
        
            [image: Learning Continuous Integration with Jenkins]
        
    
        

            
            
                
Learning Continuous Integration with Jenkins



            

            
        
    
        

                            
                    Second Edition

                
            
            
                
 

 

 

 

 

 

 

A beginner's guide to implementing Continuous Integration and Continuous Delivery using Jenkins 2

 

 

 

 

 

 

 

 

 

 

Nikhil Pathania

 

 

 

 



BIRMINGHAM - MUMBAI



            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Learning Continuous Integration with Jenkins

                
            
            
                


            

            
        
    
        

                            
                    Second Edition

                
            
            
                
Copyright © 2017 Packt Publishing

 

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

 

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 

First published: May 2016

Second edition: December 2017

 

Production reference: 1191217

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-935-6

 

www.packtpub.com





            

            
        
    
        

                            
                    Credits

                
            
            
                



	Author
Nikhil Pathania


	Copy Editor
Safis Editing





	Reviewer
Deep Mehta


	Project Coordinator
Virginia Dias





	Commissioning Editor
Vijin Boricha


	Proofreader
Safis Editing





	Acquisition Editor
Prateek Bharadwaj


	Indexer
Rekha Nair





	Content Development Editor
Sharon Raj


	Graphics
Kirk D'Penha

Tania Dutta





	Technical Editor
Khushbu Sutar


	Production Coordinator
Melwyn Dsa







 









            

            
        
    
        

                            
                    About the Author

                
            
            
                
Nikhil Pathania is currently practicing DevOps at Siemens Gamesa Renewable Energy. He started his career as an SCM engineer and later moved on to learn various tools and technologies in the fields of automation and DevOps. Throughout his career, Nikhil has promoted and implemented Continuous Integration and Continuous Delivery solutions across diverse IT projects.

He enjoys finding new and better ways to automate and improve manual processes and help teams know more about their project's SDLC by bringing valuable metrics. He is also actively working on utilizing Elastic Stack and container technologies efficiently for DevOps.

In his spare time, Nikhil likes to read, write, and meditate. He is an avid climber and also hikes and cycles.

You can reach Nikhil on twitter at @otrekpiko.

First and foremost, my beautiful wife, Karishma, without whose love and support this book would not have been possible.

Great thanks to Deep Mehta who provided me with valuable feedback throughout the writing process. 

Special thanks to the following people who worked hard to make this book the best possible experience for the readers: Sharon Raj, Khushbu Sutar, and the whole Packt Publishing technical team working in the backend.

And finally, great thanks to the Jenkins community for creating such fantastic software.



            

            
        
    
        

                            
                    About the Reviewer

                
            
            
                
Deep Mehta is a DevOps engineer who works in CI/CD automation. He is currently working in the San Francisco Bay Area. He helps clients design resilient infrastructure, identifying top microservices patterns and self-healing infrastructure automation. His area of interest is large-scale distributed computing, data science, cloud, and system administration.

I acknowledge my mom, papa, and sister for supporting me to produce this book.



            

            
        
    
        

                            
                    www.PacktPub.com

                
            
            
                
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.



https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser





            

            
        
    
        

                            
                    Customer Feedback

                
            
            
                
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1788479351.

If you'd like to join our team of regular reviewers, you can email us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!



            

            
        
    
        
            
                Table of Contents

            

            
                
                    	
            Title Page
    
    	
            Second Edition
    
    






	
            Copyright
    
    	
            Learning Continuous Integration with Jenkins
    
    	
            Second Edition
    
    










	
            Credits
    
    


	
            About the Author
    
    


	
            About the Reviewer
    
    


	
            www.PacktPub.com
    
    	
            Why subscribe?
    
    






	
            Customer Feedback
    
    


	
            Preface
    
    	
            What this book covers
    
    


	
            What you need for this book
    
    


	
            Who this book is for
    
    


	
            Conventions
    
    


	
            Reader feedback
    
    


	
            Customer support
    
    	
            Downloading the example code
    
    


	
            Downloading the color images of this book
    
    


	
            Errata
    
    


	
            Piracy
    
    


	
            Questions
    
    










	
            Concepts of Continuous Integration
    
    	
            Software Development Life Cycle
    
    	
            Requirement analysis
    
    


	
            Design
    
    


	
            Implementation
    
    


	
            Testing
    
    


	
            Evolution
    
    






	
            Waterfall model of software development
    
    	
            Disadvantages of the Waterfall model
    
    


	
            Advantages of the Waterfall model
    
    






	
            Agile to the rescue
    
    	
            The twelve agile principles
    
    


	
            How does the Agile software development process work?
    
    


	
            Advantages of Agile software development process
    
    






	
            The Scrum framework
    
    	
            Important terms used in the Scrum framework
    
    


	
            How does Scrum work?
    
    	
            Sprint Planning
    
    


	
            Sprint cycle
    
    


	
            Daily Scrum meeting
    
    


	
            Monitoring Sprint progress
    
    


	
            Sprint Review
    
    


	
            Sprint Retrospective
    
    










	
            Continuous Integration
    
    	
            Agile runs on CI
    
    


	
            Types of projects that benefit from CI
    
    






	
            Elements of CI
    
    	
            Version control system
    
    


	
            Branching strategy
    
    	
            GitFlow branching model
    
    






	
            CI tool
    
    


	
            Self-triggered builds
    
    


	
            Code coverage
    
    	
            Code coverage tools
    
    






	
            Static code analysis
    
    


	
            Automated testing
    
    


	
            Binary repository tools
    
    


	
            Automated packaging
    
    






	
            Benefits of using CI
    
    	
            Freedom from long integrations
    
    


	
            Metrics
    
    


	
            Catching issues faster
    
    


	
            Rapid development
    
    	
            Spend more time adding features
    
    










	
            Summary
    
    






	
            Installing Jenkins
    
    	
            Running Jenkins inside a servlet container
    
    	
            Prerequisites
    
    


	
            Installing Java
    
    


	
            Installing Apache Tomcat
    
    


	
            Enabling the firewall and port 8080
    
    


	
            Configuring the Apache Tomcat server
    
    


	
            Installing Jenkins on the Apache Tomcat server
    
    


	
            Installing Jenkins alone on an Apache Tomcat server
    
    


	
            Setting up the Jenkins home path
    
    






	
            Installing a standalone Jenkins server on Windows
    
    	
            Prerequisites
    
    


	
            Installing Java
    
    


	
            Installing the latest stable version of Jenkins
    
    


	
            Starting, stopping, and restarting Jenkins on Windows
    
    






	
            Installing a standalone Jenkins server on Ubuntu
    
    	
            Prerequisites
    
    


	
            Installing Java
    
    


	
            Installing the latest version of Jenkins
    
    


	
            Installing the latest stable version of Jenkins
    
    


	
            Starting, stopping, and restarting Jenkins on Ubuntu
    
    






	
            Installing a standalone Jenkins server on Red Hat Linux
    
    	
            Prerequisites
    
    


	
            Installing Java
    
    


	
            Installing the latest version of Jenkins
    
    


	
            Installing the latest stable version of Jenkins
    
    


	
            Starting, stopping, and restarting Jenkins on Red Hat Linux
    
    






	
            Running Jenkins behind a reverse proxy
    
    	
            Prerequisites
    
    


	
            Installing and configuring Nginx
    
    


	
            Configuring the firewall on a Nginx server
    
    


	
            Starting, stopping, and restarting the Nginx server
    
    


	
            Securing Nginx using OpenSSL
    
    	
            Creating an SSL certificate
    
    


	
            Creating strong encryption settings
    
    


	
            Modifying the Nginx configuration
    
    


	
            Enabling the changes and testing our Nginx setup
    
    






	
            Configuring the Jenkins server
    
    


	
            Adding reverse proxy settings to the Nginx configuration
    
    


	
            Running Nginx and Jenkins on the same machine
    
    






	
            Running Jenkins on Docker
    
    	
            Prerequisites
    
    


	
            Setting up a Docker host
    
    	
            Setting up the repository
    
    


	
            Installing Docker
    
    


	
            Installing from a package
    
    






	
            Running the Jenkins container
    
    


	
            Running a Jenkins container using a data volume
    
    	
            Testing the data volume
    
    










	
            Creating development and staging instances of Jenkins
    
    	
            Prerequisites
    
    


	
            Creating an empty data volume
    
    


	
            Copying data between data volumes
    
    


	
            Creating the development and staging instances
    
    






	
            Summary
    
    






	
            The New Jenkins
    
    	
            The Jenkins setup wizard
    
    	
            Prerequisites
    
    


	
            Unlocking Jenkins
    
    


	
            Customizing Jenkins
    
    


	
            Creating the first admin user
    
    






	
            The new Jenkins pipeline job
    
    	
            Prerequisite
    
    


	
            Creating a Jenkins pipeline job
    
    


	
            The Global Tool Configuration page
    
    


	
            Jenkins pipeline Stage View
    
    






	
            Declarative Pipeline syntax
    
    	
            Basic structure of a Declarative Pipeline
    
    	
            The node block
    
    


	
            The stage block
    
    


	
            Directives
    
    


	
            Steps
    
    










	
            Jenkins pipeline syntax utility
    
    	
            Prerequisite
    
    	
            Installing the Pipeline Maven Integration Plugin
    
    


	
            Creating a Jenkins pipeline using the pipeline syntax utility
    
    










	
            Multibranch pipeline
    
    	
            Prerequisite
    
    	
            Adding GitHub credentials inside Jenkins
    
    


	
            Configuring Webhooks on GitHub from Jenkins
    
    


	
            Create a new repository on GitHub
    
    


	
            Using a Jenkinsfile
    
    






	
            Creating a Multibranch pipeline in Jenkins
    
    


	
            Re-register the Webhooks
    
    


	
            Jenkins Multibranch pipeline in action
    
    	
            Creating a new feature branch to test the multibranch pipeline
    
    










	
            Jenkins Blue Ocean
    
    	
            Installing the Jenkins Blue Ocean plugin
    
    


	
            View your regular Jenkins pipeline in Blue Ocean
    
    


	
            Creating a pipeline in Blue Ocean
    
    






	
            Summary
    
    






	
            Configuring Jenkins
    
    	
            The Jenkins Plugin Manager
    
    	
            Updating Jenkins plugins
    
    


	
            Installing a new Jenkins plugin
    
    


	
            Uninstalling or downgrading a Jenkins plugin
    
    


	
            Configuring proxy settings in Jenkins
    
    


	
            Manually installing a Jenkins plugin
    
    






	
            Jenkins backup and restore
    
    	
            Installing the Periodic Backup plugin
    
    


	
            Configuring the Periodic Backup plugin
    
    


	
            Creating a Jenkins backup
    
    


	
            Restoring a Jenkins backup
    
    


	
            Viewing the backup and restore logs
    
    






	
            Upgrading Jenkins
    
    	
            Upgrading Jenkins running on Tomcat Server
    
    


	
            Upgrading standalone Jenkins running on Windows
    
    


	
            Upgrading standalone Jenkins running on Ubuntu
    
    


	
            Upgrading Jenkins running on a Docker container
    
    






	
            User administration
    
    	
            Enabling/disabling global security on Jenkins
    
    


	
            Enabling/disabling computers to remember user credentials
    
    


	
            Authentication methods
    
    	
            Delegating to a servlet container
    
    


	
            Jenkins' own user database
    
    


	
            LDAP
    
    


	
            Unix user/group database
    
    






	
            Creating new users inside Jenkins
    
    


	
            People page
    
    	
            User information and settings in Jenkins
    
    






	
            Authorization methods
    
    	
            Anyone can do anything
    
    


	
            Legacy mode
    
    


	
            Logged-in users can do anything
    
    


	
            Matrix-based security
    
    


	
            Project-based Matrix Authorization Strategy
    
    










	
            Summary
    
    






	
            Distributed Builds
    
    	
            Distributed build and test
    
    


	
            The Jenkins Manage Nodes page
    
    


	
            Adding Jenkins slaves &#x2013; standalone Linux machine/VMs
    
    	
            Passing environment variables to Jenkins slaves
    
    


	
            Passing tools' locations to Jenkins slaves
    
    


	
            Launching a Jenkins slave via SSH
    
    






	
            More about the active Jenkins slave
    
    


	
            Adding Jenkins slaves &#x2013; standalone Windows machine/VMs
    
    	
            Launching a Jenkins slave via Java Web Start
    
    






	
            Adding Jenkins slaves &#x2013; Docker containers
    
    	
            Prerequisites
    
    	
            Setting up a Docker server
    
    	
            Setting up the repository
    
    


	
            Installing Docker using apt-get
    
    


	
            Installing Docker using a .deb package
    
    










	
            Enabling Docker remote API
    
    	
            Modifying the docker.conf file
    
    


	
            Modifying the docker.service file
    
    






	
            Installing the Docker plugin
    
    


	
            Configuring the Docker plugin
    
    


	
            Creating a Docker image &#x2013; Jenkins slave
    
    


	
            Adding Docker container credentials in Jenkins
    
    


	
            Updating the Docker settings inside Jenkins
    
    






	
            Summary
    
    






	
            Installing SonarQube and Artifactory
    
    	
            Installing and configuring SonarQube
    
    	
            Installing Java
    
    


	
            Downloading the SonarQube package
    
    


	
            Running the SonarQube application
    
    


	
            Resetting the default credentials and generating a token
    
    


	
            Creating a project inside SonarQube
    
    


	
            Installing the build breaker plugin for SonarQube
    
    


	
            Creating quality gates
    
    


	
            Updating the default quality profile
    
    


	
            Installing the SonarQube plugin in Jenkins
    
    


	
            Configuring the SonarQube plugin in Jenkins
    
    






	
            Installing and configuring Artifactory
    
    	
            Installing Java
    
    


	
            Downloading the Artifactory package
    
    


	
            Running the Artifactory application
    
    


	
            Resetting the default credentials and generating an API key
    
    


	
            Creating a repository in Artifactory
    
    


	
            Adding Artifactory credentials inside Jenkins
    
    


	
            Installing the Artifactory plugin in Jenkins
    
    


	
            Configuring the Artifactory Plugin
    
    






	
            Summary
    
    






	
            Continuous Integration Using Jenkins
    
    	
            Jenkins CI design&#xA0;&#xA0;
    
    	
            Branching strategy
    
    	
            The master branch
    
    


	
            The integration branch
    
    


	
            The feature branch
    
    






	
            The CI pipeline
    
    


	
            Toolset for CI
    
    






	
            Creating the CI pipeline
    
    	
            Creating a new repository on GitHub
    
    


	
            Using the SonarQube scanner for Maven
    
    


	
            Writing the Jenkinsfile for CI
    
    	
            Spawning a Docker container &#x2013; build agent
    
    


	
            Downloading the latest source code from VCS
    
    


	
            Pipeline code to perform the build and unit test
    
    


	
            Pipeline code to perform static code analysis
    
    


	
            Pipeline code to perform integration testing
    
    


	
            Pipeline code to publish built artifacts to Artifactory
    
    


	
            Combined CI pipeline code
    
    






	
            Using a Jenkinsfile
    
    


	
            Creating a Multibranch Pipeline in Jenkins
    
    


	
            Re-registering the Webhooks
    
    






	
            Continuous Integration in action
    
    	
            Viewing static code analysis in SonarQube
    
    


	
            Accessing SonarQube analysis right from Jenkins
    
    


	
            Viewing artifacts in Artifactory
    
    


	
            Failing the build when quality gate criteria&#xA0;are not met
    
    






	
            Summary
    
    






	
            Continuous Delivery Using Jenkins
    
    	
            Jenkins CD design
    
    	
            Branching strategy
    
    	
            The release branch
    
    






	
            CD pipeline
    
    


	
            Toolset for CD
    
    






	
            Creating a Docker image &#x2013; performance testing
    
    	
            Adding Docker container credentials in Jenkins
    
    


	
            Updating the Docker settings inside Jenkins
    
    






	
            Creating a performance test using JMeter
    
    	
            Installing Java
    
    


	
            Installing Apache JMeter
    
    


	
            Starting JMeter
    
    


	
            Creating a performance test case
    
    	
            Creating a thread group
    
    


	
            Creating a sampler
    
    


	
            Adding a listener
    
    










	
            The CD pipeline
    
    	
            Writing the Jenkinsfile for CD
    
    	
            Revisiting the pipeline code for CI
    
    


	
            Pipeline code to stash the build artifacts
    
    


	
            Spawning a Docker container&#xA0;&#x2013; performance testing
    
    


	
            Pipeline code to start Apache Tomcat
    
    


	
            Pipeline code to deploy build artifacts
    
    


	
            Pipeline code to run performance testing
    
    


	
            Pipeline code to promote build artifacts in Artifactory
    
    


	
            Combined CD pipeline code
    
    










	
            CD in action
    
    


	
            Summary
    
    






	
            Continuous Deployment Using Jenkins
    
    	
            What is Continuous Deployment?
    
    	
            How Continuous Deployment is different from Continuous Delivery
    
    


	
            Who needs Continuous Deployment?
    
    






	
            Creating a production server
    
    	
            Installing Vagrant
    
    


	
            Installing VirtualBox
    
    


	
            Creating a VM using Vagrant
    
    	
            Creating a Vagrantfile
    
    


	
            Spawning a VM using Vagrant
    
    


	
            Adding production server credentials inside Jenkins
    
    










	
            Installing a Jenkins slave on a production server
    
    


	
            Creating a Jenkins Continuous Deployment pipeline
    
    	
            A revisit to the pipeline code for CD
    
    


	
            Pipeline code for a production Jenkins slave
    
    


	
            Pipeline code to download binaries from Artifactory
    
    


	
            Combined Continuous Deployment pipeline code
    
    


	
            Update the Jenkinsfile
    
    






	
            Continuous Delivery in action
    
    


	
            Summary
    
    






	
            Supporting Tools and Installation Guide
    
    	
            Exposing your localhost server to the internet
    
    


	
            Installing Git on Windows/Linux&#xA0;
    
    	
            Installing Git on Windows
    
    


	
            Installing Git on Linux
    
    












                
            

            
        
    
        

                            
                    Preface

                
            
            
                
In the past few years, the agile model of software development has seen a considerable amount of growth around the world. There is massive demand for a software delivery solution that is fast and flexible to frequent amendments, especially in the e-commerce sector. As a result, the Continuous Integration and Continuous Delivery methodologies are gaining popularity.

Whether small or big, all types of project gain benefits, such as early issue detection, avoiding lousy code into production, and faster delivery, which leads to an increase in productivity.

This book, Learning Continuous Integration with Jenkins Second Edition, serves as a step-by-step guide to setting up a Continuous Integration, Continuous Delivery, and Continuous Deployment system using hands-on examples. The book is 20% theory and 80% practical. It starts by explaining the concept of Continuous Integration and its significance in the Agile world, with a complete chapter dedicated to this. Users then learn to configure and set up Jenkins, followed by implementing Continuous Integration and Continuous Delivery using Jenkins. There is also a small chapter on Continuous Deployment, which talks primarily about the difference between Continuous Delivery and Continuous Deployment.

 



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Concepts of Continuous Integration, gives an account of how some of the most popular and widely used software development methodologies gave rise to Continuous Integration. This is followed by a detailed explanation of the various requirements and best practices to achieve Continuous Integration.

Chapter 2, Installing Jenkins, is a step-by-step guide all about installing Jenkins across various platforms, including Docker.

Chapter 3, The New Jenkins, provides an overview of how the new Jenkins 2.x looks and feels, with an in-depth explanation of its essential constituents. It also introduces readers to the new features added in Jenkins 2.x.

Chapter 4, Configuring Jenkins, focuses on accomplishing some basic Jenkins administration tasks.

Chapter 5, Distributed Builds, explores how to implement a build farm using Docker. It also talks about adding standalone machines as Jenkins slaves.

Chapter 6, Installing SonarQube and Artifactory, covers installing and configuring SonarQube and Artifactory for CI.

Chapter 7, Continuous Integration Using Jenkins, takes you through a Continuous Integration design and the means to achieve it using Jenkins, in collaboration with some other DevOps tools.

Chapter 8, Continuous Delivery Using Jenkins, outlines a Continuous Delivery design and the means to achieve it using Jenkins, in collaboration with some other DevOps tools.

Chapter 9, Continuous Deployment Using Jenkins, explains the difference between Continuous Delivery and Continuous Deployment. It also features a step-by-step guide to implementing Continuous Deployment using Jenkins.

Appendix, Supporting Tools and Installation Guide, takes you through the steps required to make your Jenkins server accessible over the internet and the installation guide for Git.



            

            
        
    
        

                            
                    What you need for this book

                
            
            
                
To be able to follow everything described in the book, you will need a machine with the following configurations:


	Operating systems:

	Windows 7/8/10

	Ubuntu 14 and later





	Hardware requirements:

	A machine with a minimum 4 GB memory and a multicore processor





	Other requirements:

	A GitHub account (public or private)









            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
This book is aimed at readers with little or no previous experience with Agile or Continuous Integration and Continuous Delivery. It serves as a great starting point for anyone who is new to this field and would like to leverage the benefits of Continuous Integration and Continuous Delivery to increase productivity and reduce delivery time.

Build and release engineers, DevOps engineers, (Software Configuration Management) SCM engineers, developers, testers, and project managers can all benefit from this book.

Readers who are already using Jenkins for Continuous Integration can learn to take their project to the next level, which is Continuous Delivery.

The current edition of the book is a complete reboot of its predecessor. Readers of the first edition can take advantage of some of the new stuff discussed in the current edition, such as Pipeline as Code, Multibranch Pipelines, Jenkins Blue Ocean, distributed build farms using Docker, and more.



            

            
        
    
        

                            
                    Conventions

                
            
            
                
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning. Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This will download a .hpi file on your system."

A block of code is set as follows:

stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

The extra "\" used in some of the commands is used to only indicate that the command continues in the next line. Any command-line input or output is written as follows:

   cd /tmp
   wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
   v8.5.16/bin/apache-tomcat-8.5.16.tar.gz



New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "From the Jenkins dashboard, click on the Manage Jenkins | Plugin Manager | Available tab."

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Reader feedback

                
            
            
                
Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.



            

            
        
    
        

                            
                    Customer support

                
            
            
                
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.



            

            
        
    
        

                            
                    Downloading the example code

                
            
            
                
You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you. You can download the code files by following these steps:


	Log in or register to our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Downloading the color images of this book

                
            
            
                
We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf.



            

            
        
    
        

                            
                    Errata

                
            
            
                
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title. To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.



            

            
        
    
        

                            
                    Piracy

                
            
            
                
Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the internet, please provide us with the location address or website name immediately so that we can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected pirated material. We appreciate your help in protecting our authors and our ability to bring you valuable content.



            

            
        
    
        

                            
                    Questions

                
            
            
                
If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.



            

            
        
    
        

                            
                    Concepts of Continuous Integration

                
            
            
                
We will begin this chapter with an overview of the two primary software development methodologies of the era: Waterfall, and agile. An understanding of their concepts and implications will help us answer how Continuous Integration (CI) came into existence.

Next, we will try to understand the concept behind CI and the elements that make it. Reading through the topics, you will see how CI helps projects go agile. After completing this chapter, you should be able to:


	Describe how CI came into existence.

	Define what CI is.

	Describe the elements of CI.





            

            
        
    
        

                            
                    Software Development Life Cycle

                
            
            
                
For those of you who are not familiar with the term: Software Development Life Cycle, let us try to understand it.

The Software Development Life Cycle, also sometimes referred to as SDLC for short, is the process of planning, developing, testing, and deploying software.

Teams follow a sequence of phases, and each phase uses the outcome of its previous phase, as shown in the following diagram:



Software Development Life Cycle

Let's take a look at the SDLC phases in detail.



            

            
        
    
        

                            
                    Requirement analysis

                
            
            
                
This is the first stage of the cycle. Here, the business team (mostly comprised of business analysts) perform a requirement analysis of their project's business needs. The requirements can be internal to the organization, or external, from a customer. This study involves finding the nature and scope of the requirements. With the gathered information, there is a proposal to either improve the system or create a new one. The project cost gets decided, and benefits are laid out. Then the project goals are defined.



            

            
        
    
        

                            
                    Design

                
            
            
                
The second phase is the design phase. Here, the system architects and the system designers formulate the desired features of the software solution and create a project plan. This plan may include process diagrams, overall interface, and layout design, along with a vast set of documentation.



            

            
        
    
        

                            
                    Implementation

                
            
            
                
The third phase is the implementation phase. Here, the project manager creates and assigns work to the developers. The developers develop the code depending on the tasks and goals defined in the design phase. This phase may last from a few months to a year, depending on the project.



            

            
        
    
        

                            
                    Testing

                
            
            
                
The fourth phase is the testing phase. When all the decided features are developed, the testing team takes over. For the next few months, all features are thoroughly tested. Every module of the software is collected and tested. Defects are raised if any bugs or errors occur while testing. In the event of a failure, the development team quickly acts to resolve the failures. The thoroughly tested code is then deployed into the production environment.



            

            
        
    
        

                            
                    Evolution

                
            
            
                
The last phase is the evolution phase or the maintenance phase. Feedback from the users/customers is analyzed, and the whole cycle of developing, testing, and releasing the new features and fixes in the form of patches or upgrades repeats.



            

            
        
    
        

                            
                    Waterfall model of software development

                
            
            
                
One of the most famous and widely used software development processes is the Waterfall model. The Waterfall model is a sequential software development process. It was derived from the manufacturing industry. One can see a highly structured flow of processes that run in one direction. At the time of its creation, there were no other software development methodologies, and the only thing the developers could have imagined was the production line process that was simple to adapt for software development.

The following diagram illustrates the Waterfall model of software development:



Waterfall model

The Waterfall approach is simple to understand, as the steps involved are similar to that of the SDLC.

First, there is a requirement analysis phase, which is followed by the designing phase. There is a considerable time spent on the analysis and the designing part. And once it's over, there are no further additions or deletions. In short, once the development begins, there is no modification allowed in the design.

Then comes the implementation phase, where the actual development takes place. The development cycle can range from three months to six months. During this time, the testing team is usually free. When the development cycle is completed, a whole week's time is planned for performing the integration of the source code. During this time, many integration issues pop up and are fixed immediately. This stage is followed by the testing phase.

When the testing starts, it goes on for another three months or more, depending on the software solution. After the testing completes successfully, the source code is then deployed in the production environment. For this, a day or so is again planned to carry out the deployment in production. There is a possibility that some deployment issues may pop up. When the software solution goes live, teams get feedback and may also anticipate issues.

The last phase is the maintenance phase. Feedback from the users/customers is analyzed, and the whole cycle of developing, testing, and releasing new features and fixes in the form of patches or upgrades repeats.

There is no doubt that the Waterfall model worked remarkably for decades. However, flaws did exist, but they were simply ignored for a long time. Since, way back then software projects had ample time and resources to get the job done.

However, looking at the way software technologies have changed over the past few years, we can easily say that the Waterfall model won't suit the requirements of the current world.



            

            
        
    
        

                            
                    Disadvantages of the Waterfall model

                
            
            
                
The following are some of the disadvantages of the Waterfall model:


	Working software is produced only at the end of the SDLC, which lasts for a year or so in most cases.

	There is a huge amount of uncertainty.

	It is not suitable for projects where the demand for new features is too frequent. For example, e-commerce projects.

	Integration is performed only after the entire development phase is complete. As a result, integration issues are found at a much later stage and in large quantities.

	There is no backward traceability.

	It's difficult to measure progress within stages.





            

            
        
    
        

                            
                    Advantages of the Waterfall model

                
            
            
                
By looking at the disadvantages of the Waterfall model, we can say that it's mostly suitable for projects where:


	The requirements are well documented and fixed.

	There is enough funding available to maintain a management team, a testing team, a development team, a build and release team, a deployment team, and so on.

	The technology is fixed, and not dynamic.

	There are no ambiguous requirements. And most importantly, they don't pop up during any other phase apart from the requirement analysis phase.





            

            
        
    
        

                            
                    Agile to the rescue

                
            
            
                
The name Agile rightly suggests quick and easy. Agile is a collection of methods where software is developed through collaboration among self-organized teams. The principles behind agile are incremental, quick, flexible software development, and it promotes adaptive planning.

The Agile software development process is an alternative to the traditional software development processes discussed earlier.



            

            
        
    
        

                            
                    The twelve agile principles

                
            
            
                
The following are the twelve principles of the agile model:


	Customer satisfaction through early and continuous delivery of useful software.

	Welcome changing requirements, even late in development.

	Working software is frequently delivered (in weeks, rather than months).

	Close daily cooperation between businesses, people, and developers.

	Projects are built around motivated individuals, who should be trusted.

	Face-to-face conversation is the best form of communication (co-location).

	Working software is the principal measure of progress.

	Sustainable development—able to maintain a constant pace.

	Continuous attention to technical excellence and good design.

	Simplicity—the art of maximizing the amount of work not done—is essential.

	Self-organizing teams.

	Regular adaptation to changing circumstances.



To know more about the Agile principles visit the link: http://www.agilemanifesto.org.

The twelve principles of Agile software development indicate the expectations of the current software industry and its advantages over the Waterfall model.



            

            
        
    
        

                            
                    How does the Agile software development process work?

                
            
            
                
In the Agile software development process, the whole software application is split into multiple features or modules. These features are delivered in iterations. Each iteration lasts for three weeks, and involves cross-functional teams that work simultaneously in various areas, such as planning, requirement analysis, designing, coding, unit testing, and acceptance testing.

As a result, no person sits idle at any given point in time. This is quite different from the Waterfall model wherein while the development team is busy developing the software, the testing team, the production team, and everyone else is idle or underutilized. The following diagram illustrates the Agile model of software development:



Agile methodology

From the preceding diagram, we can see that there is no time spent on requirement analysis or design. Instead, a very high-level plan is prepared, just enough to outline the scope of the project.

The team then goes through a series of iterations. Iteration can be classified as time frames, each lasting for a month or even a week in some mature projects. In this duration, a project team develops and tests features. The goal is to develop, test, and release a feature in a single iteration. At the end of the iteration, the feature goes for a demo. If the clients like it, then the feature goes live. But, if it gets rejected, the feature is taken as a backlog, re-prioritized, and again worked upon in the consecutive iteration.

There is also a possibility of parallel development and testing. In a single iteration, one can develop and test more than one feature in parallel.



            

            
        
    
        

                            
                    Advantages of Agile software development process

                
            
            
                
Let us see some of the advantages of the Agile software development process:


	Functionality can be developed and demonstrated rapidly: In an agile process, the software project is divided by features, and each feature is called as a backlog. The idea is to develop either a single or a set of features right from its conceptualization till its deployment, in a week or a month. This puts at least a feature or two on the customer's plate, which they can then start using.

	Resource requirement is less: In Agile, there are no separate development and testing teams. Neither is there a build or release team, or a deployment team. In Agile, a single project team contains around eight members. Each member of the team is capable of doing everything.

	Promotes teamwork and cross-training: Since there is a small team of about eight members, the team members switch their roles in turns and learn from each other's experience.

	Suitable for projects where requirements frequently change: In an Agile model of software development, the complete software is divided into features, and each feature is developed and delivered in a short time span. Hence, changing the feature, or even completely discarding it, doesn't affect the whole project.

	Minimalistic documentation: This methodology focuses primarily on delivering working software quickly, rather than creating huge documents. Documentation exists, but it's limited to the overall functionality.

	Little or no planning required: Since features are developed one after the other in a short period, there is no need for extensive planning.

	Parallel development: Iteration consists of one or more features developed in sequence, or even in parallel.





            

            
        
    
        

                            
                    The Scrum framework

                
            
            
                
Scrum is a framework for developing and sustaining complex products that are based on the Agile software development process. It is more than a process; it's a framework with certain roles, tasks, and teams. Scrum was written by Ken Schwaber and Jeff Sutherland; together, they created The Scrum Guide.

In a Scrum framework, the development team decides on how to develop a feature. This is because the team knows best about the problem they are presented with. I assume most of the readers are happy after reading this.

Scrum relies on a self-organizing and cross-functional team. The Scrum team is self-organizing; hence, there is no overall team leader who decides which person will do which task, or how a problem will be solved.



            

            
        
    
        

                            
                    Important terms used in the Scrum framework

                
            
            
                
The following are the important terms used in the Scrum framework:


	The Sprint: Sprint is a timebox during which a usable and potentially releasable product gets created. A new Sprint starts immediately after the conclusion of the previous Sprint. A Sprint may last between two weeks to one month, depending on the project's command over Scrum.

	Product Backlog: The Product Backlog is a list of all the required features in a software solution. The list is dynamic. That is, now and then the customers or team members add or delete items to the Product Backlog.

	Sprint Backlog: The Sprint Backlog is the set of Product Backlog items, selected for the Sprint.

	Increment: The Increment is the sum of all the Product Backlog items completed during a Sprint and the value of the Increments from all the previous Sprints.

	The Development Team: The Development Team does the work of delivering a releasable set of features named Increment at the end of each Sprint. Only members of the Development Team create the Increment. Development Teams are empowered by the organization to organize and manage their work. The resulting synergy optimizes the Development Team's overall efficiency and effectiveness.

	The Product Owner: The Product Owner is a mediator between the Scrum Team and everyone else. He is the front face of the Scrum Team and interacts with customers, infrastructure teams, admin teams, everyone involved in the Scrum, and so on.

	The Scrum Master: The Scrum Master is responsible for ensuring Scrum is understood and enacted. Scrum Masters do this by ensuring that the Scrum Team follows the Scrum theory, practices, and rules.





            

            
        
    
        

                            
                    How does Scrum work?

                
            
            
                
The Product Owner, the Scrum Master, and the Scrum Team together follow a set of stringent procedures to deliver the software features. The following diagram explains the Scrum development process:



Scrum methodology

Let us see some of the important aspects of the Scrum software development process that the team goes through.



            

            
        
    
        

                            
                    Sprint Planning

                
            
            
                
Sprint Planning is an opportunity for the Scrum Team to plan the features in the current Sprint cycle. The plan is created mainly by the developers. Once the plan is created, it is explained to the Scrum Master and the Product Owner. The Sprint Planning is a timeboxed activity, and it is usually around eight hours in total for a one-month Sprint cycle. It is the responsibility of the Scrum Master to ensure everyone participates in the Sprint Planning activity.

In the meeting, the Development Team takes into consideration the following items:


	The number of Product Backlogs to be worked on (both new and the old ones from the last Sprint).

	Team performances in the last Sprint.

	Projected capacity of the Development Team.





            

            
        
    
        

                            
                    Sprint cycle

                
            
            
                
During the Sprint cycle, the developers simply work on completing the backlogs decided in the Sprint Planning. The duration of a Sprint may last from two weeks to one month, depending on the number of backlogs.



            

            
        
    
        

                            
                    Daily Scrum meeting

                
            
            
                
This happens on a daily basis. During the Scrum meeting, the Development Team discusses what was accomplished yesterday, and what will be accomplished today. They also discuss the things that are stopping them from achieving their goal. The Development Team does not attend any other meeting or discussion apart from the Scrum meeting.



            

            
        
    
        

                            
                    Monitoring Sprint progress

                
            
            
                
The Daily Scrum is a good opportunity for a team to measure its progress. The Scrum Team can track the total work remaining, and by doing so, they can estimate the likelihood of achieving the Sprint Goal.



            

            
        
    
        

                            
                    Sprint Review

                
            
            
                
In the Sprint Review, the Development Team demonstrates the features that have been accomplished. The Product Owner updates on the Product Backlog status to date. The Product Backlog list is updated depending on the product performance or usage in the market. Sprint Review is a four-hour activity altogether for a one-month Sprint.



            

            
        
    
        

                            
                    Sprint Retrospective

                
            
            
                
In this meeting, the team discusses the things that went well, and the things that need improvement. The team then decides the points on which it has to improve to perform better in the upcoming Sprint. This meeting usually occurs after the Sprint Review and before the Sprint Planning.



            

            
        
    
        

                            
                    Continuous Integration

                
            
            
                
Continuous Integration (CI) is a software development practice where developers frequently integrate their work with the project's Integration branch and create a build.

Integration is the act of submitting your private work (modified code) to the common work area (the potential software solution). This is technically done by merging your private work (personal branch) with the common work area (Integration branch). Or we can say, pushing your private branch to the remote branch.

CI is necessary to bring out issues encountered during the integration as early as possible. This can be understood from the following diagram, which depicts various issues encountered during a single CI cycle.

A build failure can occur due to either an improper code or a human error while doing a build (assuming that the tasks are done manually). An integration issue can occur if the developers do not rebase their local copy of code frequently with the code on the Integration branch. A testing issue can occur if the code does not pass any of the unit or integration test cases.

In the event of an issue, the developer has to modify the code to fix it:



CI process



            

            
        
    
        

                            
                    Agile runs on CI

                
            
            
                
The Agile software development process focuses mainly on fast delivery, and CI helps Agile in achieving that speed. But how does CI do that? Let us understand by using a simple case.

Developing a feature involves many code changes, and between every code change, there are a set of tasks to perform, such as checking-in the code, polling the version control system for changes, building the code, unit testing, integration, building on the integrated code, integration testing, and packaging. In a CI environment, all these steps are made fast and error-free by using a CI tool such as Jenkins. 

Adding notifications makes things even faster. The sooner the team members are aware of a build, integration, or deployment failure, the quicker they can act. The following diagram depicts all the steps involved in a CI process:



CI process with notifications

In this way, the team quickly moves from feature to feature. In simple terms, the agility of the agile software development is greatly due to CI.



            

            
        
    
        

                            
                    Types of projects that benefit from CI

                
            
            
                
The amount of code written for the embedded systems presents inside a car is more than the one present inside a fighter jet. In today's world, embedded software is inside every product, modern or traditional. Be it cars, TVs, refrigerators, wrist watches, or bikes; all have little or more software-dependent features. Consumer products are becoming smarter day by day. Nowadays, we can see a product being marketed more using its smart and intelligent features than its hardware capabilities. For example, an air conditioner is marketed by its wireless control features, and TVs are being marketed by their smart features, like embedded web browsers, and so on.

The need to market new products has increased the complexity of products. This increase in software complexity had brought the Agile software development and CI methodologies to the limelight, though there were times when agile software development was used by a team of no more than 30-40 people that were working on a simple project. Almost all types of projects benefit from CI: mostly the web-based projects, for example, the e-commerce websites, and mobile phone apps.

CI and agile methodologies are used in projects that are based on Java, .NET, Ruby on Rails, and every other programming language present today. The only place where you will see it not being used is in the legacy systems. However, even they are going agile. Projects based on SAS, Mainframes; all are trying to benefit from CI.



            

            
        
    
        

                            
                    Elements of CI

                
            
            
                
Let us see the important elements of the CI process.



            

            
        
    
        

                            
                    Version control system

                
            
            
                
This is the most basic and the most important requirement for implementing CI. A Version Control System, sometimes also called a Revision Control System, is a tool to manage your code history. It can be centralized or distributed. Some of the famous centralized version control systems are SVN and IBM Rational ClearCase. In the distributed segment, we have tools like GIT and Mercurial.

Ideally, everything that is required to build software must be version controlled. A version control tool offers many features, such as tagging, branching, and so on.



            

            
        
    
        

                            
                    Branching strategy

                
            
            
                
When using a Version Control System, keep the branching to a minimum. A few companies have only one main branch, and all the development activity happens on that. Nevertheless, most of the companies follow some branching strategies. This is because there is always a possibility that a part of the team may work on one release, while others may work on another release. Other times, there is a need to support the older release versions. Such scenarios always lead companies to use multiple branches.

GitFlow is another way of managing your code using multiple branches. In the following method, the Master/Production branch is kept clean and contains only the releasable, ready-to-ship code. All the development happens on the Feature branches, with the Integration branch serving as a common place to integrate all the features. The following diagram is a moderate version of the GitFlow:



Branching strategy



            

            
        
    
        

                            
                    GitFlow branching model

                
            
            
                
The following diagram illustrates the full version of GitFlow. We have a Master/Production branch that contains only the production-ready code. The Feature branches are where all of the development takes place. The Integration branch is where the code gets integrated and tested for quality. In addition to that, we have release branches that are pulled out from the Integration branch as and when there is a stable release. All bug fixes related to a release happen in the Release branches. There is also a Hotfix branch that is pulled out of the Master/Production branch as and when there is a need for a hotfix:





GitFlow branching strategy



            

            
        
    
        

                            
                    CI tool

                
            
            
                
What is a CI tool? Well, it is nothing more than an orchestrator. A CI tool is at the center of the CI system, connected to the Version Control System, build tools, Binary Repository Manager tool, testing and production environments, quality analysis tool, test automation tool, and so on. There are many CI tools: Build Forge, Bamboo, and TeamCity, to name a few. But the prime focus of our book is Jenkins:



Centralized CI server

A CI tool provides options to create pipelines. Each pipeline has its own purpose. There are pipelines to take care of CI. Some take care of testing; some take care of deployments, and so on. Technically, a pipeline is a flow of jobs. Each job is a set of tasks that run sequentially. Scripting is an integral part of a CI tool that performs various kinds of tasks. The tasks may be as simple as copying a folder/file from one location to the other, or they can be complex Perl scripts to monitor machines for file modifications. Nevertheless, the script is getting replaced by the growing number of plugins available in Jenkins. Now you need not script to build a Java code; there are plugins available for it. All you need to do is install and configure a plugin to get the job done. Technically, plugins are nothing but small modules written in Java. They remove the burden of scripting from the developer's head. We will learn more about pipelines in the upcoming chapters.



            

            
        
    
        

                            
                    Self-triggered builds

                
            
            
                
The next important thing to understand is the self-triggered automated build. Build automation is simply a series of automated steps that compile the code and generate executables. The build automation can take the help of build tools like Ant and Maven. The self-triggered automated build is the most important part of a CI system. There are two main factors that call for an automated build mechanism:


	Speed.

	Catching integration or code issues as early as possible.



There are projects where 100 to 200 builds happen per day. In such cases, speed plays an important factor. If the builds are automated, then it can save a lot of time. Things become even more interesting if the triggering of the build is made self-driven, without any manual intervention. Auto-triggered build on every code change further saves time.

When builds are frequent and fast, the probability of finding an error (build error, compilation error, or integration error) in the framework of SDLC is higher and faster:



Probability of error versus build graph



            

            
        
    
        

                            
                    Code coverage

                
            
            
                
Code coverage is the amount of code (in percentage) that is covered by your test case. The metrics that you might see in your coverage reports could be more or less as defined in the following table:




	
Type of coverage


	
Description





	
Function


	
The number of functions called out of the total number of functions defined





	
Statement


	
The number of statements in the program that are truly called out of the total number





	
Branches


	
The number of branches of the control structures executed





	
Condition


	
The number of Boolean sub-expressions that are being tested for a true and a false value





	
Line


	
The number of lines of source code that are being tested out of the total number of lines present inside the code







Types of code coverage

This coverage percentage is calculated by dividing the number of items tested by the number of items found. The following screenshot illustrates the code coverage report from  SonarQube:



Code coverage report on SonarQube



            

            
        
    
        

                            
                    Code coverage tools

                
            
            
                
You might find several options to create coverage reports, depending on the language(s) you use. Some of the popular tools are listed as follows:




	
Language


	
Tools





	
Java


	
Atlassian Clover, Cobertura, JaCoCo





	
C#/.NET


	
OpenCover, dotCover





	
C++


	
OpenCppCoverage, gcov





	
Python


	
Coverage.py





	
Ruby


	
SimpleCov









            

            
        
    
        

                            
                    Static code analysis

                
            
            
                
Static code analysis, also commonly called white-box testing, is a form of software testing that looks for the structural qualities of the code. For example, it answers how robust or maintainable the code is. Static code analysis is performed without actually executing programs. It is different from the functional testing, which looks into the functional aspects of software, and is dynamics.

Static code analysis is the evaluation of software's inner structures. For example, is there a piece of code used repetitively? Does the code contain lots of commented lines? How complex is the code? Using the metrics defined by a user, an analysis report is generated that shows the code quality regarding maintainability. It doesn't question the code's functionality.

Some of the static code analysis tools like SonarQube come with a dashboard, which shows various metrics and statistics of each run. Usually, as part of CI, the static code analysis is triggered every time a build runs. As discussed in the previous sections, static code analysis can also be included before a developer tries to check-in his code. Hence, a code of low quality can be prevented right at the initial stage.

They support many languages, such as Java, C/C++, Objective-C, C#, PHP, Flex, Groovy, JavaScript, Python, PL/SQL, COBOL, and so on. The following screenshots illustrate the static code analysis report using SonarQube:



Static code analysis report



Static code analysis report



            

            
        
    
        

                            
                    Automated testing

                
            
            
                
Testing is an important part of an SDLC. To maintain quality software, it is necessary that the software solution goes through various test scenarios. Giving less importance to testing can result in customer dissatisfaction and a delayed product.

Since testing is a manual, time-consuming, and repetitive task, automating the testing process can significantly increase the speed of software delivery. However, automating the testing process is a bit more difficult than automating the build, release, and deployment processes. It usually takes a lot of effort to automate nearly all the test cases used in a project. It is an activity that matures over time.

Hence, when beginning to automate the testing, we need to take a few factors into consideration. Test cases that are of great value and easy to automate must be considered first. For example, automate the testing where the steps are the same, although they run with different data every time. Further, automate the testing where software functionality is tested on various platforms. Also, automate the testing that involves a software application running with different configurations.

Previously, the world was mostly dominated by desktop applications. Automating the testing of a GUI-based system was quite difficult. This called for scripting languages where the manual mouse and keyboard entries were scripted and executed to test the GUI application. Nevertheless, today the software world is completely dominated by web and mobile-based applications, which are easy to test through an automated approach using a test automation tool.

Once a code is built, packaged, and deployed, testing should run automatically to validate the software. Traditionally, the process followed is to have an environment for SIT, UAT, PT, and pre-production. First, the release goes through SIT, which stands for system integration testing. Here, testing is performed on an integrated code to check its functionality altogether. If the integration testing is passed, the code is deployed to the next environment, which is UAT, where it goes through user acceptance testing, and then it can lastly be deployed in PT, where it goes through performance testing. In this way, the testing is prioritized.

It is not always possible to automate all the testing. But, the idea is to automate whatever testing that is possible. The preceding method discussed requires the need to have many environments and also a higher number of automated deployments into various environments. To avoid this, we can go for another method where there is only one environment where the build is deployed, and then the basic tests are run, and after that, long-running tests are triggered manually.



            

            
        
    
        

                            
                    Binary repository tools

                
            
            
                
As part of the SDLC, the source code is continuously built into binary artifacts using CI. Therefore, there should be a place to store these built packages for later use. The answer is, using a binary repository tool. But what is a binary repository tool?

A binary repository tool is a Version Control System for binary files. Do not confuse this with the Version Control System discussed in the previous sections. The former is responsible for versioning the source code, and the latter is for binary files, such as .rar, .war, .exe, .msi, and so on. Along with managing built artifacts, a binary repository tool can also manage 3-party binaries that are required for a build. For example, the Maven plugin always downloads the plugins required to build the code into a folder. Rather than downloading the plugins again and again, they can be managed using a repository tool:



Repository tool

From the above illustration, you can see as soon as a build gets created and passes all the checks, the built artifact is uploaded to the binary repository tool. From here, the developers and testers can manually pick them, deploy them, and test them. Or, if the automated deployment is in place, then the built artifacts are automatically deployed to the respective test environment. So, what're the advantages of using a binary repository?

A binary repository tool does the following:


	Every time a built artifact gets generated, it is stored in a binary repository tool. There are many advantages of storing the build artifacts. One of the most important advantages is that the build artifacts are located in a centralized location from where they can be accessed when needed.

	It can store third-party binary plugins, modules that are required by the build tools. Hence, the build tool need not download the plugins every time a build runs. The repository tool is connected to the online source and keeps updating the plugin repository.

	It records what, when, and who created a build package.

	It provides a staging like environments to manage releases better. This also helps in speeding up the CI process.

	In a CI environment, the frequency of build is too high, and each build generates a package. Since all the built packages are in one place, developers are at liberty to choose what to promote and what not to promote in higher environments.





