[image: Data Analysis with Open Source Tools]

[image: O'Reilly Strata Conference]

Data Analysis with Open Source Tools

Philipp K. Janert

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Furious activity is no substitute for
 understanding.
—H. H. Williams

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596802363/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Preface

THIS BOOK GREW OUT OF MY EXPERIENCE OF
 WORKING WITH DATA FOR VARIOUS COMPANIES IN THE TECH industry.
 It is a collection of those concepts and techniques that I have found to
 be the most useful, including many topics that I wish I had known
 earlier—but didn’t.
My degree is in physics, but I also worked as a software engineer
 for several years. The book reflects this dual heritage. On the one hand,
 it is written for programmers and others in the software field: I assume
 that you, like me, have the ability to write your own programs to
 manipulate data in any way you want.
On the other hand, the way I think about data has been shaped by my
 background and education. As a physicist, I am not content merely to
 describe data or to make black-box predictions: the purpose of an analysis
 is always to develop an understanding for the processes or mechanisms that
 give rise to the data that we observe.
The instrument to express such understanding is the
 model: a description of the system under study (in
 other words, not just a description of the data!), simplified as necessary
 but nevertheless capturing the relevant information. A model may be crude
 (“Assume a spherical cow ...”), but if it helps us develop better insight
 on how the system works, it is a successful model nevertheless.
 (Additional precision can often be obtained at a later time, if it is
 really necessary.)
This emphasis on models and simplified descriptions is not
 universal: other authors and practitioners will make different choices.
 But it is essential to my approach and point of view.
This is a rather personal book. Although I have tried to be
 reasonably comprehensive, I have selected the topics that I consider
 relevant and useful in practice—whether they are part of the “canon” or
 not. Also included are several topics that you won’t find in any other
 book on data analysis. Although neither new nor original, they are usually
 not used or discussed in this particular context—but I find them
 indispensable.
Throughout the book, I freely offer specific, explicit advice,
 opinions, and assessments. These remarks are reflections of my personal
 interest, experience, and understanding. I do not claim that my point of
 view is necessarily correct: evaluate what I say for yourself and feel
 free to adapt it to your needs. In my view, a specific, well-argued
 position is of greater use than a sterile laundry list of possible
 algorithms—even if you later decide to disagree with me. The value is not
 in the opinion but rather in the arguments leading up to it. If your
 arguments are better than mine, or even just more agreeable to you, then I
 will have achieved my purpose!
Data analysis, as I understand it, is not a fixed set of techniques.
 It is a way of life, and it has a name: curiosity. There is always
 something else to find out and something more to learn. This book is not
 the last word on the matter; it is merely a snapshot in time: things I
 knew about and found useful today.
“Works are of value only if they give rise to better ones.”
(Alexander von Humboldt, writing to Charles Darwin, 18 September
 1839)
Before We Begin

More data analysis efforts seem to go bad because of an excess of
 sophistication rather than a lack of it.
This may come as a surprise, but it has been my experience again
 and again. As a consultant, I am often called in when the initial
 project team has already gotten stuck. Rarely (if ever) does the problem
 turn out to be that the team did not have the required skills. On the
 contrary, I usually find that they tried to do something unnecessarily
 complicated and are now struggling with the consequences of their own
 invention!
Based on what I have seen, two particular risk areas stand
 out:
	The use of “statistical” concepts that are only partially
 understood (and given the relative obscurity of most of statistics,
 this includes virtually all statistical
 concepts)

	Complicated (and expensive) black-box solutions when a simple
 and transparent approach would have worked at least as well or
 better

