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Furious activity is no substitute for
      understanding.
—H. H. Williams
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Preface



THIS BOOK GREW OUT OF MY EXPERIENCE OF
    WORKING WITH DATA FOR VARIOUS COMPANIES IN THE TECH industry.
    It is a collection of those concepts and techniques that I have found to
    be the most useful, including many topics that I wish I had known
    earlier—but didn’t.
My degree is in physics, but I also worked as a software engineer
    for several years. The book reflects this dual heritage. On the one hand,
    it is written for programmers and others in the software field: I assume
    that you, like me, have the ability to write your own programs to
    manipulate data in any way you want.
On the other hand, the way I think about data has been shaped by my
    background and education. As a physicist, I am not content merely to
    describe data or to make black-box predictions: the purpose of an analysis
    is always to develop an understanding for the processes or mechanisms that
    give rise to the data that we observe.
The instrument to express such understanding is the
    model: a description of the system under study (in
    other words, not just a description of the data!), simplified as necessary
    but nevertheless capturing the relevant information. A model may be crude
    (“Assume a spherical cow ...”), but if it helps us develop better insight
    on how the system works, it is a successful model nevertheless.
    (Additional precision can often be obtained at a later time, if it is
    really necessary.)
This emphasis on models and simplified descriptions is not
    universal: other authors and practitioners will make different choices.
    But it is essential to my approach and point of view.
This is a rather personal book. Although I have tried to be
    reasonably comprehensive, I have selected the topics that I consider
    relevant and useful in practice—whether they are part of the “canon” or
    not. Also included are several topics that you won’t find in any other
    book on data analysis. Although neither new nor original, they are usually
    not used or discussed in this particular context—but I find them
    indispensable.
Throughout the book, I freely offer specific, explicit advice,
    opinions, and assessments. These remarks are reflections of my personal
    interest, experience, and understanding. I do not claim that my point of
    view is necessarily correct: evaluate what I say for yourself and feel
    free to adapt it to your needs. In my view, a specific, well-argued
    position is of greater use than a sterile laundry list of possible
    algorithms—even if you later decide to disagree with me. The value is not
    in the opinion but rather in the arguments leading up to it. If your
    arguments are better than mine, or even just more agreeable to you, then I
    will have achieved my purpose!
Data analysis, as I understand it, is not a fixed set of techniques.
    It is a way of life, and it has a name: curiosity. There is always
    something else to find out and something more to learn. This book is not
    the last word on the matter; it is merely a snapshot in time: things I
    knew about and found useful today.
“Works are of value only if they give rise to better ones.”
(Alexander von Humboldt, writing to Charles Darwin, 18 September
    1839)
Before We Begin



More data analysis efforts seem to go bad because of an excess of
      sophistication rather than a lack of it.
This may come as a surprise, but it has been my experience again
      and again. As a consultant, I am often called in when the initial
      project team has already gotten stuck. Rarely (if ever) does the problem
      turn out to be that the team did not have the required skills. On the
      contrary, I usually find that they tried to do something unnecessarily
      complicated and are now struggling with the consequences of their own
      invention!
Based on what I have seen, two particular risk areas stand
      out:
	The use of “statistical” concepts that are only partially
          understood (and given the relative obscurity of most of statistics,
          this includes virtually all statistical
          concepts)

	Complicated (and expensive) black-box solutions when a simple
          and transparent approach would have worked at least as well or
          better



I strongly recommend that you make it a habit to avoid all
      statistical language. Keep it simple and stick to what you know for
      sure. There is absolutely nothing wrong with speaking of the “range over
      which points spread,” because this phrase means exactly what it says:
      the range over which points spread, and only that! Once we start talking
      about “standard deviations,” this clarity is gone. Are we still talking
      about the observed width of the distribution? Or
      are we talking about one specific measure for this
      width? (The standard deviation is only one of several that are
      available.) Are we already making an implicit
      assumption about the nature of the distribution?
      (The standard deviation is only suitable under certain conditions, which
      are often not fulfilled in practice.) Or are we even confusing the
      predictions we could make if these assumptions were
      true with the actual data? (The moment someone talks about “95 percent
      anything” we know it’s the latter!)
I’d also like to remind you not to discard simple methods until
      they have been proven insufficient. Simple
      solutions are frequently rather effective: the marginal benefit that
      more complicated methods can deliver is often quite small (and may be in
      no reasonable relation to the increased cost). More importantly, simple
      methods have fewer opportunities to go wrong or to obscure the
      obvious.
True story: a company was tracking the occurrence of defects over
      time. Of course, the actual number of defects varied quite a bit from
      one day to the next, and they were looking for a way to obtain an
      estimate for the typical number of expected defects. The solution
      proposed by their IT department involved a compute cluster running a
      neural network! (I am not making this up.) In fact, a one-line
      calculation (involving a moving average or single exponential smoothing)
      is all that was needed.
I think the primary reason for this tendency to make data analysis
      projects more complicated than they are is
      discomfort: discomfort with an unfamiliar problem
      space and uncertainty about how to proceed. This discomfort and
      uncertainty creates a desire to bring in the “big guns”: fancy
      terminology, heavy machinery, large projects. In reality, of course, the
      opposite is true: the complexities of the “solution” overwhelm the
      original problem, and nothing gets accomplished.
Data analysis does not have to be all that hard. Although there
      are situations when elementary methods will no longer be sufficient,
      they are much less prevalent than you might expect. In the vast majority
      of cases, curiosity and a healthy dose of common sense will serve you
      well.
The attitude that I am trying to convey can be summarized in a few
      points:
	Simple is better than complex.

	Cheap is better than expensive.

	Explicit is better than opaque.

	Purpose is more important than process.

	Insight is more important than precision.

	Understanding is more important than technique.

	Think more, work less.



Although I do acknowledge that the items on the right are
      necessary at times, I will give preference to those on the left whenever
      possible.
It is in this spirit that I am offering the concepts and
      techniques that make up the rest of this book.

Conventions Used in This Book



The following typographical conventions are used in this
      book:
Italic
	Indicates new terms, URLs, and email addresses



Constant width
	Used to refer to language and script elements




Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless youre reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from OReilly books does
      require permission. Answering a question by citing this book and quoting
      example code does not require permission. Incorporating a significant
      amount of example code from this book into your products documentation
      does require permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “Data Analysis with Open Source Tools, by Philipp
      K. Janert. Copyright 2011 Philipp K. Janert, 978-0-596-80235-6.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at
      permissions@oreilly.com.

Safari® Books Online



[image: Safari® Books Online]
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.
With a subscription, you can read any page and watch any video
      from our library online. Read books on your cell phone and mobile
      devices. Access new titles before they are available for print, and get
      exclusive access to manuscripts in development and post feedback for the
      authors. Copy and paste code samples, organize your favorites, download
      chapters, bookmark key sections, create notes, print out pages, and
      benefit from tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
      service. To have full digital access to this book and others on similar
      topics from OReilly and other publishers, sign up for free at
      http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
      publisher:
O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
      and any additional information. You can access this page at:
	http://oreilly.com/catalog/9780596802356



To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com



For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network, see our website at:
	http://oreilly.com
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Chapter 1. Introduction



IMAGINE
    YOUR BOSS COMES TO YOU AND SAYS: “HERE ARE 50 GB OF LOGFILES—FIND A WAY TO
    IMPROVE OUR business!”
What would you do? Where would you start? And what would you do
    next?
It’s this kind of situation that the present book wants to help you
    with!
Data Analysis



Businesses sit on data, and every second that passes, they
      generate some more. Surely, there must be a way to
      make use of all this stuff. But how, exactly—that’s far from
      clear.
The task is difficult because it is so vague: there is no specific
      problem that needs to be solved. There is no specific question that
      needs to be answered. All you know is the overall
      purpose: improve the business. And all you have is
      “the data.” Where do you start?
You start with the only thing you have: “the data.” What is it? We
      don’t know! Although 50 GB sure sounds like a lot, we have no idea what
      it actually contains. The first thing, therefore, is to take a
      look.
And I mean this literally: the first thing to do is to
      look at the data by plotting it in different ways
      and looking at graphs. Looking at data, you will notice things—the way
      data points are distributed, or the manner in which one quantity varies
      with another, or the large number of outliers, or the total absence of
      them.... I don’t know what you will find, but there is no doubt: if you
      look at data, you will observe things!
These observations should lead to some reflection. “Ten percent of
      our customers drive ninety percent of our revenue.” “Whenever our sales
      volume doubles, the number of returns goes up by a factor of four.”
      “Every seven days we have a production run that has twice the usual
      defect rate, and it’s always on a Thursday.” How very
      interesting!
Now you’ve got something to work with: the amorphous mass of
      “data” has turned into ideas! To make these ideas concrete and suitable
      for further work, it is often useful to capture them in a mathematical
      form: a model. A model (the way I use the term) is
      a mathematical description of the system under study. A model is more
      than just a description of the data—it also incorporates your
      understanding of the process or the system that produced the data. A
      model therefore has predictive power: you can
      predict (with some certainty) that next Thursday the defect rate will be
      high again.
It’s at this point that you may want to go back and alert the boss
      of your findings: “Next Thursday, watch out for defects!”
Sometimes, you may already be finished at this point: you found
      out enough to help improve the business. At other times, however, you
      may need to work a little harder. Some data sets do not yield easily to
      visual inspection—especially if you are dealing with data sets
      consisting of many different quantities, all of which seem equally
      important. In such cases, you may need to employ more-sophisticated
      methods to develop enough intuition before being able to formulate a
      relevant model. Or you may have been able to set up a model, but it is
      too complicated to understand its implications, so that you want to
      implement the model as a computer program and simulate its results. Such
      computationally intensive methods are occasionally useful, but they
      always come later in the game. You should only move on to them after
      having tried all the simple things first. And you will need the insights
      gained from those earlier investigations as input to the more elaborate
      approaches.
And finally, we need to come back to the initial agenda. To
      “improve the business” it is necessary to feed our understanding back
      into the organization—for instance, in the form of a business plan, or
      through a “metrics dashboard” or similar program.

What’s in This Book



The program just described reflects the outline of this
      book.
We begin in Part I with
      a series of chapters on graphical techniques, starting in Chapter 2 with simple data
      sets consisting of only a single variable (or considering only a single
      variable at a time), then moving on in Chapter 3 to data sets of
      two variables. In Chapter 4 we treat the
      particularly important special case of a quantity changing over time, a
      so-called time series. Finally, in Chapter 5, we discuss data
      sets comprising more than two variables and some special techniques
      suitable for such data sets.
In Part II, we discuss
      models as a way to not only describe data but also to capture the
      understanding that we gained from graphical explorations. We begin in
      Chapter 7 with a
      discussion of order-of-magnitude estimation and uncertainty
      considerations. This may seem odd but is, in fact, crucial: all models
      are approximate, so we need to develop a sense for the accuracy of the
      approximations that we use. In Chapter 8 and Chapter 9 we introduce basic
      building blocks that are useful when developing models.
Chapter 10 is a
      detour. For too many people, “data analysis” is synonymous with
      “statistics,” and “statistics” is usually equated with a class in
      college that made no sense at all. In this chapter,
      I want to explain what statistics really is, what all the mysterious
      concepts mean and how they hang together, and what statistics can (and
      cannot) do for us. It is intended as a travel guide should you ever want
      to read a statistics book in the future.
Part III discusses several
      computationally intensive methods, such as simulation and clustering in
      Chapter 12 and Chapter 13.
      Chapter 14 is,
      mathematically, the most challenging chapter in the book: it deals with
      methods that can help select the most relevant variables from a
      multivariate data set.
In Part IV we consider
      some ways that data may be used in a business environment. In Chapter 16 we talk about
      metrics, reporting, and dashboards—what is sometimes referred to as
      “business intelligence.” In Chapter 17 we introduce some of
      the concepts required to make financial calculations and to prepare
      business plans. Finally, in Chapter 18, we
      conclude with a survey of some methods from classification and
      predictive analytics.
At the end of each part of the book you will find an “Intermezzo.”
      These intermezzos are not really part of the course; I use them to go
      off on some tangents, or to explain topics that often remain a bit hazy.
      You should see them as an opportunity to relax!
The appendices contain some helpful material that you may want to
      consult at various times as you go through the text. Appendix A surveys some of the
      available tools and programming environments for data manipulation and
      analysis. In Appendix B I have collected
      some basic mathematical results that I expect you to have at least
      passing familiarity with. I assume that you have seen this material at
      least once before, but in this appendix, I put it together in an
      application-oriented context, which is more suitable for our present
      purposes. Appendix C discusses some of the
      mundane tasks that—like it or not—make up a large part of actual data
      analysis and also introduces some data-related terminology.

What’s with the Workshops?



Every full chapter (after this one) includes a section titled
      “Workshop” that contains some programming examples related to the
      chapter’s material. I use these Workshops for two purposes. On the one
      hand, I’d like to introduce a number of open source tools and libraries
      that may be useful for the kind of work discussed in this book. On the
      other hand, some concepts (such as computational complexity and
      power-law distributions) must be seen to be believed: the Workshops are
      a way to demonstrate these issues and allow you to experiment with them
      yourself.
Among the tools and libraries is quite a bit of Python and
      R. Python has become somewhat the scripting language of choice for
      scientific applications, and R is the most popular open source package
      for statistical applications. This choice is neither an
      endorsement nor a recommendation but primarily a reflection
      of the current state of available software. (See Appendix A for a more detailed
      discussion of software for data analysis and related purposes.)
My goal with the tool-oriented Workshops is rather specific: I
      want to enable you to decide whether a given tool or library is worth
      spending time on. (I have found that evaluating open source offerings is
      a necessary but time-consuming task.) I try to demonstrate clearly what
      purpose each particular tool serves. Toward this end, I usually give one
      or two short, but not entirely trivial, examples and try to outline
      enough of the architecture of the tool or library to allow you to take
      it from there. (The documentation for many open source projects has a
      hard time making the bridge from the trivial, cut-and-paste “Hello,
      World” example to the reference documentation.)

What’s with the Math?



This book contains a certain amount of mathematics. Depending on
      your personal predilection you may find this trivial, intimidating, or
      exciting.
The reality is that if you want to work
      analytically, you will need to develop some
      familiarity with a few mathematical concepts. There is simply no way
      around it. (You can work with data without any math
      skills—look at what any data modeler or database administrator does. But
      if you want to do any sort of analysis, then a
      little math becomes a necessity.)
I have tried to make the text accessible to readers with a minimum
      of previous knowledge. Some college math classes on calculus and similar
      topics are helpful, of course, but are by no means required. Some
      sections of the book treat material that is either more abstract or will
      likely be unreasonably hard to understand without some previous
      exposure. These sections are optional (they are not needed in the
      sequel) and are clearly marked as such.
A somewhat different issue concerns the notation. I use
      mathematical notation wherever it is appropriate and it helps the
      presentation. I have made sure to use only a very small set of symbols;
      check Appendix B if something looks
      unfamiliar.
Couldn’t I have written all the mathematical expressions as
      computer code, using Python or some sort of pseudo-code? The answer is
      no, because quite a few essential mathematical
      concepts cannot be expressed in a finite, floating-point oriented
      machine (anything having to do with a limit process—or real numbers, in
      fact). But even if I could write all math as code, I don’t think I
      should. Although I wholeheartedly agree that mathematical notation can
      get out of hand, simple formulas actually provide the easiest, most
      succinct way to express mathematical concepts.
Just compare. I’d argue that:
[image: What’s with the Math?]
is clearer and easier to read than:
s = 0
for k in range( len(c) ):
    s += c[k]/(1+p)**k
and certainly easier than:
s = (c/ (1+p)**numpy.arange(1, len(c)+1) ).sum(axis=0)
But that’s only part of the story. More importantly, the first
      version expresses a concept, whereas the second and
      third are merely specific prescriptions for how to perform a certain
      calculation. They are recipes, not ideas.
Consider this: the formula in the first line is a description of a
      sum—not a specific sum, but any sum of this form: it’s the
      idea of this kind of sum. We can now ask how this
      abstract sum will behave under certain conditions—for instance, if we
      let the upper limit n go to infinity. What value
      does the sum have in this case? Is it finite? Can we determine it? You
      would not even be able to ask this question given
      the code versions. (Remember that I am not talking about an
      approximation, such as letting n get “very large.”
      I really do mean: what happens if n goes all the
      way to infinity? What can we say about the sum?)
Some programming environments (like Haskell, for instance) are
      more at ease dealing with infinite data structures—but if you look
      closely, you will find that they do so by being (coarse) approximations
      to mathematical concepts and notations. And, of course, they still won’t
      be able to evaluate such expressions! (All evaluations will only involve
      a finite number of steps.) But once you train your mind to think in
      those terms, you can evaluate them in your mind at
      will.
It may come as a surprise, but mathematics is
      not a method for calculating things. Mathematics is
      a theory of ideas, and ideas—not calculational
      prescriptions—are what I would like to convey in this text. (See the
      discussion at the end of Appendix B for
      more on this topic and for some suggested reading.)
If you feel uncomfortable or even repelled by the math in this
      book, I’d like to ask for just one thing: try! Give it a shot. Don’t
      immediately give up. Any frustration you may experience at first is more
      likely due to lack of familiarity rather than to the difficulty of the
      material. I promise that none of the content is out of your
      reach.
But you have to let go of the conditioned knee-jerk reflex that
      “math is, like, yuck!”

What You’ll Need



This book is written with programmers in mind. Although previous
      programming experience is by no means required, I assume that you are
      able to take an idea and implement it in the programming language of
      your choice—in fact, I assume that this is your prime motivation for
      reading this book.
I don’t expect you to have any particular mathematical background,
      although some previous familiarity with calculus is certainly helpful.
      You will need to be able to count, though!
But the most important prerequisite is not programming experience,
      not math skills, and certainly not knowledge of anything having to do
      with “statistics.” The most important prerequisite is
      curiosity. If you aren’t curious, then this book is
      not for you. If you get a new data set and you are not
      itching to see what’s in it, I won’t be able to
      help you.

What’s Missing



This is a book about data analysis and modeling with an emphasis
      on applications in a business settings. It was written at a
      beginning-to-intermediate level and for a general technical
      audience.
Although I have tried to be reasonably comprehensive, I had to
      choose which subjects to include and which to leave out. I have tried to
      select topics that are useful and relevant in practice and that can
      safely be applied by a nonspecialist. A few topics were omitted because
      they did not fit within the book’s overall structure, or because I did
      not feel sufficiently competent to present them.
Scientific data. This is not a book about
      scientific data analysis. When you are doing scientific research
      (however you wish to define “scientific”), you really need to have a
      solid background (and that probably means formal training) in the field
      that you are working in. A book such as this one on general data
      analysis cannot replace this.
Formal statistical analysis. A different form
      of data analysis exists in some particularly well-established fields. In
      these situations, the environment from which the data arises is fully
      understood (or at least believed to be understood), and the methods and
      models to be used are likewise accepted and well known. Typical examples
      include clinical trials as well as credit scoring. The purpose of an
      “analysis” in these cases is not to find out anything new, but rather to
      determine the model parameters with the highest degree of accuracy and
      precision for each newly generated set of data points. Since this is the
      kind of work where details matter, it should be left to
      specialists.
Network analysis. This is a topic of current
      interest about which I know nothing. (Sorry!) However, it does seem to
      me that its nature is quite different from most problems that are
      usually considered “data analysis”: less statistical, more algorithmic
      in nature. But I don’t know for sure.
Natural language processing and text mining.
      Natural language processing is a big topic all by itself, which has
      little overlap (neither in terms of techniques nor applications) with
      the rest of the material presented here. It deserves its
      own treatment—and several books on this subject are available.
Big data. Arguably the most painful omission
      concerns everything having to do with Big Data. Big
      Data is a pretty new concept—I tend to think of it as relating to data
      sets that not merely don’t fit into main memory, but that no longer fit
      comfortably on a single disk, requiring compute
      clusters and the respective software and algorithms (in practice,
      map/reduce running on Hadoop).
The rise of Big Data is a remarkable phenomenon. When this book
      was conceived (early 2009), Big Data was certainly on the horizon but
      was not necessarily considered mainstream yet. As this book goes to
      print (late 2010), it seems that for many people in the tech field,
      “data” has become nearly synonymous with “Big Data.” That kind of
      development usually indicates a fad. The reality is that, in practice,
      many data sets are “small,” and in particular many
      relevant data sets are small. (Some of the most
      important data sets in a commercial setting are those maintained by the
      finance department—and since they are kept in Excel, they
      must be small.)
Big Data is not necessarily “better.” Applied carelessly, it can
      be a huge step backward. The amazing insight of classical statistics is
      that you don’t need to examine every single member of a population to
      make a definitive statement about the whole: instead you can sample! It
      is also true that a carefully selected sample may lead to better results
      than a large, messy data set. Big Data makes it easy to forget the
      basics.
It is a little early to say anything definitive about Big Data,
      but the current trend strikes me as being something quite
      different: it is not just classical data analysis
      on a larger scale. The approach of classical data analysis and
      statistics is inductive. Given a part, make
      statements about the whole: from a sample, estimate parameters of the
      population; given an observation, develop a theory for the underlying
      system. In contrast, Big Data (at least as it is currently being used)
      seems primarily concerned with individual data points. Given that
      this specific user liked this
      specific movie, what other specific
      movie might he like? This is a very different question than asking which
      movies are most liked by what people in general!
Big Data will not replace general, inductive data analysis. It is
      not yet clear just where Big Data will deliver the greatest bang for the
      buck—but once the dust settles, somebody should definitely write a book
      about it!

Part I. Graphics: Looking at Data




Chapter 2. A Single Variable: Shape and Distribution



WHEN
      DEALING WITH UNIVARIATE DATA, WE ARE USUALLY MOSTLY CONCERNED WITH THE
      OVERALL SHAPE OF the
      distribution. Some of the initial questions we may ask include:
	Where are the data points located, and how far do they spread?
          What are typical, as well as minimal and maximal, values?

	How are the points distributed? Are they spread out evenly or
          do they cluster in certain areas?

	How many points are there? Is this a large data set or a
          relatively small one?

	Is the distribution symmetric or asymmetric? In other words,
          is the tail of the distribution much larger on one side than on the
          other?

	Are the tails of the distribution relatively heavy
          (i.e., do many data points lie far away from
          the central group of points), or are most of the points—with the
          possible exception of individual outliers—confined to a restricted
          region?

	If there are clusters, how many are there? Is there only one,
          or are there several? Approximately where are the clusters located,
          and how large are they—both in terms of spread and in terms of the
          number of data points belonging to each cluster?

	Are the clusters possibly superimposed on some form of
          unstructured background, or does the entire data set consist only of
          the clustered data points?

	Does the data set contain any significant outliers—that is,
          data points that seem to be different from all the others?

	And lastly, are there any other unusual or significant
          features in the data set—gaps, sharp cutoffs, unusual values,
          anything at all that we can observe?



As you can see, even a simple, single-column data set can
      contain a lot of different features!
To make this concrete, let’s look at two examples. The first
      concerns a relatively small data set: the number of months that the
      various American presidents have spent in office. The second data set is
      much larger and stems from an application domain that may be more
      familiar; we will be looking at the response times from a web
      server.
Dot and Jitter Plots



Suppose you are given the following data set, which shows all
        past American presidents and the number of months each spent in
        office.[1] Although this data set has three columns, we can treat
        it as univariate because we are interested only in the times spent in
        office—the names don’t matter to us (at this point). What can we say
        about the typical tenure?
 1       Washington      94
 2       Adams           48
 3       Jefferson       96
 4       Madison         96
 5       Monroe          96
 6       Adams           48
 7       Jackson         96
 8       Van Buren       48
 9       Harrison         1
10       Tyler           47
11       Polk            48
12       Taylor          16
13       Filmore         32
14       Pierce          48
15       Buchanan        48
16       Lincoln         49
17       Johnson         47
18       Grant           96
19       Hayes           48
20       Garfield         7
21       Arthur          41
22       Cleveland       48
23       Harrison        48
24       Cleveland       48
25       McKinley        54
26       Roosevelt       90
27       Taft            48
28       Wilson          96
29       Harding         29
30       Coolidge        67
31       Hoover          48
32       Roosevelt      146
33       Truman          92
34       Eisenhower      96
35       Kennedy         34
36       Johnson         62
37       Nixon           67
38       Ford            29
39       Carter          48
40       Reagan          96
41       Bush            48
42       Clinton         96
43       Bush            96
This is not a large data set (just over 40 records), but it is a
        little too big to take in as a whole. A very simple way to gain an
        initial sense of the data set is to create a dot
        plot. In a dot plot, we plot all points on a single
        (typically horizontal) line, letting the value of each data point
        determine the position along the horizontal axis. (See the top part of
        Figure 2-1.)
A dot plot can be perfectly sufficient for a small data set such
        as this one. However, in our case it is slightly misleading because,
        whenever a certain tenure occurs more than once in the data set, the
        corresponding data points fall right on top of each other, which makes
        it impossible to distinguish them. This is a frequent problem,
        especially if the data assumes only integer values or is otherwise
        “coarse-grained.” A common remedy is to shift each point by a small
        random amount from its original position; this technique is called
        jittering and the resulting plot is a
        jitter plot. A jitter plot of this data set is
        shown in the bottom part of Figure 2-1.
What does the jitter plot tell us about the data set? We see two
        values where data points seem to cluster, indicating that these values
        occur more frequently than others. Not surprisingly, they are located
        at 48 and 96 months, which correspond to one and two full four-year
        terms in office. What may be a little surprising, however, is the
        relatively large number of points that occur
        outside these clusters. Apparently, quite a few
        presidents left office at irregular intervals! Even in this simple
        example, a plot reveals both something expected (the clusters at 48
        and 96 months) and the unexpected (the larger number of points outside
        those clusters).
Before moving on to our second example, let me point out a few
        additional technical details regarding jitter plots.
	It is important that the amount of “jitter” be small
            compared to the distance between points. The only purpose of the
            random displacements is to ensure that no two points fall exactly
            on top of one another. We must make sure that points are not
            shifted significantly from their true location.
[image: Dot and jitter plots showing the number of months U.S. presidents spent in office.]

Figure 2-1. Dot and jitter plots showing the number of months U.S.
              presidents spent in office.


	We can jitter points in either the horizontal or the
            vertical direction (or both), depending on the data set and the
            purpose of the graph. In Figure 2-1, points were
            jittered only in the vertical direction, so that their horizontal
            position (which in this case corresponds to the actual
            data—namely, the number of months in office) is not altered and
            therefore remains exact.

	I used open, transparent rings as symbols for the data
            points. This is no accident: among different symbols of equal
            size, open rings are most easily recognized as separate even when
            partially occluded by each other. In contrast, filled symbols tend
            to hide any substructure when they overlap, and symbols made from
            straight lines (e.g., boxes and crosses) can
            be confusing because of the large number of parallel lines; see
            the top part of Figure 2-1.



Jittering is a good trick that can be used in many different
        contexts. We will see further examples later in the book.

Histograms and Kernel Density Estimates



Dot and jitter plots are nice because they are so simple.
        However, they are neither pretty nor very intuitive, and most
        importantly, they make it hard to read off
        quantitative information from the graph. In
        particular, if we are dealing with larger data sets, then we need a
        better type of graph, such as a histogram.
[image: A histogram of a server’s response times.]

Figure 2-2. A histogram of a server’s response times.

Histograms



To form a histogram, we divide
          the range of values into a set of “bins” and then count the number
          of points (sometimes called “events”) that fall into each bin. We
          then plot the count of events for each bin as a function of the
          position of the bin.
Once again, let’s look at an example. Here is the beginning of
          a file containing response times (in milliseconds) for queries
          against a web server or database. In contrast to the previous
          example, this data set is fairly large, containing 1,000 data
          points.
 452.42
 318.58
 144.82
 129.13
1216.45
 991.56
1476.69
 662.73
1302.85
1278.55
 627.65
1030.78
 215.23
  44.50
...
Figure 2-2
          shows a histogram of this data set. I divided the horizontal axis
          into 60 bins of 50 milliseconds width and then counted the number of
          events in each bin.
What does the histogram tell us? We observe a rather
          sharp cutoff at a nonzero value on the left, which means that there
          is a minimum completion time below which no request can be
          completed. Then there is a sharp rise to a maximum at the “typical”
          response time, and finally there is a relatively large tail on the
          right, corresponding to the smaller number of requests that take a
          long time to process. This kind of shape is rather typical for a
          histogram of task completion times. If the data set had contained
          completion times for students to finish their homework or for
          manufacturing workers to finish a work product, then it would look
          qualitatively similar except, of course, that the time scale would
          be different. Basically, there is some minimum time that nobody can
          beat, a small group of very fast champions, a large majority, and
          finally a longer or shorter tail of “stragglers.”
It is important to realize that a data set does not determine
          a histogram uniquely. Instead, we have to fix
          two parameters to form a histogram: the bin
          width and the alignment of the bins.
The quality of any histogram hinges on the proper choice of
          bin width. If you make the width too large, then you lose too much
          detailed information about the data set. Make it too small and you
          will have few or no events in most of the bins, and the shape of the
          distribution does not become apparent. Unfortunately, there is no
          simple rule of thumb that can predict a good bin width for a given
          data set; typically you have to try out several different values for
          the bin width until you obtain a satisfactory result. (As a first
          guess, you can start with Scott’s rule for the
          bin width [image: ], where σ is the standard deviation for the
          entire data set and n is the number of points.
          This rule assumes that the data follows a Gaussian distribution;
          otherwise, it is likely to give a bin width that is too wide. See
          the end of this chapter for more information on the standard
          deviation.)
The other parameter that we need to fix (whether we realize it
          or not) is the alignment of the bins on the x
          axis. Let’s say we fixed the width of the bins at 1. Where do we now
          place the first bin? We could put it flush left, so that its left
          edge is at 0, or we could center it at 0. In fact, we can move all
          bins by half a bin width in either direction.
Unfortunately, this seemingly insignificant (and often
          overlooked) parameter can have a large influence on the appearance
          of the histogram. Consider this small data set:
1.4
1.7
1.8
1.9
2.1
2.2
2.3
2.6
Figure 2-3
          shows two histograms of this data set. Both use the same bin width
          (namely, 1) but have different alignment of the bins. In the top
          panel, where the bin edges have been aligned to
          coincide with the whole numbers (1, 2, 3,...), the data set appears
          to be flat. Yet in the bottom panel, where the bins have been
          centered on the whole numbers, the data set appears to have a rather strong central peak
          and symmetric wings on both sides. It should be clear that we can
          construct even more pathological examples than this. In the next
          section we shall introduce an alternative to histograms that avoids
          this particular problem.
[image: Histograms can look quite different, depending on the choice of anchoring point for the first bin. The figure shows two histograms of the same data set, using the same bin width. In the top panel, the bin edges are aligned on whole numbers; in the bottom panel, bins are centered on whole numbers.]

Figure 2-3. Histograms can look quite different, depending on the
            choice of anchoring point for the first bin. The figure shows two
            histograms of the same data set, using the same bin width. In the
            top panel, the bin edges are aligned on whole numbers; in the
            bottom panel, bins are centered on whole numbers.

Before moving on, I’d like to point out some additional
          technical details and variants of histograms.
	Histograms can be either normalized or unnormalized. In an
              unnormalized histogram, the value plotted
              for each bin is the absolute count of events in that bin. In a
              normalized histogram, we divide each count
              by the total number of points in the data set, so that the value
              for each bin becomes the fraction of points in that bin. If we
              want the percentage of points per bin instead, we simply
              multiply the fraction by 100.

	So far I have assumed that all bins have the same width.
              We can relax this constraint and allow bins of differing
              widths—narrower where points are tightly clustered but wider in
              areas where there are only few points. This method can seem very
              appealing when the data set has outliers or areas with widely
              differing point density. Be warned, though, that now there is an
              additional source of ambiguity for your histogram: should you
              display the absolute number of points per bin regardless of the
              width of each bin; or should you display the density of points
              per bin by normalizing the point count per bin by the bin width?
              Either method is valid, and you cannot assume that your audience
              will know which convention you are following.

	It is customary to show histograms with rectangular boxes
              that extend from the horizontal axis, the way I have drawn Figure 2-2 and Figure 2-3. That is
              perfectly all right and has the advantage of explicitly
              displaying the bin width as well. (Of course, the boxes should
              be drawn in such a way that they align in the same way that the
              actual bins align; see Figure 2-3.) This
              works well if you are only displaying a histogram for a single
              data set. But if you want to compare two or more data sets, then
              the boxes start to get in the way, and you are better off
              drawing “frequency polygons”: eliminate the boxes, and instead
              draw a symbol where the top of the box would have been. (The
              horizontal position of the symbol should be at the center of the
              bin.) Then connect consecutive symbols with straight lines. Now
              you can draw multiple data sets in the same plot without
              cluttering the graph or unnecessarily occluding points.

	Don’t assume that the defaults of your graphics program
              will generate the best representation of a histogram! I have
              already discussed why I consider frequency polygons to be almost
              always a better choice than to construct a histogram from boxes.
              If you nevertheless choose to use boxes, it is best to avoid
              filling them (with a color or hatch pattern)—your histogram will
              probably look cleaner and be easier to read if you stick with
              just the box outlines. Finally, if you want to compare several
              data sets in the same graph, always use a frequency polygon, and
              stay away from stacked or clustered bar graphs, since these are
              particularly hard to read. (We will return to the problem of
              displaying composition problems in Chapter 5.)



Histograms are very common and have a nice, intuitive
          interpretation. They are also easy to generate: for a moderately
          sized data set, it can even be done by hand, if necessary. That
          being said, histograms have some serious problems. The most
          important ones are as follows.
	The binning process required by all histograms loses
              information (by replacing the location of individual data points
              with a bin of finite width). If we only have a few data points,
              we can ill afford to lose any information.

	Histograms are not unique. As we saw in Figure 2-3, the
              appearance of a histogram can be quite different. (This
              nonuniqueness is a direct consequence of the information loss
              described in the previous item.)

	On a more superficial level, histograms are ragged and not
              smooth. This matters little if we just want to draw a picture of
              them, but if we want to feed them back into a computer as input
              for further calculations, then a smooth curve would be easier to
              handle.

	Histograms do not handle outliers gracefully. A single
              outlier, far removed from the majority of the points, requires
              many empty cells in between or forces us to use bins that are
              too wide for the majority of points. It is the possibility of
              outliers that makes it difficult to find an acceptable bin width
              in an automated fashion.



[image: Histogram and kernel density estimate of the distribution of the time U.S. presidents have spent in office.]

Figure 2-4. Histogram and kernel density estimate of the distribution
            of the time U.S. presidents have spent in office.

Fortunately, there is an alternative to classical
          histograms that has none of these problems. It is called a
          kernel density estimate.

Kernel Density Estimates



Kernel density estimates (KDEs) are a relatively new
          technique. In contrast to histograms, and to many other classical
          methods of data analysis, they pretty much
          require the calculational power of a reasonably
          modern computer to be effective. They cannot be done “by hand” with
          paper and pencil, even for rather moderately sized data sets. (It is
          interesting to see how the accessibility of computational and
          graphing power enables new ways to think about data!)
To form a KDE, we place a kernel—that is,
          a smooth, strongly peaked function—at the position of each data
          point. We then add up the contributions from all kernels to obtain a
          smooth curve, which we can evaluate at any point along the
          x axis.
Figure 2-4
          shows an example. This is yet another representation of the data set
          we have seen before in Figure 2-1. The dotted
          boxes are a histogram of the data set (with bin width equal to 1),
          and the solid curves are two KDEs of the same data set with
          different bandwidths (I’ll explain this concept in a moment). The
          shape of the individual kernel functions can be seen clearly—for
          example, by considering the three data points below 20. You can also
          see how the final curve is composed out of the individual kernels,
          in particular when you look at the points between 30 and 40.
[image: Graphs of some frequently used kernel functions.]

Figure 2-5. Graphs of some frequently used kernel functions.

We can use any smooth, strongly peaked function as a
          kernel provided that it integrates to 1; in other words, the area
          under the curve formed by a single kernel must be 1. (This is
          necessary to make sure that the resulting KDE is properly
          normalized.) Some examples of frequently used kernel functions
          include (see Figure 2-5):
[image: Graphs of some frequently used kernel functions.]
The box kernel and the Epanechnikov kernel are zero outside a
          finite range, whereas the Gaussian kernel is nonzero everywhere but
          negligibly small outside a limited domain. It turns out that the
          curve resulting from the KDE does not depend strongly on the
          particular choice of kernel function, so we are free to use the
          kernel that is most convenient. Because it is so easy to work with,
          the Gaussian kernel is the most widely used. (See Appendix B for more information on the
          Gaussian function.)
Constructing a KDE requires two things: first, we must move
          the kernel to the position of each point by shifting it
          appropriately. For example, the function
          K(x -
          xi)
          will have its peak at
          xi,
          not at 0. Second, we have to choose the kernel
          bandwidth, which controls the spread of the
          kernel function. To make sure that the area under the curve stays
          the same as we shrink the width, we have to make the curve higher
          (and lower if we increase the width). The final expression for the
          shifted, rescaled kernel function of bandwidth
          h is:
[image: Graphs of some frequently used kernel functions.]
[image: The Gaussian kernel for three different bandwidths. The height of the kernel increases as the width decreases, so the total area under the curve remains constant.]

Figure 2-6. The Gaussian kernel for three different bandwidths. The
            height of the kernel increases as the width decreases, so the
            total area under the curve remains constant.

This function has a peak at
          xi,
          its width is approximately h, and its height is
          such that the area under the curve is still 1. Figure 2-6 shows some
          examples, using the Gaussian kernel. Keep in mind that the area
          under all three curves is the same.
Using this expression, we can now write down a formula for the
          KDE with bandwidth h for any data set
          {x1,
          x2,...,
          xn}.
          This formula can be evaluated for any point x
          along the x axis:
[image: The Gaussian kernel for three different bandwidths. The height of the kernel increases as the width decreases, so the total area under the curve remains constant.]
All of this is straightforward and easy to implement in any
          computer language. Be aware that for large data sets (those with
          many thousands of points), the required number of kernel evaluations
          can lead to performance issues, especially if the function
          D(x) needs to be evaluated
          for many different positions (i.e., many
          different values of x). If this becomes a
          problem for you, you may want to choose a simpler kernel function or
          not evaluate a kernel if the distance x –
          xi
          is significantly greater than the bandwidth h.
          [2]
Now we can explain the wide gray line in Figure 2-4: it is a KDE
          with a larger bandwidth. Using such a large bandwidth makes it
          impossible to resolve the individual data points, but it does
          highlight entire periods of greater or smaller
          frequency. Which choice of bandwidth is right for you depends on
          your purpose.
A KDE constructed as just described is similar to a classical
          histogram, but it avoids two of the aforementioned problems. Given
          data set and bandwidth, a KDE is unique; a KDE is also smooth,
          provided we have chosen a smooth kernel function, such as the
          Gaussian.

Optional: Optimal Bandwidth Selection



We still have to fix the bandwidth. This is a different
          kind of problem than the other two: it’s not
          just a technical problem, which could be resolved through a better
          method; instead, it’s a fundamental problem that relates to the data
          set itself. If the data follows a smooth distribution, then a wider
          bandwidth is appropriate, but if the data follows a very wiggly
          distribution, then we need a smaller bandwidth to retain all
          relevant detail. In other words, the optimal bandwidth is a property
          of the data set and tells us something about the nature of the
          data.
So how do we choose an optimal value for the bandwidth?
          Intuitively, the problem is clear: we want the bandwidth to be
          narrow enough to retain all relevant detail but wide enough so that
          the resulting curve is not too “wiggly.” This is a problem that
          arises in every approximation problem: balancing the faithfulness of
          representation against the simplicity of behavior. Statisticians
          speak of the “bias–variance trade-off.”
To make matters concrete, we have to define a specific
          expression for the error of our approximation, one that takes into
          account both bias and variance. We can then choose a value for the
          bandwidth that minimizes this error. For KDEs, the generally
          accepted measure is the “expected mean-square error” between the
          approximation and the true density. The problem is that we don’t
          know the true density function that we are trying to approximate, so
          it seems impossible to calculate (and minimize) the error in this
          way. But clever methods have been developed to make progress. These
          methods fall broadly into two categories. First, we could try to
          find explicit expressions for both bias and variance. Balancing them
          leads to an equation that has to be solved numerically or—if we make
          additional assumptions (e.g., that the
          distribution is Gaussian)—can even yield explicit expressions
          similar to Scott’s rule (introduced earlier when talking about
          histograms). Alternatively, we could realize that the KDE is an
          approximation for the probability density from which the original
          set of points was chosen. We can therefore choose points from this
          approximation (i.e., from the probability
          density represented by the KDE) and see how well they replicate the
          KDE that we started with. Now we change the bandwidth until we find
          that value for which the KDE is best replicated: the result is the
          estimate of the “true” bandwidth of the data. (This latter method is
          known as cross-validation.)
Although not particularly hard, the details of both methods
          would lead us too far afield, and so I will skip them here. If you
          are interested, you will have no problem picking up the details from one of the references at the end of
          this chapter. Keep in mind, however, that these methods find the
          optimal bandwidth with respect to the mean-square
          error, which tends to overemphasize bias over variance
          and therefore these methods lead to rather narrow bandwidths and
          KDEs that appear too wiggly. If you are using KDEs to generate
          graphs for the purpose of obtaining intuitive visualizations of
          point distributions, then you might be better off with a bit of
          manual trial and error combined with visual inspection. In the end,
          there is no “right” answer, only the most suitable one for a given
          purpose. Also, the most suitable to develop intuitive understanding
          might not be the one that minimizes a particular mathematical
          quantity.


The Cumulative Distribution Function



The main advantage of histograms and kernel density estimates is
        that they have an immediate intuitive appeal: they tell us how
        probable it is to find a data point with a certain value. For example,
        from Figure 2-2 it is
        immediately clear that values around 250 milliseconds are very likely
        to occur, whereas values greater than 2,000 milliseconds are quite
        rare.
But how rare, exactly? That is a question that is much harder to
        answer by looking at the histogram in Figure 2-2. Besides wanting
        to know how much weight is in the tail, we might also be interested to
        know what fraction of requests completes in the typical band between
        150 and 350 milliseconds. It’s certainly the majority of events, but
        if we want to know exactly how many, then we need to sum up the
        contributions from all bins in that region.
The cumulative distribution function (CDF)
        does just that. The CDF at point x tells us what
        fraction of events has occurred “to the left” of
        x. In other words, the CDF is the fraction of all
        points
        xi
        with
        xi ≤
        x.
Figure 2-7
        shows the same data set that we have already encountered in Figure 2-2, but here the
        data is represented by a KDE (with bandwidth h =
        30) instead of a histogram. In addition, the figure also includes the
        corresponding CDF. (Both KDE and CDF are normalized to 1.)
We can read off several interesting observations directly from
        the plot of the CDF. For instance, we can see that at
        t = 1,500 (which certainly puts us into the tail
        of the distribution) the CDF is still smaller than 0.85; this means
        that fully 15 percent of all requests take longer than 1,500
        milliseconds. In contrast, less than a third of all requests are
        completed in the “typical” range of 150–500 milliseconds. (How do we
        know this? The CDF for t = 150 is about 0.05 and
        is close to 0.40 for t = 500. In other words,
        about 40 percent of all requests are completed in less than 500
        milliseconds; of these, 5 percent are completed in less than 150
        milliseconds. Hence about 35 percent of all requests have response
        times of between 150 and 500 milliseconds.)
[image: Kernel density estimate and cumulative distribution function of the server response times shown in .]

Figure 2-7. Kernel density estimate and cumulative distribution function
          of the server response times shown in Figure 2-2.

It is worth pausing to contemplate these findings, because they
        demonstrate how misleading a histogram (or KDE) can be despite (or
        because of) their intuitive appeal! Judging from the histogram or KDE
        alone, it seems quite reasonable to assume that “most” of the events
        occur within the major peak near t = 300 and that
        the tail for t > 1,500 contributes relatively
        little. Yet the CDF tells us clearly that this is not so. (The problem
        is that the eye is much better at judging distances than areas, and we
        are therefore misled by the large values of the histogram near its
        peak and fail to see that nevertheless the area beneath the peak is
        not that large compared to the total area under the curve.)
CDFs are probably the least well-known and most underappreciated
        tool in basic graphical analysis. They have less immediate intuitive
        appeal than histograms or KDEs, but they allow us to make the kind of
        quantitative statement that is very often required but is difficult
        (if not impossible) to obtain from a histogram.
Cumulative distribution functions have a number of important
        properties that follow directly from how they are calculated.
	Because the value of the CDF at position
            x is the fraction of points to the left of
            x, a CDF is always monotonically increasing
            with x.

	CDFs are less wiggly than a histogram (or KDE) but contain
            the same information in a representation that is inherently less
            noisy.

	Because CDFs do not involve any binning, they do not lose
            information and are therefore a more faithful representation of
            the data than a histogram.

	All CDFs approach 0 as x goes
            to negative infinity. CDFs are usually normalized so that they
            approach 1 (or 100 percent) as x goes to
            positive infinity.

	A CDF is unique for a given data set.



If you are mathematically inclined, you have probably already
        realized that the CDF is (an approximation to) the antiderivative of
        the histogram and that the histogram is the derivative of the
        CDF:
[image: Kernel density estimate and cumulative distribution function of the server response times shown in .]
Cumulative distribution functions have several uses. First, and
        most importantly, they enable us to answer questions such as those
        posed earlier in this section: what fraction of points falls between
        any two values? The answer can simply be read off from the graph.
        Second, CDFs also help us understand how imbalanced a distribution
        is—in other words, what fraction of the overall weight is carried by
        the tails.
Cumulative distribution functions also prove useful when we want
        to compare two distributions. It is notoriously difficult to compare
        two bell-shaped curves in a histogram against each other. Comparing
        the corresponding CDFs is usually much more conclusive.
One last remark, before leaving this section: in the literature,
        you may find the term quantile plot. A quantile
        plot is just the plot of a CDF in which the x and
        y axes have been switched. Figure 2-8 shows an example
        using once again the server response time data set. Plotted this way,
        we can easily answer questions such as, “What response time
        corresponds to the 10th percentile of response times?” But the
        information contained in this graph is of course exactly the same as
        in a graph of the CDF.
Optional: Comparing Distributions with Probability Plots and
          QQ Plots



Occasionally you might want to confirm that a given set of
          points is distributed according to some specific, known
          distribution. For example, you have a data set and would like to
          determine whether it can be described well by a Gaussian (or some
          other) distribution.
You could compare a histogram or KDE of the data set directly
          against the theoretical density function, but it is notoriously
          difficult to compare distributions that way—especially out in the
          tails. A better idea would be to compare the cumulative distribution
          functions, which are easier to handle because they are less wiggly
          and are always monotonically increasing. But this is still not easy.
          Also keep in mind that most probability distributions depend on
          location and scale parameters (such as mean and variance), which you
          would have to estimate before being able to
          make a meaningful comparison. Isn’t there a way to compare a set of
          points directly against a theoretical distribution and, in the
          process, read off the estimates for all the parameters
          required?
[image: Quantile plot of the server data. A quantile plot is a graph of the CDF with the x and y axes interchanged. Compare to .]

Figure 2-8. Quantile plot of the server data. A quantile plot is a
            graph of the CDF with the x and
            y axes interchanged. Compare to Figure 2-7.

[image: Jitter plot, histogram, and cumulative distribution function for a Gaussian data set.]

Figure 2-9. Jitter plot, histogram, and cumulative distribution
            function for a Gaussian data set.

As it turns out, there is. The method is technically easy to
          do, but the underlying logic is a bit convoluted and tends to trip
          up even experienced practitioners.
Here is how it works. Consider a set of points
          {xi}
          that we suspect are distributed according to the Gaussian
          distribution. In other words, we expect the cumulative distribution
          function of the set of points,
          yi
          =
          cdf(xi),
          to be the Gaussian cumulative distribution function Φ
          ((x – μ)/σ) with mean μ and standard deviation
          σ:
[image: Jitter plot, histogram, and cumulative distribution function for a Gaussian data set.]
[image: Probability plot for the data set shown in .]

Figure 2-10. Probability plot for the data set shown in Figure 2-9.

Here,
          yi
          is the value of the cumulative distribution function corresponding
          to the data point
          xi;
          in other words,
          yi
          is the quantile of the point
          xi.
Now comes the trick. We apply the inverse
          of the Gaussian distribution function to both sides of the
          equation:
[image: Probability plot for the data set shown in .]
With a little bit of algebra, this becomes
xi
          = μ +
          σΦ–1(yi)
In other words, if we plot the values in the data set as a
          function of
          Φ–1(yi),
          then they should fall onto a straight line with slope σ and zero
          intercept μ. If, on the other hand, the points do not fall onto a
          straight line after applying the inverse transform, then we can
          conclude that the data is not distributed according to a Gaussian
          distribution.
The resulting plot is known as a probability
          plot. Because it is easy to spot deviation from a
          straight line, a probability plot provides a relatively sensitive
          test to determine whether a set of points behaves according to the
          Gaussian distribution. As an added benefit, we can read off
          estimates for the mean and the standard deviation directly from the
          graph: μ is the intercept of the curve with the
          y axis, and σ is given by the slope of the
          curve. (Figure 2-10
          shows the probability plot for the Gaussian data set displayed in
          Figure 2-9.)
One important question concerns the units
          that we plot along the axes. For the vertical axis the case is
          clear: we use whatever units the original data was measured in. But
          what about the horizontal axis? We plot the data as a function of
          Φ–1(yi),
          which is the inverse Gaussian distribution function, applied to the
          percentile
          yi
          for each point
          xi.
          We can therefore choose between two different ways to dissect the
          horizontal axis: either using the percentiles
          yi
          directly (in which case the tick marks will not be distributed
          uniformly), or dividing the horizontal axis uniformly. In the latter
          case we are using the width of the standard Gaussian
          distribution as a unit. You can convince yourself that
          this is really true by realizing that
          Φ–1(y) is the
          inverse of the Gaussian distribution function
          Φ(x). Now ask yourself: what units is
          x measured in? We use the same units for the
          horizontal axis of a Gaussian probability plot. These units are
          sometimes called probits. (Figure 2-10 shows both sets
          of units.) Beware of confused and confusing explanations of this
          point elsewhere in the literature.
There is one more technical detail that we need to discuss: to
          produce a probability plot, we need not only the data itself, but
          for each point
          xi
          we also need its quantile
          yi
          (we will discuss quantiles and percentiles in more detail later in
          this chapter). The simplest way to obtain the quantiles, given the
          data, is as follows:
	Sort the data points in ascending order.

	Assign to each data point its rank (basically, its line
              number in the sorted file), starting at 1 (not at 0).

	The quantile
              yi
              now is the rank divided by n + 1, where
              n is the number of data points.



This prescription guarantees that each data point is assigned
          a quantile that is strictly greater than 0 and strictly less than 1.
          This is important because
          Φ–1(x) is defined
          only for 0 < x < 1. This prescription is
          easy to understand and easy to remember, but you may find other,
          slightly more complicated prescriptions elsewhere. For all practical
          purposes, the differences are going to be small.
Finally, let’s look at an example where the data is clearly
          not Gaussian. Figure 2-11 shows the
          server data from Figure 2-2 plotted in a
          probability plot. The points don’t fall on a straight line at
          all—which is no surprise since we already knew from Figure 2-2 that the data
          is not Gaussian. But for cases that are less clear-cut, the
          probability plot can be a helpful tool for detecting deviations from
          Gaussian behavior.
A few additional comments are in order here.
	Nothing in the previous discussion requires that the
              distribution be Gaussian! You can use almost any other commonly
              used distribution function (and its inverse) to generate the
              respective probability plots. In particular, many of the
              commonly used probability distributions depend on location and
              scale parameters in exactly the same way as the Gaussian
              distribution, so all the arguments discussed earlier go through
              as before.
[image: A probability plot of the server response times from . The data does not follow a Gaussian distribution and thus the points do not fall on a straight line.]

Figure 2-11. A probability plot of the server response times from
                Figure 2-2.
                The data does not follow a Gaussian distribution and thus the
                points do not fall on a straight
                line.


	So far, I have always assumed that we want to compare an
              empirical data set against a
              theoretical distribution. But there may
              also be situations where we want to compare two empirical data
              sets against each other—for example, to find out whether they
              were drawn from the same family of distributions (without having
              to specify the family explicitly). The process is easiest to
              understand when both data sets we want to compare contain the
              same number of points. You sort both sets and then align the
              points from both data sets that have the same rank (once
              sorted). Now plot the resulting pairs of points in a regular
              scatter plot (see Chapter 3); the
              resulting graph is known as a QQ plot. (If
              the two data sets do not contain the same number of points, you
              will have to interpolate or truncate them so that they
              do.)



Probability plots are a relatively advanced, specialized
          technique, and you should evaluate whether you really need them.
          Their purpose is to determine whether a given data set stems from a
          specific, known distribution. Occasionally, this is of interest in
          itself; in other situations subsequent analysis depends on proper
          identification of the underlying model. For example, many
          statistical techniques assume that the errors or residuals are
          Gaussian and are not applicable if this condition is violated.
          Probability plots are a convenient technique for testing this
          assumption.


Rank-Order Plots and Lift Charts



There is a technique related to histograms and CDFs that
        is worth knowing about. Consider the following scenario. A company
        that is selling textbooks and other curriculum materials is planning
        an email marketing campaign to reach out to its existing customers.
        For this campaign, the company wants to use personalized email
        messages that are tailored to the job title of each recipient (so that
        teachers will receive a different email than their principals). The
        problem is the customer database contains about 250,000 individual
        customer records with over 16,000 different job titles among them! Now
        what?
The trick is to sort the job titles by the number of individual
        customer records corresponding to each job title. The first few
        records are shown in Table 2-1. The four
        columns give the job title, the number of customers for that job
        title, the fraction of all customers having that job title, and
        finally the cumulative fraction of customers. For the last column, we
        sum up the number of customers for the current and all previously seen
        job titles, then divide by the total number of customer records. This
        is the equivalent of the CDF we discussed earlier.
We can see immediately that fully two thirds of all customers
        account for only 10 different job titles. Using just the top 30 job
        titles gives us 75 percent coverage of customer records. That’s much
        more manageable than the 16,000 job titles we started with!
Let’s step back for a moment to understand how this example is
        different from those we have seen previously. What is important to
        notice here is that the independent variable has no
        intrinsic ordering. What does this mean?
For the web-server example, we counted the number of events for
        each response time; hence the count of events per bin was the
        dependent variable, and it was determined by the independent
        variable—namely, the response time. In that case, the independent
        variable had an inherent ordering: 100 milliseconds are always less
        than 400 milliseconds (and so on). But in the case of counting
        customer records that match a certain job title, the independent
        variable (the job title) has no corresponding ordering relation. It
        may appear otherwise since we can sort the job titles alphabetically,
        but realize that this ordering is entirely arbitrary! There is nothing
        “fundamental” about it. If we choose a different font encoding or
        locale, the order will change. Contrast this with the ordering
        relationship on numbers—there are no two ways about it: 1 is always
        less than 2.
In cases like this, where the independent variable does not have
        an intrinsic ordering, it is often a good idea to sort entries by the
        dependent variable. That’s what we did in the
        example: rather than defining some (arbitrary) sort order on the job
        titles, we sorted by the number of records (i.e.,
        by the dependent variable). Once the records have been sorted in this
        way, we can form a histogram and a CDF as before.
Table 2-1. The first 30 job titles and their relative
          frequencies.
	Title
	Number of
                customers
	Fraction of
                customers
	Cumulative
                fraction

	Teacher
	66,470
	0.34047
	0.340

	Principal
	22,958
	0.11759
	0.458

	Superintendent
	12,521
	0.06413
	0.522

	Director
	12,202
	0.06250
	0.584

	Secretary
	4,427
	0.02267
	0.607

	Coordinator
	3,201
	0.01639
	0.623

	Vice Principal
	2,771
	0.01419
	0.637

	Program Director
	1,926
	0.00986
	0.647

	Program Coordinator
	1,718
	0.00880
	0.656

	Student
	1,596
	0.00817
	0.664

	Consultant
	1,440
	0.00737
	0.672

	Administrator
	1,169
	0.00598
	0.678

	President
	1,114
	0.00570
	0.683

	Program Manager
	1,063
	0.00544
	0.689

	Supervisor
	1,009
	0.00516
	0.694

	Professor
	961
	0.00492
	0.699

	Librarian
	940
	0.00481
	0.704

	Project Coordinator
	880
	0.00450
	0.708

	Project Director
	866
	0.00443
	0.713

	Office Manager
	839
	0.00429
	0.717

	Assistant Director
	773
	0.00395
	0.721

	Administrative
                Assistant
	724
	0.00370
	0.725

	Bookkeeper
	697
	0.00357
	0.728

	Intern
	693
	0.00354
	0.732

	Program Supervisor
	602
	0.00308
	0.735

	Lead Teacher
	587
	0.00300
	0.738

	Instructor
	580
	0.00297
	0.741

	Head Teacher
	572
	0.00292
	0.744

	Program Assistant
	572
	0.00292
	0.747

	Assistant Teacher
	546
	0.00279
	0.749




This trick of sorting by the dependent variable is useful
        whenever the independent variable does not have a meaningful ordering
        relation; it is not limited to situations where we count events per
        bin. Figure 2-12 and
        Figure 2-13 show two
        typical examples.
Figure 2-12 shows
        the sales by a certain company to different countries. Not only the
        sales to each country but also the cumulative sales are shown, which
        allows us to assess the importance of the remaining “tail” of the
        distribution of sales.
In this example, I chose to plot the independent variable along
        the vertical axis. This is often a good idea when the values are
        strings, since they are easier to read this way. (If you plot them
        along the horizontal axis, it is often necessary to rotate the strings
        by 90 degrees to make them fit, which makes hard to read.)
Figure 2-13
        displays what in quality engineering is known as a Pareto
        chart. In quality engineering and process improvement, the
        goal is to reduce the number of defects in a certain product or
        process. You collect all known causes of defects and observe how often
        each one occurs. The results can be summarized conveniently in a chart
        like the one in Figure 2-13. Note that the
        causes of defects are sorted by their frequency of occurrence. From
        this chart we can see immediately that problems with the engine and
        the electrical system are much more common than problems with the air
        conditioning, the brakes, or the transmission. In fact, by looking at the cumulative
        error curve, we can tell that fixing just the first two problem areas
        would reduce the overall defect rate by 80 percent.
[image: A rank-order plot of sales per country. The independent variable has been plotted along the vertical axis to make the text labels easier to read.]

Figure 2-12. A rank-order plot of sales per country. The independent
          variable has been plotted along the vertical
          axis to make the text labels easier to read.

[image: The Pareto chart is another example of a rank-order plot.]

Figure 2-13. The Pareto chart is another example of a rank-order
          plot.

Two more bits of terminology: the term “Pareto chart” is not
        used widely outside the specific engineering disciplines mentioned in
        the previous paragraph. I personally prefer the expression
        rank-order chart for any plot generated by first
        sorting all entries by the dependent variable
        (i.e., by the rank of the
        entry). The cumulative distribution curve is occasionally referred to
        as a lift curve, because it tells us how much
        “lift” we get from each entry or range of entries.

Only When Appropriate: Summary Statistics and Box Plots



You may have noticed that so far I have not spoken at all about
        such simple topics as mean and median, standard deviation, and
        percentiles. That is quite intentional. These summary
        statistics apply only under certain assumptions and are
        misleading, if not downright wrong, if those assumptions are not
        fulfilled. I know that these quantities are easy to understand and
        easy to calculate, but if there is one message I would like you to
        take away from this book it is this: the fact that something is
        convenient and popular is no reason to follow suit. For any method
        that you want to use, make sure you understand the underlying
        assumptions and always check that they are
        fulfilled for the specific application you have in mind!
Mean, median, and related summary statistics apply only to
        distributions that have a single, central peak—that is, to
        unimodal distributions. If this basic assumption
        is not fulfilled, then conclusions based on simple summary statistics
        will be wrong. Even worse, nothing will tip you off that they are
        wrong: the numbers will look quite reasonable. (We will see an example
        of this problem shortly.)
Summary Statistics



If a distribution has only a single peak, then it makes sense
          to ask about the properties of that peak: where is it located, and
          what is its width? We may also want to know whether the distribution
          is symmetric and whether any outliers are present.
Mean and standard deviation are two popular measures for
          location and spread. The mean or average is
          both familiar and intuitive:
[image: Summary Statistics]
The standard deviation measures how far points spread “on
          average” from the mean: we take all the differences between each
          individual point and the mean, and then calculate the average of all
          these differences. Because data points can either overshoot or
          undershoot the mean and we don’t want the positive and negative
          deviations to cancel each other, we sum the square of
          the individual deviations and then take the mean of the square
          deviations. (The second equation is very useful in practice and can
          be found from the first after plugging in the definition of the
          mean.)
[image: Summary Statistics]
The quantity
          s2 calculated in
          this way is known as the variance and is the
          more important quantity from a theoretical point of view. But as a
          measure of the spread of a distribution, we are better off using its
          square root, which is known as the standard
          deviation. Why take the square root? Because then both
          measure for the location, and the measure for the spread will have
          the same units, which are also the units of the actual data. (If our
          data set consists of the prices for a basket of goods, then the
          variance would be given in “square dollars,” whereas the standard
          deviation would be given in dollars.)
For many (but certainly not all!) data sets arising in
          practice, one can expect about two thirds of all data points to fall
          within the interval [m –
          s, m +
          s] and 99 percent of all points to fall within
          the wider interval [m –
          3s, m +
          3s].
Mean and standard deviation are easy to calculate, and have
          certain nice mathematical properties—provided the data is symmetric
          and does not contain crazy outliers. Unfortunately, many data sets
          violate at least one of these assumptions. Here is an example for
          the kind of trouble that one may encounter. Assume we have 10 items
          costing $1 each, and one item costing $20. The mean item price comes
          out to be $2.73, even though no item has a price anywhere near this
          value. The standard deviation is even worse: it comes out to $5.46,
          implying that most items have a price between $2.73 – $5.46 and
          $2.73 + $5.46. The “expected range” now includes negative prices—an
          obviously absurd result. Note that the data set itself is not
          particularly pathological: going to the grocery store and picking up
          a handful of candy bars and a bottle of wine will do it (pretty good
          wine, to be sure, but nothing outrageous).
A different set of summary statistics that is both more
          flexible and more robust is based on the concepts of
          median and quantiles or
          percentiles. The median is conventionally
          defined as the value from a data set such that half of all points in
          the data set are smaller and the other half greater that that value.
          Percentiles are the generalization of this concept to other
          fractions (the 10th percentile is the value such that 10 percent of
          all points in the data set are smaller than it, and so on).
          Quantiles are similar to percentiles, only that they are taken with
          respect to the fraction of points, not the percentage of points (in
          other words, the 10th percentile equals the 0.1 quantile).
Simple as it is, the percentile concept is nevertheless
          ambiguous, and so we need to work a little harder to make it really
          concrete. As an example of the problems that occur, consider the
          data set {1, 2, 3}. What is the median? It is not possible to break
          this data set into two equal parts each containing exactly half the
          points. The problem becomes even more uncomfortable when we are
          dealing with arbitrary percentile values (rather than the median
          only).
The Internet standard laid down in RFC 2330 (“Framework for IP
          Performance Metrics”) gives a definition of percentiles in terms of
          the CDF, which is unambiguous and practical, as follows. The
          pth percentile is the smallest value
          x, such that the cumulative distribution
          function of x is greater or equal
          p/100.
pth percentile: smallest
          x for which cdf(x) ≥
          p/100
This definition assumes that the CDF is normalized to 1, not
          to 100. If it were normalized to 100, the condition would be
          cdf(x) ≥ p.
With this definition, the median (i.e.,
          the 50th percentile) of the data set {1, 2, 3} is 2 because the
          cdf(1) = 0.33 ..., cdf(2) = 0.66 ..., and cdf(3) = 1.0. The median
          of the data set {1, 2} would be 1 because now cdf(1) = 0.5, and
          cdf(2) = 1.0.
The median is a measure for the location of the distribution,
          and we can use percentiles to construct a measure for the width of
          the distribution. Probably the most frequently used quantity for
          this purpose is the inter-quartile range (IQR),
          which is the distance between the 75th percentile and 25th
          percentile.
When should you favor median and percentile over mean and
          standard deviation? Whenever you suspect that your distribution is
          not symmetric or has important outliers.
If a distribution is symmetric and well behaved, then mean and
          median will be quite close together, and there is little difference
          in using either. Once the distribution becomes skewed, however, the
          basic assumption that underlies the mean as a measure for the
          location of the distribution is no longer fulfilled, and so you are
          better off using the median. (This is why the average wage is
          usually given in official publications as the median family income,
          not the mean; the latter would be significantly distorted by the few
          households with extremely high incomes.) Furthermore, the moment you
          have outliers, the assumptions behind the standard deviation as a
          measure of the width of the distribution are violated; in this case
          you should favor the IQR (recall our shopping basket example
          earlier).
If median and percentiles are so great, then why don’t we
          always use them? A large part of the preference for mean and
          variance is historical. In the days before readily available
          computing power, percentiles were simply not practical to calculate.
          Keep in mind that finding percentiles requires to
          sort the data set whereas to find the mean
          requires only to add up all elements in any order. The latter is an
          [image: ](n) process, but the
          former is an [image: ](n2)
          process, since humans—being nonrecursive—cannot be taught Quicksort
          and therefore need to resort to much less efficient sorting
          algorithms. A second reason is that it is much harder to prove
          rigorous theorems for percentiles, whereas mean and variance are
          mathematically very well behaved and easy to work with.

Box-and-Whisker Plots



There is an interesting graphical way to represent
          these quantities, together with information about potential
          outliers, known as a box-and-whisker plot, or
          box plot for short. Figure 2-15 illustrates
          all components of a box plot. A box plot consists of:
	A marker or symbol for the median as
              an indicator of the location of the
              distribution

	A box, spanning the inter-quartile
              range, as a measure of the width of the
              distribution

	A set of whiskers, extending from the
              central box to the upper and lower adjacent values, as an
              indicator of the tails of the distribution
              (where “adjacent value” is defined in the next paragraph)

	Individual symbols for all values
              outside the range of adjacent values, as a representation for
              outliers



You can see that a box plot combines a lot of information in a
          single graph. We have encountered almost all of these concepts
          before, with the exception of upper and lower adjacent
          values. While the inter-quartile range is a measure for
          the width of the central “bulk” of the distribution, the adjacent
          values are one possible way to express how far its tails reach. The
          upper adjacent value is the largest value in the data set that is
          less than twice the inter-quartile range greater than the median. In
          other words: extend the whisker upward from the median to twice the
          length of the central box. Now trim the whisker down to the largest
          value that actually occurs in the data set; this value is the upper
          adjacent value. (A similar construction holds for the lower adjacent
          value.)
You may wonder about the reason for this peculiar
          construction. Why not simply extend the whiskers to, say, the 5th
          and 95th percentile and be done with it? The problem with this
          approach is that it does not allow us to recognize true outliers!
          Outliers are data points that are, when compared to the
          width of the distribution, unusually far from the center.
          Such values may or may not be present. The top and bottom 5 percent,
          on the other hand, are always present even for very compact
          distributions. To recognize outliers, we therefore cannot simply
          look at the most extreme values, instead we must compare
          their distance from the center to the overall width of the
          distribution. That is what box-and-whisker plots, as
          described in the previous paragraph, do.
The logic behind the preceding argument is extremely important
          (not only in this application but more generally), so I shall
          reiterate the steps: first we calculated a
          measure for the width of the distribution, then
          we used this width to identify outliers as those points that are far
          from the center, where (and this is the crucial step) “far” is
          measured in units of the width of the distribution. We neither
          impose an arbitrary distance from the outside, nor do we simply
          label the most extreme x percent of the
          distribution as outliers—instead, we determine the width of the
          distribution (as the range into which points “typically” fall) and
          then use it to identify outliers as those points that deviate from
          this range. The important insight here is that the distribution
          itself determines a typical scale, which
          provides a natural unit in which to measure other properties of the
          distribution. This idea of using some typical property
          of the system to describe other parts of the system will come up
          again later (see Chapter 8).
Box plots combine many different measures of a distribution
          into a single, compact graph. A box plot allows us to see whether
          the distribution is symmetric or not and how the weight is
          distributed between the central peak and the tails. Finally,
          outliers (if present) are not dropped but shown explicitly.
Box plots are best when used to compare several distributions
          against one another—for a single distribution, the overhead of
          preparing and managing a graph (compared to just quoting the
          numbers) may often not appear justified. Here is an example that
          compares different data sets against each other.
Let’s say we have a data set containing the index of
          refraction of 121 samples of glass.[3] The data set is broken down by the type of glass: 70
          samples of window glass, 29 from headlamps, 13 from containers of
          various kinds, and 9 from tableware. Figure 2-14 and Figure 2-15 are two
          representations of the same data, the former as a kernel density
          estimate and the latter as a box plot.
The box plot emphasizes the overall structure of the data sets
          and makes it easy to compare the data sets based on their location
          and width. At the same time, it also loses much information. The KDE
          gives a more detailed view of the data—in particular showing the
          occurrence of multiple peaks in the distribution functions—but makes
          it more difficult to quickly sort and classify the data sets.
          Depending on your needs, one or the other technique may be
          preferable at any given time.
Here are some additional notes on box plots.
	The specific way of drawing a box plot that I described
              here is especially useful but is far from universal. In
              particular, the specific definition of the adjacent values is
              often not properly understood. Whenever you find yourself
              looking at a box plot, always ask what exactly is shown, and
              whenever you prepare one, make sure to include an
              explanation.

	The box plot described here can be modified and enhanced.
              For example, the width of the central box
              (i.e., the direction orthogonal to the
              whiskers) can be used to indicate the size of the underlying
              data set: the more points are included, the wider the box.
              Another possibility is to abandon the rectangular shape of the
              box altogether and to use the local width of the box to display
              the density of points at each location—which brings us almost
              full circle to KDEs.



[image: Comparing data sets using KDEs: refractive index of different types of glass. (Compare .)]

Figure 2-14. Comparing data sets using KDEs: refractive index of
            different types of glass. (Compare Figure 2-15.)



Workshop: NumPy



The NumPy module provides efficient and convenient
        handling of large numerical arrays in Python. It is the successor to
        both the earlier Numeric and the alternative numarray modules. (See
        the Appendix A for
        more on the history of scientific computing with Python.) The NumPy
        module is used by many other libraries and projects and in this sense
        is a “base” technology.
Let’s look at some quick examples before delving a bit deeper
        into technical details.
NumPy in Action



NumPy objects are of type ndarray. There are different ways of
          creating them. We can create an ndarray by:
	Converting a Python list

	Using a factory function that returns a populated
              vector

	Reading data from a file directly into a NumPy
              object



The listing that follows shows five different ways to create
          NumPy objects. First we create one by converting a Python list. Then
          we show two different factory routines that generate equally spaced
          grid points. These routines differ in how they interpret the
          provided boundary values: one routine includes both boundary values,
          and the other includes one and excludes the other. Next we create a
          vector filled with zeros and set each element in a loop. Finally, we
          read data from a text file. (I am showing only the simplest or
          default cases here—all these routines have many more options that
          can be used to influence their behavior.)
[image: Comparing data sets using box plots: refractive index of different types of glass. (Compare .)]

Figure 2-15. Comparing data sets using box plots: refractive index of
            different types of glass. (Compare Figure 2-14.)

# Five different ways to create a vector...

import numpy as np

# From a Python list
vec1 = np.array( [ 0., 1., 2., 3., 4. ] )

# arange( start inclusive, stop exclusive, step size )
vec2 = np.arange( 0, 5, 1, dtype=float )

# linspace( start inclusive, stop inclusive, number of elements )
vec3 = np.linspace( 0, 4, 5 )

# zeros( n ) returns a vector filled with n zeros
vec4 = np.zeros( 5 )
for i in range( 5 ):
    vec4[i] = i

# read from a text file, one number per row
vec5 = np.loadtxt( "data" )
In the end, all five vectors contain identical data. You
          should observe that the values in the Python list used to initialize
          vec1 are floating-point values
          and that we specified the type desired for the
          vector elements explicitly when using the arange() function to create vec2. (We will come back to types in a
          moment.)
Now that we have created these objects, we can operate
          with them (see the next listing). One of the major conveniences
          provided by NumPy is that we can operate with NumPy objects as if
          they were atomic data types: we can add, subtract, and multiply them
          (and so forth) without the need for explicit
          loops. Avoiding explicit loops makes our code clearer. It
          also makes it faster (because the entire operation is performed in C
          without overhead—see the discussion that follows).
# ... continuation from previous listing

# Add a vector to another
v1 = vec1 + vec2

# Unnecessary: adding two vectors using an explicit loop
v2 = np.zeros( 5 )
for i in range( 5 ):
    v2[i] = vec1[i] + vec2[i]

# Adding a vector to another in place
vec1 += vec2

# Broadcasting: combining scalars and vectors
v3 = 2*vec3
v4 = vec4 + 3

# Ufuncs: applying a function to a vector, element by element
v5 = np.sin(vec5)

# Converting to Python list object again
lst = v5.tolist()
All operations are performed element by element: if we add two
          vectors, then the corresponding elements from each vector are
          combined to give the element in the resulting vector. In other
          words, the compact expression vec1 +
          vec2 for v1 in the
          listing is equivalent to the explicit loop construction used to
          calculate v2. This is true even
          for multiplication: vec1 * vec2
          will result in a vector in which the corresponding elements of both
          operands have been multiplied element by element. (If you want a
          true vector or “dot” product, you must use the dot() function instead.) Obviously, this
          requires that all operands have the same number of
          elements!
Now we shall demonstrate two further convenience features that
          in the NumPy documentation are referred to as
          broadcasting and ufuncs
          (short for “universal functions”). The term “broadcasting” in this
          context has nothing to do with messaging. Instead, it means that if
          you try to combine two arguments of different shapes, then the
          smaller one will be extended (“cast broader”) to match the larger
          one. This is especially useful when combining scalars with vectors:
          the scalar is expanded to a vector of appropriate size and whose
          elements all have the value given by the scalar; then the operation
          proceeds, element by element, as before. The term “ufunc” refers to
          a scalar function that can be applied to a NumPy object. The
          function is applied, element by element, to all entries in the NumPy
          object, and the result is a new NumPy object with the same shape as
          the original one.
Using these features skillfully, a function to calculate a
          kernel density estimate can be written as a
          single line of code:
# Calculating kernel density estimates

from numpy import *

# z: position, w: bandwidth, xv: vector of points
def kde( z, w, xv ):
    return sum( exp(-0.5*((z-xv)/w)**2)/sqrt(2*pi*w**2) )

d = loadtxt( "presidents", usecols=(2,) )

w = 2.5

for x in linspace( min(d)-w, max(d)+w, 1000 ):
    print x, kde( x, w, d )
This program will calculate and print the data needed to
          generate Figure 2-4
          (but it does not actually draw the graph—that will have to wait
          until we introduce matplotlib in
          the Workshop of Chapter 3).
Most of the listing is boilerplate code, such as reading and
          writing files. All the actual work is done in the one-line function
          kde(z, w, xv). This function
          makes use of both “broadcasting” and “ufuncs” and is a good example
          for the style of programming typical of NumPy. Let’s dissect
          it—inside out.
First recall what we need to do when evaluating a KDE: for
          each location z at which we want to evaluate
          the KDE, we must find its distance to all the points in the data
          set. For each point, we evaluate the kernel for this distance and
          sum up the contributions from all the individual kernels to obtain
          the value of the KDE at z.
The expression z-xv
          generates a vector that contains the distance between z and all the points in xv (that’s broadcasting). We then divide
          by the required bandwidth, multiply by 1/2, and square each element.
          Finally, we apply the exponential function exp() to this vector (that’s a ufunc). The
          result is a vector that contains the exponential function evaluated
          at the distances between the points in the data set and the location
          z. Now we only need to sum all
          the elements in the vector (that’s what sum() does) and we are done, having
          calculated the KDE at position z.
          If we want to plot the KDE as a curve, we have to repeat this
          process for each location we wish to plot—that’s what the final loop
          in the listing is for.

NumPy in Detail



You may have noticed that none of the warm-up examples in the
          listings in the previous section contained any matrices or other
          data structures of higher dimensionality—just one-dimensional
          vectors. To understand how NumPy treats objects with dimensions
          greater than one, we need to develop at least a superficial
          understanding for the way NumPy is implemented.
It is misleading to think of NumPy as a “matrix package for
          Python” (although it’s commonly used as such). I find it more
          helpful to think of NumPy as a wrapper and access layer for
          underlying C buffers. These buffers are contiguous blocks of C
          memory, which—by their nature—are one-dimensional data structures.
          All elements in those data structures must be of the same size, and
          we can specify almost any native C type (including C structs) as the
          type of the individual elements. The default type corresponds to a C
          double and that is what we use in
          the examples that follow, but keep in mind that other choices are
          possible. All operations that apply to the data overall are
          performed in C and are therefore very fast.
To interpret the data as a matrix or other multi-dimensional
          data structure, the shape or layout is imposed during element
          access. The same 12-element data structure can therefore be
          interpreted as a 12-element vector or a 3 × 4 matrix or a 2 × 2 × 3
          tensor—the shape comes into play only through the way we access the
          individual elements. (Keep in mind that although reshaping a data
          structure is very easy, resizing is not.)
The encapsulation of the underlying C data structures is not
          perfect: when choosing the types of the atomic elements, we specify
          C data types not Python types. Similarly, some features provided by
          NumPy allow us to manage memory manually, rather than have the
          memory be managed transparently by the Python runtime. This is an
          intentional design decision, because NumPy has been designed to
          accommodate large data structures—large enough
          that you might want (or need) to exercise a greater degree of
          control over the way memory is managed. For this reason, you have
          the ability to choose types that take up less space as elements in a
          collection (e.g., C float elements rather than the default
          double). For the same reason, all
          ufuncs accept an optional argument pointing to an (already
          allocated) location where the results will be placed, thereby
          avoiding the need to claim additional memory themselves. Finally,
          several access and structuring routines return a
          view (not a copy!) of the same underlying data.
          This does pose an aliasing problem that you need to watch out
          for.
The next listing quickly demonstrates the concepts of shape
          and views. Here, I assume that the commands are entered at an
          interactive Python prompt (shown as >>> in the listing). Output
          generated by Python is shown without a prompt:
>>> import numpy as np

>>> # Generate two vectors with 12 elements each
>>> d1 = np.linspace( 0, 11, 12 )
>>> d2 = np.linspace( 0, 11, 12 )

>>> # Reshape the first vector to a 3x4 (row x col) matrix
>>> d1.shape = ( 3, 4 )
>>> print d1
[[  0.   1.    2.    3.]
 [  4.   5.    6.    7.]
 [  8.   9.   10.   11.]]

>>> # Generate a matrix VIEW to the second vector
>>> view = d2.reshape( (3,4) )

>>> # Now: possible to combine the matrix and the view
>>> total = d1 + view


>>> # Element access: [row,col] for matrix
>>> print d1[0,1]
1.0
>>> print view[0,1]
1.0
>>> # ... and [pos] for vector
>>> print d2[1]
1.0


>>> # Shape or layout information
>>> print d1.shape
(3,4)
>>> print d2.shape
(12,)
>>> print view.shape
(3,4)

>>> # Number of elements (both commands equivalent)
>>> print d1.size
12
>>> print len(d2)
12

>>> # Number of dimensions (both commands equivalent)
>>> print d1.ndim
2
>>> print np.rank(d2)
1
Let’s step through this. We create two vectors of 12 elements
          each. Then we reshape the first one into a 3 ×
          4 matrix. Note that the shape
          property is a data member—not an accessor function! For the second
          vector, we create a view in the form of a 3 × 4
          matrix. Now d1 and the newly
          created view of d2 have the same
          shape, so we can combine them (by forming their sum, in this case).
          Note that even though reshape()
          is a member function, it does not change the
          shape of the instance itself but instead returns a new view object:
          d2 is still a one-dimensional
          vector. (There is also a standalone version of this function, so we
          could also have written view = np.reshape(
          d2, (3,4) ). The presence of such redundant functionality
          is due to the desire to maintain backward compatibility with both of
          NumPy’s ancestors.)
We can now access individual elements of the data
          structures, depending on their shape. Since both d1 and view are matrices, they are indexed by a
          pair of indices (in the order [row,col]). However, d2 is still a one-dimensional vector and
          thus takes only a single index. (We will have more to say about
          indexing in a moment.)
Finally, we examine some diagnostics regarding the shape of
          the data structures, emphasizing their precise semantics. The
          shape is a tuple, giving the
          number of elements in each dimension. The size is the total number of elements and
          corresponds to the value returned by len() for the entire data structure.
          Finally, ndim gives the number of
          dimensions (i.e., d.ndim == len(d.shape)) and is equivalent
          to the “rank” of the entire data structure. (Again, the redundant
          functionality exists to maintain backward compatibility.)
Finally, let’s take a closer look at the ways in which we can
          access elements or larger subsets of an ndarray. In the previous listing we saw
          how to access an individual element by fully specifying an index for
          each dimension. We can also specify larger subarrays of a data
          structure using two additional techniques, known as
          slicing and advanced
          indexing. The following listing shows some representative
          examples. (Again, consider this an interactive Python
          session.)
>>> import numpy as np

>>> # Create a 12-element vector and reshape into 3x4 matrix
>>> d = np.linspace( 0, 11, 12 )
>>> d.shape = ( 3,4 )
>>> print d
[[  0.   1.   2.   3.]
 [  4.   5.   6.   7.]
 [  8.   9.  10.  11.]]

>>> # Slicing...
>>> # First row
>>> print d[0,:]
[ 0.  1.  2.  3.]

>>> # Second col
>>> print d[:,1]
[ 1.  5.  9.]

>>> # Individual element: scalar
>>> print d[0,1]
1.0

>>> # Subvector of shape 1
>>> print d[0:1,1]
[ 1.]

>>> # Subarray of shape 1x1
>>> print d[0:1,1:2]
[[ 1.]]
>>> # Indexing...
>>> # Integer indexing: third and first column
>>> print d[ :, [2,0] ]
[[  2.   0.]
 [  6.   4.]
 [ 10.   8.]]

>>> # Boolean indexing: second and third column
>>> k = np.array( [False, True, True] )
>>> print d[ k, : ]
[[  4.   5.   6.   7.]
 [  8.   9.  10.  11.]]
We first create a 12-element vector and reshape it into a 3 ×
          4 matrix as before. Slicing uses the standard Python slicing syntax
          start:stop:step, where the start
          position is inclusive but the stopping position is exclusive. (In
          the listing, I use only the simplest form of slicing, selecting all
          available elements.)
There are two potential “gotchas” with slicing. First of all,
          specifying an explicit subscripting index (not a slice!) reduces the
          corresponding dimension to a scalar. Slicing, though, does not
          reduce the dimensionality of the data structure. Consider the two
          extreme cases: in the expression d[0,1], indices for both dimensions are
          fully specified, and so we are left with a scalar. In contrast,
          d[0:1,1:2] is sliced in both
          dimensions. Neither dimension is removed, and the resulting object
          is still a (two-dimensional) matrix but of smaller size: it has
          shape 1 × 1.
The second issue to watch out for is that slices
          return views, not copies.
Besides slicing, we can also index an ndarray with a vector of indices, by an
          operation called “advanced indexing.” The previous listing showed
          two simple examples. In the first we use a Python list object, which
          contains the integer indices (i.e., the
          positions) of the desired columns and in the desired order, to
          select a subset of columns. In the second example, we form an
          ndarray of Boolean entries to
          select only those rows for which the Boolean evaluates to
          True.
In contrast to slicing, advanced indexing returns
          copies, not views.
This completes our overview of the basic capabilities of the
          NumPy module. NumPy is easy and convenient to use for simple use
          cases but can get very confusing otherwise. (For example, check out
          the rules for general broadcasting when both operators are
          multi-dimensional, or for advanced indexing).
We will present some more straightforward applications in
          Chapter 3 and
          Chapter 4.


Further Reading



	The Elements of Graphing
              Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
A book-length discussion of graphical methods for data
            analysis such as those described in this chapter. In particular,
            you will find more information here on topics such as box plots
            and QQ plots. Cleveland’s methods are particularly careful and
            well thought-out.

	All of Statistics: A Concise Course in
              Statistical Inference. Larry Wasserman. Springer. 2004.
A thoroughly modern treatment of mathematical statistics,
            very advanced and condensed. You will find some additional
            material here on the theory of “density estimation”—that is, on
            histograms and KDEs.

	Multivariate Density
              Estimation. David W. Scott. 2nd ed., Wiley. 2006.
A research monograph on density estimation written by the
            creator of Scott’s rule.

	Kernel Smoothing. M. P. Wand and M. C. Jones. Chapman & Hall.
              1995.
An accessible treatment of kernel density estimation.






[1] The inspiration for this example comes from a paper by
            Robert W. Hayden in the Journal of Statistics
            Education. The full text is available at
            http://www.amstat.org/publications/jse/v13n1/datasets.hayden.html.

[2] Yet another strategy starts with the realization that
              forming a KDE amounts to a convolution of the kernel function
              with the data set. You can now take the Fourier transform of
              both kernel and data set and make use of the Fourier convolution
              theorem. This approach is suitable for very large data sets but
              is outside the scope of our discussion.

[3] The raw data can be found in the “Glass Identification
              Data Set” on the UCI Machine Learning Repository at
              http://archive.ics.uci.edu/ml/.


Chapter 3. Two Variables: Establishing Relationships



WHEN WE
      ARE DEALING WITH A DATA SET THAT CONSISTS OF TWO
      VARIABLES (THAT IS, A BIVARIATE DATA
      SET), we are mostly interested in seeing whether
      some kind of relationship exists between the two variables and, if so,
      what kind of relationship this is.
Plotting one variable against another is pretty straightforward,
      therefore most of our effort will be spent on various tools and
      transformations that can be applied to characterize the nature of the
      relationship between the two inputs.
Scatter Plots



Plotting one variable against another is simple—you just
        do it! In fact, this is precisely what most
        people mean when they speak about “plotting” something. Yet there are
        differences, as we shall see.
Figure 3-1 and
        Figure 3-2 show two
        examples. The data in Figure 3-1 might come from
        an experiment that measures the force between two surfaces separated
        by a short distance. The force is clearly a complicated function of
        the distance—on the other hand, the data points fall on a relatively
        smooth curve, and we can have confidence that it represents the data
        accurately. (To be sure, we should ask for the accuracy of the
        measurements shown in this graph: are there significant error bars
        attached to the data points? But it doesn’t matter; the data itself
        shows clearly that the amount of random noise in
        the data is small. This does not mean that there aren’t problems with
        the data but only that any problems will be
        systematic ones—for instance, with the
        apparatus—and statistical methods will not be helpful.)
[image: Data that clearly shows that there is a relationship, albeit a complicated one, between x and y.]

Figure 3-1. Data that clearly shows that there is a relationship, albeit
          a complicated one, between x and
          y.

In contrast, Figure 3-2 shows the kind
        of data typical of much of statistical analysis. Here we might be
        showing the prevalence of skin cancer as a function of the mean income
        for a group of individuals or the unemployment rate as a function of
        the frequency of high-school drop-outs for a number of counties, and
        the primary question is whether there is any relationship at all
        between the two quantities involved. The situation here is quite
        different from that shown in Figure 3-1, where it was
        obvious that a strong relationship existed between
        x and y, and therefore our
        main concern was to determine the precise nature of that
        relationship.
A figure such as Figure 3-2 is referred to
        as a scatter plot or xy
        plot. I prefer the latter term because scatter plot sounds
        to me too much like “splatter plot,” suggesting that the data
        necessarily will be noisy—but we don’t know that! Once we plot the
        data, it may turn out to be very clean and regular, as in Figure 3-1; hence I am more
        comfortable with the neutral term.
When we create a graph such as Figure 3-1 or Figure 3-2, we usually want
        to understand whether there is a relationship between
        x and y as well as what the
        nature of that relationship is. Figure 3-3 shows four
        different possibilities that we may find: no relationship; a strong,
        simple relationship; a strong, not-simple relationship; and finally a
        multivariate relationship (one that is not unique).

Conquering Noise: Smoothing



When data is noisy, we are more concerned with establishing
        whether the data exhibits a meaningful
        relationship, rather than establishing its precise character. To see
        this, it is often helpful to find a smooth curve that represents the
        noisy data set. Trends and structure of the data may be more easily
        visible from such a curve than from the cloud of points.
[image: A noisy data set. Is there any relationship between x and y?]

Figure 3-2. A noisy data set. Is there any relationship between
          x and y?

[image: Four types of functional relationships (left to right, top to bottom): no relationship; strong, simple relationship; strong, not-simple relationship; multivariate relationship.]

Figure 3-3. Four types of functional relationships (left to right, top to
          bottom): no relationship; strong, simple relationship; strong,
          not-simple relationship; multivariate relationship.

Two different methods are frequently used to provide
        smooth representation of noisy data sets: weighted
        splines and a method known as LOESS
        (or LOWESS), which is short for locally weighted regression.
Both methods work by approximating the data in a small
        neighborhood (i.e., locally) by a polynomial of
        low order (at most cubic). The trick is to string the various local
        approximations together to form a single smooth curve. Both methods
        contain an adjustable parameter that controls the “stiffness” of the
        resulting curve: the stiffer the curve, the smoother it appears but
        the less accurately it can follow the individual data points. Striking
        the right balance between smoothness and accuracy is the main
        challenge when it comes to smoothing methods.
Splines



Splines are constructed from piecewise polynomial functions
          (typically cubic) that are joined together in a smooth fashion. In
          addition to the local smoothness requirements at each joint, splines
          must also satisfy a global smoothness condition by optimizing the
          functional:
[image: Splines]
Here s(t) is the
          spline curve,
          (xi,
          yi)
          are the coordinates of the data points, the
          wi
          are weight factors (one for each data point), and α is a mixing
          factor. The first term controls how “wiggly” the spline is overall,
          because the second derivative measures the curvature of
          s(t) and becomes large if
          the curve has many wiggles. The second term captures how accurately
          the spline represents the data points by measuring the squared
          deviation of the spline from each data point—it becomes large if the
          spline does not pass close to the data points. Each term in the sum
          is multiplied by a weight factor
          wi,
          which can be used to give greater weight to data points that are
          known with greater accuracy than others. (Put differently: we can
          write
          wi
          as [image: ], where
          di
          measures how close the spline should pass by
          yi
          at
          xi.)
          The mixing parameter α controls how much weight we give to the first
          term (emphasizing overall smoothness) relative to the second term
          (emphasizing accuracy of representation). In a plotting program, α
          is usually the dial we use to tune the spline for a given data
          set.
To construct the spline explicitly, we form cubic
          interpolation polynomials for each consecutive pair of points and
          require that these individual polynomials have the same values, as
          well as the same first and second derivatives, at the points where
          they meet. These smoothness conditions lead to a set of linear
          equations for the coefficients in the polynomials, which can be
          solved. Once these coefficients have been found, the spline curve
          can be evaluated at any desired location.

LOESS



Splines have an overall
          smoothness goal, which means that they are less responsive to
          local details in the data set. The LOESS
          smoothing method addresses this concern. It consists of
          approximating the data locally through a low-order (typically
          linear) polynomial (regression), while weighting all the data points
          in such a way that points close to the location of interest
          contribute more strongly than do data points farther away (local
          weighting).
Let’s consider the case of first-order (linear) LOESS, so that
          the local approximation takes the particularly simple form
          a + bx. To find the “best
          fit” in a least-squares sense, we must minimize:
[image: LOESS]
with respect to the two parameters a and
          b. Here, w(x) is the
          weight function. It should be smooth and strongly peaked—in fact, it
          is basically a kernel, similar to those we encountered in Figure 2-5 when we
          discussed kernel density estimates. The kernel most often used with
          LOESS is the “tri-cube” kernel [image: ] for |x| < 1,
          K(x) = 0 otherwise; but
          any of the other kernels will also work. The weight depends on the
          distance between the point x where we want to
          evaluate the LOESS approximation and the location of the data
          points. In addition, the weight function also depends on the
          parameter h, which controls the bandwidth of
          the kernel: this is the primary control parameter for LOESS
          approximations. Finally, the value of the LOESS approximation at
          position x is given by
          y(x) =
          a + bx, where
          a and b minimize the
          expression for χ2 stated earlier.
This is the basic idea behind LOESS. You can see that it is
          easy to generalize—for example, to two or more dimensions or two
          higher-order approximation polynomials. (One problem, though:
          explicit, closed expressions for the parameters
          a and b can be found only
          if you use first-order polynomials; whereas for quadratic or higher
          polynomials you will have to resort to numerical minimization
          techniques. Unless you have truly compelling reasons, you want to
          stick to the linear case!)
LOESS is a computationally intensive method. Keep in mind that
          the entire calculation must be performed for
          every point at which we want to obtain a
          smoothed value. (In other words, the parameters
          a and b that we calculated
          are themselves functions of x.) This is in
          contrast to splines: once the spline coefficients have been
          calculated, the spline can be evaluated easily at any point that we
          wish. In this way, splines provide a summary or approximation to the
          data. LOESS, however, does not lend itself easily to semi-analytical
          work: what you see is pretty much all you get.
One final observation: if we replace the linear function
          a + bx in the fitting
          process with the constant function a, then
          LOESS becomes simply a weighted moving average.
[image: The 1970 draft lottery: draft number versus birth date (the latter as given in days since the beginning of the year). Two LOESS curves with different values for the smoothing parameter h indicate that men born later in the year tended to have lower draft numbers. This would not be easily recognizable from a plot of the data points alone.]

Figure 3-4. The 1970 draft lottery: draft number versus birth date (the
            latter as given in days since the beginning of the year). Two
            LOESS curves with different values for the smoothing parameter
            h indicate that men born later in the year
            tended to have lower draft numbers. This would not be easily
            recognizable from a plot of the data points alone.


Examples



Let’s look at two examples where smoothing reveals
          behavior that would otherwise not be visible.
The first is a famous data set that has been analyzed in many
          places: the 1970 draft lottery. During the Vietnam War, men in the
          U.S. were drafted based on their date of birth. Each possible birth
          date was assigned a draft number between 1 and 366 using a lottery
          process, and men were drafted in the order of their draft numbers.
          However, complaints were soon raised that the lottery was
          biased—that men born later in the year had a greater chance of
          receiving a low draft number and, consequentially, a greater chance
          of being drafted early.[4]
Figure 3-4
          shows all possible birth dates (as days since the beginning of the
          year) and their assigned draft numbers. If the lottery had been
          fair, these points should form a completely random pattern. Looking at the data alone, it is
          virtually impossible to tell whether there is any structure in the
          data. However, the smoothed LOESS lines reveal a strong falling
          tendency of the draft number over the course of the year: later
          birth dates are indeed more likely to have a lower draft
          number!
The LOESS lines have been calculated using a Gaussian kernel.
          For the solid line, I used a kernel bandwidth equal to 5, but for
          the dashed line, I used a much larger bandwidth of 100. For such a
          large bandwidth, practically all points in the data set contribute
          equally to the smoothed curve, so that the LOESS operation reverts
          to a linear regression of the entire data set. (In other words: if
          we make the bandwidth very large, then LOESS amounts to a
          least-squares fit of a straight line to the data.)
In this draft number example, we mostly cared about a
          global property of the data: the presence or
          absence of an overall trend. Because we were looking for a global
          property, a stiff curve (such as a straight line) was sufficient to
          reveal what we were looking for. However, if we want to extract more
          detail—in particular if we want to extract
          local features—then we need a “softer” curve,
          which can follow the data on smaller scales.
Figure 3-5
          shows an amusing example.[5] Displayed are the finishing times (separately for men
          and women) for the winners in a marathon. Also shown are the “best
          fit” straight-line approximations for all events up to 1990.
          According to this (straight-line) model, women should start
          finishing faster than men before the year 2000 and then continue to
          become faster at a dramatic rate! This expectation is not borne out
          by actual observations: finishing times for women (and men) have
          largely leveled off.
This example demonstrates the danger of attempting to describe
          data by using a model of fixed form (a “formula”)—and a straight
          line is one of the most rigid models out there! A model that is not
          appropriate for the data will lead to incorrect conclusions.
          Moreover, it may not be obvious that the model is inappropriate.
          Look again at Figure 3-5: don’t the
          straight lines seem reasonable as a description of the data prior to
          1990?
Also shown in Figure 3-5 are smoothed
          curves calculated using a LOESS process. Because these curves are
          “softer” they have a greater ability to capture features contained
          in the data. Indeed, the LOESS curve for the women’s results does
          give an indication that the trend of dramatic improvements, seen
          since they first started competing in the mid-1960s, had already
          begun to level off before the year 1990. (All curves are based
          strictly on data prior to 1990.) This is a good example of how an
          adaptive smoothing curve can highlight local behavior that is
          present in the data but may not be obvious from merely looking at
          the individual data points.
[image: Winning times (in minutes) for an annual marathon event, separately for men and women. Also shown are the straight-line and smooth-curve approximations. All approximations are based entirely on data points prior to 1990.]

Figure 3-5. Winning times (in minutes) for an annual marathon event,
            separately for men and women. Also shown are the straight-line and
            smooth-curve approximations. All approximations are based entirely
            on data points prior to 1990.


Residuals



Once you have obtained a smoothed approximation to the
          data, you will usually also want to check out the
          residuals—that is, the remainder when you
          subtract the smooth “trend” from the actual data.
There are several details to look for when studying
          residuals.
	Residuals should be balanced: symmetrically distributed
              around zero.

	Residuals should be free of a trend. The presence of a
              trend or of any other large-scale systematic behavior in the
              residuals suggests that the model is inappropriate! (By
              construction, this is never a problem if the smooth curve was
              obtained from an adaptive smoothing model; however, it is an
              important indicator if the smooth curve comes from an analytic
              model.)

	Residuals will necessarily straddle the zero value; they
              will take on both positive and negative values. Hence you may
              also want to plot their absolute values to evaluate whether the
              overall magnitude of the residuals is the same for the entire
              data set or not. The assumption that the magnitude of the
              variance around a model is constant throughout
              (“homoscedasticity”) is often an important condition in
              statistical methods. If it is not satisfied, then such methods
              may not apply.

	Finally, you may want to use a QQ plot (see Chapter 2) to check
              whether the residuals are distributed according to a Gaussian
              distribution. This, too, is an assumption that is often
              important for more advanced statistical methods.



[image: Residuals for the women’s marathon results, both for the LOESS smoothing curve and the straight-line linear regression model. The residuals for the latter show an overall systematic trend, which suggests that the model does not appropriately describe the data.]

Figure 3-6. Residuals for the women’s marathon results, both for the
            LOESS smoothing curve and the straight-line linear regression
            model. The residuals for the latter show an overall systematic
            trend, which suggests that the model does not appropriately
            describe the data.

It may also be useful to apply a smoothing routine to
          the residuals in order to recognize their
          features more clearly. Figure 3-6 shows the
          residuals for the women’s marathon results (before 1990) both for
          the straight-line model and the LOESS smoothing curve. For the LOESS
          curve, the residuals are small overall and hardly exhibit any trend.
          For the straight-line model, however, there is a strong systematic
          trend in the residuals that is increasing in magnitude for years
          past 1985. This kind of systematic trend in the residuals is a clear
          indicator that the model is not appropriate for the data!

Additional Ideas and Warnings



Here are some additional ideas that you might want to play
          with.
As we have discussed before, you can calculate the residuals
          between the real data and the smoothed approximation. Here an
          isolated large residual is certainly odd: it suggests that the
          corresponding data point is somehow “different” than the other
          points in the neighborhood—in other words, an outlier. Now we argue
          as follows. If the data point is an outlier, then it should
          contribute less to the smoothed curve than other points. Taking this
          consideration into account, we now introduce an additional weight
          factor for each data point into the expression for
          J[s] or
          χ2 given previously. The magnitude of
          this weight factor is chosen in such a way that data points with
          large residuals contribute less to the smooth curve. With this new
          weight factor reducing the influence of points with large residuals,
          we calculate a new version of the smoothed
          approximation. This process is iterated until the smooth curve no
          longer changes.
[image: A “smooth tube” for the men’s marathon results. The solid line is a smooth representation of the entire data set; the dashed lines are smooth representations of only those points that lie above (or below) the solid line.]

Figure 3-7. A “smooth tube” for the men’s marathon results. The solid
            line is a smooth representation of the entire data set; the dashed
            lines are smooth representations of only those points that lie
            above (or below) the solid line.

Another idea is to split the original data points into
          two classes: those that give rise to a positive residual and those
          with a negative residual. Now calculate a smooth curve for each
          class separately. The resulting curves can be interpreted as
          “confidence bands” for the data set (meaning that the majority of
          points will lie between the upper and the lower smooth curve). We
          are particularly interested to see whether the width of this band
          varies along the curve. Figure 3-7 shows an
          example that uses the men’s results from Figure 3-5.
Personally, I am a bit uncomfortable with either of these
          suggestions. They certainly have an unpleasant air of circular
          reasoning about them.
There is also a deeper reason. In my opinion, smoothing
          methods are a quick and useful but entirely nonrigorous way to
          explore the structure of a data set. With some of the more
          sophisticated extensions (e.g., the two
          suggestions just discussed), we abandon the simplicity of the
          approach without gaining anything in rigor! If we need or want
          better (or deeper) results than simple graphical methods can give
          us, isn’t it time to consider a more rigorous toolset?
This is a concern that I have with many of the more
          sophisticated graphical methods you will find discussed in the
          literature. Yes, we certainly can squeeze ever
          more information into a graph using lines, colors, symbols,
          textures, and what have you. But this does not necessarily mean that
          we should. The primary benefit of a graph is
          that it speaks to us directly—without the need for formal training
          or long explanations. Graphs that require training or complicated
          explanations to be properly understood are missing their mark no
          matter how “clever” they may be otherwise.
Similar considerations apply to some of the more
          involved ways of graph preparation. After all, a smooth curve such
          as a spline or LOESS approximation is only a rough approximation to
          the data set—and, by the way, contains a huge degree of
          arbitrariness in the form of the smoothing parameter (α or
          h, respectively). Given this situation, it is
          not clear to me that we need to worry about such details as the
          effect of individual outliers on the curve.
Focusing too much on graphical methods may also lead us to
          miss the essential point. For example, once we start worrying about
          confidence bands, we should really start thinking more
          deeply about the nature of the local distribution of
          residuals (Are the residuals normally distributed? Are they
          independent? Do we have a reason to prefer one statistical model
          over another?)—and possibly consider a more reliable estimation
          method (e.g., bootstrapping; see Chapter 12)—rather than continue with hand-waving
          (semi-)graphical methods.
Remember: The purpose of computing is insight, not pictures!
          (L. N. Trefethen)


Logarithmic Plots



Logarithmic plots are a standard tool of scientists, engineers,
        and stock analysts everywhere. They are so popular because they have
        three valuable benefits:
	They rein in large variations in the data.

	They turn multiplicative variations into additive
            ones.

	They reveal exponential and power law behavior.



In a logarithmic plot, we graph the
        logarithm of the data instead of the raw data.
        Most plotting programs can do this for us (so that we don’t have to
        transform the data explicitly) and also take care of labeling the axes
        appropriately.
There are two forms of logarithmic plots:
        single or semi-logarithmic
        plots and double logarithmic or
        log-log plots, depending whether only one
        (usually the vertical or y axis) or both axes
        have been scaled logarithmically.
All logarithmic plots are based on the fundamental property of
        the logarithm to turn products into sums and powers into
        products:
log(xy) = log(x) +
        log(y)
log(xk)
        = k log(x)
Let’s first consider semi-log plots. Imagine you have data
        generated by evaluating the function:
y = C
        exp(αx) where C and α are
        constants
[image: A semi-logarithmic plot.]

Figure 3-8. A semi-logarithmic plot.

on a set of x values. If you plot
        y as a function of x, you
        will see an upward- or downward-sloping curve, depending on the sign
        of α (see Appendix B). But if you
        instead plot the logarithm of
        y as a function of x, the
        points will fall on a straight line. This can be easily understood by
        applying the logarithm to the preceding equation:
log y = αx + log
        C
In other words, the logarithm of y is a
        linear function of x with slope α and with offset
        log C. In particular, by measuring the slope of
        the line, we can determine the scale factor α, which is often of great
        interest in applications.
Figure 3-8 shows an example of a
        semi-logarithmic plot that contains some experimental data points as
        well as an exponential function for comparison. I’d like to point out
        a few details. First, in a logarithmic plot, we plot the logarithm of
        the values, but the axes are usually labeled with the actual values
        (not their logarithms). Figure 3-8 shows
        both: the actual values on the left and the logarithms on the right
        (the logarithm of 100 to base 10 is 2, the logarithm of 1,000 is 3,
        and so on). We can see how, in a logarithmic plot, the logarithms are
        equidistant, but the actual values are not. (Observe that the distance
        between consecutive tick marks is constant on the right, but not on
        the left.)
Another aspect I want to point out is that on a semi-log plot,
        all relative changes have the same size no matter
        how large the corresponding absolute change. It is this property that
        makes semi-log plots popular for long-running stock charts and the
        like: if you lost $100, your reaction may be quite different if
        originally you had invested $1,000 versus $200: in the first case you
        lost 10 percent but 50 percent in the second. In other words, relative
        change is what matters.
[image: Heart rate versus body mass for a range of mammals. Compare to .]

Figure 3-9. Heart rate versus body mass for a range of mammals. Compare
          to Figure 3-10.

The two scale arrows in Figure 3-8 have the same length and correspond
        to the same relative change, but the underlying absolute change is
        quite different (from 1 to 3 in one case, from 100 to 300 in the
        other). This is another application of the fundamental property of the
        logarithm: if the value before the change is
        y1 and if
        y2 = γ
        y1 after the change (where
        γ = 3), then the change in absolute terms is:
y2 –
        y1 = γ
        y1 –
        y1 = (γ –
        1)y1
which clearly depends on
        y1. But if we consider the
        change in the logarithms, we find:
log y2 – log
        y1 = log(γ
        y1) – log
        y1 = log γ + log
        y1 – log
        y1 = log γ
which is independent of the underlying value and depends only on
        γ, the size of the relative change.
Double logarithmic plots are now easy to understand—the only
        difference is that we plot logarithms of both x
        and y. This will render all
        power-law relations as straight lines—that is, as functions of the
        form y =
        Cxk
        or y =
        C/xk,
        where C and k are constants.
        (Taking logarithms on both sides of the first equation yields log
        y = k log
        x + log C, so that now log
        y is a linear function of log
        x with a slope that depends on the exponent
        k.)
Figure 3-9 and
        Figure 3-10 provide
        stunning example for both uses of double logarithmic plots: their
        ability to render data spanning many order of magnitude accessible and
        their ability to reveal power-law relationships by turning them into
        straight lines. Figure 3-9 shows the typical
        resting heart rate (in beats per minute) as a function of the body
        mass (in kilograms) for a selection of mammals from the hamster to
        large whales. Whales weigh in at 120 tons—nothing else even comes
        close! The consequence is that almost all of the data points are
        squished against the lefthand side of the graph, literally crushed by
        the whale.
[image: The same data as in but now plotted on a double logarithmic plot. The data points seem to fall on a straight line, which indicates a power-law relationship between resting heart rate and body mass.]

Figure 3-10. The same data as in Figure 3-9 but now plotted
          on a double logarithmic plot. The data points seem to fall on a
          straight line, which indicates a power-law relationship between
          resting heart rate and body mass.

On the double logarithmic plot, the distribution of data
        points becomes much clearer. Moreover, we find that the data points
        are not randomly distributed but instead seem to fall roughly on a
        straight line with slope –1/4: the signature of power-law behavior. In
        other words, a mammal’s typical heart rate is related to its mass:
        larger animals have slower heart beats. If we let
        f denote the heart rate and
        m the mass, we can summarize this observation
        as:
f ~
        m–1/4
This surprising result is known as allometric
        scaling. It seems to hold more generally and not just for
        the specific animals and quantities shown in these figures. (For
        example, it turns out that the lifetime of an individual organism also
        obeys a 1/4 power-law relationship with the body mass: larger animals
        live longer. The surprising consequence is that the total number of
        heartbeats per life of an individual is approximately constant for all
        species!) Allometric scaling has been explained in terms of the
        geometric constraints of the vascular network (veins and arteries),
        which brings nutrients to the cells making up a biological system. It
        is sufficient to assume that the network must be a space-filling
        fractal, that the capillaries where the actual exchange of nutrients
        takes place are the same size in all animals, and that the overall
        energy required for transport through the network is minimized, to
        derive the power-law relationships observed experimentally![6] We’ll have more to say about scaling laws and their uses
        in Part II.

Banking



Smoothing methods and logarithmic plots are both tools
        that help us recognize structure in a data set. Smoothing methods
        reduce noise, and logarithmic plots help with data sets spanning many
        orders of magnitude.
Banking (or “banking to 45 degrees”) is another graphical
        method. It is different than the preceding ones because it does not
        work on the data but on the plot as a whole by
        changing its aspect ratio.
We can recognize change
        (i.e., the slopes of curves) most easily if they
        make approximately a 45 degree angle on the graph. It is much harder
        to see change if the curves are nearly horizontal or (even worse)
        nearly vertical. The idea behind banking is
        therefore to adjust the aspect ratio of the entire plot in such a way
        that most slopes are at an approximate 45 degree angle.
Chances are, you have been doing this already by changing the
        plot ranges. Often when we “zoom” in on a graph
        it’s not so much to see more detail as to adjust the slopes of curves
        to make them more easily recognizable. The purpose is even more
        obvious when we zoom out. Banking is a more
        suitable technique to achieve the same effect and opens up a way to
        control the appearance of a plot by actively adjusting the aspect
        ratio.
Figure 3-11 and
        Figure 3-12 show the
        classical example for this technique: the annual number of sunspots
        measured over the last 300 years.[7] In Figure 3-11, the oscillation
        is very compressed, and so it is difficult to make out much detail
        about the shape of the curve. In Figure 3-12, the aspect
        ratio of the plot has been adjusted so that most line segments are now
        at roughly a 45 degree angle, and we can make an interesting
        observation: the rising edge of each sunspot cycle is steeper than the
        falling edge. We would probably not have recognized this by looking at
        Figure 3-11.
Personally, I would probably not use a graph such as Figure 3-12: shrinking the
        vertical axis down to almost nothing loses too much detail. It also
        becomes difficult to compare the behavior on the far left and far
        right of the graph. Instead, I would break up the time series and plot
        it as a cut-and-stack plot, such as the one in
        Figure 3-13. Note that
        in this plot the aspect ratio of each subplot is such that the lines
        are, in fact, banked to 45 degrees.
As this example demonstrates, banking is a good technique but
        can be taken too literally. When the aspect ratio required to achieve
        proper banking is too skewed, it is usually better to rethink the
        entire graph. No amount of banking will make the data set in Figure 3-9 look right—you
        need a double logarithmic transform.
There is also another issue to consider. The purpose of banking
        is to improve human perception of the graph (it is, after all, exactly
        the same data that is displayed). But graphs with highly skewed aspect ratios violate the great
        affinity humans seem to have for proportions of roughly 4 by 3 (or 11
        by 8.5 or [image: ] by 1). Witness the abundance of display formats
        (paper, books, screens) that adhere approximately to these proportions
        the world over. Whether we favor this display format because we are so
        used to it or (more likely, I think) it is so predominant because it
        works well for humans is rather irrelevant in this context. (And keep
        in mind that squares seem to work particularly badly—notice how
        squares, when used for furniture or appliances, are considered a
        “bold” design. Unless there is a good reason for them, such as
        graphing a square matrix, I recommend you avoid square
        displays.)
[image: The annual sunspot numbers for the last 300 years. The aspect ratio of the plot makes it hard to recognize the details of each cycle.]

Figure 3-11. The annual sunspot numbers for the last 300 years. The aspect
          ratio of the plot makes it hard to recognize the details of each
          cycle.

[image: The same data as in . The aspect ratio has been changed so that rising and falling flanks of the curve make approximately a 45 degree angle with the horizontal (banking to 45 degrees), but the figure has become so small that it is hard to recognize much detail.]

Figure 3-12. The same data as in Figure 3-11. The aspect
          ratio has been changed so that rising and falling flanks of the
          curve make approximately a 45 degree angle with the horizontal
          (banking to 45 degrees), but the figure has become so small that it
          is hard to recognize much detail.


Linear Regression and All That



Linear regression is a method for finding a straight line
        through a two-dimensional scatter plot. It is simple to calculate and
        has considerable intuitive appeal—both of which together make it
        easily the single most-often misapplied technique in all of
        statistics!
There is a fundamental misconception regarding linear
        regression—namely that it is a good and particularly rigorous way to
        summarize the data in a two-dimensional scatter
        plot. This misconception is often associated with the
        notion that linear regression provides the “best fit” to the
        data.
[image: A cut-and-stack plot of the data from . By breaking the time axis into three chunks, we can bank each century to 45 degrees and still fit all the data into a standard-size plot. Note how we can now easily recognize an important feature of the data: the rising flank tends to be steeper than the falling one.]

