

Mastering Ansible
Second Edition

Master the ins and outs of advanced operations with Ansible

Jesse Keating

BIRMINGHAM - MUMBAI

Mastering Ansible

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Second edition: March 2017

Production reference: 1270317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-568-1

www.packtpub.com

http://www.packtpub.com

Credits

Author

Jesse Keating

Copy Editor

Safis Editing

Reviewer

Sreenivas Makam

Project Coordinator

Kinjal Bari

Acquisition Editor
Prachi Bisht

Proofreader

Safis Editing

Content Development Editor
Trusha Shriyan

Indexer

Pratik Shirodkar

Technical Editor
Varsha Shivhare

Production Coordinator
Nilesh Mohite

Graphics
Kirk D'Penha

About the Author
Jesse Keating is an accomplished Ansible user, contributor, and presenter. He has been an
active member of the Linux and open source community for over fifteen years. He has first-
hand experience with a variety of IT activities, software development, and large-scale
system administration. He has presented at numerous conferences and meet-ups, and has
written many articles on a variety of topics.

About the Reviewer
Sreenivas Makam is a senior engineering manager at Cisco Systems, Bangalore. He has a
master's in electrical engineering and has around 18 years’ experience in the networking
industry. He has worked in both startups and big, established companies. His interests
include Containers, SDN, network automation, devops, and cloud technologies, and he
likes to try out and follow open source projects in these areas. His blog can be found at h t t p

s ://s r e e n i n e t . w o r d p r e s s . c o m /, he has presentations at h t t p ://w w w . s l i d e s h a r e . n e t /S r

e e n i v a s M a k a m , and his hacky code is at h t t p s ://g i t h u b . c o m /s m a k a m . Sreenivas is a
Docker Captain, (h t t p s ://w w w . d o c k e r . c o m /c o m m u n i t y /d o c k e r - c a p t a i n s) and his blog
articles have been published in Docker weekly newsletters. He can be reached on Twitter at
@srmakam.

He has written Mastering CoreOS, also reviewed Mastering Ansible, CoreOS Cookbook, all by
Packt Publishing.

It was extra special that my second daughter, Masha, was born while reviewing this book.
Thanks to my daughters, Sasha and Masha, for keeping me energetic.

https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
http://www.slideshare.net/SreenivasMakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://github.com/smakam
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1787282589.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688
https://www.amazon.com/dp/1787125688

Table of Contents
Preface 1

Chapter 1: System Architecture and Design of Ansible 6

Ansible version and configuration 7
Inventory parsing and data sources 8

Static inventory 8
Inventory variable data 10
Dynamic inventories 13
Runtime inventory additions 15
Inventory limiting 15

Playbook parsing 19
Order of operations 19
Relative path assumptions 21
Play behavior directives 24
Execution strategies 25
Host selection for plays and tasks 26
Play and task names 27

Module transport and execution 30
Module reference 30
Module arguments 31
Module transport and execution 32

Task performance 33
Variable types and location 34

Variable types 34
Accessing external data 36
Variable precedence 36

Precedence order 36
Merging hashes 37

Summary 38

Chapter 2: Protecting Your Secrets with Ansible 39

Encrypting data at rest 39
Things Vault can encrypt 40
Creating new encrypted files 41

Password prompt 42
Password file 43

[ii]

Password script 44
Encrypting existing files 44
Editing encrypted files 46
Password rotation on encrypted files 47
Decrypting encrypted files 48
Executing Ansible-playbook with encrypted files 49

Protecting secrets while operating 51
Secrets transmitted to remote hosts 52
Secrets logged to remote or local files 52

Summary 54

Chapter 3: Unlocking the Power of Jinja2 Templates 55

Control structures 55
Conditionals 56

Inline conditionals 58
Loops 60

Filtering loop items 62
Loop indexing 63

Macros 66
Macro variables 67

name 68
arguments 69
defaults 70
catch_kwargs 71
catch_varargs 72
caller 73

Data manipulation 76
Syntax 76
Useful built-in filters 77

default 78
count 78
random 78
round 79

Useful Ansible provided custom filters 79
Filters related to task status 79
shuffle 80
Filters dealing with path names 81

basename 82
dirname 83
expanduser 83

Base64 encoding 84
Searching for content 86

Omitting undefined arguments 87
Python object methods 88

[iii]

String methods 88
List methods 89
int and float methods 90

Comparing values 90
Comparisons 90
Logic 91
Tests 91

Summary 92

Chapter 4: Controlling Task Conditions 93

Defining a failure 93
Ignoring errors 93
Defining an error condition 95

Defining a change 101
Special handling of the command family 103
Suppressing a change 106

Error recovery 107
Rescue 108
Always 110

Summary 113

Chapter 5: Composing Reusable Ansible Content with Roles 114

Task, handler, variable, and playbook include concepts 115
Including tasks 115

Passing variable values to included tasks 118
Passing complex data to included tasks 120
Conditional task includes 122
Tagging included tasks 124

Task includes with loops 126
Including handlers 130
Including variables 132

vars_files 132
Dynamic vars_files inclusion 134
include_vars 135
extra-vars 138

Including playbooks 139
Roles 139

Role structure 139
Tasks 140
Handlers 140
Variables 140
Modules and plugins 141
Dependencies 141

[iv]

Files and templates 141
Putting it all together 142

Role dependencies 143
Role dependency variables 143
Tags 144
Role dependency conditionals 145

Role application 145
Mixing roles and tasks 148
Role includes 151

Role sharing 151
Ansible Galaxy 151

Summary 156

Chapter 6: Minimizing Downtime with Rolling Deployments 157

In-place upgrades 157
Expanding and contracting 160
Failing fast 163

The any_errors_fatal option 164
The max_fail_percentage option 165
Forcing handlers 168

Minimizing disruptions 171
Delaying a disruption 171
Running destructive tasks only once 176

Serializing single tasks 177
Summary 180

Chapter 7: Troubleshooting Ansible 181

Playbook logging and verbosity 181
Verbosity 182
Logging 182

Variable introspection 183
Variable sub elements 186

Subelement versus Python object method 189
Debugging code execution 191

Playbook debugging 191
Debugging local code 194

Debugging inventory code 195
Debugging playbook code 200
Debugging executor code 201
Debugging remote code 205
Debugging the action plugins 209

Summary 210

Chapter 8: Extending Ansible 211

[v]

Developing modules 211
The basic module construct 211
Custom modules 212
Simple module 213

Module documentation 216
Providing fact data 221
The check mode 223

Supporting the check mode 223
Handling check mode 223

Developing plugins 225
Connection type plugins 225
Shell plugins 225
Lookup plugins 225
Vars plugins 226
The fact caching plugins 226
Filter plugins 226
Callback plugins 228
Action plugins 231
Distributing plugins 231

Developing dynamic inventory plugins 232
Listing hosts 233
Listing host variables 233
Simple inventory plugin 234

Optimizing script performance 239
Contributing to the Ansible project 241

Contribution submissions 241
The ansible repository 242
Executing tests 242

Unit tests 243
Integration tests 244
Code style tests 246

Making a pull request 247
Summary 247

Chapter 9: Infrastructure Provisioning 248

Managing cloud infrastructure 248
Creating servers 249

Booting virtual servers 250
Adding to runtime inventory 253

Using OpenStack inventory source 256
Interacting with Docker containers 262

Building images 263

[vi]

Building containers without a Dockerfile 266
Docker inventory 270

Previewing of Ansible container 274
Init 276
Build 279
Run 281

Summary 284

Index 285

Preface
Welcome to Mastering Ansible, your guide to a variety of advanced features and
functionalities provided by Ansible, the automation and orchestration tool. This book will
provide readers with the knowledge and skills to truly understand how Ansible functions
at a fundamental level. This will allow readers to master the advanced capabilities needed
to tackle complex automation challenges of today and the future. Readers will gain
knowledge of Ansible workflows, explore use cases for advanced features, troubleshoot
unexpected behavior, and extend Ansible through customization.

What this book covers
Chapter 1, System Architecture and Design of Ansible, looks at the ins and outs of how
Ansible goes about performing tasks on behalf of an engineer, how it is designed, and how
to work with inventory and variables.

Chapter 2, Protecting Your Secrets with Ansible, explores the tools available to encrypt data at
rest and prevent secrets from being revealed at runtime.

Chapter 3, Unlocking the Power of Jinja2 Templates, states the varied uses of the Jinja2
templating engine within Ansible and discusses ways to make the most out of its
capabilities.

Chapter 4, Controlling Task Conditions, describes the changing of the default behavior of
Ansible to customize task error and change conditions.

Chapter 5, Composing Reusable Ansible Content with Roles, covers the approach to move
beyond executing loosely-organized tasks on hosts to encapsulating clean and reusable
abstractions to apply a specific functionality of a target set of hosts.

Chapter 6, Minimizing Downtime with Rolling Deployments, explains the common
deployment and upgrade strategies to showcase relevant Ansible features.

Chapter 7, Troubleshooting Ansible, takes you through the various methods that can be
employed to examine, introspect, modify, and debug the operations of Ansible.

Chapter 8, Extending Ansible, discovers the various ways in which new capabilities can be
added to Ansible via modules, plugins, and inventory sources.

Preface

[2]

Chapter 9, Infrastructure Provisioning, will be working with cloud infrastructure providers
and container systems to create an infrastructure to manage.

What you need for this book
To follow the examples provided in this book, you will need access to a computer platform
capable of running Ansible. Currently, Ansible can be run on any machine with Python 2.6
or 2.7 installed (Windows isn't supported for the control machine). This includes Red Hat,
Debian, CentOS, OS X, any of the BSDs, and so on.

This book uses the Ansible 2.2.x.x series release.

Ansible installation instructions can be found at h t t p ://d o c s . a n s i b l e . c o m /a n s i b l e /i n t r

o _ i n s t a l l a t i o n . h t m l .

Some examples use Docker, version 1.12.6. Docker installation instructions can be found at: h t t p ://w w w . d

o c k e r . c o m /c o m m u n i t y - e d i t i o n .

Who this book is for
This book is for Ansible developers and operators who have an understanding of the core
elements and applications but are now looking to enhance their skills in applying
automation using Ansible.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We'll
make use of this in a failed_when statement."

A block of code is set as follows:

- name: query sessions
 command: /sbin/iscsiadm –m session
 register: sessions
 failed_when: sessions.rc not in (0, 21)

http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition
http://www.docker.com/community-edition

Preface

[3]

Any command-line input or output is written as follows:

$ source ./hacking/env-setup

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - A n s i b l e - S e c o n d - E d i t i o n . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g A n s i b l e S e c o n d E d i t i o n _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/Mastering-Ansible-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringAnsibleSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[5]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
System Architecture and

Design of Ansible
This chapter provides a detailed exploration of the architecture and design of how Ansible
goes about performing tasks on your behalf. We will cover the basic concepts of inventory
parsing and how the data is discovered, and then dive into playbook parsing. We will take
a walk through module preparation, transportation, and execution. Lastly, we will detail
variable types and find out where variables can be located, the scope they can be used in,
and how precedence is determined when variables are defined in more than one location.
All these things will be covered in order to lay the foundation for mastering Ansible!

In this chapter, we will cover the following topics:

Ansible version and configuration
Inventory parsing and data sources
Playbook parsing
Execution strategies
Module transport and execution
Variable types and locations
Variable precedence

System Architecture and Design of Ansible

[7]

Ansible version and configuration
It is assumed that you have Ansible installed on your system. There are many documents
out there that cover installing Ansible in a way that is appropriate for the operating system
and version that you might be using. This book will assume the use of the Ansible 2.2.x.x
version. To discover the version in use on a system with Ansible already installed, make use
of the version argument, that is, either ansible or ansible-playbook:

Note that ansible is the executable for doing adhoc one-task executions
and ansible-playbook is the executable that will process playbooks for
orchestrating many tasks.

The configuration for Ansible can exist in a few different locations, where the first file found
will be used. The search order changed slightly in version 1.5, with the new order being:

ANSIBLE_CFG: This is an environment variable
~/ansible.cfg: This is in the current directory
ansible.cfg: This is in the user's home directory
./etc/ansible/ansible.cfg

Some installation methods may include placing a config file in one of these locations. Look
around to check whether such a file exists and see what settings are in the file to get an idea
of how Ansible operation may be affected. This book will assume no settings in the
ansible.cfg file that would affect the default operation of Ansible.

System Architecture and Design of Ansible

[8]

Inventory parsing and data sources
In Ansible, nothing happens without an inventory. Even ad hoc actions performed on
localhost require an inventory, even if that inventory consists just of the localhost. The
inventory is the most basic building block of Ansible architecture. When executing ansible
or ansible-playbook, an inventory must be referenced. Inventories are either files or
directories that exist on the same system that runs ansible or ansible-playbook. The
location of the inventory can be referenced at runtime with the --inventory-file (-i)
argument, or by defining the path in an Ansible config file.

Inventories can be static or dynamic, or even a combination of both, and Ansible is not
limited to a single inventory. The standard practice is to split inventories across logical
boundaries, such as staging and production, allowing an engineer to run a set of plays
against their staging environment for validation, and then follow with the same exact plays
run against the production inventory set.

Variable data, such as specific details on how to connect to a particular host in your
inventory, can be included along with an inventory in a variety of ways as well, and we'll
explore the options available to you.

Static inventory
The static inventory is the most basic of all the inventory options. Typically, a static
inventory will consist of a single file in the ini format. Here is an example of a static
inventory file describing a single host, mastery.example.name:

mastery.example.name

System Architecture and Design of Ansible

[9]

That is all there is to it. Simply list the names of the systems in your inventory. Of course,
this does not take full advantage of all that an inventory has to offer. If every name were
listed like this, all plays would have to reference specific hostname, or the special all
group. This can be quite tedious when developing a playbook that operates across different
sets of your infrastructure. At the very least, hosts should be arranged into groups. A design
pattern that works well is to arrange your systems into groups based on expected
functionality. At first, this may seem difficult if you have an environment where single
systems can play many different roles, but that is perfectly fine. Systems in an inventory can
exist in more than one group, and groups can even consist of other groups! Additionally,
when listing groups and hosts, it's possible to list hosts without a group. These would have
to be listed first, before any other group is defined. Let's build on our previous example and
expand our inventory with a few more hosts and some groupings:

[web]
mastery.example.name

[dns]
backend.example.name

[database]
backend.example.name

[frontend:children]
web

[backend:children]
dns
database

What we have created here is a set of three groups with one system in each, and then two
more groups, which logically group all three together. Yes, that's right; you can have groups
of groups. The syntax used here is [groupname:children], which indicates to Ansible's
inventory parser that this group by the name of groupname is nothing more than a
grouping of other groups. The children in this case are the names of the other groups. This
inventory now allows writing plays against specific hosts, low-level role-specific groups, or
high-level logical groupings, or any combination.

By utilizing generic group names, such as dns and database, Ansible plays can reference
these generic groups rather than the explicit hosts within. An engineer can create one
inventory file that fills in these groups with hosts from a preproduction staging
environment and another inventory file with the production versions of these groupings.
The playbook content does not need to change when executing on either staging or
production environment because it refers to the generic group names that exist in both
inventories. Simply refer to the right inventory to execute it in the desired environment.

System Architecture and Design of Ansible

[10]

Inventory variable data
Inventories provide more than just system names and groupings. Data about the systems
can be passed along as well. This can include:

Host-specific data to use in templates
Group-specific data to use in task arguments or conditionals
Behavioral parameters to tune how Ansible interacts with a system

Variables are a powerful construct within Ansible and can be used in a variety of ways, not
just the ways described here. Nearly every single thing done in Ansible can include a
variable reference. While Ansible can discover data about a system during the setup phase,
not all data can be discovered. Defining data with the inventory is how to expand the
dataset. Note that variable data can come from many different sources, and one source may
override another source. Variable precedence order is covered later in this chapter.

Let's improve upon our existing example inventory and add to it some variable data. We
will add some host-specific data as well as group-specific data:

[web]
mastery.example.name ansible_host=192.168.10.25

[dns]
backend.example.name

[database]
backend.example.name

[frontend:children]
web

[backend:children]
dns
database

[web:vars]
http_port=88
proxy_timeout=5

[backend:vars]
ansible_port=314

[all:vars]
ansible_ssh_user=otto

System Architecture and Design of Ansible

[11]

In this example, we defined ansible_host for mastery.example.name to be the IP
address of 192.168.10.25. The ansible_host variable is a behavioral inventory
variable, which is intended to alter the way Ansible behaves when operating with this host.
In this case, the variable instructs Ansible to connect to the system using the provided IP
address rather than performing a DNS lookup on the name mastery.example.name.
There are a number of other behavioral inventory variables, which are listed at the end of
this section along with their intended use.

As of version 2.0, the longer form of some behavioral inventory
parameters has been deprecated. The ssh part of ansible_ssh_host,
ansible_ssh_user, and ansible_ssh_port is no longer required. A
future release may ignore the longer form of these variables.

Our new inventory data also provides group-level variables for the web and backend
groups. The web group defines http_port, which may be used in an nginx configuration
file, and proxy_timeout, which might be used to determine HAProxy behavior. The
backend group makes use of another behavioral inventory parameter to instruct Ansible to
connect to the hosts in this group using port 314 for SSH, rather than the default of 22.

Finally, a construct is introduced that provides variable data across all the hosts in the
inventory by utilizing a built-in all group. Variables defined within this group will apply
to every host in the inventory. In this particular example, we instruct Ansible to log in as the
otto user when connecting to the systems. This is also a behavioral change, as the Ansible
default behavior is to log in as a user with the same name as the user executing ansible or
ansible-playbook on the control host.

Here is a table of behavior inventory variables and the behavior they intend to modify:

Inventory parameters Behaviour

ansible_host This is the DNS name or IP address used to connect to
the host, if different from the inventory name, or the
name of the Docker container to connect to.

ansible_port This is the SSH port number, if not 22.

ansible_user This is the default SSH username or user inside a
Docker container to use.

ansible_ssh_pass This is the SSH password to use (this is insecure; we
strongly recommend using --ask-pass or the SSH
keys).

System Architecture and Design of Ansible

[12]

ansible_ssh_private_key_file This is the private key file used by SSH. This is useful if
you use multiple keys and you don't want to use SSH
agent.

ansible_ssh_common_args This defines SSH arguments to append to the default
arguments for ssh, sftp, and scp.

ansible_sftp_extra_args This setting is always appended to the default sftp
command-line arguments.

ansible_scp_extra_args This setting is always appended to the default scp
command-line arguments.

ansible_ssh_extra_args This setting is always appended to the default ssh
command-line arguments.

ansible_ssh_pipelining This setting uses a Boolean to define whether or not
SSH pipelining should be used for this host.

ansible_ssh_executable This setting overrides the path to the SSH executable
for this host.

ansible_become This defines whether privilege escalation (sudo or
otherwise) should be used with this host.

ansible_become_method The method to use for privilege escalation. One of
sudo, su, pbrun, pfexec, doas, dzdo, or ksu.

ansible_become_user This is the user to become through privilege escalation.

ansible_become_pass This is the password to use for privilege escalation.

ansible_sudo_pass This is the sudo password to use (this is insecure; we
strongly recommend using --ask-sudo-pass).

ansible_connection This is the connection type of the host. Candidates are
local, smart, ssh, paramiko, or docker. The
default is paramiko before Ansible 1.2, and smart
afterwards, which detects whether the usage of ssh will
be feasible based on whether the SSH feature
ControlPersist is supported.

ansible_docker_extra_args This is a string of any extra arguments that can be
passed to Docker. This is mainly used to define a
remote Docker daemon to use.

System Architecture and Design of Ansible

[13]

ansible_shell_type This is the shell type of the target system. By default,
commands are formatted using the sh-style syntax.
Setting this to csh or fish will cause commands to be
executed on target systems to follow the syntax of csh
or fish instead.

ansible_shell_executable This sets the shell tool that will be used on the target
system. This should only be used if the default of
/bin/sh is not possible to use.

ansible_python_interpreter This is the target host Python path. This is useful for
systems with more than one Python, systems that are
not located at /usr/bin/python (such as *BSD), or
for systems where /usr/bin/python is not a 2.X
series Python. We do not use the /usr/bin/env
mechanism as it requires the remote user's path to be
set right and also assumes that the Python executable is
named Python, where the executable might be named
something like python26.

ansible_*_interpreter This works for anything such as Ruby or Perl and
works just like ansible_python_interpreter.
This replaces the shebang of modules which run on
that host.

Dynamic inventories
A static inventory is great and enough for many situations. But there are times when a
statically written set of hosts is just too unwieldy to manage. Consider situations where
inventory data already exists in a different system, such as LDAP, a cloud computing
provider, or an in-house CMDB (inventory, asset tracking, and data warehousing) system.
It would be a waste of time and energy to duplicate that data, and in the modern world of
on-demand infrastructure, that data would quickly grow stale or disastrously incorrect.

Another example of when a dynamic inventory source might be desired is when your site
grows beyond a single set of playbooks. Multiple playbook repositories can fall into the trap
of holding multiple copies of the same inventory data, or complicated processes have to be
created to reference a single copy of the data. An external inventory can easily be leveraged
to access the common inventory data stored outside of the playbook repository to simplify
the setup. Thankfully, Ansible is not limited to static inventory files.

System Architecture and Design of Ansible

[14]

A dynamic inventory source (or plugin) is an executable script that Ansible will call at
runtime to discover real-time inventory data. This script may reach out into external data
sources and return data, or it can just parse local data that already exists but may not be in
the Ansible inventory ini format. While it is possible and easy to develop your own
dynamic inventory source, which we will cover this in a later chapter, Ansible provides a
number of example inventory plugins, including but not limited to:

OpenStack Nova
Rackspace Public Cloud
DigitalOcean
Linode
Amazon EC2
Google Compute Engine
Microsoft Azure
Docker
Vagrant

Many of these plugins require some level of configuration, such as user credentials for EC2
or authentication endpoint for OpenStack Nova. Since it is not possible to configure
additional arguments for Ansible to pass along to the inventory script, the configuration for
the script must either be managed via an ini config file read from a known location or
environment variables read from the shell environment used to execute ansible or
ansible-playbook.

When ansible or ansible-playbook is directed at an executable file for an inventory
source, Ansible will execute that script with a single argument, --list. This is so that
Ansible can get a listing of the entire inventory in order to build up its internal objects to
represent the data. Once that data is built up, Ansible will then execute the script with a
different argument for every host in the data to discover variable data. The argument used
in this execution is --host <hostname>, which will return any variable data specific to
that host.

In Chapter 8, Extending Ansible, we will develop our own custom inventory plugin to
demonstrate how they operate.

System Architecture and Design of Ansible

[15]

Runtime inventory additions
Just like static inventory files, it is important to remember that Ansible will parse this data
once, and only once, per ansible or ansible-playbook execution. This is a fairly
common stumbling point for users of cloud dynamic sources, where frequently a playbook
will create a new cloud resource and then attempt to use it as if it were part of the
inventory. This will fail, as the resource was not part of the inventory when the playbook
launched. All is not lost though! A special module is provided that allows a playbook to
temporarily add inventory to the in-memory inventory object, the add_host module.

The add_host module takes two options, name and groups. The name should be obvious,
it defines the hostname that Ansible will use when connecting to this particular system. The
groups option is a comma-separated list of groups to add this new system to. Any other
option passed to this module will become the host variable data for this host. For example,
if we want to add a new system, name it newmastery.example.name, add it to the web
group, and instruct Ansible to connect to it by way of IP address 192.168.10.30, we will
create a task same as this:

- name: add new node into runtime inventory
 add_host:
 name: newmastery.example.name
 groups: web
 ansible_host: 192.168.10.30

This new host will be available to use, by way of the name provided, or by way of the web
group, for the rest of the ansible-playbook execution. However, once the execution has
completed, this host will not be available unless it has been added to the inventory source
itself. Of course, if this were a new cloud resource created, the next ansible or ansible-
playbook execution that sourced inventory from that cloud would pick up the new
member.

Inventory limiting
As mentioned earlier, every execution of ansible or ansible-playbook will parse the
entire inventory it has been directed at. This is even true when a limit has been applied. A
limit is applied at runtime by making use of the --limit runtime argument to ansible or
ansible-playbook. This argument accepts a pattern, which is basically a mask to apply to
the inventory. The entire inventory is parsed, and at each play the supplied limit mask
further limits the host pattern listed for the play.

System Architecture and Design of Ansible

[16]

Let's take our previous inventory example and demonstrate the behavior of Ansible with
and without a limit. If you recall, we have the special group all that we can use to
reference all the hosts within an inventory. Let's assume that our inventory is written out in
the current working directory in a file named mastery-hosts, and we will construct a
playbook to demonstrate the host on which Ansible is operating. Let's write this playbook
out as mastery.yaml:

- name: limit example play
 hosts: all
 gather_facts: false

 tasks:
 - name: tell us which host we are on
 debug:
 var: inventory_hostname

The debug module is used to print out text, or values of variables. We'll use this module a
lot in this book to simulate actual work being done on a host.

Now, let's execute this simple playbook without supplying a limit. For simplicity's sake, we
will instruct Ansible to utilize a local connection method, which will execute locally rather
than attempting to SSH to these nonexistent hosts. Let's take a look at the following
screenshot:

System Architecture and Design of Ansible

[17]

As we can see, both hosts, backend.example.name and mastery.example.name, were
operated on. Let's see what happens if we supply a limit, specifically to limit our run to only
frontend systems:

We can see that only mastery.example.name was operated in this time. While there are
no visual clues that the entire inventory was parsed, if we dive into the Ansible code and
examine the inventory object, we will indeed find all the hosts within, and see how the limit
is applied every time the object is queried for items.

It is important to remember that regardless of the host's pattern used in a play, or the limit
supplied at runtime, Ansible will still parse the entire inventory set during each run. In fact,
we can prove this by attempting to the access host variable data for a system that would
otherwise be masked by our limit. Let's expand our playbook slightly and attempt to access
the ansible_port variable from backend.example.name:

- name: limit example play
 hosts: all
 gather_facts: false

 tasks:
 - name: tell us which host we are on
 debug:
 var: inventory_hostname

 - name: grab variable data from backend

System Architecture and Design of Ansible

[18]

 debug:
 var: hostvars['backend.example.name']['ansible_port']

We will still apply our limit, which will restrict our operations to just
mastery.example.name:

We have successfully accessed the host variable data (by way of group variables) for a
system that was otherwise limited out. This is a key skill to understand, as it allows for
more advanced scenarios, such as directing a task at a host that is otherwise limited out.
Delegation can be used to manipulate a load balancer to put a system into maintenance
mode while being upgraded without having to include the load balancer system in your
limit mask.

System Architecture and Design of Ansible

[19]

Playbook parsing
The whole purpose of an inventory source is to have systems to manipulate. The
manipulation comes from playbooks (or in the case of ansible ad hoc execution, simple
single-task plays). You should already have a base understanding of playbook construction
so we won't spend a lot of time covering that; however, we will delve into some specifics of
how a playbook is parsed. Specifically, we will cover the following:

Order of operations
Relative path assumptions
Play behavior keys
Host selection for plays and tasks
Play and task names

Order of operations
Ansible is designed to be as easy as possible for a human to understand. The developers
strive to strike the best balance of human comprehension and machine efficiency. To that
end, nearly everything in Ansible can be assumed to be executed in a top to bottom order;
that is, the operation listed at the top of a file will be accomplished before the operation
listed at the bottom of a file. Having said that, there are a few caveats and even a few ways
to influence the order of operations.

A playbook has only two main operations it can accomplish. It can either run a play, or it
can include another playbook from somewhere on the filesystem. The order in which these
are accomplished is simply the order in which they appear in the playbook file, from top to
bottom. It is important to note that while the operations are executed in order, the entire
playbook and any included playbooks are completely parsed before any executions. This
means that any included playbook file has to exist at the time of the playbook parsing. They
cannot be generated in an earlier operation. This is specific to playbook includes, not
necessarily to task includes that may appear within a play, which will be covered in a later
chapter.

Within a play, there are a few more operations. While a playbook is strictly ordered from
top to bottom, a play has a more nuanced order of operations. Here is a list of the possible
operations and the order in which they will happen:

Variable loading
Fact gathering
The pre_tasks execution

System Architecture and Design of Ansible

[20]

Handlers notified from the pre_tasks execution
Roles execution
Tasks execution
Handlers notified from roles or tasks execution
The post_tasks execution
Handlers notified from post_tasks execution

Here is an example play with most of these operations shown:

- hosts: localhost
 gather_facts: false

 vars:
 - a_var: derp

 pre_tasks:
 - name: pretask
 debug:
 msg: "a pre task"
 changed_when: true
 notify: say hi

 roles:
 - role: simple
 derp: newval

 tasks:
 - name: task
 debug:
 msg: "a task"
 changed_when: true
 notify: say hi

 post_tasks:
 - name: posttask
 debug:
 msg: "a post task"
 changed_when: true
 notify: say hi

System Architecture and Design of Ansible

[21]

Regardless of the order in which these blocks are listed in a play, the order detailed above is
the order in which they will be processed. Handlers (the tasks that can be triggered by other
tasks that result in a change) are a special case. There is a utility module, meta, which can
be used to trigger handler processing at a specific point:

- meta: flush_handlers

This will instruct Ansible to process any pending handlers at that point before continuing
on with the next task or next block of actions within a play. Understanding the order and
being able to influence the order with flush_handlers is another key skill to have when
there is a need for orchestrate complicated actions, where things such as service restarts are
very sensitive to order. Consider the initial rollout of a service. The play will have tasks that
modify config files and indicate that the service should be restarted when these files
change. The play will also indicate that the service should be running. The first time this
play happens, the config file will change and the service will change from not running to
running. Then, the handlers will trigger, which will cause the service to restart immediately.
This can be disruptive to any consumers of the service. It would be better to flush the
handlers before a final task to ensure the service is running. This way, the restart will
happen before the initial start, and thus, the service will start up once and stay up.

Relative path assumptions
When Ansible parses a playbook, there are certain assumptions that can be made about the
relative paths of items referenced by the statements in a playbook. In most cases, paths for
things such as variable files to include, task files to include, playbook files to include, files to
copy, templates to render, scripts to execute, and so on, are all relative to the directory
where the file referencing them lives. Let's explore this with an example playbook and
directory listing to show where the things are:

Directory structure:

.
├── a_vars_file.yaml
├── mastery-hosts
├── relative.yaml
└── tasks
 ├── a.yaml
 └── b.yaml

System Architecture and Design of Ansible

[22]

Contents of _vars_file.yaml:

something: "better than nothing"

Contents of relative.yaml:

- name: relative path play
 hosts: localhost
 gather_facts: false
 vars_files:
 - a_vars_file.yaml
 tasks:
 - name: who am I
 debug:
 msg: "I am mastery task"
 - name: var from file
 debug:
 var: something

 - include: tasks/a.yaml

Contents of tasks/a.yaml:

- name: where am I
 debug:
 msg: "I am task a"

- include: b.yaml

Contents of tasks/b.yaml:

- name: who am I
 debug:
 msg: "I am task b"

System Architecture and Design of Ansible

[23]

Execution of the playbook is shown as follows:

We can clearly see the relative reference to paths and how they are relative to the file
referencing them. When using roles, there are some additional relative path assumptions;
however, we'll cover that in detail in a later chapter.

System Architecture and Design of Ansible

[24]

Play behavior directives
When Ansible parses a play, there are a few directives it looks for to define various
behaviors for a play. These directives are written at the same level as the hosts: directive.
Here are subset of the keys that can be used is described:

any_errors_fatal: This Boolean directive is used to instruct Ansible to treat
any failure as a fatal error to prevent any further tasks from being attempted.
This changes the default where Ansible will continue until all the tasks are
complete or all the hosts have failed.
connection: This string directive defines which connection system to use for a
given play. A common choice to make here is local, which instructs Ansible to do
all the operations locally, but with the context of the system from the inventory.
gather_facts: This Boolean directive controls whether or not Ansible will
perform the fact gathering phase of operation, where a special task will run on a
host to discover various facts about the system. Skipping fact gathering, when
you are sure that you do not need any of the discovered data, can be a significant
time-saver in a larger environment.
max_fail_percentage: This number directive is similar to
any_errors_fatal, but is more fine-grained. This allows you to define just
what percentage of your hosts can fail before the whole operation is halted.
no_log: This is a Boolean directive to control whether or not Ansible will log (to
the screen and/or a configured log file) the command given or the results
received from a task. This is important if your task or return deals with secrets.
This key can also be applied to a task directly.
port: This is a number directive to define what port SSH (or other remote
connection plugin) should use to connect unless otherwise configured in
inventory data.
remote_user: This is a string directive that defines which user to log in with on
the remote system. The default is to connect as the same user that ansible-
playbook was started with.
serial: This directive takes a number and controls how many systems Ansible
will execute a task on before moving to the next task in a play. This is a drastic
change from the normal order of operation where a task is executed across every
system in a play before moving to the next. This is very useful in rolling update
scenarios, which will be detailed in later chapters.