            

            
        
    
        

                            
                    Automated packaging

                
            
            
                
There is a possibility that a build may have many components. Let's take, for example, a build that has a .rar file as an output. Along with that, it has some Unix configuration files, release notes, some executables, and also some database changes. All of these different components need to be together. The task of creating a single archive or a single media out of many components is called packaging. Again, this can be automated using the CI tools and can save a lot of time.



            

            
        
    
        

                            
                    Benefits of using CI

                
            
            
                
The following are some of the benefits of using CI. The list is brief, and not comprehensive.



            

            
        
    
        

                            
                    Freedom from long integrations

                
            
            
                
Integrating the code rarely, as seen in the Waterfall model, can lead to merge hell. It is a situation wherein teams spend weeks resolving the merge issues.

In contrast to this, integrating every single commit on your Feature branch with the Integration branch and testing it for issues (CI) allows you to find integration issues as early as possible.



            

            
        
    
        

                            
                    Metrics

                
            
            
                
Tools like Jenkins, SonarQube, Artifactory, and GitHub allow you to generate trends over a period. All of these trends can help project managers and teams to make sure the project is heading in the right direction and with the right pace.



            

            
        
    
        

                            
                    Catching issues faster

                
            
            
                
This is the most important advantage of having a carefully implemented CI system. Any integration issue or merge issue gets caught early. The CI system has the facility to send notification as soon as the build fails.



            

            
        
    
        

                            
                    Rapid development

                
            
            
                
From a technical perspective, CI helps teams work more efficiently. Projects that use CI follow an automatic and continuous approach while building, testing, and integrating their code. This results in a faster development.

Developers spend more time developing their code and zero time building, packaging, integrating, and deploying it, as everything is automated. This also helps teams that are geographically distributed to work together. With a good software configuration management process in place, people can work on widely distributed teams.



            

            
        
    
        

                            
                    Spend more time adding features

                
            
            
                
In the past, build and release activities were managed by the developers, along with the regular development work. It was followed by a trend of having separate teams that handled the build, release, and deployment activities. And it didn't stop there; this new model suffered from communication issues and a lack of coordination among developers, release engineers, and testers. However, using CI, all the build, release, and deployment work gets automated. Therefore, the development team need not worry about anything other than developing features. In most cases, even the complete testing is automated. Therefore by using a CI process, the development team can spend more time developing the code.



            

            
        
    
        

                            
                    Summary

                
            
            
                
"Behind every successful agile project, there is a Continuous Integration process."

In this chapter, we took a glance through the history of software engineering processes. We learned about CI and the elements that make it.

The various concepts and terminologies discussed in this chapter form a foundation for the upcoming chapters. Without these, the coming chapters are mere technical know-how.

In the next chapter, we will learn how to install Jenkins on various platforms.



            

            
        
    
        

                            
                    Installing Jenkins

                
            
            
                
This chapter is all about installing Jenkins across various platforms, and more. After completing this chapter, you should be able to do the following:


	Run Jenkins on a servlet container (Apache Tomcat)

	Run Jenkins as a standalone application on Windows/Ubuntu/Red Hat Linux/Fedora

	Run Jenkins behind a reverse proxy server (Nginx)

	Run Jenkins with Docker

	Leverage the advantages of Docker data volumes

	Run development, staging, and production instance of Jenkins using Docker





            

            
        
    
        

                            
                    Running Jenkins inside a servlet container

                
            
            
                
Jenkins is available on the following servlet containers:


	Apache Geronimo 3.0

	GlassFish

	IBM WebSphere

	JBoss

	Jetty

	Jonas

	Liberty profile

	Tomcat

	WebLogic



In this section, you will learn how to install Jenkins on an Apache Tomcat server. Installing Jenkins as a service on Apache Tomcat is quite simple. Either you can choose to run Jenkins along with the other services already present on the Apache Tomcat server, or you can use the Apache Tomcat server solely for running Jenkins.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before you begin, make sure you have the following things ready:


	You need a system with at least 4 GB of memory and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machine should have Ubuntu 16.04 installed on it. Choose an LTS release version.

	Check for administrator privileges; the installation might ask for an admin username and password.





            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java on Ubuntu:


	Update the package index:



        sudo apt-get update


	Next, install Java. The following command will install the Java Runtime Environment (JRE):



        sudo apt-get install default-jre 


	To set the JAVA_HOME environment variable, get the Java installation location. Do this by executing the following command:



        update-java-alternatives -l


	The previous command will print the list of Java applications installed on your machine along with their installation paths. Copy the Java path that appears on your Terminal:



        java-1.8.0-openjdk-amd64  1081
        /usr/lib/jvm/java-1.8.0-openjdk-amd64


	Open the /etc/environment file for editing using the following command:



        sudo nano /etc/environment 


	Add the Java path (the one that you copied earlier) inside the /etc/environment file in the following format:



        JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64" 


	Type Ctrl + X and choose Y to save and close the file.

	Next, reload the file using the following command:



        sudo source /etc/environment



            

            
        
    
        

                            
                    Installing Apache Tomcat

                
            
            
                
Follow these steps to download and then install Apache Tomcat server on your Ubuntu machine:


	Move to the /tmp directory and download the Tomcat application using the wget command, as shown here:



        cd /tmp
        wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
        v8.5.16/bin/apache-tomcat-8.5.16.tar.gz

To get a complete list of Apache Tomcat versions visit: https://archive.apache.org/dist/tomcat/.


	Create a directory called /opt/tomcat using the following command:



        sudo mkdir /opt/tomcat 


	Untar the content of the archive inside /opt/tomcat:



        sudo tar xzvf apache-tomcat-8*tar.gz \
        -C /opt/tomcat --strip-components=1 


	Next, create a systemd service file using the following command:



        sudo nano /etc/systemd/system/tomcat.service


	Paste the following content into the file:



        [Unit] 
        Description=Apache Tomcat Web Application Container 
        After=network.target 
 
        [Service] 
        Type=forking 
 
        Environment=JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64                     
        Environment=CATALINA_PID=/opt/tomcat/temp/tomcat.pid 
        Environment=CATALINA_HOME=/opt/tomcat 
        Environment=CATALINA_BASE=/opt/tomcat 
        Environment='CATALINA_OPTS=-Xms512M -Xmx1024M
        -server -XX:+UseParallelGC' 
        Environment='JAVA_OPTS=-Djava.awt.headless=true
        -Djava.security.egd=file:/dev/./urandom' 
 
        ExecStart=/opt/tomcat/bin/startup.sh 
        ExecStop=/opt/tomcat/bin/shutdown.sh 
 
        RestartSec=10 
        Restart=always 
 
        [Install] 
        WantedBy=multi-user.target 


	Type Ctrl + X and choose Y to save and close the file.

	Next, reload the systemd daemon using the following command:



        sudo systemctl daemon-reload 


	Start the Tomcat service using the following command:



        sudo systemctl start tomcat 




	To check the status of Tomcat service, run the following command:



        sudo systemctl status tomcat  


	You should see the following output:



        ● tomcat.service - Apache Tomcat Web Application Container 
          Loaded: loaded (/etc/systemd/system/tomcat.service; disabled;
          vendor preset: enabled) 
          Active: active (running) since Mon 2017-07-31 21:27:39 UTC;
          5s ago 
          Process: 6438 ExecStart=/opt/tomcat/bin/startup.sh (code=exited,
          status=0/SUCCESS) 
         Main PID: 6448 (java) 
            Tasks: 44 
           Memory: 132.2M 
              CPU: 2.013s 
           CGroup: /system.slice/tomcat.service 
                   └─6448 /usr/lib/jvm/java-1.8.0-openjdk-amd64/bin/java
       -Djava.util.logging.config.file=/opt/tomcat/conf/logging.properties
       -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogMan 



            

            
        
    
        

                            
                    Enabling the firewall and port 8080

                
            
            
                
Apache Tomcat runs on port 8080. Follow these steps to enable the firewall, if it's disabled:


	Enable the firewall using the following command:



        sudo ufw enable 


	Allow traffic on port 8080:



        sudo ufw allow 8080 


	Enable OpenSSH to allow SSH connections using the following command:



        sudo ufw enable "OpenSSH" 


	Check the firewall status using the following command:



        sudo ufw status 


	You should see the following output:



        Status: active  
        To                         Action      From 
        --                         ------      ---- 
        8080                       ALLOW       Anywhere 
        OpenSSH                    ALLOW       Anywhere 
        8080 (v6)                  ALLOW       Anywhere (v6) 
        OpenSSH (v6)               ALLOW       Anywhere (v6) 


	You should now be able to access the Apache Tomcat server page at http://<IP address of the Apache Tomcat>:8080.





            

            
        
    
        

                            
                    Configuring the Apache Tomcat server

                
            
            
                
In this section, we will enable access to the Tomcat Manager app and Host Manager:


	Open the  tomcat-users.xml file for editing, which is present inside the /opt/tomcat/conf directory:



        sudo nano /opt/tomcat/conf/tomcat-users.xml 


	The file will look something like the following, for simplicity, I have ignored the comments inside the file:



        <?xml version="1.0" encoding="UTF-8"?> 
        . . . 
        <tomcat-users xmlns="http://tomcat.apache.org/xml" 
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd" 
        version="1.0"> 
        . . . 
          <!-- 
            <role rolename="tomcat"/> 
            <role rolename="role1"/> 
            <user username="tomcat" password="<must-be-changed>"
             roles="tomcat"/> 
            <user username="both" password="<must-be-changed>"
             roles="tomcat,role1"/> 
            <user username="role1" password="<must-be-changed>"
             roles="role1"/> 
          --> 
        </tomcat-users> 


	From the previous file, you can see the role and user fields are commented. We need to enable a role and a user to allow access to the Tomcat Manager app page:



        <role rolename="manager-gui"/> 
        <role rolename="admin-gui"/> 
        <user username="admin" password="password"
         roles="manager-gui,admin-gui"/>


	Finally, the file should look something as shown here (comments removed):



        <?xml version="1.0" encoding="UTF-8"?>  
        <tomcat-users xmlns="http://tomcat.apache.org/xml" 
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd" 
        version="1.0"> 
          <role rolename="manager-gui"/> 
          <role rolename="admin-gui"/> 
          <user username="admin" password="password"
           roles="manager-gui,admin-gui"/> 
        </tomcat-users> 


	Type Ctrl + X and choose Y to save and close the file.

	By default, you are allowed to access Manager and Host Manager applications only from within the Apache Tomcat server. Since, we will be managing services running on Apache from a remote machine, we would need to remove these restrictions.

	Open the following two files, /opt/tomcat/webapps/manager/META-INF/context.xml and /opt/tomcat/webapps/host-manager/META-INF/context.xml.

	Inside these files, comment the following section:



        <Context antiResourceLocking="false" privileged="true" > 
          <!--<Valve className="org.apache.catalina.valves.RemoteAddrValve" 
          allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />--> 
          <Manager sessionAttributeValueClassNameFilter="java\.lang\
          .(?:Boolean|Integer|Long|Number|String)|org\.apache\.catalina\
          .filters\.CsrfPreventionFilter\$LruCache(?:\$1)?|java\.util\
          .(?:Linked)$ 
        </Context> 


	Type Ctrl + X and choose Y to save and close the file.




	Restart the Tomcat server using the following command:



        sudo systemctl restart tomcat 


	Try to access the Manager app and the Host Manager from the Apache Tomcat server home page.





            

            
        
    
        

                            
                    Installing Jenkins on the Apache Tomcat server

                
            
            
                
You can perform the following steps if you do not wish to have a standalone server for Jenkins master, and want to host it along with other services that exist on the Apache Tomcat server:


	Move to the /tmp directory and download the Jenkins application using the wget command, as shown here:



        cd /tmp
        wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war 


	The previous command will download the latest stable version of jenkins.war file.

	Move the file from /tmp to /opt/tomcat/:



        sudo mv jenkins.war /opt/tomcat/webapps/ 


	List the content of the /opt/tomcat/webapps/ directory :



        sudo ls -l /opt/tomcat/webapps 

You should see the following output:

        total 68984 
        -rw-rw-r--  1 ubuntu ubuntu 70613578 Jul 19 22:37 jenkins.war 
        drwxr-x---  3 root   root       4096 Jul 31 21:09 ROOT 
        drwxr-x--- 14 root   root       4096 Jul 31 21:09 docs 
        drwxr-x---  6 root   root       4096 Jul 31 21:09 examples 
        drwxr-x---  5 root   root       4096 Jul 31 21:09 manager 
        drwxr-x---  5 root   root       4096 Jul 31 21:09 host-manager 
        drwxr-x--- 10 root   root       4096 Jul 31 22:52 jenkins 

You will notice that a jenkins folder automatically gets created the moment you move the jenkins.war package to the webapps folder. This is because the .war file is a web application archive file that automatically gets extracted once deployed to the webapps directory. What we did is a small deployment activity.


	And that is all you need to do. You can access Jenkins using http://<IP address of Tomcat server>:8080/jenkins.





            

            
        
    
        

                            
                    Installing Jenkins alone on an Apache Tomcat server

                
            
            
                
If you chose to have an Apache Tomcat server solely for using Jenkins, follow these steps:


	Move to the /tmp directory and download the Jenkins application using the wget command, as shown here:



        cd /tmp 
        wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war 


	Rename the downloaded jenkins.war package to ROOT.war:



        sudo mv jenkins.war ROOT.war 


	Next, delete everything inside the /opt/tomcat/webapps directory by switching to the root user:



        sudo su - 
        cd /opt/tomcat/webapps 
        sudo rm -r * 


	Now move the ROOT.war (renamed) package from the /tmp directory to the /opt/tomcat/webapps folder:



        sudo mv /tmp/ROOT.war /opt/tomcat/webapps/ 


	List the contents of the /opt/tomcat/webapps directory and you will notice a ROOT folder automatically gets created:



        total 68964 
        drwxr-x--- 10 root   root       4096 Jul 31 23:10 ROOT 
        -rw-rw-r--  1 ubuntu ubuntu 70613578 Jul 19 22:37 ROOT.war 

It's always recommended to have a dedicated web server solely for Jenkins.


	You can access Jenkins by using http://<IP address of Tomcat server>:8080/ without any additional path. Apparently, the Apache server is now a Jenkins server.



Deleting the content of the /opt/tomcat/webapps directory (leaving behind the ROOT directory and ROOT.war) and then moving the jenkins.war file to the webapps folder is also sufficient to make Apache Tomcat server solely for the use of Jenkins.



The step of renaming jenkins.war to ROOT.war is only necessary if you want to make http://<IP address of Tomcat server>:8080/ the standard URL for Jenkins.



            

            
        
    
        

                            
                    Setting up the Jenkins home path

                
            
            
                
Before we start using Jenkins, there is one important thing to configure, the jenkins_home path. When you install Jenkins as a service on Tomcat, the jenkins_home path is automatically set to /root/.jenkins/. This is the location where all of the Jenkins configurations, logs, and builds are stored. Everything that you create and configure on the Jenkins dashboard is stored here.

We need to make it something more accessible, something like /var/jenkins_home. This can be done in the following way:


	Stop the Apache Tomcat server using the following command:



        sudo systemctl stop tomcat 


	Open the context.xml file for editing, which is present inside /opt/tomcat/conf:



        sudo nano /opt/tomcat/conf/context.xml



	The file will look like this (comments removed):



        <?xml version="1.0" encoding="UTF-8"?> 
        <Context> 
          <WatchedResource>WEB-INF/web.xml</WatchedResource> 
          <WatchedResource>${catalina.base}/conf/web.xml</WatchedResource> 
        </Context>


	Add the following line between <Context> </Context>:



        <Environment name="JENKINS_HOME" value="/var/jenkins_home" 
        type="java.lang.String"/> 


	Start the Tomcat service using the following command:



        sudo systemctl start tomcat 



            

            
        
    
        

                            
                    Installing a standalone Jenkins server on Windows

                
            
            
                
Installing Jenkins on Windows is quite simple. Before performing the steps to install Jenkins on Windows, let's have a look at the prerequisites.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need a machine with at least 4 GB of RAM and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machine should have any one of the latest Windows OS (Windows 7/8/10, Windows Server 2012/2012 R2/2016) installed on it.

	Check for admin privileges; the installation might ask for admin username and password.

	Make sure port 8080 is open.





            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java:


	Download the latest version of Java JRE (x86 or x64 based on your OS) from https://java.com/en/download/manual.jsp.

	Follow the installation procedures.

	To check that Java has been installed successfully, run the following command using Command Prompt:



        java -version 


	You should get the following output:



        java version "1.8.0_121" 
        Java(TM) SE Runtime Environment (build 1.8.0_121-b13) 
        Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode) 


	To set the JAVA_HOME, first get the Java installation path on Windows using the following command:



        where java 


	The previous command should output the Java installation path, as shown in the following command. Copy the path without \bin\java:



        C:\Program Files\Java\jdk1.8.0_121\bin\java 


	Open the Command Prompt as an administrator and run the following command to set the JAVA_HOME path. Make sure to use the Java installation path that appears on your screen:



        setx -m JAVA_HOME "C:\Program Files\Java\jdk1.8.121" 



            

            
        
    
        

                            
                    Installing the latest stable version of Jenkins

                
            
            
                
To install the latest stable version of Jenkins, follow these steps in sequence:


	Download the latest stable Jenkins package available at the Jenkins official website, https://jenkins.io/download/. To install the latest stable version of Jenkins, download the Long Term Support (LTS) release. Choose the weekly release if you just want the latest version of Jenkins.

	Unzip the downloaded package, and you will find a jenkins.msi file.

	Run the jenkins.msi and follow the installation steps.

	During the installation, you will get an option to choose your Jenkins installation directory. By default, it will be C:\Program Files\Jenkins or C:\Program Files (x86)\Jenkins. Leave it as it is and click on the Next button.

	Click on the Finish button to complete the installation.





            

            
        
    
        

                            
                    Starting, stopping, and restarting Jenkins on Windows

                
            
            
                
Jenkins by default starts running when installed. In this section, the commands to start, stop, restart, and check the status of the Jenkins services are shown:


	Open the Services window from Command Prompt using the following command:



        services.msc 


	Look for a service named Jenkins.

	Right-click on the Jenkins service again and click Properties.

	Under the General tab, you can see the Jenkins service name, the path to the executable, the service status, and the start parameters.

	Using the Startup type option, you can choose the way Jenkins starts on the Windows machine. You can choose from Automatic, Manual, and Automatic (Delayed Start). Make sure it's always set to Automatic.




	In the following service status, there is an option to manually Start, Stop, Pause, and Resume the Jenkins service:





Configuring the Jenkins service startup option


	Go to the next tab, which is Log On. Here, we define the username through which Jenkins start.

	You can either choose to use the Local System account (not recommended) or you can create a special Jenkins user with special permissions (recommended):



An exclusive account for Jenkins is always preferred. The reason is that Local System account is not under control; it may get deleted or the password may expire depending on the organization's policies, whereas the Jenkins user account can be set with preferred policies and privileges.



Configuring the Jenkins service Log On option


	The next tab is Recovery. Here, we can specify the action items in case the Jenkins service fails to start.



 


	Here is an example. At the first failure, there is an attempt to restart Jenkins, at the second failure an attempt is made to restart the computer. And lastly, at subsequent failures, a program is run to debug the issue, or we can run a script that sends the Jenkins failure log through email to the respective Jenkins admin for investigation:





Configuring the Jenkins service Recovery option



            

            
        
    
        

                            
                    Installing a standalone Jenkins server on Ubuntu

                
            
            
                
Installing a Jenkins server on Ubuntu is quite easy. Before performing the steps to install Jenkins on Ubuntu, let's have a look at the prerequisites.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need a machine with at least 4 GB of RAM and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machine should have Ubuntu 16.04 installed on it. Choose a LTS release version.

	Check for admin privileges; the installation might ask for an admin username and password.

	Make sure port 8080 is open.





            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java:


	Update the package index using following command:



        sudo apt-get update 


	Next, install Java. The following command will install the JRE:



        sudo apt-get install default-jre 


	To set the JAVA_HOME environment variable, first get the Java installation location. Do this by executing the following command:



        update-java-alternatives -l  


	The previous command will print the list of Java applications installed on your machine along with their installation paths. Copy the Java path that appears on your Terminal: 



        java-1.8.0-openjdk-amd64 1081
        /usr/lib/jvm/java-1.8.0-openjdk-amd64

 


	Open the /etc/environment file for editing using the following command:



        sudo nano /etc/environment 


	Add the Java path (the one that you copied earlier) inside the /etc/environment file in the following format:



        JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64" 


	Type Ctrl + X and choose Y to save and close the file.

	Next, reload the file using the following command:



        sudo source /etc/environment



            

            
        
    
        

                            
                    Installing the latest version of Jenkins

                
            
            
                
To install the latest version of Jenkins, follow these steps in sequence:


	Add the repository key to the system using the following command:



        wget --no-check-certificate -q -O \
        - https://pkg.jenkins.io/debian/jenkins-ci.org.key | \
        sudo apt-key add - 


	You should get an output of OK. Next, append the Debian package repository address using the following command:



        echo deb http://pkg.jenkins.io/debian binary/ | \
        sudo tee /etc/apt/sources.list.d/jenkins.list 


	Update the package index:



        sudo apt-get update 


	Now, install Jenkins using the following command:



        sudo apt-get install jenkins 


	See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are required to start Jenkins.

	Jenkins is now ready for use. By default, the Jenkins service runs on port 8080. To access Jenkins, use http://localhost:8080/ or http://<Jenkins server IP address>:8080/ in a browser .





            

            
        
    
        

                            
                    Installing the latest stable version of Jenkins

                
            
            
                
If you prefer to install a stable version of Jenkins, then follow these step in sequence:


	Add the repository key to the system using the following command:



        wget --no-check-certificate -q -O - \
        https://pkg.jenkins.io/debian-stable/jenkins-ci.org.key | \
        sudo apt-key add - 


	You should get an output of OK. Next, append the Debian package repository address using the following command:



        echo deb http://pkg.jenkins.io/debian-stable binary/ | \
        sudo tee /etc/apt/sources.list.d/jenkins.list 


	Update the package index:



        sudo apt-get update


	Now, install Jenkins using the following command:



        sudo apt-get install jenkins 


	See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are required to start Jenkins.

	Jenkins is now ready for use. By default, the Jenkins service runs on port 8080. To access Jenkins, use  http://localhost:8080/ or http://<Jenkins server IP address>:8080/ in a browser.



In order to troubleshoot Jenkins, access the logs file /var/log/jenkins/jenkins.log.



The Jenkins service runs under the user Jenkins, which is automatically created upon installation.



            

            
        
    
        

                            
                    Starting, stopping, and restarting Jenkins on Ubuntu

                
            
            
                
Jenkins by default starts running when installed. Here are the commands to start, stop, restart, and check the status of the Jenkins service:


	To start Jenkins, use the following command:



        sudo systemctl start jenkins 


	Similarly, to stop Jenkins, use the following command:



        sudo systemctl stop jenkins 


	To restart Jenkins, use the following command:



        sudo systemctl restart jenkins 


	To check the status of the Jenkins service, use the following systemctl command:



        sudo systemctl status jenkins 


	You should see the following output:



        ● jenkins.service - LSB: Start Jenkins at boot time 
        Loaded: loaded (/etc/init.d/jenkins; bad; vendor preset: enabled) 
        Active: active (exited) since Wed 2017-07-19 22:34:39 UTC; 6min ago 
        Docs: man:systemd-sysv-generator(8) 



            

            
        
    
        

                            
                    Installing a standalone Jenkins server on Red Hat Linux

                
            
            
                
In this section, we will learn to install Jenkins on Red Hat Linux. The installation process discussed here are also applies to Fedora.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need a machine with at least 4 GB of RAM and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machine should have RHEL 7.3 installed on it.

	Check for admin privileges; the installation might ask for an admin username and password.

	Make sure port 8080 is open.





            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java:


	Move to the /tmp directory and download Java:



        cd /tmp 
        wget -O java_8.131.rpm \
        http://javadl.oracle.com/webapps/download/AutoDL? \
        BundleId=220304_d54c1d3a095b4ff2b6607d096fa80163 


	Next, install Java. The following command will install the JRE:



        sudo rpm -ivh java_8.131.rpm 


	To set the JAVA_HOME environment variable, first get the Java installation's location. Do this by executing the following command:



        sudo alternatives --config java       


	The previous command will print the list of Java applications installed on your machine, along with their installation paths. Copy the Java path that appears on your Terminal:



        There is 1 program that provides 'java'. 
        Selection    Command 
        ----------------------------------------------- 
        *+ 1           /usr/java/jre1.8.0_131/bin/java

 


	Add the Java path (the one that you copied earlier) inside the /etc/environment file using the following command:



        sudo sh \
        -c "echo JAVA_HOME=/usr/java/jre1.8.0_131 >>
        /etc/environment" 



            

            
        
    
        

                            
                    Installing the latest version of Jenkins

                
            
            
                
To install the latest version of Jenkins, follow these steps:


	Add the Jenkins repository to the yum repository using the following command:



        sudo wget -O /etc/yum.repos.d/jenkins.repo \
         http://pkg.jenkins-ci.org/redhat/jenkins.repo 
        sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key


	Install Jenkins using the following command:



        sudo yum install jenkins 


	See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are required to start Jenkins.



Jenkins is now ready for use. By default, the Jenkins service runs on port 8080. To access Jenkins, use  http://localhost:8080/ or http://<Jenkins server IP address>:8080/ in a browser.



            

            
        
    
        

                            
                    Installing the latest stable version of Jenkins

                
            
            
                
If you prefer to install a stable version of Jenkins, then follow these steps:


	Add the Jenkins repository to the yum repository using the following command:



        sudo wget -O /etc/yum.repos.d/jenkins.repo \
         http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo 
        sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key 


	Install Jenkins using the following command:



        sudo yum install jenkins


	See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are required to start Jenkins.





            

            
        
    
        

                            
                    Starting, stopping, and restarting Jenkins on Red Hat Linux

                
            
            
                
Here are the commands to start, stop, restart, and check the status of the Jenkins service:


	To start Jenkins, use the following command:



        sudo systemctl start jenkins 


	Similarly, to stop Jenkins, use the following command:



        sudo systemctl stop jenkins 


	To restart Jenkins, use the following command:



        sudo systemctl restart jenkins 


	To check the status of the Jenkins service, use the following systemctl command:



        sudo systemctl status jenkins  


	You should see the following output:



        ● jenkins.service - LSB: Jenkins Automation Server 
          Loaded: loaded (/etc/rc.d/init.d/jenkins; bad;
          vendor preset: disabled) 
          Active: active (running) since Wed 2017-07-19 18:45:47 EDT;
           2min 31s ago 
             Docs: man:systemd-sysv-generator(8) 
          Process: 1081 ExecStart=/etc/rc.d/init.d/jenkins start
          (code=exited, status=0/SUCCESS) 
           CGroup: /system.slice/jenkins.service 
                   └─1706 /etc/alternatives/java
           -Dcom.sun.akuma.Daemon=daemonized -Djava.awt.headless=true
           -DJENKINS_HOME=/var/lib/j...

In order to troubleshoot Jenkins, access the logs in var/log/jenkins/jenkins.log.



The Jenkins service runs with the user Jenkins, which automatically gets created upon installation.



            

            
        
    
        

                            
                    Running Jenkins behind a reverse proxy

                
            
            
                
In this example, we will learn how to position an Nginx server (running on a standalone machine) front of a Jenkins server (running on another standalone machine).



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need two machines with at least 4 GB of RAM and a Multi-core processor. One will run Nginx and the other will run Jenkins.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machine should have Ubuntu 16.04 or greater installed on it.

	Check for admin privileges; the installation might ask for an admin username and password.

	Both machines should be on the same network. The following setup assumes that your organization has an intranet for all its services.





            

            
        
    
        

                            
                    Installing and configuring Nginx

                
            
            
                
The installation of Nginx on Ubuntu is simple. Follow these steps to install an Nginx server on Ubuntu:


	Update the local package index:



        sudo apt-get update


	Install nginx using the following command:



        sudo apt-get install nginx 



            

            
        
    
        

                            
                    Configuring the firewall on a Nginx server

                
            
            
                
We need to configure the firewall on our Nginx server to allow access to the Nginx service. Follow these steps:


	Check the firewall status using the ufw command:



        sudo ufw status 

   You should see the following output:

        Status: inactive 


	If it's enabled, move to step 3. But, if you find it disabled, then enable the firewall using the following command:



        sudo ufw enable  

   You should see the following output

        Command may disrupt existing ssh connections.
        Proceed with operation (y|n)? y 
        Firewall is active and enabled on system startup 


	List the available configurations using the following command. You should see three Nginx profiles and one OpenSSH profile:



        sudo ufw app list  

   You should see the following output

        Available applications: 
          Nginx Full 
          Nginx HTTP 
          Nginx HTTPS 
          OpenSSH

The Nginx Full profile opens port 80 (unencrypted) and port 443 (TLS/SSL).



The Nginx HTTP profile opens only port 80 (unencrypted).



The Nginx HTTPS profile opens only port 443 (TLS/SSL).


 The OpenSSH profile opens only port 22 (SSH).



It is always recommended to enable the most restrictive profile.


	To keep things simple, we will enable the Nginx Full profile, as shown in the following command:



        sudo ufw allow 'Nginx Full'  
        Rules updated 
        Rules updated (v6) 


	Also, enable the OpenSSH profile if it's not active, as shown. This will allow us to continue accessing our Nginx machine over SSH:



        sudo ufw allow 'OpenSSH' 

You won't be able to log in to your Nginx machine if OpenSSH is disabled.


	Verify the changes using the following command. You should see Nginx Full and OpenSSH as allowed:



        sudo ufw status  

   You should see the following output:

        Status: active  
        To                         Action      From 
        --                         ------      ---- 
        OpenSSH                    ALLOW       Anywhere 
        Nginx Full                 ALLOW       Anywhere 
        OpenSSH (v6)               ALLOW       Anywhere (v6) 
        Nginx Full (v6)            ALLOW       Anywhere (v6)


	Check if the Nginx service is running using the systemctl command:



        systemctl status nginx  

   You should see the following output:

        ● nginx.service - A high performance web server and a reverse proxy
        server 
           Loaded: loaded (/lib/systemd/system/nginx.service; enabled;
           vendor preset: enabled) 
           Active: active (running) since Thu 2017-07-20 18:44:33 UTC;
        45min ago 
         Main PID: 2619 (nginx) 
            Tasks: 2 
           Memory: 5.1M 
              CPU: 13ms 
           CGroup: /system.slice/nginx.service 
                   ├─2619 nginx: master process /usr/sbin/nginx
           -g daemon on;                master_process on 
                   └─2622 nginx: worker process


	From the previous output, you can see that our Nginx service is running fine. Now try to access it using the browser. First, get the IP address of your machine using the ip route command:



        ip route  

   You should see the following output:

        default via 10.0.2.2 dev enp0s3
        10.0.2.0/24 dev enp0s3  proto kernel
        scope link src 10.0.2.15
        192.168.56.0/24 dev enp0s8  proto kernel  scope link
        src 192.168.56.104 


	Now access the Nginx home page using http://<IP Address>:80. You should see something similar to the following screenshot:





The Nginx index page



            

            
        
    
        

                            
                    Starting, stopping, and restarting the Nginx server

                
            
            
                
Now that we have your Nginx server up, let's see some commands we can use to manage Nginx. Just like Jenkins, we will use the systemctl command to manage Nginx:


	To stop Nginx, use the following command:



        sudo systemctl stop nginx


	To start Nginx when it is stopped, use the following command:



        sudo systemctl start nginx 


	To restart Nginx, use the following command:



        sudo systemctl restart nginx 


	To reload Nginx after making configuration changes, use the following command:



        sudo systemctl reload nginx 



            

            
        
    
        

                            
                    Securing Nginx using OpenSSL

                
            
            
                
In this section, we will learn to set up a self-signed SSL certificate for use with our Nginx server.



            

            
        
    
        

                            
                    Creating an SSL certificate

                
            
            
                
Run the following command to create a self-signed key and a certificate pair using OpenSSL:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /etc/ssl/private/nginx-selfsigned.key -out \
/etc/ssl/certs/nginx-selfsigned.crt 

The following table explains the arguments used in the previous command:




	
Parameters


	
Description





	
req


	
This argument indicates that we want to use X.509 Certificate Signing Request (CSR) management.





	
-x509


	
This argument allows us to create a self-signed certificate instead of generating a certificate signing request.





	
-nodes


	
This argument allows OpenSSL to skip the option to authenticate our certificate with a passphrase.





	
-days


	
This argument sets the duration for which the certificate is valid.





	
-newkey rsa: 2048


	
This argument tells OpenSSL to generate a new certificate and a new key at the same time. The rsa:2048 option makes the RSA key 2048 bits long.





	
-keyout


	
This argument allows you to store the generated private key file in the location of your choice.





	
-out


	
This argument allows you to store the generated certificates in the location of your choice.







 

The moment you issue the following command to generate a private key and new certificate, you will be prompted to provide information. The prompts will look something as shown here:

Country Name (2 letter code) [AU]:DK 
State or Province Name (full name) [Some-State]:Midtjylland 
Locality Name (eg, city) []:Brande 
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Deviced.Inc 
Organizational Unit Name (eg, section) []:DevOps 
Common Name (e.g. server FQDN or YOUR name) []:<IP address of Nginx> 
Email Address []:admin@organisation.com 

The Common Name (CN) field, also known as the Fully Qualified Domain Name (FQDN) is very important. You need to provide the IP address or the domain name of your Nginx server.

The /etc/ssl/private/ will now contain your nginx-selfsigned.key file and the /etc/ssl/certs/ will contain your nginx-selfsigned.crt file.

Next, we will create a strong Diffie-Hellman group, which is used in negotiating Perfect Forward Secrecy (PFS) with clients. We will do this by using openssl, as shown in the following command:

sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048 

This will take quite some time, but once it's done it will generate a dhparam.pem file inside /etc/ssl/certs/.



            

            
        
    
        

                            
                    Creating strong encryption settings

                
            
            
                
In the following section, we will set up a strong SSL cipher suite to secure our Nginx server:


	Create a configuration file named ssl-params.conf in /etc/nginx/snippets/ as shown here:



        sudo nano /etc/nginx/snippets/ssl-params.conf


	Copy the following code inside the file:



        # from https://cipherli.st/ 
        # and https://raymii.org/s/tutorials/
          Strong_SSL_Security_On_nginx.html 
 
        ssl_protocols TLSv1 TLSv1.1 TLSv1.2; 
        ssl_prefer_server_ciphers on; 
        ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH"; 
        ssl_ecdh_curve secp384r1; 
        ssl_session_cache shared:SSL:10m; 
        ssl_session_tickets off; 
        ssl_stapling on; 
        ssl_stapling_verify on; 
        resolver 8.8.8.8 8.8.4.4 valid=300s; 
        resolver_timeout 5s; 
        # disable HSTS header for now 
        #add_header Strict-Transport-Security "max-age=63072000;
         includeSubDomains; preload"; 
        add_header X-Frame-Options DENY; 
        add_header X-Content-Type-Options nosniff; 
 
        ssl_dhparam /etc/ssl/certs/dhparam.pem; 


	Type Ctrl + X and choose Y to save and close the file.



We have used the recommendations by Remy van Elst that are available at https://cipherli.st/.



            

            
        
    
        

                            
                    Modifying the Nginx configuration

                
            
            
                
Next, we will modify our Nginx configuration to enable SSL. Follow these steps:


	First and foremost, take a backup of your existing Nginx configuration file named default that is in /etc/nginx/sites-available/:



        sudo cp /etc/nginx/sites-available/default \
        /etc/nginx/sites-available/default.backup


	Now, open the file for editing using the following command:



        sudo nano /etc/nginx/sites-available/default 


	You will find a lot of commented lines inside the file. If you ignore them for a while, you will probably see the following:



        server { 
            listen 80 default_server; 
            listen [::]:80 default_server; 
 
            # SSL configuration 
 
            # listen 443 ssl default_server; 
            # listen [::]:443 ssl default_server; 
 
            . . . 
 
            root /var/www/html; 
 
            . . . 
 
            index index.html index.htm index.nginx-debian.html; 
            server_name _; 
 
            . . . 


	We will modify the configuration so that the unencrypted HTTP requests are automatically redirected to encrypted HTTPS. We will do this by adding the following three lines, as highlighted in the following code:



        server { 
            listen 80 default_server; 
            listen [::]:80 default_server; 
            server_name <nginx_server_ip or nginx domain name>; 
            return 301 https://$server_name$request_uri; 
        } 
 
            # SSL configuration 
 
            # listen 443 ssl default_server; 
            # listen [::]:443 ssl default_server; 
 
            . . .


	From the previous code, you can see that we have closed the server block.

	Next, we will start a new server block, uncomment the two listen directives that use port 443, and add http2 to these lines in order to enable HTTP/2, as shown in the following code block:



        server { 
            listen 80 default_server; 
            listen [::]:80 default_server; 
            server_name <nginx_server_ip or nginx domain name>; 
            return 301 https://$server_name$request_uri; 
        } 
 
        server { 
 
            # SSL configuration 
 
            listen 443 ssl http2 default_server; 
            listen [::]:443 ssl http2 default_server; 
 
            . . . 


	Next, we will add the location of our self-signed certificate and key. We just need to include the two snippet files we set up:



        server { 
            listen 80 default_server; 
            listen [::]:80 default_server; 
            server_name <nginx_server_ip or nginx domain name>; 
            return 301 https://$server_name$request_uri; 
        } 
        server { 
 
            # SSL configuration 
 
            listen 443 ssl http2 default_server; 
            listen [::]:443 ssl http2 default_server; 
            ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt; 
            ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key; 
            include snippets/ssl-params.conf; 
 
            . . .


	Next, we will set the server_name value to our Nginx IP or domain name inside our SSL server block. By default, the server_name may be set to an underscore (_), as shown in the following code block:



        server { 
            # SSL configuration 
 
            . . . 
 
            server_name <nginx_server_ip or nginx domain name>; 
 
            . . . 
        } 


	Type Ctrl + X and choose Y to save and close the file.





            

            
        
    
        

                            
                    Enabling the changes and testing our Nginx setup

                
            
            
                
We will now restart Nginx to implement our new changes:


	First, check whether there are any syntax errors in our files. Do this by typing the following command:



        sudo nginx -t 


	If everything is successful, you should see something similar to the following command output:



        nginx: [warn] "ssl_stapling" ignored, issuer certificate not found 
        nginx: the configuration file /etc/nginx/nginx.conf syntax is ok 
        nginx: configuration file /etc/nginx/nginx.conf test is successful 


	Restart Nginx using the following command:



        sudo systemctl restart nginx 


	Next, access your Nginx server using http://<Nginx_IP_Address>:80. You should notice that you have been automatically redirected to https://<Nginx_IP_Address>:80.



 


	You will see a warning that looks similar to the following screenshot:





SSL warning


	This is expected, as the certificate that we created isn't signed by one of your browser's trusted certificate authorities.

	Click on the Advanced... button and then click on Proceed to 192.168.56.104 (unsafe):





Proceeding as unsafe


	You should now be able to see the Nginx default page, as shown in the following screenshot:





The Nginx index page with SSL encryption



            

            
        
    
        

                            
                    Configuring the Jenkins server

                
            
            
                
In this section, we will perform some configurations on our Jenkins server. To set up a Jenkins server in the first place, see the Installing a standalone Jenkins server on Ubuntu section.

Once you have a Jenkins server up and running, follow these steps:


	To make Jenkins work with Nginx, we need to update the Jenkins configuration so that the Jenkins server listens only on the Jenkins IP address or the Jenkins domain name interface rather than all interfaces (0.0.0.0). If Jenkins listens on all interfaces, then it's potentially accessible on its original, unencrypted port (8080).

	To achieve this, modify the /etc/default/jenkins configuration file, as shown in the following command:



        sudo nano /etc/default/jenkins


	Inside the file, scroll all the way down to the last line or just look for the JENKINS_ARGS line.

	Append the following argument to the existing value of JENKINS_ARGS:



        -httpListenAddress=<IP Address of your Jenkins>  


	The final JENKINS_ARGS line should look something like this (single line):



        JENKINS_ARGS="--webroot=/var/cache/$NAME/war
        --httpPort=$HTTP_PORT
        --httpListenAddress=192.168.56.105" 


	Type Ctrl + X and choose Y to save and close the file.

	To make the new configuration effective, restart the Jenkins server:



        sudo systemctl restart jenkins 


	To check whether Jenkins is running properly, execute the following command:



        sudo systemctl status jenkins  

   You should see the following screenshot:

        ● jenkins.service - LSB: Start Jenkins at boot time 
           Loaded: loaded (/etc/init.d/jenkins; bad;
           vendor preset: enabled) 
           Active: active (exited) since Sat 2017-07-22 23:30:36 UTC;
           18h ago 
             Docs: man:systemd-sysv-generator(8) 



            

            
        
    
        

                            
                    Adding reverse proxy settings to the Nginx configuration

                
            
            
                
The following steps will help you to add reverse proxy settings to the Nginx configuration:


	Open the Nginx configuration file for editing:



        sudo nano /etc/nginx/sites-available/default


	As we're sending all requests to our Jenkins server, comment out the default try_files line, as shown in the following code block:



        location / { 
          # First attempt to serve request as file, then 
          # as directory, then fall back to displaying a 404. 
          # try_files $uri $uri/ =404; 
        } 


	Next, add the proxy settings as shown here:



        location / { 
          # First attempt to serve request as file, then 
          # as directory, then fall back to displaying a 404. 
          #try_files $uri $uri/ =404; 
          include /etc/nginx/proxy_params; 
          proxy_pass http://<ip address of jenkins>:8080; 
          proxy_read_timeout  90s; 
          # Fix potential "It appears that your reverse proxy set up
          is broken" error. 
          proxy_redirect http://<ip address of jenkins>:8080
          https://your.ssl.domain.name; 
        } 


	Type Ctrl + X and choose Y to save and close the file.

	Run the following command to check for any syntax errors in the Nginx configuration file:



        sudo nginx -t  

You should see the following output:

        nginx: [warn] "ssl_stapling" ignored, issuer certificate not found 
        nginx: the configuration file /etc/nginx/nginx.conf syntax is ok 
        nginx: configuration file /etc/nginx/nginx.conf test is successful 


	If the output is error free, restart Nginx to make the new configuration effective. Use the following command:



        sudo systemctl restart nginx


	Next, access your Nginx server using https://<nginx_ip_address>:80:





Jenkins getting started page



            

            
        
    
        

                            
                    Running Nginx and Jenkins on the same machine

                
            
            
                
If you want to run Jenkins behind a reverse proxy server (Nginx) with the Jenkins server and the Nginx server running on the same machine, then perform the following sections in sequence:


	Set up a machine with at least 4 GB of RAM and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), or a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).



 


	The machines should have Ubuntu 16.04 or greater installed on it.

	Check for admin privileges; the installation might ask for an admin username and password.

	Install Nginx; refer to the Installing and configuring Nginx section.

	Configure the firewall; refer to the Configuring the firewall on Nginx server section.

	Secure the Nginx server using OpenSSL; refer to the Securing Nginx using OpenSSL section.

	Configure the firewall to allow traffic on port 8080 using the following command:



        sudo ufw allow 8080 


	Next, check the firewall status using the following command:



        sudo ufw status  

  You should see the following output:

        Status: active  
        To                         Action      From 
        --                         ------      ---- 
        OpenSSH                    ALLOW       Anywhere 
        Nginx Full                 ALLOW       Anywhere 
        8080                       ALLOW       Anywhere 
        OpenSSH (v6)               ALLOW       Anywhere (v6) 
        Nginx Full (v6)            ALLOW       Anywhere (v6) 
        8080 (v6)                  ALLOW       Anywhere (v6) 


	 Install Jenkins, refer to the Installing a standalone Jenkins server on Ubuntu section.

	Configure the Jenkins server; refer to the Configuring the Jenkins server section. While performing the steps mentioned in this section, make sure to put 127.0.0.1 in place of <IP Address of your Jenkins>.

	Add the reverse proxy settings in Nginx; refer to the Adding reverse proxy settings to Nginx configuration section. While performing the steps mentioned in this section, you will be asked to enter the Jenkins server IP at various places inside the Nginx configuration file. Since our Jenkins server is now running on the same machine as Nginx, the value for <IP Address of your Jenkins> should be localhost.





            

            
        
    
        

                            
                    Running Jenkins on Docker

                
            
            
                
The true advantage of having Jenkins on Docker is when you have to quickly create multiple development and staging instances of your production Jenkins server. It's also very useful in redirecting the traffic to a secondary Jenkins server while you perform maintenance activities on the primary Jenkins server. While we will see these use cases later, let's first try to run Jenkins on Docker.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need a machine with at least 4 GB of RAM (the more the better) and a Multi-core processor.

	Depending on how you manage the infrastructure in your team, the machine could be an instance on a cloud platform (such as AWS, DigitalOcean, or any other cloud platform), a bare metal machine, or it could be a VM (on VMware vSphere or any other server virtualization software).

	The machines should have Ubuntu 16.04 or greater installed on it.

	Check for admin privileges; the installation might ask for an admin username and password.





            

            
        
    
        

                            
                    Setting up a Docker host

                
            
            
                
In this section, we will learn how to install Docker using the repository method and using the Debian package. Follow the steps in the following sections to set up a Docker host.



            

            
        
    
        

                            
                    Setting up the repository

                
            
            
                
Follow these steps to set up a repository:


	Execute the following command to let apt use a repository:



        sudo apt-get install apt-transport-https ca-certificates 


	Add Docker's official GPG key using the following command:



        curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -


	Verify that the key ID is exactly 58118E89F3A912897C070ADBF76221572C52609D using the following command:



        apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D

  You should see the following output:

        pub  4096R/2C52609D 2015-07-14 
        Key fingerprint = 5811 8E89 F3A9 1289 7C07  0ADB F762 2157 2C52
         609D 
        uid  Docker Release Tool (releasedocker) docker@docker.com 


	Use the following command to set up the stable repository to download Docker:



        sudo add-apt-repository \
       "deb https://apt.dockerproject.org/repo/ubuntu-$(lsb_release \
       -cs) main" 

It's recommended to always use the stable version of repository.



            

            
        
    
        

                            
                    Installing Docker

                
            
            
                
After setting up the repository, perform the following steps to install Docker:


	Update the apt package index using the following command:



        sudo apt-get update 


	To install the latest version of Docker, run the following command:



        sudo apt-get -y install docker-engine 


	To install a specific version of Docker, list the available versions using the following command:



        apt-cache madison docker-engine  

  You should see the following output:

        docker-engine | 1.16.0-0~trusty |
        https://apt.dockerproject.org/repo ubuntu-trusty/main amd64
        Packages docker-engine | 1.13.3-0~trusty |
        https://apt.dockerproject.org/repo ubuntu-trusty/main amd64
        Packages  
        ...

The output of the previous command depends on the type of repository configured in the previous section (Setting up the repository).


	Next, execute the following command to install the specific version of Docker:



        sudo apt-get -y install docker-engine=<VERSION_STRING>  
        sudo apt-get -y install docker-engine=1.16.0-0~trusty 


	The Docker service starts automatically. To verify if Docker is installed and running, execute the following command:



        sudo docker run hello-world  


	The previous command should run without any errors, and you should see a Hello from Docker! message:



        Unable to find image 'hello-world:latest' locally 
        latest: Pulling from library/hello-world 
        b04784fba78d: Pull complete 
        Digest: sha256:
          f3b3b28a45160805bb16542c9531888519430e9e6d6ffc09d72261b0d26ff74f 
        Status: Downloaded newer image for hello-world:latest 
 
        Hello from Docker! 
        This message shows that your installation appears to be working
        correctly. 
        ... 



            

            
        
    
        

                            
                    Installing from a package

                
            
            
                
Follow these steps to install Docker using the .deb package:


	Download the .deb package of your choice from https://apt.dockerproject.org/repo/pool/main/d/docker-engine/.

	To install the downloaded package, execute the following command:



        sudo dpkg -i /<path to package>/<docker package>.deb


	Verify your Docker installation by running the following command:



        sudo docker run hello-world  

  You should see the following output:

        Hello from Docker! 
        This message shows that your installation appears to be working
        correctly. 