Figure 3-13. A cut-and-stack plot of the data from Figure 3-11. By breaking
          the time axis into three chunks, we can bank each century to 45
          degrees and still fit all the data into a standard-size plot. Note
          how we can now easily recognize an important feature of the data:
          the rising flank tends to be steeper than the falling one.

This is not so. Linear regression is not a particularly good way
        to summarize data, and it provides a “best fit” in a much more limited
        sense than is generally realized.
Linear regression applies to situations where we have a set of
        input values (the controlled variable) and, for each of them, we
        measure an output value (the response variable). Now we are looking
        for a linear function f(x) =
        a + bx as a function of the
        controlled variable x that reproduces the
        response with the least amount of error. The result of a linear
        regression is therefore a function that minimizes the error in the
        responses for a given set of inputs.
This is an important understanding: the purpose of a regression
        procedure is not to summarize the data—the
        purpose is to obtain a function that allows us to
        predict the value of the response variable (which
        is affected by noise) that we expect for a certain value of the input
        variable (which is assumed to be known exactly).
As you can see, there is a fundamental asymmetry between the two
        variables: the two are not interchangeable. In fact, you will obtain a
        different solution when you regress
        x on y than when you regress
        y on x. Figure 3-14 demonstrates this
        effect: the same data set is fitted both ways: y
        = a + bx and
        x = c +
        dy. The resulting straight lines are quite
        different.
This simple observation should dispel the notion that linear
        regression provides the best fit—after all, how
        could there be two different “best fits” for a single data set?
        Instead, linear regression provides the most faithful representation
        of an output in response to an input. In other words, linear
        regression is not so much a best fit as a best
        predictor.
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]

Figure 3-14. The first data set from Anscombe’s quartet (Table 3-1), fit both ways:
          y = a +
          bx and x =
          c + dy. The thin lines
          indicate the errors, the squares of which are summed to give
          χ2. Depending on what you consider the
          input and the response variable, the “best fit” turns out to be
          different!

How do we find this “best predictor”? We require it to minimize
        the error in the responses, so that we will be able to make the most
        accurate predictions. But the error in the responses is simply the sum
        over the errors for all the individual data points. Because errors can
        be positive or negative (as the function over- or undershoots the real
        value), they may cancel each other out. To avoid this, we do not sum
        the errors themselves but their squares:
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]
where
        (xi,
        yi)
        with i = 1 ... n are the
        data points. Using the values for the parameters
        a and b that minimize this
        quantity will yield a function that best explains
        y in terms of x.
Because the dependence of χ2 on
        a and b is particularly
        simple, we can work out expressions for the optimal choice of both
        parameters explicitly. The results are:
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]
[image: Anscombe’s quartet: all summary statistics (in particular the regression coefficients) for all four data sets are numerically equal, yet only data set A is well represented by the linear regression function.]

Figure 3-15. Anscombe’s quartet: all summary statistics (in particular the
          regression coefficients) for all four data sets are numerically
          equal, yet only data set A is well represented by the linear
          regression function.

Table 3-1. Anscombe’s quartet.
	A
	B
	C
	D

	x
	y
	x
	y
	x
	y
	x
	y

	10.0
	8.04
	10.0
	9.14
	10.0
	7.46
	8.0
	6.58

	8.0
	6.95
	8.0
	8.14
	8.0
	6.77
	8.0
	5.76

	13.0
	7.58
	13.0
	8.74
	13.0
	12.74
	8.0
	7.71

	9.0
	8.81
	9.0
	8.77
	9.0
	7.11
	8.0
	8.84

	11.0
	8.33
	11.0
	9.26
	11.0
	7.81
	8.0
	8.47

	14.0
	9.96
	14.0
	8.10
	14.0
	8.84
	8.0
	7.04

	6.0
	7.24
	6.0
	6.13
	6.0
	6.08
	8.0
	5.25

	4.0
	4.26
	4.0
	3.10
	4.0
	5.39
	19.0
	12.50

	12.0
	10.84
	12.0
	9.13
	12.0
	8.15
	8.0
	5.56

	7.0
	4.82
	7.0
	7.26
	7.0
	6.42
	8.0
	7.91

	5.0
	5.68
	5.0
	4.74
	5.0
	5.73
	8.0
	6.89




These results are simple and beautiful—and, in their simplicity,
        very suggestive. But they can also be highly misleading. Table 3-1 and Figure 3-15 show a famous
        example, Anscombe’s quartet. If you calculate the
        regression coefficients a and
        b for each of the four data sets shown in Table 3-1, you will find that they are
        exactly the same for all four data sets! Yet when you look at the
        corresponding scatter plots, it is clear that only the first data set
        is properly described by the linear model. The second data set is not
        linear, the third is corrupted by an outlier, and the fourth does not
        contain enough independent x values to form a
        regression at all! Looking only at the results of the linear
        regression, you would never know this.
I think this example should demonstrate once and for all
        how dangerous it can be to rely on linear regression (or on any form
        of aggregate statistics) to summarize a data set. (In fact, the
        situation is even worse than what I have presented: with a little bit
        more work, you can calculate confidence intervals on the linear
        regression results, and even they turn out to be
        equal for all four members of Anscombe’s quartet!)
Having seen this, here are some questions to ask
        before computing linear regressions.
Do you need regression?
	Remember that regression coefficients are not a particularly
            good way to summarize data. Regression only
            makes sense when you want to use it for
            prediction. If this is not the case, then
            calculating regression coefficients is not useful.



Is the linear assumption
        appropriate?
	Linear regression is appropriate only if the data can be
            described by a straight line. If this is obviously not the case
            (as with the second data set in Anscombe’s quartet), then linear
            regression does not apply.



Is something else entirely going on?
	Linear regression, like all summary statistics, can be led
            astray by outliers or other “weird” data sets, as is demonstrated
            by the last two examples in Anscombe’s quartet.



Historically, one of the attractions of linear regression has
        been that it is easy to calculate: all you need to do is to calculate
        the four sums
        Σxi,
        [image: ],
        Σyi,
        and
        Σxiyi,
        which can be done in a single pass through the data set. Even with
        moderately sized data sets (dozens of points), this is arguably easier
        than plotting them using paper and pencil! However, that argument
        simply does not hold anymore: graphs are easy to produce on a computer
        and contain so much more information than a set of regression
        coefficients that they should be the preferred way to analyze,
        understand, and summarize data.
Remember: The purpose of computing is insight, not numbers! (R.
        W. Hamming)

Showing What’s Important



Perhaps this is a good time to express what I believe to be the
        most important principle in graphical analysis:
Plot the pertinent quantities!
As obvious as it may appear, this principle is often overlooked
        in practice.
For example, if you look through one of those books that show
        and discuss examples of poor graphics, you will find that most
        examples fall into one of two classes. First, there are those graphs
        that failed visually, with garish fonts,
        unhelpful symbols, and useless embellishments. (These are mostly
        presentation graphics gone wrong, not examples of bad graphical
        analysis.)
The second large class of graphical failures consists of those
        plots that failed conceptually or, one might
        better say, analytically. The problem with these
        is not in the technical aspects of drawing the graph but in the
        conceptual understanding of what the graph is trying to show. These
        plots displayed something, but they failed to present what was most
        important or relevant to the question at hand.
The problem, of course, is that usually it is not at all obvious
        what we want to see, and it is certainly not
        obvious at the beginning. It usually takes several iterations, while a
        mental model of the data is forming in your head, to articulate the
        proper question that a data set is suggesting and to come up with the
        best way of answering it. This typically involves some form of
        transformation or manipulation of the data: instead of the raw data,
        maybe we should show the difference between two data sets. Or the
        residual after subtracting a trend or after subtracting the results
        from a model. Or perhaps we need to normalize data sets from different
        sources by subtracting their means and dividing by their spreads. Or
        maybe we should not use the original variables to display the data but
        instead apply some form of transformation on them (logarithmic scales
        are only the simplest example of such transformations). Whatever we
        choose to do, it will typically involve some form of transformation of
        the data—it’s rarely the raw data that is most interesting; but any
        deviation from the expected is almost always an interesting
        discovery.
Very roughly, I think we can identify a three-step (maybe
        four-step) process. It should be taken not in the sense of a
        prescriptive checklist but rather in the sense of a gradual process of
        learning and discovery.
First: The basics. Initially, we are mostly
        concerned with displaying what is there.
	Select proper ranges.

	Subtract a constant offset.

	Decide whether to use symbols (for scattered data), lines
            (for continuous data), or perhaps both (connecting individual
            symbols can help emphasize trends in sparse data sets).



Second: The appearance. Next, we work with
        aspects of the plot that influence its overall appearance.
	Log plots.

	Add a smoothed curve.

	Consider banking.



Third: Build a model. At this point, we
        start building a mathematical model and compare it against the raw
        data. The comparison often involves finding the differences between
        the model and the data (typically subtracting the model or forming a
        ratio).
	Subtract a trend.

	Form the ratio to a base value or baseline.

	Rescale a set of curves to collapse them onto each
            other.



Fourth (for presentation graphics only): Add
        embellishments. Embellishments and decorations (labels,
        arrows, special symbols, explanations, and so on) can make a graph
        much more informative and self-explanatory. However, they are intended
        for an audience beyond the actual creator of the graph. You will
        rarely need them during the analysis phase, when
        you are trying to find out something new about the data set, but they
        are an essential part when presenting your
        results. This step should only occur if you want to communicate your
        results to a wider and more general audience.

Graphical Analysis and Presentation Graphics



I have used the terms graphical analysis
        and presentation graphics without explaining them
        properly. In short:
Graphical analysis
	Graphical analysis is an investigation of data using
            graphical methods. The purpose is the discovery of
            new information about the underlying data
            set. In graphical analysis, the proper question to ask is often
            not known at the outset but is discovered as part of the
            analysis.



Presentation graphics
	Presentation graphics are concerned with the communication
            of information and results that are already
            understood. The discovery has been made, and now it
            needs to be communicated clearly.



The distinction between these two activities is important,
        because they do require different techniques and yield different work
        products.
During the analysis process, convenience and ease of use are the
        predominant concerns—any amount of polishing is too much! Nothing
        should keep you from redrawing a graph, changing some aspect of it,
        zooming in or out, applying transformations, and changing styles.
        (When working with a data set I haven’t seen before, I probably create
        dozens of graphs within a few minutes—basically, “looking at the data
        from all angles.”) At this stage, any form of embellishment (labels,
        arrows, special symbols) is inappropriate—you know what you are
        showing, and creating any form of decoration on the graph will only
        make you more reluctant to throw the graph away and start over.
For presentation graphics, the opposite applies. Now you already
        know the results, but you would like to communicate them to others.
        Textual information therefore becomes very important: how else will
        people know what they are looking at?
You can find plenty of advice elsewhere on how to prepare “good”
        presentation graphics—often strongly worded and with an unfortunate
        tendency to use emotional responses (ridicule or derision) in place of
        factual arguments. In the absence of good empirical evidence one way
        or the other, I will not add to the discussion. But I present a
        checklist below, mentioning some points that are
        often overlooked when preparing graphs for presentation:
	Try to make the text self-explanatory. Don’t rely on
            a (separate) caption for basic information—it might be removed
            during reproduction. Place basic information on the graph
            itself.

	Explain what is plotted on the axes. This can be done with
            explicit labels on the axes or through explanatory text elsewhere.
            Don’t forget the units!

	Make labels self-explanatory. Be careful with nonstandard
            abbreviations. Ask yourself: If this is all the context provided,
            are you certain that the reader will be able
            to figure out what you mean? (In a recent book on data graphing, I
            found a histogram labeled Married,
            Nvd, Dvd,
            Spd, and Wdd. I could
            figure out most of them, because at least
            Married was given in long form, but I
            struggled with Nvd for quite a while!)

	Given how important text is on a graph,
            make sure to pick a suitable font. Don’t automatically rely on the
            default provided by your plotting software. Generally, sans-serif
            fonts (such as Helvetica) are preferred for short labels, such as
            those on a graph, whereas serif fonts (such as Times) are more
            suitable for body text. Also pick an appropriate size—text fonts
            on graphics are often too large, making them look garish. (Most
            text fonts are used at 10-point to 12-point size; there is no need
            for type on graphics to be much larger.)

	If there are error bars, be sure to explain their meaning.
            What are they: standard deviations, inter-quartile ranges, or the
            limits of experimental apparatus? Also, choose an appropriate
            measure of uncertainty. Don’t use standard deviations for highly
            skewed data.

	Don’t forget the basics. Choose appropriate plot ranges.
            Make sure that data is not unnecessarily obscured by
            labels.

	Proofread graphs! Common errors include: typos in textual
            labels, interchanged data sets or switched labels, missing units,
            and incorrect order-of-magnitude qualifiers
            (e.g., milli- versus micro-).

	Finally, choose an appropriate output format for your graph!
            Don’t use bitmap formats (GIF, JPG, PNG) for print publication—use
            a scalable format such as PostScript or PDF.



One last piece of advice: creating good presentation graphics is
        also a matter of taste, and taste can be
        acquired. If you want to work with data, then you should develop an
        interest in graphs—not just the ones you create yourself, but all that
        you see. If you notice one that seems to work (or not), take a moment
        to figure out what makes it so. Are the lines too thick? The labels
        too small? The choice of colors just right? The combination of curves
        helpful? Details matter.

Workshop: matplotlib



The matplotlib module is a Python module for creating
        two-dimensional xy plots, scatter plots, and
        other plots typical of scientific applications. It can be used in an
        interactive session (with the plots being shown immediately in a GUI
        window) or from within a script to create graphics files using common
        graphics file formats.
Let’s first look at some examples to demonstrate how matplotlib
        can be used from within an interactive session. Afterward, we will
        take a closer look at the structure of the library and give some
        pointers for more detailed investigations.
Using matplotlib Interactively



To begin an interactive matplotlib session, start IPython (the
          enhanced interactive Python shell) with the -pylab option, entering the following
          command line like at the shell prompt:
ipython -pylab
This will start IPython, load matplotlib
          and NumPy, and import both into the global
          namespace. The idea is to give a Matlab-like experience of
          interactive graphics together with numerical and matrix operations.
          (It is important to use IPython here—the flow of control between the
          Python command interpreter and the GUI eventloop for the graphics
          windows requires it. Other interactive shells can be used, but they
          may require some tinkering.)
We can now create plots right away:
In [1]: x = linspace( 0, 10, 100 )

In [2]: plot( x, sin(x) )
Out[2]: [<matplotlib.lines.Line2D object at 0x1cfefd0>]
This will pop up a new window, showing a graph like the one in
          Figure 3-16 but
          decorated with some GUI buttons. (Note that the sin() function is a ufunc from the NumPy
          package: it takes a vector and returns a vector of the same size,
          having applied the sine function to each element in the input
          vector. See the Workshop in Chapter 2.)
We can now add additional curves and decorations to the plot.
          Continuing in the same session as before, we add another curve and
          some labels:
In [3]: plot( x, 0.5*cos(2*x) )
Out[3]: [<matplotlib.lines.Line2D object at 0x1cee8d0>]

In [4]: title( "A matplotlib plot" )
Out[4]: <matplotlib.text.Text object at 0x1cf6950>

In [5]: text( 1, -0.8, "A text label" )
Out[5]: <matplotlib.text.Text object at 0x1f59250>

In [6]: ylim( -1.1, 1.1 )
Out[6]: (-1.1000000000000001, 1.1000000000000001)
[image: A simple matplotlib figure (see text).]

Figure 3-16. A simple matplotlib figure (see text).

In the last step, we increased the range of values plotted on
          the vertical axis. (There is also an axis() command, which allows you to
          specify limits for both axes at the same time. Don’t confuse it with
          the axes() command, which creates
          a new coordinate system.) The plot should now look like the one in
          Figure 3-17, except
          that in an interactive terminal the different lines are
          distinguished by their color, not their dash pattern.
Let’s pause for a moment and point out a few details. First of
          all, you should have noticed that the graph in the plot window was
          updated after every operation. That is typical for the interactive
          mode, but it is not how matplotlib works in a script: in general,
          matplotlib tries to delay the (possibly expensive) creation of an
          actual plot until the last possible moment. (In a script, you would
          use the show() command to force
          generation of an actual plot window.)
Furthermore, matplotlib is “stateful”: a new plot command does
          not erase the previous figure and, instead, adds to it. This
          behavior can be toggled with the hold() command, and the current state can
          be queried using ishold().
          (Decorations like the text labels are not affected by this.) You can
          clear a figure explicitly using clf().
This implicit state may come as a surprise: haven’t we learned
          to make things explicit, when possible? In fact, this stateful
          behavior is a holdover from the way Matlab works. Here is another
          example. Start a new session and execute the following
          commands:
In [1]: x1 = linspace( 0, 10, 40 )

In [2]: plot( x1, sqrt(x1), 'k-' )
Out[2]: [<matplotlib.lines.Line2D object at 0x1cfef50>]
[image: The plot from with an additional curve and some decorations added.]

Figure 3-17. The plot from Figure 3-16 with an
            additional curve and some decorations added.

In [3]: figure(2)
Out[3]: <matplotlib.figure.Figure object at 0x1cee850>

In [4]: x2 = linspace( 0, 10, 100 )

In [5]: plot( x1, sin(x1), 'k--', x2, 0.2*cos(3*x2), 'k:' )
Out[5]:
[<matplotlib.lines.Line2D object at 0x1fb1150>,
 <matplotlib.lines.Line2D object at 0x1fba250>]

In [6]: figure(1)
Out[6]: <matplotlib.figure.Figure object at 0x1cee210>

In [7]: plot( x1, 3*exp(-x1/2), linestyle='None', color='white', marker='o',
   ...: markersize=7 )
Out[7]: [<matplotlib.lines.Line2D object at 0x1d0c150>]

In [8]: savefig( 'graph1.png' )
This snippet of code demonstrates several things. We begin as
          before, by creating a plot. This time, however, we pass a third
          argument to the plot() command
          that controls the appearance of the graph elements. That matplotlib
          library supports Matlab-style mnemonics for plot styles; the letter
          k stands for the color “black”
          and the single dash - for a solid
          line. (The letter b stands for
          “blue.”)
Next we create a second figure in a new window and switch to
          it by using the figure(2)
          command. All graphics commands will now be directed to this second
          figure—until we switch back to the first figure using figure(1). This is another example of
          “silent state.” Observe also that figures are counted starting from
          1, not from 0.
In line 5, we see another way to use the plot
          command—namely, by specifying two sets of curves to be plotted
          together. (The formatting commands request a dashed and a dotted
          line, respectively.) Line 7 shows yet a different way to specify
          plot styles: by using named (keyword) arguments.
Finally, we save the currently active plot
          (i.e., figure 1) to a PNG file. The savefig() function determines the desired
          output format from the extension of the filename given. Other
          formats that are supported out of the box are PostScript, PDF, and
          SVG. Additional formats may be available, depending on the libraries
          installed on your system.

Case Study: LOESS with matplotlib



As a quick example of how to put the different aspects of
          matplotlib together, let’s discuss the script used to generate Figure 3-4. This also
          gives us an opportunity to look at the LOESS method in a bit more
          detail.
To recap: LOESS stands for locally
          weighted linear regression. The difference between LOESS
          and regular linear regression is the introduction of a weight
          factor, which emphasizes those data points that are close to the
          location x at which we want to evaluate the
          smoothed curve. As explained earlier, the expression for squared
          error (which we want to minimize) now becomes:
[image: Case Study: LOESS with matplotlib]
Keep in mind that this expression now depends on
          x, the location at which we want to evaluate
          the smoothed curve!
If we minimize this expression with respect to the parameters
          a and b, we obtain the
          following expressions for a and
          b (remember that we will have to evaluate them
          from scratch for every point x):
[image: Case Study: LOESS with matplotlib]
This can be quite easily translated into NumPy and plotted
          with matplotlib. The actual LOESS calculation is contained entirely
          in the function loess(). (See the
          Workshop in Chapter 2 for a
          discussion of this type of programming.)
from pylab import *

# x: location; h: bandwidth; xp, yp: data points (vectors)
def loess( x, h, xp, yp ):
    w = exp( -0.5*( ((x-xp)/h)**2 )/sqrt(2*pi*h**2) )

    b = sum(w*xp)*sum(w*yp) - sum(w)*sum(w*xp*yp)
    b /= sum(w*xp)**2 - sum(w)*sum(w*xp**2)
    a = ( sum(w*yp) - b*sum(w*xp) )/sum(w)

    return a + b*x

d = loadtxt( "draftlottery" )

s1, s2 = [], []
for k in d[:,0]:
    s1.append( loess( k,   5, d[:,0], d[:,1] ) )
    s2.append( loess( k, 100, d[:,0], d[:,1] ) )

xlabel( "Day in Year" )
ylabel( "Draft Number" )

gca().set_aspect( 'equal' )

plot( d[:,0], d[:,1], 'o', color="white", markersize=7, linewidth=3 )
plot( d[:,0], array(s1), 'k-', d[:,0], array(s2), 'k--' )

q = 4
axis( [1-q, 366+q, 1-q, 366+q] )

savefig( "draftlottery.eps" )
We evaluate the smoothed curve at the locations of all
          data points, using two different values for the bandwidth, and then
          proceed to plot the data together with the smoothed curves. Two
          details require an additional word of explanation. The function
          gca() returns the current “set of
          axes” (i.e., the current coordinate system on
          the plot—see below for more information on this function), and we
          require the aspect ratio of both x and
          y axes to be equal (so that the plot is a
          square). In the last command before we save the figure to file, we
          adjust the plot range by using the axis() command. This function must
          follow the plot() commands, because the plot() command automatically adjusts the
          plot range depending on the data.

Managing Properties



Until now, we have ignored the values returned by the various
          plotting commands. If you look at the output generated by IPython,
          you can see that all the commands that add graph elements to the
          plot return a reference to the object just created. The one
          exception is the plot() command
          itself, which always returns a list of objects
          (because, as we have seen, it can add more than one “line” to the
          plot).
These references are important because it is through them that
          we can control the appearance of graph elements once they have been
          created. In a final example, let’s study how we can use them:
In [1]: x = linspace( 0, 10, 100 )

In [2]: ps = plot( x, sin(x), x, cos(x) )

In [3]: t1 = text( 1, -0.5, "Hello" )

In [4]: t2 = text( 3, 0.5, "Hello again" )

In [5]: t1.set_position( [7, -0.5] )

In [6]: t2.set( position=[5, 0], text="Goodbye" )
Out[6]: [None, None]

In [7]: draw()

In [8]: setp( [t1, t2], fontsize=10 )
Out[8]: [None, None]

In [9]: t2.remove()

In [10]: Artist.remove( ps[1] )

In [11]: draw()
In the first four lines, we create a graph with two curves and
          two text labels, as before, but now we are holding on to the object
          references. This allows us to make changes to these graph elements.
          Lines 5, 6, and 8 demonstrate different ways to do this: for each
          property of a graph element, there is an explicit, named accessor
          function (line 5). Alternatively, we can use a generic setter with
          keyword arguments—this allows us to set several properties (on a
          single object) in a single call (line 6). Finally, we can use the
          standalone setp() function, which
          takes a list of graph elements and applies the requested property
          update to all of them. (It can also take a single graph element
          instead of a one-member list.) Notice that setp() generates a redraw event whereas
          individual property accessors do not; this is why we must generate
          an explicit redraw event in line 7. (If you are confused by the
          apparent duplication of functionality, read on: we will come back to
          this point in the next section.)
Finally, we remove one of the text labels and one of the
          curves by using the remove()
          function. The remove() function
          is defined for objects that are derived from the Artist class, so we can invoke it using
          either member syntax (as a “bound” function, line 9) or the class
          syntax (as an “unbound” function, line 10). Keep in mind that
          plot() returns a
          list of objects, so we need to index into the
          list to access the graph objects themselves.
There are some useful functions that can help us handle object
          properties. If you issue setp(r)
          with only a single argument in an interactive session, then it will
          print all properties that are available for object r together with information about the
          values that each property is allowed to take on. The getp(r) function on the other hand prints
          all properties of r together with
          their current values.
Suppose we did not save the references to the objects we
          created, or suppose we want to change the properties of an object
          that we did not create explicitly. In such cases we can use the
          functions gcf() and gca(), which return a reference to the
          current figure or axes object, respectively. To make use of them, we need to
          develop at least a passing familiarity with matplotlib’s object
          model.

The matplotlib Object Model and Architecture



The object model for matplotlib is constructed similarly to
          the object model for a GUI widget set: a plot is represented by a
          tree of widgets, and each widget is able to render itself. Perhaps
          surprisingly, the object model is not flat. In other words, the plot
          elements (such as axes, labels, arrows, and so on) are not
          properties of a high-level “plot” or “figure” object. Instead, you
          must descend down the object tree to find the element that you want
          to modify and then, once you have an explicit reference to it,
          change the appropriate property on the element.
The top-level element (the root node of the tree) is an object
          of class Figure. A figure
          contains one or more Axes
          objects: this class represents a “coordinate system” on which actual
          graph elements can be placed. (By contrast, the actual axes that are
          drawn on the graph are objects of the Axis class!) The gcf() and gca() functions therefore return a
          reference to the root node of the entire figure or to the root node
          of a single plot in a multiplot figure.
Both Figure and Axes are subclasses of Artist. This is the base class of all
          “widgets” that can be drawn onto a graph. Other important subclasses
          of Artist are Line2D (a polygonal line connecting
          multiple points, optionally with a symbol at each point), Text, and Patch (a geometric shape that can be
          placed onto the figure). The top-level Figure instance is owned by an object of
          type FigureCanvas (in the
          matplotlib.backend_bases module).
          Most likely you won’t have to interact with this class yourself
          directly, but it provides the bridge between the (logical) object
          tree that makes up the graph and a backend, which does the actual
          rendering. Depending on the backend, matplotlib creates either a
          file or a graph window that can be used in an interactive GUI
          session.
Although it is easy to get started with matplotlib from within
          an interactive session, it can be quite challenging to really get
          one’s arms around the whole library. This can become painfully clear
          when you want to change some tiny aspect of a plot—and can’t figure
          out how to do that.
As is so often the case, it helps to investigate how things
          came to be. Originally, matplotlib was conceived as a plotting
          library to emulate the behavior found in Matlab. Matlab
          traditionally uses a programming model based on functions and, being
          30 years old, employs some conventions that are no longer popular
          (i.e., implicit state). In contrast, matplotlib
          was implemented using object-oriented design principles in Python,
          with the result that these two different paradigms clash.
One consequence of having these two different paradigms side
          by side is redundancy. Many operations can be performed in several
          different ways (using standalone functions, Python-style keyword
          arguments, object attributes, or a Matlab-compatible alternative
          syntax). We saw examples of this redundancy in the
          third listing when we changed object properties. This duplication of
          functionality matters because it drastically increases the size of
          the library’s interface (its application programming interface or
          API), which makes it that much harder to develop a comprehensive
          understanding. What is worse, it tends to spread information around.
          (Where should I be looking for plot attributes—among functions,
          among members, among keyword attributes? Answer: everywhere!)
Another consequence is inconsistency. At least in its favored
          function-based interface, matplotlib uses some conventions that are
          rather unusual for Python programming—for instance, the way a figure
          is created implicitly at the beginning of every
          example, and how the pointer to the current figure is maintained
          through an invisible “state variable” that is opaquely manipulated
          using the figure() function. (The
          figure() function actually
          returns the figure object just created, so the invisible state
          variable is not even necessary.) Similar surprises can be found
          throughout the library.
A last problem is namespace pollution (this is another Matlab
          heritage—they didn’t have namespaces back then). Several operations
          included in matplotlib’s function-based interface are not actually
          graphics related but do generate plots as side
          effects. For example, hist() calculates (and plots) a histogram,
          acorr() calculates (and plots) an
          autocorrelation function, and so on. From a user’s perspective, it
          makes more sense to adhere to a separation of tasks: perform all
          calculations in NumPy/SciPy, and then pass the results explicitly to
          matplotlib for plotting.

Odds and Ends



There are three different ways to import and use matplotlib.
          The original method was to enter:
from pylab import *
This would load all of NumPy as well as matplotlib and import
          both APIs into the global namespace! This is no longer the preferred
          way to use matplotlib. Only for interactive use with IPython is it
          still required (using the -pylab
          command-line option to IPython).
The recommended way to import matplotlib’s function-based
          interface together with NumPy is by using:
import matplotlib.pyplot as plt
import numpy as np
The pyplot interface is a
          function-based interface that uses the same Matlab-like stateful
          conventions that we have seen in the examples of this section;
          however, it does not include the NumPy
          functions. Instead, NumPy must be imported separately (and into its
          own namespace).
Finally, if all you want is the object-oriented API to
          matplotlib, then you can import just the explicit modules from
          within matplotlib that contain the class definitions you need
          (although it is customary to import pyplot instead and thereby obtain access
          to the whole collection).
Of course, there are many details that we have not discussed.
          Let me mention just a few:
	Many more options (to configure the axes and tick marks,
              to add legend or arrows).

	Additional plot types (density or “false-color” plots,
              vector plots, polar plots).

	Digital image processing—matplotlib can read and
              manipulate PNG images and can also call into the Python Image
              Library (PIL) if it is installed.

	Matplotlib can be embedded in a GUI and can handle GUI
              events.



The Workshop of Chapter 4 contains
          another example that involves matplotlib being called from a script
          to generate image files.


Further Reading



In addition to the books listed below, you may check the
        references in Chapter 10 for additional
        material on linear regression.
	The Elements of Graphing
              Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
This is probably the definitive reference on graphical
            analysis (as opposed to presentation graphics). Cleveland is the
            inventor of both the LOESS and the banking techniques discussed in
            this chapter. My own thinking has been influenced strongly by
            Cleveland’s careful approach. A companion volume by the same
            author, entitled Visualizing Data, is also
            available.

	Exploratory Data Analysis with
              MATLAB. Wendy L. Martinez and Angel R. Martinez. Chapman &
              Hall/CRC. 2004.
This is an interesting book—it covers almost the same topics
            as the book you are reading but in opposite
            order, starting with dimensionality reduction and clustering
            techniques and ending with univariate distributions! Because it
            demonstrates all techniques by way of Matlab, it does not develop
            the conceptual background in great depth. However, I found the
            chapter on smoothing to be quite useful.






[4] More details and a description of the lottery process can
              be found in The Statistical Exorcist. M.
              Hollander and F. Proschan. CRC Press. 1984.

[5] This example was inspired by Graphic Discovery:
              A Trout in the Milk and Other Visual Adventures.
              Howard Wainer. 2nd ed., Princeton University Press. 2007.

[6] The original reference is “A General Model for the Origin of
            Allometric Scaling Laws in Biology.” G. B. West, J. H. Brown, and
            B. J. Enquist. Science 276 (1997), p. 122.
            Additional references can be found on the Web.

[7] The discussion here is adapted from my book
            Gnuplot in Action. Manning Publications.
            2010.


Chapter 4. Time As a Variable: Time-Series Analysis



IF WE
      FOLLOW THE VARIATION OF SOME QUANTITY OVER TIME, WE ARE DEALING WITH A
      TIME SERIES. TIME series are
      incredibly common: examples range from stock market movements to the
      tiny icon that constantly displays the CPU utilization of your desktop
      computer for the previous 10 seconds. What makes time series so common
      and so important is that they allow us to see not only a single quantity
      by itself but at the same time give us the typical “context” for this
      quantity. Because we have not only a single value but a bit of history
      as well, we can recognize any changes from the typical behavior
      particularly easily.
On the face of it, time-series analysis is a bivariate problem
      (see Chapter 3).
      Nevertheless, we are dedicating a separate chapter to this topic. Time
      series raise a different set of issues than many other bivariate
      problems, and a rather specialized set of methods has been developed to
      deal with them.
Examples



To get started, let’s look at a few different time series to
        develop a sense for the scope of the task.
Figure 4-1
        shows the concentration of carbon dioxide (CO2)
        in the atmosphere, as measured by the observatory on Mauna Loa on
        Hawaii, recorded at monthly intervals since 1959.
This data set shows two features we often find in a time-series
        plot: trend and seasonality. There is clearly a steady, long-term
        growth in the overall concentration of CO2;
        this is the trend. In addition, there is also a
        regular periodic pattern; this is the
        seasonality. If we look closely, we see that the
        period in this case is exactly 12 months, but we will use the term
        “seasonality” for any regularly recurring feature,
        regardless of the length of the period. We should also note that the
        trend, although smooth, does appear to be nonlinear, and in itself may
        be changing over time.
[image: Trend and seasonality: the concentration of CO2 (in parts per million) in the atmosphere as measured by the observatory on Mauna Loa, Hawaii, at monthly intervals.]

Figure 4-1. Trend and seasonality: the concentration of
          CO2 (in parts per million) in the atmosphere
          as measured by the observatory on Mauna Loa, Hawaii, at monthly
          intervals.

Figure 4-2
        displays the concentration of a certain gas in the exhaust of a gas
        furnace over time. In many ways, this example is the exact opposite of
        the previous example. Whereas the data in Figure 4-1 showed a lot of
        regularity and a strong trend, the data in Figure 4-2 shows no trend
        but a lot of noise.
Figure 4-3
        shows the dramatic drop in the cost of a typical long-distance phone
        call in the U.S. over the last century. The strongly nonlinear trend
        is obviously the most outstanding feature of this data set. As with
        many growth or decay processes, we may suspect an exponential time
        development; in fact, in a semi-logarithmic plot (Figure 4-3, inset) the data
        follows almost a straight line, confirming our expectation. Any
        analysis that fails to account explicitly for this behavior of the
        original data is likely to lead us astray. We should therefore work
        with the logarithms of the cost, rather than with the absolute
        cost.
There are some additional questions that we should ask when
        dealing with a long-running data set like this. What exactly is a
        “typical” long-distance call, and has that definition changed over the
        observation period? Are the costs adjusted for inflation or not? The
        data itself also begs closer scrutiny. For instance, the
        uncharacteristically low prices for a couple of years in the late
        1970s make me suspicious: are they the result of a clerical error (a
        typo), or are they real? Did the breakup of the AT&T system have
        anything to do with these low prices? We will not follow up on these
        questions here because I am presenting this example only as an
        illustration of an exponential trend, but any serious analysis of this
        data set would have to follow up on these questions.
[image: No trend but relatively smooth variation over time: concentration of a certain gas in a furnace exhaust (in arbitrary units).]

Figure 4-2. No trend but relatively smooth variation over time:
          concentration of a certain gas in a furnace exhaust (in arbitrary
          units).

[image: Nonlinear trend: cost of a typical long-distance phone call in the U.S.]

Figure 4-3. Nonlinear trend: cost of a typical long-distance phone call
          in the U.S.

Figure 4-4
        shows the development of the Japanese stock market as represented by
        the Nikkei Stock Index over the last 40 years, an example of a time
        series that exhibits a marked change in behavior. Clearly, whatever
        was true before the New Year’s Day 1990 was no longer true afterward.
        (In fact, by looking closely, you can make out a second change in
        behavior that was more subtle than the bursting of the big Japanese
        bubble: its beginning, sometime around 1985–1986.)
[image: Change in behavior: the Nikkei Stock Index over the last 40 years.]

Figure 4-4. Change in behavior: the Nikkei Stock Index over the last 40
          years.

This data set should serve as a cautionary example. All
        time-series analysis is based on the assumption that the processes
        generating the data are stationary in time. If the rules of the game
        change, then time-series analysis is the wrong tool for the task;
        instead we need to investigate what caused the break in behavior. More
        benign examples than the bursting of the Japanese bubble can be found:
        a change in sales or advertising strategy may significantly alter a
        company’s sales patterns. In such cases, it is more important to
        inquire about any further plans that the sales department might have,
        rather than to continue working with data that is no longer
        representative!
After these examples that have been chosen for their “textbook”
        properties, let’s look at a “real-world” data set. Figure 4-5 shows the number
        of daily calls placed to a call center for a time period slightly
        longer than two years. In comparison to the previous examples, this
        data set has a lot more structure, which makes it hard to determine
        even basic properties. We can see some high-frequency variation, but
        it is not clear whether this is noise or has some form of regularity
        to it. It is also not clear whether there is any sort of regularity on
        a longer time scale. The amount of variation makes it hard to
        recognize any further structure. For instance, we cannot tell if there
        is a longer-term trend in the data. We will come back to this example
        later in the chapter.
[image: A real-world data set: number of daily calls placed to a call center. The data exhibits short- and long-term seasonality, noise, and possibly changes in behavior. Also shown is the result of applying a 31-point Gaussian smoothing filter.]

Figure 4-5. A real-world data set: number of daily calls placed to a call
          center. The data exhibits short- and long-term seasonality, noise,
          and possibly changes in behavior. Also shown is the result of
          applying a 31-point Gaussian smoothing filter.


The Task



After this tour of possible time-series scenarios, we
        can identify the main components of every time series:
	Trend

	Seasonality

	Noise

	Other(!)



The trend may be linear or nonlinear, and we may want to
        investigate its magnitude. The seasonality pattern may be either
        additive or multiplicative. In the first case, the seasonal change has
        the same absolute size no matter what the
        magnitude of the current baseline of the series is; in the latter
        case, the seasonal change has the same relative
        size compared with the current magnitude of the series. Noise
        (i.e., some form of random variation) is almost
        always part of a time series. Finding ways to reduce the noise in the
        data is usually a significant part of the analysis process. Finally,
        “other” includes anything else that we may observe in a time series,
        such as particular significant changes in overall behavior, special
        outliers, missing data—anything remarkable at all.
Given this list of components, we can summarize what it means to
        “analyze” a time series. We can distinguish three basic tasks:
	Description

	Prediction

	Control



Description attempts to identify components of a time series
        (such as trend and seasonality or abrupt changes in behavior).
        Prediction seeks to forecast future values. Control in this context
        means the monitoring of a process over time with the purpose of
        keeping it within a predefined band of values—a typical task in many
        manufacturing or engineering environments. We can distinguish the
        three tasks in terms of the time frame they address: description looks
        into the past, prediction looks to the future, and control
        concentrates on the present.
Requirements and the Real World



Most standard methods of time-series analysis make a number of
          assumptions about the underlying data.
	Data points have been taken at equally spaced time steps,
              with no missing data points.

	The time series is sufficiently long (50 points are often
              considered as an absolute minimum).

	The series is stationary: it has no
              trend, no seasonality, and the character (amplitude and
              frequency) of any noise does not change with time.



Unfortunately, most of these assumptions will be more or less
          violated by any real-world data set that you are likely to
          encounter. Hence you may have to perform a certain amount of data
          cleaning before you can apply the methods described in this
          chapter.
If the data has been sampled at irregular time steps or if
          some of the data points are missing, then you can try to interpolate
          the data and resample it at equally spaced intervals. Time series
          obtained from electrical systems or scientific experiments can be
          almost arbitrarily long, but most series arising in a business
          context will be quite short and contain possibly no more than two
          dozen data points. The exponential smoothing methods introduced in
          the next section are relatively robust even for relatively short
          series, but somewhere there is a limit. Three or four data points
          don’t constitute a series! Finally, most interesting series will not
          be stationary in the sense of the definition just given, so we may
          have to identify and remove trend and seasonal components explicitly
          (we’ll discuss how to do that later). Drastic changes in the nature
          of the series also violate the stationarity condition. In such cases
          we must not continue blindly but instead deal with the break in the
          data—for example, by treating the data set as two different series
          (one before and one after the event).


Smoothing



An important aspect of most time series is, the presence of
        noise—that is, random (or apparently random)
        changes in the quantity of interest. Noise occurs in many real-world
        data sets, but we can often reduce the noise by
        improving the apparatus used to measure the data or by collecting a
        larger sample and averaging over it. But the particular structure of
        time series makes this impossible: the sales figures for the last 30
        days are fixed, and they constitute all the data we have. This means
        that removing noise, or at least reducing its influence, is of
        particular importance in time-series analysis. In other words, we are
        looking for ways to smooth the signal.
[image: Simple and a Gaussian weighted moving average: the weighted average is less affected by sudden jumps in the data.]

Figure 4-6. Simple and a Gaussian weighted moving average: the weighted
          average is less affected by sudden jumps in the data.

Running Averages



The simplest smoothing algorithm that we can devise is the
          running, moving, or
          floating average. The idea is straightforward:
          for any odd number of consecutive points, replace the centermost
          value with the average of the other points (here, the
          {xi}
          are the data points and the smoothed value at position
          i is
          si):
[image: Running Averages]
This naive approach has a serious problem, as you can see in
          Figure 4-6. The
          figure shows the original signal together with the 11-point moving
          average. Unfortunately, the signal has some sudden jumps and
          occasional large “spikes,” and we can see how the smoothed curve is
          affected by these events: whenever a spike enters the smoothing
          window, the moving average is abruptly distorted by the single,
          uncommonly large value until the outlier leaves the smoothing window
          again—at which point the floating average equally abruptly drops
          again.
We can avoid this problem by using a
          weighted moving average, which places less
          weight on the points at the edge of the smoothing window. Using such
          a weighted average, any new point that enters the smoothing window
          is only gradually added to the average and then gradually removed
          again:
[image: Running Averages]
Here the wj are
          the weighting factors. For example, for a 3-point moving average, we
          might use (1/4, 1/2, 1/4). The particular choice of weight factors
          is not very important provided they are peaked at the center, drop
          toward the edges, and add up to 1. I like to use the Gaussian
          function:
[image: Running Averages]
to build smoothing weight factors. The parameter σ in the
          Gaussian controls the width of the curve, and the function is
          essentially zero for values of x larger than
          about 3.5σ. Hence f(x, 1)
          can be used to build a 9-point kernel by evaluating
          f(x, 1) at the positions
          [–4, –3, –2, –1, 0, 1, 2, 3, 4]. Setting σ = 2, we can form a
          15-point kernel by evaluating the Gaussian for all integer arguments
          between –7 and +7. And so on.

Exponential Smoothing



All moving-average schemes have a number of problems.
	They are painful to evaluate. For each point, the
              calculation has to be performed from scratch. It is not possible
              to evaluate weighted moving averages by updating a previous
              result.

	Moving averages can never be extended to the true edge of
              the available data set, because of the finite width of the
              averaging window. This is especially problematic because often
              it is precisely the behavior at the leading edge of a data set
              that we are most interested in.

	Similarly, moving averages are not defined
              outside the range of the existing data set.
              As a consequence, they are of no use in forecasting.



Fortunately, there exists a very simple calculational scheme
          that avoids all of these problems. It is called
          exponential smoothing or Holt–Winters
          method. There are various forms of exponential smoothing:
          single exponential smoothing for series that have neither trend nor
          seasonality, double exponential smoothing for series exhibiting a
          trend but no seasonality, and triple exponential smoothing for
          series with both trend and seasonality. The term “Holt–Winters
          method” is sometimes reserved for triple exponential smoothing
          alone.
All exponential smoothing methods work by updating the result
          from the previous time step using the new information contained in
          the data of the current time step. They do so by “mixing” the new
          information with the old one, and the relative weight of old and new
          information is controlled by an adjustable mixing parameter. The
          various methods differ in terms of the number of quantities they
          track and the corresponding number of mixing parameters.
The recurrence relation for single exponential smoothing is
          particularly simple:
	si
                  =
                  αxi
                  + (1 – α)si –
                  1
	with 0 ≤ α ≤ 1



Here
          si
          is the smoothed value at time step i, and
          xi
          is the actual (unsmoothed) data at that time step. You can see how
          si
          is a mixture of the raw data and the previous smoothed value
          si–1.
          The mixing parameter α can be chosen anywhere between 0 and 1, and
          it controls the balance between new and old information: as α
          approaches 1, we retain only the current data point
          (i.e., the series is not smoothed at all); as α
          approaches 0, we retain only the smoothed past
          (i.e., the curve is totally flat).
Why is this method called “exponential” smoothing? To see
          this, simply expand the recurrence relation:
[image: Exponential Smoothing]
What this shows is that in exponential smoothing,
          all previous observations contribute to the
          smoothed value, but their contribution is suppressed by increasing
          powers of the parameter α. That observations further in the past are
          suppressed multiplicatively is characteristic of exponential
          behavior. In a way, exponential smoothing is like a floating average
          with infinite memory but with exponentially falling weights. (Also
          observe that the sum of the weights,
          Σj α(1 –
          α)j, equals 1 as
          required by virtue of the geometric series
          Σi
          qi
          = 1/(1 – q) for q < 1.
          See Appendix B for information on the
          geometric series.)
The results of the simple exponential smoothing procedure can
          be extended beyond the end of the data set and thereby used to make
          a forecast. The forecast is extremely simple:
xi+h
          =
          si
where
          si
          is the last calculated value. In other words, single exponential
          smoothing yields a forecast that is absolutely flat for all
          times.
Single exponential smoothing as just described works
          well for time series without an overall trend. However, in the
          presence of an overall trend, the smoothed values tend to lag behind
          the raw data unless α is chosen to be close to 1; however, in this
          case the resulting curve is not sufficiently smoothed.
Double exponential smoothing corrects for this shortcoming by
          retaining explicit information about the trend. In other words, we
          maintain and update the state of two quantities: the smoothed signal
          and the smoothed trend. There are two equations
          and two mixing parameters:
si
          =
          αxi
          + (1 –
          α)(si–1
          +
          ti–1)
ti
          =
          β(si
          –
          si–1)
          + (1 –
          β)ti–1
Let’s look at the second equation first. This equation
          describes the smoothed trend. The current unsmoothed “value” of the
          trend is calculated as the difference between the current and the
          previous smoothed signal; in other words, the current trend tells us
          how much the smoothed signal changed in the last step. To form the
          smoothed trend, we perform a simple exponential smoothing process on
          the trend, using the mixing parameter β. To obtain the smoothed
          signal, we perform a similar mixing as before but consider not only
          the previous smoothed signal but take the trend into account as
          well. The last term in the first equation is the best guess for the
          current smoothed signal—assuming we followed the previous trend for
          a single time step.
To turn this result into a forecast, we take the last smoothed
          value and, for each additional time step, keep adding the last
          smoothed trend to it:
xi+h
          =
          si
          + h
          ti
Finally, for triple exponential smoothing we add yet a third
          quantity, which describes the seasonality. We have to distinguish
          between additive and multiplicative seasonality. For the additive
          case, the equations are:
	si
	=
                  α(xi
                  –
                  pi–k)
                  + (1 –
                  α)(si–1
                  +
                  ti–1)

	ti
	=
                  β(si
                  –
                  si–1)
                  + (1 –
                  β)ti–1

	pi
	=
                  γ(xi
                  –
                  si)
                  + (1 – γ)
                  pi–k

	xi+h
	=
                  si
                  +
                  hti
                  +
                  pi–k+h



For the multiplicative case, they are:
[image: Exponential Smoothing]
Here,
          pi
          is the “periodic” component, and k is the
          length of the period. I have also included the expressions for
          forecasts.
All exponential smoothing methods are based on
          recurrence relations. This means that we need to fix the start-up
          values in order to use them. Luckily, the specific choice for these
          values is not very critical: the exponential damping implies that
          all exponential smoothing methods have a short “memory,” so that
          after only a few steps, any influence of the initial values is
          greatly diminished. Some reasonable choices for start-up values
          are:
[image: Exponential Smoothing]
and:
	t0
                  = 0
	or
	t0
                  = x1 –
                  x0



For triple exponential smoothing we must provide one full
          season of values for start-up, but we can simply fill them with 1s
          (for the multiplicative model) or 0s (for the additive model). Only
          if the series is short do we need to worry seriously about finding
          good starting values.
The last question concerns how to choose the mixing parameters
          α, β, and γ. My advice is trial and error. Try a few values between
          0.2 and 0.4 (very roughly), and see what results you get.
          Alternatively, you can define a measure for the error (between the
          actual data and the output of the smoothing algorithm), and then use
          a numerical optimization routine to minimize this error with respect
          to the parameters. In my experience, this is usually more trouble
          than it’s worth for at least the following two reasons. The
          numerical optimization is an iterative process that is not
          guaranteed to converge, and you may end up spending way too much
          time coaxing the algorithm to convergence. Furthermore, any such
          numerical optimization is slave to the expression you have chosen
          for the “error” to be minimized. The problem is that the parameter
          values minimizing that error may not have some other property you
          want to see in your solution (e.g., regarding
          the balance between the accuracy of the approximation and the
          smoothness of the resulting curve) so that, in the end, the manual
          approach often comes out ahead. However, if you have many series to
          forecast, then it may make sense to expend the effort and build a
          system that can determine the optimal parameter values
          automatically, but it probably won’t be easy to really make this
          work.
Finally, I want to present an example of the kind of results
          we can expect from exponential smoothing. Figure 4-7 is a classical
          data set that shows the monthly number of international airline
          passengers (in thousands of passengers).[8] The graph shows the actual data together with a triple
          exponential approximation. The years 1949 through 1957 were used to
          “train” the algorithm, and the years 1958 through 1960 are
          forecasted. Note how well the forecast agrees with the actual
          data—especially in light of the strong seasonal pattern—for a rather
          long forecasting time frame (three full years!). Not bad for a
          method as simple as this.
[image: Triple exponential smoothing in action: comparison between the raw data (solid line) and the smoothed curve (dashed). For the years after 1957, the dashed curve shows the forecast calculated with only the data available in 1957.]

Figure 4-7. Triple exponential smoothing in action: comparison between
            the raw data (solid line) and the smoothed curve (dashed). For the
            years after 1957, the dashed curve shows the forecast calculated
            with only the data available in 1957.



Don’t Overlook the Obvious!



On a recent consulting assignment, I was discussing monthly
        sales numbers with the client when he made the following comment: “Oh,
        yes, sales for February are always somewhat lower—that’s an after
        effect of the Christmas peak.” Sales are always lower in
        February? How interesting.
Sure enough, if you plotted the monthly sales numbers for the
        last few years, there was a rather visible dip from the overall trend
        every February. But in contrast, there wasn’t much of a Christmas
        spike! (The client’s business was not particularly seasonal.) So why
        should there be a corresponding dip two months later?
By now I am sure you know the answer already: February is
        shorter than any of the other months. And it’s
        not a small effect, either: with 28 days, February is about three days
        shorter than the other months (which have 30–31 days). That’s about 10
        percent—close to the size of the dip in the client’s sales
        numbers.
When monthly sales numbers were normalized by the number of days
        in the month, the February dip all but disappeared, and the
        adjusted February numbers were perfectly in line
        with the rest of the months. (The average number of days per month is
        365/12 = 30.4.)
Whenever you are tracking aggregated numbers in a time series
        (such as weekly, monthly, or quarterly results), make sure that you
        have adjusted for possible variation in the aggregation time frame.
        Besides the numbers of days in the month, another likely candidate for hiccups is the number of
        business days in a month (for months with five
        weekends, you can expect a 20 percent drop for most business metrics).
        But the problem is, of course, much more general and can occur
        whenever you are reporting aggregate numbers
        rather than rates. (If the client had been
        reporting average sales per day for each month, then there would never
        have been an anomaly.)
This specific problem (i.e., nonadjusted
        variations in aggregation periods) is a particular concern for all
        business reports and dashboards. Keep an eye out for it!

The Correlation Function



The autocorrelation function is the primary
        diagnostic tool for time-series analysis. Whereas the smoothing
        methods that we have discussed so far deal with the raw data in a very
        direct way, the correlation function provides us with a rather
        different view of the same data. I will first explain how the
        autocorrelation function is calculated and will then discuss what it
        means and how it can be used.
The basic algorithm works as follows: start with two copies of
        the data set and subtract the overall average from all values. Align
        the two sets, and multiply the values at corresponding time steps with
        each other. Sum up the results for all time steps. The result is the
        (unnormalized) correlation coefficient at lag 0.
        Now shift the two copies against each other by a single time step.
        Again multiply and sum: the result is the correlation coefficient at
        lag 1. Proceed in this way for the entire length of the time series.
        The set of all correlation coefficients for all lags is the
        autocorrelation function. Finally, divide all coefficients by the
        coefficient for lag 0 to normalize the correlation function, so that
        the coefficient for lag 0 is now equal to 1.
All this can be written compactly in a single formula for
        c(k)—that is the correlation
        function at lag k:
[image: The Correlation Function]
Here, N is the number of points in the data
        set. The formula follows the mathematical convention to start indexing
        sequences at 1, rather than the programming convention to start
        indexing at 0. Notice that we have subtracted the overall average μ
        from all values and that the denominator is simply the expression of
        the numerator for lag k = 0. Figure 4-8 illustrates the
        process.
The meaning of the correlation function should be clear.
        Initially, the two signals are perfectly aligned and the correlation
        is 1. Then, as we shift the signals against each other, they slowly
        move out of phase with each other, and the correlation drops. How
        quickly it drops tells us how much “memory” there is in the data. If
        the correlation drops quickly, we know that, after a few steps, the
        signal has lost all memory of its recent past. However, if the
        correlation drops slowly, then we know that we are dealing with a
        process that is relatively steady over longer periods of time. It is
        also possible that the correlation function first drops and then rises
        again to form a second (and possibly a third, or fourth,...) peak.
        This tells us that the two signals align again if we shift them far
        enough—in other words, that there is periodicity
        (i.e., seasonality) in the data set. The position
        of the secondary peak gives us the number of time steps per
        season.
[image: Algorithm to compute the correlation function.]

Figure 4-8. Algorithm to compute the correlation function.

Examples



Let’s look at a couple of examples. Figure 4-9 shows the
          correlation function of the gas furnace data in Figure 4-2. This is a
          fairly typical correlation function for a time series that has only
          short time correlations: the correlation falls quickly, but not
          immediately, to zero. There is no periodicity; after the initial
          drop, the correlation function does not exhibit any further
          significant peaks.
[image: The correlation function for the exhaust gas data shown in . The data has only short time correlations and no seasonality; the correlation function falls quickly (but not immediately) to zero, and there are no secondary peaks.]

Figure 4-9. The correlation function for the exhaust gas data shown in
            Figure 4-2. The
            data has only short time correlations and no seasonality; the
            correlation function falls quickly (but not immediately) to zero,
            and there are no secondary peaks.

Figure 4-10 is the
          correlation function for the call center data from Figure 4-5. This data set
          shows a very different behavior. First of all, the time series has a
          much longer “memory”: it takes the correlation function almost 100
          days to fall to zero, indicating that the frequency of calls to the
          call center changes more or less once per quarter but not more
          frequently. The second notable feature is the pronounced secondary
          peak at a lag of 365 days. In other words, the call center data is
          highly seasonal and repeats itself on a yearly basis. The third
          feature is the small but regular sawtooth structure. If we look
          closely, we will find that the first peak of the sawtooth is at a
          lag of 7 days and that all repeating ones occur at multiples of 7.
          This is the signature of the high-frequency component that we could
          see in Figure 4-5:
          the traffic to the call center exhibits a secondary seasonal
          component with 7-day periodicity. In other words, traffic is weekday
          dependent (which is not too surprising).

Implementation Issues



So far I have talked about the correlation function mostly
          from a conceptual point of view. If we want to proceed to an actual
          implementation, there are some fine points we need to worry
          about.
The autocorrelation function is intended for time series that
          do not exhibit a trend and have zero mean. Therefore, if the series
          we want to analyze does contain a trend, then we must remove it
          first. There are two ways to do this: we can either subtract the
          trend or we can difference the series.
[image: The correlation function for the call center data shown in . There is a secondary peak after exactly 365 days, as well as a smaller weekly structure to the data.]

Figure 4-10. The correlation function for the call center data shown in
            Figure 4-5. There
            is a secondary peak after exactly 365 days, as well as a smaller
            weekly structure to the data.

Subtracting the trend is straightforward—the only
          problem is that we need to determine the trend first! Sometimes we
          may have a “model” for the expected behavior and can use it to
          construct an explicit expression for the trend. For instance, the
          airline passenger data from the previous section, describes a growth
          process, and so we should suspect an exponential trend
          (a
          exp(x/b)). We can now try
          guessing values for the two parameters and then subtract the
          exponential term from the data. For other data sets, we might try a
          linear or power-law trend, depending on the data set and our
          understanding of the process generating the data. Alternatively, we
          might first apply a smoothing algorithm to the data and then
          subtract the result of the smoothing process from the raw data. The
          result will be the trend-free “noise” component of the time
          series.
A different approach consists of
          differencing the series: instead of dealing
          with the raw data, we instead work with the
          changes in the data from one time step to the
          next. Technically, this means replacing the original series
          xi
          with one consisting of the differences of consecutive elements:
          xi+1
          –
          xi.
          This process can be repeated if necessary, but in most cases, single
          differencing is sufficient to remove the trend entirely.
Making sure that the time series has zero mean is easier:
          simply calculate the mean of the (de-trended!) series and subtract
          it before calculating the correlation function. This is done
          explicitly in the formula for the correlation function given
          earlier.
Another technical wrinkle concerns how we implement the sum in
          the formula for the numerator. As written, this sum is slightly
          messy, because its upper limit depends on the lag. We can simplify
          the formula by padding one of the data sets
          with N zeros on the right and letting the sum
          run from i = 1 to i =
          N for all lags. In fact, many computational
          software packages assume that the data has been
          prepared in this way (see the Workshop section in this
          chapter).
[image: A filter chain: each filter applied to a signal yields another signal, which itself can be filtered.]

Figure 4-11. A filter chain: each filter applied to a signal yields
            another signal, which itself can be filtered.

The last issue you should be aware of is that there are two
          different normalization conventions for the autocorrelation
          function, which are both widely used. In the first variant,
          numerator and denominator are not normalized separately—this is the
          scheme used in the previous formula. In the second variant, the
          numerator and denominator are each normalized by the number of
          nonzero terms in their respective sum. With this convention, the
          formula becomes:
[image: A filter chain: each filter applied to a signal yields another signal, which itself can be filtered.]
Both conventions are fine, but if you want to compare results
          from different sources or different software packages, then you will
          have to make sure you know which convention each of them is
          following!


Optional: Filters and Convolutions



Until now we have always spoken of time series in a direct
        fashion, but there is also a way to describe them (and the operations
        performed on them) on a much higher level of abstraction. For this, we
        borrow some concepts and terminology from electrical engineering,
        specifically from the field of digital signal processing (DSP).
In the lingo of DSP, we deal with signals
        (time series) and filters (operations). Applying
        a filter to a signal produces a new (filtered) signal. Since filters
        can be applied to any signal, we can apply another filter to the
        output of the first and in this way chain filters together (see Figure 4-11). Signals can
        also be combined and subtracted from each other.
As it turns out, many of the operations we have seen so far
        (smoothing, differencing) can be expressed as filters. We can
        therefore use the convenient high-level language of DSP when referring
        to the processes of time-series analysis. To make this concrete, we
        need to understand how a filter is represented and what it means to
        “apply” a filter to a signal.
Each digital filter is represented by a set of coefficients or
        weights. To apply the filter, we multiply the coefficients with a
        subset of the signal. The sum of the products is the value of the
        resulting (filtered) signal:
[image: Optional: Filters and Convolutions]
This should look familiar! We used a similar expression
        when talking about moving averages earlier in the chapter. A moving
        average is simply a time series run through an
        n-point filter, where every coefficient is equal
        to 1/n. A weighted moving average filter
        similarly consists of the weights used in the expression for the
        average.
The filter concept is not limited to smoothing operations. The
        differencing step discussed in the previous section can be viewed as
        the application of the filter [1, –1]. We can even shift an entire
        time series forward in time by using the filter [0, 1].
The last piece of terminology that we will need concerns the
        peculiar sum of a product that we have encountered several times by
        now. It’s called a convolution. A convolution is
        a way to combine two sequences to yield a third sequence, which you
        can think of as the “overlap” between the original sequences. The
        convolution operation is usually defined as follows:
[image: Optional: Filters and Convolutions]
Symbolically, the convolution operation is often expressed
        through an asterisk: y = w *
        x, where y,
        w, and x are
        sequences.
Of course, if one or both of the sequences have only a finite
        number of elements, then the sum also contains only a finite number of
        terms and therefore poses no difficulties. You should be able to
        convince yourself that every application of a filter to a time series
        that we have done was in fact a convolution of the signal with the
        filter. This is true in general: applying a filter to a signal means
        forming the convolution of the two. You will find that many numerical
        software packages provide a convolution operation as a built-in
        function, making filter operations particularly convenient to
        use.
I must warn you, however, that the entire machinery of digital
        signal processing is geared toward signals of infinite (or almost
        infinite) length, which makes good sense for typical electrical
        signals (such as the output from a microphone or a radio receiver).
        But for the rather short time series that we are likely to deal with,
        we need to pay close attention to a variety of edge
        effects. For example, if we apply a smoothing or
        differencing filter, then the resulting series will be shorter, by
        half the filter length, than the original series. If we now want to
        subtract the smoothed from the original signal, the operation will
        fail because the two signals are not of equal length. We therefore
        must either pad the smoothed signal or truncate the original one. The
        constant need to worry about padding and proper alignment detracts
        significantly from the conceptual beauty of the signal-theoretic
        approach when used with time series of relatively short
        duration.

Workshop: scipy.signal



The scipy.signal package
        provides functions and operations for digital signal processing that
        we can use to good effect to perform calculations for time-series
        analysis. The scipy.signal package
        makes use of the signal processing terminology introduced in the
        previous section.
The listing that follows shows all the commands used to create
        graphs like Figure 4-5 and Figure 4-10, including the
        commands required to write the results to file. The code is heavily
        commented and should be easy to understand.
from scipy import *
from scipy.signal import *
from matplotlib.pyplot import *

filename = 'callcenter'


# Read data from a text file, retaining only the third column.
# (Column indexes start at 0.)
# The default delimiter is any whitespace.
data = loadtxt( filename, comments='#', delimiter=None, usecols=(2,) )

# The number of points in the time series. We will need it later.
n = data.shape[0]

# Finding a smoothed version of the time series:
# 1) Construct a 31-point Gaussian filter with standard deviation = 4
filt = gaussian( 31, 4 )
# 2) Normalize the filter through dividing by the sum of its elements
filt /= sum( filt )
# 3) Pad data on both sides with half the filter length of the last value
#    (The function ones(k) returns a vector of length k, with all elements 1.)
padded = concatenate( (data[0]*ones(31//2), data, data[n-1]*ones(31//2)) )
# 4) Convolve the data with the filter. See text for the meaning of "mode".
smooth = convolve( padded, filt, mode='valid' )

# Plot the raw data together with the smoothed data:
# 1) Create a figure, sized to 7x5 inches
figure( 1, figsize=( 7, 5 ) )
# 2) Plot the raw data in red
plot( data, 'r' )
# 3) Plot the smoothed data in blue
plot( smooth, 'b' )
# 4) Save the figure to file
savefig( filename + "_smooth.png" )
# 5) Clear the figure
clf()

# Calculate the autocorrelation function:
# 1) Subtract the mean
tmp = data - mean(data)
# 2) Pad one copy of data on the right with zeros, then form correlation fct
#    The function zeros_like(v) creates a vector with the same dimensions
#    as the input vector v but with all elements zero.
corr = correlate( tmp, concatenate( (tmp, zeros_like(tmp)) ), mode='valid' )
# 3) Retain only some of the elements
corr = corr[:500]
# 4) Normalize by dividing by the first element
corr /= corr[0]


# Plot the correlation function:
figure( 2, figsize=( 7, 5 ) )
plot( corr )
savefig( filename + "_corr.png" )
clf()
The package provides the Gaussian filter as well as many others.
        The filters are not normalized, but this is easy enough to
        accomplish.
More attention needs to be paid to the appropriate padding and
        truncating. For example, when forming the smoothed version of the
        data, I pad the data on both sides by half the filter length to ensure
        that the smoothed data has the same length as the original set. The
        mode argument to the convolve() and correlate functions determines which pieces
        of the resulting vector to retain. Several modes are possible. With
        mode="same", the returned vector
        has as many elements as the largest input vector (in our case, as the
        padded data vector), but the elements closest to the ends would be
        corrupted by the padded values. In the listing, I therefore use
        mode="valid", which retains only
        those elements that have full overlap between the data and the
        filter—in effect, removing the elements added in the padding
        step.
Notice how the signal processing machinery leads in this
        application to very compact code. Once you strip out the comments and
        plotting commands, there are only about 10 lines of code that perform
        actual operations and calculations. However, we had to pad all data
        carefully and ensure that we kept only those pieces of the result that
        were least contaminated by the padding.

Further Reading



	The Analysis of Time Series. Chris Chatfield. 6th ed., Chapman & Hall. 2003.
This is my preferred text on time-series analysis. It
            combines a thoroughly practical approach with mathematical depth
            and a healthy preference for the simple over the obscure. Highly
            recommended.






[8] This data is available in the “airpass.dat” data set from
              R. J. Hyndman’s Time Series Data Library at http://www.robjhyndman.com/TSDL.


Chapter 5. More Than Two Variables: Graphical Multivariate Analysis



AS SOON
      AS WE ARE DEALING WITH MORE THAN TWO VARIABLES SIMULTANEOUSLY, THINGS
      BECOME MUCH MORE complicated—in particular,
      graphical methods quickly become impractical. In this chapter, I’ll
      introduce a number of graphical methods that can be applied to
      multivariate problems. All of them work best if the number of variables
      is not too large (less than 15–25).
The borderline case of three variables can be
      handled through false-color plots, which we will
      discuss first.
If the number of variables is greater (but not much greater) than
      three, then we can construct multiplots from a collection of individual
      bivariate plots by scanning through the various parameters in a
      systematic way. This gives rise to scatter-plot matrices and
      co-plots.
Depicting how an overall entity is composed out of its constituent
      parts can be a rather nasty problem, especially if the composition
      changes over time. Because this task is so common, I’ll treat it
      separately in its own section.
Multi-dimensional visualization continues to be a research topic,
      and in the last sections of the chapter, we look at some of the more
      recent ideas in this field.
One recurring theme in this chapter is the need for adequate
      tools: most multidimensional visualization techniques are either not
      practical with paper and pencil, or are outright impossible without a
      computer (in particular when it comes to animated techniques). Moreover,
      as the number of variables increases, so does the need to look at a data
      set from different angles; this leads to the idea of using interactive
      graphics for exploration. In the last section, we look at some ideas in
      this area.
[image: A simple but effective way to show three variables: treat one as parameter and draw a separate curve for several parameter values.]

Figure 5-1. A simple but effective way to show three variables: treat one
        as parameter and draw a separate curve for several parameter
        values.

False-Color Plots



There are different ways to display information in three
        variables (typically, two independent variables and one dependent
        variable). Keep in mind that simple is sometimes best! Figure 5-1 shows the
        function f(x,
        a) =
        x4/2 +
        ax2 –
        x/2 + a/4 for various values
        of the parameter a in a simple, two-dimensional
        xy plot. The shape of the function and the way it
        changes with a are perfectly clear in this graph.
        It is very difficult to display this function in any other way with
        comparable clarity.
Another way to represent such trivariate data is in the form of
        a surface plot, such as the one shown in Figure 5-2. As a rule,
        surface plots are visually stunning but are of very limited practical
        utility. Unless the data set is very smooth and allows for a viewpoint
        such that we can look down onto the surface, they
        simply don’t work! For example, it is pretty much impossible to
        develop a good sense for the behavior of the function plotted in Figure 5-1 from a surface
        plot. (Try it!) Surface plots can help build intuition for the overall
        structure of the data, but it is notoriously difficult to read off
        quantitative information from them.
In my opinion, surface plots have only two uses:
	To get an intuitive impression of the “lay of the land” for
            a complicated data set

	To dazzle the boss (not that this isn’t important at
            times)



[image: Surface plots are often visually impressive but generally don’t represent quantitative information very well.]

Figure 5-2. Surface plots are often visually impressive but generally
          don’t represent quantitative information very well.

[image: Grayscale version of a false-color plot of the function shown as a surface plot in . Here white corresponds to positive values of the function, and black corresponds to negative values.]

Figure 5-3. Grayscale version of a false-color plot of the function shown
          as a surface plot in Figure 5-2. Here white
          corresponds to positive values of the function, and black
          corresponds to negative values.

Another approach is to project the function into the
        base plane below the surface in Figure 5-2. There are two
        ways in which we can represent values: either by showing contours of
        constant alleviation in a contour plot or by
        mapping the numerical values to a palette of colors in a
        false-color plot. Contour plots are familiar from
        topographic maps—they can work quite well, in particular if the data
        is relatively smooth and if one is primarily interested in local
        properties.
The false-color plot is an alternative and quite versatile
        technique that can be used for different tasks and on a wide variety
        of data sets. To create a false-color plot, all values of the
        dependent variable z are mapped to a palette of
        colors. Each data point is then plotted as a region of the appropriate
        color. Figure 5-3
        gives an example (where the color has been replaced by grayscale
        shading).
I like false-color plots because one can represent a lot of
        information in a them in a way that retains quantitative information.
        However, false-color plots depend crucially on the quality of the
        palette—that is, the mapping that has been used to associate colors
        with numeric values.
Let’s quickly recap some information on color and computer
        graphics. Colors for computer graphics are usually specified by a
        triple of numbers that specify the intensity of their red, green, and
        blue (RGB) components. Although RGB triples make good sense
        technically, they are not particularly intuitive. Instead, we tend to
        think of color in terms of its hue, saturation, and value
        (i.e., luminance or lightness). Conventionally,
        hue runs through all the colors of the rainbow (from red to yellow,
        green, blue, and magenta). Curiously, the spectrum of hues seems to
        circle back onto itself, since magenta smoothly transforms back to
        red. (The reason for this behavior is that the hues in the rainbow
        spectrum are arranged in order of their dominant electromagnetic
        frequency. For violet/magenta, no frequency dominates; instead, violet
        is a mixture of low-frequency reds and high-frequency blues.) Most
        computer graphics programs will be able to generate color graphics
        using a hue–saturation–value (HSV) triple.
It is surprisingly hard to find reliable recommendations on good
        palette design, which is even more unfortunate given that convenience
        and what seems like common sense often lead to particularly
        bad palettes. Here are some ideas and suggestions
        that you may wish to consider:
Keep it simple
	Very simple palettes using red, white, and blue often work
            surprisingly well. For continuous color changes you could use a
            blue-white-red palette, for segmentation tasks you could use a
            white-blue-red-white palette with a sharp blue–red transition at
            the segmentation threshold.



Distinguish between segmentation tasks and the display
        of smooth changes
	Segmentation tasks (e.g., finding all
            points that exceed a certain threshold, finding the locations
            where the data crosses zero) call for palettes with sharp color
            transitions at the respective thresholds, whereas representing
            smooth changes in a data set calls for continuous color gradients.
            Of course, both aspects can be combined in a single palette:
            gradients for part of the palette and sharp transitions
            elsewhere.



Try to maintain an intuitive sense of
        ordering
	Map low values to “cold” colors and higher values to “hot”
            colors to provide an intuitive sense of ordering in your palette.
            Examples include the simple blue-red palette and the “heat scale”
            (black-red-yellow-white—I’ll discuss in a moment why I don’t
            recommend the heat scale for use). Other palettes that convey a
            sense of ordering (if only by convention) are the “improved
            rainbow” (blue-cyan-green-yellow-orange-red-magenta) and the
            “geo-scale” familiar from topographic maps
            (blue-cyan-green-brown-tan-white).



Place strong visual gradients in regions with
        important changes
	Suppose that you have a data set with values that span the
            range from –100 to +100 but that all the really interesting or
            important change occurs in the range –10 to +10. If you use a
            standard palette (such as the improved rainbow) for such a data
            set, then the actual region of interest will appear to be all of
            the same color, and the rest of the spectrum will be “wasted” on
            parts of the data range that are not that interesting. To avoid
            this outcome, you have to compress the rainbow so that it maps
            only to the region of interest. You might want to consider mapping
            the extreme values (from –100 to –10 and from 10 to 100) to some
            unobtrusive colors (possibly even to a grayscale) and reserving
            the majority of hue changes for the most relevant part of the data
            range.



Favor subtle changes
	This is possibly the most surprising recommendation. When
            creating palettes, there is a natural tendency to “crank it up
            full” by using fully saturated colors at maximal brightness
            throughout. That’s not necessarily a good idea, because the
            resulting effect can be so harsh that details are easily lost.
            Instead, you might want to consider using soft, pastel colors or
            even to experiment with mixed hues in favor of the pure primaries
            of the standard rainbow. (Recent versions of Microsoft Excel
            provide an interesting and easily accessible demonstration for
            this idea: all default colors offered for shading the background
            of cells are soft, mixed pastels—to good effect.) Furthermore, the
            eye is quite good at detecting even subtle variations. In
            particular, when working with luminance-based palettes, small
            changes are often all that is required.



Avoid changes that are hard to
        detect
	Some visual changes are especially hard to perceive
            visually. For example, it is practically impossible to distinguish
            between different shades of yellow, and the transition from yellow
            to white is even worse! (This is why I don’t recommend the heat
            scale, despite its nice ordering property: the bottom third
            consists of hard-to-distinguish dark reds, and the entire upper
            third consists of very hard-to-distinguish shades of light
            yellow.)



Use hue- and luminance-based palettes for different
        purposes
	In particular, consider using a luminance-based palette to
            emphasize fine detail and using hue- or saturation-based palettes
            for smooth, large-scale changes. There is some empirical evidence
            that luminance-based palettes are better suited for images that
            contain a lot of fine detail and that hue-based palettes are
            better suited for bringing out smooth, global changes. A pretty
            striking demonstration of this observation can be found when
            looking at medical images (surely an application where details
            matter!): a simple grayscale representation, which is pure
            luminance, often seems much clearer than a multicolored
            representation using a hue-based rainbow palette. This rule is
            more relevant to image processing of photographs or similar images
            (such as that in our medical example) than to visualization of the
            sort of abstract information that we consider here, but it is
            worth keeping in mind.



Don’t forget to provide a color box
	No matter how intuitive you think your palette is, nobody
            will know for sure what you are showing unless you provide a color
            box (or color key) that shows the values and the colors they are
            mapped to. Always, always, provide one.



One big problem not properly addressed by these recommendations
        concerns visual uniformity. For example, consider
        palettes based on the “improved rainbow,” which is created by
        distributing the six primaries in the order
        blue-cyan-green-yellow-red-magenta across the palette. If you place
        these primaries at equal distances across from each other and
        interpolate linearly between them in color space, then the fraction of
        the palette occupied by green appears to be much larger than the
        fraction occupied by either yellow or cyan. Another example is that
        when placing a fully saturated yellow next to a fully saturated blue,
        then the blue region will appear to be more intense
        (i.e., saturated) than the yellow. Similarly, the
        browns that occur in a geo-scale easily appear darker than the other
        colors in the palette. This is a problem with our
        perception of color: simple interpolations in
        color space do not necessarily result in visually uniform
        gradients!
There is a variation of the HSV color space, called the
        HCL (hue–chroma–luminance) space that takes
        visual perception into account to generate visually uniform color maps
        and gradients. The HCL color model is more complicated to use than the
        HSV model, because not all combinations of hue, chroma, and luminance
        values exist. For instance, a fully saturated yellow appears lighter
        than a fully saturated blue, so a palette at full chroma and with high
        luminance will include the fully saturated yellow but not the blue. As
        a result, HCL-based palettes that span the entire rainbow of hues tend
        naturally toward soft, pastel colors. A disadvantage of palettes in
        the HCL space is that they often degrade particularly poorly when
        reproduced in black and white.[9]
A special case of false-color plots are geographic
        maps, and cartographers have significant
        experience developing color schemes for various purposes. Their needs
        are a little different and not all of their recommendations may work
        for general data analysis purposes, but it is worthwhile to become
        familiar with what they have learned.[10]
Finally, I’d like to point out two additional problems with all
        plots that depend on color to convey critical information.
	Color does not reproduce well. Once photocopied or printed
            on a black-and-white laser printer, a false-color plot will become
            useless!

	Also keep in mind that about 10 percent of all men
            are at least partially color blind; these individuals won’t be
            able to make much sense of most images that rely heavily or
            exclusively on color.



Either one of these problems is potentially serious enough that
        you might want to reconsider before relying entirely on color for the
        display of information.
In my experience, preparing good false-color plots is often a
        tedious and time-consuming task. This is one area where better tools
        would be highly desirable—an interactive tool that could be used to
        manipulate palettes directly and in real time would be very nice to
        have. The same is true for a publicly available set of well-tested
        palettes.

A Lot at a Glance: Multiplots



The primary concern in all multivariate visualizations is
        finding better ways to put more “stuff” on a graph. In addition to
        color (see the previous section), there are basically two ways we can
        go about this. We can make the graph elements themselves richer, so
        that they can convey additional information beyond their position on
        the graph; or we can put several similar graphs next to each other and
        vary the variables that are not explicitly displayed in a systematic
        fashion from one subgraph to the next. The first idea leads to
        glyphs, which we will introduce later in this
        chapter, whereas the latter idea leads to scatter-plot matrices and
        co-plots.
The Scatter-Plot Matrix



For a scatter-plot matrix (occasionally
          abbreviated SPLOM), we construct all possible two-dimensional
          scatter plots from a multivariate data set and then plot them
          together in a matrix format (Figure 5-4). We can now
          scan all of the graphs for interesting behavior, such as a marked
          correlation between any two variables.
The data set shown in Figure 5-4 consists of
          seven different properties of a sample of 250 wines.[11] It is not at all clear how these properties should
          relate to each other, but by studying the scatter-plot matrix, we
          can make a few interesting observations. For example, we can see
          that sugar content and density are positively correlated: if the
          sugar content goes up, so does the density. The opposite is true for
          alcohol content and density: as the alcohol content goes up, density
          goes down. Neither of these observations should come as a surprise
          (sugar syrup has a higher density than water and alcohol a lower
          one). What may be more interesting is that the wine quality seems to
          increase with increasing alcohol content: apparently, more potent
          wines are considered to be better!
[image: In a scatter-plot matrix (SPLOM), a separate scatter plot is shown for each pair of variables. All scatter plots in a given row or column have the same plot range, so that we can compare them easily.]

Figure 5-4. In a scatter-plot matrix (SPLOM), a separate scatter plot
            is shown for each pair of variables. All scatter plots in a given
            row or column have the same plot range, so that we can compare
            them easily.

One important detail that is easy to overlook is that all
          graphs in each row or column show the same plot range; in other
          words, they use shared scales. This makes it
          possible to compare graphs across the entire matrix.
The scatter-plot matrix is symmetric across the diagonal: the
          subplots in the lower left are equal to the ones in the upper right
          but rotated by 90 degrees. It is nevertheless customary to plot both
          versions because this makes it possible to scan a single row or
          column in its entirety to investigate how one quantity relates to
          each of the other quantities.
Scatter-plot matrices are easy to prepare and easy to
          understand. This makes them very popular, but I think they can be
          overused. Once we have more than about half a dozen variables, the
          individual subplots become too small as that we could still
          recognize anything useful, in particular if the number of points
          is large (a few hundred points or more). Nevertheless, scatter-plot
          matrices are a convenient way to obtain a quick overview and to find
          viewpoints (variable pairings) that deserve a closer look.

The Co-Plot



In contrast to scatter-plot matrices, which always show all
          data points but project them onto different
          surfaces of the parameter space, co-plots
          (short for “conditional plots”) show various
          slices through the parameter space such that
          each slice contains only a subset of the data points. The slices are
          taken in a systematic manner, and we can form an image of the entire
          parameter space by mentally gluing the slices back together again
          (the salami principle). Because of the regular layout of the
          subplots, this technique is also known as a trellis
          plot.
Figure 5-5
          shows a trivariate data set projected onto the two-dimensional
          xy plane. Although there is clearly structure
          in the data, no definite pattern emerges. In particular, the
          dependence on the third parameter is entirely obscured!
Figure 5-6
          shows a co-plot of the same data set that is sliced or
          conditioned on the third parameter
          a. The bottom part of the graph shows six
          slices through the data corresponding to different ranges of
          a. (The slice for the
          smallest values of a is in
          the lower left, and the one for the largest values of
          a is in the upper righthand corner.) As we look
          at the slices, the structure in the data stands out clearly, and we
          can easily follow the dependence on the third parameter
          a.
The top part of Figure 5-6 shows the range
          of values that a takes on for each of the
          slices. If you look closely, you will find that there are some
          subtle issues hidden in (or rather revealed by) this panel, because
          it provides information on the details of the slicing
          operation.
Two decisions need to be made with regard to the
          slicing:
	By what method should the overall parameter range be cut
              into slices?

	Should slices overlap or not?



In many ways, the most “natural” answer to these questions
          would be to cut the entire parameter range into a set of adjacent
          intervals of equal width. It is interesting to observe (by looking
          at the top panel in Figure 5-6) that in the
          example graph, a different decision was made in regard to both
          questions! The slices are not of equal width in the range of
          parameter values that they span; instead, they have been made in
          such a way that each slice contains the same number of
          points. Furthermore, the slices are not adjacent but
          partially overlap each other.
The first decision (to have each slice contain the same number
          of points, instead of spanning the same range of values) is
          particularly interesting because it provides additional information
          on how the values of the parameter a are
          distributed. For instance, we can see that large values of
          a (larger than about a =
          –1) are relatively rare, whereas values of a
          between –4 and –2 are much more frequent. This kind of behavior
          would be much harder to recognize precisely if we had chopped the
          interval for a into six slices of equal width.
          The other decision (to make the slices overlap partially) is more
          important for small data sets, where otherwise each slice contains
          so few points that the structure becomes hard to see. Having the
          slices overlap makes the data “go farther” than if the slices were
          entirely disjunct.
[image: Projection of a trivariate data set onto the xy plane. How does the data vary with the third variable?]

Figure 5-5. Projection of a trivariate data set onto the
            xy plane. How does the data vary with the
            third variable?

Co-plots are especially useful if some of the variables in a
          data set are clearly “control” variables, because co-plots provide a
          systematic way to study the dependence of the remaining (“response”)
          variables on the controls.

Variations



The ideas behind scatter-plot matrices and co-plots are pretty
          generally applicable, and you can develop different variants
          depending on your needs and tastes. Here are some ideas:
	In the standard scatter-plot matrix, half of the
              individual graphs are redundant. You can remove the individual
              graphs from half of the overall matrix and replace them with
              something different—for example, the numerical value of the
              appropriate correlation coefficient. However, you will then lose the
              ability to visually scan a full row or column to see how the
              corresponding quantity correlates with all other
              variables.
[image: A co-plot of the same data as in . Each scatter plot includes the data points for only a certain range of a values; the corresponding values of a are shown in the top panel. (The scatter plot for the smallest value of a is in the lower left corner, and that for the largest value of a is in the upper right.)]

Figure 5-6. A co-plot of the same data as in Figure 5-5. Each
                scatter plot includes the data points for only a certain range
                of a values; the corresponding values of
                a are shown in the top panel. (The
                scatter plot for the smallest value of a
                is in the lower left corner, and that for the largest value of
                a is in the upper right.)


	Similarly, you can place a histogram showing the
              distribution of values for the quantity in question on the
              diagonal of the scatter-plot matrix.

	The slicing technique used in co-plots can be used with
              other graphs besides scatter plots. For instance, you might want
              to use slicing with rank-order plots (see Chapter 2), where
              the conditioning “parameter” is some quantity not explicitly
              shown in the rank-order plot itself. Another option is to use it
              with histograms, making each subplot a histogram of a subset of
              the data where the subset is determined by the values of the
              control “parameter” variable.

	Finally, co-plots can be extended to
              two conditioning variables, leading to a
              matrix of individual slices.



By their very nature, all multiplots consist of many
          individual plot elements, sometimes with nontrivial interactions
          (such as the overlapped slicing in certain co-plots). Without a
          good tool that handles most of these issues
          automatically, these plot types lose most of their appeal. For the
          plots in this section, I used R (the statistical package), which
          provides support for both scatter-plot matrices and co-plots as
          built-in functionality.


Composition Problems



Many data sets describe a composition
        problem; in other words, they describe how some overall
        quantity is composed out of its parts. Composition problems pose some
        special challenges because often we want to visualize two
        different aspects of the data simultaneously: on
        the one hand, we are interested in the relative magnitude of the
        different components, and on the other, we also care about their
        absolute size.
For one-dimensional problems, this is not too difficult (see
        Chapter 2). We can
        use a histogram or a similar graph to display the absolute size for
        all components; and we can use a cumulative distribution plot (or even
        the much-maligned pie chart) to visualize the relative contribution
        that each component makes to the total.
But once we add additional variables into the mix, things can
        get ugly. Two problems stand out: how to visualize
        changes to the composition over time and how to
        depict the breakdown of an overall quantity along multiple
        axes at the same time.
Changes in Composition



To understand the difficulties in tracking compositional
          problems over time, imagine a company that makes five products
          labeled A, B, C, D, and E. As we track the daily production numbers
          over time, there are two different questions that we are likely to
          be interested in: on the one hand, we’d like to know how many items
          are produced overall; on the other hand, we would like to understand
          how the item mix is changing over time.
Figure 5-7,
          Figure 5-8, and
          Figure 5-9 show
          three attempts to plot this kind of data. Figure 5-7 simply shows
          the absolute numbers produced per day for each of the five product
          lines. That’s not ideal—the graph looks messy because some of the
          lines obscure each other. Moreover, it is not possible to understand
          from this graph how the total number of items changes over time.
          Test yourself: does the total number of items go up over time, does
          it go down, or does it stay about even?
Figure 5-8 is
          a stacked plot of the same data. The daily
          numbers for each product are added to the numbers for the products
          that appear lower down in the diagram—in other words, the line
          labeled B gives the number of items produced in product lines A
          and B. The topmost line in this diagram shows
          the total number of items produced per day (and answers the question
          posed in the previous paragraph: the total number of items does
          not change appreciably over the long run—a
          possibly surprising observation, given the appearance of Figure 5-7).
Stacked plots can be compelling because they have intuitive
          appeal and appear to be clear and uncluttered. In reality, however,
          they tend to hide the details in the development of the individual
          components because the changing baseline makes comparison difficult
          if not impossible. For example, from Figure 5-7 it is pretty
          clear that production of item D increased for a while but then
          dropped rapidly over the last 5 to 10 days. We would never guess
          this fact from Figure 5-8, where the
          strong growth of product line A masks the smaller changes in the
          other product lines. (This is why you should order the components in
          a stacked graph in ascending order of variation—which was
          intentionally not done in Figure 5-8.)
[image: Absolute number of items produced per product line and day.]

Figure 5-7. Absolute number of items produced per product line and
            day.

[image: Stacked graph of the number of items produced per product line and day.]

Figure 5-8. Stacked graph of the number of items produced per product
            line and day.

[image: Stacked graph of the relative contribution that each product line makes to the total.]

Figure 5-9. Stacked graph of the relative contribution that each
            product line makes to the total.

Figure 5-9 shows still
          another attempt to visualize this data. This figure is also a
          stacked graph, but now we are looking not at the absolute numbers of
          items produced but instead at the relative fraction that each
          product line contributes to the daily total. Because the change in
          the total number of items produced has been eliminated, this graph
          can help us understand how the item mix varies over time (although
          we still have the changing baseline problem common to all stacked
          graphs). However, information about the total number of items
          produced has been lost.
All things considered, I don’t think any one of these graphs
          succeeds very well. No single graph can satisfy both of our
          conflicting goals—to monitor both absolute numbers as well as
          relative contributions—and be clear and visually attractive at the
          same time.
I think an acceptable solution for this sort of problem will
          always involve a combination of graphs—for example, one for the
          total number of items produced and another for the relative item
          mix. Furthermore, despite their aesthetic appeal, stacked graphs
          should be avoided because they make it too difficult to recognize
          relevant information in the graph. A plot such as Figure 5-7 may seem
          messy, but at least it can be read accurately and reliably.

Multidimensional Composition: Tree and Mosaic Plots



Composition problems are generally difficult even when we do
          not worry about changes over time. Look at the following
          data:
Male    BS     NYC    Engineering
Male    MS     SFO    Engineering
Male    PhD    NYC    Engineering
Male    BS     LAX    Engineering
Male    MS     NYC    Finance
Male    PhD    SFO    Finance
Female  PhD    NYC    Engineering
Female  MS     LAX    Finance
Female  BS     NYC    Finance
Female  PhD    SFO    Finance
The data set shows information about ten employees of
          some company, and for each employee, we have four pieces of
          information: gender, highest degree obtained, office where they are
          located (given by airport code—NYC: New York, SFO: San Francisco,
          LAX: Los Angeles), and their department. Keep in mind that each line
          corresponds to a single person.
The usual way to summarize such data is in the form of a
          contingency table. Table 5-1 summarizes
          what we know about the relationship between an employee’s gender and
          his or her department. Contingency tables are used to determine
          whether there is a correlation between categorical variables: in
          this case, we notice that men tend to work in engineering and women
          in finance. (We may want to divide by the total number of records to
          get the fraction of employees in each cell of
          the table.)
The problem is that contingency tables only work for two
          dimensions at a time. If we also want to include the breakdown by
          degree or location, we have no other choice than to repeat the basic
          structure from Table 5-1 several times:
          once for each office or once for each degree.
A mosaic plot is an attempt to find a
          graphical representation for this kind of data. The construction of
          a mosaic plot is essentially recursive and proceeds as follows (see
          Figure 5-10):
	Start with a square.

	Select a dimension, and then divide the square
              proportionally according to the counts for this
              dimension.

	Pick a second dimension, and then divide each subarea
              according to the counts along the second dimension, separately
              for each subarea.

	Repeat for all dimensions, interchanging horizontal and
              vertical subdivisions for each new dimension.



Table 5-1. A contingency table: breakdown of male and female employees
            across two departments
	 	Male
	Female
	Total

	Engineering
	4
	1
	5

	Finance
	2
	3
	5

	Total
	6
	4
	10




[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]

Figure 5-10. Mosaic plots. In the top row, we start by dividing by
            gender, then also by department. In the bottom row, we have
            divided by gender, department, and location, with doctorate
            degrees shaded. The graph on the left uses the same sort order of
            dimensions as the graphs in the top row, whereas the graph on the
            bottom right uses a different sort order. Notice how the sort
            order changes the appearance of the graph!

In the lower left panel of Figure 5-10, location is
          shown as a secondary vertical subdivision in addition to the gender
          (from left to right: LAX, NYC, SFO). In addition, the degree is
          shown through shading (shaded sections correspond to employees with
          a Ph.D.).
Having seen this, we should ask how much mosaic plots actually
          help us understand this data set. Obviously, Figure 5-10 is difficult
          to read and has to be studied carefully. Keep in mind that the
          information about the number of data points within each category is
          represented by the area—recursively at all levels. Also note that
          some categories are empty and therefore invisible (for instance,
          there are no female employees in either the Los Angeles or San
          Francisco engineering departments).
[image: A tree map (left) and the corresponding tree (right). The numbers give the weight of each node and, if applicable, also the weight of the entire subtree.]
[image: A tree map (left) and the corresponding tree (right). The numbers give the weight of each node and, if applicable, also the weight of the entire subtree.]

Figure 5-11. A tree map (left) and the corresponding tree (right). The
            numbers give the weight of each node and, if applicable, also the
            weight of the entire subtree.

I appreciate mosaic plots because they represent a new idea
          for how data can be displayed graphically, but I have not found them
          to be useful. In my own experience, it is easier to understand a
          data set by poring over a set of contingency tables than by drawing
          mosaic plots. Several problems stand out.
	The order in which the dimensions are applied matters
              greatly for the appearance of the plot. The lower right panel in
              Figure 5-10
              shows the same data set yet again, but this time the data was
              split along the location dimension first and along the gender
              dimension last. Shading again indicates employees with a Ph.D.
              Is it obvious that this is the same data set? Is one
              representation more helpful than the other?

	Changing the sort order changes more than just the
              appearance, it also influences what we are likely to recognize
              in the graph. Yet even with an interactive tool, I find it
              thoroughly confusing to view a large number of mosaic plots with
              changing layouts.

	It seems that once we have more than about four or five
              dimensions, mosaic plots become too cluttered to be useful. This
              is not a huge advance over the two dimensions presented in basic
              contingency tables!

	Finally, there is a problem common to all visualization
              methods that rely on area to indicate
              magnitude: human perception is not that good at comparing areas,
              especially areas of different shape. In the lower right panel in
              Figure 5-10, for
              example, it is not obvious that the sizes of the two shaded
              areas for engineering in NYC are the same. (Human perception
              works by comparing visual objects to each other, and the easiest
              to compare are lengths, not areas or angles. This is also why
              you should favor histograms over pie charts!)



In passing, let’s quickly consider a different but related
          concept: tree maps. Tree maps are area-based
          representations of hierarchical tree structures. As shown in Figure 5-11, the area of
          each parent node in the tree is divided according to the weight of
          its children.
Tree maps are something of a media phenomenon.
          Originally developed for the purpose of finding large files in a
          directory hierarchy, they seem to be more talked about then used.
          They share the problems of all area-based visualizations already
          discussed, and even their inventors report that people find them
          hard to read—especially if the number of levels in the hierarchy
          increases. Tree maps lend themselves well to interactive
          explorations (where you can “zoom in” to deeper levels of the
          hierarchy).
My greatest concern is that tree maps have abandoned the
          primary advantage of graphical methods without gaining sufficiently
          in power, namely intuition: looking at a tree
          map does not conjure up the image of, well, a
          tree! (I also think that the focus on treelike
          hierarchies is driven more by the interests of computer science,
          rather than by the needs of data analysis—no wonder if the
          archetypical application consisted of browsing a file
          system!)


Novel Plot Types



Most of the graph types I have described so far (with the
        exception of mosaic plots) can be described as “classical”: they have
        been around for years. In this section, we will discuss a few
        techniques that are much more recent—or, at least, that have only
        recently received greater attention.
Glyphs



We can include additional information in any simple plot (such
          as a scatter plot) if we replace the simple symbols used for
          individual data points with glyphs: more
          complicated symbols that can express additional bits of information
          by themselves.
An almost trivial application of this idea occurs if we put
          two data sets on a single scatter plot and use different symbols
          (such as squares and crosses) to mark the data points from each data
          set. Here the symbols themselves carry meaning but only a simple,
          categorical one—namely, whether the point belongs to the first or
          second data set.
But if we make the symbols more complicated, then they can
          express more information. Textual labels (letters and digits) are
          often surprisingly effective when it comes to conveying more
          information—although distinctly low-tech, this is a technique to
          keep in mind!
The next step up in sophistication are arrows, which can
          represent both a direction and a magnitude (see Figure 5-12), but we need
          not stop there. Each symbol can be a fully formed graph (such as a
          pie chart or a histogram) all by itself. And even that is not the
          end—probably the craziest idea in this realm are “Chernoff faces,”
          where different quantities are encoded as facial
          features (e.g., size of the mouth,
          distance between the eyes), and the faces are used as symbols on a
          plot!
[image: Simple glyphs: using arrows to indicate both direction and magnitude of a field. Notice that the variation in the data is smooth and that the data itself has been recorded on a regular grid.]

Figure 5-12. Simple glyphs: using arrows to indicate both direction and
            magnitude of a field. Notice that the variation in the data is
            smooth and that the data itself has been recorded on a regular
            grid.

As you can see, the problem lies not so much in
          putting more information on a graph as in being able to interpret
          the result in a useful manner. And that seems to depend mostly on
          the data, in particular on the presence of
          large-scale, regular structure in it. If such structure is missing,
          then plots using glyphs can be very hard to decode and quite
          possibly useless.
Figure 5-12
          and Figure 5-13 show
          two extreme examples. In Figure 5-12, we visualize
          a four-dimensional data set using arrows (each point of the
          two-dimensional plot area has both a direction and a magnitude, so
          the total number of dimensions is four). You can think of the system
          as flow in a liquid, as electrical or magnetic field lines, or as
          deformations in an elastic medium—it does not matter, the overall
          nature of the data becomes quite clear. But Figure 5-13 is an entirely
          different matter! Here we are dealing with a data set in seven
          dimensions: the first two are given by the position of the symbol on
          the plot, and the remaining five are represented via distortions of
          a five-edged polygon. Although we can make out some regularities
          (e.g., the shapes of the symbols in the lower
          lefthand corner are all quite similar and different from the shapes
          elsewhere), this graph is hard to read and does not reveal the
          overall structure of the data very well. Also keep in mind that the
          appearance of the graph will change if we map a different pair of
          variables to the main axes of the plot, or even if we change the
          order of variables in the polygons.

Parallel Coordinate Plots



As we have seen, a scatter plot can show two variables. If we
          use glyphs, we can show more, but not all variables are treated
          equally (some are encoded in the glyphs, some are encoded by the
          position of the symbol on the plot). By using parallel
          coordinate plots, we can show all the variables of a
          multivariate data set on equal footing. The price we pay is that we
          end up with a graph that is neither pretty nor particularly
          intuitive, but that can be useful for exploratory work
          nonetheless.
[image: Complex glyphs: each polygon encodes five different variables, and its position on the plot adds another two.]

Figure 5-13. Complex glyphs: each polygon encodes five different
            variables, and its position on the plot adds another two.

In a regular scatter plot in two (or even three) dimensions,
          the coordinate axes are at right angles to each other. In a parallel
          coordinate plot, the coordinate axes instead are
          parallel to each other. For every data point,
          its value for each of the variables is marked on the corresponding
          axis, and then all these points are connected with lines. Because
          the axes are parallel to each other, we don’t run out of spatial
          dimensions and therefore can have as many of them as we need. Figure 5-14 shows what a
          single record looks like in such a plot, and Figure 5-15 shows the
          entire data set. Each record consists of nine different quantities
          (labeled A through J).
The main use of parallel coordinate plots is to find clusters
          in high-dimensional data sets. For example, in Figure 5-15, we can see
          that the data forms two clusters for the quantity labeled B: one
          around 0.8 and one around 0. Furthermore, we can see that most
          records for which B is 0, tend to have higher values of C than those
          that have a B near 0.8. And so on.
A few technical points should be noted about parallel
          coordinate plots:
	You will usually want to rescale the values in each
              coordinate to the unit interval via the linear transformation
              (also see Appendix B):
[image: Complex glyphs: each polygon encodes five different variables, and its position on the plot adds another two.]
[image: A single record (i.e., a single data point) from a multivariate data set shown in a parallel coordinate plot.]

Figure 5-14. A single record (i.e., a single
                data point) from a multivariate data set shown in a parallel
                coordinate plot.

[image: All records from the data set shown in a parallel coordinate plot. The record shown in is highlighted.]

Figure 5-15. All records from the data set shown in a parallel
                coordinate plot. The record shown in Figure 5-14 is
                highlighted.

This is not mandatory, however. There may be situations
              where you care about the absolute positions of the points along
              the coordinate axis or about scaling to a different
              interval.

	The appearance of parallel coordinate plots depends
              strongly on the order in which the coordinate lines are drawn:
              rearranging them can hide or reveal structure. Ideally, you have
              access to a tool that lets you reshuffle the coordinate axis
              interactively.

	Especially for larger data sets (several hundreds
              of points or more), overplotting of lines becomes a problem. One
              way to deal with this is through “alpha blending”: lines are
              shown as semi-transparent, and their visual effects are combined
              where they overlap each other.

	Similarly, it is often highly desirable to be able to
              select a set of lines and highlight them throughout the entire
              graph—for example, to see how data points that are clustered in
              one dimension are distributed in the other dimensions.

	Instead of combining points on adjacent coordinate axes
              with straight lines that have sharp kinks at the coordinate
              axes, one can use smooth lines that pass the coordinate axes
              without kinks.



All of these issues really are tool
          issues, and in fact parallel coordinates don’t make sense without a
          tool that supports them natively and includes good implementations
          of the features just described. This implies that parallel
          coordinate plots serve less as finished, static graphs than as an
          interactive tool for exploring a data set.
Parallel coordinate plots still seem pretty novel. The idea
          itself has been around for about 25 years, but even today, tools
          that support parallel coordinates plots well
          are far from common place.
What is not yet clear is how useful parallel coordinate plots
          really are. On the one hand, the concept seems straightforward and
          easy enough to use. On the other hand, I have found the experience
          of actually trying to apply them frustrating and not very fruitful.
          It is easy to get bogged down in technicalities of the plot
          (ordering and scaling of coordinate axes) with little real, concrete
          insight resulting in the end. The erratic tool situation of course
          does not help. I wonder whether more computationally intensive
          methods (e.g., principal component analysis—see
          Chapter 14) do not
          give a better return on investment overall. But the jury is still
          out.


Interactive Explorations



All the graphs that we have discussed so far (in this and the
        preceding chapters) were by nature static. We
        prepared graphs, so that we then could study them, but this was the
        extent of our interaction. If we wanted to see something different, we
        had to prepare a new graph.
In this section, I shall describe some ideas for
        interactive graphics: graphs that we can change
        directly in some way without having to re-create them anew.
Interactive graphics cannot be produced with paper and pencil,
        not even in principle: they require a computer.
        Conversely, what we can do in this area is even more strongly limited
        by the tools or programs that are available to us than for other types
        of graphs. In this sense, then, this section is more about
        possibilities than about
        realities because the tool support for
        interactive graphical exploration seems (at the time of this writing)
        rather poor.
Querying and Zooming



Interaction with a graph does not have to be
          complicated. A very simple form of interaction consists of the
          ability to select a point (or possibly a group of points) and have
          the tool display additional information about it. In the simplest
          case, we hover the mouse pointer over a data point and see the
          coordinates (and possibly additional details) in a tool tip or a
          separate window. We can refer to this activity as
          querying.
Another simple form of interaction would allow us to change
          aspects of the graph directly using the mouse. Changing the plot
          range (i.e., zooming) is
          probably the most common application, but I could also imagine to
          adjust the aspect ratio, the color palette, or smoothing parameters
          in this way. (Selecting and highlighting a subset of points in a
          parallel coordinate plot, as described earlier, would be another
          application.)
Observe that neither of these activities is inherently
          “interactive”: they all would also be possible if we used paper and
          pencil. The interactive aspect consists of our ability to invoke
          them in real time and by using a graphical input device (the
          mouse).

Linking and Brushing



The ability to interact directly with graphs becomes much more
          interesting once we are dealing with multiple graphs at the same
          time! For example, consider a scatter-plot matrix like the one in
          Figure 5-4. Now
          imagine we use the mouse to select and highlight a group of points
          in one of the subplots. If the graphs are
          linked, then the symbols corresponding to the
          data points selected in one of the subplots will also be highlighted
          in all other subplots as well.
Usually selecting some points and then highlighting their
          corresponding symbols in the linked subgraphs requires two separate
          steps (or mouseclicks). A real-time version of the same idea is
          called brushing: any points currently under the
          mouse pointer are selected and highlighted in all of the linked
          subplots.
Of course, linking and brushing are not limited to
          scatter-plot matrices, but they are applicable to any group of
          graphs that show different aspects of the same data set. Suppose we
          are working with a set of histograms of a multivariate data set,
          each histogram showing only one of the quantities. Now I could
          imagine a tool that allows us to select a bin in
          one of the histograms and then highlights the
          contribution from the points in that bin in all the other
          histograms.

Grand Tours and Projection Pursuits



Although linking and brushing allow us to interact with the
          data, they leave the graph itself static. This changes when we come
          to Grand Tours and Projection
          Pursuits. Now we are talking about truly animated
          graphics!
Grand Tours and Projection Pursuits are attempts to enhance
          our understanding of a data set by presenting many closely related
          projections in the form of an animated “movie.”
The concept is straightforward: we begin with some
          projection and then continuously move the viewpoint around the data
          set. (For a three-dimensional data set, you can imagine the
          viewpoint moving on a sphere that encloses the data.)
In Grand Tours, the viewpoint is allowed to perform
          essentially a random walk around the data set. In Projection
          Pursuits, the viewpoint is moved so that it will improve the value
          of an index that measures how “interesting” a specific projection
          will appear. Most indices currently suggested measure properties
          such as deviation from Gaussian behavior. At each step of a Pursuit,
          the program evaluates several possible projections and then selects
          the one that most improves the chosen index. Eventually, a Pursuit
          will reach a local maximum for the index, at which time it needs to
          be restarted from a different starting point.
Obviously, Tours and Pursuits require specialized tools that
          can perform the required projections—and do so in real time. They
          are also exclusively exploratory techniques and not suitable for
          preserving results or presenting them to a general audience.
Although the approach is interesting, I have not found Tours
          to be especially useful in practice. It can be confusing to watch a
          movie of essentially random patterns and frustrating to interact
          with projections when attempting to explore the neighborhood of an
          interesting viewpoint.

Tools



All interactive visualization techniques require suitable
          tools and computer programs; they cannot be done using
          paper-and-pencil methods. This places considerable weight on the
          quality of the available tools. Two issues stand out.
	It seems difficult to develop tools that support
              interactive features and are sufficiently general at the same
              time. For example, if we expect the plotting program to show
              additional detail on any data point that we select with the
              mouse, then the input (data) file will have to contain this
              information—possibly as metadata. But now we are talking about
              relatively complicated data sets, which require more
              complicated, structured file formats that will be specific to
              each tool. So before we can do anything with the data, we will
              have to transform it into the required format. This is a
              significant burden, and it may make these methods infeasible in
              practice. (Several of the more experimental programs mentioned
              in the Workshop section in this chapter are nearly unusable on
              actual data sets for exactly this reason.)

	A second problem concerns performance. Brushing, for
              instance, makes sense only if it truly occurs in real
              time—without any discernible delay as the mouse pointer moves.
              For a large data set and a scatter-plot matrix of a dozen
              attributes, this means updating a few thousand points in real
              time. Although by no means infeasible, such responsiveness does
              require that the tool is written with an eye toward performance
              and using appropriate technologies. (Several of the tools
              mentioned in the Workshop exhibit serious performance issues on
              real-world data sets.)



A final concern involves the overall design of the
          user interface. It should be easy to learn and easy to use, and it
          should support the activities that are actually required. Of course,
          this concern is not specific to data visualization tools but common
          to all programs with a graphical user interface.


Workshop: Tools for Multivariate Graphics



Multivariate graphs tend to be complicated and therefore require
        good tool support even more strongly than do other forms of graphs. In
        addition, some multivariate graphics are highly specialized
        (e.g., mosaic plots) and cannot be easily
        prepared with a general-purpose plotting tool.
That being said, the tool situation is questionable at best.
        Here are three different starting points for exploration—each with its
        own set of difficulties.
R



R is not a plotting tool per se; it is a statistical analysis
          package and a full development environment as well. However, R has
          always included pretty extensive graphing capabilities. R is
          particularly strong at “scientific” graphs: straightforward but
          highly accurate line diagrams.
Because R is not simply a plotting tool, but instead a full
          data manipulation and programming environment, its learning curve is
          rather steep; you need to know a lot of different things before you
          can do anything. But once you are up and running, the large number
          of advanced functions that are already built in can make working
          with R very productive. For example, the scatter-plot matrix in
          Figure 5-4 was
          generated using just these three commands:
d <- read.delim( "wines", header=T )

pairs(d)

dev.copy2eps( file="splom.eps" )
(the R command pairs()
          generates a plot of all pairs—i.e., a
          scatter-plot matrix). The scatter plot in Figure 5-5 and the
          co-plot in Figure 5-6 were generated
          using:
d <- read.delim( "data", header=F )
names( d ) <- c( "x", "a", "y" )

plot( y ~ x, data=d )
dev.copy2eps( file='coplot1.eps' )

coplot(  y ~ x | a,  data=d )
dev.copy2eps( file='coplot2.eps' )
Note that these are the entire command
          sequences, which include reading the data from file and writing the
          graph back to disk! We’ll have more to say about R in the Workshop
          sections of Chapter 10 and Chapter 14.
R has a strong culture of user-contributed add-on
          packages. For multiplots consisting of subplots arranged on a
          regular grid (in particular, for generalized co-plots), you should
          consider the lattice package,
          which extends or even replaces the functionality of the basic R
          graphic systems. This package is part of the standard R
          distribution.

Experimental Tools



If you want to explore some of the more novel graphing ideas,
          such as parallel coordinate plots and mosaic plots, or if you want
          to try out interactive ideas such as brushing and Grand Tours, then
          there are several options open to you. All of them are academic
          research projects, and all are highly experimental. (In a way, this
          is a reflection of the state of the field: I don’t think any of
          these novel plot types have been refined to a point where they are
          clearly useful.)
	The ggobi project (http://www.ggobi.org) allows brushing
              in scatter-plot matrices and parallel coordinate plots and
              includes support for animated tours and pursuits.

	Mondrian (http://www.rosuda.org/mondrian) is a
              Java application that can produce mosaic plots (as well as some
              other multivariate graphs).



Again, both tools are academic research projects—and it shows.
          They are technology demonstrators intended to try out and experiment
          with new graph ideas, but neither is anywhere near production
          strength. Both are rather fussy about the required data input
          format, their graphical user interfaces are clumsy, and neither
          includes a proper way to export graphs to file (if you want to save
          a plot, you have to take a screenshot). The interactive brushing
          features in ggobi are slow, which makes them nearly unusable for
          realistically sized data sets. There are some lessons here (besides
          the intended ones) to be learned about the design of tools for
          statistical graphics. (For instance, GUI widget sets do not seem
          suitable for interactive visualizations: they are too slow. You have
          to use a lower-level graphics library instead.)
Other open source tools you may want to check out are Tulip
          (http://tulip.labri.fr)
          and ManyEyes (http://manyeyes.alphaworks.ibm.com/manyeyes).
          The latter project is a web-based tool and community that allows you
          to upload your data set and generate plots of it online.
A throwback to a different era is OpenDX (http://www.research.ibm.com/dx).
          Originally designed by IBM in 1991, it was donated to the open
          source community in 1999. It certainly feels overly complicated and
          dated, but it does include a selection of features not found
          elsewhere.

Python Chaco Library



The Chaco library (http://code.enthought.com/projects/chaco/)
          is a Python library for two-dimensional plotting. In addition to the
          usual line and symbol drawing capabilities, it includes easy support
          for color and color manipulation as well as—more importantly—for
          real-time user interaction.
Chaco is an exciting toolbox if you plan to experiment with
          writing your own programs to visualize data and interact with it.
          However, be prepared to do some research: the best available
          documentation seems to be the set of demos that ship with it.
Chaco is part of the Enthought Tool Suite, which is developed
          by Enthought, Inc., and is available under a BSD-style
          license.


Further Reading



	Graphics of Large Datasets: Visualizing a
              Million. Antony Unwin, Martin Theus, and Heike Hofmann. Springer.
              2006.
This is a modern book that in many ways describes the state
            of the art in statistical data visualization. Mosaic plots, glyph
            plots, parallel coordinate plots, Grand Tours—all are discussed
            here. Unfortunately, the basics are neglected: standard tools like
            logarithmic plots are never even mentioned, and simple things like
            labels are frequently messed up. This book is nevertheless
            interesting as a survey of some of the state of the art.

	The Elements of Graphing
              Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
This book provides an interesting counterpoint to the book
            by Unwin and colleagues. Cleveland’s graphs often look pedestrian,
            but he thinks more deeply than almost anyone else about ways to
            incorporate more (and more quantitative) information in a graph.
            What stands out in his works is that he explicitly takes human
            perception into account as a guiding principle when developing new
            graphs. My discussion of scatter-plot matrices and co-plots is
            heavily influenced by his careful treatment.

	Gnuplot in Action: Understanding Data with
              Graphs. Philipp K. Janert. Manning Publications. 2010.
Chapter 9 of this
            book contains additional details on and examples for the use of
            color to prepare false-color plots, including explicit recipes to
            create them using gnuplot. But the principles are valid more
            generally, even if you use different tools.

	Why Should Engineers and Scientists Be Worried
              About Color? B. E. Rogowitz and L. A. Treinish. http://www.research.ibm.com/people/l/lloydt/color/color.HTM.
              1995. This paper contains important lessons for false-color
              plots, including the distinction between segmentation and smooth
              variation as well as the difference between hue- and
              luminance-based palettes. The examples were prepared using IBM’s
              (now open source) OpenDX graphical Data Explorer.

	Escaping RGBland: Selecting Colors for
              Statistical Graphics. A. Zeileis, K. Hornik, and P. Murrell. http://statmath.wu.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2009.pdf.
              2009. This is a more recent paper on the use of color in
              graphics. It emphasizes the importance of perception-based color
              spaces, such as the HCL model.






[9] An implementation of the transformations between HCL and RGB
            is available in R and C in the “colorspace” module available from
            CRAN.

[10] An interesting starting point is Cynthia Brewer’s online
            ColorBrewer at http://colorbrewer2.org/.

[11] The data can be found in the “Wine Quality” data set,
              available at the UCI Machine Learning repository at
              http://archive.ics.uci.edu/ml/.