I strongly recommend that you make it a habit to avoid all
 statistical language. Keep it simple and stick to what you know for
 sure. There is absolutely nothing wrong with speaking of the “range over
 which points spread,” because this phrase means exactly what it says:
 the range over which points spread, and only that! Once we start talking
 about “standard deviations,” this clarity is gone. Are we still talking
 about the observed width of the distribution? Or
 are we talking about one specific measure for this
 width? (The standard deviation is only one of several that are
 available.) Are we already making an implicit
 assumption about the nature of the distribution?
 (The standard deviation is only suitable under certain conditions, which
 are often not fulfilled in practice.) Or are we even confusing the
 predictions we could make if these assumptions were
 true with the actual data? (The moment someone talks about “95 percent
 anything” we know it’s the latter!)
I’d also like to remind you not to discard simple methods until
 they have been proven insufficient. Simple
 solutions are frequently rather effective: the marginal benefit that
 more complicated methods can deliver is often quite small (and may be in
 no reasonable relation to the increased cost). More importantly, simple
 methods have fewer opportunities to go wrong or to obscure the
 obvious.
True story: a company was tracking the occurrence of defects over
 time. Of course, the actual number of defects varied quite a bit from
 one day to the next, and they were looking for a way to obtain an
 estimate for the typical number of expected defects. The solution
 proposed by their IT department involved a compute cluster running a
 neural network! (I am not making this up.) In fact, a one-line
 calculation (involving a moving average or single exponential smoothing)
 is all that was needed.
I think the primary reason for this tendency to make data analysis
 projects more complicated than they are is
 discomfort: discomfort with an unfamiliar problem
 space and uncertainty about how to proceed. This discomfort and
 uncertainty creates a desire to bring in the “big guns”: fancy
 terminology, heavy machinery, large projects. In reality, of course, the
 opposite is true: the complexities of the “solution” overwhelm the
 original problem, and nothing gets accomplished.
Data analysis does not have to be all that hard. Although there
 are situations when elementary methods will no longer be sufficient,
 they are much less prevalent than you might expect. In the vast majority
 of cases, curiosity and a healthy dose of common sense will serve you
 well.
The attitude that I am trying to convey can be summarized in a few
 points:
	Simple is better than complex.

	Cheap is better than expensive.

	Explicit is better than opaque.

	Purpose is more important than process.

	Insight is more important than precision.

	Understanding is more important than technique.

	Think more, work less.

Although I do acknowledge that the items on the right are
 necessary at times, I will give preference to those on the left whenever
 possible.
It is in this spirit that I am offering the concepts and
 techniques that make up the rest of this book.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
Italic
	Indicates new terms, URLs, and email addresses

Constant width
	Used to refer to language and script elements

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless youre reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from OReilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your products documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Data Analysis with Open Source Tools, by Philipp
 K. Janert. Copyright 2011 Philipp K. Janert, 978-0-596-80235-6.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

[image: Safari® Books Online]
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.
With a subscription, you can read any page and watch any video
 from our library online. Read books on your cell phone and mobile
 devices. Access new titles before they are available for print, and get
 exclusive access to manuscripts in development and post feedback for the
 authors. Copy and paste code samples, organize your favorites, download
 chapters, bookmark key sections, create notes, print out pages, and
 benefit from tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from OReilly and other publishers, sign up for free at
 http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/9780596802356

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our website at:
	http://oreilly.com

Acknowledgments

It was a pleasure to work with O’Reilly on this project. In
 particular, O’Reilly has been most accommodating with regard to the
 technical challenges raised by my need to include (for an O’Reilly book)
 an uncommonly large amount of mathematical material in the
 manuscript.
Mike Loukides has accompanied this project as the editor since its
 beginning. I have enjoyed our conversations about life, the universe,
 and everything, and I appreciate his comments about the
 manuscript—either way.
I’d like to thank several of my friends for their help in bringing
 this book about:
	Elizabeth Robson, for making the connection