System Architecture and Design of Ansible

[25]

become: This is a Boolean directive used to configure whether privilege
escalation (sudo or otherwise) should be used on the remote host to execute tasks.
This key can also be defined at a task level. Related directives include
become_user, become_method, and become_flags. These can be used to
configure how the escalation will occur.
strategy: This directive sets the execution strategy to be used for the
play.

Many of these keys will be used in example playbooks through this book.

For a full list of available play directives, see the online documentation at:
h t t p s ://d o c s . a n s i b l e . c o m /a n s i b l e /p l a y b o o k s _ v a r i a b l e s . h t m l #p l a y

.

Execution strategies
With the release of Ansible 2.0, a new way to control play execution behavior was
introduced, strategy. A strategy defines how Ansible coordinates each task across the set of
hosts. Each strategy is a plugin, and two come with Ansible, linear and free. The linear
strategy, which is the default strategy, is how Ansible has always behaved. As a play is
executed, all the hosts for a given play execute the first task. Once all are complete, Ansible
moves to the next task. The serial directive can create batches of hosts to operate in this
way, but the base strategy remains the same. All the targets for a given batch must complete
a task before the next task is executed. The free strategy breaks from this traditional
behavior. When using the free strategy, as soon as a host completes a task, Ansible will
execute the next task for that host, without waiting for any other hosts to complete. This
will happen for every host in the set, for every task in the play. The hosts will complete the
tasks as fast as each are able to, minimizing the execution time of each specific host. While
most playbooks will use the default linear strategy, there are situations where the free
strategy would be advantageous. For example, upgrading a service across a large set of
hosts. If the play has numerous tasks to perform the upgrade, which starts with shutting
down the service, then it would be more important for each host to suffer as little downtime
as possible. Allowing each host to independently move through the play as fast as it is able
too will ensure that each host is down only for as long as necessary. Without using free, the
entire fleet will be down for as long as the slowest host in the fleet takes to complete the
tasks.

https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play
https://docs.ansible.com/ansible/playbooks_variables.html#play

System Architecture and Design of Ansible

[26]

As the free strategy does not coordinate task completion across hosts, it is
not possible to depend on the data that is generated during a task on one
host to be available for use in a later task on a different host. There is no
guarantee that the first host will have completed the task that generates
the data.

Execution strategies are implemented as a plugin, and as such, custom strategies can be
developed to extend Ansible behavior. Development of such plugins is beyond the scope of
this book.

Host selection for plays and tasks
The first thing most plays define (after a name, of course) is a host pattern for the play. This
is the pattern used to select hosts out of the inventory object to run the tasks on. Generally,
this is straightforward; a host pattern contains one or more blocks indicating a host, group,
wildcard pattern, or regex to use for the selection. Blocks are separated by a colon,
wildcards are just an asterisk, and regex patterns start with a tilde:

hostname:groupname:*.example:~(web|db)\.example\.com

Advanced usage can include group index selection or even ranges within a group:

Webservers[0]:webservers[2:4]

Each block is treated as an inclusion block, that is, all the hosts found in the first pattern are
added to all the hosts found in the next pattern, and so on. However, this can be
manipulated with control characters to change their behavior. The use of an ampersand
allows an inclusion selection (all the hosts that exist in both patterns). The use of an
exclamation point allows exclusion selection (all the hosts that exist in the previous patterns
that are NOT in the exclusion pattern):

Webservers:&dbservers
Webservers:!dbservers

System Architecture and Design of Ansible

[27]

Once Ansible parses the patterns, it will then apply restrictions, if any. Restrictions come in
the form of limits or failed hosts. This result is stored for the duration of the play, and it is
accessible via the play_hosts variable. As each task is executed, this data is consulted and
an additional restriction may be placed upon it to handle serial operations. As failures are
encountered, either failure to connect or a failure in execute tasks, the failed host is placed
in a restriction list so that the host will be bypassed in the next task. If, at any time, a host
selection routine gets restricted down to zero hosts, the play execution will stop with an
error. A caveat here is that if the play is configured to have a max_fail_precentage or
any_errors_fatal parameter, then the playbook execution stops immediately after the
task where this condition is met.

Play and task names
While not strictly necessary, it is a good practice to label your plays and tasks with names.
These names will show up in the command-line output of ansible-playbook, and will
show up in the log file if ansible-playbook is directed to log to a file. Task names also
come in handy to direct ansible-playbook to start at a specific task and to reference
handlers.

There are two main points to consider when naming plays and tasks:

Names of plays and tasks should be unique
Beware of what kind of variables can be used in play and task names

Naming plays and tasks uniquely is a best practice in general that will help to quickly
identify where a problematic task may reside in your hierarchy of playbooks, roles, task
files, handlers, and so on. Uniqueness is more important when notifying a handler or when
starting at a specific task. When task names have duplicates, the behavior of Ansible may be
nondeterministic or at least nonobvious.

System Architecture and Design of Ansible

[28]

With uniqueness as a goal, many playbook authors will look to variables to satisfy this
constraint. This strategy may work well but authors need to take care as to the source of the
variable data they are referencing. Variable data can come from a variety of locations
(which we will cover later in this chapter), and the values assigned to variables can be
defined at a variety of times. For the sake of play and task names, it is important to
remember that only variables for which the values can be determined at playbook parse
time will parse and render correctly. If the data of a referenced variable is discovered via a
task or other operation, the variable string will be displayed unparsed in the output. Let's
look at an example playbook that utilizes variables for play and task names:

- name: play with a {{ var_name }}
 hosts: localhost
 gather_facts: false

 vars:
 - var_name: not-mastery

 tasks:
 - name: set a variable
 set_fact:
 task_var_name: "defined variable"

 - name: task with a {{ task_var_name }}
 debug:
 msg: "I am mastery task"

 - name: second play with a {{ task_var_name }}
 hosts: localhost
 gather_facts: false

 tasks:
 - name: task with a {{ runtime_var_name }}
 debug:
 msg: "I am another mastery task"

System Architecture and Design of Ansible

[29]

At first glance, one might expect at least var_name and task_var_name to render
correctly. We can clearly see task_var_name being defined before its use. However, armed
with our knowledge that playbooks are parsed in their entirety before execution, we know
better:

As we can see, the only variable name that is properly rendered is var_name, as it was
defined as a static play variable.

System Architecture and Design of Ansible

[30]

Module transport and execution
Once a playbook is parsed and the hosts are determined, Ansible is ready to execute a task.
Tasks are made up of a name (optional, but please don't skip it), a module reference,
module arguments, and task control directives. A later chapter will cover task control
directives in detail, so we will only concern ourselves with the module reference and
arguments.

Module reference
Every task has a module reference. This tells Ansible which bit of work to do. Ansible is
designed to easily allow for custom modules to live alongside a playbook. These custom
modules can be a wholly new functionality, or it can replace modules shipped with Ansible
itself. When Ansible parses a task and discovers the name of the module to use for a task, it
looks into a series of locations in order to find the module requested. Where it looks also
depends on where the task lives, whether in a role or not.

If a task is in a role, Ansible will first look for the module within a directory tree named
library within the role the task resides in. If the module is not found there, Ansible looks
for a directory named library at the same level as the main playbook (the one referenced
by the ansible-playbook execution). If the module is not found there, Ansible will finally
look in the configured library path, which defaults to /usr/share/ansible/. This library
path can be configured in an Ansible config file, or by way of the ANSIBLE_LIBRARY
environment variable.

This design, allowing modules to be bundled with roles and playbooks, allows for adding
functionality, or quickly repairing problems very easily.

System Architecture and Design of Ansible

[31]

Module arguments
Arguments to a module are not always required; the help output of a module will indicate
which models are required and which are not. Module documentation can be accessed with
the ansible-doc command:

This command was piped into cat to prevent shell paging from being
used.

System Architecture and Design of Ansible

[32]

Arguments can be templated with Jinja2, which will be parsed at module execution time,
allowing for data discovered in a previous task to be used in later tasks; this is a very
powerful design element.

Arguments can be supplied in a key=value format, or in a complex format that is more
native to YAML. Here are two examples of arguments being passed to a module
showcasing the two formats:

- name: add a keypair to nova
 os_keypair: cloud={{ cloud_name }} name=admin-key wait=yes

- name: add a keypair to nova
 os_keypair:
 cloud: "{{ cloud_name }}"
 name: admin-key
 wait: yes

Both formats will lead to the same result in this example; however, the complex format is
required if you wish to pass complex arguments into a module. Some modules expect a list
object or a hash of data to be passed in; the complex format allows for this. While both
formats are acceptable for many tasks, the complex format is the format used for the
majority of examples in this book.

Module transport and execution
Once a module is found, Ansible has to execute it in some way. How the module is
transported and executed depends on a few factors; however, the common process is to
locate the module file on the local filesystem and read it into memory, and then add in the
arguments passed to the module. Then the boilerplate module code from core Ansible is
added to the file object in memory. This collection is zip compressed and base64 encoded,
and then wrapped in a script. What happens next really depends on the connection method
and runtime options (such as leaving the module code on the remote system for review).

The default connection method is smart, which most often resolves to the ssh connection
method. With a default configuration, Ansible will open an SSH connection to the remote
host, create a temporary directory, and close the connection. Ansible will then open another
SSH connection in order to write out the wrapped ZIP file from memory (the result of local
module file, task module arguments, and Ansible boilerplate code) into a file within the
temporary directory that we just created and close the connection.

System Architecture and Design of Ansible

[33]

Finally, Ansible will open a third connection in order to execute the script and delete the
temporary directory and all its contents. The module results are captured from stdout in the
JSON format, which Ansible will parse and handle appropriately. If a task has an async
control, Ansible will close the third connection before the module is complete, and SSH
back in to the host to check the status of the task after a prescribed period until the module
is complete or a prescribed timeout has been reached.

Task performance
The above description of how Ansible connects to hosts results in three connections to the
host for every task. In a small fleet with a small number of tasks, this may not be a concern;
however, as the task set grows and the fleet size grows, the time required to create and tear
down SSH connections increases. Thankfully, there are a couple ways to mitigate this.

The first is an SSH feature, ControlPersist, which provides a mechanism to create
persistent sockets when first connecting to a remote host that can be reused in subsequent
connections to bypass some of the handshaking required when creating a connection. This
can drastically reduce the amount of time Ansible spends on opening new connections.
Ansible automatically utilizes this feature if the host platform where Ansible is run from
supports it. To check whether your platform supports this feature, check the SSH main page
for ControlPersist.

The second performance enhancement that can be utilized is an Ansible feature called
pipelining. Pipelining is available to SSH-based connection methods and is configured in
the Ansible configuration file within the ssh_connection section:

[ssh_connection]
pipelining=true

This setting changes how modules are transported. Instead of opening an SSH connection to
create a directory, another to write out the composed module, and a third to execute and
clean up, Ansible will instead open an SSH connection on the remote host. Then, over that
live connection, Ansible will pipe in the zipped composed module code and script for
execution. This reduces the connections from three to one, which can really add up. By
default, pipelining is disabled.

System Architecture and Design of Ansible

[34]

Utilizing the combination of these two performance tweaks can keep your playbooks nice
and fast even as you scale your fleet. However, keep in mind that Ansible will only address
as many hosts at once as the number of forks Ansible is configured to run. Forks are the
number of processes Ansible will split off as a worker to communicate with remote hosts.
The default is five forks, which will address up to five hosts at once. Raise this number to
address more hosts as your fleet grows by adjusting the forks= parameter in an Ansible
configuration file, or by using the --forks (-f) argument with ansible or ansible-
playbook.

Variable types and location
Variables are a key component to the Ansible design. Variables allow for dynamic play
content and reusable plays across different sets of an inventory. Anything beyond the very
basic of Ansible use will utilize variables. Understanding the different variable types and
where they can be located, as well as learning how to access external data or prompt users
to populate variable data, is the key to mastering Ansible.

Variable types
Before diving into the precedence of variables, we must first understand the various types
and subtypes of variables available to Ansible, their location, and where they are valid for
use.

The first major variable type is inventory variables. These are the variables that Ansible
gets by way of the inventory. These can be defined as variables that are specific to
host_vars to individual hosts or applicable to entire groups as group_vars. These
variables can be written directly into the inventory file, delivered by the dynamic inventory
plugin, or loaded from the host_vars/<host> or group_vars/<group> directories.

These types of variables might be used to define Ansible behavior when dealing with these
hosts or site-specific data related to the applications that these hosts run. Whether a variable
comes from host_vars or group_vars, it will be assigned to a host's hostvars, and it can
be accessible from the playbooks and template files. Accessing a host's own variables can be
done just by referencing the name, such as {{ foobar }}, and accessing another host's
variables can be accomplished by accessing hostvars. For example, to access the foobar
variable for examplehost: {{ hostvars['examplehost']['foobar'] }}. These
variables have global scope.

System Architecture and Design of Ansible

[35]

The second major variable type is role variables. These are variables specific to a role and
are utilized by the role tasks and have scope only within the role that they are defined in,
which is to say that they can only be used within the role. These variables are often supplied
as a role default, which are meant to provide a default value for the variable but can easily
be overridden when applying the role. When roles are referenced, it is possible to supply
variable data at the same time, either by overriding role defaults or creating wholly new
data. We'll cover roles in depth in a later chapter. These variables apply to all hosts within
the role and can be accessed directly much like a host's own hostvars.

The third major variable type is play variables. These variables are defined in the control
keys of a play, either directly by the vars key or sourced from external files via the
vars_files key. Additionally, the play can interactively prompt the user for variable data
using vars_prompt. These variables are to be used within the scope of the play and in any
tasks or included tasks of the play. The variables apply to all hosts within the play and can
be referenced as if they are hostvars.

The fourth variable type is task variables. Task variables are made from data discovered
while executing tasks or in the facts gathering phase of a play. These variables are host-
specific and are added to the host's hostvars and can be used as such, which also means
they have global scope after the point in which they were discovered or defined. Variables
of this type can be discovered via gather_facts and fact modules (modules that do not
alter state but rather return data), populated from task return data via the register task
key, or defined directly by a task making use of the set_fact or add_host modules. Data
can also be interactively obtained from the operator using the prompt argument to the
pause module and registering the result:

- name: get the operators name
 pause:
 prompt: "Please enter your name"
 register: opname

There is one last variable type, the extra variables, or extra-vars type. These are variables
supplied on the command-line when executing ansible-playbook via --extra-vars.
Variable data can be supplied as a list of key=value pairs, a quoted JSON data, or a
reference to a YAML-formatted file with variable data defined within:

--extra-vars "foo=bar owner=fred"
--extra-vars '{"services":["nova-api","nova-conductor"]}'
--extra-vars @/path/to/data.yaml

Extra variables are considered global variables. They apply to every host and have scope
throughout the entire playbook.

System Architecture and Design of Ansible

[36]

Accessing external data
Data for role variables, play variables, and task variables can also come from external
sources. Ansible provides a mechanism to access and evaluate data from the control
machine (the machine running ansible-playbook). The mechanism is called a lookup
plugin, and a number of them come with Ansible. These plugins can be used to lookup or
access data by reading files, generate and locally store passwords on the Ansible host for
later reuse, evaluate environment variables, pipe data in from executables, access data in
the Redis or etcd systems, render data from template files, query dnstxt records, and
more. The syntax is as follows:

lookup('<plugin_name>', 'plugin_argument')

For example, to use the mastery value from etcd in a debug task:

- name: show data from etcd
 debug:
 msg: "{{ lookup('etcd', 'mastery') }}"

Lookups are evaluated when the task referencing them is executed, which allows for
dynamic data discovery. To reuse a particular lookup in multiple tasks and reevaluate it
each time, a playbook variable can be defined with a lookup value. Each time the playbook
variable is referenced, the lookup will be executed, potentially providing different values
over time.

Variable precedence
As you learned in the previous section, there are a few major types of variables that can be
defined in a myriad of locations. This leads to a very important question: what happens
when the same variable name is used in multiple locations? Ansible has a precedence for
loading variable data, and thus it has an order and a definition to decide which variable will
win. Variable value overriding is an advanced usage of Ansible, so it is important to fully
understand the semantics before attempting such a scenario.

Precedence order
Ansible defines the precedence order as follows:

Extra vars (from command-line) always win.1.
Task vars (only for the specific task).2.

System Architecture and Design of Ansible

[37]

Block vars (only for the tasks within the block).3.
Role and include vars.4.
Vars created with set_fact.5.
Vars created with the register task directive.6.
Play vars_files.7.
Play vars_prompt.8.
Play vars.9.
Host facts.10.
Playbook host_vars.11.
Playbook group_vars.12.
Inventory host_vars.13.
Inventory group_vars.14.
Inventory vars.15.
Role defaults.16.

Merging hashes
In the previous section, we focused on the precedence in which variables will override each
other. The default behavior of Ansible is that any overriding definition for a variable name
will completely mask the previous definition of that variable. However, that behavior can
be altered for one type of variable, the hash. A hash variable (a dictionary in Python terms) is
a dataset of keys and values. Values can be of different types for each key, and can even be
hashes themselves for complex data structures.

In some advanced scenarios, it is desirable to replace just one bit of a hash or add to an
existing hash rather than replacing the hash altogether. To unlock this ability, a
configuration change is necessary in an Ansible config file. The config entry is
hash_behavior, which takes one of replace, or merge. A setting of merge will instruct
Ansible to merge or blend the values of two hashes when presented with an override
scenario rather than the default of replace, which will completely replace the old variable
data with the new data.

Let's walk through an example of the two behaviors. We will start with a hash loaded with
data and simulate a scenario where a different value for the hash is provided as a higher
priority variable.

System Architecture and Design of Ansible

[38]

Starting data:

hash_var:
 fred:
 home: Seattle
 transport: Bicycle

New data loaded via include_vars:

hash_var:
 fred:
 transport: Bus

With the default behavior, the new value for hash_var will be as follows:

hash_var:
 fred:
 transport: Bus

However, if we enable the merge behavior, we will get the following result:

hash_var:
 fred:
 home: Seattle
 transport: Bus

There are even more nuances and undefined behaviors when using merge, and as such, it is
strongly recommended to only use this setting if absolutely needed.

Summary
While the design of Ansible focuses on simplicity and ease of use, the architecture itself is
very powerful. In this chapter, we covered key design and architecture concepts of Ansible,
such as version and configuration, playbook parsing, module transport and execution,
variable types and locations, and variable precedence.

You learned that playbooks contain variables and tasks. Tasks link bits of code called
modules with arguments, which can be populated by variable data. These combinations are
transported to selected hosts from provided inventory sources. The fundamental
understanding of these building blocks is the platform on which you can build a mastery of
all things Ansible!

In the next chapter, you will learn how to secure secret data while operating Ansible.

2
Protecting Your Secrets with

Ansible
Secrets are meant to stay secret. Whether they are login credentials to a cloud service or
passwords to database resources, they are secret for a reason. Should they fall into the
wrong hands, they can be used to discover trade secrets, customers' private data, create
infrastructure for nefarious purposes, or worse. All of which could cost you or your
organization a lot of time, money, and headache! In this chapter, we cover how to keep your
secrets safe with Ansible:

Encrypting data at rest
Protecting secrets while operating

Encrypting data at rest
As a configuration management system or an orchestration engine, Ansible has great
power. In order to wield that power, it is necessary to entrust secret data to Ansible. An
automation system that prompts the operator for passwords each connection is not very
efficient. To maximize the power of Ansible, secret data has to be written to a file that
Ansible can read and utilize the data from within.

This creates a risk though! Your secrets are sitting there on your filesystem in plain text.
This is a physical and digital risk. Physically, the computer could be taken from you and
pawed through for secret data. Digitally, any malicious software that can break the
boundaries set upon it could read any data your user account has access to. If you utilize a
source control system, the infrastructure that houses the repository is just as much at risk.

Protecting Your Secrets with Ansible

[40]

Thankfully, Ansible provides a facility to protect your data at rest. That facility is Vault.
This facility allows for encrypting text files so that they are stored at rest in an encrypted
format. Without the key or a significant amount of computing power, the data is
indecipherable.

The key lessons to learn when dealing with encrypting data at rest are:

Valid encryption targets
Creating new encrypted files
Encrypting existing unencrypted files
Editing encrypted files
Changing the encryption password on files
Decrypting encrypted files
Running ansible-playbook referencing encrypted files

Things Vault can encrypt
The Vault feature can be used to encrypt any structured data file used by Ansible. This is
essentially any YAML (or JSON) file that Ansible uses during its operation. This can
include:

group_vars/ files
host_vars/ files
include_vars targets
vars_files targets
--extra-vars targets
role variables
role defaults
task files
handler files
source files for copy module

Protecting Your Secrets with Ansible

[41]

If the file can be expressed in YAML and read by Ansible, or if the file is to be transported
with the copy module, it is a valid file to encrypt with Vault. Because the entire file will be
unreadable at rest, care should be taken to not be overzealous in picking which files to
encrypt. Any source control operations with the files will be done with the encrypted
content, making it very difficult to peer review. As a best practice, the smallest amount of
data possible should be encrypted, which may even mean moving some variables into a file
all by themselves.

Creating new encrypted files
To create new files, Ansible provides a new program, ansible-vault. This program is
used to create and interact with Vault encrypted files. The subroutine to create encrypted
files is the create subroutine:

To create a new file, you'll need to know two things ahead of time. The first is the password
Vault should use to encrypt the file, and the second is the file name itself. Once provided
with this information, ansible-vault will launch a text editor, whichever editor is defined
in the environment variable EDITOR. Once you save the file and exit the editor, ansible-
vault will use the supplied password as a key to encrypt the file with AES256 cypher.

Protecting Your Secrets with Ansible

[42]

All Vault encrypted files referenced by a playbook need to be encrypted
with the same key, otherwise ansible-playbook will be unable to read
them.

The ansible-vault program will prompt for a password, unless the path to a file is
provided as an argument. The password file can either be a plain text file with the
password stored as a single line, or it can be an executable file that outputs the password as
a single line to standard out.

Let's walk through a few examples of creating encrypted files. First, we'll create one and be
prompted for a password, then we will provide a password file, and lastly we'll create an
executable to deliver the password.

Password prompt

Once the passphrase is entered, our editor opens and we're able to put content into the file:

Protecting Your Secrets with Ansible

[43]

On my system, the configured editor is vim. Your system may be different,
and you may need to set your preferred editor as the value for the EDITOR
environment variable.

Now, we save the file. If we try to read the contents, we'll see that they are in fact encrypted,
with a small header hint for Ansible to use later:

Password file
In order to use ansible-vault with a password file, we first need to create the password
file. Simply echoing a password into a file can do this. Then, we can reference this file when
calling ansible-vault to create another encrypted file:

Just as with being prompted for a password, the editor will open and we can write out our
data.

Protecting Your Secrets with Ansible

[44]

Password script
This last example uses a password script. This is useful for designing a system where a
password can be stored in a central system for storing credentials and shared with
contributors to the playbook tree. Each contributor could have his or her own password to
the shared credentials store, where the Vault password would be retrieved from. Our
example will be far more simple: just a simple output to standard out with a password. This
file will be saved as password.sh. The file needs to be marked as an executable for Ansible
to treat it as such:

Encrypting existing files
The previous examples all dealt with creating new encrypted files using the create
subroutine. But what if we want to take an established file and encrypt it? A subroutine
exists for this as well. It is named encrypt:

Protecting Your Secrets with Ansible

[45]

As before our editor opens up, with our content in plain text visible to us. As with create,
encrypt expects a password (or password file) and the path to a file. In this case,
however, the file must already exist. Let's demonstrate this by encrypting an existing file we
have from a previous Chapter 1, System Architecture and Design of Ansible,
a_vars_file.yaml:

Protecting Your Secrets with Ansible

[46]

We can see the file contents before and after the call to encrypt, whereafter the contents are
indeed encrypted. Unlike the create subroutine, encrypt can operate on multiple files,
making it easy to protect all the important data in one action. Simply list all the files to be
encrypted, separated by spaces.

Attempting to encrypt already encrypted files will result in an error.

Editing encrypted files
Once a file has been encrypted with ansible-vault, it cannot be directly edited. Opening
the file in an editor would result in the encrypted data being shown. Making any changes to
the file would damage the file and Ansible would be unable to read the contents correctly.
We need a subroutine that will first decrypt the contents of the file, allow us to edit those
contents, and then encrypt the new contents, before saving it back to the file. Such a
subroutine exists, called edit:

As previously our editor opens up, with our content in plain text visible to us. All our
familiar options are back, an optional password file/script and the file to edit. If we edit the
file we just encrypted, we'll notice that ansible-vault opens our editor with a temporary
file as the file path. The editor will save this and then ansible-vault will encrypt it and
move it to replace the original file:

Protecting Your Secrets with Ansible

[47]

Password rotation on encrypted files
Over time, as contributors come and go, it is a good idea to rotate the password used to
encrypt your secrets. Encryption is only as good as the protection of the password.
ansible-vault provides a subroutine that allows us to change the password, named
rekey:

Protecting Your Secrets with Ansible

[48]

The rekey subroutine operates much like the edit subroutine. It takes in an optional
password file/script and one or more files to rekey. Note that, while you can supply a
file/script for decryption of the existing files, you cannot supply one for the new passphrase.
You will be prompted to input the new passphrase. Let's rekey our
even_more_secrets.yaml file:

Remember that all the encrypted files need to have a matching key. Be sure to rekey all the
files at the same time.

Decrypting encrypted files
If, at some point, the need to encrypt data files goes away, ansible-vault provides a
subroutine that can be used to remove encryption for one or more encrypted files. This
subroutine is (surprisingly) named decrypt:

Protecting Your Secrets with Ansible

[49]

Once again, we have an optional argument for a password file/script and then one or more
file paths to decrypt. Let's decrypt the file we created earlier, using our password file:

Protecting Your Secrets with Ansible

[50]

Executing Ansible-playbook with encrypted files
To make use of our encrypted content, we need to be able to inform ansible-playbook
how to access any encrypted data it might encounter. Unlike ansible-vault, which exists
solely to deal with file encryption/decryption, ansible-playbook is more general-
purpose, and it will not assume it is dealing with encrypted data by default. There are two
ways to indicate that encrypted data may be encountered. The first is the argument --ask-
vault-pass, which will prompt at the very beginning of a playbook execution for the
Vault password required to unlock any encountered encrypted files. Ansible will hold this
provided password in memory for the duration of the playbook execution. The second
method is to reference a password file or script via the familiar --vault-password-file
argument.

Let's create a simple playbook named show_me.yaml that will print out the value of the
variable inside of a_vars_file.yaml, which we encrypted in a previous example:

- name: show me an encrypted var
 hosts: localhost
 gather_facts: false

 vars_files:
 - a_vars_file.yaml

 tasks:
 - name: print the variable
 debug:
 var: something

Protecting Your Secrets with Ansible

[51]

Protecting secrets while operating
In the previous section of this chapter, we covered protecting your secrets at rest on the
filesystem. However, that is not the only concern when operating Ansible with secrets. That
secret data is going to be used in tasks as module arguments or loop inputs or any number
of other things. This may cause the data to be transmitted to remote hosts, logged to local
or remote log files, or displayed onscreen. This section of the chapter will discuss
strategies for protecting your secrets during operation.

Protecting Your Secrets with Ansible

[52]

Secrets transmitted to remote hosts
As we learned in Chapter 1, System Architecture and Design of Ansible, Ansible will combine
module code and arguments and write this out to a temporary directory on the remote
host. This means your secret data is transferred over the wire AND written to the remote
filesystem. Unless you are using a connection plugin other than ssh, the data over the wire
is already encrypted preventing your secrets from being discovered by simple snooping. If
you are using a connection plugin other than ssh, be aware of whether or not data is
encrypted, while in transit. Using any connection method that is not encrypted is strongly
discouraged.

Once the data is transmitted, Ansible may write this data out in clear form to the filesystem.
This can happen if pipelining (which we learned about in Chapter 1, System Architecture
and Design of Ansible) is not in use, OR if Ansible has been instructed to leave remote files
in place via the ANSIBLE_KEEP_REMOTE_FILES environment variable. Without pipelining,
Ansible will write out the module, code plus arguments, into a temporary directory that is
to be deleted upon execution. Should there be a loss of connectivity between writing out the
file and executing it, the file will be left on the remote filesystem until manually removed.
If Ansible is explicitly instructed to keep remote files in place, then, even if pipelining is
enabled, Ansible will write out and leave a remote file in place. Care should be taken with
these options when dealing with highly sensitive secrets, even though, typically, only the
user Ansible logs in as (or becomes via privilege escalation) on the remote host should
have access to the leftover file. Simply deleting anything in the ~/.ansible/tmp/ path for
the remote user will suffice to clean secrets.

Secrets logged to remote or local files
When Ansible operates on a host, it will attempt to log the action to syslog (if verbosity
level three or more is used). If this action is being done with a user with appropriate rights,
it will cause a message to appear in the syslog file of the host. This message includes the
module name and the arguments passed along to that command, which could include your
secrets. To prevent this from happening, a play and task key exists named no_log. Setting
no_log to true will prevent Ansible from logging the action to syslog.

Protecting Your Secrets with Ansible

[53]

Locally, Ansible can be instructed to log its actions as well. An environment variable
controls this, called ANSIBLE_LOG_PATH. Without this variable set, Ansible will only log to
standard out. Setting this variable to a path that can be written to by the user running
ansible-playbook will cause Ansible to log actions to this path. The verbosity of this
logging matches that of the verbosity shown onscreen. By default, no variables or return
details are displayed onscreen. With a verbosity level of one (-v), return data is displayed
onscreen (and potentially in the local log file). With verbosity turned up to level 3 (-vvv),
the input parameters may also be displayed. Since this can include secrets, the no_log
setting applies to onscreen display as well. Let's take our previous example of displaying an
encrypted secret and add a no_log key to the task to prevent showing its value:

- name: show me an encrypted var
 hosts: localhost
 gather_facts: false

 vars_files:
 - a_vars_file.yaml

 tasks:
 - name: print the variable
 debug:
 var: something
 no_log: true

If we execute this playbook, we should see that our secret data is protected:

Ansible censored itself to prevent showing sensitive data.

Protecting Your Secrets with Ansible

[54]

The no_log key can be used as a directive for a play, a role, a block, or a
task.

Summary
Ansible can deal with sensitive data. It is important to understand how this data is stored at
rest and how this data is treated when utilized. With a little care and attention, Ansible can
keep your secrets secret. Encrypting secrets with ansible-vault can protect them while
dormant on your filesystem or in a shared source control repository. Preventing Ansible
from logging task data can protect against leaking data to remote log files or onscreen
displays.

In our next chapter, we will explore the powers of the Jinja2 templating engine, as used by
Ansible.

3
Unlocking the Power of Jinja2

Templates
Templating is the lifeblood of Ansible. From configuration file content to variable
substitution in tasks, to conditional statements and beyond, templating comes into play
with nearly every Ansible facet. The templating engine of Ansible is Jinja2, a modern and
designer-friendly templating language for Python. This chapter will cover a few advanced
features of Jinja2 templating:

Control structures
Data manipulation
Comparisons

Control structures
In Jinja2, a control structure refers to things in a template that controls the flow of the
engine parsing the template. These structures include, but are not limited to, conditionals,
loops, and macros. Within Jinja2 (assuming the defaults are in use), a control structure will
appear inside blocks of {% ... %}. These opening and closing blocks alert the Jinja2 parser
that a control statement is provided instead of a normal string or variable name.

Unlocking the Power of Jinja2 Templates

[56]

Conditionals
A conditional within a template creates a decision path. The engine will consider the
conditional and choose from two or more potential blocks of code. There is always a
minimum of two: a path if the conditional is met (evaluated as true) and an implied else
path of an empty block.