Chapter 6. Intermezzo: A Data Analysis Session



OCCASIONALLY I GET THE QUESTION: “HOW DO YOU ACTUALLY
      WORK?” OR “HOW DO YOU COME UP WITH THIS stuff?” As
      an answer, I want to take you on a tour through a new data set. I will
      use gnuplot, which is my preferred tool for this kind of interactive
      data analysis—you will see why. And I will share my observations and
      thoughts as we go along.
A Data Analysis Session



The data set is a classic: the CO2
        measurements above Mauna Loa on Hawaii. The inspiration for this
        section comes from Cleveland’s Elements of Graphical
        Analysis,[12] but the approach is entirely mine.
First question: what’s in the data set? I see that the first
        column represents the date (month and year) while the second contains
        the measured CO2 concentration in parts per
        million. Here are the first few lines:
Jan-1959      315.42
Feb-1959      316.32
Mar-1959      316.49
Apr-1959      317.56
...
The measurements are regularly spaced (in fact, monthly), so I
        don’t need to parse the date in the first column; I simply plot the
        second column by itself. (In the figure, I have added tick labels on the horizontal axis for clarity,
        but I am omitting the commands required here—they are not
        essential.)
[image: The first look at the data: plot “data”u1wl]

Figure 6-1. The first look at the data: plot
          “data”u1wl

plot "data" u 2 w l
The plot shows a rather regular short-term variation overlaid on
        a nonlinear upward trend. (See Figure 6-1.)
The coordinate system is not convenient for mathematical
        modeling: the x axis is not numeric, and for
        modeling purposes it is usually helpful if the graph goes through the
        origin. So, let’s make it do so by subtracting the vertical offset
        from the data and expressing the horizontal position as the number of
        months since the first measurement. (This corresponds to the line
        number in the data file, which is accessible in a gnuplot session
        through the pseudo-column with column number 0.)
plot "data" u 0:($2-315) w l
A brief note on the command: the specification after the
        u (short for using) gives the columns to be used for the
        x and y coordinates,
        separated by a colon. Here we use the line number (which is in the
        pseudo-column 0) for the x coordinate. Also, we
        subtract the constant offset 315 from the values in the second column
        and use the result as the y value. Finally, we
        plot the result with lines
        (abbreviated w l) instead of using
        points or other symbols. See Figure 6-2.
The most predominant feature is the trend. What can we say about
        it? First of all, the trend is nonlinear: if we ignore the short-term
        variation, the curve is convex downward. This suggests a power law
        with an as-yet-unknown exponent:
        xk.
        All power-law functions go through the origin (0, 0) and also through
        the point (1, 1). We already made sure that the data passes through
        the origin, but to fix the upper-right corner, we need to rescale both
        axes: if
        xk
        goes through (1, 1), then [image: ] goes through (a,
        b).
[image: Making the x values numeric and subtracting the constant vertical offset: plot “data” u 0:($2-315) w l]

Figure 6-2. Making the x values numeric and
          subtracting the constant vertical offset: plot “data” u
          0:($2-315) w l

[image: Adding a function: plot “data” u 0:($2-315) w l, 35*(x/350)**2]

Figure 6-3. Adding a function: plot “data” u 0:($2-315) w l,
          35*(x/350)**2

What’s the value for the exponent k? All I
        know about it right now is that it must be greater than 1 (because the
        function is convex). Let’s try k = 2. (See Figure 6-3.)
plot "data" u 0:($2-315) w l, 35*(x/350)**2
Not bad at all! The exponent is a bit too large—some fiddling
        suggests that k = 1.35 would be a good value (see
        Figure 6-4).
plot "data" u 0:($2-315) w l, 35*(x/350)**1.35
To verify this, let’s plot the residual; that is, we subtract
        the trend from the data and plot what’s left. If our guess for the
        trend is correct, then the residual should not exhibit any trend
        itself—it should just straddle y = 0 in a
        balanced fashion (see Figure 6-5).
plot "data" u 0:($2-315 - 35*($0/350)**1.35) w l
[image: Getting the exponent right:]

Figure 6-4. Getting the exponent right: [image: ]

[image: The residual, after subtracting the function from the data.]

Figure 6-5. The residual, after subtracting the function from the
          data.

It might be hard to see the longer-term trend in this data, so
        we may want to approximate it by a smoother curve. We can use the
        weighted-spline approximation built into gnuplot for that purpose. It
        takes a third parameter, which is a measure for the smoothness: the
        smaller the third parameter, the smoother the resulting curve; the
        larger the third parameter, the more closely the spline follows the
        original data (see Figure 6-6).
plot "data" u 0:(2 − 315 − 35 * (0/350)**1.35) w l, \
     "" u 0:($2-315 - 35*($0/350)**1.35):(0.001) s acs w l
At this point, the expression for the function that we use to
        approximate the data has become unwieldy. Thus it now makes sense to
        define it as a separate function:
f(x) = 315 + 35*(x/350)**1.35
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Plotting a smoothed version of the residual together with the unsmoothed residual to test whether there is any systematic trend remaining in the residual.]

Figure 6-6. Plotting a smoothed version of the residual together with the
          unsmoothed residual to test whether there is any systematic trend
          remaining in the residual.

From the smoothed line we can see that the overall
        residual is pretty much flat and straddles zero. Apparently, we have
        captured the overall trend quite well: there is little evidence of a
        systematic drift remaining in the residuals.
With the trend taken care of, the next feature to tackle is the
        seasonality. The seasonality seems to consist of rather regular
        oscillations, so we should try some combination of sines and cosines.
        The data pretty much starts out at y = 0 for
        x = 0, so we can try a sine by itself. To make a
        guess for its wavelength, we recall that the data is meteorological
        and has been taken on a monthly basis—perhaps there is a
        year-over-year periodicity. This would imply that the data is the same
        every 12 data points. If so, then a full period of the sine, which
        corresponds to 2π, should equal a horizontal distance of 12 points.
        For the amplitude, the graph suggests a value close to 3 (see Figure 6-7).
plot "data" u 0:($2-f($0)) w l, 3*sin(2*pi*x/12) w l
Right on! In particular, our guess for the wavelength worked out
        really well. This makes sense, given the origin of the data.
Let’s take residuals again, employing splines to see the bigger
        picture as well (see Figure 6-8):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12)
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
The result is pretty good but not good enough. There is clearly
        some regularity remaining in the data, although at a higher frequency
        than the main seasonality. Let’s zoom in on a smaller interval of the
        data to take a closer look. The data in the interval [60:120] appears particularly regular, so
        let’s look there (see Figure 6-9):
plot [60:120] "data" u 0:($2-f($0)) w lp, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Fitting the seasonality with a sine wave:]

Figure 6-7. Fitting the seasonality with a sine wave: [image: ]

[image: Residuals after subtracting both trend and seasonality.]

Figure 6-8. Residuals after subtracting both trend and
          seasonality.

I have indicated the individual data points using gnuplot’s
        linespoints (lp) style. We can now count the number of
        data points between the main valleys in the data: 12 points. This is
        the main seasonality. But it seems that between any two primary
        valleys there is exactly one secondary valley. Of course: higher
        harmonics! The original seasonality had a period of exactly 12 months,
        but its shape was not entirely symmetric: its rising flank comprised 7
        months but the falling flank only 5 (as you can see by zooming in on
        the original data with only the trend removed). This kind of asymmetry
        implies that the seasonality cannot be represented by a simple sine
        wave alone but that we have to take into account higher harmonics—that
        is, sine functions with frequencies that are integer multiples of the
        primary seasonality. So let’s try the first higher harmonic, again
        punting a little on the amplitude (see Figure 6-10):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6)
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Zooming in for a closer look. Individual data points are marked by symbols.]

Figure 6-9. Zooming in for a closer look. Individual data points are
          marked by symbols.

[image: Residual after removing trend and the first and second harmonic of the seasonality.]

Figure 6-10. Residual after removing trend and the first and second
          harmonic of the seasonality.

Now we are really pretty close. Look at the residual—in
        particular, for values of x greater than about
        150. The data starts to look quite “random,” although there is some
        systematic behavior for x in the range [0:70] that we don’t really capture. Let’s
        add some constant ranges to the plot for comparison (see Figure 6-11):
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1
It looks as if the residual is skewed toward positive values, so
        let’s adjust the vertical offset by 0.1 (see Figure 6-12):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1
[image: Adding some grid lines for comparison.]

Figure 6-11. Adding some grid lines for comparison.

[image: The final residual.]

Figure 6-12. The final residual.

That’s now really close. You should notice how small the last
        adjustment was—we started out with data ranging from 300 to 350, and
        now we are making adjustments to the parameters on the order of 0.1.
        Also note how small the residual has become: mostly in the range from
        –0.7 to 0.7. That’s only about 3 percent of the total variation in the
        data.
Finally, let’s look at the original data again, this time
        together with our analytical model (see Figure 6-13):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1
plot "data" u 0:2 w l, f(x)
All in all, pretty good.
[image: The raw data with the final fit.]

Figure 6-13. The raw data with the final fit.

So what is the point here? The point is that we started out with
        nothing—no idea at all of what the data looked like. And then, layer
        by layer, we peeled off components of the data, until only random
        noise remained. We ended up with an explicit, analytical formula that
        describes the data remarkably well.
But there is something more. We did so entirely “manually”: by
        plotting the data, trying out some approximations, and wiggling the
        numbers until they agreed reasonably well with the data. At no point
        did we resort to a black-box fitting routine—because we didn’t have
        to! We did just fine. (In fact, after everything was finished, I tried
        to perform a nonlinear fit using the functional form of the analytical
        model as we have worked it out—only to have it explode terribly! The
        model depends on seven parameters, which means that convergence of a
        nonlinear fit can be a bit precarious. In fact, it took me
        longer to try to make the fit work than it took
        me to work the parameters out manually as just demonstrated.)
I’d go even further. We learned more by
        doing this work manually than if we had used a fitting routine. Some
        of the observations (such as the idea to include higher harmonics)
        arose only through direct interaction with the data. And it’s not even
        true that the parameters would be more accurate if they had been
        calculated by a fitting routine. Sure, they would contain 16 digits
        but not more information. Our manual wiggling of the parameters
        enabled us to see quickly and directly the point at which changes to
        the parameters are so small that they no longer influence the
        agreement between the data and the model. That’s when we have
        extracted all the information from the data—any further “precision” in
        the parameters is just insignificant noise.
You might want to try your hand at this yourself and also
        experiment with some variations of your own. For example, you may
        question the choice of the power-law behavior for the long-term trend.
        Does an exponential function (like exp(x)) give a
        better fit? It is not easy to tell from the data, but it makes
        a huge difference if we want to project our findings significantly (10
        years or more) into the future. You might also take a closer look at
        the seasonality. Because it is so regular—and especially since its
        period is known exactly—you should be able to isolate just the
        periodic part of the data in a separate model by averaging
        corresponding months for all years. Finally, there is 20 years’ worth
        of additional data available beyond the “classic” data set used in my
        original exploration.[13] Figure 6-14 shows all the
        available data together with the model that we have developed. Does
        the fit continue to work well for the years past 1990?
[image: The extended data set up to early 2010 together with the model (up to 1990).]

Figure 6-14. The extended data set up to early 2010 together with the
          model (up to 1990).


Workshop: gnuplot



The example commands in this chapter should have given you a
        good idea what working with gnuplot is like, but let’s take a quick
        look at some of the basics.
Gnuplot (http://www.gnuplot.info) is command-line
        oriented: when you start gnuplot, it presents you with a text prompt
        at which to enter commands; the resulting graphs are shown in a
        separate window. Creating plots is simple—the command:
plot sin(x) with lines, cos(x) with linespoints
will generate a plot of (you guessed it) a sine and a cosine.
        The sine will be drawn with plain lines, and the cosine will be drawn
        with symbols (“points”) connected by lines. (Many gnuplot keywords can
        be abbreviated: instead of with
        lines I usually type: w
        l, or w lp instead of
        with linespoints. These short forms
        are a major convenience although rather cryptic in the beginning. In
        this short introductory section, I will make sure to only use the full
        forms of all commands.)
To plot data from a file, you also use the plot command; for instance:
plot "data" using 1:2 with lines
When plotting data from a file, we use the using keyword to specify which columns from
        the file we want to plot—in the command just given, we use entries
        from the first column as x values and use entries
        from the second column for y values.
One of the nice features of gnuplot is that you can apply
        arbitrary transformations to the data as it is being plotted. To do
        so, you put parentheses around each entry in the column specification
        that you want to apply a transform to. Within these parentheses you
        can use any mathematical expression. The data from each column is
        available by prefixing the column index by the dollar sign. An example
        will make this more clear:
plot "data" using (1/$1):($2+$3) with lines
This command plots the sum of the second and third columns (that
        is: $2+$3) as a function of one
        over the value in the first column (1/$1).
It is also possible to mix data and functions in a single plot
        command (as we have seen in the examples in this chapter):
plot "data" using 1:2 with lines, cos(x) with lines
This is different from the Matlab-style of plotting, where a
        function must be explicitly evaluated for a set
        of points before the resulting set of values can be plotted.
We can now proceed to add decorations (such as labels and
        arrows) to the plot. All kinds of options are available to customize
        virtually every aspect of the plot’s appearance: tick marks, the
        legend, aspect ratio—you name it. When we are done with a plot, we can
        save all the commands used to create it (including all decorations)
        via the save command:
save "plot.gp"
Now we can use load "plot.gp"
        to re-create the graph.
As you can see, gnuplot is extremely straightforward to use. The
        one area that is often regarded as somewhat clumsy is the creation of
        graphs in common graphics file formats. The reason for this is
        historical: the first version of gnuplot was written in 1985, a time
        when one could not expect every computer to be connected to a
        graphics-capable terminal and when many of our current file formats
        did not even exist! The gnuplot designers dealt with this situation by
        creating the so-called “terminal” abstraction. All hardware-specific
        capabilities were encapsulated by this abstraction so that the rest of
        gnuplot could be as portable as possible. Over time, this “terminal”
        came to include different graphics file formats
        as well (not just graphics hardware terminals), and this usage
        continues to this day. Exporting a graph to a common file format (such as GIF,
        PNG, PostScript, or PDF) requires a five-step process:
set terminal png
set output "plot.png"
replot
set terminal wxt
set output
In the first step, we choose the output device or “terminal”:
        here, a PNG file. In the second step, we choose the file name. In the
        third step, we explicitly request that the graph be regenerated for
        this newly chosen device. The remaining commands restore the
        interactive session by selecting the interactive wxt terminal (built on top of the wxWidgets
        widget set) and redirecting output back to the interactive terminal.
        If you find this process clumsy and error-prone, then you are not
        alone, but rest assured: gnuplot allows you to write macros, which can
        reduce these five steps to one!
I should mention one further aspect of gnuplot: because it has
        been around for 25 years, it is extremely mature and robust when it
        comes to dealing with typical day-to-day problems. For example,
        gnuplot is refreshingly unpicky when it comes to parsing input files.
        Many other data analysis or plotting programs that I have seen are
        pretty rigid in this regard and will bail when encountering unexpected
        data in an input file. This is the right thing to do in theory, but in
        practice, data files are often not clean—with ad hoc formats and
        missing or corrupted data points. Having your plotting program balk
        over whitespace instead of tabs is a major
        nuisance when doing real work. In contrast, gnuplot usually does an
        amazingly good job at making sense of almost any input file you might
        throw at it, and that is indeed a great help. Similarly, gnuplot
        recognizes undefined mathematical expressions (such as 1/0, log(0),
        and so on) and discards them. This is also very helpful, because it
        means that you don’t have to worry about the domains over which
        functions are properly defined while you are in the thick of things.
        Because the output is graphical, there is usually very little risk
        that this silent discarding of undefined values will lead you to miss
        essential behavior. (Things are different in a computer program, where
        silently ignoring error conditions usually only compounds the
        problem.)

Further Reading



	Gnuplot in Action: Understanding Data with
              Graphs. Philipp K. Janert. Manning Publications. 2010.
If you want to know more about gnuplot, then you may find
            this book interesting. It includes not only explanations of all
            sorts of advanced options, but also helpful hints for working with
            gnuplot.






[12] The Elements of Graphing Data. William
            S. Cleveland. Hobart Press. 1994. The data itself (in a slightly
            different format) is available from StatLib: http://lib.stat.cmu.edu/datasets/visualizing.data.zip
            and from many other places around the Web.

[13] You can obtain the data from the observatory’s official
            website at http://www.esrl.noaa.gov/gmd/ccgg/trends/.
            Also check out the narrative (with photos of the apparatus!) at
            http://celebrating200years.noaa.gov/datasets/mauna/welcome.html.


Part II. Analytics: Modeling Data




Chapter 7. Guesstimation and the Back of the Envelope



LOOK
      AROUND THE ROOM YOU ARE SITTING IN AS YOU READ THIS. NOW ANSWER THE
      FOLLOWING QUESTION: how many Ping-Pong balls would
      it take to fill this room?
Yes, I know it’s lame to make the reader do jot’em-dot’em
      exercises, and the question is old anyway, but please make the effort to
      come up with a number. I am trying to make a point here.
Done? Good—then, tell me, what is the margin of error in your
      result? How many balls, plus or minus, do you think the room might
      accommodate as well? Again, numbers, please! Look at the margin of
      error: can you justify it, or did you just pull some numbers out of thin
      air to get me off your back? And if you found an argument to base your
      estimate on: does the result seem right to you? Too large, too
      small?
Finally, can you state the assumptions you made when answering the
      first two questions? What did or did you not take into account? Did you
      take the furniture out or not? Did you look up the size of a Ping-Pong
      ball, or did you guess it? Did you take into account different ways to
      pack spheres? Which of these assumptions has the largest effect on the
      result? Continue on a second sheet of paper if you need more space for
      your answer.
The game we just played is sometimes called
      guesstimation and is a close relative to the
      back-of-the-envelope calculation. The difference is
      minor: the way I see it, in guesstimation we worry primarily about
      finding suitable input values, whereas in a typical back-of-the-envelope
      calculation, the inputs are reasonably well known and the challenge is
      to simplify the actual calculation to the point that it can be done on
      the back of the proverbial envelope. (Some people seem to prefer napkins
      to envelopes—that’s the more sociable crowd.)
Let me be clear about this: I consider proficiency at
      guesstimation and similar techniques the absolute hallmark of the
      practical data analyst—the person who goes out and solves
      real problems in the real
      world. It is so powerful because it connects a conceptual understanding
      (no matter how rough) with the concrete reality of the problem domain;
      it leaves no place to hide. Guesstimation also generates
      numbers (not theories or models) with their
      wonderful ability to cut through vague generalities and opinion-based
      discussions.
For all these reasons, guesstimation is a crucial skill. It is
      where the rubber meets the road.
The whole point of guesstimation is to come up with an approximate
      answer—quickly and easily. The flip side of this is that it forces us to
      think about the accuracy of the result: first how to estimate the
      accuracy and then how to communicate it. That will be the program for
      this chapter.
Principles of Guesstimation



Let’s step through our introductory Ping-Pong ball example
        together. This will give me an opportunity to point out a few
        techniques that are generally useful.
First consider the room. It is basically rectangular in shape. I
        have bookshelves along several walls; this helps me estimate the
        length of each wall, since I know that shelves are 90 cm (3 ft)
        wide—that’s a pretty universal standard. I also know that I am 1.80 m
        (6 ft) tall, which helps me estimate the height of the room. All told,
        this comes to 5 m by 3.5 m by 2.5 m or about 50
        m3.
Now, the Ping-Pong ball. I haven’t had one in my hands for a
        long time, but I seem to remember that they are about 2.5 cm (1 in) in
        diameter. That means I can line up 40 of them in a meter, which means
        I have 403 in a cubic meter. The way I
        calculate this is: 403 =
        43 · 103 =
        26 · 1,000 = 64,000. That’s the number of
        Ping-Pong balls that fit into a cubic meter.
Taking things together, I can fit 50 · 64,000 or approximately
        3,000,000 Ping-Pong balls into this room. That’s a large number. If
        each ball costs me a dollar at a sporting goods store, then the value
        of all the balls required to fill this room would be many times
        greater than the value of the entire house!
Next, the margins of error. The uncertainty in each dimension is
        at least 10 percent. Relative errors are added to each other in a
        multiplication (we will discuss error propagation later in this
        chapter), so the total error turns out to be 3 · 10 percent = 30
        percent! That’s pretty large—the number of balls required might be as
        low as two million or as high as four million. It is uncomfortable to
        see how the rather harmless-looking 10 percent error in each
        individual dimension has compounded to lead to a 30 percent
        uncertainty.
The same problem applies to the diameter of the
        Ping-Pong balls. Maybe 2.5 cm is a bit low—perhaps 3 cm is more like
        it. Now, that’s a 20 percent increase, which means that the number of
        balls fitting into one cubic meter is reduced by 60 percent (3 times
        the relative error, again): now we can fit only about 30,000 of them
        into a cubic meter. The same goes for the overall estimate: a decrease
        by half if balls are 5 mm larger than initially assumed. Now the range
        is something between one and two million.
Finally, the assumptions. Yes, I took the furniture out. Given
        the uncertainty in the total volume of the room, the space taken up by
        the furniture does not matter much. I also assumed that balls would
        stack like cubes, when in reality they pack tighter if we arrange them
        in the way oranges (or cannonballs) are stacked. It’s a slightly
        nontrivial exercise in geometry to work out the factor, but it comes
        to about 15 percent more balls in the same space.
So, what can we now say with certainty? We will need a few
        million Ping-Pong balls—probably not less than one million and
        certainly not more than five million. The biggest uncertainty is the
        size of the balls themselves; if we need a more accurate estimate than
        the one we’ve obtained so far, then we can look up their exact
        dimensions and adjust the result accordingly.
(After I wrote this paragraph, I finally looked up the size of a
        regulation Ping-Pong ball: 38–40 mm. Oops. This means that only about
        15,000 balls fit into a cubic meter, and so I must adjust all my
        estimates down by a factor of 4.)
This example demonstrates all important aspects of
        guesstimation:
	Estimate sizes of things by comparing them to something you
            know.

	Establish functional relationships by using simplifying
            assumptions.

	Originally innocuous errors can compound dramatically, so
            tracking the accuracy of an estimate is crucial.

	And finally, a few bad guesses on things that are not very
            familiar can have a devastating effect (I really haven’t played
            Ping-Pong in a long time), but they can be corrected easily when
            better input is available.



Still, we did find the order of magnitude, one way or the other:
        a few million.
Estimating Sizes



The best way to estimate the size of an object is to compare
          it to something you know. The shelves played this role in the
          previous example, although sometimes you have to work a little
          harder to find a familiar object to use as reference in any given
          situation.
Obviously, this is easier to do the more you know, and it can
          be very frustrating to find yourself in a situation where you don’t
          know anything you could use as a reference. That being said, it is usually possible to go quite far
          with just a few data points to use as reference values.
(There are stories from the Middle Ages of how soldiers would
          count how many rows of stone blocks were used in the walls of a
          fortress before mounting an attack, the better to estimate the
          height of the walls. Obtaining an accurate value was necessary to
          prepare scaling ladders of the appropriate length: if the ladders
          were too short, then the top of the wall could not be reached; if
          they were too long, the defenders could grab the overhanging tops
          and topple the ladders back over. Bottom line: you’ve got to find
          your reference objects where you can.)
Knowing the sizes of things is therefore the first order of
          business. The more you know, the easier it is to form an estimate;
          but also the more you know, the more you develop a feeling for the
          correct answer. That is an important step when operating with
          guesstimates: to perform an independent “sanity check” at the end to
          ensure we did not make some horrible mistake along the way. (In
          fact, the general advice is that “two (independent) estimates are
          better than one”; this is certainly true but not always possible—at
          least I can’t think of an independent way to work out the Ping-Pong
          ball example we started with.)
Knowing the sizes of things can be
          learned. All it takes is a healthy interest in
          the world around you—please don’t go through the dictionary,
          memorizing data points in alphabetical order. This is not about
          beating your buddies at a game of Trivial Pursuit! Instead, this is
          about becoming familiar (I’d almost say intimate) with the world you
          live in. Feynman once wrote about Hans A. Bethe that “every number
          was near something he knew.” That is the ideal.
The next step is to look things up. In
          situations where one frequently needs relatively good approximations
          to problems coming from a comparably small problem domain,
          special-purpose lookup tables can be a great help. I vividly
          remember a situation in a senior physics lab where we were working
          on an experiment (I believe, to measure the muon lifetime), when the
          instructor came by and asked us some guesstimation problem—I forget
          what it was, but it was nontrivial. None of us had a clue, so he
          whipped out from his back pocket a small booklet the size of a
          playing card that listed the physical properties of all kinds of
          subnuclear particles. For almost any situation that could arise in
          the lab, he had an approximate answer right there.
Specialized lookup tables exist in all kinds of disciplines,
          and you might want to make your own as necessary for whatever it is
          you are working on. The funniest I have seen gave typical sizes (and
          costs) for all elements of a manufacturing plant or warehouse: so
          many square feet for the office of the general manager, so many
          square feet for his assistant (half the size of the boss’s), down to
          the number of square feet per toilet stall, and—not to forget—how
          many toilets to budget for every 20 workers per 8-hour shift.
Finally, if we don’t know anything close and we can’t look
          anything up, then we can try to estimate “from the ground up”:
          starting just with what we know and then piling up arguments to arrive at an estimate. The problem with
          this approach is that the result may be way
          off. We have seen earlier how errors compound, and the more steps we
          have in our line of arguments the larger the final error is likely
          to be—possibly becoming so large that the result will be useless. If
          that’s the case, we can still try and find a cleverer argument that
          makes do with fewer argument steps. But I have to acknowledge that
          occasionally we will find ourselves simply stuck: unable to make an
          adequate estimate with the information we have.
The trick is to make sure this happens only rarely.

Establishing Relationships



Establishing relationships that get us from what we know to
          what we want to find is usually not that hard. This is true in
          particular under common business scenarios, where the questions
          often revolve around rather simple relationships (how something fits
          into something else, how many items of a kind there are, and the
          like). In scientific applications, this type of argument can be
          harder. But for most situations that we are likely to encounter
          outside the science lab, simple geometric and counting arguments
          will suffice.
In the next chapter, we will discuss in more detail the kinds
          of arguments you can use to establish relationships. For now, just
          one recommendation: make it simple! Not:
          keep it simple because, more likely than not,
          initially the problem is not simple; hence you
          have to make it so in order to make it tractable.
Simplifying assumptions let you cut through the fog and get to
          the essentials of a situation. You may incur an error as you
          simplify the problem, and you will want to estimate its effect, but
          at least you are moving toward a result.
An anecdote illustrates what I mean. When working for
          Amazon.com, I had a discussion with a rather sophisticated
          mathematician about how many packages Amazon can typically fit onto
          a tractor-trailer truck, and he started to work out the different
          ways you can stack rectangular boxes into the
          back of the truck! This is entirely missing the point because, for a
          rough calculation, we can make the simplifying assumption that the
          packages can take any shape at all (i.e., they
          behave like a liquid) and simply divide the total volume of the
          truck by the typical volume of a package. Since the individual
          package is tiny compared to the size of the truck, the specific
          shapes and arrangements of individual packages are irrelevant: their
          effect is much smaller than the errors in our estimates for the size
          of the truck, for instance. (We’ll discuss this in more detail in
          Chapter 8, where we discuss
          the mean-field approximation.)
The point of back-of-the-envelope estimates is to retain only
          the core of the problem, stripping away as much nonessential detail
          as possible. Be careful that your sophistication does not get in the
          way of finding simple answers.

Working with Numbers



When working with numbers, don’t automatically reach
          for a calculator! I know that I am now running the risk of sounding
          ridiculous—praising the virtues of old-fashioned reading, ‘riting,
          and ‘rithmetic. But that’s not my point. My point is that it is
          all right to work with numbers. There is no
          reason to avoid them.
I have seen the following scenario occur countless times: a
          discussion is under way, everyone is involved, ideas are flying,
          concentration is intense—when all of a sudden we need a few numbers
          to proceed. Immediately, everything comes to a
          screeching halt while several people grope for their calculators and
          others fire up their computers, followed by hasty attempts to get
          the required answer, which invariably (given the haste) leads to
          numerous keying errors and false starts, followed by arguments about
          the best calculator software to use. In any case, the whole creative
          process just died. It’s a shame.
Besides forcing you to switch context, calculators remove you
          one step further from the nature of the problem. When working out a
          problem in your head, you get a feeling for the significant digits
          in the result: for which digits does the result change as the inputs
          take on any value from their permissible range? The surest sign that
          somebody has no clue is when they quote the results from a
          calculation based on order-of-magnitude inputs to 16 digits!
The whole point here is not to be religious about it—either
          way. If it actually becomes more complicated to work out a numerical
          approximation in your head, then by all means use a calculator. But
          the compulsive habit to avoid working with numbers at all cost
          should be restrained.
There are a few good techniques that help with the kinds of
          calculations required for back-of-the-envelope estimates and that
          are simple enough that they still (even today) hold their own
          against uncritical calculator use. Only the first is a must-have;
          the other two are optional.
Powers of ten



The most important technique for deriving order-of-magnitude
            estimates is to work with orders of magnitudes directly—that is,
            with powers of ten.
It quickly gets confusing to multiply 9,000 by 17 and then
            to divide by 400, and so on. Instead of trying to work with the
            numbers directly, split each number into the most significant
            digit (or digits) and the respective power of ten. The
            multiplications now take place among the digits only while the
            powers of ten are summed up separately. In the example I just
            gave, we split 9,000 = 9 · 1,000, 17 = 1.7 · 10 ≈ 2 · 10, and 400
            = 4 · 100. From the leading digits we have 9 times 2 divided by 4
            equals 4.5, and from the powers of ten we have 3 plus 1 minus 2
            equals 2; so then 4.5 · 102 = 450. That
            wasn’t so hard, was it? (I have replaced 17 with 2 · 10 in this
            approximation, so the result is a bit on the high side, by about 15 percent. I might want to correct
            for that in the end—a better approximation would be closer to 390.
            The exact value is 382.5.)
More systematically, any number can be split into a decimal
            fraction and a power of ten. It will be most convenient to require
            the fraction to have exactly one digit before the decimal point,
            like so:
123.45 = 1.2345 · 102
1,000,000 = 1.0 · 106
0.00321 = 3.21 · 10–3
The fraction is commonly known as the
            mantissa (or the
            significand in most recent usage), whereas
            the power of ten is always referred to as the
            exponent.
This notation significantly simplifies multiplication and
            division between numbers of very different magnitude: the
            mantissas multiply (involving only single-digit multiplications,
            if we restrict ourselves to the most significant digit), and the
            exponents add. The biggest challenge is to keep the two different
            tallies simultaneously in one’s head.

Small perturbations



The techniques in this section are part of a much larger
            family of methods known as perturbation
            theory, methods that play a huge role in applied
            mathematics and related fields. The idea is always the same—we
            split the original problem into two parts: one that is easy to
            solve and one that is somehow “small” compared to the first. If we
            do it right, the effect of the latter part is only a “small
            perturbation” to the first, easy part of the problem. (You may
            want to review Appendix B if some of
            this material is unfamiliar to you.)
The easiest application of this idea is in the calculation
            of simple powers, such as 123. Here is
            how we would proceed:
	123 =
                    (10 + 2)3
	= 103
                    + 3 · 102 · 2 + 3 · 10 ·
                    22 +
                    23

	 	= 1,000 + 600 +
                    ···

	 	= 1,600 + ···



In the first step, we split 12 into 10 + 2: here 10 is the
            easy part (because we know how to raise 10 to an integer power)
            and 2 is the perturbation (because 2 ≪ 10). In the next step, we
            make use of the binomial formula (see Appendix B), ignoring everything except
            the linear term in the “perturbation.” The final result is pretty
            close to the exact value.
The same principle can be applied to many other situations.
            In the context of this chapter, I am interested in this concept
            because it gives us a way to estimate and correct for the error
            introduced by ignoring all but the first digit in powers-of-ten
            calculations. Let’s look at another example:
32 · 430
Using only the most significant digits, this is (3 ·
            101) · (4 ·
            102) = (3 · 4) ·
            101+2 = 12,000. But this is clearly not
            correct, because we dropped some digits from the factors.
We can consider the nonleading digits as small
            perturbations to the result and treat them separately.
            In other words, the calculation becomes:
(3 + 0.2) · (4 + 0.3) · 103 ≈ 3(1
            + 0.1 ...) · 4(1 + 0.1 ...) ·
            103
where I have factored out the largest
            factor in each term. On the righthand side I did not write out the
            correction terms in full—for our purposes, it’s enough to know
            that they are about 0.1.
Now we can make use of the binomial formula:
(1 + ϵ)2 = 1 + 2ϵ +
            ϵ2
We drop the last term (since it will be very small compared
            to the other two), but the second term gives us the size of the
            correction: +2ϵ. In our case, this amounts to about 20 percent,
            since ϵ is one tenth.
I will admit that this technique seems somewhat out of place
            today, although I do use it for real calculations when I don’t
            have a calculator on me. But the true value of this method is that
            it enables me to estimate and reason about the effect that changes
            to my input variables will have on the overall outcome. In other
            words, this method is a first step toward sensitivity
            analysis.

Logarithms



This is the method by which generations before us performed
            numerical calculations. The crucial insight is that we can use
            logarithms for products (and exponentiation) by making use of the
            functional equation for logarithms:
log(xy) = log(x) +
            log(y)
In other words, instead of multiplying
            two numbers, we can add their logarithms. The
            slide rule was a mechanical calculator based on this idea.
Amazingly, using logarithms for multiplication is
            still relevant—but in a slightly different
            context. For many statistical applications (in particular when
            using Bayesian methods), we need to multiply the probabilities of
            individual events in order to arrive at the probability for the
            combination of these events. Since probabilities are by
            construction less than 1, the product of any two probabilities is
            always smaller than the individual factors. It does not take many
            probability factors to underflow the floating-point precision of
            almost any standard computer. Logarithms to the rescue! Instead of
            multiplying the probabilities, take logarithms of the individual
            probabilities and then add the logarithms. (The logarithm of a
            number that is less than 1 is negative, so one usually works with
            –log(p).) The resulting numbers, although
            mathematically equivalent, have much better numerical properties.
            Finally, since in many applications we mostly care which of a
            selection of different events has the maximum probability, we
            don’t even need to convert back to probabilities: the event with
            maximum probability will also be the one with the maximum
            (negative) logarithm.


More Examples



We have all seen this scene in many a Hollywood movie: the
          gangster comes in to pay off the hitman (or pay for the drug deal,
          or whatever it is). Invariably, he hands over an elegant briefcase
          with the money—cash, obviously. Question: how much is in the
          case?
Well, a briefcase is usually sized to hold two letter-size
          papers next to each other; hence it is about 17 by 11 inches wide,
          and maybe 3 inches tall (or 40 by 30 by 7 centimeters). A bank note
          is about 6 inches wide and 3 inches tall, which means that we can
          fit about six per sheet of paper. Finally, a 500-page ream of
          printer paper is about 2 inches thick. All told, we end up with 2 ·
          6 · 750 = 9,000 banknotes. The highest dollar denomination in
          general circulation is the $100 bill,[14] so the maximum value of that payoff was about $1
          million, and certainly not more than $5 million.
Conclusion: for the really big jobs, you need to pay by check.
          Or use direct transfer.
For a completely different example, consider the following
          question. What’s the typical takeoff weight of a large,
          intercontinental jet airplane? It turns out that you can come up
          with an approximate answer even if you don’t know
          anything about planes.
A plane is basically an aluminum tube with wings. Ignore the
          wings for now; let’s concentrate on the tube. How big is it? One way
          to find out is to check your boarding pass: it will display your row
          number. Unless you are much classier than your author, chances are
          that it shows a row number in the range of 40–50. You can estimate
          that the distance between seats is a bit over 50 cm—although it
          feels closer. (When you stand in the aisle, facing sideways, you can
          place both hands comfortably on the tops of two consecutive seats;
          your shoulders are about 30 cm apart, so the distance between seats
          must be a tad greater than that.) Thus we have the length: 50 · 0.5
          m. We double this to make up for first and business class, and to
          account for cockpit and tail. Therefore, the length of the tube is
          about 50 m. How about its diameter? Back in economy, rows are about
          9 seats abreast, plus two aisles. Each seat being just a bit wider
          than your shoulders (hopefully), we end up with a diameter of about
          5 m. Hence we are dealing with a tube that is 50 m long and 5 m in
          diameter.
As you walked through the door, you might have noticed the
          strength or thickness of the tube: it’s about 5 mm. Let’s make that
          10 mm (1 cm) to account for “stuff”: wiring, seats, and all kinds of
          other hardware that’s in the plane. Imagining now that you unroll
          the entire plane (the way you unroll aluminum foil), the result is a
          sheet that is 50 · π · 5 · 0.01m3. The
          density of aluminum is a little higher than water (if you have ever
          been to a country that uses aluminum coins, you know that you can
          barely make them float), so let’s say it’s 3
          g/cm3.
Table 7-1. Approximate measurements for some common intercontinental
            jets
	 	Length
	Width
	Diameter
	Weight (empty)
	Weight (full)
	Passengers

	B767
	50 m
	50 m
	5 m
	90 t
	150 t
	200

	B747
	70 m
	60 m
	6.5 m
	175 t
	350 t
	400

	A380
	75 m
	80 m
	7 m
	275 t
	550 t
	500




It is at this point that we need to employ the proverbial back
          of the envelope (or the cocktail napkin they gave you with the
          peanuts) to work out the numbers. It will help to realize that there
          are 1003 = 106
          cubic centimeters in a cubic meter and that the density of aluminum
          can therefore be written as 3 tons per cubic meter. The final mass
          of the “tube” comes out to about 25 ton. Let’s double this to take
          into account the wings (wings are about as long as the fuselage is
          wide—if you look at the silhouette of a plane in the sky, it forms
          an approximate square); this yields 50 ton just for the “shell” of
          the airplane. It does not take into account the engines and most of
          the other equipment inside the plane.
Now let’s compare this number with the load. We have 50 rows,
          half of them with 9 passengers and the other half with 5; this gives
          us an average of 7 passengers per row or a total of 350 passengers
          per plane. Assuming that each passenger contributes 100 kg (body
          weight and baggage), the load amounts to 35 ton: comparable to the
          weight of the plane itself. (This weight-to-load ratio is actually
          not that different than for a car, fully occupied by four people. Of
          course, if you are driving alone, then the ratio for the car is
          much worse.)
How well are we doing? Actually, not bad at all: Table 7-1 lists typical
          values for three planes that are common on transatlantic routes: the
          mid size Boeing 767, the large Boeing 747 (the “Jumbo”), and the
          extra-large Airbus 380. That’s enough to check our calculations. We
          are not far off.
(What we totally missed is that planes don’t fly on air and
          in-flight peanuts alone: in fact, the greatest single contribution
          to the weight of a fully loaded and fuelled airplane is the weight
          of the fuel. You can estimate its weight as
          well, but to do so, you will need one additional bit of information:
          the fuel consumption of a modern jet airplane per passenger and mile
          traveled is less than that of a typical compact car with only a
          single passenger.)
That was a long and involved estimation, and I won’t blame you
          if you skipped some of the intermediate steps. In case you are just
          joining us again, I’d like to emphasize one point: we came up with a
          reasonable estimate without having to resort to any “seat of the
          pants” estimates—even though we had no prior knowledge! Everything
          that we used, we could either observe directly (such as the number of
          rows in the plane or the thickness of the fuselage walls) or could
          relate to something that was familiar to us (such as the distance
          between seats). That’s an important takeaway!
But not all calculations have to be complicated. Sometimes,
          all you have to do is “put two and two together.” A friend told me
          recently that his company had to cut their budget by a million
          dollars. We knew that the overall budget for this company was about
          five million dollars annually. I also knew that, since it was mostly
          a service company, almost all of its budget went to payroll (there
          was no inventory or rent to speak of). I could therefore tell my
          friend that layoffs were around the corner—even with a salary
          reduction program, the company would have to cut at least 15 percent
          of their staff. The response was: “Oh, no, our management would
          never do that.” Two weeks later, the company
          eliminated one third of all positions.

Things I Know



Table 7-2 is a
          collection of things that I know and frequently use to make
          estimates. Of course, this list may seem a bit whimsical, but it is
          actually pretty serious. For instance, note the
          range of areas from which these items are
          drawn! What domains can you reason about, given the information in
          this table?
Also notice the absence of systematic “scales.” That is no
          accident. I don’t need to memorize the weights of a mouse, a cat,
          and a horse—because I know (or can guess) that a mouse is 1,000
          times smaller than a human, a cat 10 times smaller, and a horse 10
          times larger. The items in this table are not
          intended to be comprehensive; in fact, they are the bare minimum.
          Knowing how things relate to each other lets me take it from
          there.
Of course, this table reflects my personal history and
          interests. Yours will be different.


How Good Are Those Numbers?



Remember the Ping-Pong ball question that started out this
        chapter? I once posted that question as a homework problem in a class,
        and one student’s answer was something like 1,020,408.16327. (Did you
        catch both mistakes? Not only does the result of
        this rough estimate pretend to be accurate to within a single ball;
        but the answer also includes a fractional part—which is meaningless,
        given the context.) This type of confusion is incredibly common: we
        focus so much on the calculation (any calculation) that we forget to
        interpret the result!
This story serves as a reminder that there are two questions
        that we should ask before any calculation as well
        as one afterward. The two questions to ask before
        we begin are:
	What level of correctness do I
            need?

	What level of correctness can I
            afford?



Table 7-2. Reference points for guesstimations
	Size of an atomic data
                type
	10 bytes

	A page of text
	55 lines of 80 characters, or about
                4,500 characters total

	A record (of
                anything)
	100–1,000 bytes

	A car
	4 m long, 1 ton
                weight

	A person
	2 m tall, 100 kg
                weight

	A shelf
	1 m wide, 2 m tall

	Swimming pool (not
                Olympic)
	25 × 12.5 meters

	A story in a commercial
                building
	4 m high

	Passengers on a large
                airplane
	350

	Speed of a jetliner
	1,000 km/hr

	Flight time from NY
	6 hr (to the West Coast or
                Europe)

	Human, walking
	1 m/s (5 km/hr)

	Human, maximum power
                output
	200 W (not
                sustainable)

	Power consumption of a water
                kettle
	2 kW

	Electricity grid
	100 V (U.S.), 220 V
                (Europe)

	Household fuse
	16 A

	3 · 3
	10 (minus 10%)

	π
	3

	Large city
	1 million

	Population, Germany or
                Japan
	100 million

	Population, USA
	300 million

	Population, China or
                India
	1 billion

	Population, Earth
	7 billion

	U.S. median annual
                income
	$60,000

	U.S. federal income tax
                rate
	25% (but also as low as 0% and as
                high as 40%)

	Minimum hourly wage
	$10 per hour

	Billable hours in a
                year
	2,000 (50 weeks at 40 hours per
                week)

	Low annual inflation
	2%

	High annual inflation
	8%

	Price of a B-2 bomber
	$2 billion

	American Civil War; Franco-Prussian
                War
	1860s; 1870s

	French Revolution
	1789

	Reformation
	1517

	Charlemagne
	800

	Great Pyramids
	3000 B.C.E.

	Hot day
	35 Celsius

	Very hot kitchen oven
	250 Celsius

	Steel melts
	1200 Celsius

	Density of water
	1
                g/cm3

	Density of aluminum
	3
                g/cm3

	Density of lead
	13
                g/cm3

	Density of gold
	20
                g/cm3

	Ionization energy of
                hydrogen
	13.6 eV

	Atomic diameter (Bohr
                radius)
	10–10
                m

	Energy of X-ray
                radiation
	keV

	Nuclear binding energy per
                particle
	MeV

	Wavelength of the sodium
                doublet
	590 nm




The question to ask afterward is:
	What level of correctness did I
            achieve?



I use the term “correctness” here a bit loosely to refer to the
        quality of the result. There are actually two different concepts
        involved: accuracy and
        precision.
Accuracy
	Accuracy expresses how close the result of a calculation or
            measurement comes to the “true” value. Low accuracy is due to
            systematic error.



Precision
	Precision refers to the “margin of error” in the calculation
            or the experiment. In experimental situations, precision tells us
            how far the results will stray when the experiment is repeated
            several times. Low precision is due to random noise.



Said another way: accuracy is a measure for the correctness of
        the result, and precision is a measure of the result’s
        uncertainty.
Before You Get Started: Feasibility and Cost



The first question (what level of correctness is needed) will
          define the overall approach—if I only need an order-of-magnitude
          approximation, then the proverbial back of the envelope will do; if
          I need better results, I might need to work harder. The second
          question is the necessary corollary: it asks whether I will be able
          to achieve my goal given the available resources. In other words,
          these two questions pose a classic engineering trade-off
          (i.e., they require a regular cost–benefit
          analysis).
This obviously does not matter much for a throwaway
          calculation, but it matters a lot for bigger projects. I once
          witnessed a huge project (involving a dozen developers for over a
          year) to build a computation engine that had failed to come clear on
          both counts until it was too late. The project was eventually
          canceled when it turned out that it would cost
          more to achieve the accuracy required than the
          project was supposed to gain the company in increased revenue!
          (Don’t laugh—it could happen to you. Or at least in your
          company.)
This story points to an important fact: correctness is usually
          expensive, and high correctness is often
          disproportionally more expensive. In other
          words, a 20 percent approximation can be done on the back of an
          envelope, a 5 percent solution can be done in a couple of months,
          but the cost for a 1 percent solution may be astronomical. It is
          also not uncommon that there is no middle ground
          (e.g., an affordable 10 percent
          solution).
I have also seen the opposite problem: projects chasing
          correctness that is not really necessary—or not achievable because
          the required input data is not available or of poor quality. This is
          a particular risk if the project involves the opportunity to play
          with some attractive new technology.
Finding out the true cost or benefit of higher-quality results
          can often be tricky. I was working on a project to forecast the
          daily number of visitors viewing the company’s website, when I was
          told that “we must have absolute forecast accuracy; nothing else
          matters.” I suggested that if this were so, then we
          should take the entire site down, since doing
          so would guarantee a perfect forecast (zero page views). Yet because
          this would also imply zero revenue from display advertising, my
          suggestion focused the client’s mind wonderfully to define more
          clearly what “else” mattered.

After You Finish: Quoting and Displaying Numbers



It is obviously pointless to report or quote results to more
          digits than is warranted. In fact, it is misleading or at the very
          least unhelpful, because it fails to communicate to the reader
          another important aspect of the result—namely its
          reliability!
A good rule (sometimes known as Ehrenberg’s
          rule) is to quote all digits up to and including the
          first two variable digits. Starting from the
          left, you keep all digits that do not change over the entire range
          of numbers from one data point to the next; then you also keep the
          first two digits that vary over the entire
          range from 0 to 9 as you scan over all data points. An
          example will make this clear. Consider the following data
          set:
121.733
122.129
121.492
119.782
120.890
123.129
Here, the first digit (from the left) is always 1 and the
          second digit takes on only two values (1 and 2), so we retain them
          both. All further digits can take on any value between 0 and 9, and
          we retain the first two of them—meaning that we retain a total of
          four digits from the left. The two right-most
          digits therefore carry no significance, and we can drop them when
          quoting results. The mean (for instance) should be reported
          as:
121.5
Displaying further digits is of no value.
This rule—to retain the first two digits that vary over the
          entire range of values and all digits to the left of them—works well
          with the methods described in this chapter. If you are working with
          numbers as I suggested earlier, then you also develop a sense for
          the digits that are largely unaffected by reasonable variations in
          the input parameters as well as for the position in the result after
          which uncertainties in the input parameters corrupt the
          outcome.
Finally, a word of warning. The accuracy level of a numerical
          result should be established from the outset, since doing so later
          will trigger resistance. I have encountered a system that reported
          projected sales numbers (which were typically in the hundreds of
          thousands) to six “significant” digits (e.g.,
          as 324,592 or so). But because these were forecasts that were
          at best accurate to within 30 percent,
          all digits beyond the first were absolute junk!
          (Note that 30 percent of 300,000 is 100,000, which means that the
          confidence band for this result was 200,000–400,000.)
          However, a later release of the same software, which now reported
          only the actually significant digits, was met by violent opposition
          from the user community because it was “so much less
          precise”!


Optional: A Closer Look at Perturbation Theory and Error
        Propagation



I already mentioned the notion of “small perturbations.” It is
        one of the great ideas of applied mathematics, so it is worth a closer
        look.
Whenever we can split a problem into an “easy” part and a part
        that is “small,” the problem lends itself to a perturbative solution.
        The “easy” part we can solve directly (that’s what we mean by “easy”),
        and the part that is “small” we solve in an approximative fashion. By
        far the most common source of approximations in this area is based on
        the observation that every function (every curve) is linear (a
        straight line) in a sufficiently small neighborhood: we can therefore
        replace the full problem by its linear approximation when dealing with
        the “small” part—and linear problems are always solvable.
As a simple example, let’s calculate [image: ]. Can we split this into a “simple” and a
        “small” problem? Well, we know that 16 = 42
        and so [image: ]. That’s the simple part, and we therefore now
        write [image: ]. Obviously 1 ≪ 16, so there’s the “small” part
        of the problem. We can now rewrite our problem as follows:
[image: Optional: A Closer Look at Perturbation Theory and Error Propagation]
It is often convenient to factor out everything so that we are
        left with 1 + small stuff as in the second line
        here. At this point, we also replaced the small part with ϵ (we will
        put the numeric value back in at the end).
So far everything has been exact, but to make progress we need
        to make an approximation. In this case, we replace the square root by
        a local approximation around 1. (Remember: ϵ is small, and
        [image: ] is easy.) Every smooth function can be replaced
        by a straight line locally, and if we don’t go too far, then that
        approximation turns out to be quite good (see Figure 7-1). These
        approximations can be derived in a systematic fashion by a process
        known as Taylor expansion. The figure shows both
        the simplest approximation, which is just a straight line, and also
        the next-higher (second-order) approximation, which is even
        better.
Taylor expansions are so fundamental that they are almost
        considered a fifth basic operation (after
        addition, subtraction, multiplication, and division). See Appendix B for a little more information on
        them.
[image: The square-root function and the first two approximations around x = 0.]

Figure 7-1. The square-root function [image: ] and the first two approximations around
          x = 0.

With the linear approximation in place, our problem has now
        become quite tractable:
[image: The square-root function and the first two approximations around x = 0.]
We can now plug the numeric value ϵ = 1/16 back in:
        [image: ]. The exact value is [image: ] .... Our approximation is pretty good.
Error Propagation



Error propagation considers situations where we have some
          quantity x and an associated uncertainty
          δx. We write x ±
          δx to indicate that we expect the true value to
          lie anywhere in the range from x –
          δx to x +
          δx. In other words, we have not just a single
          value for the quantity x, but instead a whole
          range of possible values.
Now suppose we have several quantities—each with its own error
          term—and we need to combine them in some fashion. We probably know
          how to work with the quantities themselves, but what about the
          uncertainties? For example, we know both the height and width of a
          rectangle to within some range: h +
          δh and w +
          δw. We also know that the area is
          A = hw (from basic
          geometry). But what can we say about the uncertainty in the
          area?
This kind of scenario is ideal for the perturbative methods
          discussed earlier: the uncertainties are “small,” so we can use
          simplifying approximations to deduce their behavior.
Let’s work through the area example:
[image: Error Propagation]
Here again we have factored the primary terms out, to end up
          with terms of the form 1 + small stuff, because
          that makes life easier. This also means that, instead of expressing
          the uncertainty through the absolute error
          δh or δw, we express them
          through the relative error
          δh/h or
          δw/w. (Observe that if
          δh ≪ h, then
          δh/h ≪ 1.)
So far, everything has been exact. Now comes the
          approximation: the error terms are small (in fact, smaller than 1);
          hence their product is extra-small, and we can therefore drop it.
          Our final result is thus [image: ] or, in words: “When multiplying two
          quantities, their relative errors add.” So if I know both the width
          and the height to within 10 percent each, then my uncertainty in the
          area will be 20 percent.
Here are a few more results of this form, which are useful
          whenever you work with quantities that have associated uncertainties
          (you might want to try deriving some of these yourself):
[image: Error Propagation]
The most important ones are the first two: when adding (or
          subtracting) two quantities, their absolute errors add; and when
          multiplying (or dividing) two quantities, their relative errors add.
          This implies that, if one of two quantities has a significantly
          larger error than the other, then the larger error dominates the
          final uncertainty.
Finally, you may have seen a different way to calculate errors
          that gives slightly tighter bounds, but it is only appropriate if
          the errors have been determined by calculating the variances in
          repeated measurements of the same quantity.
          Only in that case are the statistical assumptions valid upon which
          this alternative calculation is based. For guesstimation, the simple
          (albeit more pessimistic) approach described here is more
          appropriate.


Workshop: The Gnu Scientific Library (GSL)



What do you do when a calculation becomes too involved
        to do it in your head or even on the back of an envelope? In
        particular, what can you do if you need the extra
        precision that a simple order-of-magnitude estimation (as practiced in
        this chapter) will not provide? Obviously, you reach for a numerical
        library!
The Gnu Scientific Library, or GSL, (http://www.gnu.org/software/gsl/) is the
        best currently available open source library for numerical and
        scientific calculations that I am aware of. The list of included
        features is comprehensive, and the implementations are of high
        quality. Thanks to some unifying conventions, the API, though
        forbidding at first, is actually quite easy to learn and comfortable
        to use. Most importantly, the library is mature, well documented, and
        reliable.
Let’s use it to solve two rather different problems; this will
        give us an opportunity to highlight some of the design choices
        incorporated into the GSL. The first example involves matrix and
        vector handling: we will calculate the singular value decomposition
        (SVD) of a matrix. The second example will demonstrate how the GSL
        handles non-linear, iterative problems in numerical analysis as we
        find the minimum of a nonlinear function.
The listing that follows should give you a flavor of what vector
        and matrix operations look like when using the GSL. First, we allocate
        a couple of (two-dimensional) vectors and assign values to their
        elements. We then perform some basic vector operations: adding one
        vector to another and performing a dot product. (The result of a dot
        product is a scalar, not another vector.) Finally, we allocate and
        initialize a matrix and calculate its SVD. (See Chapter 14 for more
        information on vector and matrix operations.)
/* Basic Linear Algebra using the GSL */

#include <stdio.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

int main()  {
  double r;

  gsl_vector *a, *b, *s, *t;
  gsl_matrix *m, *v;


  /* --- Vectors --- */
  a = gsl_vector_alloc( 2 );    /* two dimensions */
  b = gsl_vector_alloc( 2 );

  /* a = [ 1.0, 2.0 ] */
  gsl_vector_set( a, 0, 1.0 );
  gsl_vector_set( a, 1, 2.0 );
  /* b = [ 3.0, 6.0 ] */
  gsl_vector_set( b, 0, 3.0 );
  gsl_vector_set( b, 1, 6.0 );

  /* a += b (so that now  a = [ 4.0, 8.0 ]) */
  gsl_vector_add( a, b );
  gsl_vector_fprintf( stdout, a, "%f" );

  /* r = a . b  (dot product) */
  gsl_blas_ddot( a, b, &r );
  fprintf( stdout, "%f\n", r );

  /* --- Matrices --- */
  s = gsl_vector_alloc( 2 );
  t = gsl_vector_alloc( 2 );

  m = gsl_matrix_alloc( 2, 2 );
  v = gsl_matrix_alloc( 2, 2 );

  /* m = [ [1, 2],
           [0, 3] ] */
  gsl_matrix_set( m, 0, 0, 1.0 );
  gsl_matrix_set( m, 0, 1, 2.0 );
  gsl_matrix_set( m, 1, 0, 0.0 );
  gsl_matrix_set( m, 1, 1, 3.0 );

  /* m = U s V^T  (SVD : singular values are in vector s) */
  gsl_linalg_SV_decomp( m, v, s, t );
  gsl_vector_fprintf( stdout, s, "%f" );


  /* --- Cleanup --- */
  gsl_vector_free( a );
  gsl_vector_free( b );
  gsl_vector_free( s );
  gsl_vector_free( t );

  gsl_matrix_free( m );
  gsl_matrix_free( v );

  return 0;
}
It is becoming immediately (and a little painfully) clear that
        we are dealing with plain C, not C++ or any other more modern,
        object-oriented language! There is no operator overloading; we must
        use regular functions to access individual vector and matrix elements.
        There are no namespaces, so function names tend to be lengthy. And of
        course there is no garbage collection!
What is not so obvious is that element
        access is actually boundary checked: if you try to access a vector
        element that does not exist (e.g., gsl_vector_set( a, 4, 1.0 );), then the GSL
        internal error handler will be invoked. By default, it will halt the
        program and print a message to the screen. This is quite generally
        true: if the library detects an error—including bad inputs, failure to
        converge numerically, or an out-of-memory situation—it will invoke its
        error handler to notify you. You can provide your own error handler to
        respond to errors in a more flexible fashion. For a fully tested
        program, you can also turn range checking on vector and matrix
        elements off completely, to achieve the best
        possible runtime performance.
Two more implementation details before leaving the linear
        algebra example: although the matrix and vector elements are of type
        double in this example, versions of
        all routines exist for integer and complex data types as well.
        Furthermore, the GSL will use an optimized implementation of the BLAS
        (Basic Linear Algebra Subprograms) API if one is available; if not,
        the GSL comes with its own, basic implementation.
Now let’s take a look at the second example. Here we use the GSL
        to find the minimum of a one-dimensional function. The function to
        minimize is defined at the top of the listing:
        x2
        log(x). In general, nonlinear problems such as
        this must be solved iteratively: we start with a guess, then calculate
        a new trial solution based on that guess, and so on until the result
        meets whatever stopping criteria we care to define.
At least that’s what the introductory textbooks tell you.
In the main part of the program, we instantiate a “minimizer,”
        which is an encapsulation of a specific minimization algorithm (in
        this case, Golden Section Search—others are available, too) and
        initialize it with the function to minimize as well as our initial
        guess for the interval containing the minimum.
Now comes the surprising part: an explicit loop! In this loop,
        the “minimizer” takes a single step in the iteration
        (i.e., calculates a new, tighter interval
        bounding the minimum) but then essentially hands control back to us.
        Why so complicated? Why can’t we just specify the desired accuracy of
        the interval and let the library handle the entire iteration for us?
        The reason is that real problems more often than not don’t converge as
        obediently as the textbooks suggest! Instead they can (and do) fail in
        a variety of ways: they converge to the wrong solution, they attempt
        to access values for which the function is not defined, they attempt
        to make steps that (for reasons of the larger system of which the
        routine is only a small part) are either too large or too small, or
        they diverge entirely. Based on my experience, I have come to the
        conclusion that every nonlinear problem is
        different (whereas every linear problem is the same), and
        therefore generic black-box routines don’t work!
This brings us back to the way this minimization routine is
        implemented: the required iteration is not a black box and instead is
        open and accessible to us. We can simply monitor its progress (as we
        do in this example, by printing every iteration step to the screen),
        but we could also interfere with it—for instance to enforce some
        invariant that is specific to our problem. The “minimizer” does as
        much as it can by calculating and proposing a new interval;
        ultimately, however, we are in control over how the iteration
        progresses. (For the textbook example used here, this doesn’t matter,
        but it makes all the difference when you are doing serious numerical
        analysis on real problems!)
/* Minimizing a function with the GSL */

#include <stdio.h>
#include <gsl/gsl_min.h>

double fct( double x, void *params )  {
  return x*x*log(x);
}

int main()  {
  double a = 0.1, b = 1; /*  interval which bounds the minimum */

  gsl_function f;        /* pointer to the function to minimize */
  gsl_min_fminimizer *s; /* pointer to the minimizer instance */

  f.function = &fct;     /* the function to minimize */
  f.params = NULL;       /* no additional parameters needed */

  /* allocate the minimizer, choosing a particular algorithm */
  s = gsl_min_fminimizer_alloc( gsl_min_fminimizer_goldensection );

  /* initialize the minimizer with a function an an initial interval */
  gsl_min_fminimizer_set( s, &f, (a+b)/2.0, a, b );

  while ( b-a > 1.e-6 )  {
    /* perform one minimization step */
    gsl_min_fminimizer_iterate( s );

    /* obtain the new bounding interval */
    a = gsl_min_fminimizer_x_lower( s );
    b = gsl_min_fminimizer_x_upper( s );

    printf( "%f\t%f\n", a, b );
  }

  printf( "Minimum Position: %f\tValue: %f\n",
          gsl_min_fminimizer_x_minimum(s), gsl_min_fminimizer_f_minimum(s) );

  gsl_min_fminimizer_free( s );

  return 0;
}
Obviously, we have only touched on the GSL. My primary intention
        in this section was to give you a sense for the way the GSL is
        designed and for what kinds of considerations it incorporates. The
        list of features is extensive—consult the documentation for more
        information.

Further Reading



	Guesstimation: Solving the World’s Problems on
              the Back of a Cocktail Napkin. Lawrence Weinstein and John A. Adam. Princeton University
              Press. 2008.
This little book contains about a hundred guesstimation
            problems (with solutions!) from all walks of life. If you are
            looking for ideas to get you started, look no further.

	Programming Pearls. Jon Bentley. 2nd ed., Addison-Wesley. 1999; also,
              More Programming Pearls: Confessions of a
              Coder. Jon Bentley. Addison-Wesley. 1989.
These two volumes of reprinted magazine columns are
            delightful to read, although (or because) they breathe the
            somewhat dated atmosphere of the old Bell Labs. Both volumes
            contain chapters on guesstimation problems in a programming
            context.

	Back-of-the-Envelope
              Physics. Clifford E. Swartz. Johns Hopkins University Press.
              2003.
Physicists regard themselves as the inventors of
            back-of-the-envelope calculations. This book contains a set of
            examples from introductory physics (with solutions).

	The Flying Circus of
              Physics. Jearl Walker. 2nd ed., Wiley. 2006.
If you’d like some hints on how to take an interest in the
            world around you, try this book. It contains hundreds of everyday
            observations and challenges you to provide an explanation for
            each. Why are dried coffee stains always darker around the rim?
            Why are shower curtains pulled inward? Remarkably, many of these
            observations are still not fully understood! (You might also want
            to check out the rather different and more challenging first
            edition.)

	Pocket Ref. Thomas J. Glover. 3rd ed., Sequoia Publishing.
              2009.
This small book is an extreme example of the “lookup” model.
            It seems to contain almost everything: strength of wood beams,
            electrical wiring charts, properties of materials, planetary data,
            first aid, military insignia, and sizing charts for clothing. It
            also shows the limitations of an overcomplete collection of
            trivia: I simply don’t find it all that useful, but it is
            interesting for the breadth of topics covered.






[14] Larger denominations exist but—although legal tender—are
              not officially in circulation and apparently fetch far more than
              their face value among collectors.


Chapter 8. Models from Scaling Arguments



AFTER
      FAMILIARIZING YOURSELF WITH THE DATA THROUGH PLOTS AND GRAPHS, THE NEXT
      STEP IS TO START building a model for the data.
      The meaning of the word “model” is quite hazy, and I don’t want to spend
      much time and effort attempting to define this concept in an abstract
      way. For our purposes, a model is a mathematical
      description of the data that ideally is guided by our understanding of
      the system under consideration and that relates the various variables of
      the system to each other: a “formula.”
Models



Models like this are incredibly important. It is at this point
        that we go from the merely descriptive (plots and
        graphs) to the prescriptive: having a model
        allows us to predict what the system will do under a certain set of
        conditions. Furthermore, a good or truly useful model—because it helps
        us to understand how the system works—allows us
        to do so without resorting to the model itself or having to evaluate
        any particular formula explicitly. A good model ties the different
        variables that control the system together in such a way that we can
        see how varying any one of them will influence the outcome. It is this
        use of models—as an aide to or expression of our understanding—that is
        the most important one. (Of course, we must still evaluate the model
        formulas explicitly in order to obtain actual numbers for a specific
        prediction.)
I should point out that this view of models and what they can do
        is not universal, and you will find the term used quite differently
        elsewhere. For instance, statistical models (and this includes
        machine-learning models) are much more descriptive: they do not
        purport to explain the observed behavior in the
        way just described. Instead, their purpose is to predict expected
        outcomes with the greatest level of accuracy possible (numbers in,
        numbers out). In contrast, my training is in theoretical physics,
        where the development of conceptual understanding
        of the observed behavior is the ultimate goal. I will use all
        available information about the system and how it works (or how I
        suspect it works!) wherever I can; I don’t
        restrict myself to using only the information contained in the data
        itself. (This is a practice that statisticians traditionally frown
        upon, because it constitutes a form of “pollution” of the data. They
        may very well be right, but my purpose is different: I don’t want to
        understand the data, I want to understand the
        system!) At the same time, I don’t consider the
        absolute accuracy of a model paramount: a model that yields only
        order-of-magnitude accuracy but helps me understand the system’s
        behavior (so that I can, for instance, make informed trade-off
        decisions) is much more valuable to me than a model that yields
        results with 1 percent accuracy but that is a black box
        otherwise.
To be clear: there are situations when achieving the best
        possible accuracy is all that matters and conceptual understanding is
        of little interest. (Often these cases involve repeatable processes in
        well-understood systems.) If this describes your situation, then you
        need to use different methods that are appropriate to your problem
        scenario.
Modeling



As should be clear from the preceding description, building
          models is basically a creative process. As such, it is difficult (if
          not impossible) to teach: there are no established techniques or
          processes for arriving at a useful model in any given scenario. One
          common approach to teaching this material is to present a large
          number of case studies, describing the problem situations and
          attempts at modeling them. I have not found this style to be very
          effective. First of all, every (nontrivial) problem is different,
          and tricks and fortuitous insights that work well for one example
          rarely carry over to a different problem. Second, building effective
          models often requires fairly deep insight into the particulars of
          the problem space, so you may end up describing lots of tedious
          details of the problem when actually you wanted
          to talk about the model (or the
          modeling).
In this chapter, we will take a different approach. Effective
          modeling is often an exercise in determining “what to leave out”:
          good models should be simple (so that they are workable) yet retain
          the essential features of the system—certainly those that we are
          interested in.
As it turns out, there are a few essential arguments and
          approximations that prove helpful again and again to make a complex
          problem tractable and to identify the dominant behavior. That’s what
          I want to talk about.

Using and Misusing Models



Just a reminder: models are not reality. They are descriptions
          or approximations of reality—often quite coarse ones! We need to
          ensure that we only place as much confidence in a model as is
          warranted.
How much confidence is warranted? That depends on how
          well-tested the model is. If a model is based on a good theory,
          agrees well with a wide range of data sets, and has shown it can
          predict observations correctly, then our confidence may be quite
          strong.
At the other extreme are what one might call “pie in the sky”
          models: ad hoc models, involving half a dozen (or so) parameters—all
          of which have been estimated independently and not verified against
          real data. The reliability of such a model is highly dubious: each
          of the parameters introduces a certain degree of uncertainty, which
          in combination can make the results of the model meaningless. Recall
          the discussion in Chapter 7: three
          parameters known to within 10 percent produce an uncertainty in the
          final result of 30 percent—and that assumes that the parameters are
          actually known to within 10 percent! With four to six parameters
          that possibly are known, only much less precisely than 10 percent,
          the situation is correspondingly worse. (Many business models fall
          into this category.)
Also keep in mind that virtually all models have only a
          limited region of validity. If you try to apply an existing model to
          a drastically different situation or use input values that are very
          different from those that you used to build the model, then you may
          well find that the model makes poor predictions. Be sure to check
          that the assumptions on which the model is based are actually
          fulfilled for each application that you have in mind!


Arguments from Scale



Next to the local stadium there is a large, open parking lot.
        During game days, the parking lot is filled with cars, and—for obvious
        reasons—a line of portable toilets is set up all along one of the
        edges of the parking lot. This poses an interesting balancing problem:
        will this particular arrangement work for all situations, no matter
        how large the parking lot in question?
The answer is no. The number of people in the parking lot grows
        with the area of the parking lot, which grows with the square of the
        edge length (i.e., it “scales as”
        L2); but the number of
        toilets is proportional to the edge length itself (so it scales as
        L). Therefore, as we make the parking lot bigger
        and bigger, there comes a point where the number of people overwhelms
        the number of available facilities. Guaranteed.
Scaling Arguments



This kind of reasoning is an example of a scaling
          argument. Scaling arguments try to capture how some
          quantity of interest depends on a control parameter. In particular,
          a scaling argument describes how the output quantity will change as
          the control parameter changes. Scaling arguments are a particularly
          fruitful way to arrive at symbolic expressions for phenomena
          (“formulas”) that can be manipulated analytically.
You should have observed that the expressions I gave in the
          introductory example were not “dimensionally consistent.” We had
          people expressed as the square of a length and toilets expressed as
          length—what is going on here? Nothing, I merely omitted some detail
          that was not relevant for the argument I tried to make. A car takes
          up some amount of space on a parking lot; hence given the size of
          the parking lot (its area), we can figure out how many cars it can
          accommodate. Each car seats on average two people (on a game day),
          so we can figure out the number of people as well. Each person has a
          certain probability of using a bathroom during the duration of the
          game and will spend a certain number of minutes there. Given all
          these parameters, we can figure out the required “toilet
          availability minutes.” We can make a similar argument to find the
          “availability minutes” provided by the installed facilities. Observe
          that none of these parameters depend on the size of the parking lot:
          they are constants. Therefore, we don’t need to worry about them if
          all we want to determine is whether this particular arrangement
          (with toilets all along one edge, but nowhere else) will work for
          parking lots of any size. (It is a widely followed convention to use
          the tilde, as in A ~
          B, to express that A
          “scales as” B, where A and
          B do not necessarily have the same
          dimensions.)
On the other hand, if we actually want to know the exact
          number of toilets required for a specific parking lot size, then we
          do need to worry about these factors and try to obtain the best
          possible estimates for them.
Because scaling arguments free us from having to think about
          pesky numerical factors, they provide such a convenient and powerful
          way to begin the modeling process. At the beginning, when things are
          most uncertain and our understanding of the system is least
          developed, they free us from having to worry about low-level details
          (e.g., how long does the average person spend
          in the bathroom?) and instead help us concentrate on the system’s
          overall behavior. Once the big picture has become clearer (and if
          the model still seems worth pursuing), we may want to derive some
          actual numbers from it as well. Only at this point do we need to
          concern ourselves with numerical constants, which we must either
          estimate or derive from available data.
A recurring challenge with scaling models is to find the
          correct scales. For example, we implicitly assumed that the parking
          lot was square (or at least nearly so) and would remain that shape
          as it grew. But if the parking lot were growing in one direction
          only (i.e., becoming longer and longer, while
          staying the same width), then its area would no longer scale as
          L2 but instead scale
          as L, where L is now the
          “long” side of the lot. This changes the argument, for if the
          portable toilets were located along the long side of the lot then
          the balance between people and available facilities would be the
          same no matter how large the lot became! On the other hand, if the
          facilities were set up along the short side, then their number would
          remain constant while the long side grew, resulting again in an
          imbalanced situation.
Finding the correct scales is a bit of an experience issue—the
          important point here is that it is not as simple as saying: “It’s an
          area, therefore it must scale as length squared.” It depends on the
          shape of the area and on which of its lengths controls the
          size.
[image: Heights and weights of a group of middle-school students.]

Figure 8-1. Heights and weights of a group of middle-school
            students.

The parking lot example demonstrates one typical
          application of high-level scaling arguments: what I call a “no-go
          argument.” Even without any specific numbers, the scaling behavior
          alone was enough to determine that this particular arrangement of
          toilets to visitors will break down at some point.

Example: A Dimensional Argument



Figure 8-1
          shows the heights and weights of a class of female middle-school
          students.[15] Also displayed is the function m
          = 0.84h – 84.0, where m
          stands for the mass (or weight) and h for the
          height. The fit seems to be quite close—is this a good model?
The answer is no, because the model makes unreasonable
          predictions. Look at it: the model suggests that students have no
          weight unless they are at least 84 centimeters (almost 3 feet) tall;
          if they were shorter, their weight would be
          negative. Clearly, this model is no good
          (although it does describe the data over the
          range shown quite well). We expect that people who have no height
          also have no weight, and our model should reflect that.
Rather than a model of the form ax +
          b, we might instead try
          axb,
          because this is the simplest function that gives the expected result
          for x = 0.
[image: A double logarithmic plot of the data from . The cubic function m = ah3 seems to describe the data much better than the linear function m = ah.]

Figure 8-2. A double logarithmic plot of the data from Figure 8-1. The cubic
            function m =
            ah3 seems to
            describe the data much better than the linear function
            m = ah.

Figure 8-2
          shows the same data but on a double logarithmic plot. Also indicated
          are functions of the form y =
          ax and y =
          ax3. The cubic
          function ax3 seems
          to represent the data quite well—certainly better than the linear
          function.
But this makes utmost sense! The weight of a body is
          proportional to its volume—that is, to height
          times width times depth or h · w ·
          d. Since body proportions are pretty much the
          same for all humans (i.e., a person who is
          twice as tall as another will have shoulders that are twice as wide,
          too), it follows that the volume of a person’s body (and hence its
          mass) scales as the third power of the height: mass ~
          height3.
Figure 8-3
          shows the data one more time and together with the model
          m = 1.25 ·
          10–5h3.
          Notice that the model makes reasonable predictions even for values
          outside the range of available data points, as you can see by
          comparing the model predictions with the average body measurements
          for some different age groups. (The figure also shows the possible
          limitations of a model that is built using less than perfectly
          representative data: the model underestimates adult weights because
          middle-school students are relatively light for their size. In
          contrast, two-year-olds are notoriously “chubby.”)
Nevertheless, this is a very successful model. On the one
          hand, although based on very little data, the model successfully
          predicts the weight to within 20 percent accuracy over a range of
          almost two orders of magnitude in height. On the other hand, and
          arguably more importantly, it captures the general relationship
          between body height and weight—a relationship that makes sense but
          that we might not necessarily have guessed without looking at the
          data.
[image: The data from , together with the cubic model and the linear approximation to this model around h = 150 cm. Note that the approximation is good over the range of the actual data set but is wildly off farther away from it.]

Figure 8-3. The data from Figure 8-1, together
            with the cubic model and the linear approximation to this model
            around h = 150 cm. Note that the approximation is good over the
            range of the actual data set but is wildly off farther away from
            it.

The last question you may ask is why the initial
          description, m = 0.84x –
          84 in Figure 8-1
          seemed so good. The answer is that this is exactly the linear
          approximation to the correct model, m = 1.25 ·
          10–5h3,
          near h = 150 cm. (See Appendix B.) As with all linear
          approximations, it works well in a small region but fails for values
          farther away.

Example: An Optimization Problem



Another application of scaling arguments is to cast a question
          as an optimization problem. Consider a group of people scheduled to
          perform some task (say, a programming team). The amount of work that
          this group can perform in a fixed amount of time (its “throughput”)
          is obviously proportional to the number n of
          people on the team: ~ n. However, the members
          of the team will have to coordinate with each other. Let’s assume
          that each member of the team needs to talk to every other member of
          the team at least once a day. This implies a communication overhead
          that scales the square of the number of people:
          ~ –n2. (The minus
          sign indicates that the communication overhead results in a loss in
          throughput.) This argument alone is enough to show that for this
          task, there is an optimal number of people for which the realized
          productivity will be highest. (Also see Figure 8-4.)
To find the optimal staffing level, we want to maximize the
          productivity P with respect to the number of
          workers on the team n:
P(n) =
          cn –
          dn2
[image: The work achievable by a team as a function of its size: the raw amount of work that can be accomplished grows with the team size, but the communication overhead grows even faster, which leads to an optimal team size.]

Figure 8-4. The work achievable by a team as a function of its size:
            the raw amount of work that can be accomplished grows with the
            team size, but the communication overhead grows even faster, which
            leads to an optimal team size.

where c is the number of minutes
          each person can contribute during a regular workday, and
          d is the effective number
          of minutes consumed by each communication event. (I’ll return to the
          cautious “effective” modifier shortly.)
To find the maximum, we take the derivative of
          P(n) with respect to
          n, set it equal to 0, and solve for
          n (see Appendix B). The result is:
[image: The work achievable by a team as a function of its size: the raw amount of work that can be accomplished grows with the team size, but the communication overhead grows even faster, which leads to an optimal team size.]
Clearly, as the time consumed by each communication event
          d grows larger, the optimal team size
          shrinks.
If we now wish to find an actual number for the optimal
          staffing level, then we need to worry about the numerical factors,
          and this is where the “effective” comes in. The total number of
          hours each person can put in during a regular workday is easy to
          estimate (8 hours at 60 minutes, less time for diversions), but the
          amount of time spent in a single communication event is more
          difficult to determine. There are also additional effects that I
          would lump into the “effective” parameter: for example, not
          everybody on the team needs to talk to everybody else. Adjustments
          like this can be lumped into the parameter d
          which increasingly turns it into a synthetic parameter and less one
          that can be measured directly.

Example: A Cost Model



Models don’t have to be particularly complicated to provide
          important insights. I remember a situation where we were trying to
          improve the operation of a manufacturing environment. One particular
          job was performed on a special machine that had to be retooled for
          each different type of item to be produced. First the machine would
          be set up (which took about 5 to 10 minutes), and then a worker
          would operate the machine to produce a batch of 150 to 200 identical
          items. The whole cycle lasted a bit longer than an hour and a half
          to complete the batch, and then the machine was retooled for the
          next batch.
The retooling part of the cycle was a constant source of
          management frustration: for 10 minutes (while the machine was being
          set up), nothing seemed to be happening. Wasted time! (In
          manufacturing, productivity—defined as “units per hour”—is the most
          closely watched metric.) Consequently, there had been a long string
          of process improvement projects dedicated to making the retooling
          part more efficient and thereby faster. By the time I arrived, it
          had been streamlined very well. Nevertheless, there were constant
          efforts underway to reduce the time it took—after all, the sight of
          the machine sitting idle for 10 minutes seemed to be all the proof
          that was needed.
It is interesting to set up a minimal cost model for this
          process. The relevant quantity to study is “minutes per unit.” This
          is essentially the inverse of the productivity, but I find it easier
          to think in terms of the time it takes to produce a single unit than
          the other way around. Also note that “time per unit” equates to
          “cost per unit” after we take the hourly wage into account. Thus,
          the time per unit is the time T it takes to
          produce an entire batch, divided by the number of items
          n in the batch. The total processing time
          itself consists of the setup time
          T1 and
          n times the amount of time
          t required to produce a single item:
[image: Example: A Cost Model]
The first term on the righthand side is the amount of the
          setup time that can be attributed to a single item; the second term,
          of course, is the time it takes to actually produce the item. The
          larger the batch size, the smaller the contribution of the setup
          time to the cost of each item as the setup time is “amortized” over
          more units.
This is one of those situations where the numerical factors
          actually matter. We know that
          T1 is in the range of
          300–600 seconds, and that n is between 150 and
          200, so that the setup time per item,
          T1/n,
          is between 1–4 seconds. We can also find the time
          t required to actually produce a single item if
          we recall that the cycle time for the entire batch was about 90
          minutes; therefore t = 90 ·
          60/n, which is about 30 seconds per item. In
          other words, the setup time that caused management so much grief
          actually accounted for less than 10 percent of the total time to
          produce an item!
But we aren’t finished yet. Let’s assume that, through some
          strenuous effort, we are able to reduce the setup time by 10
          percent. (Not very likely, given that this part of the process had
          already received a lot of attention, but let’s assume—best case!)
          This would mean that we can reduce the setup time per
          item to 1–3.5 seconds. However, this means that the
          total time per item is reduced by only 1 or 2
          percent! This is the kind of efficiency gain that makes sense only in very, very controlled situations
          where everything else is completely optimized.
          In contrast, a 10 percent reduction in t, the
          actual work time per item, would result in (almost) a 10 percent
          improvement in overall productivity (because the amount of time that
          it takes to produce an item is so much greater than the fraction of
          the setup time attributable to a single item).
[image: Total time required to process a unit, as a function of the batch size.]

Figure 8-5. Total time required to process a unit, as a function of the
            batch size.

We can see this in Figure 8-5 which shows
          the “loaded” time per unit (including the setup time) for two
          typical values of the setup time as a function of the number of
          items produced in a single batch. Although the setup time
          contributes significantly to the per-item time when there are fewer
          than about 50 items per batch, its effect is very small for batch
          sizes of 150 or more. For batches of this size, the time it takes to
          actually make an item dominates the time to
          retool the machine.
The story is still not finished. We eventually launched a
          project to look at ways to reduce t for a
          change, but it was never strongly supported and shut down at the
          earliest possible moment by plant management in favor of a project
          to look at, you guessed it, the setup time! The sight of the machine
          sitting idle for 10 minutes was more than any self-respecting plant
          manager could bear.

Optional: Scaling Arguments Versus Dimensional
          Analysis



Scaling arguments may seem similar to another concept you may
          have heard of: dimensional analysis. Although
          they are related, they are really quite different. Scaling concepts,
          as introduced here, are based on our intuition of how the system
          behaves and are a way to capture this intuition in a mathematical
          expression.
Dimensional analysis, in contrast, applies to physical
          systems, which are described by a number of quantities that have
          different physical dimensions, such as length,
          mass, time, or temperature. Because equations describing a physical
          system must be dimensionally consistent, we can try to deduce the
          form of these equations by forming dimensionally consistent
          combinations of the relevant variables.
Let’s look at an example. Everybody is familiar with the
          phenomenon of air resistance, or drag: there is a force
          F that acts to slow a moving body down. It
          seems reasonable to assume that this force depends on the
          cross-sectional area of the body A and the
          speed (or velocity) ν. But it must also depend on some property of
          the medium (air, in this case) through which the body moves. The
          most basic property is the density ρ, which is the mass (in grams or
          kilograms) per volume (in cubic centimeters or meters):
F =
          f(A, υ, ρ)
Here, f(x,
          y, z) is an as-yet-unknown
          function.
Force has units of mass ·
          length/time2, area has units of
          length2, velocity of length/time, and
          density has units of mass/length3. We can
          now try to combine A, υ, and ρ to form a
          combination that has the same dimensions as force. A little
          experimentation leads us to:
F = cρ
          Aυ2
where c is a pure (dimensionless) number.
          This equation expresses the well-known result that air resistance
          increases with the square of the speed. Note that we arrived at it
          using purely dimensional arguments without any insight into the
          physical mechanisms at work.
This form of reasoning has a certain kind of magic to it: why
          did we choose these specific quantities? Why did we not include the
          viscosity of air, the ambient air pressure, the temperature, or the
          length of the body? The answer is (mostly) physical intuition. The
          viscosity of air is small (viscosity measures the resistance to
          shear stress, which is the force transmitted by a fluid captured
          between parallel plates moving parallel to each other but in
          opposite directions—clearly, not a large effect for air at
          macroscopic length scales). The pressure enters indirectly through
          the density (at constant temperature, according to the ideal gas
          law). And the length of the body is hidden in the numerical factor
          c, which depends on the shape of the body and
          therefore on the ratio of the cross-sectional radius
          [image: ] to the length. In summary: it is impressive
          how far we came using only very simple arguments, but it is hard to
          overcome a certain level of discomfort entirely.
Methods of dimensional analysis appear less arbitrary when the
          governing equations are known. If this is the case, then we can use
          dimensional arguments to reduce the number of independently variable
          quantities. For example: assume that we already
          know the drag force is described by F =
          cρ
          Aυ2. Suppose further
          that we want to perform experiments to determine
          c for various bodies by measuring the drag
          force on them under various conditions. Naively, it might appear as
          if we had to map out the full three-dimensional parameter space by making measurements for all
          combinations of (ρ, A, υ). But these three
          parameters only occur in the combination γ =
          ρAυ2, therefore it
          is sufficient to run a single series of tests that varies γ over the
          range of values that we are interested in. This constitutes a
          significant simplification!
Dimensional analysis relies on dimensional consistency and
          therefore works best for physical and engineering systems, which are
          described by independently measurable, dimensional quantities. It is
          particularly prevalent in areas such as fluid dynamics, where the
          number of variables is especially high, and the physical laws are
          complicated and often not well understood. It is much less
          applicable in economic or social settings, where there are fewer (if
          any) rigorously established, dimensionally consistent
          relationships.

Other Arguments



There are other arguments that can be useful when attempting
          to formulate models. They come from the physical sciences, and (like
          dimensional analysis) they may not work as well in social and
          economic settings, which are not governed by strict physical
          laws.
Conservation laws
	Conservation laws tell us that some quantity does not
              change over time. The best-known example is the law of
              conservation of energy. Conservation laws can be very powerful
              (in particular when they are exact, as opposed to only
              approximate) but may not be available: after all, the entire
              idea of economic growth and (up to a point) manufacturing itself
              rest on the assumption that more comes out than is being put
              in!



Symmetries
	Symmetries, too, can be helpful in reducing complexity.
              For example, if an apparently two-dimensional system exhibits
              the symmetry of a circle, then I know that I’m dealing with a
              one-dimensional problem: any variation can occur only in the
              radial direction, since a circle looks the
              same in all directions. When looking for symmetries, don’t
              restrict yourself to geometric considerations—for instance,
              items entering and leaving a buffer at the same rate exhibit a
              form of symmetry. In this case, you might only need to solve one
              of the two processes explicitly while treating the other as a
              mirror image of the first.



Extreme-value considerations
	How does the system behave at the extremes? If there are
              no customers, messages, orders, or items? If there are
              infinitely many? What if the items are extremely large or
              vanishingly small, or if we wait an infinite amount of time?
              Such considerations can help to “sanity check” an existing
              model, but they can also provide inspiration when first
              establishing a model. Limiting cases are often easier to treat
              because only one effect dominates, which eliminates the
              complexities arising out of the interplay of different
              factors.





Mean-Field Approximations



The term mean-field approximation
        comes from statistical physics, but I use it only as a convenient and
        intuitive expression for a much more general approximation
        scheme.
Statistical physics deals with large systems of interacting
        particles, such as gas molecules in a piston or atoms on a crystal
        lattice. These systems are extraordinarily complicated because every
        particle interacts with every other particle. If you move one of the
        particles, then this will affect all the other particles, and so they
        will move, too; but their movement will, in turn, influence the first
        particle that we started with! Finding exact solutions for such large,
        coupled systems is often impossible. To make progress, we ignore the
        individual interactions between explicit pairs of particles. Instead,
        we assume that the test particle experiences a field, the
        “mean-field,” that captures the “average” effect of all the other
        particles.
For example, consider N gas atoms in a
        bottle of volume V. We may be interested to
        understand how often two gas atoms collide with each other. To
        calculate that number exactly, we would have to follow every single
        atom over time to see whether it bumps into any of the other atoms.
        This is obviously very difficult, and it certainly seems as if we
        would need to keep track of a whole lot of detail that should be
        unnecessary if we are only interested in macroscopic
        properties.
Realizing this, we can consider this gas in a mean-field
        approximation: the probability that our test particle collides with
        another particle should be proportional to the average density of
        particles in that bottle ρ =
        N/V. Since there are
        N particles in the bottle, we expect that the
        number of collisions (over some time frame) will be proportional to
        Nρ. This is good enough to start making some
        predictions—for example, note that this expression is proportional to
        N2. Doubling the
        number of particles in the bottle therefore means that the number of
        collisions will grow by a factor of 4. In contrast, reducing the
        volume of the container by half will increase the number of collisions
        only by a factor of 2.
You will have noticed that in the previous argument, I omitted
        lots of detail—for example, any reference to the time frame over which
        I intend to count collisions. There is also a constant of
        proportionality missing: Nρ is not really the
        number of collisions but is merely proportional to it. But if all I
        care about is understanding how the number of collisions depends on
        the two variables I consider explicitly (i.e., on
        N and V), then I don’t need
        to worry about any of these details. The argument so far is sufficient
        to work out how the number of collisions scales with both
        N and V.
You can see how mean-field approximations and scaling arguments
        enhance and support each other. Let’s step back and look at the
        concept behind mean-field approximations more closely.
Table 8-1. Mean-field approximations replace an average over functions
          with functions of averages.
	Exact
	Mean-Field

	[image: Mean-field approximations replace an average over functions with functions of averages.]
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Background and Further Examples



If mean-field approximations were limited to systems of
          interacting particles, they would not be of much interest in this
          book. However, the concept behind them is much more general and is
          very widely applicable.
Whenever we want to calculate with a quantity whose values are
          distributed according to some probability distribution, we face the
          challenge that this quantity does not have a single, fixed value.
          Instead, it has a whole spectrum of possible values, each more or
          less likely according to the probability distribution. Operating
          with such a quantity is difficult because at least in principle we
          have to perform all calculations for each possible outcome and then
          weight the result of our calculation by the appropriate probability.
          At the very end of the calculation, we eventually form the average
          (properly weighted according to the probability factors) to arrive
          at a unique numerical value.
Given the combinatorial explosion of possible outcomes,
          attempting to perform such a calculation exactly invariably starts
          to feel like wading in a quagmire—and that assumes that the
          calculation can be carried out exactly at all!
The mean-field approach cuts through this difficulty by
          performing the average before embarking on the
          actual calculation. Rather than working with all possible outcomes
          (and averaging them at the end), we determine the average outcome
          first and then only work with that value alone. Table 8-1 summarizes the
          differences.
This may sound formidable, but it is actually something we do
          all the time. Do you ever try to estimate how high the bill is going
          to be when you are waiting in line at the supermarket? You can do
          this explicitly—by going through all the items individually and
          adding up their prices (approximately) in your head—or you can apply
          a mean-field approximation by realizing that the items in your cart
          represent a sample, drawn “at random,” from the selection of goods
          available. In the mean-field approximation, you would estimate the
          average single-item price for goods from that store (probably about
          $5–$7) and then multiply that value by the number of items in your
          cart. Note that it should be much easier to count the items in your
          cart than to add up their individual prices explicitly.
This example also highlights the potential pitfalls with
          mean-field arguments: it will only be reliable if the average item
          price is a good estimator. If your cart contains two bottles of
          champagne and a rib roast for a party of eight, then an estimate
          based on a typical item price of $7 is going to be
          way off.
To get a grip on the expected accuracy of a mean-field
          approximation, we can try to find a measure for the width of the
          original distribution (e.g., its standard
          deviation or inter-quartile range) and then repeat our calculations
          after adding (and subtracting) the width from the mean value. (We
          may also treat the width as a small perturbation to the average
          value and use the perturbation methods discussed in Chapter 7.)
Another example: how many packages does UPS (or any comparable
          freight carrier) fit onto a truck (to be clear: I don’t mean a
          delivery truck, but one of these 53 feet tractor-trailer
          long-hauls)? Well, we can estimate the “typical” size of a package
          as about a cubic foot (0.33
          m3), but it might also be as small as
          half that or as large as twice that size. To find an estimate for
          the number of packages that will fit, we divide the volume of the
          truck (17 m long, 2 m wide, 2.5 m high—we can estimate height and
          width if we realize that a person can stand upright in these things)
          by the typical size of a package: (17 · 2 ·
          2.5/0.33) ≈ 3,000 packages. Because the
          volume (not the length!) of each package might vary by as much as a
          factor of 2, we end up with lower and upper bounds of (respectively)
          1,500 to 6,000 packages.
This calculation makes use of the mean-field idea twice.
          First, we work with the “average” package size. Second, we don’t
          worry about the actual spatial packing of boxes inside the truck;
          instead, we pretend that we can reshape them like putty. (This also
          is a form of “mean-field” approximation.)
I hope you appreciate how the mean-field idea has turned this
          problem from almost impossibly difficult to trivial—and I don’t just
          mean with regard to the actual computation and the eventual
          numerical result; but more importantly in the way we thought about
          it. Rather than getting stuck in the enormous technical difficulties
          of working out different stacking orders for packages of different
          sizes, the mean-field notion reduced the problem description to the
          most fundamental question: into how many small pieces can we divide
          a large volume? (And if you think that all of this is rather
          trivial, I fully agree with you—but the “trivial” can easily be
          overlooked when one is presented with a complex problem in all of
          its ugly detail. Trying to find mean-field descriptions helps strip
          away nonessential detail and helps reveal the fundamental questions
          at stake.)
One common feature of mean-field solutions is that they
          frequently violate some of the system’s properties. For example, at
          Amazon, we would often consider the typical order to contain 1.7
          items, of which 0.9 were books, 0.3 were CDs, and the remaining 0.5
          items were other stuff (or whatever the numbers were). This is
          obviously nonsense, but don’t let this disturb you! Just carry on as
          if nothing happened, and work out the correct breakdown of things at
          the end. This approach doesn’t always work: you’ll still have to
          assign a whole person to a job, even it requires only one tenth of a
          full-time worker. However, this kind of argument is often sufficient
          to work out the general behavior of things.
There is a story involving Richard Feynman working on the
          Connection Machine, one of the earliest massively parallel
          supercomputers. All the other people on the team were computer scientists, and when a certain problem came
          up, they tried to solve it using discrete methods and exact
          enumerations—and got stuck with it. In contrast, Feynman worked with
          quantities such as “the average number of 1 bits in a message
          address” (clearly a mean-field approach). This allowed him to cast
          the problem in terms of partial differential equations, which were
          easier to solve.[16]


Common Time-Evolution Scenarios



Sometimes we can propose a model based on the way the system
        under consideration evolves. The “proper” way to do this is to write
        down a differential equation that describes the system (in fact, this
        is exactly what the term “modeling” often means) and then proceed to
        solve it, but that would take us too far afield. (Differential
        equations relate the change in some quantity, expressed through its
        derivative, to the quantity itself. These equations can be solved to
        yield the quantity for all times.)
However, there are a few scenarios so fundamental and so common
        that we can go ahead and simply write down the solution in its final
        form. (I’ll give a few notes on the derivation as well, but it’s the
        solutions to these differential equations that should be committed to
        memory.)
Unconstrained Growth and Decay Phenomena



The simplest case concerns pure growth (or death) processes.
          If the rate of change of some quantity is
          constant in time, then the quantity will follow an
          exponential growth (or decay). Consider a cell
          culture. At every time step, a certain fraction of all cells in
          existence at that time step will split (i.e.,
          generate offspring). Here the fraction of cells
          that participate in the population growth at every time step is
          constant in time; however, because the population itself grows, the
          total number of new cells at each time step is larger than at the
          previous time step. Many pure growth processes exhibit this
          behavior—compound interest on a monetary amount is another example
          (see Chapter 17).
Pure death processes work similarly, only in this case a
          constant fraction of the population dies or disappears at each time
          step. Radioactive decay is probably the best-known example; but
          another one is the attenuation of light in a transparent medium
          (such as water). For every unit of length that light penetrates into
          the medium, its intensity is reduced by a constant fraction, which
          gives rise to the same exponential behavior. In this case, the
          independent variable is space, not time, but the argument is exactly
          the same.
Mathematically, we can express the behavior of a cell culture
          as follows: if N(t) is the
          number of cells alive at time t and if a
          fraction f of these cells split into new cells,
          then the number of cells at the next time step
          t + 1 will be:
N(t + 1) =
          N(t) + f
          N(t)
The first term on the righthand side comes from the cells
          which were already alive at time t, whereas the
          second term on the right comes from the “new” cells created at
          t. We can now rewrite this equation as
          follows:
N(t + 1) –
          N(t) = f
          N(t)
This is a difference equation. If we can
          assume that the time “step” is very small, we can replace the
          lefthand side with the derivative of N (this
          process is not always quite as simple as in this example—you may
          want to check Appendix B for more
          details on difference and differential quotients):
[image: Unconstrained Growth and Decay Phenomena]
This equation is true for growth processes; for pure death
          processes instead we have an additional minus sign on the righthand
          side.
These equations can be solved or integrated explicitly, and
          their solutions are:
	N(t)
                  = N0
                  et/T
	Pure birth process

	N(t)
                  = N0
                  e–t/T
	Pure death process



Instead of using the “fraction” f of new
          or dying cells that we used in the difference equation, here we
          employ a characteristic time scale
          T, which is the time over which the number of
          cells changes by a factor e or
          1/e, where e = 2.71828
          .... The value for this time scale will depend on the actual system:
          for cells that multiply rapidly, T will be
          smaller than for another species that grows more slowly. Notice that
          such a scale factor must be there to make the
          argument of the exponential function dimensionally consistent!
          Furthermore, the parameter
          N0 is the number of
          cells in existence at the beginning t =
          0.
Exponential processes (either birth or death) are very
          important, but they never last very long. In a pure death process,
          the population very quickly dwindles to practically nothing. At
          t = 3T, only 5 percent of
          the original population are left; at t =
          10T, less than 1 in 10,000 of the original
          cells has survived; at t =
          20T, we are down to one in a billion. In other
          words, after a time that is a small multiple of
          T, the population will have all but
          disappeared.
Pure birth processes face the opposite problem: the population
          grows so quickly that, after a very short while, it will exceed the
          capacity of its environment. This is so generally true that it is
          worth emphasizing: exponential growth is not sustainable over
          extended time periods. A process may start out as exponential, but
          before long, it must and will saturate. That brings us to the next
          scenario.

Constrained Growth: The Logistic Equation



Pure birth processes never continue for very long: the
          population quickly grows to a size that is unsustainable, and then
          the growth slows. A common model that takes this behavior into
          account assumes that the members of the population start to “crowd”
          each other, possibly competing for some shared resource such as food
          or territory. Mathematically, this can be expressed as
          follows:
[image: Constrained Growth: The Logistic Equation]
The first term on the righthand side (which equals
          λKN) is the same as in the exponential growth
          equation. By itself, it would lead to an exponentially growing
          population N(t) =
          C exp(λKt). But the second
          term (–λN2)
          counteracts this: it is negative, so its effect is to
          reduce the population; and it is proportional
          to N2, so it grows
          more strongly as N becomes large. (You can
          motivate the form of this term by observing that it measures the
          number of collisions between members of the population and therefore
          expresses the “crowding” effect.)
This equation is known as the logistic differential
          equation, and its solution is the logistic
          function:
[image: Constrained Growth: The Logistic Equation]
This is a complicated function that depends on three
          parameters:
	λ
	The characteristic growth
                  rate

	K
	The carrying capacity
                  K =
                  N(t →
                  ∞)

	N0
	The initial number
                  N0 =
                  N(t = 0) of
                  cells



Compared to a pure (exponential) growth process, the
          appearance of the parameter K is new. It stands
          for the system’s “carrying capacity”—that is the maximum number of
          cells that the environment can support. You should convince yourself
          that the logistic function indeed tends to K as
          t becomes large. (You will find different forms
          of this function elsewhere and with different parameters, but the
          form given here is the most useful one.) Figure 8-6 shows the
          logistic function for a selection of parameter values.
I should point out that determining values for the three
          parameters from data can be extraordinarily difficult especially
          when the only data points available are those to the left of the
          inflection point (the point with maximum slope, about halfway
          between N0 and
          K). Many different combinations of λ,
          K, and
          N0 may seem to fit the
          data about equally well. In particular, it is difficult to assess
          K from early-stage data alone. You may want to
          try to obtain an independent estimate (even a very rough one) for
          the carrying capacity and use it when determining the remaining
          parameters from the data.
[image: Logistic growth for different values of the growth rate λ. The initial population N0 and the overall carrying capacity K are the same in all cases.]

Figure 8-6. Logistic growth for different values of the growth rate λ.
            The initial population
            N0 and the overall
            carrying capacity K are the same in all
            cases.

The logistic function is the most common model for all
          growth processes that exhibit some form of saturation. For example,
          infection rates for contagious diseases can be modeled using the
          logistic equation, as can the approach to equilibrium for cache hit
          rates.

Oscillations



The last of the common dynamical behaviors occurs in systems
          in which some quantity has an equilibrium value and that respond to
          excursions from that equilibrium position with a restoring effect,
          which drives the system back to the equilibrium position. If the
          system does not come to rest in the equilibrium position but instead
          overshoots, then the process will continue, going back and forth
          across the neutral position—in other words, the system undergoes
          oscillation. Oscillations occur in many
          physical systems (from tides to grandfather clocks to molecular
          bonds), but the “restore and overshoot” phenomenon is much more
          general. In fact, oscillations can be found almost everywhere: the
          pendulum that has “swung the other way” is proverbial, from the
          political scene to personal relationships.
Oscillations are periodic: the system undergoes the same
          motion again and again. The simplest functions that exhibit this
          kind of behavior are the trigonometric functions
          sin(x) and cos(x) (also
          see Appendix B), therefore we can
          express any periodic behavior, at least approximately, in terms of
          sines or cosines. Sine and cosine are periodic with period 2π. To
          express an oscillation with period D, we
          therefore need to rescale x by
          2π/D. It may also be necessary to shift
          x by a phase factor ϕ: an expression like
          sin(2π(x – ϕ)/D) will at
          least approximately describe any periodic data set.
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]

Figure 8-7. The sawtooth function can be composed out of sine functions
            and their higher harmonics.

But it gets better: a powerful theorem states that
          every periodic function, no matter how crazy,
          can be written as a (possibly infinite) combination of trigonometric
          functions called a Fourier series. A Fourier
          series looks like this:
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]
where I have assumed that ϕ = 0. The important point is that
          only integer multiples of 2π/D are being used
          in the argument of the sine—the so-called “higher harmonics” of
          sin(2π x/D). We need to
          adjust the coefficients
          an
          to describe a data set. Although the series is in principle
          infinite, we can usually get reasonably good results by truncating
          it after only a few terms. (We saw an example for this in Chapter 6, where we used
          the first two terms to describe the variation in
          CO2 concentration over Mauna Loa on
          Hawaii.)
If the function is known exactly, then the coefficients
          an
          can be worked out. For the sawtooth function (see Figure 8-7), the
          coefficients are simply 1, 1/2, 1/3, 1/4,... with alternating
          signs:
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]
You can see that the series converges quite rapidly—even for
          such a crazy, discontinuous function as the sawtooth.


Case Study: How Many Servers Are Best?



To close out this chapter, let’s discuss an additional simple
        case study in model building.
[image: Costs associated with provisioning a data center, as a function of the number of servers.]

Figure 8-8. Costs associated with provisioning a data center, as a
          function of the number of servers.

Imagine you are deciding how many servers to purchase to power
        your ecommerce site. Each server costs you a fixed amount
        E per day—this includes both the operational cost
        for power and colocation as well as the amortized acquisition cost
        (i.e., the purchase price divided by the number
        of days until the server is obsolete and will be replaced). The total
        cost for n servers is therefore
        nE.
Given the expected traffic, one server should be sufficient to
        handle the load. However, each server has a finite probability
        p of failing on any given day. If your site goes
        down, you expect to lose B in profit before a new
        server can be provisioned and brought back online. Therefore, the
        expected loss when using a single server is
        pB.
Of course, you can improve the reliability of your site by using
        multiple servers. If you have n servers, then
        your site will be down only if all of them fail simultaneously. The
        probability for this event is
        pn.
        (Note that
        pn
        < p, since p is a
        probability and therefore p < 1.)
The total daily cost C that you incur can
        now be written as the combination of the fixed cost
        nE and the expected loss due to server downtime
        pn
        B (also see Figure 8-8):
C =
        pn
        B + nE
Given p, B, and
        E, you would like to minimize this cost with
        respect to the number of servers n. We can do
        this either analytically (by taking the derivative of
        C with respect to n) or
        numerically.
But wait, there’s more! Suppose we also have an alternative
        proposal to provision our data center with servers from a different
        vendor. We know that their reliability q is worse
        (so that q >
        p), but their price F is
        significantly lower (F ≪ E).
        How does this variant compare to the previous one?
The answer depends on the values for p,
        B, and E. To make a
        decision, we must evaluate not only the location
        of the minimum in the total cost (i.e., the
        number of servers required) but also the actual
        value of the total cost at the minimum position.
        Figure 8-8 includes
        the total cost for the alternative proposal that uses less reliable
        but much cheaper servers. Although we need more servers under this
        proposal, the total cost is nevertheless lower than in the first
        one.
(We can go even further: how about a mix of different servers?
        This scenario, too, we can model in a similar fashion and evaluate it
        against its alternatives.)

Why Modeling?



Why worry about modeling in a book on data
        analysis? It seems we rarely have touched any
        actual data in the examples of this chapter.
It all depends on your goals when working with data. If all you
        want to do is to describe it, extract some features, or even decompose
        it fully into its constituent parts, then the “analytic” methods of
        graphical and data analysis will suffice. However, if you intend to
        use the data to develop an understanding of the
        system that produced the data, then looking at
        the data itself will be only the first (although important)
        step.
I consider conceptual modeling to be extremely important,
        because it is here that we go from the descriptive to the
        prescriptive. A conceptual model by itself may well be the most
        valuable outcome of an analysis. But even if not, it will at the very
        least enhance the purely analytical part of our work, because a
        conceptual model will lead us to additional hypothesis and thereby
        suggest additional ways to look at and study the data in an iterative
        process—in other words, even a purely conceptual model will point us
        back to the data but with added insight.
The methods described in this chapter and the next are the
        techniques that I have found to be the most practically useful when
        thinking about data and the processes that generated it. Whenever
        looking at data, I always try to understand the system behind it, and
        I always use some (if not all) of the methods from these two
        chapters.

Workshop: Sage



Most of the tools introduced in this book work with
        numbers, which makes sense given that we are
        mostly interested in understanding data. However, there is a different
        kind of tool that works with formulas instead: computer
        algebra systems. The big (commercial) brand names for such
        systems have been Maple and Mathematica; in the open source world, the
        Sage project (http://www.sagemath.org) has become somewhat
        of a front runner.
Sage is an “umbrella” project that attempts to combine
        several existing open source projects (SymPy, Maxima, and others)
        together with some added functionality into a single, coherent,
        Python-like environment. Sage places heavy emphasis on features for
        number theory and abstract algebra (not exactly everyone’s cup of tea)
        and also includes support for numerical calculations and graphics, but
        in this section we will limit ourselves to basic calculus and a little
        linear algebra. (A word of warning: if you are not really comfortable
        with calculus, then you probably want to skip the rest of this
        section. Don’t worry—it won’t be needed in the rest of the
        book.)
Once you start Sage, it drops you into a text-based command
        interpreter (a REPL, or read-eval-print loop). Sage makes it easy to
        perform some simple calculations. For example, let’s define a function
        and take its derivative:
sage: a, x = var( 'a x' )
sage: f(x) = cos(a*x)
sage: diff( f, x )
x |--> -a*sin(a*x)
In the first line we declare a and x
        as symbolic variables—so that we can refer to them later and Sage
        knows how to handle them. We then define a function using the
        “mathematical” notation f(x) = ....
        Only functions defined in this way can be used in symbolic
        calculations. (It is also possible to define Python functions using
        regular Python syntax, as in def f(x, a):
        return cos(a*x), but such functions can only be evaluated
        numerically.) Finally, we calculate the first derivative of the
        function just defined.
All the standard calculus operations are available. We can
        combine functions to obtain more complex ones, we can find integrals
        (both definite and indefinite), and we can even evaluate
        limits:
sage: # Indefinite integral:
sage: integrate( f(x,a) + a*x^2, x )
1/3*a*x^3 + sin(a*x)/a
sage:
sage: # Definite integral on [0,1]:
sage: integrate( f(x,a) + a*x^2, x, 0, 1 )
1/3*(a^2 + 3*sin(a))/a
sage:
sage: # Definite integral on [0,pi], assigned to function:
sage: g(x,a) = integrate( f(x,a) + a*x^2, x, 0, pi )
sage:
sage: # Evaluate g(x,a) for different a:
sage: g(x,1)
1/3*pi^3
sage: g(x,1/2)
1/6*pi^3 + 2
sage: g(x,0)
----------------------------------------------------------
RuntimeError

(some output omitted...)
RuntimeError: power::eval(): division by zero
sage: limit( g(x,a), a=0 )
pi
In the next-to-last command, we tried to evaluate an expression
        that is mathematically not well defined: the function g(x,a) includes a term of the form
        sin(πa)/a, which we can’t
        evaluate for a = 0 because we can’t divide by
        zero. However, the limit [image: ] exists and is found by the limit() function.
As a final example from calculus, let’s evaluate some Taylor
        series (the arguments are: the function to expand, the variable to
        expand in, the point around which to expand, and the degree of the
        desired expansion):
sage: taylor( f(x,a), x, 0, 5 )
1/24*a^4*x^4 - 1/2*a^2*x^2 + 1
sage: taylor( sqrt(1+x), x, 0, 3 )
1/16*x^3 - 1/8*x^2 + 1/2*x + 1
So much for basic calculus. Let’s also visit an example from
        linear algebra. Suppose we have the linear system of equations:
	ax +
                by
	= 1

	2x +
                ay
	+
                3z
	= 2

	b2x
	–
                z
	=
                a



and that we would like to find those values of
        (x, y,
        z) that solve this system. If all the
        coefficients were numbers, then we could use a numeric routine to
        obtain the solution; but in this case, some coefficients are known
        only symbolically (as a and
        b), and we would like to express the solution in
        terms of these variables.
Sage can do this for us quite easily:
sage: a, b, x, y, z = var( 'a b x y z' )
sage:
sage: eq1 = a*x + b*y == 1
sage: eq2 = 2*x + a*y + 3*z == 2
sage: eq3 = b^2 - z == a
sage:

sage: solve( [eq1,eq2,eq3], x,y,z )
[[x == (3*b^3 - (3*a + 2)*b + a)/(a^2 - 2*b),
  y == -(3*a*b^2 - 3*a^2 - 2*a + 2)/(a^2 - 2*b),
  z == b^2 - a]]
As a last example, let’s demonstrate how to calculate the
        eigenvalues of the following matrix:
[image: Workshop: Sage]
Again, if the matrix were given numerically, then we could use a
        numeric algorithm, but here we would like to obtain a symbolic
        solution.
Again, Sage can do this easily:
sage: m = matrix( [[a,b,a],[b,c,b],[a,b,0]] )
sage: m.eigenvalues()
[-1/18*(-I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3
*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2
*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4
)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) - 1/2*(I*sqrt(3) + 1)
*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sq
rt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3
 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3
))^(1/3) + 1/3*a + 1/3*c, -1/18*(I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/5
4*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*
a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*
a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/
3) - 1/2*(-I*sqrt(3) + 1)*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(
15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6
+ 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*
b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) + 1/3*a + 1/3*c, 1/3*a + 1/3*c + 1/9*(4*a^2 - a
*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 -
 c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a
^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38
*a*b^4)*c)*sqrt(3))^(1/3) + (11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18
*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^
6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^
3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3)]
Whether these results are useful to us is a different
        question!
This last example demonstrates something I have found to be
        quite generally true when working with computer algebra systems: it
        can be difficult to find the right kind of problem for them.
        Initially, computer algebra systems seem like pure magic, so
        effortlessly do they perform tasks that took us
        years to learn (and that we still get wrong). But
        as we move from trivial to more realistic problems, it is often
        difficult to obtain results that are actually useful. All too often we
        end up with a result like the one in the eigenvalue example,
        which—although “correct”—simply does not shed much light on the
        problem we tried to solve! And before we try manually to simplify an
        expression like the one for the eigenvalues, we might be better off
        solving the entire problem with paper and pencil, because using paper
        and pencil, we can can introduce new variables for frequently
        occurring terms or even make useful approximations as we go
        along.
I think computer algebra systems are most useful in scenarios
        that require the generation of a very large
        number of terms (e.g., combinatorial problems),
        which in the end are evaluated (numerically or otherwise) entirely by
        the computer to yield the final result without providing a “symbolic”
        solution in the classical sense at all. When these conditions are
        fulfilled, computer algebra systems enable you to tackle problems that
        would simply not be feasible with paper and pencil. At the same time,
        you can maintain a greater level of accuracy because numerical
        (finite-precision) methods, although still required to obtain a useful
        result, are employed only in the final stages of the calculation
        (rather than from the outset). Neither of these conditions is
        fulfilled for relatively straightforward ad hoc symbolic
        manipulations. Despite their immediate “magic” appeal, computer
        algebra systems are most useful as specialized tools for specialized
        tasks!
One final word about the Sage project. As an open source
        project, it leaves a strange impression. You first become aware of
        this when you attempt to download the binary distribution: it consists
        of a 500 MB bundle, which unpacks to 2 GB on your disk! When you
        investigate what is contained in this huge package, the answer turns
        out to be everything. Sage ships with
        all of its dependencies. It ships with its own
        copy of all libraries it requires. It ships with its own copy of R. It
        ships with its own copy of Python! In short, it ships with its own
        copy of everything.
This bundling is partially due to the well-known difficulties
        with making deeply numerical software portable, but is also an
        expression of the fact that Sage is an umbrella project that tries to
        combine a wide range of otherwise independent projects. Although I
        sincerely appreciate the straightforward pragmatism of this solution,
        it also feels heavy-handed and ultimately unsustainable. Personally,
        it makes me doubt the wisdom of the entire “all under one roof”
        approach that is the whole purpose of Sage: if this is what it takes,
        then we are probably on the wrong track. In other words, if it is not
        feasible to integrate different projects in a more organic way, then
        perhaps those projects should remain independent, with the user free
        to choose which to use.

Further Reading



There are two or three dozen books out there specifically on the
        topic of modeling, but I have been disappointed by most of them. Some
        of the more useful (from the elementary to the quite advanced) include
        the following.
	How to Model It: Problem Solving for the
              Computer Age. A. M. Starfield, K. A. Smith, and A. L. Bleloch.
              Interaction Book Company. 1994.
Probably the best elementary introduction to modeling that I
            am aware of. Ten (ficticious) case studies are presented and
            discussed, each demonstrating a different modeling method.
            (Available directly from the publisher.)

	An Introduction to Mathematical
              Modeling. Edward A. Bender. Dover Publications. 2000. Short and
              idiosyncratic. A bit dated but still insightful.

	Concepts of Mathematical
              Modeling. Walter J. Meyer. Dover Publications. 2004.
This book is a general introduction to many of the topics
            required for mathematical modeling at an advanced beginner level.
            It feels more dated than it is, and the presentation is a bit
            pedestrian; nevertheless, it contains a lot of accessible, and
            most of all practical, material.