            

            
        
    
        

                            
                    Running the Jenkins container

                
            
            
                
Now that we have our Docker host ready, let's run Jenkins:


	Run the following command to start a Jenkins container. This might take some time, as Docker will try to download the Jenkins Docker image (jenkins/jenkins:lts) from Docker Hub:



        docker run -d --name jenkins_dev -p 8080:8080 \
        -p 50000:50000 jenkins/jenkins:lts  

  You should see the following output:

        ...
        ...
        ... 
        d52829d9da9e0a1789a3117badc862039a0084677be6a771a959d8467b9cc267 


	The following table explains the Docker command that we used in the previous command:






	
Parameters


	
Description





	
docker


	
Used to invoke the Docker utility.





	
run


	
A Docker command to run a container.





	
-d


	
This option runs the container in the backend.





	
--name


	
This option allows you to give your container a name.





	
-p


	
This option is used to map a container's port with the host.





	
jenkins/jenkins:lts


	
The name of the Docker image and its version used to create a container. jenkins/jenkins is the Jenkins Docker image, and lts is a particular version of that image.








	To see the list of running containers, execute the following command:



        sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

  You should see the following output:

        d52829d9da9e: jenkins/jenkins:lts jenkins_dev 

To use the latest LTS release of Jenkins, use the jenkins/jenkins:lts Jenkins Docker image.



To use the latest weekly release of Jenkins, use the jenkins/jenkins Jenkins Docker image. 


	Make a note of your Docker host IP using the following command:



        sudo ip route  

  You should see the following output:

        default via 10.0.2.2 dev enp0s3 
        10.0.2.0/24 dev enp0s3  proto kernel  scope link  src 10.0.2.15 
        172.17.0.0/16 dev docker0  proto kernel  scope link  src 172.17.0.1 
        192.168.56.0/24 dev enp0s8  proto kernel  scope link
        src 192.168.56.107 


	Your Jenkins server is now available on http:<IP Address of Docker host>:8080. You should now be able to see the Jenkins Getting Started page.

	To proceed with the Jenkins setup, you might need the initialAdminPassword key. This file is inside /var/jenkins_home/secrets/. There are two ways you can get the data inside the initialAdminPassword file. You can use the docker exec command, as illustrated here:



        sudo docker exec -it jenkins_dev \
        cat /var/jenkins_home/secrets/initialAdminPassword

Or, by logging inside the running Jenkins container, using the same docker exec command, as shown here:

            sudo docker exec -it jenkins_dev bash


	Once you are inside the container, execute the following Linux command to get the contents of the file:



        cat /var/jenkins_home/secrets/initialAdminPassword \


Both the commands will print the content of the initialAdminPassword file, similar to the one shown as follows:

        1538ededb4e94230aca12d10dd461e52 

Here, the -i option allows you to interact with your Docker container and the -t option allocates a pseudo -tty.


	While you are still inside the Jenkins container, notice that the jenkins_home directory is present inside the /var/ directory and the jenkins.war file is located inside /usr/share/jenkins.



The jenkins_home is a very important directory where all your Jenkins jobs, builds, metadata, configurations, users, and everything, are stored.



            

            
        
    
        

                            
                    Running a Jenkins container using a data volume

                
            
            
                
In the previous sections, we created a Jenkins container without a mechanism to make the data inside the jenkins_home directory persistent. In simple words, if for some reason you delete the Jenkins container, you delete your jenkins_home directory.

Luckily, there is still a better way to run Jenkins with Docker, and that is by using data volumes. Data volumes are special directories that make the data persistent and independent of the container's life cycle. If a container writes data to a data volume, deleting the container will still make the data available because the container and its associated data volume are two different entities.

Let's create a Jenkins container using a data volume:


	Run a Jenkins container using the following command:



        sudo docker run -d --name jenkins_prod -p 8080:8080\
        -p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
        jenkins/jenkins:lts



	The -v jenkins-home-prod:/var/jenkins_home option will create a data volume named jenkins-home-prod and will map it to the /var/jenkins_home directory inside the container.

	Execute the following command to see the contents of the /var/jenkins_home directory inside the jenkins_prod Jenkins container:



        sudo docker exec -it jenkins_prod ls -lrt /var/jenkins_home 

  You should see the following output:

        total 72 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 init.groovy.d 
        -rw-r--r--  1 jenkins jenkins  102 Jul 26 20:41
         copy_reference_file.log 
        drwxr-xr-x 10 jenkins jenkins 4096 Jul 26 20:41 war 
        -rw-r--r--  1 jenkins jenkins    0 Jul 26 20:41
         secret.key.not-so-secret 
        -rw-r--r--  1 jenkins jenkins   64 Jul 26 20:41 secret.key 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 plugins 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 jobs 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 nodes 
        -rw-r--r--  1 jenkins jenkins  159 Jul 26 20:41
          hudson.model.UpdateCenter.xml 
        -rw-------  1 jenkins jenkins 1712 Jul 26 20:41 identity.key.enc 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 userContent 
        -rw-r--r--  1 jenkins jenkins  907 Jul 26 20:41 nodeMonitors.xml 
        drwxr-xr-x  3 jenkins jenkins 4096 Jul 26 20:41 logs 
        -rw-r--r--  1 jenkins jenkins    6 Jul 26 20:41
          jenkins.install.UpgradeWizard.state 
        drwxr-xr-x  3 jenkins jenkins 4096 Jul 26 20:41 users 
        drwx------  4 jenkins jenkins 4096 Jul 26 20:41 secrets 
        -rw-r--r--  1 jenkins jenkins   94 Jul 26 20:41 jenkins.CLI.xml 
        -rw-r--r--  1 jenkins jenkins 1592 Jul 26 20:41 config.xml 
        drwxr-xr-x  2 jenkins jenkins 4096 Jul 26 20:41 updates 


	To list your Docker volume, execute the following command:



        sudo docker volume ls 

  You should see the following output:

        DRIVER              VOLUME NAME 
 
        local               jenkins-home-prod 


	Now you have a Jenkins container with a persistent jenkins_home directory.





            

            
        
    
        

                            
                    Testing the data volume

                
            
            
                
We will test our data volume by performing the following steps:


	We will make some changes on our Jenkins server; this will modify the content inside the /var/jenkins_home directory.

	We will delete the Jenkins container.

	We will create a new Jenkins container that will use the same data volume.

	 Check for the active Jenkins container using the following command:



        sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

  You should see the following output:

        5d612225f533: jenkins/jenkins:lts jenkins_prod 


	Access the Jenkins server using http://<ip address of docker host>:8080.




	Get the contents of the initialAdminPassword  file using the following command:



        sudo docker exec -it jenkins_prod \
        cat /var/jenkins_home/secrets/initialAdminPassword

  You should see the following output:

        7834556856f04925857723cc0d0523d7


	Paste the initialAdminPassword under the Administrator password field on the Jenkins page and proceed with the Jenkins setup.

	Create a new user at the Create First Admin User step, as shown in the following screenshot:





Creating the first admin user on Jenkins


	Proceed with the remaining steps.

	Execute the following command to list the content of the /var/jenkins_home/users directory. This the is location where you have all the user accounts:



        sudo docker exec -it jenkins_prod ls -lrt /var/jenkins_home/users 

  Output should be as follows:

        total 4 
        drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 21:38 developer 


	Notice our newly created user developer is listed under the users directory.

	Now let's delete the jenkins_prod Jenkins container using the following commands:



        sudo docker kill jenkins_prod
        sudo docker rm jenkins_prod 


	List the existing Docker containers (running/stopped) using the following command: 



        sudo docker ps -a --format "{{.ID}}: {{.Image}} {{.Names}}"

You should see the following output. However, you shouldn't see jenkins_prod in the list:

        3511cd609b1b: hello-world eloquent_lalande 


	List the volumes using the following command:



        sudo docker volume ls 

You should see something similar. You can see that deleting the container did not delete its associated data volume:

        DRIVER              VOLUME NAME 

        local               jenkins-home-prod 


	Now let's create a new Jenkins container named jenkins_prod that uses the existing jenkins-home-prod volume:



        sudo docker run -d --name jenkins_prod -p 8080:8080 \
        -p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
        jenkins/jenkins:lts 


	Try to access the Jenkins dashboard using http://<IP Address of Docker host>:8080. You will not see the Jenkins setup page; instead, you should see the login page.

	Log in to Jenkins using the user that we created earlier. You should be able to log in. This proves that our entire Jenkins configuration is intact.





            

            
        
    
        

                            
                    Creating development and staging instances of Jenkins

                
            
            
                
Many times you are in need of a development or a staging instance of your Jenkins production server to test something new. Docker makes it easy and safe to create multiple instances of your Jenkins servers.

Here is how to do it. In this section, we will create a development and a staging instance of Jenkins using our Jenkins production instance.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	We need a Docker host running a Jenkins instance (production), utilizing data volumes

	Refer to the Running a Jenkins container using a data volume section





            

            
        
    
        

                            
                    Creating an empty data volume

                
            
            
                
We will create a data volume named jenkins-home-staging and jenkins-home-development for our staging and development instances of Jenkins, respectively:


	To create an empty jenkins-home-staging data volume, run the following command:



        sudo docker volume create --name jenkins-home-staging 


	To create an empty jenkins-home-development data volume, run the following command:



        sudo docker volume create --name jenkins-home-development


	List the newly create data volumes using the docker volume command:



        sudo docker volume ls 

You should see the following output:

        DRIVER              VOLUME NAME 
 
        local               jenkins-home-prod 
        local               jenkins-home-development 
        local               jenkins-home-staging


	From the previous list, you can see the newly created data volumes named jenkins-home-staging and jenkins-home-development.



If you have followed the previous section, you should also see the data volume jenkins-home-prod that is being used by our Jenkins production instance jenkins_prod.



            

            
        
    
        

                            
                    Copying data between data volumes

                
            
            
                
We now have our newly created empty data volumes. Let's copy the content of jenkins-home-prod to each of them:


	Copy the content of jenkins-home-prod to jenkins-home-staging using the following command:



        sudo docker run --rm -it --user root \
        -v jenkins-home-prod:/var/jenkins_home \
        -v jenkins-home-staging:/var/jenkins_home_staging \
        jenkins/jenkins:lts bash -c "cd /var/jenkins_home_staging \
        && cp -a /var/jenkins_home/* ." 


	The previous command will do the following:

	It will first create an interactive container using the Docker image for Jenkins jenkins/jenkins:lts (the container is temporary).

	All actions performed on this temporary container will be using the root user. Notice the --user root option in the previous command.

	It will mount the content of the  jenkins-home-prod data volume onto the /var/jenkins_home directory present inside the container. Notice the -v jenkins-home-prod:/var/jenkins_home option.

	Similarly, it will mount the non-existing content of the jenkins-home-staging data volume onto the non-existing /var/jenkins_home_staging directory inside the container. Notice the -v jenkins-home-staging:/var/jenkins_home_staging option.

	It will then, copy the content of /var/jenkins_home to /var/jenkins_home_staging. Notice the bash -c "cd /var/jenkins_home_staging && cp -a /var/jenkins_home/*" option.








	Now, copy the content of jenkins-home-prod to jenkins-home-development using the following command:



        sudo docker run --rm -it --user root \
        -v jenkins-home-prod:/var/jenkins_home \
        -v jenkins-home-development:/var/jenkins_home_development \
        jenkins/jenkins:lts bash -c "cd /var/jenkins_home_development \
        && cp -a /var/jenkins_home/* ." 


	Now we have the same data on all the three data volumes: jenkins-home-prod, jenkins-home-staging, and jenkins-home-development.





            

            
        
    
        

                            
                    Creating the development and staging instances

                
            
            
                
Now that we have data volumes for development and staging, let's spawn the containers using them:


	To create a Jenkins staging instance named jenkins_staging using the  jenkins-home-staging data volume, run the following command:



        sudo docker run -d --name jenkins_staging \
        -v jenkins-home-staging:/var/jenkins_home -p 8081:8080 \
        -p 50001:50000 jenkins/jenkins:lts

The previous command will create a Jenkins instance running on port 8080 and mapped to port 8081 of the Docker host. We choose a different port on Docker host because we already have our Jenkins production instance, jenkins_prod, running on port 8080, which is mapped to port 8080 of the Docker host.



The same reason applies to mapping port 50000 on the Jenkins instance to port 50001 on the Docker host.


	Try to access your Jenkins staging instance using http:<IP Address of Docker host>:8081.

	Similarly, to create a Jenkins development instance named jenkins_development using the  jenkins-home-development data volume, run the following command:



        sudo docker run -d --name jenkins_development \
        -v jenkins-home-development:/var/jenkins_home -p 8082:8080 \
        -p 50002:50000 jenkins/jenkins:lts 

The previous command will create a Jenkins instance running on port 8080 and mapped to port 8082 of the Docker host. We choose a different port on the Docker host because port 8080 and 8081 are already in use on the Docker host.



The same reason applies to mapping port 50000 on the Jenkins instance to port 50002 on the Docker host.


	Try to access your Jenkins development instance using http:<IP Address of Docker host>:8082.





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned how to install Jenkins on an Apache Tomcat server and as a standalone application on various operating systems. We also learned how to set up a reverse proxy server (Nginx) in front of our Jenkins server and secured the connection using SSL.

Above all, we learned how to run Jenkins on Docker. We also saw the advantages of using data volumes on Docker and learned how to leverage them to create on-demand instances (development or staging) of our Jenkins server.

The main objective of the current chapter was to show the readers how diverse Jenkins is in many ways when it comes to the installation process and the variety of operating systems that it supports. The Jenkins administration will be discussed in Chapter 4, Configuring Jenkins.

In the next chapter, we will have a quick overview of what's new in Jenkins 2.x.





            

            
        
    
        

                            
                    The New Jenkins

                
            
            
                
In this chapter, we will look at some of the new features that are now part of the Jenkins 2.x release. After completing this chapter, you will have an understanding of the following:


	The new Jenkins setup wizard

	Jenkins pipeline as a code (Jenkins pipeline job)

	Jenkins Stage view

	Jenkins Declarative Pipeline syntax

	Jenkins Multibranch pipeline

	Jenkins pipeline syntax utility (Snippet Generator)

	Jenkins credentials

	Jenkinsfile

	Jenkins Blue Ocean

	Creating a pipeline in Jenkins Blue Ocean





            

            
        
    
        

                            
                    The Jenkins setup wizard

                
            
            
                
When you access Jenkins for the first time, you are presented with the Getting Started wizard. We have already been through this exercise in the previous chapter; nevertheless, in the following section, we will take a deeper look at some of its important sections.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	A Jenkins server running on any of the platforms discussed in the previous chapter (Docker, standalone, cloud, VM, servlet container, and so on).

	Make sure your Jenkins server has access to the internet. This is necessary to download and install plugins.





            

            
        
    
        

                            
                    Unlocking Jenkins

                
            
            
                
When you access Jenkins for the first time, you are asked to unlock it using a secret initial admin password. This password is stored inside the file initialAdminPassword, which is located inside your jenkins_home directory. The file, along with its full path, is displayed on the Jenkins page, as shown in the following screenshot:


	On Windows: You can find the file under C:\Program Files (x86)\Jenkins\secrets. If you have chosen to install Jenkins somewhere else, then look for the file under <Jenkins installation directory>\secrets.

	On Linux: You can find the file under /var/jenkins_home/secrets:





Unlocking Jenkins

Get the password from the initialAdminPassword file, paste it under the Administrator password field, and click on Continue.

You can always log in to Jenkins using the password from the intialAdminPassword file and the username admin.



            

            
        
    
        

                            
                    Customizing Jenkins

                
            
            
                
Next, you are presented with two options to install the Jenkins plugins, as shown in the following screenshot:



Customizing Jenkins

Choosing Install suggested plugins will install all the generic plugins for Jenkins, like Git, Pipeline as Code, and so on (as suggested by the Jenkins community).

Choosing Select plugins to install will let you install the plugins of your choice.

In the following section, we will go ahead and choose the option Select plugins to install. When you do, you should see the screen shown in the following screenshot. The following page will list some of the most popular plugins, although it's not a complete list of Jenkins plugins. You will notice that the suggested plugin is already selected (ticked) by default:



Choosing plugins to install

You can choose All, None, or the Suggested plugins.

Once you are done choosing plugins, click Install at the bottom of the page. The following screenshot shows the Jenkins plugin installation:



Installing Jenkins plugins



            

            
        
    
        

                            
                    Creating the first admin user

                
            
            
                
Once the plugins are installed, you will be asked to create an administrator user account, as shown in the following screenshot. The following administrator account is different from the temporary administrator user account that was used at the beginning of the setup wizard (the initial admin account):



Creating your first Jenkins user

Fill in the fields appropriately and click on the Save and Finish button. Alternatively, you can also choose to ignore creating a new administrator user and continue with the initial administrator user by clicking on Continue as admin.

Next, on the following page, you will be greeted with a message saying, Jenkins is ready! Your Jenkins setup is complete. Click on Start using Jenkins to proceed to the Jenkins dashboard.



            

            
        
    
        

                            
                    The new Jenkins pipeline job

                
            
            
                
Those who are already familiar with Jenkins are well aware of the freestyle Jenkins job. The classic way of creating a pipeline in Jenkins is by using the freestyle job, wherein each CI stage is represented using a Jenkins job (freestyle).

The Jenkins freestyle job is a web-based, GUI-propelled configuration. Any modification to the CI pipeline requires you to log in to Jenkins and reconfigure each of the Jenkins freestyle jobs.

The concept of Pipeline as Code rethinks the way we create a CI pipeline. The idea is to write the whole CI/CD pipeline as a code that offers some level of programming and that can be version controlled.

The following are some of the advantages of taking the Pipeline as Code route:


	It's programmable

	All of your CI/CD pipeline configurations can be described using just a single file (Jenkinsfile)

	It's version controllable, just like any other code

	It comes with an option to define your pipeline using the Declarative Pipeline syntax, which is an easy and elegant way of coding your pipeline



Let's take a look at the Jenkins pipeline job. We will try to look and get the feel of it by creating a simple CI pipeline.



            

            
        
    
        

                            
                    Prerequisite

                
            
            
                
Before we begin, make sure you have the following things ready:


	A Jenkins server running on any of the platforms discussed in the previous chapter (Docker, standalone, cloud, VM, servlet container, and so on).

	Make sure your Jenkins server has access to the internet. This is necessary to download and install plugins.

	Make sure your Jenkins server has all the suggested plugins installed. See the Customizing Jenkins section.





            

            
        
    
        

                            
                    Creating a Jenkins pipeline job

                
            
            
                
Follow the given steps to create a Jenkins pipeline job:


	From the Jenkins dashboard, click on the New Item link.

	On the resultant page, you will be presented with various types of Jenkins jobs to choose from.

	Choose Pipeline, and give a name to your pipeline using the Enter an item name field.



 


	Once you are done, click on the OK button at the bottom of the page.

	All kinds of Jenkins jobs (freestyle, pipeline, multibranch, and so on) now come with a featured tab, as shown in the following screenshot:





The new tab feature in Jenkins jobs


	We will quickly navigate to the pipeline section by clicking on the Pipeline tab.

	The following screenshot depicts the pipeline section. Let us see this section in detail:

	The Definition field gives you two options to choose from—Pipeline script and Pipeline script from SCM. If you choose the option Pipeline script, then you define your pipeline code inside the Script field. But, if you choose the option Pipeline script from SCM (not shown in the screenshot), then your pipeline script (Jenkinsfile) is automatically fetched from the Version Control System (We will explore this option in the upcoming section).

	To get a short description about any of the options, you can click on the question mark icon.

	The Pipeline Syntax is a utility that helps you to convert GUI configurations into code. (We will explore this option in the upcoming section).









The pipeline section


	Now let us write some code inside the Script field to see how the pipeline works. We will try some of the example code provided by Jenkins.

	To do so, click on the try sample Pipeline… field and choose the GitHub + Maven option, as shown in the following screenshot:





Choosing a sample pipeline script


	This will fill the Script field with a sample code. 

	The code is shown as follows. It's in the Declarative Pipeline syntax form:



      node { 
        def mvnHome 
        stage('Preparation') { // for display purposes 
          // Get some code from a GitHub repository 
          git 'https://github.com/jglick/
          simple-maven-project-with-tests.git' 
          // Get the Maven tool. 
          // ** NOTE: This 'M3' Maven tool must be configured 
          // **       in the global configuration.            
          mvnHome = tool 'M3' 
        } 
        stage('Build') { 
          // Run the maven build 
          if (isUnix()) { 
            sh "'${mvnHome}/bin/mvn'
            -Dmaven.test.failure.ignore clean package" 
          } else { 
            bat(/"${mvnHome}\bin\mvn"
            -Dmaven.test.failure.ignore clean package/) 
          }  
        } 
        stage('Results') { 
          junit '**/target/surefire-reports/TEST-*.xml' 
          archive 'target/*.jar' 
        } 
      } 


	Let us quickly scan through the pipeline script (we will explore more about Declarative Pipeline syntax in the upcoming section):

	The node {} is the main container which tells Jenkins to run the whole pipeline script on the Jenkins master.

	Inside the node {} container, there are three more containers, shown as follows:







                  stage('Preparation') {...} 
                  stage('Build') {...} 
                  stage('Results') {...}


	

	The Preparation stage will download the Maven source code from a GitHub repository and will tell Jenkins to use the M3 Maven tool that is defined in the global configuration (we need to do this before we run our pipeline).

	The Build stage will build the Maven project.




	The Results stage will archive the build artifacts along with the JUnit testing results.








	Save the changes made to the pipeline job by clicking on the Save button at the bottom of the page.





            

            
        
    
        

                            
                    The Global Tool Configuration page

                
            
            
                
Before we run the pipeline, it is important that we take a look at the Global Tool Configuration page in Jenkins. This is the place where you configure tools that you think will be used globally across all your pipelines: for example, Java, Maven, Git, and so on.

Let's say you have multiple build agents (Jenkins slave agents) that build your Java code, and your build pipeline requires Java JDK, Maven, and Git. All you need to do is configure these tools inside the Global Tool Configuration, and Jenkins will automatically summon them while building your code on the build agents (Jenkins slave agents). There is no need for you to install these tools on any of the build agents.

Let us configure the Maven tool inside Global Tool Configuration to make our pipeline work. Follow the given steps:


	To access the Global Tool Configuration page, do any one of the following:

	From the Jenkins dashboard, click on Manage Jenkins | Global Tool Configuration.

	Or paste the URL http://<IP Address of your Jenkins server>:8080/configureTools/ in your browser.





	Scroll all the way down to the Maven section and click on the Add Maven button. You will be presented with a list of options, as shown in the following screenshot. Fill the information in as follows:

	Provide a unique name for your Maven installation by filling the Name field. (Make it M3 for our example pipeline to work.)

	The Install from Apache option will appear by default. This will make Jenkins download the Maven application from Apache:









Configuring Maven inside the Global Tool Configuration


	

	Choose the latest Maven version using the Version field; I have chosen to use Maven 3.5.0, as shown in the previous screenshot.







To choose a different installer first, delete the existing installer by clicking on the Delete Installer button. Next, click on the Add Installer drop-down menu and choose a different installer. The other options, apart from Install from Apache are, Run Batch Command, Run Shell Command, and Extract *.zip/*.tar.gz (not shown in the screenshot).


	The Java tool is also needed to build the Maven project, but since we are building our code on Jenkins master (which already has Java JDK), we can skip installing the Java tool for now.

	Once you are done with configuring Maven, scroll down to the bottom of the page and click on the Save button.





            

            
        
    
        

                            
                    Jenkins pipeline Stage View

                
            
            
                
Jenkins Stage View is a new feature that comes as a part of release 2.x. It works only with Jenkins Pipeline and Jenkins Multibranch pipeline jobs.

Jenkins Stage View lets you visualize the progress of various stages of your pipeline in real time. Let us see that in action by running our example pipeline:


	On the Jenkins dashboard, under the All view tab, you will see your pipeline.

	Click on the build trigger icon to run the pipeline, as shown in the following screenshot:





Viewing pipeline on the Jenkins dashboard


	To get to the Stage View, click on your pipeline name (which also happens to be a link to your pipeline project page).




	Alternatively, you can mouse over your pipeline name to get a drop-down menu with a list of action items and links, as shown in the following screenshot:





A view of the pipeline menu


	The Stage View page will look something like the following screenshot:





The Stage View


	To view the build logs of a particular stage, mouse over the color-coded status box, and you should see an option to view the logs. Clicking it will open up a small pop-up window displaying the logs, as shown in the following screenshot:





Jenkins individual stage logs


	To view the complete build log, look for the Build History on the left-hand side. The Build History tab will list all the builds that have been run. Right-click on the desired build number and click Console Output:





Accessing the console output



            

            
        
    
        

                            
                    Declarative Pipeline syntax

                
            
            
                
In the previous section, we created a Jenkins pipeline to get a look at and feel for its various components. We utilized the pipeline script that followed a declarative syntax to define our pipeline.

The Declarative Pipeline syntax is a more simplified and structured version of the Groovy syntax, the latter being more powerful due to its programmability. In this section, we will learn about the Declarative Pipeline syntax in a bit more detail. This is important because in the upcoming chapters we will be using the same to define our CI and CD pipelines.



            

            
        
    
        

                            
                    Basic structure of a Declarative Pipeline

                
            
            
                
In simple terms, a Declarative Pipeline is a collection of multiple node blocks (nodes), stage blocks (stages), directives, and steps. A single node block can have multiple stage blocks, and vice versa. We can also run multiple stages in parallel. Let's see each of them in detail.



            

            
        
    
        

                            
                    The node block

                
            
            
                
A node block defines the Jenkins agent wherein its constituents (stage blocks, directives, and steps) should run. The node block structure looks like the following:

node ('<parameter>') {<constituents>} 

The following gives more information about the node block:


	Defines: The node where the stage, directives, or steps should run

	Constituents: Multiple stage blocks, directives, or steps

	Required: Yes

	Parameters: Any, label





            

            
        
    
        

                            
                    The stage block

                
            
            
                
A stage block is a collection of closely related steps and directives that have a common objective. The stage block structure looks like the following:

stage ('<parameter>') {<constituents>} 

The following gives more information about the stage block:


	Defines: A collection of steps and directives

	Constituents: Multiple node blocks, directives, or steps

	Required: Yes

	Parameters: A string that is the name of the stage (mandatory)





            

            
        
    
        

                            
                    Directives

                
            
            
                
The main purpose of directives is to assist the node block, stage block, and steps by providing them with any of the following elements: environments, options, parameters, triggers, tools.

The following gives more information about the stage block:


	Defines:  The node where the stage should run

	Constituents: Environments, options, parameters, triggers, tools

	Required: No, but every CI/CD pipeline has it

	Parameters: None





            

            
        
    
        

                            
                    Steps

                
            
            
                
Steps are the fundamental elements that make up the Declarative Pipeline. A step could be a batch script or a shell script, or any other command that's executable. Steps have various purposes, such as cloning a repository, building code, running tests, uploading artifacts to the repository server, performing static code analysis, and so on. In the upcoming section, we will see how to generate steps using the Jenkins pipeline syntax utility.

The following gives more information about the stage block:


	Defines:  It tells Jenkins what to do

	Constituents: Commands, scripts, and so on. It's the fundamental block of a pipeline

	Required: No. But every CI/CD pipeline has it

	Parameters: None



The following is the pipeline code that we used earlier. The node block, the stage blocks, the directives, and the steps are highlighted using comments (//). As you can see, there are three stage blocks inside the node block. A node block can have multiple stage blocks. In addition to that, each stage block contains multiple steps, and one of them also contains a directive:

// Node block
node ('master') {
  // Directive 1
  def mvnHome
 
  // Stage block 1
  stage('Preparation') {
    // Step 1
    git 'https://github.com/jglick/simple-maven-project-with-tests.git'
    // Directive 2
    mvnHome = tool 'M3' 
   }
 
   // Stage block 2 
   stage('Build') {
     // Step 2 
     sh "'${mvnHome}/bin/mvn' clean install" 
   } 
 
   // Stage block 3
   stage('Results') {
     // Step 3 
     junit '**/target/surefire-reports/TEST-*.xml'
     // Step 4
     archive 'target/*.jar' 
   } 
 
} 

In the preceding code, note the line: node ('master') {. Here, the string master is a parameter (label) that tells Jenkins to use the Jenkins master for running the contents of the node block.

If you choose the parameter value as any, then all the stage nodes and their respective steps and directives will be executed on any one of the available Jenkins slave agents.

We will learn more about the Declarative Pipeline in the upcoming chapters, wherein we will try to write a CI/CD pipeline using it.

For more information about Declarative Pipeline syntax, refer to https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections.
To get a list of all the available steps that are compatible with the Declarative Pipeline, refer to https://jenkins.io/doc/pipeline/steps/.



            

            
        
    
        

                            
                    Jenkins pipeline syntax utility

                
            
            
                
The Jenkins pipeline syntax utility is a quick and easy way to create pipeline code. The pipeline syntax utility is available inside the Jenkins pipeline job; see the screenshot: The pipeline section in the Creating a Jenkins pipeline job section.

In this section, we will recreate the pipeline that we created in the previous section, but this time using the pipeline syntax utility.



            

            
        
    
        

                            
                    Prerequisite

                
            
            
                
Before we begin, make sure you have the following things ready:


	The Maven tool configured inside the Global Tool Configuration page (refer to the The Global Tool Configuration page section)

	Install Pipeline Maven Integration Plugin 

	The Java tool is also needed to build the Maven project, but since we are building our code on Jenkins master (which already has Java JDK), we can skip installing the Java tool





            

            
        
    
        

                            
                    Installing the Pipeline Maven Integration Plugin

                
            
            
                
Follow the given steps to install the Pipeline Maven Integration Plugin. The following plugin will allow us to use the Maven tool inside our pipeline code:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins | Available tab.

	Type Pipeline Maven Integration inside the Filter field to search the respective plugin, as shown in the following screenshot:





The Plugin Manager page


	Click on the checkbox to select the respective plugin, and then click on the Install without restart button to install it.

	Once you click on the Install without restart button, you will see the plugin getting installed, as shown in the following screenshot. Jenkins will first check for the network connection, after which it will install the dependencies, and lastly, it will install the plugin.




	Some plugins might need a restart before they can be used. To do so, check the option, Restart Jenkins when installation is complete and no jobs are running:





Plugin installation in progress



            

            
        
    
        

                            
                    Creating a Jenkins pipeline using the pipeline syntax utility

                
            
            
                
Follow the given steps to create a new Jenkins pipeline job:


	From the Jenkins dashboard, click on the New Item link.

	On the resultant page, you will be presented with various types of Jenkins jobs to choose from.

	Choose Pipeline, and give a name to your pipeline using the Enter an item name field.

	Once you are done, click on the OK button at the bottom of the page.

	We will quickly navigate to the pipeline section by clicking on the Pipeline tab.



 


	Under the Pipeline tab, click on the link named Pipeline Syntax. This will open up a new tab, as shown in the following screenshot:





The Pipeline Syntax page


	We will be using the following Snippet Generator to create pipeline code for various blocks and steps.

	Let us first generate a code for a node block:

	On the Pipeline Syntax page, under the Steps section, choose node: Allocate node using the Sample Step field, as shown in the following screenshot.

	In the Label field, add a string master. By doing so we tell Jenkins to use the Jenkins master as the node of choice to execute our pipeline.

	Click on the Generate Pipeline Script button to generate the code.

	Copy the generated code and keep it aside on a text editor:









Generating code for the node block


	Now, let us create two stage blocks named Preparation and Build:

	On the Pipeline Syntax page, under the Steps section, choose stage: Stage using the Sample Step field, as shown in the following screenshot.

	In the Stage Name field, add a string Preparation.

	Click on the Generate Pipeline Script button to generate the code.

	Copy the generated code and paste it inside the node block that we generated earlier:









Generating code for the stage block


	Similarly, repeat step 9 to create a stage block named Build. Paste the generated code inside the node block and after the Preparation (the stage block).

	Our pipeline code, so far, should look something like the following (without the // some block lines):



      node('master') {

        stage('Preparation') {
        }

        stage('Build') {
        }

      }


	Let us now create a step to download the source code from GitHub:

	On the Pipeline Syntax page, under the Steps section, choose git: Git using the Sample Step field, as shown in the following screenshot.

	In the Repository URL field, add the link to the example GitHub repository: https://github.com/jglick/simple-maven-project-with-tests.git.

	Leave the rest of the options as is.

	Click on the Generate Pipeline Script button to generate the code.

	Copy the generated code, and paste it into the Preparation (the stage block) that we generated earlier:









Generating code for the Git step


	Next, let us generate a directive that will tell Jenkins to use the M3 Maven tool that we have configured inside the Global Tool Configuration:

	On the Pipeline Syntax page, under the Steps section, choose withMaven: Provide Maven environment using the Sample Step field, as shown in the following screenshot.

	In the Maven field, choose M3, which is the Maven tool that we have configured inside the Global Tool Configuration.

	Leave the rest of the options as is.

	Click on the Generate Pipeline Script button to generate the code.




	Copy the generated code and paste it into the Build (the stage block) that we generated earlier:









Generating code for the withMaven directive


	Lastly, generate a pipeline code for our Maven build command:

	On the Pipeline Syntax page, under the Steps section, choose sh: Shell Script using the Sample Step field, as shown in the following screenshot. This is a step to create a shell script.

	In the Shell Script field, type mvn -Dmaven.test.failure.ignore clean package, which is the Maven command to build, test, and package the code. This will be the content of our shell script.

	 Click on the Generate Pipeline Script button to generate the code.

	Copy the generated code and paste it into the withMaven (directive) that we generated earlier:









Generating code for the maven build


	Our final pipeline script should look something like the following (without the // some block lines):



      node('master') {

        stage('Preparation') {
          git 'https://github.com/jglick/
          simple-maven-project-with-tests.git'
        }
 
        stage('Build') {
          withMaven(maven: 'M3') {
            sh 'mvn -Dmaven.test.failure.ignore clean
            package'
          }
        }

      }


	Now switch to the pipeline job configuration page.

	Scroll to the Pipeline section and paste the preceding pipeline code inside the Script field.

	Click on the Save button at the bottom of the page.



We will see more examples in the upcoming chapters when we try to create a CI/CD pipeline using the Declarative Pipeline syntax, utilizing the pipeline syntax utility.



            

            
        
    
        

                            
                    Multibranch pipeline

                
            
            
                
In this section, we will learn about the multibranch pipeline job in Jenkins. This is one of the new features added to Jenkins release 2.x.

The Multibranch pipeline allows you to automatically create a pipeline for each branch on your source control repository. This is depicted in the following screenshot. A Multibranch pipeline works using a Jenkinsfile that is stored along with your source code inside a version control repository. A Jenkinsfile is nothing but a pipeline script that defines your CI pipeline:



Auto-generated pipeline for a new branch

In addition to that, the Multibranch pipeline is designed to trigger a build whenever there is a new code change on any of the branches on your Git/GitHub repository. This is depicted in the following screenshot:



Usage of multibranch pipeline for continuous integration



            

            
        
    
        

                            
                    Prerequisite

                
            
            
                
Before we begin, make sure you have the following things ready:


	The Maven tool configured inside the Global Tool Configuration page (refer to the section: The Global Tool Configuration page).

	Install Pipeline Maven Integration Plugin.

	The Java tool is also needed to build the Maven project, but since we are building our code on Jenkins master (which already has Java JDK), we can skip installing the Java tool.

	Install GitHub plugin (already installed if you have chosen to install the recommended plugins during the Jenkins setup wizard).

	Make sure your Jenkins URL is accessible from the internet. If you are using a staging or a development environment to perform this exercise, and your Jenkins server doesn't have a domain name, your Jenkins server might not be accessible from the internet. To make your Jenkins URL accessible over the internet, refer to the Exposing your local server to the internet section in the Appendix, Supporting Tools and Installation Guide.





            

            
        
    
        

                            
                    Adding GitHub credentials inside Jenkins

                
            
            
                
In order to make Jenkins communicate with GitHub, we need to add GitHub account credentials inside Jenkins. We will do this using the Jenkins Credentials Plugin. If you have followed the Jenkins setup wizard (discussed at the beginning of the chapter), you will find the Credentials feature on the Jenkins dashboard (see the left-hand side menu).

Follow the given steps to add the GitHub credentials inside Jenkins:


	From the Jenkins dashboard, click on Credentials | System | Global credentials (unrestricted).

	On the Global credentials (unrestricted) page, from the left-hand side menu, click on the Add Credentials link.

	You will be presented with a bunch of fields to configure (see the following screenshot):

	Choose Username with password for the Kind field.

	Choose Global (Jenkins, nodes, items, all child items, etc) for the Scope field.

	Add your GitHub username to the Username field.

	Add your GitHub password to the Password field.

	Give a unique ID to your credentials by typing a string in the ID field.

	Add some meaningful description to the Description field.

	Click on the Save button once done:









Adding GitHub credentials inside Jenkins


	And that's how you save credentials inside Jenkins. We will use these GitHub credentials shortly.





            

            
        
    
        

                            
                    Configuring Webhooks on GitHub from Jenkins

                
            
            
                
Now that we have saved GitHub account credentials inside Jenkins, let's configure Jenkins to talk to GitHub. We will do this by configuring the GitHub settings inside the Jenkins configuration.

Carefully follow the given steps to configure GitHub settings inside Jenkins:


	From the Jenkins dashboard, click on Manage Jenkins | Configure System.

	On the resultant Jenkins configuration page, scroll all the way down to the GitHub section.

	Under the GitHub section, click on the Add GitHub Server button and choose GitHub Servers from the available drop-down list. Doing so will display a bunch of options for you to configure.

	 Let us configure them one by one, as follows:

	Give your GitHub server a name by adding a string to the Name field.

	Under the API URL field, add https://api.github.com (default value) if you are using a public GitHub account. Otherwise, if you are using GitHub Enterprise, then specify its respective API endpoint.




	 Make sure the Manage hooks option is checked:









Configuring the GitHub server


	

	Click on the Advanced… button (you will see two of them; click on the second one). Doing so will display a few more fields to configure.

	Under the Additional actions field, click on Manage additional GitHub actions and choose Convert login and password to token from the available list (you will see only one option to choose).

	 This will further disclose new fields to configure.

	Select the From credentials option (active by default). Using the Credentials field, choose the GitHub credentials that we created in the previous section (ID: github_credentials).

	Next, click on the Create token credentials button. This will generate a new personal access token on your GitHub account:









Converting GitHub credentials to a token


	

	To view your personal access token on GitHub, log in to your GitHub account and navigate to Settings | Developer settings | Personal access tokens:









Personal access token on GitHub


	

	Once done, click on the Save button at the bottom of the Jenkins configuration page.

	 An entry of the respective personal access token will also be added inside the Jenkins credentials. To view it, navigate to Jenkins dashboard | Credentials | System | api.github.com, and you should see a credential entry of the Kind secret text.








	We are not yet done with our GitHub configuration inside Jenkins. Follow the remaining steps as follows:

	From the Jenkins dashboard, click on Manage Jenkins | Configure System.

	Scroll all the way down to the GitHub section.

	Using the Credentials field, choose the newly generated credentials of the Kind secret text (the personal access token entry inside Jenkins).

	Now, click on the Test connection button to test our connection between Jenkins and GitHub.




	Once done, click on the Save button at the bottom of your Jenkins configuration page:









Testing the connection between Jenkins and GitHub


	We are now done with configuring GitHub settings inside Jenkins.





            

            
        
    
        

                            
                    Create a new repository on GitHub

                
            
            
                
In this section, we will create a new repository on GitHub. Make sure you have Git installed on the machine that you will use to perform the steps mentioned in the following section (refer to the Installing Git on Windows/Linux section in the Appendix, Supporting Tools and Installation Guide).

Follow the given steps to create a repository on GitHub:


	Log in to your GitHub account.

	To keep things simple, we will reuse the source code from the repository at https://github.com/jglick/simple-maven-project-with-tests.git. This is the repository that we have been using to create a Jenkins pipeline.

	The easiest way to reuse a GitHub repository is to fork it. To do so, just access the above repository from your internet browser and click on the Fork button, as shown in the following screenshot:





Forking a GitHub project


	Once done, a replica of the preceding repository will be visible on your GitHub account.





            

            
        
    
        

                            
                    Using a Jenkinsfile

                
            
            
                
Jenkins multibranch pipeline utilizes Jenkinsfile. In the following section, we will learn how to create a Jenkinsfile. We will reuse the example pipeline script that we created in the previous section to create our Jenkinsfile. Follow the given steps:


	Log in to your GitHub account.

	Navigate to the forked repository simple-maven-project-with-tests.

	Once on the repository page, click on the Create new file button to create a new empty file that will be our Jenkinsfile, as shown in the following screenshot:





Creating a new file on GitHub


	Name your new file Jenkinsfile by filling the empty text box, as shown in the following screenshot:





Naming your new file on GitHub


	Add the following code to your Jenkinsfile:



      node ('master') { 
        checkout scm 
        stage('Build') { 
          withMaven(maven: 'M3') { 
            if (isUnix()) { 
              sh 'mvn -Dmaven.test.failure.ignore clean package' 
            }  
            else { 
              bat 'mvn -Dmaven.test.failure.ignore clean package' 
            } 
          } 
        }   
        stage('Results') { 
          junit '**/target/surefire-reports/TEST-*.xml' 
          archive 'target/*.jar' 
        } 
      } 


	Once done, commit the new file by adding a meaningful comment, as shown in the following screenshot:





Committing your new file on GitHub



            

            
        
    
        

                            
                    Creating a Multibranch pipeline in Jenkins

                
            
            
                
Follow the given steps to create a new Jenkins pipeline job:


	From the Jenkins dashboard, click on the New Item link.

	On the resultant page, you will be presented with various types of Jenkins jobs to choose from.

	Choose Multibranch Pipeline, and give a name to your pipeline using the Enter an item name field.



 


	Once you are done, click on the OK button at the bottom of the page.

	Scroll to the section Branch Sources. This is the place where we configure the GitHub repository that we want to use.

	Click on the Add Source button and choose GitHub. You will be presented with a list of fields to configure. Let us see them one by one (see the following screenshot):

	For the Credentials field, choose the GitHub account credentials (Kind as Username with Password) that we created in the previous section.

	Under the Owner field, specify the name of your GitHub organization or GitHub user account.

	The moment you do so, the Repository field will list all the repositories that are on your GitHub account.

	Choose simple-maven-project-with-tests under the Repository field.

	Leave the rest of the options at their default values:









Configuring the multibranch pipeline


	Scroll all the way down and click on the Save button.





            

            
        
    
        

                            
                    Re-register the Webhooks

                
            
            
                
Before we proceed, let us re-register the Webhooks for all our Jenkins pipelines:


	To do so, from the Jenkins dashboard, click on Manage Jenkins | Configure System.

	On the Jenkins configuration page, scroll all the way down to the GitHub section.

	Under the GitHub section, click on the Advanced… button (you will see two of them; click on the second one).



 


	This will display a few more fields and options. Click on the Re-register hooks for all jobs button.

	The preceding action will create new Webhooks for our multibranch pipeline on the respective repository inside your GitHub account. Do the following to view the Webhooks on GitHub:

	Log in to your GitHub account.

	Go to your GitHub repository, simple-maven-project-with-tests in our case.

	Click on the repository Settings, as shown in the following screenshot:









Repository Settings


	

	On the Repository Settings page, click on Webhooks from the left-hand side menu. You should see the Webhooks for your Jenkins server, as shown in the following screenshot:









Webhooks on GitHub repository



            

            
        
    
        

                            
                    Jenkins Multibranch pipeline in action

                
            
            
                
Follow the given steps:


	From the Jenkins dashboard, click on your Multibranch pipeline.

	 On your Jenkins Multibranch pipeline page, from the left-hand side menu, click on the Scan Repository Now link. This will scan the repository for branches with Jenkinsfile, and will immediately run a pipeline for every branch that has got a Jenkinsfile, as shown in the following screenshot:





Pipeline for the master branch


	On your Multibranch pipeline page, from the left-hand side menu, click on Scan Repository Log. You will see something like that which is shown as follows. Notice the highlighted code. You can see that the master branch met the criteria, as it had a Jenkinsfile and a pipeline was secluded for it. There was no pipeline scheduled for the testing branch since there was no Jenkinsfile on it:



Started by user nikhil pathania 
[Mon Aug 14 22:00:57 UTC 2017] Starting branch indexing... 
22:00:58 Connecting to https://api.github.com using ******/****** (credentials to access GitHub account) 
22:00:58 Connecting to https://api.github.com using ******/****** (credentials to access GitHub account) 
Examining nikhilpathania/simple-maven-project-with-tests 
 
  Checking branches... 
 
  Getting remote branches... 
 
    Checking branch master 
 
  Getting remote pull requests... 
      'Jenkinsfile' found 
    Met criteria 
Scheduled build for branch: master 
 
    Checking branch testing 
      'Jenkinsfile' not found 
    Does not meet criteria 
 
  2 branches were processed 
 
  Checking pull-requests... 
 
  0 pull requests were processed 
 
Finished examining nikhilpathania/simple-maven-project-with-tests 
 
[Mon Aug 14 22:01:00 UTC 2017] Finished branch indexing. Indexing took 2.3 sec 
Finished: SUCCESS 


	You need not always scan the repository. The GitHub Webhooks is configured to trigger a pipeline automatically whenever there is a push or a new branch on your GitHub repository. Remember, a Jenkinsfile should also be present on the respective branch to tell Jenkins what it needs to do when it finds a change in the repository.





            

            
        
    
        

                            
                    Creating a new feature branch to test the multibranch pipeline

                
            
            
                
Let us now create a feature branch out of the master branch and see if Jenkins can run a pipeline for it:


	To do so, log in to your GitHub account.

	Go to your respective GitHub repository; in our case it's simple-maven-project-with-tests.




	Click on the Branch: master button and type a name for your new branch in the empty text box. Next, click on the Create branch: feature option to create a new branch named feature, as shown in the following screenshot:





Creating a feature branch


	This should immediately trigger a pipeline inside Jenkins for our new feature branch:





Pipeline for the new feature branch



            

            
        
    
        

                            
                    Jenkins Blue Ocean

                
            
            
                
The Jenkins Blue Ocean is a completely new way of interacting with Jenkins. It's more of a UI sidekick to the main Jenkins application. The following are some the features of Jenkins Blue Ocean:


	Improved visualizations

	Pipeline editor

	Personalization

	Quick and easy pipeline setup wizard for Git and GitHub



The pipelines that you create using your classic Jenkins interface can be visualized in the new Jenkins Blue Ocean, and vice versa. As I said earlier, Jenkins Blue Ocean is a UI sidekick to the main Jenkins application.

In the following section, we will visualize the Jenkins pipelines that we created in the previous section in Blue Ocean. We will also create a new pipeline, just to get a look at and feel for the new Jenkins Blue Ocean interface.



            

            
        
    
        

                            
                    Installing the Jenkins Blue Ocean plugin

                
            
            
                
In order to use the Jenkins Blue Ocean plugin, we need to install the Blue Ocean plugin for Jenkins. Follow the given steps:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.

	On the Plugin Manager page, click on the Available tab.

	Using the Filter option, search for Blue Ocean, as shown in the following screenshot:





Installing the Jenkins Blue Ocean plugin


	From the list of items, choose Blue Ocean and click on Install without restart. You only need Blue Ocean and nothing else.

	The dependency list for Blue Ocean is big, so you will see a lot of stuff getting installed along with the Blue Ocean plugin on the Installing Plugins/Upgrades page.





            

            
        
    
        

                            
                    View your regular Jenkins pipeline in Blue Ocean

                
            
            
                
In this section, we will try to visualize our existing Jenkins pipelines that we have created in the previous sections:


	On the Jenkins dashboard, you should now see a new link on the left-hand side menu with the name Open Blue Ocean.

	Click on the Open Blue Ocean link to go to the Jenkins Blue Ocean dashboard. The following is what you should see (refer to the following screenshot):

	The Administration link will take you to the Manage Jenkins page.