The statement for conditionals is the if statement. This statement works much same as it
does in Python. An if statement can be combined with one or more optional elif with an
optional final else, and unlike Python, requires an explicit endif. The following example
shows a config file template snippet combining both regular variable replacement and an
if else structure:

setting = {{ setting }}
{% if feature.enabled %}
feature = True
{% else %}
feature = False
{% endif %}
another_setting = {{ another_setting }}

In this example, the variable feature.enabled is checked to see if it exists and is not set to
False. If this is True, then the text feature = True is used; otherwise, the text feature
= False is used. Outside of this control block, the parser does the normal variable
substitution for the variables inside the mustache brackets. Multiple paths can be defined by
using an elif statement, which presents the parser with another test to perform should the
previous tests equate to false.

To demonstrate rendering the template, we'll save the example template as demo.j2 and
then make a playbook named template-demo.yaml that defines the variables in use and
then uses a template lookup as part of a pause task to display the rendered template on
screen:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 setting: a_val
 feature:
 enabled: true
 another_setting: b_val
 tasks:
 - name: pause with render
 pause:

Unlocking the Power of Jinja2 Templates

[57]

 prompt: "{{ lookup('template', 'demo.j2') }}"

Executing this playbook will show the rendered template on screen while waiting for input.
We can simply press Enter to complete the playbook:

Unlocking the Power of Jinja2 Templates

[58]

If we were to change the value of feature.enabled to False, the output would be
slightly different:

Inline conditionals
The If statements can be used inside of inline expressions. This can be useful in some
scenarios where additional newlines are not desired. Let's construct a scenario where we
need to define an API as either cinder or cinderv2:

API = cinder{{ 'v2' if api.v2 else '' }}

Unlocking the Power of Jinja2 Templates

[59]

This example assumes api.v2 is defined as Boolean True or False. Inline if expressions
follow the syntax of <do something> if <conditional is true> else <do
something else>. In an inline if expression, there is an implied else; however, that
implied else is meant to evaluate as an undefined object, which will normally create an
error. We protect against this by defining an explicit else, which renders a zero length
string.

Let's modify our playbook to demonstrate an inline conditional. This time, we'll use the
debug module to render the simple template:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 api:
 v2: true
 tasks:
 - name: pause with render
 debug:
 msg: "API = cinder{{ 'v2' if api.v2 else '' }}"

Execution of the playbook will show the template being rendered:

Unlocking the Power of Jinja2 Templates

[60]

Changing the value of api.v2 to false leads to a different result:

Loops
A loop allows you to create dynamically created sections in template files and is useful
when you know you need to operate on an unknown number of items in the same way. To
start a loop control structure, the for statement is used. Let's look at a simple way to loop
over a list of directories where a fictional service might find data:

data dirs
{% for dir in data_dirs %}
data_dir = {{ dir }}
{% endfor %}

Unlocking the Power of Jinja2 Templates

[61]

In this example, we will get one data_dir = line per item within the data_dirs variable,
assuming data_dirs is a list with at least one item in it. If the variable is not a list (or other
iterable type) or is not defined, an error will be generated. If the variable is an iterable type
but is empty, then no lines will be generated. Jinja2 allows for the reacting to this scenario
and also allows substituting in a line when no items are found in the variable via an else
statement. In this next example, assume that data_dirs is an empty list:

data dirs
{% for dir in data_dirs %}
data_dir = {{ dir }}
{% else %}
no data dirs found
{% endfor %}

We can test this by modifying our playbook and template file again. We'll update demo.j2
with the earlier template content and make use of a prompt in our playbook again:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 data_dirs: []
 tasks:
 - name: pause with render
 pause:
 prompt: "{{ lookup('template', 'demo.j2') }}"

Unlocking the Power of Jinja2 Templates

[62]

Running our playbook will show the following result:

Filtering loop items
Loops can be combined with conditionals, as well. Within the loop structure, an if
statement can be used to check a condition using the current loop item as part of the
conditional. Let's extend our example and protect against using (/) as a data_dir:

data dirs
{% for dir in data_dirs %}
{% if dir != "/" %}
data_dir = {{ dir }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

Unlocking the Power of Jinja2 Templates

[63]

The preceding example successfully filters out any data_dirs item that is (/) but takes
more typing than should be necessary. Jinja2 provides a convenience that allows you to
filter loop items easily as part of the for statement. Let's repeat the previous example using
this convenience:

data dirs
{% for dir in data_dirs if dir != "/" %}
data_dir = {{ dir }}
{% else %}
no data dirs found
{% endfor %}

Not only does this structure require less typing, but it also correctly counts the loops, which
we'll learn about in the next section.

Loop indexing
Loop counting is provided for free, yielding an index of the current iteration of the loop. As
variables, this can be accessed a few different ways. The following table outlines the ways
they can be referenced:

Variable Description

loop.index The current iteration of the loop (1 indexed)

loop.index0 The current iteration of the loop (0 indexed)

loop.revindex The number of iterations until the end of the loop (1 indexed)

loop.revindex0 The number of iterations until the end of the loop (0 indexed)

loop.first Boolean True if the first iteration

loop.last Boolean True if the last iteration

loop.length The number of items in the sequence

Unlocking the Power of Jinja2 Templates

[64]

Having information related to the position within the loop can help with logic around what
content to render. Considering our previous examples, instead of rendering multiple lines
of data_dir to express each data directory, we could instead provide a single line with
comma-separated values. Without having access to loop iteration data, this would be
difficult, but in using this data, it can be fairly easy. For the sake of simplicity, this example
assumes a trailing comma after the last item is allowed and that white-space (newlines)
between items are also allowed:

data dirs
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }},
{% else %}
 {{ dir }},
{% endif %}
{% else %}
no data dirs found
{% endfor %}

The preceding example made use of the loop.first variable in order to determine if it
needed to render the data_dir = part or if it just needed to render the appropriately
spaced padded directory. By using a filter in the for statement, we get a correct value for
loop.first, even if the first item in data_dirs is the undesired (/). To test this, we'll once
again modify demo.j2 with the updated template and modify template-demo.yaml to
define some data_dirs, including one of / that should be filtered out:

- name: demo the template
 hosts: localhost
 gather_facts: false
 vars:
 data_dirs: ['/', '/foo', '/bar']
 tasks:
 - name: pause with render
 pause:
 prompt: "{{ lookup('template', 'demo.j2') }}"

Unlocking the Power of Jinja2 Templates

[65]

Now, we can execute the playbook and see our rendered content:

If in the preceding example trailing commas were not allowed, we could utilize inline if
statements to determine if we're done with the loop and render commas correctly, as shown
in the following example:

data dirs.
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }}{{ ',' if not loop.last else '' }}
{% else %}
 {{ dir }}{{ ',' if not loop.last else '' }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

Unlocking the Power of Jinja2 Templates

[66]

Using inline if statements allows us to construct a template that will only render a comma
if there are more items in the loop that passed our initial filter. Once more, we'll update
demo.j2 with the earlier content and execute the playbook:

Macros
The astute reader will have noticed that in the previous example, we had some repeated
code. Repeating code is the enemy of any developer and thankfully, Jinja2 has a way to
help! A macro is like a function in a regular programming language; it's a way to define a
reusable idiom. A macro is defined inside a {% macro ... %} ... {% endmacro %}
block and has a name and can take zero or more arguments. Code within a macro does not
inherit the namespace of the block calling the macro, so all arguments must be explicitly
passed in. Macros are called within mustache blocks by name and with zero or more
arguments passed in via parentheses. Let's create a simple macro named comma to take the
place of our repeating code:

Unlocking the Power of Jinja2 Templates

[67]

{% macro comma(loop) %}
{{ ',' if not loop.last else '' }}
{%- endmacro -%}
data dirs.
{% for dir in data_dirs if dir != "/" %}
{% if loop.first %}
data_dir = {{ dir }}{{ comma(loop) }}
{% else %}
 {{ dir }}{{ comma(loop) }}
{% endif %}
{% else %}
no data dirs found
{% endfor %}

Calling comma and passing it in the loop object allows the macro to examine the loop and
decide if a comma should be emitted or not. You may have noticed some special marks on
the endmacro line. These marks, the (-) next to the (%), instructs Jinja2 to strip the white-
space before and right after the block. This allows us to have a newline between the macro
and the start of the template for readability without actually rendering that newline when
evaluating the template.

Macro variables
Macros have access inside them to any positional or keyword argument passed along when
calling the macro. Positional arguments are arguments that are assigned to variables based
on the order they are provided, while keyword arguments are unordered and explicitly
assign data to variable names. Keyword arguments can also have a default value if they
aren't defined when the macro is called. Three additional special variables are available:

varargs

kwargs

caller

The varargs variable is a holding place for additional unexpected positional arguments
passed along to the macro. These positional argument values will make up the varargs list.

The kwargs variable is same as varargs; however, instead of holding extra positional
argument values, it will hold a hash of extra keyword arguments and their associated
values.

The caller variable can be used to call back to a higher level macro that may have called
this macro (yes, macros can call other macros).

Unlocking the Power of Jinja2 Templates

[68]

In addition to these three special variables are a number of variables that expose internal
details regarding the macro itself. These are a bit complicated, but we'll walk through their
usage one by one. First, let's take a look at a short description of each variable:

name: The name of the macro itself
arguments: A tuple of the names of the arguments the macro accepts
defaults: A tuple of the default values
catch_kwargs: A Boolean that will be defined as true if the macro accesses (and
thus accepts) the kwargs variable
catch_varargs: A Boolean that will be defined as true if the macro accesses
(and thus accepts) the varargs variable
caller: A Boolean that will be defined as true if the macro accesses the caller
variable (and thus may be called from another macro)

Similar to a class in Python, these variables need to be referenced via the name of the macro
itself. Attempting to access these macros without prepending the name will result in
undefined variables. Now, let's walk through and demonstrate the usage of each of them.

name
The name variable is actually very simple. It just provides a way to access the name of the
macro as a variable, perhaps for further manipulation, or usage. The following template
includes a macro that references the name of the macro in order to render it in the output:

{% macro test() %}
{{ test.name }}
{%- endmacro -%}
{{ test() }}

If we were to update demo.j2 with this template and execute the template-demo.yaml
playbook, the output would be:

Unlocking the Power of Jinja2 Templates

[69]

arguments
The arguments variable is a tuple of the arguments the macro accepts. These are the
explicitly defined arguments, not the special kwargs or varargs. Our previous example
would have rendered an empty tuple (), so lets modify it to get something else:

{% macro test(var_a='a string') %}
{{ test.arguments }}
{%- endmacro -%}
{{ test() }}

Unlocking the Power of Jinja2 Templates

[70]

Rendering this template will result in the following:

defaults
The defaults variable is a tuple of the default values for any keyword arguments the
macro explicitly accepts. Let's change our macro to display the default values as well as the
arguments:

{% macro test(var_a='a string') %}
{{ test.arguments }}
{{ test.defaults }}
{%- endmacro -%}
{{ test() }}

Unlocking the Power of Jinja2 Templates

[71]

Rendering this version of the template will result in the following:

catch_kwargs
This variable is only defined if the macro itself accesses the kwargs variable in order to
catch any extra keyword arguments that might have been passed along. Without accessing
the kwargs variable, any extra keyword arguments in a call to the macro will result in an
error when rendering the template. Likewise, accessing catch_kwargs without also
accessing kwargs will result in an undefined error. Let's modify our example template
again so that we can pass along extra kwargs:

{% macro test() %}
{{ kwargs }}
{{ test.catch_kwargs }}
{%- endmacro -%}
{{ test(unexpected='surprise') }}

Unlocking the Power of Jinja2 Templates

[72]

The rendered version of this template will be:

catch_varargs
Much like catch_kwargs, this variable exists if the macro accesses the varargs variable.
Modifying our example once more, we can see this in action:

{% macro test() %}
{{ varargs }}
{{ test.catch_varargs }}
{%- endmacro -%}
{{ test('surprise') }}

Unlocking the Power of Jinja2 Templates

[73]

The template's rendered result will be:

caller
The caller variable takes a bit more explaining. A macro can call out to another macro.
This can be useful if the same chunk of the template will be used multiple times, but part of
the inside changes more than what could easily be passed as a macro parameter. The
Caller variable isn't exactly a variable; it's more of a reference back to the call in order to
get the contents of that calling macro. Let's update our template to demonstrate the usage:

{% macro test() %}
The text from the caller follows:
{{ caller() }}
{%- endmacro -%}
{% call test() %}
This is text inside the call
{% endcall %}

Unlocking the Power of Jinja2 Templates

[74]

The rendered result will be:

A call to a macro can still pass arguments to that macro; any combination of arguments or
keyword arguments can be passed. If the macro utilizes varargs or kwargs, then extras
of those can be passed along, as well. Additionally, a macro can pass arguments back to the
caller, too! To demonstrate this, let's create a larger example. This time, our example will
generate out a file suitable for an Ansible inventory:

{% macro test(group, hosts) %}
[{{ group }}]
{% for host in hosts %}
{{ host }} {{ caller(host) }}
{%- endfor %}
{%- endmacro -%}
{% call(host) test('web', ['host1', 'host2', 'host3']) %}
ssh_host_name={{ host }}.example.name ansible_sudo=true
{% endcall %}
{% call(host) test('db', ['db1', 'db2']) %}
ssh_host_name={{ host }}.example.name
{% endcall %}

Unlocking the Power of Jinja2 Templates

[75]

Once rendered, the result will be:

We called the test macro twice, once per each group we wanted to define. Each group had
a subtly different set of host variables to apply, and those were defined in the call itself. We
saved typing by having the macro call back to the caller, passing along the host from the
current loop.

Control blocks provide programming power inside of templates, allowing template authors
to make their templates efficient. The efficiency isn't necessarily in the initial draft of the
template; instead, the efficiency really comes into play when a small change to a repeating
value is needed.

Unlocking the Power of Jinja2 Templates

[76]

Data manipulation
While control structures influence the flow of template processing, another tool exists to
modify the contents of a variable. This tool is called a filter. Filters are same as small
functions, or methods, that can be run on the variable. Some filters operate without
arguments, some take optional arguments, and some require arguments. Filters can be
chained together, as well, where the result of one filter action is fed into the next filter and
the next. Jinja2 comes with many built-in filters, and Ansible extends these with many
custom filters available to you when using Jinja2 within templates, tasks, or any other place
Ansible allows templating.

Syntax
A filter is applied to a variable by way of the pipe symbol (|) followed by the name of the
filter and then any arguments for the filter inside parentheses. There can be a space between
the variable name and the pipe symbol as well as a space between the pipe symbol and the
filter name. For example, if we wanted to apply the filter lower (which makes all the
characters lowercase) to the variable my_word, we would use the following syntax:

{{ my_word | lower }}

Because the lower filter does not take any arguments, it is not necessary to attach an empty
parentheses set to it. If we use a different filter, one that requires arguments, we can see
how that looks. Let's use the replace filter, which allows us to replace all occurrences of a
substring with another substring. In this example, we want to replace all occurrences of the
substring no with yes in the variable answers:

{{ answers | replace('no', 'yes') }}

Applying multiple filters is accomplished by simply adding more pipe symbols and more
filter names. Let's combine both replace and lower to demonstrate the syntax:

{{ answers | replace('no', 'yes') | lower }}

We can easily demonstrate this with a simple play that uses the debug command to render
the line:

- name: demo the template
 hosts: localhost
 gather_facts: false
 tasks:
 - name: debug the template

Unlocking the Power of Jinja2 Templates

[77]

 debug:
 msg: "{{ answers | replace('no', 'yes') | lower }}"

Now, we can execute the playbook and provide a value for answers at run time:

Useful built-in filters
A full list of the filters built into Jinja2 can be found in the Jinja2 documentation. At the time
of writing this book, there are over 45 built-in filters, too many to describe here. Instead,
we'll take a look at some of the more commonly used filters.

Unlocking the Power of Jinja2 Templates

[78]

default
The default filter is a way to provide a default value for an otherwise undefined variable,
which will prevent Ansible from generating an error. It is shorthand for a complex if
statement checking if a variable is defined before trying to use it, with an else clause to
provide a different value. Let's look at two examples that render the same thing. One will
use the if/else structure while the other uses the default filter:

{% if some_variable is defined %}
{{ some_variable }}
{% else %}
default_value
{% endif %}
{{ some_variable | default('default_value') }}

The rendered result of each of these examples is the same; however, the example using the
default filter is much quicker to write and easier to read.

While default is very useful, proceed with caution if you are using the same variable in
multiple locations. Changing a default value can become a hassle, and it may be more
efficient to define the variable with a default at the play or role level.

count
The count filter will return the length of a sequence or hash. In fact, length is an alias of
count to accomplish the same thing. This filter can be useful for performing any sort of
math around the size of a set of hosts or any other case where the count of some set needs to
be known. Let's create an example where we set a max_threads configuration entry to
match the count of hosts in the play:

max_threads: {{ play_hosts | count }}

random
The random filter is used to make a random selection from a sequence. Let's use this filter to
delegate a task to a random selection from the db_servers group:

- name: backup the database
 shell: mysqldump -u root nova > /data/nova.backup.sql
 delegate_to: "{{ groups['db_servers'] | random }}"
 run_once: true

Unlocking the Power of Jinja2 Templates

[79]

round
The round filter exists to round a number. This can be useful if you need to perform
floating-point math and then turn the result into a rounded integer. The round filter takes
optional arguments to define a precision (default of 0) and a rounding method. The possible
rounding methods are common (rounds up or down, the default), ceil (always round up),
and floor (always round down). In this example, we'll chain two filters together to
commonly round a math result to zero precision and then turn that into an int:

{{ math_result | round | int }}

Useful Ansible provided custom filters
While there are many provided filters with Jinja2, Ansible includes some additional filters
that playbook authors may find particularly useful. We'll outline a few of them here.

Filters related to task status
Ansible tracks task data for each task. This data is used to determine if a task has failed,
resulted in a change, or was skipped all together. Playbook authors can register the results
of a task and then use filters to easily check the task status. These are most often used in
conditionals with later tasks. The filters are aptly named failed, success, changed, and
skipped. They each return a Boolean value. Here is a playbook that demonstrates the use
of a couple of these:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: fail a task
 debug:
 msg: "I am not a change"
 register: derp
 - name: only do this on change
 debug:
 msg: "You had a change"
 when: derp | changed
 - name: only do this on success
 debug:
 msg: "You had a success"
 when: derp | success

Unlocking the Power of Jinja2 Templates

[80]

The output is as shown in the following screenshot:

shuffle
Similar to the random filter, the shuffle filter can be used to produce randomized results.
Unlike the random filter, which selects one random choice from a list, the shuffle filter
will shuffle the items in a sequence and return the full sequence back:

- name: demo the filters
 hosts: localhost

Unlocking the Power of Jinja2 Templates

[81]

 gather_facts: false
 tasks:
 - name: shuffle the cards
 debug:
 msg: "{{ ['Ace', 'Queen', 'King', 'Deuce'] | shuffle }}"

The output is as shown in the following screenshot:

Filters dealing with path names
Configuration management and orchestration frequently refers to path names, but often
only part of the path is desired. Ansible provides a few filters to help.

Unlocking the Power of Jinja2 Templates

[82]

basename
To obtain the last part of a file path, use the basename filter. For example:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: demo basename
 debug:
 msg: "{{ '/var/log/nova/nova-api.log' | basename }}"

The output is as shown in the following screenshot:

Unlocking the Power of Jinja2 Templates

[83]

dirname
The inverse of basename is dirname. Instead of returning the final part of a path, dirname
will return everything except the final part. Let's change our previous play to use dirname
and run it again:

expanduser
Often, paths to various things are supplied with a user shortcut, such as ~/.stackrc.
However some uses may require the full path to the file. Rather than the complicated
command and register calls, the expanduser filter provides a way to expand the path to
the full definition. In this example, the user name is jkeating:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: demo filter
 debug:
 msg: "{{ '~/.stackrc' | expanduser }}"

Unlocking the Power of Jinja2 Templates

[84]

The output is as shown in the following screenshot:

Base64 encoding
When reading content from remote hosts, same as with the slurp module (used to read file
content from remote hosts into a variable), the content will be Base64 encoded. To decode
such content, Ansible provides a b64decode filter. Similarly, if running a task that requires
Base64 encoded input, regular strings can be encoded with the b64encode filter.

Let's read content from the file derp:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: read file
 slurp:
 src: derp
 register: derp
 - name: display file content (undecoded)
 debug:

Unlocking the Power of Jinja2 Templates

[85]

 var: derp.content
 - name: display file content (decoded)
 debug:
 var: derp.content | b64decode

The output is as shown in the following screenshot:

Unlocking the Power of Jinja2 Templates

[86]

Searching for content
It is fairly common in Ansible to search a string for a substring. In particular, the common
administrator task of running a command and grepping the output for a particular key
piece of data is a reoccurring construct in many playbooks. While it's possible to replicate
this with a shell task to execute a command and pipe the output into grep and use careful
handling of failed_when to catch grep exit codes, a far better strategy is to use a command
task, register the output, and then utilize Ansible provided regex filters in later
conditionals. Let's look at two examples, one using the shell, pipe, grep method and
another using the search filter:

- name: check database version
 shell: neutron-manage current |grep juno
 register: neutron_db_ver
 failed_when: false
- name: upgrade db
 command: neutron-manage db_sync
 when: neutron_db_ver|failed

The preceding example works by forcing Ansible to always see the task as successful, but
assumes that if the exit code from the shell is non-zero then the string juno was not found
in the output of the neutron-manage command. This construct is functional, but a bit
clunky, and could mask real errors from the command. Let's try again using the search
filter:

- name: check database version
 command: neutron-manage current
 register: neutron_db_ver
- name: upgrade db
 command: neutron-manage db_sync
 when: not neutron_db_ver.stdout | search('juno')

This version is much cleaner to follow and does not mask errors from the first task.

The search filter searches a string and will return True if the substring is found anywhere
within the input string. If an exact complete match is desired instead, the match filter can be
used. Full Python regex syntax can be utilized inside the search/match string.

Unlocking the Power of Jinja2 Templates

[87]

Omitting undefined arguments
The omit variable takes a bit of explaining. Sometimes, when iterating over a hash of data
to construct task arguments, it may be necessary to only provide some arguments for some
of the items in the hash. Even though Jinja2 supports in-line if statements to conditionally
render parts of a line, this does not work well in an Ansible task. Traditionally, playbook
authors would create multiple tasks, one for each set of potential arguments passed in, and
use conditionals to sort the loop members between each task set. A recently added magic
variable named omit solves this problem when used in conjunction with the default filter.
The omit variable will remove the argument the variable was used with all together.

To illustrate how this works, let's consider a scenario where we need to install a set of
Python packages with pip. Some of the packages have a specific version while others do
not. These packages are in a list of hashes named pips. Each hash has a name key and
potentially a ver key. Our first example utilizes two different tasks to complete the installs:

- name: install pips with versions
 pip: name={{ item.name }} version={{ item.ver }}
 with_items: pips
 when: item.ver is defined
- name: install pips without versions
 pip: name={{ item.name }}
 with_items: pips
 when: item.ver is undefined

This construct works, but the loop is iterated twice and some of the iterations will be
skipped in each task. This next example collapses the two tasks into one and utilizes the
omit variable:

- name: install pips
 pip: name={{ item.name }} version={{ item.ver | default(omit) }}
 with_items: pips

This example is shorter, cleaner, and doesn't generate extra skipped tasks.

Unlocking the Power of Jinja2 Templates

[88]

Python object methods
Jinja2 is a Python-based template engine. Because of this, Python object methods are
available within templates. Object methods are methods, or functions, that are directly
accessible by the variable object (typically a string, list, int, or float). A good way to
think about this is if you were writing Python code and could write the variable, then a
period, then a method call, and then you would have access to do the same in Jinja2. Within
Ansible, only methods that return modified content or a Boolean are typically used. Let's
explore some common object methods that might be useful in Ansible.

String methods
String methods can be used to return new strings or a list of strings modified in some way,
or to test the string for various conditions and return a Boolean. Some useful methods are as
follows:

endswith: Determines if the string ends with a substring
startswith: Same as endswith, but from the start
split: Splits the string on characters (default is space) into a list of substrings
rsplit: The same as split, but starts from the end of the string and works
backwards
splitlines: Splits the string at newlines into a list of substrings
upper: Returns a copy of the string all in uppercase
lower: Returns a copy of the string all in lowercase
capitalize: Returns a copy of the string with just the first character in
uppercase

We can create a simple play that will utilize some of these methods in a single task:

- name: demo the filters
 hosts: localhost
 gather_facts: false
 tasks:
 - name: string methods
 debug:
 msg: "{{ 'foo bar baz'.upper().split() }}"

Unlocking the Power of Jinja2 Templates

[89]

The output is as shown in the following screenshot:

Because these are object methods, we need to access them with dot notation rather than as a
filter via (|).

List methods
Only a couple methods do something other than modify the list in-place rather than
returning a new list, and they are as follows:

Index: Returns the first index position of a provided value
Count: Counts the items in the list

Unlocking the Power of Jinja2 Templates

[90]

int and float methods
Most int and float methods are not useful for Ansible.

Sometimes, our variables are not exactly in the format we want them in. However, instead
of defining more and more variables that slightly modify the same content, we can make
use of Jinja2 filters to do the manipulation for us in the various places that require that
modification. This allows us to stay efficient with the definition of our data, preventing
many duplicate variables and tasks that may have to be changed later.

Comparing values
Comparisons are used in many places with Ansible. Task conditionals are comparisons.
Jinja2 control structures often use comparisons. Some filters use comparisons, as well. To
master Ansible's usage of Jinja2, it is important to understand which comparisons are
available.

Comparisons
Like most languages, Jinja2 comes equipped with the standard set of comparison
expressions you would expect, which will render a Boolean true or false.

The expressions in Jinja2 are as follows:

Expression Definition

== Compares two objects for equality

!= Compares two objects for inequality

> True if the left-hand side is greater than the right-hand side

< True if the left-hand side is less than the right- hand side

>= True if the left-hand side is greater than or equal to the right-hand side

<= True if the left-hand side is less than or equal to the right-hand side

Unlocking the Power of Jinja2 Templates

[91]

Logic
Logic helps group two or more comparisons together. Each comparison is referred to as an
operand:

And: Returns true if the left and the right operand are true
Or: Returns true if the left or the right operand is true
Not: Negates an operand
(): Wraps a set of operands together to form a larger operand

Tests
A test in Jinja2 is used to see if a value is something. In fact, the is operator is used to
initiate a test. Tests are used any place a Boolean result is desired, such as with if
expressions and task conditionals. There are many built-in tests, but we'll highlight a few of
the particularly useful ones:

Defined: Returns true if the variable is defined
Undefined: The opposite of defined
None: Returns true if the variable is defined, but the value is none
Even: Returns true if the number is divisible by 2
odd: Returns true if the number is not divisible by 2

To test if a value is not something, simply use is not.

We can create a playbook that will demonstrate some of these value comparisons:

- name: demo the logic
 hosts: localhost
 gather_facts: false
 vars:
 num1: 10
 num3: 10
 tasks:
 - name: logic and comparison
 debug:
 msg: "Can you read me?"
 when: num1 >= num3 and num1 is even and num2 is not defined

Unlocking the Power of Jinja2 Templates

[92]

The output is as shown in the following screenshot:

Summary
Jinja2 is a powerful language that is used by Ansible. Not only is it used to generate file
content, but it is also used to make portions of playbooks dynamic. Mastering Jinja2 is vital
to creating and maintaining elegant and efficient playbooks and roles.

In the next chapter, we will explore more in depth Ansible's capability to define what
constitutes a change or failure for tasks within a play.

4
Controlling Task Conditions

Ansible fundamentally operates on the concept of task statuses: ok, changed, failed, or
skipped. These statuses determine whether any further tasks should be executed on a host
and handlers should be notified due of any changes. Tasks can also make use of
conditionals that check the status of previous tasks to control operation.

In this chapter, we'll explore ways to influence Ansible when determining the task status:

Controlling what defines a failure
Recovering gracefully from a failure
Controlling what defines a change

Defining a failure
Most modules that ship with Ansible have an opinion on what constitutes an error. An
error condition is highly dependent upon the module and what the module is attempting to
accomplish. When a module returns an error, the host will be removed from the set of
available hosts, preventing any further tasks or handlers from being executed on that host.
Further, the ansible-playbook function or Ansible execution will exit with nonzero,
indicating failure. However, we are not limited by a module's opinion of what an error is.
We can ignore errors or redefine the error condition.

Ignoring errors
A task condition, named ignore_errors, is used to ignore errors. This condition is a
Boolean, meaning that the value should be something Ansible understands to be true, such
as yes, on, true, or 1 (string or integer).

Controlling Task Conditions

[94]

To demonstrate how to use ignore_errors, let's create a playbook named errors.yaml,
where we attempt to query a webserver that doesn't exist. Normally, this would be an error,
and if we don't define ignore_errors, we get the default behavior, that is, the host will be
marked as failed and no further tasks will be attempted on that host. Let's take a look at the
following code snippet:

-name: broken website
 uri:
 url: http://notahost.nodomain

Running the task as is will give us an error:

Now, let's imagine that we didn't want Ansible to stop here, and instead we wanted it to
continue. We can add the ignore_errors condition to our task like this:

- name: broken website
 uri:
 url: http://notahost.nodomain
 ignore_errors: true

Controlling Task Conditions

[95]

This time when we run the playbook, our error will be ignored, as we can see here:

Our task error is ignored. Any further tasks for that host will still be attempted and the
playbook does not register any failed hosts.

Defining an error condition
The ignore_errors condition is a bit of a blunt hammer. Any error generated from the
module used by the task will be ignored. Further, the output, at first glance, still appears
like an error, and may be confusing to an operator attempting to discover a real failure. A
more subtle tool is the failed_when condition. This condition is more like a fine scalpel,
allowing a playbook author to be very specific as to what constitutes an error for a task.
This condition performs a test to generate a Boolean result, much like the when condition. If
the condition results in a Boolean is truth, the task will be considered a failure. Otherwise,
the task will be considered successful.

Controlling Task Conditions

[96]

The failed_when condition is quite useful when used in combination with the command or
shell module and registering the result of the execution. Many programs that are executed
can have detailed nonzero exit codes that mean different things, however, these modules all
consider an exit code of anything other than zero to be a failure. Let's look at the iscsiadm
utility. This utility can be used for many things related to iSCSI. For the sake of our
demonstration we'll use it to discover any active iscsi sessions:

- name: query sessions
 command: /sbin/iscsiadm -m session
 register: sessions

If this were to be run on a system where there were no active sessions, we'd see output like
this:

Controlling Task Conditions

[97]

We can just use the ignore_errors condition, but that would mask other problems with
iscsi; so, instead of this, we want to instruct Ansible that an exit code of 21 is acceptable.
To that end, we can make use of the registered variable to access the rc variable, which
holds the return code. We'll make use of this in a failed_when statement:

- name: query sessions
 command: /sbin/iscsiadm -m session
 register: sessions
 failed_when: sessions.rc not in (0, 21)

We simply stated that any exit code other than 0 or 21 should be considered a failure. Let's
see the new output after this modification:

The output now shows no error, and, in fact, we see a new data key in the results-
failed_when_result. This shows whether our failed_when statement rendered true or
false, which was false in this case.

Controlling Task Conditions

[98]

Many command-line tools do not have detailed exit codes. In fact, most typically use
zero for success and one other non-zero code for all failure types. Thankfully, the
failed_when statement is not just limited to the exit code of the application; it is a free
form Boolean statement that can access any sort of data required. Let's look at a different
problem, one involving git. We'll imagine a scenario where we want to ensure that a
particular branch does not exist in a git checkout. This task assumes a git repository
checked out in the /srv/app directory. The command to delete a git branch is git
branch -D. Let's have a look at the following code snippet:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app

The command and shell modules use a different format for providing
module arguments. The command itself is provided a free form, while
module arguments go into a args hash.

If we start with just this command, we'll get an error, an exit code of 1 if the branch does not
exist:

Controlling Task Conditions

[99]

We're using the command module to easily demonstrate our topic despite
the existence of the git module. When dealing with git repositories the
git module should be used instead.

Without the failed_when and changed_when conditions, we would have to create a two-
step task combo to protect ourselves from errors:

- name: check if branch badfeature exists
 command: git branch
 args:
 chdir: /srv/app
 register: branches
- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 when: branches.stdout | search('badfeature')

In the scenario where the branch doesn't exist, running these tasks looks as follows:

Controlling Task Conditions

[100]

While the task set is functional, it is not efficient. Let's improve upon this and leverage the
failed_when functionality to reduce the two tasks into one:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 register: gitout
 failed_when:
 - gitout.rc != 0
 - not gitout.stderr | search('branch.*not found')

Multiple conditions that would normally be joined with an and can
instead be expressed as list elements. This can make playbooks easier to
read and logic issues easier to find.