	Introduction to the Foundations of Applied
              Mathematics. Mark H. Holmes. Springer. 2009.
This is one of the few books on modeling that places
            recurring mathematical techniques, rather than case studies, at
            the center of its discussion. Much of the material is advanced,
            but the first few chapters contain a careful discussion of
            dimensional analysis and nice introductions to perturbation
            expansions and time-evolution scenarios.

	Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.
This is a book by a physicist (not a mathematician, applied
            or otherwise), and it demonstrates how a physicist thinks about
            building models. The examples are rich, but mostly of theoretical
            interest. Conceptually advanced, mathematically not too
            difficult.

	Practical Applied
              Mathematics. Sam Howison. Cambridge University Press. 2005.
This is a very advanced book on applied mathematics with a
            heavy emphasis on partial differential equations. However, the
            introductory chapters, though short, provide one of the most
            insightful (and witty) discussions of models, modeling, scaling
            arguments, and related topics that I have seen.



The following two books are not about the process of modeling.
        Instead, they provide examples of modeling in action (with a
        particular emphasis on scaling arguments):
	The Simple Science of
              Flight. Henk Tennekes. 2nd ed., MIT Press. 2009.
This is a short yet fascinating book about the physics and
            engineering of flying, written at the “popular science” level. The
            author makes heavy use of scaling laws throughout. If you are
            interested in aviation, then you will be interested in this
            book.

	Scaling Concepts in Polymer
              Physics. Pierre-Gilles de Gennes. Cornell University Press.
              1979.
This is a research monograph on polymer physics and probably
            not suitable for a general audience. But the treatment, which
            relies almost exclusively on a variety of scaling arguments, is
            almost elementary. Written by the master of the scaling
            models.






[15] A description of this data set can be found in A
              Handbook of Small Data Sets. David J. Hand, Fergus
              Daly, K. McConway, D. Lunn, and E. Ostrowski. Chapman &
              Hall/CRC. 1993.

[16] This story is reported in “Richard Feynman and the
              Connection Machine.” Daniel Hillis. Physics
              Today 42 (February 1989), p. 78. The paper can also
              be found on the Web.


Chapter 9. Arguments from Probability Models



WHEN
      MODELING SYSTEMS THAT EXHIBIT SOME FORM OF RANDOMNESS, THE CHALLENGE IN
      THE MODELING process is to find a way to handle
      the resulting uncertainty. We don’t know for sure what the system will
      do—there is a range of outcomes, each of which is more or less likely,
      according to some probability distribution. Occasionally, it is possible
      to work out the exact probabilities for all possible events; however,
      this quickly becomes very difficult, if not impossible, as we go from
      simple (and possibly idealized systems) to real applications. We need to
      find ways to simplify life!
In this chapter, I want to take a look at some of the “standard”
      probability models that occur frequently in practical problems. I shall
      also describe some of their properties that make it possible to reason
      about them without having to perform explicit calculations for all
      possible outcomes. We will see that we can reduce the behavior of many
      random systems to their “typical” outcome and a narrow range around
      that.
This is true for many situations but not for all! Systems
      characterized by power-law distribution functions can
      not be summarized by a narrow regime around a
      single value, and you will obtain highly misleading (if not outright
      wrong) results if you try to handle such scenarios with standard
      methods. It is therefore important to recognize this kind of behavior
      and to choose appropriate techniques.
The Binomial Distribution and Bernoulli Trials



Bernoulli trials are random trials that can have only two
        outcomes, commonly called Success and Failure. Success occurs with
        probability p, and Failure occurs with
        probability 1 – p. We further assume that
        successive trials are independent and that the probability parameter
        p stays constant throughout.
Although this description may sound unreasonably limiting, in
        fact many different processes can be expressed in terms of Bernoulli
        trials. We just have to be sufficiently creative when defining the
        class of events that we consider “Successes.” A few examples:
	Define Heads as Success in n successive
            tosses of a fair coin. In this case, p =
            1/2.

	Using fair dice, we can define getting an “ace” as Success
            and all other outcomes as Failure. In this case,
            p = 1/6.

	We could just as well define not
            getting an “ace” as Success. In this case, p
            = 5/6.

	Consider an urn that contains b black
            tokens and r red tokens. If we define drawing
            a red token as Success, then repeated drawings (with replacement!)
            from the urn constitute Bernoulli trials with
            p =
            r/(r +
            b).

	Toss two identical coins and define obtaining two Heads as
            Success. Each toss of the two coins together
            constitutes a Bernoulli trial with p =
            1/4.



As you can see, the restriction to a binary outcome is not
        really limiting: even a process that naturally has more than two
        possible outcomes (such as throwing dice) can be cast in terms of
        Bernoulli trials if we restrict the definition of Success
        appropriately. Furthermore, as the last example shows, even
        combinations of events (such as tossing two coins or, equivalently,
        two successive tosses of a single coin) can be expressed in terms of
        Bernoulli trials.
The restricted nature of Bernoulli trials makes it possible to
        derive some exact results (we’ll see some in a moment). More
        importantly, though, the abstraction forced on us by the limitations
        of Bernoulli trials can help to develop simplified conceptual models
        of a random process.
Exact Results



The central formula for Bernoulli trials gives the
          probability of observing k Successes in N trials with
          Success probability p, and it is also known as the
          Binomial distribution (see Figure 9-1):
[image: Exact Results]
This should make good sense: we need to obtain
          k Successes, each occurring with probability
          p, and N –
          k Failures, each occurring with probability 1 –
          p. The term:
[image: Exact Results]
consisting of a binomial coefficient is
          combinatorial in nature: it gives the number of distinct
          arrangements for k successes and
          N – k failures. (This is
          easy to see. There are N! ways to arrange N distinguishable items:
          you have N choices for the first item,
          N – 1 choices for the second, and so on.
          However, the k Successes are indistinguishable
          from each other, and the same is true for the N
          – k Failures. Hence the total number of
          arrangements is reduced by the number of ways in which the Successes
          can be rearranged, since all these rearrangements are identical to
          each other. With k Successes, this means that
          k! rearrangements are indistinguishable, and
          similarly for the N – k
          failures.) Notice that the combinatorial factor does not depend on
          p.
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]

Figure 9-1. The Binomial distribution: the probability of obtaining
            k Successes in N trials
            with Success probability p.

This formula gives the probability of obtaining a specific
          number k of Successes. To find the expected
          number of Successes μ in N Bernoulli trials, we
          need to average over all possible outcomes:
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]
This result should come as no surprise. We use it intuitively
          whenever we say that we expect “about five Heads in ten tosses of
          fair coin” (N = 10, p =
          1/2) or that we expect to obtain “about ten aces in sixty tosses of
          a fair die” (N = 60, p =
          1/6).
Another result that can be worked out exactly is the standard
          deviation:
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]
The standard deviation gives us the range over which
          we expect the outcomes to vary. (For example, assume that we perform
          m experiments, each consisting of
          N tosses of a fair coin. The expected number of
          Successes in each experiment is Np, but of
          course we won’t obtain exactly this number in each experiment.
          However, over the course of the m experiments,
          we expect to find the number of Successes in the majority of them to
          lie between [image: ] and [image: ].
Notice that σ grows more slowly with the number of trials than
          does μ (σ ~ [image: ] versus μ ~ N). The
          relative width of the outcome distribution therefore shrinks as we
          conduct more trials.

Using Bernoulli Trials to Develop Mean-Field Models



The primary reason why I place so much emphasis on the concept
          of Bernoulli trials is that it lends itself naturally to the
          development of mean-field models (see Chapter 8). Suppose we try to
          develop a model to predict the staffing level required for a call
          center to deal with customer complaints. We know from experience
          that about one in every thousand orders will lead to a complaint
          (hence p = 1/1000). If we shipped a million
          orders a day, we could use the Binomial distribution to work out the
          probability to receive 1, 2, 3,..., 999,999, 1,000,000 complaints a
          day and then work out the required staffing levels accordingly—a
          daunting task! But in the spirit of mean-field theories, we can cut
          through the complexity by realizing that we will receive “about
          Np = 1,000” complaints a day. So rather than
          working with each possible outcome (and its associated probability),
          we limit our attention to a single expected
          outcome. (And we can now proceed to determine how many calls a
          single person can handle per day to find the required number of
          customer service people.) We can even go a step further and
          incorporate the uncertainty in the number of complaints by
          considering the standard deviation, which in this example comes out
          to [image: ]. (Here I made use of the fact that 1 –
          p is very close to 1 for the current value of
          p.) The spread is small compared to the
          expected number of calls, lending credibility to our initial
          approximation of replacing the full distribution with only its
          expected outcome. (This is a demonstration for the observation we
          made earlier that the width of the resulting distribution grows much
          more slowly with N than does the expected value
          itself. As N gets larger, this effect becomes
          more drastic, which means that mean-field theory gets
          better and more reliable the more urgently we
          need it! The tough cases can be situations where
          N is of moderate size—say, in the range of
          10,..., 100. This size is too large to work out all outcomes exactly
          but not large enough to be safe working only with the expected
          values.)
Having seen this, we can apply similar reasoning to more
          general situations. For example, notice that the number of orders
          shipped each day will probably not equal exactly one
          million—instead, it will be a random quantity itself. So, by using
          N = 1,000,000 we have employed the mean-field
          idea already. It should be easy to generalize to other situations
          from here.
[image: The Gaussian probability density.]

Figure 9-2. The Gaussian probability density.



The Gaussian Distribution and the Central Limit Theorem



Probably the most ubiquitous formula in all of
        probability theory and statistics is:
[image: The Gaussian Distribution and the Central Limit Theorem]
This is the formula for the Gaussian (or
        Normal) probability density. This is the
        proverbial “Bell Curve.” (See Figure 9-2 and Appendix B for additional details.)
Two factors contribute to the elevated importance of the
        Gaussian distribution: on the foundational side, the Central Limit
        Theorem guarantees that the Gaussian distribution will arise naturally
        whenever we take averages (of almost anything). On the sheerly
        practical side, the fact that we can actually explicitly work out most
        integrals involving the Gaussian means that such expressions make good
        building blocks for more complicated theories.
The Central Limit Theorem



Imagine you have a source of data points that are distributed
          according to some common distribution. The data could be numbers
          drawn from a uniform random-number generator, prices of items in a
          store, or the body heights of a large group of people.
Now assume that you repeatedly take a sample of
          n elements from the source
          (n random numbers, n items
          from the store, or measurements for n people)
          and form the total sum of the values. You can also divide by
          n to get the average. Notice that these sums
          (or averages) are random quantities themselves: since the points are
          drawn from a random distribution, their sums will also be random
          numbers.
Note that we don’t necessarily know the distributions from
          which the original points come, so it may seem it would be
          impossible to say anything about the distribution of their sums.
          Surprisingly, the opposite is true: we can make very precise
          statements about the form of the distribution according to which the
          sums are distributed. This is the content of the Central Limit
          Theorem.
The Central Limit Theorem states that the
          sums of a bunch of random quantities will be distributed according
          to a Gaussian distribution. This statement is not strictly true; it
          is only an approximation, with the quality of the approximation
          improving as more points are included in each sample (as
          n gets larger, the approximation gets better).
          In practice, though, the approximation is excellent even for quite
          moderate values of n.
This is an amazing statement, given that we made no
          assumptions whatsoever about the original distributions (I will
          qualify this in a moment): it seems as if we got something for
          nothing! After a moment’s thought, however, this result should not
          be so surprising: if we take a single point from the original
          distribution, it may be large or it may be small—we don’t know. But
          if we take many such points, then the highs and the lows will
          balance each other out “on average.” Hence we should not be too
          surprised that the distribution of the sums is a
          smooth distribution with a central
          peak. It is, however, not obvious that this distribution
          should turn out to be the Gaussian specifically.
We can now state the Central Limit Theorem formally.
          Let
          {xi}
          be a sample of size n, having the following
          properties:
	All xn are mutually
              independent.

	All
              xn
              are drawn from a common
              distribution.

	The mean μ and the standard
              deviation σ for the distribution of the
              individual data points
              xi
              are finite.



Then the sample average
          [image: ] is distributed according to a
          Gaussian with mean μ and standard deviation
          [image: ]. The approximation improves as the sample
          size n increases. In other words, the probability of
          finding the value x for the sample mean
          [image: ] becomes Gaussian as n
          gets large:
[image: The Central Limit Theorem]
Notice that, as for the binomial distribution, the width of
          the resulting distribution of the average is smaller than the width
          of the original distribution of the individual data points. This
          aspect of the Central Limit Theorem is the formal justification for
          the common practice to “average out the noise”: no matter how widely
          the individual data points scatter, their averages will scatter
          less.
On the other hand, the reduction in width is not as fast as
          one might want: it is not reduced linearly with the number
          n of points in the sample but only by
          [image: ]. This means that if we take 10 times as many
          points, the scatter is reduced to only [image: ] percent of its original value. To reduce it
          to 10 percent, we would need to increase the sample size by a factor
          of 100. That’s a lot!
Finally, let’s take a look at the Central Limit Theorem in
          action. Suppose we draw samples from a uniform distribution that
          takes on the values 1, 2,..., 6 with equal probability—in other
          words, throws of a fair die. This distribution has mean μ = 3.5
          (that’s pretty obvious) and standard deviation [image: ] (not as obvious but not terribly hard to work
          it out, or you can look it up).
We now throw the die a certain number of times and evaluate
          the average of the values that we observe. According to the Central
          Limit Theorem, these averages should be distributed according to a
          Gaussian distribution that becomes narrower as we increase the
          number of throws used to obtain an average. To see the distribution
          of values, we generate a histogram (see Chapter 2). I use 1,000
          “repeats” to have enough data for a histogram. (Make sure you
          understand what is going on here: we throw the die a certain number
          of times and calculate an average based on those throws; and this
          entire process is repeated 1,000 times.)
The results are shown in Figure 9-3. In the
          upper-left corner we have thrown the die only once and thus form the
          “average” over only a single throw. You can see that all of the
          possible values are about equally likely: the distribution is
          uniform. In the upper-right corner, we throw the dice
          twice every time and form the average over both
          throws. Already a central tendency in the distribution of the
          average of values can be observed! We then
          continue to make longer and longer averaging runs. (Also shown is
          the Gaussian distribution with the appropriately adjusted width:
          [image: ], where n is the number
          of throws over which we form the average.)
I’d like to emphasize two observations in particular. First,
          note how quickly the central tendency becomes apparent—it only takes
          averaging over two or three throws for a central peak to becomes
          established. Second, note how well the properly scaled Gaussian
          distribution fits the observed histograms. This is the Central Limit
          Theorem in action.

The Central Term and the Tails



The most predominant feature of the Gaussian density function
          is the speed with which it falls to zero as |x|
          (the absolute value of x—see Appendix B) becomes large. It is worth
          looking at some numbers to understand just how quickly it does
          decay. For x = 2, the standard Gaussian with
          zero mean and unit variance is approximately
          p(2, 0, 1) = 0.05 .... For
          x = 5, it is already on the order of
          10–6; for x = 10
          it’s about 10–22; and not much further
          out, at x = 15, we find
          p(15, 0, 1) ≈ 10–50.
          One needs to keep this in perspective: the age of the universe is
          currently estimated to be about 15 billion years, which is about 4 ·
          1017 seconds. So, even if we had made
          a thousand trials per second since the beginning of
          time, we would still not have found a value as large or
          larger than x = 10!
[image: The Central Limit Theorem in action. Distribution of the average number of points when throwing a fair die several times. The boxes show the histogram of the value obtained; the line shows the distribution according to the Central Limit Theorem.]

Figure 9-3. The Central Limit Theorem in action. Distribution of the
            average number of points when throwing a fair die several times.
            The boxes show the histogram of the value obtained; the line shows
            the distribution according to the Central Limit Theorem.

Although the Gaussian is defined for all
          x, its weight is so strongly concentrated
          within a finite, and actually quite small, interval (about [–5, 5])
          that values outside this range will not occur. It is not just that
          only one in a million events will deviate from the mean by more than
          5 standard deviations: the decline continues, so that fewer than one
          in 1022 events will deviate by more than
          10 standard deviations. Large outliers are not just rare—they don’t
          happen!
This is both the strength and the limitation of the Gaussian
          model: if the Gaussian model applies, then we
          know that all variation in the data will be relatively small and
          therefore “benign.” At the same time, we know that for some systems,
          large outliers do occur in practice. This means that, for such
          systems, the Gaussian model and theories based on
          it will not apply, resulting in bad guidance or outright
          wrong results. (We will return to this problem shortly.)

Why Is the Gaussian so Useful?



It is the combination of two properties that makes the
          Gaussian probability distribution so common and useful: because of
          the Central Limit Theorem, the Gaussian distribution will occur whenever we we dealing with averages; and
          because so much of the Gaussian’s weight is concentrated in the
          central region, almost any expression can be approximated by
          concentrating only on the central region, while largely disregarding
          the tails.
As we will discuss in Chapter 10 in more
          detail, the first of these two arguments has been put to good use by
          the creators of classical statistics: although we may not know
          anything about the distribution of the actual data points, the
          Central Limit Theorem enables us to make statements about their
          averages. Hence, if we concentrate on estimating the sample
          average of any quantity, then we are on much
          firmer ground, theoretically. And it is impressive to see how
          classical statistics is able to make rigorous statements about the
          extent of confidence intervals for parameter estimates while using
          almost no information beyond the data points themselves! I’d like to
          emphasize these two points again: through clever application of the
          Central Limit Theorem, classical statistics is able to give
          rigorous (not just intuitive) bounds on
          estimates—and it can do so without requiring detailed knowledge of
          (or making additional assumptions about) the system under
          investigation. This is a remarkable achievement!
The price we pay for this rigor is that we lose much of the
          richness of the original data set: the distribution of points has
          been boiled down to a single number—the average.
The second argument is not so relevant from a conceptual
          point, but it is, of course, of primary practical importance: we can
          actually do many integrals involving Gaussians, either exactly or in
          very good approximation. In fact, the Gaussian is so convenient in
          this regard that it is often the first choice when an integration
          kernel is needed (we have already seen examples of this in Chapter 2, in the
          context of kernel density estimates, and in Chapter 4, when we
          discussed the smoothing of a time series).

Optional: Gaussian Integrals



The basic idea goes like this: we want to evaluate an integral
          of the form:
[image: Optional: Gaussian Integrals]
We know that the Gaussian is peaked around
          x = 0, so that only nearby points will
          contribute significantly to the value of the integral. We can
          therefore expand f(x) in a
          power series for small x. Even if this
          expansion is no good for large x, the result
          will not be affected significantly because those points are
          suppressed by the Gaussian. We end up with a series of integrals of
          the form
[image: Optional: Gaussian Integrals]
which can be performed exactly. (Here,
          an
          is the expansion coefficient from the expansion of
          f(x).)
We can push this idea even further. Assume that the kernel is
          not exactly Gaussian but is still strongly peaked:
[image: Optional: Gaussian Integrals]
where the function
          g(x) has a minimum at some
          location (otherwise, the kernel would not have a peak at all). We
          can now expand g(x) into a
          Taylor series around its minimum (let’s assume it is at
          x = 0), retaining only the first two terms:
          g(x) ≈
          g(0) + g″
          (0)x2/2 + ···. The
          linear term vanishes because the first derivative
          g′ must be zero at a minimum. Keeping in mind
          that the first term in this expansion is a constant not depending on
          x, we have transformed the original integral to
          one of Gaussian type:
[image: Optional: Gaussian Integrals]
which we already know how to solve.
This technique goes by the name of Laplace’s
          method (not to be confused with “Gaussian integration,”
          which is something else entirely).

Beware: The World Is Not Normal!



Given that the Central Limit Theorem is a rigorously proven
          theorem, what could possibly go wrong? After all, the Gaussian
          distribution guarantees the absence of outliers, doesn’t it? Yet we
          all know that unexpected events do
          occur.
There are two things that can go wrong with the discussion so
          far:
	The Central Limit Theorem only applies to sums or averages
              of random quantities but not necessarily to the random
              quantities themselves. The distribution of individual data
              points may be quite different from a Gaussian, so if we want to
              reason about individual events (rather than about an aggregate
              such as their average), then we may need different methods. For
              example, although the average number of
              items in a shipment may be Gaussian distributed around a typical
              value of three items per shipment, there is no guarantee that
              the actual distribution of items per shipment will follow the
              same distribution. In fact, the distribution will probably be
              geometrical, with shipments containing only a single item being
              much more common than any other shipment size.

	More importantly, the Central Limit Theorem may
              not apply. Remember the three conditions listed as
              requirements for the Central Limit Theorem to hold? Individual
              events must be independent, follow the same distribution, and
              must have a finite mean and standard deviation. As it turns out,
              the first and second of these conditions can be weakened
              (meaning that individual events can be somewhat correlated and
              drawn from slightly different distributions), but the third
              condition cannot be weakened: individual
              events must be drawn from a distribution of
              finite width.
Now this may seem like a minor matter: surely, all
              distributions occurring in practice are of finite width, aren’t
              they? As it turns out, the answer is no!
              Apparently “pathological” distributions of this kind are much
              more common in real life than one might expect. Such
              distributions follow power-law behavior,
              and they are the topic of the next section.





Power-Law Distributions and Non-Normal Statistics



Let’s start with an example. Figure 9-4 shows a histogram
        for the number of visits per person that a sample of visitors made to
        a certain website over one month. Two things stand out: the huge
        number of people who made a handful of visits (fewer than 5 or 6) and,
        at the other extreme, the huge number of visits that a few people
        made. (The heaviest user made 41,661 visits: that’s about one per
        minute over the course of the month—probably a bot or monitor of some
        sort.)
This distribution looks nothing like the “benign” case in Figure 9-2. The distribution in Figure 9-4 is not merely
        skewed—it would be no exaggeration to say that it consists
        entirely of outliers! Ironically, the “average”
        number of visits per person—calculated naively, by summing the visits
        and dividing by the number of unique visitors—equals 26 visits per
        person. This number is clearly not representative of anything: it
        describes neither the huge majority of light users on the lefthand
        side of the graph (who made one or two visits), nor the small group of
        heavy users on the right. (The standard deviation is ±437, which
        clearly suggests that something is not right, given that the mean is
        26 and the number of visits must be positive.)
This kind of behavior is typical for distributions with
        so-called fat or heavy
        tails. In contrast to systems ruled by a Gaussian
        distribution or another distribution with short tails, data values are
        not effectively limited to a narrow domain. Instead, we can find a
        nonnegligible fraction of data points that are very far away from the
        majority of points.
Mathematically speaking, a distribution is heavy-tailed if it
        falls to zero much slower than an exponential function. Power laws
        (i.e., functions that behave as ~
        1/xβ for some exponent
        β > 0) are usually used to describe such behavior.
In Chapter 3,
        we discussed how to recognize power laws: data points falling onto a
        straight line on a double logarithmic plot. A double logarithmic plot
        of the data from Figure 9-4 is shown in Figure 9-5, and we see that
        eventually (i.e., for more than five visits per
        person), the data indeed follows a power law (approximately ~
        x–1.9). On the
        lefthand side of Figure 9-5
        (i.e., for few visits per person), the behavior
        is different. (We will come back to this point later.)
Power-law distributions like the one describing the data set in
        in Figure 9-4 and
        Figure 9-5 are
        surprisingly common. They have been observed in a number of different
        (and often colorful) areas: the frequency with which words are used in
        texts, the magnitude of earthquakes, the size of files, the copies of
        books sold, the intensity of wars, the sizes of sand particles and
        solar flares, the population of cities, and the distribution of
        wealth. Power-law distributions go by different names in different
        contexts—you will find them referred to as “Zipf” of “Pareto”
        distributions, but the mathematical structure is always the same. The
        term “power-law distribution” is probably the most widely accepted,
        general term for this kind of heavy-tailed distribution.
[image: A histogram of the number of visitors who made x number of visits to a certain website. Note the extreme skewness of the distribution: most visitors made one or two visits, but a few made tens of thousands of visits.]

Figure 9-4. A histogram of the number of visitors who made
          x number of visits to a certain website. Note
          the extreme skewness of the distribution: most visitors made one or
          two visits, but a few made tens of thousands of visits.

Whenever they were found, power-law distributions were met with
        surprise and (usually) consternation. The reason is that they possess
        some unexpected and counterintuitive properties:
	Observations span a wide range of values, often many orders
            of magnitude.

	There is no typical scale or value that could be used to
            summarize the distribution of points.

	The distribution is extremely skewed, with many data points
            at the low end and few (but not negligibly few) data points at
            very high values.

	Expectation values often depend on the sample size. Taking
            the average over a sample of n points may
            yield a significantly smaller value than taking the average over
            2n or 10n data points.
            (This is in marked contrast to most other distributions, where the
            quality of the average improves when it is based on more points.
            Not so for power-law distributions!)



[image: The data from but on double logarithmic scales. The righthand side of this curve is well described by the power law 1/x1.9.]

Figure 9-5. The data from Figure 9-4 but on double
          logarithmic scales. The righthand side of this curve is well
          described by the power law
          1/x1.9.

It is the last item that is the most disturbing. After
        all, didn’t the Central Limit Theorem tell us that the scatter of the
        average was always reduced by a factor of 1/[image: ] as the sample size increases? Yes, but remember
        the caveat at the end of the last section: the Central Limit Theorem
        applies only to those distributions that have a finite mean and
        standard deviation. For power-law distributions, this condition is not
        necessarily fulfilled, and hence the Central Limit Theorem does
        not apply.
The importance of this fact cannot be overstated. Not only does
        much of our intuition go out the window but most of statistical
        theory, too! For the most part, distributions without expectations are
        simply not treated by standard probability theory and
        statistics.[17]
Working with Power-Law Distributions



So what should you do when you encounter a situation described
          by a power-law distribution? The most important thing is to
          stop using classical methods. In particular,
          the mean-field approach (replacing the distribution by its mean) is
          no longer applicable and will give misleading or incorrect
          results.
From a practical point of view, you can try segmenting the
          data (and, by implication, the system) into different groups: the
          majority of data points at small values (on the lefthand side in
          Figure 9-5), the
          set of data points in the tail of the distribution (for relatively
          large values), and possibly even a group of data points
          making up the intermediate regime. Each such group is now more
          homogeneous, so that standard methods may apply. You will need
          insight into the business domain of the data, and you should
          exercise discretion when determining where to make those cuts,
          because the data itself will not yield a natural “scale” or other
          quantity that could be used for this purpose.
There is one more practical point that you should be aware of
          when working with power-law distributions: the form ~
          1/xβ is only valid
          “asymptotically” for large values of x. For
          small x, this rule must be supplemented, since
          it obviously cannot hold for x → 0 (we can’t
          divide by zero). There are several ways to augment the original form
          near x = 0. We can either impose a minimum
          value xmin of
          x and consider the distribution only for values
          larger than this. That is often a reasonable approach because such a
          minimum value may exist naturally. For example there is an obvious
          “minimum” number of pages (i.e., one page) that
          a website visitor can view and still be considered a “visitor.”
          Similar considerations hold for the population of a city and the
          copies of books sold—all are limited on the left by
          xmin = 1. Alternatively,
          the behavior of the observed distribution may be different for small
          values. Look again at Figure 9-5: for values
          less than about 5, the curve deviates from the power-law behavior
          that we find elsewhere.
Depending on the shape that we require near zero, we can
          modify the original rule in different ways. Two examples stand out:
          if we want a flat peak for x = 0, then we can
          try a form like ~ 1/(a +
          xβ) for some
          a > 0, and if we require a peak at a nonzero
          location, we can use a distribution like ~
          exp(–C/x)/xβ
          (see Figure 9-6).
          For specific values of β, two distributions of this kind have
          special names:
[image: Working with Power-Law Distributions]

Optional: Distributions with Infinite Expectation
          Values



The expectation value
          E(f) of a function
          f(x), which in turn
          depends on some random quantity x, is nothing
          but the weighted average of that function in which we use the
          probability density p(x)
          of x as the weight function:
[image: Optional: Distributions with Infinite Expectation Values]
Of particular importance are the expectation values for simple
          powers of the variable x, the so called
          moments of the distribution:
[image: Optional: Distributions with Infinite Expectation Values]
[image: The Lévy distribution for several values of the parameter c.]

Figure 9-6. The Lévy distribution for several values of the parameter
            c.

The first expression must always equal 1, because we expect
          p(x) to be properly
          normalized. The second is the familiar mean, as the weighted average
          of x. The last expression is used in the
          definition of the standard deviation:
[image: The Lévy distribution for several values of the parameter c.]
For power-law distributions, which behave as ~
          1/xβ with β > 1
          for large x, some of these integrals may not
          converge—in this case, the corresponding moment “does not exist.”
          Consider the kth moment (C
          is the normalization constant C =
          E(1) = ∫
          p(x)
          dx):
[image: The Lévy distribution for several values of the parameter c.]
Unless β – k > 1, this integral does
          not converge at the upper limit of integration. (I assume that the
          integral is proper at the lower limit of integration, through a
          lower cutoff xmin or
          another one of the methods discussed previously.) In particular, if
          β < 2, then the mean and all higher moments do not exist; if β
          < 3, then the standard deviation does not exist.
We need to understand that this is an analytical result—it
          tells us that the distribution is ill behaved and that, for
          instance, the Central Limit Theorem does not apply in this case. Of
          course, for any finite sample of
          n data points drawn from such a distribution,
          the mean (or other moment) will be perfectly finite. But these
          analytical results warn us that, if we continue to draw additional
          data points from the distribution, then their average (or other
          moment) will not settle down: it will grow as the number of data
          points in the sample grows. Any summary statistic calculated from a
          finite sample of points will therefore not be a good estimator for
          the true (in this case: infinite) value of that statistic. This
          poses an obvious problem because, of course, all practical samples
          contain only a finite number of points.
Power-law distributions have no parameters that could (or
          need) be estimated—except for the exponent, which we know how to
          obtain from a double logarithmic plot. There is also a maximum
          likelihood estimator for the exponent:
[image: The Lévy distribution for several values of the parameter c.]
where x0 is the
          smallest value of x for which the asymptotic
          power-law behavior holds.

Where to Go from Here



If you want to dig deeper into the theory of heavy-tail
          phenomena, you will find that it is a mess. There are two reasons
          for that: on the one hand, the material is technically hard (since
          one must make do without two standard tools: expectation values and
          the Central Limit Theorem), so few simple, substantial, powerful
          results have been obtained—a fact that is often covered up by
          excessive formalism. On the other hand, the “colorful” and multi
          disciplinary context in which power-law distributions are found has
          led to much confusion. Similar results are being discovered and
          re-discovered in various fields, with each field imposing its own
          terminology and methodology, thereby obscuring the mathematical
          commonalities.
The unexpected and often almost paradoxical consequences of
          power-law behavior also seem to demand an explanation for
          why such distributions occur in practice and
          whether they might all be expressions of some common mechanisms.
          Quite a few theories have been proposed toward this end, but none
          has found widespread acceptance or proved particularly useful in
          predicting new phenomena—occasionally grandiose claims to the
          contrary notwithstanding.
At this point, I think it is fair to say that we don’t
          understand heavy-tail phenomena: not when and why they occur, nor
          how to handle them if they do.


Other Distributions



There are some other distributions that describe common
        scenarios you should be aware of. Some of the most important (or most
        frequently used) ones are described in this section.
[image: The geometric distribution: p(k, p) = p(1 – p)k–1.]

Figure 9-7. The geometric distribution:
          p(k,
          p) = p(1 –
          p)k–1.

Geometric Distribution



The geometric distribution (see Figure 9-7):
p(k,
          p) = p(1 –
          p)k–1
          with k = 1, 2, 3,...
is a special case of the binomial distribution. It can be
          viewed as the probability of obtaining the first Success at the
          kth trial (i.e., after
          observing k – 1 failures). Note that there is
          only a single arrangement of events for this outcome, hence the
          combinatorial factor is equal to one. The geometric distribution has
          mean μ = 1/p and standard deviation
          [image: ].

Poisson Distribution



The binomial distribution gives us the probability of
          observing exactly k events in
          n distinct trials. In contrast, the Poisson
          distribution describes the probability of finding
          k events during some continuous observation
          interval of known length. Rather than being
          characterized by a probability parameter and a number of trials (as
          for the binomial distribution), the Poisson distribution is
          characterized by a rate λ and an
          interval length t.
The Poisson distribution
          p(k,
          t, λ) gives the probability of observing
          exactly k events during an interval of length
          t when the rate at which events occur is λ (see
          Figure 9-8):
[image: Poisson Distribution]
[image: The Poisson distribution: .]

Figure 9-8. The Poisson distribution: [image: ].

Because t and λ only occur together, this
          expression is often written in a two-parameter form as
          p(k, υ) =
          e–υ
          υk/k!.
          Also note that the term
          e–λt
          does not depend on k at all—it is merely there
          as a normalization factor. All the action is in the fractional part
          of the equation.
Let’s look at an example. Assume that phone calls arrive at a
          call center at a rate of 15 calls per hour (so that λ = 0.25
          calls/minute). Then the Poisson distribution
          p(k, 1, 0.25) will give us
          the probability that k = 0, 1, 2,... calls will
          arrive in any given minute. But we can also use it to calculate the
          probability that k calls will arrive during any
          5-minute time period: p(k,
          5, 0.25). Note that in this context, it makes no sense to speak of
          independent trials: time passes continuously, and the expected
          number of events depends on the length of the observation
          interval.
We can collect a few results. Mean μ and standard deviation σ
          for the Poisson distribution are given by:
[image: The Poisson distribution: .]
Notice that only a single parameter (λt)
          controls both the location and the width of the distribution. For
          large λ, the Poisson distribution approaches a Gaussian distribution
          with μ = λ and [image: ]. Only for small values of λ (say, λ < 20)
          are the differences notable. Conversely, to estimate the parameter λ
          from observations, we divide the number k of
          events observed by the length t of the
          observation period: λ =
          k/t. Keep in mind that
          when evaluating the formula for the Poisson
          distribution, the rate λ and the length t of
          the interval of interest must be of compatible units. To find the
          probability of k calls over 6 minutes in our
          call center example above, we can either use t
          = 6 minutes and λ = 0.25 calls per minute or t
          = 0.1 hours and λ = 15 calls per hour, but we cannot mix them. (Also
          note that 6 · 0.25 = 0.1 · 15 = 1.5, as it should.)
The Poisson distribution is appropriate for processes in which
          discrete events occur independently and at a constant rate: calls to
          a call center, misprints in a manuscript, traffic accidents, and so
          on. However, you have to be careful: it applies only if you can
          identify a rate at which events occur and if
          you are interested specifically in the number of events that occur
          during intervals of varying length. (You cannot expect every
          histogram to follow a Poisson distribution just because “we are
          counting events.”)

Log-Normal Distribution



Some quantities are inherently asymmetrical. Consider, for
          example, the time it takes people to complete a certain task:
          because everyone is different, we expect a distribution of values.
          However, all values are necessarily positive (since times cannot be
          negative). Moreover, we can expect a particular shape of the
          distribution: there will be some minimum time that nobody can beat,
          then a small group of very fast champions, a peak at the most
          typical completion time, and finally a long tail of stragglers.
          Clearly, such a distribution will not be well described by a
          Gaussian, which is defined for both positive and negative values of
          x, is symmetric, and has short tails!
The log-normal distribution is an example of an asymmetric
          distribution that is suitable for such cases. It is related to the
          Gaussian: a quantity follows the log-normal distribution if its
          logarithm is distributed according to a Gaussian.
The probability density for the log-normal distribution looks
          like this:
[image: Log-Normal Distribution]
(The additional factor of x in the
          denominator stems from the Jacobian in the change of variables from
          x to log x.) You may often
          find the log-normal distribution written slightly
          differently:
[image: Log-Normal Distribution]
This is the same once you realize that
          log(x/μ) = log(x) – log(μ)
          and make the identification [image: ]. The first form is much better because it
          expresses clearly that μ is the typical scale
          of the problem. It also ensures that the argument of the logarithm
          is dimensionless (as it must be).
[image: The log-normal distribution.]

Figure 9-9. The log-normal distribution.

Figure 9-9 shows the
          log-normal distribution for a few different values of σ. The
          parameter σ controls the overall “shape” of the curve, whereas the
          parameter μ controls its “scale.” In general, it can be difficult to
          predict what the curve will look like for different values of the
          parameters, but here are some results (the mode
          is the position of the peak).
[image: The log-normal distribution.]
Values for the parameters can be estimated from a data set as
          follows:
[image: The log-normal distribution.]
The log-normal distribution is important as an example of a
          standard statistical distribution that provides an alternative to
          the Gaussian model for situations that require an asymmetrical
          distribution. That being said, the log-normal distribution can be
          fickle to use in practice. Not all asymmetric point distributions
          are described well by a log-normal distribution, and you may not be
          able to obtain a good fit for your data using a log-normal
          distribution. For truly heavy-tail phenomena in particular, you will
          need a power-law distribution after all. Also keep in mind that the
          log-normal distribution approaches the Gaussian as σ becomes small compared to
          μ (i.e., σ/μ ≪ 1), at which point it becomes
          easier to work with the familiar Gaussian directly.

Special-Purpose Distributions



Many additional distributions have been defined and studied.
          Some, such as the gamma distribution, are mostly of theoretical
          importance, whereas others—such as the chi-square,
          t, and F distributions—are
          are at the core of classical, frequentist statistics (we will
          encounter them again in Chapter 10). Still others
          have been developed to model specific scenarios occurring in
          practical applications—especially in reliability engineering, where
          the objective is to make predictions about likely failure rates and
          survival times.
I just want to mention in passing a few terms that you may
          encounter. The Weibull distribution is used to
          express the probability that a device will fail after a certain
          time. Like the log-normal distribution, it depends on both a shape
          and a scale parameter. Depending on the value of the shape
          parameter, the Weibull distribution can be used to model different
          failure modes. These include “infant mortality” scenarios, where
          devices are more likely to fail early but the failure rate declines
          over time as defective items disappear from the population, and
          “fatigue death” scenarios, where the failure rate rises over time as
          items age.
Yet another set of distributions goes by the name of
          extreme-value or Gumbel
          distributions. They can be used to obtain the probability that the
          smallest (or largest) value of some random quantity will be of a
          certain size. In other words, they answer the question: what is the
          probability that the largest element in a set of random numbers is
          precisely x?
Quite intentionally, I don’t give formulas for these
          distributions here. They are rather advanced and specialized tools,
          and if you want to use them, you will need to consult the
          appropriate references. However, the important point to take away
          here is that, for many typical scenarios involving random
          quantities, people have developed explicit models and studied their
          properties; hence a little research may well turn up a solution to
          whatever your current problem is.


Optional: Case Study—Unique Visitors over Time



To put some of the ideas introduced in the last two chapters
        into practice, let’s look at an example that is a bit more involved.
        We begin with a probabilistic argument and use it to develop a
        mean-field model, which in turn will lead to a differential equation
        that we proceed to solve for our final answer. This example
        demonstrates how all the different ideas we have been introducing in
        the last few chapter can fit together to tackle more complicated
        problems.
Imagine you are running a website. Users visit this website
        every day of the month at a rate that is roughly constant. We can also
        assume that we are able to track the identity of these users (through
        a cookie or something like that). By studying those cookies, we can
        see that some users visit the site only once in any given month while
        others visit it several times. We are interested in the number of
        unique users for the month and, in particular,
        how this number develops over the course of the month. (The number of
        unique visitors is a key metric in Internet advertising, for
        instance.)
The essential difficulty is that some users visit several times
        during the month, and so the number of unique visitors is smaller than
        the total number of visitors. Furthermore, we will observe a
        “saturation effect”: on the first day, almost every user is new; but
        on the last day of the month, we can expect to have seen many of the
        visitors earlier in the month already.
We would like to develop some understanding for the number of
        unique visitors that can be expected for each day of the month
        (e.g., to monitor whether we are on track to meet
        some monthly goal for the number of unique visitors). To make
        progress, we need to develop a model.
To see more clearly, we use the following idealization, which is
        equivalent to the original problem. Consider an urn that contains
        N identical tokens (total number of potential
        visitors). At each turn (every day), we draw k
        tokens randomly from the urn (average number of visitors per day). We
        mark all of the drawn tokens to indicate that we have “seen” them and
        then place them back into the urn. This cycle is repeated for every
        day of the month.
Because at each turn we mark all unmarked tokens from the random
        sample drawn at this turn, the number of marked tokens in the urn will
        increase over time. Because each token is marked at most once, the
        number of marked tokens in the urn at the end of the month is the
        number of unique visitors that have visited during that time
        period.
Phrased this way, the process can be modeled as a sequence of
        Bernoulli trials. We define drawing an already marked token as
        Success. Because the number of marked tokens in the urn is increasing,
        the success probability p will change over time.
        The relevant variables are:
	N
	Total number of tokens in
                urn

	k
	Number of tokens drawn at each
                turn

	m(t)
	Number of already-marked tokens
                drawn at turn t

	n(t)
	Total number of marked tokens in urn
                at time t

	[image: ]
	Probability of drawing an
                already-marked token at turn
                t



Each day consists of a new Bernoulli trial in which
        k tokens are drawn from the urn. However, because
        the number of marked tokens in the urn increases every day, the
        probability p(t) is
        different every day.
On day t, we have
        n(t) marked tokens in the
        urn. We now draw k tokens, of which we expect
        m(t) =
        kp(t) to be marked
        (Successes). This is simply an application of the basic result for the
        expectation value of Bernoulli trials, using the current value for the
        probability. (Working with the expectation value in this way
        constitutes a mean-field approximation.)
The number of unmarked tokens in the current drawing is:
k –
        m(t) =
        k –
        kp(t) =
        k(1 –
        p(t))
We now mark these tokens and place them back into the urn, which
        means that the number of marked tokens in the urn grows by
        k(1 –
        p(t)):
n(t + 1) =
        n(t) +
        k(1 –
        p(t))
This equation simply expresses the fact that the new number of
        marked tokens n(t + 1)
        consists of the previous number of marked tokens
        n(t)
        plus the newly marked tokens
        k(1 –
        p(t)).
We can now divide both sides by N (the
        total number of tokens). Recalling that
        p(t) =
        n(t)/N,
        we write:
[image: Optional: Case Study—Unique Visitors over Time]
This is a recurrence relation for
        p(t), which can be rewritten
        as:
p(t + 1) –
        p(t) =
        f(1 –
        p(t))
In the continuum limit, we replace the difference between the
        “new” and the “old” values by the derivative at
        time t, which turns the recurrence relation into
        a more convenient differential equation:
[image: Optional: Case Study—Unique Visitors over Time]
with initial condition
        p(t = 0) = 0 (because
        initially there are no marked tokens in the urn). This differential
        equation has the solution:
p(t) = 1 –
        e–ft
Figure 9-10 shows
        p(t) for various values of
        the parameter f. (The parameter
        f has an obvious interpretation as size of each
        drawing expressed as a fraction of the total number of tokens in the
        urn.)
This is the result that we have been looking for. Remember that
        p(t) =
        n(t)/N;
        hence the probability is directly proportional to the number of unique
        visitors so far. We can rewrite it more explicitly as:
[image: Optional: Case Study—Unique Visitors over Time]
[image: Fraction of unique visitors seen on day t. The parameter f is the number of daily users expressed as a fraction of all potential users.]

Figure 9-10. Fraction of unique visitors seen on day
          t. The parameter f is the
          number of daily users expressed as a fraction of all potential
          users.

In this form, the equation gives us, for each day of the month,
        the number of unique visitors for the month up to that date. There is
        only one unknown parameter: N, the total number
        of potential visitors. (We know
        k, the average number of total visitors per day,
        because this number is immediately available from the web-server
        logs.) We can now try to fit one or two months’ worth of data to this
        formula to obtain a value for N. Once we have
        determined N, the formula predicts the expected
        number of unique visitors for each day of the month. We can use this
        information to track whether the actual number of unique visitors for
        the current month is above or below expectations.
The steps we took in this little example are typical of a lot of
        modeling. We start with a real problem in a specific situation. To
        make headway, we recast it in an idealized format that tries to retain
        only the most relevant information. (In this example: mapping the
        original problem to an idealized urn model.) Expressing things in
        terms of an idealized model helps us recognize the problem as one we
        know how to solve. (Urn models have been studied extensively; in this
        example, we could identify it with Bernoulli trials, which we know how
        to handle.) Finding a solution often requires that we make actual
        approximations in addition to the abstraction from the problem domain
        to an idealized model. (Working with the expectation value was one
        such approximation to make the problem tractable; replacing the
        recurrence relation with a differential equation was another.)
        Finally, we end up with a “model” that involves some unknown
        parameters. If we are mostly interested in developing conceptual
        understanding, then we don’t need to go any further, since we can read
        off the model’s behavior directly from the formula.
However, if we actually want to make numerical
        predictions, then we’ll need to find numerical values for those
        parameters, which is usually done by fitting the model to some already
        available data. (We should also try to validate the model to see
        whether it gives a good “fit”; refer to the discussion in Chapter 3 on examining
        residuals, for instance.)
Finally, I should point out that the model in this example is
        simplified—as models usually are. The most critical simplification
        (which would most likely not be correct in a real
        application) is that every token in the urn has the same probability
        of being drawn at each turn. In contrast, if look at the behavior of
        actual visitors, we will find that some are much more likely to visit
        more frequently while others are less likely to visit. Another
        simplification is that we assumed the total number of potential
        visitors to be constant. But if we have a website that sees
        significant growth from one month to the next, this assumption may not
        be correct, either. You may want to try and build an improved model
        that takes these (and perhaps other) considerations into account. (The
        first one in particular is not easy—in fact, if you succeed, then let
        me know how you did it!)

Workshop: Power-Law Distributions



The crazy effects of power-law distributions have to be seen to
        be believed. In this workshop, we shall generate (random) data points
        distributed according to a power-law distribution and begin to study
        their properties.
First question: how does one actually generate nonuniformly
        distributed random numbers on a computer? A random generator that
        produces uniformly distributed numbers is available in almost all
        programming environments, but generating random numbers distributed
        according to some other distribution requires a little bit more work.
        There are different ways of going about it; some are specific to
        certain distributions only, whereas others are designed for speed in
        particular applications. We’ll discuss a simple method that works for
        distributions that are analytically known.
The starting point is the cumulative distribution function for
        the distribution in question. By construction, the distribution
        function is strictly monotonic and takes on values in the interval [0,
        1]. If we now generate uniformly distributed numbers between 0 and 1,
        then we can find the locations at which the cumulative distribution
        function assumes these values. These points will be distributed
        according to the desired distribution (see Figure 9-11).
(A good way to think about this is as follows. Imagine you
        distribute n points
        uniformly on the interval [0, 1] and find the
        corresponding locations at which the cumulative distribution function
        assumes these values. These locations are spaced according to the
        distribution in question—after all, by construction, the probability
        grows by the same amount between successive locations. Now use points
        that are randomly distributed, rather than uniformly, and you end up
        with random points distributed according to the desired
        distribution.)
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]

Figure 9-11. Generating random numbers from the Gaussian distribution:
          generate uniformly distributed numbers between 0 and 1, then find
          the locations values at which the Gaussian distribution function
          assumes these values. The locations follow a Gaussian
          distribution.

For power-law distributions, we can easily work out the
        cumulative distribution function and its inverse. Let the probability
        density p(x) be:
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
This is known as the the “standard” form of the Pareto
        distribution. It is valid for values of x greater
        than 1. (Values of x < 1 have zero probability
        of occurring.) The parameter α is the “shape parameter” and must be
        greater than zero, because otherwise the probability is not
        normalizable. (This is a different convention than the one we used
        earlier: β = 1 + α.)
We can work out the cumulative distribution function
        P(x):
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
This expression can be inverted to give:
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
If we now use uniformly distributed random values for
        y, then the values for x
        will be distributed according to the Pareto distribution that we
        started with. (For other distributions, such as the Gaussian,
        inverting the expression for the cumulative distribution function is
        often harder, and you may have to find a numerical library that
        includes the inverse of the distribution function explicitly.)
Now remember what we said earlier. If the exponent in the
        denominator is less than 2 (i.e., if β ≤ 2 or α ≤
        1), then the “mean does not exist.” In practice, we can evaluate the
        mean for any sample of points, and for any finite
        sample the mean will, of course, also be finite. But as we take more
        and more points, the mean does not settle down—instead it keeps on
        growing. On the other hand, if the exponent in the denominator is
        strictly greater than 2 (i.e., if β > 2 or α
        > 1), then the mean does exist, and its value does not depend on
        the sample size.
I would like to emphasize again how counterintuitive the
        behavior for α ≤ 1 is. We usually expect that larger samples will give
        us better results with less noise. But in this particular scenario,
        the opposite is true!
We can explore behavior of this type using the simple program
        shown below. All it does is generate 10 million random numbers
        distributed according to a Pareto distribution. I generate those
        numbers using the method described at the beginning of this section;
        alternatively, I could have used the paretovariate() function in the standard
        random module. We maintain a
        running total of all values (so that we can form the mean) and also
        keep track of the largest value seen so far. The results for two runs
        with α = 0.5 and α = 1.2 are shown in Figure 9-12 and Figure 9-13,
        respectively.
import sys, random

def pareto( alpha ):
    y = random.random()
    return 1.0/pow( 1-y, 1.0/alpha )


alpha = float( sys.argv[1] )

n, ttl, mx = 0, 0, 0

while n<1e7:
    n += 1


    v = pareto( alpha )

    ttl += v
    mx = max( mx, v )

    if( n%50000 == 0 ):
        print n, ttl/n, mx
The typical behavior for situations with α ≤ 1 versus α > 1
        is immediately apparent: whereas in Figure 9-13, the mean
        settles down pretty quickly to a finite value, the mean in Figure 9-12 continues to
        grow.
We can also recognize clearly what drives this behavior. For α ≤
        1, very large values occur relatively frequently. Each such occurrence
        leads to an upward jump in the total sum of values seen, which is
        reflected in a concomitant jump in the mean. Over time, as more trials
        are conducted, the denominator in the mean grows, and hence the value
        of the mean begins to fall. However (and this is what is different for
        α ≤ 1 versus α > 1), before the mean has fallen back to its
        previous value, a further extraordinarily large
        value occurs, driving the sum (and hence the mean) up again, with the
        consequence that the numerator of the expression ttl/n in the example program grows faster
        than the denominator.
[image: Sampling from the Pareto distribution . Both the mean and the maximum value grow without bound.]

Figure 9-12. Sampling from the Pareto distribution [image: ]. Both the mean and the maximum value grow
          without bound.

You may want to experiment yourself with this kind of system.
        The behavior at the borderline value of α = 1 is particularly
        interesting. You may also want to investigate how quickly ttl/n grows with different values of α.
        Finally, don’t restrict yourself only to the mean. Similar
        considerations hold for the standard deviation (see our discussion
        regarding this point earlier in the chapter).

Further Reading



	An Introduction to Probability Theory and Its
              Applications, vol. 1. William Feller. 3rd ed., Wiley. 1968.
Every introductory book on probability theory covers most of
            the material in this chapter. This classic is my personal favorite
            for its deep, yet accessible treatment and for its large selection
            of interesting or amusing examples.

	An Introduction to Mathematical Statistics and
              Its Applications. Richard J. Larsen and Morris L. Marx. 4th ed., Prentice
              Hall. 2005.
This is my favorite book on theoretical statistics. The
            first third contains a good, practical introduction to many of
            this chapter’s topics.
[image: Sampling from the Pareto distribution . Both the mean and the maximum reach a finite value and retain it as we continue to make further drawings.]

Figure 9-13. Sampling from the Pareto distribution [image: ]. Both the mean and the maximum reach a
              finite value and retain it as we continue to make further
              drawings.


	NIST/SEMATECH e-Handbook of Statistical
              Methods. NIST. http://www.itl.nist.gov/div898/handbook/.
              2010.
This free ebook is made available by the National Institute
            for Standards and Technology (NIST). There is a wealth of
            reliable, high-quality information here.

	Statistical Distributions. Merran Evans, Nicholas Hastings, and Brian Peacock. 3rd
              ed., Wiley. 2000.
This short and accessible reference includes basic
            information on 40 of the most useful or important probability
            distributions. If you want to know what distributions exist and
            what their properties are, this is a good place to start.

	“Power Laws, Pareto Distributions and Zipf’s Law.” M. E. J.
            Newman. Contemporary Physics 46 (2005), p.
            323.
This review paper provides a knowledgeable yet very readable
            introduction to the field of power laws and heavy-tail phenomena.
            Highly recommended. (Versions of the document can be found on the
            Web.)

	Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.
Chapter 8 of this
            book provides a succinct and level-headed overview of the current
            state of research into power-law phenomena.






[17] The comment on page 48 (out of 440) of Larry Wasserman’s
            excellent All of Statistics is typical: “From
            now on, whenever we discuss expectations, we implicitly assume
            that they exist.”


Chapter 10. What You Really Need to Know About Classical Statistics



BASIC
      CLASSICAL STATISTICS HAS ALWAYS BEEN SOMEWHAT OF A MYSTERY TO ME: A
      TOPIC FULL OF OBSCURE notions, such as
      t-tests and p-values, and
      confusing statements like “we fail to reject the null hypothesis”—which
      I can read several times and still not know if it is saying yes, no, or
      maybe.[18] To top it all off, all this formidable machinery is then
      used to draw conclusions that don’t seem to be all that interesting—it’s
      usually something about whether the means of two data sets are the same
      or different. Why would I care?
Eventually I figured it out, and I also figured out why the field
      seemed so obscure initially. In this chapter, I want to explain what
      classical statistics does, why it is the way it is, and what it is good
      for. This chapter does not attempt to teach you how to perform any of
      the typical statistical methods: this would require a separate book. (I
      will make some recommendations for further reading on this topic at the
      end of this chapter.) Instead, in this chapter I will tell you what all
      these other books omit.
Let me take you on a trip. I hope you know where your towel
      is.
Genesis



To understand classical statistics, it is necessary to realize
        how it came about. The basic statistical methods that we know today
        were developed in the late 19th and early 20th centuries, mostly in
        Great Britain, by a very small group of people. Of those, one worked
        for the Guinness brewing company and another—the most influential one
        of them—worked at an agricultural research lab (trying to increase
        crop yields and the like). This bit of historical context tells us
        something about their working conditions and primary
        challenges.
No computational capabilities
	All computations had to be performed with paper and
            pencil.



No graphing capabilities, either
	All graphs had to be generated with pencil, paper, and a
            ruler. (And complicated graphs—such as those requiring prior
            transformations or calculations using the data—were especially
            cumbersome.)



Very small and very expensive data
        sets
	Data sets were small (often not more than four to five
            points) and could be obtained only with great difficulty. (When it
            always takes a full growing season to generate a new data set, you
            try very hard to make do with the data you
            already have!)



In other words, their situation was almost entirely the opposite
        of our situation today:
	Computational power that is essentially free (within
            reason)

	Interactive graphing and visualization capabilities on every
            desktop

	Often huge amounts of data



It should therefore come as no surprise that the methods
        developed by those early researchers seem so out of place to us: they
        spent a great amount of effort and ingenuity solving problems we
        simply no longer have! This realization goes a long way toward
        explaining why classical statistics is the way it is and why it often
        seems so strange to us today.
By contrast, modern statistics is very
        different. It places greater emphasis on nonparametric methods and
        Bayesian reasoning, and it leverages current computational
        capabilities through simulation and resampling methods. The book by
        Larry Wasserman (see the recommended reading at the end of this
        chapter) provides an overview of a more contemporary point of
        view.
However, almost all introductory statistics
        books—that is, those books one is likely to pick up as a
        beginner—continue to limit themselves to the same selection of
        slightly stale topics. Why is that? I believe it is a combination of
        institutional inertia together with the expectations of the “end-user”
        community. Statistics has always been a support science for other
        fields: originally agriculture but also medicine, psychology,
        sociology, and others. And these fields, which merely apply statistics
        but are not engaged in actively developing it themselves, continue to
        operate largely using classical methods. However, the machine-learning
        community—with its roots in computer science but great demand for
        statistical methods—provides a welcome push for the widespread
        adoption of more modern methods.
Keep this historical perspective in mind as we take a
        closer look at statistics in the rest of this chapter.

Statistics Defined



All of statistics deals with the following scenario: we have a
        population—that is the set of all possible
        outcomes. Typically, this set is large: all male U.S. citizens, for
        example, or all possible web-server response times. Rather than
        dealing with the total population (which might be impossible,
        infeasible, or merely inconvenient), we instead work with a
        sample. A sample is a subset of the total
        population that is chosen so as to be representative of the overall
        population. Now we may ask: what conclusions about the overall
        population can we draw given one specific
        sample? It is this particular question that
        classical statistics answers via a process known as
        statistical inference: properties of the
        population are inferred from properties of a sample.
Intuitively, we do this kind of thing all the time. For example,
        given the heights of five men (let’s say 178 cm, 180 cm, 179 cm, 178
        cm, and 180 cm), we are immediately comfortable calculating the
        average (which is 179 cm) and concluding that the “typical” body size
        for all men in the population (not just the five in the sample!) is
        179 cm, “more or less.” This is where formal classical statistics
        comes in: it provides us with a way of making the vague “more or less”
        statement precise and quantitative. Given the
        sample, statistical reasoning allows us to make specific statements
        about the population, such as, “We expect x
        percent of men to be between y and
        z cm tall,” or, “We expect fewer than
        x percent of all men to be taller than
        y cm,” and so on.
Classical statistics is mostly concerned with two procedures:
        parameter estimation (or “estimation” for short)
        and hypothesis testing. Parameter estimation
        works as follows. We assume that the population is described by some
        distribution—for example, the Gaussian:
[image: Statistics Defined]
and we seek to estimate values for the parameters (μ and σ this
        case) from a sample. Note that once we have estimates for the
        parameters, the distribution describing the population is fully
        determined, and we can (at least in principle) calculate any desired
        property of the population directly from that distribution. Parameter
        estimation comes in two flavors: point estimation
        and interval estimation. The first just gives us
        a specific value for the parameter, whereas the second gives us a
        range of values that is supposed to contain the true value.
Compared with parameter estimation, hypothesis testing is the
        weirder of the two procedures. It does not attempt to quantify the
        size of an effect; it merely tries to determine whether there is any
        effect at all. Note well that this is a largely theoretical argument; from a practical point of view, the existence
        of an effect cannot be separated entirely from its size. We will come
        back to this point later, but first let’s understand how hypothesis
        testing works.
Suppose we have developed a new fertilizer but don’t know yet
        whether it actually works. Now we run an experiment: we divide a plot
        of land in two and treat the crops on half of the plot with the new
        fertilizer. Finally, we compare the yields: are they different? The
        specific amounts of the yield will almost surely differ, but is this
        difference due to the treatment or is it merely a chance fluctuation?
        Hypothesis testing helps us decide how large the difference needs to
        be in order to be statistically
        significant.
Formal hypothesis testing now proceeds as follows. First we set
        up the two hypotheses between which we want to decide: the
        null hypothesis (no effect; that is there is no
        difference between the two experiments) and the alternate
        hypothesis (there is an effect so that the two experiments
        have significantly different outcomes). If the difference between the
        outcomes of the two experiments is statistically significant, then we
        have sufficient evidence to “reject the null hypothesis,” otherwise we
        “fail to reject the null hypothesis.” In other words: if the outcomes
        are not sufficiently different, then we retain the null hypothesis
        that there is no effect.
This convoluted, indirect line of reasoning is required because,
        strictly speaking, no hypothesis can ever be proved correct by
        empirical means. If we find evidence against a
        hypothesis, then we can surely reject it. But if we
        don’t find evidence against the hypothesis, then
        we retain the hypothesis—at least until we do find evidence against it
        (which may possibly never happen, in which case we retain the
        hypothesis indefinitely).
This, then, is the process by which hypothesis testing proceeds:
        because we can never prove that a treatment was successful, we instead
        invent a contradicting statement that we can prove to be
        false. The price we pay for this double negative
        (“it’s not true that there is
        no effect”) is that the test results mean exactly
        the opposite from what they seem to be saying: “retaining the null
        hypothesis,” which sounds like a success, means that the treatment had
        no effect; whereas “rejecting the null hypothesis” means that the
        treatment did work. This is the first problem with hypothesis testing:
        it involves a convoluted, indirect line of reasoning and a terminology
        that seems to be saying the exact opposite from what it means.
But there is another problem with hypothesis testing: it makes a
        statement that has almost no practical meaning! In reducing the
        outcome of an experiment to the Boolean choice between “significant”
        and “not significant,” it creates an artificial dichotomy that is not
        an appropriate view of reality. Experimental outcomes are not either
        strictly significant or strictly nonsignificant: they form a
        continuum. In order to judge the results of an experiment, we need to
        know where along the continuum the experimental outcome falls
        and how robust the estimate is. If we have this
        information, we can decide how to interpret the experimental result
        and what importance to attach to it.
Classical hypothesis testing exhibits two well-known traps. The
        first is that an experimental outcome that is
        marginally outside the statistical significance
        level abruptly changes the interpretation of the experiment from
        “significant” to “not significant”—a discontinuity in interpretation
        that is not borne out by the minimal change in the actual outcome of
        the experiment. The other problem is that almost any effect, no matter
        how small, can be made “significant” by increasing the sample size.
        This can lead to “statistically significant” results that nevertheless
        are too small to be of any practical importance. All of this is
        compounded by the arbitrariness of the chosen “significance level”
        (typically 5 percent). Why not 4.99 percent? Or 1 percent, or 0.1
        percent? This seems to render the whole hypothesis testing machinery
        (at least as generally practiced) fundamentally inconsistent: on the
        one hand, we introduce an absolutely sharp cutoff into our
        interpretation of reality; and on the other hand, we choose the
        position of this cutoff in an arbitrary manner. This does not seem
        right.
(There is a third trap: at the 5 percent significance level, you
        can expect 1 out of 20 tests to give the wrong result. This means that
        if you run enough tests, you will always find one that supports
        whatever conclusion you want to draw. This practice is known as
        data dredging and is strongly frowned
        upon.)
Moreover, in any practical situation, the actual size of the
        effect is so much more important than its sheer existence. For this
        reason, hypothesis testing often simply misses the point. A project I
        recently worked on provides an example of this. The question arose as
        to whether two events were statistically independent (this is a form
        of hypothesis testing). But, for the decision that was ultimately
        made, it did not matter whether the events truly were independent
        (they were not) but that treating them as independent made no
        measurable difference to the company’s balance sheet.
Hypothesis testing has its place but typically in rather
        abstract or theoretical situations where the mere existence of an
        effect constitutes an important discovery (“Is this coin loaded?” “Are
        people more likely to die a few days after their birthdays than
        before?”). If this describes your situation, then you will quite
        naturally employ hypothesis tests. However, if the
        size of an effect is of interest to you, then you
        should feel free to ignore tests altogether and instead work out an
        estimate of the effect—including its confidence interval. This will
        give you the information that you need. You are not “doing it wrong”
        just because you haven’t performed a significance test somewhere along
        the way.
Finally, I’d like to point out that the statistics community
        itself has become uneasy with the emphasis that is placed on tests in
        some fields (notably medicine but also social sciences). Historically,
        hypothesis testing was invented to deal with sample sizes so small
        (possibly containing only four or five events) that drawing any
        conclusion at all was a challenge. In such cases, the broad
        distinction between “effect” and “no effect” was about the best one
        could do. If interval estimates are available, there is no reason to
        use statistical tests. The Wikipedia entry on
        p-values (explained below) provides some starting
        points to the controversy.
I have devoted quite a bit of space to a topic that may
        not seem especially relevant. However, hypothesis tests feature so
        large in introductory statistics books and courses and, at the same
        time, are so obscure and counterintuitive, that I found it important
        to provide some background. In the next section, we will take a more
        detailed look at some of the concepts and terminology that you are
        likely to find in introductory (or not-so-introductory) statistics
        books and courses.

Statistics Explained



In Chapter 9, we
        already encountered several well-known probability distributions,
        including the binomial (used for trials resulting in Success or
        Failure), the Poisson (applicable in situations where events are
        evenly distributed according to some density), and the ubiquitous
        Normal, or Gaussian, distribution. All of these distributions describe
        real-world, observable phenomena.
In addition, classical statistics uses several distributions
        that describe the distribution of certain quantities that are not
        observed but calculated. These distributions are not (or not usually)
        used to describe events in the real world. Instead, they describe how
        the outcomes of specific typical calculations involving random
        quantities will be distributed. There are four of these distributions,
        and they are known as sampling
        distributions.
The first of these (and the only one having much use outside of
        theoretical statistics) is the Gaussian distribution. As a sampling
        distribution, it is of interest because we already know that it
        describes the distribution of a sum of independent, identically
        distributed random variables. In other words, if
        X1,
        X2,...,
        Xn
        are random variables, then Z =
        X1 +
        X2 + ··· +
        Xn
        will be normally distributed and (because we can divide by a constant)
        the average m =
        (X1 +
        X2 + ··· +
        Xn)/n
        will also follow a Gaussian. It is this last property that makes the
        Gaussian important as a sampling distribution: it describes
        the distribution of averages. One caveat: to
        arrive at a closed formula for the Gaussian, we need to know the
        variance (i.e., the width) of the distribution
        from which the individual
        Xi
        are drawn. For most practical situations this is not a realistic
        requirement, and in a moment we will discuss what to do if the
        variance is not known.
The second sampling distribution is the
        chi-square (χ2)
        distribution. It describes the distribution of
        the sum of squares of independent, identically
        distributed Gaussian random variables. Thus, if
        X1,
        X2,...,
        Xn
        are Gaussian random variables with unit variance, then
        [image: ] will follow a chi-square distribution. Why
        should we care? Because we form this kind of sum every time we
        calculate the variance. (Recall that the variance is defined as
        [image: ].) Hence, the chi-square distribution is used to
        describe the distribution of variances. The
        number n of elements in the sum is referred to as
        the number of degrees of freedom of the
        chi-square distribution, and it is an additional parameter we need to
        know to evaluate the distribution numerically.
The third sampling distribution describes the behavior
        of the ratio T of a normally (Gaussian)
        distributed random variable Z and a
        chi-square-distributed random variable U. This
        distribution is the famous Student
        t distribution.
        Specifically, let Z be distributed according to
        the standard Gaussian distribution and U
        according to the chi-square distribution with n
        degrees of freedom. Then [image: ] is distributed according to the
        t distribution with n
        degrees of freedom. As it turns out, this is the correct formula to
        use for the distribution of the average if the variance is
        not known but has to be determined from the sample together
        with the average.
The t distribution is a symmetric,
        bell-shaped curve like the Gaussian but with fatter tails. How fat the
        tails are depends on the number of degrees of freedom
        (i.e., on the number of data points in the
        sample). As the number of degrees of freedom increases, the
        t distribution becomes more and more like the
        Gaussian. In fact, for n larger than about 30,
        the differences between them are negligible. This is an important
        point to keep in mind: the distinction between the
        t distribution and the Gaussian matters only for
        small samples—that is, samples containing less than approximately 30
        data points. For larger samples, it is all right to use the Gaussian
        instead of the t distribution.
The last of the four sampling distributions is
        Fisher’s F
        distribution, which describes the behavior of the
        ratio of two chi-square random variables. We care about this when we
        want to compare two variances against each other
        (e.g., to test whether they are equal or
        not).
These are the four sampling distributions of classical
        statistics. I will neither trouble you with the formulas for these
        distributions, nor show you their graphs—you can find them in every
        statistics book. What is important here is to understand what they are
        describing and why they are important. In short, if you have
        n independent but identically distributed
        measurements, then the sampling distributions describe how the
        average, the variance, and their ratios will be distributed. The
        sampling distributions therefore allow us to reason about averages and
        variances. That’s why they are important and why statistics books
        spend so much time on them.
One way to use the sampling distribution is to construct
        confidence intervals for an estimate. Here is how it works. Suppose we
        have n observations. We can find the average and
        variance of these measurements as well as the ratio of the two.
        Finally, we know that the ratio is distributed according to the
        t distribution. Hence we can find the interval
        that has a 95 percent probability of containing the true value (see
        Figure 10-1). The
        boundaries of this range are the 95 percent confidence interval; that
        is, we expect the true value to fall outside this confidence range in
        only 1 out 20 cases.
A similar concept can be applied to hypothesis testing, where
        sampling distributions are often used to calculate so-called
        p-values. A p-value is an
        attempt to express the strength of the evidence in a hypothesis test
        and, in so doing, to soften the sharp binary distinction between
        significant and not significant outcomes mentioned earlier. A
        p-value is the probability of obtaining
        a value as (or more) extreme than the one actually observed
        under the assumption that the null hypothesis is true (see Figure 10-2). In other words,
        if the null hypothesis is that there is no effect, and if the observed
        effect size is x, then the
        p-value is the probability of observing an effect
        at least as large as x. Obviously, a large effect
        is improbable (small p-value) if the null
        hypothesis (zero effect) is true; hence a small
        p-value is considered strong evidence against the
        null hypothesis. However, a p-value is not “the
        probability that the null hypothesis is true”—such an interpretation
        (although appealing!) is incorrect. The p-value
        is the probability of obtaining an effect as large or larger than the
        observed one if the null hypothesis is true.
        (Classical statistics does not make probability statements about the
        truth of hypotheses. Doing so would put us into the realm of Bayesian
        statistics, a topic we will discuss toward the end of this
        chapter.)
[image: The shaded area contains 95 percent of the area under the curve; the boundaries of the shaded region are the bounds on the 95 percent confidence interval.]

Figure 10-1. The shaded area contains 95 percent of the area under the
          curve; the boundaries of the shaded region are the bounds on the 95
          percent confidence interval.

By the way, if you are thinking that this approach to hypothesis
        testing—with its sliding p-values—is quite
        different from the cut-and-dried significant–not significant approach
        discussed earlier, then you are right. Historically, two competing
        theories of significance tests have been developed and have generated
        quite a bit of controversy; even today they sit a little awkwardly
        next to each other. (The approach based on sliding
        p-values that need to be interpreted by the
        researcher is due to Fisher; the decision-rule approach was developed
        by Pearson and Neyman.) But enough, already. You can consult any
        statistics book if you want to know more details.
[image: The p-value is the probability of observing a value as large or larger than the one actually observed if the null hypothesis is true.]

Figure 10-2. The p-value is the probability of observing a value as large
          or larger than the one actually observed if the null hypothesis is
          true.

Example: Formal Tests Versus Graphical Methods



Historically, classical statistics evolved as it did
          because working with actual data was hard. The
          early statisticians therefore made a number of simplifying
          assumptions (mostly that data would be normally distributed) and
          then proceeded to develop mathematical tools (such as the sampling
          distributions introduced earlier in the chapter) that allowed them
          to reason about data sets in a general way and required only the
          knowledge of a few, easily calculated summary statistics (such as
          the mean). The ingenuity of it all is amazing, but it has led to an
          emphasis on formal technicalities as opposed to the direct insight
          into the data. Today our situation is different, and we should take
          full advantage of that.
An example will demonstrate what I mean. The listing below
          shows two data sets. Are they the same, or are they different (in
          the sense that their means are the same or different)?[19]
0.209         0.225
0.205         0.262
0.196         0.217
0.210         0.240
0.202         0.230
0.207         0.229
0.224         0.235
0.223         0.217
0.220
0.201
[image: Box-and-whisker plots of the two Quintus Curtius Snodgrass data sets. There is almost no overlap between the two.]

Figure 10-3. Box-and-whisker plots of the two Quintus Curtius Snodgrass
            data sets. There is almost no overlap between the two.

In case study 9.2.1 of their book, Larsen and Marx
          (see the recommended reading at the end of this chapter) labor for
          several pages and finally conclude that the data sets are different
          at the 99 percent level of significance.
Figure 10-3
          shows a box plot for each of the data sets. Case closed.
(In fairness, the formal test does something that a graphical
          method cannot do: it gives us a quantitative criterion by which to
          make a decision. I hope that the discussion in this chapter has
          convinced you that this is not always an advantage, because it can
          lead to blind faith in “the number.” Graphical methods require you
          to interpret the results and take responsibility for the
          conclusions. Which is why I like them: they keep you honest!)


Controlled Experiments Versus Observational Studies



Besides the machinery of formal statistical inference (using the
        sampling distributions just discussed), the early statistics pioneers
        also developed a general theory of how best to undertake statistical
        studies. This conceptual framework is sometimes known as
        Design of Experiment and is worth knowing
        about—not least because so much of typical data mining activity does
        not make use of it.
The most important distinction formalized by the Design of
        Experiment theory is the one between an observational
        study and a controlled experiment. As
        the name implies, a controlled experiment allows us to control many aspects of the
        experimental setup and procedure; in particular, we control which
        treatment is applied to which experimental unit (we will define these
        terms shortly). For example, in an agricultural experiment, we would
        treat some (but not all) of the plots with a new fertilizer and then
        later compare the yields from the two treatment groups. In contrast,
        with an observational study, we merely collect data as it becomes (or
        already is) available. In particular, retrospective studies are always
        observational (not controlled).
In a controlled experiment, we are able to control the “input”
        of an experiment (namely, the application of a treatment) and
        therefore can draw much more powerful conclusions from the output. In
        contrast to observational studies, a properly conducted controlled
        experiment can provide strong support for cause-and-effect
        relationships between two observations and can be used to rule out
        hidden (or confounding) causes. Observational studies can merely
        suggest the existence of a relationship between
        two observations; however, they can neither prove that one observation
        is caused by the other nor rule out that additional (unobserved)
        factors have played a role.
The following (intentionally whimsical) example will serve to
        make the point. Let’s say we have data that suggests that cities with
        many lawyers also have many espresso stands and that cities with few
        lawyers have few espresso stands. In other words, there is strong
        correlation between the two quantities. But what conclusions can we
        draw about the causal relationship between the two? Are lawyers
        particularly high consumers of expensive coffee? Or does caffeine make
        people more litigious? In short, there is no way for us to determine
        what is cause and what is effect in this example. In contrast, if the
        fertilized yields in the controlled agricultural experiment are higher
        than the yields from the untreated control plots, we have strong
        reason to conclude that this effect is due to the fertilizer
        treatment.
In addition to the desire to establish that the treatment indeed
        causes the effect, we also want to rule out the possibility of
        additional, unobserved factors that might account for the observed
        effect. Such factors, which influence the outcome of a study but are
        not themselves part of it, are known as
        confounding (or “hidden” or “lurking”) variables.
        In our agricultural example, differences in soil quality might have a
        significant influence on the yield—perhaps a greater influence than
        the fertilizer. The spurious correlation between the number of lawyers
        and espresso stands is almost certainly due to confounding: larger
        cities have more of everything! (Even if we account for this effect
        and consider the per capita density of lawyers
        and espresso stands, there is still a plausible confounding factor:
        the income generated per head in the city.) In the next section, we
        will discuss how randomization can help to remove
        the effect of confounding variables.
The distinction between controlled experiments and observational
        studies is most critical. Many of the most controversial scientific or
        statistical issues involve observational studies. In particular,
        reports in the mass media often concern studies that (inappropriately)
        draw causal inferences from observational studies (about topics such
        as the relationship between gun laws and homicide rates, for example).
        Sometimes controlled experiments are not possible, with the result
        that it becomes almost impossible to settle certain questions once and
        for all. (The controversy around the connection between smoking and
        lung cancer is a good example.)
In any case, make sure you understand clearly the difference
        between controlled and observational studies, as well as the
        fundamental limitations of the latter!
Design of Experiments



In a controlled experiment, we divide the
          experimental units that constitute our sample
          into two or more groups and then apply different
          treatments or treatment
          levels to the units in each group. In our agricultural
          example, the plots correspond to the experimental units,
          fertilization is the treatment, and the options “fertilizer” and “no
          fertilizer” are the treatment levels.
Experimental design involves several techniques to improve the
          quality and reliability of any conclusions drawn from a controlled
          experiment.
Randomization
	Randomization means that treatments (or treatment levels)
              are assigned to experimental units in a random fashion. Proper
              randomization suppresses systematic errors. (If we assign
              fertilizer treatment randomly to plots, then we remove the
              systematic influence of soil quality, which might otherwise be a
              confounding factor, because high-quality and low-quality plots
              are now equally likely to receive the fertilizer treatment.)
              Achieving true randomization is not as easy as it looks—I’ll
              come back to this point shortly.



Replication
	Replication means that the same treatment is applied to
              more than one experimental unit. Replication serves to reduce
              the variability of the results by averaging over a larger
              sample. Replicates should be independent of each other, since
              nothing is gained by repeating the same experiment on the same
              unit multiple times.



Blocking
	We sometimes know (or at least strongly suspect) that not
              all experimental units are equal. In this case, it may make
              sense to group equivalent experimental units into “blocks” and
              then to treat each such block as a separate sample. For example,
              if we know that plots A and C have poor soil quality and that B
              and D have better soil, then we would form two blocks—consisting
              of (A, C) and (B, D), respectively—before proceeding to make a
              randomized assignment of treatments for each block
              separately. Similarly, if we know that web traffic is
              drastically different in the morning and the afternoon, we
              should collect and analyze data for both time periods
              separately. This also is a form of blocking.



Factorization
	The last of these techniques applies only to experiments
              involving several treatments (e.g.,
              irrigation and fertilization, to stay within our agricultural
              framework). The simplest experimental design would make only a
              single change at any given time, so that we would observe yields
              with and without irrigation as well as with and without
              fertilizer. But this approach misses the possibility that there
              are interactions between the two
              treatments—for example, the effect of the fertilizer may be
              significantly higher when coupled with improved irrigation.
              Therefore, in a factorial experiment all possible combinations
              of treatment levels are tried. Even if a fully factorial
              experiment is not possible (the number of combinations goes up
              quickly as the number of different treatments grows), there are
              rules for how best to select combinations of treatment levels
              for drawing optimal conclusions from the study.



Another term you may come across in this context is ANOVA
          (analysis of variance), which is a standard way of summarizing
          results from controlled experiments. It emphasizes the variations
          within each treatment group for easy comparison with the variances
          between the treatments, so that we can determine whether the
          differences between different treatments are significant compared to
          the variation within each treatment group. ANOVA is a clever
          bookkeeping technique, but it does not introduce particularly
          noteworthy new statistical concepts.
A word of warning: when conducting a controlled experiment,
          make sure that you apply the techniques properly; in particular,
          beware of pseudo-randomization and
          pseudo-replication.
Pseudo-randomization occurs if the assignment of treatments to
          experimental units is not truly random. This can occur relatively
          easily, even if the assignment seems to be
          random. For example, if you would like to try out two different
          drugs on lab rats, it is not sufficient to “pick a rat at random”
          from the cage to administer the treatment. What does “at random”
          mean? It might very well mean picking the most active rat first
          because it comes to the cage door. Or maybe the least
          aggressive-looking one. In either case, there is a systematic
          bias!
Here is another example, perhaps closer to home: the web-lab.
          Two different site designs are to be presented to viewers, and the
          objective is to measure conversion rate or click-throughs or some
          other metric. There are multiple servers, so we dedicate one of them
          (chosen “at random”) to serve the pages with the new design. What’s
          wrong with that?
Everything! Do you have any indication
          that web requests are assigned to servers in a random fashion? Or
          might servers have, for example, a strong geographic bias? Let’s
          assume the servers are behind some “big-IP” box that routes requests
          to the servers. How is the routing conducted—randomly, or
          round-robin, or based on traffic intensity? Is the routing smart, so
          that servers with slower response times get fewer hits? What about
          sticky sessions, and what about the relationship between sticky
          sessions and slower response times? Is the router reordering the
          incoming requests in some way? That’s a lot of questions—questions
          that randomization is intended to avoid. In
          fact, you are not running a controlled experiment at all: you are
          conducting an observational study!
The only way that I know to run a controlled
          experiment is by deciding ahead of time which experimental unit will
          receive which treatment. In the lab rat example, rats should have
          been labeled and then treatments assigned to the labels using a
          (reliable) random number generator or random table. In the
          web-server example it is harder to achieve true randomization,
          because the experimental units are not known ahead of time. A simple
          rule (e.g., show the new design to every
          nth request) won’t work, because there may be
          significant correlation between subsequent requests. It’s not so
          easy.
Pseudo-replication occurs when experimental units are not
          truly independent. Injecting the same rat five times with the same
          drug does not reduce variability! Similarly, running the same query
          against a database could be misleading because of changing cache
          utilization. And so on. In my experience, pseudo-replication is
          easier to spot and hence tends to be less of a problem than
          pseudo-randomization.
Finally, I should mention one other term that often comes up
          in the context of proper experimental process:
          blind and double-blind
          experiments. In a blind experiment, the experimental unit should not
          know which treatment it receives; in a double-blind experiment, the
          investigator—at the time of the experiment—does not know either. The
          purpose of blind and double-blind experiments is to prevent the
          knowledge of the treatment level from becoming a confounding factor.
          If people know that they have been given a new drug, then this
          knowledge itself may contribute to their well-being. An investigator
          who knows which field is receiving the fertilizer might weed that
          particular field more vigorously and thereby introduce some
          invisible and unwanted bias. Blind experiments play a huge role in
          the medical field but can also be important in other contexts.
          However, I would like to emphasize that the question of “blindness”
          (which concerns the experimental procedure) is a different issue
          than the Design of Experiment prescriptions (which are intended to
          reduce statistical uncertainty).

Perspective



It is important to maintain an appropriate perspective on
          these matters.
In practice, many studies are observational, not controlled.
          Occasionally, this is a painful loss and only due to the inability
          to conduct a proper controlled experiment (smoking and lung cancer,
          again!). Nevertheless, observational studies can be of great value:
          one reason is that they may be exploratory and discover new and
          previously unknown behavior. In contrast, controlled experiments are
          always confirmatory in deciding between the effectiveness or
          ineffectiveness of a specific “treatment.”
Observational studies can be used to derive predictive models
          even while setting aside the question of causation. The
          machine-learning community, for instance, attempts to develop
          classification algorithms that use descriptive
          attributes or features of the unit to predict
          whether the unit belongs to a given class. They work entirely
          without controlled experiments and have developed methods for
          quantifying the accuracy of their results. (We will describe some in
          Chapter 18.)
That being said, it is important to understand the
          limitations of observational studies—in particular, their inability
          to support strong conclusions regarding cause-and-effect
          relationships and their inability to rule out confounding factors.
          In the end, the power of controlled experiments can be their
          limitation, because such experiments require a level of control that
          limits their application.


Optional: Bayesian Statistics—The Other Point of View



There is an alternative approach to statistics that is based on
        a different interpretation of the concept of
        probability itself. This may come as a surprise,
        since probability seems to be such a basic concept. The problem is
        that, although we have a very strong intuitive sense of what we mean
        by the word “probability,” it is not so easy to give it a rigorous
        meaning that can be used to develop a mathematical theory.
The interpretation of probability used by classical statistics
        (and, to some degree, by abstract probability theory) treats
        probability as a limiting frequency: if you toss
        a fair coin “a large number of times,” then you will obtain Heads
        about half of the time; hence the probability for Heads is 1/2.
        Arguments and theories starting from this interpretation are often
        referred to as “frequentist.”
An alternative interpretation of probability views it as the
        degree of our ignorance about an outcome: since we don’t know which
        side will be on top in the next toss of a fair coin, we assign each
        possible outcome the same probability—namely 1/2. We can therefore
        make statements about the probabilities associated with individual
        events without having to invoke the notion of a large number of
        repeated trials. Because this approach to probability and statistics
        makes use of Bayes’ theorem at a central step in
        its reasoning, it is usually called Bayesian
        statistics and has become increasingly popular in recent
        years. Let’s compare the two interpretations in a bit more
        detail.
The Frequentist Interpretation of Probability



In the frequentist interpretation, probability is viewed as
          the limiting frequency of each outcome of an experiment that is
          repeated a large number of times. This “frequentist” interpretation
          is the reason for some of the peculiarities of classical statistics.
          For example, in classical statistics it is incorrect to say that a
          95 percent confidence interval for some parameter has a 95 percent
          chance of containing the true value—after all, the true value is
          either contained in the interval or not; period. The only statement
          that we can make is that, if we perform an experiment to measure
          this parameter many times, then in about 95 percent of all cases the
          experiment will yield a value for this parameter that lies within
          the 95 percent confidence interval.
This type of reasoning has a number of drawbacks.
	It is awkward and clumsy, and liable to (possibly even
              unconscious) misinterpretations.

	The constant appeal to a “large number of trials”
              is artificial even in situations where such a sequence of trials
              would—at least in principle—be possible (such as tossing a
              coin). But it becomes wholly ficticious in situations where the
              trial cannot possibly be repeated. The weather report may state:
              “There is an 80 percent chance of rain tomorrow.” What is that
              supposed to mean? It is either going to rain tomorrow or not!
              Hence we must again invoke the unlimited sequence of trials and
              say that in 8 out of 10 cases where we observe the current
              meteorological conditions, we expect rain on the following day.
              But even this argument is illusionary, because we will never
              observe these precise conditions ever
              again: that’s what we have been learning from chaos theory and
              related fields.

	We would frequently like to make statements such as the
              one about the chance of rain, or similar ones—for example, “The
              patient has a 60 percent survival probability,” and “I am 25
              percent certain that the contract will be approved.” In all such
              cases the actual outcome is not of a probabilistic nature: it
              will rain or it will not; the patient will survive or not; the
              contract will be approved or not. Even so, we’d like to express
              a degree of certainty about the expected outcome even if
              appealing to an unlimited sequence of trials is neither
              practical nor even meaningful.



From a strictly frequentist point of view, a statement like
          “There is an 80 percent chance of rain tomorrow” is nonsensical.
          Nevertheless, it seems to make so much intuitive sense. In what way
          can this intuition be made more rigorous? This question leads us to
          Bayesian statistics or Bayesian
          reasoning.

The Bayesian Interpretation of Probability



To understand the Bayesian point of view, we first need to
          review the concept of conditional probability.
          The conditional probability
          P(A|B)
          gives us the probability for the event A,
          given (or assuming) that event
          B has occurred. You can easily convince
          yourself that the following is true:
[image: The Bayesian Interpretation of Probability]
where P(A ∩
          B) is the joint
          probability of finding both event A
          and event B. For example, it is well known that
          men are much more likely than women to be color-blind: about 10
          percent of men are color-blind but fewer than 1 percent of women are
          color-blind. These are conditional
          probabilities—that is, the probability of being color-blind
          given the gender:
P(color-blind|male) = 0.1
P(color-blind|female) = 0.01
In contrast, if we “randomly” pick a person off the street,
          then we are dealing with the joint probability
          that this person is color-blind and male. The
          person has a 50 percent chance of being male and a 10 percent conditional probability of
          being color-blind, given that the person is male. Hence, the joint
          probability for a random person to be color-blind
          and male is 5 percent, in agreement with the
          definition of conditional probability given previously.
One can now rigorously prove the following equality, which is
          known as Bayes’ theorem:
[image: The Bayesian Interpretation of Probability]
In words: the probability of finding A
          given B is equal to the probability of finding
          B given A multiplied by
          the probability of finding A and divided by the
          probability of finding B.
Now, let’s return to statistics and data analysis. Assume
          there is some parameter that we attempt to determine through an
          experiment (say, the mass of the proton or the survival rate after
          surgery). We are now dealing with two “events”: event
          B is the occurrence of the specific set of
          measurements that we have observed, and the parameter taking some
          specific value constitutes event A. We can now
          rewrite Bayes’ theorem as follows:
P(parameter|data)
          ∝
          P(data|parameter)P(parameter)
(I have dropped the denominator, which I can do because the
          denominator is simply a constant that does not depend on the
          parameter we wish to determine. The left- and righthand sides are
          now no longer equal, so I have replaced the equality sign with ∝ to
          indicate that the two sides of the expression are merely
          proportional: equal to within a numerical constant.)
Let’s look at this equation term by term.
On the lefthand side, we have the probability of
          finding a certain value for the parameter, given the
          data. That’s pretty exciting, because this is an
          expression that makes an explicit statement about the
          probability of an event (in this case, that the
          parameter has a certain value), given the data. This probability is
          called the posterior probability, or simply
          the posterior, and is defined solely through
          Bayes’ theorem without reference to any unlimited sequence of
          trials. Instead, it is a measure of our “belief” or “certainty”
          about the outcome (i.e., the value of the
          parameter) given the data.
The first term on the righthand side,
          P(data|parameter),
          is known as the likelihood function. This is a
          mathematical expression that links the parameter to the probability
          of obtaining specific data points in an actual experiment. The
          likelihood function constitutes our “model” for the system under
          consideration: it tells us what data we can expect to observe, given
          a particular value of the parameter. (The example in the next
          section will help to clarify the meaning of this term.)
Finally, the term
          P(parameter) is known as
          the prior probability, or simply the
          prior, and captures our “prior” (prior to the experiment)
          belief of finding a certain outcome—specifically our prior belief
          that the parameter has a certain value. It is the existence of this prior that makes the Bayesian
          approach so controversial, because it seems to introduce an
          inappropriately subjective element into the analysis. In reality,
          however, the influence of the prior on the final result of the
          analysis is typically small, in particular when there is plenty of
          data. One can also find so-called “noninformative” priors that
          express our complete ignorance about the possible outcomes. But the
          prior is there, and it forces us to think about our assumptions
          regarding the experiment and to state some of these assumptions
          explicitly (in form of the prior distribution function).

Bayesian Data Analysis: A Worked Example



All of this will become much clearer once we demonstrate these
          concepts in an actual example. The example is very simple, so as not
          to distract from the concepts.
Assume we have a coin that has been tossed 10 times, producing
          the following set of outcomes (H for Heads, T for Tails):
T H H H H T T H H H
If you count the outcomes, you will find that we obtained 7
          Heads and 3 Tails in 10 tosses of the coin.
Given this data, we would like to determine whether the coin
          is fair or not. Specifically, we would like to determine the
          probability p that a toss of this coin will
          turn out Heads. (This is the “parameter” we would like to estimate.)
          If the coin is fair, then p should be close to
          1/2.
Let’s write down Bayes’ equation, adapted to this
          system:
P(p| {T H H H H T T
          H H H}) ∝ P({T H H H H T T H H H} |
          p)P(p)
Notice that at this point, the problem has become
          parametric. All that is left to do is to
          determine the value of the parameter p or, more
          precisely, the posterior probability distribution for all values of
          p.
To make progress, we need to supply the likelihood function
          and the prior. Given this system, the likelihood function is
          particularly simple:
          P(H|p) =
          p and
          P(T|p) = 1 –
          p. You should convince yourself that this
          choice of likelihood function gives us exactly what we want: the
          probability to obtain Heads or Tails, given
          p.
We also assume that the tosses are independent, which implies
          that only the total number of Heads or Tails matters but not the
          order in which they occurred. Hence we don’t need to find the
          combined likelihood for the specific sequence of 10 tosses; instead,
          the likelihood of the set of events is simply the product of the 10
          individual tosses. (The likelihood “factors” for independent
          events—this argument occurs frequently in Bayesian analysis.)
[image: The (unnormalized) posterior probability of obtaining 7 Heads in 10 tosses of a coin as a function of p.]

Figure 10-4. The (unnormalized) posterior probability of obtaining 7
            Heads in 10 tosses of a coin as a function of p.

Finally, we know nothing about this coin. In
          particular, we have no reason to believe that any value of
          p is more likely than any other, so we choose
          as prior probability distribution the “flat” distribution
          P(p) = 1 for all
          p.
Collecting everything, we end up with the following expression
          (where I have dropped some combinatorial factors that do not depend
          on p):
P(p| {7 Heads, 3
          Tails}) ∝ p7(1 –
          p)3
This is the posterior probability distribution for the
          parameter p based on the experimental data (see
          Figure 10-4). We can
          see that it has a peak near p = 0.7, which is
          the most probable value for p. Note that the
          absence of tick marks on the y axis in Figure 10-4: the
          denominator, which we dropped earlier, is still undetermined, and
          therefore the overall scale of the function is not yet fixed. If we
          are interested only in the location of the
          maximum, this does not matter.
But we are not restricted to a single (point) estimate for
          p—the entire distribution function is available
          to us! We can now use it to construct confidence intervals for
          p. And because we are now talking about
          Bayesian probabilities, it would be legitimate to state that “the
          confidence interval has a 95 percent chance of containing the true
          value of p.”
We can also evaluate any function that depends on
          p by integrating it against the posterior
          distribution for p. As a particularly simple
          example, we could calculate the expectation value of
          p to obtain the single “best” estimate of
          p (rather than use the most probable value as
          we did before):
[image: The (unnormalized) posterior probability of obtaining 7 Heads in 10 tosses of a coin as a function of p.]
[image: The (unnormalized) posterior probability of obtaining 70 percent Heads in 10 and in 30 tosses of a coin. The more data there is, the more strongly peaked the posterior distribution becomes.]

Figure 10-5. The (unnormalized) posterior probability of obtaining 70
            percent Heads in 10 and in 30 tosses of a coin. The more data
            there is, the more strongly peaked the posterior distribution
            becomes.

Here we finally need to worry about all the factors that we
          dropped along the way, and the denominator in the formula is our way
          of fixing the normalization “after the fact.” To ensure that the
          probability distribution is properly normalized, we divide
          explicitly by the integral over the whole range of values, thereby
          guaranteeing that the total probability equals 1 (as it
          must).
It is interesting to look at the roles played by the
          likelihood and the prior in the result. In Bayesian analysis, the
          posterior “interpolates” between the prior and the data-based
          likelihood function. If there is only very little data, then the
          likelihood function will be relatively flat, and therefore the
          posterior will be more influenced by the prior. But as we collect
          more data (i.e., as the empirical evidence
          becomes stronger), the likelihood function becomes more and more
          narrowly peaked at the most likely value of p,
          regardless of the choice of prior. Figure 10-5 demonstrates
          this effect. It shows the posterior for a total of 10 trials and a
          total of 30 trials (while keeping the same ratio of Heads to Tails):
          as we gather more data, the uncertainty in the resulting posterior
          shrinks.
[image: The effect of a nonflat prior: posterior probabilities for data sets of different sizes, calculated using a Gaussian prior.]

Figure 10-6. The effect of a nonflat prior: posterior probabilities for
            data sets of different sizes, calculated using a Gaussian
            prior.

Finally, Figure 10-6 demonstrates
          the effect of the prior. Whereas the posterior distributions shown
          in Figure 10-5 were
          calculated using a flat prior, those in Figure 10-6 were
          calculated using a Gaussian prior—which expresses a rather strong
          belief that the value of p will be between 0.35
          and 0.65. The influence of this prior belief is rather significant
          for the smaller data set, but as we take more and more data points,
          its influence is increasingly diminished.

Bayesian Inference: Summary and Discussion



Let’s summarize what we have learned about Bayesian data
          analysis or Bayesian inference and discuss what
          it can do for us—and what it can’t.
First of all, the Bayesian (as opposed to the frequentist)
          approach to inference allows us to compute a true probability
          distribution for any parameter in question. This has great intuitive
          appeal, because it allows us to make statements such as “There is a
          90 percent chance of rain tomorrow” without having to appeal to the
          notion of extended trials of identical experiments.
The posterior probability distribution arises as the product
          of the likelihood function and the prior. The likelihood links
          experimental results to values of the parameter, and the prior
          expresses our previous knowledge or belief about the
          parameter.
The Bayesian approach has a number of appealing features. Of
          course, there is the intuitive nature of the results obtained using
          Bayesian arguments: real probabilities and 95 percent confidence
          intervals that have exactly the kind of interpretation one would
          expect! Moreover, we obtain the posterior probability distribution
          in full generality and without having to make limiting assumptions
          (e.g., having to assume that the data is
          normally distributed).
Additionally, the likelihood function enters the calculation
          in a way that allows for great flexibility in how we build “models.”
          Under the Bayesian approach, it is very easy to deal with missing
          data, with data that is becoming available over time, or with
          heterogeneous data sets (i.e., data sets in
          which different attributes are known about each data point). Because
          the result of Bayesian inference is a probability distribution
          itself, it can be used as input for a new model that builds on the
          previous one (hierarchical models). Moreover, we can use the prior
          to incorporate previous (domain) knowledge that we may have about
          the problem under consideration.
On the other hand, Bayesian inference has some problems,
          too—even when we concentrate on practical applications only, leaving
          the entire philosophical debate about priors and subjectivity
          aside.
First of all, Bayesian inference is always
          parametric; it is never just exploratory or
          descriptive. Because Bayesian methods force us to supply a
          likelihood function explicitly, they force us to be specific about
          our choice of model assumptions: we must already have a likelihood
          function in mind, for otherwise we can’t even get started (hence
          such analysis can never be exploratory). Furthermore, the result of
          a Bayesian analysis is always a posterior distribution—that is, a
          conditional probability of something, given the
          data. Here, that “something” is some form of hypothesis that we
          have, and the posterior gives us the probability that this
          hypothesis is true. To make this prescription operational (and, in
          particular, expressible through a likelihood function), we pretty
          much have to parameterize the hypothesis. The inference then
          consists of finding the best value for this parameter, given the
          data—which is a parametric problem, given a specific choice for the
          model (i.e., the likelihood function). (There
          are so-called “nonparametric” Bayesian methods, but in reality they
          boil down to parametric models with very large numbers of
          parameters.)
Additionally, actual Bayesian calculations are often
          difficult. Recall that Bayesian inference gives us the full explicit
          posterior distribution function. If we want to summarize this
          function, we either need to find its maximum or integrate it to
          obtain an expectation value. Both of these problems are hard,
          especially when the likelihood function is complicated and there is
          more than one parameter that we try to estimate. Instead of
          explicitly integrating the posterior, one can
          sample it—that is, draw random points that are
          distributed according to the posterior distribution, in order to
          evaluate expectation values. This is clearly an expensive process
          that requires computer time and specialized software (and the
          associated know-how). There can also be additional problems. For
          example, if the parameter space is very high-dimensional, then
          evaluating the likelihood function (and hence the posterior) may be
          difficult.
In contrast, frequentist methods tend to make more
          assumptions up front and rely more strongly on general analytic
          results and approximations. With frequentist methods, the hard work
          has typically already been done (analytically), leading to an
          asymptotic or approximate formula that you only need to plug in.
          Bayesian methods give you the full, nonapproximate result but leave
          it up to you to evaluate it. The disadvantage of the plug-in
          approach, of course, is that you might be plugging into an
          inappropriate formula—because some of the assumptions or
          approximations that were used to derive it do not apply to your
          system or data set.
To bring this discussion to a close, I’d like to end with a
          cautionary note. Bayesian methods are very appealing and even
          exciting—something that is rarely said about classical frequentist
          statistics. On the other hand, they are probably not very suitable
          for casual uses.
	Bayesian methods are parametric and specific; they are
              never exploratory or descriptive. If we already know what
              specific question to ask, then Bayesian methods may be the best
              way of obtaining an answer. But if we don’t yet know the proper
              questions to ask, then Bayesian methods are not
              applicable.

	Bayesian methods are difficult and require a fair deal of
              sophistication, both in setting up the actual model (likelihood
              function and prior) and in performing the required
              calculations.



As far as results are concerned, there is not much difference
          between frequentist and Bayesian analysis. When there is sufficient
          data (so that the influence of the prior is small), then the end
          results are typically very similar, whether they were obtained using
          frequentist methods or Bayesian methods.
Finally, you may encounter some other terms and concepts in
          the literature that also bear the “Bayesian” moniker: Bayesian
          classifier, Bayesian network, Bayesian risk, and more. Often, these
          have nothing to do with Bayesian (as opposed to frequentist)
          inference as explained in this chapter. Typically, these methods
          involve conditional probabilities and therefore appeal at some point
          to Bayes’ theorem. A Bayesian classifier, for instance, is the
          conditional probability that an object belongs to a certain class,
          given what we know about it. A Bayesian network is a particular way
          of organizing the causal relationships that exist among events that
          depend on many interrelated conditions. And so on.


Workshop: R



R is an environment for data manipulation and numerical
        calculations, specifically statistical applications. Although it can
        be used in a more general fashion for programming or computation, its
        real strength is the large number of built-in (or user-contributed)
        statistical functions.
R is an open source clone of the S programming language,
        which was originally developed at Bell Labs in the 1970s. It was one
        of the first environments to combine the capabilities that today we
        expect from a scripting language (e.g., memory
        management, proper strings, dynamic typing, easy file handling) with
        integrated graphics and intended for an interactive usage
        pattern.
I tend to stress the word environment when
        referring to R, because the way it integrates its various components
        is essential to R. It is misleading to think of R as a programming
        language that also has an interactive shell (like Python or Groovy).
        Instead, you might consider it as a shell but for handling data
        instead of files. Alternatively, you might want to view R as a
        text-based spreadsheet on steroids. The “shell” metaphor in particular
        is helpful in motivating some of the design choices made by R.
The essential data structure offered by R is the so-called
        data frame. A data frame encapsulates a data set
        and is the central abstraction that R is built on. Practically all
        operations involve the handling and manipulation of frames in one way
        or the other.
Possibly the best way to think of a data frame is as being
        comparable to a relational database table. Each
        data frame is a rectangular data structure consisting of rows and
        columns. Each column has a designated data type,
        and all entries in that column must be of that type. Consequently,
        each row will in general contain entries of
        different types (as defined by the types of the columns), but all rows
        must be of the same form. All this should be familiar from relational
        databases. The similarities continue: operations on frames can either
        project out a subset of columns, or filter out a subset of rows;
        either operation results in a new data frame. There is even a command
        (merge) that can perform a join of
        two data frames on a common column. In addition (and in contrast to
        databases), we will frequently add columns to an
        existing frame—for example, to hold the results of an intermediate
        calculation.
We can refer to columns by name. The names are either read from
        the first line of the input file, or (if not provided) R will
        substitute synthetic names of the form V1, V2,
        .... In contrast, we filter out a set of rows through various forms of
        “indexing magic.” Let’s look at some examples.
Consider the following input file:
Name     Height   Weight   Gender
Joe      6.2      192.2    0
Jane     5.5      155.4    1
Mary     5.7      164.3    1
Jill     5.6      166.4    1
Bill     5.8      185.8    0
Pete     6.1      201.7    0
Jack     6.0      195.2    0
Let’s investigate this data set using R, placing particular
        emphasis on how to handle and manipulate data with R—the full session
        transcript is included below. The commands entered at the command
        prompt are prefixed by the prompt >, while R output is shown without the
        prompt:
> d <- read.csv( "data", header = TRUE, sep = "\t" )
> str(d)
'data.frame':   7 obs. of   4 variables:
 $ Name  : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2
 $ Height: num  6.2 5.5 5.7 5.6 5.8 6.1 6
 $ Weight: num  192 155 164 166 186 ...
 $ Gender: int  0 1 1 1 0 0 0
>
> mean( d$Weight )
[1] 180.1429
> mean( d[,3] )
[1] 180.1429
>
> mean( d$Weight[ d$Gender == 1 ] )
[1] 162.0333
> mean( d$Weight[ 2:4 ] )
[1] 162.0333
>
> d$Diff <- d$Height - mean( d$Height )
> print(d)
  Name Height Weight Gender        Diff
1  Joe    6.2  192.2      0  0.35714286
2 Jane    5.5  155.4      1 -0.34285714
3 Mary    5.7  164.3      1 -0.14285714
4 Jill    5.6  166.4      1 -0.24285714
5 Bill    5.8  185.8      0 -0.04285714
6 Pete    6.1  201.7      0  0.25714286
7 Jack    6.0  195.2      0  0.15714286
> summary(d)
   Name       Height          Weight          Gender            Diff
  Bill:1  Min.   :5.500   Min.   :155.4   Min.   :0.0000   Min.   :-3.429e-01
  Jack:1  1st Qu.:5.650   1st Qu.:165.3   1st Qu.:0.0000   1st Qu.:-1.929e-01
  Jane:1  Median :5.800   Median :185.8   Median :0.0000   Median :-4.286e-02
  Jill:1  Mean   :5.843   Mean   :180.1   Mean   :0.4286   Mean   : 2.538e-16
  Joe :1  3rd Qu.:6.050   3rd Qu.:193.7   3rd Qu.:1.0000   3rd Qu.: 2.071e-01
  Mary:1  Max.   :6.200   Max.   :201.7   Max.   :1.0000   Max.   : 3.571e-01
  Pete:1
>
> d$Gender <- factor( d$Gender, labels = c("M", "F") )
> summary(d)
    Name      Height          Weight      Gender      Diff
  Bill:1  Min.   :5.500   Min.   :155.4   M:4    Min.   :-3.429e-01
  Jack:1  1st Qu.:5.650   1st Qu.:165.3   F:3    1st Qu.:-1.929e-01
  Jane:1  Median :5.800   Median :185.8          Median :-4.286e-02
  Jill:1  Mean   :5.843   Mean   :180.1          Mean   : 2.538e-16
  Joe :1  3rd Qu.:6.050   3rd Qu.:193.7          3rd Qu.: 2.071e-01
  Mary:1  Max.   :6.200   Max.   :201.7          Max.   : 3.571e-01
  Pete:1
>
> plot( d$Height ~ d$Gender )
> plot( d$Height ~ d$Weight, xlab="Weight", ylab="Height" )

> m <- lm( d$Height ~ d$Weight )
> print(m)

Call:
lm(formula = d$Height ~ d$Weight)

Coefficients:
(Intercept)     d$Weight
    3.39918      0.01357

> abline(m)
> abline( mean(d$Height), 0, lty=2 )
Let’s step through this session in some detail and explain what
        is going on.
First, we read the file in and assign it to the variable
        d, which is a data frame as
        discussed previously. The function str(d) shows us a string representation of
        the data frame. We can see that the frame consists of five named
        columns, and we can also see some typical values for each column.
        Notice that R has assigned a data type to each column: height and
        weight have been recognized as floating-point values; the names are
        considered a “factor,” which is R’s way of indicating a categorical
        variable; and finally the gender flag is interpreted as an integer.
        This is not ideal—we will come back to that.
> d <- read.csv( "data", header = TRUE, sep = "\t" )
> str(d)
'data.frame':    7 obs. of  4 variables:
 $ Name  : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2
 $ Height: num  6.2 5.5 5.7 5.6 5.8 6.1 6
 $ Weight: num  192 155 164 166 186 ...
 $ Gender: int  0 1 1 1 0 0 0
Let’s calculate the mean of the weight column to demonstrate
        some typical ways in which we can select rows and columns. The most
        convenient way to specify a column is by name: d$Weight. The use of the dollar-sign
        ($) to access members of a data
        structure is one of R’s quirks that one learns to live with. Think of
        a column as a shell variable! (By contrast, the dot (.) is not an operator and can be part of a
        variable or function name—in the same way that an underscore (_) is
        used in other languages. Here again the shell metaphor is useful:
        recall that shells allow the dot as part of filenames!)
> mean( d$Weight )
[1] 180.1429
> mean( d[,3] )
[1] 180.1429
Although its name is often the most convenient method to specify
        a column, we can also use its numeric index. Each element in a data
        frame can be accessed using its row and column index via the familiar
        bracket notation: d[row,col]. Keep
        in mind that the vertical (row) index comes first, followed by the
        horizontal (column) index. Omitting one of them selects all possible
        values, as we do in the listing above: d[,3] selects all rows
        from the third column. Also note that indices in R start at 1
        (mathematical convention), not at 0 (programming convention).
Now that we know how to select a column, let’s see how to select
        rows. In R, this is usually done through various forms of “indexing
        magic,” two examples of which are shown next in the listing. We want
        to find the mean weight of only the women in the sample. To do so, we
        take the weight column but now index it with a logical expression.
        This kind of operation takes some getting used to: inside the
        brackets, we seem to compare a column (d$Gender) with a scalar—and then use the
        result to index another column. What is going on here? Several things:
        first, the scalar on the righthand side of the comparison is expanded
        into a vector of the same length as the operator on the lefthand side.
        The result of the equality operator is then a
        Boolean vector of the same length as d$Gender or d$Weight. A Boolean vector of the
        appropriate length can be used as an index and selects only those rows
        for which it evaluates as True—which it does in this case only for the
        women in the sample. The second line of code is much more
        conventional: the colon operator (:) creates a range of numbers, which are
        used to index into the d$Weight column. (Remember that indices start
        at 1, not at 0!)
> mean( d$Weight[ d$Gender == 1 ] )
[1] 162.0333
> mean( d$Weight[ 2:4 ] )
[1] 162.0333
These kinds of operation are very common in R: using some form
        of creative indexing to filter out a subset of rows (there are more
        ways to do this, which I don’t show) and mixing vectors and scalars in
        expressions. Here is another example:
> d$Diff <- d$Height - mean( d$Height )
Here we create an additional column, called d$Diff, as the residual that remains when
        the mean height is subtracted from each individual’s height. Observe
        how we mix a column with a scalar expression to obtain another
        vector.
summary(d)
Next, we calculate the summary of the entire data frame with the
        new column added. Take a look at the gender column: because R
        interpreted the gender flag as an integer, it went ahead and
        calculated its “mean” and other quantities. This is meaningless, of
        course; the values in this column should be treated as categorical.
        This can be achieved using the factor() function, which also allows us to
        replace the uninformative numeric labels with more convenient string
        labels.
> d$Gender <- factor( d$Gender, labels = c("M", "F") )
As you can see when we run summary(d) again, R treats categorical
        variables differently: it counts how often each value occurs in the
        data set.
Finally, let’s take a look at R’s plotting capabilities. First,
        we plot the height “as a function of” the gender. (R uses the tilde
        (~) to separate control and
        response variables; the response variable is always on the
        left.)
> plot( d$Height ~ d$Gender )
[image: A box plot, showing the distribution of heights by gender.]

Figure 10-7. A box plot, showing the distribution of heights by
          gender.

This gives us a box plot, which is shown in Figure 10-7. On the other
        hand, if we plot the height as a function of the weight, then we
        obtain a scatter plot (see Figure 10-8—without the lines; we will
        add them in a moment).
> plot( d$Height ~ d$Weight, xlab="Weight", ylab="Height" )
Given the shape of the data, we might want to fit a linear model
        to it. This is trivially easy to do in R—it’s a single line of
        code:
> m <- lm( d$Height ~ d$Weight )
Notice once again the tilde notation used to indicate control
        and response variable.
We may also want to add the linear model to the scatter plot
        with the data. This can be done using the abline() function, which plots a line given
        its offset (“a”) and slope (“b”). We can either specify both
        parameters explicitly, or simply supply the result m of the fitting procedure; the abline function can use either. (The
        parameter lty selects the line
        type.)
> abline(m)
> abline( mean(d$Height), 0, lty=2 )
This short example should have given you an idea of what working
        with R is like.
R can be difficult to learn: it uses some unfamiliar idioms
        (such as creative indexing) as well as some obscure function and
        parameter names. But the greatest challenge to the newcomer (in my
        opinion) is its indiscriminate use of function overloading. The same
        function can behave quite differently depending on the (usually
        opaque) type of inputs it is given. If the default choices made by R
        are good, then this can be very convenient, but it can be hellish if
        you want to exercise greater, manual control.
[image: A scatter plot with a linear fit.]

Figure 10-8. A scatter plot with a linear fit.

Look at our example again: the same plot() command generates entirely different
        plot types depending on whether the control
        variable is categorical or numeric (box plot in the first case,
        scatter plot in the latter). For the experienced user, this kind of
        implicit behavior is of course convenient, but for the beginner, the
        apparent unpredictability can be very confusing. (In Chapter 14, we will see
        another example, where the same plot() command generates yet a different
        type of plot.)
These kinds of issues do not matter much if you use R
        interactively because you see the results immediately or, in the worst
        case, get an error message so that you can try something else.
        However, they can be unnerving if you approach R with the mindset of a
        contemporary programmer who prefers for operations to be explicit. It
        can also be difficult to find out which operations are available in a
        given situation. For instance, it is not at all obvious that the
        (opaque) return type of the lm()
        function is admissible input to the abline() function—it certainly doesn’t look
        like the explicit set of parameters used in the second call to
        abline(). Issues of this sort make
        it hard to predict what R will do at any point, to develop a
        comprehensive understanding of its capabilities, or how to achieve a
        desired effect in a specific situation.

Further Reading



The number of introductory statistics texts seems almost
        infinite—which makes it that much harder to find good ones. Below are
        some texts that I have found useful:
	An Introduction to Mathematical Statistics and
              Its Applications. Richard J. Larsen and Morris L. Marx. 4th ed., Prentice
              Hall. 2005.
This is my preferred introductory text for the mathematical
            background of classical statistics: how it all works. This is a
            math book; you won’t learn how to do
            practical statistical fieldwork from it. (It contains a large
            number of uncommonly interesting examples; however, on close
            inspection many of them exhibit serious flaws in their
            experimental design—at least as described in this book.) But as a
            mathematical treatment, it very neatly blends accessibility with
            sufficient depth.

	Statistics for Technology: A Course in Applied
              Statistics. Chris Chatfield. 3rd ed., Chapman & Hall/CRC.
              1983.
This book is good companion to the book by Larsen and Marx.
            It eschews most mathematical development and instead concentrates
            on the pragmatics of it, with an emphasis on engineering
            applications.

	The Statistical Sleuth: A Course in Methods of
              Data Analysis. Fred Ramsey and Daniel Schafer. 2nd ed., Duxbury Press.
              2001.
This advanced undergraduate textbook emphasizes the
            distinction between observational studies and controlled
            experiments more strongly than any other book I am aware of. After
            working through some of their examples, you will not be able to
            look at the description of a statistical study without immediately
            classifying it as observational or controlled (and questioning the
            conclusions if it was merely observational). Unfortunately, the
            development of the general theory gets a little lost in the
            detailed description of application concerns.