	The Pipelines link will take you to the Jenkins Blue Ocean dashboard that you are seeing now.

	The icon (arrow within a square) will take you to the classic Jenkins dashboard.




	The New Pipeline button will open up the pipeline creation wizard for Git- and GitHub-based projects.

	A list of pipelines (highlighted as e):









The Jenkins Blue Ocean dashboard


	Let us have a look at our multibranch pipeline. Click on your multibranch pipeline from the Jenkins Blue Ocean dashboard. Doing so will open up the respective multibranch pipeline page, as shown in the following screenshot:

	The button (highlighted as a) will take you to the pipeline configuration page.

	The Activity tab will list all the current and past pipelines.

	The Branches tab will show you an aggregate view of the pipelines for each branch.

	The Pull Requests tab will list all the open pull requests on your branches.




	The button (highlighted as e) is used to rerun the pipeline:









Multibranch pipeline in Blue Ocean


	Now let us see the individual build page. To do so, from the Jenkins pipeline page (see the preceding screenshot), click on any of the builds, and you will be taken to the build page of the respective pipeline, as shown in the following screenshot:

	The Changes tab will list the code changes that triggered the build.

	The Artifacts tab will list all the artifacts that are generated by the build.

	The button (highlighted as c) will rerun your build.

	The section (highlighted as d) displays some metrics about your build.

	This Stage View (highlighted as e) will list all the sequential and parallel stages.

	The Steps Results section will show you all the steps of a particular stage that you have selected (in the following screenshot, I have selected the stage Results).




	Each listed step (highlighted as g) can be expanded and its log  can be viewed:









Build page in Blue Ocean

This was a short overview of how your Jenkins pipeline (the one that you created using the classic Jenkins UI) should look in Blue Ocean. It has demonstrated pretty much everything. However, I encourage readers to keep exploring.



            

            
        
    
        

                            
                    Creating a pipeline in Blue Ocean

                
            
            
                
In this section, we will see how to create a new pipeline from the Jenkins Blue Ocean dashboard. We will look at the new pipeline creation wizard in Blue Ocean. Before you begin make the following things ready:


	Fork the following repository: https://github.com/nikhilpathania/hello-world-example.git into your GitHub account. We will be using it in the example described in the following section

	Install the JUnit plugin (https://plugins.jenkins.io/junit) for Jenkins



Follow the given steps:


	From the Jenkins Blue Ocean dashboard, click on the New Pipeline button. Jenkins will ask you to choose between Git and GitHub. For our current exercise, we will choose GitHub:





Choosing between Git and GitHub repositories


	Next, Jenkins will ask you to provide the GitHub access token for your GitHub account. Click on the Create an access key here link to create a new one:





GitHub access token field


	In a new tab, you will be asked to log in to your GitHub account.

	Once you log in, you will be taken directly to the GitHub settings page to create a New personal access token.

	Type a small description for the Token description field to identify your token. Leave the options under the Select scopes section at their default values:





Creating a GitHub personal access token


	Click on the Generate new token button at the bottom of the page to generate a new Personal access token:





GitHub personal access token


	Copy the newly created personal access token and paste it inside your GitHub access token field, then click on the Connect button (see the following screenshot).

	Next, click on the listed organization:





Choosing the GitHub account


	You can choose between New Pipeline and Auto-discover Jenkinsfiles. In the following example, we will choose the New Pipeline option:





Choosing between creating and discovering pipelines


	Next, you will be asked to choose a repository from the list of available repositories on your GitHub account. You can utilize the Search… option to look for the desired repository in case it's not listed. In our current example, we will choose the hello-world-example repo:





Choosing a repository


	The next thing Jenkins will ask you to do is create a pipeline. Since there is no Jenkinsfile found on the respective repository, click on the Create Pipeline button to create a Jenkinsfile:





Creating a new pipeline


	The page to create a pipeline will look like that which follows. On the left-hand side, you will find a visualization of your pipeline, and on the right-hand side, you will find the utility to choose the blocks, stages, and steps (similar to the pipeline syntax utility that we saw in the previous section):





Blue Ocean pipeline editor


	Let us first choose an Agent to run our pipeline. To do so, from the Pipeline Settings, using the Agent field, choose the option label. Then type master under the Label field, as shown in the following screenshot. In this way, we are telling Jenkins to run our pipeline on the Jenkins master:





Creating a node block


	Next, let us create a stage named Build that will build our source code. To do so, click on the + button, available on the pipeline visualization.



 


	You will be asked to name your new stage. Do so by typing Build under the Name your stage field, as shown in the following screenshot:





Creating a build stage


	Next, we will add a step to build our Maven code. To do so, click on the + Add step button.

	You will be asked to choose from a list of available steps, as shown in the following screenshot:





The step menu


	Ours is a Maven project. Therefore, we might need to set up the Maven environment first, to tell Jenkins which Java and Maven tool it can use.

	To do so, search for Provide Maven environment using the search box (find steps by name):





Choosing the provide Maven environment step

Not all Jenkins plugins are compatible with Jenkins Blue Ocean. The list is still small. However, it's expected to grow over time.


	When you click on the Provide Maven environment step, you will be presented with a list of fields to configure, as shown in the following screenshot. Type M3 under the Maven field and leave rest of the options as is:





Configuring the provide maven environment step


	At the bottom of the configuration page, click on the + Add step button to create a new child step that will build our Maven code.

	Choose Shell Script from the list of available steps, if your Jenkins master is a Linux machine. Choose Windows Batch Script, if it's a Windows machine.

	Type the following code inside the textbox for Shell Script/Windows Batch Script:



        mvn clean install 



Configuring the shell script child step


	Click on the back arrow to go back to the previous menu. You should now see your new step, Shell Script, listed under the Child steps section, as shown in the following screenshot:





Shell script as one of the child steps


	Click on the back arrow to go back to the previous menu.

	Next, let us create a stage named Results, wherein we will archive our built artifacts and the XML result reports. To do so, click on the + button available on the pipeline visualization.

	You will be asked to name your new stage. Do so by typing Results under the Name your stage field, as shown in the following screenshot:





Creating a results stage


	Next, we will add a few steps on our new stage. The first one will be a step to publish our test results report. To do so, click on the + Add step button.

	Choose Publish JUnit test result report from the list of available steps. You will be presented with a list of options to configure:

	Add **/target/surefire-reports/TEST-*.xml under the TestResults field.




	Leave the rest of the options as is:









Configuring the publish JUnit test result report step


	Click on the back arrow to go back to the previous menu. 

	Click on the + Add step button again to add a new step.

	Choose Archive the artifacts from the list of available steps. You will be presented with a list of options to configure:

	Add target/*.jar under the Artifacts field.

	Leave the rest of the options as is:









Configuring the Archive the artifacts step


	Click on the back arrow to go back to the previous menu.

	Finally, click on the Save button at the top-right corner of the page to save your pipeline configuration.

	A pop-up window will ask you to add some Description and choose the branch on which to commit the pipeline configuration.

	Once done, click on the Save & run button:





Saving the pipeline


	This will immediately run a pipeline on the respective branch, as shown in the following screenshot:





A successful build on the master branch


	You will notice that a new file has been created inside your repository under the master branch:





Jenkinsfile listed inside the source code


	The following should be the content of the file:



pipeline { 
  agent { 
    node { 
      label 'master' 
    } 
     
  } 
  stages { 
    stage('Build') { 
      steps { 
        withMaven(maven: 'M3') { 
          sh 'mvn clean install' 
        } 
         
      } 
    } 
    stage('Results') { 
      steps { 
        junit '**/target/surefire-reports/TEST-*.xml' 
        archiveArtifacts 'target/*.jar' 
      } 
    } 
  } 
}



            

            
        
    
        

                            
                    Summary

                
            
            
                
In the preceding chapter, we got hands-on experience of almost all of the new features in Jenkins. We chose modest examples to keep our pipelines simple. Nevertheless, in the upcoming chapters, we will learn to create a full-fledged CI/CD pipeline using all of the new features in Jenkins.

In the next chapter, we will take a look at some of the administrative tasks in Jenkins.



            

            
        
    
        

                            
                    Configuring Jenkins

                
            
            
                
In this chapter, we will learn how to perform some basic Jenkins administration tasks, as follows:


	Updating/installing/uninstalling/downgrading Jenkins plugins

	Installing Jenkins plugins manually

	Performing Jenkins backup and restore

	Upgrading Jenkins on various platforms (Windows/Linux/servlet)

	Upgrading Jenkins running inside a Docker container

	Creating and managing users in Jenkins

	Learning various authentication methods in Jenkins

	Configuring various authorization methods in Jenkins



Jenkins comes with a pile of items to configure. The more plugins you install, the more there is to configure. In this chapter, we will cover only the basic administrative tasks in Jenkins. We will learn more about the Jenkins configuration in the upcoming chapters, wherein we will try to add up more plugins to Jenkins in order to achieve Continuous Integration (CI) and Continuous Delivery (CD).



            

            
        
    
        

                            
                    The Jenkins Plugin Manager

                
            
            
                
Jenkins derives most of its power from plugins. Jenkins plugins are pieces of software that upon installation enhance the Jenkins functionality. A plugin that is installed inside Jenkins manifests itself as a parameter or a configurable item inside a Jenkins job or inside the Jenkins system configuration, or event as a step under the Snippet Generator (in case it's compatible with the Declarative Pipeline syntax).

The following screenshot shows the Jenkins system configuration. It's a setting to configure the SonarQube tool (a static code analysis tool). The respective configuration is available only after installing the Jenkins plugin for SonarQube:



SonarQube settings inside Jenkins system configuration

There is a special section inside Jenkins to manage plugins. In this section, we will learn how to manage plugins using the Jenkins Plugin Manager:


	From the Jenkins dashboard click on Manage Jenkins.

	Once on the Manage Jenkins page, click on Manage Plugins. You can also access the same Jenkins Plugin Manager page using the <Jenkins URL>/pluginManager link.




	You will see the following four tabs: Updates, Available, Installed, and Advanced.





            

            
        
    
        

                            
                    Updating Jenkins plugins

                
            
            
                
The Updates tab lists out all of the plugins that need an update, as shown in the following screenshot:



Updating Jenkins plugins

To update a plugin, select it by clicking on its respective checkbox and click on the Download now and install after restart button.

To update all plugins listed under the Update tab, click on All (available at the bottom of the page). This will select all the plugins. Then, click on the Download now and install after restart button to install the updates.

On the Updates tab, at the bottom of the page, you will see a button named Check now. Click on it to refresh the list of plugins that are displayed under the Updates tab. This will check for plugin updates.



            

            
        
    
        

                            
                    Installing a new Jenkins plugin

                
            
            
                
The Available tab lists all plugins available for Jenkins. Plugins that are installed on your Jenkins instance will not be listed here.

The following screenshot shows a list of available plugins for Jenkins:



The plugins are grouped based on their functionality

To install a plugin, select it by clicking on its respective checkbox. Then, at the bottom of the page click on either the Install without restart button (to install the plugin immediately) or on the Download now and install after restart button (the name is self-explanatory).

Just like the Updates tab, here too you will see a button named Check now. Clicking on it will refresh the list of plugins under the Available tab.



            

            
        
    
        

                            
                    Uninstalling or downgrading a Jenkins plugin

                
            
            
                
The Installed tab lists all the plugins currently installed on your Jenkins instance. As shown in the following screenshot, you can see there is an option to uninstall a plugin as well as downgrade it.

You can always choose to downgrade a plugin, in the event your Jenkins instance becomes unstable or your CI/CD pipeline does not do well, after a plugin update:



List of installed Jenkins plugin



            

            
        
    
        

                            
                    Configuring proxy settings in Jenkins

                
            
            
                
Under the Advanced tab, you will see a section named HTTP Proxy Configuration. This is the place where you configure your proxy settings to allow Jenkins to fetch updates from the internet:



HTTP Proxy Configuration settings

Leave these fields empty if your Jenkins server is not behind any firewall and has direct access to the internet.


Jenkins uses the HTTP Proxy Configuration details when you try to install or upgrade a Jenkins plugin. It also uses this information to update the list of Jenkins plugins available on the Update tab and the Available tab.



To test your proxy settings, do the following:


	Under the HTTP Proxy Configuration section, click on the Advanced… button.

	Add a URL to the Test URL field and click on the Validate Proxy button.

	You should see a message: Success, as shown in the following screenshot.

	Click on the Submit button to save the settings:





Checking the proxy settings



            

            
        
    
        

                            
                    Manually installing a Jenkins plugin

                
            
            
                
Under the Advanced tab, just after the HTTP Proxy Configuration section, you will see another section named Upload Plugin. It provides you with the facility to install or upgrade a Jenkins plugin.

This feature is helpful when your Jenkins instance does not have internet access and you are in need of a new plugin or you need to upgrade an existing plugin. Imagine a situation where you have a Jenkins instance running inside a local area network, but with no access to the internet, or shall we say the Jenkins online plugin repository. In such cases, you will first download the required Jenkins plugin from the online Jenkins repository, and then you will transport it to the Jenkins master server using a removable media. And finally, you will use the Upload Plugin section to install the required Jenkins plugin.

Let us try to install a plugin manually by following the given steps:


	From a machine that has access to the internet, open the website: https://updates.jenkins-ci.org/download/plugins/. 



 


	The preceding site contains the list of all plugins available for Jenkins, as shown in the following screenshot:





Jenkins plugin index


	In the following example, we will install a plugin named logstash.

	On the index page, search for logstash and click on it.

	You will see all available versions of the respective plugin. Click on the one that you need (I choose to install the latest):





List of versions available for a plugin


	This will download a .hpi file on your system.

	When you download a plugin, it is also important that you download its dependencies (other Jenkins plugins).

	All the dependencies (Jenkins plugins) must be installed before installing the desired plugin.

	Copy this .hpi file (logstash.hpi) to your Jenkins server or to any machine that has access to your Jenkins dashboard.



 


	Now, log in to your Jenkins server. From the Jenkins dashboard, navigate to Manage Jenkins | Manage Plugins | Advanced.

	On the Advanced tab, under the Upload Plugin section, do the following (as shown in the following screenshot):

	Click on the Browse… button under the File field.

	From the resultant window, upload the downloaded .hpi file.

	Once done, click on the Upload button:





Manually uploading a Jenkins plugin


	Jenkins will now proceed with the plugin installation.





            

            
        
    
        

                            
                    Jenkins backup and restore

                
            
            
                
What happens if someone accidentally deletes important Jenkins configurations? Although this can be avoided using stringent user permissions that we will see in the User Administration section, imagine a situation where someone working on the Jenkins configuration wants to restore to a previous stable Jenkins configuration.

From what we have learned so far, we know that the entire Jenkins configuration is stored under the Jenkins home directory. It is C:\jenkins (Windows), /var/jenkins_home (Apache Tomcat), /var/lib/jenkins (Linux). In the following section, we will learn how to back up and restore the Jenkins configuration using a plugin, the Periodic Backup plugin.



            

            
        
    
        

                            
                    Installing the Periodic Backup plugin

                
            
            
                
Follow the given steps to install the Periodic Backup plugin:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.

	On the Plugin Manager page, click on the Available tab.

	Using the Filter option, search for Periodic Backup, as shown in the following screenshot:





Installing the Periodic Backup plugin


	From the list of items choose Periodic Backup and click on Install without restart. You only need Blue Ocean and nothing else.





            

            
        
    
        

                            
                    Configuring the Periodic Backup plugin

                
            
            
                
We need to tell the Periodic Backup plugin what to back up, where to back up, and how frequent to back up before we even start using it. Follow the given steps:


	From the Jenkins dashboard go to Manage Jenkins | Periodic Backup Manager.

	When you access the Periodic Backup Manager for the first time you will see the following notification:



The Periodic Backup plugin has not been configured yet. Click here to configure it.


	Click on the Click here to configure it link.

	You will be taken to the Periodic Backup Manager page, and you will find quite a few options to configure. Let us see them one by one (as shown in the following screenshot).

	The Root Directory, <your Jenkins home directory>, is your Jenkins home directory.

	The Temporary Directory field should be a directory located on your Jenkins server machine. As the name says, this directory is used as a temporary location to perform archive/unarchive operations during the backup/restore process. It can be any directory and should be outside Jenkins home directory.

	The Backup schedule (cron) field is where you define when or how frequent to make a backup. Do not leave this field empty. Note that the field accepts cron syntax. For example, to back up daily at midnight, use the following cron syntax without quotes: 0 0 * * *.

	The Validate cron syntax button is to validate the cron that you have entered in the Backup schedule (cron) field.

	The Maximum backups in location field tells Jenkins not to store backups greater than the number described here.

	The Store no older than (days) field tells Jenkins to delete any backup that is older than this value.

	Under File Management Strategy, you have two options to choose from: ConfigOnly and FullBackup. If you choose the ConfigOnly option, Jenkins will back up all the .xml files from the Jenkins home directory and the config.xml files of all the jobs. But, if you choose FullBackup, then Jenkins will back up the whole Jenkins home directory.

	Under Storage Strategy, you have three options to choose from: NullStorage, TarGzStorage, and ZipStorage (with multi-volume support). You can choose the one that suits your requirement.

	Under Backup Location, you can add multiple backup locations to store your backups. To do so, click on the Add Location button and choose LocalDirectory. Next, under the Backup directory path field, add the location where you want Jenkins to store the backup. Also, do not forget to check the Enable this location checkbox. You can choose multiple locations and enable all of them.





Periodic Backup configurations



            

            
        
    
        

                            
                    Creating a Jenkins backup

                
            
            
                
Now that we have configured the Periodic Backup plugin, let us run a backup to test our settings. To do so, on the Periodic Backup Manager page, click on the Backup Now! link available on the left-hand side menu.

You will see the notification on the Periodic Backup Manager page while the backup is in progress as Creating backup….

Once the backup is complete, you will see it listed on the same page, as shown in the following screenshot:



List of backup



            

            
        
    
        

                            
                    Restoring a Jenkins backup

                
            
            
                
Let us now test restoring a Jenkins backup. But before we do that, let us make some configuration changes to see if the restore operation works. We will do this by making some configuration changes on the Configure System page:


	From the Jenkins dashboard, click on Manage Jenkins |Configure System.

	On the Configure System page, change the values for the following fields.

	Change the value of the # of executors field from 2 to 5.

	Change the value of the Quiet period field from 5 to 10.

	Click on the Save button at the bottom of the page.

	Now, let us restore Jenkins to a point previous to the above changes.

	From the Jenkins dashboard, click on Manage Jenkins | Periodic Backup Manager.

	On the resultant page, choose the backup that we created in the previous section and click on the Restore selected backup button.

	You will see the following message:



Restoring backup…


	Refresh the page, and from the Jenkins dashboard click on Manage Jenkins | Configure System.

	You will find the value of the # of executors field as two and the Quiet period field as five.





            

            
        
    
        

                            
                    Viewing the backup and restore logs

                
            
            
                
You can see the whole log with respect to Jenkins backup and restore. To view the details logs, perform the following steps:


	From the Jenkins dashboard, click on Manage Jenkins | System Log.

	On the Logs page, under the Log Recorders section, click on org.jenkinsci.plugins.periodicbackup.

	You will find the complete log of the backup and the restore action performed here, as shown in the following screenshot:





Jenkins Periodic Backup log



            

            
        
    
        

                            
                    Upgrading Jenkins

                
            
            
                
There are two kinds of Jenkins releases: LTS Release and Weekly Release. The Jenkins Weekly Release contains new features and bug fixes, whereas the LTS (Long Term Support) Release are special releases that are considered stable over a period of 12 weeks. It's recommended that you always choose an LTS Release for your Jenkins server:



Jenkins download page

Jenkins by itself notifies you when there is a newer version available (provided your Jenkins server has access to the internet), as shown in the following screenshot:



Jenkins notification about the availability of a new version



            

            
        
    
        

                            
                    Upgrading Jenkins running on Tomcat Server

                
            
            
                
In the following section, we will learn to update Jenkins running inside a servlet (Apache Tomcat). Follow the given steps:


	Log in to your Apache Tomcat server machine as the root user.

	Download the latest (LTS) version of jenkins.war under the /tmp directory using the following command:




         cd /tmp

         wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war


To download a specific version of Jenkins (LTS), go to the following link: http://mirrors.jenkins.io/war-stable/ and choose the desired version of Jenkins (for example, http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war).



To download a specific version of Jenkins (Weekly), go to the following link: http://mirrors.jenkins.io/war/ and choose the desired version of Jenkins (for example, http://mirrors.jenkins.io/war/2.78/jenkins.war).


	Before we upgrade Jenkins, it is important that we take a backup of our jenkins_home directory. Refer to the Creating a Jenkins backup section.




Always run a backup of Jenkins before upgrading Jenkins.




	Now, stop the tomcat service using the following command:



        systemctl stop tomcat


	Next, go to the location where the current jenkins.war file is present. In our case, it is /opt/tomcat/webapps:




        cd /opt/tomcat/webapps/



If you have chosen to use Tomcat Server solely to run Jenkins, you may find ROOT.war instead of jenkins.war under the webapps directory. Refer to the Installing Jenkins alone on Apache Tomcat Server section, from Chapter 2, Installing Jenkins.




	Take a backup of your existing jenkins.war or ROOT.war and place it somewhere outside the webapps directory (for example, the /tmp directory):




        cp jenkins.war /tmp/jenkins.war.last.stable.version

    Or:

         cp ROOT.war /tmp/ROOT.war.last.stable.version



	Now, delete the current jenkins.war or ROOT.war file inside the webapps directory:




        rm –r jenkins.war

    Or:

        rm –r ROOT.war



	Next, move the new jenkins.war that you have downloaded from the /tmp directory to the webapps directory. If you are using Apache Tomcat Server solely for running Jenkins, then rename the destination.war file as ROOT.war:




        mv /tmp/jenkins.war /opt/tomcat/webapps/jenkins.war

    Or:

        mv /tmp/jenkins.war /opt/tomcat/webapps/ROOT.war



	Now, start the Tomcat service using the following command:




        systemctl start tomcat



	Log in to your Jenkins instance. To confirm the Jenkins version, look at the bottom-right corner of your Jenkins dashboard, where you will find a new Jenkins version number.





            

            
        
    
        

                            
                    Upgrading standalone Jenkins running on Windows

                
            
            
                
Upgrading a standalone Jenkins server on Windows is a simple task. Follow the given steps:


	Download the latest jenkins.war from https://jenkins.io/download/. Or, if you are looking for a particular Jenkins version that you want to upgrade to, then download it from the following link: http://mirrors.jenkins.io/war-stable/.

	Before we upgrade Jenkins it is important that we take a backup of our jenkins_home directory. Refer to the Creating a Jenkins backup section under the Jenkins backup and restore section.




Always run a backup of Jenkins before upgrading Jenkins.

On a Jenkins standalone instance (running on a Windows machine), the jenkins.war file is present inside the jenkins_home directory. Hence, backing up the jenkins_home directory is enough.




	Next, stop the Jenkins service. To do that, execute services.msc from Windows Run. This will open the Windows services page.

	Search for the Jenkins service (usually named Jenkins). Stop the Jenkins service, as shown in the following screenshot:





Stopping a Jenkins service


	Or, you can also stop the Jenkins service from the Windows Command Prompt (Run as administrator), using the following command:




        net stop Jenkins

   The output is as follows:

        The Jenkins service is stopping.
        The Jenkins service was stopped successfully.



	Next, replace the jenkins.war file, present under C:\Program Files (x86)\Jenkins\, with the newly downloaded jenkins.war file.

	After replacing the jenkins.war file, start the Jenkins service from the services window, as shown in the following screenshot:





Starting a Jenkins service


	Or, you can also start the Jenkins service from the Windows Command Prompt (Run as administrator), using the following command:




        net start Jenkins

   The output is as follows:

        The Jenkins service is starting.
        The Jenkins service was started successfully.



	Log in to your Jenkins instance. To confirm the Jenkins version, look at the bottom-right corner of your Jenkins dashboard, where you should see a new Jenkins version number.





            

            
        
    
        

                            
                    Upgrading standalone Jenkins running on Ubuntu

                
            
            
                
In the following section, we will learn how to update Jenkins running on Ubuntu. Follow the given steps:


	Log in to your Jenkins server machine as a root user.



 


	Download the latest (LTS) version of jenkins.war under the /tmp directory, using the following command:




        cd /tmp

        wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war



To download a specific version of Jenkins (LTS), go to the following link: http://mirrors.jenkins.io/war-stable/ and choose the desired version of Jenkins (for example, http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war).

To download a specific version of Jenkins (Weekly), go to the following link: http://mirrors.jenkins.io/war/ and choose the desired version of Jenkins (for example, http://mirrors.jenkins.io/war/2.78/jenkins.war).




	Before we upgrade Jenkins, it is important that we take a backup of our jenkins_home directory. Refer to the Creating a Jenkins Backup section under the Jenkins backup and restore section.




Always run a backup of Jenkins before upgrading Jenkins.




	Now, stop the jenkins service, using the following command:




        systemctl stop jenkins



	Next, go to the location where the current jenkins.war file is present. In our case, it is /usr/share/jenkins/:




        cd /usr/share/jenkins/



	Take a backup of your existing jenkins.war and place it somewhere outside the jenkins directory (for example, the /tmp directory):




        cp jenkins.war /tmp/jenkins.war.last.stable.version



	Now, delete the current jenkins.war file inside the jenkins directory:




        rm –r jenkins.war



	Next, move the new jenkins.war file that you have downloaded from the /tmp directory to the jenkins directory:




        mv /tmp/jenkins.war /usr/share/jenkins/jenkins.war



	Now, start the jenkins service using the following command:




        systemctl start jenkins



	Log in to your Jenkins instance. To confirm the Jenkins version, look at the bottom-right corner of your Jenkins dashboard, where you will find a new Jenkins version number.





            

            
        
    
        

                            
                    Upgrading Jenkins running on a Docker container

                
            
            
                
In the following section, we will learn how to update a Jenkins instance running inside a Docker container:


The following section is applicable only if you are running your Jenkins instance using a data volume for your jenkins_home directory. See the Running Jenkins on Docker, Running a Jenkins container using a data volume sections from the Chapter 2, Installing Jenkins.




	Log in to your Docker host machine.

	Look for the running Jenkins container, using the following command:




        sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

The output is as follows:

        d52829d9da9e: jenkins/jenkins:lts jenkins_prod



	You should get an output similar to the previous snippet. Note the Jenkins container name, in my example it is jenkins_prod.

	We will stop and then delete the running Jenkins container using the following Docker commands. But, before you stop and delete your Jenkins instance, make sure that there is no job running on your Jenkins server:




        sudo docker stop <your jenkins container name>
        sudo docker rm <your jenkins container name>



	List the available Docker images on your Docker host, using the following command. You can see we have a Jenkins Docker image: jenkins/jenkins:lts. However, that is no longer the latest:




        sudo docker images

  The output is as follows:

      REPOSITORY        TAG      IMAGE ID        CREATED             SIZE
      jenkins/jenkins   lts      6376a2961aa6    7 weeks ago         810MB
      hello-world       latest   1815c82652c0    3 months ago        1.84kB



	Download the latest Jenkins Docker image, using the following command:




        sudo docker image pull jenkins/jenkins:2.73.1



The aforementioned command may take a while to download the Jenkins Docker image.

At the time of writing this chapter, 2.73.1 was the latest Jenkins release (LTS). Choose the desired version of Jenkins by modifying the command.




	Once the download is completed, execute the sudo docker images command again, as shown in the following segment. Note the new Jenkins Docker image. In my example, it is jenkins/jenkins:2.73.1:




        sudo docker images

   

The output is as follows:


     REPOSITORY          TAG     IMAGE ID       CREATED             SIZE
     jenkins/jenkins     2.73.1  c8a24e6775ea   24 hours ago        814MB
     jenkins/jenkins     lts     6376a2961aa6   7 weeks ago         810MB
     hello-world         latest  1815c82652c0   3 months ago        1.84kB



	Now let us start a new Jenkins container using the newly downloaded Jenkins Docker image (we will reuse the old Jenkins container name):




      sudo docker run -d --name jenkins_prod \
      -p 8080:8080 -p 50000:50000 \ 
      -v jenkins-home-prod:/var/jenkins_home \
      jenkins/jenkins:2.73.1



	The following table explains the Docker commands that we used before:






	
docker


	
Used to invoke Docker utility.





	
run


	
It's a Docker command to run a container.





	
-d


	
This option runs the container on the backend.





	
--name


	
This option gives a name to your container.





	
-p


	
This option is used to map a container's port with the host.





	
jenkins/jenkins:2.73.1


	
The name of the Docker image and its version used to create a container. jenkins/jenkins is the Jenkins Docker image and 2.73.1 is a particular version of that image.








	Log in to your Jenkins instance. You should see all your jobs/settings intact. To confirm the Jenkins version, look at the bottom-right corner of your Jenkins dashboard, where you will find a new Jenkins version number.





            

            
        
    
        

                            
                    User administration

                
            
            
                
Let's see what Jenkins has to offer in the area of user administration. From the Jenkins dashboard, click on Manage Jenkins | Configure Global Security to access the Configure Global Security page.


You can also access the Configure Global Security page by using the <Jenkins URL>/configureSecurity/ link.



In the following section, we will stick to the options that are related to user authentication and permissions. We will look at the other security options in the upcoming chapters.



            

            
        
    
        

                            
                    Enabling/disabling global security on Jenkins

                
            
            
                
Once on the Configure Global Security page, you will see that the Enable security option is already enabled. The Enable security option should always be on; disabling it will make Jenkins accessible to anyone who has the Jenkins URL, with no restrictions of any kind.



            

            
        
    
        

                            
                    Enabling/disabling computers to remember user credentials

                
            
            
                
When users try to access Jenkins, they are offered an option to be remembered on their respective computers, as shown in the following screenshot:



Remember me on this computer option

This behavior is enabled by default. To disable this feature, tick the Disable remember me option available under the Configure Global Security page.



            

            
        
    
        

                            
                    Authentication methods

                
            
            
                
Jenkins offers a variety of authentication methods to choose from. The following is a list of available options:


	Delegate to servlet container

	Jenkins' own user database

	LDAP

	Unix user/group database





Jenkins' authentication methods

The Jenkins' own user database option is enabled by default. The initial users that we created during the Jenkins setup wizard are all stored under the Jenkins' own user database. There is no actual database of any kind, and all user information is saved as XML files. Let us take a quick look at each of the authentication methods.



            

            
        
    
        

                            
                    Delegating to a servlet container

                
            
            
                
This option can be used only when you are running your Jenkins server from a servlet container, such as Apache Tomcat and so on. Enabling this option will allow Jenkins to authenticate users using the servlet containers’ realm.

For example, in the Configure the Apache Tomcat Server sub-section under the Running Jenkins inside a servlet container section from the  Chapter 2, Installing Jenkins, we modified the tomcat-user.xml file to create users and access. That is an example of the UserDatabaseRealm.

That means, if your Jenkins server is running on Apache Tomcat server and you have configured the UserDatabaseRealm, then all users defined in the tomcat-user.xml file will be able to access Jenkins.


Refer to the following website to see all types of realms supported by Apache Tomcat: http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations.





            

            
        
    
        

                            
                    Jenkins' own user database

                
            
            
                
This option is enabled by default. Under this scheme, Jenkins stores all the user information inside XML files. This option is good for small organizations or if you are exploring Jenkins and are yet to make it a part of your organization.

There is also an option to allow users to sign up at the login page. To enable it, tick the Allow users to sign up option available under Jenkins' own user database.

This will enable a link named Create an account at the Jenkins login page, as shown in the following screenshot:



Allow user to sign up option

As a new user, when you click on the Create an account link you will be asked to fill in some basic details about yourself, such as username, password, email, full name, and so on. Once you are done filling in the necessary information you will be allowed to access Jenkins.

What you as a new user are allowed to see/do on Jenkins depends on the Authorization settings inside Jenkins. We will learn about the Authorization settings later in the current chapter.



            

            
        
    
        

                            
                    LDAP

                
            
            
                
This is one of the most widely used authentication methods in most organizations. If you do not see the LDAP option listed under the Access Control | Security Realm section, then check for the LDAP plugin.

The following option, as shown in the following screenshot allows Jenkins to authenticate users using an LDAP server. Contact the IT administration team in your organization to provide the LDAP server details (if your organization uses LDAP).



For more information about the LDAP configuration, refer to the LDAP plugin page: https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin.



            

            
        
    
        

                            
                    Unix user/group database

                
            
            
                
The following option works if Jenkins is installed on a Unix/Linux machine. When enabled, Jenkins delegates the authentication to the underlying OS. In other words, all users/groups that are configured on the underlying OS get access to Jenkins.

You need not configure anything inside Jenkins to make this option work. However, all users on the underlying OS should have access to the /etc/shadow file.

Use the following command to make the /etc/shadow file accessible to all users:


sudo chmod g+r /etc/shadow




            

            
        
    
        

                            
                    Creating new users inside Jenkins

                
            
            
                
The following section is only applicable if you are using Jenkins' own user database as the Authentication method. Perform the following steps to manually add users to your Jenkins server.


	From the Jenkins dashboard, click on Manage Jenkins | Manage Users.

	On the Manage Users page, from the left-hand side menu, click on Create User.

	On the resultant page, you will be asked to provide some basic information about the user, as shown in the following screenshot:





Creating a user in Jenkins


	Fill the fields with appropriate values and click on the Create User button.




The Manage Users link is only available if you are using Jenkins' own user database as the Authentication method.





            

            
        
    
        

                            
                    People page

                
            
            
                
The People page displays all users that have access to the Jenkins server, as shown in the following screenshot:



The Jenkins People page



            

            
        
    
        

                            
                    User information and settings in Jenkins

                
            
            
                
Click on any particular user ID or name (see the following screenshot) to get information about the respective user. You will be taken to the users' Status page, as seen in the following screenshot:



The users' Status page

On the users' Status page you will see the following options on the left-hand side menu: Status, Builds, Configure, My Views and Credentials. Let us explore some of them in detail:


	The Builds page will display information about all the Jenkins builds that were run by the current user.

	The My Views page will take you to the views that are accessible by the current user. If no views are configured for the current user, then the My Views page will show the default All view (Jenkins dashboard).

	The Credentials link will take you to the Credentials page. However, the Credentials page will display additional information with respect to the current user, as shown in the following screenshot:





Jenkins credentials scoped to a user



            

            
        
    
        

                            
                    Authorization methods

                
            
            
                
Jenkins offers a variety of authorization methods to choose from. The following is a list of available options:


	Anyone can do anything

	Legacy mode

	Logged-in users can do anything

	Matrix-based

	Project-based Matrix Authorization Strategy



The Logged-in users can do anything option is enabled by default. Let us take a quick look at each of the authorization methods.

To access the Jenkins Authorization settings, from the Jenkins dashboard navigate to Manage Jenkins | Configure Global Security | Access Control.



            

            
        
    
        

                            
                    Anyone can do anything

                
            
            
                
When you choose this option, Jenkins does not perform any authorization. Anyone who has access to Jenkins gets full control, including anonymous users. This option is not recommended.



            

            
        
    
        

                            
                    Legacy mode

                
            
            
                
When you choose this option, Jenkins behaves the way it used to be before release 1.164. In simple terms, Jenkins will look for a user named Admin (irrespective of the Authentication method you use). This Admin user will be provided administrative privilege, and the rest of the users will be treated as anonymous users. This option is again not recommended.



            

            
        
    
        

                            
                    Logged-in users can do anything

                
            
            
                
This is the default authentication setting that Jenkins comes with when you install and set up a new Jenkins server. The name is self-explanatory, that is, logged-in users are administrators by default. Again, this option is not recommended.

Under the Logged-in users can do anything field, there is an option named Allow anonymous read access (disabled by default). When this option is ticked (enabled), anyone who has access to the Jenkins URL will be straight away taken to the Jenkins dashboard with read-only access to all Jenkins jobs. However, you are required to log in in order to edit a Jenkins job or view Jenkins' configuration.



            

            
        
    
        

                            
                    Matrix-based security

                
            
            
                
This is one of the most widely used Authorization methods in Jenkins. Let us explore it in detail by performing the following steps:


	Enable the Matrix-based security authorization method by selecting it. You will be presented with the following matrix:





Matrix-based security configurations


	From the previous screenshot, you can see the columns represent various items in Jenkins and the rows represent various users. At the bottom of the matrix there is an option to add users.

	Let us add some users and provide them some permissions.

	To add a user, enter the exact username of the user in the User/group to add field, and click on the Add button.

	You can see from the following screenshot that I have added four users (refer to the People page section to see the list of users that you can add in here). If you are using Jenkins' own user database then create a few users (refer to the Creating new users inside Jenkins section):





Adding users to the matrix


	Now, let us give them some permissions by selecting the appropriate checkbox. You can see from the following screenshot that I have given full access to the user jenkins_admin. The users jenkins_developer and jenkins_tester have been given access to read and execute Jenkins jobs, and the jenkins_user user has been given only read access:





Providing permissions using the Matrix


	Leave the rest of the settings as they are and click on the Save button at the bottom of the page.

	To check the configuration, log in as each user and confirm what you see on the Jenkins dashboard.





            

            
        
    
        

                            
                    Project-based Matrix Authorization Strategy

                
            
            
                
In the previous section, we saw the matrix-based security authorization feature, which gave us a good amount of control over the users and permissions.

However, imagine a situation where your Jenkins server has grown to a point where it contains hundreds of Jenkins jobs and many users, and you want to control user permissions at the job level (project level).

In such a case, we need the Project-based Matrix Authorization Strategy:



User permission at job level

Let us learn how to configure the Project-based Matrix Authorization Strategy. Perform the following steps:


	To access the Jenkins Authorization settings, from the Jenkins dashboard navigate to Manage Jenkins | Configure Global Security | Access Control.

	Select the Project-based Matrix Authorization Strategy option. You will be presented with the following matrix:





Project-based Matrix Authorization Strategy configurations


	For now, add a user and give it full permissions. To add a user, type the exact username of the user in the User/group to add field, and click on the Add button.



 


	You can see from the following screenshot that I have added the user jenkins_admin with full permissions:





Adding users to the matrix


	Leave the rest of the settings as they are and click on the Save button at the bottom of the page.

	Next, from the Jenkins dashboard right-click on any of the Jenkins jobs and select Configure.

	Once on the Jobs Configuration page, scroll all the way down to the Enable project-based security option and enable it.

	The moment you enable the project-based security, a matrix table will appear, as shown in the following screenshot:





Project-based security configurations inside Jenkins job


	Let us add some users and provide them some permissions.

	To add a user, enter the exact username of the user in the User/group to add field, and click on the Add button.



 


	You can see from the following screenshot that I have added the user jenkins_developer with some permissions:





Providing permissions using the Matrix


	Once done, click on the Save button at the bottom of the page.

	Now log in as the user that you have just given permissions to for the respective Jenkins job (in our example it is jenkins_developer).

	You will find that the user can only see the Jenkins job that it has permission to access.

	Similarly, you can configure user permissions on each and every job that you create in Jenkins.





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we saw how to configure some of the basic but important elements in Jenkins, all with the help of some practical examples. Jenkins upgrade, Jenkins backup, and Jenkins user management are some of the important things we learned in this chapter.

The next chapter is all about the Jenkins master-slave architecture and the Jenkins Distributed Build System.





            

            
        
    
        

                            
                    Distributed Builds

                
            
            
                
Jenkins' master-slave architecture makes it easy to distribute work across multiple slave machines. This chapter is all about configuring Jenkins slaves across various platforms. The following are the topics that we will cover:


	An overview of the Jenkins node manager

	Installing a Jenkins slave on a standalone Linux machine

	Installing a Jenkins slave on a standalone Windows machine

	Installing and configuring the Docker plugin for creating on-demand Jenkins slaves





            

            
        
    
        

                            
                    Distributed build and test

                
            
            
                
In the following section let us learn a little bit about the distributed build and testing. Imagine you have a really fat unit test or integration test suite. If you can divide them in small parts then you can run them in parallel. To run them in parallel you need multiple clones of your build/test machines. If you have them in place either using Docker or using some other mechanism, then the remaining thing to do is to make them a Jenkins slave agent.

The following illustration shows how a Jenkins pipeline to build, unit test and integration test utilizes the distributed build/test farm in Jenkins. You can see, we have two categories of Jenkins slave agents: Standalone Jenkins slave for build and unit test, and standalone Jenkins slave for integration test.

The unit testing is distributed across three Jenkins slave agents for build and unit test (category 1), and the integration testing is distributed across two Jenkins slave agents for integration testing (category 2). 



Distributed build and testing farm using Jenkins standalone slave agents

The Jenkins slave agents are categorized using labels. We will learn more about labels in the up-coming sections. 

It is also much better and easy to spawn on demand Jenkins slaves using Docker. Shown as follows is the Docker version of the same concept that we discussed previously. Here the Jenkins slave are created on demand using the Docker images.

You can see in the following illustration, we have two types of Docker images: Docker image for build and unit test, and Docker image for integration test. The Docker slave agents are created using these Docker images. The unit testing is distributed across three Docker slave agents for build and unit test (category 1), and the integration testing is distributed across two Docker slave agents for integration testing (category 2). 

Again here the Docker slave agents are categorized using labels. We will learn more about labels in the up-coming sections: 



Distributed build and testing farm using Jenkins and Docker slave agents



            

            
        
    
        

                            
                    The Jenkins Manage Nodes page

                
            
            
                
In the following section, we will take a look at the Jenkins Manage Nodes page:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

	On the left-hand side, you will see a menu; the options are as explained in the following screenshot:





Jenkins Manage Nodes page


	On the right-hand side, you will also see a table showing the list of available Jenkins slaves, as shown in the following screenshot:





List of available nodes


	Since we haven't configured any Jenkins slaves yet, the list (as shown in the preceding screenshot) contains only one entry: that is, master.

	Along with the node's Name, the table also displays other useful information about the node, such as its Architecture, the amount of Free Disk Space, and the Response Time.

	To enable/disable the amount of information being displayed about each node, click on the Configure link (see the Jenkins Manage Nodes page screenshot). This will take you to the next page, as shown in the following screenshot:





Preventive Node Monitoring options


	Uncheck/Check the relevant options to disable/enable them. The Free Space Threshold option is important. If the amount of Free Disk Space and Free Temp Space goes below the specified value (by default it's set to 1GB), then the nodes go offline. This prevents the Jenkins pipeline from running on slaves that have run out of disk space and eventually failing.





            

            
        
    
        

                            
                    Adding Jenkins slaves – standalone Linux machine/VMs

                
            
            
                
In the following section, we will try to add a standalone Linux machine as a Jenkins slave. Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow the given steps:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

	From the left-hand side menu, click on New Node. On the resultant page you will be asked to provide a name for your node and choose the type, as shown in the following screenshot:





Adding a name and choosing the agent type (type of slave)


	Add a meaningful name under the Node name field and choose the agent type. For now, there is only one type of agent to choose from: that is, Permanent Agent. These are the types of agents that are mainly physical machines and VMs.

	Click on the OK button to proceed.




	On the resultant page, you will see the following options to configure, as shown in the following screenshot:





Jenkins slave configuration

Let's see them one by one:


	We already used the Name field to give a name to our Jenkins slave.

	Use the Description field to add some notes about the Jenkins slave: for example, purpose, type, what it can build or test, and tools installed.

	The # of executors field is used to describe the number of parallel builds a Jenkins slave (agent) is allowed to run. Choosing a value greater than 1, say 3, will allow the Jenkins slave to run three builds in parallel. This could also result in each build taking more time than usual. Choose wisely.




	The Remote root directory field is used to define a directory path on the Jenkins slave that will serve as a dedicated workspace for Jenkins to perform build activities.

	The Labels field is the most important. You can add multiple labels (separated by a space) to your Jenkins slave. In order to run a pipeline on a particular slave you will use its label, as shown in the preceding screenshot. We have added a maven-build-1 label, which says it's a Jenkins slave to build a Maven project.

	The Usage field is used to define how Jenkins schedules build on this node. It contains two options, as follows:

	Use this node as much as possible: This is the default option. This mode makes the current Jenkins slave open to all the pipelines that haven't been configured to run on a specific Jenkins slave.

	Only build jobs with label expressions matching this node: In this mode, Jenkins will only build a project on this node when that project is restricted to certain nodes using a label expression, and that expression matches this node's name and/or labels.





	The Launch method field describes how Jenkins starts this Jenkins slave. It contains four options, shown as follows. In the following example, we will use the SSH method to launch our Jenkins slave. See the Launching a Jenkins slave via SSH section:

	Launch agent via Java Web Start: This allows an agent to be launched using Java Web Start. In this case, a Java Network Launch Protocol (JNLP) file must be opened on the agent machine, which will establish a TCP connection to the Jenkins master. If you have enabled security via the Configure Global Security page, you can customize the port on which the Jenkins master will listen for incoming JNLP agent connections.

	Launch agent via execution of command on the master: This starts an agent by having Jenkins execute a command from the master. Use this when the master is capable of remotely executing a process on another machine, for example, via SSH or remote shell (RSH).

	Launch slave agents via SSH: This starts a slave by sending commands over a secure SSH connection. The slave needs to be reachable from the master, and you will have to supply an account that can log in on the target machine. No root privileges are required.

	Let Jenkins control this Windows slave as a Windows service: This starts a Windows slave by a remote management facility built into Windows. It is suitable for managing Windows slaves. Slaves need to be IP reachable from the master.








	The Availability field defines how Jenkins starts, stops, and uses the Jenkins slaves. It has three options, as follows:

	Keep this agent online as much as possible: In this mode, Jenkins will keep this agent online as much as possible. If the agent goes offline, for example, due to a temporary network failure, Jenkins will periodically attempt to restart it.

	Take this agent online and offline at specific times: In this mode, Jenkins will bring this agent online at the scheduled time(s), remaining online for a specified amount of time. If the agent goes offline while it is scheduled to be online, Jenkins will periodically attempt to restart it. After this agent has been online for the number of minutes specified in the Scheduled Uptime field, it will be taken offline. If Keep online while builds are running is checked, and the agent is scheduled to be taken offline, Jenkins will wait for any builds that may be in progress to be completed.

	Take this agent online when in demand, and offline when idle: In this mode, Jenkins will bring this agent online if there is demand, that is, if there are queued builds that meet the following criteria: They have been in the queue for at least the specified In demand delay time period

	They can be executed by this agent (for example, have a matching label expression)







      This agent will be taken offline if:


	

	

	There are no active builds running on this agent

	This agent has been idle for at least the specified Idle delay time period













            

            
        
    
        

                            
                    Passing environment variables to Jenkins slaves

                
            
            
                
Follow the given steps to pass the environment variables:


	You will see a section named Node Properties. Using these options, you can pass predefined environment variables to the Jenkins slaves and tools locations.

	As shown in the following screenshot, you can pass environment variables to the Jenkins slaves. It is possible to pass multiple environment variables (by clicking on the Add button). These environment variables are available to the Jenkins pipeline during its execution:





Passing environment variables to the Jenkins slaves


With the advent of Pipeline as Code feature in Jenkins, it is possible to define and use environment variables right within the Jenkins pipeline code (pipeline script/Jenkinsfile). Therefore, the option of defining environment variables (as demonstrated in the preceding screenshot) become less significant.





            

            
        
    
        

                            
                    Passing tools' locations to Jenkins slaves

                
            
            
                
As shown in the following screenshot, you can specify the location of certain tools on the Jenkins slave, overriding the global configuration:



Passing tools' locations to the Jenkins slaves



            

            
        
    
        

                            
                    Launching a Jenkins slave via SSH

                
            
            
                
To launch the slave via SSH, follow these steps:


	When you choose the Launch slave agents via SSH option, you are presented with options, as shown in the following screenshot.

	The Host field is where you can define the IP address or the hostname of the Jenkins slave machine.

	The Credentials field allows you to choose the relevant credentials saved inside Jenkins to authenticate the Jenkins slave. To create a new credential, click on the Add button beside the Credentials field (create a credential of the Kind: Username with password):





Configure Launch slave agent via SSH properties


The user that you use to authenticate the Jenkins slave should have read/write permissions for the directory path defined under the Remote root directory field.