We check the command return code for anything other than 0 and then use the search filter
to search the stderr value with a regex branch.*not found. We use the Jinja2 logic to
combine the two conditions, which will evaluate to an inclusive true or false option:

Controlling Task Conditions

[101]

Defining a change
Similar to defining a task failure, it is also possible to define what constitutes a changed task
result. This capability is particularly useful with the command family of modules (command,
shell, raw, and script). Unlike most other modules, the modules of this family do not
have an inherent idea of what a change may be. In fact, unless otherwise directed, these
modules only result in failed, changed, or skipped. There is simply no way for these
modules to assume a changed condition versus unchanged.

The changed_when condition allows a playbook author to instruct a module how to
interpret a change. Just like failed_when, changed_when performs a test to generate a
Boolean result. Frequently, the tasks used with changed_when are commands that will exit
nonzero to indicate that no work is needed to be done, so often authors will combine
changed_when and failed_when to fine-tune the task result evaluation. In our previous
example, the failed_when condition caught the case where there was no work to be done
but the task still showed a change. We want to register a change on the exit code 0, but not
on any other exit code. Let's expand our example task to accomplish this:

- name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 register: gitout
 failed_when:
- gitout.rc != 0
- not gitout.stderr | search('branch.*not found')
 changed_when: gitout.rc == 0

Controlling Task Conditions

[102]

Now, if we run our task when the branch still does not exist, we'll see the following output:

Note how the key changed now has the value false.

Just to be complete, we'll change the scenario so that the branch does exist and run it again.
To create the branch, simply run git branch badfeature from the /srv/app directory.
Now, we can execute our playbook once again to see the output, which is as follows:

Controlling Task Conditions

[103]

This time, our output is different; it's registering a change, and the stdout data shows the
branch being deleted.

Special handling of the command family
A subset of the command family of modules (command, shell, and script) has a pair of
special arguments that will influence whether or not the task work has already been done,
and thus, whether or not a task will result in a change. The options are creates and
removes. These two arguments expect a file path as a value. When Ansible attempts to
execute a task with the creates or removes arguments, it will first check whether the
referenced file path exists. If the path exists and the creates argument was used, Ansible
will consider that the work has already been completed and will return Ok. Conversely, if
the path does not exist and the removes argument is used, then Ansible will again consider
the work to be complete, and it will return ok. Any other combination will cause the work
to actually happen. The expectation is that whatever work the task is doing will result in
either the creation or removal of the file that is referenced.

Controlling Task Conditions

[104]

The convenience of creates and removes saves developers from having to do a two-task
combo. Let's create a scenario where we want to run the script frobitz from the files/
subdirectory of our project root. In our scenario, we know that the frobitz script will
create a path /srv/whiskey/tango. In fact, the source of frobitz is the following:

#!/bin/bash
rm -rf /srv/whiskey/tango
mkdir /srv/whiskey/tango

We don't want this script to run twice as it can be destructive to any existing data. The two-
task combo will look like this:

- name: discover tango directory
 stat: path=/srv/whiskey/tango
 register: tango
- name: run frobitz
 script: files/frobitz --initialize /srv/whiskey/tango
 when: not tango.stat.exists

Assuming that the file already exists, the output will be as follows:

Controlling Task Conditions

[105]

If the /srv/whiskey/tango path did not exist, the stat module would have returned far
less data, and the exists key would have a value of false. Thus, our frobitz script
would have been run.

Now, we'll use creates to reduce this down to a single task:

- name: run frobitz
 script: files/frobitz creates=/srv/whiskey/tango

The script module is actually an action_plugin, which will be
discussed in Chapter 8, Extending Ansible. The script action_plugin
only accepts arguments in the key=value format.

This time, our output will be slightly different:

Controlling Task Conditions

[106]

Making good use of creates and removes will keep your playbooks
concise and efficient.

Suppressing a change
Sometimes it can be desirable to completely suppress changes. This is often used when
executing a command in order to gather data. The command execution isn't actually
changing anything; instead, it's just gathering info, like the setup module. Suppressing
changes on such tasks can be helpful for quickly determining whether a playbook run
resulted in any actual change in the fleet.

To suppress change, simply use false as an argument to the changed_when task key. Let's
extend one of our previous examples to discover the active iscsi sessions to suppress
changes:

- name: discover iscsi sessions
 command: /sbin/iscsiadm -m session
 register: sessions
 failed_when:
- sessions.rc != 0
- not sessions.stderr |
 search('No active sessions')
 changed_when: false

Now, no matter what comes in the return data, Ansible will treat the task as Ok rather than
changed:

Controlling Task Conditions

[107]

Error recovery
While error conditions can be narrowly defined, there will be times when real errors
happen. Ansible provides a method to react to true errors, a method that allows running
additional tasks when an error occurs, defining specific tasks that always execute even if
there was an error, or even both. This method is the blocks feature.

The blocks feature, introduced with Ansible version 2.0, provides some additional structure
to play task listings. Blocks can group tasks together into a logical unit, which can have task
controls applied to the unit as a whole. In addition, a Block of tasks can have optional
rescue and always sections.

Controlling Task Conditions

[108]

Rescue
The rescue section of a block defines a logical unit of tasks that will be executed should a
true failure be encountered within a block. As Ansible performs the tasks within a block,
from top to bottom, when a true failure is encountered execution will jump to the first task
of the rescue section of the block, if it exists. Then tasks are performed from top to bottom
until either the end of the section is reached, or another error is encountered. After the
rescue section completes, task execution continues with whatever comes after the block,
as if there were no errors. This provides a way to gracefully handle errors, allowing clean
up tasks to be defined so that a system is not left in a completely broken state, and the rest
of a play can continue. This is far cleaner than a complex set of task registered results and
task conditionals based on error status.

To demonstrate this, lets create a new task set inside of a block. This task set will have an
unhandled error in it that will cause execution to switch to the rescue section, where we'll
perform a cleanup task. We'll also provide a task after the block to ensure execution
continues. We'll re-use the errors.yaml playbook:

- name: error handling
 hosts: localhost
 gather_facts: false

 tasks:
 - block:
 - name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app

 - name: this task is lost
 debug:
 msg: "I do not get seen"

 rescue:
 - name: cleanup task
 debug:
 msg: "I am cleaning up"

 - name: cleanup task 2
 debug:
 msg: "I am also cleaning up"
 - name: task after block
 debug:
 msg: "Execution goes on"

Controlling Task Conditions

[109]

When this play executes, first task will result in an error, and the second task will be passed
over. Execution continues with the clean up tasks, as we can see in this screenshot:

Not only did the rescue section get executed, the rest of the play completed as well, and
the whole ansible-playbook execution was considered successful.

Controlling Task Conditions

[110]

Always
In addition to rescue, another section is available, named always. This section of a block
will always be executed whether there were errors or not. This feature is handy to ensure
the state of a system is always left functional, whether a block of tasks was successful or
not. As some tasks of a block may be skipped due to an error, and a rescue section is only
executed when there is an error, the always section provides the guarantee of task
execution in every case.

Let's extend our previous example and add an always section to our block:

always:
 - name: most important task
 debug:
 msg: "Never going to let you down"

Re-running our playbook we see the additional task displayed:

Controlling Task Conditions

[111]

To verify that the always section does indeed always execute, we can alter the play so that
the git task is considered successful. The full playbook is shown here for convenience:

- name: error handling
 hosts: localhost
 gather_facts: false

 tasks:
 - block:
 - name: delete branch bad
 command: git branch -D badfeature
 args:
 chdir: /srv/app
 register: gitout
 failed_when:
 - gitout.rc != 0
 - not gitout.stderr | search('branch.*not found')

 - name: this task is lost
 debug:
 msg: "I do not get seen"

 rescue:
 - name: cleanup task
 debug:
 msg: "I am cleaning up"

 - name: cleanup task 2
 debug:
 msg: "I am also cleaning up"

 always:
 - name: most important task
 debug:
 msg: "Never going to let you down"

 - name: task after block
 debug:
 msg: "Execution goes on"

Controlling Task Conditions

[112]

This time when we execute the playbook our rescue section is skipped over, our
previously masked by error task is executed, and our always block is still executed:

Controlling Task Conditions

[113]

Summary
In general, Ansible does a great job at determining when there are failures or actual changes
made by a task. However, sometimes, Ansible is either incapable or just needs some fine-
tuning based on the situation. To facilitate this, a set of task constructs exist for playbook
authors to utilize. Additionally, task blocks provide a method to gracefully recover from
errors so that cleanup routines can be performed, and the rest of the play(s) can be
completed. In the next chapter, we'll explore the use of Roles to organize tasks, files,
variables, and other content.

5
Composing Reusable Ansible

Content with Roles
For many projects, a simple, single Ansible playbook may suffice. As time goes on and
projects grow, additional playbooks and variable files are added and task files may be split
out. Other projects within an organization may want to reuse some of the content; either the
projects get added to the directory tree or the desired content may get copied between
multiple projects. As the complexity and size of the scenario grows, something more than a
loosely organized handful of playbooks, task files, and variable files are highly desired.
Creating such a hierarchy can be daunting and may explain why many uses of Ansible start
off simple and only grow into a better organization once the scattered files become
unwieldy and a hassle to maintain. Making the migration can be difficult and may require
rewriting significant portions of playbooks, which can further delay reorganization efforts.

In this chapter, we will cover the best practices for compostable, reusable, and well-
organized content within Ansible. Lessons learned in this chapter will help developers
design Ansible content that grows well with the project, avoiding the need for difficult
redesign work later. The following is an outline of what we will cover:

Task, handler, variable, and playbook, include concepts
Roles (structures, defaults, dependencies)
Designing top level playbooks to utilize roles (tags and other things roles lack)
Sharing roles across projects (dependencies via git, galaxy-like repos)

Composing Reusable Ansible Content with Roles

[115]

Task, handler, variable, and playbook
include concepts
The first step to understanding how to efficiently organize an Ansible project structure is to
master the concept of including files. The act of including files allows content to be defined
in a topic specific file that can be included into other files one or more times within a
project. This inclusion feature supports the concept of Don't Repeat Yourself (DRY).

Including tasks
Task files are YAML files that define one or more tasks. These tasks are not directly tied to
any particular play or playbook; they exist purely as a list of tasks. These files can be
referenced by playbooks or other task files by way of the include operator. This operator
takes a path to a task file, and as we learned in Chapter 1, System Architecture and Design of
Ansible, the path can be relative from the file referencing it.

To demonstrate how to use the include operator to include tasks, let's create a simple play
that includes a task file with some debug tasks within it. First, let's write our playbook file,
and we'll call it includer.yaml:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - name: non-included task
 debug:
 msg: "I am not included"

 - include: more-tasks.yaml

Next, we'll create more-tasks.yaml in the same directory that holds includer.yaml:

- name: included task 1
 debug:
 msg: "I am the first included task"

- name: included task 2
 debug:
 msg: "I am the second included task"

Composing Reusable Ansible Content with Roles

[116]

Now, we can execute our playbook to observe the output:

We can clearly see our tasks from the include file execution. Because the include
operator was used within the play's tasks section, the included tasks were executed within
that play. In fact, if we were to add a task to the play after the include operator, we would
see that the order of execution follows as if all the tasks from the included file existed at the
spot the include operator was used:

tasks:
 - name: non-included task
 debug:
 msg: "I am not included"

Composing Reusable Ansible Content with Roles

[117]

 - include: more-tasks.yaml

 - name: after-included tasks
 debug:
 msg: "I run last"

If we run our modified playbook, we will see the task order we expect:

Composing Reusable Ansible Content with Roles

[118]

By breaking these tasks into their own file, we could include them multiple times or in
multiple playbooks. If we ever have to alter one of the tasks, we only have to alter a single
file, no matter how many places this file gets referenced.

Passing variable values to included tasks
Sometimes, we want to split out a set of tasks but have those tasks act slightly differently
depending on variable data. The include operator allows us to define and override
variable data at the time of inclusion. The scope of the definition is only within the included
task file (and any other files that file may itself include). To illustrate this capability, let's
create a new scenario in which we need to touch a couple of files, each in their own
directory path. Instead of writing two file tasks for each file (one to create the directory and
another to touch the file), we'll create a task file with each task that will use variable names
in the tasks. Then, we'll include the task file twice, each time passing different data in. First,
we'll do this with the task file files.yaml:

- name: create leading path
 file:
 path: "{{ path }}"
 state: directory

- name: touch the file
 file:
 path: "{{ path + '/' + file }}"
 state: touch

Next, we'll create the play to include the task file we've just created, passing along variable
data for the path and file variables:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - include: files.yaml vars:
 path: /tmp/foo
 file: herp

 - include: files.yaml vars:
 path: /tmp/foo
 file: derp

Composing Reusable Ansible Content with Roles

[119]

Variable definitions provided when including files can either be in the
inline format of key=value or in the illustrated YAML format of key:
value inside of a vars hash.

When we run this playbook, we'll see four tasks get executed, the two tasks from within
files.yaml twice. The second set should result in only one change, as the path is the same
for both sets:

Composing Reusable Ansible Content with Roles

[120]

Passing complex data to included tasks
When wanting to pass complex data to included tasks, such as a list or hash, an alternative
syntax can be used when including the file. Let's repeat the last scenario, only this time
instead of including the task file twice, we'll include it once and pass a hash of the paths and
files in. First, we'll work the task file:

- name: create leading path
 file:
 path: "{{ item.value.path }}"
 state: directory
 with_dict: "{{ files }}"

- name: touch the file
 file:
 path: "{{ item.value.path + '/' + item.key }}"
 state: touch
 with_dict: "{{ files }}"

Now, we'll alter our playbook to provide the files hash in a single include statement:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - include: files.yaml
 vars:
 files:
 herp:
 path: /tmp/foo
 derp:
 path: /tmp/foo

Composing Reusable Ansible Content with Roles

[121]

If we run this new playbook and task file, we should see similar but slightly different
output, the end result of which is the /tmp/foo directory already in place and the two files
herp and derp being touched within:

Using this manner of passing in a hash of data allows for the growth of the set of things
created without having to grow the number of include statements in the main playbook.

Composing Reusable Ansible Content with Roles

[122]

Conditional task includes
Similar to passing data into included files, conditionals can also be passed into included
files. This is accomplished by attaching a when statement to the include operator. This
conditional does not cause Ansible to evaluate the test to determine whether or not the file
should be included; rather, it instructs Ansible to add the conditional to each and every task
within the included file (and any other files said file may include).

It is not possible to conditionally include a file. Files will always be
included; however, a task conditional can be applied to every task within.

Let's demonstrate this by modifying our first example that includes simple debug
statements. We'll add a conditional and pass along some data for the conditional to use.
First, let's modify the playbook:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - include: more-tasks.yaml
 when: item | bool vars:
 a_list:
 - true
 - false

Next, let's modify more-tasks.yaml to loop over the a_list variable in each task:

- name: included task 1
 debug:
 msg: "I am the first included task"
 with_items: "{{ a_list }}"

- name: include task 2
 debug:
 msg: "I am the second included task"
 with_items: "{{ a_list }}"

Composing Reusable Ansible Content with Roles

[123]

Now, let's run the playbook and see our new output:

We can see a skipped iteration per task, the iteration where the item evaluated to a Boolean
false. It's important to remember that all hosts will evaluate all included tasks. There is no
way to influence Ansible to not include a file for a subset of hosts. At most, a conditional
can be applied to every task within an include hierarchy so that included tasks may be
skipped. One method to include tasks based on host facts is to utilize the group_by action
plugin to create dynamic groups based on host facts. Then, you can give the groups their
own plays to include specific tasks. This is an exercise left up to the reader.

Composing Reusable Ansible Content with Roles

[124]

Tagging included tasks
When including task files, it is possible to tag all the tasks within the file. The tags key is
used to define one or more tags to apply to all the tasks within the include hierarchy. The
ability to tag at include time can keep the task file itself un-opinionated about how the tasks
should be tagged and can allow for a set of tasks to be included multiple times but with
different data and tags passed along.

Tags can be defined at the include statement or at the play itself to cover
all includes (and other tasks) in a given play.

Let's create a simple demonstration to illustrate how tags can be used. We'll start with a
playbook that includes a task file twice, each with a different tag name and different
variable data:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - include: more-tasks.yaml vars:
 data: first
 tags: first

 - include: more-tasks.yaml vars:
 data: second
 tags: second

Now, we'll update more-tasks.yaml to do something with the data being provided:

- name: included task
 debug:
 msg: "My data is {{ data }}"

Composing Reusable Ansible Content with Roles

[125]

If we run this playbook without selecting tags, we'll see this task run twice:

Now, if we select which tag to run, say the second tag, by altering our ansible-playbook
arguments, we should see only that occurrence of the included task being run:

Composing Reusable Ansible Content with Roles

[126]

Our example used the --tags command line argument to indicate which tagged tasks to
run. A different argument, --skip-tags, allows expressing the opposite, which tagged
tasks to not run.

Task includes with loops
Task inclusions can be combined with loops as well. When adding a with_ loop to a task
include, the tasks inside the file will be executed with the item variable which holds the
place of the current loop value. The entire include file will be executed repeatedly until the
loop runs out of items. Let's update our example play to demonstrate this:

- name: task inclusion
 hosts: localhost
 gather_facts: false

 tasks:
 - include: more-tasks.yaml
 with_items:
 - one
 - two

Composing Reusable Ansible Content with Roles

[127]

We also need to update our more-tasks.yaml file to make use of the loop item:

- name: included task 1
 debug:
 msg: "I am the first included task with {{ item }}"
- name: included task 2
 debug:
 msg: "I am the second included task with {{ item }}"

When executed, we can tell that tasks 1 and 2 are executed a single time for each item in the
loop:

Composing Reusable Ansible Content with Roles

[128]

Looping on inclusion is a powerful concept, but it does introduce one complexity. What is
there were tasks inside the included file that have their own loops? There will be a collision
of the item variable, creating unexpected outcomes. For this reason, the loop_control
feature was added to Ansible in version 2.1. Among other things, this feature provides a
method to name the variable used for the loop, instead of the default of item. Using this,
we can distinguish between the item that comes outside of the include from any items
used inside of the include. To demonstrate this, we'll add a loop_var loop control to our
outer include:

 - include: more-tasks.yaml
 with_items:
 - one
 - two
 loop_control:
 loop_var: include_item

Inside more-tasks.yaml we'll have a task with its own loop, making use of the
include_item and the local item:

- name: included task 1
 debug:
 msg: "I combine {{ item }} and {{ include_item }}"
 with_items:
 - a
 - b

Composing Reusable Ansible Content with Roles

[129]

When executed, we see that task 1 is executed twice per inclusion loop and that the two
loop variables are used:

Other loop controls exist as well, such as label, which will define what is shown on screen
in the task output for the item value (useful to prevent large data structures from cluttering
the screen) and pause, providing the ability to pause for a defined number of seconds
between each loop.

Composing Reusable Ansible Content with Roles

[130]

Including handlers
Handlers are essentially tasks. They're a set of potential tasks triggered by way of
notifications from other tasks. As such, handler tasks can be included just like regular tasks
can. The include operator is legal within the handlers block.

Unlike with task includes, variable data cannot be passed along when including handler
tasks. However, it is possible to attach a conditional to a handler inclusion, to apply the
conditional to every handler within the file.

Let's create an example to demonstrate. First, we'll create a playbook that has a task that
will always change, and that includes a handler task file and attaches a conditional to that
inclusion:

- name: touch files
 hosts: localhost
 gather_facts: false

 tasks:
 - name: a task
 debug:
 msg: "I am a changing task"
 changed_when: true
 notify: a handler

 handlers:
 - include: handlers.yaml
 when: foo | default('true') | bool

When evaluating a variable that may be defined outside of a playbook, it's
best to use the bool filter to ensure that strings are properly converted to
their Boolean meaning.

Next, we'll create handlers.yaml to define our handler task:

- name: a handler
 debug:
 msg: "handling a thing"

Composing Reusable Ansible Content with Roles

[131]

If we execute this playbook without providing any further data, we should see our handler
trigger:

Now, let's run the playbook again; this time we'll define foo as false and as an extra-var
in our ansible-playbook execution arguments:

Composing Reusable Ansible Content with Roles

[132]

This time, since foo evaluates to false, our included handler gets skipped.

Including variables
Variable data can also be separated into loadable files. This allows for sharing variables
across multiple plays or playbooks or including variable data that lives outside the project
directory (such as secret data). Variable files are simple YAML formatted files providing
keys and values. Unlike task include files, variable include files cannot further include more
files.

Variables can be included in three different ways; via vars_files, via include_vars, or
via --extra-vars (-e).

Composing Reusable Ansible Content with Roles

[133]

vars_files
The vars_files key is a play directive. It defines a list of files to read from to load variable
data. These files are read and parsed at the time the playbook itself is parsed. Just as with
including tasks and handlers, the path is relative to the file referencing the file.

Here is an example play that loads variables from a file:

- name: vars
 hosts: localhost
 gather_facts: false

 vars_files:
 - variables.yaml

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

Now, we need to create variables.yaml in the same directory as our playbook:

name: derp

Running the playbook will show that the name variable value is properly sourced from the
variables.yaml file:

Composing Reusable Ansible Content with Roles

[134]

Dynamic vars_files inclusion
In certain scenarios, it may be desirable to parameterize the variable files to be loaded. It is
possible to do this by using a variable as part of the filename; however, the variable must
have a value defined at the time the playbook is parsed, just like when using variables in
task names. Let's update our example play to load a variable file based on the data provided
at execution time:

- name: vars
 hosts: localhost
 gather_facts: false

 vars_files:
 - "{{ varfile }}"

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

Now, when we execute the playbook, we'll provide the value for varfile with the -e
argument:

Composing Reusable Ansible Content with Roles

[135]

In addition to the variable value needing to be defined at execution time, the file to be
loaded must also exist at execution time. Even if a reference to a file is four plays down in a
playbook and the file itself is generated by the first play, unless the file exists at execution
time, ansible-playbook will report an error.

include_vars
The second method to include variable data from files is the include_vars module. This
module will load variables as a task action and will be done for each host. Unlike most
modules, this module is executed locally on the Ansible host; therefore, all paths are still
relative to the play file itself. Because the variable loading is done as a task, evaluation of
variables in the filename happens when the task is executed. Variable data in the file
name can be host-specific and defined in a preceding task. Additionally, the file itself does
not have to exist at execution time; it can be generated by a preceding task, as well. This is a
very powerful and flexible concept that can lead to very dynamic playbooks if used
properly.

Before getting ahead of ourselves, let's demonstrate a simple usage of include_vars by
modifying our existing play to load the variable file as a task:

- name: vars
 hosts: localhost
 gather_facts: false

 tasks:
 - name: load variables
 include_vars: "{{ varfile }}"

 - name: a task
 debug:
 msg: "I am a {{ name }}"

Execution of the playbook remains the same and our output differs only slightly from
previous iterations:

Composing Reusable Ansible Content with Roles

[136]

Just like with other tasks, looping can be done to load more than one file in a single task.
This is particularly effective when using the special with_first_found loop to iterate
through a list of increasingly more generic file names until a file is found to be loaded. Let's
demonstrate this by changing our play to use gathered host facts to try and load a variable
file specific to the distribution, specific to the distribution family, or finally, a default file:

- name: vars
 hosts: localhost
 gather_facts: true

 tasks:
 - name: load variables
 include_vars: "{{ item }}"
 with_first_found:
 - "{{ ansible_distribution }}.yaml"
 - "{{ ansible_os_family }}.yaml"
 - variables.yaml

 - name: a task
 debug:
 msg: "I am a {{ name }}"

Composing Reusable Ansible Content with Roles

[137]

Execution should look very similar to previous runs, only this time we'll see a fact-gathering
task, and we will not pass along extra variable data in the execution:

We can also see from the output which file was found to load. In this case,
variables.yaml was loaded, as the other two files did not exist. This practice is
commonly used to load variables that are operating system specific to the host in question.
Variables for a variety of operating systems can be written out to appropriately named files.
By utilizing the variable ansible_distribution, which is populated by fact gathering,
variable files that use ansible_distribution values as part of their name can be loaded
by way of a with_first_found argument. A default set of variables can be provided in a
file that does not use any variable data as a failsafe.

Composing Reusable Ansible Content with Roles

[138]

extra-vars
The final method to load variable data from a file is to reference a file path with the --
extra-vars (or -e) argument to ansible-playbook. Normally, this argument expects a
set of key=value data; however, if a file path is provided and prefixed with the @ symbol,
Ansible will read the entire file to load variable data. Let's alter one of our earlier examples
where we used -e and instead of defining a variable directly on the command line, we'll
include the variable file we've already written out:

- name: vars
 hosts: localhost
 gather_facts: false

 tasks:
 - name: a task
 debug:
 msg: "I am a {{ name }}"

When we provide a path after the @ symbol, the path is relative to the current working
directory, regardless of where the playbook itself lives. Let's execute our playbook and
provide a path to variables.yaml:

Composing Reusable Ansible Content with Roles

[139]

When including a variable file with the --extra-vars argument, the file
must exist at ansible-playbook execution time.

Including playbooks
Playbook files can include other whole playbook files. This construct can be useful to tie
together a few independent playbooks in a larger, more comprehensive playbook. Playbook
inclusion is a bit more primitive than task inclusion. You cannot perform variable
substitution when including a playbook, you cannot apply conditionals, and you cannot
apply tags, either. The playbook files to be included must exist at the time of execution as
well.

Roles
With a functional understanding of the inclusion of variables, tasks, handlers, and
playbooks, we can move on to the more advanced topic of Roles. Roles move beyond the
basic structure of a few playbooks and a few broken out files to reference. Roles provide a
framework for fully independent, or interdependent, collections of variables, tasks, files,
templates, and modules. Each role is typically limited to a particular theme or desired end
result, with all the necessary steps to reach that result either within the role itself or in other
roles listed as dependencies. Roles themselves are not playbooks. There is no way to
directly execute a role. Roles have no setting for which host the role will apply to. Top-level
playbooks are the glue that binds the hosts from your inventory to roles that should be
applied to those hosts.

Role structure
Roles have a structured layout on the file system. This structure exists to provide
automation around including tasks, handlers, variables, modules, and role dependencies.
The structure also allows for easy reference of files and templates from anywhere within the
role.

Composing Reusable Ansible Content with Roles

[140]

Roles all live in a subdirectory of a playbook archive, in the roles/ directory. This is, of
course, configurable by way of the roles_path general configuration key, but let's stick to
the defaults. Each role is itself a directory tree. The role name is the directory name within
roles/. Each role can have a number of subdirectories with special meaning that are
processed when a role is applied to a set of hosts.

A role may contain all these elements, or as few as just one of them. Missing elements are
simply ignored. Some roles exist just to provide common handlers across a project. Other
roles exist as a single dependency point that in turn just depends on numerous other roles.

Tasks
The task file is the main meat of a role. If roles/<role_name>/tasks/main.yaml exists,
all the tasks therein and any other files it includes will be embedded in the play and
executed.

Handlers
Similar to tasks, handlers are automatically loaded from
roles/<role_name>/handlers/main.yaml, if the file exists. These handlers can be
referenced by any task within the role, or by any tasks within any other role that lists this
role as a dependency.

Variables
There are two types of variables that can be defined in a role. There are role variables,
loaded from roles/<role_name>/vars/main.yaml, and there are role defaults that are
loaded from roles/<role_name>/defaults/main.yaml. The difference between vars
and defaults has to do with precedence order. Refer to Chapter 1, System Architecture and
Design of Ansible, for a detailed description of the order. Role defaults are the lowest order
variables. Literally, any other definition of a variable will take precedence over a role
default. Role defaults can be thought of as place holders for actual data, a reference of what
variables a developer may be interested in defining with site-specific values. Role variables,
on the other hand, have a higher order precedence. Role variables can be overridden, but
generally they are used when the same data set is referenced more than once within a role.
If the data set is to be redefined with site-local values, then the variable should be listed in
the role defaults rather than the role variables.

Composing Reusable Ansible Content with Roles

[141]

Modules and plugins
A role can include custom modules as well as plugins. While the Ansible project is quite
good at reviewing and accepting submitted modules, there are certain cases where it may
not be advisable or even legal to submit a custom module upstream. In those cases,
delivering the module with the role may be a better option. Modules can be loaded from
roles/<role_name>/library/ and can be used by any task in the role, or any later role.
Modules provided in this path will override any other copies of the same module name
anywhere else on the file system, which can be a way to distribute added functionality to a
core module before the functionality has been accepted upstream and released with a new
version of Ansible.

Likewise, plugins are often used to tweak Ansible behavior in a way that makes sense for a
particular environment, and are unsuitable for upstream contribution. Plugins can be
distributed as part of a role, which may be easier than explicitly installing plugins on every
host that will act as an Ansible control host. Plugins will automatically be loaded if found
inside of a role, in one of the following subdirectories:

action_plugins

lookup_plugins

callback_plugins

connection_plugins

filter_plugins

strategy_plugins

cache_plugins

test_plugins

shell_plugins

Dependencies
Roles can express a dependency upon another role. It is common practice for sets of roles to
all depend on a common role such as tasks, handlers, modules, and so on. Those roles may
depend upon only having to be defined once. When Ansible processes a role for a set of
hosts, it will first look for any dependencies listed in
roles/<role_name>/meta/main.yaml. If any are defined, those roles will be processed
and the tasks within will be executed (after checking for any dependencies listed within,
too) until all dependencies have been completed before starting on the initial role tasks. We
will describe role dependencies more in depth later in this chapter.

Composing Reusable Ansible Content with Roles

[142]

Files and templates
Task and handler modules can reference files relatively within
roles/<role_name>/files/. The filename can be provided without any prefix and will
be sourced from roles/<role_name>/files/<file_name>. Relative prefixes are allowed
as well, in order to access files within subdirectories of roles/<role_name>/files/.
Modules such as template, copy, and script may take advantage of this.

Similarly, templates used by the template module can be referenced relatively within
roles/<role_name>/templates/. This sample code uses a relative path to load the
template derp.j2 from the full roles/<role_name>/templates/herp/derp.j2 path:

- name: configure herp
 template:
 src: herp/derp.j2
 dest: /etc/herp/derp.j2

Putting it all together
To illustrate what full role structure might look like, here is an example role by the name of
demo:

roles/demo
├── defaults
│ └── main.yaml
├── files
│ └── foo
├── handlers
│ └── main.yaml
├── library
│ └── samplemod.py
├── meta
│ └── main.yaml
├── tasks
│ └── main.yaml
├── templates
│ └── bar.j2
└── vars
 └── main.yaml

Composing Reusable Ansible Content with Roles

[143]

When creating a role, not every directory or file is required. Only the files that exist will be
processed.

Role dependencies
As stated before, roles can depend on other roles. These relationships are called
dependencies and they are described in a role's meta/main.yaml file. This file expects a
top-level data hash with a key of dependencies; the data within is a list of roles:

dependencies:
 - role: common
 - role: apache

In this example, Ansible will fully process the common role first (and any dependencies it
may express) before continuing with the apache role and then finally starting on the role's
tasks.

Dependencies can be referenced by name without any prefix, if they exist within the same
directory structure or live within the configured roles_path. Otherwise, full paths can be
used to locate roles:

role: /opt/ansible/site-roles/apache

When expressing a dependency, it is possible to pass along data to the dependency. The
data can be variables, tags, or even conditionals.

Role dependency variables
Variables that are passed along when listing a dependency will override values for
matching variables defined in defaults/main.yaml or vars/main.yaml. This can be
useful for using a common role like an apache role as a dependency while providing site-
specific data such as what ports to open in the firewall or what apache modules to enable.
Variables are expressed as additional keys to the role listing. Let's update our example to
add simple and complex variables to our two dependencies:

dependencies:
 - role: common
 simple_var_a: True
 simple_var_b: False
 - role: apache
 complex_var:

Composing Reusable Ansible Content with Roles

[144]

 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081

When providing dependency variable data, two names are reserved and should not be used
as role variables: tags and when. The former is used to pass tag data into a role, and the
latter is used to pass a conditional into the role.