	The Practice of Business
              Statistics. David S. Moore, George P. McCabe, William M. Duckworth,
              and Layth Alwan. 2nd ed., Freeman. 2008.
This is a “for business” version of a popular beginning
            undergraduate textbook. The coverage of topics is comprehensive,
            and the presentation is particularly easy to follow. This book can
            serve as a first course, but will probably not provide sufficient
            depth to develop proper understanding.

	Problem Solving: A Statistician’s
              Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC. 1995;
              and Statistical Rules of Thumb. Gerald van
              Belle. 2nd ed., Wiley. 2008.
Two nice books with lots of practical advice on statistical
            fieldwork. Chatfield’s book is more general; van Belle’s contains
            much material specific to epidemiology and related
            applications.

	All of Statistics: A Concise Course in
              Statistical Inference. Larry Wasserman. Springer. 2004.
A thoroughly modern treatment of mathematical statistics,
            this book presents all kinds of fascinating and powerful topics
            that are sorely missing from the standard introductory curriculum.
            The treatment is advanced and very condensed, requiring general
            previous knowledge in basic statistics and a solid grounding in
            mathematical methods.

	Bayesian Methods for Data
              Analysis. Bradley P. Carlin, and Thomas A. Louis. 3rd ed., Chapman
              & Hall. 2008.
This is a book on Bayesian methods applied to data analysis
            problems (as opposed to Bayesian theory only). It is a thick book,
            and some of the topics are fairly advanced. However, the early
            chapters provide the best introduction to Bayesian methods that I
            am aware of.

	“Sifting the Evidence—What’s Wrong with Significance Tests?”
            Jonathan A. C. Sterne and George Davey Smith. British
            Medical Journal 322 (2001), p. 226.
This paper provides a penetrating and nonpartisan overview
            of the problems associated with classical hypothesis tests, with
            an emphasis on applications in medicine (although the conclusions
            are much more generally valid). The full text is freely available
            on the Web; a search will turn up multiple locations.






[18] I am not alone—even professional statisticians have the same
          experience. See, for example, the preface of Bayesian
          Statistics. Peter M. Lee. Hodder & Arnold.
          2004.

[19] This is a famous data set with history that is colorful
              but not really relevant here. A Web search for “Quintus Curtius
              Snodgrass” will turn up plenty of references.


Chapter 11. Intermezzo: Mythbusting—Bigfoot, Least Squares, and All
      That



EVERYBODY
      HAS HEARD OF BIGFOOT, THE MYSTICAL FIGURE THAT LIVES IN THE WOODS, BUT
      NOBODY HAS EVER actually seen him. Similarly,
      there are some concepts from basic statistics that everybody has heard
      of but that—like Bigfoot—always remain a little shrouded in mystery.
      Here, we take a look at three of them: the average of averages, the
      mystical standard deviation, and the ever-popular least squares.
How to Average Averages



Recently, someone approached me with the following question:
        given the numbers in Table 11-1, what number
        should be entered in the lower-right corner? Just adding up the
        individual defect rates per item and dividing by 3 (in effect,
        averaging them) did not seem right—if only because it would come out
        to about 0.75, which is pretty high when one considers that
        most of the units produced (100 out of 103) are
        not actually defective. The specific question asked was: “Should I
        weight the individual rates somehow?”
This situation comes up frequently but is not always recognized:
        we have a set of rates (or averages) and would like to summarize them
        into an overall rate (or overall average). The problem is that the naive way of doing so (namely, to
        add up the individual rates and then to divide by the number of rates)
        will give an incorrect result. However, this is
        rarely noticed unless the numbers involved are as extreme as in the
        present example.
Table 11-1. Defect rates: what value should go into the lower-right
          corner?
	Item type
	Units produced
	Defective units
	Defect rate

	A
	2
	1
	0.5

	B
	1
	1
	1.0

	C
	100
	1
	0.01

	Total defect rate
	???




The correct way to approach this task is to start from scratch.
        What is the “defect rate,” anyway? It is the number of defective items
        divided by the number of items produced. Hence, the
        total defect rate is the total number of
        defective items divided by the total number of items produced: 3/103 ≈
        0.03. There should be no question about that.
Can we arrive at this result in a different way by starting with
        the individual defect rates? Absolutely—provided
        we weight them appropriately. Each individual defect rate should
        contribute to the overall defect rate in the same way that the
        corresponding item type contributes to the total item count. In other
        words, the weight for item type A is 2/103, for B is 1/103, and for C
        it is 100/103. Pulling all this together, we have: 0.5 · 2/103 + 1.0 ·
        1/103 + 0.01 · 100/103 = (1 + 1 + 1)/103 = 3/103 as before.
To show that this agreement is not accidental, let’s write
        things out in greater generality:
	nk
	Number of items of type
                k

	dk
	Number of defective items of type
                k

	[image: ]
	Defect rate for type
                k

	[image: ]
	Contribution of type
                k to total production



Now look at what it means to weight each individual defect
        rate:
[image: Defect rates: what value should go into the lower-right corner?]
In other words, weighting the individual defect rate
        ϵk by the appropriate
        weight factor
        fk
        has the effect of turning the defect rate back to
        the the defect count
        dk
        (normalized by total number of items).
In this example, each item could get only one of two “grades,”
        namely 1 (for defective) or 0 (for not defective), and so the “defect
        rate” was a measure of the “average defectiveness” of a single item.
        The same logic as just demonstrated applies if you have a greater (or
        different) range of values. (You can make up your own example: give
        items grades from 1 to 5, and then calculate the overall “average
        grade” to see how it works.)
Simpson’s Paradox



Since we are talking about mystical figures that can sometimes
          be found in tables, we should also mention Simpson’s
          paradox. Look at Table 11-2 which shows
          applications and admissions to a fictional college in terms the
          applicants’ gender and department.
Table 11-2. Simpson’s paradox: applications and admissions by gender of
            applicant.
	 	Male
	Female
	Overall

	Department A
	80/100 = 0.8
	9/10 = 0.9
	89/110 = 0.81

	Department B
	5/10 = 0.5
	60/100 = 0.6
	65/110 = 0.59

	Total
	85/110 = 0.77
	69/110 = 0.63
	 



If you look only at the bottom line with the totals, then it
          might appear that the college is discriminating against women, since
          the acceptance rate for male applicants is higher than that for
          female applicants (0.77 versus 0.63).[20] But when you look at the rates for each individual
          department within the college, it turns out that women have
          higher acceptance rates than men for
          every department. How can that be?
The short and intuitive answer is that many more women apply
          to department B, which has a lower overall admission rate than
          department A (0.59 versus 0.81), and this drags down their
          (gender-specific) acceptance rate.
The more general explanation speaks of a “reversal of
          association due to a confounding factor.” When considering only the
          totals, it may seem as if there is an association between gender and
          admission rates, with male applicants being accepted more
          frequently. However, this view ignores the presence of a hidden but
          important factor: the choice of department. In fact, the choice of
          department has a greater influence on the
          acceptance rate than the original explanatory variable (the gender).
          By lumping the observations for the different departments into a
          single number, we have in fact masked the influence of this
          factor—with the consequence that the association between acceptance
          rate (which favors women for each department) and gender was
          reversed.
The important insight here is that such “reversal of
          association” due to a confounding factor is always possible.
          However, both conditions must occur: the confounding factor must be
          sufficiently strong (in our case, the acceptance rates for
          departments A and B were sufficiently different), and the assignment
          of experimental units to the levels of this factor must be
          sufficiently imbalanced (in our case, many more women applied to
          department B than to department A).
As opposed to Bigfoot, Simpson’s paradox is known to occur in
          the real world. The example in this section, for instance, was based
          on a well-publicized case involving the University of California
          (Berkeley) in the early 1970s. A quick Internet search will turn up
          additional examples.


The Standard Deviation



The fabled standard deviation is another close relative
        of Bigfoot. Everybody (it seems) has heard of it, everybody knows how
        to calculate it, and—most importantly—everybody knows that 68 percent
        of all data points fall within 1 standard deviation, 95 percent within
        2, and virtually all (that is: 99.7 percent) within 3.
Problem is: this is utter nonsense.
It is true that the standard deviation is a measure for the
        spread (or width) of a distribution. It is also true that, for a given
        set of points, the standard deviation can always be calculated. But
        that does not mean that the standard deviation is always a
        good or appropriate measure for the width of a
        distribution; in fact, it can be quite misleading if applied
        indiscriminately to an unsuitable data set. Furthermore, we must be
        careful how to interpret it: the whole 68 percent business applies
        only if the data set satisfies some very specific requirements.
In my experience, the standard deviation is probably the most
        misunderstood and misapplied quantity in all of statistics.
Let me tell you a true story (some identifying details have been
        changed to protect the guilty). The story is a bit involved, but this
        is no accident: in the same way that Bigfoot sightings never occur in
        a suburban front yard on a sunny Sunday morning, severe
        misunderstandings in mathematical or statistical methods usually don’t
        reveal themselves as long as the applications are as clean and simple
        as the homework problems in a textbook. But once people try to apply
        these same methods in situations that are a bit less standard,
        anything can happen. This is what happened in
        this particular company.
I was looking over a bit of code used to identify outliers in
        the response times from a certain database server. The purpose of this
        program was to detect and report on uncommonly slow responses. The
        piece of code in question processed log files containing the response
        times and reported a threshold value: responses that took longer than
        this threshold were considered “outliers.”
An existing service-level agreement defined an outlier as any
        value “outside of 3 standard deviations.” So what did this piece of
        code do? It sorted the response times to identify the top 0.3 percent
        of data points and used those to determine the threshold. (In other
        words, if there were 1,000 data points in the log file, it reported
        the response time of the third slowest as threshold.) After all, 99.7
        percent of data points fall within 3 standard deviations.
        Right?
After reading Chapter 2, I hope you can
        immediately tell where the original programmer went wrong: the
        threshold that the program reported had nothing at
        all to do with standard deviations—instead, it reported the
        top 0.3 percentile. In other words, the program completely failed to
        do what it was supposed to do. Also, keep in mind that it is incorrect
        to blindly consider the top x percent of any
        distribution as outliers (review the discussion of box plots in Chapter 2 if you need a
        reminder).
But the story continues. This was a database server whose
        typical response time was less than a few seconds. It was clear that
        anything that took longer than one or two minutes had to be considered
        “slow”—that is, an outlier. But when the program was run, the
        threshold value it reported (the 0.3 percentile) was on the order of
        hours. Clearly, this threshold value made no
        sense.
In what must have been a growing sense of desperation, the
        original programmer now made a number of changes: from selecting the
        top 0.3 percent, to the top 1 percent, then the top 5 percent and
        finally the top 10 percent. (I could tell, because each such change
        had dutifully been checked into source control!) Finally, the
        programmer had simply hard-coded some seemingly “reasonable” value
        (such as 47 seconds or something) into the program, and that’s what
        was reported as “3 standard deviations” regardless of the
        input.
It was the only case of outright technical fraud that I have
        ever witnessed: a technical work product that—with the original
        author’s full knowledge—in no way did what it claimed to do.
What went wrong here? Several things. First, there was a
        fundamental misunderstanding about the definition of the standard
        deviation, how it is calculated, and some of the properties that in
        practice it often (but not always) has. The second mistake was
        applying the standard deviation to a situation where it is not a
        suitable measure.
Let’s recap some basics: we often want to characterize a point
        distribution by a typical value (its location) and its spread around
        this location. A convenient measure for the location is the mean:
        [image: ]. Why is the mean so convenient? Because it is
        easy to calculate: just sum all the values and divide by
        n.
To find the width of the distribution, we would like see how far
        points “typically” stray from the mean. In other words, we would like
        to find the mean of the
        deviations
        xi –
        μ. But since the deviations can be positive and negative, they would
        simply cancel, so instead we calculate the mean of the
        squared deviations: [image: ]. This quantity is called the
        variance, and its square root is the
        standard deviation. Why do we bother with the
        square root? Because it has the same units as the mean, whereas in the
        variance the units are raised to the second power.
Now, if and only if the point distribution
        is well behaved (which in practice means: it is Gaussian),
        then it is true that about 68 percent of points
        will fall within the interval [μ – σ, μ + σ] and that 95 percent fall
        within the interval [μ – 2σ, μ + 2σ] and so on. The inverse is
        not true: you cannot conclude that 68 percent of
        points define a “standard deviation” (this is where the programmer in
        our story made the first mistake). If the point distribution is not
        Gaussian, then there are no particular patterns by which fractions of
        points will fall within 1, 2, or any number of standard deviations
        from the mean. However, keep in mind that the definitions of the mean
        and the standard deviation (as given by the previous equations) both
        retain their meaning: you can calculate them for any distribution and
        any data set.
However (and this is the second mistake that was made), if the
        distribution is strongly asymmetrical, then mean and standard
        deviation are no longer good measures of location and spread,
        respectively. You can still calculate them, but
        their values will just not be very informative. In particular, if the
        distribution has a fat tail then both mean and standard deviation will
        be influenced heavily by extreme values in the tail.
In this case, the situation was even worse: the distribution of
        response times was a power-law distribution,
        which is extremely poorly summarized by quantities such as mean and
        standard deviation. This explains why the top 0.3 percent of response
        times were on the order of hours: with power-law distributions, all
        values—even extreme ones—can (and do!) occur; whereas for Gaussian or
        exponential distributions, the range of values that do occur in
        practice is pretty well limited. (See Chapter 9 for more information on
        power-law distributions.)
To summarize, the standard deviation, defined as
        [image: ], is a measure of the width of a distribution
        (or a sample). It is a good measure for the width only if the
        distribution of points is well behaved (i.e.,
        symmetric and without fat tails). Points that are far away from the
        center (compared to the width of the distribution) can be considered
        outliers. For distributions that are less well behaved, you will have
        to use other measures for the width (e.g., the
        inter-quartile range); however, you can usually still identify
        outliers as points that fall outside the typical range of values. (For
        power-law distributions, which do not have a “typical” scale, it
        doesn’t make sense to define outliers by statistical means; you will
        have to justify them differently—for instance by appealing to
        requirements from the business domain.)
How to Calculate



Here is a good trick for calculating the standard deviation
          efficiently. At first, it seems you need to make two passes over the
          data in order to calculate both mean and standard deviation. In the
          first pass you calculate the mean, but then you need to make a
          second pass to calculate the deviations from that mean:
[image: How to Calculate]
It appears as if you can’t find the deviations until the mean
          μ is known.
However, it turns out that you can calculate both quantities
          in a single pass through the data. All you need to do is to maintain
          both the sum of the values [image: ] and the sum of the squares of the values
          [image: ], because you can write the preceding equation
          for σ2 in a form that depends only on those two sums:
[image: How to Calculate]
This is a good trick that is apparently too little known. Keep
          it in mind; similar situations crop up in different contexts from
          time to time. (To be sure, the floating-point properties of both
          methods are different, but if you care enough to worry about the
          difference, then you should be using a library anyway.)

Optional: One over What?



You may occasionally see the standard deviation defined with
          an n in the denominator and sometimes with a
          factor of n – 1 instead.
[image: Optional: One over What?]
What really is the difference, and which
          expression should you use?
The factor 1/n applies only if you know
          the exact value of the mean μ ahead of time. This is usually not the
          case; instead, you will usually have to calculate the mean from the
          data. This adds a bit of uncertainty, which leads to the widening of
          the proper estimate for the standard deviation. A theoretical
          argument then leads to the use of the factor
          1/(n – 1) instead of
          1/n.
In short, if you calculated the mean from the data (as is
          usually the case), then you should really be using the
          1/(n – 1) factor. The difference is going to be
          small, unless you are dealing with very small data sets.

Optional: The Standard Error



While we are on the topic of obscure sources of confusion,
          let’s talk about the standard error.
[image: Fitting for statistical parameter estimation: data affected by random noise. What is the slope of the straight line?]

Figure 11-1. Fitting for statistical parameter estimation: data affected
            by random noise. What is the slope of the straight line?

The standard error is the standard deviation of an
          estimated quantity. Let’s say we estimate some quantity
          (e.g., the mean). If we repeatedly take
          samples, then the means calculated from those samples will scatter
          around a little, according to some distribution. The standard
          deviation of this distribution is the “standard error” of the
          estimated quantity (the mean, in this example).
The following observation will make this clearer. Take a
          sample of size n from a normally distributed
          population with standard deviation σ. Then 68 percent of the members
          of the sample will be within ±σ from the
          estimated mean (i.e., the sample mean).
However, the mean itself is normally distributed (because of
          the Central Limit Theorem, since the mean is a sum of random
          variables) with standard deviation [image: ] (again because of the Central Limit Theorem).
          So if we take several samples, each of size n,
          then we can expect 68 percent of the estimated means to lie within
          [image: ] of the true mean
          (i.e., the mean of the overall
          population).
In this situation, the quantity [image: ] is therefore the standard error of
          the mean.


Least Squares



Everyone loves least squares. In the confusing and uncertain
        world of data and statistics, they provide a sense of
        security—something to rely on! They give you, after all, the “best”
        fit. Doesn’t that say it all?
Problem is, I have never (not once!) seen
        least squares applied appropriately, and I have come to doubt that it
        should ever be considered a suitable technique. In fact, when today I
        see someone doing anything involving “least-squares
        fitting,” I am pretty certain this person is at wit’s end—and probably
        does not even know it!
[image: Fitting a function to approximate a curve known only at discrete locations. Is the fit a good representation of the data?]

Figure 11-2. Fitting a function to approximate a curve known only at
          discrete locations. Is the fit a good representation of the
          data?

There are two problems with least squares. The first is that it
        is used for two very different purposes that are commonly confused.
        The second problem is that least-squares fitting is usually not the
        best (or even a suitable) method for either purpose. Alternative
        techniques should be used, depending on the overall purpose (see first
        problem) and on what, in the end, we want to do with the
        result.
Let’s try to unravel these issues.
Why do we ever want to “fit” a function to data to begin with?
        There are two different reasons.
Statistical Parameter Estimation
	Data is corrupted by random noise, and we want to extract
            parameters from it.



Smooth Interpolation or
        Approximation
	Data is given as individual points, and we would like either
            to find a smooth interpolation to arbitrary positions between
            those points or to determine an analytical “formula” describing
            the data.



These two scenarios are conceptually depicted in Figure 11-1 and Figure 11-2.
Statistical Parameter Estimation



Statistical parameter estimation is the more legitimate of the
          two purposes. In this case, we have a control variable
          x and an outcome y. We set
          the former and measure the latter, resulting in a data set of pairs:
          {(x1,
          y1),
          (x2,
          y2),...}. Furthermore,
          we assume that the outcome is related to the control variable
          through some function f(x;
          {a, b,
          c,...}) of known form that depends on the
          control variable x and also on a set of
          (initially unknown) parameters {a,
          b, c,...}. However, in
          practice, the actual measurements are affected by some random noise
          ϵ, so that the measured values
          yi
          are a combination of the “true” value and the noise term:
yi
          =
          f(xi,
          {a, b,
          c,...}) +
          ϵi
We now ask: how should we choose values for the parameters
          {a, b,
          c,...}, such that the function
          f(x,
          {a, b,
          c,...}) reproduces the measured values of
          y most faithfully? The usual answer is that we
          want to choose the parameters such that the total
          mean-square error
          E2 (sometimes called
          the residual sum of squares):
[image: Statistical Parameter Estimation]
is minimized. As long as the distribution of errors is
          reasonably well behaved (not too asymmetric and without heavy
          tails), the results are adequate. If, in addition, the noise is
          Gaussian, then we can even invoke other parts of statistics and show
          that the estimates for the parameters obtained by the least-squares
          procedure agree with the “maximum likelihood estimate.” Thus the
          least-squares results are consistent with alternative ways of
          calculation.
But there is another important aspect to least-squares
          estimation that is frequently lost: we can obtain not only
          point estimates for the parameters
          {a, b,
          c,...} but also confidence
          intervals, through a self-consistent argument that links
          the distribution of the parameters to the distribution of the
          measured values.
I cannot stress this enough: a point estimate by itself is of
          limited use. After all, what good is knowing that the point estimate
          for a is 5.17 if I have no idea whether this
          means a = 5.17 ± 0.01 or a
          = 5.17 ± 250? We must have some way of judging
          the range over which we expect our estimate to vary, which is the
          same as finding a confidence interval for it. Least squares works,
          when applied in a probabilistic context like this, because it gives
          us not only an estimate for the parameters but also for their
          confidence intervals.
One last point: in statistical applications, it is rarely
          necessary to perform the minimization of
          E2 by numerical
          means. For most of the functions
          f(x,
          {a, b,
          c,...}) that are commonly used in statistics,
          the conditions that will minimize
          E2 can be worked out
          explicitly. (See Chapter 3 for the
          results when the function is linear.) In general, you should be
          reluctant to resort to numerical minimization procedures—there might
          be better ways of obtaining the result.

Function Approximation



In practice, however, least-squares fitting is often
          used for a different purpose. Consider the situation in Figure 11-2, where we have
          a set of individual data points. These points clearly seem to fall
          on a smooth curve. It would be convenient to have an explicit
          formula to summarize these data points rather than having to work
          with the collection of points directly. So, can we “fit” a formula
          to them?
Observe that, in this second application of least-squares
          fitting, there is no random noise. In fact,
          there is no random component at all! This is an important insight,
          because it implies that statistical methods and arguments don’t
          apply.
This becomes relevant when we want to determine the degree of
          confidence in the results of a fit. Let’s say we have performed a
          least-squares routine and obtained some values for the parameters.
          What confidence intervals should we associate with the parameters,
          and how good is the overall fit? Whatever errors we may incur in the
          fitting process, they will not be of a random nature, and we
          therefore cannot make probabilistic arguments about them.
The scenario in Figure 11-2 is typical:
          the plot shows the data together with the best fit for a function of
          the form f(x;
          a, b) =
          a/(1 +
          x)b,
          with a = 1.08 and b =
          1.77. Is this a good fit? And what uncertainty do we have in the
          parameters? The answer depends on what you want to do with the
          results—but be aware that the deviations between the fit and the
          data are not at all “random” and hence that statistical “goodness of
          fit” measures are inappropriate. We have to find other ways to
          answer our questions. (For instance, we may find the largest of the
          residuals between the data points and our fitted function and report
          that the fit “represents the data with a maximum deviation of
          ....”)
This situation is typical in yet another way: given how smooth
          the curve is that the data points seem to fall on, our “best fit”
          seems really bad. In particular, the fit
          exhibits a systematic error: for 0 < x <
          1.5, the curve is always smaller than the data, and for
          x > 1.5, it is always greater. Is this
          really the best we can do? The answer is yes, for functions of the
          form a/(1 +
          x)b.
          However, a different choice of function might give much better
          results. The problem here is that the least-squares approach forces
          us to specify the functional form of the function we are attempting
          to fit, and if we get it wrong, then the results won’t be any good.
          For this reason, we should use less constraining approaches (such as
          nonparametric or local approximations) unless we have good reasons
          to favor a particular functional form.
In other words, what we really have here is a problem of
          function interpolation or approximation: we know the function on a
          discrete set of points, and we would like to extend it smoothly to
          all values. How we should do this depends on what we want to do with
          the results. Here is some advice for common scenarios:
	To find a “smooth curve” for plotting purposes, you should
              use one of the smoothing routines discussed in Chapter 3, such as
              splines or LOESS. These nonparametric methods have the advantage
              that they do not impose a particular functional form on the data
              (in contrast to the situation in Figure 11-2).

	If you want to be able to evaluate the function easily at
              an arbitrary location, then you should use a local interpolation
              method. Such methods build a local approximation by using the
              three or four data points closest to the desired location. It is
              not necessary to find a global expression in this case: the
              local approximation will suffice.

	Sometimes you may want to summarize the behavior of the
              data set in just a few “representative” values
              (e.g., so you can more easily compare one
              data set against another). This is tricky—it is probably a
              better idea to compare data sets directly
              against each other using similarity metrics such as those
              discussed in Chapter 13. If you still
              need to do this, consider a basis function
              expansion using Fourier, Hermite, or wavelet
              functions. (These are special sets of functions that enable you
              to extract greater and greater amounts of detail from a data
              set. Expansion in basis functions also allows you to evaluate
              and improve the quality of the approximation in a systematic
              fashion.)

	At times you might be interested in some particular
              feature of the data: for example, you suspect that the data
              follows a power law
              xb
              and you would like to extract the exponent; or the data is
              periodic and you need to know the length of one period. In such
              cases, it is usually a better idea to transform the data in such
              a way that you can obtain that particular feature directly,
              rather than fitting a global function. (To extract exponents,
              you should consider a logarithmic transform. To obtain the
              length of an oscillatory period, measure the peak-to-peak (or,
              better still, the zero-to-zero) distance.)

	Use specialized methods if available and applicable. Time
              series, for instance, should be treated with the techniques
              discussed in Chapter 4.



You may have noticed that none of these suggestions involve
          least squares!


Further Reading



Every introductory statistics book covers the standard deviation
        and least squares (see the book recommendations in Chapter 10). For the
        alternatives to least squares, consult a book on numerical analysis,
        such as the one listed here.
	Numerical Methods That (Usually)
              Work. Forman S. Acton. 2nd ed., Mathematical Association of
              America. 1997.
Although originally published in 1970, this book does not
            feel the least bit dated—it is still one of the best introductions
            to the art of numerical analysis. Neither a cookbook nor a
            theoretical treatise, it stresses practicality and understanding
            first and foremost. It includes an inimitable chapter on “What
            Not to Compute.”






[20] You should check that the entries in the bottom row have
              been calculated properly, per the discussion in the previous
              section!


Part III. Computation: Mining Data




Chapter 12. Simulations



IN THIS
      CHAPTER, WE LOOK AT SIMULATIONS AS A WAY TO UNDERSTAND DATA. IT MAY SEEM
      STRANGE TO FIND simulations included in a book on
      data analysis: don’t simulations just generate even
      more data that needs to be analyzed? Not
      necessarily—as we will see, simulations in the form of
      resampling methods provide a family of techniques
      for extracting information from data. In addition, simulations can be
      useful when developing and validating models, and in this way, they
      facilitate our understanding of data. Finally, in the context of this
      chapter we can take a brief look at a few other relevant topics, such as
      discrete event simulations and queueing theory.
A technical comment: I assume that your programming environment
      includes a random-number generator—not only for uniformly distributed
      random numbers but also for other distributions (this is a pretty safe
      bet). I also assume that this random-number generator produces random
      numbers of sufficiently high quality. This is probably a reasonable
      assumption, but there’s no guarantee: although the theory of
      random-number generators is well understood, broken implementations
      apparently continue to ship. Most books on simulation methods will
      contain information on random-number generators—look there if you feel
      that you need more detail.
A Warm-Up Question



As a warm-up to demonstrate how simulations can help us analyze
        data, consider the following example. We are given a data set with the
        results of eight tosses of a coin: six Heads and two Tails. Given this
        data, would we say the coin is biased?
[image: The likelihood function p6(1 – p)2 of observing six Heads and two Tails in eight tosses of a coin, as a function of the coin’s “balance parameter” p.]

Figure 12-1. The likelihood function p6(1 –
          p)2 of observing six Heads and two Tails
          in eight tosses of a coin, as a function of the coin’s “balance
          parameter” p.

The problem is that the data set is small—if there had been
        80,000 tosses of which 60,000 came out Heads, then we would have no
        doubt that the coin was biased. But with just eight tosses, it seems
        plausible that the imbalance in the results might be due to chance
        alone—even with a fair coin.
It was for precisely this kind of question that formal
        statistical methods were developed. We could now either invoke a
        classical frequentist point of view and calculate the probability of
        obtaining six or more Heads in eight tosses of a fair coin
        (i.e., six or more successes in eight Bernoulli
        trials with p = 0.5). The probability comes out
        to 37/256 ≈ 0.14, which is not enough to “reject the null hypothesis
        (that the coin is fair) at the 5 percent level.” Alternatively, we
        could adopt a Bayesian viewpoint and evaluate the appropriate
        likelihood function for the given data set with a noninformative prior
        (see Figure 12-1). The
        graph suggests that the coin is not balanced.
But what if we have forgotten how to evaluate either quantity,
        or (more likely!) if we are dealing with a problem more intricate than
        the one in this example, so that we neither know the appropriate model
        to choose nor the form of the likelihood function? Can we find a quick
        way to make progress on the question we started with?
Given the topic of this chapter, the answer is easy. We can
        simulate tosses of a coin, for various degrees of
        imbalance, and then compare the simulation results to our data
        set.
import random

repeats, tosses = 60, 8
[image: Results of 60 simulation runs, each consisting of eight tosses of a coin, for different values of the coin’s “balance parameter” p. Shown are the number of Heads observed in each run. Although a slight balance toward Heads (p ≈ 0.7) seems most probable, note that as many as six Heads can occasionally be observed even with a coin that is balanced toward Tails.]

Figure 12-2. Results of 60 simulation runs, each consisting of eight
          tosses of a coin, for different values of the coin’s “balance
          parameter” p. Shown are the number of Heads observed in each run.
          Although a slight balance toward Heads (p ≈ 0.7) seems most
          probable, note that as many as six Heads can occasionally be
          observed even with a coin that is balanced toward Tails.

def heads( tosses, p ):
    h = 0
    for x in range( 0, tosses ):
        if random.random() < p: h += 1
    return h

p = 0
while p < 1.01:
    for t in range( 0, repeats ):
        print p, "\t", heads( tosses, p )
    p += 0.05
The program is trivial to write, and the results, in the form of
        a jitter plot, are shown in Figure 12-2. (For each value
        of the parameter p, which controls the imbalance
        of the coin, we have performed 60 repeats of 8 tosses each and counted
        the number of Heads in each repeat.)
The figure is quite clear: for p = 0.5
        (i.e., a balanced coin), it is pretty unlikely to
        obtain six or more Heads, although not at all impossible. On the other
        hand, given that we have observed six Heads, we would expect the
        parameter to fall into the range p = 0.6,...,
        0.7. We have thus not only answered the question we started with but
        also given it some context. The simulation therefore not only helped
        us understand the actual data set but also allowed us to explore the
        system that produced it. Not bad for 15 lines of code.

Monte Carlo Simulations



The term Monte Carlo simulation is
        frequently used to describe any method that involves the generation of
        random points as input for subsequent operations.
Monte Carlo techniques are a major topic all by themselves.
        Here, I only want to sketch two applications that are particularly
        relevant in the context of data analysis and modeling. First,
        simulations allow us to verify analytical work and to experiment with
        it further; second, simulations are a way of obtaining results from
        models for which analytical solutions are not available.
Combinatorial Problems



Many basic combinatorial problems can be solved exactly—but
          obtaining a solution is often difficult. Even when one is able to
          find a solution, it is surprisingly easy to arrive at incorrect
          conclusions, missing factors like 1/2 or 1/n!
          and so on. And lastly, it takes only innocuous looking changes to a
          problem formulation to render the problem intractable.
In contrast, simulations for typical combinatorial problems
          are often trivially easy to write. Hence they are a great way to
          validate theoretical results, and they can be extended to explore
          problems that are not tractable otherwise.
Here are some examples of questions that can be answered
          easily in this way:
	If we place n balls into
              n boxes, what is the probability that no
              more than two boxes contain two or more balls? What if I told
              you that exactly m
              boxes are empty? What if at most
              m boxes are empty?

	If we try keys from a key chain containing
              n different keys, how many keys will we
              have to try before finding the one that fits the lock? How is
              the answer different if we try keys randomly (with replacement)
              as opposed to in order (without replacement)?

	Suppose an urn contains 2n tokens
              consisting of n pairs of items. (Each item
              is marked in such a way that we can tell to which pair it
              belongs.) Repeatedly select a single token from the urn and put
              it aside. Whenever the most recently selected token is the
              second item from a pair, take both items
              (i.e., the entire pair) and return them to
              the urn. How many “broken pairs” will you have set aside on
              average? How does the answer change if we care about triples
              instead of pairs? What fluctuations can we expect around the
              average value?



The last problem is a good example of the kind of problem for
          which the simple case (average number of broken pairs) is fairly
          easy to solve but that becomes rapidly more complicated as we make
          seemingly small modifications to the original problem
          (e.g., going from pairs to triples). However,
          in a simulation such changes do not pose any special
          difficulties.
Another way that simulations can be helpful concerns
          situations that appear unfamiliar or even paradoxical. Simulations
          allow us to see how the system behaves and
          thereby to develop intuition for it. We already encountered an
          example in the Workshop section of Chapter 9, where we studied
          probability distributions without expectation values. Let’s look at
          another example.
Suppose, we are presented with a choice of three closed
          envelopes. One envelope contains a prize, the other two are empty.
          After we have selected an envelope, it is revealed that one of the
          envelopes that we had not selected is empty. We
          are now permitted to choose again. What should we do? Stick with our
          initial selection? Randomly choose between the two remaining
          envelopes? Or pick the remaining envelope—that is, not the one that
          we selected initially and not the one that has been opened?
This is a famous problem, which is sometimes known as the
          “Monty Hall Problem” (after the host of a game show that featured a
          similar game).
As it turns out, the last strategy (always switch to the
          remaining envelope) is the most beneficial. The problem appears to
          be paradoxical because the additional information that is revealed
          (that an envelope we did not select is empty) does not seem to be
          useful in any way. How can this information affect the probability
          that our initial guess was correct?
The argument goes as follows. Our initial selection is correct
          with probability p = 1/3 (because one envelope
          among the original three contains the prize). If we stick with our
          original choice, then we should therefore have a 33 percent chance
          of winning. On the other hand, if in our second choice, we choose
          randomly from the remaining options (meaning that we are as likely
          to pick the initially chosen envelope or the remaining one), then we
          will select the correct envelope with probability
          p = 1/2 (because now one out of two envelopes
          contains the prize). A random choice is therefore better than
          staying put!
But this is still not the best strategy. Remember that our
          initial choice only had a p = 1/3 probability
          of being correct—in other words, it has probability
          q = 2/3 of being wrong.
          The additional information (the opening of an empty envelope) does
          not change this probability, but it removes all
          alternatives. Since our original choice is wrong with
          probability q = 2/3 and since now there is only
          one other envelope remaining, switching to this remaining envelope
          should lead to a win with 66 percent probability!
I don’t know about you, but this is one of those cases where I
          had to “see it to believe it.” Although the argument above seems
          compelling, I still find it hard to accept. The program in the
          following listing helped me do exactly that.
  import sys
  import random as rnd

  strategy = sys.argv[1]  # must be 'stick', 'choose', or 'switch'

  wins = 0
  for trial in range( 1000 ):

  # The prize is always in envelope 0 ... but we don't know that!
  envelopes = [0, 1, 2]

  first_choice = rnd.choice( envelopes )

  if first_choice == 0:
      envelopes = [0, rnd.choice( [1,2] ) ] # Randomly retain 1 or 2
  else:
      envelopes = [0, first_choice] # Retain winner and first choice

  if strategy == 'stick':
      second_choice = first_choice
  elif strategy == 'choose':
      second_choice = rnd.choice( envelopes )
  elif strategy == 'switch':
      envelopes.remove( first_choice )
      second_choice = envelopes[0]

  # Remember that the prize is in envelope 0
  if second_choice == 0:
      wins += 1

print wins
The program reads our strategy from the command line:
          the possible choices are stick,
          choose, and switch. It then performs a thousand trials
          of the game. The “prize” is always in envelope 0, but we don’t know that. Only if our
          second choice equals envelope 0
          we count the game as a win.
The results from running this program are consistent with the
          argument given previously: stick
          wins in one third of all trials, choose wins half the time, but switch amazingly wins in two thirds of all
          cases.

Obtaining Outcome Distributions



Simulations can be helpful to verify with combinatorial
          problems, but the primary reason for using simulations is that they
          allow us to obtain results that are not available analytically. To
          arrive at an analytical solution for a model, we usually have to
          make simplifying assumptions. One particularly common one is to
          replace all random quantities with their most probable value (the
          mean-field approximation; see Chapter 8). This allows us to solve
          the model, but we lose information about the distribution of
          outcomes. Simulations are a way of retaining the effects of
          randomness when determining the consequences of a model.
Let’s return to the case study discussed at the end of Chapter 9. We had a visitor
          population making visits to a certain website. Because individual
          visitors can make repeat visits, the number of
          unique visitors grows more slowly than the
          number of total visitors. We found an
          expression for the number of unique visitors over time but had to
          make some approximations in order to make progress. In particular,
          we assumed that the number of total visitors per day would be the
          same every day, and be equal to the average number of visitors per
          day. (We also assumed that the fraction of actual repeat visitors on
          any given day would equal the fraction of repeat visitors in the
          total population.)
Both of these assumptions are of precisely the nature
          discussed earlier: we replaced what in reality is a random quantity
          with its most probable value. These approximations made the problem
          tractable, but we lost all sense of the accuracy of the result.
          Let’s see how simulations can help provide additional insight to
          this situation.
The solution which in Chapter 9 was a
          model: an analytical (mean-field) model. The
          short program that follows is another model of the same system, but
          this time it is a simulation model. It is a
          model in the sense that again everything that is not absolutely
          essential has been stripped away: there is no website, no actual
          visits, no browsing behavior. But the model retains two aspects that
          are important and that were missing from the mean-field model.
          First, the number of visitors per day is no longer fixed, instead it
          is distributed according to a Gaussian distribution. Second, we have
          a notion of individual visitors (as elements of the list has_visited), and on every “day” we make a
          random selection from this set of visitors to determine who does
          visit on this day and who does not.
import random as rnd

n = 1000    # total visitors
k = 100     # avg visitors per day
s = 50      # daily variation

def trial():
    visitors_for_day = [0]  # No visitors on day 0

    has_visited = [0]*n     # A flag for each visitor
    for day in range( 31 ):
        visitors_today = max( 0, int(rnd.gauss( k, s )) )

        # Pick the individuals who visited today and mark them
        for i in rnd.sample( range( n ), visitors_today ):
            has_visited[i] = 1

        # Find the total number of unique visitors so far
        visitors_for_day.append( sum(has_visited) )

return visitors_for_day


for t in range( 25 ):
    r = trial()
    for i in range( len(r) ):
        print i, r[i]

    print
    print
[image: Unique visitors as a function of time: results from the simulation run, together with predictions from the analytical model. All data points are jittered horizontally to minimize overplotting. The solid line is the most probable number of visitors according to the model; the dashed lines indicate a confidence band.]

Figure 12-3. Unique visitors as a function of time: results from the
            simulation run, together with predictions from the analytical
            model. All data points are jittered horizontally to minimize
            overplotting. The solid line is the most probable number of
            visitors according to the model; the dashed lines indicate a
            confidence band.

The program performs 25 trials, where each trial consists of a
          full, 31-day month of visits. For each day, we find the number of
          visitors for that day (which must be a positive integer) and then
          randomly select the same number of “visitors” from our list of
          visitors, setting a flag to indicate that they have visited.
          Finally, we count the number of visitors that have the flag set and
          print this number (which is the number of unique visitors so far)
          for each day. The results are shown in Figure 12-3.
Figure 12-3
          also includes results from the analytical model. In Chapter 9, we found that the
          number of unique visitors on day t was given
          by:
[image: Unique visitors as a function of time: results from the simulation run, together with predictions from the analytical model. All data points are jittered horizontally to minimize overplotting. The solid line is the most probable number of visitors according to the model; the dashed lines indicate a confidence band.]
where N is the total number of visitors
          (N = 1,000 in the simulation) and
          k is the average number of visitors per day
          (k = 100 in the simulation). Accordingly, the
          solid line in Figure 12-3 is given by
          n(t) = 1,000
          [image: ].
The simulation includes a parameter that was not part of the
          analytical model—namely the width s of the
          daily fluctuations in visitors. I have chosen the value
          s = 50 for the simulation runs. The dashed
          lines in Figure 12-3
          show the analytical model, with values of k ±
          s/2 (i.e.,
          k = 75 and k = 125) to
          provide a sense for the predicted spread, according to the
          mean-field model.
First of all, we should note that the analytical model agrees
          very well with the data from the simulation run: that’s a nice
          confirmation of our previous result! But we should also note the
          differences; in particular, the simulation results are consistently
          higher than the theoretical predictions. If we
          think about this for a moment, this makes sense. If on any day there
          are unusually many visitors, then this irrevocably bumps the number
          of unique visitors up: the number of unique
          visitors can never shrink, so any outlier above the average can
          never be neutralized (in contrast to an outlier below the average,
          which can be compensated by any subsequent high-traffic day).
We can further analyze the data from the simulation run,
          depending on our needs. For instance, we can calculate the most
          probable value for each day, and we can estimate proper confidence
          intervals around it. (We will need more than 25 trials to obtain a
          good estimate of the latter.)
What is more interesting about the simulation model developed
          here is that we can use it to obtain additional
          information that would be difficult or impossible to calculate from
          the analytical formula. For example, we may ask for the
          distribution of visits per user
          (i.e., how many users have visited once, twice,
          three times, and so on). The answer to this question is just a snap
          of the fingers away! We can also extend the model and ask for the
          number of unique visitors who have paid two or
          more visits (not just one). (For two visits per person,
          this question can be answered within the framework of the original
          analytical model, but the calculations rapidly become more tedious
          as we are asking for higher visit counts per person.)
Finally, we can extend the simulation to include features not
          included in the analytical model at all. For instance, for a real
          website, not all possible visitors are equally likely to visit: some
          individuals will have a higher probability of visiting the website
          than do others. It would be very difficult to incorporate this kind
          of generalization into the approach taken in Chapter 9, because it
          contradicts the basic assumption that the fraction of actual repeat
          visitors equals the fraction of repeat visitors in the total
          population. But it is not at all difficult to model this behavior in
          a simulation model!

Pro and Con



Basic simulations of the kind discussed in this section are
          often easy to program—certainly as compared with the effort required
          to develop nontrivial combinatorial arguments! Moreover, when we
          start writing a simulation project, we can be fairly certain of
          being successful in the end; whereas there is no guarantee that an
          attempt to find an exact answer to a combinatorial problem will lead
          anywhere.
On the other hand, we should not forget that a simulation
          produces numbers, not insight! A simulation is always only one step
          in a larger process, which must include a proper analysis of the
          results from the simulation run and, ideally, also involves an
          attempt to incorporate the simulation data into a larger conceptual
          model. I always get a little uncomfortable when presented with a
          bunch of simulation results that have not been fit into a larger
          context. Simulations cannot replace analytical modeling.
In particular, simulations do not yield the kind of
          insight into the mechanisms driving certain developments that a good
          analytical model affords. For instance, recall the case study near
          the end of Chapter 8, in
          which we tried to determine the optimal number of servers. One
          important insight from that model was that the probability
          pn
          for a total failure dropped extremely rapidly as the number
          n of servers increased: the exponential decay
          (with n) is much more important than the
          reliability p of each individual server. (In
          other words, redundant commodity hardware beats expensive
          supercomputers—at least for situations in which this simplified cost
          model holds!) This is the kind of insight that would be difficult to
          gain simply by looking at results from simulation runs.
Simulations can be valuable for verifying analytical work and
          for extending it by incorporating details that would be difficult or
          impossible to treat in an analytical model. At the same time, the
          benefit that we can derive from simulations is enhanced by the
          insight gained from the analytical, conceptual modeling of the the
          mechanisms driving a system.
The two methods are complementary—although I will give primacy
          to analytical work. Analytical models without simulation may be
          crude but will still yield insight, whereas simulations without
          analysis produce only numbers, not insight.


Resampling Methods



Imagine you have taken a sample of n points
        from some population. It is now a trivial exercise to calculate the
        mean from this sample. But how reliable is this mean? If we repeatedly
        took new samples (of the same size) from the population and calculated
        their means, how much would the various values
        for the mean jump around?
This question is important. A point estimate (such as the mean
        by itself) is not very powerful: what we really want is an interval
        estimate which also gives us a sense of the reliability of the
        answer.
If we could go back and draw additional samples, then we could
        obtain the distribution of the mean directly as a histogram of the
        observed means. But that is not an option: all we have are the
        n data points of the original sample.
Much of classical statistics deals with precisely this question:
        how can we make statements about the reliability of an estimate based
        only on a set of observations? To make progress, we need to make some
        assumptions about the way values are distributed. This is where the
        sampling distributions of classical statistics
        come in: all those Normal, t, and chi-square
        distributions (see Chapter 10). Once we have a
        theoretical model for the way points are distributed, we can use this
        model to establish confidence intervals.
Being able to make such statements is one of the outstanding
        achievements of classical statistics, but at the same time, the
        difficulties in getting there are a major factor in making classical
        statistics seem so obscure. Two problems stand out:
	Our assumptions about the shape of those
            distributions may not be correct, or we may not be able to
            formulate those distributions at all—in particular, if we are
            interested in more complicated quantities than just the sample
            mean or if we are dealing with populations that are ill behaved
            (i.e., not even remotely Gaussian).

	Even if we know the sampling distribution, determining
            confidence limits from it may be tedious, opaque, and
            error-prone.



The Bootstrap



The bootstrap is an alternative approach
          for finding confidence intervals and similar quantities directly
          from the data. Instead of making assumptions about the distribution
          of values and then employing theoretical arguments, the bootstrap
          goes back to the original idea: what if we could draw
          additional samples from the population?
We can’t go back to the original population, but the sample
          that we already have should be a fairly good approximation to the
          overall population. We can therefore create additional samples (also
          of size n) by sampling with
          replacement from the original sample. For each of these
          “synthetic” samples, we can calculate the mean (or any other
          quantity, of course) and then use this set of values for the mean to
          determine a measure of the spread of its distribution via any
          standard method (e.g., we might calculate its
          inter-quartile range; see Chapter 2).
Let’s look at an example—one that is simple enough that we can
          work out the analytical answer and compare it directly to the
          bootstrap results. We draw n = 25 points from a
          standard Gaussian distribution (with mean μ = 0 and standard
          deviation σ = 1). We then ask about the (observed) sample mean and
          more importantly, about its standard error. In this case, the answer
          is simple: we know that the error of the mean is [image: ] (see Chapter 11), which
          amounts to 1/5 here. This is the analytical result.
To find the bootstrap estimate for the standard error, we draw
          100 samples, each containing n = 25 points,
          from our original sample of 25 points. Points are drawn randomly
          with replacement (so that each point can be selected multiple
          times). For each of these bootstrap samples, we calculate the mean.
          Now we ask: what is the spread of the distribution of these 100
          bootstrap means?
The data is plotted in Figure 12-4. At the bottom,
          we see the 25 points of the original data sample; above that, we see
          the means calculated from the 100 bootstrap samples. (All points are
          jittered vertically to minimize overplotting.) In addition, the
          figure shows kernel density estimates (see Chapter 2) of the
          original sample and also of the bootstrap means. The latter is the
          answer to our original question: if we repeatedly took samples from
          the original distribution, the sample means
          would be distributed similarly to the bootstrap means.
(Because in this case we happen to know the original
          distribution, we can also plot both it and the theoretical
          distribution of the mean, which happens to be Gaussian as well but
          with a reduced standard deviation of [image: ]. As we would expect, the theoretical
          distributions agree reasonably well with the kernel density
          estimated calculated from the data.)
[image: The bootstrap. The points in the original sample are shown at the bottom; the means calculated from the bootstrap samples are shown above. Also displayed are the original distribution and the distribution of the sample means, both using the theoretical result and a kernel density estimate from the corresponding samples.]

Figure 12-4. The bootstrap. The points in the original sample are shown
            at the bottom; the means calculated from the bootstrap samples are
            shown above. Also displayed are the original distribution and the
            distribution of the sample means, both using the theoretical
            result and a kernel density estimate from the corresponding
            samples.

Of course, in this example the bootstrap procedure was not
          necessary. It should be clear, however, that the bootstrap provides
          a simple method for obtaining confidence intervals even in
          situations where theoretical results are not available. For
          instance, if the original distribution had been highly skewed, then
          the Gaussian assumption would have been violated. Similarly, if we
          had wanted to calculate a more complicated quantity than the mean,
          analytical results might have been hard to obtain.
Let me repeat this, because it’s important: bootstrapping is a
          method to estimate the spread of some quantity.
          It is not a method to obtain “better” estimates of the original
          quantity itself—for that, it is necessary to obtain a larger sample
          by making additional drawings from the original population. The
          bootstrap is not a way to give the appearance of a larger sample
          size by reusing points!

When Does Bootstrapping Work?



As we have seen, the bootstrap is a simple, practical, and
          relatively transparent method to obtain confidence intervals for
          estimated quantities. This begs the question: when does it work? The
          following two conditions must be fulfilled.
	The original sample must provide a good representation of
              the entire population.

	The estimated quantity must depend “smoothly” on the data
              points.



The first condition requires the original sample to be
          sufficiently large and relatively clean. If the sample size is too
          small, then the original estimate for the actual quantity in
          question (the mean, in our example) won’t be very good.
          (Bootstrapping in a way exacerbates this problem because data points
          have a greater chance of being reused repeatedly in the bootstrap
          samples.) In other words, the original sample has to be large enough
          to allow meaningful estimation of the primary quantity. Use common
          sense and insight into your specific application area to establish
          the required sample size for your situation.
Additionally, the sample has to be relatively clean: crazy
          outliers, for instance, can be a problem. Unless the sample size is
          very large, outliers have a significant chance of being reused in a
          bootstrap sample, distorting the results.
Another problem exists in situations involving power-law
          distributions. As we saw in Chapter 9, estimated values for
          such distributions may not be unique but depend on the sample
          size. Of course, the same considerations apply
          to bootstrap samples drawn from such distributions.
The second condition suggests that bootstrapping does not work
          well for quantities that depend critically on only a few data
          points. For example, we may want to estimate the maximum value of
          some distribution. Such an estimate depends critically on the
          largest observed value—that is, on a single data point. For such
          applications, the bootstrap is not suitable. (In contrast, the mean
          depends on all data points and with equal
          weight.)
Another questions concerns the number of bootstrap samples to
          take. The short answer is: as many as you need to obtain a
          sufficiently good estimate for the spread you are calculating. If
          the number of points in the original sample is very small, then
          creating too many bootstrap samples is counterproductive because you
          will be regenerating the same bootstrap samples over and over again.
          However, for reasonably sized samples, this is not much of a
          problem, since the number of possible bootstrap samples grows very
          quickly with the number of data points n in the
          original sample. Therefore, it is highly unlikely that the same
          bootstrap example is generated more than once—even if we generate
          thousands of bootstrap samples.
The following argument will help to develop a sense for the
          order of magnitudes involved. The problem of choosing
          n data points with replacement from the
          original n-point sample is equivalent to
          assigning n elements to n
          cells. It is a classical problem in occupancy theory to show that
          there are:
[image: When Does Bootstrapping Work?]
ways of doing this. This number grows extremely quickly: for
          n = 5 it is 126, for n =
          10 we have 92,378, but for n = 20 it already
          exceeds 1010.
(The usual proof proceeds by observing that assigning
          r indistinguishable objects to
          n bins is equivalent to aligning
          r objects and n – 1 bin
          dividers. There are r + n
          – 1 spots in total, which can be occupied by either an object or a
          divider, and the assignment amounts to choosing
          r of these spots for the r
          objects. The number of ways one can choose r
          elements out of n + r – 1
          is given by the binomial coefficient [image: ]. Since in our case r =
          n, we find that the number of different
          bootstrap samples is given by the expression above.)

Bootstrap Variants



There are a few variants of the basic bootstrap idea. The
          method so far—in which points are drawn directly from the original
          sample—is known as the nonparametric bootstrap.
          An alternative is the parametric bootstrap: in
          this case, we assume that the original population follows some
          particular probability distribution (such as the Gaussian), and we
          estimate its parameters (mean and standard deviation, in this case)
          from the original sample. The bootstrap samples are then drawn from
          this distribution rather than from the original sample. The
          advantage of the parametric bootstrap is that the bootstrap values
          do not have to coincide exactly with the known data points. In a
          similar spirit, we may use the original sample to compute a kernel
          density estimate (as an approximation to the population
          distribution) and then draw bootstrap samples from it. This method
          combines aspects of both parametric and nonparametric approaches: it
          is nonparametric (because it make no assumption about the form of
          the underlying population distribution), yet the bootstrap samples
          are not restricted to the values occurring in the original sample.
          In practice, neither of these variants seems to provide much of an
          advantage over the original idea (in part because the number of
          possible bootstrap samples grows so quickly with the number of
          points in the sample that choosing the bootstrap samples from only
          those points is not much of a restriction).
Another idea (which historically predates the bootstrap) is
          the so-called jackknife. In the jackknife, we
          don’t draw random samples. Instead, given an original sample
          consisting of n data points, we calculate the
          n estimates of the quantity of interest by
          successively omitting one of the data points from the sample. We can
          now use these n values in a similar way that we
          used values calculated from bootstrap samples. Since the jackknife
          does not contain any random element, it is an entirely deterministic
          procedure.


Workshop: Discrete Event Simulations with SimPy



All the simulation examples that we considered so far were
        either static (coin tosses, Monty Hall problem) or extremely stripped
        down and conceptual (unique visitors). But if we are dealing with the
        behavior and time development of more complex systems—consisting of
        many different particles or actors that interact with each other in
        complicated ways—then we want a simulation that expresses all these
        entities in a manner that closely resembles the problem domain. In
        fact, this is probably exactly what most of us think of when we hear
        the term “simulation.”
There are basically two different ways that we can set up such a
        simulation. In a continuous time simulation, time
        progresses in “infinitesimally” small increments. At each time step,
        all simulation objects are advanced while taking possible
        interactions or status changes into account. We would typically choose
        such an approach to simulate the behavior of particles moving in a
        fluid or a similar system.
But in other cases, this model seems wasteful. For instance,
        consider customers arriving at a bank: in such a situation, we only
        care about the events that change the state of
        the system (e.g., customer arrives, customer
        leaves)—we don’t actually care what the customers do while waiting in
        line! For such system we can use a different simulation method, known
        as discrete event simulation. In this type of
        simulation, time does not pass continuously; instead, we determine
        when the next event is scheduled to occur and then jump ahead to
        exactly that moment in time.
Discrete event simulations are applicable to a wide variety of
        problems involving multiple users competing for access to a shared
        server. It will often be convenient to phrase the description in terms
        of the proverbial “customers arriving at a bank,” but exactly the same
        considerations apply, for instance, to messages on a computer
        network.
Introducing SimPy



The SimPy package (http://simpy.sourceforge.net/) is a Python
          project to build discrete event simulation models. The framework
          handles all the event scheduling and messaging “under the covers” so
          that the programmer can concentrate on describing the behavior of
          the actors in the simulation.
All actors in a SimPy simulation must be subclasses of the
          class Process. Congestion points
          where queues form are modeled by instances of the Resource class or its subclasses. Here is
          a short example, which describes a customer visiting a bank:
from SimPy.Simulation import *

class Customer( Process ):
    def doit( self ):
        print "Arriving"
        yield request, self, bank

        print "Being served"
        yield hold, self, 100.0

        print "Leaving"
        yield release, self, bank

# Beginning of main simulation program
initialize()

bank = Resource()

cust = Customer()
cust.start( cust.doit() )

simulate( until=1000 )
Let’s skip the class definition of the Customer object for now and concentrate on
          the rest of the program. The first function to call in any SimPy
          program is the initialize()
          method, which sets up the simulation run and sets the “simulation
          clock” to zero. We then proceed to create a Resource object (which models the bank)
          and a single Customer object.
          After creating the Customer, we
          need to activate it via the start() member function. The start() function takes as argument the
          function that will be called to advance the Customer through its life cycle (we’ll
          come back to that). Finally, we kick off the actual simulation,
          requiring it to stop after 1,000 time steps on the simulation clock
          have passed.
The Customer subclasses
          Process, therefore its instances
          are active agents, which will be scheduled by the framework to
          receive events. Each agent must define a process execution
          method (PEM), which defines its behavior and which will
          be invoked by the framework whenever an event occurs.
For the Customer class, the
          PEM is the doit() function.
          (There are no restrictions on its name—it can be called anything.)
          The PEM describes the customer’s behavior: after the customer
          arrives, the customer requests a resource
          instance (the bank in this case).
          If the resource is not available (because it is busy, serving other
          customers), then the framework will add the customer to the waiting
          list (the queue) for the requested resource.
          Once the resource becomes available, the customer is being serviced.
          In this simple example, the service time is a fixed value of 100
          time units, during which the customer instance is
          holding—just waiting until the time has passed.
          When service is complete, the customer releases
          the resource instance. Since no additional actions are listed in the
          PEM, the customer is not scheduled for future events and will
          disappear from the simulation.
Notice that the Customer
          interacts with the simulation environment through Python yield statements, using special yield
          expressions of the form shown in the example. Yielding control back
          to the framework in this way ensures that the Customer retains its state and its current
          spot in the life cycle between invocations. Although there are no
          restrictions on the name and argument list permissible for a PEM,
          each PEM must contain at least one of these
          special yield statements. (But of
          course not necessarily all three, as in this case; we are free to
          define the behavior of the agents in our simulations at
          will.)

The Simplest Queueing Process



Of course the previous example which involved only a
          single customer entering and leaving the bank,
          is not very exciting—we hardly needed a simulation for that! Things
          change when we have more than one customer in the system at the same
          time.
The listing that follows is very similar to the previous
          example, except that now there is an infinite stream of customers
          arriving at the bank and requesting service. To generate this
          infinite sequence of customers, the listing makes use of an idiom
          that’s often used in SimPy programs: a “source” (the CustomerGenerator instance).
from SimPy.Simulation import *
import random as rnd

interarrival_time = 10.0
service_time = 8.0


class CustomerGenerator( Process ):
    def produce( self, b ):
        while True:
            c = Customer( b )
            c.start( c.doit() )
            yield hold, self, rnd.expovariate(1.0/interarrival_time)


class Customer( Process ):
    def __init__( self, resource ):
        Process.__init__( self )
        self.bank = resource

    def doit( self ):
        yield request, self, self.bank
        yield hold, self, self.bank.servicetime()
        yield release, self, self.bank

class Bank( Resource ):
    def servicetime( self ):
        return rnd.expovariate(1.0/service_time)


initialize()

bank = Bank( capacity=1, monitored=True, monitorType=Monitor )

src = CustomerGenerator()
activate( src, src.produce( bank ) )

simulate( until=500 )


print bank.waitMon.mean()
print

for evt in bank.waitMon:
    print evt[0], evt[1]
The CustomerGenerator is
          itself a subclass of Process and
          defines a PEM (produce()).
          Whenever it is triggered, it generates a new Customer and then goes back to sleep for a
          random amount of time. (The time is distributed according to an
          exponential distribution—we will discuss this particular choice in a
          moment.) Notice that we don’t need to keep track of the Customer instances explicitly: once they
          have been activated using the start() member function, the framework
          ensures that they will receive scheduled events.
There are two changes to the Customer class. First of all, we
          explicitly inject the resource to request (the bank) as an additional argument to the
          constructor. By contrast, the Customer in the previous example found the
          bank reference via lookup in the
          global namespace. That’s fine for small programs but becomes
          problematic for larger ones—especially if there is more than one
          resource that may be requested. The second change is that the
          Customer now asks the
          bank for the service time. This is in the
          spirit of problem domain modeling—it’s usually the server (in this
          case, the bank) that controls the time it takes to complete a
          transaction. Accordingly, we have introduced Bank as subclass of Resource in order to accommodate this
          additional functionality. (The service time is also exponentially
          distributed but with a different wait time than that used for the
          CustomerGenerator.)
Subtypes of the Process
          class are used to model actors in a SimPy simulation. Besides these
          active simulation objects, the next most important abstraction
          describes congestion points, modeled by the Resource class and its subclasses. Each
          Resource instance models a shared
          resource that actors may request, but its more important function is
          to manage the queue of actors currently waiting
          for access.
Each Resource instance
          consists of a single queue and one or more actual “server units”
          that can fulfill client requests. Think of the typical queueing
          discipline followed in banks and post offices (in the U.S.—other
          countries have different conventions!): a single line but multiple
          teller windows, with the person at the head of the line moving to
          the next available window. That is the model represented by each
          Resource instance. The number of
          server units is controlled through the keyword argument capacity to the Resource constructor. Note that all server
          units in a single Resource
          instance are identical. Server units are also “passive”: they have
          no behavior themselves. They only exist so that a Process object can acquire them, hold them
          for a period of time, and then release them (like a mutex).
Although a Resource
          instance may have multiple server units, it can contain only a
          single queue. If you want to model a supermarket checkout situation,
          where each server unit has its own queue, you therefore need to set
          up multiple Resource instances,
          each with capacity=1: one for
          each checkout stand and each managing its own queue of
          customers.
For each Resource instance,
          we can monitor the length of the queue and the events that change it
          (arrivals and departures) by registering an observer object with the
          Resource. There are two types of
          such observers in SimPy: a Monitor records the time stamp and new
          queue length for every event that affects the queue, whereas a
          Tally only keeps enough
          information to calculate summary information (such as the average
          queue length). Here we have registered a Monitor object with the Bank. (We’ll later see an example of a
          Tally.)
As before, we run the simulation until the internal simulation
          clock reaches 1,000. The CustomerGenerator produces an infinite
          stream of Customer objects, each
          requesting service from the Bank,
          while the Monitor records all
          changes to the queue.
[image: Number of customers in queue over time.]

Figure 12-5. Number of customers in queue over time.

After the simulation has run to completion, we
          retrieve the Monitor object from
          the Bank: if an observer had been
          registered with a Resource, then
          it is available in the waitMon
          member variable. We print out the average queue length over the
          course of the simulation as well as the full time series of events.
          (The Monitor class is a List subclass, so we can iterate over it
          directly.) The time evolution of the queue is shown in Figure 12-5.
One last implementation detail: if you look closely, you will
          notice that the CustomerGenerator
          is activated using the standalone function activate(). This function is an
          alternative to the start() member
          function of all Process objects
          and is entirely equivalent to it.

Optional: Queueing Theory



Now that we have seen some of these concepts in action
          already, it is a good time to step back and fill in some
          theory.
A queue is a specific example of a stochastic
          process. In general, the term “stochastic process” refers
          to a sequence of random events occurring in time. In the queueing
          example, customers are joining or leaving the queue at random times,
          which makes the queue grow and shrink accordingly. Other examples of
          stochastic processes include random walks, the movement of stock
          prices, and the inventory levels in a store. (In the latter case,
          purchases by customers and possibly even deliveries by suppliers
          constitute the random events.)
In a queueing problem, we are concerned only about
          arrivals and departures. A particularly important special case
          assumes that the rate at which customers arrive is constant over
          time and that arrivals at different times are independent of each
          other. (Notice that these are reasonable assumptions in many cases.)
          These two conditions imply that the number of arrivals during a
          certain time period t follows a Poisson
          distribution, since the Poisson distribution:
[image: Optional: Queueing Theory]
gives the probability of observing k
          Successes (arrivals, in our case) during an interval of length
          t if the “rate” of Successes is λ (see Chapter 9).
Another consequence is that the times between arrivals are
          distributed according to an exponential distribution:
p(t, λ) =
          λe–λt
The mean of the exponential distribution can be calculated
          without difficulty and equals 1/λ. It will often be useful to work
          with its inverse
          ta
          = 1/λ, the average interarrival time.
(It’s not hard to show that interarrival times are distributed
          according to the exponential distribution when the number of
          arrivals per time interval follows a Poisson distribution. Assume
          that an arrival occurred at t = 0. Now we ask
          for the probability that no arrival has
          occurred by t = T; in
          other words, p(0, T, λ) =
          e–λT
          because x0 = 1 and
          0! = 1. Conversely, the probability that the next arrival will have
          occurred sometime between t = 0 and
          t = T is 1 –
          p(0, T, λ). This is the
          cumulative distribution function for the interarrival time, and from
          it, we find the probability density for an arrival to occur at
          t as [image: ]
The appearance of the exponential distribution as the
          distribution of interarrival times deserves some comment. At first
          glance, it may seem surprising because this distribution is greatest
          for small interarrival times, seemingly favoring very short
          intervals. However, this observation has to be balanced against the
          infinity of possible interarrival times, all of which may occur!
          What is more important is that the exponential distribution is in a
          sense the most “random” way that interarrival times can be
          distributed: no matter how long we have waited since the last
          arrival, the probability that the next visitor will arrive after
          t more minutes is always the
          same: p(t, λ) =
          λe–λt. This property
          is often referred to as the lack of memory of
          the exponential distribution. Contrast this with a distribution of
          interarrival times that has a peak for some nonzero time: such a
          distribution describes a situation of scheduled
          arrivals, as we would expect to occur at a bus stop. In this
          scenario, the probability for an arrival to occur within the next
          t minutes will change with time.
Because the exponential distribution arises naturally from the
          assumption of a constant arrival rate (and from the independence of
          different arrivals), we have used it as the distribution of
          interarrival times in the CustomerGenerator in the previous example.
          It is less of a natural choice for the distribution of service times
          (but it makes some theoretical arguments simpler).
The central question in all queueing problems concerns the
          expected length of the queue—not only how large it is but also
          whether it will settle down to a finite value at all, or whether it
          will “explode,” growing beyond all bounds.
In the simple memoryless, single-server–single-queue scenario
          that we have been investigating, the only two control parameters are
          the arrival rate λa and
          the service or exit rate
          λe; or rather their
          ratio:
[image: Optional: Queueing Theory]
which is the fraction of time the server is busy. The quantity
          u is the server’s
          utilization. It is intuitively clear that if
          the arrival rate is greater than the exit rate
          (i.e., if customers are arriving at a faster
          rate then the server can process them), then the queue length will
          explode. However, it turns out that even if the arrival rate
          equals the service rate (so that
          u = 1), the queue length still grows beyond all
          bounds. Only if the arrival rate is strictly lower than the service
          rate will we end up with a finite queue.
Let’s see how this surprising result can be derived. Let
          pn
          be the probability of finding exactly n
          customers waiting in the queue. The rate at which the queue grows is
          λa, but the rate at
          which the queue grows from exactly n to exactly
          n + 1 is
          λa
          pn,
          since we must take into account the probability of the queue having
          exactly n members. Similarly, the probability
          of the queue shrinking from n + 1 to
          n members is
          λe
          pn+1.
In the steady state (which is the requirement for a finite
          queue length), these two rates must be equal:
λa
          pn
          = λe
          pn+1
which we can rewrite as:
[image: Optional: Queueing Theory]
This relationship must hold for all n,
          and therefore we can repeat this argument and write
          pn
          =
          upn–1
          and so on. This leads to an expression for
          pn
          in terms of p0:
pn
          =
          un
          p0
The probability p0
          is the probability of finding no customer in
          the queue—in other words, it is the probability that the server is
          idle. Since the utilization is the probability for the server to be
          busy, the probability p0
          for the server to be idle must be
          p0 = 1 –
          u.
We can now ask about the expected length
          L of the queue. We already know that the queue
          has length n with probability
          pn
          =
          un
          p0. Finding the expected
          queue length L requires that we sum over all
          possible queue lengths, each one weighted by the appropriate
          probability:
[image: Optional: Queueing Theory]
Now we employ a trick that is often useful for sums of this
          form: observe that [image: ] and hence that [image: ]. Using this expression in the sum for
          L leads to:
[image: Optional: Queueing Theory]
where we have used the sum of the geometric series (see Appendix B) and the expression for
          p0 = 1 –
          u. We can rewrite this expression directly in
          terms of the arrival and exit rates as:
[image: Optional: Queueing Theory]
This is a central result. It gives us the expected length of
          the queue in terms of the utilization (or in terms of the arrival
          and exit rates). For low utilization (i.e., an
          arrival rate that is much lower than the service rate or,
          equivalently, an interarrival time that is much larger than the
          service time), the queue is very short on average. (In fact,
          whenever the server is idle, then the queue length equals 0, which
          drags down the average queue length.) But as the arrival rate
          approaches the service rate, the queue grows in length and becomes
          infinite when the arrival rate equals the service rate. (An
          intuitive argument for why the queue length will explode when the
          arrival rate equals the service time is that, in this case, the
          server never has the opportunity to “catch up.” If the queue becomes
          longer due to a chance fluctuation in arrivals, then this backlog
          will persist forever, since overall the server is only capable of
          keeping up with arrivals. The cumulative effect of such chance
          fluctuations will eventually make the queue length diverge.)

Running SimPy Simulations



In this section, we will try to confirm the previous result
          regarding the expected queue length by simulation. In the process,
          we will discuss a few practical points of using SimPy to understand
          queueing systems.
First of all, we must realize that each simulation run
          is only a particular realization of the sequence of events. To draw
          conclusions about the system in general, we therefore always need to
          perform several simulation runs and average their results.
In the previous listing, the simulation framework maintained
          its state in the global environment. Hence, in order to rerun the
          simulation, you had to restart the entire program! The program in
          the next listing uses an alternative interface that encapsulates the
          entire environment for each simulation run in an instance of class
          Simulation. The global functions
          initialize(), activate(), and simulate() are now member functions of
          this Simulation object. Each
          instance of the Simulation class
          provides a separate, isolated simulation environment. A completely
          new simulation run now requires only that we create a new instance
          of this class.
The Simulation class is
          provided by SimPy. Using it does not require any changes to the
          previous program, except that the current instance of the Simulation class must be passed explicitly
          to all simulation objects (i.e., instances of
          Process and Resource and their subclasses):
from SimPy.Simulation import *
import random as rnd

interarrival_time = 10.0

class CustomerGenerator( Process ):
    def produce( self, bank ):
        while True:
            c = Customer( bank, sim=self.sim )
            c.start( c.doit() )
            yield hold, self, rnd.expovariate(1.0/interarrival_time)


class Customer( Process ):
    def __init__( self, resource, sim=None ):
        Process.__init__( self, sim=sim )
        self.bank = resource

    def doit( self ):
        yield request, self, self.bank
        yield hold, self, self.bank.servicetime()
        yield release, self, self.bank

class Bank( Resource ):
    def setServicetime( self, s ):
        self.service_time = s

    def servicetime( self ):
        return rnd.expovariate(1.0/self.service_time )


def run_simulation( t, steps, runs ):
    for r in range( runs ):

        sim = Simulation()
        sim.initialize()

        bank = Bank( monitored=True, monitorType=Tally, sim=sim )
        bank.setServicetime( t )

        src = CustomerGenerator( sim=sim )
        sim.activate( src, src.produce( bank ) )

        sim.startCollection( when=steps//2 )
        sim.simulate( until=steps )

        print t, bank.waitMon.mean()


t = 0
while t <= 11.0:
    t += 0.5
    run_simulation( t, 100000, 10 )
Another important change is that we don’t start recording
          until half of the simulation time steps have passed (that’s what the
          startCollection() method is for).
          Remember that we are interested in the queue length in the
          steady state—for that reason, we don’t want to
          start recording until the system has settled down and any transient
          behavior has disappeared.
To record the queue length, we now use a Tally object instead of a Monitor. The Tally will not allow us to replay the
          entire sequence of events, but since we are only interested in the
          average queue length, it is sufficient for our current
          purposes.
Finally, remember that as the utilization approaches
          u = 1 (i.e., as the
          service time approaches the interarrival time), we expect the queue
          length to become infinite. Of course, in any finite simulation it is
          impossible for the queue to grow to infinite length: the length of
          the queue is limited by the finite duration of the simulation run.
          The consequence of this observation is that, for utilizations near
          or above 1, the queue length that we will observe depends on the
          number of steps that we allow in the simulation. If we terminate the
          simulation too quickly, then the system will not have had time to
          truly reach its fully developed steady state and so our results will
          be misleading.
Figure 12-6
          shows the results obtained when running the example program with
          1,000 and 100,000 simulation steps. For low utilization
          (i.e., short queue lengths), the results from
          both data sets agree with each other (and with the theoretical
          prediction). However, as the service time approaches the
          interarrival time, the short simulation run does not last long
          enough for the steady state to form, and so the observed queue
          lengths are too short.

Summary



This concludes our tour of discrete event simulation with
          SimPy. Of course, there is more to SimPy than mentioned here—in
          particular, there are two additional forms of resources: the
          Store and Level abstractions. Both of them not only
          encapsulate a queue but also maintain an inventory (of individual
          items for Store and of an
          undifferentiated amount for Level). This inventory can be consumed or
          replenished by simulation objects, allowing us to model inventory
          systems of various forms. Other SimPy facilities to explore include
          asynchronous events, which can be received by simulation objects as
          they are waiting in queue and additional recording and tracing
          functionality. The project documentation will provide further
          details.
[image: Average queue length as a function of the service time for a fixed interarrival time of ta = 10.]

Figure 12-6. Average queue length as a function of the service time for
            a fixed interarrival time of ta =
            10.
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            and includes many topics that we did not cover. Requires
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            often don’t seem commensurate with the amount of effort required
            to obtain them. This book (although possibly hard to find) is one
            of the more accessible ones.

	Introduction to Stochastic
              Processes. Gregory F. Lawler. Chapman & Hall/CRC. 2006.
This short book is much more advanced and theoretical than
            the previous one. The treatment is concise and to the
            point.
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              M. Harris. 4th ed., Wiley. 2008.
The standard textbook on queueing theory. Not for the faint
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Chapter 13. Finding Clusters



THE TERM
      CLUSTERING REFERS TO THE PROCESS OF FINDING GROUPS
      OF POINTS WITHIN A DATA SET THAT ARE IN some way
      “lumped together.” It is also called unsupervised
      learning—unsupervised because we don’t know ahead of time
      where the clusters are located or what they look like. (This is in
      contrast to supervised learning or
      classification, where we attempt to assign data
      points to preexisting classes; see Chapter 18.)
I regard clustering as an exploratory method:
      a computer-assisted (or even computationally driven) approach to
      discovering structure in a data set. As an exploratory technique, it
      usually needs to be followed by a confirmatory analysis that validates
      the findings and makes them more precise.
Clustering is a lot of fun. It is a rich topic with a wide variety
      of different problems, as we will see in the next section, where we
      discuss the different kinds of cluster one may
      encounter. The topic also has a lot of intuitive appeal, and most
      clustering methods are rather straightforward. This allows for all sorts
      of ad hoc modifications and enhancements to accommodate the specific
      problem one is working on.
What Constitutes a Cluster?



Clustering is not a very rigorous field: there are precious few
        established results, rigorous theorems, or algorithmic guarantees. In
        fact, the whole notion of a “cluster” is not particularly well
        defined. Descriptions such as “groups of points that are similar” or
        “close to each other” are insufficient, because clusters must also be
        well separated from each other. Look at Figure 13-1: some points are
        certainly closer to each other than to other points, yet there are no
        discernible clusters. (In fact, it is an interesting exercise to
        define what constitutes the absence of clusters.)
        This leads to one possible definition of clusters:
        contiguous regions of high data point density separated by
        regions of lower point density. Although not particularly
        rigorous either, this description does seem to capture the essential
        elements of typical clusters. (For a different point of view, see the
        next section.)
[image: A uniform point distribution. Any “clusters” that we may recognize are entirely spurious.]

Figure 13-1. A uniform point distribution. Any “clusters” that we may
          recognize are entirely spurious.

The definition just proposed allows for very different kinds of
        clusters. Figure 13-2
        and Figure 13-3 show
        two very different types. Of course, Figure 13-2 is the “happy”
        case, showing a data set consisting of well-defined and clearly
        separated regions of high data point density. The clusters in Figure 13-3 are of a
        different type, one that is more easily thought of by means of
        nearest-neighbor (graph) relationships than by point density. Yet in
        this case as well, there are higher density regions separated by lower
        density regions—although we might want to exploit the nearest-neighbor
        relationship instead of the higher density when developing with a
        practical algorithm for this case.
Clustering is not limited to points in space. Figure 13-4 and Figure 13-5 show two rather
        different cases for which it nevertheless makes sense to speak of
        clusters. Figure 13-4
        shows a bunch of street addresses. No two of them are exactly the
        same, but if we look closely, we will easily recognize that all of
        them can be grouped into just a few neighborhoods. Figure 13-5 shows a bunch of
        different time series: again, some of them are more alike than others.
        The challenge in both of these examples is finding a way to express
        the “similarity” among these nonnumeric, nongeometric objects!
Finally, we should keep in mind that clusters may have
        complicated shapes. Figure 13-6 shows two very
        well-behaved clusters as distinct regions of high point density.
        However, complicated and intertwined shapes of the regions will
        challenge many commonly used clustering algorithms.
[image: The “happy” case: three well-separated, globular clusters.]

Figure 13-2. The “happy” case: three well-separated, globular
          clusters.

[image: Examples of non-globular clusters in a smiley face. Some of the clusters are nested, meaning that they are entirely contained within other clusters.]

Figure 13-3. Examples of non-globular clusters in a smiley face. Some of
          the clusters are nested, meaning that they are entirely contained
          within other clusters.

A bit of terminology can help to distinguish different
        cluster shapes. If the line connecting any two points lies entirely
        within the cluster itself (as in Figure 13-2), then the
        cluster is convex. This is the easiest shape to
        handle. A cluster is convex only if the connecting line between two
        points lies entirely within the cluster for all
        pairs of points. Sometimes this is not the case, but we can still find
        at least one point (the center) such that the
        connecting line from the center to any other point lies entirely
        within the cluster: such a cluster is called star convex. Notice that the
        clusters in Figure 13-6 are neither
        convex nor star convex. Sometimes one cluster is entirely surrounded
        by another cluster without actually being part of it: in this case we
        speak of a nested cluster. Nested clusters can be
        particularly challenging (see Figure 13-3).
[image: Clustering strings. Although none of these strings are identical, we can make out several groups of strings that are similar to each other.]

Figure 13-4. Clustering strings. Although none of these strings are
          identical, we can make out several groups of strings that are
          similar to each other.

[image: Six time series. We can recognize groups of time series that seem more similar to each other than to others.]

Figure 13-5. Six time series. We can recognize groups of time series that
          seem more similar to each other than to others.

A Different Point of View



In the absence of a precise (mathematical) definition, a
          cluster can be whatever we consider as one. That is important
          because our minds have a different, alternative way of grouping
          (“clustering”) objects: not by proximity or density but rather by
          the way objects fit into a larger structure. Figure 13-7 and Figure 13-8 show two
          examples.
Intuitively, we have no problem grouping the points in Figure 13-7 into two
          overlapping clusters. Yet, the density-based definition of a cluster
          we proposed earlier will not support such a conclusion. Similar
          considerations apply to the set of points in Figure 13-8. The distance
          between any two adjacent points is the same, but we perceive the
          larger structures of the vertical and horizontal arrangements and
          assign points to clusters based on them.
[image: Two clusters that are well separated but not globular. Some algorithms (e.g., the k-means algorithm) will not be able to handle such clusters.]

Figure 13-6. Two clusters that are well separated but not globular. Some
            algorithms (e.g., the k-means algorithm) will not be able to
            handle such clusters.

[image: An impossible situation for most clustering algorithms: although we believe to recognize two crossed clusters, no strictly local algorithm will be able to separate them.]

Figure 13-7. An impossible situation for most clustering algorithms:
            although we believe to recognize two crossed clusters, no strictly
            local algorithm will be able to separate them.

This notion of a cluster does not hinge on the similarity or
          proximity of any pair of points to each other but instead on the
          similarity between a point and a property of the entire
          cluster. For any algorithm that considers a single point
          (or a single pair of points) at a time, this leads to a problem: to
          determine cluster membership, we need the property of the whole
          cluster; but to determine the properties of the cluster, we must
          first assign points to clusters.
[image: The two clusters are distinguished not by a local property between pairs of points but rather by a global property of the entire cluster.]

Figure 13-8. The two clusters are distinguished not by a local property
            between pairs of points but rather by a global property of the
            entire cluster.

To handle such situations, we would need to perform
          some kind of global structure analysis—a task our minds are
          incredibly good at (which is why we tend to think of clusters this
          way) but that we have a hard time teaching computers to do. For
          problems in two dimensions, digital image
          processing has developed methods to recognize and extract
          certain features (such as edge detection). But general clustering
          methods, such as those described in the rest of this chapter, deal
          only with local properties and therefore can’t handle problems such
          as those in Figure 13-7 and Figure 13-8.


Distance and Similarity Measures



Given how strongly our intuition about clustering is shaped by
        geometric problems such as those in Figure 13-2 and Figure 13-3, it is an
        interesting and perhaps surprising observation that clustering does
        not actually require data points to be embedded into a geometric
        space: all that is required is a distance or
        (equivalently) a similarity measure for any
        pair of points. This makes it possible to perform
        clustering on a set of strings, such as those in Figure 13-4 that do not map
        to points in space. However, if the data points have properties of a
        vector space (see Appendix C), then we can
        develop more efficient algorithms that exploit these
        properties.
A distance is any function
        d(x, y)
        that takes two points and returns a scalar value that is a measure for
        how different these points are: the more different, the larger the
        distance. Depending on the problem domain, it may make more sense to
        express the same information in terms of a
        similarity function
        s(x,
        y), which returns a scalar that tells us how
        similar two points are: the more different they are, the smaller the
        similarity. Any distance can be transformed into a similarity and vice
        versa. For example if we know that our similarity measure
        s can take on values only in the range [0, 1],
        then we can form an equivalent distance by setting
        d = 1 – s. In other
        situations, we might decide to use d =
        1/s, or s =
        e–d,
        and so on; the choice will depend on the problem we are working on. In
        what follows, I will express problems in terms of either distances or
        similarities, whichever seems more natural. Just keep in mind that you
        can always transform between the two.
How we define a distance function is largely up to us, and we
        can express different semantics about the data set through the
        appropriate choice of distance. For some problems, a particular
        distance measure will present itself naturally (if the data points are
        points in space, then we will most likely employ the Euclidean
        distance or a measure similar to it), but for other problems, we have
        more freedom to define our own metric. We will see several examples
        shortly.
There are certain properties that a distance (or similarity)
        function should have. Mathematicians have developed a set of
        properties that a function must possess to be considered a metric (or
        distance) in a mathematical sense. These properties can provide
        valuable guidance, but don’t take them too seriously: for our
        purposes, different properties might be more important. The four
        axioms of a mathematical metric are:
	d(x,
                y)
	≥ 0
	 
	d(x,
                y)
	= 0
	if and only if
                x = y

	d(x,
                y)
	=
                d(y,
                x)

	d(x,
                y) +
                d(y,
                z)
	≥
                d(x,
                z)



The first two axioms state that a distance is always positive
        and that it is null only if the two points are equal. The third
        property (“symmetry”) states that the distance between
        x and y is the same as the
        distance between y and x—no
        matter which way we consider the pair. The final property is the
        so-called triangle inequality, which states that to get from
        x to z, it is never shorter
        to take a detour through a third point y instead
        of going directly (see Figure 13-9).
This all seems rather uncontroversial, but these conditions are
        not necessarily fulfilled in practice. A funny example for an
        asymmetric distance occurs if you ask everyone in a group of people
        how much they like every other member of the group and then use the
        responses to construct a distance measure: it is not at all guaranteed
        that the feelings of person A for person B are requited by B. (Using
        the same example, it is also possible to construct scenarios that
        violate the triangle inequality.) For technical reasons, the symmetry
        property is usually highly desirable. You can always construct a
        symmetric distance function from an asymmetric one:
[image: Distance and Similarity Measures]
is always symmetric.
[image: The triangle inequality: the direct path from x to z is always shorter than any path that goes through an intermediate point y.]

Figure 13-9. The triangle inequality: the direct path from x to z is
          always shorter than any path that goes through an intermediate point
          y.

One property of great practical importance but not
        included among the distance axioms is smoothness.
        For example, we could define a rather simple-minded distance function
        that is 0 if and only if both points are equal to each other and that
        is 1 if the two points are not equal:
[image: The triangle inequality: the direct path from x to z is always shorter than any path that goes through an intermediate point y.]
You can convince yourself that this distance fulfills all four
        of the distance axioms. However, this is not a very informative
        distance measure, because it gives us no information about
        how different two nonidentical points are! Most
        clustering algorithms require this information. A certain kind of
        tree-based algorithm, for example, works by successively considering
        the pairs of points with the smallest distance between them. When
        using this binary distance, the algorithm will make only limited
        progress before having exhausted all information available to
        it.
The practical upshot of this discussion is that a good distance
        function for clustering should change smoothly as its inputs become
        more or less similar. (For classification tasks, a binary one as in
        the example just discussed might be fine.)
Common Distance and Similarity Measures



Depending on the data set and the purpose of our analysis,
          there are different distance and similarity measures
          available.
First, let’s clarify some terminology. We are looking for ways
          to measure the distance between any two data points. Very often, we
          will find that a point has a number of
          dimensions or features.
          (The first usage is more common for numerical data, the latter for
          categorical data.) In other words, each point is a collection of
          individual values: x =
          {x1,
          x2,...,
          xd},
          where d is the number of dimensions (or
          features). For example, the data point {0, 1} has two dimensions and
          describes a point in space; whereas the tuple [ 'male', 'retired', 'Florida' ], which
          describes a person, has three features.
Table 13-1. Commonly used distance and similarity measures for numeric
            data
	Name
	Definition

	Manhattan

                  Euclidean
 Maximum

                  Minkowski
	[image: ]

	Dot product

                  Correlation coefficient
	[image: ]




For any given data set containing n
          elements, we can form
          n2 pairs of points.
          The set of all distances for all possible pairs of points can be
          arranged in a quadratic table known as the distance
          matrix. The distance matrix embodies all information
          about the mutual relationships between all points in the data set.
          If the distance function is symmetric, as is usually the case, then
          the matrix is also symmetric. Furthermore, the entries along the
          main diagonal typically are all 0, since
          d(x,
          x) = 0 for most well-behaved distance
          functions.
Numerical data



If the data is numerical and also “mixable” or vector-like
            (in the sense of Appendix C), then the
            data points bear a strong resemblance to points in space; hence we
            can use a metric such as the familiar Euclidean
            distance. The Euclidean distance is the most commonly
            used from a large family of related distance measures, which also
            contains the so-called Manhattan (or
            taxicab) distance and
            the maximum (or
            supremum) distance. All
            of these are in fact special cases of a more general
            Minkowski or
            p-distance.[21] Table 13-1 shows some
            examples. (The Manhattan distance is so named because it measures
            distances the way a New York taxicab moves: at right angles, along
            the city blocks. The Euclidean distance measures distances “as the
            crow flies.” Finally, it is an amusing exercise to show that the
            maximum distance corresponds to the Minkowski
            p-distance as p →
            ∞.)
All these distance measures have very similar properties,
            and the differences between them usually do not matter much. The
            Euclidean distance is by far the most commonly used. I list the
            others here mostly to give you a sense of the kind of leeway that
            exists in defining a suitable distance measure—without
            significantly affecting the results!
If the data is numeric but not
            mixable (so that it does not make sense to add a random fraction
            of one data set to a random fraction of a different data set),
            then these distance measures are not appropriate. Instead, you may
            want to consider a metric based on the
            correlation between two data points.
Correlation-based measures are measures of
            similarity: they are large when objects are
            similar and small when the objects are dissimilar. There are two
            related measures: the dot product and the
            correlation coefficient, which are also
            defined in Table 13-1. The only
            difference is that when calculating the correlation coefficient,
            we first center both data points by subtracting their respective
            means.
In both measures, we multiply entries for the same
            “dimension” and sum the results; then we divide by the correlation
            of each data point with itself. Doing so provides a
            normalization and ensures that the
            correlation of any point with itself is always 1. This
            normalization step makes correlation-based distance measures
            suitable for data sets containing data points with widely
            different numeric values.
By construction, the value of a dot product always falls in
            the interval [0, 1], and the correlation coefficient always falls
            in the interval [–1, 1]. You can therefore transform either one
            into a distance measure if need be (e.g., if
            d is the dot product, then 1 –
            d is a proper distance).
I should point out that the dot product has a geometric
            meaning. If we regard the data points as vectors in some suitable
            space, then the dot product of two points is the cosine of the
            angle that the two vectors make with each other. If they are
            perfectly aligned (i.e., they fall onto each
            other), then the angle is 0 and the cosine (and the correlation)
            is 1. If they are at right angles to each other, the cosine is
            0.
Correlation-based distance measures are suitable whenever
            numeric data is not readily mixable—for instance, when evaluating
            the similarity of the time series in Figure 13-5.

Categorical data



If the data is categorical, then we can count the number of
            features that do not agree in both data
            points (i.e., the number of mismatched
            features); this is the Hamming distance. (We
            might want to divide by the total number of features to obtain a
            number between 0 and 1, which is the fraction of
            mismatched features.)
In certain data mining problems, the number of features is
            large, but only relatively few of them will be present for each
            data point. Moreover, the features may be binary: we care only
            whether or not they are present, but their values don’t matter.
            (As an example, imagine a patient’s health record: each possible
            medical condition constitutes a feature, and we want to know
            whether the patient has ever suffered from it.) In such
            situations, where features are not merely categorical but binary
            and sparse (meaning that just a few of the features are On), we
            may be more interested in matches between features that are On
            than in matches between features that are Off. This leads us to
            the Jaccard coefficient
            sJ,
            which is the number of matches between features that are On for
            both points, divided by the number of features that are On in at least one
            of the data points. The Jaccard coefficient is a
            similarity measure; the corresponding
            distance function is the Jaccard distance
            dJ
            = 1 –
            sJ
            .
	n00
	features that are Off in both
                    points

	n10
	features that are On in the
                    first point, and Off in the second point

	n01
	features that are Off in the
                    first point, and On in the second point

	n11
	features that are On in both
                    points

	[image: ]



There are many other measures of similarity or dissimilarity
            for categorical data, but the principles are always the same. You
            calculate some fraction of matches, possibly emphasizing one
            aspect (e.g., the presence or absence of
            certain values) more than others. Feel free to invent your own—as
            far as I can see, none of these measures has achieved universal
            acceptance or is fundamentally better than any other.

String data



If the data consists of strings, then we can use a form of
            Hamming distance and count the number of mismatches. If the
            strings in the data set are not all of equal length, we can pad
            the shorter string and count the number of characters added as
            mismatches.
If we are dealing with many strings that are rather similar
            to each other (distorted through typos, for instance), then we can
            use a more detailed measure of the difference between them—namely
            the edit or Levenshtein
            distance. The Levenshtein distance is the minimum
            number of single-character operations (insertions, deletions, and
            substitutions) required to transform one string into the other. (A
            quick Internet search will give many references to the actual
            algorithm and available implementations.)
Another approach is to find the length of the
            longest common subsequence. This metric is
            often used for gene sequence analysis in computational
            biology.
This may be a good place to make a more general point: the
            best distance measure to use does not follow automatically from
            data type; rather, it depends on the semantics of the data—or,
            more precisely, on the semantics that you care about for your
            current analysis! In some cases, a simple metric that only
            calculates the difference in string length may be perfectly
            sufficient. In another case, you might want to use the Hamming
            distance. If you really care about the details of otherwise
            similar strings, the Levenshtein distance is most appropriate. You
            might even want to calculate how often each letter appears in a
            string and then base your comparison on that. It all depends on
            what the data means and on what aspect of it you are interested at
            the moment (which may also change as the analysis progresses).
            Similar considerations apply everywhere—there are no “cookbook”
            rules.

Special-purpose metrics



A more abstract measure for the similarity of two
            points is based on the number of neighbors that the two points
            have in common; this metric is known as the shared
            nearest neighbor (SNN) similarity. To calculate the SNN
            for two points x and y,
            you find the k nearest neighbors (using any
            suitable distance function) for both x and
            y. The number of neighbors shared by both
            points is their mutual SNN.
The same concept can be extended to cases in which there is
            some property that the two points may have in common. For example,
            in a social network we could define the “closeness” of two people
            by the number of friends they share, by the number of movies they
            have both seen, and so on. (This application is equivalent to the
            Hamming distance.) Nearest-neighbor-based metrics are particularly
            suitable for high-dimensional data, where other distance measures
            can give spuriously small results.
Finally, let me remind you that sometimes the solution does
            not consist of inventing a new metric. Instead, the trick is to
            map the problem to a different space that already has a
            predefined, suitable metric.
As an example, consider the problem of measuring the degree
            of similarity between different text documents (we here assume
            that these documents are long—hundreds or thousands of words). The
            standard approach to this problem is to count how often each word
            appears in each document. The resulting data structure is referred
            to as the document vector. You can now form a
            dot product between two document vectors as a measure of their
            correspondence.
Technically speaking, we have mapped each document to a
            point in a (high-dimensional) vector space. Each distinct word
            that occurs in any of the documents spans a new dimension, and the
            frequency with which each word appears in a document provides the
            position of that document along this axis. This is very
            interesting, because we have transformed highly structured data
            (text) into numerical, even vector-like data and can therefore now
            manipulate it much more easily. (Of course, the benefit comes at a
            price: in doing so we have lost all information about the sequence
            in which words appeared in the text. It is a separate
            consideration whether this is relevant for our purpose.)
One last comment: one can overdo it when defining distance
            and similarity measures. Complicated or sophisticated definitions
            are usually not necessary as long as you capture the fundamental
            semantics. The Hamming distance and the document vector
            correlation are two good examples of simplified metrics that
            intentionally discard a lot of information yet still turn out to
            be highly successful in practice.



Clustering Methods



In this section, we will discuss several very different
        clustering algorithms. As you will see, the basic ideas behind all
        three algorithms are rather simple, and it is straightforward to
        come up with perfectly adequate implementations of them
        yourself. These algorithms are also important as starting points for
        more sophisticated clustering routines, which usually augment them
        with various heuristics or combine ideas from different
        algorithms.
Different algorithms are suitable for different kinds of
        problems—depending, for example, on the shape and structure of the
        clusters. Some require vector-like data, whereas others require only a
        distance function. Different algorithms tend to be misled by different
        kinds of pitfalls, and they all have different performance
        (i.e., computational complexity) characteristics.
        It is therefore important to have a variety of different algorithms at
        your disposal so that you can choose the one most appropriate for your
        problem and for the kind of solution you seek!
        (Remember: it is pretty much the choice of algorithm that defines what
        constitutes a “cluster” in the end.)
Center Seekers



One of the most popular clustering methods is the
          k-means algorithm. The
          k-means algorithm requires the number of
          expected clusters k as input. (We will later
          discuss how to determine this number.) The
          k-means algorithm is an iterative scheme. The
          main idea is to calculate the position of each cluster’s center (or
          centroid) from the positions of the points
          belonging to the cluster and then to assign points to their nearest
          centroid. This process is repeated until sufficient convergence is
          achieved. The basic algorithm can be summarized as follows:
choose initial positions for the cluster centroids

repeat:
  for each point:
    calculate its distance from each cluster centroid
    assign the point to the nearest cluster

  recalculate the positions of the cluster centroids
The k-means algorithm is
          nondeterministic: a different choice of starting values may result
          in a different assignment of points to clusters. For this reason, it
          is customary to run the k-means algorithm
          several times and then compare the results. If you have previous
          knowledge of likely positions for the cluster centers, you can use
          it to precondition the algorithm. Otherwise, choose random data
          points as initial values.
What makes this algorithm efficient is that you don’t have to
          search the existing data points to find one that would make a good
          centroid—instead you are free to construct a
          new centroid position. This is usually done by calculating the
          cluster’s center of mass. In two dimensions, we would have:
[image: Center Seekers]
where each sum is over all points in the cluster.
          (Generalizations to higher dimensions are straightforward.) You can
          only do this for vector-like data, however, because only such data
          allows us to form arbitrary “mixtures” in this way.
For strictly categorical data (such as the strings in Figure 13-4), the
          k-means algorithm cannot be used (because it is
          not possible to “mix” different points to construct a new centroid).
          Instead, we have to use the k-medoids
          algorithm. The k-medoids algorithm works in the
          same way as the k-means algorithm except that,
          instead of calculating the new centroid, we search through all
          points in the cluster to find the data point (the
          medoid) that has the smallest average distance
          to all other points in the cluster.
The k-means algorithm is surprisingly
          modest in its resource consumption. On each iteration, the algorithm
          evaluates the distance function once for each cluster and each
          point; hence the computational complexity per iteration is
          [image: ](k ·
          n), where k is the number
          of clusters and n is the number of points in
          the data set. This is remarkable because it means that the algorithm
          is linear in the number of points. The number
          of iterations is usually pretty small: 10–50 iterations are typical.
          The k-medoids algorithm is more costly because
          the search to find the medoid of each cluster is an
          [image: ](n2)
          process. For very large data sets this might be prohibitive, but you
          can try running the k-medoids algorithm on
          random samples of all data points. The results
          from these runs can then be used as starting points for a run using
          the full data set.
Despite its cheap-and-cheerful appearance, the
          k-means algorithm works surprisingly well. It
          is pretty fast and relatively robust. Convergence is usually quick.
          Because the algorithm is simple and highly intuitive, it is easy to
          augment or extend it—for example, to incorporate points with
          different weights. You might also want to experiment with different
          ways to calculate the centroid, possibly using the median position
          rather than the mean, and so on.
That being said, the k-means algorithm
          can fail—annoyingly in situations that exhibit especially strong
          clustering! Because of its iterative nature, the algorithm works
          best in situations that involve gradual density changes. If your
          data sets consists of very dense and widely separated clusters, then
          the k-means algorithm can get “stuck” if
          initially two centroids are assigned to the same cluster: moving one
          centroid to a different cluster would require a large move, which is
          not likely to be found by the mostly local steps taken by the
          k-means algorithm.
Among variants, a particularly important one is
          fuzzy clustering. In fuzzy clustering, we don’t
          assign each point to a single cluster; instead, for each point and
          each cluster, we determine the probability that the point belongs to
          that cluster. Each point therefore acquires a set of
          k probabilities or weights (one for each
          cluster; the probabilities must sum to 1 for each point). We then
          use these probabilities as weights when calculating the centroid
          positions. The probabilities also make it possible to declare
          certain points as “noise” (having low probability of belonging to
          any cluster) and thus can help with data
          sets that contain unclustered “noise” points and with
          ambiguous situations such as the one shown in Figure 13-7.
To summarize:
	The k-means algorithms and its
              variants work best for globular (at least star-convex) clusters.
              The results will be meaningless for clusters with complicated
              shapes and for nested clusters (Figure 13-6 and Figure 13-3,
              respectively).

	The expected number of clusters is required as an input.
              If this number is not known, it will be necessary to repeat the
              algorithm with different values and compare the results.

	The algorithm is iterative and nondeterministic; the
              specific outcome may depend on the choice of starting
              values.

	The k-means algorithm requires vector
              data; use the k-medoids algorithm for
              categorical data.

	The algorithm can be misled if there are clusters of
              highly different size or different density.

	The k-means algorithm is linear in
              the number of data points; the k-medoids
              algorithm is quadratic in the number of points.




Tree Builders



Another way to find clusters is by successively combining
          clusters that are “close” to each other into a larger cluster until
          only a single cluster remains. This approach is known as
          agglomerative hierarchical clustering, and it
          leads to a treelike hierarchy of clusters. Clusters that are close
          to each other are joined early (near the leaves of the tree) and
          more distant clusters are joined late (near the root of the tree).
          (One can also go in the opposite direction, continually splitting
          the set of points into smaller and smaller clusters. When applied to
          classification problems, this leads to a decision
          tree—see Chapter 18.)
The basic algorithm proceeds exactly as just outlined:
	Examine all pairs of clusters.

	Combine the two clusters that are closest to each other
              into a single cluster.

	Repeat.



What do we mean by the distance between
          clusters? The distance measures that we have
          defined are valid only between points! To apply them, we need to
          select (or construct) a single “representative” point from each
          cluster. Depending on this choice, hierarchical clustering will lead
          to different results. The most important alternatives are as
          follows.
Minimum or single link
	We define the distance between two clusters as the
              distance between the two points (one from each cluster) that are
              closest to each other. This choice leads to
              extended, thinly connected clusters. Because of this, this
              approach can handle clusters of complicated shapes, such as
              those in Figure 13-6, but it
              can be sensitive to noise points.



Maximum or complete link
	The distance between two clusters is defined as the
              distance between the two points (one from each cluster) that are
              farthest away from each other. With this
              choice, two clusters are not joined until all points within each
              cluster are connected to each other—favoring compact, globular
              clusters.



Average
	In this case, we form the average over the distances
              between all pairs of points (one from each cluster). This choice
              has characteristics of both the single- and complete-link
              approaches.



Centroid
	For each cluster, we calculate the position of a centroid
              (as in k-means clustering) and define the
              distance between clusters as the distance between
              centroids.



Ward’s method
	Ward’s method measures the distance between two clusters
              in terms of the decrease in coherence that occurs when the two
              clusters are combined: if we combine clusters that are closer
              together, the resulting cluster should be more coherent than if
              we combine clusters that are farther apart. We can measure
              coherence as the average distance of all points in the cluster
              from a centroid, or as their average distance from each other.
              (We’ll come back to cohesion and other cluster properties
              later.)



The result of hierarchical clustering is not actually a set of
          clusters. Instead, we obtain a treelike structure that contains the
          individual data points at the leaf nodes. This structure can be
          represented graphically in a dendrogram (see
          Figure 13-10). To
          extract actual clusters from it, we need to walk the tree, evaluate
          the cluster properties for each subtree, and then cut the tree to
          obtain clusters.
Tree builders are expensive: we need at least the full
          distance matrix for all pairs of points (requiring
          [image: ](n2)
          operations to evaluate). Building the complete tree takes
          [image: ](n) iterations: there are
          n clusters (initially, points) to start with,
          and at each iteration, the number of clusters is reduced by one
          because two clusters are combined. For each iteration, we need to
          search the distance matrix for the closest pair of clusters—naively
          implemented, this is an [image: ](n2)
          operation that leads to a total complexity of [image: ](n3)
          operations. However, this can be reduced to [image: ](n2
          log n) by using indexed lookup.
One outstanding feature of hierarchical clustering is that it
          does more than produce a flat list of clusters; it also shows their
          relationships in an explicit way. You need to decide whether this
          information is relevant for your needs, but keep in mind that the
          choice of measure for the cluster distance (single- or
          complete-link, and so on) can have a significant influence on the
          appearance of the resulting tree structure.
[image: A typical dendrogram for data like the data in . Individual data points are at the leaf nodes. The vertical distance between the tree nodes represents the dissimilarity between the nodes.]

Figure 13-10. A typical dendrogram for data like the data in Figure 13-5. Individual
            data points are at the leaf nodes. The vertical distance between
            the tree nodes represents the dissimilarity between the
            nodes.


Neighborhood Growers



A third kind of clustering algorithm could be dubbed
          “neighborhood growers.” They work by connecting points that are
          “sufficiently close” to each other to form a cluster and then keep
          doing so until all points have been classified. This approach makes
          the most direct use of the definition of a cluster as a region of
          high density, and it makes no assumptions about the overall
          shape of the cluster. Therefore, such methods
          can handle clusters of complicated shapes (as in Figure 13-6), interwoven
          clusters, or even nested clusters (as in Figure 13-3). In general,
          neighborhood-based clustering algorithms are more of a
          special-purpose tool: either for cases that other algorithms don’t
          handle well (such as the ones just mentioned) or for polishing, in a
          second pass, the features of a cluster found by a general-purpose
          clustering algorithm such as k-means.
The DBSCAN algorithm which we will introduce in this section
          is one such algorithm, and it demonstrates some typical concepts. It
          requires two parameters. One is the minimum
          density that we expect to prevail inside of a
          cluster—points that are less densely packed will not be considered
          part of any cluster. The other parameter is the size of
          the region over which we expect this density to be
          maintained: it should be larger than the average distance between
          neighboring points but smaller than the entire cluster. The choice
          of parameters is rather subtle and clearly requires an appropriate
          balance.
In a practical implementation, it is easier to work with two
          slightly different parameters: the neighborhood radius
          r and the minimum number of points
          n that we expect to find within the
          neighborhood of each point in a cluster. The DBSCAN algorithm
          distinguishes between three types of points: noise, edge, and core
          points. A noise point is a point which has
          fewer than n points in its neighborhood of
          radius r, such a point does not belong to any
          cluster. A core point of a cluster has more
          than n neighbors. An edge
          point is a point that has fewer neighbors than required
          for a core point but that is itself the neighbor of a core point.
          The algorithm discards noise points and concentrates on core points.
          Whenever it finds a core point, the algorithm assigns a cluster
          label to that point and then continues to add all its neighbors, and
          their neighbors recursively to the cluster,
          until all points have been classified.
This description is simple enough, but actually deriving a
          concrete implementation that is both correct and efficient is less
          than straightforward. The pseudo-code in the original paper[22] appears needlessly clumsy; on the other hand, I am not
          convinced that the streamlined version that can be found (for
          example) on Wikipedia is necessarily correct. Finally, the basic
          algorithm lends itself to elegant recursive implementations, but
          keep in mind that the recursion will not unwind until the current
          cluster is complete. This means that, in the worst case (of a single
          connected cluster), you will end up putting the entire data set onto
          the stack!
As pointed out earlier, the main advantage of the DBSCAN
          algorithm is that it handles clusters of complicated shapes and
          nested clusters gracefully. However, it does depend sensitively on
          the appropriate choice of values for its two control parameters, and
          it provides little help in finding them. If a data set contains
          several clusters with widely varying densities, then a single set of
          parameters may not be sufficient to classify all of the clusters.
          These problems can be ameliorated by coupling the DBSCAN algorithm
          with the k-means algorithm: in a first pass,
          the k-means algorithm is used to identify
          candidates for clusters. Moreover, statistics on these subsets of
          points (such as range and density) can be used as input to the
          DBSCAN algorithm.
The DBSCAN algorithm is dominated by the calculations required
          to find the neighboring points. For each point in the data set, all
          other points have to be checked; this leads to a complexity of
          [image: ](n2).
          In principle, algorithms and data structures exist to find
          candidates for neighboring points more efficiently
          (e.g., kd-trees and global
          grids), but their implementations are subtle and carry their own
          costs (grids can be very memory intensive). Coupling the DBSCAN
          algorithm with a more efficient first-pass algorithm (such as
          k-means) may therefore be a better
          strategy.


Pre- and Postprocessing



The core algorithm for grouping data points into
        clusters is usually only part (though the most important one) of the
        whole strategy. Some data sets may require some cleanup or
        normalization before they are suitable for clustering: that’s the
        first topic in this section.
Furthermore, we need to inspect the results of every clustering
        algorithm in order to validate and characterize the clusters that have
        been found. We will discuss some concepts and quantities used to
        describe clusters and to measure the clustering quality.
Finally, several cluster algorithms require certain input
        parameters (such as the number of clusters to find), and we need to
        confirm that the values we provided are consistent with the outcome of
        the clustering process. That will be our last topic in this
        section.
Scale Normalization



Look at Figure 13-11 and Figure 13-12. Wouldn’t you
          agree that the data set in Figure 13-11 exhibits two
          reasonably clearly defined and well-separated clusters while the
          data set in Figure 13-12 does not? Yet
          both figures show the same data set—only drawn
          to different scales! In Figure 13-12, I used
          identical units for both the x axis and the
          y axis; whereas Figure 13-11 was drawn to
          maintain a suitable aspect ratio for this data set.
This example demonstrates that clustering is not independent
          of the units in which the data is measured. In fact, for the data
          set shown in Figure 13-11 and Figure 13-12, points in two
          different clusters may be closer to each other than to other points
          in the same cluster! This is clearly a problem.
If, as in this example, your data spans very different ranges
          along different dimensions, you need to normalize the data before
          starting a clustering algorithm. An easy way to achieve this is to
          divide the data, dimension for dimension, by the range of the data
          along that dimension. Alternatively, you might want to divide by the
          standard deviation along that dimension. This process is sometimes
          called whitening or
          prewhitening, particularly in signal-theoretic
          literature.
You only need to worry about this problem if you are working
          with vector-like data and are using a distance measure like the
          Euclidean distance. It does not affect correlation-based similarity
          measures. In fact, there is a special variant of the Euclidean
          distance that performs the appropriate rescaling for each dimension
          on the fly: the Mahalanobis distance.

Cluster Properties and Evaluation



It is easiest to think about cluster properties in the context
          of vector-like data and a straightforward clustering algorithm such
          as k-means. The algorithm already gives us the
          coordinates of the cluster centroids directly, hence
          we have the cluster location. Two additional
          quantities are the mass of the cluster
          (i.e., the number of points in the cluster) and
          its radius. The radius is simply the average
          deviation of all points from the cluster center—basically the
          standard deviation, when using the Euclidean distance:
[image: Cluster Properties and Evaluation]
[image: It is easy to argue that there are two clusters in this graph. (Compare .)]

Figure 13-11. It is easy to argue that there are two clusters in this
            graph. (Compare Figure 13-12.)

in two dimensions (equivalently in higher dimensions). Here
          xc
          and
          yc
          are the coordinates of the center of the cluster, and the sum runs
          over all points i in the cluster. Dividing the
          mass by the radius gives us the density of the
          cluster. (These values can be used to construct input values for the
          DBSCAN algorithm.)
We can apply the same principles to develop a measure for the
          overall quality of the clustering. The key concepts are
          cohesion within a cluster and
          separation between clusters. The average
          distance for all points within one cluster is a measure of the
          cohesion, and the average distance between all points in one cluster
          from all points in another cluster is a measure of the separation
          between the two clusters. (If we know the centroids of the clusters,
          we can use the distance between the centroids as a measure for the
          separation.) We can go further and form the average (weighted by the
          cluster mass) of the cohesion for all clusters as a measure for the
          overall quality.
If a data set can be cleanly grouped into clusters, then we
          expect the distance between the clusters to be large compared to the
          radii of the clusters. In other words, we expect the ratio:
[image: It is easy to argue that there are two clusters in this graph. (Compare .)]
to be large.
[image: It is difficult to recognize two well-separated clusters in this figure. Yet the data is the same as in but drawn to a different scale! (Compare the horizontal and vertical scales in both graphs.)]

Figure 13-12. It is difficult to recognize two well-separated clusters in
            this figure. Yet the data is the same as in Figure 13-11 but drawn to
            a different scale! (Compare the horizontal and vertical scales in
            both graphs.)

A particular measure based on this concept is the
          silhouette coefficient S.
          The silhouette coefficient is defined for individual points as
          follows. Let
          ai
          be the average distance (the cohesion) that point
          i has from all other points in the cluster to
          which it belongs. Evaluate the average distance that point
          i has from all points in any cluster to which
          it does not belong, and let
          bi
          be the smallest such value (i.e.,
          bi
          is the separation from the “closest” other cluster). Then the
          silhouette coefficient of point i is defined
          as:
[image: It is difficult to recognize two well-separated clusters in this figure. Yet the data is the same as in but drawn to a different scale! (Compare the horizontal and vertical scales in both graphs.)]
The numerator is a measure for the “empty space” between
          clusters (i.e., it measures the amount of
          distance between clusters that is not occupied by the original
          cluster). The denominator is the greater of the two length scales in
          the problem—namely the cluster radius and the distance between
          clusters.
By construction, the silhouette coefficient ranges from –1 to
          1. Negative values indicate that the cluster radius is
          greater than the distance between clusters, so
          that clusters overlap; this suggests poor clustering. Large values
          of S suggest good clustering. We can form the
          average of the silhouette coefficients for all points belonging to a
          single cluster and thereby develop a measure for the quality of the
          entire cluster. We can further define the average over the
          silhouette coefficients for all individual points as the overall
          silhouette coefficient for the entire data set; this would be a
          measure for the quality of the clustering result.
The overall silhouette coefficient can be useful to determine
          the number of clusters present in the data set. If we run the
          k-means algorithm several times for different
          values of the expected number of clusters and calculate the
          overall silhouette coefficient each time, then it should exhibit a
          peak near the optimal number of clusters.
[image: How many clusters are in this data set?]

Figure 13-13. How many clusters are in this data set?

Let’s work through an example to see how the the silhouette
          coefficient performs in practice. Figure 13-13 shows the
          points of a two-dimensional data set. This is an interesting data
          set because, even though it exhibits clear clustering, it is not at
          all obvious how many distinct clusters there
          really are—any number between six and eight seems plausible. The
          total silhouette coefficient (averaged over all points in the data
          set) for this data set (see Figure 13-14) confirms this
          expectation, clearly leaning toward the lower end of this range. (It
          is interesting to note that the data set was generated, using a
          random-number generator, to include 10 distinct
          clusters, but some of those clusters are overlapping so strongly
          that it is not possible to distinguish them.) This example also
          serves as a cautionary reminder that it may not always be so easy to
          determine what actually constitutes a cluster!
Another interesting question concerns distinguishing
          legitimate clusters from a random (unclustered) background. Of the
          algorithms that we have seen, only the DBSCAN algorithm explicitly
          labels some points as background; the k-means
          and the tree-building algorithm perform what is known as
          complete clustering by assigning every point to
          a cluster. We may want to relax this behavior by trimming those
          points from each cluster that exceed the average cohesion within the
          cluster by some amount. This is easiest for fuzzy clustering
          algorithms, but it can be done for other algorithms as well.


Other Thoughts



The three types of clustering algorithms introduced in this
        chapter are probably the most popular and widely used, but they
        certainly don’t exhaust the range of possibilities.
[image: The silhouette coefficient for the data in . According to this measure, six or seven clusters give optimal results for this data set.]

Figure 13-14. The silhouette coefficient for the data in Figure 13-13. According to
          this measure, six or seven clusters give optimal results for this
          data set.