	The last option, Host Key Verification Strategy, defines how Jenkins verifies the SSH key presented by the remote host while connecting. This option is valid only when using credentials of the Kind: SSH username with private key. There are four options available, as follows:

	Known hosts file Verification Strategy: This checks the known_hosts file (~/.ssh/known_hosts) for the user Jenkins is executing under, to see if an entry exists that matches the current connection. This method does not make any updates to the known_hosts file, instead it uses the file as a read-only source and expects someone with suitable access to the appropriate user account on the Jenkins master to update the file as required, potentially using the ssh hostname command to initiate a connection and update the file appropriately.

	Manually provide key Verification Strategy: This checks that the key provided by the remote host matches the key set by the user who configured this connection.

	Known trusted key Verification Strategy: This checks that the remote key matches the key currently marked as trusted for this host. Depending on the configuration, the key will be automatically trusted for the first connection, or an authorized user will be asked to approve the key. An authorized user will be required to approve any new key that gets presented by the remote host.

	Non verifying Verification Strategy: This does not perform any verification of the SSH key presented by the remote host, allowing all connections regardless of the key they present.





	Once you are done configuring all the options, click on the Save button.





            

            
        
    
        

                            
                    More about the active Jenkins slave

                
            
            
                
In the following section, we will take a look at the various other configurable options available to us for the Jenkins slave agent that we have just added. Jenkins also provides a lot of general information about its slaves that we will see here. Follow these steps:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

	On the right-hand side you will also see a table showing the list of available Jenkins slaves. New to the list will be our newly added Jenkins slave.

	Click on the Jenkins slave name to access its configurations and metadata.




	On the resultant page (Jenkins slave Status page), on the left-hand side menu you will see a few options, as shown in the following screenshot:





Jenkins slave page


	Most of the preceding links (from the preceding screenshot) are self-explanatory. However, let's look at some of them in detail.

	The Log link is where you will find all the logs with respect to the Jenkins slave. After adding a Jenkins slave, if it does not come online, the Log is where you need to look. Authentication issues, permission issues, and everything else while connecting to the Jenkins slaves gets listed here. See the following screenshot:





Jenkins slave logs


	The System Information link will show you most of the system information about the respective Jenkins slave, such as System Properties, and Environment Variables. See the preceding screenshot. You won't be visiting here frequently. Nevertheless, it's useful when debugging build errors caused due to system tools, environment variables, and so on:





Jenkins slave System Information


	The Build History link will show you a timeline of all the builds that were performed on the respective Jenkins slave.

	On the Jenkins slave Status page, you will see the labels that are attached to the respective Jenkins slave and, also, information about the projects that are associated with the following Jenkins slave. See the following screenshot:





Jenkins slave Status page


	There is an option to make the Jenkins slave temporarily offline by clicking on the Mark this node temporarily offline button. When you click on the button, you will be asked to add a note (optional) before taking the Jenkins slave offline:





Making a Jenkins slave offline


	To bring the offline node back online, from the Jenkins Status page, click on the Bring this node back online button:





Bringing a Jenkins slave online



            

            
        
    
        

                            
                    Adding Jenkins slaves – standalone Windows machine/VMs

                
            
            
                
In the following section, we will try to add a standalone Windows machine as a Jenkins slave. Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow the given steps:


	From the left-hand side menu, click on New Node. On the resultant page, you will be asked to provide a name for your node and choose the type, as shown in the following screenshot:

	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.





Adding a name and choosing the agent type (type of slave)


	Add a meaningful name under the Node name field and choose the agent type as Permanent Agent. These are the types of agents that are mainly physical machines and VMs. Also, there is an option to clone an existing Jenkins slave. To do so, choose the Copy Existing Node option and under the Copy from field, enter the name of the Jenkins slave source.

	In the following example however, we will choose the Permanent Agent option.

	Click on the OK button to proceed.




	On the resultant page, you will see the following options to configure, as shown in the following screenshot. We have already seen them before:





Jenkins slave configurations


	Since this is a Windows build agent, there are two ways we can launch the Jenkins slave, as shown here:

	Launch agent via Java Web Start: This allows an agent to be launched using Java Web Start. In this case, a JNLP file must be opened on the agent machine, which will establish a TCP connection to the Jenkins master. If you have enabled security via the Configure Global Security page, you can customize the port on which the Jenkins master will listen for incoming JNLP agent connections.

	Let Jenkins control this Windows slave as a Windows service: This starts a Windows slave by a remote management facility built into Windows. It is suitable for managing Windows slaves. Slaves need to be IP reachable from the master.









            

            
        
    
        

                            
                    Launching a Jenkins slave via Java Web Start

                
            
            
                
In the following section, we will learn how to launch a Jenkins slave on Windows using the Java Web Start method.


	For the Launch method field, choose Launch agent via Java Web Start.

	Click on the Save button.

	From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our example it's standalone-windows-slave.

	On the resultant page (Jenkin slave Status page), you will see the following options, as shown here:





Jenkins slave connection method (Java Web Start)


	Do nothing on the Jenkins server.

	Now, log in to your prospective Jenkins slave machine (Windows) and open the Jenkins dashboard.

	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

	From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our example it's standalone-windows-slave.

	Now, either run the command, as shown in the following screenshot, or click on the Launch button.




	If you choose to click on the Launch button, you will see the following pop-up window, as shown in the following screenshot:





Opening the slave-agent.jnlp file


	Choose as the Open with option the Java(TM) Web Start Launcher (default) option, and click on the OK button.

	You will get another pop-up window, asking you to confirm that you would like to run this application. Click on Run, as shown in the following screenshot:





Running the Jenkins Remoting Agent


	Finally, you will see a small window showing the Jenkins slave connection status as Connected, as shown in the following screenshot:





Jenkins slave agent window


	Your Jenkins slave (Windows) is now connected. To make it a Windows service, click on File (previous screenshot), and choose Install as a service.

	Open the Run utility and give the command services.msc to open the Windows Services utility. In the list of services, you will find the Jenkins slave agent service, as shown in the following screenshot:





Jenkins slave listed as a Windows service


	Right-click on the Jenkins slave Windows service and choose Properties.




	In the Properties window, go to the Log On tab. Under the Log on as section, choose the This account option, and provide the administrator account details (a user with admin privileges on the Jenkins slave machine), as shown in the following screenshot:





Jenkins slave service properties


	Your Jenkins slave (on Windows) is now installed.





            

            
        
    
        

                            
                    Adding Jenkins slaves – Docker containers

                
            
            
                
In the following section, we will learn how to install and configure the Docker plugin that will allow us to spawn on-demand Jenkins slaves (Docker containers) from a CI pipeline. The Docker containers are started by the CI pipeline, and once the build is done, they are destroyed. In the following section, we will only see the configuration part. It is in the next chapter that we will see this process in action.



            

            
        
    
        

                            
                    Prerequisites

                
            
            
                
Before we begin, make sure you have the following things ready:


	A Jenkins server running on any of the following platforms: Docker, standalone, cloud, VM, servlet container, and so on. (refer to Chapter 2, Installing Jenkins).




	Your Jenkins server should have access to the internet. This is necessary to download and install plugins.

	Your Jenkins server can talk to GitHub using the GitHub plugin. (Refer to the Add GitHub credentials inside Jenkins and Configure Webhooks on GitHub from Jenkins sections from Chapter 3, The New Jenkins).

	You might also need Java, Git, and Maven configured on your Jenkins server. (Refer to the The new Jenkins pipeline job subsection under the The Global Tool Configuration page section of Chapter 3, The New Jenkins).

	A Docker server.





            

            
        
    
        

                            
                    Setting up a Docker server

                
            
            
                
To install Docker, you need a machine with any one of the following Ubuntu OSes (64-bit): Yakkety Yak 16.10, Xenial Xerus 16.04, or Trusty Tahr 14.04. Make sure curl is also installed. Follow the steps given to set up a Docker server.



            

            
        
    
        

                            
                    Setting up the repository

                
            
            
                
Follow the given steps to set up a repository:


	Execute the following command to let apt use a repository:



        sudo apt-get install apt-transport-https ca-certificates


	Add the Docker's official GPG key using the following command:



        curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -


	Verify that the key ID is exactly 58118E89F3A912897C070ADBF76221572C52609D, using the following command:



        apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D


	You should see a similar output:



        pub 4096R/2C52609D 2015-07-14
        Key fingerprint = 5811 8E89 F3A9 1289 7C07 0ADB F762 2157 2C52 609D
        Uid Docker Release Tool (releasedocker) docker@docker.com


	Use the following command to set up a stable repository to download Docker:



        sudo add-apt-repository \
        "deb https://apt.dockerproject.org/repo/ubuntu-$(lsb_release -cs) \
        main"

It's recommended to always use the stable version of the repository.



            

            
        
    
        

                            
                    Installing Docker using apt-get

                
            
            
                
Now that you have set up the repository, perform the following steps to install Docker:


	Update the apt package index using the following command:



        sudo apt-get update


	To install the latest version of Docker, execute the following command:



       sudo apt-get -y install docker-engine


	However, if you wish to install a specific version of Docker, execute the following command:



        apt-cache madison docker-engine


	This will give you a list of available versions:



        docker-engine | 1.16.0-0~trusty |
        https://apt.dockerproject.org/repo
        ubuntu-trusty/main amd64 Packages
        docker-engine | 1.13.3-0~trusty |
        https://apt.dockerproject.org/repo
        ubuntu-trusty/main amd64 Packages


The output of the preceding command depends on the type of repository configured in the previous section, Setting up the repository.


	Next, execute the following command to install the specific version of Docker:



        sudo apt-get -y install docker-engine=<VERSION_STRING>

                Example: sudo apt-get -y install docker-engine=1.16.0-0~trusty


	The docker service starts automatically. To verify whether Docker is installed and running, run the following command:



        sudo docker run hello-world



	If the preceding command runs without any errors, and you see a hello world message, it means Docker is installed and running.



        Hello from Docker!
        This message shows that your installation appears to be
        working correctly.



            

            
        
    
        

                            
                    Installing Docker using a .deb package

                
            
            
                
For some reason, if you are unable to install Docker using the preceding repository method, you can download the .deb package.


	Download the .deb package of your choice from https://apt.dockerproject.org/repo/pool/main/d/docker-engine/.

	To install the downloaded package, type the following:



        sudo dpkg -i /<path to package>/<docker package>.deb


	Verify your Docker installation by running the following command:



        sudo docker run hello-world


	If the preceding command runs without any errors, and you see a hello world message, it means Docker is installed and running.



        Hello from Docker!
        This message shows that your installation appears to be
        working correctly.



            

            
        
    
        

                            
                    Enabling Docker remote API

                
            
            
                
Jenkins (through the Docker plugin) uses the Docker remote API to communicate with a Docker server. The Docker remote API allows external applications to communicate with the Docker server using REST APIs. Docker remote APIs can also be used to get information about all the running containers inside the Docker server.

To enable the Docker remote API, we need to modify Docker's configuration file. Depending on your OS version and the way you have installed Docker on your machine, you might need to choose the right configuration file to modify. Shown, as follows, are two methods that work on Ubuntu.



            

            
        
    
        

                            
                    Modifying the docker.conf file

                
            
            
                
Follow these steps to modify the docker.conf file. These configurations are important to allow Jenkins to communicate with the Docker host:


	Log in to your Docker server, make sure you have sudo privileges.

	Execute the following command to edit the docker.conf file:



        sudo nano /etc/init/docker.conf


	Inside the docker.conf file, go to the line containing DOCKER_OPTS=.



You will find the DOCKER_OPTS= variable at two places inside the docker.conf file. First, in the pre-start script section, and next in the post-start script section. Use the DOCKER_OPTS= variable under the pre-start script section.


	Set the value of DOCKER_OPTS to the following:



        DOCKER_OPTS='-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'


	The preceding setting will bind the Docker server to the Unix socket, as well as on TCP port 4243. 0.0.0.0, which makes the Docker engine accept connections from anywhere.



If you want your Docker server to accept connections from only your Jenkins server, then replace 0.0.0.0 with your Jenkins server IP.


	Restart the Docker server using the following command:



        sudo service docker restart


	To check if the configuration has worked, type the following:



        curl -X GET http://<Docker server IP>:4243/images/json

The preceding command will list all the images present on your Docker server, if any.



            

            
        
    
        

                            
                    Modifying the docker.service file

                
            
            
                
Follow the given steps to modify the docker.service file:


	Execute the following command to edit the docker.service file:



        sudo nano /lib/systemd/system/docker.service


	Inside the docker.service file, go to the line containing ExecStart=.

	Set the value of ExecStart= as shown:



        ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:4243


	The preceding setting will bind the Docker server to the Unix socket. Furthermore, on TCP port 4243. 0.0.0.0, it makes the Docker engine accept connections from anywhere.



If you want your Docker server to accept connections from only your Jenkins server, replace 0.0.0.0 with your Jenkins server IP.


	Execute the following command to make the Docker daemon notice the modified configuration:



        systemctl daemon-reload


	Restart the Docker server using the following command:



        sudo service docker restart


	To check whether the configuration has worked, type the following:



        curl -X GET http://<Docker server IP>:4243/images/json

The preceding command will list all the images present on your Docker server, if any.



            

            
        
    
        

                            
                    Installing the Docker plugin

                
            
            
                
To create Docker containers (build agents) on the fly, we need to install the Docker plugin for Jenkins. To achieve this, follow the given steps:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins | Available tab. You will be taken to the Jenkins Manage Plugins page.

	Enter Docker Plugin in the Filter field, as shown in the following screenshot:





Installing the Docker plugin


	Select the Docker Plugin from the list and click on the Install without restart button.

	Restart Jenkins if needed.





            

            
        
    
        

                            
                    Configuring the Docker plugin

                
            
            
                
Now that we have our Docker plugin installed, let's configure it:


	From the Jenkins dashboard, click Manage Jenkins | Configure System.

	Once on the Configure System page, scroll all the way down to the Cloud section (see the following screenshot).




	Click on the Add a new cloud button and choose Docker from the available options.

	On the resultant page, you will find a good number of settings to configure.

	Give your Docker server a name using the Name field.

	Add your Docker server URL under the Docker URL field.

	Click on the Test Connection button to check whether Jenkins can communicate with Docker server:





Configuring the Docker plugin to talk to the Docker server


	At the end of the page, click on the Apply and Save buttons. We will come back here later to make further configurations.





            

            
        
    
        

                            
                    Creating a Docker image – Jenkins slave

                
            
            
                
Enabling the Docker remote API made the communication between Jenkins and the Docker server possible. Now we need a Docker image on the Docker server. This Docker image will be used by Jenkins to create Docker containers (Jenkins slaves) on the fly. To achieve this, follow the steps as shown:


	Log in to your Docker server. Give the following command to check the available Docker images:



        sudo docker images


	From the following screenshot, you can see we have two docker images (ubuntu and hello-world) already on our Docker server:





List the Docker images


	If your Docker server is a freshly backed-up machine, then you will see no images at this point.

	We will build a Docker image for our use from the ubuntu Docker image. To do so, download the Docker image for ubuntu using the following command:



        docker pull ubuntu

You can find more Docker images for various OSes at https://hub.docker.com/.


	Once the pull gets completed, give the sudo docker images command again. Now you should see a Docker image for Ubuntu, as shown in the preceding screenshot.




	We will now upgrade our Ubuntu Docker image with all the necessary applications that we need to run our build. They are as follows:

	Java JDK (latest)

	Git

	Maven

	A user account to log in to the Docker container

	sshd (to accept an SSH connection)








	Execute the following command to run a Docker container using the Ubuntu Docker image. This will create a container, and open up its bash shell:



        sudo docker run -i -t ubuntu /bin/bash


	Now, install all the required applications as you would do on any normal Ubuntu machine. Let's begin by creating a jenkins user:

	Execute the following command and follow the user creation steps, as shown in the following screenshot:







                adduser jenkins



Creating a user


	

	Check the new user using the switch user command:







                su jenkins


	Switch back to the root user by typing exit.

	Next, we will install the SSH server. Execute the following commands in sequence:



        apt-get update
        apt-get install openssh-server
        mkdir /var/run/sshd


	Next, we will install Git using the following command:



        apt-get install git


	Install Java JDK using the following command:



        apt-get install openjdk-8-jdk


	Install Maven using the following command:



        apt-get install maven


	Next, exit the container by typing exit.

	We need to save (commit) all the changes that we made to our Docker container.

	Get the CONTAINER ID of the container that we worked on recently by listing all the inactive containers, as shown in the following screenshot:



        sudo docker ps -a



List of inactive containers


	Note the CONTAINER ID, and execute the commit command to commit the changes that we made to our container, shown as follows:



         sudo docker commit <CONTAINER ID> <new name for the container>


	We have named the container maven-build-slave-0.1, as shown in the following screenshot:





Docker commit command


	Once you have committed the changes, a new Docker image gets created.

	Execute the following Docker command to list the images:



        sudo docker images



List the Docker images


	You can see our new Docker image, with the name maven-build-slave-0.1. We will now configure our Jenkins server to use the Docker image to create Jenkins slaves (build agents).





            

            
        
    
        

                            
                    Adding Docker container credentials in Jenkins

                
            
            
                
Follow the given steps to add credentials inside Jenkins to allow it to talk to Docker:


	From the Jenkins dashboard, navigate to Credentials | System | Global credentials (unrestricted).

	Click on the Add Credentials link on the left-hand side menu to create a new credential (see the following screenshot).

	Choose a Kind as Username with Password.

	Leave the Scope field to its default value.

	Add a username for your Docker image (jenkins, as per our example) under the Username field.

	Under the Password field, add the password.

	Add an ID under the ID field, and some description under the Description field.



 

 

 

 


	Once done, click on the OK button:





Create credentials inside Jenkins



            

            
        
    
        

                            
                    Updating the Docker settings inside Jenkins

                
            
            
                
Follow the given steps to update the Docker settings inside Jenkins:


	From the Jenkins dashboard, click on Manage Jenkins | Configure System.

	Scroll all the way down to the Cloud section (see the following screenshot).

	Under the Cloud section, click on the Add Docker Template button and choose Docker Template.

	You will be presented with lots of settings to configure. However, to keep this demo simple, let's stick to the important settings:

	Under the Docker Image field, enter the name of the Docker image that we created earlier. In our case, it's maven-build-slave-0.1.

	Under the Labels field, add a label. The Docker container will be recognized using this label by your Jenkins pipeline. Add a  docker label.

	The Launch Method should be Docker SSH computer launcher.

	Under the Credentials field, choose the credentials that we created to access the Docker container.

	Make sure the Pull strategy option is set to Never pull.

	Leave the rest of the other options to their default values.

	Once done, click on Apply and then Save:









Configuring the Docker plugin settings


	Now your Jenkins server is all set to create Jenkins slaves on demand using Docker.





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned how to add and configure Jenkins slaves on standalone Windows and Linux machines (physical/VMs), using two widely used methods: Launching Jenkins slave via SSH and Launching Jenkins Slave via Java Web Start. We also learned how to install and configure the Docker plugin for Jenkins that allows us to create on-demand Docker containers (Jenkins slaves) for our CI.

In the next chapter, we will learn how to implement continuous integration using Jenkins, and we will utilize the distributed build farm using Jenkins Docker containers (Jenkins slaves) to perform our CI.



            

            
        
    
        

                            
                    Installing SonarQube and Artifactory

                
            
            
                
In this chapter, we will learn about SonarQube, which is a popular open source tool for static code analysis. We will also learn about Artifactory, which is another popular open source tool for version controlling binary files. In this chapter, you will learn about the following topics:


	Installing a standalone SonarQube server

	Creating a project inside SonarQube

	Installing the build breaker plugin for SonarQube

	Creating a quality gate and a quality profile

	Installing and configuring the SonarQube plugin in Jenkins

	Installing a standalone Artifactory server

	Creating a repository inside Artifactory

	Installing and configuring the Artifactory plugin in Jenkins





            

            
        
    
        

                            
                    Installing and configuring SonarQube

                
            
            
                
Apart from integrating code in a continuous way, CI pipelines nowadays also include tasks that perform continuous inspection—inspecting code for its quality in a continuous approach.

Continuous inspection deals with inspecting and avoiding code that is of poor quality. Tools such as SonarQube help us in achieving this. Every time a code gets checked-in (committed), a code analysis is performed on the code.

This analysis is based on some rules defined by the code analysis tool. If the code passes the error threshold, it's allowed to move to the next step in its life cycle. But, if it crosses the error threshold, it's dropped.

Some organizations prefer checking the code for its quality, right at the moment when the developer tries to check-in the code. If the analysis is good, the code is allowed to be checked-in, or else the check-in is cancelled and the developer needs to work on the code again.

SonarQube is a code quality management tool that allows teams to manage, track, and improve the quality of their source code.  It is a web-based application that contains rules, alerts, and thresholds, all of which can be configured. It covers the seven types of code quality parameters, which are architecture and design, duplications, unit tests, complexity, potential bugs, coding rules, and comments.

SonarQube is an open source tool that supports almost all popular programming languages with the help of plugins. SonarQube can also be integrated with a CI tool such as Jenkins to perform continuous inspection, which we will see shortly.

So, first let's learn how to install SonarQube. In the following section, we will learn how to install SonarQube on Ubuntu 16.04.



            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java:


	Update the package index:



sudo apt-get update


	Next, install Java. The following command will install the JRE:



sudo apt-get install default-jre


	To set the JAVA_HOME environment variable, first get the Java installation location. Do this by executing the following command:



update-java-alternatives –l


	You should get a similar output:



java-1.8.0-openjdk-amd64 1081 /usr/lib/jvm/java-1.8.0-openjdk-amd64


	The path in the preceding output is the JAVA_HOME location. Copy it.

	Open the /etc/environment file for editing:



sudo nano /etc/environment


	Add the following line inside the /etc/environment file, as shown here:



JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"


	Type Ctrl + X and choose Y to save and close the file.

	Next, reload the file using the following command:



        sudo source /etc/environment



            

            
        
    
        

                            
                    Downloading the SonarQube package

                
            
            
                
The following steps will help you to download the SonarQube package:


	Download the latest version of the SonarQube installation package by navigating to https://www.sonarqube.org/downloads/.




It is recommended that you always install the latest LTS* version of SonarQube.




	Move to the /tmp folder:



cd /tmp


	Download the SonarQube ZIP package, using wget, as shown in the following command. Here, I am downloading SonarQube version 5.6.7 (LTS*):



wget https://sonarsource.bintray.com/Distribution/sonarqube/
sonarqube-5.6.7.zip


	Next, unzip the SonarQube ZIP package inside the /opt directory, using the following command:



unzip sonarqube-5.6.7.zip -d /opt/


To use the unzip command, make sure you have the zipping tool installed on your Ubuntu machine. To install the ZIP tool, execute the following command:

sudo apt-get install zip

You can also download the SonarQube ZIP package on a different machine and then move it to your SonarQube server, using WinSCP.




	Move to the extracted folder and list its content:



cd /opt/sonarqube-5.6.7/

ls -lrt


The bin/ folder contains all the scripts to install and start SonarQube, and the logs/ folder contains the SonarQube logs.





            

            
        
    
        

                            
                    Running the SonarQube application

                
            
            
                
Follow these steps to start the SonarQube server:


	Move to /opt/sonarqube-5.6.6/bin/linux-x86-64/. In our current example, we are starting SonarQube on a 64-bit Linux OS:



cd /opt/sonarqube-5.6.6/bin/linux-x86-64/


	Run the sonar.sh script to start SonarQube, as shown in the following command:



./sonar.sh start


	You should see a similar output:



Starting SonarQube...
Started SonarQube.


	To access SonarQube, use the following link in your favorite web browser: http://localhost:9000/ or http://<IP-Address>:9000.




Right now there are no user accounts configured in SonarQube. However, by default there is an admin account with the username as admin and the password as admin.

Make sure you have at least 4 GB of memory to run the 64-bit version of SonarQube.





            

            
        
    
        

                            
                    Resetting the default credentials and generating a token

                
            
            
                
Follow these steps to reset the credentials and generate a token:


	Open the SonarQube link in your favorite browser and switch to admin user.

	From the SonarQube dashboard, click on Administrator | My Account | Security (tab).

	On the resultant page, under the Change password section, do the following:

	Add your old password (admin) under the Old Password field.

	Add a new password under the New Password field.

	Reconfirm your new password by adding it again in the Confirm Password field.

	Once done, click on the Change Password button.





	On the same page under the Tokens section, there is an option to generate a token. Jenkins can use this token to access SonarQube. Perform the following steps to generate a new token:

	Under the Tokens section, add a name for your new token, using the Generate Tokens field by clicking on the Generate button.

	A new token will get generated, as shown in the following screenshot.








	

	Copy and save this token, has we will need it later:









Creating a token inside SonarQube



            

            
        
    
        

                            
                    Creating a project inside SonarQube

                
            
            
                
In the following section, we will create a project inside SonarQube. The project will be used to display the static code analysis:


	From the SonarQube dashboard, click on Administration | Projects (tab) | Management.

	On the resultant page, click on the Create Project button.




	On the resultant window, fill in the respective details, as illustrated in the following steps:

	Add a name under the Name field.

	Add a key under the Key field.

	Click on the Create button to create the project:









Creating a project inside SonarQube


	You can see your newly created project on the Project Management page, as shown in the following screenshot:





Newly created project inside SonarQube



            

            
        
    
        

                            
                    Installing the build breaker plugin for SonarQube

                
            
            
                
The build breaker plugin is available for SonarQube. It's exclusively a SonarQube plugin and not a Jenkins plugin. This plugin allows the CI system (Jenkins) to forcefully fail a Jenkins build if a quality gate condition is not satisfied. To install the build breaker plugin, perform the following steps:


	Before downloading the plugin, first refer to the compatibility table. This will help us in downloading the right plugin version. The compatibility table is available at https://github.com/SonarQubeCommunity/sonar-build-breaker.

	Download the build breaker plugin from https://github.com/SonarQubeCommunity/sonar-build-breaker/releases.

	Move to the /tmp directory and download the build breaker plugin, using the following command:



cd /tmp

wget https://github.com/SonarQubeCommunity/
sonar-build-breaker/releases/download/2.2/
sonar-build-breaker-plugin-2.2.jar


	Move the downloaded .jar file to the location opt/sonarqube-5.6.7/extensions/plugins/:



cp sonar-build-breaker-plugin-2.2.jar \
/opt/sonarqube-5.6.7/extensions/plugins/


	Restart SonarQube, using the following commands:



cd /opt/sonarqube-5.6.7/bin/linux-x86-64

sudo ./sonar.sh restart


	You should see a similar output:



Stopping SonarQube...
Waiting for SonarQube to exit...
Stopped SonarQube.
Starting SonarQube...
Started SonarQube.


	After a successful restart, go to the SonarQube dashboard and log in as administrator.




	Click on the Administration link from the menu bar.

	On the Administration page, you will see the Build Breaker option under the CATEGORY sidebar, as shown in the following screenshot; do nothing:





The build breaker plugin settings inside SonarQube


	The build breaker plugin has been installed successfully.





            

            
        
    
        

                            
                    Creating quality gates

                
            
            
                
For the build breaker plugin to work, we need to create a quality gate; it's nothing but a rule with some conditions. When a Jenkins pipeline runs, it will execute the quality profiles and the quality gate. If the quality gate check passes successfully then the Jenkins pipeline continues, but if it fails then the Jenkins pipeline is aborted. Nevertheless, the analysis still happens.

Follow these steps to create a quality gate in SonarQube:


	From the SonarQube dashboard, click on the Quality Gates link from the menu bar.

	On the resultant page, click on the Create button at the top-left corner.

	You will get a pop-up window, as shown in the following screenshot. Add a name for your quality gate under the Name field, and click on the Create button:





Creating a new quality gate


	You will see your new quality gate listed on the Quality Gates page, as shown in the following screenshot:





The new quality gate


	Let us now add a condition to our quality gate by choosing one from the Add Condition menu:





Condition menu


	The following screenshot shows a condition named Major Issues. If it's greater than 1 but less than 50 it's a WARNING, and if it's greater than 50, it's an ERROR, as shown in the following screenshot. This is just an example; you can configure any number of conditions you like:





Configuring the quality gate


	Next, let us make sure that the example project that we created earlier in SonarQube uses our newly created quality gate. To do so, from the SonarQube dashboard click on Administration | Projects (tab) | Management.

	On the resultant page, you will see the example project that we created earlier in SonarQube. Click on it.

	On the resultant page, click on Administration (tab) | Quality Gate.




	Under the Quality Gate section, you will see an option to choose the quality gate from the list of available quality gates in SonarQube. Choose the one that we created recently and click on the Update button:





Associating a quality gate to a project



            

            
        
    
        

                            
                    Updating the default quality profile

                
            
            
                
In the following section, we will modify the default quality profile for Java (Sonar way), which we intend to use for our static code analysis. Follow these steps:


	From the SonarQube dashboard, click on the Quality Profiles link from the menu bar. On the resultant page, you will see all the quality profiles that exist on SonarQube, as shown in the following screenshot:





List of quality profiles in SonarQube


	From the previous screenshot, you can see that the default quality profile for Java: Sonar way contains 254 active rules. Let us try to add more rules. 

	Click on the Activate More button.

	On the resultant page, you will see something, as shown in the following screenshot:





List of inactive rules


	This is the place where you can add and remove rules from your quality profile. Let us activate all the inactive rules for Java.




	To do this, from the top-right corner of the page, click on Bulk Change | Activate In Sonar way, as shown in the following screenshot:





Activating rules in bulk


	You will see a popup asking you to confirm the changes. Click on the Apply button and proceed.

	Next, from the menu bar, click on the Quality Profiles link. On the resultant page, click on the Sonar way quality profile for Java, and now you should see a greater number of rules than before.  



The list of rules and default quality profiles visible on SonarQube depends on the installed plugin. To get rules for your desired language, install its respective SonarQube plugin. 



            

            
        
    
        

                            
                    Installing the SonarQube plugin in Jenkins

                
            
            
                
Follow these steps to install the SonarQube plugin for Jenkins:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins | Available (tab). You will be taken to the Jenkins Manage Plugins page.



 

 


	Enter SonarQube in the Filter field, as shown in the following screenshot:





Installing the SonarQube plugin


	Select SonarQube Scanner for Jenkins from the list and click on the Install without restart button.

	Restart Jenkins if needed.





            

            
        
    
        

                            
                    Configuring the SonarQube plugin in Jenkins

                
            
            
                
Now that we have our SonarQube plugin installed, let us configure it:


	From the Jenkins dashboard, click Manage Jenkins | Configure System.

	Once on the Configure System page, scroll down all the way to the SonarQube servers section.

	Under the SonarQube servers section, click on the Add SonarQube button. You will be presented with settings to configure, as shown in the following screenshot. Let us see them one by one.

	Give your SonarQube server a name using the Name field.

	Enter the SonarQube server URL under the Server URL field.

	Add Artifactory credentials under the Default Deployer Credentials.

	Add the token that we created inside SonarQube under the Server authentication token field.



 

 


	Click on the Test Connection button to test the Jenkins connection with Artifactory:





Configuring the SonarQube plugin


	Once done, click on the Save button at the end of the page to save the settings.





            

            
        
    
        

                            
                    Installing and configuring Artifactory

                
            
            
                
Continuous integration results in frequent builds and packages. Hence, there is a need for a mechanism to store all this binary code (builds, packages, third-party plugins, and so on) in a system akin to a version control system.

Since version control systems such as Git, TFS, and SVN store code and not binary files, we need a binary repository tool. A binary repository tool such as Artifactory or Nexus tightly integrated with Jenkins provides the following advantages:


	Tracking builds (who triggers? What code was built?)

	Dependencies

	Deployment history



The following diagram depicts how a binary repository tool such as Artifactory works with Jenkins to store build artifacts. In the coming topics, we will learn how to achieve this by creating a Jenkins job to upload code to Artifactory:



Jenkins pipeline pushing built artifacts to Artifactory

In the current book, we will be dealing with Artifactory to store our builds. Artifactory is a tool used to version control binaries. The binaries can be anything from built code, packages, executables, Maven plugins, and so on.

In the following section, we will set up Artifactory on Ubuntu 16.04.



            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow these steps to install Java:


	Update the package index:



sudo apt-get update


	Next, install Java. The following command will install the JRE:



sudo apt-get install default-jre


	To set the JAVA_HOME environment variable, first get the Java installation location. Do this by executing the following command:



update-java-alternatives –l


	You should get a similar output:



java-1.8.0-openjdk-amd64 1081 /usr/lib/jvm/java-1.8.0-openjdk-amd64


	The path in the preceding output is the JAVA_HOME location. Copy it.

	Open the /etc/environment file for editing:



sudo nano /etc/environment


	Add the following line inside the /etc/environment file, as shown here:



JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"


	Type Ctrl + X and choose Y to save and close the file.

	Next, reload the file using the following command:



        sudo source /etc/environment



            

            
        
    
        

                            
                    Downloading the Artifactory package

                
            
            
                
Follow the given steps to download the Artifactory package:


	Download the latest version of Artifactory (open source) from https://www.jfrog.com/open-source/ or https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip.

	To download Artifactory Pro, visit https://bintray.com/jfrog/artifactory-pro/ or https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip.




It is recommended that you always install the latest LTS version of Artifactory. 

In the following chapter, we will use Artifactory Pro to demonstrate code promotion using properties in the upcoming chapter.

Refer to https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro to learn the process of activating Artifactory Pro. 




	Move to the /tmp folder:



cd /tmp


	Download the Artifactory Pro ZIP package, using wget, as shown in the following code. Here, I am downloading Artifactory version 5.5.2 (LTS*):



wget https://jfrog.bintray.com/artifactory-pro/org/artifactory/pro/jfrog-artifactory-pro/5.5.2/jfrog-artifactory-pro-5.5.2.zip

You can download the Artifactory ZIP package on a different machine (from a browser) and then move it to your to-be Artifactory server, using WinSCP.


	Next, unzip the SonarQube ZIP package inside the /opt directory, as shown in the following code:



sudo unzip jfrog-artifactory-pro-5.5.2.zip -d /opt/

Or, if the downloaded ZIP package has a strange name:

sudo unzip \
download_file\?file_path\=jfrog-artifactory-pro-5.5.2.zip \
–d /opt/


To use the unzip command, make sure you have the zipping tool installed on your Ubuntu machine.  To install the ZIP tool, execute the following command:

sudo apt-get install zip




	Move to the extracted folder and list its content:



cd /opt/artifactory-pro-5.5.2/

ls -lrt

The bin/ folder contains all the scripts to install and start Artifactory, and the logs/ folder contains the Artifactory logs.



            

            
        
    
        

                            
                    Running the Artifactory application

                
            
            
                
Follow the given steps to start the Artifactory server:


	Move to the /opt/artifactory-pro-5.5.2/bin/ directory and run the installService.sh script:



sudo ./installService.sh


	You should see a similar output:



Installing artifactory as a Unix service that will run as user artifactory
Installing artifactory with home /opt/artifactory-pro-5.5.2
Creating user artifactory...creating... DONE

Checking configuration link and files in /etc/opt/jfrog/artifactory...
Moving configuration dir /opt/artifactory-pro-5.5.2/etc /opt/artifactory-pro-5.5.2/etc.original...creating the link and updating dir... DONE
Creating environment file /etc/opt/jfrog/artifactory/default...creating... DONE
** INFO: Please edit the files in /etc/opt/jfrog/artifactory to set the correct environment
Especially /etc/opt/jfrog/artifactory/default that defines ARTIFACTORY_HOME, JAVA_HOME and JAVA_OPTIONS
Initializing artifactory.service service with systemctl... DONE

Setting file permissions... DONE

************ SUCCESS ****************
Installation of Artifactory completed

Please check /etc/opt/jfrog/artifactory, /opt/artifactory-pro-5.5.2/tomcat and /opt/artifactory-pro-5.5.2 folders

You can activate artifactory with:
> systemctl start artifactory.service


	Start the Artifactory service, using any of the following commands:



sudo service artifactory start

  Or:

sudo /etc/init.d/artifactory start

  Or:

sudo systemctl start artifactory


	You can check the Artifactory installation by executing any of the following commands:



service artifactory check

  Or:

/etc/init.d/artifactory check


  Or:

sudo ./artifactoryctl check


	Access the Artifactory dashboard by navigating to http://<Server IP Address>:8081/.




Right now there are no user accounts configured in Artifactory. However, by default there is an admin account with the username as admin and the password as password.

Make sure you have at least 4 GB of memory to run the 64-bit version of Artifactory.





            

            
        
    
        

                            
                    Resetting the default credentials and generating an API key

                
            
            
                
Follow the given steps to reset the Artifactory credentials:


	Access the Artifactory dashboard using the following link: http://<Server IP Address>:8081/.

	Log in as admin using the initial default credentials for admin.

	From the Artifactory dashboard, click on Welcome, admin | Edit Profile.

	Enter your current password in the Current Password field and press the Unlock button.

	On the resultant page, under Personal Settings, add your email ID.

	Under the Change Password section, add a new password to reset the default credentials for the admin user.

	Next, under the Authentication Settings section, click on Generate key (gear logo) to generate a new API key.

	Copy the generated API key by clicking on the copy button (see the following screenshot).

	We might need this API key later for authentication:



 

Artifactory API key


	Once done, click on the Save button.





            

            
        
    
        

                            
                    Creating a repository in Artifactory

                
            
            
                
In the following section, we will create a genetic repository inside Artifactory. The repository will be used to store the build artifacts:


	From the Artifactory dashboard, on the left-hand side menu, click on Admin | Repositories | Local, as shown in the following screenshot:





Creating a local repository in Artifactory


	The resultant page will show you all the Local Repositories currently available, as shown in the following screenshot:





List of all the Local Repositories


	Click on the New button at the top-right corner to create a new local repository (see the following screenshot).

	You will be presented with a pop-up window with a list of various types of repositories to choose from, shown as follows. Choose the Generic type (see the following screenshot):





Option to choose various types of repositories


	Give your repository a name by adding a value under the Repository Key field, as shown in the following screenshot. Leave the rest of the settings to their default values:





Naming our new local repository


	Once done, click on the Save & Finish button.

	Now we have our new local repository, as shown in the following screenshot:





Our newly created local repository



            

            
        
    
        

                            
                    Adding Artifactory credentials inside Jenkins

                
            
            
                
Follow the given steps to create credentials inside Jenkins to talk to Artifactory:


	From the Jenkins dashboard, click on Credentials | System | Global credentials (unrestricted).

	Click on the Add Credentials link on the left-hand side menu to create a new credential (see the following screenshot).

	Choose Kind as Username with Password.

	Leave the Scope field to its default value.

	Add the Artifactory username under the Username field.

	Under the Password field, add the password.

	Add an ID under the ID field and a description under the Description field.

	Once done, click on the OK button:





Adding Artifactory credentials inside Jenkins



            

            
        
    
        

                            
                    Installing the Artifactory plugin in Jenkins

                
            
            
                
Follow the given steps to install the Artifactory plugin for Jenkins:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins | Available (tab). You will be taken to the Jenkins Manage Plugins page.

	Enter Artifactory in the Filter field, as shown in the following screenshot:





Installing the Artifactory Plugin


	Select the Artifactory Plugin from the list and click on Install without restart button.

	Restart Jenkins if needed.





            

            
        
    
        

                            
                    Configuring the Artifactory Plugin

                
            
            
                
Now that we have our Artifactory Plugin installed, let us configure it:


	 From the Jenkins dashboard, click Manage Jenkins | Configure System.

	Once on the Configure System page, scroll down all the way to the Artifactory section.

	Under the Artifactory section, click on the Add button. You will be presented with the following settings to configure, as shown in the following screenshot. Let us look at them one by one.




	Give your Artifactory server a name, using the Server ID field.

	Enter the Artifactory server URL under the URL field.

	Add Artifactory credentials under the Default Deployer Credentials, as shown in the following screenshot.

	Click on the Test Connection button to test the Jenkins connection with Artifactory:





Configuring the Artifactory Plugin


	Once done, click on the Save button at the end of the page to save the settings.





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned how to install and configure SonarQube and Artifactory. In today's world, static code analysis forms an important part of the CI pipeline (although it is not necessary). Similarly, Artifactory is a popular tool used to store all the build artifacts that are generated by the CI pipeline. Once the CI pipeline is complete, Artifactory take the center stage. It is from Artifactory that all the built artifacts are deployed to various testing environments, and it is with Artifactory that we perform code promotion.

We will learn more about these tools in the next chapter, which is about implementing continuous integration using Jenkins.



            

            
        
    
        

                            
                    Continuous Integration Using Jenkins

                
            
            
                
We will begin this chapter with a Continuous Integration (CI) design that covers the following areas:


	A branching strategy

	A list of tools for CI

	A Jenkins pipeline structure



The CI design will serve as a blueprint that will guide the readers in answering the how, why, and where of CI being implemented. The design will cover all the necessary steps involved in implementing an end-to-end CI pipeline.

The CI design discussed in this chapter should be considered as a template for implementing CI, and not a full and final model. The branching strategy and the tools used can all be modified and replaced to suit the purpose.



            

            
        
    
        

                            
                    Jenkins CI design  

                
            
            
                
Almost every organization creates one before they even begin to explore the CI and DevOps tools. In this section, we will go through a very general CI design.

Continuous Integration includes not only Jenkins or any other similar CI tool for that matter, but it also deals with how you version control your code, the branching strategy you follow, and so on.

Various organizations may follow different kinds of strategies to achieve CI, since it all depends on the requirement and type of the project.



            

            
        
    
        

                            
                    Branching strategy

                
            
            
                
It's always good to have a branching strategy. Branching helps you organize your code. It is a way to isolate your working code from the code that is under development. In our CI design, we will start with three types of branches:


	The master branch

	The integration branch

	The feature branch



This branching strategy is a slimmer version of the GitFlow workflow branching model.



            

            
        
    
        

                            
                    The master branch

                
            
            
                
One can also call it a production branch. It holds the working copy of the code that has been delivered. The code on this branch has passed all the testing. No development happens on this branch.



            

            
        
    
        

                            
                    The integration branch

                
            
            
                
The integration branch is also known as the mainline branch. This is where all the features are integrated, built, and tested for integration issues. Again, no development happens here. However, developers can create feature branches out of the integration branch and work on them.



            

            
        
    
        

                            
                    The feature branch

                
            
            
                
Lastly, we have the feature branch. This is where the actual development takes place. We can have multiple feature branches spanning out of the integration branch.

The following illustration shows a typical branching strategy that we will be using as part of our CI design. We will be creating two feature branches spanning out from the Integration/Mainline Branch, which itself spans out from the master branch:



Branching strategy

A commit on the feature branch or the integration branch (a merge will create a commit) will go through a build, static code analysis, and integration test phase. If the code passes these phases successfully, the resultant package is uploaded to Artifactory (binary repository).



            

            
        
    
        

                            
                    The CI pipeline

                
            
            
                
We are now at the heart of the CI design. We will be creating a Multibranch Pipeline in Jenkins that will have the following stages:


	Fetch the code from the version control system (VCS) on a push event (initialization of the CI pipeline).

	Build and unit test the code, and publish a unit test report on Jenkins.



 


	Perform static code analysis on the code and upload the result to SonarQube. Fail the pipeline if the number of bugs crosses the threshold defined in the quality gate.

	Perform integration testing and publish a unit test report on Jenkins.

	Upload the built artifacts to Artifactory along with some meaningful properties.



The purpose of the previous CI pipeline is to automate the process of continuously building, testing (unit test and integration test), performing static code analysis, and uploading the built artifacts to the binary repository. Reporting for failures/success happens at every step. Let us discuss these pipelines and their constituents in detail.



            

            
        
    
        

                            
                    Toolset for CI

                
            
            
                
The example project for which we are implementing CI is a simple Maven project. In this chapter, we will see Jenkins working closely with many other tools. The following table contains the list of tools and technologies involved in everything that we will be seeing:




	Technology
	Characteristic



	Java
	Primary programming language used for coding



	Maven
	Build tool



	JUnit
	Unit testing and integration testing tools



	Jenkins
	Continuous Integration tool



	GitHub
	Version control system



	SonarQube
	Static code analysis tool



	Artifactory
	Binary repository manager







            

            
        
    
        

                            
                    Creating the CI pipeline

                
            
            
                
In this section, we will learn how to create the CI pipeline discussed in the previous section. We will perform the following steps:


	We will create a source code repository in GitHub

	We will create a Jenkinsfile to describe the way we build, unit test, perform static code analysis, integration test, and publish built artifacts to Artifactory

	We will utilize Docker to spawn build agents to run our CI pipeline

	We will create a Multibranch Pipeline in Jenkins



It is important that you have configured the Configuring Webhooks on GitHub from Jenkins section from Chapter 3, The New Jenkins.



            

            
        
    
        

                            
                    Creating a new repository on GitHub

                
            
            
                
Let us create a new repository on GitHub. Make sure you have Git installed on the machine that you will use to perform the steps mentioned in the following section:


	Log in to your GitHub account.

	In this chapter, we will use the source code from https://github.com/nikhilpathania/hello-world-greeting.git as an example.

	Try to fork the repository mentioned in the previous link. To do so, just access the repository from your internet browser and click on the Fork button, as shown in the following screenshot:





Forking a GitHub project


	Once done, a replica of the repository will be visible under your GitHub account.





            

            
        
    
        

                            
                    Using the SonarQube scanner for Maven

                
            
            
                
Ideally, we need the SonarQube scanner to perform static code analysis on a project. However, we will use the SonarQube scanner utility for Maven instead, as the example source code that we are using in the current chapter is a Maven project.

To do so, add the following code to your .pom file:

<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <sonar.language>java</sonar.language>
</properties>

You need not perform the previous step if you have forked the following repository:

https://github.com/nikhilpathania/hello-world-greeting.git.



            

            
        
    
        

                            
                    Writing the Jenkinsfile for CI

                
            
            
                
In the following section, we will learn how to write pipeline code for our Continuous Integration.



            

            
        
    
        

                            
                    Spawning a Docker container – build agent

                
            
            
                
First, let us create pipeline code to create a Docker container (Jenkins slave), which will act as our build agent.

If you can recall, in the Adding Jenkins slaves – Docker containers section from Chapter 5, Distributed Builds, we learned to create a Docker image (maven-build-slave-0.1) that was meant for creating Docker containers (Jenkins slaves). We will use the same Docker image over here to spawn Jenkins Slave Agents for our CI pipeline.

In our Jenkinsfile, to spawn a Docker container (Jenkins slave) we need to write a code block for node with the label as docker:

node('docker') {
}

Where docker is a label for the maven-build-slave-0.1 Docker template.

We would like to perform the following tasks on the docker node:


	Perform build

	Perform unit tests and publish the unit test report

	Perform static code analysis and upload the results on SonarQube

	Perform integration testing and publish the integration test report

	Publish artifacts to Artifactory



All the previous tasks are various stages of our CI pipeline. Let's write pipeline code for each one of them.



            

            
        
    
        

                            
                    Downloading the latest source code from VCS

                
            
            
                
We want our Jenkins pipeline to download the latest change pushed to the master branch on our GitHub repository:

scm checkout

Wrap the previous step inside a stage called Poll:

stage('Poll') {
    scm checkout
}



            

            
        
    
        

                            
                    Pipeline code to perform the build and unit test

                
            
            
                
The example project that we are using in the current chapter is a Maven project. Therefore, the pipeline code for the build is a simple shell script that runs the mvn clean command:

sh 'mvn clean verify -DskipITs=true';
junit '**/target/surefire-reports/TEST-*.xml'
archive 'target/*.jar'

Where -DskipITs=true is the option to skip the integration test and perform only the build and unit test.

The junit '**/target/surefire-reports/TEST-*.xml' command enables Jenkins to publish JUnit unit test reports on the Jenkins pipeline page.  **/target/surefire-reports/TEST-*.xml is the directory location where the unit test reports are generated.

Your Maven .pom file should have maven-surefire-plugin and maven-failsafe-plugin for the previous command to work.

You also need the Jenkins JUnit plugin (installed by default).