	Austin King, for pointing out the obvious

	Scott White, for suffering my questions gladly

	Richard Kreckel, for much-needed advice

As always, special thanks go to PAUL Schrader (Bremen).
The manuscript benefited from the feedback I received from various
 reviewers. Michael E. Driscoll, Zachary Kessin, and Austin King read all
 or parts of the manuscript and provided valuable comments.
I enjoyed personal correspondence with Joseph Adler, Joe Darcy,
 Hilary Mason, Stephen Weston, Scott White, and Brian Zimmer. All very
 generously provided expert advice on specific topics.
Particular thanks go to Richard Kreckel, who provided uncommonly
 detailed and insightful feedback on most of the manuscript.
During the preparation of this book, the excellent collection at
 the University of Washington libraries was an especially valuable
 resource to me.
Authors usually thank their spouses for their “patience and
 support” or words to that effect. Unless one has lived through the
 actual experience, one cannot fully comprehend how true this is. Over
 the last three years, Angela has endured what must have seemed like a
 nearly continuous stream of whining, frustration, and
 desperation—punctuated by occasional outbursts of exhilaration and
 grandiosity—all of which before the background of the self-centered and
 self-absorbed attitude of a typical author. Her patience and support
 were unfailing. It’s her turn now.

Chapter 1. Introduction

IMAGINE
 YOUR BOSS COMES TO YOU AND SAYS: “HERE ARE 50 GB OF LOGFILES—FIND A WAY TO
 IMPROVE OUR business!”
What would you do? Where would you start? And what would you do
 next?
It’s this kind of situation that the present book wants to help you
 with!
Data Analysis

Businesses sit on data, and every second that passes, they
 generate some more. Surely, there must be a way to
 make use of all this stuff. But how, exactly—that’s far from
 clear.
The task is difficult because it is so vague: there is no specific
 problem that needs to be solved. There is no specific question that
 needs to be answered. All you know is the overall
 purpose: improve the business. And all you have is
 “the data.” Where do you start?
You start with the only thing you have: “the data.” What is it? We
 don’t know! Although 50 GB sure sounds like a lot, we have no idea what
 it actually contains. The first thing, therefore, is to take a
 look.
And I mean this literally: the first thing to do is to
 look at the data by plotting it in different ways
 and looking at graphs. Looking at data, you will notice things—the way
 data points are distributed, or the manner in which one quantity varies
 with another, or the large number of outliers, or the total absence of
 them.... I don’t know what you will find, but there is no doubt: if you
 look at data, you will observe things!
These observations should lead to some reflection. “Ten percent of
 our customers drive ninety percent of our revenue.” “Whenever our sales
 volume doubles, the number of returns goes up by a factor of four.”
 “Every seven days we have a production run that has twice the usual
 defect rate, and it’s always on a Thursday.” How very
 interesting!
Now you’ve got something to work with: the amorphous mass of
 “data” has turned into ideas! To make these ideas concrete and suitable
 for further work, it is often useful to capture them in a mathematical
 form: a model. A model (the way I use the term) is
 a mathematical description of the system under study. A model is more
 than just a description of the data—it also incorporates your
 understanding of the process or the system that produced the data. A
 model therefore has predictive power: you can
 predict (with some certainty) that next Thursday the defect rate will be
 high again.
It’s at this point that you may want to go back and alert the boss
 of your findings: “Next Thursday, watch out for defects!”
Sometimes, you may already be finished at this point: you found
 out enough to help improve the business. At other times, however, you
 may need to work a little harder. Some data sets do not yield easily to
 visual inspection—especially if you are dealing with data sets
 consisting of many different quantities, all of which seem equally
 important. In such cases, you may need to employ more-sophisticated
 methods to develop enough intuition before being able to formulate a
 relevant model. Or you may have been able to set up a model, but it is
 too complicated to understand its implications, so that you want to
 implement the model as a computer program and simulate its results. Such
 computationally intensive methods are occasionally useful, but they
 always come later in the game. You should only move on to them after
 having tried all the simple things first. And you will need the insights
 gained from those earlier investigations as input to the more elaborate
 approaches.
And finally, we need to come back to the initial agenda. To
 “improve the business” it is necessary to feed our understanding back
 into the organization—for instance, in the form of a business plan, or
 through a “metrics dashboard” or similar program.