Here is a brief list of other ideas that can (and have)
        been used to develop clustering algorithms.
	We can impose a specific topology, such
            as a grid on the data points. Each data point will fall into a
            single grid cell, and we can use this information to find cells
            containing unusually many points and so guide clustering.
            Cell-based methods will perform poorly in many dimensions, because
            most cells will be empty and have few occupied neighbors (the
            “curse of dimensionality”).

	Among grid-based approaches, Kohonen maps (which we will
            discuss in Chapter 14) have a lot
            of intuitive appeal.

	Some special methods have been suggested to address the
            challenges posed by high-dimensional feature spaces. In
            subspace clustering, for example, clustering
            is performed on only a subset of all available features. These
            results are then successively extended by including features
            ignored in previous iterations.

	Remember kernel density estimates (KDEs) from Chapter 2? If the
            dimensionality is not too high, then we can generate a KDE for the
            data set. The KDE provides a smooth approximation to the local
            point density. We can then identify clusters by finding the maxima
            of this density directly, using standard methods from numerical
            analysis.

	The QT (“quality threshold”) algorithm is a center-seeking
            algorithm that does not require the number of clusters as input;
            instead, we have to fix a maximum radius. The
            QT algorithm treats every point in the
            cluster as a potential centroid and adds neighboring points (in
            the order of increasing distance from the centroid) until the
            maximum radius is exceeded. Once all candidate clusters have been
            completed in this way, the cluster with the greatest number of points
            is removed from the data set, and then the process starts again
            with the remaining points.

	There is a well-known correspondence between graphs and
            distance matrices. Given a set of points, a graph tells us which
            points are directly connected to each other—but so does a distance
            matrix! We can exploit this equivalence by treating a distance
            matrix as the adjacency matrix of a graph. The distance matrix is
            pruned (by removing connections that are too long) to obtain a
            sparse graph, which can be interpreted as the backbone of a
            cluster.

	Finally, spectral clustering uses
            powerful but abstract methods from linear algebra (similar to
            those used for principal component analysis; see Chapter 14) to
            structure and simplify the distance matrix.



Obviously, much depends on our prior knowledge about the data
        set: if we expect clusters to be simple and convex, then the
        k-means algorithm suggests itself. On the other
        hand, if we have a sense for the typical radius of the clusters that
        we expect to find, then QT clustering would be a more natural
        approach. If we expect clusters of complicated shapes or nested
        clusters, then an algorithm like DBSCAN will be required. Of course,
        it might be difficult to develop this kind of intuition—especially for
        problems that have significantly more than two or three
        dimensions!
Besides thinking of different ways to combine points into
        clusters, we can also think of different ways to define clusters to
        begin with. All methods discussed so far have relied (directly or
        indirectly) on the information contained in the distance between any
        two points. We can extend this concept and begin to think about
        three-point (or higher) distance
        functions. For example, it is possible to determine the
        angle between any three consecutive points and
        use this information as the measure of the similarity between points.
        Such an approach might help with cases like the one shown in Figure 13-8. Yet another idea
        is to measure not the similarity between points
        but instead the similarity between a point and a property of
        the cluster. For example, there is a straightforward
        generalization of the k-means algorithm in which
        the centroids are no longer pointlike but are straight lines,
        representing the “axis” of an elongated cluster. Rather than measuring
        the distance for each point from the centroid, this algorithm
        calculates the distance from this axis when assigning points to
        clusters. This algorithm would be suitable for cases like that shown
        in Figure 13-7. I
        don’t think any of these ideas that try to generalize beyond pairwise
        distances have been explored in detail yet.

A Special Case: Market Basket Analysis



Which items are frequently bought together? This and similar
        questions arise in market basket analysis or—more
        generally—in association analysis. Because
        association analysis is looking for items that occur together, it is
        in some ways related to clustering. However, the specific nature of
        the problem is different enough to require a separate toolset.
The starting point for association analysis is usually a
        data set consisting of transactions—that is,
        items that have been purchased together (we will often stay with the
        market basket metaphor when illustrating these concepts). Each
        transaction corresponds to a single “data point” in regular
        clustering.
For each transaction, we keep track of all items that have
        occurred together but typically ignore whether or not any particular
        item was purchased multiple times: all attributes are Boolean and
        indicate only the presence or absence of a certain item. Each item
        spans a new dimension: if the store sells N
        different items, then each transaction can have up to
        N different (Boolean) attributes, although each
        transaction typically contains only a tiny subset of the entire
        selection. (Note that we do not necessarily need to know the
        dimensionality N ahead of time: if we don’t know
        it, we can infer an approximation from the number of different items
        that actually occur in the data set.)
From this description, you can already see how association
        analysis differs from regular clustering: data points in association
        analysis are typically very high-dimensional but also very sparse. It
        also differs from clustering (as we have discussed it so far) in that
        we are not necessarily interested in grouping entire “points”
        (i.e., transactions) but would like to identify
        those dimensions that frequently occur together.
A group of zero or more items occurring together is known as an
        item set (or itemset). Each
        transaction consists of an item set, but every one of its subsets is
        also an item set. We can construct arbitrary item sets from the
        selection of available items. For each such item set, its
        support count is the number of actual
        transactions that contain the candidate item set as a subset.
Besides simply identifying frequent item sets, we can also try
        to derive association rules—that is, rules of the
        form “if items A and B are bought, then item C is also likely to be
        bought.” Two measures are important when evaluating the strength of an
        association rule: its support s and its
        confidence c. The support of
        a rule is the fraction of transactions in the entire data set that
        contain the combined item set (i.e., the fraction
        of transactions that contain all three items A, B, and C). A rule with
        low support is not very useful because it is rarely applicable.
The confidence is a measure for the
        reliability of an association rule. It is defined as the number of
        transactions in which the rule is correct,
        divided by the number of transactions in which it is
        applicable. In our example, it would be the
        number of times A, B, and C occur together divided by the number of
        times A and B occur together.
How do we go about finding frequent item sets (and association
        rules)? Rather than performing an open-ended search for the “best”
        association rule, it is customary to set thresholds for the minimum
        support (such as 10 percent) and confidence (such as 80 percent)
        required of a rule and then to generate all rules that meet these
        conditions.
To identify rules, we generate candidate item sets and
        then evaluate them against the set of transactions to determine
        whether they exceed the required thresholds. However, the naive
        approach—to create and evaluate all possible item
        sets of k elements—is not feasible because of the
        huge number (2k) of
        candidate item sets that could be generated, most of which will
        not be frequent! We must find a way to generate
        candidate item sets more efficiently.
The crucial observation is that an item set can occur
        frequently only if all of its subsets occur frequently.
        This insight is the basis for the so-called apriori
        algorithm, which is the most fundamental algorithm for
        association analysis.
The apriori algorithm is a two-step algorithm: in the first
        step, we identify frequent item sets; in the second step, we extract
        association rules. The first part of the algorithm is the more
        computationally expensive one. It can be summarized as follows.
Find all 1-item item sets that meet the minimum support threshold.

repeat:
  from the current list of k-item item sets, construct (k+1)-item item sets
  eliminate those item sets that do not meet the minimum support threshold
  stop when no (k+1)-item item set meets the minimum support threshold
The list of frequent item sets may be all that we require, or we
        may postprocess the list to extract explicit association rules. To
        find association rules, we split each frequent item set into two sets,
        and evaluate the confidence associated with this pair. From a
        practical point of view, rules that have a 1-item item set on the
        “righthand side” are the easiest to generate and the most important.
        (In other words, rules of the form “people who bought A and B also
        bought C,” rather than rules of the form “people who bought A and B
        also bought C and D.”)
This basic description leaves out many technical details, which
        are important in actual implementations. For example: how exactly do
        we create a (k + 1)-item item set from the list
        of k-item item sets? We might take every single
        item that occurs among the k-item item sets and
        add it, in turn, to every one of the k-item item
        sets; however, this would generate a large number of duplicate item
        sets that need to be pruned again. Alternatively, we might combine two
        k-item item sets only if they agree on all but
        one of their items. Clearly, appropriate data structures are essential
        for obtaining an efficient implementation. (Similar considerations
        apply when determining the support count of a candidate item set, and
        so on.)[23]
Although the apriori algorithm is probably the most popular
        algorithm for association analysis, there are also very different
        approaches. For example, the FP-Growth Algorithm
        (where FP stands for “Frequent Pattern”) identifies frequent item sets
        using something like a string-matching algorithm. Items in
        transactions are sorted by their support count, and a treelike data
        structure is built up by exploiting data sets that agree in the first
        k items. This tree structure is then searched for
        frequently occurring item sets.
Association analysis is a relatively complicated problem that
        involves many technical (as opposed to conceptual) challenges as well.
        The discussion in this section could only introduce the topic and
        attempt to give a sense of the kinds of approaches that are available.
        We will see some additional problems of a similar nature in Chapter 18.

A Word of Warning



Clustering can lead you astray, and when done carelessly it can
        become a huge waste of time. There are at least two reasons for this:
        although the algorithms are deceptively simple, it can be surprisingly
        difficult to obtain useful results from them. Many of them depend
        quite sensitively on several heuristic parameters, and you can spend
        hours fiddling with the various knobs. Moreover, because the
        algorithms are simple and the field has so much intuitive appeal, it
        can be a lot of fun to play with implementations and to develop all
        kinds of modifications and variations.
And that assumes there actually are any clusters present! (This
        is the second reason.) In the absence of rigorous, independent
        results, you will actually spend more time on
        data sets that are totally worthless—perpetually hunting for those
        clusters that “the stupid algorithm just won’t find.” Perversely,
        additional domain knowledge does not necessarily make the task any
        easier: knowing that there should be exactly 10 clusters present in
        Figure 13-13 is of no
        help in finding the clusters that actually can be identified!
Another important question concerns the value that you
        ultimately derive from clustering (assuming now that at least one of
        the algorithms has returned something apparently meaningful). It can
        be difficult to distinguish spurious results from real ones: like
        clustering algorithms, cluster evaluation methods are not particularly
        rigorous or unequivocal either (Figure 13-14 does not exactly
        inspire confidence). And we still have not answered the question of
        what you will actually do with the
        results—assuming that they turn out to be significant.
I have found that understanding the actual question that needs
        to be answered, developing some pertinent hypotheses and models around
        it, and then verifying them on the data through specific, focused
        analysis is usually a far better use of time than to go off on a
        wild-goose clustering search.
Finally, I should emphasize that, in keeping with the spirit of
        this book, the algorithms in this chapter are suitable for moderately
        sized data sets (a few thousand data points and a dozen dimensions, or
        so) and for problems that are not too pathological. Highly developed
        algorithms (e.g., CURE and BIRCH) exist for very
        large or very high-dimensional problems; these algorithms usually
        combine several different cluster-finding approaches together with a set of heuristics. You need to evaluate
        whether such specialized algorithms make sense for your
        situation.

Workshop: Pycluster and the C Clustering Library



The C Clustering Library (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm)
        is a mature and relatively efficient clustering library originally
        developed to find clusters among gene expressions in microarray
        experiments. It contains implementations of the
        k-means and k-medoids
        algorithms, tree clustering, and even self-organized (Kohonen) maps.
        It comes with its own GUI frontend as well as excellent Perl and
        Python bindings. It is easy to use and very well documented. In this
        Workshop, we use Python to demonstrate the library’s center-seeker
        algorithms.
import Pycluster as pc
import numpy as np
import sys

# Read data filename and desired number of clusters from command line
filename, n = sys.argv[1], int( sys.argv[2] )

# x and y coordinates, whitespace-separated
data = np.loadtxt( filename, usecols=(0,1) )

# Perform clustering and find centroids
clustermap = pc.kcluster( data, nclusters=n, npass=50 )[0]
centroids = pc.clustercentroids( data, clusterid=clustermap )[0]

# Obtain distance matrix
m = pc.distancematrix( data )

# Find the masses of all clusters
mass = np.zeros( n )
for c in clustermap:
    mass[c] += 1

# Create a matrix for individual silhouette coefficients
sil = np.zeros( n*len(data) )
sil.shape = ( len(data), n )

# Evaluate the distance for all pairs of points
for i in range( 0, len(data) ):
    for j in range( i+1, len(data) ):
        d = m[j][i]

        sil[i, clustermap[j] ] += d
        sil[j, clustermap[i] ] += d

# Normalize by cluster size (that is: form average over cluster)
for i in range( 0, len(data) ):
    sil[i,:] /= mass

# Evaluate the silhouette coefficient
s = 0
for i in range( 0, len(data) ):
    c = clustermap[i]
    a = sil[i,c]
    b = min( sil[i, range(0,c)+range(c+1,n) ] )
    si = (b-a)/max(b,a) # This is the silhouette coeff of point i
    s += si

# Print overall silhouette coefficient
print n, s/len(data)
The listing shows the code used to generate Figure 13-14, showing how the
        silhouette coefficient depends on the number of clusters. Let’s step
        through it.
We import both the Pycluster
        library itself as well as the NumPy package. We will use some of the
        vector manipulation abilities of the latter. The point coordinates are
        read from the file specified on the command line. (The file is assumed
        to contain the x and y
        coordinates of each point, separated by whitespace; one point per
        line.) The point coordinates are then passed to the kcluster() function, which performs the
        actual k-means algorithm. This function takes a
        number of optional arguments: nclusters is the desired number of clusters,
        and npass holds the number of
        trials that should be performed with different
        starting values. (Remember that k-means
        clustering is nondeterministic with regard to the initial guesses for
        the positions of the cluster centroids.) The kcluster() function will make npass different trials and report on the
        best one.
The function returns three values. The first return value is an
        array that, for each point in the original data set, holds the index
        of the cluster to which it has been assigned. The second and third
        return values provide information about the quality of the clustering
        (which we ignore in this example). This function signature is a
        reflection of the underlying C API, where you pass in an array of the
        same length as the data array and then the cluster assignments of each
        point are communicated via this additional array. This frees the
        kcluster() function from having to
        do its own resource management, which makes sense in C (and possibly
        also for extremely large data sets).
All information about the result of the clustering procedure are
        contained in the clustermap data
        structure. The Pycluster library
        provides several functions to extract this information; here we
        demonstrate just one: we can pass the clustermap to the clustercentroids() function to obtain the
        coordinates of the cluster centroids. (However, we won’t actually use
        these coordinates in the rest of the program.)
You may have noticed that we did not specify the distance
        function to use in the listing. The C Clustering Library does
        not give us the option of a user-defined distance
        function with k-means. It does include several
        standard distance measures (Euclidean, Manhattan, correlation, and
        several others), which can be selected through a keyword argument to
        kcluster() (the default is to use
        the Euclidean distance). Distance calculations can be a rather
        expensive part of the algorithm, and having them implemented in C
        makes the overall program faster. (If we want to define our own
        distance function, then we have to use the kmedoids() function, which we will discuss
        in a moment.)
[image: The result of running the k-means algorithm on the data from , finding six clusters. Different clusters are shown in black and gray, and the cluster centroids are indicated by filled dots.]

Figure 13-15. The result of running the k-means algorithm on the data from
          Figure 13-13, finding
          six clusters. Different clusters are shown in black and gray, and
          the cluster centroids are indicated by filled dots.

To evaluate the silhouette coefficient we need the
        point-to-point distances, and so we obtain the distance matrix from
        the Pycluster library. We will also
        need the number of points in each cluster (the cluster’s “mass”)
        later.
Next, we calculate the individual silhouette coefficients for
        all data points. Recall that the silhouette coefficient involves both
        the average distance to the all points in the
        same cluster as well as the average distance to
        all points in the nearest cluster. Since we don’t
        know ahead of time which one will be the nearest cluster to each
        point, we simply go ahead and calculate the average distance to
        all clusters. The results are stored in the
        matrix sil.
(In the implementation, we make use of some of the vector
        manipulation features of NumPy: in the expression sil[i,:] /= mass, each entry in row i is divided componentwise by the
        corresponding entry in mass.
        Further down, we make use of “advanced indexing” when looking for the
        minimum distance between the point i and a cluster to which it does not belong:
        in the expression b = min( sil[i,
        range(0,c)+range(c+1,n) ] ), we construct an indexing vector
        that includes indices for all clusters except the one that the point
        i belongs to. See the Workshop in
        Chapter 2 for more
        details.)
Finally, we form the average over all single-point silhouette
        coefficients and print the results. Figure 13-14 shows them as a
        graph.
Figure 13-15 and
        Figure 13-16 show how
        the program assigned points to clusters in two runs, finding 6 and 10
        clusters, respectively. These results agree with Figure 13-14:
        k = 6 is close to the optimal number of clusters,
        whereas k = 10 seems to split some clusters
        artificially.
[image: Similar to but for k = 10. Ten seems too high a number of clusters for this data set, which agrees with the results from calculating the silhouette coefficient in .]

Figure 13-16. Similar to Figure 13-15 but for k = 10.
          Ten seems too high a number of clusters for this data set, which
          agrees with the results from calculating the silhouette coefficient
          in Figure 13-14.

The next listing demonstrates the kmedoids() function, which we have to use if
        we want to provide our own distance function. As implemented by the
        Pycluster library, the
        k-medoids algorithm does not
        require the data at all—all it needs is the distance matrix!
import Pycluster as pc
import numpy as np
import sys

# Our own distance function: maximum norm
def dist( a, b ):
    return max( abs(  a - b ) )

# Read data filename and desired number of clusters from command line
filename, n = sys.argv[1], int( sys.argv[2] )

# x and y coordinates, whitespace-separated
data = np.loadtxt( filename, usecols=(0,1) )
k = len(data)

# Calculate the distance matrix
m = np.zeros( k*k )
m.shape = ( k, k )

for i in range( 0, k ):
    for j in range( i, k ):
        d = dist( data[i], data[j] )
        m[i][j] = d
        m[j][i] = d

# Perform the actual clustering
clustermap = pc.kmedoids( m, n, npass=20 )[0]

# Find the indices of the points used as medoids, and the cluster masses
medoids =  {}
for i in clustermap:
    medoids[i] = medoids.get(i,0) + 1


# Print points, grouped by cluster
for i in medoids.keys():
    print "Cluster=", i, " Mass=", medoids[i], " Centroid: ", data[i]

    for j in range( 0, len(data) ):
        if clustermap[j] == i:
            print "\t", data[j]
In the listing, we calculate the distance matrix using the
        maximum norm (which is not supplied by Pycluster) as distance function. Obviously,
        we could use any other function here—such as the Levenshtein distance
        if we wanted to cluster the strings in Figure 13-4.
We then call the kmedoids()
        function, which returns a clustermap data structure similar to the one
        returned by kcluster(). For the
        kmedoids() function, the data
        structure contains—for each data point—the index of the data point
        that is the centroid of the assigned cluster.
Finally, we calculate the masses of the clusters and print the
        coordinates of the cluster medoids as well as the coordinates of all
        points assigned to that cluster.
The C Clustering Library is small and relatively easy to use.
        You might also want to explore its tree-clustering implementation. The
        library also includes routines for Kohonen maps and principal
        component analysis, which we will discuss in Chapter 14.

Further Reading



	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
              Addison-Wesley. 2005.
This is my favorite book on data mining. The presentation is
            compact and more technical than in most other books on this topic.
            The section on clustering is particularly strong.

	Data Clustering: Theory, Algorithms, and
              Applications. Guojun Gan, Chaoqun Ma, and Jianhong Wu. SIAM.
              2007.
This book is a recent survey of results from clustering
            research. The presentation is too terse to be useful, but it
            provides a good source of concepts and keywords for further
            investigation.

	Algorithms for Clustering
              Data. Anil K. Jain and Richard C. Dubes. Prentice Hall. 1988. An
              older book on clustering as freely available at http://www.cse.msu.edu/~jain/Clustering_Jain_Dubes.pdf.

	Metric Spaces: Iteration and
              Application. Victor Bryant. Cambridge University Press. 1985. If you
              are interested in thinking about distance measures in arbitrary
              spaces in a more abstract way, then this short (100-page) book
              is a wonderful introduction. It requires no more than some
              passing familiarity with real analysis, but it does a remarkable
              job of demonstrating the power of purely abstract reasoning—both
              from a conceptual point of view but also with an eye to real
              applications.






[21] The Minkowski distance defined here
                should not be confused with the Minkowski
                metric, which defines the metric of the
                four-dimensional space-time in special relativity.

[22] “A Density-Based Algorithm for Discovering Clusters in
              Large Spatial Databases with Noise.” Martin Ester, Hans-Peter
              Kriegel, Jörg Sander, and Xiaowei Xu. Proceedings of 2nd
              International Conference on Knowledge Discovery and Data Mining
              (KDD-96). 1996.

[23] An open source implementation of the apriori algorithm (and
            many other algorithms for frequent pattern identification),
            together with notes on efficient implementation, can be found at
            http://borgelt.net/apriori.html. The
            arules package for R is an
            alternative. It can be found on CRAN.


Chapter 14. Seeing the Forest for the Trees: Finding Important
      Attributes



WHAT DO
      YOU DO WHEN YOU DON’T KNOW WHERE TO START? WHEN YOU ARE DEALING WITH A
      DATA SET THAT offers no structure that would
      suggest an angle of attack?
For example, I remember looking through a company’s contracts with
      its suppliers for a certain consumable. These contracts all differed in
      regards to the supplier, the number of units ordered, the duration of
      the contract and the lead time, the destination location that the items
      were supposed to be shipped to, the actual shipping date, and the
      procurement agent that had authorized the contract—and, of course, the
      unit price. What I tried to figure out was which of these quantities had
      the greatest influence on the unit price.
This kind of problem can be very difficult: there are so many
      different variables, none of which seems, at first glance, to be
      predominant. Furthermore, I have no assurance that the variables are all
      independent; many of them may be expressing related information. (In
      this case, the supplier and the shipping destination may be related,
      since suppliers are chosen to be near the place where the items are
      required.)
Because all variables arise on more or less equal footing, we
      can’t identify a few as the obvious “control” or independent variables
      and then track the behavior of all the other variables in response to
      these independent variables. We can try to look at all possible
      pairings—for example, using graphical techniques such as scatter-plot
      matrices (Chapter 5)—but that may not
      really reveal much either, particularly if the number of variables is
      truly large. We need some form of computational guidance.
In this chapter, we will introduce a number of different
      techniques for exactly this purpose. All of them help us select the most
      important variables or features from a multivariate
      data set in which all variables appear to arise on equal footing. In
      doing so, we reduce the dimension of the data set from the original
      number of variables (or features) to a smaller set, which (hopefully)
      captures most of the “interesting” behavior of the data. These methods
      are therefore also known as feature selection or
      dimensionality reduction techniques.
A word of warning: the material in this chapter is probably the
      most advanced and least obvious in the whole book, both conceptually and
      also with respect to actual implementations. In particular, the
      following section (on principal component analysis) is very abstract,
      and it may not make much sense if you haven’t had some previous exposure
      to matrices and linear algebra (including eigentheory). Other sections
      are more accessible.
I include these techniques here nevertheless, because they are of
      considerable practical importance but also to give you a sense of the
      kinds of (more advanced) techniques that are available, and also as a
      possible pointer for further study.
Principal Component Analysis



Principal component analysis (PCA) is the primary tool for
        dimensionality reduction in multivariate problems. It is a
        foundational technique that finds applications as part of many other,
        more advanced procedures.
Motivation



To understand what PCA can do for us, let’s consider a simple
          example. Let’s go back to the contract example given earlier and now
          assume that there are only two variables for each contract: its lead
          time and the number of units to be delivered. What can we say about
          them? Well, we can draw histograms for each to understand the
          distribution of values and to see whether there are “typical” values
          for either of these quantities. The histograms (in the form of
          kernel density estimates—see Chapter 2) are shown in
          Figure 14-1 and
          don’t reveal anything of interest.
Because there are only two variables in this case, we can also
          plot one variable against the other in a scatter plot. The resulting
          graph is shown in Figure 14-2 and is very
          revealing: the lead time of the contract grows with its size. So
          far, so good.
But we can also look at Figure 14-2 in a different
          way. Recall that the contract data depends on two variables (lead
          time and number of items), so that we would expect the points to
          fill the two-dimensional space spanned by the two axes (lead time
          and number of items). But in reality, all the points fall very close
          to a straight line. A straight line, however, is only
          one-dimensional, and this means that we need only a
          single variable to describe the position of
          each point: the distance along the straight line. In other words,
          although it appears to depend on two variables, the contract data
          mostly depends on a single variable that lies
          halfway between the original ones. In this sense, the data is of
          lower dimensionality than it originally appeared.
[image: Contract data: distribution of points for the lead time and the number of units per order. The distributions do not reveal anything in particular about the data.]

Figure 14-1. Contract data: distribution of points for the lead time and
            the number of units per order. The distributions do not reveal
            anything in particular about the data.

[image: Contract data: individual contracts in a scatter plot spanned by the two original variables. All the points fall close to a straight line that is not parallel to either of the original coordinate axes.]

Figure 14-2. Contract data: individual contracts in a scatter plot
            spanned by the two original variables. All the points fall close
            to a straight line that is not parallel to either of the original
            coordinate axes.

Of course, the data still depends on two variables—as it did
          originally. But most of the variation in the
          data occurs along only one direction. If we were to measure the data
          only along this direction, we would still capture most of what is
          “interesting” about the data. In Figure 14-3, we see another
          kernel density estimate of the same data, but this time not taken
          along the original variables but instead showing the distribution of
          data points along the two “new” directions indicated by the arrows in
          the scatter plot of Figure 14-2. In contrast to
          the variation occurring along the “long” component, the “short”
          component is basically irrelevant.
[image: Contract data: distribution of points along the principal directions. Most of the variation is along the “long” direction, whereas there is almost no variation perpendicular to it. (The vertical scales have been adjusted to make the curves comparable.)]

Figure 14-3. Contract data: distribution of points along the principal
            directions. Most of the variation is along the “long” direction,
            whereas there is almost no variation perpendicular to it. (The
            vertical scales have been adjusted to make the curves
            comparable.)

For this simple example, which had only two variables to begin
          with, it was easy enough to find the lower-dimensional
          representation just by looking at it. But that won’t work when there
          are significantly more than two variables involved. If there aren’t
          too many variables, then we can generate a scatter-plot matrix (see
          Chapter 5)
          containing all possible pairs of variables, but even this becomes
          impractical once there are more than seven or eight variables.
          Moreover, scatter-plot matrices can never show us more than the
          combination of any two of the original variables. What if the data
          in a three-dimensional problem falls onto a straight line that runs
          along the space diagonal of the original
          three-dimensional data cube? We will not find this by plotting the
          data against any (two-dimensional!) pair of the original
          variables.
Fortunately, there is a calculational scheme that—given a set
          of points—will give us the principal directions (in essence, the
          arrows in Figure 14-2) as a
          combination of the original variables. That is the topic of the next
          section.

Optional: Theory



We can make progress by using a technique that works for many
          multi-dimensional problems. If we can summarize the available
          information regarding the multi-dimensional system in
          matrix form, then we can invoke a large and
          powerful body of results from linear algebra to transform this matrix into a form that
          reveals any underlying structure (such as the structure visible in
          Figure 14-2).
In what follows, I will often appeal to the two-dimensional
          example of Figure 14-2, but the real
          purpose here is to develop a procedure that will be applicable to
          any number of dimensions. These techniques become necessary when the
          number of dimensions exceeds two or three so that simple
          visualizations like the ones discussed so far will no longer
          work.
To express what we know about the system, we first need to ask
          ourselves how best to summarize the way any two variables relate to
          each other. Looking at Figure 14-2, the
          correlation coefficient suggests itself. In
          Chapter 13, we introduced the correlation
          coefficient as a measure for the similarity between two
          multi-dimensional data points
          x and y. Here, we use the
          same concept to express the similarity between two
          dimensions in a multivariate data set. Let
          x and y be two different
          dimensions (“variables”) in such a data set, then the correlation
          coefficient is defined by:
[image: Optional: Theory]
where the sum is over all data points, x̄ and ȳ are the means
          of the
          xi
          and the
          yi,
          respectively, and [image: ] is the standard deviation of
          x (and equivalently for
          y). The denominator in the expression of the
          correlation coefficient amounts to a rescaling of the values of both
          variables to a standard interval. If that is not what we want, then
          we can instead use the covariance between the
          xi
          and the
          yi:
[image: Optional: Theory]
All of these quantities can be defined for
          any two variables (just supply values for, say
          xi
          and
          zi).
          For a p-dimensional problem, we can find all
          the p(p – 1)/2 different
          combinations (remember that these coefficients are symmetric:
          cov(x, y) =
          cov(y, x)).
It is now convenient to group the values in a matrix, which is
          typically called Σ (not to be confused with the summation
          sign!)
[image: Optional: Theory]
and similarly for the correlation matrix. Because the
          covariance (or correlation) itself is symmetric under an interchange
          of its arguments, the matrix Σ is also symmetric (so that it equals
          its transpose).
We can now invoke an extremely important result from
          linear algebra, known as the spectral decomposition
          theorem, as follows. For any real,
          symmetric N × N
          matrix A, there
          exists an orthogonal matrix U
          such that:
[image: Optional: Theory]
is a diagonal matrix.
Let’s explain some of the terminology. A matrix is
          diagonal if its only nonzero entries are along
          the main diagonal from the top left to the bottom right. A matrix is
          orthogonal if its transpose equals its inverse:
          UT
          = U–1 or
          UT
          U =
          UUT
          = 1.
The entries λi in
          the diagonal matrix are called the eigenvalues
          of matrix A, and the column vectors of
          U are the eigenvectors.
          The spectral theorem also implies that all eigenvectors are mutually
          orthogonal. Finally, the ith column vector in
          U is the eigenvector “associated” with the
          eigenvalue λi; each
          eigenvalue has an associated eigenvector.
What does all of this mean? In a nutshell, it means that we
          can perform a change of variables that turns any symmetric matrix
          A into a diagonal matrix
          B. Although it may not be obvious, the matrix
          B contains the same information as
          A—it’s just packaged differently.
The change of variables required for this transformation
          consists of a rotation of the original
          coordinate system into a new coordinate system in which the
          correlation matrix has a particularly convenient (diagonal) shape.
          (Notice how in Figure 14-2, the new
          directions are rotated with respect to the original horizontal and
          vertical axes.)
When expressed in the original coordinate system
          (i.e., the original variables that the problem
          was initially expressed in), the matrix Σ is a complicated object
          with off-diagonal entries that are nonzero. However, the
          eigenvectors span a new coordinate system that is rotated with
          respect to the old one. In this new coordinate system, the matrix
          takes on a simple, diagonal form in which all entries that are not
          on the diagonal vanish. The arrows in Figure 14-2 show the
          directions of the new coordinate axes, and the histogram in Figure 14-3 measures the
          distribution of points along these new directions.
The purpose of performing a matrix diagonalization is to find
          the directions of this new coordinate system, which is more suitable
          for describing the data than was the original coordinate
          system.
Because the new coordinate system is merely rotated relative
          to the original one, we can express its coordinate axes as linear
          combinations of the original ones. In Figure 14-2, for instance,
          to make a step in the new direction (along the diagonal), you take a
          step along the (old) x axis, followed by a step
          along the (old) y axis. We can therefore
          express the new direction (call it [image: ]) in terms of the old ones: [image: ] (the factor [image: ] is just a normalization factor).

Interpretation



The spectral decomposition theorem applies to
          any symmetric matrix. For any such matrix, we
          can find a new coordinate system, in which the matrix is diagonal.
          But the interpretation of the results (what do
          the eigenvalues and eigenvectors mean?) depends on the specific
          application. In our case, we apply the spectral theorem to the
          covariance or correlation matrix of a set of points, and the results
          of the decomposition will give us the principal axes of
          the distribution of points (hence the name of the
          technique).
Look again at Figure 14-2. Points are
          distributed in a region shaped like an extremely stretched ellipse.
          If we calculate the eigenvalues and eigenvectors of the correlation
          matrix of this point distribution, we find that the
          eigenvectors lie in the directions of the
          principal axes of the ellipse while the
          eigenvalues give the relative length of the
          corresponding principal axes.
Put another way, the eigenvalues point along the directions of
          greatest variance: the data is most stretched out if we measure it
          along the principal directions. Moreover, the eigenvalue
          corresponding to each eigenvector is a measure of the width of the
          distribution along this direction.
(In fact, the eigenvalue is the square of the standard
          deviation along that direction; remember that the diagonal entries
          of the covariance matrix Σ are [image: ]. Once we diagonalize Σ, the entries along the
          diagonal—that is, the eigenvalues—are the variances along the “new”
          directions.)
You should also observe that the variables measured along the
          principal directions are uncorrelated with each other. (By
          construction, their correlation matrix is diagonal, which means that
          the correlation between any two different variables is zero.)
This, then, is what the principal component analysis does for
          us: if the data points are distributed as a globular cloud in the
          space spanned by all the original variables (which may be more than
          two!), then the eigenvectors will give us the
          directions of the principal axes of the
          ellipsoidal cloud of data points and the eigenvalues will give us
          the length of the cloud along each of these
          directions. The eigenvectors and eigenvalues therefore describe the
          shape of the point distribution. This becomes especially useful if
          the data set has more than just two dimensions, so that a simple
          plot (as in Figure 14-2) is no longer
          feasible. (There are special varieties of PCA, such as “Kernel PCA”
          or “ISOMAP,” that work even with point distributions that do not
          form globular ellipsoids but have more complicated, contorted
          shapes.)
The description of the shape of the point distribution
          provided by the PCA is already helpful. But it gets even better,
          because we may suspect that not all of the original variables are really needed. Some of them may be
          redundant (expressing more or less the same thing), and others may
          be irrelevant (carrying little information).
An indication that variables may be redundant
          (i.e., express the “same thing”) is that they
          are correlated. (That’s pretty much the definition of correlation:
          knowing that if we change one variable, then there will be a
          corresponding change in the other.) The PCA uses the information
          contained in the mutual correlations between variables to identify
          those that are redundant. By construction, the principal coordinates
          are uncorrelated (i.e.,
          not redundant), which means that the information contained in the
          original (redundant) set of variables has been concentrated in only
          a few of the new variables while the remaining variables have become
          irrelevant. The irrelevant variables are those corresponding to
          small eigenvalues: the point distribution will have only little
          spread in the corresponding directions (which means that these
          variables are almost constants and can therefore be ignored).
The price we have to pay for the reduction in dimensions is
          that the new directions will not, in general, map neatly to the
          original variables. Instead, the new directions will correspond to
          combinations of the original variables.
There is an important consequence of the preceding discussion:
          the principal component analysis works with the correlation between
          variables. If the original variables are uncorrelated, then there is
          no point in carrying out a PCA! For instance, if the data points in
          Figure 14-2 had shown
          no structure but had filled the entire two-dimensional parameter
          space randomly, then we would not have been able to simplify the
          problem by reducing it to a one-dimensional one consisting of the
          new direction along the main diagonal.

Computation



The theory just described would be of only limited interest if
          there weren’t practical algorithms for calculating both eigenvalues
          and eigenvectors. These calculations are always numerical. You may
          have encountered algebraic methods matrix diagonalization methods in
          school, but they are impractical for matrices larger than 2 × 2 and
          infeasible for matrices larger than about 4 × 4.
However, there are several elegant
          numerical algorithms to invert and diagonalize
          matrices, and they tend to form the foundational part of any
          numerical library. They are not trivial to understand, and
          developing high-quality implementations (that avoid, say round-off
          error) is a specialized skill. There are no good reasons to write
          your own, so you should always use an established library. (Every
          numerical library or package will include the required
          functionality.)
Matrix operations are relatively expensive, and run time
          performance can be a serious concern for large matrices. Matrix
          operations tend to be of [image: ](N3)
          complexity, which means that doubling the size of the matrix will
          increase the time to perform an operation by a factor of 23 = 8. In
          other words, doubling the problem size will result in nearly a
          tenfold increase in runtime! This is not an
          issue for small matrices (up to 100 × 100 or so), but you will hit a
          brick wall at a certain size (somewhere between 5,000 × 5,000 and
          50,000 × 50,000). Such large matrices do occur in practice but
          usually not in the context of the topic of this chapter. For even
          larger matrices there are alternative algorithms—which, however,
          calculate only the most important of the eigenvalues and
          eigenvectors.
I will not go into details about different algorithms, but I
          want to mention one explicitly because it is of particular
          importance in this context. If you read about principal component
          analysis (PCA), then you will likely encounter the term
          singular value decomposition (SVD); in fact,
          many books treat PCA and SVD as equivalent expressions for the same
          thing. That is not correct; they are really quite different. PCA is
          the application of spectral methods to covariance or correlation
          matrices; it is a conceptual technique, not an algorithm. In
          contrast, the SVD is a specific algorithm that can be applied to
          many different problems one of which is the PCA.
The reason that the SVD features so prominently in discussions
          of the PCA is that the SVD combines two required steps into one. In
          our discussion of the PCA, we assumed that you first calculate the
          covariance or correlation matrix explicitly from the set of data
          points and then diagonalize it. The SVD performs these two steps in
          one fell swoop: you pass the set of data points directly to the SVD,
          and it calculates the eigenvalues and eigenvectors of the
          correlation matrix directly from those data points.
The SVD is a very interesting and versatile algorithm, which
          is unfortunately rarely included in introductory classes on linear
          algebra.

Practical Points



As you can see, principal component analysis is an involved
          technique—although with the appropriate tools it becomes almost
          ridiculously easy to perform (see the Workshop in this chapter). But
          convenient implementations don’t make the conceptual difficulties go
          away or ensure that the method is applied appropriately.
First, I’d like to emphasize that the mathematical operations
          underlying principal component analysis (namely, the diagonalization
          of a matrix) are very general: they consist of a set of formal
          transformations that apply to any symmetric
          matrix. (Transformations of this sort are used for many different
          purposes in literally all fields of science and engineering.)
In particular, there is nothing specific to data analysis
          about these techniques. The PCA thus does not involve any of the
          concepts that we usually deal with in statistics or analysis: there
          is no mention of populations, samples, distributions, or models.
          Instead, principal component analysis is a set of formal
          transformations, which are applied to the covariance matrix of a
          data set. As such, it can be either exploratory
          or preparatory.
As an exploratory technique, we may inspect its
          results (the eigenvalues and eigenvectors) for anything that helps
          us develop an understanding of the data set. For example, we may
          look at the contributions to the first few principal components to
          see whether we can find an intuitive interpretation of them (we will
          see an example of this in the Workshop section). Biplots (discussed
          in the following section) are a graphical technique that can be
          useful in this context.
But we should keep in mind that this kind of investigation is
          exploratory in nature: there is no guarantee that the results of a
          principal component analysis will turn up anything useful. In
          particular, we should not expect the principal components to have an
          intuitive interpretation in general.
On the other hand, PCA may also be used as a preparatory
          technique. Keep in mind that, by construction, the principal
          components are uncorrelated. We can therefore transform any
          multivariate data set into an equivalent form, in which all
          variables are mutually independent, before performing any subsequent
          analysis. Identifying a subset of principal components that captures
          most of the variability in the data set—for the purpose of reducing
          the dimensionality of the problem, as we discussed earlier—is
          another preparatory use of principal component analysis.
As a preparatory technique, principal component analysis is
          always applicable but may not always be useful. For instance, if the
          original variables are already uncorrelated, then the PCA cannot do
          anything for us. Similarly, if none of the eigenvalues are
          significantly smaller (so that their corresponding principal
          components can be dropped), then again we gain nothing from the
          PCA.
Finally, let me reiterate that PCA is just a mathematical
          transformation that can be applied to any symmetric matrix. This
          means that its results are not uniquely determined by the data set
          but instead are sensitive to the way the inputs are prepared. In
          particular, the results of a PCA depend on the actual
          numerical values of the data points and
          therefore on the units in which the
          measurements have been recorded. If the numerical values for one of
          the original variables are consistently larger than the values of
          the other variables, then the variable with the large values will
          unduly dominate the spectrum of eigenvalues. (We will see an example
          of this problem in the Workshop.) To avoid this kind of problem, all
          variables should be of comparable scale. A systematic way to achieve
          this is to work with the correlation matrix (in which all entries
          are normalized by their autocorrelation) instead of the covariance
          matrix.
Biplots



Biplots are an interesting way to visualize the results of a
            principal component analysis. In a biplot, we plot the data points
            in a coordinate system spanned by the first two principal
            components (i.e., those two of the
            new variables corresponding to the largest
            eigenvalues). In addition, we also plot a representation of the
            original variables but now projected into
            the space of the new variables. The data points are
            represented by symbols, whereas the directions of the original
            variables are represented by arrows. (See Figure 14-5 in the
            Workshop section.)
In a biplot, we can immediately see the distribution of
            points when represented through the new variables (and can also
            look for clusters, outliers, or other interesting features).
            Moreover, we can see how the original variables relate to the
            first two principal components and to each other: if any of the
            original variables are approximately aligned with the horizontal
            (or vertical) axis, then they are approximately aligned with the
            first (or second) principal component (because in a biplot, the
            horizonal and vertical axes coincide with the first and second
            principal components). We can thus see which of the original
            variables contribute strongly to the first principal components,
            which might help us develop an intuitive interpretation for those
            components. Furthermore, any of the original variables that are
            roughly redundant will show up as more or less parallel to each
            other in a biplot—which can likewise help us identify such
            combinations of variables in the original problem.
Biplots may or may not be helpful. There is a whole
            complicated set of techniques for interpreting biplots and reading
            off various quantities from them, but these techniques seem rarely
            used, and I have not found them to be very practical. If I do a
            PCA, I will routinely also draw a biplot: if it tells me something
            worthwhile, that’s great; but if not, then I’m not going to spend
            much time on it.



Visual Techniques



Principal component analysis is a rigorous prescription, and
        example of a “data-centric” technique: it transforms the original data
        in a precisely prescribed way, without ambiguity and without making
        further assumptions. The results are an expression of properties of
        the data set. It is up to us to interpret them, but the results are
        true regardless of whether we find them useful or not.
In contrast, the methods described in this section are
        convenience methods that attempt to make multi-dimensional data sets
        more “palatable” for human consumption. These methods do not calculate
        any rigorous properties inherent in the data set; instead, they try to
        transform the data in such a way that it can be plotted while at the
        same time trying to be as faithful to the data as possible.
We will not discuss any of these methods in depth, since
        personally, I do not find them worth the effort: on the one hand, they
        are (merely) exploratory in nature; on the other hand, they require
        rather heavy numerical computations and some nontrivial theory. Their
        primary results are projections (i.e., graphs) of
        data sets, which can be difficult to interpret if the number of data
        points or their dimensionality becomes large—which is exactly when I
        expect a computationally intensive method to be helpful! Nevertheless,
        there are situations where you might find these methods
        useful, and they do provide some interesting concepts for how to
        think about data. This last reason is the most
        important to me, which is why this section emphasizes concepts while
        skipping most of the technical details.
The methods described in this section try to calculate specific
        “views” or projections of the data into a lower number of dimensions.
        Instead of selecting a specific projection, we can also try to display
        many of them in sequence, leaving it to the human observer to choose
        those that are “interesting.” That is the method we introduced in
        Chapter 5, when we
        discussed Grand Tours and Projection Pursuits—they provide yet another
        approach to the problem of dimensionality reduction for multivariate
        data sets.
Multidimensional Scaling



Given a set of data points (i.e., the
          coordinates of each data point), we can easily
          find the distance between any pair of points (see Chapter 13 for a discussion of distance
          measures). Multidimensional scaling (MDS) attempts to answer the
          opposite question: given a distance matrix, can we recover the
          explicit coordinates of the points?
This question has a certain intellectual appeal in its own
          right, but of course, it is relevant in situations where our
          information about a certain system is limited to the differences
          between data points. For example, in usability studies or surveys we
          may ask respondents to list which of a set of cars (or whiskeys, or
          pop singers) they find the most or the least alike; in fact, the
          entire method was first developed for use in psychological studies.
          The question is: given such a matrix of relative preferences or
          distances, can we come up with a set of absolute positions for each
          entry?
First, we must choose the desired number of dimensions of our
          points. The dimension D = 2 is used often, so
          that the results can be plotted easily, but other values for
          D are also possible.
If the distance measure is Euclidean—that is, if the distance
          between two points is given by:
[image: Multidimensional Scaling]
where the sum is running over all dimensions—then it turns out
          that we can invert this relationship explicitly and find expressions
          for the coordinates in terms of the distances. (The only additional
          assumption we need to make is that the center of mass of the entire
          data set lies at the origin, but this amounts to no more than an
          arbitrary translation of all points.) This technique is known as
          classical or metric
          scaling.
The situation is more complicated if we cannot assume that the
          distance measure is Euclidean. Now we can no longer invert the
          relationship exactly and must resort instead to iterative
          approximation schemes. Because the resulting coordinates may not
          replicate the original distances exactly, we include an
          additional constraint: the distance matrix calculated from the new
          positions must obey the same rank order as the original distance
          matrix: if the original distances between any three points obeyed
          the relationship d(x,
          y) <
          d(x,
          z), then the calculated coordinates of the
          three points must satisfy this also. For this reason, this version
          of multidimensional scaling is known as ordinal
          scaling.
The basic algorithm makes an initial guess for the coordinates
          and calculates a distance matrix based on the guessed coordinates.
          The coordinates are then changed iteratively to minimize the
          discrepancy (known as the “stress”) between the new distance matrix
          and the original one.
Both versions of multidimensional scaling lead to a set of
          coordinates in the desired number of dimensions (usually two), which
          we can use to plot the data points in a form of scatter plot. We can
          then inspect this plot for clusters, outliers, or other
          features.

Network Graphs



In passing, I’d like to mention force-based
          algorithms for drawing network graphs because they are
          similar in spirit to multidimensional scaling.
Imagine we have a network consisting of nodes, some of which
          are connected by vertices (or edges), and we would like to find a
          way to plot this network in a way that is “attractive” or
          “pleasing.” One approach is to treat the edges as springs, in such a
          way that each spring has a preferred extension and exerts an
          opposing force—in the direction of the spring—if compressed or
          extended beyond its preferred length. We can now try to find a
          configuration (i.e., a set of coordinates for
          all nodes) that will minimize the overall tension of the
          springs.
There are basically two ways we can go about this. We can
          write down the the total energy due to the distorted springs and
          then minimize it with respect to the node coordinates using a
          numerical minimization algorithm. Alternatively, we can “simulate”
          the system by initializing all nodes with random coordinates and
          then iteratively moving each node in response to the spring forces
          acting on it. For smaller networks, we can update all nodes at the
          same time; for very large networks, we may randomly choose a single
          node at each iteration step for update and continue until the
          configuration no longer changes. It is easy to see how this basic
          algorithm can be extended to include richer situations—for instance,
          edges carrying different weights.
Note that this algorithm makes no guarantees regarding the
          distances that are maintained between the nodes in the final
          configuration. It is purely a visualization technique.


Kohonen Maps



Self-organizing maps (SOMs), often called Kohonen maps after
        their inventor, are different from the techniques discussed so far. In
        both principal component analysis and multidimensional scaling, we
        attempted to find a new, more favorable arrangement of points by
        moving them about in a continuous fashion. When constructing a Kohonen
        map, however, we map the original data points to cells in a
        lattice. The presence of a lattice forces a fixed
        topology on the system; in particular, each point in a lattice has a
        fixed set of neighbors. (This property is typically and confusingly
        called “ordering” in most of the literature on Kohonen maps.)
The basic process of constructing a Kohonen map works as
        follows. We start with a set of k data points in
        p dimensions, so that each data point consists of
        a tuple of p numeric values. (I intentionally
        avoid the word “vector” here because there is no requirement that the
        data points must satisfy the “mixable” property characteristic of
        vectors—see Appendix C and Chapter 13.)
Next we prepare a lattice. For simplicity, we consider a
        two-dimensional square lattice consisting of n ×
        m cells. Each cell contains a
        p-dimensional tuple, similar to a data point,
        which is called the reference tuple. We
        initialize this tuple with random values. In other words, our lattice
        consists of a collection of random data points, arranged on a regular
        grid.
Now we perform the following iteration. For each data point, we
        find that cell in the lattice with the smallest distance between its
        contained p-tuple and the data point; then we
        assign the data point to this cell. Note that multiple data points can
        be assigned to the same cell if necessary.
Once all the data points have been assigned to cells in the
        lattice, we update the p-tuples of all cells
        based on the values of the data points assigned to the cell itself and
        to its neighboring cells. In other words, we use the data points
        assigned to each cell, as well as those assigned to the cell’s
        neighbors, to compute a new tuple for the cell.
When all lattice points have been updated, we restart the
        iteration and begin assigning data points to cells again (after
        erasing the previous assignments). We stop the iteration if the
        assignments no longer change or if the differences between the
        original cell values and their updates are sufficiently small.
This is the basic algorithm for the construction of a Kohonen
        map. It has certain similarities with the k-means
        algorithm discussed in Chapter 13. Both are
        iterative procedures in which data points are assigned to cells or
        clusters, and the cell or cluster is updated based on the points
        assigned to it. However, two features are specific to Kohonen
        maps:
	Each data point is mapped to a cell in the lattice, and this
            implies that each data point is placed in a specific neighborhood
            of other data points (which have been mapped to neighboring
            cells).

	Because the updating step for each cell relies not only on
            the current cell but also on neighboring cells, the resulting map
            will show a “smooth” change of values: changes are averaged or
            “smeared out” over all cells in the neighborhood. Viewed the other
            way around, this implies that points that are similar to each
            other will map to lattice cells that are in close proximity to
            each other.



Although the basic algorithm seems fairly simple, we still need
        to decide on a number of technical details if we want to develop a
        concrete implementation. Most importantly, we still need to give a
        specific prescription for how the reference tuples will be updated by
        the data points assigned to the current cell and its
        neighborhood.
In principle, it would be possible to recalculate the values for
        the reference tuple from scratch every time by forming a componentwise
        average of all data points assigned to the cell. In practice, this may
        lead to instability during iteration, and therefore it is usually
        recommended to perform an incremental update of the reference value
        instead, based on the difference between the current value of the
        reference tuple and the assigned data points. If
        yi(t)
        is the value of the reference tuple at position i
        and at iteration t, then we can write its value
        at the next iteration step t + 1 as:
[image: Kohonen Maps]
where
        xk(j;
        t) is the data point k which
        has been assigned to lattice point j at iteration
        step t and where the sum runs over all data
        points. The weight function
        h(i, j;
        t) is now chosen to be a decreasing function of
        the distance between the lattice cells i and
        j, and it is also made to shrink in value as the
        iteration progresses. A typical choice is a Gaussian:
[image: Kohonen Maps]
where
        dij
        is the Euclidean distance between lattice points
        i and j and where
        α(t) and σ(t) are decreasing
        functions of t. Choices other than the Gaussian
        are also possible—for instance, we may choose a step function to
        delimit the effective neighborhood.
Even with these definitions, we still need to decide on further
        details:
	What is the topology of the lattice? Square lattices (like
            quad-ruled paper) are convenient but strongly single out two
            specific directions. Hexagonal lattices (like a honeycomb) are
            more isotropic. We also need to fix the boundary conditions. Do
            cells at the edge of the lattice have fewer neighbors than cells
            in the middle of the lattice, or do we wrap the lattice around and
            connect the opposite edges to form periodic boundary
            conditions?

	What is the size of the lattice? Obviously, the number of
            cells in the lattice should be smaller than the number of data
            points (otherwise, we end up with unoccupied cells). But how much
            smaller? Is there a preferred ratio between data points and
            lattice cells? Also, should the overall lattice be square
            (n × n) or rectangular
            (n × m)? In principle,
            we can even consider lattices of different shape—triangular, for
            example, or circular. However, if we choose a lattice of higher
            symmetry (square or circular), then the
            orientation of the final result within the
            lattice is not fixed; for this reason, it has been suggested that
            the lattice should always be oblongated
            (e.g., rectangular rather than
            square).

	We need to choose a distance or similarity measure for
            measuring the distance between data points and reference
            tuples.

	We still need to fix the numerical range of
            α(t) and σ(t) and define
            their behavior as functions of t.



In addition, there are many opportunities for low-level tuning,
        in particular with regard to performance and convergence. For example,
        we may find it beneficial to initialize the lattice points with values
        other than random numbers.
Finally, we may ask what we can actually do with the resulting
        lattice of converged reference tuples. Here are some ideas.
	We can use the lattice to form a smooth, “heat map”
            visualization of the original data set. Because cells in the
            lattice are closely packed, a Kohonen map interpolates smoothly
            between different points. This is in contrast to the result from
            either PCA or MDS, which yield only individual, scattered
            points.

	One problem when plotting a Kohonen map is deciding which
            feature to show. If the original data set was
            p-dimensional, you may have to plot
            p different graphs to see the distribution of
            all features.

	The situation is more favorable if one of the features of
            interest is categorical and has only a few possible values. In
            this case, you can plot the labels on the graph and study their
            relationships (which labels are close to each other, and so on).
            In this situation, it is also possible to use a “trained” Kohonen
            map to classify new data points or data points with missing
            data.

	If the number of cells in the lattice was chosen much
            smaller than the number of original data points, then you can try
            mapping the reference tuples back into the
            original data space—for example, to use them as
            prototypes for clustering purposes.



Kohonen maps are an interesting technique that occupy a space
        between clustering and dimensionality reduction. Kohonen maps group
        similar points together like a clustering algorithm, but they also
        generate a low-dimensional representation of all data points by
        mapping all points to a low-dimensional lattice. The entire concept is
        very ad hoc and heuristic; there is little rigorous theory, and thus
        there is little guidance on the choice of specific details.
        Nonetheless, the hands-on, intuitive nature of Kohonen maps lends
        itself to exploration and experimentation in a way that a more
        rigorous (but also more abstract) technique like PCA does not.

Workshop: PCA with R



Principal component analysis is a complicated technique, so it
        makes sense to use specialized tools that hide most of the complexity.
        Here we shall use R, which is the best-known open source package for
        statistical calculations. (We covered some of the basics of R in the
        Workshop section of Chapter 10; here I want to
        demonstrate some of the advanced functionality built into R.)
Let’s consider a nontrivial example. For a collection of nearly
        5,000 wines, almost a dozen physico-chemical properties were measured,
        and the results of a subjective “quality” or taste test were recorded
        as well.[24] The properties are:
 1 - fixed acidity
 2 - volatile acidity
 3 - citric acid
 4 - residual sugar
 5 - chlorides
 6 - free sulfur dioxide
 7 - total sulfur dioxide
 8 - density
 9 - pH
10 - sulphates
11 - alcohol
12 - quality (score between 0 and 10)
This is a complicated data set, and having to handle 11 input
        variables is not comfortable. Can we find a way to make sense of them
        and possibly even find out which are most important in determining the
        overall quality of the wine?
This is a problem that is perfect for an application of the PCA.
        And as we will see, R makes this really easy for us.
For this example, I’ll take you on a slightly roundabout route.
        Be prepared that our initial attempt will lead to an incorrect
        conclusion! I am including this detour here for a number of reasons. I
        want to remind you that real data analysis, with real and interesting
        data sets, usually does not progress linearly. Instead, it is very
        important that, as we work with a data set, we constantly keep
        checking and questioning our results as we go along. Do they make
        sense? Might we be missing something? I also want to demonstrate how
        R’s interactive programming model facilitates the required exploratory
        work style: try something and look at the results; if they look wrong,
        go back and make sure you are on the right track, and so on.
Although it can be scripted for batch operations, R is primarily
        intended for interactive use, and that is how we will use it here. We
        first load the data set into a heterogeneous “data frame” and then
        invoke the desired functions on it. Functions in turn may return data
        structures themselves that can be used as input to other functions,
        that can be printed in a human readable format to the screen, or that
        can be plotted.
R includes many statistical functions as built-in functions. In
        our specific case, we can perform an entire principal component
        analysis in a single command:
wine <- read.csv( "winequality-white.csv", sep=';', header=TRUE )
pc <- prcomp( wine )
plot( pc )
[image: A scree plot: the values of the principal components, from largest to smallest. Here, the largest component totally dominates the spectrum. But be careful: this result is spurious! (See text.)]

Figure 14-4. A scree plot: the values of the principal components, from
          largest to smallest. Here, the largest component totally dominates
          the spectrum. But be careful: this result is spurious! (See
          text.)

This snippet of code reads the data from a file and
        assigns the resulting data frame to the variable wine. The prcomp() function performs the actual
        principal component analysis and returns a data structure containing
        the results, which we assign to the variable pc. We can now examine this returned data
        structure in various ways.
R makes heavy use of function overloading—a function such as
        plot() will accept different forms
        of input and try to find the most useful action to perform, given the
        input. For the data structure returned by prcomp(), the plot() function constructs a so-called
        scree plot[25] (see Figure 14-4), showing the
        magnitudes of the variances for the various principal components, from
        the greatest to the smallest.
We see that the first eigenvalue entirely dominates the
        spectrum, suggesting that the corresponding new variable is all that
        matters (which of course would be great). To understand in more detail
        what is going on, we look at the corresponding eigenvector. The
        print() function is another
        overloaded function, which for this particular data structure prints
        out the eigenvalues and eigenvectors:
print( pc )

(some output omitted...)

                               PC1           PC2           PC3
fixed.acidity        -1.544402e-03 -9.163498e-03 -1.290026e-02
volatile.acidity     -1.690037e-04 -1.545470e-03 -9.288874e-04
citric.acid          -3.386506e-04  1.403069e-04 -1.258444e-03
residual.sugar       -4.732753e-02  1.494318e-02 -9.951917e-01

chlorides            -9.757405e-05 -7.182998e-05 -7.849881e-05
free.sulfur.dioxide  -2.618770e-01  9.646854e-01  2.639318e-02
total.sulfur.dioxide -9.638576e-01 -2.627369e-01  4.278881e-02
density              -3.596983e-05 -1.836319e-05 -4.468979e-04
pH                   -3.384655e-06 -4.169856e-05  7.017342e-03
sulphates            -3.409028e-04 -3.611112e-04  2.142053e-03
alcohol               1.250375e-02  6.455196e-03  8.272268e-02

(some output omitted...)
This is disturbing: if you look closely, you will notice that
        both the first and the second eigenvector are dominated by the sulfur
        dioxide concentration—and by a wide margin! That does not seem right.
        I don’t understand much about wine, but I would not think that the
        sulfur dioxide content is all that matters in the end.
Perhaps we were moving a little too fast. What do we actually
        know about the data in the data set? Right: absolutely nothing! Time
        to find out. One quick way to do so is to use the summary() function on the
        original data:
summary(wine)
fixed.acidity    volatile.acidity  citric.acid     residual.sugar
Min.   : 3.800   Min.   :0.0800   Min.   :0.0000   Min.   : 0.600
1st Qu.: 6.300   1st Qu.:0.2100   1st Qu.:0.2700   1st Qu.: 1.700
Median : 6.800   Median :0.2600   Median :0.3200   Median : 5.200
Mean   : 6.855   Mean   :0.2782   Mean   :0.3342   Mean   : 6.391
3rd Qu.: 7.300   3rd Qu.:0.3200   3rd Qu.:0.3900   3rd Qu.: 9.900
Max.   :14.200   Max.   :1.1000   Max.   :1.6600   Max.   :65.800
    chlorides     free.sulfur.dioxide total.sulfur.dioxide    density
Min.   :0.00900   Min.   :  2.00       Min.   :  9.0        Min.   :0.9871
1st Qu.:0.03600   1st Qu.: 23.00       1st Qu.:108.0        1st Qu.:0.9917
Median :0.04300   Median : 34.00       Median :134.0        Median :0.9937
Mean   :0.04577   Mean   : 35.31       Mean   :138.4        Mean   :0.9940
3rd Qu.:0.05000   3rd Qu.: 46.00       3rd Qu.:167.0        3rd Qu.:0.9961
Max.   :0.34600   Max.   :289.00       Max.   :440.0        Max.   :1.0390
       pH         sulphates          alcohol           quality
Min.   :2.720   Min.   :0.2200    Min.   : 8.00     Min.   :3.000
1st Qu.:3.090   1st Qu.:0.4100    1st Qu.: 9.50     1st Qu.:5.000
Median :3.180   Median :0.4700    Median :10.40     Median :6.000
Mean   :3.188   Mean   :0.4898    Mean   :10.51     Mean   :5.878
3rd Qu.:3.280   3rd Qu.:0.5500    3rd Qu.:11.40     3rd Qu.:6.000
Max.   :3.820   Max.   :1.0800    Max.   :14.20     Max.   :9.000
I am showing the output in its entire length to give you a sense
        of the kind of output generated by R. If you look through this
        carefully, you will notice that the two sulfur dioxide columns have
        values in the tens to hundreds, whereas all other columns have values
        between 0.01 and about 10.0. This explains a lot: the two sulfur
        dioxide columns dominate the eigenvalue spectrum simply because they
        were measured in units that make the numerical values much larger than
        the other quantities. As explained before, if this is the case, then
        we need to scale the input variables before
        performing the PCA. We can achieve this by passing the scale option to the prcomp() command, like so:
pcx <- prcomp( wine, scale=TRUE )
Before we examine the result of this operation, I’d like to
        point out something else. If you look really closely, you will notice
        that the quality column is not what it claims to be. The description
        of the original data set stated that quality was graded on a scale
        from 1 to 10. But as we can see from the data summary, only grades
        between 3 and 9 have actually been assigned. Worse, the first quartile
        is 5 and the third quartile is 6, which means that at least half of all entries in the data set have a quality
        ranking of either 5 or 6. In other words, the actual range of
        qualities is much narrower than we might have expected (given the
        original description of the data) and is strongly dominated by the
        center. This makes sense (there are more mediocre wines than
        outstanding or terrible ones), but it also makes this data set much
        less interesting because whether a wine will be ranked 5 versus 6
        during the sensory testing is likely a toss-up.
We can use the table()
        function to see how often each quality ranking occurs in the data set
        (remember that the dollar sign is used to select a single column from
        the data frame):
table( wine$quality )

 3     4    5    6    7   8     9
20   163 1457 2198  880 175     5
As we suspected, the middling ranks totally dominate the
        distribution. We might therefore want to change our goal and instead
        try to predict the outliers, either good or bad, rather than spending
        too much effort on the undifferentiated middle.
Returning to the results of the scaled PCA, we can look at the
        spectrum of eigenvalues for the scaled version by using the summary() function (again, overloaded!) on
        the return value of prcomp():
summary( pcx )
Importance of components:
                         PC1   PC2   PC3    PC4    PC5    PC6
Standard deviation     1.829 1.259 1.171 1.0416 0.9876 0.9689
Proportion of Variance 0.279 0.132 0.114 0.0904 0.0813 0.0782
Cumulative Proportion  0.279 0.411 0.525 0.6157 0.6970 0.7752
                         PC7    PC8    PC9    PC10   PC11   PC12
Standard deviation     0.8771 0.8508 0.7460 0.5856 0.5330 0.14307
Proportion of Variance 0.0641 0.0603 0.0464 0.0286 0.0237 0.00171
Cumulative Proportion  0.8393 0.8997 0.9460 0.9746 0.9983 1.00000
No single eigenvalue dominates now, and the first 5 (out of 12)
        eigenvalues account for only 70 percent of the total variance. That’s
        not encouraging—it doesn’t seem that we can significantly reduce the
        number of variables this way.
As a last attempt, we can create a biplot. This, too, is very
        simple; all we need to do is execute (see Figure 14-5)
biplot( pcx )
This is actually a fascinating graph! We see that three of the
        original variables—alcohol content, sugar content, and density—are
        parallel to the first principal component (the horizontal axis).
        Moreover, alcohol content is aligned in the direction opposite to the
        other two quantities.
But this makes utmost sense. If you recall from chemistry class,
        alcohol has a lower density than water, and sugar syrup has a higher
        density. So the result of the PCA reminds us that density, sugar
        concentration, and alcohol content are not independent: if you change
        one, the others will change accordingly. And because these variables
        are parallel to the first principal component, we can conclude that
        the overall density of the wine is an important quantity.
[image: A biplot: symbols correspond to the individual data points projected onto the plane spanned by the two largest principal components. Also shown are the original variables projected onto the same plane.]

Figure 14-5. A biplot: symbols correspond to the individual data points
          projected onto the plane spanned by the two largest principal
          components. Also shown are the original variables projected onto the
          same plane.

The next set of variables that we can read off are the fixed
        acidity, the citric acid concentration, and the pH value. Again, this
        makes sense: the pH is a measure of the acidity of a solution (with
        higher pH values indicating less acidity). In other words, these three
        variables are also at least partially redundant.
The odd one out, then, is the overall sulfur content, which is a
        combination of sulfur dioxide and sulphate concentration.
And finally, it is interesting to see that the quality seems to
        be determined primarily by the alcohol content and the acidity. This
        suggests that the more alcoholic and the less sour the wine, the more
        highly it is ranked—quite a reasonable conclusion!
We could have inferred all of this from the original description
        of the data set, but I must say that I, for one, failed to see these
        connections when initially scanning the list of columns. In this
        sense, the PCA has been a tremendous help in interpreting and
        understanding the content of the data set.
Finally, I’d like to reflect one more time on our use of R in
        this example. This little application demonstrates both the power and
        the shortcomings of R. On the one hand, R comes with many high-level,
        powerful functions built in, often for quite advanced statistical
        techniques (even an unusual and specialized graph like a biplot can be
        created with a single command). On the other hand, the heavy reliance
        on high-level functions with implicit behavior leads to opaque
        programs that make it hard to understand exactly what is going on. For
        example, such a critical question as deciding whether or not to
        rescale the input data is handled as a rather obscure option to the
        prcomp() command. In particular,
        the frequent use of overloaded functions—which can exhibit widely
        differing functionality depending on their input—makes it hard to
        predict the precise outcome of an operation and makes discovering ways
        to perform a specific action uncommonly difficult.

Further Reading



	Introduction to Multivariate
              Analysis. Chris Chatfield and Alexander Collins. Chapman &
              Hall/CRC. 1981.
A bit dated but still one of the most practical, hands-on
            introductions to the mathematical theory of multivariate analysis.
            The section on PCA is particularly clear and practical but
            entirely skips computational issues and makes no mention of the
            SVD.

	Principal Component
              Analysis. I. T. Jolliffe. 2nd ed., Springer. 2002.
The definitive reference on principal component analysis.
            Not an easy read.

	Multidimensional Scaling. Trevor F. Cox and Michael A. A. Cox. Chapman &
              Hall/CRC. 2001.
The description of multidimensional scaling given in this
            chapter is merely a sketch—mostly, because I find it hard to
            imagine scenarios where this technique is truly useful. However,
            it has a lot of appeal and is fun to tinker with. Much more
            information, including some extensions, can be found in this
            book.

	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
              Addison-Wesley. 2005.
This is my favorite reference on data mining. The
            presentation is compact and more technical than in most other
            books on this topic.



Linear Algebra



Linear algebra is a foundational topic. It is here
          that one encounters for the first time abstract concepts such as
          spaces and mappings treated as objects of interest in their own
          right. It takes time and some real mental effort to get used to
          these notions, but one gains a whole different perspective on
          things.
The material is also of immense practical value—particularly
          its central result, which is the spectral decomposition theorem. The
          importance of this result cannot be overstated: it is used in
          every multi-dimensional problem in mathematics,
          science, and engineering.
However, the material is abstract and unfamiliar, which makes
          it hard for the beginner. Most introductory books on linear algebra
          try to make the topic more palatable by emphasizing applications,
          but that only serves to confuse matters even more, because it never
          becomes clear why all that abstract machinery is needed when looking
          at elementary examples. The abstract notions at the heart of linear
          algebra are best appreciated, and most easily understood, when
          treated in their own right.
The resources listed here are those I have found most helpful
          in this regard.
	Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004. The book lives
                up to its grandiose title. It treats linear algebra as an
                abstract theory of mappings but on a very accessible, advanced
                undergraduate level. Highly recommended but probably not as
                the first book on the topic.

	Matrix Methods in Data Mining and Pattern
                Recognition. Lars Eldén. SIAM. 2007. This short book is an
                introduction to linear algebra with a particular eye to
                applications in data mining. The pace is fast and probably
                requires at least some previous familiarity with the
                subject.

	Understanding Complex Datasets: Data Mining
                with Matrix Decompositions. David Skillicorn. Chapman & Hall/CRC. 2007.
An advanced book, concentrating mostly on applications of
              the SVD and its variants.

	“A Singularly Valuable Decomposition: The SVD of a
              Matrix.” Dan Kalman. The College Mathematics
              Journal 27 (1996), p. 2. This article, which can be
              found on the Web, is a nice introduction to the SVD. It’s not
              for beginners, however.







[24] This example is taken from the “Wine Quality” data set,
            available at the UCI Machine Learning repository at
            http://archive.ics.uci.edu/ml/.

[25] Scree is the rubble that collects at
            the base of mountain cliffs.


Chapter 15. Intermezzo: When More Is Different



WHEN
      DEALING WITH SOME OF THE MORE COMPUTATIONALLY INTENSIVE DATA ANALYSIS OR
      MINING algorithms, you may encounter an unexpected
      obstacle: the brick wall. Programs or algorithms
      that seemed to work just fine turn out not to work once in production.
      And I don’t mean that they work slower than expected. I mean they do not
      work at all!
Of course, performance and scalability problems are familiar to
      most enterprise developers. However, the kinds of problems that arise in
      data-centric or computationally intensive applications are different,
      and most enterprise programmers (and, in fact, most computer science
      graduates) are badly prepared for them.
Let’s try an example: Table 15-1 shows the time
      required to perform 10 matrix multiplications for square matrices of
      various size. (The details of matrix multiplication don’t concern us
      here; suffice it to say that it’s the basic operation in almost all
      problems involving matrices and is at the heart of operator
      decomposition problems, including the principal component analysis
      introduced in Chapter 14.)
Table 15-1. Time required to perform 10 matrix multiplications for square
        matrices of different sizes
	Size
              n
	Time [seconds]

	100
	0.00

	200
	0.06

	500
	2.12

	1,000
	22.44

	2,000
	176.22




Would you agree that the data in Table 15-1 does not look too
      threatening? For a 2,000 × 2,000 matrix, the time required is a shade
      under three minutes. How long might it take to perform the same
      operation for a 10,000 × 10,000 matrix? Five, maybe ten minutes? Yeah,
      right. It takes five hours! And if you need to go a
      little bit bigger still—say, 30,000 × 30,000, the computation will take
      five days.
What we observe here is typical of many computationally intensive
      algorithms: they consume disproportionately more time as the problem
      size becomes larger. Of course, we have all heard about this in school,
      but our intuition for the reality of this phenomenon is usually not very
      good. Even if we run a few tests on small data sets, we fail to spot the
      trouble: sure, the program takes longer as the data sets get larger, but
      it all seems quite reasonable. Nevertheless, we tend to be unprepared
      for what appears to be a huge jump in the required
      time as we increase the data set by a seemingly not very large factor.
      (Remember: what took us from three minutes to five hours was an increase
      in the problem size by a factor of 5—not even an order of
      magnitude!)
The problem is that, unless you have explicitly worked on either a
      numerical or a combinatorial problem in the past, you probably have
      never encountered the kind of scaling behavior exhibited by
      computational or combinatorial problems. This skews our
      perception.
Where are you most likely to encounter perceptible performance
      problems in an enterprise environment? Answer: slow database queries! We
      all have encountered the frustration resulting from queries that perform
      a full table scan instead of using an indexed lookup (regardless whether
      no index is available or the query optimizer fails to use it). Yet a
      query that performs a full table scan rather than using an index
      exhibits one of the most benign forms of scaling: from
      [image: ](log n) (meaning that the
      response time is largely insensitive to the size of the table) to
      [image: ](n) (meaning that doubling
      the table size will double the response time).
In contrast, matrix operations—such as the matrix multiplication
      encountered in the earlier example—scale as [image: ](n3);
      this means that if the problem doubles in size, then the time required
      grows by a factor of 8 (because
      23 = 8). In other words, as you go from a
      2,000 × 2,000 matrix to a 4,000 × 4,000 matrix, the problem will take
      almost 10 times as long; and if you go to a 10,000 × 10,000 matrix, it
      will take 53 = 125 times as long.
      Oops.
And this is the good news. Many combinatorial problems (such as
      the Traveling Salesman problem and similar problems) don’t scale
      according to a power law (such as [image: ](n3))
      but instead scale exponentially ([image: ](en)).
      In these cases, you will hit the brick wall much
      faster and much more brutally. For such problems, an incremental
      increase in the size of the problem (i.e., from
      n to n + 1) will typically at
      least double the runtime. In other words, the last
      element to calculate takes as much time as all the previous elements
      taken together. System sizes of around
      n = 50 are frequently the end of the line. With
      extreme effort you might be able to push it to n =
      55, but n = 100 will be entirely out of
      reach.
The reason I stress this kind of problem so much is that in my
      experience, not only are most enterprise developers unprepared for the
      reality of it but also that the standard set of software engineering
      practices and attitudes is entirely inadequate to deal with them. I once
      heard a programmer say, “It’s all just engineering” in response to
      challenges about the likely performance problems of a computational
      system he was working on. Nothing could be further from the truth: no
      amount of low-level performance tuning will save a program of this
      nature that is algorithmically hosed—and no amount of faster hardware,
      either. Moreover, “standard software engineering practices” are either
      of no help or are even entirely inapplicable (we’ll see an example in a
      moment).
Most disturbing to me was his casual, almost blissful
      ignorance—this coming from a guy who definitely
      should have known better.
A Horror Story



I was once called into a project in its thirteenth hour—they had
        far exceeded both their budget and their schedule and were about to be
        shut down for good because they could not make their system work. They
        had been trying to build an internal tool that was intended to solve
        what was, essentially, a combinatorial problem. The tool was supposed
        to be used interactively: the user supplies some inputs and receives
        an answer within, at most, a few minutes. By the time I got involved,
        the team had labored for over a year, but the minimum response time
        achieved by their system exceeded 12 hours—even
        though it ran on a very expensive (and very expensive to operate)
        supercomputer.
After a couple of weeks, I came up with an improved algorithm
        that calculated answers in real time and could run on a laptop.
No amount of “engineering” will be able to deliver that kind of
        speed-up.
How was this possible? By attacking the problem on many
        different levels. First of all, we made sure we fully
        understood the problem domain. The original
        project team had always been a little vague about what exactly the
        program was trying to calculate, as a result their “domain model” was
        not truly logically consistent. Hence the first thing to do was to put
        the whole problem on sound mathematical footing. Second, we
        redefined the problem: the original program had
        attempted to calculate a certain quantity by explicit enumeration of
        all possible combinations, whereas the new solution calculated an
        approximation instead. This was warranted because the input data was
        not known very precisely, anyway, and because we were able to show
        that the uncertainty introduced by the approximation was less than the
        uncertainty already present in the data. Third, we treated
        hot spots differently than the happy case: the new
        algorithm could calculate the result to higher accuracy, but it did so
        only when the added accuracy was needed. Fourth, we used efficient
        data structures and implemented some core pieces ourselves instead of
        relying on general-purpose libraries; we also judiciously
        precalculated and cached some frequently used intermediate
        results.
After putting the whole effort on a conceptually
        consistent footing, the most important contribution was changing the
        problem definition: dropping the exact approach, which was unnecessary
        and infeasible, and adopting an approximate solution that was cheap
        and all that was required.

Some Suggestions



Computational and combinatorial programming is really different.
        It runs into different limits and requires different techniques. Most
        important is the appropriate choice of algorithm at the outset, since
        no amount of low-level tuning or “engineering” will save a program
        that is algorithmically flawed.
Here is a list of recommendations in case you find yourself
        setting out on a project that involves heavy computation or deals with
        combinatorial complexity issues:
Do your homework. Understand computational
        complexity, know the complexity of the algorithm you intend to use,
        and research the different algorithms (and their trade-offs) available
        for your kind of problem. Read broadly—although the exact problem as
        specified may turn out to be intractable, you may find that a small
        change in the requirements may lead to a much simpler problem. It is
        definitely worth it to renegotiate the problem with the customer or
        end users than setting out on a project that is infeasible from the
        outset. (Skiena’s Algorithm Design Manual is a
        particularly good resource for algorithms grouped by problems.)
Run a few numbers. Do a few tests with
        small programs and evaluate their scaling performance. Don’t just look
        at the actual numbers themselves—also consider the scaling behavior as
        you vary the problem size. If the program does not exhibit the scaling
        behavior you expect theoretically, it has a bug. If so, fix the bug
        before proceeding! (In general, algorithms follow the theoretical
        scaling prediction quite closely for all but the smallest of problem
        sizes.) Extrapolate to real-sized problems: can you live with the
        expected runtime predictions?
Forget standard software engineering
        practices. It is a standard assumption in current software
        engineering that developer time is the scarcest resource and that
        programs should be designed and implemented accordingly.
        Computationally intensive programs are one case where this is not
        true: if you are likely to max out the machine, then it’s worth having
        the developer—rather than the computer—go the extra mile. Additional
        developer time may very well make the difference between an
        “infeasible” problem and a solved one.
For instance, in situations where you are pressed for space, it
        might very well make sense to write your own container implementations
        instead of relying on the system-provided hash map. Beware of the trap
        of conditioned thinking, though: in one project I worked on, we knew
        that we would have a memory size problem and that we therefore had to
        keep the size of individual elements small. On the other
        hand, it was not clear at first whether the 4-byte Java int data type would be sufficient to
        represent all required values or whether we would have to use the
        8-bye Java long type. In response,
        someone suggested that we wrap the atomic data
        type in an object so we could swap out the implementation, in case the
        4-byte int turned out to be
        insufficient. That’s a fine approach in a standard software
        engineering scenario (“encapsulation” and all that), but in this
        situation—where space was at a premium—it missed the point entirely:
        the space that the Java wrapper would have consumed (in addition to
        its data members) would have been larger than the payload!
Remember: standard software engineering practices are typically
        intended to trade machine resources for developer resources. However,
        for computationally intensive problems, machine resources (not
        developer time) are the limiting factor.
Don’t assume that parallelization will be
        possible. Don’t assume that you’ll be able to partition the
        problem in such a way that simultaneous execution on multiple machines
        (i.e., parallelization) will be possible, until
        you have developed an actual, concrete, implementable algorithm—many
        computational problems don’t parallelize well. Even if you can come up
        with a parallel algorithm, performance may be disappointing: hidden
        costs (such as communication overhead) often lead to performance that
        is much poorer than predicted; a cluster consisting of twice as many
        nodes often exhibits a behavior much less than
        double the original one! Running realistic tests (on realistically
        sized data sets and on realistically sized clusters) is harder for
        parallel programs than for single processor implementations—but even
        more important.
Leave yourself some margin. Assume that the
        problem size will be larger by a factor of 3 and that hardware will
        deliver only 50 percent of theoretically predicted performance.
If the results are not wholly reassuring, explore
        alternatives. Take the results for the expected runtime and
        memory requirements that you obtained from theoretical predictions and
        the tests that you have performed seriously. Unless you seem able to
        meet your required benchmarks comfortably,
        explore alternatives. Consider better algorithms, research whether the
        problem can be simplified or whether the problem can be approached in
        an entirely different manner, and look into approximate or heuristic
        solutions. If you feel yourself stuck, get help!
If you can’t make it work on paper, STOP.
        It won’t work in practice, either. It is a surprisingly common
        anti-pattern to see the warning signs early but to press on regardless
        with the hopeful optimism that “things will work themselves out during
        implementation.” This is entirely misguided: nothing will work out
        better as you proceed with an implementation; everything is always a
        bit worse than expected.
Unless you can make it work on paper and make it work
        comfortably, there is no point in
        proceeding!
The recurring recommendation here is that nobody is helped by a
        project that ultimately fails, because it was impossible (or at least
        infeasible) from the get-go. Unless you can demonstrate at least the
        feasibility of a solution (at an acceptable price point!), there is no
        use to proceed. And everybody is much better off knowing this ahead of
        time.

What About Map/Reduce?



Won’t the map/reduce family of techniques make most of these
        considerations obsolete? The answer, in general, is
        no.
It is important to understand that map/reduce is not actually a
        clever algorithm or even an algorithm at all. It is a piece of
        infrastructure that makes naive algorithms
        convenient.
That’s a whole different ball game. The map/reduce approach does
        not speed up any particular algorithm at all. Instead, it makes the
        parallel execution of many subproblems convenient. For map/reduce to
        be applicable, therefore, it must be possible to
        partition the problem in such a way that
        individual partitions don’t need to talk to each other. Search is such
        an application that is trivially parallelizable, and many (if not all)
        successful current applications of map/reduce that I am aware of seem
        to be related to generalized forms of search.
This is not to say that map/reduce is not a very important
        advance. (Any device that makes an existing technique orders of
        magnitudes more convenient is an important innovation!) At the moment,
        however, we are still in the process of figuring how which problems
        are most amenable to the map/reduce approach and how best to adapt
        them. I suspect that the algorithms that will work best on map/reduce
        will not be straightforward generalizations of
        serial algorithms but instead will be algorithms that would be
        entirely unattractive on a serial computer.
It is also worth remembering that parallel computation is not
        new. What has killed it in the past was the need for different
        partitions of the problem to communicate with each other: very
        quickly, the associated communication overhead annihilated the benefit
        from parallelization. This problem has not gone away, it is merely
        masked by the current emphasis on search and searchlike problems,
        which allow trivial parallelization without any need for communication
        among partitions. I worry that more strictly computational
        applications (such as the matrix multiplication problem discussed
        earlier or the simulation of large physical systems) will require so
        much sharing of information among nodes that the map/reduce approach
        will appear unattractive.
Finally, amid the excitement currently generated by map/reduce,
        it should not be forgotten that its total cost of ownership (including
        the long-term operational cost of maintaining the
        required clusters as well as the associated network and storage
        infrastructure) is not yet known. Although map/reduce installations
        make distributed computing “freely” available to the individual
        programmer, the required hardware installations and their operations
        are anything but “free.”
In the end, I expect map/reduce to have an effect similar to the
        one that compilers had when they came out. The code that they produced
        was less efficient than handcoded assembler code, but the overall
        efficiency gain far outweighed this local disadvantage.
But keep in mind that even the best compilers have rendered
        neither Quicksort nor indexed lookup obsolete.

Workshop: Generating Permutations



Sometimes, you have to see it to believe it. In this spirit,
        let’s write a program that calculates all permutations
        (i.e., all possible rearrangements) of a set.
        (That is, if the set is [1,2,3],
        then the program will generate [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].) You can imagine this routine to be
        part of a larger program: in order to solve the Traveling Salesman
        problem exactly, for example, one needs to generate all possible trips
        (i.e., all permutations of the cities to visit)
        and evaluate the associated distances.
Of course, we all “know” that the number of permutations grows
        as n! = 1 · 2 · 3 ··· n,
        where n is the number of elements in the set and
        that the factorial function grows “quickly.” Nevertheless, you have to
        see it to believe it. (Even I was shocked by what I found when
        developing and running the program below!)
The program that follows reads a positive integer n from the command line and then generates
        all permutations of a list of n
        elements, using a recursive algorithm. (It successively removes one
        element of the list, generates all permutations of the remainder, and
        then tacks the removed element back on to the results.) The time
        required is measured and printed.
import sys, time

def permutations( v ):
    if len(v) == 1: return [ [v[0]] ]

    res = []
    for i in range( 0, len(v) ):
        w = permutations( v[:i] + v[i+1:] )
        for k in w:
            k.append( v[i] )
        res += w

    return res


n = int(sys.argv[1])
v = range(n)
t0 = time.clock()
z = permutations( v )
t1 = time.clock();

print n, t1-t0
(You may object to the use of recursion here, pointing out that
        Python does not allow infinite depth of recursion. This is true but is
        not a factor: we will run into trouble long before that constraint
        comes into play.)
I highly recommend that you try it. Because we know (or suspect)
        that this program might take a while to run when the number of
        elements is large, we probably want to start out with three elements.
        Or with four. Then maybe we try five, six, or seven. In all cases, the
        program finishes almost instantaneously. Then go
        ahead and run it with n=10. Just 10
        elements. Go ahead, do it. (But I suggest you save all files and clean
        up your login session first, so you can reboot without losing too much
        work if you have to.)
Go ahead. You have to see it to believe
        it![26]

Further Reading



	The Algorithm Design Manual. Steven S. Skiena. 2nd ed., Springer. 2008.
This is an amazing book, because it presents algorithms not
            as abstract entities to be studied for their own beauty but as
            potential solutions to real problems. Its second half consists of
            a “hitchhiker’s guide to algorithms”: a catalog of different
            algorithms for common problems. It helps you find an appropriate
            algorithm by asking detailed questions about your specific problem
            and provides pointers to existing implementations. In addition,
            the author’s “war stories” of past successes and failures in the
            real world provide a vivid reminder that algorithms are
            real.






[26] Anybody who scoffs that this example is silly, because “you
            should not store all the intermediate results; use a generator” or
            because “everyone knows you can’t find all permutations
            exhaustively; use heuristics” is absolutely correct—and entirely
            missing the point. I know that this implementation is naive,
            but—cross your heart—would you really have assumed that the naive
            implementation would be in trouble for n =
            10? Especially, when it didn’t even blink for
            n = 7?


Part IV. Applications: Using Data




Chapter 16. Reporting, Business Intelligence, and Dashboards



DATA
      ANALYSIS DOES NOT JUST CONSIST OF CRUNCHING NUMBERS. IT ALSO INCLUDES
      NAVIGATING THE CONTEXT and environment in which
      the need for data analysis arises. In this chapter and the next, we will
      look at two areas that often have a demand for data analysis and
      analytical modeling but that tend to be unfamiliar if you come from a
      technical background: in this chapter, we discuss business intelligence
      and corporate metrics; in the next chapter, financial calculations and
      business plans.
This material may seem a little out of place because it is largely
      not technical. But that is precisely why it is important to include this
      topic here: to a person with a technical background, this material is
      often totally new. Yet it is precisely in these areas that sound
      technical and analytical advice is often required: the primary consumers
      of these services are “business people,” who may not have the necessary
      background and skills to make appropriate decisions without help. This
      places additional responsibility on the person working with the data to
      understand the problem domain thoroughly, in order to make suitable
      recommendations.
This is no joke. I have seen otherwise very smart people at
      high-quality companies completely botch business metrics programs simply
      because they lacked basic software engineering and math skills. As the
      person who (supposedly!) “understands data,” I see it as part of my
      responsibility to understand what my clients actually want to
      do with the data—and advise them accordingly on the
      things they should be doing. But to do so
      effectively, it is not enough to understand the data—I also need to
      understand my clients.
That’s the spirit in which these chapters are intended. The aim is
      to describe some of the ways that demand for data arises in a business
      environment, to highlight some of the traps for the unwary, and to give
      some advice on using data more successfully.
Business Intelligence



Businesses have been trying to make use of the data that
        they collect for years and, in the process, have accumulated a fair
        share of disappointments. I think we need to accept that the problem
        is hard: you need to find a way to represent, store, and make
        accessible a comprehensive view of all available data in such a way
        that is useful to anybody and for any purpose. That’s just hard. In
        addition, to be comprehensive, such an initiative has to span the
        entire company (or at least a very large part of it), which brings
        with it a whole set of administrative and political problems.
This frustrating state of affairs has brought forth a number of
        attempts to solve what is essentially a conceptual and political
        problem using technical means. In particular, the
        large enterprise tool vendors saw (and see) this problem space as an
        opportunity!
The most recent iteration on this theme was data warehouses—that
        is, long-term, comprehensive data stores in which data is represented
        in a denormalized schema that is intended to be more general than the
        schema of the transactional databases and also easier to use for
        nontechnical users. Data is imported into the data warehouse from the
        transactional databases using so-called ETL (extraction,
        transformation, and load) processes.
Overall, there seems to be a feeling that data warehouses fell
        short of expectations for three reasons. First of all, since data
        warehouses are enterprise-wide, they respond slowly to changes in any
        one business unit. In particular, changes to the transactional data
        schema tend to propagate into the data warehouse at a glacial pace, if
        at all. The second reason is that accessing the data in the data
        warehouse never seems to be as convenient as it should be. The third
        and final reason is that doing something useful with the data (once
        obtained) turns out to be difficult—in part because the typical query
        interface is often clumsy and not designed for analytic work.
While data warehouses were the most recent iteration in the
        quest for making company data available and useful, the current trend
        goes by the name of business intelligence, or BI.
        The term is not new (Wikipedia tells me that it was first used in the
        1950s), but only in the last one or two years have I seen the term
        used regularly.
The way I see it, business intelligence is an accessibility
        layer sitting on top of a data warehouse or similar data store, trying
        to make the underlying data more useful through better reporting,
        improved support for ad hoc data analysis, and even some attempts at
        canned predictive analytics.
Because it sits atop a database, all business intelligence stays
        squarely within the database camp; and what it aspires to do is
        constrained by what a database (or a database developer!) can do. The
        “analytics” capabilities consist mostly of various aggregate
        operations (sums, averages, and so on) that are typically supported by
        OLAP (Online Analytical Processing) cubes. OLAP
        cubes are multi-dimensional contingency tables
        (i.e., with more than two dimensions) that are
        precomputed and stored in the database and that allow for (relatively)
        quick summaries or projections along any of the axes. These “cubes”
        behave much like spreadsheets on steroids, which makes them familiar
        and accessible to the large number of people comfortable with
        spreadsheets and pivot tables.
In my experience, the database heritage (in contrast to a
        software engineering heritage) of BI has another consequence: the way
        people involved with business intelligence relate to it. While almost
        all software development has an element of
        product development to it, business intelligence
        often feels like infrastructure maintenance. And
        while the purpose of the former typically involves innovation and the
        development of new ways to please the customer, the latter tends to be
        more reactive and largely concerned with “keeping the trains on time.”
        This is not necessarily a bad thing, as long as one pays attention to
        the difference in cultures.
What is the take away here? First of all, I think it is
        important to have realistic expectations: when it comes right down to
        it, business intelligence initiatives are mostly about better
        reporting. That is fine as far as it goes, but it does not require (or
        provide) much data analysis per se. The business users who are the
        typical customers of such projects usually don’t need much help in
        defining the numbers they would like to see. There may be a need for
        help with visualization and overall user interface design, but the
        possibilities here tend to be mostly defined (and that means limited)
        by the set of tools being used.
More care needs to be taken when any of the “canned” analysis
        routines are being used that come bundled with many BI packages. Most
        (if not all) of these tools are freebies, thrown in by the vendor to
        pad the list of supported features, but they are likely to lack
        production strength and instead emphasize “ease of use.” These tools
        will produce results, all right—but it will be our job to decide how
        significant and how relevant
        these results are.
We should first ask what these routines are actually doing
        “under the hood.” For example, a clustering package may employ any one
        of a whole range of clustering algorithms (as we saw in Chapter 13) or even use a combination of algorithms
        together with various heuristics. Once we understand what the package
        does, we can then begin asking questions about the quality and, in
        particular, the significance of the results. Given that the routine is
        largely a black box to us, we will not have an intuitive sense
        regarding the extent of the region of validity of its results, for
        example. And because it is intended as an easy-to-use give away, it is
        not likely to have support for (or report at length about) nasty
        details such as confidence limits on the results. Finally, we should
        ask how relevant and useful these results are. Was there an original
        question that is being addressed—or was the answer mostly motivated by
        the ease with which it could be obtained?
One final observation: when there are no commercial tool
        vendors around, there is not much momentum for developing business
        intelligence implementations. Neither of the two major open source
        databases (MySQL and Postgres) has developed BI functionality or the
        kinds of ad hoc analytics interfaces that are typical of BI tools.
        (There are, however, a few open source projects that provide reporting
        and OLAP functionality.)
Reporting



The primary means by which data is used for “analysis”
          purposes in an enterprise environment is via reports. Whether we
          like it or not, much of “business intelligence” revolves around
          reporting, and “reporting” is usually a big part of what companies
          do with their data.
It is also one of the greatest sources of frustration. Given
          the ubiquity of reporting and the resources spent on it, one would
          think that the whole area would be pretty well figured out by now.
          But this is not so: in my experience, nobody seems to like what the
          reporting team is putting out—including the reporting team
          itself.
I have come to the conclusion that reporting, as currently
          understood and practiced, has it all wrong. Reporting is the one
          region of the software universe that has so far been barely touched
          by the notions of “agility” and “agile development.” Reporting
          solutions are invariably big, bulky, and bureaucratic, slow to
          change, and awkward to use. Moreover, I think with regards to two
          specific issues they get it exactly
          wrong:
	In an attempt to conserve resources, reporting solutions
              are often built generically: a single reporting system that
              supports all the needs of all the users. The reality, of course,
              is that the system does not serve the needs of
              any user (certainly not well), even as the
              overhead of the general-purpose architecture drives the cost
              through the roof.

	Most reporting that I have seen confuses “up to date” with
              “real time.” Data for reports is typically pulled in immediate
              response to a user’s query, which ensures that the data is up to
              date but also (for many reports) that it will take a while
              before the report is available—often quite a while! I believe
              that this delay is the single greatest source of frustration
              with all reports, anywhere. For a user, it typically matters
              much more to get the data right this minute
              than to get it up to this minute!



Can we conceive of an alternative to the current style of
          reporting, one that actually delivers on its promise and is easy and
          fun to use? I think so (in fact, I have seen it in action), but
          first we need to slaughter a sacred cow: namely, that
          one reporting system should be able to handle
          all kinds of different requirements. In
          particular, I think it will be helpful to distinguish very clearly
          between operational and
          representative reports.
Representative reports are those intended for external users.
          Quarterly filings certainly fall into this category, as do reports
          the company may provide to its customers on various metrics. In
          short, anything that gets published.
Operational reports, in contrast, are those used by managers
          within the company to actually run the business. Such reports
          include information on the the number of orders shipped today, the
          size of the backlog, or the CPU loads of various servers.
These two report types have almost nothing in common!
          Operational reports need to be fast and convenient—little else
          matters. Representative reports need to be definitive and optically
          impressive. It is not realistic to expect a single reporting system
          to support both requirements simultaneously! I’d go further and say
          that the preparation of representative reports is always somewhat of
          a special operation and should be treated as such: “making it look
          good.” If you have to do this a lot (e.g.,
          because you regularly send invoices to a large number of customers),
          then by all means automate the process—but don’t kid yourself into
          thinking that this is still merely “reporting.” (Billing is a
          core business activity for all service
          businesses!)
When it comes to operational reports, there are several ideas
          to consider:
Think “simple, fast, convenient.” Reports
          should be simple to understand, quick (instantaneous) to run, and
          convenient to use. Convenience dictates that the users
          must not be required to fill in an input mask
          with various parameters. The most the user can be expected to do is
          to select one specific report from a fixed list of available
          ones.
Don’t waste real estate. The whole point
          of having a report is the data. Don’t waste
          space on other things, especially if they never change. I have seen
          reports in which fully one third of the screen was taken up by a
          header showing the company logo! In another case, a similar amount
          of space was taken up by an input mask. Column headers and
          explanations are another common culprit: once people have seen the
          report twice, they will know what the columns are. (You will still
          need headers, but they can be short.) Move explanatory material to a
          different location and provide a link to it. Remember: the reason
          people ran the report is to see the
          data.
Make reports easy to read. In particular,
          this means putting lots of data onto a single page that can be read
          by scrolling (instead of dividing the data across several pages that
          require reloading those pages). Use a large enough font and consider
          (gently!) highlighting every second line. Less is more.
Consider expert help for the visual
          design. Reports don’t have to be ugly. It may be worth
          enlisting an expert to design and implement a report that
          looks pleasant and is easy to use. Good design
          will emphasize the content and avoid distracting embellishments.
          Developing good graphic designs is a specialized skill, and some
          people are simply better at this task than others. Remember: a
          report’s ease of use is not an unnecessary detail but an essential
          quality!
Provide raw data, and let the user handle filtering
          and aggregation. This is a potentially radical idea:
          instead of providing a complicated input mask whereby the user has
          to specify a bunch of selection criteria and the columns to return,
          a report can simply return everything (within
          reason, of course) and leave it to the user to perform any desired
          filtering and aggregation. This idea is based on the realization
          that most people who use reports are going to be comfortable working
          with Excel (or an equivalent spreadsheet program). Hence, we can
          regard a report not as an end product but rather as a data feed for
          spreadsheets.
This approach has a number of advantages: it is simple, cheap,
          and flexible (because users are free to design their own reports).
          It also implies that the report needs to include additional columns,
          which are required for user-level filtering and aggregation.
Consider cached reports instead of real-time
          queries. Once the input mask has been removed, the
          content of a report is basically fixed. But once it is fixed, it can
          be run ahead of time and cached—which means that we can return the
          data to the user instantaneously. It also means that the database is
          hit only once no matter how often the report is viewed.
Find out what your users are doing with reports—and
          then try to provide it for them. I cannot tell how often
          I’ve witnessed the following scenario. The reporting team spends
          significant time and effort worrying about the details and layout of
          its reports. But a few doors down the hall, the first thing that the
          report’s actual users do is cut-and-paste the results from the
          reporting system and import them into, yes, Excel. And then they
          often spend a lot of time manually editing and formatting the
          results so that they reflect the information that the users actually
          need. This occurs every day (or every week, or
          every hour—each time the report is accessed).
These edits are often painfully simple: the users need the
          report sorted on some numerical column, but this is impossible
          because the entry in that column is text: “Quantity 17.” Or they
          need the difference between two columns rather than the raw values.
          In any case, it’s usually something that could be implemented in
          half an hour, solving the problem once and for all. (These informal
          needs tend not to be recognized in formal “requirements” meetings,
          but they become immediately apparent if you spend a couple of hours
          tracking the the users’ daily routines.)
Reports are for consumers, not producers.
          A common response to the previous item is that every user seems to
          have his own unique set of needs, and trying to meet all of them
          would lead to a proliferation of different reports.
There is of course some truth to that. But in my experience,
          certain reports are used by work groups in a fairly standard
          fashion. It is in these situations that the time spent on
          repetitive, routine editing tasks (such as those just described) is
          especially painful—and avoidable. In such cases it might also be
          worthwhile to work with the group (or its management) to standardize
          their processes, so that in the end, a single report can meet
          everybody’s needs.
But there is a bigger question here, too. Whose convenience is
          more important—the producers’ or the users’? More broadly: for
          whom are the reports intended—for the reporting
          team or for the people looking at them?
Think about the proper metrics to show.
          For reports that show some form of summary statistics (as opposed to
          raw counts), think about which quantities to show. Will a mean
          (e.g., “average time spent in queue”) be
          sufficient, or is the distribution of values skewed, so that the
          median would be more appropriate? Do you need to include a measure
          for the width of the distribution (standard deviation or
          inter-quartile range)? (Answer: probably!) Also, don’t neglect
          cumulative information (see Chapter 2).
Don’t mix drill-down functionality with standard
          reporting. This may be a controversial item. In my
          opinion, reports are exactly that: standard overviews of the status
          of the system. Every time I run a report, I expect to find the same
          picture. (The numbers will change, of course, but not the overall
          view.) Drill-downs, on the other hand, are always different. After
          all, they are usually conducted in response to something out of the
          ordinary. Hence I don’t think it makes sense devising a
          general-purpose framework for them; ad hoc work is best done using
          ad hoc tools.
Consider this: general-purpose frameworks are always clumsy
          and expensive yet they rarely deliver the functionality required.
          Would it be more cost-effective to forget about maintaining
          drill-down functionality in the reporting system itself and instead
          deploy the resources (i.e., the developers)
          liberated thereby to address drill-down tasks on an ad hoc
          basis?
Don’t let your toolset strangle you.
          Don’t let your toolset limit the amount of value you can deliver.
          Many reporting solutions that I have seen can be awfully limiting in
          terms of the kind of information you can display and the formatting
          options that are available. As with any tool: if it gets in the way,
          evaluate again whether it is a net gain!
This is the list. I think the picture I’m trying to paint is
          pretty clear: fast, simple, and convenient
          reports that show lots of data but little else. Minimal overhead and
          a preference for cheap one-offs as opposed to expensive,
          general-purpose solutions. It’s not all roses—in particular, the
          objection that a large number of cheap one-off reports might incur a
          significant total cost of ownership in the long run is well taken.
          On the other hand, every general-purpose reporting solution that I
          have seen incurred a similar cost of ownership—but did not deliver
          the same level of flexibility and convenience.
I think it is time to rethink reporting. The agile movement
          (whether right or wrong in all detail) has brought fresh life to
          software development processes. We should start applying its lessons
          to reporting.
Finally, a word about reporting tools. The promise of the
          reporting tools that I have seen is to consume data from “many
          sources” and to deliver reports to “many formats” (such as HTML,
          PDF, and Excel).
I have already suggested why I consider this largely an
          imaginary problem: I cannot conceive of a situation where you really
          need to deliver the same report in both HTML and PDF versions. If
          there is a requirement to support both formats, on close examination
          we will probably find that the HTML report is an operational report,
          whereas the PDF report is to be representational. There are probably
          additional differences between the two versions (besides the output
          format), in terms of layout, content, life cycle, and audience—just
          about everything.
Similar considerations apply regarding the need to pull data
          from many sources. Although this does occur,
          does it occur often enough that it should form the basis for the
          entire reporting architecture? Or does, in reality, most of the data
          come from relational databases and the odd case where some
          information comes from a different source
          (e.g., an XML document, an LDAP server, or a
          proprietary data store) is best handled as a special case? (If you
          do in fact need to pull data from very different sources, then you
          should consider implementing a proper intermediate layer, one that
          extracts and stores data from all sources in a
          robust, common format. Reporting requires a solid and reliable data
          model. In other words, you want to isolate your reporting solution
          from the vagaries of the data sources—especially if these sources
          are “weird.”)
The kinds of problems that reporting tools promise to solve
          strike me as classic examples of cases where a framework
          seems like a much better idea than it actually
          is. Sure, a lot of the tasks involved in reporting are lame and
          repetitive. However, designing a framework that truly has the
          flexibility required to function as a general-purpose tool is
          difficult, which leads to frameworks that are hard to use for
          everyone—and you still have to work around their limitations. The
          alternative is to write some boring but straightforward and most of
          all simple boilerplate code that solves
          your specific problems simply and well. I tend
          to think that some simple, problem-specific boilerplate code is in
          every way preferable to a big, complicated, all-purpose
          framework.
As for the actual delivery technology, I am all for simple
          tables and static, precomputed graphics—provided they are useful and
          well thought-out (which is not always as easy as it may seem).
          Specifically, I don’t think that animated or interactive
          graphics—for example, using Adobe Flash, Microsoft Silverlight, or
          some other “Thick Client” technology—work well for reporting. Test
          yourself: how often do you want to wait for 5–10 seconds while some
          bar chart is slowly rendering itself (with all the animated bars
          growing individually from the base line)? Once you have seen this a
          few times, the “cute” effect has worn off, and the waiting becomes a
          drag. Remember that reports should be convenient, and that mostly
          means quick.
Thick clients do make sense as technologies for
          building “control consoles”: complex user interfaces designed to
          operate a complex system that needs to be controlled in real time.
          But that’s a very different job than reporting and should be (and
          usually is) treated as a core product with a dedicated software
          team.


Corporate Metrics and Dashboards



It is always surprising when a company doesn’t have good,
        real-time, and consistent visibility into some of its own fundamental
        processes. It can be amazingly difficult to obtain insight into data
        such as: orders fulfilled today, orders still pending, revenue by item
        type, and so on.
But this lack of visibility should not come as surprise because
        up close, the problem is harder than it appears. Any business of
        sufficient size will have complex business rules, which furthermore
        may be inconsistent across divisions or include special exceptions for
        major customers. The IT infrastructure that provides the data will
        have undergone several iterations over the years and be a mixture of
        “legacy” and more current systems—none of which were primarily
        designed for our current purposes! The difficulties in presenting the
        desired data are nothing more than a reflection of the complexity of
        the business.
You may encounter two concepts that try to address the
        visibility problem just described: special
        dashboards and more general metrics
        programs. The goals of a metrics program are to
        define those quantities that are most relevant
        and should be tracked and to design and develop the infrastructure
        required to collect the appropriate data and make it
        accessible.
A dashboard might be the visible outcome of a metrics program.
        The purpose of a dashboard is to provide a high-level view of all
        relevant metrics in a single report (rather than a collection of
        individual, more detailed reports). Dashboards often include
        information on whether any given metric is within its desired
        range.
Dashboard implementations can be arbitrarily fancy, with various
        forms of graphical displays for individual quantities. An unfortunate
        misunderstanding results from taking the word “dashboard” too
        seriously and populating the report with graphical images of dials, as
        one might find in a car. Of course, this is beside the point and
        actually detracts from a legitimate, useful idea: to have a
        comprehensive, unified view of the whole set of relevant
        metrics.
I think it is important to keep dashboards simple. Stick to the
        original idea of all the relevant data on a single page—together with
        clear indications of whether each value is within the desired range or
        not.
As already explained when discussing reports, I do not believe
        that drill-down functionality should be part of the overall
        infrastructure. The purpose of the dashboard is to highlight areas
        that need further attention, but the actual work on these areas is
        better done using individual, detailed research.
Recommendations for a Metrics Program



In case you find yourself on a project team to implement a
          metrics program, tasked to define the metrics to track and to design
          the required infrastructure, here are some concrete recommendations
          that you might want to consider.
Understand the cost of metrics programs.
          Metrics aren’t free. They require development effort and deployment
          infrastructure of production-level strength, both of which have
          costs and overhead. Once in production, these systems will also
          require regular maintenance. None of this is free.
I think the single biggest mistake is to assume that a
          successful metrics program can be run as an add-on project without
          additional resources. It can’t.
Have realistic expectations for the achievable
          benefit. The short-term effect of any sort of metrics
          program is likely to be small and possibly nondetectable. Metrics
          provide visibility and only visibility, but
          they don’t improve performance. Only the decisions based on these
          metrics will (perhaps!) improve performance. But here the
          marginal gain can be quite small, since many of
          the same decisions might have been made anyway, based on routine and
          gut feeling.
The more important effect of a metrics program stems from the
          long-term effect it has on the organizational culture. A greater
          sense of accountability, or even the realization that there
          are different levels of performance, can change
          the way the business runs. But these effects take time to
          materialize.
Start with the actions that the metrics should
          drive. When setting out to define a set of metrics to
          collect, make sure to ask yourself: what decision would I make
          differently in response to the value of this metric? If none comes
          to mind, you don’t need to collect it!
Don’t define what you can’t measure. This
          is a good one. I remember a metrics program where the set of metrics
          to track had been decided at the executive management level, based
          on what would be “useful” to see. Problem was, for a significant
          fraction of those quantities, no data was being collected and none
          could be collected because of limitations in the physical
          processes.
Build appropriate infrastructure. For a
          metrics program to be successful, it must be technically reliable,
          and the data must be credible. In other words, the systems that
          support it must be of production-level quality
          in regard to robustness, uptime, and reliability. For a company of
          any size, this requires databases, network infrastructure,
          monitoring—the whole nine yards. Plan on them! It will be difficult
          to be successful with only flat files and a CGI script (or with
          Excel sheets on a SharePoint, for that matter).
There is an important difference here between a more
          comprehensive program that purports to be
          normative and widely available, and an ad hoc report. Ad hoc reports
          can be extremely effective precisely because they do not require any
          infrastructure beyond a CGI script (or an Excel sheet), but they
          do not scale. They won’t scale to more metrics,
          larger groups of users, more facilities, longer historical time
          frames, or whatever it is.
That being said, if all you need is an ad hoc report, by all
          means go for it.
Steer clear of manually collected
          metrics. First of all, manually collected metrics are
          neither reliable nor credible (people will forget to enter numbers
          and, if pressed, will make them up). Second, most people will resist
          having to enter numbers (especially in detail—think timesheets!),
          which will destroy the acceptance and credibility of the program.
          Avoid manually collected metrics at all cost.
Beware of aggregates. It can be very
          appealing to aggregate values as much as possible: “Just give me
          one number so that I see how my business is
          doing.” The problem is that every aggregation step loses information
          that is impossible to regain: you can’t unscramble an egg. And
          actionable information is typically
          detailed information. Knowing that my
          aggregated performance score has tanked is not actionable but
          knowing which specific system has failed
          is!
This leads us to questions about user interface design,
          roll-ups, and drill-downs. I think most of this is unnecessary. All
          that’s required is a simple, high-level report. If details are
          required, one can always dig deeper in an ad hoc fashion.
Think about the math involved. The math
          required for corporate metrics is rarely advanced, but it still
          offers opportunities for mistakes. A common example occurs whenever
          we are forming a ratio—for example, to calculate the defect rate as
          the number of defects divided by the number of items produced. The
          problem is that the denominator can become zero (no items produced
          during the observation time frame), which makes it impossible to
          calculate a defect rate. There are different ways you can handle
          this (report as “not available,” treat zero items produced as a
          special case, especially slick: add a small number to the
          denominator in your definition of the defect rate, so that it can
          never become zero), but you need to handle this possibility somehow
          (also see Appendix B).
There are other problems for which careful thinking about the
          best mathematical representation can be helpful. For example, to
          compare metrics they need to be normalized through rescaling by an
          appropriate scaling factor. For quantities that vary over many
          orders of magnitude, it might be more useful to track the logarithm
          instead of the raw quantity. Consider getting expert help: a
          specialist with sufficient analytical background can recognize
          trouble spots and make recommendations for how
          best to deal with them that may not be obvious.
Be careful with statistical methods that
          might not apply. Mean and standard deviation are good
          representations for the typical value and the typical spread only if
          the distribution of data points is roughly symmetrical. In many
          practical situations, this is not the
          case—waiting times, for instance, can never be negative and,
          although the “typical” waiting time may be quite short, there is
          likely to be a tail of events that take a very long time to
          complete. This tail will corrupt both mean and standard deviation.
          In such cases, median-based statistics are a better bet (see Chapter 2 and Chapter 9).
In general, it is necessary to study the nature of the data
          before settling on an appropriate way to
          summarize it. Again, consider expert help if you don’t have the
          competency in-house.
Don’t buy what you don’t need. It is
          tempting to ask for a lot of detail that is not really required.
          Generally, it is not necessary to track sales numbers on a
          millisecond basis because we cannot respond to changes at that
          speed—and even if we could, the numbers would not be very meaningful
          because sales normally fluctuate over the course of a day.
Establish a meaningful time scale or the frequency with which
          to track changes. This time scale should be similar to the time
          scale in which we can make decisions and also similar to the time
          scale after which we see the results of those decisions. Note that
          this time scale might vary drastically: daily is probably good
          enough for sales, but for, say, the reactor temperature, a much
          shorter time scale is certainly appropriate!
Don’t oversteer. This recommendation is
          the logical consequence of the previous one. Every “system” has a
          certain response time within which it reacts to changes. Applying
          changes more frequently than this response time is useless and
          possibly harmful (because it prevents the system from reaching a
          steady state).
Learn to distinguish trend and variation.
          Most metrics will be tracked over time, so what we have learned
          about time-series analysis (see Chapter 4) applies. The
          most important skill is to develop an understanding for the duration
          and magnitude of typical “noise” fluctuations and to distinguish
          them from significant changes (trends) in the data. Suppose sales
          dipped today by 20 percent: this is no cause for alarm if we know
          that sales fluctuate by ±25 percent from day to day. But if sales
          fall by 5 percent for five days in a row, that could possibly be a
          warning sign.
Don’t forget the power of perverted
          incentives. When metrics are used to manage staff
          performance, this often means changing from a vague yet broad sense
          of “performance” to a much narrower focus on specifically those
          quantities that are being measured. This development can result in
          creating perverted incentives.
Take, for instance, the primary performance metric in
          a customer service call center: the number of calls a worker handles
          per hour, or “calls per hour.” The best way for a call center worker
          who is evaluated solely in terms of calls per hour to improve her
          standing is by picking up the phone when it rings and hanging up
          immediately! By making calls per hour the dominant metric, we have
          implicitly deemphasized other important aspects, such as customer
          satisfaction (i.e., quality).
Beware of availability bias. Some
          quantities are easier to measure than others and therefore tend to
          receive greater attention. In my experience, productivity is
          generally easier to measure than quality, with all the unfortunate
          consequences this entails.
Just because it can’t be measured does not mean it
          does not exist. Some quantities cannot be measured. This
          includes “soft” factors such as culture, commitment, and fun; but
          also some very “hard” factors like customer satisfaction. You can’t
          measure that—all you can measure directly are proxies
          (e.g., the return rate). An alternative are
          surveys, but because participants decide themselves whether they
          reply, the results may be misleading. (This is known as
          self-selection bias.)
Above all, don’t forget that a metrics program is intended to
          help the business by providing visibility—it should never become an
          end in itself. Also keep in mind that it is an effort to support
          others, not the other way around.