Wrap the previous step inside a stage called Build & Unit test:

stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
}



            

            
        
    
        

                            
                    Pipeline code to perform static code analysis

                
            
            
                
The pipeline code to perform static code analysis is a simple shell script that will run the Maven commands, as shown in the following command block. This is made possible using the SonarQube scanner utility for Maven. Remember the configuration that we saw in the Using the SonarQube scanner for Maven section:

sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
-Dsonar.projectKey=example-project -Dsonar.projectVersion=$BUILD_NUMBER';

The -Dsonar.projectName=example-project option is the option to pass the SonarQube project name. In this way, all our results will be visible under the projectName=example-project that we created in the previous chapter. 

Similarly, the -Dsonar.projectKey=example-project option allows the SonarQube scanner for the Maven utility to confirm the projectKey=example-project with SonarQube.

The -Dsonar.projectVersion=$BUILD_NUMBER option allows us to attach the Jenkins build number with every analysis that we perform and upload to SonarQube. $BUILD_NUMBER is the Jenkins environment variable for the build number.

Wrap the previous step inside a stage called Static Code Analysis:

stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project -Dsonar.projectVersion=$BUILD_NUMBER';
}



            

            
        
    
        

                            
                    Pipeline code to perform integration testing

                
            
            
                
The pipeline code to perform integration testing is a shell script that will run the Maven commands, as shown in the following command block:

sh 'mvn clean verify -Dsurefire.skip=true';
junit '**/target/failsafe-reports/TEST-*.xml'
archive 'target/*.jar'

Where -Dsurefire.skip=true is the option to skip unit testing and perform only the integration testing. 

The junit '**/target/failsafe-reports/TEST-*.xml' command enables Jenkins to publish JUnit unit test reports on the Jenkins pipeline page.  **/target/failsafe-reports/TEST-*.xml is the directory location where the integration test reports are generated.

Wrap the previous step inside a stage called Integration Test:

stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
}

Your Maven .pom file should have maven-surefire-plugin and maven-failsafe-plugin for the previous command to work.

You also need the Jenkins JUnit plugin (installed by default).



            

            
        
    
        

                            
                    Pipeline code to publish built artifacts to Artifactory

                
            
            
                
To upload the build artifacts to Artifactory, we will use the File Specs. The File Specs code is shown in the following code block:

"files": [
    {
      "pattern": "[Mandatory]",
      "target": "[Mandatory]",
      "props": "[Optional]",
      "recursive": "[Optional, Default: 'true']",
      "flat" : "[Optional, Default: 'true']",
      "regexp": "[Optional, Default: 'false']"
    }
  ]

The following table states the parameters from the preceding code:




	Parameters
	Condition
	Description



	pattern
	[Mandatory]
	Specifies the local filesystem path to artifacts that should be uploaded to Artifactory. You can specify multiple artifacts by using wildcards or a regular expression, as designated by the regexp property.

If you use a regexp, you need to escape any reserved characters (such as ., ?, and so on) used in the expression using a backslash \. Since version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory plugin, the pattern format has been simplified and uses the same file separator / for all operating systems, including Windows. 



	target
	[Mandatory]
	Specifies the target path in Artifactory in the following format: [repository_name]/[repository_path]. If the pattern ends with a slash, for example, repo-name/a/b/, then b is assumed to be a folder in Artifactory and the files are uploaded into it. In the case of repo-name/a/b, the uploaded file is renamed to b in Artifactory. For flexibility in specifying the upload path, you can include placeholders in the form of {1}, {2}, {3}... which are replaced by corresponding tokens in the source path that are enclosed in parentheses. For more details, please refer to the Using Placeholders article (https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders).



	props
	[Optional]
	List of key=value pairs separated by a semicolon (;) to be attached as properties to the uploaded properties. If any key can take several values, then each value is separated by a comma (,). For example, key1=value1;key2=value21,value22;key3=value3.



	flat
	[Default: true]
	If true, artifacts are uploaded to the exact target path specified and their hierarchy in the source filesystem is ignored.

If false, artifacts are uploaded to the target path while maintaining their filesystem hierarchy.



	recursive
	[Default: true]
	If true, artifacts are also collected from subdirectories of the source directory for upload.

If false, only artifacts specifically in the source directory are uploaded.



	regexp
	[Default: false]
	If true, the command will interpret the pattern property, which describes the local filesystem path of artifacts to upload, as a regular expression.

If false, the command will interpret the pattern property as a wildcard expression.





 

The following is the File Specs code that we will use in our pipeline:

def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
  "files": [
    {
       "pattern": "target/hello-0.0.1.war",
       "target": "example-project/${BUILD_NUMBER}/",
       "props": "Integration-Tested=Yes;Performance-Tested=No"
    }
  ]
}"""
server.upload(uploadSpec)

The following table states the parameters from the preceding code:




	Parameters
	Description



	def server = Artifactory.server 'Default Artifactory Server'
	This line tells Jenkins to use the existing Artifactory server configured in Jenkins. In our example, it is the default Artifactory server.



	Default Artifactory Server
	This is the name of the Artifactory server configured inside Jenkins.



	"pattern": "target/hello-0.0.1.war",
	This line of code will look at a file named hello-0.0.1.war inside the directory target, which is again inside the Jenkins workspace directory.



	"target": "example-project/${BUILD_NUMBER}/",
	This line of code will try to upload the build artifacts to the Artifactory repository named helloworld-greeting-project. It will place the artifact inside a folder named after the build number inside the Artifactory repository.



	${BUILD_NUMBER}
	The Jenkins environment variable for the build number.



	"props": "Integration-Tested=Yes;Performance-Tested=No"
	
This code creates two key-value pairs and assigns them to the uploaded artifacts. These key-value pairs can be used as labels for code promotion in Artifactory.









 

Wrap the previous step inside a stage called Publish:

stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
  server.upload(uploadSpec)
}



            

            
        
    
        

                            
                    Combined CI pipeline code

                
            
            
                
The following is the complete combined code that will run inside the docker node:

node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "example-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
}



            

            
        
    
        

                            
                    Using a Jenkinsfile

                
            
            
                
Jenkins Multibranch Pipelines utilize Jenkinsfiles. In this section, we will learn how to create a Jenkinsfile. We will use the example pipeline script that we created in the previous section to create our Jenkinsfile. Follow these steps:


	Log in to your GitHub account.

	Navigate to the forked repository.

	Once on the repository page, click on the Create new file button to create a new empty file that will be our Jenkinsfile, as shown in the following screenshot:






Creating a new file on GitHub


	Name your new file Jenkinsfile by filling in the empty textbox, as shown in the following screenshot:





Naming your new file on GitHub


	Add the following code in your Jenkinsfile:



node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar
    -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project
    -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "example-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
}


	Once done, commit the new file by adding a meaningful comment, as shown in the following screenshot:





Committing your new file on GitHub



            

            
        
    
        

                            
                    Creating a Multibranch Pipeline in Jenkins

                
            
            
                
Follow these steps to create a new Jenkins pipeline job:


	From the Jenkins dashboard, click on the New Item link.

	On the resultant page, you will be presented with various types of Jenkins jobs to choose from.

	Choose Multibranch Pipeline, and give a name to your pipeline using the Enter an item name field.

	Once you are done, click on the OK button at the bottom of the page.

	Scroll to the Branch Sources section. This is the place where we configure the GitHub repository that we want to use.

	Click on the Add Source button and choose GitHub. You will be presented with a list of fields to configure. Let us see them one by one (see the following screenshot).

	For the Credentials field, choose the GitHub account credentials (Kind: Username with Password) that we created in the previous section.



 


	Under the Owner field, specify the name of your GitHub organization or GitHub user account.

	The moment you do so, the Repository field will list all the repositories that are on your GitHub account.

	Choose hello-world-greeting under the Repository field.

	Leave the rest of the options to their default values:





Configuring the Multibranch Pipeline


	Scroll all the way down to the Build Configuration section. Make sure the Mode field is set to by Jenkinsfile and the Script Path field is set to Jenkinsfile:





Build configuration


	Scroll all the way down and click on the Save button.





            

            
        
    
        

                            
                    Re-registering the Webhooks

                
            
            
                
Now, let us re-register the Webhooks for all our Jenkins pipelines. To do so, perform the following steps:


	On the Jenkins dashboard, click on Manage Jenkins | Configure System.

	On the Jenkins configuration page, scroll all the way down to the GitHub section.



 


	Under the GitHub section, click on the Advanced… button (you will see two of them; click on the second one).

	This will display a few more fields and options. Click on the Re-register hooks for all jobs button.

	The previous action will create new Webhooks for our Multibranch Pipeline on the respective repository inside your GitHub account. Do the following to view the Webhooks on GitHub:

	Log in to your GitHub account.

	Go to your GitHub repository, hello-world-greeting in our case.

	Click on the repository Settings button, as shown in the following screenshot:









Repository settings


	

	On the repository Settings page, click on Webhooks from the left-hand side menu. You should see the Webhooks for your Jenkins server, as shown in the following screenshot:









Webhooks on GitHub repository



            

            
        
    
        

                            
                    Continuous Integration in action

                
            
            
                
Follow the given steps:


	From the Jenkins dashboard, click on your Multibranch Pipeline.

	On the Jenkins Multibranch Pipeline page, from the left-hand side menu, click on the Scan Repository Now link. This will scan the repository for branches and Jenkinsfiles, and will immediately run a pipeline for every branch that has got a Jenkinsfile, as shown in the following screenshot:





Pipeline for the master branch


	On the Multibranch Pipeline page, from the left-hand side menu, click on Scan Repository Log. You will see something similar to the following output. Notice the highlighted code. You can see the master branch met the criteria, as it had a Jenkinsfile and a pipeline was scheduled for it. There was no pipeline scheduled for the testing branch since there was no Jenkinsfile on it:



Started by user nikhil pathania
[Sun Nov 05 22:37:19 UTC 2017] Starting branch indexing...
22:37:19 Connecting to https://api.github.com using nikhilpathania@hotmail.com/****** (credentials to access GitHub account)
22:37:20 Connecting to https://api.github.com using nikhilpathania@hotmail.com/****** (credentials to access GitHub account)
Examining nikhilpathania/hello-world-greeting  
  Checking branches...   
  Getting remote branches...     
    Checking branch master   
  Getting remote pull requests...      
      ‘Jenkinsfile’ found    
    Met criteria
Changes detected: master (c6837c19c3906b0f056a87b376ca9afdff1b4411 1e5834a140d572f4d6f9665caac94828b779e2cd)Scheduled build for branch: master  
1 branches were processed  
Checking pull-requests...  
0 pull requests were processed
Finished examining nikhilpathania/hello-world-greeting
[Sun Nov 05 22:37:21 UTC 2017] Finished branch indexing. Indexing took 2.1 sec
Finished: SUCCESS

You need not always scan for the repository. The GitHub Webhooks are configured to automatically trigger a pipeline whenever there is a push or a new branch on your GitHub repository. Remember, a Jenkinsfile should also be present on the respective branch to tell Jenkins what it needs to do when it finds a change in the repository.


	From your Jenkins Multibranch Pipeline page (<Jenkins URL>/job/<Jenkins Multi-branch pipeline name>/), click on the respective branch pipeline (see the following screenshot).

	On the resultant page, you will see the Stage View for the master branch pipeline:





Pipeline Stage View


	To see the unit test and integration test results, click on Latest Test Result link, which is available on the same page below the Stage View, as shown in the following screenshot:






	On the resultant page, you will see a detailed report about the unit as well as the integration test execution, as shown in the following screenshot:





Test report using JUnit plugin


	You can click on the individual tests to get more details.



 


	While on the same page, on the left-hand side menu there is a link named History, which gives you a historic graph about the number of metrics related to the test execution over a period of time:





Test execution history





            

            
        
    
        

                            
                    Viewing static code analysis in SonarQube

                
            
            
                
Let us take a look at the static code analysis report performed as part of our CI pipeline. Follow these steps:


	Open the SonarQube link, using your favorite browser. You should see something similar to the following screenshot:





SonarQube homepage


	From the SonarQube dashboard, using the menu option, click on the Log in link.

	Enter your SonarQube credentials.

	On the resultant page, under the PROJECTS widget, click on the example-project project.

	You will see an overview of the static code analysis of your project (see the following screenshot):





Static code analysis overview


	Click on Measures | Coverage. On the resultant page, you will get a nice overview of your code coverage and unit test result report, as shown in the following screenshot:





Code coverage report and unit test report



            

            
        
    
        

                            
                    Accessing SonarQube analysis right from Jenkins

                
            
            
                
You can access your static code analysis report right from your CI pipeline. Follow these steps:


	From your Jenkins dashboard, click on your Multibranch Pipeline. Next, click on the respective branch pipeline (master in our example).



 


	Once you are on your branch pipeline, hover your mouse on the Static Code Analysis stage and click on Logs. See the following screenshot:





Fetching individual stage logs


	In the resultant pop-up window named Stage Logs (Static Code Analysis), scroll all the way down to the end. You should see a link to the SonarQube analysis page. See the following screenshot:





SonarQube analysis link from Jenkins logs


	Clicking on the link, as shown in the previous screenshot, will take you straight to the SonarQube dashboard of the respective project.





            

            
        
    
        

                            
                    Viewing artifacts in Artifactory

                
            
            
                
Let us see how our artifacts look when uploaded to Artifactory. Follow these steps:


	From your favorite browser, access the Artifactory link. From the Artifactory dashboard, log in using the Log in link.

	Click on the Artifacts tab on the left-hand side menu. You should see your repository listed under the Artifact Repository Browser, as shown in the following screenshot:





Artifact Repository Browser


	Expand the repository, and you should see the built artifact along with the properties, as shown in the following screenshot:





Artifact generated by the CI pipeline



            

            
        
    
        

                            
                    Failing the build when quality gate criteria are not met

                
            
            
                
In the following section, we will tweak the SonarQube quality gate that we created in the previous chapter, such that it should fail the Jenkins CI pipeline. Follow these steps to simulate this scenario:


	Log in to your SonarQube server and click on Quality Gates from the menu bar.

	From the left-hand side menu, click on the quality gate: example-quality-gate that we created in the previous chapter.

	Now, change the value of the ERROR field from 50 to 3.  



 


	Click on Update. Finally, everything should look as shown in the following screenshot:





Updating the SonarQube quality gate


	Next, make some changes on the GitHub repository to trigger a CI pipeline in Jenkins.

	Log in to Jenkins and navigate to your Jenkins Multibranch CI Pipeline. You should see something similar to the following screenshot:





Failed CI pipeline


	Click on the failed stage of the respective pipeline to fetch its logs. In the pop-up window, scroll all the way down. You should see the reason for the pipeline failure, as shown in the following screenshot (arrow):





SonarQube logs with quality gate status



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned how to create a Multibranch CI Pipeline that gets triggered on a push event, performs build, static code analysis, integration testing, and uploads the successfully tested binary artifact to Artifactory. Lastly, we saw the whole CI pipeline in action from the perspective of a developer.

The CI design discussed in the book can be modified to suit the needs of any type of project; the users just need to identify the right tools and configurations that can be used with Jenkins.

In the next chapter, we will extend our CI pipeline to do more in the area of QA.





            

            
        
    
        

                            
                    Continuous Delivery Using Jenkins

                
            
            
                
We will begin this chapter with a Continuous Delivery design that covers the following areas:


	Branching strategy

	A list of tools for Continuous Delivery

	A Jenkins pipeline structure



The Continuous Delivery (CD) design will serve as a blueprint that will guide the readers in answering the how, why, and where of the CD being implemented. The design will cover all the necessary steps involved in implementing an end-to-end CD pipeline.

The CD design, discussed in this chapter, should be considered as a template for implementing CD, and not a full and final model. All the tools used can be modified and replaced to suit the purpose.



            

            
        
    
        

                            
                    Jenkins CD design

                
            
            
                
In this section, we will go through a very general CD design.



            

            
        
    
        

                            
                    Branching strategy

                
            
            
                
In Chapter 7, Continuous Integration Using Jenkins, we followed a branching strategy for the CI that included the following:


	The master branch

	The integration branch

	The feature branch



This branching strategy is a slimmer version of the GitFlow workflow branching model.

While CI can be performed on integration/development branches or feature branches, CD is carried out only on the integration and release branches.



            

            
        
    
        

                            
                    The release branch

                
            
            
                
Some teams go with the strategy of having a release branch. A release branch is created after a successfully-tested code goes live in production (distributed to customers) from the master branch. The purpose of creating a release branch is to support bug fixes on the respective release:



Branching strategy



            

            
        
    
        

                            
                    CD pipeline

                
            
            
                
We are now at the heart of the CD design. We will not create a new pipeline; instead, we will build on the existing CI Multibranch Pipeline in Jenkins. The new CD pipeline will have the following stages:


	Fetch the code from the version control system (VCS) on a push event (initialization of the CI pipeline).

	Build and unit test the code; publish a unit test report on Jenkins.

	Perform static code analysis on the code and upload the result to SonarQube. Fail the pipeline if the number of bugs crosses the threshold defined in the quality gate.

	Perform integration testing; publish a unit test report on Jenkins.

	Upload the built artifacts to Artifactory along with some meaningful properties.

	Deploy the binaries to the testing environment.

	Execute testing (quality analysis).

	Promote the solution in Artifactory and mark it as a release candidate.



The purpose of the preceding CD pipeline is to automate the process of continuously deploying, testing (QA), and promoting the build artifacts in the binary repository. Reporting for failures/success happens at every step. Let us discuss these pipelines and their constituents in detail.


In the real world, the QA may contain multiple stages of testing, such as performance testing, user acceptance testing, component testing, and so on. To keep things simple, we will perform only performance testing in our example CD pipeline.





            

            
        
    
        

                            
                    Toolset for CD

                
            
            
                
The example project for which we are implementing CI is a simple Maven project. Therefore, we will see Jenkins working closely with many other tools.

The following table contains the list of tools and technologies involved in everything that we will be seeing:





	
Tool/Technology


	
Description





	
Java


	
Primary programming language used for coding





	
Maven


	
Build tool





	
JUnit


	
Unit test and integration test tools





	
Jenkins


	
CI tool





	
GitHub


	
VCS





	
SonarQube


	
Static code analysis tool





	
Artifactory


	
Binary repository manager





	
Apache Tomcat


	
Application server to host the solution





	
Apache JMeter


	
Performance testing tool











            

            
        
    
        

                            
                    Creating a Docker image – performance testing

                
            
            
                
In this section, we will create a Docker image for our performance testing (PT). This Docker image will be used by Jenkins to create Docker containers, wherein we will deploy our built solution and execute our performance tests. Follow the given steps:


	Log in to your Docker server. Give the following command to check the available Docker images:



       sudo docker images


	From the following screenshot, you can see I have three Docker images (ubuntu, hello-world, and maven-build-slave-0.1) already on my Docker server:





Listing the Docker images


	We will build a new Docker image for running our PT using the Ubuntu Docker image.

	Let us upgrade our Ubuntu Docker image with all the necessary application that we need to run our tests, which are as follows:

	Java JDK (latest)

	Apache Tomcat (8.5)

	Apache JMeter

	A user account to log in the Docker container

	OpenSSH daemon (to accept SSH connection)

	Curl








	Execute the following command to run a Docker container using the Ubuntu Docker image. This will create a container and open up its bash shell:



sudo docker run -i -t ubuntu /bin/bash


	Now, install all the required application as you would do on any normal Ubuntu machine. Let's begin with creating a jenkins user:

	Execute the following command and follow the user creation steps, shown as follows:







adduser jenkins



Creating a user


	

	Check the new user, using the switch user command:







su jenkins


	Switch back to the root user by typing exit.

	Next, we will install the SSH server. Execute the following commands in sequence:



apt-get update

apt-get install openssh-server

mkdir /var/run/sshd



	Follow the given steps to install Java:

	Update the package index:







apt-get update


	

	Next, install Java. The following command will install the Java Runtime Environment (JRE):







apt-get install default-jre


	The best way to install Tomcat 8.5 is to download the latest binary release and then configure it manually:

	Move to the /tmp directory and download Apache Tomcat 8.5, using the following commands:







cd /tmp

wget https://archive.apache.org/dist/tomcat/tomcat-8/v8.5.11/bin/apache-tomcat-8.5.11.tar.gz


	

	We will install Tomcat inside the home/jenkins/ directory. To do so, first switch to the jenkins user. Create a tomcat directory inside /home/jenkins/:







su jenkins

mkdir /home/jenkins/tomcat


	

	Then extract the archive to it:







tar xzvf apache-tomcat-8*tar.gz \
-C /home/jenkins/tomcat --strip-components=1


	Switch back to the root user by typing exit.

	Apache JMeter is a good tool to perform performance testing. It's free and open source. It can run in both GUI and command-line mode, which makes it a suitable candidate for automating performance testing:

	Move to the /tmp directory:







cd /tmp


	

	Download apache-jmeter-3.1.tgz, or whichever is the latest stable version, from http://jmeter.apache.org/download_jmeter.cgi:







wget https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.1.tgz


	

	We will install JMeter inside the opt/jmeter/ directory. To do so, create a jmeter directory inside /opt:







mkdir /opt/jmeter


	

	Then extract the archive to the /opt/jmeter/ directory and also give it the appropriate permissions:







tar xzvf apache-jmeter-3*.tgz \
-C /opt/jmeter --strip-components=1

chown -R jenkins:jenkins /opt/jmeter/

chmod -R 777 /opt/jmeter/


	Follow the given step to install curl:



apt-get install curl


	Follow the given steps to save all the changes that we made to the Docker image:

	Exit the container by typing exit.

	We need to save (commit) all the changes that we did to our Docker container.

	Get the CONTAINER ID of the container that we worked on recently by listing all the inactive containers, as shown in the following screenshot after the command:







sudo docker ps -a



Listing inactive containers


	

	Note the CONTAINER ID, and execute the following command to save (commit) the changes that we made to our container:







sudo docker commit <CONTAINER ID> <new name for the container>


	

	I have named my container performance-test-agent-0.1, as shown in the following screenshot:









Docker commit command


	

	Once you have committed the changes, a new Docker image gets created.





	 

	Execute the following docker command to list images, as shown in the following screenshot after the command:







sudo docker images



Listing the Docker images


	

	You can see our new Docker image with the name performance-test-agent-0.1. We will now configure our Jenkins server to use the performance-test-agent-0.1 Docker image to create Jenkins slaves (build agents).









            

            
        
    
        

                            
                    Adding Docker container credentials in Jenkins

                
            
            
                
Follow the given steps to add credentials inside Jenkins to allow it to talk to Docker:


	From the Jenkins dashboard, navigate to Credentials | System | Global credentials (unrestricted).

	Click on the Add Credentials link on the left-hand side menu to create a new credential (see the following screenshot).

	Choose Kind as Username with Password.

	Leave the Scope field to its default value.

	Add a username for your Docker image (jenkins, as per our example) under the Username field.

	Under the Password field, add the password.

	Add an ID under the ID field, and a description under the Description field.




	Once done, click on the OK button:





Creating credentials inside Jenkins



            

            
        
    
        

                            
                    Updating the Docker settings inside Jenkins

                
            
            
                
Follow the given steps to update the Docker settings inside Jenkins:


	From the Jenkins dashboard, click on Manage Jenkins | Configure System.

	Scroll all the way down to the Cloud section.

	Under the Cloud section, click on the Add Docker Template button and choose Docker Template.

	You will be presented with a lot of settings to configure (see the following screenshot). However, to keep this demonstration simple, let us stick to the important settings.

	Under the Docker Image field, enter the name of the Docker image that we created earlier. In my case, it is performance-test-agent-0.1.

	Under the Labels field, add a label. The Docker container will be recognized, using this label by your Jenkins pipeline. I have added the docker_pt label.

	Launch Method should be Docker SSH computer launcher.

	Under the Credentials field, choose the credentials that we created to access the Docker container.

	Make sure that the Pull strategy option is set to Never pull.

	Leave the rest of the options to their default values.




	Once done, click on Apply and then Save:





Creating a Docker Template for integration testing



            

            
        
    
        

                            
                    Creating a performance test using JMeter

                
            
            
                
In this section, we will learn how to create a simple performance test using the JMeter tool. The steps mentioned should be performed on your local machine. The following steps are performed on a machine with Ubuntu 16.04.



            

            
        
    
        

                            
                    Installing Java

                
            
            
                
Follow the given steps to install Java:


	Update the package index:



sudo apt-get update


	Next, install Java. The following command will install the JRE:



sudo apt-get install default-jre


	To set the JAVA_HOME environment variable, first get the Java installation location. Do this by executing the following command:



sudo update-alternatives --config java


	Copy the resultant path and update the JAVA_HOME variable inside the /etc/environment file.





            

            
        
    
        

                            
                    Installing Apache JMeter

                
            
            
                
Follow the given steps to install Apache JMeter:


	Move to the /tmp directory:



cd /tmp


	Download apache-jmeter-3.1.tgz, or whichever is the latest stable version, from http://jmeter.apache.org/download_jmeter.cgi:



wget https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3.1.tgz


	We will install JMeter inside the /opt/jmeter directory. To do so, create a jmeter directory inside /opt:



mkdir /opt/jmeter


	Then extract the archive to it:



tar xzvf apache-jmeter-3*.tgz \
-C /opt/jmeter --strip-components=1



            

            
        
    
        

                            
                    Starting JMeter

                
            
            
                
Follow the given steps to start JMeter:


	To start JMeter, move to the JMeter installation directory and run the jmeter.sh, script using the following command:



cd /opt/jmeter/bin

./jmeter.sh


	The JMeter GUI utility will open up in a new window.





            

            
        
    
        

                            
                    Creating a performance test case

                
            
            
                
By default, you will see an example test plan. We will create a new test plan by modifying the existing template:


	Rename the test plan to Hello_World_Test_Plan, as shown in the following screenshot:





Creating a test plan


	Save it inside the examples folder by clicking on the Save button from the menu items or by clicking Ctrl + S, as shown in the following screenshot:





Saving the test plan



            

            
        
    
        

                            
                    Creating a thread group

                
            
            
                
Follow the given steps to create a thread group:


	Add a thread group. To do so, right-click on Hello_World_Test_Plan and select Add | Threads (Users) | Thread Group:





Creating a thread group


	In the resultant page, give your thread group a name and fill the options as follows:

	Select Continue for the option Action to be taken after a Sampler error.

	Add Number of Threads (users) as 1.

	Add Ramp-Up Period (in seconds) as 1.

	Add Loop Count as 1:









Configuring a thread group



            

            
        
    
        

                            
                    Creating a sampler

                
            
            
                
Follow the given steps to create a sampler:


	Right-click on Hello_World_Test_Plan and select Add | Sampler | HTTP Request:





Adding a Sampler


	Name the HTTP Request appropriately and fill the options as follows:

	Add Server Name or IP as <IP Address of your Testing Server machine>.

	Add Port Number as 8080.

	Add Path as /hello.0.0.1/:









Configuring a sampler



            

            
        
    
        

                            
                    Adding a listener

                
            
            
                
Follow the given steps to add a listener:


	Right-click on Hello_World_Test_Plan and select Add | Listener | View Results Tree:





Adding a Listener


	Do nothing; leave all the fields as they are.

	Save the whole configuration by clicking on the Save button in the menu items or by clicking Ctrl + S.

	Copy the .jmx file from /opt/jmeter/bin/examples.

	Under your Maven project, create a folder named pt inside the src directory and add the .jmx file inside it.

	Upload the code to GitHub.





            

            
        
    
        

                            
                    The CD pipeline

                
            
            
                
We have all the required tools and the Docker image is ready. In this section, we will create a pipeline in Jenkins that will describe our CD process.



            

            
        
    
        

                            
                    Writing the Jenkinsfile for CD

                
            
            
                
We will build on the CI pipeline that we created earlier. Let's first revisit our CI pipeline, and then we will add some new stages to it as part of the CD process.



            

            
        
    
        

                            
                    Revisiting the pipeline code for CI

                
            
            
                
The following is the complete combined code that was part of the CI:

node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project
    -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "example-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
}



            

            
        
    
        

                            
                    Pipeline code to stash the build artifacts

                
            
            
                
The Jenkins pipeline uses a feature called stash to pass build artifacts across nodes. In the following step, we will stash a few build artifacts that we wish to pass to the docker_pt node, wherein we will perform our performance test:

stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx', name: 'binary'

In the preceding code:


	name: Name for the stash

	includes: Comma-separated files to include





            

            
        
    
        

                            
                    Spawning a Docker container – performance testing

                
            
            
                
First, let us create a pipeline code that will create a Docker container (Jenkins slave) using the performance-test-agent-0.1 Docker image for performance testing:

node('docker_pt') {
}

Where docker_pt is the label for the performance-test-agent-0.1 Docker template.

We would like to perform the following tasks on the docker_pt node:


	Start Tomcat.

	Deploy the build artifacts to Tomcat on the testing environment.

	Perform performance testing.

	Promote the build artifacts inside Artifactory.



All the preceding tasks are various stages of our CD pipeline. Let's write the pipeline code for each one of them.



            

            
        
    
        

                            
                    Pipeline code to start Apache Tomcat

                
            
            
                
The pipeline code to start Apache Tomcat on the performance testing agent is a simple shell script that will run the ./startup.sh script present inside the Tomcat installation directory:

sh '''cd /home/jenkins/tomcat/bin
./startup.sh''';

Wrap the preceding step inside a stage called Start Tomcat:

stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
}



            

            
        
    
        

                            
                    Pipeline code to deploy build artifacts

                
            
            
                
The pipeline code to deploy build artifacts happens in two steps. First, we will un-stash the binary package that we stashed from the previous node Docker block. Then, we deploy the un-stashed files into the webapps folder inside the Tomcat installation directory on our testing environment. The code is as follows:

unstash 'binary'
sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';

Wrap the preceding step inside a stage called Deploy:

stage ('Deploy){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
}



            

            
        
    
        

                            
                    Pipeline code to run performance testing

                
            
            
                
The pipeline code to execute the performance testing is a simple shell script that evokes the jmeter.sh script and passes the .jmx file to it. The test result is stored inside a .jtl file that is then archived. The code is as follows:

sh '''cd /opt/jmeter/bin/
./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l $WORKSPACE/test_report.jtl''';

step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])

The following table gives the description the preceding code snippet:




	
Code


	
Description





	
./jmeter.sh -n -t <path to the .jmx file> -l <path to save the .jtl file>


	
This is the jmeter command to execute the performance test plan (the .jmx files) and generate a test result (the .jtl files).





	
step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])

 


	
This line of code will archive all files with the .jtl extension.







 

Wrap the previous step inside a stage called Performance Testing:

stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}



            

            
        
    
        

                            
                    Pipeline code to promote build artifacts in Artifactory

                
            
            
                
The way we are going to promote build artifacts in Artifactory is by using the properties (key-value pair) feature. All builds that have passed performance testing will be applied a Performance-Tested=Yes tag. The code is as follows:

withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable: 'credentials')]) {
    sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/example-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
}

The following table gives the description the preceding code snippet:




	
Code


	
Description





	
withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable: 'credentials')]) {

}


	
We are using the withCredentials plugin inside Jenkins to pass Artifactory credentials to the curl command.





	
curl -u<username>:password -X PUT "<artifactory server URL>/api/storage/<artifactory repository name>?properties=key-value"


	
This is the curl command to update the property (key-value pair) on the build artifact present inside Artifactory. The curl command makes use of the REST API features of Artifactory.







 

Wrap the previous step inside a stage called Promote build in Artifactory:

stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId: 'artifactory-account', variable: 'credentials')]) {
        sh 'curl -u${credentials} -X PUT "http://172.17.8.108:8081/artifactory/api/storage/example-project/${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
    }
}



            

            
        
    
        

                            
                    Combined CD pipeline code

                
            
            
                
The following is the complete combined code that will run inside the docker_pt node:

node('docker_pt') {
  stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
  }
  stage ('Deploy '){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
  }
  stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
  }
  stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId:
      'artifactory-account', variable: 'credentials')]) {
        sh 'curl -u${credentials} -X PUT
        "http://172.17.8.108:8081/artifactory/api/storage/example-project/
        ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
      }
  }
}

Let us combine the preceding code with the pipeline code for CI to get the complete CD pipeline code, shown as follows:

node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "example-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
  stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
  name: 'binary'
}
node('docker_pt') {
  stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
  }
  stage ('Deploy '){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
  }
  stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
  }
  stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId:
      'artifactory-account', variable: 'credentials')]) {
        sh 'curl -u${credentials} -X PUT
        "http://172.17.8.108:8081/artifactory/api/storage/example-project/
        ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
      }
  }
}



            

            
        
    
        

                            
                    CD in action

                
            
            
                
Make some changes on your GitHub code or just trigger the Jenkins pipeline from the Jenkins dashboard:


	Log in to Jenkins, and from the Jenkins dashboard click on your Multibranch Pipeline. You should see something like the following:





Jenkins CD pipeline in action


	Log in to the Artifactory server and see if the code has been uploaded and promoted using the properties, shown as follows:





Build artifacts being promoted inside Artifactory


	Let us see our CD pipeline in Jenkins Blue Ocean. To do so, navigate to your Jenkins Multibranch CD pipeline (<Jenkins URL>/job/<Jenkins multibranch pipeline name>/).

	On the pipeline page, click on the Open Blue Ocean link available on the left-hand side menu.

	You will be taken to your Multibranch Pipeline page in Blue Ocean, as shown in the following screenshot:






	Click on the master branch to see its pipeline. You should see something like the following:







            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned how to create an end-to-end CD pipeline that gets triggered on a push event, performs builds, static code analysis, and integration testing, uploads the successfully tested binary artifact to Artifactory, deploys the code to the testing environment, performs some automated testing, and promotes the binaries in Artifactory.

The CD design discussed in the book can be modified to suit the needs of any type of project. The users just need to identify the right tools and configurations that can be used with Jenkins.

In the next chapter, we will learn about Continuous Deployment, how different it is from Continuous Delivery, and more.



            

            
        
    
        

                            
                    Continuous Deployment Using Jenkins

                
            
            
                
This chapter begins by defining and explaining Continuous Deployment. We will also try to differentiate between Continuous Deployment and Continuous Delivery. Continuous Deployment is a simple, tweaked version of the Continuous Delivery pipeline. Hence, we won't be seeing any major Jenkins configuration changes or any new tools.

The following topics will be covered in the chapter:


	Creating a production server

	Installing a Jenkins slave on a production server

	Creating a Jenkins Continuous Deployment pipeline

	Continuous Delivery in action





            

            
        
    
        

                            
                    What is Continuous Deployment?

                
            
            
                
The process of continuously deploying production-ready features into the production environment, or to the end user, is termed as Continuous Deployment.

Continuous Deployment in a holistic sense means, the process of making production-ready features go live instantly without any intervention. This includes building features in an agile manner, integrating and testing them continuously, and deploying them into the production environment without any breaks.

Continuous Deployment in a literal sense means, the task of deploying any given package continuously in any given environment. Therefore, the task of deploying packages into a testing server and a production server conveys the literal meaning of Continuous Deployment.



            

            
        
    
        

                            
                    How Continuous Deployment is different from Continuous Delivery

                
            
            
                
First, the features are developed, and then they go through a cycle, or Continuous Integration, or through testing of all kinds. Anything that passes the various tests is considered as a production-ready feature. These production-ready features are then labeled in Artifactory (not shown in this book) or kept separately to segregate them from non-production ready features.

This is similar to the manufacturing production line. The raw product goes through phases of modifications and testing. Finally, the finished product is packaged and stored in the warehouses. From the warehouses, depending on the orders, it gets shipped to various places. The product doesn't get shipped immediately after it's packaged.

We can safely call this practice Continuous Delivery. The following illustration depicts the Continuous Delivery life cycle:



Continuous Delivery pipeline

On the other hand, a Continuous Deployment life cycle looks somewhat as shown in the following illustration. The deployment phase is immediate without any break. The production-ready features are immediately deployed into production:



Continuous Deployment pipeline



            

            
        
    
        

                            
                    Who needs Continuous Deployment?

                
            
            
                
One might have the following questions rolling in their minds: how can I achieve Continuous Deployment in my organization, what could be the challenges, how much testing do I need to incorporate and automate? The list goes on.

However, technical challenges are one thing. What's more important to decide is whether we really need it. Do we really need Continuous Deployment?

The answer is, not always and not in every case. Since, from our definition of Continuous Deployment and our understanding from the previous topic, production-ready features get deployed instantly into the production environments.

In many organizations, it's the business that decides whether or not to make a feature live, or when to make a feature live. Therefore, think of Continuous Deployment as an option, and not a compulsion.

On the other hand, Continuous Delivery; which means creating production-ready features in a continuous way, should be the motto for any organization.



            

            
        
    
        

                            
                    Creating a production server

                
            
            
                
In the following section, let us create a production server that will host our hello world application. We will later extend our Continuous Delivery pipeline to automatically deploy fully testing binary artifacts on our production server.

In the following example, our production server is a simple Tomcat server. Let us create one using Vagrant. 



            

            
        
    
        

                            
                    Installing Vagrant

                
            
            
                
In this section, we will install Vagrant on Ubuntu. Make sure you perform these steps as a root user or with an account having root privileges (sudo access):


	Open up a Terminal and type the following command to download Vagrant:




wget https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5_x86_64.deb

Or, you can also download the latest Vagrant package from the Vagrant website at https://www.vagrantup.com/downloads.html:





Vagrant download webpage

Use the latest version of Vagrant and VirtualBox available. Using an older version of Vagrant with a newer version of VirtualBox or vice versa may result in issues while creating VMs.


	Once the download is complete, you should see a .deb file.

	Execute the following commands to install Vagrant using the downloaded package file. You may be prompted to provide a password:




sudo dpkg -i vagrant_1.8.5_x86_64.deb

sudo apt-get install -f



	Once the installation is complete, check the installed version of Vagrant by executing the following command:



vagrant --version


	You should see a similar output:




Vagrant 1.8.5




            

            
        
    
        

                            
                    Installing VirtualBox

                
            
            
                
Vagrant needs Oracle VirtualBox to create virtual machines. However, it's not limited to just Oracle VirtualBox, you can use VMware too. Follow the given steps to install VirtualBox on your machine:


To run Vagrant with either VMware or AWS, visit https://www.vagrantup.com/docs/getting-started/providers.html.




	Add the following line to your sources.list file present inside the /etc/apt directory:




deb http://download.virtualbox.org/virtualbox/debian \
xenial contrib



According to your Ubuntu distribution, replace xenial with vivid, utopic, trusty, raring, quantal, precise, lucid, jessie, wheezy, or squeeze.




	Download and register the keys using the following commands. You should expect a output: OK for both the commands.



wget -q \
https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | 
sudo apt-key add -

wget -q \
https://www.virtualbox.org/download/oracle_vbox.asc -O- | 
sudo apt-key add –




	To install VirtualBox, execute the following commands:



sudo apt-get update

sudo apt-get install virtualbox-5.1


	Execute the following command to see the installed VirtualBox version:



VBoxManage –-version


	You should see a similar output:



5.1.6r110634

Ubuntu/Debian users might want to install the dkms package to ensure that the VirtualBox host kernel modules (vboxdrv, vboxnetflt, and vboxnetadp) are properly updated if the Linux kernel version changes during the next apt-get upgrade. For Debian, it is available in Lenny backports and in the normal repository for Squeeze and later. The dkms package can be installed through the Synaptic package manager or through the following command:
sudo apt-get install dkms



            

            
        
    
        

                            
                    Creating a VM using Vagrant

                
            
            
                
In the following section, we will spawn up a VM that will act as our production server using Vagrant and VirtualBox.



            

            
        
    
        

                            
                    Creating a Vagrantfile

                
            
            
                
We will create a Vagrantfile to describe our VM. Follow the given steps:


	Create a new file named Vagrantfile using the following command:



sudo nano Vagrantfile


	Paste the following code into the file:



# -*- mode: ruby -*-
# vi: set ft=ruby :
Vagrant.configure(2) do |config|
config.vm.box = "ubuntu/xenial64"

config.vm.define :node1 do |node1_config|
node1_config.vm.network "private_network", ip:"192.168.56.31"
node1_config.vm.provider :virtualbox do |vb|
vb.customize ["modifyvm", :id, "--memory", "2048"]
vb.customize ["modifyvm", :id, "--cpus", "2"]
end
end
end

Choose the IP address, memory, and number of CPUs accordingly.


	Type Ctrl + X, and then Y to save the file.





            

            
        
    
        

                            
                    Spawning a VM using Vagrant

                
            
            
                
In this section, we will create a VM using the Vagrantfile that we created just now:


	Type the following command to spawn a VM using the preceding Vagrantfile:



       vagrant up node1


	It will take a while for Vagrant to bring up the machine. Once it is done, execute the following command to log in to the new VM:



       vagrant ssh node1


The output is as follows:

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-83-generic x86_64)

 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/advantage

  Get cloud support with Ubuntu Advantage Cloud Guest:
    http://www.ubuntu.com/business/services/cloud
0 packages can be updated.
0 updates are security updates.

ubuntu@ubuntu-xenial:~$



	We are now inside the VM. We will upgrade our VM with all the necessary applications that we need to run our application:

	Java JDK (latest)

	Apache Tomcat (8.5)

	A user account to log in to the Docker container

	Open SSH daemon—sshd (to accept SSH connections)

	Curl





	Now, install all the required applications as you would do on any normal Ubuntu machine. Let's begin with creating a jenkins user:

	Execute the following command and follow the user creation steps:








adduser jenkins


The output is as follows:


Adding user `jenkins' ...
Adding new group `jenkins' (1001) ...
Adding new user `jenkins' (1001) with group `jenkins' ...
Creating home directory `/home/jenkins' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the default
        Full Name []: Nikhil Pathania
        Room Number []:
        Work Phone []:
        Home Phone []:
        Other []:
Is the information correct? [Y/n] Y



	

	Check the new user using the switch user command:








su jenkins



	Switch back to the root user by typing exit.

	Next, we will install the SSH server. Execute the following command in sequence (ignore if the openssh-server application and the /var/run/sshd directory path already exist):




sudo apt-get update

sudo apt-get install openssh-server

sudo mkdir /var/run/sshd



	Follow the given steps to install Java:

	Update the package index:








sudo apt-get update



	

	Next, install Java. The following command will install the JRE:








sudo apt-get install default-jre



	The best way to install Tomcat 8.5 is to download the latest binary release, then configure it manually:

	Move to the /tmp directory and download Apache Tomcat 8.5 using the following commands:








cd /tmp

wget https://archive.apache.org/dist/tomcat/tomcat-8/v8.5.11/bin/apache-tomcat-8.5.11-deployer.tar.gz



	

	We will install Tomcat inside the $HOME directory. To do so, create a tomcat directory inside $HOME:








mkdir $HOME/tomcat



	

	Then, extract the archive to it:








sudo tar xzvf apache-tomcat-8*tar.gz \
-C $HOME/tomcat --strip-components=1



	Exit the VM by typing exit in the Terminal.





            

            
        
    
        

                            
                    Adding production server credentials inside Jenkins

                
            
            
                
In order to make Jenkins communicate with the production server, we need to add the account credentials inside Jenkins.

We will do this using the Jenkins Credentials plugin. If you have followed the Jenkins setup wizard (discussed at the beginning of the chapter), you will find the Credentials feature on the Jenkins dashboard (see the left-hand side menu):

Follow the given steps:


	From the Jenkins dashboard, click on Credentials | System | Global credentials (unrestricted).

	On the Global credentials (unrestricted) page, from the left-hand side menu, click on the Add Credentials link.

	You will be presented with a bunch of fields to configure.

	Choose Username with password for the Kind field.

	Choose Global (Jenkins, nodes, items, all child items, etc) for the Scope field.

	Add a username under the Username field.

	Add a password under the Password field.

	Give a unique ID to your credentials by typing a string under the ID field.

	Add a meaningful description under the Description field.

	Click on the Save button once done:





Adding credentials inside Jenkins



            

            
        
    
        

                            
                    Installing a Jenkins slave on a production server

                
            
            
                
In this section, we will install a Jenkins slave on the production server. This will allow us to perform deployment on the production server. Execute the following steps:


	From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

	Once on the Node Manager page, from the left-hand side menu click on New Node.

	Give your new Jenkins slave node a name, as shown:





Adding a new Jenkins slave


	On the resultant page, you will be presented with a large number of options. Let us see them one by one.

	For the Remote root directory field, add the value /home/jenkins.

	For the Labels field, add the value production.

	For the Usage field, choose Use this node as much as possible.

	For the Launch method field, choose the option Launch slave agents via SSH.

	Under the Host field, add the IP address of the production server.

	Under the Credentials field, choose the credentials that we created in the previous section.




	Leave the rest of the options as they are.

	Once done, click on the Save button:





Configuring the Jenkins slave



            

            
        
    
        

                            
                    Creating a Jenkins Continuous Deployment pipeline

                
            
            
                
In the following section, we will extend our Continuous Delivery pipeline to perform deployment.



            

            
        
    
        

                            
                    A revisit to the pipeline code for CD

                
            
            
                
The following is the complete combined code that was part of the CD:

node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project
    -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
           "pattern": "target/hello-0.0.1.war",
           "target": "example-project/${BUILD_NUMBER}/",
           "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
  stash includes:
   'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
  name: 'binary'
}
node('docker_pt') {
  stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
  }
  stage ('Deploy '){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
  }
  stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
  }
  stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId:
     'artifactory-account', variable: 'credentials')]) {
      sh 'curl -u${credentials} -X PUT
      "http://192.168.56.102:8081/artifactory/api/storage/example-project/
      ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
    }
  }
}



            

            
        
    
        

                            
                    Pipeline code for a production Jenkins slave

                
            
            
                
First, let us create a node block for our Jenkins slave, production-server:

node('production') {
}

Where production is the label for the Jenkins slave node, production-server.

We would like to deploy the build artifacts to Tomcat on the production server on the production node.

Let's write the pipeline code for it.



            

            
        
    
        

                            
                    Pipeline code to download binaries from Artifactory

                
            
            
                
To download the build artifacts from Artifactory, we will use the File Specs. The File Specs code looks as follows:

"files": [
    {
      "pattern": "[Mandatory]",
      "target": "[Mandatory]",
      "props": "[Optional]",
      "recursive": "[Optional, Default: 'true']",
      "flat" : "[Optional, Default: 'true']",
      "regexp": "[Optional, Default: 'false']"
    }
  ]

The following table describes the various parameters used:




	
Parameters


	
Description





	
pattern


	
[Mandatory]

Specifies the local filesystem path to artifacts that should be uploaded to Artifactory. You can specify multiple artifacts by using wildcards or a regular expression as designated by the regexp property.

If you use a regexp, you need to escape any reserved characters (such as ., ?, and so on) used in the expression using a backslash \.

Since version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory plugin, the pattern format has been simplified and uses the same file separator / for all operating systems, including Windows. 





	
target


	
[Mandatory]

Specifies the target path in Artifactory in the following format: [repository_name]/[repository_path]

If the pattern ends with a slash, for example, repo-name/a/b/, then b is assumed to be a folder in Artifactory and the files are uploaded into it. In the case of repo-name/a/b, the uploaded file is renamed to b in Artifactory.

For flexibility in specifying the upload path, you can include placeholders in the form of {1}, {2}, {3}... which are replaced by corresponding tokens in the source path that are enclosed in parentheses. For more details, please refer to the Using Placeholders document at https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders.





	
props


	
[Optional] 

List of key=value pairs separated by a semi-colon (;) to be attached as properties to the uploaded properties. If any key can take several values, then each value is separated by a comma (,). For example, key1=value1;key2=value21,value22;key3=value3.





	
flat


	
[Default: true]

If true, artifacts are uploaded to the exact target path specified and their hierarchy in the source filesystem is ignored.

If false, artifacts are uploaded to the target path while maintaining their filesystem hierarchy.





	
recursive


	
[Default: true]

If true, artifacts are also collected from subdirectories of the source directory for upload.

If false, only artifacts specifically in the source directory are uploaded.





	
regexp


	
[Default: false]

If true, the command will interpret the pattern property, which describes the local filesystem path of artifacts to upload, as a regular expression.

If false, the command will interpret the pattern property as a wildcard expression.