Tags
Tags can be applied to all the tasks found within a dependency role. This functions much in
the same way that tags can be applied to included task files, as described earlier in this
chapter. The syntax is simple; the tags key can be a single item or a list. To demonstrate,
let's add some tags to our example dependency list:

dependencies:
 - role: common
 simple_var_a: True
 simple_var_b: False
 tags: common_demo
 - role: apache
 complex_var:
 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081
 tags:
 - apache_demo
 - 8080
 - 8181

As with adding tags to included task files, all the tasks found within a dependency (and any
dependency within that hierarchy) will gain the provided tags.

Composing Reusable Ansible Content with Roles

[145]

Role dependency conditionals
While it is not possible to prevent the processing of a dependency role with a conditional, it
is possible to skip all the tasks within a dependency role hierarchy by applying a
conditional to a dependency. This mirrors the functionality of task inclusion with
conditionals, as well. The when key is used to express the conditional. Once again, we'll
grow our example by adding a dependency to demonstrate the syntax:

dependencies:
 - role: common
 simple_var_a: True
 simple_var_b: False
 tags: common_demo
 - role: apache
 complex_var:
 key1: value1
 key2: value2
 short_list:
 - 8080
 - 8081
 tags:
 - apache_demo
 - 8080
 - 8181
 when: backend_server == 'apache'

Role application
Roles are not plays. They do not possess any opinions about which hosts the role tasks
should run on, what connection methods to use, whether or not to operate serially, or any
other play behaviors described in Chapter 1, System Architecture and Design of Ansible. Roles
must be applied inside of a play within a playbook, where all these opinions can be
expressed.

To apply a role within a play, the roles operator is used. This operator expects a list of
roles to apply to the hosts in the play. Much like describing role dependencies, when
describing roles to apply, data can be passed along, such as variables, tags, and
conditionals. The syntax is exactly the same.

Composing Reusable Ansible Content with Roles

[146]

To demonstrate applying roles within a play, let's create a simple role and apply it in a
simple playbook. First, let's build the role named simple, which will have a single debug
task in roles/simple/tasks/main.yaml that prints the value of a role default variable
defined in roles/simple/defaults/main.yaml. First, let's work the task file:

- name: print a variable
 debug:
 var: derp

Next, we'll write our default file with a single variable, derp:

derp: herp

To execute this role, we'll write a playbook with a single play to apply the role. We'll call
our playbook roleplay.yaml, and it'll live at the same directory level as the roles/
directory:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple

If no data is provided with the role, an alternative syntax that just lists the
roles to apply can be used, instead of the shown hash. However, for
consistency, I feel it's best to always use the same syntax within a project.

Composing Reusable Ansible Content with Roles

[147]

We'll re-use our mastery-hosts inventory from earlier chapters and execute the playbook:

Thanks to the magic of roles, the derp variable value was automatically loaded from the
role defaults. Of course, we can override the default value when applying the role. Let's
modify our playbook and supply a new value for derp:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple
 derp: newval

Composing Reusable Ansible Content with Roles

[148]

This time when we execute, we'll see newval as the value for derp:

Multiple roles can be applied within a single play. The roles: key expects a list value. Just
add more roles to apply more roles:

- hosts: localhost
 gather_facts: false

 roles:
 - role: simple
 derp: newval
 - role: second_role
 othervar: value
 - role: third_role
 - role: another_role

Mixing roles and tasks
Plays that use roles are not limited to just roles. These plays can have tasks of their own, as
well as two other blocks of tasks: pre_tasks and post_tasks. The order in which these
are executed is not dependent upon which order these sections are listed in the play itself;
rather, there is a strict order to block execution within a play. See Chapter 1, System
Architecture and Design of Ansible, for details on the playbook order of operations.

Composing Reusable Ansible Content with Roles

[149]

Handlers for a play are flushed at multiple points. If there is a pre_tasks block, handlers
are flushed after all pre_tasks are executed. Then, the roles and tasks blocks are
executed (roles first, then tasks, regardless of the order they are written in the playbook),
after which handlers will be flushed again. Finally, if a post_tasks block exists, handlers
will be flushed once again after all post_tasks have executed. Of course, handlers can be
flushed at any time with the meta: flush_handlers call. Let's expand on our
roleplay.yaml to demonstrate all the different times handlers can be triggered:

- hosts: localhost
 gather_facts: false

 pre_tasks:
 - name: pretask
 debug:
 msg="a pre task"
 changed_when: true
 notify: say hi

 roles:
 - role: simple
 derp: newval

 tasks:
 - name: task
 debug:
 msg: "a task"
 changed_when: true
 notify: say hi

 post_tasks:
 - name: posttask
 debug:
 msg: "a post task"
 changed_when: true
 notify: say hi

 handlers:
 - name: say hi
 debug:
 msg="hi"

We'll also modify our simple role's tasks to notify the say hi handler, as well:

- name: print a variable
 debug:

Composing Reusable Ansible Content with Roles

[150]

 var: derp
 changed_when: true
 notify: say hi

This only works because the say hi handler has been defined in the play
that is calling the simple role. If the handler is not defined, an error will
occur. It's best practice to only notify handlers that exist within the same
role or any role marked as a dependency.

Running our playbook should result in the say hi handler being called a total of three of
times: once for pre_tasks, once for roles and tasks, and once for post_tasks:

Composing Reusable Ansible Content with Roles

[151]

While the order in which pre_tasks, roles, tasks, and post_tasks are written into a
play does not impact the order in which those sections are executed, it's a best practice to
write them in the order that they will be executed. This is a visual cue to help remember the
order and to avoid confusion when reading the playbook later.

Role includes
With Ansible version 2.2, a new action plugin is made available as a technical preview,
include_role. This plugin is used in a task to include and execute an entire role directly
from a task. This is an interesting concept that is still being evaluated, and is not guaranteed
to remain available in future releases. Reliance on this functionality should be avoided.

Role sharing
One of the advantages of using roles is the ability to share the role across plays, playbooks,
entire project spaces, and even across organizations. Roles are designed to be self-contained
(or to clearly reference dependent roles) so that they can exist outside of a project space
where the playbook that applies the role lives. Roles can be installed in shared paths on an
Ansible host, or they can be distributed via source control.

Ansible Galaxy
Ansible Galaxy (https://galaxy.ansible.com/) is a community hub for finding and
sharing Ansible roles. Anybody can visit the website to browse the roles and reviews; plus,
users who create a login can provide reviews of the roles they've tested. Roles from Galaxy
can be downloaded using the ansible-galaxy utility provided with Ansible.

The ansible-galaxy utility can connect to and install roles from the Ansible Galaxy
website. This utility will default to installing roles into /etc/ansible/roles. If
roles_path is configured, or if a run-time path is provided with the --roles-path (or -
p) option, the roles will be installed there instead. If any roles have been installed to the
roles_path or the provided path, ansible-galaxy can list those and show information
about those, as well. To demonstrate the usage of ansible-galaxy, let's use it to install a
role for managing known_hosts for ssh from Ansible Galaxy into the roles directory we've
been working with. Installing roles from Ansible Galaxy requires a username.rolename,
as multiple users may have uploaded roles with the same name. In this case, we want the
docker_ubuntu role from the user angstwad:

https://galaxy.ansible.com/

Composing Reusable Ansible Content with Roles

[152]

Now we can make use of this role by referencing angstwad.docker_ubuntu in a play or
another role's dependencies block. We can also list it and gain information about it using
the ansible-galaxy utility:

Composing Reusable Ansible Content with Roles

[153]

The output was capped at 37 lines, to avoid displaying the entire README.md contents.
Some of the data being displayed by the info command lives within the role itself, in the
meta/main.yaml file. Previously, we've only seen dependency information in this file and
it may not have made much sense to name the directory meta, but now we see that other
metadata lives in this file, as well:

The ansible-galaxy utility can also help in the creation of new roles. The init method
will create a skeleton directory tree for the role, as well as populate the meta/main.yaml
file with placeholders for Galaxy-related data. The init method takes a variety of options,
as shown in the help output:

Composing Reusable Ansible Content with Roles

[154]

Let's demonstrate this capability by creating a new role in our working directory named
autogen:

Composing Reusable Ansible Content with Roles

[155]

For roles that are not suitable for Ansible Galaxy, such as roles dealing with in-house
systems, ansible-galaxy can install directly from a git URL. Instead of just providing a
role name to the install method, a full git URL with an optional version can be provided
instead. For example, if we wanted to install the foowhiz role from our internal git server,
we could simply do the following:

Without version info, the master branch will be used. Without name data, the name will be
determined from the URL itself. To provide a version, append a comma and the version
string that git can understand, such as a tag or branch name, like v1:

A name for the role can be added with another comma followed by the name string. If you
need to supply a name but do not wish to supply a version, an empty slot is still required
for the version. For example:

Roles can also be installed directly from tarballs, as well, by providing a URL to the tarball
in lieu of a full git URL or a role name to fetch from Ansible Galaxy.

Composing Reusable Ansible Content with Roles

[156]

When you need to install many roles for a project, it's possible to define multiple roles to
download and install in a YAML formatted file that ends with .yaml (or .yml). The format
of this file allows you to specify multiple roles from multiple sources and retain the ability
to specify versions and role names. In addition, the source control method can be listed
(currently only git and hg are supported):

- src: <name or url>
 version: <optional version>
 name: <optional name override>
 scm: <optional defined source control mechanism>

To install all the roles within a file, use the --roles-file (-r) option with the install
method:

Summary
Ansible provides the capability to divide content logically into separate files. This capability
helps project developers to not repeat the same code over and over again. Roles within
Ansible take this capability a step further and wrap some magic around the paths to the
content. Roles are tunable, reusable, portable, and shareable blocks of functionality. Ansible
Galaxy exists as a community hub for developers to find, rate, and share roles. The
ansible-galaxy command-line tool provides a method to interact with the Ansible
Galaxy site or other role sharing mechanisms. These capabilities and tools help with the
organization and utilization of common code.

In the next chapter, we'll cover different deployment and upgrade strategies and the
Ansible features useful for each strategy.

6
Minimizing Downtime with

Rolling Deployments
Application deployments and upgrades can be approached in a variety of different
strategies. The best approach depends on the application itself, the capabilities of the
infrastructure the application runs on, and any promised service-level agreements with the
users of the application. Whatever strategy you use, Ansible is well suited to facilitate the
deployment. In this chapter, we'll walk through a couple of common deployment strategies
and showcase the Ansible features that will be useful within those strategies. We'll also
discuss a couple of other deployment considerations that are common across both
deployment strategies which are:

In-place upgrades
Expanding and contracting
Failing fast
Minimizing disruptive actions
Serializing single tasks

In-place upgrades
The first type of deployment we'll cover is in-place upgrades. This style of deployment
operates on infrastructure that already exists in order to upgrade the existing application.
This model can be seen as a traditional model that existed when the creation of new
infrastructure was a costly endeavor in terms of both time and money.

Minimizing Downtime with Rolling Deployments

[158]

To minimize the downtime during this type of an upgrade, a general design pattern is to
deploy the application across multiple hosts behind a load balancer. The load balancer will
act as a gateway between users of the application and the servers that run the application.
Requests for the application will come to the load balancer, and depending on
configuration, the load balancer will decide which backend server to direct the request to.

To perform a rolling in-place upgrade of an application deployed with this pattern, each
server (or a small subset of the servers) will be disabled at the load balancer, upgraded, and
then re-enabled to take on new requests. This process will be repeated for the remaining
servers in the pool until all servers have been upgraded. As only a portion of the available
application servers is taken offline to be upgraded, the application as a whole remains
available for requests. Of course, this assumes that an application can perform well with
mixed versions running at the same time.

Let's build a playbook to upgrade a fictional application. Our fictional application will run
on servers foo-app01 through foo-app08, which exist in the group foo-app. These
servers will have a simple website being served via the nginx webserver, with the content
coming from a foo-app git repository, defined by the variable foo-app.repo. A load
balancer server, foo-lb, running the haproxy software, will front these app servers.

In order to operate on a subset of our foo-app servers, we need to employ the serial mode.
This mode changes how Ansible will execute a play. By default, Ansible will execute tasks
of a play across each host in the order that the tasks are listed. Each task of the play is
executed across every host before moving on to the next task. If we were to use the default
method, our first task would remove every server from the load balancer, which would
result in complete outage of our application. The serial mode, instead, lets us operate on a
subset so that the application as a whole stays available even if some of the members are
offline. In our example, we'll use a serial amount of two in order to keep the majority of the
application members online:

- name: Upgrade foo-app in place
 hosts: foo-app
 serial: 2

Ansible 2.2 introduced the concept of serial batches, a list of numbers
that could increase the amount of hosts addressed serially each time
through the play. This allows for increasing the size of the hosts addressed
as confidence increases. The last number provided will be the size of any
remaining batch until all hosts have been completed.

Minimizing Downtime with Rolling Deployments

[159]

Now, we can start creating our tasks. The first task will be to disable the host from the load
balancer. The load balancer runs on the foo-lb host; however, we're operating on the foo-
app hosts. Therefore, we need to delegate the task using the delegate_to task operator.
This operator redirects where Ansible will connect in order to execute the task, but keeps all
the variable context of the original host. We'll use the haproxy module to disable the
current host from the foo-app backend pool:

 tasks:
 - name: disable member in balancer
 haproxy:
 backend: foo-app
 host: "{{ inventory_hostname }}"
 state: disabled
 delegate_to: foo-lb

With the host disabled, we can now update the foo-app content. We'll use the git module
to update the content path with the desired version defined as foo-version. We'll add a
notify handler to this task to reload the nginx server if the content update results in a
change. This can be done every time, but we're using this as an example usage of notify:

 - name: pull stable foo-app
 git:
 repo: "{{ foo-app.repo }}"
 dest: /srv/foo-app/
 version: "{{ foo-version }}"
 notify:
 - reload nginx

Our next step would be to re-enable the host in the load balancer; however, if we did that
task next, we'd put the old version back in place, as our notified handler hasn't run yet. So,
we need to trigger our handlers early by way of the meta: flush_handlers call, which
we learned about in the previous chapter:

 - meta: flush_handlers

Minimizing Downtime with Rolling Deployments

[160]

Now, we can re-enable the host in the load balancer. We can just enable it straight away and
rely on the load balancer to wait until the host is healthy before sending requests to it.
However, because we are running with a reduced number of available hosts, we need to
ensure that all the remaining hosts are healthy. We can make use of a wait_for task to wait
until the nginx service is once again serving connections. The wait_for module will wait
for a condition on either a port or a file path. In our example, we will wait for the port 80
and the condition that port should be in. If it is started (the default), this means it is
accepting connections:

 - name: ensure healthy service
 wait_for:
 port: 80

Finally, we can re-enable the member within haproxy. Once again, we'll delegate the task
to foo-lb:

 - name: enable member in balancer
 haproxy:
 backend: foo-app
 host: "{{ inventory_hostname }}"
 state: enabled
 delegate_to: foo-lb

Of course, we still need to define our reload nginx handler:

 handlers:
 - name: reload nginx
 service:
 name: nginx
 state: restarted

This playbook, when run, will now perform a rolling in-place upgrade of our application.

Expanding and contracting
An alternative to the in-place upgrade strategy is the expand and contract strategy. This
strategy has become popular of late thanks to the self-service nature of on-demand
infrastructure, such as cloud computing or virtualization pools. The ability to create new
servers on demand from a large pool of available resources means that every deployment of
an application can happen on brand new systems. This strategy avoids a host of issues, such
as a build up of cruft on long running systems, such as:

Minimizing Downtime with Rolling Deployments

[161]

The configuration files no longer managed by Ansible are left behind
The run-away processes consume resources in the background
Things manually changed by humans with shell access to the server

Starting afresh each time also removes differences between an initial deployment and an
upgrade. The same code path can be used, reducing the risk of surprises while upgrading
an application. This type of an install can also make it extremely easy to roll back if the new
version does not perform as expected. In addition to this, as new systems are created to
replace old systems, the application does not need to go into a degraded state during the
upgrade.

Let's re-approach our previous upgraded playbook with the expand and contract strategy.
Our pattern will be to create new servers, deploy our application, verify our application,
add new servers to the load balancer, and remove old servers from the load balancer. First,
let's start with creating new servers. For this example, we'll make use of an OpenStack
Compute Cloud to launch new instances:

- name: Create new foo servers
 hosts: localhost

 tasks:
 - name: launch instances
 os_server:
 name: foo-appv{{ version }}-{{ item }}
 image: foo-appv{{ version }}
 flavor: 4
 key_name: ansible-prod
 security_groups: foo-app
 auto_floating_ip: false
 state: present
 auth:
 auth_url: https://me.openstack.blueboxgrid.com:5001/v2.0
 username: jlk
 password: FAKEPASSW0RD
 project_name: mastery
 register: launch
 with_sequence: count=8

Minimizing Downtime with Rolling Deployments

[162]

In this task, we're looping over a count of 8 using with_sequence. Each loop in the item
variable will be replaced with a number. This allows us to create eight new server instances
with a name based on the version of our application and the number of the loop. We're also
assuming a prebuilt image to use so that we do not need to do any further configuration of
the instance. In order to use the servers in future plays, we need to add their details to the
inventory. To accomplish this, we register the results of the run in the launch variable,
which we'll use next to create runtime inventory entries:

 - name: add hosts
 add_host:
 name: "{{ item.openstack.name }}"
 ansible_ssh_host: "{{ item.openstack.private_v4 }}"
 groups: new-foo-app
 with_items: launch.results

This task will create new inventory items with the same name as that of our server instance.
To help Ansible know how to connect, we'll set ansible_ssh_host to the IP address that
our cloud provider assigned to the instance (this is assuming that the address is reachable
by the host running Ansible). Finally, we'll add the hosts to the group new-foo-app. As
our launch variable comes from a task with a loop, we need to iterate over the results of that
loop by accessing the results key. This allows us to loop over each launch action to access
the data specific to that task.

Next, we'll operate on the servers to ensure that the new service is ready for use. We'll use
wait_for again, just as we did earlier, as a part of a new play on our new-foo-app group:

- name: Ensure new app
 hosts: new-foo-app
 tasks:
 - name: ensure healthy service
 wait_for:
 port: 80

Once they're all ready to go, we can reconfigure the load balancer to make use of our new
servers. For the sake of simplicity, we will assume a template for the haproxy configuration
that expects hosts in a new-foo-app group, and the end result will be a configuration that
knows all about our new hosts and forgets about our old hosts. This means that we can
simply call a template task on the load balancer system itself rather than attempting to
manipulate the running state of the balancer:

- name: Configure load balancer
 hosts: foo-lb
 tasks:
 - name: haproxy config
 template:

Minimizing Downtime with Rolling Deployments

[163]

 dest: /etc/haproxy/haproxy.cfg
 src: templates/etc/haproxy/haproxy.cfg

 - name: reload haproxy
 service:
 name: haproxy
 state: reloaded

Once the new configuration file is in place, we can issue a reload of the haproxy service.
This will parse the new configuration file and start a new listening processes for new
incoming connections. The existing connections will eventually close and the old processes
will terminate. All new connections will be routed to the new servers running our new
application version.

This playbook can be extended to decommission the old version of the servers, or that
action may happen at a different time, when it has been decided that a rollback to the old
version capability is no longer necessary.

The expand and contract strategy can involve more tasks, and even separate playbooks for
creating a golden image set, but the benefits of fresh infrastructure for every release far
outweigh the extra tasks or added complexity of creation followed by deletion.

Failing fast
When performing an upgrade of an application, it may be desirable to fully stop the
deployment at any sign of error. A partially upgraded system with mixed versions may not
work at all, so continuing with part of the infrastructure while leaving the failed systems
behind can lead to big problems. Fortunately, Ansible provides a mechanism to decide
when to reach a fatal error scenario.

By default, when Ansible is running through a playbook and encounters an error, Ansible
will remove the failed host from the list of play hosts and continue with the tasks or plays.
Ansible will stop executing once either all the requested hosts for a play have failed, or all
the plays have been completed. To change this behavior, there are a couple of play controls
that can be employed. Those controls are any_errors_fatal and max_fail_percentage.

Minimizing Downtime with Rolling Deployments

[164]

The any_errors_fatal option
This setting instructs Ansible to consider the entire operation to be fatal and stop executing
immediately if any host encounters an error. To demonstrate this, we'll add a new group to
our mastery-hosts inventory using a pattern that will expand up to ten new hosts:

[failtest]
failer[01:10]

Then we'll create a play on this group with any_errors_fatal set to true. We'll also turn
off fact gathering since these hosts do not exist:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 any_errors_fatal: true

We want a task that will fail for one of the hosts but not the others. Then, we'll want a
second task as well, just to demonstrate how it will not run:

 tasks:
 - name: fail last host
 fail:
 msg: "I am last"
 when: inventory_hostname == play_hosts[-1]
 - name: never ran
 debug:
 msg: "I should never be ran"
 when: inventory_hostname == play_hosts[-1]

Now when we execute, we'll see one host fail but the entire play will stop after the first task:

Minimizing Downtime with Rolling Deployments

[165]

We can see that just one host failed, however, Ansible reported all hosts to have failed, and
aborted the playbook before getting to the next play.

The max_fail_percentage option
This setting allows play developers to define a percentage of hosts that can fail before the
whole operation is aborted. At the end of each task, Ansible will perform a math operation
to determine the number of the hosts targeted by the play that have reached a failure state,
and if that number is greater than the number allowed, Ansible will abort the playbook.
This is similar to any_errors_fatal, in fact, any_errors_fatal internally just expresses
a max_fail_percentage parameter of 0, where any failure is considered fatal. Let's edit
our play from the preceding and change our max_fail_percentage parameter to 20:

- name: any errors fatal
 hosts: failtest

Minimizing Downtime with Rolling Deployments

[166]

 gather_facts: false
 max_fail_percentage: 20

By making that change, our play should complete both tasks without aborting:

Minimizing Downtime with Rolling Deployments

[167]

Now, if we change our conditional so that we fail on over 20 percent of the hosts, we'll see
the playbook abort early:

 - name: fail last host
 fail:
 msg: "I am last"
 when: inventory_hostname in play_hosts[0:3]

We're setting up three hosts to fail, which will give us a failure rate of greater than 20
percent. The max_fail_percentage setting is the maximum allowed, so our setting of 20
would allow 2 out of the 10 hosts to fail. With three hosts failing, we will see a fatal error
before the second task:

Minimizing Downtime with Rolling Deployments

[168]

Forcing handlers
Normally, when Ansible fails a host, it stops executing anything on that host. This means
that any pending handlers will not be run. This can be undesirable, and there is a play
control that will force Ansible to process pending handlers for failed hosts. This play control
is force_handlers, which must be set to the Boolean true.

Let's modify our preceding example a little to demonstrate this functionality. We'll remove
our max_fail_percentage parameter add a new first task. We need to create a task that
returns successfully with a change. We can do this with the debug module using the
changed_when task control, even though the debug module will never register a change by
default. We'll revert our fail task conditional to what we originally started with as well:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 tasks: - name: run first
 debug:
 msg: "I am a change"
 changed_when: true
 when: inventory_hostname == play_hosts[-1]
 notify: critical handler
 - name: change a host
 fail:
 msg: "I am last"
 when: inventory_hostname == play_hosts[-1]

Our third task remains unchanged, but we will define our critical handler:

 - name: never ran
 debug:
 msg: "I should never be ran"
 when: inventory_hostname == play_hosts[-1]
 handlers:
 - name: critical handler
 debug:
 msg: "I really need to run"

Minimizing Downtime with Rolling Deployments

[169]

Let's run this new play to show the default behavior of the handler not being executed. In
the interest of reduced output, we'll limit execution to just one of the hosts:

Now, we add the force_handlers play control and set it to true:

- name: any errors fatal
 hosts: failtest
 gather_facts: false
 max_fail_percentage: 0
 force_handlers: true

Minimizing Downtime with Rolling Deployments

[170]

This time when we run the playbook, we should see the handler run even for the failed
hosts:

Forcing handlers can be a runtime decision as well, using the --force-
handlers command line argument to ansible-playbook.

Forcing handlers to run can be really useful for repeated playbook runs. The first run may
result in some changes but if a fatal error is encountered before the handlers are flushed,
those handler calls will be lost. Repeated runs will not result in the same changes so the
handler will never run without manual interaction. Forcing handlers to execute will make
some attempt at ensuring that those handler calls are not lost.

Minimizing Downtime with Rolling Deployments

[171]

Minimizing disruptions
During deployments, there are often tasks that can be considered disruptive or destructive.
These tasks may include restarting services, performing database migrations, and so on.
Disruptive tasks should be clustered together to minimize the overall impact on an
application, while destructive tasks should only be performed once.

Delaying a disruption
Restarting services for a new code version is a very common need. When viewed in
isolation, a single service can be restarted whenever the code and configuration for the
application has changed, without concern for the overall distributed system health.
Typically, a distributed system will have roles for each part of the system, and each role will
operate essentially in isolation on the hosts targeted to perform those roles. When
deploying an application for the first time, there is no existing uptime of the whole system
to worry about; so, services can be restarted at will. However, during an upgrade, it may be
desirable to delay all service restarts until every service is ready to minimize interruptions.

Reuse of role code is strongly encouraged rather than designing a completely separate
upgrade code path. To accommodate a coordinated reboot, the role code for a particular
service needs protection around the service restart. A common pattern is to put a
conditional statement on the disruptive tasks that check a variable's value. When
performing an upgrade, this variable can be defined at runtime to trigger this alternative
behavior. This variable can also trigger a coordinated restart of services at the end of the
main playbook once all roles have completed, to cluster the disruption and minimize the
total outage.

Let's create a fictional application upgrade that involves two roles with simulated service
restarts. We'll call these roles microA and microB:

roles/microA
├── handlers
│ └── main.yaml
└── tasks
 └── main.yaml
roles/microB
├── handlers
│ └── main.yaml
└── tasks
 └── main.yaml

Minimizing Downtime with Rolling Deployments

[172]

For both of these roles, we'll have a simple debug task that simulates the installation of a
package. We'll notify a handler to simulate the restart of a service. And, to ensure that the
handler will trigger, we'll force the task to always register as changed:

roles/microA/tasks/main.yaml:

- name: install microA package
 debug:
 msg: "This is installing A"
 changed_when: true
 notify: restart microA
roles/microB/tasks/main.yaml:

- name: install microB package
 debug:
 msg: "This is installing B"
 changed_when: true
 notify: restart microB

The handlers for these roles will be debug actions as well, and we'll attach a conditional to
the handler task to only restart if the upgrade variable evaluates to the Boolean false. We'll
also use the default filter to give this variable a default value of false:

roles/microA/handlers/main.yaml:

- name: restart microA
 debug:
 msg: "microA is restarting"
 when: not upgrade | default(false) | bool
roles/microB/handlers/main.yaml:

- name: restart microB
 debug:
 msg: "microB is restarting"
 when: not upgrade | default(false) | bool

Minimizing Downtime with Rolling Deployments

[173]

For our top-level playbook, we'll create four plays. The first two plays will apply each of the
micro roles and the last two plays will do the restarts. The last two plays will only be
executed if performing an upgrade; so, they will make use of the upgrade variable as a
condition. Let's have a look at the following code snippet:

micro.yaml:

- name: apply microA
 hosts: localhost
 gather_facts: false

 roles:
 - role: microA

- name: apply microB
 hosts: localhost
 gather_facts: false

 roles:
 - role: microB

- name: restart microA
 hosts: localhost
 gather_facts: false

 tasks:
 - name: restart microA for upgrade
 debug:
 msg: "microA is restarting"
 when: upgrade | default(false) | bool

- name: restart microB
 hosts: localhost
 gather_facts: false

 tasks:
 - name: restart microB for upgrade
 debug:
 msg: "microB is restarting"
 when: upgrade | default(false) |bool

Minimizing Downtime with Rolling Deployments

[174]

If we execute this playbook without defining the upgrade module, we will see the execution
of each role and the handlers within. The final two plays will just have skipped tasks:

Minimizing Downtime with Rolling Deployments

[175]

Now, let's execute the playbook again, and this time, we'll define the upgrade as true at
runtime:

Minimizing Downtime with Rolling Deployments

[176]

This time, we can see that our handlers are skipped but the final two plays have tasks that
execute. In a real world scenario, where many more things are happening in the microA
and microB roles, and potentially other micro-service roles on other hosts, the difference
could be of many minutes or more. Clustering the restarts at the end can reduce the
interruption period significantly.

Running destructive tasks only once
Destructive tasks come in many flavors. They can be one-way tasks that are extremely
difficult to roll back, one-time tasks that cannot easily be rerun, or they can be race
condition tasks that if performed in parallel would result in catastrophic failure. For these
reasons and more, it is essential that these tasks be performed only once from a single host.
Ansible provides a mechanism to accomplish this by way of the run_once task control.

The run_once task control will ensure that the task only executes a single time from a
single host, regardless of how many hosts happen to be in a play. While there are other
methods to accomplish this goal, such as using a conditional to make the task only execute
on the first host of a play, the run_once control is the most simple and direct way to
express this desire. Additionally, any variable data registered from a task controlled by
run_once will be made available to all hosts of the play, not just the host that was selected
by Ansible to perform the action. This can simplify later retrieval of the variable data.

Let's create an example playbook to demonstrate this functionality. We'll reuse our
failtest hosts created in an earlier example to have a pool of hosts, and select two of
them using a host pattern. We'll do a debug task set to run_once and register the results,
then access the result in a different task by a different host:

- name: run once test
 hosts: failtest[0:1]
 gather_facts: false

 tasks:
 - name: do a thing
 debug:
 msg: "I am groot"
 register: groot
 run_once: true

 - name: what is groot
 debug:
 var: groot
 when: inventory_hostname == play_hosts[-1]

Minimizing Downtime with Rolling Deployments

[177]

When we run this play, we'll pay special attention to the hostnames listed for each task
operation:

We can see that the do a thing task is executed on the host failer01, while the what is
groot task, which examines the data from the do a thing task, operates on host
failer02.

Serializing single tasks
Certain applications that run multiple copies of a service may not react well to all of those
services being restarted at once. Typically, when upgrading this type of application, a
serial play is used. However, if the application is of large enough scale, serializing the
entire play may be wildly inefficient. A different approach can be used, which is to serialize
just the sensitive task(s), often the handlers to restart services.

Minimizing Downtime with Rolling Deployments

[178]

To serialize a specific handler task, we can make use of a built in variable, play_hosts.
This variable holds the list of hosts that should be used for a given task, as part of the play.
It is kept up to date with hosts that have failed or are unreachable. Using this variable, we
can construct a loop to iterate over each host that could potentially run a handler task.
Instead of using the item in the module arguments, we'll use the item in when conditional
and a delegate_to directive, so that we can run the handler task if the host notified the
handler and delegate the handler task to the host in the loop, rather than the original host.
However, if we just use this as the list for a with_items directive, we'll end up executing
the task for every host, for each of the hosts that trigger a handler. That's obviously
unwanted, so we can use a task directive, run_once, to change behavior. The run_once
directive instructs Ansible to only execute the task for one host, instead of for every host
that it would normally target. Combining run_once and our with_items of play_hosts
creates a scenario where Ansible will run through the loop, only once. Finally, we want to
wait a small amount of time between each loop so that the restarted service can become
functional before we restart the next one. We can make use of a loop_control of pause
(introduced with Ansible version 2.2) to insert a pause between each iteration of the loop.

To demonstrate how this serialization will work, we'll write a play using a few hosts from
our failtest group, with a task that creates a change, registers the output (so we can
check in the handler task) and a serialized handler task:

- name: parallel and serial
 hosts: failtest[0:3]
 gather_facts: false

 tasks:
 - name: do a thing
 debug:
 msg: "I am groot"
 changed_when: inventory_hostname in play_hosts[0:2]
 register: groot
 notify: restart groot

 handlers:
 - name: restart groot
 debug:
 msg: "I am groot?"
 with_items: "{{ play_hosts }}"
 delegate_to: "{{ item }}"
 run_once: true
 when: hostvars[item]['groot']['changed'] | bool
 loop_control:
 pause: 2

Minimizing Downtime with Rolling Deployments

[179]

Upon execution of this playbook we can see the handler notification (thanks to double
verbosity -vv), and in the handler task we can see the loop, conditional, and delegation.
Unfortunately, we cannot see the delay happen as that information is not part of the output:

Minimizing Downtime with Rolling Deployments

[180]

Summary
Deployment and upgrade strategies are a matter of taste. Each comes with distinct
advantages and disadvantages. Ansible does not possess an opinion on which is better, and
therefore is well suited to perform deployments and upgrades regardless of the strategy.
Ansible provides features and design patterns that facilitate a variety of styles with ease.
Understanding the nature of each strategy and how Ansible can be tuned for that strategy
will empower you to decide and design deployments for each of your applications. Task
controls and built in variables provide methods to efficiently upgrade large scale
applications while treating specific tasks carefully.