Data Quality Issues



All reporting and metrics efforts depend on the availability and
        quality of the underlying data. If the required data is improperly
        captured (or not captured at all), there is nothing to work
        with!
The truth of the matter is that if a company wants to have a
        successful business intelligence or metrics program, then its data
        model and storage solution must be designed with reporting
        needs in mind. By the time the demand for data analysis
        services rolls around, it is too late to worry about data
        modeling!
Two problems in particular occur frequently when one is trying
        to prepare reports or metrics: data may not be
        available or it may not be
        consistent.
Data Availability



Data may not be collected at all, often with the innocent
          argument that “nobody wanted to use it.” That’s silly: data that’s
          directly related to a company’s business is always relevant—whether
          or not anybody is looking at it right now.
If data is not available, this does not necessarily mean that
          it is not being collected. Data may be collected but not at the
          required level of granularity. Or it is collected but immediately
          aggregated in a way that loses the details required for later
          analysis. (For instance, if server logs are aggregated daily into
          hits per page, then we lose the ability to associate a specific user
          to a page, and we also lose information about the order in which
          pages were visited.)
Obviously, there is a trade-off between the amount of data
          that can be stored and the level of detail that we can achieve in an
          analysis. My recommendation: try to keep as much detail as you can,
          even if you have to spool it out to tape (or whatever offline
          storage mechanism is available). Keep in mind that operational data,
          once lost, can never be restored. Furthermore,
          gathering new data takes time and cannot be
          accelerated. If you know that data will be needed for some planned
          analysis project, start collecting it today.
          Don’t wait for the “proper” extraction and storage solution to be in
          place—that could easily take weeks or even months. If necessary, I
          do not hesitate to pull daily snapshots of relevant data to my local
          desktop, to preserve it temporarily, while a long-term storage
          solution is being worked out. Remember: every day that data is not
          collected is another day by which your results will be
          delayed.
Even when data is in principle collected at the appropriate
          level of detail, it may still not be available in a practical sense,
          if the storage schema was not designed with reporting needs in mind.
          (I assume here that the data in question comes from a corporate
          database—certainly the most likely case by far.) Three problems
          stand out to me in this context: lack of revision history, business
          logic commingled with data, and awkward encodings.
Some entities have a nontrivial life cycle: orders will go
          through several status updates, contracts have revisions, and so on.
          In such cases, it is usually important to preserve the full revision
          history—that is, all life-cycle events. The best way to do this is
          to model the time-varying state as a separate
          entity. For instance, you might have the Order entity (which contains, for example,
          the order ID and the customer ID) and the OrderStatus, which represents the actual
          status of the order (placed, accepted, shipped, paid, completed,
          ...), as well as a timestamp for the time that the status change
          took place. The current status is the one with the most recent
          status change. (A good way to handle this is with two timestamps:
          ValidFrom and ValidTo, where the latter is NULL for the current status.) Such a model
          preserves all the information necessary to study quantities like the
          typical time that orders remain in any one state. (In contrast, the
          presence of history tables with OldValue and NewValue columns suggests improper
          relational modeling.)
The important principle is that data is never
          updated—we only append to the revision history.
          Keep in mind that every time a database field is updated, the
          previous value is destroyed. Try to avoid this whenever you can!
          (I’d go so far as to say that CRUD—create, read, update, delete—is
          indeed a four-letter word. The only two operations that should ever
          be used are create and read. There may be valid operational reasons
          to move very old data to offline storage, but the data model should
          be designed in such a way that we never clobber existing data. In my
          experience, this point is far too little understood and even less
          heeded.)
The second common problem is business logic that is
          commingled with data in such a way that the data alone does not
          present an accurate picture of the business. A sure sign of this
          situation is a statement like the following: “Don’t try to read from
          the database directly—you have to go through the access layer API to
          get all the business rules.” What this is saying is that the DB
          schema was not designed so that the data can stand by itself: the
          business rules in the access layer are required to interpret the
          data correctly. (Another indicator is the presence of long,
          complicated stored procedures. This is worse, in fact, because it
          suggests that the situation developed inadvertently, whereas the
          presence of an access layer is proof of at least some degree of
          foreplanning.)
From a reporting point of view, the difficulty with a
          mandatory access layer like this is that a reporting system
          typically has to consume the data in bulk, whereas
          application-oriented access layers tend to access individual records
          or small collections of items. The problem is not the access layer
          as such—in fact, an abstraction layer between the database and the
          application (or applications) often makes sense. But it should be
          exactly that: an abstraction and access layer without embedded
          business logic, so that it can be bypassed if necessary.
Finally, the third problem that sometimes arises is the use of
          weird data representations, which (although complete) make bulk
          reporting excessively difficult. As an example, think of a database
          that stores only updates (to inventory levels, for example) but not
          the grand total. To get a view of the current state, it is now
          necessary to replay the entire transaction history since the
          beginning of time. (This is why your bank statement lists both a
          transaction history and an account balance!) In
          such situations it may actually make sense to invest in the required
          infrastructure to pull out the data and store it in a more
          manageable fashion. Chances are good that plenty of uses for the
          sanitized data will appear over time (build it, and they will
          come).

Data Consistency



Problems of data consistency (as opposed to data availability)
          occur in every company of sufficient size, and they are simply an
          expression of the complexity of the underlying business. Here are
          some typical examples that I have encountered.
	Different parts of the company use different definitions
              for the same metric. Operations, for example, may consider an
              order to be completed when it has left the warehouse, whereas
              the finance department does consider an order to be complete
              once the payment for it has been received.

	Reporting time frames may not be aligned with operational
              process flows. A seemingly simple question such as, “How many
              orders did we complete yesterday?” can quickly become
              complicated, depending on whose definition of “yesterday” we
              use. For example, in a warehouse, we may only be able to obtain
              a total for the number of orders completed per shift—but then
              how do we account for the shift that stretches from 10 at night
              to 6 the next morning? How do we deal with time zones? Simply
              stating that “yesterday” refers to the local time
              at the corporate headquarters sounds simple but is probably not
              practical, since all the facilities will naturally do their
              bookkeeping and reporting according to their local time.

	Time flows backward. How does one account for an order
              that was later returned? If we want to recognize revenue in the
              quarter in which the order was completed but an item is later
              returned, then we have a problem. We can still report on the
              revenue accurately—but not in a timely manner. (In other words,
              final quarterly revenue reports cannot be produced until the
              time allowed to return an item has elapsed. Keep in mind that
              this may be a long time in the case of
              extended warranties or similar arrangements.)



Additional difficulties will arise if information has been
          lost—for instance, because the revision history of a contract has
          not been kept (recall our earlier discussion). You can probably
          think of still other scenarios in which problems of data or metric
          inconsistency occur.
The answer to this set of problems is not technical but
          administrative or political. Basically it comes down to agreeing on
          a common definition of all metrics. An even more drastic
          recommendation to deal with conflicting metrics is to declare one
          data source as the “normative” one; this does not make the data any
          more accurate, but it can help to stop fruitless efforts to
          reconcile different sources at any cost. At least that’s the theory.
          Unfortunately, if the manager of an off-site facility can expect to
          have his feet held to the fire by the CEO over why the facility
          missed its daily goal of two million produced units by a handful of
          units last Friday, he will look for ways to pass the blame. And
          pointing to inconsistencies in the reports is an easy way out. (In
          my experience, one major drawback of all metrics programs is the
          amount of work generated to reconcile minute inconsistencies between
          different versions of the same data. The costs—in terms of
          frustration and wasted developer time—can be stunning.)
As practical advice I recommend striving as much as possible
          for clear definitions of all metrics, so that at least we know what
          we’re talking about. Furthermore, wherever possible, try to make
          those metrics normative that are practical to
          gather, rather than those “correct” from a theoretical point of view
          (e.g., report metrics in local instead of
          global time coordinates). Apply conversion factors behind the
          scenes, if necessary, but try to make sure that humans only need to
          deal with quantities that are meaningful and familiar to
          them.


Workshop: Berkeley DB and SQLite



For analysis purposes, the most suitable data format is usually
        the flat file. Most of the time, we will want all (or almost all) of
        the records in a data set for our analysis. It therefore makes more
        sense to read the whole file, possibly filter out the unneeded
        records, and process the rest, rather than to do an indexed lookup of
        only the records that we want.
Common as this scenario is, it does not always apply.
        Especially when it comes to reporting, it can be highly desirable to
        have access to a data storage solution that supports structured data,
        indexed lookup, and even the ability to merge and aggregate data. In
        other words, we want a database.
The problem is that most databases are
        expensive—and I don’t (just) mean in terms of
        money. They require their own process (or processes), they require
        care and feeding, they require network access (so that people and
        processes can actually get to them). They must be designed, installed,
        and provisioned; very often, they require architectural approval
        before anything else. (The latter point can become such an ordeal that
        it makes anything requiring changes to the database environment
        virtually impossible; one simply has to invent solutions that do
        without them.) In short, most databases are expensive: both
        technically and politically.
Fortunately, other people have recognized this and developed
        database solutions that are cheap: so-called embedded
        databases. Their distinguishing feature is that they do not
        run in a separate process. Instead, embedded databases store their
        data in a regular file, which is accessed through a library linked
        into the application. This eliminates most of the overhead for
        provisioning and administration, and we can replicate the entire
        database simply by copying the data file! (This is occasionally very
        useful to “deploy” databases.)
Let’s take a look at the two most outstanding examples of (open
        source) embedded databases: the Berkeley DB, which is a key/value hash
        map stored on disk, and SQLite, which is a complete relational
        database “in a box.” Both have bindings to almost any programming
        language—here, we demonstrate them from Python. (Both are included in
        the Python Standard Library and therefore should already be available
        wherever Python is.)
Berkeley DB



The Berkeley DB is a key/value hash map (a “dictionary”)
          persisted to disk. The notion of a persistent key/value database
          originated on Unix; the first implementation being the Unix dbm facility. Various reimplementations
          (ndbm, gdbm, and so on) exist. The original
          “Berkeley DB” was just one specific implementation that added some
          additional capabilities—mostly multiuser concurrency support. It was
          developed and distributed by a commercial company (Sleepycat) that
          was acquired by Oracle in 2008. However, the name “Berkeley DB” is
          often used generically for any key/value database.
Through the magic of operator overloading, a Berkeley DB also
          looks like a dictionary to the
          programmer[27] (with the requirement that keys and values must be
          strings):
import dbm

db = dbm.open( "data.db", 'c' )
db[ 'abc' ] = "123"
db[ 'xyz' ] = "Hello, World!"
db[ '42' ] = "42"

print db[ 'abc' ]

del db[ 'xyz' ]

for k in db.keys():
    print db[k]

db.close()
That’s all there is to it. In particular, notice that the
          overhead (“boilerplate”) required is precisely zero. You can’t do
          much better than that.
I used to be a great fan of the Berkeley DB, but over time I
          have become more aware of its limitations. Berkeley DBs store
          single-key/single-value pairs—period. If that’s what you want to do,
          then a Berkeley DB is great. But as soon as that’s not
          exactly what you want to do, then the Berkeley
          DB simply is the wrong solution. Here are a few things you
          cannot do with a Berkeley DB:
	Range searches: 3 < x <
              17

	Regular expression searches: x
              like 'Hello%'

	Aggregation: count(*)

	Duplicate keys

	Result sets consisting of multiple records and iteration
              over result sets

	Structured data values

	Joins



In fairness, you can achieve some of these features, but you
          have to build them yourself (e.g., provide your
          own serialization and deserialization to support structured data
          values) or be willing to lose almost all of the benefit provided by
          the Berkeley DB (you can have range or regular expression searches,
          as long as you are willing to suck in all the
          keys and process them sequentially in a loop).
Another area in which Berkeley DBs are weak is administrative
          tasks. There are no standard tools for browsing and (possibly)
          editing entries, with the consequence that you have to write your
          own tools to do so. (Not hard but annoying.) Furthermore, Berkeley
          DBs don’t maintain administrative information about themselves (such
          as the number of records, most recent access times, and so on). The
          obvious solution—which I have seen implemented in just about every
          project using a Berkeley DB—is to maintain this information explicitly and to store it in the DB under
          a special, synthetic key. All of this is easy enough, but it does
          bring back some of the “boilerplate” code that we hoped to avoid by
          using a Berkeley DB in the first place.

SQLite



In contrast to the Berkeley DB, SQLite (http://www.sqlite.org/) is a full-fledged
          relational database, including tables, keys, joins, and WHERE clauses. You talk to it in the
          familiar fashion through SQL. (In Python, you can use the DB-API 2.0
          or one of the higher-level frameworks built on top of it.)
SQLite supports almost all features found in standard SQL with
          very few exceptions. The price you pay is that you have to design
          and define a schema. Hence SQLite has a bit more overhead than a
          Berkeley DB: it requires some up-front design as well as a certain
          amount of boilerplate code.
A simple example exercising many features of SQLite is shown
          in the following listing. It should pose few (if any) surprises, but
          it does demonstrate some interesting features of SQLite:
import sqlite3

# Connect and obtain a cursor
conn = sqlite3.connect( 'data.dbl' )
conn.isolation_level = None            # use autocommit!
c = conn.cursor()


# Create tables
c.execute( """CREATE TABLE orders
              ( id INTEGER PRIMARY KEY AUTOINCREMENT,
                customer )""" )
c.execute( """CREATE TABLE lineitems
              ( id INTEGER PRIMARY KEY AUTOINCREMENT,
                orderid, description, quantity )""" )

# Insert values
c.execute( "INSERT INTO orders ( customer ) VALUES ( 'Joe Blo' )" )
id = str( c.lastrowid )
c.execute( """INSERT INTO lineitems ( orderid, description, quantity )
              VALUES ( ?, 'Widget 1', '2' )""", ( id, ) )
c.execute( """INSERT INTO lineitems ( orderid, description, quantity )
              VALUES ( ?, 'Fidget 2', '1' )""", ( id, ) )
c.execute( """INSERT INTO lineitems ( orderid, description, quantity )
              VALUES ( ?, 'Part 17', '5' )""", ( id, ) )

c.execute( "INSERT INTO orders ( customer ) VALUES ( 'Jane Doe' )" )
id = str( c.lastrowid )
c.execute( """INSERT INTO lineitems ( orderid, description, quantity )
              VALUES ( ?, 'Fidget 2', '3' )""", ( id, ) )
c.execute( """INSERT INTO lineitems ( orderid, description, quantity )
              VALUES ( ?, 'Part 9', '2' )""", ( id, ) )


# Query
c.execute( """SELECT li.description FROM orders o, lineitems li
              WHERE o.id = li.orderid AND o.customer LIKE '%Blo'""" )
for r in c.fetchall():
    print r[0]

c.execute( """SELECT orderid, sum(quantity) FROM lineitems
              GROUP BY orderid ORDER BY orderid desc""" )
for r in c.fetchall():
    print "OrderID: ", r[0], "\t Items: ", r[1]


# Disconnect
conn.close()
Initially, we “connect” to the database—if it doesn’t exist
          yet, it will be created. We specify autocommit mode so that each
          statement is executed immediately. (SQLite also supports concurrency
          control through explicit transaction.)
Next we create two tables. The first column is specified as a
          primary key (which implies that it will be indexed automatically)
          with an autoincrement feature. All other columns do not have a data
          type associated with them, because basically all values are stored
          in SQLite as strings. (It is also possible to declare certain type
          conversions that should be applied to the values, either in the
          database or in the Python interface.)
We then insert two orders and some associated line items. In
          doing so, we make use of a convenience feature provided by the
          sqlite3 module: the last value of
          an autoincremented primary key is available through the lastrowid attribute (data member) of the
          current cursor object.
Finally, we run two queries. The first one demonstrates a join
          as well as the use of SQL wildcards; the second uses an aggregate
          function and also sorts the result set. As you can see, basically
          everything you know about relational databases carries over directly
          to SQLite!
SQLite supports some additional features that I have not
          mentioned. For example, there is an “in-memory” mode, whereby the
          entire database is kept entirely in memory: this can be very helpful
          if you want to use SQLite as a part of a performance-critical
          application. Also part of SQLite is the command-line utility
          sqlite3, which allows you to
          examine a database file and run ad hoc queries against it.
I have found SQLite to be extremely useful—basically
          everything you expect from a relational database but without most of
          the pain. I recommend it highly.


Further Reading



	Information Dashboard Design: The Effective
              Visual Communication of Data. Stephen Few. O’Reilly. 2006.
This book addresses good graphical design of dashboards and
            reports. Many of the author’s points are similar in spirit to the
            recommendations in this chapter. After reading his book, you might
            consider hiring a graphic or web designer to design your reports
            for you!






[27] In Perl, you use a “tied hash” to the same effect.


Chapter 17. Financial Calculations and Modeling



I
      RECENTLY RECEIVED A NOTICE FROM A MAGAZINE REMINDING ME THAT MY
      SUBSCRIPTION WAS RUNNING OUT. It’s a relatively
      expensive weekly magazine, and they offered me three different plans to
      renew my subscription: one year (52 issues) for $130, two years for
      $220, or three years for $275. Table 17-1 summarizes these
      options and also shows the respective cost per issue.
Table 17-1. Pricing plans for a magazine subscription
	Subscription
	Total price
	Price per issue

	Single issue
	n/a
	6.00

	1 year
	130
	2.50

	2 years
	220
	2.12

	3 years
	275
	1.76




Assuming that I want to continue the subscription, which of these
      three options makes the most sense? From Table 17-1, we can see that
      each issue of the magazine becomes cheaper as I commit myself to a
      longer subscription period, but is this a good deal? In fact, what does
      it mean for a proposal like this to be a “good deal”? Somehow, stomping
      up nearly three hundred dollars right now seems like a stretch, even if
      I remind myself that it saves me more than half the price on each
      issue.
This little story demonstrates the central topic of this chapter:
      the time value of money, which expresses the notion
      that a hundred dollars today are worth more than a hundred dollars a
      year from now. In this chapter, I shall introduce some standard concepts
      and calculational tools that are required whenever we need to
      make a choice between different investment decisions—whether they
      involve our own personal finances or the evaluation of business cases
      for different corporate projects.
I find the material in this chapter fascinating—not because it is
      rocket science (it isn’t) but because it is so fundamental to how the
      economy works. Yet very few people, in particular, very few tech people,
      have any understanding of it. (I certainly didn’t.) This is a shame, not
      just because the topic is obviously important but also because it is not
      really all that mystical. A little familiarity with the basic concepts
      goes a long way toward removing most of the confusion (and, let’s face
      it, the intimidation) that many of us experience when reading the Wall
      Street pages.
More important in the context of this book is that a lot of data
      analysis is done specifically to evaluate different business proposals
      and to support decisions among them. To be able to give effective,
      appropriate advice, you want to understand the concepts and terminology
      of this particular problem domain.
The Time Value of Money



Let’s return to the subscription problem. The essential insight
        is that—instead of paying for the second and third year of the
        subscription now—I could invest that money, reap
        the investment benefit, and pay for the subsequent years of the
        subscription later. In other words, the discount offered by the
        magazine must be greater than the investment
        income I can expect if I were instead to invest the sum.
It is this ability to gain an investment benefit that makes
        having money now more valuable than having the
        same amount of money later. Note well that this
        has nothing to do with the concept of inflation,
        which is the process by which a certain amount of money tends to buy a
        lesser amount of goods as time passes. For our purposes, inflation is
        an external influence over which we have no control. In contrast,
        investment and purchasing decisions (such as the earlier magazine
        subscription problem) are under our control, and time value of money
        calculations can help us make the best possible decisions in this
        regard.
A Single Payment: Future and Present Value



Things are easiest when there is only a single payment
          involved. Imagine we are given the following choice: receive $1,000
          today, or receive $1,050 a year from now. Which one should we
          choose?
Well, that depends on what we could do with $1,000 right now.
          For this kind of analysis, it is customary to assume that we would
          put the money in a “totally safe form of investment” and use the
          returns generated in this way as a benchmark for
          comparison.[28] Now we can compare the alternatives against the
          interest that would be generated by this “safe” investment. For
          example, assume that the current interest rate that we could gain on
          a “safe” investment is 5 percent annually. If we invest $1,000 for a
          full year, then at the year’s end, we will receive back our
          principal ($1,000) and, in addition, the accrued interest (0.05 ·
          $1000 = $50), for a total of $1,050.
In this example, both options lead to the same amount of money
          after one year; we say that they are
          equivalent. In other words, receiving $1,000
          now is equivalent to receiving $1,050 a year
          from now, given that the current interest rate
          on a safe form of investment is 5 percent annually. Equivalence
          always refers to a specific time frame and interest rate.
Clearly, any amount of money that we now possess has a
          future value (or future
          worth) at any point in the future; likewise, a payment
          that we will receive at some point in the future has a
          present value (or present
          worth) now. Both values depend on the interest rate that
          we could achieve by investing in a safe alternative investment
          instead. The present or future values must be equivalent at equal
          times.
There is a little bit of math behind this that is not
          complicated but is often a little messy. The future value
          Vf
          of some base amount M (the
          principal), after a single time period during
          which the amount earns p percent of interest,
          is calculated as follows:
[image: A Single Payment: Future and Present Value]
The first term on the righthand side expresses that we get our
          principal back, and the second term is the amount of interest we
          receive in addition. Here and in what follows, I explicitly show the
          denominator 100 that is used to translate a statement such as
          “p percent” into the equivalent numerical
          factor p/100.
Conversely, if we want to know how much a certain amount of
          money in the future is worth today, then we have to
          discount that amount to its present value. To
          find the present value, we work the preceding equation backward. The
          present value
          Vp
          is unknown, but we do know the amount of money
          M that we will have at some point in the
          future, hence the equation becomes:
[image: A Single Payment: Future and Present Value]
This can be solved for
          Vp:
[image: A Single Payment: Future and Present Value]
Note how we find the future or present value by
          multiplying the base amount by an appropriate
          equivalencing factor—namely, the future-worth
          factor 1 + p/100 and the present-worth factor
          1/(1 + p/100). Because most such calculations
          involve discounting a future payment to the present value, the
          percentage rate p used in these formulas is
          usually referred to as the discount
          rate.
This example was the simplest possible because there was only
          a single payment involved—either at the beginning or at the end of
          the period under consideration. Next, we look at scenarios where
          there are multiple payments occurring over time.

Multiple Payments: Compounding



Matters become a bit more complicated when there is not just a
          single payment involved as in the example above but a series of
          payments over time. Each of these payments must be discounted by the
          appropriate time-dependent factor, which leads us to
          cash-flow analysis. In addition, payments made
          or received may alter the base amount on which we operate, this
          leads to the concept of compounding.
Let’s consider compounding first, since it is so fundamental.
          Again, the idea is simple: if we put a sum of money into an
          interest-bearing investment and then reinvest
          the generated interest, we will start to receive interest on the
          interest itself. In other words, we will start receiving
          compound interest.
Here is how it works: we start with principal
          M and invest it at interest rate
          p. After one year, we have:
[image: Multiple Payments: Compounding]
In the second year, we receive interest on the combined sum of
          the principal and the interest from the first year:
[image: Multiple Payments: Compounding]
and so on. After n years, we will
          have:
[image: Multiple Payments: Compounding]
These equations tell us the future worth of our investment at
          any point in time. It works the other way around, too: we can
          determine the present value of a payment that we expect to receive
          n years from now by working the equations
          backward (much as we did previously for a single payment) and
          find:
[image: Multiple Payments: Compounding]
We can see from these equations that, if we continue to
          reinvest our earnings, then the total amount of money grows
          exponentially with time (i.e., as
          at
          for some constant a)—in other words,
          fast. The growth law that applies to compound
          interest is the same that describes the growth of bacteria cultures
          or similar systems, where at each time step new members are added to
          the population and start producing offspring
          themselves. In such systems, not only does the population grow, but
          the rate at which it grows is constantly increasing as well.
On the other hand, suppose you take out a loan without making
          payments and let the lender add the accruing interest back onto your
          principal. In this case, you not only get deeper into debt every
          month, but you do so at a faster rate as time goes by.

Calculational Tricks with Compounding



Here is a simple trick that is quite convenient when making
          approximate calculations of future and present worth. The
          single-payment formula for future worth, V = (1
          + p/100)M, is simple and
          intuitive: the principal plus the interest
          after one period. In contrast, the corresponding formula for present
          worth [image: ], seems to make less intuitive sense and is
          harder to work with (how much is $1,000 divided by 1.05?). But this
          is again one of those situations where guesstimation techniques (see
          Chapter 7; also
          see Appendix B) can be brought to
          bear. We can approximate the discounting factor as follows:
[image: Calculational Tricks with Compounding]
Since p is typically small (single
          digits), it follows that p/100 is very small,
          and so we can terminate the expansion after the first term. Using
          this approximation, the discounting equation for the present worth
          becomes V = (1 –
          p/100)M, which has an
          intuitive interpretation: the present value is equal to the future
          value, less the interest that we will have received by then.
We can use similar formulas even in the case of compounding,
          since:
[image: Calculational Tricks with Compounding]
However, keep in mind that the overall perturbation must be
          small for the approximation to be valid. In particular, as the
          number of years n grows, the perturbation term
          np/100 may no longer be small. Still, even for
          5 percent over 5 years, the approximation gives 1 ± 25/100 = 1.25 or
          0.75, respectively. Compare this with the exact values of 1.28 and
          0.79. However, for 10 percent over 10 years, the approximation
          starts to break down, yielding 2 and 0, respectively, compared to
          the exact values of 2.59 and 0.39.
Similar logic is behind “Einstein’s Rule of 72.” This rule of
          thumb states that if you divide 72 by the applicable interest rate,
          you obtain the number of years it would take for your investment to
          double. So if you earn 7 percent interest, your money will double in
          10 years, but if you only earn 3.5 percent, it will take 20 years to
          double.
What’s the basis for this rule? By now, you can probably
          figure it out yourself, but here is the solution in a nutshell: for
          your investment to double, the compounding factor must equal 2.
          Therefore, we need to solve (1 +
          p/100)n
          = 2 for n. Applying logarithms on both sides we
          find n = log(2)/log(1 +
          p/100). In a second step, we expand the
          logarithm in the denominator (remember that
          p/100 is a small perturbation!) and end up with
          n = log(2) · (100/p) =
          69/p, since the value of log(2) is
          approximately 0.69. The number 69 is awkward to work with, so it is
          usually replaced by the number 72—which has the advantage of being
          evenly divisible by 2, 3, 4, 6, 8, and 9 (you can replace 72 with 70
          for interest rates of 5 or 7 percent).
Here is another calculational tool that you may find useful.
          Strictly speaking, an expression such as
          xn
          is defined only for integer n. For general
          exponents, the power function is defined as
          xn
          = exp(n log x). We can use
          this when calculating compounding factors as follows:
[image: Calculational Tricks with Compounding]
where in the second step we have expanded the logarithm again
          and truncated the expansion after the first term. This form of the
          compounding factor is often convenient (e.g.,
          it allows us to use arbitrary values for the time period
          n, not just full years). It becomes exact in
          the limit of continuous compounding (discussed shortly).
Interest rates are conventionally quoted “per year,” as in “5
          percent annually.” But payments may occur more frequently than that.
          Savings accounts, for example, pay out any accrued interest on a
          monthly basis. That means that (as long as we don’t withdraw
          anything) the amount of money that earns us interest grows every
          month; we say it is compounded monthly. (This
          is in contrast to other investments, which pay out interest or
          dividends only on a quarterly or even annual basis.) To take
          advantage of the additional compounding, it is of course in our
          interest (pun intended) to receive payments as early as
          possible.
This monthly compounding is the reason for the difference
          between the nominal interest rate and the
          annual yield that you will find stated on your
          bank’s website: the nominal interest rate is the rate
          p that is used to determine the amount of
          interest paid out to you each month. The yield tells you by how much
          your money will grow over the course of the year when the monthly
          compounding has been factored in. With our knowledge, we can now
          calculate the yield from the nominal rate:
[image: Calculational Tricks with Compounding]
One more bit of terminology: the interest rate
          p/12 that is used to determine the value of the
          monthly payout is known as the effective
          interest rate.
Of course, other payment periods are possible. Many mutual
          funds pay out quarterly. In contrast, many credit cards compound
          daily. In theory, we can imagine payments being made constantly (but
          at an appropriately reduced effective interest rate); this is the
          case of continuous compounding mentioned
          earlier. In this case, the compounding factor is given by the
          exponential function. (Mathematically, you replace the 12 in the
          last formula by n and then let
          n go to infinity, using the identity
          limn→∞(1
          +
          x/n)n
          = exp(x).)

The Whole Picture: Cash-Flow Analysis and Net Present
          Value



We now have all the tools at our disposal to evaluate the
          financial implications of any investment decision, no matter how
          complicated. Imagine we are running a manufacturing plant (or
          perhaps an operation like Amazon’s, where books and other goods are
          put into boxes and mailed to customers—that’s how
          I learned about all these things). We may
          consider buying some piece of automated equipment for some part of
          the process (e.g., a sorting machine that sorts
          boxes onto different trucks according to their destination).
          Alternatively, we can have people do the same job manually. Which of
          these two alternatives is better from an economic point of
          view?
The manual solution has a simple structure: we just have to
          pay out the required wages every year. If we decide to buy the
          machine, then we have to pay the purchase price now (this is also
          known as the first cost) and also pay a small
          maintenance fee each year. For the sake of the argument, assume also
          that we expect to use the machine for ten years and then sell it on
          for scrap value.
In economics texts, you will often find the sequence of
          payments visualized using cash-flow diagrams
          (see Figure 17-1).
          Time progresses from left to right; inflows are indicated by
          upward-pointing arrows and outflows by downward-pointing
          arrows.
To decide between different alternatives, we now proceed as
          follows:
	Determine all individual net cash flows
              (net cash flows, because we offset annual
              costs against revenues).

	Discount each cash flow to its present value.

	Add up all contributions.



The quantity obtained in the last step is known either as the
          net present value (NPV) or the
          discounted net cash flow: it is the total value
          of all cash flows, each properly discounted to its present value. In
          other words, our financial situation will be the same, whether we
          execute the entire series of cash flows or
          receive the net present value today. Because the net present value
          contains all inflows and outflows (properly discounted to the
          present value), it is a comprehensive single measure that can be
          used to compare the financial outcomes of different investment
          strategies.
[image: Examples of cash-flow diagrams. Arrows pointing up correspond to money received; arrows pointing down, to money spent.]

Figure 17-1. Examples of cash-flow diagrams. Arrows pointing up
            correspond to money received; arrows pointing down, to money
            spent.

We can express the net present value of a series of cash flows
          in a single formula:
[image: Examples of cash-flow diagrams. Arrows pointing up correspond to money received; arrows pointing down, to money spent.]
where c(i) is the
          net cash flow at payment period i and 1/(1 +
          p/100)i
          is the associated discounting factor.
There is one more concept that is interesting in this context.
          What should we use for the discount rate p in
          the second step above? Instead of supplying a value, we can ask how
          much interest we would have to receive elsewhere (on a “safe”
          investment) to obtain the same (or higher) payoff than that expected
          from the planned project. Let’s consider an example. Assume we are
          evaluating a project that would require us to purchase some piece of
          equipment at the beginning but that would then result in a series of
          positive cash flows over the next so many years. Is this a “good”
          investment? It is if its net present value is positive! (That’s
          pretty much the definition of “net present value”: the NPV takes
          into account the first cost to purchase the equipment as well as the
          subsequent positive cash flows. If the discounted cash flows are
          greater than the first cost, we come out ahead.) But the net present
          value depends on the discount rate p, so we
          need to find that value of p for which the NPV
          first becomes zero: if we can earn a higher interest rate elsewhere,
          then the project does not make financial sense and we should instead
          take our money to the bank. But if the bank would pay us less than
          the rate of return just calculated, then the
          project is financially the better option. (To find a numeric value
          for the rate of return, plug your cash flow structure
          c(i) into the equation for
          NPV and then solve for p. Unless the cash flows
          are particularly simple, you will have to do this
          numerically.)
The net present value is such an important criterion
          when making investment decisions because it provides us with a
          single number that summarizes the financial results of any planned
          project. It gives us an objective (financial) quantity to decide
          among different investment alternatives.
Up to a point, that is. The process described here is only as
          good as its inputs. In particular, we have assumed that we know all
          inputs perfectly—possibly for many years into the future. Of course
          we don’t have perfect knowledge, and so we better accommodate for
          that uncertainty somehow. That will be the topic of the next
          section.
There is another, more subtle problem when evaluating
          different options solely based on net present value: different
          investment alternatives may have nonfinancial benefits or drawbacks
          that are not captured by the net present value. For example, using
          manual labor may lead to greater flexibility: if business grows more
          strongly than expected, then the company can hire additional
          workers, and if business slows down, then it can reduce the number
          of workers. In contrast, any piece of equipment has a maximum
          capacity, which may be a limiting factor if business grows more
          strongly than expected. The distinction arising here is that between
          fixed and variable cost, and we will come back to it toward the end
          of the chapter.


Uncertainty in Planning and Opportunity Costs



Now we are ready to revisit the magazine subscription problem
        from the beginning of this chapter. Let’s consider only two
        alternatives: paying the entire amount for a two-year subscription up
        front or making two single-year payments. The NPV for the second
        option is (1 + 1/(1 + p/100))
        C1yr, where we have left
        the discount rate p undetermined for the moment.
        We can now ask: what interest rate would we have to earn elsewhere to
        make the second option worthwhile? In other words, we want to know the
        discount rate we’d have to apply to make the NPV of the
        multiple-payment option equal to the cost of the single-payment
        plan:
[image: Uncertainty in Planning and Opportunity Costs]
This equation can be solved for p. The
        result is p = 30 percent! In other words, the
        two-year subscription is so much cheaper that we would have to find an
        investment yielding 30 percent annually before it would be worthwhile
        to pay for the subscription year by year and invest the saved money
        elsewhere. No investment (and certainly no “safe” investment) yields
        anywhere near that much. Clearly, something is amiss. (Exercise for
        the reader: find the net present value for the three-year subscription
        and verify that it leads to the same value for
        p.)
Using Expectation Values to Account for Uncertainty



The two- and three-year plans carry a hidden cost for us: once
          we have signed up, we can no longer freely decide over our
          money—we’re committed ourselves for the long haul. In contrast, if
          we pay on a yearly basis, then we can reevaluate every year whether
          we want to continue the subscription. The price for this freedom is
          a higher subscription fee. However, we will probably not find it
          easy to determine the exact dollar value that this freedom is worth
          to us.
From the magazine’s perspective, the situation is simpler.
          They can simply ask how much money they expect to make from an
          individual subscriber under either option. If I sign up for the
          two-year subscription, they make
          C2yr with certainty; if
          I sign up for the one-year subscription, they make
          C1yr with certainty now
          and another C1yr
          later—provided I renew my subscription! In this
          case, then, the amount of money the magazine expects to make on me
          is C1yr +
          γC1yr, where γ is the
          probability that I will renew the subscription. From the magazine’s
          perspective, both options must be equally favorable (otherwise they
          would adjust the price of the two-year subscription to make them
          equal), so we can equate the expected revenues and solve for γ. The
          result comes out to about γ = 0.7—in other words, the magazine
          expects (based on past experience, and so on) that about 70 percent
          of its current subscribers will renew their subscription. For three
          years, the equation becomes (1 + γ +
          γ2)C1yr
          = C3yr because, to sign
          up for three years, a subscriber must decide
          twice to renew the subscription. If you work
          through the algebra, you will find that γ again comes out to about γ
          = 0.7, providing a nice consistency check.
There are two takeaways in this example that are worth
          emphasizing: the first concerns making economic decisions that are
          subject to uncertainty. The second is the concept of opportunity
          cost, which is the topic of the following section.
When making economic decisions that are subject to
          uncertainty, you may want to take this uncertainty into account by
          replacing the absolute cash flows with their expected values. A
          simple probability model for the likely payout is often sufficient.
          In the magazine example there were just two outcomes: the subscriber
          renews with probability γ = 0.7 and value
          C1yr, or the subscriber
          does not renew with probability γ = 0.3 and value 0, hence the
          expected value is 0.3 · 0 + 0.7 ·
          C1yr. If your situation
          warrants it and if you can specify the probability distribution for
          various payout alternatives in more detail, then you can calculate
          the expected value accordingly. (See Chapter 8 and Chapter 9 for more information
          on how to build models to support this kind of conclusion.)
Working with expectation values is convenient, because once
          you have determined the expected value of the payout, you no longer
          need to worry about the probabilities for the various outcomes: they
          have been entirely absorbed into the expectation values. What you
          lose is insight into the probable spread of outcomes. For a quick
          order-of-magnitude check, that’s acceptable, but for a more serious
          study, an estimate of the spread should be included. There are two
          ways to do this: repeat your calculation multiple times using
          different values (low, medium, high) for the expected payouts at
          every step to develop a sense for the range of possible outcomes.
          (If there are many different options, you may want to do this
          through simulation; see Chapter 12.)
          Alternatively, you can evaluate both the expectation value and the spread directly from the
          probability distribution to obtain a range for each estimated value:
          μ ± σ. Now you can use this sum in your calculations, treating σ as
          a small perturbation and evaluate the effect of this perturbation on
          your model (see Chapter 7).

Opportunity Costs



The second point that I would like to emphasize is the concept
          of opportunity cost. Opportunity costs arise
          when we miss out on some income (the “opportunity”) because we were
          not in a position to take advantage of it. Opportunity costs
          formalize the notion that resources are finite and that, if we apply
          them to one purpose, then those resources are not available for
          other uses. In particular, if we commit resources to a project, then
          we want that project to generate a benefit greater than the
          opportunity costs that arise, because those resources are no longer
          available for other uses.
I find it easiest to think about opportunity cost in the
          context of certain business situations. For instance, suppose a
          company takes on a project that pays $15,000. While this contract is
          under way, someone else offers the company a project that would pay
          $20,000. Assuming that the company cannot break its initial
          engagement, it is now incurring an opportunity cost of
          $5,000.
I find the concept of opportunity cost
          useful as a way to put a price on alternatives, particularly when no
          money changes hands. In textbooks, this is often demonstrated by the
          example of the student who takes a trip around the world instead of
          working at a summer job. Not only does the student have to pay the
          actual expenses for the trip but also incurs an opportunity cost
          equal to the amount of forgone wages. The concept of opportunity
          cost allows us to account for these forgone wages, which would
          otherwise be difficult because they do not show up on any account
          statement (since they were never actually paid).
On the other hand, I often find opportunity cost a somewhat
          shadowy concept because it totally hinges on a competing opportunity
          actually arising. Imagine you try to decide between two
          opportunities: an offer for a project that would pay $15,000 and the
          prospect of a project paying $20,000. If you take the first job and
          then the second opportunity comes through as well, you are incurring
          an opportunity cost of $5,000. But if the second project falls
          through, your opportunity cost just dropped to zero! (The rational
          way to make this decision would be to calculate the total revenue
          expected from each prospect but weighted by the
          probability that the contract will actually be signed.
          This brings us back to calculations involving
          expected payouts, as discussed in the preceding
          section.)
To be clear: the concept of opportunity cost has nothing to do
          with uncertainty in planning. It is merely a way to evaluate the
          relative costs of competing opportunities. However, when evaluating
          competing deals, we must often decide between plans that have a
          different likelihood of coming to fruition, and therefore
          opportunity cost and planning for uncertainty often arise
          together.


Cost Concepts and Depreciation



The methods described in the previous sections might
        suggest that the net present value is all there is to financial
        considerations. This is not so—other factors may influence our
        decision. Some factors are entirely outside the financial realm
        (e.g., ethical or strategic considerations);
        others might have direct business implications but are not
        sufficiently captured by the quantities we have discussed so
        far.
For example, let’s go back to the situation discussed earlier
        where we considered the choice between two alternatives: buying a
        sorting machine or having the same task performed manually. Once we
        identify all arising costs and discount them properly to their present
        value, it would seem we have accounted for all financial implications.
        But that would be wrong: the solution employing manual labor is more
        flexible, for instance. If the pace of the business varies over the
        course of the year, then we need to buy a sorting machine that is
        large enough to handle the busiest season—which means it will be
        underutilized during the rest of the year. If we rely on manual labor,
        then we can more flexibly scale capacity up through temporary labor or
        overtime—and we can likewise respond to unexpectedly strong (or weak)
        growth of the overall business more flexibly, again by adjusting the
        number of workers. (This practice may have further consequences—for
        example, regarding labor relations.) In short, we need to look at the
        costs, and how they arise, in more detail.
To understand the cost structure of a business or an operation
        better, it is often useful to discuss it in terms of three pairs of
        complementary concepts:
	Direct versus indirect cost

	Fixed versus variable cost

	Capital expenditure versus operating cost



For good measure, I’ll also throw in the concept of
        depreciation, although it is not a cost in the
        strict sense of the word.
Direct and Indirect Costs



Labor and materials that are applied in creating the
          product (i.e., in the
          creation of something the company will sell)
          are considered direct labor or direct materials cost. Indirect
          costs, on the other hand, arise from activities that the company
          undertakes to maintain itself: management,
          maintenance, and administrative tasks (payroll and accounting) but
          also training, for example. Another term for such indirect costs is
          overhead.
I should point out that this is a slightly different
          definition of direct and indirect costs than the one you will find
          in the literature. Most textbooks define direct cost as the cost
          that is “easily attributable” to the production process, whereas
          indirect cost is “not easily attributable.” This definition makes it
          seem as if the distinction between direct and indirect costs is mostly one of convenience.
          Furthermore, the textbook definition provides no reason why, for
          example, maintenance and repair activities are usually considered
          indirect costs. Surely, we can keep track of which machine needed
          how much repair and therefore assign the associated cost to the
          product made on that specific machine. On the other hand, by my
          definition, it is clear that maintenance should be considered an
          indirect cost because it is an activity the company undertakes to
          keep itself in good order—not to generate value
          for the customer.
I have used the term “product” for whatever the company is
          selling. For manufacturing or retail industries this is a
          straightforward concept, but for a service industry the “product”
          may be intangible. Nevertheless, in probably all businesses we can
          introduce the concept of a single produced unit or unit of
          production. In manufacturing and retail there are actual
          “units,” but in other industries the notion of a produced unit is a
          bit more artificial: in service industries, for instance, one often
          uses “billable hours” as a measure of production. Other industries
          have specialized conventions: the airline industry uses “passenger
          miles,” for example.
The unit is an important concept because it is the basis for
          the most common measure of productivity—namely the unit cost or
          cost per unit (CPU). The cost per unit is
          obtained by dividing the total (dollar) amount spent during a time
          period (per month, for instance) by the total number of units
          produced during that time. If we include not only the direct cost
          but also the indirect cost in this calculation, we obtain what is
          called the loaded or
          burdened cost per unit.
We can go further and break out the various contributions to
          the unit cost. For example, if there are multiple production steps,
          then we can determine how much each step contributes to the total
          cost. We can also study how much indirect costs contribute to the
          overall cost as well as how material costs relate to labor.
          Understanding the different contributions to the total cost per unit
          is often a worthwhile exercise because it points directly to where
          the money is spent. And appearances can be deceiving. I have seen
          situations where literally hundreds of people were required for a
          certain processing step whereas, next door, a single person was
          sufficient to oversee a comparable but highly automated process. Yet
          once you calculated the cost per unit, it all looked very different:
          because the number of units going through the automated process was
          low, its total cost per unit was actually higher than for the manual
          process. And because so many units where processed manually, their
          labor cost per unit turned out to be very
          low.
In general, it is desirable to have low overhead relative to
          the direct cost: a business should spend relatively less time and
          money on managing itself than on generating value for the customer.
          In this way, the ratio of direct to indirect cost can be a telling
          indicator for “top-heavy” organizations that seem mostly occupied
          with managing themselves. On the other hand, overeager attempts to
          improve the direct/indirect cost ratio can lead to pretty unsanitary
          manipulations. For example, imagine a company that considers
          software engineers direct labor, while any form
          of management (team leads and project managers) is considered indirect.
          The natural consequence is that management responsibilities are
          pushed onto developers to avoid “indirect” labor. Of course, this
          does not make these tasks go away; they just become invisible. (It
          also leads to the inefficient use of a scarce resource: developers
          are always in short supply—and they are expensive.) In short, beware
          the danger of perverted incentives!

Fixed and Variable Costs



Compared to the previous distinction (between direct and
          indirect costs), the distinction between fixed and variable costs is
          clearer. The variable costs are those that
          change in response to changing demand, while
          fixed costs don’t. For a car manufacturer, the
          cost of steel is a variable cost: if fewer cars are being built,
          less steel is consumed. Whether labor costs are fixed or variable
          depends on the type of labor and the employment contracts. But the
          capital cost for the machines in the production line is a fixed
          cost, because it has to be paid regardless of whether the machines
          are busy or idle.
It is important not to confuse direct and variable costs.
          Although direct costs are more likely to be variable (and overhead,
          in general, is fixed), these are unrelated concepts; one can easily
          find examples of fixed, yet direct costs. For example, consider a
          consultancy with salaried employees: their staff of consultants is a
          direct cost, yet it is also a
          fixed cost because the consultants expect their
          wages regardless of whether the consultancy has projects for them or
          not. (We’ll see another example in a moment.)
In general, having high fixed costs relative to variable ones
          makes a business or industry less flexible and more susceptible to
          downturns. An extreme example is the airline industry: its cost
          structure is almost exclusively fixed (pretty much the only variable
          cost is the price of the in-flight meal), but its demand pattern is
          subject to extreme cyclical swings.
The numbers are interesting. Let’s do a calculation in the
          spirit of Chapter 7. A modern jet
          airplane costs about $100M new and has a useful service life of
          about 10 years. The cost attributable to a single 10-hour
          transatlantic flight (the depreciation—see below) comes to about
          $30k (i.e., $100M/(10 · 365)—half that, if the
          plane is turned around immediately, completing a full round-trip
          within 24 hours). Fuel consumption is about 6 gallons per mile; if
          we assume a fuel price of $2 per gallon, then the 4,000-mile flight
          between New York and Frankfurt (Germany) will cost $50k for fuel.
          Let’s say there are 10 members of the cabin crew at $50k yearly
          salary and two people in the cockpit at $150k each. Double these
          numbers for miscellaneous benefits, and we end up with about $2M in
          yearly labor costs, or $10k attributable to this one flight. In
          contrast, the cost of an in-flight meal (wholesale) is probably less
          than $10 per person. For a flight with 200 passengers, this amounts
          to $1,000–2,000 dollars total. It is interesting to see that—all
          things considered—the influence of the in-flight meal on the overall
          cost structure of the flight is as high as it is: about 2 percent of
          the total. In a business with thin margins, improving profitability
          by 2 percent is usually seen as worthwhile. In other words, we
          should be grateful that we get anything at
          all! A final cross-check: the cost per passenger for the entire
          flight from the airline’s point of view is $375—and at the time of
          this writing, the cheapest fare I could find was $600 round-trip,
          equivalent to $300 for a single leg. As is well known, airlines
          break even on economy class passengers but don’t make any
          profits.

Capital Expenditure and Operating Cost



Our final distinction is the one between capital
          expenditure (CapEx) and operating
          expense (OpEx—the abbreviation is rarely used). Capital
          expenses are money spent to purchase long-lived and typically
          tangible assets: equipment, installations, real estate. Operating
          expenses are everything else: payments for rents, raw materials,
          fees, salaries. In most companies, separate budgets exist for both
          types of expense, and the availability of funds may be quite
          different for each. For example, in a company that is financially
          strapped but does have a revenue stream, it might be quite
          acceptable to hire and “throw people” at a problem (even at great
          cost), but it might very well be impossible to buy a piece of
          equipment that would take care of the problem for good. Conversely,
          in companies that do have money in the bank, it is often
          easier to get a lump sum approved for a
          specific purchase than to hire more people or to perform
          maintenance. Decision makers often are more inclined to approve
          funding for an identifiable and visible purchase than for spending
          money on “business as usual.” Political and vanity considerations
          may play a role as well.
The distinction between CapEx and operating costs is important
          because, depending on the availability of funds from either source,
          different solutions will be seen as feasible. (I refer to such
          considerations as “color of money” issues—although all dollars are
          green, some are greener than others!)
In the context of capital expenditure, there is one more
          concept that I’d like to introduce because it provides an
          interesting and often useful way of thinking about money: the notion
          of depreciation.[29] The idea is this: any piece of equipment that we
          purchase will have a useful service life. We can now distribute the
          total cost of that purchase across the entire life of the asset. For
          example, if I purchase a car for $24,000 and expect to drive it for
          10 years, then I can say that this car costs me $200 per month “in
          depreciation” alone and before taking into account any operating
          costs (such as gas and insurance). I may want to compare this number
          with monthly lease payment options on the same kind of
          vehicle.
In other words, depreciation is a formalized way of capturing
          how an asset loses value over time. There are different standard
          ways to calculate it: “straight-line” distributes the purchase cost
          (less any salvage value that we might expect to
          obtain for the asset at the end of its life) evenly over the service
          life. The “declining balance” method assumes that the asset loses a
          certain constant fraction of its value every year. And so on.
          (Interestingly, land is never depreciated—because it does not wear
          out in the way a machine does and therefore does not have a finite
          service life.)
I find depreciation a useful concept, because it provides a
          good way to think about large capital expenses: as an ongoing cost
          rather than as an occasional lump sum. But depreciation is just
          that: a way of thinking. It is important to understand that
          depreciation is not a cash flow and therefore
          does not show up in any sort of financial accounting. What’s in the
          books is the money actually spent, when it is spent.
The only occasion where depreciation is treated as a cash flow
          is when it comes to taxes. The IRS (the U.S. tax authority) requires
          that certain long-lived assets purchased for business purposes be
          depreciated over a number of years, with the annual depreciation
          counted as a business expense for that year. For this reason,
          depreciation is usually introduced in conjunction with tax
          considerations. But I find the concept more generally useful as a
          way to think about and account for the cost of assets and their
          declining value over time.


Should You Care?



What does all this talk about money, business plans, and
        investment decisions have to do with data analysis? Why should you
        even care?
That depends. If you take a purely technical stance, then all of
        these questions are outside your area of competence and
        responsibility. That’s a valid position to take, and many
        practitioners will make exactly that decision.
Personally, I disagree. I don’t see it as my job to provide
        answers to questions. I see
        it as my responsibility to provide solutions to
        problems, and to do this effectively, I need to
        understand the context in which questions arise, and I need to
        understand how answers will be evaluated and used. Furthermore, when
        it comes to questions having to do with abstract topics like data and
        mathematical modeling, I have found that few clients are in a good
        position to ask meaningful questions. Coaching
        the client on what makes a good question (one that is both operational
        for me and actionable for the client) is therefore a large part of
        what I do—and to do that, I must understand and speak the client’s
        language.
There are two more reasons why I find it important to understand
        issues such as those discussed in this (and the previous) chapter: to
        establish my own credibility and to provide
        advice and counsel on the mathematical details
        involved.
The decision makers—that is, the people who request and use the
        results of a data analysis study—are “business people.” They tend to
        see decisions as investment decisions and thus
        will evaluate them using the methods and terminology introduced in
        this chapter. Unless I understand how they will look at my results and
        unless I can defend my results in those terms, I will be on weak
        ground—especially since I am supposed to be “the expert.” I learned
        this the hard way: once, while presenting the results of a rather
        sophisticated and involved analysis, some MBA bully fresh out of
        business school challenged me with: “OK, now which of these options
        has the best discounted net cash flow?” I had no idea what he was
        talking about. I looked like an idiot. That did
        not help my credibility! (No matter how right I
        was in everything else I was presenting.)
Another reason why I think it is important to understand the
        concepts in this chapter is that the math can get a little tricky.
        This is why the standard textbooks resort to large collections of
        precooked scenarios—which is not only confusing but can become
        downright misleading if none of them fit exactly and people start
        combining several of the standard solutions in ad hoc (and probably
        incorrect) ways. Often the most important skill I bring to the table
        is basic calculus. In one place I worked for, which was actually
        staffed by some of the smartest people in the industry, I discovered a
        problem because people did not fully understand the difference between
        1/x and –x. Of course, if
        you put it like this, everybody understands the difference. But if you
        muddy the waters a little bit and present the problem in the business
        domain setting in which it arose, it’s no longer so easy to see the
        difference. (And I virtually guarantee you that nobody will understand
        why 1/(1 – x) is actually close to 1 –
        x for small x, when
        1/x is not equal –x.)
In my experience, the correct and meaningful application of
        basic math outside a purely mathematical environment poses a nearly
        insurmountable challenge even for otherwise very bright people.
        Understanding exactly what people are trying to do
        (e.g., in calculating a total rate of return)
        allows me to help them avoid serious mistakes.
But in the end, I think the most important reason for mastering
        this material is to be able to understand the
        context in which questions arise and to be able
        to answer those questions appropriately with a sense for the
        purpose driving the original request.

Is This All That Matters?



In this chapter, we discussed several financial concepts and how
        to use them when deciding between different business or investment
        options.
This begs the question: are these the only issues that matter?
        Should you automatically opt for the choice with the highest net
        present value and be done with it?
Of course, the short answer is no. Other aspects matter and may
        even be more important (strategic vision, sustainability, human
        factors, personal interest, commitment). What makes these factors
        different is that they are intangible. You have
        to decide on them yourself.
The methods and concepts discussed in this chapter deal
        specifically and exclusively with the financial
        implications of certain decisions. Those concerns are
        important—otherwise, you would not even be in
        business. But this focus should not be taken to imply that financial
        considerations are the only ones that
        matter.
[image: Simulation results for the newsvendor problem: total revenue as a function of the initial inventory, for several values of the sales price c1. Also shown is the (theoretical) locus of the initial inventory size that leads to maximum revenue.]

Figure 17-2. Simulation results for the newsvendor problem: total revenue
          as a function of the initial inventory, for several values of the
          sales price c1. Also
          shown is the (theoretical) locus of the initial inventory size that
          leads to maximum revenue.

However, I am in no better position than you to give
        advice on ethical questions. It’s up to each of us individually—what
        kind of life do we want to live?

Workshop: The Newsvendor Problem



In this workshop, I’d like to introduce one more idea that is
        often relevant when dealing with business plans and calculations on
        how to find the optimal price or, alternatively, the optimal inventory
        level for some item. The basic problem is often presented in the
        following terms.
Imagine you run a newsstand. In the morning, you buy a certain
        number n of newspapers at price
        c0. Over the course of the
        day, you try to sell this inventory at price
        c1; anything that isn’t
        sold in the evening is discarded (no salvage value). If you knew how
        many papers you would actually sell during the course of the day (the
        demand m), then it would be
        easy: you would buy exactly m papers in the
        morning. However, the demand is not known exactly, although we know
        the probability p(k) of
        selling exactly k copies. The question is: how
        many papers should you buy in the morning in order to maximize your
        net earnings (the revenue)?
A first guess might be to use the average number of papers that
        we expect to sell—that is, the mean of
        p(k). However, this approach
        may not be good enough: suppose that
        c1 is much larger than
        c0 (so that your markup is
        high). In that case, it makes sense to purchase more papers in the
        hope of selling them, because the gain from selling an additional
        paper outweighs the loss from having purchased too many. (In other
        words, the opportunity cost that we incur if we
        have too few papers to satisfy all demand is greater than the cost of
        purchasing the inventory.) The converse also holds: if the markup is
        small, then each unsold paper significantly reduces our overall
        revenue.
This problem lends itself nicely to simulations. The listing
        that follows shows a minimal program for simulating the newsvendor
        problem. We fix the purchase price
        c0 at $1 and read the
        projected sales price c1
        from the command line. For the demand, we assume a Gaussian
        distribution with mean μ = 100 and standard deviation σ = 10. Now, for
        each possible initial level of inventory n, we
        make 1,000 random trials. Each trial corresponds to a single “day”; we
        randomly generate a level of demand m and
        calculate the resulting revenue for that day. The revenue consists of
        the sales price for the number of units that were actually sold
        less the purchase price for the inventory. You
        should convince yourself that the number of units sold is the lesser
        of the inventory and the demand: in the first case, we sold out; in
        the second case, we ended up discarding inventory. Finally, we average
        all trials for the current level of starting inventory and print the
        average revenue generated. The results are shown in Figure 17-2 for several
        different sales prices
        c1:
from sys import argv
from random import gauss

c0, c1 = 1.0, float( argv[1] )
mu, sigma = 100, 10
maxtrials = 1000

for n in range( mu-5*sigma, mu+5*sigma ):
    avg = 0
    for trial in range( maxtrials ):
        m = int( 0.5 + gauss( mu, sigma ) )
        r = c1*min( n, m ) -  c0*n
        avg += r

    print c1, n, avg/maxtrials
Of course, the total revenue depends on the actual sales
        price—the higher the price, the more we take home. But we can also see
        that, for each value of the sales price, the revenue curve has a
        maximum at a different horizontal location. The corresponding value of
        n gives us the optimal initial inventory level
        for that sales price. Thus we have achieved our objective: we have
        found the optimal number of newspapers to buy at the beginning of the
        day to maximize our earnings.
This simple idea can be extended in different ways. More
        complicated situations may involve different
        types of items, each with its own demand distribution. How much of
        each item should we hold in inventory now? Alternatively, we can turn
        the problem around by asking: given a fixed inventory, what would be
        the optimal price to maximize earnings? To answer
        this question, we need to know how the demand varies as we change the
        price—that is, we need to know the demand curve,
        which takes the role of the demand distribution in our example.
Optional: Exact Solution



For this particular example, involving only a single type of
          product at a fixed price, we can actually work out the optimum
          exactly. (This means that running a simulation wasn’t strictly
          necessary in this case. Nevertheless, this is one of those cases
          where a simulation may actually be easier to do and less error-prone
          than an analytical model. For more complicated scenarios, such as
          those involving different types of items with different demands,
          simulations are unavoidable.)
To solve this problem analytically, we want to find the
          optimum of the expected revenue. The revenue—as we already saw in
          our example simulation program—is given by
r(m) =
          c1
          min(n, m) –
          c0n
The revenue depends on the demand m.
          However, the demand is a random quantity: all that we know is that
          it is distributed according to some distribution
          p(m). The
          expected revenue
          E[r(m)]
          is the average of the revenue over all possible values of
          m, where each value is weighted by the
          appropriate probability factor:
[image: Optional: Exact Solution]
We can now plug in the previous expression for
          r(m), using the lesser of
          n and m in the
          integral:
[image: Optional: Exact Solution]
where we have made use of the fact that [image: ] and that [image: ].
We now want to find the maximum of the expected revenue with
          respect to the initial inventory level n. To
          locate the maximum, we first take the derivative with respect to
          n:
[image: Optional: Exact Solution]
where we have used the product rule and the fundamental
          theorem of calculus: [image: ].
Next we equate the derivative to zero (that is the condition
          for the maximum) and rearrange terms to find
[image: Optional: Exact Solution]
This is the final result. The lefthand side is the
          cumulative distribution function of the demand,
          and the righthand side is a simple expression involving the ratio of
          the purchase price and the sales price. Given the cumulative
          distribution function for the demand, we can now find the value of
          n for which the cumulative distribution
          function equals 1 –
          c0/c1—that
          value of n is the optimal initial inventory
          level.
The lighter dotted line in Figure 17-2 shows the
          location of the optimum revenue obtained by plugging the optimal
          inventory calculated in this way back into the expression for the
          revenue. As we would expect, this line goes right through the peaks
          in all the revenue curves. Notice that the maximum in the revenue
          curve occurs for n < 100 for
          c1 < 2.00: in other
          words, our markup has to be at least 100 percent, before it makes
          sense to hold more inventory than the expected
          average demand. (Remember that we expect to sell 100 papers on
          average.) If our markup is less than that, then we are better-off
          selling our inventory out entirely, rather than having to discard
          some items. (Of course, details such as these depend on the specific
          choice of the probability distribution
          p(m) that is used to model
          the demand.)


Further Reading



If you want to read up on some of the details that I have (quite
        intentionally) skipped, you should look for material on “engineering
        economics” or “engineering economic analysis.” Some books that I have
        found useful include the following.
	Industrial Mathematics: Modeling in Industry,
              Science and Government. Charles R. MacCluer. Prentice Hall. 1999.
In his preface, MacCluer points out that most engineers
            leaving school “will have no experience with problems
            incorporating the unit $.” This observation was part of the
            inspiration for this chapter. MacCluer’s book contains an overview
            over many more advanced mathematical techniques that are relevant
            in practical applications. His choice of topics is excellent, but
            the presentation often seems a bit aloof and too terse for the
            uninitiated. (For instance, the material covered in this chapter
            is compressed into only three pages.) Available as a 2010 Dover
            edition under the title A Survey of Industrial
            Mathematics.

	Schaum’s Outline of Engineering
              Economics. Jose Sepulveda, William Souder, and Byron Gottfried.
              McGraw-Hill. 1984.
If you want a quick introduction to the details left out of
            my presentation, then this inexpensive book is a good choice.
            Includes many worked examples.

	Engineering Economy. William G. Sullivan, Elin M. Wicks, and C. Patrick
              Koelling. 14th ed., Prentice Hall. 2008.
Engineering Economic
              Analysis. Donald Newnan, Jerome Lavelle, and Ted Eschenbach. 10th
              ed., Oxford University Press. 2009.
Principles of Engineering Economic
              Analysis. John A. White, Kenneth E. Case, and David B. Pratt. 5th
              ed., Wiley. 2000.
Three standard, college-level textbooks that treat largely
            the same material on many more pages.



The Newsvendor Problem



	Pricing and Revenue
                Optimization. Robert Phillips. Stanford Business Books. 2005.
Finding the optimal price for a given demand is the
              primary question in the field of “revenue optimization.” This
              book provides an accessible introduction.

	Introduction to Operations
                Research. Frederick S. Hillier and Gerald J. Lieberman. 9th ed.,
                McGraw-Hill. 2009.
The field of operations research encompasses a set of
              mathematical methods that are useful for many problems that
              arise in a business setting, including inventory management.
              This text is a standard introduction.







[28] This used to mean investing in U.S. Treasury Bonds or the
              equivalent, but at the time of this writing, even these are no
              longer considered sacrosanct. But that’s leaving the scope of
              this discussion!

[29] Do not confuse to depreciate, which
              is the process by which an asset loses value over time, with
              to deprecate, which is an expression of
              disapproval. The latter word is used most often to mark certain
              parts of a software program or library as
              deprecated, meaning that they should no
              longer be used in future work.


Chapter 18. Predictive Analytics



DATA
      ANALYSIS CAN TAKE MANY DIFFERENT FORMS—NOT ONLY IN THE TECHNIQUES THAT
      WE APPLY BUT ALSO in the kind
      of results that we ultimately achieve. Looking back over the material
      that we have covered so far, we see that the results obtained in Part I were mostly
      descriptive: we tried to figure out what the data
      was telling us and to describe it. In contrast, the results in Part II were primarily
      prescriptive: data was used as a guide for building
      models which could then be used to infer or prescribe phenomena,
      including effects that had not actually been observed yet. In this form
      of analysis, data is not used directly; instead it is used only
      indirectly to guide (and verify) our intuition when building models.
      Additionally, as I tried to stress in those chapters, we don’t just
      follow data blindly, but instead we try to develop an understanding of
      the processes that generate the data and to capture this understanding
      in the models we develop. The predictive power of such models derives
      from this understanding we develop by studying data
      and the circumstances in which it is generated.[30]
In this chapter, we consider yet another way to use data—we can
      call it predictive, since the purpose will be to
      make predictions about future events. What is different is that now we
      try to make predictions directly from the data
      without necessarily forming the kind of conceptual model (and the
      associated deeper understanding of the problem domain) as discussed in
      Part II. This difference is
      obviously both a strength and a weakness. It’s a strength in that it
      enables us to deal with problems for which we have no hope of developing
      a conceptual model, given the complexity of the situation. It is also a
      weakness because we may end up with only a black-box solution and no
      deeper understanding.
There are technical difficulties also: this form of
      analysis tends to require huge data sets because we are lacking the
      consistency and continuity guarantees provided by a conceptual model.
      (We will come back to this point.)
Topics in Predictive Analytics



The phrase predictive analytics is a bit of
        an umbrella term (others might say: marketing term) for various tasks
        that share the intent of deriving predictive information directly from
        data. Three different specific application areas stand out:
Classification or supervised
        learning
	Assign each record to exactly one of a set of predefined
            classes. For example, classify credit card transactions as “valid”
            or “fraudulent.” Spam filtering is another example. Classification
            is considered “supervised,” because the classes are known ahead of
            time and don’t need to be inferred from the data. Algorithms are
            judged on their ability to assign records to the correct
            class.



Clustering or unsupervised learning
	Group records into clusters, where the size and shape—and
            often even the number—of clusters is unknown. Clustering is
            considered “unsupervised,” because no information about the
            clusters is available ahead of the clustering procedure.



Recommendation
	Recommend a suitable item based on past interest or
            behavior. Recommendation can be seen as a form of clustering,
            where you start with an anchor and then try to find items that are
            similar or related to it.



A fourth topic that is sometimes included is time-series
        forecasting. However, I find that it does not share many
        characteristics with the other three, so I usually don’t consider it
        part of predictive analytics itself. (We discussed time-series
        analysis and forecasting in Chapter 4.)
Of the three application areas, classification is arguably the
        most important and the best developed; the rest of this chapter will
        try to give an overview over the most important classification
        algorithms and techniques. We discussed unsupervised learning in Chapter 13 on clustering techniques—and I’ll repeat
        my impression that clustering is more an exploratory than a predictive
        technique. Recommendations are the youngest branch of predictive
        analytics and quite different from the other two. (There are at least
        two major differences. First, on the technical side, many
        recommendation techniques boil down to network or graph algorithms,
        which have little in common with the statistical techniques used for
        classification and clustering. Second, recommendations tend to be
        explicitly about predicting human behavior; this
        poses additional difficulties not shared by systems that follow
        strictly deterministic laws.) For these reasons, I won’t have much to
        say about recommendation techniques here.
Table 18-1. The confusion matrix for a binary classification
          problem
	 	Predicted: A
	Predicted: B

	Actual:
                A
	Correct
	Incorrect

	Actual:
                B
	Incorrect
	Correct




Let me emphasize that this chapter can serve only as an overview
        of classification. Entire books could (and have!) been written about
        it. But we can outline the problem, introduce some terminology, and
        give the flavor of different solution approaches.

Some Classification Terminology



We begin with a data set containing multiple elements, records,
        or instances. Each instance consists of several
        attributes or features. One
        of the features is special: it denotes the record’s
        class and is known as the class
        label. Each record belongs to exactly one class.
A large number of classification problems are binary, consisting
        only of two classes (valid or fraudulent, spam or not spam); however,
        multiclass scenarios do also occur. Many classification algorithms can
        deal only with binary problems, but this is not a real limitation
        because any multiclass problem can be treated as a
        set of binary problems (belongs to the target
        class or does belong to any other class).
A classifier takes a record
        (i.e., a set of attribute values) and produces a
        class label for this record. Building and using a classifier generally
        follows a three-step process of training, testing, and actual
        application.
We first split the existing data set into a training
        set and a test set. In the training
        phase, we present each record from the training set to the
        classification algorithm. Next we compare the class label produced by
        the algorithm to the true class label of the record in question; then
        we adjust the algorithm’s “parameters” to achieve the greatest
        possible accuracy or, equivalently, the lowest possible error rate.
        (Of course, the details of this “fitting” process vary greatly from
        one algorithm to the next; we will look at different ways of how this
        is done in the next section.)
The results can be summarized in a so-called confusion
        matrix whose entries are the number of records in each
        category. (Table 18-1
        shows the layout of a generic confusion matrix.)
Unfortunately, the error rate derived from the training set (the
        training error) is typically way too optimistic
        as an indicator of the error rate the classifier would achieve on new
        data—that is, on data that was not used during the learning phase.
        This is the purpose of the test set: after we have optimized the
        algorithm using only the training data, we let
        the classifier operate on the elements of the test set to see how well
        it classifies them. The error rate obtained in this way is the
        generalization error and is a much more reliable
        indicator of the accuracy of the classifier.
[image: Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.]

Figure 18-1. Overfitting: as a model becomes more complex, it becomes
          increasingly able to represent the training data. However, such a
          model is overfitted and will not generalize well to data that was
          not used during training.

To understand the need for a separate testing phase
        (using a separate data set!), keep in mind that as long as we use
        enough parameters (i.e., making the classifier
        more and more complex) we can always tweak a classifier until it works
        very well on the training set. But in doing so, we train the
        classifier to memorize every aspect of the training set, including
        those that are atypical for the system in general. We therefore need
        to find the right level of complexity for the classifier. On the one
        hand, if it is too simple, then it cannot represent the desired
        behavior very well, and both its training and generalization error
        will be poor; this is known as underfitting. On
        the other hand, if we make the classifier too complex, then it will
        perform very well on the training set (low training error) but will
        not generalize well to unknown data points (high generalization
        error); this is known as overfitting. Figure 18-1 summarizes these
        concepts.
Once a classifier has been developed and tested, it can be used
        to classify truly new and unknown data points—that is, data points for
        which the correct class label is not known. (This is in contrast to
        the test set, where the class labels were known but not used by the
        classifier when making a prediction.)

Algorithms for Classification



At least half a dozen different families of classification
        algorithms have been developed. In this section, we briefly
        characterize the basic idea underlying each algorithm, emphasizing how
        it differs from competing methods. The first two algorithms
        (nearest-neighbor and Bayesian classifiers) are simpler, both
        technically and conceptually, than the other; I discuss them in more detail since you may want to
        implement them yourself. For the other algorithms, you probably want
        to use existing libraries instead!
Instance-Based Classifiers and Nearest-Neighbor
          Methods



The idea behind instance-based classifiers is dead simple: to
          classify an unknown instance, find an existing instance that is
          “most similar” to the new instance and assign the class label of the
          known instance to the new one!
This basic idea can be generalized in a variety of ways. First
          of all, the notion of “most similar” brings us back to the notion of
          distance and similarity measures introduced in Chapter 13; obviously we have considerable
          flexibility in the choice of which distance measure to use.
          Furthermore, we don’t have to stop at a single “most similar”
          existing instance. We might instead take the nearest
          k neighbors and use them to classify the new
          instance, typically by using a majority rule
          (i.e., we assign the new instance to the class
          that occurs most often among the k neighbors).
          We could even employ a weighted-majority rule whereby “more similar”
          neighbors contribute more strongly than those farther away.
Instance-based classifiers are atypical in that they don’t
          have a separate “training” phase; for this reason, they are also
          known as “lazy learners.” (The only adjustable parameter is the
          extent k of the neighborhood used for
          classification.) However, a (possibly large) set of known instances
          must be kept available during the final application phase. For the
          same reason, classification can be relatively expensive because the
          set of existing instances must be searched for appropriate
          neighbors.
Instance-based classifiers are local:
          they do not take the overall distribution of points into account.
          Additionally, they impose no particular shape or geometry on the
          decision boundaries that they generate. In this sense they are
          especially flexible. On the other hand, the are also susceptible to
          noise.
Finally, instance-based classifiers depend on the proper
          choice of distance measure, much as clustering algorithms do. We
          encountered this situation before, when we discussed the need for
          scale normalization in Chapter 13 and Chapter 14; the same
          considerations apply here as well.

Bayesian Classifiers



A Bayesian classifier takes a probabilistic
          (i.e., nondeterministic) view of
          classification. Given a set of attributes, it calculates the
          probability of the instance to belong to this
          or that class. An instance is then assigned the class label with the
          highest probability.
A Bayesian classifier calculates a
          conditional probability. This is the
          probability of the instance to belong to a specific class
          C, given the set of
          attribute values:
P(class C|
          {x1,
          x2,
          x3,...,
          xn})
Here C is the class label, and the set of
          attribute values is {x1,
          x2,
          x3,...,
          xn}.
          Note that we don’t yet know the value of the probability—if we did,
          we’d be finished.
To make progress, we invoke Bayes’ theorem (hence the name of
          the classifier—see also Chapter 10 for a
          discussion of Bayes’ theorem) to invert this probability expression
          as follows:
[image: Bayesian Classifiers]
where I have collapsed the set of n
          features into
          {xi}
          for brevity.
The first term in the numerator (the likelihood) is the
          probability of observing a set of features
          {xi}
          if the instance belongs to class
          C (in the language of conditional probability:
          given the class label C).
          We can find an empirical value for this probability from the set of
          training instances: it is simply the frequency with which we observe
          the set of specific attribute values
          {xi}
          among instances belonging to class C.
          Empirically, we can approximate this distribution by a set of
          histograms of the
          {xi
          }, one for each class label. The second term in the numerator,
          P(class C), is the prior
          probability of any instance belonging to class
          C. We can estimate this probability from the
          fraction of instances in the training set that belong to class
          C. The denominator does not depend on the class
          label and—as usual with Bayesian computations—is ignored until the
          end, when the probabilities are normalized.
Through the use of Bayes’ theorem, we have been able to
          express the probability for an instance to belong to class
          C, given a set of features, entirely through
          expressions that can be determined from the training set.
At least in theory. In practice, it will be almost impossible
          to evaluate this probability directly. Look closely at the
          expression (now written again in its long form),
          P({x1,
          x2,
          x3,...,
          xn}
          | class C). For each possible combination of
          attribute values, we must have enough examples in our training set
          to be able to evaluate their frequency with some degree of
          reliability. This is a combinatorial nightmare! Assume that each
          feature is binary (i.e., it can take on one of
          only two values). The number of possible combinations is then
          2n, so for
          n = 5 we already have 32 different
          combinations. Let’s say we need about 20 example instances for each
          possible combination in order to evaluate the frequency, then we’ll
          need a training set of at least 600 instances. In practice, the
          problem tends to be worse because features frequently can take more
          than two values, the number of features can easily be larger than
          five, and—most importantly—some combinations of features occur much
          less frequently than others. We therefore need a training set large
          enough to guarantee that even the least-frequent attribute
          combination occurs sufficiently often.
In short, the “brute force” approach of evaluating the
          likelihood function for all possible feature combinations is not
          feasible for problems of realistic size. Instead, one uses one of
          two simplifications.
The naive Bayesian classifier
          assumes that all features are independent of each other, so that we
          can write:
P({x1,
          x2,
          x3,...,
          xn}
          |C) =
          P(x1|C)P(x2|C)P(x3|C)
          ···
          P(xn|C)
This simplifies the problem greatly, because now we need only
          determine the frequencies for each attribute value for a
          single attribute at a time. In other words,
          each probability distribution
          P(xi
          |C) is given as the histogram of a single
          feature
          xi,
          separately for each class label. Despite their simplicity, naive
          Bayesian classifiers are often surprisingly effective. (Many spam
          filters work this way.)
Another idea is to use a Bayesian
          network. Here we prune the set of all possible feature
          combinations by retaining only those that have a causal relationship
          with each other.
Bayesian networks are best discussed through an example.
          Suppose we want to build a classifier that predicts whether we will
          be late to work in the morning, based on three binary
          features:
	Alarm clock went off: Yes or No

	Left the house on time: Yes or No

	Traffic was bad: Yes or No



Although we don’t assume that all
          features are independent (as we did for the naive Bayesian
          classifier), we do observe that the traffic situation is independent
          of the other two features. Furthermore, whether we leave the house
          on time does depend on the proper working of the alarm clock. In
          other words, we can split the full probability:
P(Arrive on time | Alarm clock, Leave on
          time, Traffic)
into the following combination of events:
P(Arrive on time | Leave on time)
P(Leave on time | Alarm clock)
P(Arrive on time | Traffic)
Notice that only two of the terms give the probability for the
          class label (“Arrive on time”) and that one gives the probability of
          an intermediate event (see Figure 18-2).
For such a small example (containing only three features), the
          savings compared with maintaining all feature combinations are not
          impressive. But since the number of combinations grows exponentially
          with the number of features, restricting our attention to only those
          factors that have a causal relationship with each other can
          significantly reduce the number of combinations we need to retain
          for larger problems.
The structure (or topology) of a Bayesian
          network is usually not inferred from the data; instead, we use
          domain knowledge to determine which pathways to keep. This is
          exactly what we did in the example: we “knew” that traffic
          conditions were independent of the situation at home and used this
          knowledge to prune the network accordingly.
[image: The structure of different Bayesian classifiers.]

Figure 18-2. The structure of different Bayesian classifiers.

There are some practical issues that need to be addressed when
          building Bayesian classifiers. The description given here silently
          assumes that all attributes are categorical
          (i.e., take on only a discrete set of values).
          Attributes that take on continuous numerical values either need to
          be discretized, or we need to find the probability
          P({xi}
          | C) through a kernel density estimate (see
          Chapter 2) for all
          the points in class C in the training set. If
          the training set is large, the latter process may be
          expensive.
[image: Using regression for classification: the data points show the they employee type (employee or manager) as a function of the salary; managers tend to have higher salaries. (Data points are jittered in the vertical direction to avoid overplotting.)]

Figure 18-3. Using regression for classification: the data points show
            the they employee type (employee or manager) as a function of the
            salary; managers tend to have higher salaries. (Data points are
            jittered in the vertical direction to avoid overplotting.)

Another tricky detail concerns attribute values that
          do not occur in the training set: the corresponding probability is
          0. But a naive Bayesian classifier consists of a product of
          probabilities and therefore becomes 0 as soon as a single term is 0!
          In particular with small training sets, this is a problem to watch
          out for. On the other hand, naive Bayesian classifiers are robust
          with regard to missing features: when
          information about an attribute value is unknown for some of the
          instances, the corresponding probability simply evaluates to 1 and
          does not affect the final result.

Regression



Sometimes we have reason to believe that there is a functional
          relationship between the class label and the set of features. For
          example, we might assume that there is some relationship between an
          employee’s salary and his status (employee or manager). See Figure 18-3.
If it is reasonable to assume a functional relationship, then
          we can try to build a classifier based on this relationship by
          “fitting” an appropriate function to the data. This turns the
          classification problem into a regression
          problem.
However, as we can see in Figure 18-3, a linear
          function is usually not very appropriate because it takes on all
          values, whereas class labels are discrete. Instead of fitting a
          straight line, we need something like a step function: a function
          that is 0 for points belonging to the one class, and 1 for points
          belonging to the other class. Because of its discontinuity,
          the step function is hard to work with; hence one
          typically uses the logistic function (see Appendix B) as a smooth approximation to the
          step function. The logistic function gives this technique its name:
          logistic regression. Like all regression
          methods, it is a global technique that tries to optimize a fit over
          all points and not just over a particularly relevant subset.
Logistic regression is not only important in practical
          applications but has deep roots in theoretical statistics as well.
          Until the arrival of support vector machines, it was the method of
          choice for many classification problems.

Support Vector Machines



Support vector machines are a relative newcomer among
          classification methods. The name is a bit unfortunate: there is
          nothing particularly “machine-y” about them. They are, in fact,
          based on a simple geometrical construction.
Consider training instances in a two-dimensional feature space
          like the one in Figure 18-4. Now we are
          looking for the “best” dividing line (or decision
          boundary) that separates instances belonging to one class
          from instances belonging to the other.
We need to decide what we mean by “best.” The answer given by
          support vector machines is that the “best” dividing line is one that
          has the largest margin. The margin is the
          space, parallel to the decision boundary, that is free of any
          training instances. Figure 18-4 shows two
          possible decision boundaries and their respective margins. Although
          this example is only two-dimensional, the reasoning generalizes
          directly to higher dimensions. In such cases, the decision boundary
          becomes a hyperplane, and support vector machines therefore find the
          maximum margin hyperplanes (a term you might
          find in the literature).
I will not go through the geometry and algebra required to
          construct a decision boundary from a data set, since you probably
          don’t want to implement it yourself, anyway. (The construction is
          not difficult, and if you have some background in analytic geometry,
          you will be able to do it yourself or look it up elsewhere.) The
          important insight is that support vector machines turn the task of
          finding a decision boundary first into the geometric task of
          constructing a line (or hyperplane) from a set of points (this is an
          elementary task in analytic geometry). The next step—find the
          decision boundary with the largest margin—is then just a
          multi-dimensional optimization problem, with a particularly simple
          and well-behaved objective function (namely, the square of the
          distance of each point from the decision boundary), for which good
          numerical algorithms exist.
One important property of support vector machines is that they
          perform a strict global optimization without having to rely on
          heuristics. Because of the nature of the objective function, the
          algorithm is guaranteed to find the global optimum, not merely a
          local one. On the other hand, the final solution does not depend on
          all points; instead it depends only on those closest to the decision
          boundary, points that lie right on the edge of the margin. (These
          are the support vectors, see Figure 18-4.) This means
          that the decision boundary depends only on instances close to it and
          is not influenced by system behavior far from the decision boundary.
          However, the global nature of the algorithm implies that, for those
          support vectors, the optimal hyperplane will be found!
[image: Two decision boundaries and their margins. Note that the vertical decision boundary has a wider margin than the other one. The arrows indicate the distance between the respective support vectors and the decision boundary.]

Figure 18-4. Two decision boundaries and their margins. Note that the
            vertical decision boundary has a wider margin than the other one.
            The arrows indicate the distance between the respective support
            vectors and the decision boundary.

Two generalizations of this basic concept are of great
          practical importance. First, consider Figure 18-4 again. We were
          lucky that we could find a straight line (in fact, more than one) to
          separate the data points exactly into two classes, so that both
          decision boundaries shown have zero training error. In practice, it
          is not guaranteed that we will always find such a decision boundary,
          and there may be some stray instances that cannot be classified
          correctly by any straight-line decision boundary. More generally, it
          may be advantageous to have a few misclassified training
          instances—in return for a much wider margin—because it is reasonable
          to assume that a larger margin will lead to a lower generalization
          error later on. In other words, we want to find a balance between
          low training error and large margin size. This can be done by
          introducing slack variables. Basically, they
          associate a cost with each misclassified instance, and we then try
          to solve the extended optimization problem, in which we try to
          minimize the cost of misclassified instances while at the same time
          trying to maximize the margins.
The other important generalization allows us to use curves
          other than straight lines as decision boundaries. This is usually
          achieved through kernelization or the “kernel
          trick.” The basic idea is that we can replace the dot product
          between two vectors (which is central to the geometric construction
          required to find the maximum margin hyperplane) with a more general
          function of the two vectors. As long as this function meets certain
          requirements (you may find references to “Mercer’s theorem” in the
          literature), it can be shown that all the previous arguments
          continue to hold.
One disadvantage of support vector machines is that
          they lead to especially opaque results: they truly are black boxes.
          The final classifier may work well in practice, but it does not shed
          much light on the nature of the problem. This is in contrast to
          techniques such as regression or decision trees (see the next
          section), which often lead to results that can be interpreted in
          some form. (In regression problems, for instance, one can often see
          which attributes are the most influential ones, and which are less
          relevant.)

Decision Trees and Rule-Based Classifiers



Decision trees and rule-based classifiers are different from
          the classifiers discussed so far in that they do not require a
          distance measure. For this reason, they are sometimes referred to as
          nonmetric classifiers.
Decision trees consist of a hierarchy of decision points (the
          nodes of the tree). When using a decision tree to classify an
          unknown instance, a single feature is examined at each node of the
          tree. Based on the value of that feature, the next node is selected.
          Leaf nodes on the tree correspond to classes; once we have reached a
          leaf node, the instance in question is assigned the corresponding
          class label. Figure 18-5 shows an
          example of a simple decision tree.
The primary algorithm (Hunt’s algorithm)
          for deriving a decision tree from a training set employs a greedy
          approach. The algorithm is easiest to describe when all features are
          categorical and can take only one of two values (binary attributes).
          If this is the case, then the algorithm proceeds as follows:
	For each instance in the training set, examine each
              feature in turn.

	Split the training instances into two subsets based on the
              value of the current feature.

	Select the feature that results in the “purest” subsets;
              the value of this attribute will be the decision condition
              employed by the current node.

	Repeat this algorithm recursively on the two subsets until
              the resulting subsets are sufficiently pure.



To make this concrete, we must be able to measure the
          purity of a set. Let
          fC
          be the fraction of instances in the set belonging to class
          C. Obviously, if
          fC
          = 1 for any class label C, then the set is
          totally pure because all of its elements belong to the same class.
          We can therefore define the a purity of a set as the frequency of
          its most common constituent. (For example, if a set consists of 60
          percent of items from class A, 30 percent from class B, and 10
          percent from class C, then its purity is 60 percent.) This is not
          the only way to define purity. Other ways of measuring it are
          acceptable provided they reach a maximum when all elements of a set
          belong to the same class and reach a minimum when the elements of
          the set are distributed uniformly across classes.
[image: A very simple decision tree.]

Figure 18-5. A very simple decision tree.

Another important quantity related to decision trees
          is the gain ratio Δ from a parent node to its
          children. This quantity measures the gain in purity from parent to
          children, weighted by the relative size of the subsets:
[image: A very simple decision tree.]
where I is the purity (or impurity) of a
          node,
          Nj
          is the number of elements assigned to child node
          j, and N is the total
          number of elements at the parent node. We want to find a splitting
          that maximizes this gain ratio.
What I have described so far is the outline of the basic
          algorithm. As with all greedy algorithms, there is no guarantee that
          it will find the optimal solution, and therefore various heuristics
          play a large role to ensure that the solution is as good as
          possible. Hence the various published (and proprietary) algorithms
          for decision trees (you may find references to CART, C4.5, and ID3)
          differ in such details such as the following:
	What choice of purity/impurity measure is used?

	At what level of purity does the splitting procedure stop?
              (Continuing to split a training set until all leaf nodes are
              entirely pure usually results in overfitting.)

	Is the tree binary, or can a node have more than
              two children?

	How should noncategorical attributes be treated? (For
              attributes that take on a continuum of values, we need to define
              the optimal splitting point.)

	Is the tree postprocessed? (To reduce overfitting, some
              algorithms employ a pruning step that attempts to eliminate leaf
              nodes having too few elements.)



Decision trees are popular and combine several attractive
          features: with good algorithms, decision trees are relatively cheap
          to build and are always very fast to evaluate. They are also rather
          robust in the presence of noise. It can even be instructive to
          examine the decision points of a decision tree, because they
          frequently reveal interesting information about the distribution of
          class labels (such as when 80 percent of the class information is
          contained in the topmost node). However, algorithms for building
          decision trees are almost entirely black-box and do not lend
          themselves to ad hoc modifications or extensions.
There is an equivalence between decision trees and
          rule-based classifiers. The latter consist of a
          set of rules (i.e., logical conditions on
          attribute values) that, when taken in aggregate, determine the class
          label of a test instance. There are two ways to build a rule-based
          classifier. We can build a decision tree first and then transform
          each complete path through the decision tree into a single rule.
          Alternatively, we can build rule-based classifiers directly from a
          training set by finding a subset of instances that can be described
          by a simple rule. These instances are then removed from the training
          set, and the process is repeated. (This amounts to a bottom-up
          approach, whereas using a variant of Hunt’s algorithm to build a
          decision-tree follows a top-down approach.)

Other Classifiers



In addition to the classifiers discussed so far, you will find
          others mentioned in the literature. I’ll name just two—mostly
          because of their historical importance.
Fisher’s linear discriminant analysis
          (LDA) was one of the first classifiers developed. It is similar to
          principal component analysis (see Chapter 14). Whereas in
          PCA, we introduce a new coordinate system to maximize the spread
          along the new coordinates axes, in LDA we introduce new coordinates
          to maximize the separation between two classes that we try to
          distinguish. The position of the means, calculated separately for
          each class, are taken as the location of each class.
Artificial neural networks were conceived
          as extremely simplified models for biological brains. The idea was
          to have a network of nodes; each node receives input from several
          other nodes, forms a weighted average of its input, and then sends
          it out to the next layer of nodes. During the learning stage, the
          weights used in the weighted average are adjusted to minimize
          training error. Neural networks were very popular for a while but
          have recently fallen out of favor somewhat. One reason is that the
          calculations required are more complicated than for other classifiers; another
          is that the whole concept is very ad hoc and lacks a solid
          theoretical grounding.


The Process



In addition to the primary algorithms for classification,
        various techniques are important for dealing with practical problems.
        In this section, we look at some standard methods commonly used to
        enhance accuracy—especially for the important case when the most
        “interesting” type of class occurs much less frequently than the other
        types.
Ensemble Methods: Bagging and Boosting



The term ensemble methods refers to a set
          of techniques for improving accuracy by combining the results of
          individual or “base” classifiers. The rationale is the same as when
          performing some experiment or measurement multiple times and then
          averaging the results: as long as the experimental runs are
          independent, we can expect that errors will cancel and that the
          average will be more accurate than any individual trial. The same
          logic applies to classification techniques: as long as the
          individual base classifiers are independent, combining their results
          will lead to cancellation of errors and the end result will have
          greater accuracy than the individual contributions.
To generate a set of independent classifiers, we have to
          introduce some randomness into the process by which they are built.
          We can manipulate virtually any aspect of the overall system: we can
          play with the selection of training instances (as in bagging and
          boosting), with the selection of features (often in conjunction with
          random forests), or with parameters that are specific to the type of
          classifier used.
Bagging is an application of the
          bootstrap idea (see Chapter 12) to
          classification. We generate additional training sets by sampling
          with replacement from the original training set. Each of these
          training sets is then used to train a separate classifier instance.
          During production, we let each of these instances provide a separate
          assessment for each item we want to classify. The final class label
          is then assigned based on a majority vote or similar
          technique.
Boosting is another technique to generate
          additional training sets using a bootstrap approach. In contrast to
          bagging, boosting is an iterative process that assigns higher
          weights to instances misclassified in previous rounds. As the
          iteration progresses, higher emphasis is placed on training
          instances that have proven hard to classify correctly. The final
          result consists of the aggregate result of all base classifiers
          generated during the iteration. A popular variant of this technique
          is known as “AdaBoost.”
Random forests apply specifically to
          decision trees. In this technique, randomness is introduced not by
          sampling from the training set but by randomly choosing what
          features to use when building the decision tree. Instead of
          examining all features at every node to find the feature that gives
          the greatest gain ratio, only a subset of features is evaluated for
          each tree.

Estimating Prediction Error



Earlier, we already talked about the difference between the
          training and the generalization error: the training error is the
          final error rate that the classifier achieves on the training set.
          It is usually not a good measure for the accuracy of the classifier
          on new data (i.e., on data
          that was not used to train the classifier). For this reason, we hold
          some of the data back during training, and use it later as a test
          set. The error that the classifier achieves on this test set is a
          much better measure for the generalization error that we can expect
          when using the classifier on entirely new data.
If the original data set is very large, there is no problem in
          splitting it into a training and a test set. In reality, however,
          available data sets are always “too small,” so that we need to make
          sure we use the available data most efficiently, using a process
          known as cross-validation.
The basic idea is that we randomly divide the original data
          set into k equally sized chunks. We then
          perform k training and test runs. In each run,
          we omit one of the chunks from the training set and instead use it
          as the test set. Finally, we average the generalization errors from
          all k runs to obtain the overall expected
          generalization error.
A value of k = 10 is typical, but you can
          also use a value like k = 3. Setting
          k = n, where
          n is the number of available data points, is
          special: in this so-called “leave-one-out” cross-validation, we
          train the classifier on all data points except one and then try to
          predict the omitted data point—this procedure is then repeated for
          all data points. (This prescription is similar to the jackknife
          process that was mentioned briefly in Chapter 12.)
Yet another method uses the idea of random sampling
          with replacement, which is characteristic of
          bootstrap techniques (see Chapter 12). Instead
          of dividing the available data into k
          nonoverlapping chunks, we generate a bootstrap sample by drawing
          n data points with replacement from the
          original n data points. This bootstrap sample
          will contain some of the data points more than once, and some not at
          all: overall, the fraction of the unique data points included in the
          bootstrap sample will be about 1 –
          e–1 ≈ 0.632 of the
          available data points—for this reason, the method is often known as
          the 0.632 bootstrap. The bootstrap sample is
          used for training, and the data points not included in the bootstrap
          sample become the test set. This process can be repeated several
          times, and the results averaged as for cross-validation, to obtain
          the final estimate for the generalization error.
(By the way, this is basically the “unique visitor” problem
          that we discussed in Chapter 9 and Chapter 12—after n days (draws)
          with one random visitor each day (one data point selected per draw),
          we will have seen [image: ] unique visitors (unique data points).)
Table 18-2. Terminology for the confusion matrix in the case of class
            imbalance (i.e. “bad” outcomes are much less
            frequent than “good” outcomes)
	 	Predicted:
                  Bad
	Predicted:
                  Good

	Actually: Bad
	True positive:
                  “Hit”
	False negative:
                  “Miss”

	Actually: Good
	False positive: “False
                  alarm”
	True negative: “Correct
                  rejection”





Class Imbalance Problems



A special case of particular importance concerns situations
          where one of the classes occurs much less frequently than any of the
          other classes in the data set—and, as luck would have it, that’s
          usually the class we are interested in! Consider credit card fraud
          detection, for instance: only one of every hundred credit card
          transactions may be fraudulent, but those are exactly the ones we
          are interested in. Screening lab results for patients with elevated
          heart attack risk or inspecting manufactured items for defects falls
          into the same camp: the “interesting” cases are rare, perhaps
          extremely rare, but those are precisely the cases that we want to
          identify.
For cases like this, there is some additional terminology as
          well as some special techniques for overcoming the technical
          difficulties. Because there is one particular class that is of
          greater interest, we refer to an instance belonging to this class as
          a positive event and the class itself as the
          positive class. With this terminology, entries
          in the confusion matrix (see Table 18-1) are often
          referred to as true (or false) positives (or negatives).
I have always found this terminology very confusing, in part
          because what is called “positive” is usually something
          bad: a fraudulent transaction, a defective
          item, a bad heart. Table 18-2 shows a
          confusion matrix employing the special terminology for problems with
          a class imbalance—and also an alternative terminology that may be
          more intuitive.
The two different types of errors may have very different
          costs associated with them. From the point of view of a merchant
          accepting credit cards as payment, a false negative
          (i.e., a fraudulent transaction incorrectly
          classified as “not fraudulent”—a “miss”) results in the total loss
          of the item purchased, whereas a false positive (a valid transaction
          incorrectly classified as “not valid”—a “false alarm”) results only
          in the loss of the profit margin on that item.
The usual metrics by which we evaluate a classifier (such as
          accuracy and error rate), may not be very meaningful in situations
          with pronounced class imbalances: keep in mind that the trivial
          classifier that labels every credit card
          transaction as “valid” is 99 percent accurate—and entirely useless!
          Two metrics that provide better insight into the ability of a
          classifier to detect instances belonging to the positive class are
          recall and precision. The
          precision is the fraction of correct classifications among all
          instances labeled positive; the recall is the fraction of correct
          classifications among all instances labeled negative:
[image: Class Imbalance Problems]
[image: A ROC (receiver operating characteristic) curve: the trade-off between true positives (“hits”) and false positives (“false alarms”), for three different classifier implementations.]

Figure 18-6. A ROC (receiver operating characteristic) curve: the
            trade-off between true positives (“hits”) and false positives
            (“false alarms”), for three different classifier
            implementations.

You can see that we will need to strike a balance. On
          the one hand, we can build a classifier that is very aggressive,
          labeling many transactions as “bad,” but it will have a high
          false-positive rate, and therefore low precision. On the other hand,
          we can build a classifier that is highly selective, marking only
          those instances that are blatantly fraudulent as “bad,” but it will
          have a high rate of false negatives and therefore low recall. These
          two competing goals (to have few false positives and few false
          negatives) can be summarized in a graph known as a
          receiver operating characteristic (ROC) curve.
          (The concept originated in signal processing, where it was used to
          describe the ability of a receiver to distinguish a true signal from
          a spurious one in the presence of noise, hence the name.)
Figure 18-6
          shows an example of a ROC curve. Along the horizontal axis, we plot
          the false positive rate (good events that were labeled as bad—“false
          alarms”) and along the vertical axis we plot the true positive rate
          (bad events labeled as bad—“hits”). The lower-left corner
          corresponds to a maximally conservative classifier, which labels
          every instance as good; the upper-right corner corresponds to a
          maximally aggressive classifier, which labels everything as bad. We
          can now imagine tuning the parameters and thresholds of our
          classifier to shift the balance between “misses” and “false alarms”
          and thereby mapping out the characteristic curve for our classifier.
          The curve for a random classifier (which assigns a positive class
          label with fixed probability p, irrespective of
          attribute values) will be close to the diagonal: it is equally
          likely to classify a good instance as good as it is to classify a
          bad one as good, hence its false positive rate equals its true
          positive rate. In contrast, the ideal classifier would have a true
          positive rate equal to 1 throughout. We want to tune our classifier
          so that it approximates the ideal classifier as nearly as
          possible.
Class imbalances pose some technical issues during the
          training phase: if positive instances are extremely rare, then we
          want to make sure to retain as much of their information as possible
          in the training set. One way to achieve this is by oversampling
          (i.e., resampling) from the positive class
          instances—and undersampling from the negative class instances—when
          generating a training set.


The Secret Sauce



All this detail about different algorithms and processes can
        easily leave the impression that that’s all there is to
        classification. That would be unfortunate, because it leaves out what
        can be the most important but also the most difficult part of the
        puzzle: finding the right attributes!
The choice of attributes matters for successful
        classification—arguably more so than the choice of classification
        algorithm. Here is an interesting case story. Paul Graham has written
        two essays on using Bayesian classifiers for spam filtering.[31] In the second one, he describes how using the
        information contained in the email headers is
        critical to obtaining good classification results, whereas using only
        information in the body is not enough. The punch
        line here is clear: in practice, it matters a lot which features or
        attributes you choose to include.
Unfortunately, when compared with the extremely detailed
        information available on different classifier algorithms and their
        theoretical properties, it is much more difficult to find good
        guidance regarding how best to choose, prepare, and encode features
        for classification. (None of the current books on classification
        discuss this topic at all.)
I think there are several reasons for this relative lack of
        easily available information—despite the importance of the topic. One
        of them is lack of rigor: whereas one can prove rigorous theorems on
        classification algorithms, most recommendations for feature
        preparation and encoding would necessarily be empirical and heuristic.
        Furthermore, every problem domain is different, which makes it
        difficult to come up with recommendations that would be applicable
        more generally. The implication is that factors such as experience,
        familiarity with the problem domain, and lots of time-consuming trial
        and error are essential when choosing attributes for classification.
        (A last reason for the relative lack of available information on this topic may
        be that some prefer to keep their cards a little closer to their
        chest: they may tell you how it works “in theory,” but they won’t
        reveal all the tricks of the trade necessary to fully replicate the
        results.)
The difficulty of developing some recommendations that work in
        general and for a broad range of application domains may also explain
        one particular observation regarding classification: the apparent
        scarcity of spectacular, well-publicized successes. Spam filtering
        seems to be about the only application that clearly works and affects
        many people directly. Credit card fraud detection and credit scoring
        are two other widely used (if less directly visible) applications. But
        beyond those two, I see only a host of smaller, specialized
        applications. This suggests again that every successful classifier
        implementation depends strongly on the details of the particular
        problem—probably more so than on the choice of algorithm.

The Nature of Statistical Learning



Now that we have seen some of the most commonly used algorithms
        for classification as well as some of the related practical
        techniques, it’s easy to feel a bit overwhelmed—there seem to be so
        many different approaches (each nontrivial in its own way) that it can
        be hard to see the commonalities among them: the “big picture” is
        easily lost. So let’s step back for a moment and reflect on the
        specific challenges posed by classification problems and on the
        overall strategy by which the various algorithms overcome these
        challenges.
The crucial problem is that from the outset, we don’t have good
        insight into which features are the most relevant in predicting the
        class—in fact, we may have no idea at all about the processes (if
        any!) that link observable features to the resulting class. Because we
        don’t know ahead of time which features are likely to be most
        important, we need to retain them all and perhaps even expand the
        feature set in an attempt to include any possible clue we can get. In
        this way, the problem quickly becomes very multi-dimensional. That’s
        the first challenge.
But now we run into a problem: multi-dimensional data sets are
        invariably sparse data sets. Think of a histogram
        with (say) 5 bins per dimension. In one dimension, we have 5 bins
        total. If we want on average at least 5 items per bin, we can make do
        with 25 items total. Now consider the same data set in two dimensions.
        If we still require 5 bins per dimension, we have a total of 25 bins,
        so that each bin contains on average only a single element. But it is
        in three dimensions that the situation becomes truly dramatic: now
        there are 125 bins, so we can be sure that the majority of bins will
        contain no element at all! It gets even worse in
        higher dimensions. (Mathematically speaking, the problem is that the
        number of bins grows exponentially with the number of dimensions:
        Nd,
        where d is the number of dimensions and
        N is the number of bins per dimension. No matter
        what you do, the number of cells is going to grow faster than you can
        obtain data. This problem is known as the curse of
        dimensionality.) That’s the second challenge.
It is this combinatorial explosion that drives the need for
        larger and larger data sets. We have just seen that the the number of
        possible attribute value combinations grows exponentially; therefore,
        if we want to have a reasonable chance of finding at least one
        instance of each possible combination in our training data, we need to
        have very large data sets indeed. Yet despite our best efforts, we
        will frequently end up with a sparse data set (as discussed above).
        Nevertheless, we will often deal with inconveniently large data sets.
        That’s the third challenge.
Basically all classification algorithms deal with these
        challenges by using some form of interpolation
        between points in the sparse data set. In other words, they attempt to
        smoothly fill the gaps left in the high-dimensional feature space,
        supported only by a (necessarily sparse) set of points
        (i.e., the training instances).
Different algorithms do this in different ways: nearest-neighbor
        methods and naive Bayesian classifiers explicitly “smear out” the
        training instances to fill the gaps locally, whereas regression and
        support vector classifiers construct global structures to form a
        smooth decision boundary from the sparse set of supporting points.
        Decision trees are similar to nearest-neighbor methods in this regard
        but provide a particularly fast and efficient lookup of the most
        relevant neighbors. Their differences aside, all algorithms aim to
        fill the gaps between the existing data points in some smooth,
        consistent way.
This brings us to the question of what can actually be predicted
        in this fashion. Obviously, class labels must depend on attribute
        values, and they should do so in some smooth, predictable fashion. If
        the relationship between attribute values and class labels is too
        crazy, no classifier will be very useful.
Furthermore, the distribution of attribute values for different
        classes must differ, for otherwise no classifier
        will be able to distinguish classes by examining the attribute
        values.
Unfortunately, there is—to my knowledge—no independent, rigorous
        way of determining whether the information contained in a data set is
        sufficient to allow the data to be classified. To find out, we must
        build an actual classifier. If it works, then obviously there
        is enough information in the data set for
        classification. But if it does not work, we have
        learned nothing, because it is always possible that a different or
        more sophisticated classifier would work. But
        without an independent test, we can spend an infinite amount of time
        building and refining classifiers on data sets that contain no useful
        information. We encountered this kind of difficulty already in Chapter 13 in the context of clustering algorithms,
        but it strikes me as even more of a problem here. The reason is that
        classification is by nature predictive (or at least should be),
        whereas uncertainty of this sort seems more acceptable in an
        exploratory technique such as clustering.
To make this more clear, suppose we have a large, rich data set:
        many records with many features. We then arbitrarily assign class
        labels A and B to the records in the data set. Now, by construction,
        it is clear that there is no way to predict the labels from the
        “data”—they are, after all, purely random! However, there is no
        unambiguous test that will clearly say so. We can calculate the
        correlation coefficients between each feature (or combination of
        features) and the class label, we can look at the distribution of
        feature values and see whether they differ from class to class, and so
        eventually convince ourselves that we won’t be able to build a good
        classifier given this data set. But there is no clear test or
        diagnostic that would give us, for instance, an upper bound on the
        quality of any classifier that could be built based on this data set.
        If we are not careful, we may spend a lot of time vainly attempting to
        build a classifier capable of extracting useful information from this
        data set. This kind of problem is a trap to be aware of!

Workshop: Two Do-It-Yourself Classifiers



With classification especially, it is really easy to end up with
        a black-box solution: a tool or library that provides an
        implementation of a classification algorithm—but one that we would not
        be able to write ourselves if we had to. This kind of situation always
        makes me a bit uncomfortable, especially if the algorithms require any
        parameter tuning to work properly. In order to adjust such parameters
        intelligently, I need to understand the algorithm well enough that I
        could at least provide a rough-cut version myself (much as I am happy
        to rely on the library designer for the high-performance
        version).
In this spirit, instead of discussing an existing classification
        library, I want to show you how to write straightforward (you might
        say “toy version”) implementations for two simple classifiers: a
        nearest-neighbor lazy learner and a naive Bayesian classifier. (I’ll
        give some pointers to other libraries near end of the section.)
We will test our implementations on the
        classic data set in all of classification: Fisher’s Iris data
        set.[32] The data set contains measurements of four different
        parts of an iris flower (sepal length and width, petal length and
        width). There are 150 records in the data set, distributed equally
        among three species of Iris (Iris setosa,
        versicolor, and virginica).
        The task is to predict the species based on a given a set of
        measurements.
First of all, let’s take a quick look at the distributions of
        the four quantities, to see whether it seems feasible to distinguish
        the three classes this way. Figure 18-7 shows histograms
        (actually, kernel density estimates) for all four quantities,
        separately for the three classes. One of the features (sepal width)
        does not seem very promising, but the distributions of the other three
        features seem sufficiently separated that it should be possible to
        obtain good classification results.
[image: The distribution of the four attributes in the Iris data set, displayed separately for the three classes.]

Figure 18-7. The distribution of the four attributes in the Iris data set,
          displayed separately for the three classes.

As preparation, I split the original data set into two parts: a
        training set (in the file iris.trn)
        and a test set (in file iris.tst).
        I randomly selected five records from each class for the test set; the
        remaining records were used for training. The test set is shown in
        full below: the columns are (in order) sepal length, sepal width,
        petal length, petal width, and the class label. (All measurements are
        in centimeters and to millimeter precision.)
5.0,3.6,1.4,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.7,2.8,4.5,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.3,2.9,5.6,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
Our implementation of the nearest-neighbor classifier is shown
        in the next listing. The implementation is exceedingly
        simple—especially once you realize that about two thirds of the
        listing deal with file input and output. The actual “classification”
        is a matter of three lines in the middle:
# A Nearest-Neighbor Classifier

from numpy import *

train = loadtxt( "iris.trn", delimiter=',', usecols=(0,1,2,3) )
trainlabel = loadtxt( "iris.trn", delimiter=',', usecols=(4,), dtype=str )

test = loadtxt( "iris.tst", delimiter=',', usecols=(0,1,2,3) )
testlabel = loadtxt( "iris.tst", delimiter=',', usecols=(4,), dtype=str )

hit, miss = 0, 0
for i in range( test.shape[0] ):
    dist = sqrt( sum( (test[i] - train)**2, axis=1 ) )
    k = argmin( dist )

    if trainlabel[k] == testlabel[i]:
        flag = '+'
        hit += 1
    else:
        flag = '-'
        miss += 1

    print flag, "\t Predicted: ", trainlabel[k], "\t True: ", testlabel[i]

print
print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)
The algorithm loads both the training and the test data set into
        two-dimensional NumPy arrays. Because all elements in a NumPy array
        must be of the same type, we store the class labels (which are
        strings, not numbers) in separate vectors.
Now follows the actual classification step: for each element of
        the test set, we calculate the Euclidean distance to each element in
        the training set. We make use of NumPy “broadcasting” (see the
        Workshop in Chapter 2) to calculate
        the distance of the test instance test[i] from all
        training instances in one fell swoop. (The argument axis=1 is necessary to tell NumPy that the
        sum in the Euclidean distance should be taken over the
        inner (horizontal) dimension of the
        two-dimensional array.) Next, we use the argmin() function to obtain the index of the
        training record that has the smallest distance to the current test
        record: this is our predicted class label. (Notice that we base our
        result only on a single record—namely the closest training
        instance.)
Simple as it is, the classifier works very well (on this data
        set). For the test set shown, all records in the test set are
        classified correctly!
The naive Bayesian classifier implementation is next. A naive
        Bayesian classifier needs an estimate of the probability distribution
        P(class C | feature
        x), which we find from a histogram of attribute
        values, separately for each class. In this case, we need a total of 12
        histograms (3 classes × 4 features). I maintain this data in a triply
        nested data structure: histo[label][feature][value]. The first
        index is the class label, the second index specifies the feature, and
        the third contains the values of the feature that occur in the
        histogram. The value stored in the histogram is the number of times
        that each value has been observed:
# A Naive Bayesian Classifier

total = {}  # Training instances per class label
histo = {}  # Histogram

# Read the training set and build up a histogram
train = open( "iris.trn" )
for line in train:
    # seplen, sepwid, petlen, petwid, label
    f = line.rstrip().split( ',' )
    label = f.pop()

    if not total.has_key( label ):
        total[ label ] = 0
        histo[ label ] = [ {},  {},  {},  {} ]

    # Count training instances for the current label
    total[label] += 1

    # Iterate over features
    for i in range( 4 ):
        histo[label][i][f[i]]  = 1 + histo[label][i].get( f[i], 0.0 )

train.close()

# Read the test set and evaluate the probabilities
hit, miss = 0, 0
test = open( "iris.tst" )
for line in test:
    f = line.rstrip().split( ',' )
    true = f.pop()

    p = {}  # Probability for class label, given the test features
    for label in total.keys():
        p[label] = 1
        for i in range( 4 ):
            p[label] *= histo[label][i].get(f[i],0.0)/total[label]

    # Find the label with the largest probability
    mx, predicted = 0, -1
    for k in p.keys():
        if p[k] >= mx:
            mx, predicted = p[k], k

    if true == predicted:
        flag = '+'
        hit += 1

    else:
        flag = '-'
        miss += 1

    print flag, "\t", true, "\t", predicted, "\t",
    for label in p.keys():
        print label, ":", p[label], "\t",
    print

print
print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)

test.close()
I’d like to point out two implementation details. The
        first is that the second index is an integer, which I use instead of
        the feature names; this simplifies some of the loops in the program.
        The second detail is more important: I know that the feature values
        are given in centimeters, with exactly one digit after the decimal
        point. In other words, the values are already discretized, and so I
        don’t need to “bin” them any further—in effect, each bin in the
        histogram is one millimeter wide. Because I never need to operate on
        the feature values, I don’t even convert them to numbers: I read them
        as strings from file and use them (as strings) as keys in the
        histogram. Of course, if we wanted to use a different bin width, then
        we would have to convert them into numerical values so that we can
        operate on them.
In the evaluation part, the program reads data points from the
        test set and then evaluates the probability that the record belongs to
        a certain class for all three class labels. We then pick the class
        label that has the highest probability. (Notice that we don’t need an
        explicit factor for the prior probability, since we know that each
        class is equally likely.)
On the test set shown earlier, the Bayesian classifier does a
        little worse than the nearest neighbor classifier: it correctly
        classifies 12 of 15 instances for a total accuracy of 80
        percent.
If you look at the results of the classifier more closely, you
        will immediately notice a couple of problems that are common with
        Bayesian classifiers. First of all, the posterior probabilities are
        small. This should come as no surprise: each
        Bayes factor is smaller than 1 (because it’s a probability), so their
        product becomes very small very quickly. To avoid underflows, it’s
        usually a good idea to add the logarithms of the probabilities instead
        of multiplying the probabilities directly. In fact, if you have a
        greater number of features, this becomes a necessity. The second
        problem is that many of the posterior probabilities come out as
        exactly zero: this occurs whenever no entry in the histogram can be
        found for at least one of the feature values in the test record; in
        this case the histogram evaluates to zero, which means the entire
        product of probabilities is also identical to zero. There are
        different ways of dealing with this problem—in our case, you might
        want to experiment with replacing the histogram of discrete feature
        values with a kernel density estimate (similar to those in Figure 18-7), which, by
        construction, is nonzero everywhere. Keep in mind that you will need
        to determine a suitable bandwidth for each histogram!
Let me be clear: the implementations of both classifiers are
        extremely simpleminded. My intention here is to demonstrate the basic
        ideas behind these algorithms in as few lines of code as possible—and
        also to show that there is nothing mystical about writing a simple
        classifier. Because the implementations are so simple, it is easy to
        continue experimenting with them: can we do better if we use a larger number of
        neighbors in our nearest-neighbor classifier? How about a different
        distance function? In the naive Bayesian classifier, we can experiment
        with different bin widths in the histogram or, better yet, replace the
        histogram of discrete bins with a kernel density estimate. In either
        case, we need to start thinking about runtime efficiency: for a data
        set of only 150 elements this does not matter much, but evaluating a
        kernel density estimate of a few thousand points can be quite
        expensive!
If you want to use an established tool or library, there are
        several choices in the open source world. Three projects have put
        together entire data analysis and mining “toolboxes,” complete with
        graphical user interface, plotting capabilities, and various plug-ins:
        RapidMiner (http://rapid-i.com/) and WEKA
        (http://www.cs.waikato.ac.nz/ml/weka/), which
        are both in Java as well as Orange (http://www.ailab.si/orange/), which is in
        Python. WEKA has been around for a long time and is very well
        established; RapidMiner is part of a more comprehensive tool suite
        (and includes WEKA as a plug-in). Orange is an alternative using
        Python.
All three of these projects use a “pipeline” metaphor: you
        select different processing steps (discretizers, smoothers, principal
        component analysis, regression, classifiers) from a toolbox and string
        them together to build up the whole analysis workflow entirely within
        the tool. Give it a shot—the idea has a lot of appeal, but I must
        confess that I have never succeeded in doing
        anything nontrivial with any of them!
There are some additional libraries worth checking out that have
        Python interfaces: libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
        and Shogun (http://www.shogun-toolbox.org/) provide
        implementations of support vector machines, while the Modular toolkit
        for Data Processing (http://mdp-toolkit.sourceforge.net/) is more
        general. (The latter also adheres to the “pipeline” metaphor.)
Finally, all classification algorithms are also available as R
        packages. I’ll mention just three: the class package for nearest-neighbor
        classifiers and the rpart package
        for decision trees (both part of the R standard distribution) as well
        as the e1071 package (which can be
        found on CRAN) for support vector machines and naive Bayesian
        classifiers.