 

The following is the File Specs code that we will use in our pipeline:

 

def server = Artifactory.server 'Default Artifactory Server'
def downloadSpec = """{
  "files": [
    {
        "pattern": "example-project/$BUILD_NUMBER/*.zip",
        "target": "/home/jenkins/tomcat/webapps/"
        "props": "Performance-Tested=Yes;Integration-Tested=Yes",
    }
  ]
}""
server.download(downloadSpec)

Wrap the preceding step inside a stage called Deploy to Prod:

 

stage ('Deploy to Prod'){
  def server = Artifactory.server 'Default Artifactory Server'
  def downloadSpec = """{
    "files": [
      {
        "pattern": "example-project/$BUILD_NUMBER/*.zip",
        "target": "/home/jenkins/tomcat/webapps/"
        "props": "Performance-Tested=Yes;Integration-Tested=Yes",
      }
    ]
  }""
server.download(downloadSpec)
}

Wrap the Deploy to Prod stage inside the production node block:

node ('production') {
  stage ('Deploy to Prod'){
    def server = Artifactory.server 'Default Artifactory Server'
    def downloadSpec = """{
      "files": [
        {
          "pattern": "example-project/$BUILD_NUMBER/*.zip",
          "target": "/home/jenkins/tomcat/webapps/"
          "props": "Performance-Tested=Yes;Integration-Tested=Yes",
        }
      ]
    }""
    server.download(downloadSpec)
  }
}



            

            
        
    
        

                            
                    Combined Continuous Deployment pipeline code

                
            
            
                
The following is the combined Continuous Deployment pipeline code:

node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project
    -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server 'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
          "pattern": "target/hello-0.0.1.war",
          "target": "example-project/${BUILD_NUMBER}/",
          "props": "Integration-Tested=Yes;Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
  stash includes:
   'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
  name: 'binary'
}
node('docker_pt') {
  stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
  }
  stage ('Deploy '){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
  }
  stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
    $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
  }
  stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId:
     'artifactory-account', variable: 'credentials')]) {
      sh 'curl -u${credentials} -X PUT
      "http://192.168.56.102:8081/artifactory/api/storage/example-project/
      ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
    }
  }
}
node ('production') {
  stage ('Deploy to Prod'){
    def server = Artifactory.server 'Default Artifactory Server'
    def downloadSpec = """{
      "files": [
        {
          "pattern": "example-project/$BUILD_NUMBER/*.zip",
          "target": "/home/jenkins/tomcat/webapps/"
          "props": "Performance-Tested=Yes;Integration-Tested=Yes",
        }
      ]
    }""
    server.download(downloadSpec)
  }
}



            

            
        
    
        

                            
                    Update the Jenkinsfile

                
            
            
                
A Jenkins Multibranch CD Pipeline utilizes a Jenkinsfile. In this section, we will update our existing Jenkinsfile. Follow the given steps:


	Log in to your GitHub account.

	Navigate to the forked repository.

	Once on the repository page, click on the Jenkinsfile. Next, on the resultant page click on the Edit button to edit your Jenkinsfile.

	Replace the existing content with the following code:



node('docker') {
  stage('Poll') {
    checkout scm
  }
  stage('Build & Unit test'){
    sh 'mvn clean verify -DskipITs=true';
    junit '**/target/surefire-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage('Static Code Analysis'){
    sh 'mvn clean verify sonar:sonar
    -Dsonar.projectName=example-project
    -Dsonar.projectKey=example-project
    -Dsonar.projectVersion=$BUILD_NUMBER';
  }
  stage ('Integration Test'){
    sh 'mvn clean verify -Dsurefire.skip=true';
    junit '**/target/failsafe-reports/TEST-*.xml'
    archive 'target/*.jar'
  }
  stage ('Publish'){
    def server = Artifactory.server
      'Default Artifactory Server'
    def uploadSpec = """{
      "files": [
        {
           "pattern": "target/hello-0.0.1.war",
           "target": "example-project/${BUILD_NUMBER}/",
           "props": "Integration-Tested=Yes;
             Performance-Tested=No"
        }
      ]
    }"""
    server.upload(uploadSpec)
  }
  stash includes:
   'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
  name: 'binary'
}
node('docker_pt') {
  stage ('Start Tomcat'){
    sh '''cd /home/jenkins/tomcat/bin
    ./startup.sh''';
  }
  stage ('Deploy '){
    unstash 'binary'
    sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
  }
  stage ('Performance Testing'){
    sh '''cd /opt/jmeter/bin/
    ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx
    -l $WORKSPACE/test_report.jtl''';
    step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
  }
  stage ('Promote build in Artifactory'){
    withCredentials([usernameColonPassword(credentialsId:
     'artifactory-account', variable: 'credentials')]) {
      sh 'curl -u${credentials} -X PUT
      "http://192.168.56.102:8081/artifactory/api/storage/
       example-project/${BUILD_NUMBER}/hello-0.0.1.war?
       properties=Performance-Tested=Yes"';
    }
  }
}
node ('production') {
  stage ('Deploy to Prod'){
    def server = Artifactory.server 
     'Default Artifactory Server'
    def downloadSpec = """{
      "files": [
        {
          "pattern": "example-project/$BUILD_NUMBER/*.zip",
          "target": "/home/jenkins/tomcat/webapps/"
          "props": "Performance-Tested=Yes;
             Integration-Tested=Yes",
        }
      ]
    }""
    server.download(downloadSpec)
  }
}


	Once done, Commit the new file by adding a meaningful comment.





            

            
        
    
        

                            
                    Continuous Delivery in action

                
            
            
                
Make some changes to your GitHub code or just trigger the Jenkins pipeline from the Jenkins dashboard.

Log in to Jenkins, and from the Jenkins dashboard click on your Multibranch Pipeline. You should see something similar to the following screenshot:



Jenkins Continuous Deployment pipeline in action



            

            
        
    
        

                            
                    Summary

                
            
            
                
This marks the end of Continuous Deployment. In this chapter, we learned how to achieve Continuous Deployment using Jenkins. Also, I hope the confusion between Continuous Delivery and Continuous Deployment is clear. There were no major setups or configurations in the chapter, as all the necessary things were achieved in the previous chapters while implementing Continuous Integration and Continuous Delivery.

I really hope this book serves as a means for you to go out there and experiment more with Jenkins.

Until next time, cheers!



            

            
        
    
        

                            
                    Supporting Tools and Installation Guide

                
            
            
                
This chapter will take you through the steps required to make your Jenkins server accessible over the internet. We will also cover the steps required for installing Git on Windows and Linux.



            

            
        
    
        

                            
                    Exposing your localhost server to the internet

                
            
            
                
You are required to create Webhooks on GitHub in order to trigger a pipeline in Jenkins. Also, for the GitHub Webhooks to work, it is important that the Jenkins server is accessible over the internet. 

While practicing the examples described in this book, you may feel a need to make your Jenkins server accessible over the internet, which is installed in your sandbox environment. 

In the following section, we will use a tool named ngrok to achieve this feat. Perform the following steps to make your Jenkins server accessible over the internet:


	Log in to the Jenkins server machine (standalone Windows/Linux machine). If you are running Jenkins using Docker, log in to your Docker host machine (most probably, Linux).

	Download the ngrok application from https://ngrok.com/download.

	What you download is a ZIP package. Extract it using the unzip command (to install the ZIP utility on Ubuntu, execute sudo apt-get install zip).

	Run the following command to unzip the ngrok ZIP package:



unzip /path/to/ngrok.zip



	To run ngrok on Linux, execute the following command:



./ngrok http 8080

Alternatively, run the following command:

nohup ./ngrok http 8080 &



	To run ngrok on Windows, execute the following command:



ngrok.exe http 8080



	You should see a similar output, as shown as follows; the highlighted text is the public URL of localhost:8080: 



ngrok by @inconshreveable (Ctrl+C to quit)
Session Status online
Version 2.2.8
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://8bd4ecd3.ngrok.io -> localhost:8080
Forwarding https://8bd4ecd3.ngrok.io -> localhost:8080
Connections ttl opn rt1 rt5 p50 p90
0 0 0.00 0.00 0.00 0.00


	Copy the preceding public URL.

	Log in to your Jenkins server. From the Jenkins dashboard, navigate to Manage Jenkins | Configure System.

	On the Jenkins configuration page, scroll all the way down to the Jenkins Location section and add the public URL generated using ngrok inside the Jenkins URL field.

	Click on the Save button to save the settings.

	You will now be able to access your Jenkins server using the public URL over the internet.

	While creating Webhooks on GitHub, use the public URL generated using ngrok.





            

            
        
    
        

                            
                    Installing Git on Windows/Linux 

                
            
            
                
The steps mentioned in the following sections are required to install Git on Windows and Linux:



            

            
        
    
        

                            
                    Installing Git on Windows

                
            
            
                
To install Git on Windows, follow these steps:


	You can download Git from https://git-scm.com/downloads: 






	Click on the downloaded executable and proceed with the installation steps.

	Accept the license agreement and click on Next.



 


	Select all the components and click on Next, as shown in the following screenshot:






	Choose the default editor used by Git, and click on Next. 

	Adjust your path environment by selecting the appropriate environment and click on Next, as shown in the following screenshot:






	Choose Use OpenSSH as the SSH executable and click on Next:






	Select Use the OenSSL library as the HTTPS transport backend and click on Next:






	Choose the line ending conversion that suits you the best and click on Next.

	Choose the terminal emulator and click on Next. 

	Select the Enable file system caching and Enable Git Credentials Manager options, as shown in the following screenshot, and click on Install:






	The Git installation should begin now. Once it's complete, click on Finish.





            

            
        
    
        

                            
                    Installing Git on Linux

                
            
            
                
Perform the following steps to install Git on Linux:


	Installing Git on Linux is simple. In this section, we will install Git on Ubuntu (16.04.x).

	Log in to your Ubuntu machine. Ensure that you have admin privileges. 

	Open a terminal in case you are using the GUI.

	Execute the following commands in sequence:



sudo apt-get update

sudo apt-get install git


	Execute the following command to check the Git installation:



git --version


	You should get the following result:



git version 2.15.1.windows.2





            

            
        
    assets/1e48e17b-d7e3-436f-9f70-3a42b1ff01fc.png
Review Release to Customer

Integrate & Test

() o 28

Develop Feature
Starta project
Define high level Requirement





assets/a53d3e48-1049-44b7-9afd-f6af7bddaf20.png
File Edit Search Run Options Help

Deal°du

XA |+ =% >» 3

7 a Hello_World Test_Plan

Thread Group

thread Group|

] workBench

Name: [user visiting the hello world page

Comments:
Action to be taken after a Sampler error

® Continue O Start Next Thread Loop () Stop Thread O Stop Test () Stop Test Now

Thread Properties
Number of Threads (users): |1 |

Ramp-Up Period (in seconds): [1

Loop Count: [] Forever |

[ Delay Thread creation until needed

[] Scheduler






assets/1f4bfdbd-03f3-4e18-856d-46d24a2b123c.png
ubuntu@node4:~$ sudo docker images

REPOSITORY TAG  IMAGE ID CREATED SIZE
maven-build-slave-0.1 latest 317fb6ec990f About a minute ago 298 MB
ubuntu latest f49eec8960le 3 weeks ago 129 MB
hello-world latest 48b5124b2768 4 weeks ago 1.84 kB

ubuntu@nodea:~$ I





assets/61a44fa4-2629-47e3-b837-e7f5a459699c.png
7% 8 example-project
# Issues Measures Code Dashboards v

Al Reliability  Security  Maintainability

Unit Test Errors.

2

Unit Tests

Unit Test Failures
Skipped Unit Tests
Unit Test Success (%)

Unit Test Duration

1000%





assets/5948748e-4024-4099-9db2-7be2cb9e4899.png
Updates  Avallable  Installed  Advanced

HTTP Proxy Configuration

Server
Port
User name

Password





assets/d1d71555-36df-4e7a-b61e-b3a1971774e6.png
Build Configuration

Mode by Jenkinsfile

SerptPath - jenginstie






assets/e1a18e07-2033-48e3-b60f-2b5136a9ec61.png
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space  Response Time

B e Linu amass) Insync 519GB Qos 519GB oms.

Data obtained 15 min 15 min 15 min 15 min 15 min 15 min






assets/3549184c-d257-4359-b6ad-1f12a6dbc9f9.png
New personal access token

Personal access tokens function like ordinary OAuth access tokens. They can
HTTPS, or can be used to authenticate to the APl over Basic Authentication.

Token description
blue_ocean_jenkins.

What's this token for?





assets/a72f15ab-db44-47c7-ae53-2dd78dc4cede.png
Getting Started

Organization and Administration
Build Features

Build Tools.

Build Analysis and Reporting
Pipelines and Continuous Delivery
Source Code Management
Distributed Builds

User Management and Security
Notifications and Publishing

Jenkins 2.60.2

All | None | Suggested Selected (20/57)

Note that the fulllist of plugins is not shown here. Additional plugins can be installed in the Plugin Manager
once the initial setup is complete. See the Wiki for more information.

Organization and Administration (2/3)

I Dashboard View 7 94

Jenkins view that shows various cuts of build information via configured portlets.

W Folders Plugin 14

This plugin allows users to create *folders" to organize jobs. Users can define custom taxonomies (like by
project type, organization type etc). Folders are nestable and you can define views within folders. Maintained
by CloudBees, Inc.

¥ OWASP Markup Formatter Plugin * 34
Uses policy definitions to allow limited HTML markup in user-submitted text.

Build Features (4/10)

I build-name-setter 7 64

¥ build timeout plugin * 154

Aborts a build if ifs taking too long

I™ Config File Provider Plugin » 54

Ability to provide configuration files (e.g. settings.xml for maven, XML, groovy, custom files,..) loaded through
the Ul which will be copied to the job workspace






assets/8352c68e-83e1-49b8-b609-bc8357372200.png
Branch Sources

GitHub.

Credentials - nihiipathania@hotmail com/=+ J o Add~

Owner nikhilpathania

RepOSIONY  heyio worlg-greeting





assets/5c249a7f-420a-40f2-ad57-94182360e9f5.png
kl=la] =

[ Welome tongin

< C | A Notsecure | hur75//192.168.56.104 *

Apps. »

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thark you for using nginx.






assets/858f6f25-7150-457a-a1ca-8c8718c4196c.png
+/ ienkins_multibranch_pipeline_demo 4 Changes Tests

Branch: master @ 55 No changes
Commit: 07e52ze ® 21 hours ago Started by user nikhil pathania

Results

Steps Results D g

4| > **/target/surefire-reports/TEST-*.xml

2 > target/*jar

Avtifacts

<1s

<1s





assets/32090f0e-7c8f-420a-b026-58cb8c3ddaa3.png
O Choose a repository
Loaded 3 repositories.

[ search..

| hello-world-example:

‘ Projectlenkins

‘ simple-maven-project-with-tests






assets/ce6a95c9-0f54-4ef8-8e00-42a521ea5d82.png
Downloads

@ Macosx Windows

A Linux/Unix

Older relezses are available and the Git source
repository is on GitHub.

F Latest source Release

2.15.1

(2017-11-28)

Download

5.1 for Windows






assets/9fdce913-e10c-4b74-b977-22b2917eeae0.png
O Create a single Pipeline or discover all Pipelines?

New Pipeline — Recommended
Createa

ipeline from a single repository.

Auto-discover Jenkinsfiles — Advanced

Create Pipelines for any repository in this
organization that contain a Jenkinsfile.






assets/8624581a-3562-4e27-89cb-538d2bfb5536.png
Preventive Node Monitoring
P Archiecture
W Clock Difference

' Free Disk Space

Free Space Threshold 15

' Free Swap Space
' Free Temp Space
Free Space Threshold | g

' Response Time

El -

® ®® 6

® ®

®





assets/7e5005a6-ceda-46d4-a968-edb72ea1ff52.png
Getting Started

Create First Admin User

Username: developer

Password

Confirm password

Full name: nikhil pathania

Jenkin 2.60.2 Continue as admin  CEYEUETGUTENY





assets/04880dcc-7390-4e9e-850a-b00ff65e51ee.png
E jenkins_multibranch_pipeline_demo

AMaven project that just has some test failures (and skips) at random, to demonstrate
result reporting.

Branches (1) Pul Requests (0)

S W Name | LastSuccess LastFailure Last Duration

Q@ 0 master  7sec-st WA 64sec )





assets/c6652c5e-c2e6-4b1c-af77-91e065509163.jpg





assets/1191e0c3-04e5-4126-bb7c-a0bbdcaf3038.png
Branches (1) Pul Requests (0)

W Name | Last Success Last Failure Last Duration Fav

e @ ‘master 6 days 23 hr - £10 NA 1 min 3 sec [3R%d





assets/407bb3e5-3b11-4c33-8364-c5f27b796175.png
GitHub Servers

GitHub Server

Name default_github_account
APIURL hitps:/api.github.com
S

Manage hooks

Test connection

® ® ® ® ® ®





assets/e1607e85-369d-418e-94a3-399cd3dc06fc.png
Name of your Maven installation

Maven

Maven installations Maven

Name | o
' Install automatically

Install from Apache
Version [35.0

Add Installer

Delete Maven

Delete Installer

Add Maven

List of Maven instllstons on this sstem

Maven version





assets/8351e74a-5ba7-49a7-9fd2-9f856ee465af.png
Test URL

https://www google. com

Success

Validate Proxy





assets/069781a4-5c14-4f7d-bbf0-1e981654cee5.png
Artifact Repository Browser

Tree Simple Q v & hello-0.0.1.war
~v © example-project General Effective Permissio... Properties
v B 10 .
5 Properties
> 8 hello0.0.1.war
Page | 1/of 1

Property Value(s)
Performance-Tested Yes
build.timestamp 1489261456603
build.name jenkins_multibranch_pipeline_demo
build.number 10

Integration-Tested ~ Yes





assets/be84fa4e-a90c-434f-9438-842c06375f60.png
Jenkins Properties (Local Computer)

Genersl LogOn Recovery Dependencies.

‘Selectthe computer' response f his servics als. Help me set up recovery
actions.

First failure: Restart the Service: v
‘Second faiure: Restart the Computer v
‘Subsequent failures: Run a Program ~
Remisicam e [ dan

Restart service ater:

&bl 3ciors Tor S35 Wil 87575 | Restart Computer Options.

Run program
Frogram

—
e —

[ Append fai count to end of command e (fail=%1%)

o [l [






assets/a78bf775-0f8f-459c-8aa8-3cdc49ce6843.png
Updates  Available  Installed  Advanced

Install | Name
NET Development

Agent Launchers and Controllers
Android Development

[~ Android Emulator Plugin

Android Lint Plugin
) Parses Android Lint output and displays
the results for analysis.

Android Signing Plugin

ins build ste

215

25





assets/357ee6b7-7641-4d0a-93d7-88d28c7a61e5.png





assets/fa494748-28b3-46bb-9054-1aaa218a2273.png
Docker
Name Default Docker Host ®
Docker URL 1op//172.17.8.107:4243/ @
Docker API Version °
Credentials none - :I o5 Add -

Gonnection Timeout | °
Read Tmeout | °
Version - 1.13.1, API Version = 126 | 1.

ContanerCap | 400 e

Images

Add Docker Template  +

List of Images 0 be launched as siaves

Delete cloud





assets/74b68bd5-87e1-42ee-b84a-2b004a2a1197.png
ubuntu@noded:~$ sudo docker commit 81a5d12f6c4a maven-build-slave-0.1
sha256:317fb6ec990f235fc2f2f42beab6f73e44fbabd2debbad479858386c569a7c7d
ubuntu@noded:~$ i





assets/cd5132ff-23dc-413c-8a2c-7022506f3884.png
O JFrog Artifactory

Local Repositories

@ New
1 Repository
Repository Key Type

S Generic





assets/e0dc9e79-b757-4d80-ba9a-a2dde9275ed9.png
‘Search plugins

List all plugins available for Jenkins

—‘ Filter: [ Pipeline Maven Integration

Updates  Available  Installed  Advanced
Install | Name Version
Pipeline Maven Integration Plugin

“This plugin provides integration with Pipeline, configures

‘maven environment to use within a pipeline job by calling ~ 2.5.2
sh mwn or bat mvn. The selected maven installation will be
configured and prepended to the path

Update information obtained: 1 hr 30 min ago SIS

Install selected plugin





assets/30cbbc4e-258f-4614-90b7-86239c75ad5d.png
Updates  Available  Installed  Advanced

Instal Name | Version  Installed
Ant Plugin
[a 17 15
Adds Apache Ant support to Jenkins
Blue Ocean

Blue Ocean s a new project that rethinks the
user experience of Jenkins. Designed fiom the

(m) ground up for Jenkins Pipeline and compatible 121 117
with Freestyle jobs, Blue Ocean reduces
clutter and increases clarity for every member
of your team.

Blue Ocean Pipeline Editor





assets/d63005f3-1445-4c3b-b04f-37e58c628235.png
Conditions

Only project measures are checked against thresholds. Sub-projects, directories and files are ignored.

METRIC OVER LEAKPERIOD  OPERATOR WARNING ~ERROR

Major Issues O gresterthan - 1 5 v






assets/276fc79d-0046-4daf-b2c4-5d08c7251ee3.png
Stage Logs (Static Code Analysis)

[INFO] Waiting for report processing to complete...
[INFO] Quality gate status: ERROR

[ERROR] Major Issues: 24 > 3

[ERROR] [BUILD BREAKER] Project did not meet 1 conditions
[zFo0]
[INFO] BUILD FAILURE
[zFo0]
[INFO] Total time: 21.349 5

[INFO] Finished at: 2017-12-03T16:
[INFO] Final Memory: 3si/430M
[zFo0]
[ERROR] Failed to execute goal org.sonarsource. scanner.maven: sonar-maven-plugis

.4.0.905:sonar (default-c
15) on project hello: Project does not pass the quality gate. -> [Help 1]

[ERROR]

[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.

[ERROR] Re-run Maven using the X switch to enable full debug logging.

[ERROR]

[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException :|






assets/dc71186f-4385-417c-a19b-c75ca5c3ba4d.png
GitHub Servers.

GitHub Server

Name default_github_account
APIURL hitps:/api.github.com
Credentials

GitHub (nttps://api.github.com) auto generated token j o Add v
Credentials verified for user nikhilpathania, rate imit: 4997 gt connectic

Manage hooks

® ® ® ® ® ®





assets/74eda867-bec6-4849-989a-41596806e3f2.png
Overview

This Snippet
used to define
it, click Gener
would call the st
statement into
parameters are
values )

Steps.
‘Sample Step

Click to generate pipeline code

List of Steps Step configuration

nerator will help you leam the Pipeline Script code
ious steps. Pick a step you are interested in from th

Pipeline Script, and you will see a Pipeline Scri

p vith that configuration. You may copy and paste
r script, or pick up just the options you care about
ptional and can be omitted in your script, leaving ther

archiveArifacts: Archive the artifacts

ich can be.
list, configure
statement that
le whole
lost
at default

Files to archive

® &g

Advanced...

—

‘Generated pipeline code





assets/00f3b49d-a8dc-401f-8462-5540e3faed4e.png
Continuous Delivery

Continuous Testing

business requires |

Descrete Deployment





assets/542c5aa3-1b45-4499-a082-36084c5439b1.png
Steps.

Sample Step g hell Script

‘Shell Script

‘mun -Dmaven test failure ignore clean package

Advanced...

‘sh"mvn -Dmaven test failure ignore clean package”






assets/276529b2-d674-4ed9-a73f-68b62a1e3197.png
Webhooks Add webhook

Webhooks allow external services to be notified when certain events happen within your repository.
When the specified events happen, we'll send a POST request to each of the URLS you provide.
Learn more in our Webhooks Guide.

 ttps//wsssmnnssnnss/github-webhook (pull request and push) Edit | Delete





assets/7b1dafe8-34ef-48f6-a714-94b9fde90f54.png
Save In:

(1 examples

Disp

[} csvsample.jmx

[} csvsample_a

ns.csv

[} csvsample_user.csv

[} PerformanceTestPlanMemoryThread.jmx

File Name:  [Hello_World_Test_Planjm{

Files of Type: [All Files [N

save

cancel






assets/be77336b-9115-4a4a-8d4e-17c57c49749a.png
O Where do you store your code?

‘ Q Git ‘ ‘ ) Github






assets/45f426a5-bccc-4b67-9bef-dc4a9065305e.png
Options
This property type is not supported

Child steps

Shell Script





assets/6af0a744-f7f3-422d-81a9-4fca5744b0dc.png
& Jenkins’ own user database | User:

¥ Alowuserstosignup | Password

I Remember me on this computer

Create an account if you are not a member yet





assets/d5c6bb50-da5d-4e75-926c-0411f5cdcb1f.png
Userld Name  LastCommitActivity 1  On
nikhipathania
2 hello-

‘ nikhilpathania  nikhilpathania 1 mo 1 day world-
example »
temp

& ientins aomin ikt pathenia A






assets/dcdbf242-72bd-4929-a677-3c9b47c1511f.png
0 jglick / simple-maven-project-with-tests @Wstch~ 0 KStr 4 YFork | 101

<> Code Issues 0 Pull requests 0 Projects 0 Wik Insights

A Maven project that just has some test failures (and skips) at random, to demonstrate result reporting.





assets/72c099b7-890c-484d-ab55-334c0e420c1a.png
Jenkins slave agent =1olx]

Comnected






assets/2e2b9422-cd5c-4416-b89b-a217114f070f.png
Artifact Repository Browser

Tree Simple Q v & hello-0.0.1.war
~v © example-project General Effective Permissions Properties
» B 28
5 Properties
vy B 29

> & hello-0.0.1.war

© le-repo-local
example-repo-local ©  Property Value(s)

PerformanceTested  Yes

build.timestamp 1512495600782
build.name jenkins_multibranch_pipeline_demo :: master
build.number 29

Integration-Tested ~ Yes





assets/a84c0478-d3f6-458c-8940-f72357ae5915.png
Integration/Mainiine Branch Master/Production Branch

Feature1 Branch Feature 2 Branch






assets/ab96cc1d-13fe-418d-860d-318c863d1a6c.png
Kind | Usemame with password j

Scope Global (Jenkins, nodes, items, all child items, etc) j

Usemame. | namegorg.com

® ® ® ® ®

Password
D github_credentials
Description

credentials to access GitHub account






assets/e9449540-e547-4202-bcc1-f7f3ad4922e4.png
Quality Profiles Crese Sonar way Jsva Backup | Rename

Copy.

‘Show: All Profiles v Rules

254 adtive rules

=3
S 75 Bug
20 Vulnerability
pial 159 Code Smell
Javasript
Sonar Security Way Oprojects Projects
Sonar way You must not select specific projects for the default qualty profile.

Inheritance |_Change Parent

Sonar way
254 active rules





assets/574a41b9-0acc-41e4-b8d2-815bdb493a0a.png
ubuntu@node4:~$ sudo docker ps -a
CONTAINER ID IMAGE 'COMMAND CREATED STATUS PORTS NAMES
81asd12f6cda ubuntu "/bin/bash” About an hour ago Exited (0) 2 minutes ago nystifying_fermat

S |

ubuntu@noded:





assets/b114abf2-e612-4867-a627-d8a28eb7a930.png
P & © & &

Home
Artifacts
Search Repositories
Local
Builds
Remote
Admin Virtual

Distribution

Security

Security Configuration
Users
Groups

Permissions





assets/c006f56d-abf5-48ac-9211-d912bdb16c23.png
Getting Started

Create First Admin User

Usermame: jenkins_admin

Password

Confirm password
Full name: nikhil pathania

E-mail address:  admin@company.org

Jenkins 2.60.2 Continue as admin  [CEYCRUEESUTEN





assets/4e968dab-db63-4073-aedd-8995d881c7ec.png
ubuntu@node4:~$ sudo docker images

REPOSITORY TAG
performance-test-agent-0.1 latest
maven-build-slave-0.1 latest
ubuntu latest
hello-world latest
ubuntu@nodea:~$ |

IMAGE ID

5218edfb9eag.
317fb6ec99ef
f49eec89601e
48b5124b2768

CREATED

23 hours ago
2 weeks ago

6 weeks ago

7 weeks ago

SIZE
720 MB
298 MB
129 MB
1.84 kB





assets/a53f8bfa-15a5-445d-9acf-0e7c3cb0ddb4.png
Choose step type

Shell Script

Print Message

Enforce time limit

Retry the body up to N times

Sleep





assets/2d249a6c-ede9-4a30-82d0-6bf59340a4f0.png
Integration Branch Hot Fix Branch  Production Branch

Feature Branch
R01.00.00
Merge

Feature Branch

R01.00.01






assets/b79b0471-a5d9-4cad-99b5-9ddc0506d4a2.png
Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Install suggested
plugins

Install plugins the Jenkins
community finds most
useful.

Select plugins to
install

Select and install plugins
most suitable for your needs.

Jenkins 2.60.2





assets/a2812c0a-85ae-4326-a547-5628397a63e2.png
Tabs

General | Build Triggers  Advariced Project Options  Pipeline

Pipeline name _ jenkins_pipeline_demo

Description

[Plain text] Preview

Pipeline Name





assets/e5ee84d3-e56a-4487-84a8-309386750bfb.png
Stage View

Poll

4s

Build & Unit
test

20s

19s

static Code
Analysis

225

22s

Integration
Test

3s

Publish





assets/13597da5-9afd-4d48-8e55-a820df9d3f41.png
System Properties

Name | Value
awt toolkit ‘sun.awt X1 XToolkit

fle encoding UTF8

fle encoding pkg sunio

fle separator /

java.awt graphicseny ‘sun awt XHGraphicsEnvironment

Environment Variables

Name | Value
_ Justibinfjava

HOME Ihome/nikhil

LANG en_USUTF8

LOGNAME nikhil





assets/792f399f-263f-45c0-98b2-8431a6e73315.png
Images

Docker Template

Docker Image perfomance-est-agent-0.1 ®
Container settings...

Instance Capacty | °

Remote Filng System Root o cjcrvine °

Labels docker_pt ®

Usage ‘Only bud jobs with label expressions matching this node :I@

> Experimental Options...

P fe

Credentials | ing/evess (credentials :l —Addv @
Advanced..
Remote FS Root MapPINg | 1y uiyjenkins @
Remove volumes (@) ©
Pull strategy Never pull j@

Delete Docker Template





assets/ff2bae15-4881-435e-a35a-d6145c36ec10.png
Pttt or-indos, b o]

Select the components you want o instal; dear the components you do not want to
instal.ClckNext when you e ready to continue.

GitLFS (Large Fie Support)
 Associte .git* configuration fles with the defaut text editor
 Associte .sh fles to be run with Bash

Use 2 TrueType fontin al console windows

Current selection requires atleast 226,7 M8 of disk space.

<o [0 ] _ome






assets/ccf7322a-5472-4ad9-98f5-bacf5798ade3.png
¢ 5 Pilot

# Isues  Messures Code Dashboards~  Administration ¥

Quality Gate ed

Coversge

Coverage

11.2% _—

Coverage Coverage on New Code





assets/16eb4ab3-f25c-45ed-b5ef-1c31886e807c.png
Branch Sources

GitHub.

CIEGENUS | sesvssssesssssssssssssssssesss eres (crodentials t j o Add~

Owner nikhilpathania

Repositoy  gimple maven-project-with-tests





assets/9e5f51aa-9c1d-4343-9939-41e2cf3f7d7d.png
Pipeline Settings

Agent

Label*





assets/a2beda43-f4d7-4cf8-a7ca-a04e664ea5d7.png
Index of /download/plugins

Name  Last modified Size Description

& Parent Directory -
(23 AnchorChain/ 2017-09-1121:16 -
(23 Aical oadtest/ 2017-09-1121:16 -

(23 BlameSubversion/ 2017-09-11 21:16





assets/a28850e3-50a0-4695-894d-4e72883a215c.png
Getting Started

Getting Started

+ Folders Plugin
() Timestamper
& Pipeline
& Gitplugin

' PAM Authentication
plugin

Jenkins 2.60.2

OWASP Markup
Formatter Plugin

Workspace Cleanup
Plugin

GitHub Branch Source.
Plugin

Subversion Plug-in

LDAP Plugin

<

<

<

<

build timeout plugin

Ant Plugin

Pipeline: GitHub Groovy
Libraries

‘SSH Slaves plugin

Email Extension Plugin

Credentials Binding
Plugin

Gradle Plugin

Pipeline: Stage View
Plugin

Matrix Authorization
Strategy Plugin

Mailer Plugin

** bouncycastle API Plugin
Folders Elugin

* Structs Plugin

** JUnit Plugin

ONASP Markup Formatter Plugin
EAM Authentication plugin

* Windows Slaves Plugin

** Display URL AP

Jenkins Mailer Plugin

** - required dependency





assets/b77a50b6-e9b1-4240-8282-6d810f915442.png
Build

Results

Results

+ Ad






assets/feadc99b-1d20-434f-9521-e0b083eeab26.png
static code analysis stage

Jenkins Master 5™ S99 ; pubish sage

Jenkins CI Pipeline build stage

integration test stage

unit test stage

Artifactory Server





assets/73efe47d-5080-4d6f-b25e-ab83f4c34c70.png
seconds

show count

Build Description  Duration Fal  Skp  Total
jenkins_multibranch_pipeline_demo » master #17 sms 0 0 3
jenkins_multibranch_pipeline_demo » master #16 6ms 0 0 3
jenkins_multibranch_pipeline_demo » master #15 6ms 0 0 2
jenkins_multibranch_pipeline_demo » master #14 sms 0 0 3
jenkins_multibranch_pipeline_demo » master #13 3ms 0 0 3
jenkins_multibranch_pipeline_demo » master #12 2ms 0 0 2






assets/759518a8-0daf-4c5b-867a-a16c9da145bf.png
Node name  roquction-server

@ Permanent Agent
Adds a plain, permanent agent to Jenkins. This is called “permanent” because Jenkins
doesn't provide higher level of integration with these agents, such as dynamic provisioning
‘Select this type i no other agent types apply — for example such as when you are adding
 physical computer,virtual machines managed outside Jenkins, etc.

€ Copy Existing Node
Copy from





assets/475542b9-94b7-47d6-a833-8837d27d1f70.png
[ Welome tongin

@

C | ® 19216856104 Q * H

Apps. »

Welcome to nginx!

IF you ses this page, the nginx web server s successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nainx.ora.
Commercial support is avalable at naink.com.

Thank you for using nginx.






assets/0c63f480-8313-4043-9833-6d7d2c327934.png
Local Repositories

2 Repositories

Repository Key ~ Type Recalculate Index Replications

example-project & Generic

example-repo-local & Generic





assets/a452caa6-2dd5-4b7b-b374-fcd04f8ea34d.png
Integration Branch Hot Fix Branch  Production Branch

Feature Branch Feature Branch

Release Branch

Merge

Release Branch

R02.00.00






assets/b683c11b-e08c-4f8d-b4c4-05119f8d0ef6.png
Startup Type

€}, KtmRm for Distributed Transaction Coordinator
€ Link-Layer Topology Discovery Mapper

€, Local Session Manager

€} Microsoft (R) Diagnostics Hub Standard Collector Se
€ Microsoft Account Sign-in Assistant

€ Microsoft iSCS! Initiator Service

€ Microsoft Passport

€ Microsoft Passport Container

€ Microsoft Softuware Shadow Copy Provider

€ Microsoft Storage Spaces SMP

€ Microsoft Windows SMS Router Service.

€3 Net-Tep Port Sharing Service





assets/264deaab-f537-40b7-9a3f-fb4106b72280.png
SonarQube servers.

Environment variables (7] a6 injection of SonarQube server configuration

as build environment variables

I checked. job adminitrators wilbe able o inject
2 SonarQube server configuraton as envionment variables in the buid.

SonarQube installations

Name Default SonarQube Server
Server URL hitp//172.17.8.109:9000
Defaut s htpzhocahost9000
Server version S30rm :I

‘Configuration fiekds depend on the SonarQube senver version
‘Server authentication token

‘Sonaraude authenticaton token.
"Mandatory when anonymous access s disabled.

‘SonarQube account login

‘SonarQube account used 1o perorm anaisi.
Mandatory when anonymous access s disabled.
Noonger used snce SonarQude 5.3.

‘SonarQube account password

‘SonarQube account used 1o perorm anaisi.
Mandatory when anonymous access s disabled.
No longer used since SonarQube 5.3.





assets/a40ecb00-809b-4338-8daf-86bcbd42700e.png
Name

Description

# of executors

Remote root directory

Labels

Usage

Launch method

Availability

standalone-windows-slave

maven build agent

c/jenkins

maven-build-2

Use this node s much as possible

Launch agent via Java Web Start

Keep this agent online as much as possible





assets/ebebf3fa-3f71-40b1-a538-c2ee9dddfd4b.png
Images

Docker Template

Docker Image maven-buid-slave-0.1 ®
Container settings...

Instance Capacity | ®

Remole Filng System ROt ooy ®

Labels docker ®

Usage ‘Only bud jobs with label expressions matching this node :I@

> Experimental Options...

P fe

Credentials | ing/evess (credentials :l —Addv @
Advanced..
Remote FS Root MapPINg | 1y uiyjenkins @
Remove volumes (@) ©
Pull strategy Never pull j@

Delete Docker Template





assets/7db067ed-9cfb-4a21-b084-b395c2531571.png
Poll

4s

Build & Unit
test

20s

20s

Success

di Logs

22s

Integration
Test

3s

Publish





assets/917b1d32-edbf-4433-b3c9-2f8096afd65a.png





assets/5778110f-0867-4c0c-b119-383604539831.png
Your connection is not private

Attackers might be trying to steal your information from (for example,
passwords, messages, or credit cards). D

[0 Automatically report details of possible security incidents to Google. Privacy policy.

ADVANCED






assets/28a9fbb7-38a9-4ab6-94ce-24e63f8d1259.png
User search base

User search filter

Group search base

Group search fiiter

Group membership

Manager DN

Manager Password

Display Name LDAP attribute

Email Address LDAP attribute

7' Allow biank rootDN

uid={0}

€ Parse user attribute for list of LDAP groups
€ search for LDAP groups containing user

displayname

mail

® ®

® ® & &

® ® & &






assets/b70677e5-6337-4f2e-a625-8d5b7014741e.png
Long-term Support
(LTS)

LTS (Long-Term Support) releases are
chosen every 12 weeks from the stream
of regular releases as the stable release
for that time period. Leam more.

Changelog | Upgrade Guide | Past
Releases

£ Deploy Jenkins 2.73.1

@ Deploy to Azure

Download Jenkins 2.73.1 for:

Docker

FreeBSD

Gentoo %

Mac OS X

Weekly

Anew release is produced weekly to
deliver bug fixes and features to users.
and plugin developers.

Changelog | Past Releases

£ Download Jenkins 2.78 for:

Arch Linux

Docker

FreeBSD

Gentoo %

Mac OS X

OpenBSD &





assets/141ed30d-e9c4-4c9e-99b4-aaddef0ec338.png
Edit Search Run Options Help
Dea°da
& Hello_World_Test_Plan | [
] worksench

Paste T Test Fragment »| setUp Thread Group
Reset Gui Config Element | tearbown Thread Group
Timer »
Undo
Pre Processors » 12bles
Redo
Post Processors » Value
CLDks Assertions  »
GEDETS Listener >

save Selection As...

Save Node As Image  ctic
Save Screen As Image Ci+shits

Enable
Disable
Toggle ctir

Help






assets/bc2cba34-769a-4d46-baa7-b0e761b702c4.png
Build / Shell Script

myp clean install





assets/6ecdc314-dceb-4878-ac42-055baa7cf532.png





assets/c1df46a8-b178-4657-a133-727ebd636d54.png
SCM Metrics

View

Run

Job

Agent

Credentials

Overall

View
ThreadDump
HealthCheck

Tag
Read
Delete
Create
Configure
Update
Replay
Delete
Workspace
Read
Move
Discover
Delete
Create
Configure
Cancel
Build
Provision
Disconnect
Delete
Create
Connect
Configure
Build
View
Update
ManageDomains
Delete
Create
Read
Administer

Userigroup’

LY TTTIVEN il i ) i i A i i Al i A i i i

Add

User/group to add:





assets/64b5022d-1083-416e-b2ba-5392fdc1da63.png
© nikhilpathania / hello-world-greeting Ounwatch~ 1 s 0 Yok 0

< Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings





assets/0c2b47ca-93ec-4bbf-9f43-2f5f0780f35f.png
Administration

Configuration »  Securty > Projects  System+

General Settings

Edit global settings for this SonarQube instance.

CATEGORY
Analysis Scope

Build Breaker

c*

General

Java

Javascript

Licenses

Scanner for MsBuild
sam

Security

Technical Debt

Build Breaker

Alternative server URL

APL query interval (ms)

API query max attempts

URL to use for web service requests. f unset, uses the ser
${sonar.working. directory}/report-task. txt.

Key: sonar buildbreaker.altemativeServerUrl

Default: 10000

‘The interval between queries to the API when waiting for r
Total wait time is sonar . bui 1dbreaker . queryhaxAttenpt

Key: sonar buildbreaker.querylnterval





assets/cc01527d-c048-4819-964c-d52ed9b33490.png
Steps.

Sample SteP noge: Allocate node

Label master

Label master is seniced by 1 node

node(master) {
1 some block

}

® ® L«






assets/dd8ac73e-9be4-4e7b-8dc3-05eb011557aa.png
logstash

= permalink to the latest





assets/a07538d6-68a3-4249-aec2-44e4e19f5b35.png
Filter: [ SonarQube

Updates  Available  Installed  Advanced

Install | Name Version
P SonarQube Scanner for Jenkins 261

Install without re:






assets/1ce449b9-0115-4152-9e16-c5039649c57d.png
.- Integration with notification

- Develop & Commit

Build on Integrated code
* with notification

O &

- Packaging

Integration testing

.- Build with notification =, Integration testir





assets/1c0318be-9128-46d6-84b9-d3b385f2e707.png
Filter: [\ Periodic Backup

Updates  Available  Installed  Advanced
Install | Name Version
P Periodic Backup 15

Install without resf Download now and installafter re

information obtained: 7 hr 28 min ago





assets/8f5db5c3-8ee0-4fe7-bc64-46a7ffcaf1f8.png
Stores scoped to User: nikhil pathania

P Store | Domains

,& User: nikhil pathania  (global) blueocean-git-domain i blueocean-github-domain
Stores from parent

P Store | Domains

g denkins i (alobal) g 2pi github com





assets/0636b012-51d8-4008-8a0b-03ccc76fd7f3.png
Authentication Settings
APl Key

® Revoke API Key

Encrypted Password






assets/f68e3f67-10c9-4109-a8c7-3db079818704.png
Upload Plugin

You can upload a hpi fle to install a plugin from outside the central plugin
repository.

File:| | Browse... | logstash hpi





assets/5a306aab-9b75-4ce0-8af3-a1e674f00289.png
sslave-c_jenkins) Properties (Local Compusale-1|
General Log On | Recovery | Dependencies |
Loganas:

€ Local System account
I oy service tinteract it deskion:

© Thsaccowt:  [Pamnsmeor | Bowse

Password [eesssrnnnnnnnns

Confimpassword:  [sesssssssssssss

Help me corfiaure user account log on options.

[ o 1 coed | o |






assets/d12868b9-ea7c-43c4-aceb-bfcd2864b2f1.png
Rules

search
@ Language

Java Ee
c E>)
Javascript 13
Search -
2 Type

Bug 1
Vulnerabilty Y
Code Smell %
O Tag
O Repository
O efault Severity
O status

O Available Since
O Template
2 Quality Profile

Sonar Security Way JavaScript
Sonarway C#

Sonar way JavaScript

a1/128 [ Reload | NewSearch | Bulk Change
sed Java Code Smell @ cwe, obsolete
o many “forward" Jova Code Smell @ brain-overload, strts
Jents should not be used Jova Code Smell @ bad-practice
Java  CodeSmell W performance
and work for subdasses Jova Bug
n not required by Jova Vulnerabiity @ cwe, eror-handiing
ted" members Jova CodeSmell @ confusing
ed Jova  Vulnersbility W error-handling

e used Java Vulnerability @ cue, owasp-a6, sans-top25-porous

Java Vulnerability @ error-handiing
uld not be used Java  CodeSmell @ bad-practice
Jitch off issues Java  CodeSmell @ bad-practice

Java Bug @ multi-threading
-aught Java  CodeSmell @ cert, cwe, ermor-handiing






assets/6121d63c-a160-4d77-a9a3-1aac84e4d4db.png
Results / Publish JUnit test result report ---

TestResults*

** target/surefire-reports/Tl

[ AllowEmptyResults
HealthScaleFactor
1
(] KeepLongstdio

TestDataPublishers
This property type is not supported





assets/00db7d51-f0f0-42fd-92bd-11ada1770bc6.png
Name production-server (2

Description @
#of executors P e
Remote root directory [ 4o reniing ®
Labels production (2
Usage Use this node s much as possible j (2
Launch method Launch slave agents via SSH j @
Host 192.168.56.31
Credentials jenkins/****** (production j Al @
Host Key Veriication Strategy | nop verifying Verification Strategy j @
®
Advanced...
Avaitabilty Keep this agent online as much as possible He





assets/116beaf2-76f9-4a74-8e84-3c65d644f288.png
lcon: SML

Mouseover here to get the menu

Name |

fer

nkins_pipeline_demo +

(© Delete Ppeiine —
Run pipeiine
2% contigure—_

Access the Pipeline

O Full Stage View
- configuration page

© Pipeline syntax S—
Access the Full Stage View





assets/717a6c52-f11d-47d3-be93-718225fdb5fd.png
Jenkins Master

-—
T e

Distributed, parallel

[IIITIEET)  Integration testng

Distributed, parallel
Unittesting

P standsione Jenkins Siave machine
I st2ce in 2 i ppsine

Cl pipeline

G seriins Siave Lavel





assets/e60e4c18-80ec-4069-bfc2-468181edf9db.png
Webhooks Add webhook

Webhooks allow external services to be notified when certain events happen within your repository.
When the specified events happen, we'll send a POST request to each of the URLS you provide.
Learn more in our Webhooks Guide.

 ttps//wsssmnnssnnss/github-webhook (pull request and push) Edit | Delete





assets/08ecdfe7-3f64-4510-ab9a-5df45fa8ef3d.png
Commit new file

added a Jenkinsfile

iption,

& o Commit directly to the master branch.

€ [ Create a new branch for this commit and start a pull request. Learn more about pull requests.