In Chapter 7, Troubleshooting Ansible, we'll cover topics that will help for when things don't
quite go as expected when executing Ansible playbooks.

7
Troubleshooting Ansible

Ansible is simple but powerful. The simplicity of Ansible means that the operation is easy
to understand and follow. Being able to understand and follow is critically important when
debugging unexpected behavior. In this chapter, we will explore the various methods that
can be employed to examine, introspect, modify, and, otherwise debug the operation of
Ansible:

Playbook logging and verbosity
Variable introspection
Playbook debugging
Ansible console
Debugging local code execution
Debugging remote code execution

Playbook logging and verbosity
Increasing the verbosity of Ansible output can solve many problems. From invalid module
arguments to incorrect connection commands, increased verbosity can be critical to
pinpointing the source of an error. Playbook logging and verbosity were briefly discussed
in Chapter 2, Protecting Your Secrets with Ansible, with regards to protecting secret values
while executing playbooks. This section will cover verbosity and logging further in-depth.

Troubleshooting Ansible

[182]

Verbosity
When executing playbooks with ansible-playbook, the output is displayed on standard
out. With the default level of verbosity, very little information is displayed. As a play is
executed, ansible-playbook will print a PLAY header with the name of the play. Then
for each task, a TASK header is printed with the name of the task. As each host executes the
task, the name of the host is displayed along with the task state, which can be ok, fatal, or
changed. No further information about the task is displayed, such as the module being
executed, the arguments provided to the module, or the return data from the execution.
While this is fine for well-established playbooks, I tend to want a little more information
about my plays. In most previous examples in this book, we've used a verbosity level of 2 (-
vv) so that we can see the location of the task and return data. There are five total levels of
verbosity: none, which is the default level, 1 (-v), where the return data and conditional
information is displayed, 2 (-vv) for task location and handler notification information, 3 (-
vvv), which provides details of the connection attempts, task invocation information, and 4
(-vvvv), which will pass along extra verbosity options to the connection plugins (such as
passing -vvv to the ssh commands). Increasing the verbosity can help pinpoint where
errors might be occurring as well as providing extra insight into how Ansible is performing
its operations.

As mentioned in Chapter 2, Protecting Your Secrets with Ansible, verbosity beyond 1 can leak
sensitive data to standard out and log files, so care should be taken when using increased
verbosity in a potentially shared environment.

Logging
While the default is for ansible-playbook to log to standard out, the amount of output
may be greater than the buffer of the terminal emulator being used; therefore it may be
necessary to save all the output to a file. While various shells provide some mechanism to
redirect output, a more elegant solution is to direct ansible-playbook to log to a file. This
is accomplished by way of either a log_path definition in the ansible.cfg file or by
setting ANSIBLE_LOG_PATH as an environment variable. The value of either should be the
path to a file. If the path does not exist, Ansible will attempt to create the file. If the file does
exist, Ansible will append to the file, allowing consolidation of multiple ansible-
playbook execution logs.

Troubleshooting Ansible

[183]

The use of a log file is not mutually exclusive with logging to standard output. Both can
happen at the same time, and the verbosity level provided has an effect on both.

Variable introspection
A common set of problems encountered when developing Ansible playbooks is the
improper use or invalid assumption of the value of variables. This is particularly common
when registering the results of one task in a variable and later using that variable in a task
or template. If the desired element of the result is not accessed properly, the end result will
be unexpected or perhaps even harmful.

To troubleshoot improper variable usage, inspection of the variable value is the key. The
easiest way to inspect a variable's value is with the debug module. The debug module
allows for displaying free form text on screen, and like with other tasks, the arguments to
the module can take advantage of the Jinja2 template syntax as well. Let's demonstrate this
usage by creating a sample play that executes a task, registers the result, and then shows the
result in a debug statement using the Jinja2 syntax to render the variable:

- name: variable introspection demo
 hosts: localhost
 gather_facts: false

 tasks:
 - name: do a thing
 uri:
 url: https://derpops.bike
 register: derpops

 - name: show derpops
 debug:
 msg: "derpops value is {{ derpops }}"

Troubleshooting Ansible

[184]

Now when we run this play, we'll see displayed value for derpops:

The debug module has a different option that may be useful as well. Instead of printing a
free form string to debug template usage, the module can simply print the value of any
variable. This is done using the var argument instead of the msg argument. Let's repeat our
example, but this time, we'll use the var argument, and we'll access just the server
subelement of the derpops variable:

- name: variable introspection demo
 hosts: localhost
 gather_facts: false

Troubleshooting Ansible

[185]

 tasks:
 - name: do a thing
 uri:
 url: https://derpops.bike
 register: derpops

 - name: show derpops
 debug:
 var: derpops.server

Running this modified play will show just the server portion of the derpops variable:

Troubleshooting Ansible

[186]

In our example that used the msg argument to debug, the variable needed to be expressed
inside of mustache brackets, but when using var, it did not. This is because msg expects a
string, and so Ansible needs to render the variable as a string via the template engine.
However, var expects a single unrendered variable.

Variable sub elements
Another frequent mistake in playbooks is to improperly reference a subelement of a
complex variable. A complex variable is one that is more than simply a string; it is either a
list or a hash. Often the wrong subelement will be referenced, or the element will be
improperly referenced expecting a different type.

While lists are fairly easy to work with, hashes present some unique challenges. A hash is
an unordered key-value set of potentially mixed types, which could also be nested. A hash
can have one element that is a single string, while another element can be list of strings, and
a third element can be a another hash with further elements inside of it. Knowing how to
properly access the right subelement is critical to success.

For an example, let's modify our previous play a bit more. This time we'll allow Ansible to
gather facts, and then we'll show the value of ansible_default_ipv4:

- name: variable introspection demo
 hosts: localhost

 tasks:
 - name: show a complex hash
 debug:
 var: ansible_default_ipv4

Troubleshooting Ansible

[187]

The output is shown in the following screenshot:

Troubleshooting Ansible

[188]

Using debug to display the entire complex variable is a great way to learn all the names of
the subelements.

This variable has elements that are strings along with elements that are lists of strings. Let's
access the last item in the list of flags:

- name: variable introspection demo
 hosts: localhost

 tasks:
 - name: show a complex hash
 debug:
 var: ansible_default_ipv4.flags[-1]

The output is shown in the following screenshot:

Because flags is a list, we can use the list index method to select a specific item from the
list. In this case, -1 will give us the very last item in the list.

Troubleshooting Ansible

[189]

Subelement versus Python object method
A less common but confusing gotcha comes from a quirk of the Jinja2 syntax. Complex
variables within Ansible playbooks and templates can be referenced in two ways. The first
style is to reference the base element by the name followed by a bracket and the subelement
within quotes inside the brackets. This is the standard subscript syntax, for example, to
access the herp subelement of the derp variable, we will use the following:

{{ derp['herp'] }}

The second style is a convenience method that Jinja2 provides, which is to use a period to
separate the elements. This is called dot notation:

{{ derp.herp }}

There is a subtle difference in how these styles work that has to do with Python objects and
object methods. As Jinja2 is at its heart a Python utility, variables in Jinja2 have access to
their native Python methods. A string variable has access to Python string methods, a list
has access to list methods, and a dictionary has access to dictionary methods. When using
the first style, Jinja2 will first search the element for a subelement of the provided name. If
none is found, Jinja2 will then attempt to access a Python method of the provided name.
However, the order is reversed when using the second style; first a Python object method is
searched for and if not found, then a subelement is searched for. This difference matters
when there is a name collision between a subelement and a method. Imagine a variable
named derp, which is a complex variable. This variable has a subelement named keys.
Using each style to access the keys element will result in different values. Let's build a
playbook to demonstrate this:

- name: sub-element access styles
 hosts: localhost
 gather_facts: false
 vars:
 - derp:
 keys:
 - c
 - d
 tasks:
 - name: subscript style
 debug:
 var: derp['keys']
 - name: dot notation style
 debug:
 var: derp.keys

Troubleshooting Ansible

[190]

When running this play, we clearly see the difference between the two styles. The first style
successfully references the keys subelement, while the second style references the keys
method of Python dictionaries:

Generally, it's best to avoid using subelement names that conflict with Python object
methods. However, if that's not possible, the next best thing to do is to be aware of the
difference in subelement reference styles and choose the appropriate one.

Troubleshooting Ansible

[191]

Debugging code execution
Sometimes logging and inspection of variable data is not enough to troubleshoot a problem.
When this happens, it can be necessary to interactively debug the playbook, or to dig
deeper into the internals of Ansible code. There are two main sets of Ansible code, the code
that runs locally on the Ansible host and the module code that runs remotely on the target
host.

Playbook debugging
Playbooks can be interactively debugged, using an execution strategy introduced in Ansible
2.1, the debug strategy. If a play uses this strategy, when an error state is encountered an
interactive debugging session starts. This interactive session can be used to display variable
data, display task arguments, update task arguments, update variables, redo task execution,
continue execution, or exit the debugger.

Let's demonstrate this with a play that has a successful task followed by a task with an
error, followed by a final successful task. We'll re-use the playbook we've been using but
update it a bit:

- name: sub-element access styles
 hosts: localhost
 gather_facts: false
 strategy: debug

 vars:
 - derp:
 keys:
 - c
 - d

 tasks:
 - name: subscript style
 debug:
 var: derp['keys']

 - name: failing task
 debug:
 msg: "this is {{ derp['missing'] }}"

 - name: final task
 debug:
 msg: "my only friend the end"

Troubleshooting Ansible

[192]

Upon execution, Ansible will encounter an error in our failing task, and present the
(debug) prompt:

From this prompt, we can display the task, and the arguments to the task, using the p
command:

Troubleshooting Ansible

[193]

We can also change the playbook on the fly in order to try different arguments or variable
values. Let's define the missing key of the derp variable, and then retry the execution. All
the variables are within the top level vars dictionary. We can directly set variable data
using Python syntax, and then retry with the r command:

The debug execution strategy is a handy tool for quickly iterating through different task
argument and variable combinations in order to figure out the correct path forward.
However, because errors result in interactive consoles, the debug strategy is inappropriate
for automated executions of playbooks, as there is no human on the console to manipulate
the debugger.

Troubleshooting Ansible

[194]

Changing data within the debugger will not save the changes to backing
files. Always remember to update playbook files to reflect discoveries
made during debugging.

Debugging local code
The local Ansible code is the lion's share of the code that comes with Ansible. All the
playbook, play, role, and task parsing code live locally. All the task result processing code
and transport code live locally. All the code except for the assembled module code that is
transported to the remote host lives locally.

Local Ansible code can be broken down into three major sections: inventory, playbook, and
executor. Inventory code deals with parsing inventory data from host files, dynamic
inventory scripts, or combinations of the two in directory trees. Playbook code is used to
parse the playbook YAML code into Python objects within Ansible. Executor code is the
core API and deals with forking processes, connecting to hosts, executing modules,
handling results, and most other things. Learning the general area to start debugging comes
with practice, but the general areas described here are a starting point.

As Ansible is written in Python, the tool for debugging local code execution is the Python
debugger, pdb. This tool allows us to insert break points inside the Ansible code and
interactively walk through the execution of the code, line by line. This is very useful for
examining the internal state of Ansible as the local code executes. There are many books
and websites that cover the usage of pdb, and can by found with a simple web search for an
introduction to Python pdb, so we will not repeat them here. The basics are to edit the
source file to be debugged, insert a new line of code to create a break point, and then
execute the code. Code execution will stop where the breakpoint was created and a prompt
will be provided to explore the code state.

Troubleshooting Ansible

[195]

Debugging inventory code
Inventory code deals with finding inventory sources, reading or executing the discovered
files, parsing the inventory data into inventory objects, and loading variable data for the
inventory. To debug how Ansible will deal with an inventory, a breakpoint must be added
inside inventory/__init__.py or one of the other files within the inventory/
subdirectory. This directory will be located on the local filesystem wherever Ansible has
been installed. On a Linux system, this is typically stored in the path
/usr/lib/python2.7/site-packages/ansible/inventory/. This path may be inside
of a Python virtual environment if Ansible has been installed that way. To discover where
Ansible is installed, simply type which ansible from the command line. This command
will show where the ansible executable is installed, and may indicate a Python virtual
environment. For this book, Ansible has been installed in a Python virtual environment
with the path /Users/jkeating/.virtualenvs/ansible/.

To discover the path to the ansible python code, simply type python -c "import
ansible; print(ansible)". On my system this shows <module 'ansible' from
'/Users/jkeating/.virtualenvs/ansible/lib/python2.7/site-

packages/ansible/__init__.pyc'>, from which we can deduce that the inventory
subdirectory is located at
/Users/jkeating/.virtualenvs/ansible/lib/python2.7/site-

packages/ansible/inventory/.

Within inventory/__init__.py, there is a class definition for the Inventory class. This
is the inventory object that will be used throughout a playbook run, and it is created when
ansible-playbook parses the options provided to it for an inventory source. The
__init__ method of the Inventory class does all the inventory discovery, parsing, and
variable loading. To troubleshoot an issue in those three areas, a breakpoint should be
added within the __init__() method. A good place to start would be after all of the class
variables are given an initial value and just before any data is processed. In version 2.2.0.0
of Ansible, this would be line 98 of inventory/__init__.py, where the
parse_inventory function is called.

Troubleshooting Ansible

[196]

We can skip down to the parse_inventory function definition, on line 107 to insert our
breakpoint. To insert a breakpoint we must first import the pdb module and then call the
set_trace() function:

To start debugging, save the source file and then execute ansible-playbook as normal.
When the breakpoint is reached, the execution will stop and a pdb prompt will be
displayed:

Troubleshooting Ansible

[197]

From here, we can issue any number of debugger commands, such as the help command:

Troubleshooting Ansible

[198]

The where and the list commands can help us determine where we are in the stack, and
where we are in the code:

Troubleshooting Ansible

[199]

The where command showed us that we're in inventory/__init__.py in the
parse_inventory() method. The next frame up is the same file, the __init__()
function. Before that is a different file, the playbook.py file, and the function in that file is
run(); this line calls to ansible.inventory. Inventory to create the inventory object.
Before that is the original file, ansible-playbook, calling cli.run().

The list command shows the source code around our current point of execution, five lines
before and five lines after.

From here, we can guide pdb through the function line by line with the next command.
And, if we chose to, we can trace into other function calls with the step command. We can
also print variable data to inspect values:

We can see that the host_list variable has a value of mastery-hosts, which is the string
we gave ansible-playbook for our inventory data. We can continue to walk through or
jump around, or just use the continue command to run until the next breakpoint or the
completion of the code.

Troubleshooting Ansible

[200]

Debugging playbook code
Playbook code is responsible for loading, parsing, and executing playbooks. The main entry
point for playbook handling is playbook/__init__.py, inside of which lives the
PlayBook class. A good starting point for debugging playbook handling is line 76:

Putting a breakpoint here will allow us to trace through finding the playbook file and
parsing it. Specifically, stepping into the self._loader.load_from_file() function call,
we will be able to follow the parsing in action.

The PlayBook class load() function just does the initial parsing. Other classes within other
directories are used for execution of plays and tasks. A particularly interesting directory is
the ansible/executor/ directory, which holds files with classes to execute playbooks,
plays, and tasks. The run() function within the PlaybookExecutor class defined in the
ansible/executor/playbook_executor.py file will loop through all of the plays in the
playbook and execute the plays, which will, in turn, execute the individual tasks. This is the
function to walk through if facing an issue related to play parsing, play or task callbacks,
tags, play host selection, serial operation, handler running, or anything in between.

Troubleshooting Ansible

[201]

Debugging executor code
Executor code in Ansible is the connector code that binds together inventory data,
playbooks, plays, tasks, and the connection methods. While each of those other code bits
can be individually debugged, how they interact can be examined within executor code.

The executor classes are defined in various files within executor/. One such class is the
PlaybookExecutor class. This class handles executing all the plays and the tasks within a
given playbook. The class creation function, __init__(), creates a series of placeholder
attributes, as well as setting some default values, while the run() function is where most of
the fun happens.

Debugging can often take you from one file to another, jumping around the code base. For
example, in the __init__() function of the PlaybookExecutor class, there is code to
cache whether or not the default ssh executable supports control persist.
 ControlPersist is the feature of ssh that keeps sockets to remote hosts open for a period
of time for fast reuse. Let's put a break point here and follow the code:

Troubleshooting Ansible

[202]

Now we can run our objmethod.yml playbook again to get into a debugging state:

We'll need to step into the function to follow the execution. Stepping into the function will
take us to a different file:

Troubleshooting Ansible

[203]

From here we can use list to see the code in our new file:

Walking a few more lines down, we come to a block of code that will execute an ssh
command and check the output to determine if ControlPersist is supported:

Troubleshooting Ansible

[204]

Let's walk through the next couple of lines and then print out what the value of err is. This
will show us the result of the ssh execution and the whole string that Ansible will be
searching within:

As we can see, the search string is not within the err variable, so the value of has_cp
remains the default of True.

A quick note on forks and debugging: when Ansible uses multiprocessing
for multiple forks, debugging becomes difficult. A debugger may be
attached to one fork and not another, which will make it very difficult to
debug the code. Unless specifically debugging the multiprocessing code,
best practice is to stick to a single fork.

Troubleshooting Ansible

[205]

Debugging remote code
The remote code is the code that Ansible transports to a remote host in order to execute.
This is typically module code, or in the case of action_plugins, other snippets of code.
Using the debugging method discussed in the previous section to debug module execution
will not work, as Ansible simply copies the code over and then executes it. There is no
terminal attached to the remote code execution, and thus, no way to attach to a debugging
prompt, that is, without editing the module code.

To debug module code, we need to edit the module code itself to insert a debugger break
point. Instead of directly editing the installed module file, create a copy of the file in a
library/ directory relative to the playbooks. This copy of the module code will be used
instead of the installed file, which makes it easy to temporarily edit a module without
disrupting other users of modules on the system.

Unlike with other Ansible code, module code cannot be directly debugged with pdb,
because the module code is assembled and then transported to a remote host. Thankfully,
there is a solution in the form of a slightly different debugger named rpdb - The Remote
Python Debugger. This debugger has the ability to start a listening service on a provided
port in order to allow remote connections into the Python process. Connecting to the
process remotely will allow debugging the code line by line, just as we did with other
Ansible code.

To demonstrate how this debugger works, first we're going to need a remote host. For this
example, we're using a remote host by the name of debug.example.com, and setting the IP
address to a host that is already set up and waiting. Next, we need a playbook to execute a
module that we'd like to debug:

- name: remote code debug
 hosts: debug.example.com
 gather_facts: false

 tasks:
 - name: a remote module execution
 systemd:
 name: dnsmasq
 state: stopped
 enabled: no

Troubleshooting Ansible

[206]

This play simply calls the systemd module to ensure that the dnsmasq service is stopped
and will not start up upon boot. As stated above, we need to make a copy of the service
module and place it in library/. The location of the service module to copy from will vary
based on the way Ansible is installed. Typically, this module will be located in the
modules/core/system/ subdirectory of where the Ansible Python code lives, like
/Users/jkeating/.virtualenvs/ansible/lib/python2.7/site-

packages/ansible/modules/core/system/systemd.py on my system. Then, we can
edit it to put in our break point:

We'll put the break point just before the systemctl variable value gets created, near line
248. First, the rpdb module must be imported (meaning that the rpdb Python library needs
to exist on the remote host), then the break point needs to be created with set_trace().
Unlike the regular debugger, this function will open a port and listen for external
connections. By default, the function will listen for connections to port 4444 on the address
127.0.0.1. However, that address is not exposed over the network, so in my example I've
instructed rpdb to listen on address 0.0.0.0, effectively every address on the host. Now,
we can run this playbook to set up the server that will wait for a client connection:

Troubleshooting Ansible

[207]

Now that the server is running, we can connect to it from another terminal. Connecting to
the running process can be accomplished with the telnet program:

Troubleshooting Ansible

[208]

From this point on, we can debug as normal. The commands we've used before still exist,
such as list to show where in the code the current frame is:

Using the debugger, we can walk through the systemd module to track how it determines
the path to the underlying tool, trace which commands are executed on the host, determine
how a change is computed, and so on. The entire file can be stepped through, including any
other external libraries the module may make use of, allowing debugging of other non-
module code on the remote host as well.

If the debugging session allows the module to exit cleanly, the playbook execution will
return as normal. However, if the debugging session is disconnected from before the
module completes, the playbook will error:

Troubleshooting Ansible

[209]

Because of this side-effect, it is best to not exit the debugger early, and instead issue a
continue command when your debugging is finished.

Debugging the action plugins
Some modules are actually action plugins. These are tasks that will execute some code
locally before transporting code to the remote host. Some example action plugins include
copy, fetch, script, and template. The source to these plugins can be found in
plugins/action/. Each plugin will have its own file in this directory that can be edited to
have break points inserted to debug the code executed prior to (or in lieu of) sending code
to the remote host. Debugging these is typically done with pdb, as most of the code is
executed locally.

Troubleshooting Ansible

[210]

Summary
Ansible is software, and software breaks. It's not a matter of if, but when. Invalid input,
improper assumptions, unexpected environments – all things that can lead to a frustrating
situation when tasks and plays are just not performing as expected. Introspection and
debugging are troubleshooting techniques that can quickly turn frustration into elation
when a root cause is discovered.

In the next chapter, we will learn how to extend the functionality of Ansible by writing our
own modules, plugins, and inventory sources.

8
Extending Ansible

Ansible takes the kitchen sink approach to functionality. There are over 800 modules
available for use within Ansible at the time of writing this. In addition, there are numerous
callback plugins, lookup plugins, filter plugins, and dynamic inventory plugins. Even with
all of that functionality, there can still exist a need to add new functionality.

This chapter will explore the following ways in which new capabilities can be added to
Ansible:

Developing modules
Developing plugins
Developing dynamic inventory plugins
Contributing code to the Ansible project

Developing modules
Modules are the workhorse of Ansible. They provide just enough abstraction that enables
playbooks to be stated simply and clearly. There are over 100 modules maintained by the
core Ansible development team covering clouds, commands, databases, files, network,
packaging, source control, system, utilities, web infrastructure, and so on. In addition, there
are nearly 700 other modules maintained by community contributors that expand
functionality in many of these categories. The real magic happens inside the module code,
which takes in the arguments passed to it and works to establish the desired outcome.

Modules in Ansible are the bits of code that get transported to the remote host to be
executed. They can be written in any language that the remote host can execute; however,
Ansible provides some very useful shortcuts if writing the module in Python.

Extending Ansible

[212]

The basic module construct
A module exists to satisfy a need – the need to do a piece of work on a host. Modules
usually, but not always, expect input, and will return some sort of output. Modules also
strive to be idempotent, allowing rerunning the module over and over again without
having a negative impact. In Ansible, the input is in the form of command-line arguments
to the module, and output is delivered as JSON to standard out.

Input is generally provided in the space-separated key=value syntax and it's up to the
module to deconstruct these into the usable data. If using Python, there are convenience
functions to manage this, and if using a different language, then it is up to the module code
to fully process the input.

The output is JSON formatted. Convention dictates that in a success scenario, the JSON
output should have at least one key, changed, which is a Boolean to indicate whether the
module execution resulted in a change or not. Additional data can be returned as well,
which may be useful to define specifically what changed, or provide important information
back to the playbook for later use. Additionally, host facts can be returned in the JSON data
to automatically create host variables based on the module execution results. We will see
more on this later.

Custom modules
Ansible provides an easy mechanism to utilize custom modules outside of what comes with
Ansible. As we learned in Chapter 1, System Architecture and Design of Ansible, Ansible will
search many locations to find a requested module. One such location, the first location, is
the library/ subdirectory of the path where the top-level playbook resides. This is where
we will place our custom module so that we can use it in our example playbook.

Modules can also be embedded within roles to deliver the added functionality that a role
may depend upon. These modules are only available to the role that contains it or any other
roles or tasks executed after the role containing the module. To deliver a module with a
role, place the module in the library/ subdirectory of the role's root.

Extending Ansible

[213]

Simple module
To demonstrate the ease of writing Python-based modules, let's create a simple module. The
purpose of this module will be to remotely copy a source file to a destination file; a simple
task that we can build up from. To start our module, we need to create the module file. For
easy access to our new module, we'll create the file in the library/ subdirectory of the
working directory we've already been using. We'll call this module remote_copy.py, and
to start it off, we'll need to put in a sha-bang line to indicate that this module is to be
executed with Python:

#!/usr/bin/python
#

For Python-based modules, the convention is to use /usr/bin/python as the listed
executable. When executed on a remote system, the configured Python interpreter for the
remote host is used to execute the module, so fret not if your Python doesn't exist in this
path. Next, we'll import a Python library we'll use later in the module, called shutil:

import shutil

Now, we're ready to create our main function. The main function is essentially the entry
point to the module, where the arguments to the module will be defined and where the
execution will start. When creating modules in Python, we can take some shortcuts in this
main function to bypass a lot of boilerplate code, and get straight to the argument
definitions. We do this by creating an AnsibleModule object and giving it an
argument_spec dictionary for the arguments:

def main():
 module = AnsibleModule(
 argument_spec = dict(
 source=dict(required=True, type='str'),
 dest=dict(required=True, type='str')
)
)

In our module, we're providing two arguments. The first argument is source, which we'll
use to define the source file for the copy. The second argument is dest, the destination for
the copy. Both of these arguments are marked as required, which will raise an error when
executed if one of the two are not provided. Both arguments are of the type string. The
location of the AnsibleModule class has not yet been defined, as that happens later in the
file.

Extending Ansible

[214]

With a module object at our disposal, we can now create the code that will do the actual
work on the remote host. We'll make use of shutil.copy and our provided arguments to
accomplish the copy:

 shutil.copy(module.params['source'],
 module.params['dest'])

The shutil.copy function expects a source and a destination, which we've provided by
accessing module.params. The module.params dictionary holds all of the parameters for
the module. Having completed the copy, we are now ready to return the results to Ansible.
This is done via another AnsibleModule method, exit_json. This method expects a set of
key=value arguments and will format it appropriately for a JSON return. Since we're
always performing a copy, we will always return a change for simplicity's sake:

 module.exit_json(changed=True)

This line will exit the function, and thus the module. This function assumes a successful
action and will exit the module with the appropriate return code for success: 0. We're not
done with our module's code though, we still have to account for the AnsibleModule
location. This is where a bit of magic happens, where we tell Ansible what other code to
combine with our module to create a complete work that can be transported:

from ansible.module_utils.basic import *

That's all it takes! That one line gets us access to all of the basic module_utils, a decent set
of helper functions and classes. There is one last thing we should put into our module, a
couple of lines of code telling the interpreter to execute the main() function when the
module file is executed:

if __name__ == '__main__':
 main()

Now our module file is complete and we can test it with a playbook. We'll call our playbook
simple_module.yaml, and store it in the same directory as the library/ directory where
we've just written our module file. We'll run the play on localhost for simplicity's sake
and use a couple of filenames in /tmp for the source and destination. We'll also use a task to
ensure that we have a source file to begin with:

- name: test remote_copy module
 hosts: localhost
 gather_facts: false

 tasks:
 - name: ensure foo

Extending Ansible

[215]

 file:
 path: /tmp/foo
 state: touch

 - name: do a remote copy
 remote_copy:
 source: /tmp/foo
 dest: /tmp/bar

To run this playbook, we'll reference our mastery-hosts file. If the remote_copy module
file is written to the correct location, everything will work just fine, and the screen output
will look as follows:

Our first task touches the /tmp/foo path to ensure that it exists, and then our second task
makes use of remote_copy to copy /tmp/foo to /tmp/bar. Both tasks are successful,
resulting in a change each time.

Extending Ansible

[216]

Module documentation
No module should be considered complete unless it contains documentation on how to
operate the module. Documentation for modules exists within the module itself, in special
variables called DOCUMENTATION, EXAMPLES, and RETURN.

The DOCUMENTATION variable contains a specially formatted string describing the module
name, the version it was added to Ansible (if it is in Ansible proper), a short description of
the module, a longer description, a description of the module arguments, author and license
information, additional requirements, and any extra notes useful to users of the module.
Let's add a DOCUMENTATION string to our module:

import shutil

DOCUMENTATION = '''

module: remote_copy
version_added: future
short_description: Copy a file on the remote host
description:
 - The remote_copy module copies a file on the remote host from a given
source to a provided destination.
options:
 source:
 description:
 - Path to a file on the source file on the remote host
 required: True
 dest:
 description:
 - Path to the destination on the remote host for the copy
 required: True
author:
 - Jesse Keating
'''

The format of the string is essentially YAML, with some top-level keys containing hash
structures within (same as the options key). Each option has subelements to describe the
option, indicate whether the option is required, list any aliases for the option, list static
choices for the option, or indicate a default value for the option. With this string saved to
the module, we can test our formatting to ensure that the documentation will render
correctly. This is done via the ansible-doc tool with an argument to indicate where to
search for modules. If we run it from the same place as our playbook, the command will be
ansible-doc -M library/ remote_copy, and the output will be as follows:

Extending Ansible

[217]

In this example, I've piped the output into cat to prevent the pager from hiding the
execution line. Our documentation string appears to be formatted correctly, and provides
the user with important information regarding the usage of the module.

The EXAMPLES string is used to provide one or more example uses of the module, snippets
of the task code that one would use in a playbook. Let's add an example task to demonstrate
the usage. This variable definition traditionally goes after the DOCUMENTATION definition:

EXAMPLES = '''
Example from Ansible Playbooks
- name: backup a config file
 remote_copy:
 source: /etc/herp/derp.conf
 dest: /root/herp-derp.conf.bak
'''

Extending Ansible

[218]

With this variable defined, our ansible-doc output will now include the example, as we
can see in the following screenshot:

The last documentation variable, RETURN, is a relatively new feature of module
documentation. This variable is used to describe the return data from a module execution.
Return data is often useful as a registered variable for later usage, and having
documentation of what return data to expect can aid in playbook development. Our module
doesn't have any return data yet; so before we can document return data, we first have to
add return data. This can be done by modifying the module.exit_json line to add more
information. Let's add the source and dest data into the return output:

 module.exit_json(changed=True, source=module.params['source'],
 dest=module.params['dest'])

Extending Ansible

[219]

Rerunning the playbook will show extra data being returned, as shown in the following
screenshot:

Looking closely at the return data, we can see more data than we put in our module. This is
actually a bit of a helper functionality within Ansible; when a return data set includes a
dest variable Ansible will gather more information about the destination file. The extra
data gathered is gid (group ID), group (group name), mode (permissions), uid (owner ID),
owner (owner name), size, and state (file, link, or directory). We can document all of
these return items in our RETURN variable, which is added after the EXAMPLES variable:

RETURN = '''
source:
 description: source file used for the copy
 returned: success
 type: string
 sample: "/path/to/file.name"
dest:
 description: destination of the copy
 returned: success
 type: string
 sample: "/path/to/destination.file"

Extending Ansible

[220]

gid:
 description: group ID of destination target
 returned: success
 type: int
 sample: 502
group:
 description: group name of destination target
 returned: success
 type: string
 sample: "users"
uid:
 description: owner ID of destination target
 returned: success
 type: int
 sample: 502
owner:
 description: owner name of destination target
 returned: success
 type: string
 sample: "fred"
mode:
 description: permissions of the destination target
 returned: success
 type: int
 sample: 0644
size:
 description: size of destination target
 returned: success
 type: int
 sample: 20
state:
 description: state of destination target
 returned: success
 type: string
 sample: "file"
'''

Each return item is listed with a description, the cases when the item would be in the return
data, the type of item it is, and a sample of the value. The RETURN string is essentially
repeated verbatim in the ansible-doc output, as shown in the following (abbreviated)
example:

Extending Ansible

[221]

Providing fact data
Similar to data returned as part of a module exit, a module can directly create facts for a
host by returning data in a key named ansible_facts. Providing facts directly from a
module eliminates the need to register the return of a task with a subsequent set_fact
task. To demonstrate this usage, let's modify our module to return the source and dest
data as facts. Because these facts will become top-level host variables, we'll want to use
more descriptive fact names than source and dest:

 facts = {'rc_source': module.params['source'],
 'rc_dest': module.params['dest']}

 module.exit_json(changed=True, ansible_facts=facts)

Extending Ansible

[222]

We'll also add a task to our playbook to use one of the facts in a debug statement:

 - name: show a fact
 debug:
 var: rc_dest

Now, running the playbook will show the new return data plus the use of the variable:

If our module does not return facts, we will have to register the output and use set_fact
to create the fact for us, as shown in the following code:

 - name: do a remote copy
 remote_copy:
 source: /tmp/foo
 dest: /tmp/bar
 register: mycopy

 - name: set facts from mycopy

Extending Ansible

[223]

 set_fact:
 rc_dest: "{{ mycopy.dest }}"

The check mode
Since version 1.1, Ansible has supported check mode, a mode of operation that will pretend
to make changes to a system without actually changing the system. Check mode is useful
for testing whether a change will actually happen, or if a system state has drifted since the
last Ansible run. Check mode depends on modules to support check mode and return data
as if it had actually completed the change. Supporting check mode in our module requires
two changes; the first is to indicate that the module supports check mode, and the second is
to detect when check mode is active and return data before execution.