Further Reading



	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
              Addison-Wesley. 2005.
This is my favorite book on data mining. It contains two
            accessible chapters on classification.

	The Elements of Statistical
              Learning. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2nd
              ed., Springer. 2009.
This book exemplifies some of the problems with current
            machine-learning theory: an entire book of highly nontrivial
            mathematics—and what feels like not a single real-world example or
            discussion of “what to use when.”






[30] The techniques discussed in Part III are different: for the
          most part they were strictly computational and can be applied to any
          purpose, depending on the context.

[31] “A Plan for Spam” (http://www.paulgraham.com/spam.html) and
            “Better Bayesian Filtering” (http://www.paulgraham.com/better.html).

[32] First published in 1936. The data set is available from many
            sources, for example in the “Iris” data set on the UCI Machine
            Learning repository at http://archive.ics.uci.edu/ml/.


Chapter 19. Epilogue: Facts Are Not Reality



THE LAST
      (NOT LEAST) IMPORTANT SKILL WHEN WORKING WITH DATA IS TO KEEP IN MIND
      THAT DATA IS ONLY part of the picture. In
      particular, when one is working intensely with data oneself, it is all
      too easy to forget that just about everyone else will have a different
      perspective.
When the data contradicts appearances, appearances will
      win. Almost always, at least. Abstract “data” will have
      little or no credibility when compared with direct, immediate
      observation. This has been one of my most common experiences. A manager
      observes a pile of defective items—and no amount of “data” will convince
      him that avoiding those defects will cost more than the defects
      themselves. A group of workers spends an enormous amount of effort on
      some task—and no amount of “data” will convince them that their efforts
      make no measurable difference to the quality of the product.
If something strongly appears to be one way,
      then it will be very, very difficult to challenge that appearance based
      on some abstract analysis—no matter how “hard” your facts may be.
And it can get ugly. If your case is watertight, so that your
      analysis cannot be refuted, then you may next find that your
      personal credibility or integrity is being
      challenged.
Never underestimate the persuasive power of appearance.
Data-driven decision making is a contradiction in
      terms. Making a decision means that someone must stick his or
      her neck out and decide. If we wait until the
      situation is clear or let “the data” dictate what we do, then there is
      no longer any decision involved. This also means that if things don’t
      turn out well, then nobody will accept the blame (or the responsibility)
      for the outcome: after all, we did what “the data” told us to do.
It is a fine line. Gut-level decisions can be annoyingly
      random (this way today, that way tomorrow). They can also lead to a lack
      of accountability: “It was my decision to do X that led to Y!”—without a
      confirming look at some data, who can say?
Studying data can help us understand the situation in more detail
      and therefore make better-informed decisions. On the other hand, data
      can be misleading in subtle ways. For instance, by focusing on “data” it
      is easy to overlook aspects that are important but for which no data is
      available (including but not limited to “soft factors”). Also, keep in
      mind that data is always backward looking: there is
      no data available to evaluate any truly novel idea!
Looking at data can help illuminate the situation and thereby help
      us make better decisions. But it should not be used to absolve everyone
      from taking individual responsibility.
Sometimes the only reason you need is that it is the
      right thing to do. Some organizations feel as if you would
      not put out a fire in the mail room, unless you first ran a controlled
      experiment and developed a business case for the various alternatives.
      Such an environment can become frustrating and stifling; if the same
      approach is being applied to human factors such as creature comforts
      (better chairs, larger monitors) or customer service (“sales don’t dip
      proportionally if we lower the quality of our product”), then it can
      start to feel toxic pretty quickly.
Don’t let “data” get in the way of ethical decisions.
The most important things in life can’t be
      measured. It is a fallacy to believe that, just because
      something can’t be measured, it doesn’t matter or doesn’t even exist.
      And a pretty tragic fallacy at that.
Appendix A. Programming Environments for Scientific Computation and Data
    Analysis



MOST DATA ANALYSIS INVOLVES A GOOD
    DEAL OF DATA MANIPULATION AND NUMERICAL COMPUTATION. OF course,
    we use computers for these tasks, hence we also need appropriate
    software.
This appendix is intended to give a brief survey of several popular
    software systems suitable for the kind of data analysis discussed in the
    rest of the book. I am mostly interested in open source software, although
    I also mention some of the most important commercial players.
The emphasis here is on programming
    environments for scientific applications
    (i.e., libraries or packages intended for general
    data manipulation and computation) because being able to operate with data
    easily and conveniently is a fundamental capability for all data analysis
    efforts. On the other hand, I do not include programs intended exclusively
    for graphing data: not because visualization is not important (it is), but
    because the choice of plotting or visualization software is less
    fundamental.
Software Tools



In many ways, our choice of a data manipulation environment
      determines what problems we can solve; it certainly determines which
      problems we consider to be “easy” problems. For data analysis, the hard
      problem that we should be grappling with is always the data and what it
      is trying to tell us—the mechanics of handling it should be sufficiently
      convenient that we don’t even think about them.
Properties I look for in a tool or programming environment
      include:
	Low overhead or ceremony; it must be easy to get started on a
          new investigation.

	Facilitates iterative, interactive use.

	No arbitrary limitations (within reasonable limits).

	Scriptable—not strictly required but often nice to
          have.

	Stable, correct, mature; free of random defects and other
          annoying distractions.



Most of these items are probably not controversial. Given the
      investigative nature of most data analysis, the ability to support
      iterative, interactive use is a requirement. Scriptability and the
      absence of arbitrary limitations are both huge enablers. I have been in
      situations where the ability to generate and compare hundreds of graphs
      revealed obvious similarities and differences that had never been
      noticed before—not least because everyone else was using tools (mostly
      Excel) that allowed graphs to be created only one at a time. (Excel is
      notorious for unnecessarily limiting what can be done, and so is SQL.
      Putting even minimal programming abilities on top of SQL greatly expands
      the range of problems that can be tackled.)
In addition to these rather obvious requirements, I want to
      emphasize two properties that may appear less important, but are, in
      fact, essential for successful data analysis. First, it is very
      important that the tool or environment itself does not impose much
      overhead or “ceremony”: we will be hesitant to investigate an ad hoc
      idea if our programming environment is awkward to use or time-consuming
      to start. Second, the tool must be stable and correct. Random defects
      that we could “work around” if we used it as a component in a larger
      software project are unacceptable when we use the tool by itself.
In short: whatever we use for data manipulation must not get in
      our way! (I consider this more important than how “sophisticated” the
      tool or environment might be: a dumb tool that works is better than a
      cutting-edge solution that does not deliver—a point that is occasionally
      a little bit forgotten.)
Before leaving this section, let me remind you that it is not only
      the size of the toolbox that matters but also our mastery of the various
      elements within it. Only tools we know well enough that using them feels
      effortless truly leverage our abilities. Balancing these opposing trends
      (breadth of tool selection and depth of mastery) is a constant
      challenge. When in doubt, I recommend you opt for depth—superficiality
      does not pay.
Scientific Software Is Different



It is important to realize that scientific software (for a
        sufficiently wide definition of “scientific”) faces some unusual
        challenges. First of all, scientific software is
        hard. Writing high-quality scientific programs is
        difficult and requires rather rare and specialized skills. (We’ll come
        back to this later.) Second, the market for scientific software is
        small, which makes it correspondingly harder for
        any one program or vendor to gain critical mass.
Both of these issues affect all players equally, but a third
        problem poses a particular challenge for open source offerings: many
        users of scientific software are transients. Graduate students
        graduate, moving on from their projects and often leaving the research
        environment entirely. As a result, “abandonware” is
        common among open source scientific software projects. (And not just
        there—the long-term viability of commercial offerings is also far from
        assured.)
Before investing significant time and effort into mastering any
        one tool, it is therefore necessary to evaluate it with regard to two
        questions:
	Is the project of sufficiently high
            quality?

	Does the project have strong enough
            momentum and
            support?





A Catalog of Scientific Software



There are currently three main contenders for interactive, numeric
      programming available: Matlab (and its open source clone, Octave), R
      (and its commercial predecessor, S/S-Plus), and the NumPy/SciPy set of
      libraries for Python. Fundamentally, all three are vector and matrix
      packages: they treat vectors and matrices as atomic data types and allow
      mathematical functions to operate on them directly (addition,
      multiplication, application of a function to all elements in a vector or
      matrix). Besides this basic functionality, all three offer various other
      mathematical operations, such as special functions, support for function
      minimization, or numerical integration and nonlinear equation solving.
      It is important to keep in mind that all three are packages for
      numerical computations that operate with
      floating-point numbers. None of these three packages handles
      symbolic computations, such as the expansion of a
      function into its Taylor series. For this you need a symbolic math
      package, such as Mathematica or Maple (both commercial) or Maxima, Sage,
      or Axiom (all three open source). (Matlab has recently acquired the
      ability to perform symbolic operations as well.)
Matlab



Matlab has been around since the mid-1980s; it has a very large
        user base, mostly in the engineering professions but also in pure
        mathematics and in the machine-learning community. Rather than do all
        the heavy lifting itself, Matlab was conceived as a user-friendly
        frontend to existing high-performance numerical linear algebra
        libraries (LINPACK and EISPACK, which have been replaced by LAPACK).
        Matlab was one of the first widely used languages to treat complex
        data structures (such as vectors and matrices) as atomic data types,
        allowing the programmer to work with them as if they were scalar
        variables and without the need for explicit looping. (In this day and
        age, when object-oriented programming and operator overloading are
        commonly used and entirely mainstream, it is hard to imagine how
        revolutionary this concept seemed when it was first
        developed.[33]) In 2008, The MathWorks (the company that develops
        Matlab) acquired the rights to the symbolic math package MuPAD and
        incorporated it into subsequent Matlab releases.
Matlab was mainly designed to be used interactively, and its
        programming model has serious deficiencies for larger programming
        projects. (There are problems with abstraction and encapsulation as
        well as memory management issues.) It is a commercial product but
        quite reasonably priced.
Matlab places particular emphasis on the quality of its
        numerical and floating-point algorithms and implementations.
There is an open source clone of Matlab called Octave. Octave
        (http://www.gnu.org/software/octave/) strives
        to be fully compatible; however, there are reports of difficulties
        when porting programs back and forth.

R



R is the open source clone of the S/S-Plus statistical package
        originally developed at Bell Labs. R (http://www.r-project.org) has a very large
        user base, mostly in the academic statistics community and a healthy
        tradition of user-contributed packages. The Comprehensive R
        Archive Network (CRAN) is a large central repository of
        user-contributed modules.
When first conceived, S was revolutionary in providing an
        integrated system for data analysis, including capabilities that we
        today associate with scripting languages (built-in support for
        strings, hash maps, easy file manipulations, and so on), together with
        extensive graphics functionality—and all that in an interactive
        environment! On the other hand, S was not conceived as a
        general-purpose programming language but is strongly geared toward
        statistical applications. Its programming model is quite different
        from current mainstream languages, which can make it surprisingly
        difficult for someone with a strong programming background to switch
        to S (or R). Finally, its primarily academic outlook makes for a
        sometimes awkward fit within a commercial enterprise
        environment.
The strongest feature of R is the large number of built-in (or
        user-contributed) functions for primarily
        statistical calculations. In contrast to Matlab,
        R is not intended as a general numerical workbench (although it can,
        with some limitations, be used for that purpose). Moreover—and perhaps
        contrary to expectations—it is not intended as a general-purpose data
        manipulation language, although it can serve as scripting language for
        text and file manipulations and similar tasks.
A serious problem when working with R is its dated programming
        model. It relies strongly on implicit behavior and “reasonable
        defaults,” which leads to particularly opaque programs. Neither the
        language nor the libraries provide strong support for organizing
        information into larger structures, making it uncommonly difficult to
        locate pertinent information. Although it is easy to pick up isolated
        “tricks,” it is notoriously difficult to develop a comprehensive
        understanding of the whole environment.
Like Matlab, R is here to stay. It has proven its worth
        (for 30 years!); it is mature; and it has a strong, high-caliber, and
        vocal user base. Unlike Matlab, it is free and open source, making it
        easy to get started.

Python



Python has become the scripting language of choice for
        scientists and scientific applications, especially in the
        machine-learning field and in the biological and social sciences.
        (Hard-core, large-scale numerical applications in physics and related
        fields continue to be done in C/C++ or even—horresco
        referens—in Fortran.)
The barrier to programming in Python is low, which makes it easy
        to start new projects. This is somewhat of a mixed blessing: on the
        one hand, there is an abundance of exciting Python projects out there;
        on the other hand, they seem to be particularly prone to the
        “abandonware” problem mentioned before. Also, scientists are not
        programmers, and it often shows (especially with regard to long-term,
        architectural vision and the cultivation of a strong and committed
        community).
In addition to a large number of smaller and more specialized
        projects, there have been five major attempts to provide a
        comprehensive Python library for scientific
        applications. It can be confusing to understand how they relate to
        each other, so they are summarized here:[34]
Numeric
	This is the original Python module for the manipulation of
            numeric arrays, initiated in 1995 at MIT. Superceded by
            NumPy.



Numarray
	An alternative implementation from the Space Telescope
            Science Institute (2001). Considered obsolete, replaced by
            NumPy.



NumPy
	The NumPy project was begun in 2005 to provide a unified
            framework for numerical matrix calculations. NumPy builds on (and
            supercedes) Numeric, and it includes the additional functionality
            developed by numarray.



SciPy
	Started in 2001, the SciPy project evolved out of an effort
            to combine several previously separate libraries for scientific
            computing. Builds on and includes NumPy.



ScientificPython
	An earlier (started in 1997) general-purpose library for
            scientific applications. In contrast to SciPy, this library tries
            to stay with “pure Python” implementations for better
            portability.



Today, the NumPy/SciPy project has established itself as
        the clear winner among general-purpose libraries for scientific
        applications in Python, and we will take a closer look at it
        shortly.
A strong point in favor of Python is the convenient support it
        has for relatively fancy and animated graphics. The matplotlib library
        is the most commonly used Python library for generating standard
        plots, and it has a particularly close relationship with NumPy/SciPy.
        Besides matplotlib there are Chaco and Mayavi (for two- and
        three-dimensional graphics, respectively) and libraries such as PyGame
        and Pyglet (for animated and interactive graphics)—and, of course,
        many more.
Uncertainties associated with the future and adoption of Python3
        affect all Python projects, but they are particularly critical for
        many of the scientific and graphics libraries just mentioned: to
        achieve higher performance, these libraries usually rely heavily on C
        bindings, which do not port easily to Python3. Coupled with the issue
        of “abandonware” discussed earlier, this poses a particular challenge
        for all scientific libraries based on Python at this time.
NumPy/SciPy



The NumPy/SciPy project (http://www.scipy.org) has become the
          dominant player in scientific programming for Python. NumPy provides
          efficient vector and matrix operations; SciPy consists of a set of
          higher-level functions built on top of NumPy. Together with the
          matplotlib graphing library and the IPython interactive shell,
          NumPy/SciPy provides functionality resembling Matlab. NumPy/SciPy is
          open source (BSD-style license) and has a large user community; it
          is supported and distributed by a commercial company
          (Enthought).
NumPy is intended to contain low-level routines for handling
          vectors and matrices, and SciPy is meant to contain all higher-level
          functionality. However, some additional functions are included in
          NumPy for backward compatibility, and all NumPy functions are
          aliased into the SciPy namespace for convenience. As a result, the
          distinction between NumPy and SciPy is not very clear in
          practice.
NumPy/SciPy can be a lot of fun. It contains a wide selection
          of features and is very easy to get started with. Creating graphical
          output is simple. Since NumPy/SciPy is built on Python, it is
          trivial to integrate it into other software projects. Moreover, it
          does not require you to learn (yet another) restricted,
          special-purpose language: everything is accessible from a modern,
          widely used scripting language.
On the other hand, NumPy/SciPy has its own share of problems.
          The project has a tendency to emphasize quantity over quality: the
          number of features is very large, but the design appears overly
          complicated and is often awkward to use. Edge and error cases are
          not always handled properly. On the scientific level, NumPy/SciPy
          feels amateurish. The choice of algorithms appears to reflect some
          well-known textbooks more than deep, practical knowledge arising
          from real experience.
What worries me most is that the project does not seem
          to be managed very well: although it has been around for nearly 10
          years and has a large and active user base, it has apparently not
          been able to achieve and maintain a consistent level of reliability
          and maturity throughout. Features seem to be added haphazardly,
          without any long-term vision or discernible direction. Despite
          occasional efforts in this regard, the documentation remains
          patchy.
NumPy/SciPy is interesting because, among scientific and
          numeric projects, it probably has the lowest barrier to entry and is
          flexible and versatile. That makes it a convenient environment for
          getting started and for casual use. However, because of the overall
          quality issues, I would not want to rely on it for “serious”
          production work at this point.


What About Java?



Java is not a strong player when it comes to heavily
        numerical computations—so much so that a Java
        Numerics Working Group ceased operations years ago (around the year
        2002) for lack of interest.
Nevertheless, a lot of production-quality machine-learning
        programming is done in Java, where its relatively convenient string
        handling (compared to C) and its widespread use for
        enterprise programming come into play. One will
        have to see whether these applications will over time lead to the
        development of high-quality numerical libraries as well.
If you want a comfortable programming environment for large
        (possibly distributed) systems that’s relatively fast, then Java is a
        reasonable choice. However, Java programming has become very
        heavy-weight (with tools to manage your frameworks, and so on), which
        does not encourage ad hoc, exploratory programming. Groovy carries
        less programming overhead but is slow. A last issue concerns Java’s
        traditionally weak capabilities for interactive graphics and user
        interfaces, especially on Linux.
Java is very strong in regard to Big Data; in particular,
        Hadoop—the most popular open source map/reduce implementation—is
        written in Java. Java is also popular for text processing and
        searching.
A relatively new project is Incanter (http://incanter.org/), which uses Clojure (a
        Lisp dialect running on top of the Java virtual machine) to develop an
        “R-like statistical computing and graphics environment.” Incanter is
        an interesting project, but I don’t feel that it has stood the test of
        time yet, and one will have to see how it will position itself with
        respect to R.

Other Players



The preceding list of programs and packages is, of course, far
        from complete. Among the other players, I shall briefly mention
        three.
SAS SAS is a classical statistics
        packages with strongly established uses in credit scoring and medical
        trials. SAS was originally developed for OS/360 mainframes, and it
        shows. Its command language has a distinct 1960s feel, and the whole
        development cycle is strongly batch oriented (neither interactive nor
        exploratory). SAS works best when well-defined procedures need to be
        repeated often and on large data sets. A unique feature of SAS is that
        it works well with data sets that are too large to fit into memory and
        therefore need to be processed on disk.
SAS, like the mainframes it used to run on, is very expensive
        and requires specially trained operators—it is not for the casual
        user. (It is not exactly fun, either. The experience has been
        described as comparable to “scraping down the wallpaper with your
        fingernails.”)
SciLab SciLab is an open source project
        similar to Matlab. It was created by the French research institute
        INRIA.
GSL The GSL (Gnu Scientific Library) is a C
        library for classical numerical analysis: special functions, linear
        algebra, nonlinear equations, differential equations, the lot. The GSL
        was designed and implemented by a relatively small team of developers,
        who clearly knew what they were doing—beyond the standard textbook
        treatment. (This is evident from some design choices that specifically
        address ugly but important real-world needs.)
The API is wonderfully clear and consistent, the implementations
        are of high quality, and even the documentation is complete and
        finished. I find the GSL thoroughly enjoyable to use. (If you learned
        numerical analysis from Numerical
        Recipes,[35] this is the software that should have shipped with the
        book—but didn’t.)
The only problem with the GSL is that it is written in C. You
        need to be comfortable with C programming, including memory management
        and function pointers, if you want to use it. Bindings to scripting
        languages exist, but they are not part of the core project and may not
        be as complete or mature as the GSL itself.

Recommendations



So, which to pick? No clear winner emerges, and every single
        program or environment has significant (not just superficial)
        drawbacks. However, here are some qualified recommendations:
	Matlab is the 800-pound gorilla of scientific software. As a
            commercially developed product, it also has a certain amount of
            “polish” that many open source alternatives lack. If you don’t have a preferred programming
            environment yet, and if you can afford it (or
            can make your employer pay for it), then Matlab is probably the
            most comprehensive, most mature, and best supported all-purpose
            tool. Octave is a cheap way to get started and “try before you
            buy.”

	If you work with statisticians or have otherwise a need for
            formal statistical methods (tests, models), then R is a serious
            contender. It can also stand in as a scripting language for data
            manipulation if you don’t already have a favorite one yet. Since
            it is open source software, its financial cost to you is zero, but
            be prepared for a significant investment of time and effort before
            you start feeling comfortable and proficient.

	NumPy/SciPy is particularly easy to get started with and can
            be a lot of fun for casual use. However, you may want to evaluate
            carefully whether it will meet your needs in the long run if you
            are planning to use it for a larger or more demanding
            project.

	NumPy/SciPy, together with some of its associated graphics
            packages, is also of interest if you have a need for fancier,
            possibly interactive, graphics.

	If you have a need for serious numerical analysis
            and you know C well, then the GSL is a
            mature, high-quality library.



I am well aware that this list of options does not cover all
        possibilities that may occur in practice!


Writing Your Own



Given the fragmented tool situation, it may be tempting to write
      your own. There is nothing wrong with that: it can be very effective to
      write a piece of software specifically for your
      particular problem and application domain. It is much harder to write
      general-purpose scientific software.
Just how much harder is generally underappreciated. When P. J.
      Plauger worked on his reference implementation of the standard C
      library,[36] he found that he “spent about as much time writing and
      debugging the functions declared in <math.h> as [he] did all the rest of
      this library combined”! Plauger then went on to state his design goals
      for his implementation of those functions.
This should startle you: design goals? Why
      should a reference implementation need any design goals beyond
      faithfully and correctly representing the standard?
The reason is that scientific and numerical routines can fail in
      more ways than most people expect. For such routines, correctness is not
      so much a binary property, as a floating-point value itself. Numerical
      routines have more complicated contracts than strlen(char *).
My prime example for this kind of problem is the sine function.
      What could possibly go wrong with it? It is analytic everywhere,
      strictly bounded by [–1, 1], perfectly smooth, and with no weird
      behavior anywhere. Nonetheless, it is impossible to evaluate the sine
      accurately for sufficiently large values of x. The
      reason is that the sine sweeps out its entire range of values when
      x changes by as little as 2π. Today’s
      floating-point values carry about 16 digits of precision. Once
      x has become so large that all of these digits are
      required to represent the value of x to the left of
      the decimal point, we are no longer able to resolve the location of
      x within the interval of length 2π with sufficient
      precision to be meaningful—hence the “value” returned by
      sin(x) is basically random. In practice, the
      quality of the results starts to degrade long before we reach this
      extreme regime. (More accurately the problem lies not so much in the
      implementation of the sine but in the inability to express its input
      values with the precision required for obtaining a meaningful result.
      This makes no difference for the present argument.)
There are two points to take away here. First, note how
      “correctness” is a relative quality that can degrade smoothly depending
      on circumstances (i.e., the inputs). Second, you
      should register the sense of surprise that a function, which in
      mathematical theory is perfectly harmless, can turn nasty in the harsh
      reality of a computer program!
Similar examples can be found all over and are not limited to
      function evaluations. In particular for iterative algorithms (and almost
      all numerical algorithms are iterative), one needs to monitor and
      confirm that all intermediate values are uncorrupted—even in cases where
      the final result is perfectly reasonable. (This warning applies to many
      matrix operations, for instance.)
The punch line here is that although it is often not hard to
      produce an implementation that works well for a limited set of input
      values and in a narrow application domain, it is much more difficult to
      write routines that work equally well for all possible arguments. It
      takes a lot of experience to anticipate all possible applications and
      provide built-in diagnostics for likely failure modes. If at all
      possible, leave this work to specialists!

Further Reading



Matlab



	Numerical Computing with
              MATLAB. Cleve B. Moler. Revised reprint, SIAM. 2008.
The literature on Matlab is vast. I mention this title
            because its author is Cleve Moler, the guy who started it
            all.




R



	A Beginner’s Guide to R. Alain F. Zuur, Elena N. Ieno, and Erik H. W. G. Meesters.
              Springer. 2009.
Probably the most elementary introduction into the mechanics
            of R. A useful book to get started, but it won’t carry you very
            far. Obviously very hastily produced.

	R in a Nutshell. Joseph Adler.
            O’Reilly. 2009.
This is the first book on R that is organized by the
            task that you want to perform. This makes it
            an invaluable resource in those situations where you know exactly
            what you want to do but can’t find the appropriate commands that
            will tell R how to do it. The first two thirds of the book address
            data manipulation, programming, and graphics in general; the
            remainder is about statistical methods.

	Using R for Introductory
              Statistics. John Verzani. Chapman & Hall/CRC. 2004.
This is probably my favorite introductory text on how to
            perform basic statistical analysis using R.




NumPy/SciPy



There is no comprehensive introduction to NumPy/SciPy currently
        available that takes a user’s perspective. (The “Guide to NumPy” by
        Travis Oliphant, which can be found on the NumPy website, is too
        concerned with implementation issues.) Some useful bits, together with
        an introduction to Python and some other libraries, can be found in
        either of the following two books.
	Python Scripting for Computational
              Science. Hans Petter Langtangen. 3rd ed., Springer. 2009.

	Beginning Python Visualization: Crafting Visual
              Transformation Scripts. Shai Vaingast. Apress. 2009.







[33] I remember how blown away I personally was when I first read
            about such features in the programming language APL in the
            mid-1980s!

[34] For more information on the history and interrelations of
            these libraries, check out the first chapter in Travis B.
            Oliphant’s “Guide to NumPy,” which can be found on the Web.

[35] Numerical Recipes 3rd Edition: The Art of
            Scientific Computing. William H. Press, Saul A.
            Teukolsky, William T. Vetterling, and Brian P. Flannery. Cambridge
            University Press. 2007.

[36] The Standard C Library. P. J. Plauger.
          Prentice Hall. 1992.


Appendix B. Results from Calculus



IN THIS APPENDIX, WE REVIEW SOME OF
    THE RESULTS FROM CALCULUS THAT ARE EITHER NEEDED EXPLICITLY IN
    the main part of the book or are conceptually sufficiently important when
    doing data analysis and mathematical modeling that you should at least be
    aware that they exist.
Obviously, this appendix cannot replace a class (or two) in
    beginning and intermediate calculus, and this is also not the intent.
    Instead, this appendix should serve as a reminder of things that you
    probably know already. More importantly, the results are presented here in
    a slightly different context than usual. Calculus is generally taught with
    an eye toward the theoretical development—it has to be, because the intent
    is to teach the entire body of knowledge of calculus and therefore the
    theoretical development is most important. However, for applications you
    need a different sort of tricks (based on the same fundamental techniques,
    of course), and it generally takes years of
    experience to make out the tricks from the theory. This appendix assumes
    that you have seen the theory at least once, so I am just reminding you of
    it, but I want to emphasize those elementary techniques that are most
    useful in applications of the kind explained in this book.
This appendix is also intended as somewhat of a teaser: I have
    included some results that are particularly interesting, noteworthy, or
    fascinating as an invitation for further study.
The structure of this appendix is as follows:
	To get a head start, we first look at some common functions and
        their graphs.

	Then we discuss the core concepts of calculus proper:
        derivative, integral, limit.

	Next I mention a few practical tricks and techniques that are
        frequently useful.

	Near the end, there is a section on notation and
        very basic concepts. If you start
        feeling truly confused, check here! (I did not want to
        start with that section because I’m assuming that most readers know
        this material already.)

	I conclude with some pointers for further study.



A note for the mathematically fussy: this appendix quite
    intentionally eschews much mathematical sophistication. I know that many
    of the statements can be made either more general or more precise. But the
    way they are worded here is sufficient for my purpose, and I want to avoid
    the obscurity that is the by-product of presenting mathematical statements
    in their most general form.
Common Functions



Functions are mappings, which map a real number into another real
      number: [image: ]. This mapping is always unique: every input value
      x is mapped to exactly one result value
      f(x). (The converse is not
      true: many input values may be mapped to the same result. For example,
      the mapping f(x) = 0, which
      maps all values to zero, is a valid
      function.)
More complicated functions are often built up as combinations of
      simpler functions. The most important simple functions are powers,
      polynomials and rational functions, and trigonometric and exponential
      functions.
Powers



The simplest nontrivial function is the
        linear function:
f(x) =
        ax
The constant factor a is the
        slope: if x increases by 1,
        then f(x) increases by
        a. Figure B-1
        shows linear functions with different slopes.
The next set of elementary functions are the simple
        powers:
f(x) =
        xk
The power k can be greater or smaller than
        1. The exponent can be positive or negative, and it can be an integer
        or a fraction. Figure B-2
        shows graphs of some functions with positive integer powers, and Figure B-3 shows functions
        with fractional powers.
Simple powers have some important properties:
	All simple powers go through the two points (0, 0) and (1,
            1).

	The linear function
            f(x) =
            x is a simple power with
            k = 1.

	The square-root function [image: ] is a simple power with
            k = 1/2.

	Integer powers (k = 1, 2, 3,...) can be
            evaluated for negative x, but for fractional
            powers we have to be more careful.



[image: The linear function y = ax.]

Figure B-1. The linear function y =
          ax.

[image: Simple powers: y = axk.]

Figure B-2. Simple powers: y =
          axk.

Powers obey the following laws:
[image: Simple powers: y = axk.]
[image: Fractional powers: y = ap/q.]

Figure B-3. Fractional powers: y =
          ap/q.

If the exponent is negative, it turns the expression
        into a fraction:
[image: Fractional powers: y = ap/q.]
When dealing with fractions, we must always remember that the
        denominator must not become zero. As the denominator of a fraction
        approaches zero, the value of the overall expression goes to infinity.
        We say: the expression diverges and the function
        has a singularity at the position where the
        denominator vanishes. Figure B-4 shows graphs of
        functions with negative powers. Note the divergence for
        x = 0.

Polynomials and Rational Functions



Polynomials are sums of integer powers together with constant
        coefficients:
p(x) =
        anxn
        +
        an–1
        xn–1
        + ... +
        a2x2
        + a1x
        + a0
Polynomials are nice because they are extremely easy to handle
        mathematically (after all, they are just sums of simple integer
        powers). Yet, more complicated functions can be approximated very well
        using polynomials. Polynomials therefore play an important role as
        approximations of more complicated functions.
All polynomials exhibit some “wiggles” and eventually diverge as
        x goes to plus or minus infinity (see Figure B-5). The highest
        power occurring in a polynomial is known as that
        degree of the polynomial.
[image: Negative powers: y = ax–k = a/xk.]

Figure B-4. Negative powers: y =
          ax–k =
          a/xk.

[image: A polynomial: y = 16x5 – 20x3 + 2x2 + 4x.]

Figure B-5. A polynomial: y =
          16x5 –
          20x3 +
          2x2 +
          4x.

Rational functions are fractions that have polynomials in both
        the numerator and the denominator:
[image: A polynomial: y = 16x5 – 20x3 + 2x2 + 4x.]
[image: The exponential function y = ex.]

Figure B-6. The exponential function y =
          ex.

Although they may appear equally harmless, rational
        functions are entirely more complicated beasts than polynomials.
        Whenever the denominator becomes zero, they blow up. The behavior as
        x approaches infinity depends on the relative
        size of the largest powers in numerator and denominator, respectively.
        Rational functions are not simple
        functions.

Exponential Function and Logarithm



Some functions cannot be expressed as polynomials (or as
        fraction of polynomials) of finite degree. Such functions are known as
        transcendental functions. For our purposes, the
        most important ones are the exponential function
        f(x) =
        ex (where
        e = 2.718281 ... is Euler’s number) and its
        inverse, the logarithm.
A graph of the exponential function is shown in Figure B-6. For positive argument
        the exponential function grows very quickly, and
        for negative argument it decays equally quickly. The exponential
        function plays a central role in growth and decay processes.
Some properties of the exponential function follow from the
        rules for powers:
[image: Exponential Function and Logarithm]
The logarithm is the inverse of the exponential function; in
        other words:
	y =
                ex
	⇔
	log y =
                x

	elog(x)
                = x
	and
	log
                (ex) =
                x



[image: The natural logarithm: y = log(x).]

Figure B-7. The natural logarithm: y =
          log(x).

A plot of the logarithm is shown in Figure B-7. The logarithm is
        defined only for strictly positive values of x,
        and it tends to negative infinity as x approaches
        zero. In the opposite direction, as x becomes
        large the logarithm grows without bounds, but it grows almost
        unbelievably slowly. For x = 2, we have log 2 =
        0.69 ... and for x = 10 we find log 10 = 2.30
        ..., but for x = 1,000 and x
        = 106 we have only log 1000 = 6.91 ... and
        log 106 = 13.81 ..., respectively. Yet the
        logarithm does not have an upper bound: it keeps on growing but at an
        ever-decreasing rate of growth.
The logarithm has a number of basic properties:
log(1) = 0
log(x y) = log x + log
        y
log(xk) =
        k log x
As you can see, logarithms turn products into sums and powers
        into products. In other words, logarithms “simplify” expressions. This
        property was (and is!) used in numerical calculations: instead of
        multiplying two numbers (which is complicated), you add their
        logarithms (which is easy—provided you have a logarithm table or a
        slide rule) and then exponentiate the result. This calculational
        scheme is still relevant today, but not for the kinds of simple
        products that previous generations performed using slide rules.
        Instead, logarithmic multiplication can be necessary when dealing with
        products that would generate intermediate over- or underflows even
        though the final result may be of reasonable size. In particular,
        certain kinds of combinatorial and probabilistic problems require
        finding the maximum of expressions such as
        pn(1 –
        p)k,
        where p < 1 is a probability and
        n and k may be large
        numbers. Brute-force evaluation will underflow even for modest values of the exponents, but taking
        logarithms first will result in a numerically harmless
        expression.
[image: The trigonometric functions sin(x) and cos(x).]

Figure B-8. The trigonometric functions sin(x) and
          cos(x).


Trigonometric Functions



The trigonometric functions describe oscillations of all kinds
        and thus play a central role in sciences and engineering. Like the
        exponential function, they are transcendental functions, meaning they
        cannot be written down as a polynomial of finite degree.
Figure B-8
        shows graphs of the two most important trigonometric functions:
        sin(x) and cos(x). The
        cosine is equal to the sine but is shifted by π/2 (90 degrees) to the
        left. We can see that both functions are
        periodic: they repeat themselves
        exactly after a period of length 2π. In other
        words, sin(x + 2π) = sin(x)
        and cos(x + 2π) =
        cos(x).
The length of the period is 2π, which you may recall is the
        circumference of a circle with radius equal to 1.
        This should make sense, because sin(x) and
        cos(x) repeat themselves after advancing by 2π
        and so does the circle: if you go around the circle once, you are back
        to where you started. This similarity between the trigonometric
        functions and the geometry of the circle is no accident, but this is
        not the place to explore it.
Besides their periodicity, the trigonometric functions obey a
        number of rules and properties (“trig identities”), only one of which
        is important enough to mention here:
sin2 x +
        cos2 x = 1 for all
        x
[image: The Gaussian: .]

Figure B-9. The Gaussian: [image: ].

Finally, I should mention the tangent function, which is
        occasionally useful:
[image: The Gaussian: .]

Gaussian Function and the Normal Distribution



The Gaussian function arises frequently and in many different
        contexts. It is given by the formula:
[image: Gaussian Function and the Normal Distribution]
and its plot is shown in Figure B-9. (This
        is the form in which the Gaussian should be memorized, with the factor
        1/2 in the exponent and the factor [image: ] up front: they ensure that the integral of the
        Gaussian over all x will be equal to 1.)
Two applications of the Gaussian stand out. First of all, a
        strong result from probability theory, the Central Limit
        Theorem states that (under rather weak assumptions) if we
        add many random quantities, then their sum will be distributed
        according to a Gaussian distribution. In particular, if we take
        several samples from a population and calculate the mean for each
        sample, then the sample means will be distributed according to a
        Gaussian. Because of this, the Gaussian arises all the
        time in probability theory and statistics.
It is because of this connection that the Gaussian is often
        identified as “the” bell curve—quite incorrectly so, since there are
        many bell-shaped curves, many of which have drastically different
        properties. In fact, there are important cases where the Central Limit
        Theorem fails, and the Gaussian is
        not a good way to describe the behavior of a
        random system (see the discussion of power-law distributions in Chapter 9).
[image: The Gaussian distribution function.]

Figure B-10. The Gaussian distribution function.

The other context in which the Gaussian arises frequently is as
        a kernel—that is, as a strongly peaked and
        localized yet very smooth function. Although the Gaussian is greater
        than zero everywhere, it falls off to zero so quickly that almost the
        entire area underneath it is concentrated on the interval –3 ≤
        x ≤ 3. It is this last property that makes the
        Gaussian so convenient to use as a kernel. Although the Gaussian is
        defined and nonzero everywhere (so that we don’t need to worry about
        limits of integration), it can be multiplied against almost any
        function and integrated. The integral will retain only those values of
        the function near zero; values at positions far from the origin will
        be suppressed (smoothly) by the Gaussian.
In statistical applications, we are often interested in the area
        under certain parts of the curve because that will provide the answer
        to questions such as: “What is the probability that the point lies
        between –1 and 1?” The antiderivative of the Gaussian cannot be
        expressed in terms of elementary functions; instead it is defined
        through the integral directly:
[image: The Gaussian distribution function.]
This function is known as the Normal distribution
        function (see Figure B-10). As previously mentioned,
        the factor [image: ] is a normalization constant that ensures the
        area under the entire curve is 1.
Given the function Φ(x), a question like
        the one just given can be answered easily: the area over the interval
        [–1, 1] is simply Φ(1) – Φ(–1).
[image: The absolute value function y = |x| and the square y = x2.]

Figure B-11. The absolute value function y =
          |x| and the square y =
          x2.


Other Functions



There are some other functions that appear in
        applications often enough that we should be familiar with them but are
        a bit more exotic than the families of functions considered so
        far.
The absolute value function is defined
        as:
[image: Other Functions]
In other words, it is the positive (“absolute”) value of its
        argument. From a mathematical perspective, the absolute value is hard
        to work with because of the need to treat the two possible cases
        separately and because of the kink at x = 0,
        which poses difficulties when doing analytical work. For this reason,
        one instead often uses the square
        x2 to guarantee a
        positive value. The square relieves us of the need to worry about
        special cases explicitly, and it is smooth throughout. However, the
        square is relatively smaller than the absolute value for small values
        of x but relatively larger for large values of
        x. Weight functions based on the square (as in
        least-squares methods, for instance) therefore tend to overemphasize
        outliers (see Figure B-11).
Both the hyperbolic tangent
        tanh(x) (pronounced: tan-sh) and the
        logistic function are S-shaped or sigmoidal
        functions. The latter function is the solution to the
        logistic differential equation, hence the name.
        The logistic differential equation is used to model constrained
        growth processes such as bacteria competing for food and
        infection rates for contagious diseases. Both these functions are
        defined in terms of the exponential functions as follows:
[image: Other Functions]
[image: Two sigmoid (step) functions: the hyperbolic tangent y = tanh(x) and the logistic function y = 1/(1 + e–x).]

Figure B-12. Two sigmoid (step) functions: the hyperbolic tangent
          y = tanh(x) and the
          logistic function y = 1/(1 +
          e–x).

Both functions are smooth approximations to a step function, and
        they differ mostly in the range of values they assume: the
        tanh(x) takes on values in the interval [–1, 1],
        whereas the logistic function takes on only positive values between 0
        and 1 (see Figure B-12). It is not hard
        to show that the two functions can be transformed into each other; in
        fact, we have P(x) =
        (tanh(x/2) + 1)/2.
These two functions are each occasionally referred to as
        the sigmoid function. That is incorrect: there
        are infinitely many functions that smoothly interpolate a step
        function. But among those functions, the two discussed here have the
        advantage that—although everywhere smooth—they basically consist of
        three straight lines: very flat as x goes to plus
        or minus infinity and almost linear in the transition regime. The
        position and steepness of the transition can be changed through a
        standard variable transformation; for example,
        tanh((x –
        m)/a) will have a transition
        at m with local slope
        1/a.
The last function to consider here is the
        factorial: n!. The factorial
        is defined only for nonnegative integers, as follows:
0! = 1
n! = 1 · 2 ····· (n –
        1) · n
The factorial plays an important role in combinatorial
        problems, since it is the number of ways that n
        distinguishable objects can be arranged. (To see this, imagine that
        you have to fill n boxes with
        n items. To fill the first box, you have
        n choices. To fill the second box, you have
        n – 1 choices. And so on. The total number of
        arrangements or permutations is therefore
        n · (n – 1) ··· 1 =
        n!.)
The factorial grows very quickly; it grows
        faster even than the exponential. Because the factorial grows so
        quickly, it is often convenient to work with its logarithm. An
        important and widely used approximation for the logarithm of the
        factorial is Stirling’s approximation:
	log n! ≈
                n log(n) –
                n
	for large
                n



For the curious: it is possible to define a function that
        smoothly interpolates the factorial for all positive numbers (not just
        integers). It is known as the Gamma function, and
        it is another example (besides the Gaussian distribution function) for
        a function defined through an integral:
[image: Two sigmoid (step) functions: the hyperbolic tangent y = tanh(x) and the logistic function y = 1/(1 + e–x).]
The variable t in this expression is just a
        “dummy” variable of integration—it does not appear in the final
        result. You can see that the first term in the integral grows as a
        power while the second falls exponentially, with the effect that the
        value of the integral is finite. Note that the limits of integration
        are fixed. The independent variable x enters the
        expression only as a parameter. Finally, it is easy to show that the
        Gamma function obeys the rule n
        Γ(n) = Γ(n + 1), which is
        the defining property of the factorial function.
We do not need the Gamma function in this book, but it is
        interesting as an example of how integrals can be used to define and
        construct new functions.

The Inverse of a Function



A function maps its argument to a result: given a value for
        x, we can find the corresponding value of
        f(x). Occasionally, we want
        to turn this relation around and ask: given a value of
        f(x), what is the
        corresponding value of x?
That’s what the inverse function does: if
        f(x) is some function, then
        its inverse
        f–1(x)
        is defined as the function that, when applied to
        f(x), returns the original
        argument:
f–1
        (f(x)) =
        x
Sometimes we can invert a function explicitly. For example, if
        f(x) =
        x2, then the inverse
        function is the square root, because [image: ] (which is the definition of the inverse
        function). In a similar way, the logarithm is the inverse function of
        the exponential:
        log(ex) =
        x.
[image: The slope of a linear function is the ratio of the growth in the vertical direction, f(b) – f(a), divided by the corresponding growth in the horizontal direction, b – a.]

Figure B-13. The slope of a linear function is the ratio of the growth in
          the vertical direction,
          f(b) –
          f(a), divided by the
          corresponding growth in the horizontal direction,
          b – a.

In other cases, it may not be possible to find an
        explicit form for the inverse function. For example, we sometimes need
        the inverse of the Gaussian distribution function
        Φ(x). However, no simple form for this function
        exists, so we write it symbolically as
        Φ–1(x), which refers
        to the function for which Φ–1
        (Φ(x)) = x is true.


Calculus



Calculus proper deals with the consideration of limit processes:
      how does a sequence of values behave if we make infinitely many steps?
      The slope of a function and the area underneath a function are both
      defined through such limit processes (the derivative and the integral,
      respectively).
Calculus allows us to make statements about properties of
      functions and also to develop approximations.
Derivatives



We already mentioned the slope as the rate of change of a linear
        function. The same concept can be extended to nonlinear functions,
        though for such functions, the slope itself will vary from place to
        place. For this reason, we speak of the local
        slope of a curve at each point.
Let’s examine the slope as the rate of
        change of a function in more detail, because this concept
        is of fundamental importance whenever we want to interpolate or
        approximate some data by a smooth function. Figure B-13 shows the
        construction used to calculate the slope of a linear function. As x
        goes from a to b, the
        function changes from f(a)
        to f(b). The rate of change
        is the ratio of the change in
        f(x) to the change in
        x:
[image: Derivatives]
[image: As bi approaches a, the slope found for these two points becomes closer and closer to the local slope at a.]

Figure B-14. As bi approaches
          a, the slope found for these two points becomes
          closer and closer to the local slope at
          a.

Make sure that you really understand this formula!
Now, let’s apply this concept to a function that is nonlinear.
        Because the slope of the curve varies from point to point, we cannot
        find the slope directly using the previous formula; however, we can
        use the formula to approximate the local
        slope.
Figure B-14
        demonstrates the concept. We fix two points on a curve and put a
        straight line through them. This line has a slope, which is
        [image: ]. This is only an approximation to the slope at
        point a. But we can improve the approximation by
        moving the second point b closer to
        a. If we let b go all the
        way to a, we end up with the (local) slope
        at the point a exactly. This
        is called the derivative. (It is a central result
        of calculus that, although numerator and denominator in
        [image: ] each go to zero separately in this process, the
        fraction itself goes to a well-defined value.)
The construction just performed was done graphically and for a
        single point only, but it can be carried out analytically in a fully
        general way. The process is sufficiently instructive that we shall
        study a simple example in detail—namely finding a general rule for the
        derivative of the function
        f(x) =
        x2. It will be useful
        to rewrite the interval [a, b] as
Table B-1. Derivatives and antiderivatives (integrals) for a few
          elementary functions.
	Function
	Derivative
	Integral

	xn
	nxn–1
	[image: ]

	ex
	ex
	ex

	log
                x
	1/x
	x log
                x – x

	sin
                x
	cos
                x
	–cos
                x

	cos
                x
	–sin
                x
	sin
                x




[x, x + ϵ]. We can now go ahead and form
        the familiar ratio:
[image: Derivatives and antiderivatives (integrals) for a few elementary functions.]
In the second step, the terms not depending on ϵ cancel each
        other; in the third step, we cancel an ϵ between the numerator and the
        denominator, which leaves an expression that is perfectly harmless as
        ϵ goes to zero! The (harmless) result is the sought-for derivative of
        the function. Notice that the result is true for any
        x, so we have obtained an expression for the derivative of
        x2 that holds for all
        x: the derivative of
        x2 is
        2x. Always. Similar rules can be set up for other
        functions (you may try your hand at finding the rule for
        x3 or even
        xk for general
        k). Table B-1 lists a few of
        the most important ones.
There are two ways to indicate the derivative. A short form uses
        the prime, like this: f′(x)
        is the derivative of f(x).
        Another form uses the differential operator
        [image: ], which acts on the expression to its right.
        Using the latter, we can write:
[image: Derivatives and antiderivatives (integrals) for a few elementary functions.]

Finding Minima and Maxima



When a smooth function reaches a local minimum or maximum, its
        slope at that point is zero. This is easy to see: as you approach a
        peak, you go uphill (positive slope); once over the top, you go
        downhill (negative slope). Hence, you must have passed a point where
        you were going neither uphill nor downhill—in other words, where the
        slope was zero. (From a mathematically rigorous point of view, this is
        not quite as obvious as it may seem; you may want to check for
        “Rolle’s theorem” in a calculus text.)
[image: The slope of a curve is zero when the curve reaches a maximum, a minimum, or a saddle point. Zeros in the derivative therefore indicate the occurrence of one of those special points.]

Figure B-15. The slope of a curve is zero when the curve reaches a
          maximum, a minimum, or a saddle point. Zeros in the derivative
          therefore indicate the occurrence of one of those special
          points.

The opposite is also true: if the slope
        (i.e., the derivative) is zero somewhere, then
        the function has either a minimum or a maximum at that position.
        (There is also a third possibility: the function has a so-called
        saddle point there. In practice, this occurs less frequently.) Figure B-15 demonstrates all
        these cases.
We can therefore use derivatives to locate minima or maxima of a
        function. First we determine the derivative of the function, and then
        we find the locations where the derivative is zero (the derivative’s
        roots). The roots are the locations of the
        extrema of the original function.
Extrema are important because they are the solution to
        optimization problems. Whenever we want to find
        the “best” solution in some context, we are looking for an extremum:
        the lowest price, the longest duration, the greatest utilization, the
        highest efficiency. Hence, if we have a mathematical expression for
        the price, duration, utilization, or efficiency, we can take its
        derivative with respect to its parameters, set the derivative to zero,
        and solve for those values of the parameters that maximize (or
        minimize) our objective function.

Integrals



Derivatives find the local rate of change of a curve as the
        limit of a sequence of better and better approximations. Integrals
        calculate the area underneath a curve by a similar method.
Figure B-16
        demonstrates the process. We approximate the area underneath a curve
        by using rectangular boxes. As we make the boxes narrower, the
        approximation becomes more accurate. In the limit of infinitely many
        boxes of infinitely narrow width, we obtain the exact area under the
        curve.
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]

Figure B-16. The integral is the area under a curve. It can be
          approximated by filling the area under the curve with narrow
          rectangles and adding up their areas. The approximation improves as
          the width of the rectangles becomes smaller.

Integrals are conceptually very simple but analytically much
        more difficult than derivatives. It is always possible to find a
        closed-form expression for the derivative of a function. This is not
        so for integrals in general, but for some simple functions an
        expression for the integral can be found. Some examples are included
        in Table B-1.
Integrals are often denoted using uppercase letters, and there
        is a special symbol to indicate the “summing” of the area underneath a
        curve:
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]
We can include the limits of the domain over which we want to
        integrate, like this:
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]
Notice that A is a
        number, namely the area underneath the curve
        between x = a and
        x = b, whereas the
        indefinite integral (without the limits) is a
        function, which can be evaluated at any
        point.

Limits, Sequences, and Series



The central concept in all of calculus is the notion of
        a limit. The basic idea is as follows. We
        construct some process that continues indefinitely and approximates
        some value ever more closely as the process goes on—but without
        reaching the limit in any finite number of steps, no matter how many.
        The important insight is that, even though the limit is never reached,
        we can nevertheless make statements about the limiting value. The
        derivative (as the limit of the difference ratio) and the integral (as
        the limit of the sum of approximating “boxes”) are examples that we
        have already encountered.
As simpler example, consider the numbers 1/1, 1/2, 1/3, 1/4, ...
        or 1/n in general as n goes
        to infinity. Clearly, the numbers approach zero ever more closely;
        nonetheless, for any finite n, the value of
        1/n is always greater than zero. We call such an
        infinite, ordered set of numbers a sequence, and
        zero is the limit of this particular sequence.
A series is a sum:
[image: Limits, Sequences, and Series]
As long as the number of terms in the series is finite, there is
        no problem. But once we let the number of terms go to infinity, we
        need to ask whether the sum still converges to a finite value. We have
        already seen a case where it does: we defined the integral as the
        value of the infinite sum of infinitely small boxes.
It may be surprising that an infinite sum
        can still add up to a finite value. Yet this can
        happen provided the terms in the sum become smaller rapidly enough.
        Here’s an example: if you sum up 1, 0.1, 0.01, 0.001, 0.0001, ..., you
        can see that the sum approaches 1.1111 ... but will never be larger
        than 1.2. Here is a more dramatic example: I have a piece of
        chocolate. I break it into two equal parts and give you one. Now I
        repeat the process with what I have left, and so on. Obviously, we can
        continue like this forever because I always retain half of what I had
        before. However, you will never accumulate more chocolate than what I
        started out with!
An infinite series converges to a finite value only if the
        magnitude of the terms decreases sufficiently quickly. If the terms do
        not become smaller fast enough, the series diverges
        (i.e., its value is infinite). An important
        series that does not converge is the
        harmonic series:
[image: Limits, Sequences, and Series]
One can work out rigorous tests to determine whether or not a
        given series converges. For example, we can compare the terms of the
        series to those from a series that is known to converge: if the terms
        in the new series become smaller more quickly than in the converging
        series, then the new series will also converge.
Finding the value of an infinite sum is often tricky,
        but there is one example that is rather straightforward. The solution
        involves a trick well worth knowing. Consider the infinite
        geometric series:
[image: Limits, Sequences, and Series]
Now, let’s multiply by q and add 1:
	qs +
                1
	= q(1 +
                q +
                q2 +
                q3 + · · ·) +
                1

	 	= q +
                q2 +
                q3 +
                q4 + · · · +
                1

	 	=
                s



To understand the last step, realize that the righthand side
        equals our earlier definition of s. We can now
        solve the resulting equation for s and
        obtain:
[image: Limits, Sequences, and Series]
This is a good trick that can be applied in similar cases: if
        you can express an infinite series in terms of itself, the result may
        be an equation that you can solve explicitly for the unknown value of
        the infinite series.

Power Series and Taylor Expansion



An especially important kind of series contains consecutive
        powers of the variable x multiplied by the
        constant coefficients ai.
        Such series are called power series. The variable
        x can take on any value (it is a “dummy
        variable”), and the sum of the series is therefore a function of
        x:
[image: Power Series and Taylor Expansion]
If n is finite, then there is only a finite
        number of terms in the series: in fact, the series is simply a
        polynomial (and, conversely, every polynomial is a finite power
        series). But the number of terms can also be infinite, in which case
        we have to ask for what values of x does the
        series converge. Infinite power series are of great theoretical
        interest because they are a (conceptually straightforward)
        generalization of polynomials and hence represent the “simplest”
        nonelementary functions.
But power series are also of the utmost
        practical importance. The reason is a remarkable
        result known as Taylor’s theorem. Taylor’s
        theorem states that any reasonably smooth function can be
        expanded into a power series. This process (and
        the resulting series) is known as the Taylor
        expansion of the function.
Taylor’s theorem gives an explicit construction for the
        coefficients in the series expansion:
[image: Power Series and Taylor Expansion]
[image: The sine function sin(x) and its Taylor expansions around zero, truncated after retaining different numbers of terms. If more terms are kept, the approximation is acceptable over a greater range of values.]

Figure B-17. The sine function sin(x) and its Taylor
          expansions around zero, truncated after retaining different numbers
          of terms. If more terms are kept, the approximation is acceptable
          over a greater range of values.

In other words, the coefficient of the
        nth term is the nth
        derivative (evaluated at zero) divided by n!. The
        Taylor series converges for all x—the factorial
        in the denominator grows so quickly that convergence is guaranteed no
        matter how large x is.
The Taylor series is an exact representation of the function on
        the lefthand side if we retain all (infinitely many) terms. But we can
        also truncate the series after just a few terms
        and so obtain a good local approximation of the
        function in question. The more terms we keep, the larger will be the
        range over which the approximation is good. For the sine function,
        Figure B-17 shows how
        the Taylor expansion improves as a greater number of terms is kept.
        Table B-2 shows the
        Taylor expansions for some functions we have encountered so
        far.
It is this last step that makes Taylor’s theorem so useful from
        a practical point of view: it tells us that we can
        approximate any smooth function locally by a polynomial.
        And polynomials are always easy to work with—often much easier than
        the complicated functions that we started with.
One important practical point: the approximation provided by a
        truncated Taylor series is good only locally—that
        is, near the point around which we expand. This is because in that
        case x is small (i.e.,
        x ≪ 1) and so higher powers become negligible
        fast. Taylor series are usually represented in a form that assumes
        that the expansion takes place around zero. If this is not the case,
        we need to remove or factor out some large quantity so that we are
        left with a “small parameter” in which to expand. As an example,
        suppose we want to obtain an approximation to
        ex for values of
        x near 10. If we expanded in the usual fashion
        around zero, then we would have to sum many terms
        before the approximation becomes good (the terms grow until
        10n < n!, which
        means we need to keep more than 20 terms). Instead, we proceed as
        follows: we write [image: ]. In other words, we set it up so that δ is
        small allowing us to expand
        eδ around zero as
        before.
Table B-2. The first few terms of the Taylor expansion of some important
          functions
	Function
	Taylor expansion
	Comment

	ex
	[image: ]
	all
                x

	sin
                x
	[image: ]
	all
                x

	cos
                x
	[image: ]
	all
                x

	log(1 +
                x)
	[image: ]
	–1 < x ≤
                1

	[image: ]
	[image: ]
	|x| ≤
                1

	1/(1 +
                x)
	1 – x +
                x2 –
                x3 ±
                ···
	|x| <
                1




Another important point to keep in mind is that the function
        must be smooth at the point around which we expand: it must not have a
        kink or other singularity there. This is why the logarithm is usually
        expanded around one (not zero): recall that the logarithm diverges as
        x goes to zero.


Useful Tricks



The Binomial Theorem



Probably everyone has encountered the binomial formulas at some
        point:
(a +
        b)2 =
        a2 +
        2ab +
        b2
(a –
        b)2 =
        a2 –
        2ab +
        b2
The binomial theorem provides an extension of this result to
        higher powers. The theorem states that, for an arbitrary integer power
        n, the expansion of the lefthand side can be
        written as:
[image: The Binomial Theorem]
This complicated-looking expression involves the
        binomial coefficients:
[image: The Binomial Theorem]
The binomial coefficients are combinatorial factors that count
        the number of different ways one can choose k
        items from a set of n items, and in fact there is
        a close relationship between the binomial theorem and the binomial
        probability distribution.
As is the case for many exact results, the greatest
        practical use of the binomial theorem comes from an approximate
        expression. Assume that b < a, so that
        b/a < 1. Now we can
        write:
[image: The Binomial Theorem]
Here we have neglected terms involving higher powers of
        b/a, which are small compared to the retained
        terms, since b/a < 1 by
        construction (so that higher powers of b/a, which
        involve multiplying a small number repeatedly by itself, quickly
        become negligible).
In this form, the binomial theorem is frequently useful as a way
        to generate approximate expansions. In particular, the first-order
        approximation:
	(1 +
                x)n
                ≈ 1 + nx
	for |x| < 1



should be memorized.

The Linear Transformation



Here is a quick, almost trivial, trick that is useful enough to
        be committed to memory. Any variable can be transformed to a similar
        variable that takes on only values from the interval [0, 1], via the
        following linear transformation, where
        xmin and
        xmax are the minimum and
        maximum values that x can take on:
[image: The Linear Transformation]
This transformation is frequently useful—for instance, if we
        have two quantities and would like to compare how they develop over
        time. If the two quantities have very different magnitudes, then we
        need to reduce both of them to a common range of values. The
        transformation just given does exactly that.
If we want the transformed quantity to fall
        whenever the original quantity goes up, we can do this by
        writing:
[image: The Linear Transformation]
We don’t have to shift by
        xmin and rescale by the
        original range xmax –
        xmin. Instead, we can
        subtract any “typical” value and divide by any “typical” measure of
        the range. In statistical applications, for example, it is frequently
        useful to subtract the mean μ and to divide by the standard deviation
        σ. The resulting quantity is referred to as the
        z-score:
[image: The Linear Transformation]
Alternatively, you might also subtract the median and
        divide by the inter-quartile range. The exact choice of parameters is
        not crucial and will depend on the specific application context. The
        important takeaway here is that we can normalize any variable
        by:
	Subtracting a typical value (shifting) and

	Dividing by the typical range (rescaling)




Dividing by Zero



Please remember that you cannot divide by
        zero! I am sure you know this—but it’s surprisingly easy to
        forget (until the computer reminds us with a fatal “divide by zero”
        error).
It is instructive to understand what happens if you try to
        divide by zero. Take some fixed number (say, 1), and divide it by a
        sequence of numbers that approach zero:
[image: Dividing by Zero]
In other words, as you divide a constant by numbers that
        approach zero, the result becomes larger and
        larger. Finally, if you let the divisor go to zero, the result grows
        beyond all bounds: it diverges. Figure B-18 shows this
        graphically.
What you should take away from this exercise and Figure B-18 is that you
        cannot replace 1/0 by something else—for instance, it is
        not a smart move to replace 1/0 by 0 “because
        both don’t really mean anything, anyway.” If you need to find a
        numeric value for 1/0, then it should be something like “infinity,”
        but this is not a useful value to operate with in practical
        applications.
Therefore, whenever you encounter a fraction
        [image: ] of any kind, you must
        check whether the denominator can become zero and exclude
        these points from consideration.
Failing to do so is one of the most common sources of error.
        What is worse, these errors are difficult to recover from—not just in
        implementations but also conceptually. A typical example involves
        “relative errors,” where we divide the difference between the observed
        and the expected value by the expected value:
[image: Dividing by Zero]
[image: As you divide a constant value by smaller and smaller numbers, the result is getting larger and larger. If you divide by zero, it blows up!]

Figure B-18. As you divide a constant value by smaller and smaller
          numbers, the result is getting larger and larger. If you divide by
          zero, it blows up!

What happens if for one day the expected value drops to zero?
        You are toast. There is no way to assign a meaningful value to the
        error in this case. (If the observed value is also zero, then you can
        treat this as a special case and define the
        relative error to be zero in this case, but if the observed value is
        not zero, then this definition is obviously inappropriate.)
These kinds of problems have an unpleasant ability to sneak up
        on you. A quantity such as the relative error or the defect rate
        (which is also a ratio: the number of defects found divided by the
        number of units produced) is a quantity commonly found in reports and
        dashboards. You don’t want your entire report to crash because no
        units were produced for some product on this day rendering the
        denominator zero in one of your formulas!
There are a couple of workarounds, neither of which is perfect.
        In the case of the defect rate, where you can be sure that the
        numerator will be zero if the denominator is (because no defects can
        be found if no items were produced), you can add a small positive
        number to the denominator and thereby prevent it from ever becoming
        exactly zero. As long as this number is small compared to the number
        of items typically produced in a day, it will not significantly affect
        the reported defect rate, but will relieve you from having to check
        for the [image: ] special case explicitly. In the case of
        calculating a relative error, you might want to replace the numerator
        with the average of the expected and the observed values. The
        advantage is that now the denominator can be zero only if the
        numerator is zero, which brings us back to the suggestion for dealing with
        defect rates just discussed. The problem with this method is that when
        no events are observed but some number was expected, the relative
        error is reported as –2 (negative 200 percent instead of negative 100
        percent); this is due to the factor 1/2 in the denominator, which
        comes from calculating the average there.
So, let me say it again: whenever you are dealing with
        fractions, you must consider the case of
        denominators becoming zero. Either rule them out or handle them
        explicitly.


Notation and Basic Math



This section is not intended as a comprehensive overview of
      mathematical notation or as your first introduction to mathematical
      formulas. Rather, it should serve as a general reminder of some basic
      facts and to clarify some conventions used in this book. (All my
      conventions are pretty standard—I have been careful not to use any
      symbols or conventions that are not generally used and
      understood.)
On Reading Formulas



A mathematical formula combines different components, called
        terms, by use of operators. The most basic
        operators are plus and minus
        (+ and –) and multiplied by and divided
        by (· and /). Plus and minus are always written explicitly,
        but the multiplication operator is usually silent—in other words, if
        you see two terms next to each other, with nothing between them, they
        should be multiplied. The division operator can be written in two
        forms: 1/n or [image: ], which mean exactly the same thing. The former
        is more convenient in text such as this; the latter is more clear for
        long, “display” equations. An expression such as
        1/n + 1 is ambiguous and should not be used, but
        if you encounter it, you should assume that it means
        [image: ] and not 1/(n + 1) (which
        is equivalent to [image: ]).
Multiplication and division have higher precedence than addition
        and subtraction, therefore ab +
        c means that first you multiply
        a and b and then add
        c to the result. To change the priority, you need
        to use parentheses: a(b +
        c) means that first you add
        b and c and then multiply
        the result by a. Parentheses can either be round
        (...) or square [...], but their meaning is the same.
Functions take one (or several) arguments and return a result. A
        function always has a name followed by the
        arguments. Usually the arguments are enclosed in
        parentheses: f(x). Strictly
        speaking, this notation is ambiguous because an expression such as
        f (a + b) could mean either
        “add a and b and then
        multiply by f” or “add a and
        b and then pass the result to the function
        f.” However, the meaning is usually clear from
        the context.
(There is a slightly more advanced way to look at this. You can
        think of f as an operator, similar to a
        differential operator like [image: ] or an integral operator like ∫
        dt. This operator is now applied to the
        expression to the right of it. If f is a
        function, this means applying the function to the argument; if the operator is a
        differential operator, this means taking the derivative; and if
        f is merely a number, then applying it simply
        means multiplying the term on its right by it.)
A function may take more than one argument; for example, the
        function f (x, y, z) takes three arguments.
        Sometimes you may want to emphasize that not all of these arguments
        are equivalent: some are actual variables, whereas others are
        “parameters,” which are kept constant while the variables change.
        Consider f(x) =
        ax + b. In this function,
        x is the variable (the quantity usually plotted
        along the horizontal axis) while a and
        b would be considered parameters. If we want to
        express that the function f does depend on the
        parameters as well as on the actual variable, we can do this by
        including the parameters in the list of arguments: f (x, a,
        b). To visually separate the parameters from the actual
        variable (or variables), a semicolon is sometimes used: f
        (x; a, b). There are no hard-and-fast
        rules for when to use a semicolon instead of a comma—it’s simply a
        convenience that is sometimes used and other times not.
One more word on functions: several functions are regarded as
        “well known” in mathematics (such as sine and cosine, the exponential
        function, and the logarithm). The names of such well-known functions
        are always written in upright letters, whereas functions in general
        are denoted by an italic letter. (Variables are always written in
        italics.) For well-known functions, the parentheses around the
        arguments can be omitted if the argument is sufficiently simple. (This
        is another example of the “operator” point of view mentioned earlier.)
        Thus we may write sin(x + 1) + log
        x –
        f(x) (note the upright
        letters for sine and logarithm, and the parentheses around the
        argument for the logarithm have been omitted, because it consists of
        only a single term). This has a different meaning than:
        sin(x + 1) + log(x –
        f(x)).

Elementary Algebra



For numbers, the following is generally true:
a(b +
        c) = ab +
        ac
This is often applied in situations like the following, where we
        factor out the a:
a + b =
        a(1 +
        b/a)
If a is much greater than
        b, then we have now converted the original
        expression a + b into
        another expression of the form:
something large · (1 + something
        small)
which makes it easy to see which terms matter and which can be
        neglected in an approximation scheme. (The small term in the
        parentheses is “small” compared to the 1 in the parentheses and can
        therefore be treated as a perturbation.)
Quantities can be multiplied together, which gives rise
        to powers:
a · a =
        a2
a · a ·
        a =
        a3
. . .
The raised quantity (the superscript) is also referred to as the
        exponent. In this book, superscripts always
        denote powers.
The three binomial formulas should be committed to
        memory:
(a +
        b)2 =
        a2 +
        2ab +
        b2
(a –
        b)2 =
        a2 –
        2ab +
        b2
(a +
        b)(a –
        b) =
        a2 –
        b2
Because the easiest things are often the most readily forgotten,
        let me just work out the first of these identities explicitly:
	(a +
                b)2
	= (a +
                b)(a +
                b)

	 	=
                a(a +
                b) +
                b(a +
                b)

	 	=
                a2 +
                ab + ba +
                b2

	 	=
                a2 +
                2ab +
                b2



where I have made use of the fact that ab =
        ba.

Working with Fractions



Let’s review the basic rules for working with fractions. The
        expression on top is called the numerator, the
        one at the bottom is the denominator:
[image: Working with Fractions]
If you can factor out a common factor in both numerator and
        denominator, then this common factor can be canceled:
[image: Working with Fractions]
To add two fractions, you have to bring them onto a common
        denominator in an operation that is the opposite of canceling a common
        factor:
[image: Working with Fractions]
Here is a numeric example:
[image: Working with Fractions]

Sets, Sequences, and Series



A set is a grouping of elements in
        no particular order. In a sequence, the elements
        occur in a fixed order, one after the other.
The individual elements of sets and sequences are usually shown
        with subscripts that denote the index of the element in the set or its
        position in the sequence (similar to indexing into an array). In this
        book, subscripts are used only for the purpose of indexing elements of
        sets or sequences in this way.
Sets are usually indicated by curly braces. The following
        expressions are equivalent:
{x1,
        x2,
        x3, . . .,
        xn}
{xi
        | i = 1, . . ., n}
For brevity, it is customary to suppress the range of the index
        if it can be understood from context. For example, if it is clear that
        there are n elements in the set, I might simply
        write {xi}.
One often wants to sum a finite or infinite sequence of numbers;
        the result is known as a series:
x1 +
        x2 +
        x3 + · · · +
        xn
Instead of writing out the terms explicitly, it is often useful
        to use the sum notation:
[image: Sets, Sequences, and Series]
The meaning of the summation symbol should be clear from this
        example. The variable used as index (here, i) is
        written underneath the summation sign followed by the lower limit
        (here, 1). The upper limit (here, n) is written
        above the summation sign. As a shorthand, any one of these
        specifications can be omitted. For instance, if it is clear from the
        context that the lower limit is 1 and the upper limit is
        n, then I might simply write [image: ] or even [image: ]. In the latter form, it is understood that the
        sum runs over the index of the summands.
It is often convenient to describe the terms to be summed over
        in words, rather than giving specific limits:
[image: Sets, Sequences, and Series]
Some standard transformations involving the summation notation
        are used fairly often. For example, one frequently needs to shift
        indices. The following three expressions are equal, as you can easily
        see by writing out explicitly the terms of the sum in each
        case:
[image: Sets, Sequences, and Series]
Keep in mind that the summation notation is just a
        shorthand for the explicit form given at the start of this section. If
        you become confused, you can always write out the terms explicitly to
        understand what is going on.
Finally, we may take the upper limit of the sum to be infinity,
        in which case the sum runs over infinitely many terms. Infinite series
        play a fundamental role in the theoretical development of mathematics,
        but all series that you will encounter in applications are, of course,
        finite.

Special Symbols



A few mathematical symbols are either indispensable or so useful
        that I wouldn’t do without them.
Binary relationships



There are several special symbols to describe the relationship
          between two expressions. Some of the most useful ones are listed in
          Table B-3.
Table B-3. Commonly used relational operators
	Operator
	Meaning

	= ≠
	equal to, not equal
                  to

	< >
	less than, greater
                  than

	≤ ≥
	less than or equal to, greater
                  than or equal to

	≪ ≫
	much less than, much greater
                  than

	α
	proportional to

	≈
	approximately equal
                  to

	~
	scales as




The last three might require a word of explanation. We say two
          quantities are approximately equal when they
          are equal up to a “small” error. Put differently, the difference
          between the two quantities must be small compared to the quantities
          themselves: x and 1.1x are
          approximately equal, x ≈
          1.1x, because the difference (which is
          0.1x) is small compared to
          x.
One quantity is proportional to another
          if they are equal up to a constant factor that has been omitted from
          the expression. Often, this factor will have units associated with
          it. For example, when we say “time is money,” what we really mean
          is:
money α time
Here the omitted constant of proportionality is the hourly
          rate (which is also required to fix the units: hours on the left,
          dollars on the right; hence hourly rate must have units of “dollars
          per hour” to make the equation dimensionally consistent).
We say that a quantity scales as
          some other quantity if we want to express how one quantity depends
          on another one in a very general way. For example, recall that the
          area of a circle is
          πr2 (where
          r is the length of the radius) but that the
          area of a square is
          a2 (where
          a is the length of the side of the square). We
          can now say that “the area scales as the square
          of the length.” This is a more general statement than saying that
          the area is proportional to the square of the length: the latter
          implies that they are equal up to a constant factor, whereas the
          scaling behavior allows for more complicated dependencies. (In this
          example, the constant of proportionality depends on the
          shape of the figure, but the scaling behavior
          area ~ length2 is true for all
          symmetrical figures.)
In particular when evaluating the complexity of algorithms,
          there is another notation to express a very similar notion: the
          so-called big O notation. For example, the
          expression [image: ](n2)
          states that the complexity of an algorithm grows (“scales”) with the
          square of the number of elements in the input.

Parentheses and other delimiters



Round parentheses (...) are used for two purposes: to group
          terms together (establishing precedence) and to indicate the
          arguments to a function:
	ab +
                  c ≠
                  a(b +
                  c)
	Parentheses to establish
                  precedence

	f(x,
                  y) = x +
                  y
	Parentheses to indicate function
                  arguments



Square brackets [...] are mostly used to indicate an
          interval:
	[a,
                  b]
	all x such
                  that a ≤ x ≤
                  b



For the purpose of this book, we don’t need to worry about the
          distinction between closed and open intervals
          (i.e., intervals that do or don’t contain their
          endpoints, respectively).
Very rarely I use brackets for other purposes—for example as
          an alternative to round parentheses to establish precedence, or
          indicate that a function takes another function
          as its argument, as in the expectation value:
          E[
          f(x)].
Curly braces {...} always denote a set.

Miscellaneous symbols



Two particular constants are indispensable. Everybody has
          heard of π = 3.141592 ..., which is the ratio of the circumference
          of a circle to its diameter:
[image: Miscellaneous symbols]
Equally important is the “base of the natural
          logarithm” e = 2.718281 ..., sometimes called
          Euler’s number. It is defined as the value of the infinite
          series:
[image: Miscellaneous symbols]
The function
          ex obtained by
          raising e to the xth power
          has the property that its derivative also equals
          ex, and it is the
          only function that equals its derivative (up to a multiplicative
          constant, to be precise).
The number e also shows up in the
          definition of the Gaussian function:
e–x2
(Any function that contains e raised to
          –x2 power is called
          a “Gaussian”; what’s crucial is that the x in
          the exponent is squared and enters with a negative sign. Other
          constants may appear also, but the
          –x2 in the exponent
          is the defining property.)
Because the exponents are often complicated expressions
          themselves, there is an alternative notation for the exponential
          function that avoids superscripts and instead uses the function name
          exp(...). The expression exp(x) means exactly
          the same as ex, and
          the following two expressions are equivalent, also—but the one on
          the right is easier to write:
[image: Miscellaneous symbols]
A value of infinite magnitude is indicated by a special
          symbol:
	∞
	a value of infinite
                  magnitude



The square root sign [image: ] states that:
[image: Miscellaneous symbols]
Finally, the integral sign ∫, which always occurs together
          with an expression of the form dx (or
          dt, or so), is used to denote a generalized
          form of summation: the expression to the right of the integral sign
          is to be “summed” for all values of x (or
          t). If explicit limits of the integration are
          given, they are attached to the integral sign:
[image: Miscellaneous symbols]
This means: “sum all values of
          f(x) for
          x ranging from 0 to 1.”


The Greek Alphabet



Greek letters are used all the time in mathematics and other
        sciences and should be committed to memory. (See Table B-4.)
Table B-4. The Greek alphabet
	Lowercase
	Uppercase
	Name

	α
	A
	Alpha

	β
	B
	Beta

	γ
	Γ
	Gamma

	δ
	Δ
	Delta

	ϵ
	E
	Epsilon

	ζ
	Z
	Zeta

	η
	H
	Eta

	θ
	Θ
	Theta

	ι
	I
	Iota

	κ
	K
	Kappa

	λ
	Λ
	Lambda

	μ
	M
	Mu

	ν
	N
	Nu

	ξ
	Ξ
	Xi

	ο
	Ο
	Omicron

	π
	Π
	Pi

	ρ
	R
	Rho

	σ
	Σ
	Sigma

	τ
	T
	Tau

	υ
	ϒ
	Upsilon

	ϕ
	Φ
	Phi

	χ
	X
	Chi

	ψ
	Ψ
	Psi

	ω
	Ω
	Omega






Where to Go from Here



This appendix can of course only give a cartoon version of the
      topics mentioned, or—if you have seen this material before—at best serve
      as a reminder. But most of all, I hope it serves as a
      teaser: mathematics is a wonderfully rich and
      stimulating topic, and I would hope that in this appendix (and in the
      rest of this book) I have been able to convey some of its
      fascination—and perhaps even convinced you to dig a little
      deeper.
If you want to learn more, here are a couple of hints.
The first topic to explore is calculus (or real analysis). All
      modern mathematics starts here, and it is here that some of the most
      frequently used concepts (derivative, integral, Taylor expansion) are
      properly introduced. It is a must-have.
But if you limit your attention to calculus, you will never get
      over the idea that mathematics is about “calculating something.” To get
      a sense of what math is really all about, you have
      to go beyond analysis. The next topic in a typical college syllabus is
      linear algebra. In linear algebra, we go beyond relatively tangible
      things like curves and numbers and for the first time start to consider
      concepts in a fully abstract way: spaces, transformations, mappings.
      What can we say about them in general without
      having to appeal to any particular realization? Understanding this
      material requires real mental effort—you have to change the way you
      think. (Similarly to how you have to change the way you think if you try
      to learn Lisp or Haskell.) Linear algebra also provides the theoretical
      underpinnings of all matrix operations and hence for most frequently
      used numerical routines. (You can’t do paper-and-pencil mathematics
      without calculus, and you can’t do numerical mathematics without linear
      algebra.)
With these two subjects under your belt, you will be able to pick
      up pretty much any mathematical topic and make sense of it. You might
      then want to explore complex calculus for the elegance and beauty of its
      theorems, or functional analysis and Fourier theory (which blend
      analysis and linear algebra) because of their importance in all
      application-oriented areas, or take a deeper look at probability theory,
      with its obvious importance for anything having to do with random
      data.
On Math



I have observed that there are two misconceptions about
        mathematics that are particularly prevalent among people coming from a
        software or computing background. The first misconception holds that
        mathematics is primarily a prescriptive, calculational (not
        necessarily numerical) scheme and similar to an Algol-derived
        programming language: a pseudo-code for expressing algorithms. The
        other misconception views mathematics as mostly an abstract method for
        formal reasoning, not dissimilar to certain logic programming
        environments: a way to manipulate logic statements.
What both of them miss is that mathematics is not a
        method but first and foremost a body of
        content in its own right. You will never
        understand what mathematics is if you see it only as something you
        use to obtain certain results. Mathematics is,
        first and foremost, a rich and exciting story in itself.
There is an unfortunate perception among nonmathematicians (and
        even partially reinforced by this book) that mathematics is about
        “calculating things.” This is not so, and it is probably the most
        unhelpful misconception about mathematics of all.
In fairness, this point of view is promulgated by many
        introductory college textbooks. In a thoroughly misguided attempt to
        make their subject “interesting,” they try to motivate mathematical
        concepts with phony applications to the design of bridges and
        airplanes, or to calculating the probability of winning at poker. This
        not only obscures the beauty of the subject but also creates the
        incorrect impression of mathematics as a utilitarian fingering
        exercise and almost as a necessary evil.
Finally, I strongly recommend that you stay away from books on
        popular or recreational math, for two reasons. First, they tend to
        focus on a small set of topics that can be treated using “elementary”
        methods (mostly geometry and some basic number theory), and tend to
        omit most of the conceptually important topics. Furthermore, in their
        attempt to present amusing or entertaining snippets of information,
        they fail to display the rich, interconnected structure of
        mathematical theory: all you end up with is a book of (stale)
        jokes.


Further Reading



Calculus



	The Hitchhiker’s Guide to
              Calculus. Michael Spivak. Mathematical Association of America.
              1995.
If the material in this appendix is really new to you, then
            this short (120-page) booklet provides a surprisingly complete,
            approachable, yet mathematically respectable introduction. Highly
            recommended for the curious and the confused.

	Precalculus: A Prelude to
              Calculus. Sheldon Axler. Wiley. 2008.
Axler’s book covers the basics: numbers, basic algebra,
            inequalities, coordinate systems, and functions—including
            exponential, logarithmic, and trigonometric functions—but it stops
            short of derivatives and integrals. If you want to brush up on
            foundational material, this is an excellent text.

	Calculus. Michael Spivak. 4th ed., Publish or Perish. 2008.
This is a comprehensive book on calculus. It concentrates
            exclusively on the clear development of the mathematical theory
            and thereby avoids the confusion that often results from an
            oversupply of (more or less) artificial examples. The presentation
            is written for the reader who is relatively new to formal
            mathematical reasoning, and the author does a good job motivating
            the peculiar arguments required by formal mathematical
            manipulations. Rightly popular.

	Yet Another Introduction to
              Analysis. Victor Bryant. Cambridge University Press. 1990.
This short book is intended as a quick introduction for
            those readers who already possess passing familiarity with the
            topic and are comfortable with abstract operations.




Linear Algebra



	Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004.
This is the best introduction to linear algebra that I am
            aware of, and it fully lives up to its grandiose title. This book
            treats linear algebra as abstract theory of mappings, but on a
            very accessible, advanced undergraduate level. Highly
            recommended.

	Linear Algebra. Klaus Jänich. Springer. 1994.
This book employs a greater amount of abstract mathematical
            formalism than the previous entry, but the author tries very hard
            to explain and motivate all concepts. This book might therefore
            give a better sense of the nature of abstract algebraic arguments
            than Axler’s streamlined presentation. The book is written for a
            first-year course at German universities; the style of the
            presentation may appear exotic to the American reader.




Complex Analysis



	Complex Analysis. Joseph Bak and Donald J. Newman. 2nd ed., Springer.
              1996.
This is a straightforward, and relatively short,
            introduction to all the standard topics of classical complex
            analysis.

	Complex Variables. Mark J. Ablowitz and Athanassios S. Fokas. 2nd ed.,
              Cambridge University Press. 2003.
This is a much more comprehensive and advanced book. It is
            split into two parts: the first part developing the theory, the
            second part discussing several nontrivial applications (mostly to
            the theory of differential equations).

	Fourier Analysis and Its
              Applications. Gerald B. Folland. American Mathematical Society.
              2009.
This is a terrific introduction to Fourier theory. The book
            places a strong emphasis on the solution of partial differential
            equations but in the course of it also develops the basics of
            function spaces, orthogonal polynomials, and eigenfunction
            expansions. The later chapters give an introduction to
            distributions and Green’s functions. This is a very accessible
            book, but you will need a strong grounding in real and complex
            analysis, as well as some linear algebra.




Mindbenders



If you really want to know what math is
        like, pick up any one of these. You don’t have to understand
        everything—just get the flavor of it all. None of them are “useful,”
        all are fascinating.
	A Primer of Analytic Number
              Theory. Jeffrey Stopple. Cambridge University Press. 2003.
This is an amazing book in every respect. The author takes
            one of the most advanced, obscure, and “useless” topics—namely
            analytic number theory—and makes it completely accessible to
            anyone having even minimal familiarity with calculus concepts (and
            even those are not strictly required). In the course of the book,
            the author introduces series expansions, complex numbers, and many
            results from calculus, finally arriving at one of the great
            unsolved problems in mathematics: the Riemann hypothesis. If you
            want to know what math really is, read this
            book!

	The Computer As Crucible: An Introduction to
              Experimental Mathematics. Jonathan Borwein and Keith Devlin. AK Peters. 2008.
If you are coming from a programming background, you might
            be comfortable with this book. The idea behind “experimental
            mathematics” is to see whether we can use a computer to provide us
            with intuition about mathematical results that can later be
            verified through rigorous proofs. Some of the observations one
            encounters in the process are astounding. This book tries to
            maintain an elementary level of treatment.

	Mathematics by Experiment. Jonathan M. Borwein and David H. Bailey. 2nd ed., AK
              Peters. 2008.
This is a more advanced book coauthored by one of the
            authors of the previous entry on much the same topic.

	A Mathematician’s Lament: How School Cheats Us
              Out of Our Most Fascinating and Imaginative Art
              Form. Paul Lockhart. Bellevue Literary Press. 2009. This is not
              a math book at all: instead it is a short essay by a
              mathematician (or math teacher) on what
              mathematics is and why and
              how it should be taught. The author’s
              philosophy is similar to the one I’ve tried to present in the
              observations toward the end of this appendix. Read it and weep.
              (Then go change the world.) Versions are also available on the
              Web (for example, check http://www.maa.org/devlin/devlin_03_08.html).





Appendix C. Working with Data



ONE OF THE UNCOMFORTABLE (AND EASILY
    OVERLOOKED) TRUTHS OF WORKING WITH DATA IS THAT USUALLY only a
    small fraction of the time is spent on the actual “analysis.” Often a far
    greater amount of time and effort is expended on a variety of tasks that
    may appear “menial” by comparison but that are absolutely critical
    nevertheless: obtaining the data; verifying, cleaning and possibly
    reformatting it; and dealing with updates, storage, and archiving. For
    someone new to working with data (and even, periodically, for someone not
    so new), it typically comes as a surprise that these preparatory tasks are
    not only necessary but also take up as much time as they do.
By their nature, these housekeeping and auxiliary tasks tend to be
    very specific: specific to the data, specific to the environment, and
    specific to the particular question being investigated. This implies that
    there is little that can be said about them in generality—it pretty much
    all comes down to ad hoc hackery. Of course, this absence of recognizable
    nontrivial techniques is one of the main reasons these activities receive
    as little attention as they do.
That being said, we can try to increase our awareness of such issues
    typically arising in practical situations.
Sources for Data



The two most common sources for data in an enterprise environment
      are databases and logfiles. As
      data sources, the two sources tend to address different needs. Databases
      will contain data related to the “business,” whereas logfiles are a
      source for “operational” data: databases answer the question “what did
      we sell to whom?” whereas logfiles answer the question “what did we do,
      and when?”
Databases can be either “online transaction processing” (OLTP) or
      “production” databases, or “data warehouses” for long-term storage.
      Production databases tend to be normalized, fast, and busy. You may or
      may not be able to get read access to them for ad hoc queries, depending
      on company policy. Data warehouses tend to be denormalized, slow, and
      often accessed through a batch processing facility (submit your query
      tonight and find out tomorrow that you omitted a field you needed).
      Production databases tend to be owned (at least in spirit) by the
      application development teams. Data warehouses are invariably owned by
      the IT department, which implies a different culture (see also the
      discussion in Chapter 17).
      In either form, databases tend to provide a stable foundation for data
      needs—provided you are interested in something the company already
      considers part of its “business.”
In contrast, logfiles are often an important source of data for
      new initiatives. If you want to evaluate a new business idea, chances
      are that the data required for your analysis will not be available in
      the database—not yet, since there has never been a
      reason to store it before. In such situations you may still be able to
      find the information you need in logfiles that are regularly
      produced.
One very important distinction is that
      databases and logfiles have different life cycles: making changes to the
      design of a database is always a slow (often, excruciatingly slow)
      process, but the data itself lives in the database forever (if the
      database is properly designed). In contrast, logfiles often contain much
      more information than the database, but they are usually deleted very
      quickly. If your organization keeps logfiles for two weeks, consider
      yourself lucky!
Therefore, if you want to begin a project using data contained in
      logfiles then you need to move fast: start saving
      all files to your desktop or another safe location immediately,
      then figure out what you want to do with them!
      Frequently, you will need several weeks’ (or months’) worth of data for
      a conclusive analysis, and every day that you wait can never be made up.
      Also keep in mind that logfiles are usually generated on production
      servers to which access may be heavily restricted. It is not uncommon to
      spend weeks in negotiations with network
      administrators if you need to move significant amounts of data off of
      production systems.
The same consideration applies if information is not available in
      the logfiles, so that existing code needs to be instrumented to support
      collection of the required data. In this situation, you will likely find
      yourself captive to preexisting release schedules and other constraints.
      Again: start to think about collecting data
      early.
Because databases and logfiles are so common and so directly
      useful sources of data in an enterprise environment, it’s easy to forget
      that they’re not the only available sources.
A separate data source that sometimes can be extremely useful is
      the company’s finance department. Companies are required to report on
      various financial metrics, which means that such information
      must be available, although possibly only in a
      highly aggregated form (e.g., quarterly) and
      possibly quite late. On other hand, this information is normative
      and therefore reliable: after all, it’s what the company
      is paying taxes on! (I am ignoring the possibility that the data
      provided by the finance department might be wrong,
      but don’t get me wrong: forensic data analysis is also an interesting
      field of study.)
What works internally may also work with competitors. The
      quarterly filings that publicly listed companies are required to make
      can make interesting reading!
So far we have assumed that you had to find and extract the data
      you need from whatever sources are available; in my experience, this is
      by far the most common scenario. However, your data may also be handed
      to you—for example, if it is experimental data or if it comes from an
      external source. In this case, it may come in a domain-specific file
      format (we’ll return to data formats shortly). The problem with this
      situation is, of course, that now you have no control over what is in
      the data!

Cleaning and Conditioning



Raw data, whether it was obtained from a database query or by
      parsing a logfile, typically needs to be cleaned or conditioned. Here
      are some areas that often need attention.
Missing values
	If individual attributes or entire data points are missing, we
          need to decide how to handle them. Should we discard the whole
          record, mark the information in question as missing, or backfill it
          in some way? Your choice will depend strongly on your specific
          situation and goals.



Outliers
	In general, you should be extremely careful when removing
          outliers—you may be removing the effect that you are looking for.
          Never should data points be removed silently.
          (There is a (partly apocryphal) story[37] that the discovery of the hole in the ozone layer over
          Antarctica was delayed by several years because the automated data
          gathering system discarded readings that it considered to be
          “impossibly low.”)



Junk
	Data that comes over a network may contain nonprintable
          characters or similar junk. Such data is not only useless but can
          also seriously confuse downstream applications that are attempting
          to process the data (e.g., when nonprintable
          characters are interpreted as control characters—many programming
          environments will not issue helpful diagnostics if this happens).
          This kind of problem frequently goes unnoticed, because such junk is
          typically rare and not easily noticed simply by scanning the
          beginning of a data set.



Formatting and normalizing
	Individual values may not be formatted in the most useful way
          for subsequent analysis. Examples of frequently used transformations
          for this purpose include: forcing upper- or lowercase; removing blanks within strings, or
          replacing them with dashes; replacing timestamps with Unix Epoch
          seconds, the Julian day number, or a similar numerical value;
          replacing numeric codes with string labels, or vice versa; and so
          on.



Duplicate records
	Data sets often contain duplicate records that need to be
          recognized and removed (“de-duped”). Depending on what you consider
          “duplicate,” this may require a nontrivial effort. (I once worked on
          a project that tried to recognize misspelled postal addresses and
          assign them to the correctly spelled one. This also is a form of
          de-duping.)



Merging data sets
	The need to merge data sets from different sources is arises
          pretty often—for instance, when the data comes from different
          database instances. Make sure the data is truly compatible,
          especially if the database instances are geographically dispersed.
          Differing time zones are a common trouble spot, but don’t overlook
          things like monetary units. In addition, you may need to be aware of
          localization issues, such as font encodings and date
          formatting.[38]



Reading this list, you should realize that the process of
      cleaning data cannot be separated from
      analyzing it. For instance: outlier detection and
      evaluation require some pretty deep analysis to be reliable. On the
      other hand, you may need to remove outliers before you can calculate
      meaningful values for certain summary statistics. This is an important
      insight, which we will make time and again: data analysis is an
      iterative process, in which each operation is at
      the same time the result of a previous step and the preparation for a
      subsequent step.
Data files may also be defective in ways that only become apparent
      when subsequent analysis fails or produces nonsensical results. Some
      common problems are:
Clerical errors
	These are basically data entry errors: 0.01 instead of 0.001,
          values entered in the wrong column, all that. Because most data
          these days is computer generated, the classic occasional typo seems
          to be mostly a thing of the past. But watch out for its industrial
          counterpart: entire data sets that are systematically corrupted.
          (Once, we didn’t realize that a certain string field in the database
          was of fixed width. As we went from entries of the form ID1, ID2, and so on to entries like ID10, the last character was silently
          truncated by the database. It took a long time before we
          noticed—after all, the results we got back
          looked all right.)



Numerical “special” values
	Missing values in a data set may be encoded using special
          numerical values (such as –1 or 9999). Unless these values are
          filtered out, they will obviously corrupt any statistical analysis.
          There is less of a need for special values like this when data is
          kept in text files (because you can indicate missing values with a
          marker such as ???), but be aware
          that it’s still an issue when you are dealing with binary
          files.



Crazy business rules and overloaded database
      fields
	Bad schema design can thoroughly wreck your analysis. A
          pernicious problem is overloaded database fields: fields that change
          their meaning depending on the values of other
          fields in the database. I remember a case where the Quantity field in a table contained the
          number of items shipped—unless it was zero—in which case it signaled
          a discount, a promotion, or an out-of-stock situation depending on
          whether an entry with the same order ID existed in the Discounts, Promotions, or BackOrders tables—or it contained not the
          number of items shipped but rather the number of multi-item packages
          that had been shipped (if the IsMulti flag was set), or it contained the
          ID (!) of the return order associated with this line item (if some
          other flag was set). What made the situation so treacherous was that
          running a query such as select
          avg(Quantity) from ... would produce a number that
          seemed sensible even though it was, of course,
          complete nonsense. What’s worse, most people were unaware of this
          situation because the data was usually accessed only through
          (massive) stored procedures that took all these crazy business rules
          into account.




Sampling



When dealing with very large data sets, we can often simplify our
      lives significantly by working with a sample
      instead of the full data set—provided the sample is
      representative of the whole. And therein lies the
      problem.
In practice, sampling often means partitioning the data on some
      property of the data: picking all customers whose names begin with the
      letter “t,” for instance, or whose customer ID ends with “0”; or using
      the logfile from one server only (out of 10); or all transactions that
      occurred today. The problem is that it can be very difficult to
      establish a priori whether these subpopulations are at all
      representative of the entire population. Determining this would require
      an in-depth study on the whole population—precisely
      what we wanted to avoid!
Statistical lore is full of (often quite amusing) stories about
      the subtle biases introduced through improper sampling. Choosing all
      customers whose first names end in “a” will probably introduce a bias
      toward female customers. Surveying children for the number of siblings
      will overestimate the number of children per household because it
      excludes households without children. A long-term study of mutual funds
      may report overly optimistic average returns on investment because it
      ignores funds that have been shut down because of poor performance (“survivorship bias”). A
      trailing zero may indicate a customer record that was created long ago
      by the previous version of the software. The server you selected for
      your logfile may be the “overflow” server that comes online during peak
      hours only. And we haven’t even mentioned the problems involved with
      collecting data in the first place! (A phone survey is inherently biased
      against those who don’t have a phone or don’t answer it.) Furthermore,
      strange biases may exist that nobody is aware of. (It is not guaranteed
      that the network administrators will know or understand the algorithm
      that the load balancer uses to assign transactions to servers,
      particularly if the load balancer itself is “smart” and changes its
      logic based on traffic patterns.)
A relatively safe way to create a sample is to take the whole data
      set (or as large a chunk of it as possible) and randomly pick some of
      the records. The keyword is randomly: don’t take
      every tenth record; instead, evaluate each record and retain it with a
      probability of 1/10. Also make sure that the data set does not contain
      duplicates. (For instance, to sample customers given their purchases,
      you must first extract the customer IDs and de-dupe them, then sample
      from the de-duped IDs. Sampling from the transactions alone will
      introduce a bias toward repeat customers.)
Sampling in this way pretty much requires that the data be
      available as a file. In contrast, sampling from a database is more
      difficult because, in general, we don’t have control (or even full
      understanding) over how records are sorted internally. We can dump all
      records to file and then sample from there, but this is rather awkward
      and may not even be feasible for very large tables.
A good trick to enable random sampling from databases is to
      include an additional column, which at the time the record is
      created is filled with a random integer between (say) 0 and
      99. By selecting on this column, we can extract a sample consisting of 1
      percent of all records. This column can even be indexed (although the
      database engine may ignore the index if the result set is too large).
      Even when it is not possible to add such a column to the actual table,
      the same technique can still be used by adding a cross-reference table
      that contains only the primary key of the table we want to sample from
      and the random integer. It is critical that the the random number is
      assigned at the time the record is created and is never changed or
      updated thereafter.
Whichever approach you take, you should verify that your sampling
      process does lead to representative samples. (Take two independent
      samples and compare their properties.)
Sampling can be truly useful—even necessary. Just be very
      careful.

Data File Formats



When it comes to file formats for data, my recommendation is to
      keep it simple, even dead-simple. The simpler the file format, the
      greater flexibility you have in terms of the tools you can use on the
      data. Avoid formats that require a nontrivial parser!
My personal favorite is that old standby, the
      delimiter-separated text file, with one record per line and a single
      data set per file. (Despite the infamous difficulties with the Unix
      make utility, I nevertheless like
      tab-delimited files: since numbers don’t contain tabs, I never need to
      quote or escape anything; and the tabs make it easy to visually inspect
      a file—easier than do commas.) In fairness, delimiter-separated text
      files do not work well for one-to-many relationships or other situations
      where each record can have a varying number of attributes. On the other
      hand, such situations are rare and tend to require special treatment,
      anyway.
One disadvantage of this format is that it does not allow you to
      keep information about the data (“metadata”) within the file itself,
      except possibly the column names as first row. One solution is to use
      two files—one for the data and one for the metadata—and to adopt a
      convenient naming convention (e.g., using the same
      basename for both files while distinguishing them by the extensions
      .data and .names).[39]
In general, I strongly recommend that you stay with text files and
      avoid binary files. Text files are portable (despite the annoying
      newline issue), robust, and self-explanatory. They also compress nicely.
      If you nevertheless decide to use binary files, I suggest that you use
      an established format (for which mature libraries exist!) instead of
      devising an ad hoc format of your own.
I also don’t find XML very suitable as a file format for data: the
      ratio of markup to payload is poor which leads to unnecessarily bloated
      files. XML is also notoriously expensive to parse, in particular for
      large files. Finally, the flexibility provided by XML is rarely
      necessary for data sets, which typically have a very regular structure.
      (It may seem as if XML might be useful for metadata, but even here I
      disagree: the value of XML is to make data machine-readable, whereas the
      primary consumers of metadata are humans!)
Everything I have said so far assumes that the data files are
      primarily for yourself (you don’t want to distribute them) and that you
      are willing to read in the entire file sequentially (so that you don’t
      need to perform seeks within the file). There are file formats that
      allow you to bundle multiple data sets into a single file and
      efficiently extract parts of them (for example, check out the
      Hierarchical Data Format (HDF) and its variants, such as netCDF), but I
      have never encountered them in real life. It should not be lost on you
      that the statistics and machine-learning communities use
      delimiter-separated text almost exclusively as format for data sets on
      their public data repositories. (And if you need indexed lookup, you may
      be better off setting up a minimal standalone database for yourself: see
      the Workshop in Chapter 16.)
Finally, I should point out that some (scientific) disciplines
      have their own specialized file formats as well as the tools designed to
      handle them. Use them when appropriate.

The Care and Feeding of Your Data Zoo



If you work in the same environment for a while, you are
      likely to develop a veritable collection of different data sets. Not
      infrequently, it is this ready access to relevant data sets that makes
      you valuable to the organization (quite aside from your more celebrated
      skills). On the downside, maintaining that
      collection in good order requires a certain amount of effort.
My primary advice is make sure that all data sets are
      self-explanatory and
      reproducible.
To ensure that a data set is self-explanatory, you should not only
      include the minimal metadata with or in the file itself, but include
      all the information necessary to make sense of it.
      For instance, to represent a time series (i.e., a
      data set of measurements taken over time at regular intervals), it is
      strictly necessary to store only the values, the starting time, and the
      length of the interval between data points. However, it is safer to
      store the corresponding timestamp with each measured value—this way, the
      data set still makes sense even if the metadata has been lost or
      garbled. Similar considerations apply more generally: I tend to be
      fairly generous when it comes to including information that might seem
      “redundant.”
To keep data reproducible, you should keep track of its source
      and the cleaning and conditioning transformations.
      This can be tedious because so much of the latter consists of ad hoc,
      manual operations. I usually keep logs with my data sets to record the
      URLs (if the data came from the Web) or the database queries. I also
      capture the commands and pipelines issued at the shell prompt and keep
      copies of all transformation scripts. Finally, if I combine data from
      multiple sources into a single data set, I always retain the original
      data sets.
This kind of housekeeping is very important: not only to produce
      an audit trail (should it ever be needed) but also because data sets
      tend to be reused again and again and for different purposes. Being able
      to determine exactly what is in the data is
      crucial.
I have not found many opportunities to automate these processes;
      the tasks just vary too much. The one exception is the automated
      scheduled collection and archiving of volatile data
      (e.g., copying logfiles to a safe location). Your
      needs may be different.
Finally, here are three pieces of advice on the physical handling
      of data files. They should be obvious but aren’t necessarily.
Keep data files readily available
	Being able to run a minimal script on a file residing on a
          local drive to come up with an answer in seconds (compared to the
          12–24 hour turnaround typical of may data warehouse installations)
          is a huge enabler.



Compress your data files
	I remember a group of statisticians who constantly complained
          about the lack of disk space and kept requesting more storage. None
          of them used compression or had even heard of it. And all their data sets were kept in a
          textlike format that could be compressed by 90 percent! (Also keep
          in mind that gzip can read from
          and write to a pipe, so that the uncompressed file never needs to
          exist on disk.)



Have a backup strategy
	This is important especially if all of your data resides only
          on your local workstation. At the very least, get a second drive and
          mirror files to it. Of course, a remote (and, ideally, managed)
          storage location is much better. Keep in mind that data sets can
          easily become large, so you might want to sit down with your network
          administrators early in the process so that your storage needs can
          be budgeted appropriately.




Skills



I hope that I’ve convinced you that obtaining, preparing, and
      transforming data makes up a large part of day-to-day activities when
      working with data. To be effective in this role, I recommend you acquire
      and develop some skills that facilitate these aspects of your
      role.
For the most part, these skills come down to easy, ad hoc
      programming. If you come from software development, you will hardly find
      anything new here. But if you come from a scientific (or academic)
      background, you might want to broaden your expertise a little.
A special consideration is due to those who come to “data
      analysis” from a database-centric, SQL programming point of view. If
      this describes your situation, I strongly encourage
      you to pick up a language besides SQL. SQL is simply too restricted in
      what it can do and therefore limits the kinds of problems you will
      choose to tackle—whether you realize it or not! It’s also a good idea to
      do the majority of your work “offline” so that there is less of a toll
      on the database (which is, after all, usually a shared resource).
Learn a scripting language
	A scripting language such as Perl, Python, or Ruby is required
          for easy manipulation of data files. Knowledge of a “large-scale”
          programming language like C/C++/Java/C# is not
          sufficient. Scripting languages eliminate the overhead (“boilerplate
          code”) typically associated with common tasks such as input/output
          and file or string handling. This is important because most data
          transformation tasks are tiny and therefore the typical cost of
          overhead, relative to the overall programming task, is simply not
          acceptable.
Note that R (the statistics package) can do double duty as a
          scripting language for these purposes.



Master regular expressions
	If you are dealing with strings (or stringlike objects, such
          as timestamps), then regular expressions are the solution (and an
          amazingly powerful solution) to problems you didn’t even realize you
          had! You don’t need to develop intimate familiarity with the whole
          regular expression bestiary, but working knowledge of the basics is
          required.



Be comfortable browsing a
      database
	Pick a graphical database frontend[40] and become proficient with it. You should be able to
          figure out the schema of a database and the semantics of the data
          simply by browsing the tables and their values, requiring only
          minimal help.



Develop a good relationship with your system
      administrator and DBA
	System administrators and DBAs are in the position to make
          your life significantly easier (by granting you access, creating
          accounts, saving files, providing storage, running jobs for you,
          ...). However, they were not hired to do that—to the contrary, they
          are paid to “keep the trains on time.” A rogue (and possibly
          clueless or oblivious) data analyst, running huge batch jobs during
          the busiest time of the day, does not help with
          that task!
I would like to encourage you to take an interest in the
          situation of your system administrators: try to understand their
          position and the constraints they have to work under. System
          administrators tend to be paranoid—that’s what they’re paid for!
          Their biggest fear is that something will upset
          the system. If you can convince them that you do not pose a great
          risk, you will probably find them to be incredibly helpful.
(Finally, I tend to adopt the attitude that any production job
          by default has higher priority than the research and analysis I am
          working on, and therefore I better be patient.)



Work on Unix
	I mean it. Unix was developed for
          precisely this kind of ad hoc programming with
          files and data, and it continues to provide the most liberating
          environment for such work.
Unix (and its variants, including Linux and Mac OS X) has some
          obvious technical advantages, but its most important property in the
          present context is that it encourages you to devise
          solutions. It does not try (or pretend) to do the job for
          you, but it goes out of its way to give you tools that you might
          find handy—without prescribing how or for what you use them. In
          contrast, other operating systems tend to encourage you to stay
          within the boundaries of certain familiar activity patterns—which
          does not encourage the development of your
          problem-solving abilities (or, more importantly, your
          problem-solving attitudes).
True story: I needed to send a file containing several
          millions of keys to a coworker. (The company did not work on Unix.)
          Since the file was too large to fit safely into an email message, I
          posted it to a web server on my desktop and sent my coworker the
          link. (I dutifully had provided the file with the extension .txt, so that he would be able to open
          it.) Five minutes later, he calls me back: “I can’t open that”—“What
          do you mean?”—“Well, I click the link, but ScrapPaper [the default
          text editor for small text files on this particular system] dies because the file
          is too big.” This coworker was not inept (in fact, he was quite good
          at his primary job), but he displayed the particular
          non-problem-solving attitude that develops in predefined work
          environments: “link, click.” It did not even occur to him to think
          of something else to try. That’s a problem!
If you want to be successful working with data, you want to
          work in an environment that encourages you to devise your own
          solutions.
You want to work on Unix.




Terminology



When working with data, there is some terminology that is
      frequently used.
Types of Data



We can distinguish different types of data. The most important
        distinction is the one between numerical and
        nonnumerical or categorical data.
Numerical data is the most convenient to handle because it
        allows us to perform arbitrary calculations. (In other words, we can
        calculate quantities like the mean.) Numerical data can be
        continuous (taking on all values) or
        discrete (taking on only a discrete set of
        values). It is often necessary to discretize or
        bin continuous data.
You will sometimes find numerical data subdivided further into
        interval and ratio data.
        Interval data is data that does not have a proper origin, whereas
        ratio data does. Examples of interval data (without proper origin) are
        calendar dates and temperatures in units of Fahrenheit or Celsius. You
        can subtract such data to form intervals (there
        are 7 days between 01 April 09 and 07 April 09) but you cannot form
        ratios: it does not make sense to say that 60 Celsius is “twice as
        hot” as 30 Celsius. In contrast, quantities like length or weight
        measurements are ratio data: 0 kilograms truly means “no mass,” and 0
        centimeters truly means “no length.” For ratio data, it makes sense to
        say that a mass of 2 kilograms is “twice as heavy” as a mass of 1
        kilogram.
The distinction between ratio and interval data is not very
        important in practice, because interval data occurs rarely (I can
        think of no examples other than the two just mentioned) and can always
        be avoided through better encoding. The data is numeric by
        construction, so a zero must exist; hence an encoding can be found
        that measures magnitudes from this origin (the Kelvin scale for
        temperatures does exactly that).
All nonnumerical data is categorical—in practice, you will
        usually find categorical data encoded as strings. Categorical data is
        less powerful than numerical data because there are fewer things we
        can do with it. Pretty much the only available operation is counting
        how often each value occurs.
Categorical data can be subdivided into
        nominal and ordinal data.
        The difference is that for ordinal data, a natural sort order between
        values exists, whereas for nominal data no such sort order exists. An
        example for ordinal (sortable) data is a data set consisting of values
        like Like, Dislike, Don't
        Care, which have a clear sort order (namely, Like > Don't
        Care > Dislike). In
        contrast, the colors Red, Blue, Green when used to describe (say) a sweater
        are nominal, because there is no natural order in which to arrange
        these values.
Sortability is an important property because it implies that the
        data is “almost” numerical. If categorical data is sortable then it
        can be mapped to a set of numbers, which are more convenient to
        handle. For example, we can map Like, Dislike, Don't
        Care to the numbers 1, –1, and 0, which allows us to
        calculate an average value after all! However, there is no such thing
        as the “average color” of all sweaters that were sold.
Another property I look for determines whether data is
        “mixable.” Can I combine arbitrary multiples of data points to
        construct a new data point? For data to be mixable in this way, it is
        not enough to be able to combine data points
        (e.g., concatenating two strings) I must also be
        able to combine arbitrary multiples of all data
        points. If I can do this, then I can construct a
        new data point that lies, for example, “halfway”
        between the original ones, like so: x/2 +
        y/2. Being able to construct new data points in
        this way can speed up certain algorithms (see Chapter 13 for some applications).
When data is mixable it is similar to points in space, and a lot
        of geometric intuition can be brought to bear. (Technically, the data
        forms a vector space over the real numbers.)

The Data Type Depends on the Semantics



It is extremely important to realize that the type of
        the data is determined by the semantics of the data. The
        data type is not inherent in the data—it only
        arises from its context.
Postal codes are a good example: although a postal code like
        98101 may look
        like a number, it does not behave like a number.
        It just does not make sense to add two postal codes together or to
        form the average of a bunch of postal codes! Similarly, the colors
        Red, Yellow, Green may be either nominal (if they refer
        to the colors of a sweater) or ordinal (if they are status indicators,
        in which case they obey a sort order akin to that of a traffic
        light).
Whether data is numerical or categorical, sortable or not,
        depends on its meaning. You can’t just look at a data set in isolation
        to determine its type. You need to know what the data
        means.
Data by itself does not provide information. It is only when we
        take the data together with its context that
        defines its semantics that data becomes meaningful. (This point is
        occasionally overlooked by people with an overly formalistic
        disposition.)

Types of Data Sets



Data sets can be classified by the number of variables or
        columns they contain. Depending on the type of data set, we tend to be
        interested in different questions.
Univariate
	A data set containing values only for a single variable. The
            weights of all students in a class, for example, form a univariate
            data set. For univariate data sets, we usually want to know how
            the individual points are distributed: the shape of the
            distribution, whether it is symmetric, does it have outliers, and
            so on.



Bivariate
	A data set containing two variables. For such data sets, we
            are mostly interested in determining whether there is a
            relationship between the two quantities. If we had the heights in
            addition to the weights, for instance, we would ask whether there
            is any discernible relationship between heights and weights
            (e.g., are taller students heavier?).



Multivariate
	If a data set contains more than two variables, then it is
            considered multivariate. When dealing with multivariate problems,
            we typically want to find a smaller group of variables that still
            contains most of the information about the data set.



Of course, any bivariate or multivariate data set can be
        treated as a univariate one if we consider a
        single variable at a time. Again, the nature of the data set is not
        inherent in the data but depends on how we look at it.


Further Reading



	Problem Solving: A Statistician’s
            Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC.
            1995.
This is a highly informative book about all the messy
          realities that are usually not mentioned in
          class: from botched experimental setups to effective communication
          with the public. The book is geared toward professional
          statisticians, and some of the technical discussion may be too
          advanced, but it is worthwhile for the practicality of its general
          advice nonetheless.

	Unix Power Tools. Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides.
            3rd ed., O’Reilly. 2002.
The classic book on getting stuff done with Unix.

	The Art of UNIX Programming. Eric S. Raymond. Addison-Wesley. 2003.
The Unix philosophy has been expounded many times before but
          rarely more eloquently. This is a partisan book, and one need not
          agree with every argument the author makes, but some of his
          observations on good design and desirable features in a programming
          environment are well worth contemplating.



Data Set Repositories



Although I assume that you have your own data sets that you
        would like to analyze, it’s nice to have access to a wider selection
        of data sets—for instance, when you want to try out and learn a new
        method.
Several data set repositories exist on the Web. These are the
        ones that I have found particularly helpful.
	The Data and Story Library at
              statlib. A smaller collection of data sets, together with their
              motivating “stories,” intended for courses in introductory
              statistics. (http://lib.stat.cmu.edu/DASL)

	Data Archive at the Journal of Statistics
              Education. A large collection of often uncommonly interesting data
              sets. In addition to the data sets, the site provides links to
              the full text of the articles in which these data sets were
              analyzed and discussed. (http://www.amstat.org/publications/jse—then
              select “Data Archive” in the navigation bar)

	UCI Machine Learning
              Repository. A large collection of data sets, mostly suitable for
              classification tasks. (http://archive.ics.uci.edu/ml/)

	Time Series Data Library. An extensive collection of times series data.
              Unfortunately, many of the data sets are poorly documented.
              (http://robjhyndman.com/TSDL/)

	Frequent Itemset Mining Dataset
              Repository. A specialized repository with data sets for methods to
              find frequent item sets. (http://fimi.cs.helsinki.fi/data/)

	UCINET IV Datasets. Another specialized collection: this one includes data
              sets with information about social networks. (http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm)

	A Handbook of Small Data
              Sets. David J. Hand, Fergus Daly, K. McConway, D. Lunn, and E.
              Ostrowski. Chapman & Hall/CRC. 1993.
This is a rather curious resource: a book containing over
            500 individual data sets (with descriptions) from all walks of
            life. Most of the data sets are “small,” containing from a handful
            to a few hundred points. The data sets themselves can be found all
            over the Web, but only the book gives you the descriptions as
            well.







[37] http://www.nas.nasa.gov/About/Education/Ozone/history.html.

[38] Regarding time zones, I used to be a strong proponent of
              keeping all date/time information in Coordinated Universal Time
              (UTC, “Greenwich Time”), always. However, I have since learned
              that this is not always appropriate: for some information, such
              as customer behavior, it is the local time
              that matters, not the absolute time. Nevertheless, I would
              prefer to store such information in two parts: timestamp in UTC
              and in addition, the local time zone of the
              user. (Whether we can actually determine the user’s time zone
              accurately is a different matter.)

[39] This convention is used by many data sets available from the
          UCI Machine Learning Repository.

[40] The SQuirreL project (http://squirrel-sql.sourceforge.net)
              is a good choice. Free, open source, and mature, it is also
              written in Java—which means that it can run anywhere and connect
              to any database for which JDBC drivers exist.
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