Cancel





assets/caac1ef5-8704-4f73-b1ff-78fe35e852a7.png
Filter: [ Blue Ocean

Updates  Available  Installed  Advanced

Install | Name Version
Blue Ocean

Blue Ocean s a new project that rethinks the user
experience of Jenkins. Designed from the ground up for
Jenkins Pipeline and compatible with Freestyle jobs, Blue
Ocean reduces clutter and increases clarity for every
member of your team

formaton cssined: 2 a0

117





assets/80196f7a-711c-4f57-a07b-0744e800a211.png
New Local Repository

Basic / Advanced | Replications %

Package Type *

Generic
Repository Key *

example-project

Cancel






assets/a2b42a63-8020-4717-b83e-0b5afd1ab36a.png
Taking standalone-linux-slave Offline

You can optionally explain why you are taking this node offine, so that others
can see why

maintenance activity






assets/ea7a448f-a912-4c05-b68a-776cf1297a73.png
& nikhilpathania / hello-world-greeting

<> Code

Issues 0 [ Pullrequests 0 [ Projects 0 [IWiki [ Insights £t Settings





assets/6924bed0-dcd8-437e-813a-7457b4bdd3b7.png
ubuntu@noded:~$ sudo docker run -i -t ubuntu /bin/bash
root@81asd12f6caa: /# adduser jenkins
Adding user 'jenkins'
Adding new group 'jenkins' (1000) .
Adding new user ‘jenkins' (1000) with group 'jenkins
Creating home directory '/home/jenkins
Copying files from '/etc/skel'
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the default
Full Name []: Nikhil Pathania
Room Number []: 208
work Phone [
Home Phone [
other []:
Is the information correct? [Y/n] y
root@8iasdi2fecaa: /# I






assets/0bde4efe-b020-4f50-894d-d9f05a273a4a.png
Build / Provide Maven
environment

GlobalMavenSettingsConfig

L ]

GlobalMavenSettingsFilePath





assets/70400369-0ac2-40f1-a2c8-13c4a877c0e3.png
Test Result : hello

0 failures (20)
L ]
tests (20)
Took 5 ms
(add description
All Tests
Class. Duration Fail (6f) Skip (dff) Pass (f) Total (aiff
DateTimeTest oms 0 0 1 1
GreetingMessagelT ~ 11ms 0 0 1 1
MessageTest 6ms 0 0 1 1






assets/ee2f6d60-778f-4fa8-b432-bcbea4c1d48f.png
<> Code Pull requests 0 [ Projects 0 B2 Wiki £t Settings

[ Branch: master~ | simple-maven-project-with-tests / Jenkinsfile

Switch branches/tags

Branches | Tags

P Create branch: feature

from ‘maste






assets/d9717ae3-3dd7-4a38-bf60-9a40464a1d42.png
Jenkins Pipelines

@ jenkins_multibranch_pipeline_demo Y %% Activity ~ Branches  Pull Requests

HEALTH STATUS BRANCH comMMmIT COMPLETED

(] master 2¢793da. 22 minutes ago





assets/2e09bb15-a5f1-4ba8-9b45-715f0854e770.png
Jenkins Propertis (Local Computer) x

General LogOn Recovery Dependendies

Sevicename:  Jenkins
Display name:Jenkans

Descpton: rmmumnms,m

Pathto exeoutabl:
“C:\Program Fies (36)\Jenkins\eriins exe”

Statuptype:  [Automatic =

Service staus:  Stopped

(e O )

You can spectly the start parameters that apply when you sta the service:
from here.

] E—






assets/61f3d4e8-b854-4484-ae97-a33c1f11cf00.png
Jenkins Master

Docker image
for buid & unit test
Docker image
for integration test

Docker host Container using the Container using the

? buid & unittestimage  integration test image
[_Build__]

(“Unittest (1:50) Ji_integration test (1-50)

Unit test (50-100) J Integration test (50.100)
B - :

Distributed, parallel

Integration testing

Distributed, parallel
Unittesting

[ octor orner
I sisce s Ci peine

Cl pipeline





assets/79391053-cd83-43c1-b21e-9837c8009dfe.png
< Code Issues 0 Pull requests 0 Projects 0

hello-world-greeting /  Jenkinsfie or cancel





assets/6849205d-4800-46d6-955d-82b98778ca11.png
Poll

ds

Build & Unit
test

19s.

20s

static Code
Analysis

225

22s

Integration
Test

3s

ds

Publish

1s

Start Tomeat

s

1s

Deploy

413ms

413ms

Performance
Testing

s

1s

Promote build
in Artifactory

s

356ms.

Deploy
to Prod

s

1s





assets/03f37030-2c3a-4982-985c-0fac38ccc1ad.png
< Build

There are no steps, at least one is require.






assets/7dd6182e-ff2a-4851-bd85-3fe1f7a95f5d.png
Commit new

added a Jenkinsfile

©® o Commit directly to the master branch.

© T Create a new branch for this commit and start 2 pull request, Lear more about pull requests.

Capcd





assets/31cab72b-5fe6-4a14-9f59-f4d729a712ea.png
Additional actions
Convert login and password to token

GitHub AP1URL o 7api github.com
@ From credentials

Credentials | s s sessss sesses s mesns rassss (cregientials to acce j o Add~

Created credentials with id 311a8¢c5-a2c0-41fe-b13e-e6bd1daBb040.
(can use it for GitHub Server Config)

Create token credentials

€ From login and password





assets/e725c942-5e2a-467f-8021-e4a130881ba2.png
Installing Plugins/Upgrades

Preparation
« Checking intemet connectivity
« Checking update center connectivity
« Success

Config File Provider Plugin @ Success

Pipeline Maven Integration Plugin Installing

 Gobackiothe top page
(you can start using the installed plugins right away)

& I Restart Jenkins when installation is complete and no jobs are running





assets/044110f3-342c-495a-bc73-239692bb3861.png
Steps.

Sample Step gy g j
(2}
Repository URL o /igithub. comjglick/simple-maven-project-w
Branch master
Credentials

- none - o Add v

' Include in polling?
' Include in changelog?

git ittps//github. com/iglickisimple-maven-project-with-tests git






assets/36f2c2eb-3c25-4f7e-b793-f30febb61293.png
© ConfigOnly created on Sat Sep 16 18:45:43 UTC 2017






assets/90868ba9-9b9d-47ac-aadc-2823937899c6.png
- o a o o

Status  Run Commit  Branch Message Duration Completed a
o e7es2ae  feature Push event to branch feature 65 21 hours ago
Q® - e7es2ae  master Started by user nikhil pathania 5 21 hours ago





assets/5f8fffd9-65b6-481d-a65e-4ebf3e152c99.png
ubuntu@node4:~$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest f49eecs89601e 3 weeks ago 129 MB
hello-world latest 48b5124b2768 4 weeks ago 1.84 kB
ubuntu@noded:~S I





assets/c3f61f02-6489-495f-a39a-4d362c3f66d4.png
it 2.15.1.2 Setup

Adjusting your PATH environment
How would you lke to use Git from the command ne?

 Use Git from Git Bash only
This s the safest choice as your PATH wilnot be modified atal. You il only be
able to use the Gt command Ine took from Git Bash.

& Use Git from the Windows Command Prompt.

This option i considered safe 2s it only adds some minimal Git wrappers to your
PATH to avoid cutiering your environment with optional Uni tooks. You il be
able to use Git from both Git Bash and the Windows Command Prompt.

 Use Git and optional Unix tools from the Windows Command Prompt
Both Git and the optional Liix tooks wil be added to your PATH.

Warring: This il overrice Windows tools ke “find” and “Sort”. Only
use this option i you understand the implcatins.

I

Pttt For-indos, b o]






assets/f509ecad-31db-44c1-9812-d40924045d39.png
ubuntu@noded:~$ sudo docker run -i -t ubuntu /bin/bash
root@81asd12f6caa: /# adduser jenkins
Adding user 'jenkins'
Adding new group 'jenkins' (1000) .
Adding new user ‘jenkins' (1000) with group 'jenkins
Creating home directory '/home/jenkins
Copying files from '/etc/skel'
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the default
Full Name []: Nikhil Pathania
Room Number []: 208
work Phone [
Home Phone [
other []:
Is the information correct? [Y/n] y
root@8iasdi2fecaa: /# I






assets/d4fa369b-876b-41e3-8c2b-35269b125a3d.png
Launch method
Launch slave agents via SSH j )

Host 192.168.66.221

Credentials ey j FyvPEREEPN

Host Key Verification Strateq | yoq yertying Verifcation Strtegy j@





assets/bf85ab3c-ee78-483f-930b-00c251dbadfc.png
Search Run Options Help

Deal°du X|EBjaE||+] =]

7 a Hello_World_Test_Plan
user visiting the hello world page| | HTTP Request
./ HTTP Request
] worksench

Name: [HTTP Request
comments:

Basic | Advanced
Web Server

Server Name or IP: [localhost
HTTP Request

|Port Number: (8080 |

Implementation:

~| Protocol [http]: [ Metho

=

e e

Path: [fhello.0.0.1]

[Pty

Follow Redirects






assets/0110ad53-fefb-415b-b8c1-07a7259ca3b2.png
Gives you a status
of your Jenkins Slave (current page)

4 Back o List
Click to delete the Jenkins Slave

O, status /
@ Delete Agent —

Lists all the builds that
ran on this Jenkins Slave
#¢ Configure

= Buid History —
@8 Load statistics. -_
B script Console Gives build metrics, such as

Queue length..tc
Cwe —

B system information Jenkins Slave connection logs
—_—

© Disconnect T
—

System information about
the Jenkins Slave

Click to disconnect the Jenkins Slave





assets/5fe7c47e-611e-420e-9ce7-307594a00458.png
E jenkins_multibranch_pipeline_demo

AMaven project that just has some test failures (and skips) at random, to demonstrate
result reporting.

Branches (2)  Pull Requests (0)

S W Name | LastSuccess Last Failure ~Last Duration

Q@ O fawe Tmn2ésec-# NA 6.8 sec )

(*]

master 7minS5sec-#1  NA 56 sec )






assets/37e7abda-0552-457b-a75c-a61fceddf129.png
Integration/Mainiine Branch Master/Production Branch

Release Branch 1

Release Branch 2






assets/ef7846e1-9049-4198-bf91-f15ef634bc9b.png
nikhilpathania / hello-world-example Cancel

Pipeline Settings

Agent

Start

none
Environment

Name Value





assets/d030bc67-453f-4a2f-b62a-b5b86d60d91b.png
Node name.

€ Permanent Agent

oK

Adds a plain, permanent agent to Jenkins. This is called "permanent”
because Jenkins doesn't provide higher level of integration with these
agents, such as dynamic provisioning. Select this type if no other agent
types apply — for example such as when you are adding a physical
‘computer,virtual machines managed outside Jenkins, etc.





assets/2418c781-8498-4498-b877-fa0743ad6873.png
Updates  Available Installed  Advanced
Enabled Name |

Ant Plugin

Adds Apache Ant
support to Jenkins

Authentication Tokens

API Plugin
This plugin provides
an AP for
converting
credentials into
authentication
tokens in Jenkins





assets/0e103ce0-2cea-4a59-bb0e-31ebfd64584b.png
Packh






assets/051e5837-2fba-4fb7-a108-9005364b8dc6.png
Download - Vagrant by HashiCorp - Mozilla Firefox
W Download-Vagran... x Qg

€ )9 | ® @ | https://www

vagrantup.com/dov @ | |Q search B » =

My WINDOWS
ay

Universal (32 and 64-bit)

DEBIAN

64-bit | 32-bit |

CENTOS

32-bit | 64-bit





assets/6b05ed69-1771-48e8-a77b-e3ec50e0dae7.png
File Edit Search Run Options Help

Dea °d4d KA +]=]%p® 3 o W

&

7 a Hello_World_Test_Plan
+ user visiting the hello world page

Thread Group

K] Vorkgencn A Logic Controlier ¥
Start Element »
Start no pauses Timer >
Validate Pre Processors  , thraad ( tan Tast
G g ‘Access Log Sampler
e o Post Processors | AIP/L.3 Sampler
Pacte . |Assertions b Beanshell Sampler
Duplicate cusic LListener | Debug sampler
Reset Gui FTP Request
Remove [ e L

I needed Java Request

undo JDBC Request
e JMS Point-to-Point
Open... JMS Publisher
Merge JMS Subscriber
Save Selection As... POy
Save Node As Image cri JUnit Request
Save Screen As Image ciisiifc LDAP Extended Request
Enable LDAP Request
Disable Mail Reader Sampler
Toggle e 05 Process Sampler
o SMTP Sampler

SOAP/XML-RPC Request
TCp sampler
Test Action






assets/8b88000f-8f24-4110-9184-e875520405de.png
Personal access tokens Generatenewtoken | | Revokeall

Tokens you have generated that can be used to access the GitHub APL

Jenkins GitHub Plugin token (http://

/) — adminrepo_hook, repo, Neverused | Edit | Delete
reposstatus





assets/d53c922f-0c0e-4ccc-95e2-df874beca61e.png
it 2.15.1.2 Setup

Choosing the SSH executable
Vibich Secure Shelldient program would you ik Git to use?

 Use OpensSH

This uses ssh.exe that comes with Gt The GIT_SSH and SVN_SSH
environment variables wil not be modified.

 Use (Tortoise)Plink

PUTTY sessions were found in your Registry. You may spedfy the path
to an existing copy of (Tortoise)Pink.exe from the TortoiseGH/SYN/CVS
or PUTTY applications, The GIT_SSH and SVN_SSH environment
variables wil be adjusted to pont to the foloning executable:

rogram Fies PUTTY pink.exe

=

Pttt For-indos, b o]

I






assets/28dc83ba-a19f-4211-a012-6c05e799ccb7.png
4 Back to Dashboard Click to create a new node

% vanage JenM—

Build Queue
General configuration
No builds in the queue.





assets/d990542b-515b-4d37-84ae-aea4e6f663b5.png
Add Con
Complesty

Complety / Clsss

Compley / Fie

Complesty / Function
Coverage

Condition Coverage
Condition Coverage by T on...
Condition Coverage on New ..
Coverage

Coverage by IT on New Code =]

L ¢





assets/d3c961a3-4b8c-48a6-950b-d44df9021f26.png
SonarQube

Environment variables (] Enable injection of SonarQube server configuration as build environment variables
SonarQube installations  pame s
onar
Server URL
Defaut s ipiocainost 9000

‘SonarQube account login

‘SonarQube account password

Disable
‘Gheck to quisk disable SonarQube on i jbs.
Advanced...
Delete SonarQube
Add SonarQube.

List of SonarQube installations





assets/89be1a2d-475d-46e3-b6b9-f507b6756641.png
® Lo






assets/f10bbd70-475c-4265-bce1-8faa6f2a5e83.png
Configuration»  Security v Projects ¥ System +

Projects Management

Use this page to delete multiple projects at once, or to provision projects if you would like to configure them before the first analysi.
Note that once 2 project i provisioned, you have access to perform all project configurations on i,

O [l evsenes | oo | Q

O B example-project example-project






assets/6b6704f0-5295-4c5d-b77d-53f98ce2425c.png
M Tool Locations

List of tool locations
Name.

(Maven) M3 J

Home | /oathitolthe/maven/application/on/thelJenkins/Slave

Add





assets/8a772edd-f225-4c4a-a8ff-729360dc0125.png
Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
1o the log (not sure where to find it?) and this file on the server:

/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password





assets/4c5b3274-88d7-49d9-8209-3c1bd9837584.png
O Which organization does the repository belong to?






assets/3e822d7c-11be-4aba-a2b8-394915bed092.png





assets/121eda1a-9588-4edb-8455-3464c23a3387.png





assets/7ec8e5c8-9f21-4e0f-bb5e-eb2e9e2b1f81.png
<+ Build History trend =

[find X

Q@E  Auo2017 rr20pm
= changes

I

[ EdtBuild Inormation





assets/cfea67b3-bd34-479b-8a40-e3fa38068f7c.png
Jenkins Properties (Local Computer)

General LogOn Recovery Dependencies.
Logonas:

O Local System account
Alow servi o terac wh deskiop

- =
-
P—






assets/704daee7-e279-40f8-ac8c-2fb2e1f88c33.png
P e

S

et
=

Intgrated Code i

Inlewalmn testing

EINEl

&&=

Repository Server





assets/e9fff868-cfb0-4208-87e6-cc922892cd65.png
Steps

Sample SteP i taven: Provide Maven environment j
@

Maven M3 j @
JDK — Use system default JOK — j @®

Maven Settings Config — Use system default settings o file path — j @

Global Maven Settings Config 5 system defautt settings o file path — j @

Options Add Option  ~

withMaven(maven: 'M3) {
11 some block

}






assets/e6abe66d-9f7f-45ed-9499-cd539bfc45db.png
Stage Logs (Build) x

® Checks if running on a Unix-like node (self time 1ms)

® Shell Script — ‘var/jenkins_home/tools/hudson tasks Maven_Maveninstallation/M3/bin/mvn' -Dmaven test failure ignore
clean package — (self time 3s)

[1vF0]
[INFO] Building simple-maven-project-with-tests 1.0-SNAPSHOT

[TnFo] -

[zFo0]

[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ simple-maven-project-with-tests ---

[INFO] Deleting /var/jenkins_home/workspace/jenkins_pipeline_demo/target

[1nF0]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ simple-maven-project-with-tests -

[INFO] Using "UTF-
[INFO] skip non existing resourceDirectory /var/jenkins_home/workspace/jenkins_pipeline_demo/src/main/reso

encoding to copy filtered resources.

[zFo0]

[INFO] --- maven-compiler-plugin
[INFO] No sources to compile
[1nF0]
[zFo0]
sts -
[INFO] Using "UTF-
[INFO] skip non existing resourceDirectory /var/jenkins_home/workspace/jenkins_pipeline_demo/src/test/reso

.1:compile (default-compile) @ simple-maven-project-with-tests ---

-~ maven-resources-plugin:2.6:testResources (default-testResources) @ simple-maven-project-with-te

encoding to copy filtered resources.






assets/62e687de-76e9-4bab-991c-729c89603e8c.png
ubuntu@noded:~5 sudo docker commit f8bl14a252e77 performance-test-agent-0.1
sha256:5218edfb90a9d3391393e5b11a2188f6fese1f85fd7e92a12d9bac558cc33ea1
ubuntu@nodea:~$ ||





assets/ab5d269d-6d44-449e-b6da-be6b1d649e1c.png
%2 8 Pilot

A Issues  Measures

Custom

Iesues

184

Code  Dashboards »

Administration v

Technical Debt

1d 4h

Relzbility
Remediation Effore

1d 1h

Security
Remediation Effort

0

© Blocker
© critical
@ Major

© Minor

© Info

20
ESl
78





assets/1cb007db-8457-4c84-b1b4-b087b367e199.jpg
Name [}

jenkins multibranch_pipeline_demo
jenkins_pipeline_demo

jenkins_pipeline_pipeline_syntax_demo

1.7 - Core 2.60.2 - 9d9¢Bb6 - (no branch)

Health  Branches PR

® o
‘ g E

12th August 2017 12:30 AM





assets/a2506300-1e55-4349-8790-560d4add5e0b.png
® 1 commit ¥ 1branch © 0 releases 42 0 contributors.

Branch: master~ || New pullrequest || Createnew file | Upload files | Find file





assets/a956195c-a5df-4d44-915a-e6d07b529020.png
File Edit Search Run Options Help

0ea d4 X

s Hello_World_Test_Plan

N Workgench U ik

Name: [Hello_World_Test_Plan

Comments:






assets/c6cb40f3-a870-4e92-9953-f753e9fb2611.png
Conditions

Only project measures are checked against thresholds. Sub-projects, directories and files are ignored.

METRIC OVER LEAKPERIOD  OPERATOR WARNING ~ERROR

Major Issues O gresterthan - 1 50 v






assets/dbcf67c9-5078-48b2-a26a-d594178d7a85.png
Save Pipeline

Saving the pipeline will commit a Jenkinsfile to the repository.

Description

created a pipeline script

(© Commit to master
() Commit to new branch





assets/785440f2-11d0-4324-9932-0b72cfbad081.png
which is: JNLP File (365 bytes)
from: hitp://192.168.56. 107:8080

What should Frefox do with this fle?

 Openwith | ava(TM) Web Start Launcher (default)

© saveFle

I Do this gutomatically for fles like this from now on.

=






assets/e92dbeb9-f389-4743-b294-9773aeb7be49.png
EXPERT

Max Kanat-Alexander

Machine Pa ndas

; ; Understanding
Learning With Go
Software Cookboak

Packt>

Go to www.packtpub.com
and use this code in the
checkout:






assets/f560e82a-351b-4746-afe3-af784edc9e8b.png
Your connection is not private

Attackers might be trying to steal your information from 192.168.56.104 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

Automatically send some system information and page content to Google to help detect
dangerous apps and sites. Privacy policy

HIDE ADVANCED Back to safety

This server could not prove that it is 192.168.56.104; its security certificate is not trusted
by your computer's operating system. This may be caused by a misconfiguration or an
attacker intercepting your connection. Learn mare.






assets/6d1df560-8ff6-4bce-9cc9-fac015f8c960.png
Continuous Integration -

Continuous Deployment

Continuous Testing





assets/dd1355de-4c12-4620-a2a9-0f15078d3120.png
V' Enable project-based security

™ Block inheritance of global authorization matrix

Run View  SCM

Job

Credentials

Tag
Read
Delete
Create
Configure
Update
Replay
Delete
Workspace
Read
Move
Discover
Delete
Create
Configure
Cancel
Build
View
Update
ManageDomains
Delete
Create

Userigroup’

)
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
2
4

Add

User/group to add:





assets/522cf1f9-2c0f-436f-b373-b74eb20e6517.png
Expected stage run time based on history

. Stage name
Stage View /
Pipeline number Preparation Build Results
/
/
/ 1s 3s 133ms

Contains Built artifacts )

Color coded status

Execution date and time

[
Il 1s 3s 133ms
m / \
/ \

Stage run time





assets/c6bd151e-aa70-4820-8434-b1e8f7c9c57c.png
Personal access tokens Generate newtoken | | Revokeal

Tokens you have generated that can be used to access the GitHub APL

Make sure to copy your new personal access token now. You won't be able to see it again!

v 122a4a1dbac7a9a6e50221d787456d3b6c0dedo [} Edit | Delete





assets/6b3b4f0a-47a2-47ea-b51b-0efc1e5c3373.png
sonarqube | |\Dashboar

Quality Gates

SonarQube way

example-quality-gate

example-quality-gate
Conditions
Only project measures are checked against thres

No Conditions.





assets/35a27889-be95-47b7-bea9-5bb2bdd978fb.png
Name Status  Startup Type

Automatic

. KtmRm for Distributed Transaction Coordinaty  St2rt Manual (Trigger Stat)
ik Lyer Topolooy Discovery Mooper [ Stop | Manaat
€, Local Session Manager e Automatic

Manual
Manual (Trigger Start)
Manual

€} Microsoft (R) Diagnostics Hub Standard Colle
€ Microsoft Account Sign-in Assistant
€ Microsoft iSCS! Initiator Service

Resume.
Restart

2 Micosof Pasport Manusl (Tigger Star)
€} Micosof Pessport Container Manusl(Tigger Start)
2} Micosof Sotwae Shadow Copy Provider Manusl
2 Micosoft Storage Spaces SWP Manusl

2} Microsoft Windows SMS Router Sevce.
& Net-Tep Port Sharing Service

Manual (Trigger Strt)
Disabled

Log On As

Local Service
Local System
Local System
Local System
Local System
Local System
Local Service
Local System
Network Senvice
Local System
Local Service





assets/da3b4670-eb42-4f16-a02d-deffe64d51ae.png
Lines of Code.

Unit Tests

Complexity.

Complexity
14,528

/Funciion

18

JFile
65

May 162017
14

1131082

187,206

106 2017
124

117555

14528

File Distribution / Complesity

1457

0

33
-
5

249
10

£

2

68

0

112007

60

125

117555

14528

1

%





assets/254111d5-9f2e-4f30-9332-c02d289e5f0b.png
Poll

ds

Build & Unit
test

19s.

20s

static Code
Analysis

225

22s

Integration
Test

3s

4

Publish

1s

Start Tomeat

s

1s

Deploy

413ms

413ms.

Performance
Testing

s

1s

Promote build
in Artifactory

s

356ms.





assets/1e821bb2-57ef-4e99-be7f-4365c4dcdf91.png
A nikhilpathania Updated Jenkinsfile

sic ‘added files to source control
B gitignore ‘added files to source control
[B) Jenkinsfle Updated Jenkinsfile

[B) LICENSE ‘added files to source control
[) READMEmd ‘added files to source control

B pom.xmi ‘added files to source control





assets/00a94942-270b-439e-bc33-3fb2e087a827.png
Results / Archive the artifacts -

Artifacts®

[ AllowEmptyArchive
[] casesensitive

(] DefauitExcludes
Excludes

L ]
[ Fingerprint

[ onlyifsuccessful





assets/326c64cd-d3bf-4fa2-8020-d8731154e286.png
ubuntu@node4:~$ sudo docker ps -a

CONTAINER ID IMAGE 'COMMAND CREATED STATUS

ubuntu "/bin/bash” 3@ minutes ago Exited (@) About a minute ago
81a5d12f6c4a ubuntu "/bin/bash” 2 weeks ago Exited (@) 2 weeks ago
ubuntu@nodea:~$ [






assets/cd806558-9290-422f-843b-89af36ee38a2.png
ubuntu@node4:~$ sudo docker images

REPOSITORY TAG  IMAGE ID CREATED SIZE
maven-build-slave-0.1 latest 317fb6ec990f About a minute ago 298 MB
ubuntu latest f49eec8960le 3 weeks ago 129 MB
hello-world latest 48b5124b2768 4 weeks ago 1.84 kB

ubuntu@nodea:~$ I





assets/75e9461b-266b-4728-9ae9-199714b159f0.png
[SSH] Starting slave process: od "/var/jenkins" && java -jar slave.jar

<===[JENKINS REMOTING CAPACITY]===>channel started
Slave.jar version: 3.7

This is a Unix agenmt

Evacuated stdout

Agent successfully connected and online

I





assets/798bfc0c-bb19-487e-b92d-161c409f9539.png
Kind

Usemame wih password 1
5080 [ Gova e, e, o, atcmatons o9 |
semane

Jenkins.

docker-container-id

Description

credentials for docker container (enkins slave)

® ® ® ® &





assets/377644cd-07c3-4848-affc-31adfd284e89.png
Create Quality Gate

Name * | example-quality-gate

Cancel






assets/7ae29d7e-75a0-42e8-bf47-459b8cb9c0c1.png
el @ cwe, obsole  Bulk Change
Activate In,

 brain-overload, stru Activate In Sonar way
Deactivate I

mell @ bad-practice V= | Actate






assets/7904f347-7f7b-4906-bc12-5d42d721ac52.png
User: lienkins_admin

Password

¥ Remember me on this computer





assets/bbf8604f-29dd-4ff9-a997-7f9655a14d34.png
Artifactory
() enaple Push to Bintray

(2 use the credentiais Plugin

Artifactory servers . Artitactory

Senver 1D petaut Artitactory Server

URL hitp://172.17.8.108:8081/artitactory/

Defauit Deployer Credentials

Usemame

admin

Password

Found Artifactory 5.5.2 P

List of Artifactory servers that projects will want to deploy artiacts and buid info to

() use Ditferent Resolver Credentials

® ®





assets/a554e7c0-38c9-447e-9efb-2e577b520d39.png
% B example-project

A Isues Measures Code Dashboardsv  Administration v

Quality Gate
Choose which quaity gate is associated with this project.

example-qualty-gate 7|





assets/ecd49b99-5d32-45cd-9d03-8d5bfcb3c875.png
Do you want to run this application?

name:  Jenkins Remoting Agent

G| pubtisher e e asute konagicn)
— Locations: _ http://192.168.56. 107:3080
Launched from donriosded 10 e

“This applicaton wil un with unvestricted access which may put your computer and personal
information atrsk. Run tis applcation only i you trust the locations and pubisher above.

T~ Do not show this again for this app from the publisher above.

[ i - _cencel|






assets/7276900d-8174-46d6-bd08-9d8ae475fddd.png
Name | Description | Stat... | Startup Type | Log On As.

* Juriper Netork Connect Service Manages..._Started Automatic _Local System

I p——





assets/d0faaace-2f45-4a7b-8506-6ad8d2c20a45.png
Root Directory Ivarljenkins_home
Temporary Directory Hmp

Backup schedule (cron) 00+t

Maximum backups in location | 10

Store no older than (days) | 7

File Management Strategy

& Configonly
€ FullBackup
Storage Strategy

TarGzStorage

Add Storage  +

Backup Location

LocalDirectory
Backup directory path | ronvine backup

¥ Enable this location

directory Yjenkins_backup OK

Validate cron syntax

@

Validate path

@
@





assets/828d7b02-7faf-472d-a4aa-2ac36c609086.png
Learning

Continuous Integration
with Jenkins

Second Edition

A beginner's guide to implementing Continuous
Integration and Continuous Delivery using Jenkins 2

L]





assets/1e461503-6663-4b58-b44d-02fa04fd0b2e.png
Access Control Security Realm

€ Delegate to senet container

@ Jenkins' own user database
I Allow users to sign up

© LDAP

€ Unix user/group database

[ONCNCRCNC]





assets/83069db0-08c4-4210-8b28-c951e83858ec.png
+/ jenkins_multibranch_pipeline_demo 29 Changes Tests Artifacts ) Va X
Branch: master &5 @ 1m13s Changes by noreply
Commit: 2e793d4 @© 26 minutes ago Started by user nikhil pathania

Static Code

& Unit test Analysi Integration Test






assets/d5107130-d5ae-4ef0-a630-1f593f84b85a.png
Kind s emame with password

o [ ———"

Usemame

admin

Password

o arifactory-account

Description

® ® ® ® ® Lo

credentials to access artifactory server





assets/ff10b159-86ec-40df-be8d-b01061ce0111.png
O There are no Jenkinsfiles in hello-world-example

Cre: eline






assets/7bd98a77-5268-43d7-b7cd-513e7d68f99f.png
SCM Metrics

View

Run

Job

Agent

Credentials

Overall

View
ThreadDump
HealthCheck

Tag
Read
Delete
Create
Configure
Update
Replay
Delete
Workspace
Read
Move
Discover
Delete
Create
Configure
Cancel
Build
Provision
Disconnect
Delete
Create
Connect
Configure
Build
View
Update
ManageDomains
Delete
Create
Read
Administer

Userigroup’

LY TTTIVEN il i ) i i A i i Al i A i i i

Add

User/group to add:





assets/5c88759c-f83e-4644-bbf0-be08e2a3dbdc.png
Node Properties
¥ Enmvironment variables

List of variables [T r—

Value | ibana_password

Add





assets/87a1a20e-2e55-474c-b8d1-9dfee98ea1a4.png
Run Pipeline

Al -

S W Name | Last Success  Last Failure  Last Duration

) enkins_pipeline_demo  N/A A A )

N

Pipeline name





assets/e90f47c6-2fe9-4c33-b8d8-6ece576f93c1.png
PROJECTS.

QG NAMEa VERSION LOC BUGS  VULNERABIITIES ~ CODESMELLS  LASTANALYS

5 example-project 17 42 o o






assets/55f13735-d54a-4cfe-8108-ba77f31f6928.png
Select Package Type

* * * * * *
& & o © 4
Bower Chef CocoaPods. Conan debian Gems

* * *

o
(:1 ‘w maven L O,

* * * * *
. € w8
fom =S






assets/d089eb2f-b0f8-4b0a-9f1a-43e4ee7c50a9.png





assets/df4e7d76-06d5-4d93-b709-ac3b166cd0bd.png
Create Project
Name* | example-project
Branch

Key* | example-project

Cancel






assets/924c015c-dd88-45da-b66b-239d8c01f1e1.png
Userigroup

& Jenkins_admin

& Jenkins_developer
& Jenkins_tester

& Jenkins_user
Anonymous

Overall

sesiuwpy

aaanax
A
aaanax
aaanax

peay
ajealo

Credentials

ajeleq

9 7 7 71 T suewogsbeuen

ajepdn
maIA
ping
a1nBluoo

aaanax
aaanax
aaanax
aaanax
aaanax
aaanax
aaanax
aaanax
aaanax
a3l
a3l
a3l
aaanax
aaanax
aaanax
aaanax
a3l
aaanax
aaanax
a3l
aaanax
a3l
a3l
aaanax
a3l

Agent

J8UU0D

ajealo

ajeleq

J08UL02SIQ

uolsinold

ping
103UBD
a1nBluoo

ajealo

ajeleq

1en00siQ

anol
peay
sordsiom

ajeleq

Run

Aerdey
ajepdn
a1nBluoo

View

ajealo
ajeleq

peay

SCM  Metrics
3
4 58<
&35¢%
23
FERR
FERR
FERR
FERR
rrrr





assets/d5b34192-d78e-4fa6-9402-c744e8bc6bac.png
Tokens

If you want to enforce security by not providing credentials of a real SonarQube
user to run your code scan or to invoke web services, you can provide a User Token
as a replacement of the user login. This wil increase the security of your installation
by not letting your analysis user's password going through your network.

NAME CREATED

e — octaber 29,2017

Generate Tokens

Enter Token Name

New token ‘jenkins-sonarqube" has been created. Make sure you copy it now,
you won' be able to see it agai

dBe171a4c965ace895edebB503F10ed3eFSabE0d






assets/c923f2eb-e6e1-4dd7-b42c-28c428b8c2b0.png
Feature

<fl

Develop & Commit

¥ s v

Integrate

Build





assets/f40c3688-14a8-4d28-8ea1-e518b87afeb8.png
Run View  SCM

Job

Credentials

Tag
Read
Delete
Create
Configure
Update
Replay
Delete
Workspace
Read
Move
Discover
Delete
Create
Configure
Cancel
Build
View
Update
ManageDomains
Delete
Create

Userigroup

rcorooooooooooCcoooC0Cnff

& jenkins developer T T T T CMFEFCOCCOCCOCFOCOVMEOVMENERE P

Anonymous





assets/5b778cfb-8997-45e4-a40b-912e5322b473.png
Search Run Options Help

EOEEEE MEEIREEIND [N °IF]

7 a Hello_World_Test_Plan

+ & IR | Thread Group

Logic Controller » £ hello world page

B worl start Config Element »
ST 1 imer » bfter a Sampler error
Validate Pre Processors )| continue O Start Next Thread Loop () Stop Threa
cut cubx applcy ’
e e Post Processors »
e iy Assertions » lusers): [1
Duplicate Cutsshitc :99"*93:5 §'BP':I
. ggregate Repo
{IDelay Thread cr¢ Backend Listener
Undo .
Beanshell Listener
fedo scheduler Comparison Assertion Visualizer
Open... cheduler Configus Generate Summary Results
s uration (seconds)| Graph Results
Save Selection As. JSR223 Listener
artup delay (sec
Save Node As Image  ctis P Mailer Visualizer
Save Screen As Image cul+shic fart Time Response Time Graph
Enable nd Time Save Responses to a file
Disable simple Data Writer
Toggle cuir Summary Report
w Results in Table

o NiewResultsTree |





assets/77dccbc9-a126-4781-9437-1f5b79ed21ef.png
Create User

Username:
Password
Confirm password

Full name:

E-mail address:






assets/0da5aa5c-2fda-4669-a6e9-ff3cee992fb8.png
it 2.15.1.2 Setup

Choosing HTTPS transport backend
Wihich SSLTLS ibrary would you ke Git o use for HTTPS connectons?

 Use the OpenSS library
Server certficates wil be valdated using the ca-bundle.a't fie.

 Use the native Windows Secure Channel library

Server certficates wil be validated using Windows Certiicate Stores.
This option aso allows you t use your company's nternal Root CA certiicates
dtrbuted e.g. via Active Diectory Domain Services.

Pttt For-indos, b o]






assets/5cc912af-7a37-47d9-bbac-4a0d8dcda61e.png
¥ nikhilpathania / simple-maven-project-with-tests
fored rom clsmpie-maven projctth e

¢>Code  [1Pullrequests 0  [Projects 0  EEWiki £ Settings





assets/368c6f20-7c9f-4c0b-bfff-a130f5eb8508.png
Node name | giandalone-indows-slave
@ Permanent Agent

Adds a plain, permanent agent to Jenkins. This is called "permanent” because Jenkins
doesn't provide higher level of integration with these agents, such as dynamic provisioning
Select this type if no other agent types apply — for example such as when you are adding
 physical computer,virtual machines managed outside Jenkins, etc.

€ Copy Existing Node
Copy from





assets/338fb9ee-1fab-4f4e-a7e9-7e412e0fdf7f.png
Agent standalone-linux-slave (maven build agent)

Oct 15, 2017 11:57:00 PM
Disconnected by jenkins_admin

'

intenance activity





assets/4d6e00da-6cea-423c-aecd-b71b2ab777b4.png
KInd " sername with password j

Scope Global (Jenkins, nodes, items, all child items, etc) j @
Usemame | enyin ®
Password ®
o production-server-credentials. )
Descriplion proquction-server-credentials. )





assets/07304f0b-783a-498e-b707-c033986ca49d.png
Jo11a BupuY 10

2401 %

Frequency of build





assets/b75bf3f0-c19e-4feb-88c5-19c5ffffec1a.png
Filter: [ Docker Plugin

Updates  Avallable  Installed  Advanced

Install | Name Version
Yet Another Docker Plugin
(@] 0.1.0-c31
Allows to run Docker Jenkins Cloud Slaves.
Docker plugin
0.162

This plugin allows slaves to be dynamically provisioned using Docker.





assets/52217b0f-36f5-497f-a50c-9b52762360ac.png
Conouring extr ptons
e e ot

[V Enable file system caching
File system data wil be read i buk and cached in memory for certain
operations (core. fscache s set to true’). This provides a significant
performance boost.

¥ Enable Git Credential Manager
The Git Credential Manager for Windous provides secure Git redential storage:
for Windows, most notably mlt-factor authentication support for Visua Studo
Team Services and Gitub. (requires NET framenork v4.5. 1.or orlater).

I Enable symbolic links

Enable symbolc inks (requires the SeCreateSymbolictink permissio).
Please note that existing repositries are unaffected by ths setting.

o

Pttt For-indos, b o]






assets/3baed5fb-2918-44a3-8754-16f6c407c07f.png
g Agent standalone-linux-slave (maven build agent)

Labels

maven-build-1 ~

Projects tied to standalone-linux-slave

None





assets/47b38548-a70f-4df2-8ca8-25e3525af551.png
Kind s emame with password

Scope Global (Jenkins, nodes, items, all child items, etc)

performance-test-agent-0.1

Uescription

® ® ® ® &

credentials for docker container (Performance test)





assets/3eeb250d-f852-432e-8fb4-fb06b6166658.png
Sep 16, 2017 1
Starced PeriodicBackup
0 oxg.sentinscs plusins pesicdicbachup LocslDizectesy

backup_2017_03_16_23_15_36_131.tar.gz copied to
/3enkins_backup/backup_2017_09_16_23_15_36_131.tar.qz

backup_2017_09_16_23_15_36_131.pbobj copied to /jenkins_backup
/backup_2017_05_16_23_15_36_131.pbob3
[ ————
Deleting the temporary file
/tmp/backup_2017_09_16_23_15_36_131.pbob3

Deleting temporary file
/tmp/backup_2017_09_16_23_15_36_131.tar.gz
Backup finished successfully after 18 ms

atsonsocel BeyocTeriotichostst £

Finished PeriodicBackup. 19 ms

Sep 16, Z017 1171606 B FRRNING oxg.Senbinacs.plugpins periodichachup Resterelxecuter i
The final result directory /tmp/finalResult is not empry,
deleting. ..

sep 16, 2007 123

/tmp/finalResult does not exist, making new directory
exg.3enkinec piogins peciodicbachup. LocsiDisestory

cessiereBactuptsontocssion
Copying /3eniins_backup/backup_2017_08_16_23_11_31_835.tar.qz
o /tmp/backup_2017_05_16_23_11_31_835.taz.gz

Archive /jenkins_backup/backup_2017_09_16_23_11 31_835.tar.gz
copied to /tmp/backup_2017_09_16_23_11_31_835.tar.gz

0 oxg 3enkinscs. plogins periodichactup TarceStorsge marchiveFiles
Extracting files from
/tmp/backup_2017_09_16_23_11_31_835.tar.gz to /tmp/finalResult

Deleting /tmp/backup_2017_09_16_23_11_31_835.tar.gz
17 11:16:07 B IBED oxg.Jenkinnes. plogins. pesiodiabactep. OrerveiselessoreBalicy sestore

Restoring of files finished
s senkinscs plusins pesicdichachup Rescesalrecssor
Reloading configuration...

Restoration finished after 592 ms





assets/5cf66ecb-2dc9-43fe-8457-18344b00f90d.png
Manage Jenkins

/i New version of Jenkins (2.73.1) is available for download (changelog).

Configure System
Configure global settings and paths

@ Configure Global Secuity

Secure Jenkins; define who is allowed to access/use the system

{ Configure Credentials
Configure the credential providers and types





assets/5ff0eeed-f4d9-4898-bebd-70a21507e379.png
Connect to Github

Jenkins needs an access key to authorize itself with Github. Create an

access key here.

‘ Your Github access token






assets/5769741f-1b23-4f9f-8510-161d08fcb172.png
Product Backlog

Sprint plannmu

'-‘
D€
Retospocive Mesing ' ‘ Sorint Backiog
@ ‘ ’ L

==
\ 0





assets/b880a897-95a6-4653-afef-83117295df5a.png
Userigroup

Anonymous
& Jenkins_admin
& Jenkins_developer
& Jenkins_tester
& Jenkins_user

Overall

sesiuwpy

aaanana
aaanana
aaanana
aaanana

peay
ajealo

Credentials

ajeleq

9 7 7 7 1 suewogsbeuen

ajepdn
maIA
ping
a1nBluoo

aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana
aaanana

Agent

J8UU0D

ajealo

ajeleq

J08UL02SIQ

uolsinold

ping

103UBD
a1nBluoo

ajealo

ajeleq

1en00siQ

anol
peay
sordsiom

ajeleq

Run

Aerdey
ajepdn
a1nBluoo

View

ajealo
ajeleq

peay

SCM  Metrics
3
4 58<
&35¢%
23
rrono
rrrono
rrrono
rrrono
rrrono





assets/cf8502d2-a1d9-4b0e-8315-570ea32d2fcc.png
@5 commits I 2 branches © 0 releases 281 contributor

Branch: master v || New pull request Create new file | Upload files | Find file





assets/ffa8caf4-1644-4929-863d-fcb6b34ed212.png
4 People

O, status

= Buids

A Credentials

&) nikhil pathania

Jenkins User Id: jenkins_admin





assets/7808491f-1b30-4647-85e2-acb14ccc6416.png
Name

standalone-inux-slave. @
Description maven build agent ©
#of executors P @
Remote 100t directory | o jeniins ®
Labels maven-build-1 @
Usage Use this node s much as possible j @
Launch method Launch agent via Java Web Start j @
Advanced...
Availabity Keep this agent online as much as possible j %)

Node Properties

' Enmvironment variables
= Tool Locations





assets/89003f6b-027e-46f8-baa2-c3fe1109e946.png
Repository static code analysis
server server

Testing farm

Production
environment.





assets/06937fdb-4d28-4e9c-85c3-bed014c2ade2.png
<> Code Pull requests 0 Projects 0 Wiki Settings  Insights ~

simple-maven-project-with-tests / Jenkinsfile or cancel
p proj

< Editnewfile | @ Preview Spaces & 2 & Nowsp %

1





assets/b2b94a51-ea3b-4362-bf30-c555d7afe146.png
Stage Logs (Static Code Analysis) x

® Shell Script — mvn clean verify sonar-sonar -Dsonar projectName=example-project -Dsonar projectiey=example-project
-Dsonar projectVersion=SBUILD_NUMBER — (self time 225)

[INFO] CPD calculation Finished
[INFO] Analysis report generated in S6ms, dir size=27 KB

[INFO] Analysis reports compressed in lams, zip size=13 KB

[INFO] Analysis report uploaded in 2oms

[INFO] ANALYSTS SUCCESSFUL, you can browse http://192.168.56.101:9000/dashboard/index/example-project
[INFO] Note that you will be able to access the updated dashboard once the server has processed the submit
ted analysis report

[INFO] More about the report processing at http://192.168.56.101:9000/api/ce/task?id=AAPHHEYnEDPNtHOBbE
[INFO] Executing post-job org.sonar.plugins.buildbreaker.QualityGateBreaker

[INFO] Waiting for report processing to complete...
[INFO] Quality gate status: WARN

[WARNING] Major Issues: 24 > 1

[TnFo] -
[INFO] BUILD SUCCESS
[TnFo] -
[INFO] Total time: 20.907 s

[INFO] Finished at: 2017-12-03T16:
[INFO] Final Memory: 3om/430M
[TnFo] -






assets/7f7ae013-b35a-4166-89cd-e29aaee573dd.png
Type of Definition Pipeline tab

General  Buil\Triggers  Advanced Project Options

Pipeline

Definition Pipsline script J

Script 1 try sample Pipeline +| @

¥ Use Groovy Sandbox @

Pipeline Syntax /
Place where you write your script A short description
about the option

The Pipeline Syntax Utility





assets/07e485d5-9c07-4e70-b65a-984f42a0e102.png
Stage View

Build & Unit Static Code Integration

=D test Analysis Test REID
55 205 225 3s ES
peeo 55 19s 225
2
sated]
@ G
%% | cranges 4s 195 225 as 2
1631






assets/ae9aade4-de56-41cb-af18-7bf9a541a195.png
Fiter: [\ Artitactory

Updates  Avallable  Installed  Advanced
Install | Name Version

Artifactory Plugin
Integrates Artifactory to Jenkins

Install without restart Download now and Install after restart

292






assets/706e7583-47b3-4db5-b944-425924ab3213.png
®

Status  Run Commit ~ Branch Message Duration Completed

(] 3 9bs8117  master Updated Jenkinsfile 75 aminute ago





assets/d2f51380-f683-4e9f-8807-0eaf756fcbd7.png
‘Source Control

Fealure Branch 1 Integration Branch Feature Branch 2

Source code Jenkinsfle  Source code Jenkinsfle  Source code Jenkinsfie

Jenkins server

et o Featue rancn 1 @)
B & Uni est

peineformeraton e (@)
Buna & Unttest | ntegraton st
et o Fatre rancn o)
N stage in a Ci pipeline
o





assets/30171bc2-e4c7-4125-b765-23a3a72c3c41.png
Pipeline

Definition

Pipsline script

Script

try sample Pipeline.






assets/e711c177-52a8-4c0a-b7e8-43858a7ab8f6.png
G Jenkin enkins] <\
& - C [ A Notsecure | #7%//192.168.56.104/login?rom=%2F

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a
password has been written to the log (not sure where to find it?)

and this file on the server:
/var/1ib/jenkins/secrets/initialAdminPassword

Please copy the password from either location and paste it
below.

Administrator password






assets/85f46033-e09b-4615-9a27-aa2c8ff92dc7.png
Choose step type
provide

Provide Maven environment





assets/c9bd2038-3014-4e97-bb31-5aa3ba3c136c.png
W 5 example-project

# Issues Measures Code Dashboards~

Quality Gate [ EEIREEN

24

Bugs & Vulnerabilities

Ol

Bugs

Code Smells

558

Code smells
started a day ago

Duplications

0.0%

Duplications

Size

Java — 12

Administration v

Leak Period: since 16

started 2 day ago.
08 0 0
Vulnerabilities New Bugs NE

5h

0 +0.0%

Duplicated Blocks






assets/d2fdbec6-baaa-4e51-b6f1-795ee8ff8af7.png
Feature Branch 1 Integration Branch
U Buiid & nittest B4
LI Buiid & nittest B4
LI Buiia & nitiest Vg

Buid & Unit test_ RV
Integration test Vg

Feature Branch 2

DI Buia & unittest_JP'4
o ETHITTE v-

Build & Unittest 4
Integration tost

Build & Unit test k¥
Integration test RV

¢ ETHITTE v-

© Code commit
I staoe i a Ci piocine
X Fai

W Pass
—Skip





assets/658d04c6-e015-4bd6-a911-3c0fc68b87ec.png
SCM  Metrics

View

Run

Job

Agent

Credentials

Overall

View
ThreadDump
HealthCheck

Tag
Read
Delete
Create
Configure
Update
Replay
Delete
Workspace
Read
Move
Discover
Delete
Create
Configure
Cancel
Build
Provision
Disconnect
Delete
Create
Connect
Configure
Build
View
Update

rcrooooocCooCoCoCooCcCoCcCoCcCoCcCoCC0CD 0Crnr

ManageDomalns L

Delete
Create
Read
Administer

Userigroup

L
L
N
L

Anonymous

& jenkins_adnin¥ V¥ VMV VMV VVWVVVVIVVIVVIVVIVFVIVFVIVFEVIVVEIVVEFEFVFVFEPV





assets/a2a4d822-acbf-428c-8060-37a9c4fc8f8d.png
@ Home Artifact Repository Browser

@ Arifacts Tree Simple Q ] Cor

»

© example-repo-local






assets/e759d255-6a0c-4490-b307-4fe948e361f4.png
Connect agent to Jenkins one of these ways:

[ Launch agent from browser

« Run from agent command line:

java -jar slave.jar -jnlpUrl http://192.168.56.107:8080
/computer/standalone-windows-slave/slave-agent.jnlp -secret
260c26532211273501d3¢a76120967£63350h64751492422600707baa%e
8293