Supporting the check mode
To indicate that a module supports check mode, an argument has to be set when creating
the module object. This can be done before or after the argument_spec variable is defined
in the module object; here, we will do it after it is defined:

 module = AnsibleModule(
 argument_spec = dict(
 source=dict(required=True, type='str'),
 dest=dict(required=True, type='str')
),
 supports_check_mode=True
)

Handling check mode
Detecting when check mode is active is very easy. The module object will have a
check_mode attribute, which will be set to Boolean value true when check mode is active.
In our module, we want to detect whether check mode is active before performing the copy.
We can simply move the copy action into an if statement to avoid copying when check
mode is active. The return can happen without any changes:

 if not module.check_mode:
 shutil.copy(module.params['source'],
 module.params['dest'])

Extending Ansible

[224]

Now, we can run our playbook and add the -C argument to our execution. This argument
engages check mode. We'll also test to ensure that the playbook did not actually create and
copy the files. Let's take a look at the following screenshot:

Although the module output looks like it created and copied files, we can see that the files
referenced did not exist before execution and still do not exist after execution.

Extending Ansible

[225]

Developing plugins
Plugins are another way of extending or modifying the functionality of Ansible. While
modules are executed as tasks, plugins are utilized in a variety of other places. Plugins are
broken down into a few types, based on where they would plug in to the Ansible execution.
Ansible ships some plugins for each of these areas, and end users can create their own to
extend the functionality of these specific areas.

Connection type plugins
Any time Ansible makes a connection to a host to perform a task, a connection plugin is
used. Ansible ships with a few connection plugins, including ssh, docker, chroot, local,
and smart. Additional connection mechanisms can be utilized by Ansible to connect to
remote systems by creating a connection plugin, which may be useful if faced with
connecting to some new type of system, such as a network switch, or maybe your
refrigerator some day. Creating connection plugins is a bit beyond the scope of this book;
however, the easiest way to get started is to read through the existing plugins that ship with
Ansible and pick one to modify as necessary. The existing plugins can be found in
plugins/connection/ wherever the Ansible Python libraries are installed on your
system, such as /Users/jkeating/.virtualenvs/ansible/lib/python2.7/site-
packages/ansible/plugins/connection/ on my system.

Shell plugins
Much like connection plugins, Ansible makes use of shell plugins to execute things in a
shell environment. Each shell has subtle differences that Ansible cares about in order to
properly execute commands, redirect output, discover errors, and other such interactions.
Ansible supports a number of shells, including sh, csh, fish, and powershell. We can
add more shells by implementing a new shell plugin.

Lookup plugins
Lookup plugins are how Ansible accesses outside data sources from the host system, and
implements language features, such as looping constructs (with_*). A lookup plugin can be
created to access data from an existing data store, or to create a new looping mechanism.
The existing lookup plugins can be found in plugins/lookup/. Lookup plugins can be
added to introduce new ways of looping over content, or for looking up resources in
external systems.

Extending Ansible

[226]

Vars plugins
Constructs to inject variable data exist in the form of vars plugins. Data such as host_vars
and group_vars are implemented via plugins. While it's possible to create new variable
plugins, most often, it is better to create a custom inventory source or a fact module instead.

The fact caching plugins
Recently (as of version 1.8), Ansible gained the ability to cache facts between playbook runs.
Where the facts are cached depends on the configured cache plugin that is used. Ansible
includes plugins to cache facts in memory (not actually cached between runs), memcached,
redis, and jsonfile. Creating a fact caching plugin can enable additional caching
mechanisms.

Filter plugins
While Jinja2 includes a number of filters, Ansible has made filters pluggable to extend the
Jinja2 functionality. Ansible includes a number of filters that are useful to Ansible
operations, and users of Ansible can add more. Existing plugins can be found in
plugins/filter/.

To demonstrate the development of a filter plugin, we will create a simple filter plugin to
do a silly thing to text strings. We will create a filter that will replace any occurrence of the
cloud with somebody else's computer. We'll define our filter in a file within a new
directory, filter_plugins/, in our existing working directory. The name of the file
doesn't matter, as we'll define the name of the filter within the file; so, lets name our file
filter_plugins/sample_filter.py. First, we need to define the function that will
perform the translation, and provide the code to translate the strings:

def cloud_truth(a):
 return a.replace("the cloud", "somebody else's computer")

Next, we'll need to construct a FilterModule object and define our filter within it. This
object is what Ansible will load, and Ansible expects there to be a filters function within
the object that returns a set of filter names to functions within the file:

class FilterModule(object):
 '''Cloud truth filters'''
 def filters(self):
 return {'cloud_truth': cloud_truth}

Extending Ansible

[227]

Now, we can use this filter in a playbook, which we'll call simple_filter.yaml:

- name: test cloud_truth filter
 hosts: localhost
 gather_facts: false
 vars:
 statement: "I store my files in the cloud"
 tasks:
 - name: make a statement
 debug:
 msg: "{{ statement | cloud_truth }}"

Now, let's run our playbook and see our filter in action:

Our filter worked, and it turned the cloud into somebody else's computer. This is a silly
example without any error handling, but it clearly demonstrates our capability to extend
Ansible and Jinja2's filter capabilities.

Although the file name a filter exists in can be whatever the developer
wants to name it, a best practice is to name it after the filter itself so that it
can easily be found in the future, potentially by other collaborators. This
example did not follow this to demonstrate that the file name is not
attached to the filter name.

Extending Ansible

[228]

Callback plugins
Callbacks are places in Ansible execution that can be plugged into for added functionality.
There are expected callback points that can be registered against to trigger custom actions at
those points. Here is a list of possible points to trigger functionality at the time of this
writing:

v2_on_any

v2_runner_on_failed

v2_runner_on_ok

v2_runner_on_skipped

v2_runner_on_unreachable

v2_runner_on_no_hosts

v2_runner_on_async_poll

v2_runner_on_async_ok

v2_runner_on_async_failed

v2_runner_on_file_diff

v2_playbook_on_start

v2_playbook_on_notify

v2_playbook_on_no_hosts_matched

v2_playbook_on_no_hosts_remaining

v2_playbook_on_task_start

v2_playbook_on_cleanup_task_start

v2_playbook_on_handler_task_start

v2_playbook_on_vars_prompt

v2_playbook_on_setup

v2_playbook_on_import_for_host

v2_playbook_on_not_import_for_host

v2_playbook_on_play_start

v2_playbook_on_stats

v2_on_file_diff

v2_playbook_on_include

v2_runner_item_on_ok

Extending Ansible

[229]

v2_runner_item_on_failed

v2_runner_item_on_skipped

v2_runner_retry

As an Ansible run reaches each of these states, any plugins that have code to run at these
points will be executed. This provides a tremendous ability to extend Ansible without
having to modify the base code

Callbacks can be utilized in a variety of ways; to change how things are displayed on
screen, to update a central status system on progress, to implement a global locking system,
or nearly anything imaginable. It's the most powerful way to extend the functionality of
Ansible. To demonstrate our ability to develop a callback plugin, we'll create a simple
plugin that will print something silly on the screen as a playbook executes:

First, we'll need to make a new directory to hold our callback. The location1.
Ansible will look for is callback_plugins/. Unlike the filter plugin earlier, we
do need to name our callback plugin file carefully as it will also have to be
reflected in an ansible.cfg file.
We'll name ours callback_plugins/shrug.py. Inside this file, we'll need to2.
create a CallbackModule class, subclassed from the CallbackModule defined
in the default callback plugin found in
ansible.plugins.callback.default, since we only need to change one
aspect of normal output.
Within this class, we define variable values to indicate that it is a 2.0 version3.
callback, and that it is an stdout type of callback, and finally that it has a name
of shrug.
Also within this class, we define one or more of the callback points we'd like to4.
plug into in order to make something happen.
We only have to define the points we want to plug in. In our case we'll plug into5.
the v2_on_any point so that our plugin runs at every callback spot.

 from ansible.plugins.callback import default
 class CallbackModule(default.CallbackModule):
 CALLBACK_VERSION = 2.0
 CALLBACK_TYPE = 'stdout'
 CALLBACK_NAME = 'shrug'
 def v2_on_any(self, *args, **kwargs):
 msg = '\xc2\xaf_(\xe3\x83\x84)_/\xc2\xaf'
 self._display.display(msg.decode('utf-8') * 8)

Extending Ansible

[230]

As this callback is a stdout_callback, we'll need to create an ansible.cfg file6.
and within it indicate that the shrug stdout callback should be used. The
ansible.cfg file can be in /etc/ansible/ or in the same directory as the
playbook.

[defaults]
stdout_callback = shrug

That's all we have to write into our callback. Once it's saved, we can rerun our7.
previous playbook, which exercised our sample_filter, but this time we'll see
something different on screen:

Very silly, but demonstrates the ability to plug into various points of a playbook execution.
We chose to display a series of shrugs on screen, but we could have just as easily interacted
with some internal audit and control system to record actions, or to report progress to an
IRC or Slack channel.

Extending Ansible

[231]

Action plugins
Action plugins exist to hook into the task construct without actually causing a module to be
executed, or to execute code locally on the Ansible host before executing a module on the
remote host. A number of action plugins are included with Ansible and can be found in
plugins/action/. One such action plugin is the template plugin used in place of a
template module. When a playbook author writes a template task, that task will actually
call the template plugin to do the work. The plugin, among other things, will render the
template locally before copying the content to the remote host. Because actions have to
happen locally, the work is done by an action plugin. Another action plugin we should be
familiar with is the debug plugin, which we've used heavily in this book to print content.
Creating a custom action plugin is useful when trying to accomplish both local work and
remote work in the same task.

Distributing plugins
Much like distributing custom modules, there are standard places to store custom plugins
alongside playbooks that expect to use plugins. The default locations for plugins are the
locations that are shipped with the Ansible code install, subdirectories within
~/.ansible/plugins/, and subdirectories of the project root (the place where the top-
level playbook is stored). Plugins can be distributed within the same subdirectories of a role
as well. To utilize plugins from any other location, we need to define the location to find the
plugin for the plugin type in an ansible.cfg file.

When distributing plugins inside the project root, each plugin type gets its own top-level
directory:

action_plugins/

cache_plugins/

callback_plugins/

connection_plugins/

shell_plugins/

lookup_plugins/

vars_plugins/

filter_plugins/

Extending Ansible

[232]

As with other Ansible constructs, the first plugin with a given name found will be used, and
just like with modules, the paths relative to the project root are checked first, allowing a
local override of an existing plugin. Simply place the filter file into the appropriate
subdirectory, and it will automatically get used when referenced.

Developing dynamic inventory plugins
Inventory plugins are bits of code that will create inventory data for an Ansible execution.
In many environments, the simple ini file style inventory source and variable structure is
not sufficient to represent the actual infrastructure being managed. In such cases, a dynamic
inventory source is desired, one that will discover the inventory and data at runtime at
every execution of Ansible. A number of these dynamic sources ship with Ansible,
primarily to operate Ansible with the infrastructure built into one cloud computing
platform or another. A short, incomplete list of dynamic inventory plugins that ship with
Ansible includes:

apache-libcloud

cobbler

console_io

digital_ocean

docker

ec2

gce

libvirt_lxc

linode

openshift

openstack

rax

vagrant

vmware

windows_azure

Extending Ansible

[233]

An inventory plugin is essentially an executable script. Ansible calls the script with set
arguments (--list or --host <hostname>) and expects JSON formatted output on
standard out. When the --list argument is provided, Ansible expects a list of all the
groups to be managed. Each group can list host membership, child group membership, and
group variable data. When the script is called with the --host <hostname> argument,
Ansible expects host-specific data to be returned (or an empty JSON dictionary).

Using a dynamic inventory source is easy. A source can be used directly by referring to it
with the -i (--inventory-file) option to ansible and ansible-playbook, or by
placing the plugin file in the ansible.cfg configured inventory path, or by putting the
plugin file inside the directory referred to by either the inventory path in ansible.cfg or
by the -i runtime option.

Before creating an inventory plugin, we must understand the expected format for when --
list or --host is used with our script.

Listing hosts
When the --list argument is passed to an inventory script, Ansible expects the JSON
output data to have a set of top-level keys. These keys are named for the groups in the
inventory. Each group gets its own key. The structure within a group key varies depending
on what data needs to be represented in the group. If a group just has hosts and no group
level variables, the data within the key can simply be a list of host names. If the group has
variables or children (group of groups), then the data needs to be a hash, which can have
one or more keys named hosts, vars, or children. The hosts and children subkeys have a
list value, a list of the hosts that exist in the group, or a list of the child groups. The vars
subkey has a hash value, where each variable's name and value is represented by a key and
value.

Listing host variables
When the --host <hostname> argument is passed to an inventory script, Ansible expects
the JSON output data to simply be a hash of the variables, where each variable name and
value is represented by a key and a value. If there are no variables for a given host, an
empty hash is expected.

Extending Ansible

[234]

Simple inventory plugin
To demonstrate developing an inventory plugin, we'll create one that simply prints the
same host data we've been using in our mastery-hosts file. Integrating with a custom
asset management system or an infrastructure provider is a bit beyond the scope of this
book, so we'll simply code the systems into the plugin itself. We'll write our inventory
plugin to a file in the top level of our project root named mastery-inventory.py, and
make it executable. We'll use Python for this file for the ease of handling execution
arguments and JSON formatting:

First, we'll need to add a sha-bang line to indicate that this script is to be1.
executed with Python:

#!/usr/bin/env python
#

Next, we'll need to import a couple of Python modules that we will need later in2.
our plugin:

import json
import argparse

Now, we'll create a Python dictionary to hold all of our groups. Some of our3.
groups just have hosts, while others have variables or children. We'll format each
group accordingly:

inventory = {}
inventory['web'] = {'hosts': ['mastery.example.name'],
 'vars': {'http_port': 80,
 'proxy_timeout': 5}}
inventory['dns'] = {'hosts': ['backend.example.name']}
inventory['database'] = {'hosts': ['backend.example.name'],
 'vars': {'ansible_ssh_user': 'database'}}
inventory['frontend'] = {'children': ['web']}
inventory['backend'] = {'children': ['dns', 'database'],
 'vars': {'ansible_ssh_user': 'blotto'}}
inventory['errors'] = {'hosts': ['scsihost']}
inventory['failtest'] = {'hosts': ["failer%02d" % n for n in
 range(1,11)]}

Extending Ansible

[235]

To recreate our failtest group, which in our inventory file was represented as4.
failer[01:10], we used a Python list comprehension to produce the list for us,
formatting the items in the list just the same as our original inventory file. Every
other group entry is self-explanatory.
Our original inventory also had an all group variable that provided a default5.
variable ansible_ssh_user to all groups (which groups could override) that
we'll define here and make use of later in the file:

allgroupvars = {'ansible_ssh_user': 'otto'}

Next, we need to enter the host-specific variables into their own dictionary. Only6.
two nodes in our original inventory have host-specific variables:

hostvars = {}
hostvars['web'] = {'ansible_ssh_host': '192.168.10.25'}
hostvars['scsihost'] = {'ansible_ssh_user': 'jkeating'}

With all our data defined, we can now move on to the code that will handle7.
argument parsing. This is done via the argparse module we imported earlier in
the file:

parser = argparse.ArgumentParser(description='Simple Inventory')
parser.add_argument('--list', action='store_true',
 help='List all hosts')
parser.add_argument('--host', help='List details of a host')
args = parser.parse_args()

After parsing the arguments, we can deal with either the --list or --host8.
actions. If a list is requested, we simply print a JSON representation of our
inventory. This is where we'll take into account the allgroupvars data, the
default ansible_ssh_user for each group. We'll loop through each group,
create a copy of the allgroupvars data, update that data with any data that may
already exist in the group, then replace the group's variable data with the newly
updated copy. Finally, we'll print out the end result:

if args.list:
 for group in inventory:
 ag = allgroupvars.copy()
 ag.update(inventory[group].get('vars', {}))
 inventory[group]['vars'] = ag
 print(json.dumps(inventory))

Extending Ansible

[236]

Finally, we'll handle the --host action by printing the JSON formatted variable9.
data for the provided host, or an empty hash if there is no host-specific variable
data for the provided host:

elif args.host:
 print(json.dumps(hostvars.get(args.host, {})))

Now, our inventory is ready to test! We can execute it directly and pass the --help
argument we get for free using argparse. This will show us the usage of our script based
on the argparse data we provided earlier in the file:

If we pass --list, we'll get the output of all our groups; and, if we pass --host with a
couple of hosts, we'll get either the host data or an empty set:

Extending Ansible

[237]

And now with the --host argument:

Now, we're ready to use our inventory file with Ansible. Let's make a new playbook
(inventory_test.yaml) to display the hostname and ssh username data:

- name: test the inventory
 hosts: all
 gather_facts: false

 tasks:
 - name: hello world
 debug:
 msg: "Hello world, I am {{ inventory_hostname }}.
 My username is {{ ansible_ssh_user }}"

Extending Ansible

[238]

To use our new inventory plugin with this playbook, we simply refer to the plugin file with
the -i argument. Because we are using the all hosts group in our playbook, we'll also limit
the run to a few groups to save on screen space:

As we can see, we get the hosts we expect, and we get the default ssh user for
master.example.name. The backend.example.name and scsihost each show their
host-specific ssh username.

Extending Ansible

[239]

Optimizing script performance
With this inventory script, when Ansible starts, it will execute the script once with --list
to gather the group data. Then, Ansible will execute the script again with --host
<hostname> for each host it discovered in the first call. With our script, this takes very little
time as there are very few hosts, and our execution is very fast. However, in an
environment with a large number of hosts or a plugin that takes a while to run, gathering
the inventory data can be a lengthy process. Fortunately, there is an optimization that can
be made in the return data from a --list call that will prevent Ansible from rerunning the
script for every host. The host-specific data can be returned all at once inside the group data
return, inside of a top-level key named _meta that has a subkey named hostvars that
contains a hash of all the hosts that have host variables and the variable data itself. When
Ansible encounters a _meta key in the --list return, it'll skip the --host calls and assume
that all of the host-specific data was already returned, potentially saving a
significant amount of time! Let's modify our inventory script to return host variables inside
of _meta, and create an error condition inside the --host option to show that --host is
not being called:

First, we'll add the _meta key to the inventory dictionary after all of the1.
hostvars have been defined, just before parsing arguments:

hostvars['scsihost'] = {'ansible_ssh_user': 'jkeating'}

inventory['_meta'] = {'hostvars': hostvars}

parser = argparse.ArgumentParser(description='Simple Inventory')
Next we'll change the --host handling to raise an exception:
elif args.host:
 raise StandardError("You've been a bad boy")

Extending Ansible

[240]

Now, we'll re-run the inventory_test.yaml playbook to ensure that2.
we're still getting the right data:

Just to be sure, we'll manually run the inventory plugin with the --hosts3.
argument to show the exception:

Extending Ansible

[241]

With this optimization, our simple playbook using our inventory module now runs nearly
twice as fast, just because of the gained efficiency in inventory parsing.

Contributing to the Ansible project
Not all modifications need to be for local site needs. Ansible users will often identify an
enhancement that could be made to the project that others would benefit from. These
enhancements can be contributed back to the Ansible project. Contribution could be in the
form of updates to an existing module or core Ansible code, updates to documentation, new
modules or plugins, or simply testing proposed contributions from other community
members.

Contribution submissions
The Ansible project uses GitHub (h t t p s ://g i t h u b . c o m) to manage code repositories,
issues, and other project aspects. The Ansible organization (h t t p s ://g i t h u b . c o m /a n s i b l e

) is where the code repositories can be found. The main repository is the ansible
repository (h t t p s ://g i t h u b . c o m /a n s i b l e /a n s i b l e), where the core Ansible code, the
modules, and the documentation can be found. This is the repository that should be cloned
in order to develop a contribution.

The Ansible project uses a development branch named devel instead of
the traditional name of master. Most contributions will target the devel
branch, or a stable release branch.

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/ansible/ansible

Extending Ansible

[242]

The ansible repository
This repository has a number of files and folders at its root. The files are mostly high level
documentation files, code licenses, or continuous integration test platform configurations.

Of the directories, a few are worth noting:

bin: Source for the various ansible core executables
contrib: Source for contributed inventory and vault plugins
docs: Source for API documentation, the h t t p s ://d o c s . a n s i b l e . c o m website,
and the man pages
hacking: Guides and utilities for hacking on the Ansible source
lib/ansible: The core Ansible source code
test: Unit and integration test code

Contributions to Ansible will likely occur in one of those folders.

Executing tests
Before any submission can be accepted by Ansible, the change must pass tests. These tests
fall into three categories, Unit tests, Integration tests, and Code Style tests. Unit tests will
cover very narrow aspects of the source code functions, while integration tests will take a
more holistic approach and ensure the desired functionality happens. Code style tests
examine the syntax used as well as whitespace and other style aspects.

Before any tests can be executed, the shell environment must be prepared to work with the
Ansible code checkout. A shell environment file exists to set the required variables, which
can be activated with the command:

 $ source ./hacking/env-setup

Ensuring tests are passing before modifications are made can save a lot of debugging time
later.

https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com
https://docs.ansible.com

Extending Ansible

[243]

Unit tests
All of the unit tests are located within the directory tree starting at test/units. These tests
should all be self-contained and do not require access to external resources. Running the
tests is as simple as executing make tests from the root of the Ansible source checkout. This
will test much of the code base, including module code.

Executing the tests may require installing additional software. When using
a Python virtualenv to manage Python software installs, it's best to create a
new venv to use for testing Ansible, one that does not have Ansible
installed in it.

To target a specific set of tests to run, the pytest utility can be called directly, with a path
provided to a directory or a specific file to test. In this example, just the parsing unit tests
are executed:

Extending Ansible

[244]

Integration tests
The Ansible integration tests are tests designed to validate playbook functionality. The
testing is executed by playbooks as well, making things a bit recursive. Tests are broken
down into a few main categories:

Non-destructive
Destructive
Cloud
Windows
Network

A more detailed explanation of the test categories can be found in the README.md file found
at test/integration/README.md.

Many of the integration tests require ssh to the local host to be functional.
Be sure that ssh works, ideally without a password prompt. Remote hosts
can be used by altering the inventory file used for tests
(test/integration/inventory)

As with unit tests, individual integration tests can be executed, using the ansible-test
utility located at test/runner/ansible-test. This is particularly important as many of
the integration tests require external resources, such as computer cloud accounts. Each
directory in test/integration/targets is a target that can be tested individually. For
example, to test ping functionality, use the ping target:

Extending Ansible

[245]

A large set of POSIX compatible non-destructive integration tests run by continuous
integration systems on proposed changes to Ansible can be executed with:

 $ test/runner/ansible-test integration -v posix/ci/

At the time of this writing, a number of the posix/ci tests do not pass on
Mac OSX. It is recommended to execute these tests in a recent Fedora
environment.

Extending Ansible

[246]

Code style tests
A third category of Ansible tests is the code style category. These tests examine the syntax
used in the Python files, ensuring a cohesive look across the codebase. The code style
enforced is defined by PEP8, a Style Guide for Python. More information is available in
test/sanity/pep8/README.md. This style is enforced via the pep8 make target. If there
are no errors, this target does not output any text, however the return code can be verified.
A return code of 0 means there were no errors:

If a Python file does have a pep8 violation, the output will reflect the violation:

The pep8 errors will indicate an error code, which can be looked up for detailed
explanations and guidance.

Extending Ansible

[247]

Making a pull request
With passing tests, a submission can be made. The Ansible project uses GitHub pull
requests to manage submissions. To create a pull request, your changes must be committed
and pushed to GitHub. Developers use a fork of the Ansible repository under their own
account to push proposed changes to. Once pushed, a pull request can be opened using the
GitHub website. This will create the pull request, which will start continuous integration
tests and notify reviewers of a new submission. Further information about GitHub pull
requests can be found at h t t p s ://h e l p . g i t h u b . c o m /c a t e g o r i e s /c o l l a b o r a t i n g - w i t h - i s

s u e s - a n d - p u l l - r e q u e s t s /.

Once the pull request is open, reviewers will comment on the pull request, either asking for
more information, suggesting changes, or approving of the change. For new module
submissions, there is an extensive checklist to follow, which can be found at
http://docs.ansible.com/ansible/dev_guide/developing_modules_checklist.html.

Submissions which are found acceptable and merged will be made generally available in
the next release of Ansible. The latest details about the Ansible release process can be found
at h t t p ://d o c s . a n s i b l e . c o m /a n s i b l e /d e v _ g u i d e /d e v e l o p i n g _ r e l e a s e s . h t m l .

Summary
Ansible is a great tool, however, sometimes it doesn't offer all the functionality one might
desire. Not every bit of functionality is appropriate to support the main project, nor is it
possible to integrate with custom proprietary data sources. For these reasons, there exists
facilities within Ansible to extend its functionality. Creating and using custom modules is
made easy due to shared module base code. Many different types of plugins can be created
and used with Ansible to affect operations in a variety of ways. Inventory sources beyond
what Ansible supports can still be used with relative ease and efficiency.

In all cases, there exists a mechanism to provide modules, plugins, and inventory sources
alongside the playbooks and roles that depend on the enhanced functionality, making it
seamless to distribute.

Enhanced functionality that may benefit other consumers of Ansible can be contributed
back to the project. Ansible is an open source project, with much of the contribution coming
from community members.

In Chapter 9, Infrastructure Provisioning, we will explore using Ansible to create the
infrastructure to be managed.

https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
http://docs.ansible.com/ansible/dev_guide/developing_modules_checklist.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html
http://docs.ansible.com/ansible/dev_guide/developing_releases.html

9
Infrastructure Provisioning

Automation needs have expanded in recent years to include management of the very
infrastructure required to run services. Infrastructure as a Service providers offer APIs for
programmatically managing images, servers, networks, and storage components. These
resources are often expected to be created just-in-time to reduce costs and increase
efficiency.

This chapter will explore the following ways in which Ansible can interact with these
services:

Managing cloud infrastructure
Interacting with Docker containers
Previewing of Ansible container

Managing cloud infrastructure
Cloud is a popular, but vague, term to describe resource service. There are many types of
resources that can be provided by a Cloud, though the most commonly discussed are
compute and storage. Ansible is capable of interacting with numerous cloud providers to
discover, create, or otherwise manage resources within them.

One such cloud provider that Ansible can interact with is OpenStack. OpenStack is an open
source cloud operating system. A suite of services provides interfaces to manage compute,
storage, and networking services, plus many other supportive services. There is not a single
provider of OpenStack, instead many public and private cloud providers build their
products with OpenStack, and as such they all share common interfaces for tooling such as
Ansible to interact with.

Infrastructure Provisioning

[249]

Ansible has supported OpenStack services since very early in the project. That initial
support has grown to include over forty modules, with support for managing:

Compute
Bare metal compute
Compute images
Authentication accounts
Networks
Object storage
Block storage

In addition to performing create, read, update, or delete actions (CRUD) on the
preceding types of resources, Ansible also includes the ability to use OpenStack (and other
clouds) as an inventory source. Each execution of ansible or ansible-playbook that
utilizes an OpenStack cloud as an inventory source will get on-demand information about
what compute resources exist and various facts about those compute resources. Since the
cloud service is already tracking these details, this can reduce overhead by eliminating
manual tracking of these resources.

To demonstrate Ansible's ability to manage and interact with cloud resources, we'll walk
through two scenarios; a scenario to create and then interact with new compute resources,
and the other scenario will demonstrate using OpenStack as an inventory source.

Creating servers
The OpenStack Compute service provides an API for creation, reading, updating, or
deleting of virtual machine servers. Through this API, we'll be able to create the server for
our demonstration. After accessing and modifying the server through SSH, we'll also use
the API to delete the server. This self-service ability is a key feature of cloud computing.

Ansible can be used to manage these servers using the various os_server modules:

os_server: This module is use to create and delete virtual servers
os_server_facts: This module is use to gather facts about a server
os_server_actions: This module is use to perform various actions on a server
os_server_group: This module is use to create and delete server groups
os_server_volume: This module is use to attach or detach block storage
volumes from a server

Infrastructure Provisioning

[250]

Booting virtual servers
For our demonstration, we will use os_server. We'll need to provide authentication
details about our cloud, such as the auth URL and our login credentials. For the server
creation, we'll need a flavor, an image, a network, and a name. These details may be
different for each OpenStack cloud.

I'll name our playbook boot-server.yaml. Our play starts with a name and uses
localhost as the host pattern. As we do not rely on any local facts, I'll turn fact gathering
off as well:

- name: boot server
 hosts: localhost
 gather_facts: false

To create the server, I'll use the os_server module, and provide auth details relevant to an
OpenStack cloud I have access to, as well as a flavor, image, network, and name. I'll also
provide a key_name, which will indicate which SSH public key to plumb into the server so
that I can SSH into it. Of course, I've obfuscated some private details in this example, such
as my password:

 tasks:
 - name: boot the server
 os_server:
 auth:
 auth_url: "CLOUDURL"
 username: "jlk"
 password: "PASSWORD"
 project_name: "jlk"
 flavor: "1"
 image: "Fedora 25"
 key_name: "jlk"
 network: "internal"
 name: "mastery1"

Authentication details can be written to an external file, which will be read
by the underlying module code. This module code uses os-client-
config, a standard library for managing OpenStack credentials.

Infrastructure Provisioning

[251]

Running this play as-is will simply create the server and nothing more. I can use the
previously created mastery-hosts as an inventory source, as I'm only using localhost
from it:

I've truncated the output as there is a lot of data returned from the module. Most
importantly, we get data regarding IP addresses of the host. This particular cloud uses a
floating IP to provide public access to the server instance, which we can see the value of by
registering the output and then debug printing the value of openstack.accessIPv4:

 tasks:
 - name: boot the server
 os_server:
 auth:
 auth_url: "CLOUDURL"
 username: "jlk"
 password: "PASSWORD"

Infrastructure Provisioning

[252]

 project_name: "jlk"
 flavor: "1"
 image: "Fedora 25"
 key_name: "jlk"
 network: "internal"
 name: "mastery1"
 register: newserver

 - name: show floating ip
 debug:
 var: newserver.openstack.accessIPv4

This time when executing, the first task does not result in a change, as the server we want
already exists:

Infrastructure Provisioning

[253]

The output shows an IP address of 169.45.80.10. I can use that information to connect to
my newly created cloud server.

Adding to runtime inventory
Booting a server isn't all that useful by itself. The server exists to be used, and will likely
need some configuration to become useful. While it's possible to have one playbook to
create resources and a completely different playbook to manage configuration, we can also
do it all from the same playbook. Ansible provides a facility to add hosts to the inventory as
part of a play, which will allow use of those hosts in subsequent plays.

Working from the previous example, we have enough information to add the new host to
the runtime inventory, by way of the add_host module:

- name: add new server
 add_host:
 name: "mastery1"
 ansible_ssh_host: "{{ newserver.openstack.accessIPv4 }}"
 ansible_ssh_user: "fedora"

I know that this image has a default user of fedora so I set a host variable accordingly,
along with setting the IP address as the connection address.

This example is also glossing over any needed security group
configuration in OpenStack, and any accepting of the SSH host key.
Additional tasks can be added to manage these things.

With the server added to our inventory, we can do something with it. Let's imagine a
scenario in which we want to use this cloud resource to convert an image file, using
ImageMagick software. To accomplish this, we'll need a new place making use of the new
host. I know that this particular fedora image does not contain python, so we need to add
python, and the python bindings for dnf (so we can use the dnf module) as our first task
using the raw module:

- name: configure server
 hosts: mastery1
 gather_facts: false

 tasks:
 - name: install python
 raw: "sudo dnf install -y python python2-dnf"

Infrastructure Provisioning

[254]

Next, we'll need the ImageMagick software, which we can install using the dnf module:

 - name: install imagemagick
 dnf:
 name: "ImageMagick"
 become: "yes"

Running the playbook at this point will show changed tasks for our new host:

Infrastructure Provisioning

[255]

The preceding screenshot is truncated as the output from using the raw module is quite
extensive. The following screenshot is the final bit of output from the last task of the play, as
that output was extensive as well:

We can see Ansible reporting two changed tasks on the host mastery1, which we just
created in the first play. This host does not exist in the mastery-hosts inventory file.

From this point, we could long our second play to upload a source image file using copy,
then perform a command using ImageMagick on the host to convert the image. Another
task can be added to fetch the converted file back down using the slurp module, or the
modified file could be uploaded to a cloud based object store. Finally, a last play could be
added to delete the server itself.

Infrastructure Provisioning

[256]

The entire lifespan of the server, from creation to configuration to use and finally to
removal, can be managed all with a single playbook. The playbook can be made dynamic
by reading runtime variable data to define what file should be uploaded/modified and
where it should be stored, turning the playbook into essentially into a reusable program.

Using OpenStack inventory source
Our previous example imagined a single-use short-lived cloud server. But what if instead
we want to create and use long-lived cloud servers? Walking through the tasks of creating
them and adding them to temporary inventory each time we want to touch them seems
inefficient. Manually recording the server details into a static inventory also seems
inefficient, and error prone. Thankfully there is a better way, using the cloud itself as a
dynamic inventory source.

Ansible ships with a number of dynamic inventory scripts for cloud providers. We'll
continue our examples with OpenStack. The Ansible source repository holds these
contributed scripts in contrib/inventory/ and the OpenStack script is
contrib/inventory/openstack.py, with an associated configuration file at
contrib/inventory/openstack.yml. To make use of this script, simply copy the .py file
to the playbook directory that expects to use it, or to a path accessible to all users/playbooks
on the system that will be executing Ansible. For our example, I'll copy it to the playbook
directory.

The configuration file needs a bit more consideration. This file holds authentication details
for the OpenStack cloud(s) to connect to. That makes this file sensitive and should only be
made visible to the users who require access to this information. In addition, the inventory
script will attempt to load configuration from standard paths used by os-client-config (
h t t p s ://d o c s . o p e n s t a c k . o r g /d e v e l o p e r /o s - c l i e n t - c o n f i g /), the underlying
authentication code. That means configuration for this inventory source can live in:

clouds.yaml in the current working directory when executing the inventory
script
~/.config/openstack/clouds.yaml

/etc/openstack/clouds.yaml

/etc/openstack/openstack.yaml

/etc/openstack/openstack.yml

https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/
https://docs.openstack.org/developer/os-client-config/

Infrastructure Provisioning

[257]

The first file found will be used. For our example, I'll use a clouds.yaml file in the
playbook directory alongside the script itself, in order to isolate configuration from any
other paths.

The help output for the script shows a few possible arguments, however the ones that
Ansible will use are --list and --host:

The first is used to get a list of all the servers visible to the account used, and the second
would be used to get host variable data from each, except that this inventory script returns
all the host variables with the --list call. Returning the data with the host list is a
performance enhancement, eliminating the need to call the OpenStack APIs for each and
every host returned.

Infrastructure Provisioning

[258]

The output from --list is quite long, however here is the first few lines:

Infrastructure Provisioning

[259]

The configured account has only one visible server which has a UUID of
bd47daf7-6ab9-4c97-a3e4-cc97418fbe49, the instance we booted in a previous
example. We see this instance listed in groups RegionOne and
RegionOne_compute_standard. The first group is for all the servers found in the
RegionOne region. The second group is for all the servers found in RegionOne that are in
the availability zone of compute_standard. These groupings happen automatically within
the inventory plugin. The tail end of the output will show the other groups provided by the
plugin:

Infrastructure Provisioning

[260]

Additional groups are as follows:

compute_standard: All servers in the compute_standard availability zone
flavor-m1.tiny: All servers that use the m1.tiny flavor
image-Fedora 25: All servers that use the Fedora 25 image
instance-bd47daf7-6ab9-4c97-a3e4-cc97418fbe49: A group named after
the instance itself
mastery1: A group named after the server's name
open: All servers found in the cloud named open
open_RegionOne: All servers in the RegionOne region of the cloud named open
open_RegionOne_compute_standard: All servers in the compute_standard
availability zone on the cloud named open

There are many groups provided, each with a potentially different slice of the servers found
by the inventory script. These groups make it easy to target just the right instances with
plays. The hosts are defined as the UUIDs of the servers. As these are by nature unique, and
quite long, they are unwieldy as a target within a play. This makes groups all the more
important.

To demonstrate using this script as an inventory source, we'll re-create the previous
example, skipping over the creation of the server and instead just writing the second play
using an appropriate group target. We'll name this playbook configure-server.yaml:

- name: configure server
 hosts: mastery1
 gather_facts: false
 remote_user: fedora

 tasks:
 - name: install python
 raw: "sudo dnf install -y python python2-dnf"

 - name: install imagemagick
 dnf:
 name: "ImageMagick"
 become: "yes"

The default user on this image is fedora, however that information isn't readily available
via the OpenStack APIs, and thus it is not reflected in the data our inventory script
provides. We can simply define the user to use at the play level.

Infrastructure Provisioning

[261]

The hosts pattern we used before of mastery1 is actually appropriate for use with the
inventory plugin. This is the name we gave our server in an earlier example, and our
inventory script has exposed this as a group.

The rest of the play is unchanged, and the output should look similar to previous
executions:

Infrastructure Provisioning

[262]

This output differs from the last time the boot-server.yaml playbook was executed in
only a few ways. First, the master1 server is not booted. We're assuming that the servers
we want to interact with have already been booted. Second, the target host displayed in the
output is the UUID of the server rather than the name master1. Otherwise the output is the
same.

As servers get added or removed over time, each execution of the inventory plugin will
discover what servers are there at the moment of playbook execution. This can save a
significant amount of time over attempting to maintain an accurate list of servers in static
inventory files.

Interacting with Docker containers
Linux containers in general, and Docker specifically, have grown in popularity recently.
Containers provide a fast path to resource isolation. Containers can be launched quickly as
there is very little overhead. Utilities like Docker provide a lot of useful tooling around
container management, such as a registry of images to use as the filesystem, tooling to build
the images themselves, clustering orchestration, and so on. Docker has become one of the
most popular ways to manage containers.

Ansible can interact with Docker in numerous ways as well. Notably, Ansible can be used
to build images, to start or stop containers, to compose multiple container services, to
connect to and interact with active containers, or even to discover inventory from. Modules,
a connection plugin, and an inventory script are all provided by Ansible.

To demonstrate working with Docker, we'll explore a few use cases. The first use case is
building a new image to use with Docker. The second use case is launching a container
from the new image and interacting with it. The last use case is using the inventory plugin
to interact with an active container.

Creating a functional Docker install is beyond the scope of this book. The
Docker website provides detailed installation and use instructions: h t t p s

://d o c s . d o c k e r . c o m . Ansible works best with Docker on a Linux host, so
the remaining examples will be from a Fedora twenty-five virtual
machine.

https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com

Infrastructure Provisioning

[263]

Building images
Docker images are a filesystem bundled with parameters to use at runtime. The filesystem
is usually a small part of a Linux userland, with enough files to start the desired process.
Docker provides tooling to build these images, generally based on very small base images.
The tooling uses a Dockerfile as the input, which is a plain text file with directives. This
file is parsed by the docker build command, and we can parse it via the docker_image
module. The remaining examples will be from a Fedora 25 virtual machine using Docker
version 1.12.6., with the cowsay package and nginx added, so that running the container
will provide a web server that will display something from cowsay.

First we'll need a Dockerfile. This file needs to live in a path that Ansible can read, and
I'm going to put it in the same directory as my playbooks. The Dockerfile content will be
very simple. I'll need to define a base image, a command to run to install necessary
software, some minimal configuration of software, a port to expose, and a default action for
running a container with this image:

FROM docker.io/fedora:25

RUN dnf install -y cowsay nginx
RUN "daemon off;" >> /etc/nginx/nginx.conf
RUN cowsay boop > /usr/share/nginx/html/index.html

EXPOSE 80

CMD /usr/sbin/nginx

I'm using the Fedora 25 image from the fedora repository on the Docker Hub image
registry. To install the necessary cowsay and nginx packages, I'm using dnf. To run nginx
directly in the container I need to turn daemon mode off in nginx config. I use cowsay to
generate content for the default web page. I'm instructing Docker to expose port 80 in the
container, where nginx will listen for connections. The default action of this container will
be to run nginx.

Infrastructure Provisioning

[264]

The playbook to build and use the image can live in the same directory. I'll name it
docker-interact.yaml. This playbook will operate on localhost and have two tasks.
One to build the image using docker_image, and another to launch the container using
docker_container:

- name: build an image
 hosts: localhost
 gather_facts: false

 tasks:
 - name: build that image
 docker_image:
 path: .
 state: present
 name: fedora-moo

 - name: start the container
 docker_container:
 name: playbook-container
 image: fedora-moo
 ports: 8080:80
 state: started

Before we execute this playbook, let's look at the Docker system to see if there are any
running containers or any created images:

Infrastructure Provisioning

[265]

Now let's run the playbook to build the image and start a container using that image:

The verbosity of this playbook execution was reduced, to save screen space. Our output
simply shows that the task to build the image resulted in a change, as did the task to start
the container. A quick check of running containers and available images should reflect our
work:

Infrastructure Provisioning

[266]

We can test the functionality of our container by using curl to access the web server, which
should show us a cow saying boop:

Building containers without a Dockerfile
Dockerfiles are useful, but many of the things done inside Dockerfiles could be done with
Ansible instead. Ansible can be used to launch a container using a base image, then interact
with that container using the docker connection method to complete the configuration.
Let's demonstrate this by repeating the previous example, entirely in a new playbook
named docker-all.yaml:

- name: build an image
 hosts: localhost
 gather_facts: false

 tasks:
 - name: start the container
 docker_container:
 name: playbook-container
 image: docker.io/fedora:25
 ports: 8080:80
 state: started
 command: sleep 500

 - name: make a host
 add_host:
 name: playbook-container
 ansible_connection: docker

- name: do things

Infrastructure Provisioning

[267]

 hosts: playbook-container
 gather_facts: false

 tasks:
 - name: install things
 raw: dnf install -y python-dnf

 - name: install things
 dnf:
 name: "{{ item }}"
 with_items:
 - nginx
 - cowsay

 - name: configure nginx
 lineinfile:
 line: "daemon off;"
 dest: /etc/nginx/nginx.conf

 - name: boop
 shell: cowsay boop > /usr/share/nginx/html/index.html

 - name: run nginx
 shell: nginx &

The playbook consists of two plays. The first play creates the container from the base fedora
25 image. The command given is a sleep command to keep the container running for a
period of time, as the docker connection plugin only works with active containers. The
second task of the first play creates a runtime inventory entry for the container. The
inventory host name must match the container name. The connection method is set to
docker as well.

The second play targets the newly created host, and the first task uses the raw module to
get the python-dnf package in place (which will bring the rest of python in) so that we can
use the dnf module. The next task uses the dnf module to install the packages we want,
namely nginx and cowsay. Then the lineinfile module is used to add a new line to the
nginx configuration. A shell task uses cowsay to create content for nginx to serve. Finally,
nginx itself is started as a background process.

Infrastructure Provisioning

[268]

Before running the playbook, let's remove any running containers from the previous
example:

With the running container removed, we can now run our new playbook to recreate the
container, bypassing the image build step:

Infrastructure Provisioning

[269]

Again, the playbook has been run with minimal verbosity to save screen space. We see tasks
execute on the localhost, and then the second play executes on playbook-container.
Once complete, we can test the web service and list the running containers to verify our
work:

Infrastructure Provisioning

[270]

This method of using Ansible to configure the running container has some advantages. One
can re-use existing roles to set up an application, easily switching from cloud VM targets to
containers to bare metal resources. One can easily review all configuration that goes into an
application simply by reviewing playbook content.

Another use case for this method of interaction is to use docker containers to simulate
multiple hosts in order to verify playbook execution across multiple hosts. A container
could be started with an init system as the running process, allowing additional services to
be started as if they were on a full operating system. This use case is valuable within a
continuous integration environment to validate changes to playbook content quickly and
cheaply.

Docker inventory
Similar to the OpenStack inventory plugin detailed earlier in this chapter, a Docker
inventory script is also available. The Docker script is located at
contrib/inventory/docker.py within the Ansible source repository, with an associated
configuration file at contrib/inventory/docker.yml. To make use of this script, simply
copy the .py file to the playbook directory that expects to use it, or to a path accessible to all
users/playbooks on the system that will be executing Ansible. For our example, I'll copy it
to the playbook directory. The configuration file, which can be used to define how to
connect to one or more Docker daemons, does not need to be used for this example, as we'll
simply be connecting to the local Docker daemon.

Infrastructure Provisioning

[271]

The help output for the script shows many possible arguments, however the ones that
Ansible will use are --list and --host:

Infrastructure Provisioning

[272]

If the previously built container is still running when this script is executed to list hosts, it
should appear in the output:

Infrastructure Provisioning

[273]

As earlier, a number of groups are presented, which have the running container as a
member. The two groups shown earlier are the short container ID and long container ID.
Many variables are also defined as part of the output, which has been truncated in the
preceding screenshot. The tail end of the output reveals a few more groups:

Infrastructure Provisioning

[274]

The additional groups are:

docker_hosts: All the hosts communicated with to query for hosts
image_name: A group for each image used by discovered containers
container name: A group that matches the name of the container
running: A group of all the running containers
stopped: A group of all the stopped containers

This inventory plugin, and the groups and data provided by it, can be used by playbooks to
target various selections of containers available to interact with.

Previewing of Ansible container
Ansible container is a set of tools that build upon concepts introduced earlier in this chapter
to provide a comprehensive workflow for container development, testing, and deployment.
It is currently a tech preview, under active development. As it is a preview, the interfaces
provided may change quickly.

Ansible container does not get installed with Ansible at the time of writing, and must be
installed separately. It can be installed from pypi as the package name ansible-
container, or installed from the source repository (h t t p s ://g i t h u b . c o m /a n s i b l e /a n s i b l

e - c o n t a i n e r . g i t).

With Ansible container, one can define one or more services to containerize. These are
defined in a YAML file that closely follows the Docker compose version 1 schema (support
version 2 schema will be in the next release of Ansible container). Each service defined
becomes a container, and is exposed as an Ansible host. These hosts are used by a playbook
file to perform all the necessary configuration to prep the container to run the service.
Additional files can be used to define any python library requirements for modules used by
the playbook, Ansible Galaxy role dependencies of the playbook, Ansible Galaxy metadata
for sharing the project, and an Ansible configuration file used with the playbook.

https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git
https://github.com/ansible/ansible-container.git

Infrastructure Provisioning

[275]

The main executable of Ansible container is ansible-container, which includes a
number of sub-commands:

init: The init sub-command will create an ansible/ directory and the control
files described earlier within it. Optionally, it can connect to Ansible Galaxy and
use a project template to pre-populate some of the files, otherwise they will be
created mostly blank.

Infrastructure Provisioning

[276]

build: The build sub-command is used to launch containers for each service
defined, and one container with Ansible inside of it, which is used to run the
playbook against the service containers. Once the playbook is finished, images
are created from the configured containers.
run: The run sub-command will launch new containers for each service using the
images created during the build phase.
stop: The stop sub-command will stop containers launched by a run sub-
command.
push: The push sub-command will upload the built images to a target Docker
image registry.
shipit: The shipit sub-command will generate a Ansible content to deploy
containers from built images into container orchestration platforms such as
Kubernetes or Red Hat OpenShift.

To demonstrate Ansible container, we'll reproduce our previous Docker service container to
display cowsay via a web server, and run it locally.

Init
Ansible container relies on a directory tree of content, which is created with the init sub-
command. This content is what will be made available inside the container used to run
Ansible itself:

Infrastructure Provisioning

[277]

For this example, we'll run the init sub-command in the same directory we've used for
previous examples:

First, to define our services, we'll need to edit the container.yml file within the newly
created ansible/ directory. Our example only has a single service, which we'll name
cowsay. We'll want to use the docker.io/fedora:25 image. This time, we'll expose port
8081, just to differentiate it from previous examples. We'll set the command for this service
to be nginx:

version: "1"
services:
 cowsay:
 image: docker.io/fedora:25
 ports:
 - "8081:80"
 command: ['nginx']

Infrastructure Provisioning

[278]

With the service established, we need to write the plays to configure the base image to our
needs. This is in the main.yml file. The tasks should match the tasks we used in a previous
example, this time targeting the inventory host name cowsay, which matches the service we
just defined:

- hosts: cowsay
 gather_facts: false

 tasks:
 - name: install things
 raw: dnf install -y python-dnf

 - name: install things
 dnf:
 name: "{{ item }}"
 with_items:
 - nginx
 - cowsay

 - name: configure nginx
 lineinfile:
 line: "daemon off;"
 dest: /etc/nginx/nginx.conf

 - name: boop
 shell: cowsay boop > /usr/share/nginx/html/index.html

Unlike the previous example, we do not need to add a task to run nginx, that will happen
when the container is started.

Infrastructure Provisioning

[279]

Build
For this example, no other files need to be modified from their initial state. We're now ready
to build the images, which is done with the build subcommand of ansible-container:

Infrastructure Provisioning

[280]

The build process will download a container image to run Ansible within. It'll launch a
container using that image and map in the contents from the ansible/ directory. Then it
will launch the service container and execute the playbook against it. After the playbook
finishes, the configured service container will be exported as an image and saved to the
local system:

Infrastructure Provisioning

[281]

The image will be named partly for the base directory (mastery in this case) and partly for
the service (cowsay), as we can see with docker images:

Run
With the image created, we can now run the service. We could launch the container
manually with docker, or write a playbook for it to launch with Ansible. Both of those
approaches takes more thought than necessary, since we've already defined how this
container should be launched in our container.yml file. We can utilize this configuration
and simply use the run sub-command of ansible-container:

Infrastructure Provisioning

[282]

Infrastructure Provisioning

[283]

There are a few optional arguments to the run sub-command, where one can pick a specific
service to start, attach volumes, define variables, toggle production configuration, and so
on. The argument that we're interested in is the --detached argument, as it will run the
application in the background, giving control back to the terminal:

The run sub-command will use the Ansible container to bring up the service container(s).
At this point, we should be able to see the container running in docker ps, and
communicate with the container to see what our cow has to say:

Infrastructure Provisioning

[284]

This example barely scratches the surface of what's possible with Ansible container. The
control files support templating values to make quite dynamic service arrangements, which
can easily be tested locally and then pushed into a production deployment system such as
Kubernetes. More features are being added, and the functionality may change, so be sure to
check the documentation before getting started with Ansible container: h t t p ://d o c s . a n s i b

l e . c o m /a n s i b l e - c o n t a i n e r /.

Summary
DevOps has pushed automation in many new directions, including the creation of
infrastructure itself. Cloud computing services enable self-service management of fleets of
servers to run services. Ansible can easily interact with these services to provide the
automation and orchestration engine.

Ansible can start nothing but the host it is running on, and with proper credentials it can
create the infrastructure it wants to manage, for one-off actions or to deploy a new version
of an application into a production container management system.

http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/
http://docs.ansible.com/ansible-container/

Index

A
action plugins 231
Ansible container
 build sub-command 279
 init sub-command 276
 previewing 274
 reference link 274
 run sub-command 281
 sub-commands 276
Ansible Galaxy
 about 151
 role, installing from 151, 153, 154, 155
 URL 151
Ansible project
 contributing to 241
 contribution submissions 241
Ansible
 about 6
 configuration 7
 extending 211
 files, including 115
 handlers, including 130
 task, including with loops 126
 tasks, including 115, 116
 troubleshooting 181
 variables, including 132
 version 7
arguments variable 69

B
build sub-command
 about 279
 running 280
built-in filters, Jinja2
 about 77
 count 78

 default 78
 random 78
 round 79

C
callback plugins 228, 229
caller variable 73, 75
catch_kwargs variable 71
catch_varargs variable 72
cloud infrastructure
 about 248
 managing 248
 OpenStack inventory source, using 256
 servers, creating 249
CMBD 13
code execution
 debugging 191
 local code, debugging 194
 playbook debugging 191, 193
 remote code, debugging 205, 208, 209
comparisons, Jinja2
 expressions 90
complex variable 186
conditionals, Jinja2 control structures
 about 56, 58
 inline conditionals 58
connection type plugins 225
contract strategy 160
contribution submissions, Ansible project
 about 241
 ansible repository 242
 pull request, making 247
 tests, executing 242
control machine 36
control structures, Jinja2
 about 55
 conditionals 56

[286]

 loops 60
 macros 66
custom filters, Jinja2
 about 79
 Base64 encoding 84
 filters, dealing with path names 81
 filters, related to task status 79
 searching content 86
 shuffle 80

D
data encryption, at rest
 Ansible-playbook, executing with encrypted files

50

 encrypted files, decrypting 48
 encrypted files, editing 46
 existing files, encrypting 44
 new encrypted files, creating 41
 password rotation, on encrypted files 47
 performing 39
 Vault, using 40
data manipulation, Jinja2
 about 76
 built-in filters 77
 custom filters 79
 Python object methods 88
 syntax 76
 undefined arguments, omitting 87
default filter 78
defaults variable 70
disruptions
 delaying 171, 175, 176
 destructive tasks, running only once 176
 minimizing 171
Docker containers, interacting with
 about 262
 containers, building without Dockerfile 266, 269,

270

 Docker inventory 270
 images, building 263, 265
Docker inventory 272, 274
dot notation 189
DRY (Don't Repeat Yourself) 115
dynamic inventories 13
dynamic inventory plugins

 developing 232
 host variables, listing 233
 hosts, listing 233
 simple inventory plugin, developing 234

E
encrypted files
 creating 42
 password file 43
 password prompt 42
 password script 44
error recovery, tasks
 always section 110
 performing 107
 rescue section 108, 109
expand strategy 160, 163
extra variables 35

F
fact caching plugins 226
fact modules 35
failing fast
 about 163
 any_errors_fatal option 164
 handlers, forcing 168, 170
 max_fail_percentage option 165, 167
filter plugins 226
filters 76
filters, dealing with path names
 basename 82
 dirname 83
 expanduser 83

G
GitHub pull requests
 URL 247

H
handlers inclusion
 about 130
 performing 132
HAProxy behavior 11

[287]

I
in-place upgrades
 about 157
 performing 158, 160
infrastructure provisioning
 Ansible container, previewing 274
 cloud infrastructure, managing 248
 Docker containers, interacting with 262
init sub-command
 about 276
 running 277
inventory variables 34
inventory
 behavior inventory variables 11
 data sources 8
 dynamic inventories 13
 inventory variable data 10, 11
 limiting 15, 17, 18
 parsing 8
 runtime inventory additions 15
 static inventory 8, 9

J
Jinja2
 about 55
 comparisons 90
 control structures 55
 data manipulation 76
 values, comparing 90

L
LDAP 13
local code, debugging
 about 194
 executor code, debugging 201, 202, 203, 204
 inventory code, debugging 195, 196, 198, 199
 playbook code, debugging 200
logging 182
logic, Jinja2 91
lookup plugin 36, 225
loops, Jinja2 control structures
 about 60
 loop indexing 63
 loop items, filtering 62

M
macro variables, Jinja2 control structures
 about 67
 arguments 69
 caller 73, 74, 75
 catch_kwargs 71
 catch_varargs 72
 defaults 70
 name 68
macros, Jinja2 control structures
 about 66
 macro variables 67
module transport and execution
 about 30, 32
 module arguments 31
 module reference 30
 task performance 33
modules, developing
 about 211
 basic module construct 212
 custom modules 212
 simple module 213

N
name variable 68
nginx configuration file 11

O
omit variable 87
OpenStack 248
OpenStack inventory source
 using 256, 257, 259, 260, 262
os-client-config
 reference link 256

P
play behavior directives
 any_errors_fatal 24
 become 25
 connection 24
 gather_facts 24
 max_fail_percentage 24
 no_log 24
 port 24

[288]

 remote_user 24
 serial 24
play variables 35
playbook parsing
 about 19
 host selection, for plays and tasks 26
 order of operations 19, 21
 play and task names 27
 play behavior directives 24
 relative path assumptions 21, 23
playbooks inclusion 139
plugins
 action plugins 231
 callback plugins 228, 230
 connection type plugins 225
 developing 225
 distributing 231
 fact caching plugins 226
 filter plugins 226, 227
 lookup plugins 225
 shell plugins 225
 vars plugins 226
Python object methods
 about 88
 float methods 90
 int methods 90
 list methods 89
 string methods 88

R
remote code, debugging
 about 205, 207, 209
 action plugins, debugging 209
Remote Python Debugger 205
role application
 about 145
 implementing 148
 role inclusion 151
 roles, mixing with tasks 148, 151
role default 35
role dependencies
 about 143
 conditionals 145
 tags 144
 variables 143

role sharing
 about 151
 Ansible Galaxy 151
role structure
 about 140
 dependencies 141
 files 142
 handlers 140
 implementing 142
 module 141
 plugins 141
 tasks 140
 templates 142
 variables 140
role variables 35
roles
 about 139
 application 145
 dependencies 143
 sharing 151
 structure 139
run sub-command
 about 281
 running 283

S
secrets, protecting while operating
 about 51
 secrets, logged to remote or local files 52
 secrets, transmitted to remote hosts 52
servers
 adding, to runtime inventory 253, 255
 creating 249
 virtual servers, booting 250, 251, 253
shell plugins
 about 225
simple inventory plugin
 developing 234, 237, 238
 script performance, optimizing 239, 241
simple module
 check mode 223
 check mode, handling 223
 check mode, supporting 223
 creating 213, 215
 documentation 216, 217, 218, 220

 fact data, providing 221, 222
single tasks
 serializing 177
string methods
 about 88
 capitalize 88
 endswith 88
 lower 88
 rsplit 88
 split 88
 splitlines 88
 startswith 88
 upper 88
subelement
 versus, Python object method 189, 190

T
task failure, defining
 about 93
 error condition, defining 95, 97, 98, 100
 errors, ignoring 93, 95
task result change, defining
 about 101, 102
 change, suppressing 106
 command family, special handling 103, 105
task status, determining
 about 93
 change, defining 101
 error recovery 107
 failure, defining 93
task variables 35
tasks inclusion
 about 115
 complex data, passing to included tasks 120
 conditional task 122, 123
 included tasks, tagging 124, 126
 performing 115, 116
 variable values, passing to included tasks 118
 with loops 126, 129
tests, Jinja2 91
tests

 code style tests 246
 executing 242
 integration tests 244
 unit tests 243
troubleshooting, Ansible
 code execution, debugging 191
 performing 181
 playbook logging and verbosity 181
 variable introspection 183, 184, 186

V
values comparing, Jinja2
 comparisons 90
 logic 91
 tests 91
variable introspection
 about 183, 184, 186
 variable sub elements 186, 188
variable precedence
 about 36
 hashes, merging 37
 precedence order, defining 36
variable types
 about 34
 extra variables 35
 inventory variables 34
 play variables 35
 role variables 35
 task variables 35
variables inclusion
 about 132
 dynamic vars_files inclusion 134
 extra-vars 138
 include_vars 135, 137
 vars_files 133
variables
 about 34
 external data, accessing 36
vars plugins
 about 226
verbosity 182

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: System Architecture and Design of Ansible
	Ansible version and configuration
	Inventory parsing and data sources
	Static inventory
	Inventory variable data
	Dynamic inventories
	Runtime inventory additions
	Inventory limiting

	Playbook parsing
	Order of operations
	Relative path assumptions
	Play behavior directives
	Execution strategies
	Host selection for plays and tasks
	Play and task names

	Module transport and execution
	Module reference
	Module arguments
	Module transport and execution
	Task performance

	Variable types and location
	Variable types

	Accessing external data
	Variable precedence
	Precedence order
	Merging hashes

	Summary

	Chapter 2: Protecting Your Secrets with Ansible
	Encrypting data at rest
	Things Vault can encrypt
	Creating new encrypted files
	Password prompt
	Password file
	Password script

	Encrypting existing files
	Editing encrypted files
	Password rotation on encrypted files
	Decrypting encrypted files
	Executing Ansible-playbook with encrypted files

	Protecting secrets while operating
	Secrets transmitted to remote hosts
	Secrets logged to remote or local files

	Summary

	Chapter 3: Unlocking the Power of Jinja2 Templates
	Control structures
	Conditionals
	Inline conditionals

	Loops
	Filtering loop items
	Loop indexing

	Macros
	Macro variables
	name
	arguments
	defaults
	catch_kwargs
	catch_varargs
	caller

	Data manipulation
	Syntax
	Useful built-in filters
	default
	count
	random
	round

	Useful Ansible provided custom filters
	Filters related to task status
	shuffle
	Filters dealing with path names
	basename
	dirname
	expanduser

	Base64 encoding
	Searching for content

	Omitting undefined arguments
	Python object methods
	String methods
	List methods
	int and float methods

	Comparing values
	Comparisons
	Logic
	Tests

	Summary

	Chapter 4: Controlling Task Conditions
	Defining a failure
	Ignoring errors
	Defining an error condition

	Defining a change
	Special handling of the command family
	Suppressing a change

	Error recovery
	Rescue
	Always

	Summary

	Chapter 5: Composing Reusable Ansible Content with Roles
	Task, handler, variable, and playbook include concepts
	Including tasks
	Passing variable values to included tasks
	Passing complex data to included tasks
	Conditional task includes
	Tagging included tasks

	Task includes with loops
	Including handlers
	Including variables
	vars_files
	Dynamic vars_files inclusion
	include_vars
	extra-vars

	Including playbooks

	Roles
	Role structure
	Tasks
	Handlers
	Variables
	Modules and plugins
	Dependencies
	Files and templates
	Putting it all together

	Role dependencies
	Role dependency variables
	Tags
	Role dependency conditionals

	Role application
	Mixing roles and tasks
	Role includes

	Role sharing
	Ansible Galaxy

	Summary

	Chapter 6: Minimizing Downtime with Rolling Deployments
	In-place upgrades
	Expanding and contracting
	Failing fast
	The any_errors_fatal option
	The max_fail_percentage option
	Forcing handlers

	Minimizing disruptions
	Delaying a disruption
	Running destructive tasks only once

	Serializing single tasks
	Summary

	Chapter 7: Troubleshooting Ansible
	Playbook logging and verbosity
	Verbosity
	Logging

	Variable introspection
	Variable sub elements
	Subelement versus Python object method

	Debugging code execution
	Playbook debugging
	Debugging local code
	Debugging inventory code
	Debugging playbook code
	Debugging executor code
	Debugging remote code
	Debugging the action plugins

	Summary

	Chapter 8: Extending Ansible
	Developing modules
	The basic module construct
	Custom modules
	Simple module
	Module documentation
	Providing fact data
	The check mode
	Supporting the check mode
	Handling check mode

	Developing plugins
	Connection type plugins
	Shell plugins
	Lookup plugins
	Vars plugins
	The fact caching plugins
	Filter plugins
	Callback plugins
	Action plugins
	Distributing plugins

	Developing dynamic inventory plugins
	Listing hosts
	Listing host variables
	Simple inventory plugin
	Optimizing script performance

	Contributing to the Ansible project
	Contribution submissions
	The ansible repository
	Executing tests
	Unit tests
	Integration tests
	Code style tests

	Making a pull request

	Summary

	Chapter 9: Infrastructure Provisioning
	Managing cloud infrastructure
	Creating servers
	Booting virtual servers
	Adding to runtime inventory

	Using OpenStack inventory source

	Interacting with Docker containers
	Building images
	Building containers without a Dockerfile
	Docker inventory

	Previewing of Ansible container
	Init
	Build
	Run

	Summary

	Index
	Humble bundle_CDP.pdf
	Table of Contents
	Test
	Index