What’s in This Book

The program just described reflects the outline of this
 book.
We begin in Part I with
 a series of chapters on graphical techniques, starting in Chapter 2 with simple data
 sets consisting of only a single variable (or considering only a single
 variable at a time), then moving on in Chapter 3 to data sets of
 two variables. In Chapter 4 we treat the
 particularly important special case of a quantity changing over time, a
 so-called time series. Finally, in Chapter 5, we discuss data
 sets comprising more than two variables and some special techniques
 suitable for such data sets.
In Part II, we discuss
 models as a way to not only describe data but also to capture the
 understanding that we gained from graphical explorations. We begin in
 Chapter 7 with a
 discussion of order-of-magnitude estimation and uncertainty
 considerations. This may seem odd but is, in fact, crucial: all models
 are approximate, so we need to develop a sense for the accuracy of the
 approximations that we use. In Chapter 8 and Chapter 9 we introduce basic
 building blocks that are useful when developing models.
Chapter 10 is a
 detour. For too many people, “data analysis” is synonymous with
 “statistics,” and “statistics” is usually equated with a class in
 college that made no sense at all. In this chapter,
 I want to explain what statistics really is, what all the mysterious
 concepts mean and how they hang together, and what statistics can (and
 cannot) do for us. It is intended as a travel guide should you ever want
 to read a statistics book in the future.
Part III discusses several
 computationally intensive methods, such as simulation and clustering in
 Chapter 12 and Chapter 13.
 Chapter 14 is,
 mathematically, the most challenging chapter in the book: it deals with
 methods that can help select the most relevant variables from a
 multivariate data set.
In Part IV we consider
 some ways that data may be used in a business environment. In Chapter 16 we talk about
 metrics, reporting, and dashboards—what is sometimes referred to as
 “business intelligence.” In Chapter 17 we introduce some of
 the concepts required to make financial calculations and to prepare
 business plans. Finally, in Chapter 18, we
 conclude with a survey of some methods from classification and
 predictive analytics.
At the end of each part of the book you will find an “Intermezzo.”
 These intermezzos are not really part of the course; I use them to go
 off on some tangents, or to explain topics that often remain a bit hazy.
 You should see them as an opportunity to relax!
The appendices contain some helpful material that you may want to
 consult at various times as you go through the text. Appendix A surveys some of the
 available tools and programming environments for data manipulation and
 analysis. In Appendix B I have collected
 some basic mathematical results that I expect you to have at least
 passing familiarity with. I assume that you have seen this material at
 least once before, but in this appendix, I put it together in an
 application-oriented context, which is more suitable for our present
 purposes. Appendix C discusses some of the
 mundane tasks that—like it or not—make up a large part of actual data
 analysis and also introduces some data-related terminology.

What’s with the Workshops?

Every full chapter (after this one) includes a section titled
 “Workshop” that contains some programming examples related to the
 chapter’s material. I use these Workshops for two purposes. On the one
 hand, I’d like to introduce a number of open source tools and libraries
 that may be useful for the kind of work discussed in this book. On the
 other hand, some concepts (such as computational complexity and
 power-law distributions) must be seen to be believed: the Workshops are
 a way to demonstrate these issues and allow you to experiment with them
 yourself.
Among the tools and libraries is quite a bit of Python and
 R. Python has become somewhat the scripting language of choice for
 scientific applications, and R is the most popular open source package
 for statistical applications. This choice is neither an
 endorsement nor a recommendation but primarily a reflection
 of the current state of available software. (See Appendix A for a more detailed
 discussion of software for data analysis and related purposes.)
My goal with the tool-oriented Workshops is rather specific: I
 want to enable you to decide whether a given tool or library is worth
 spending time on. (I have found that evaluating open source offerings is
 a necessary but time-consuming task.) I try to demonstrate clearly what
 purpose each particular tool serves. Toward this end, I usually give one
 or two short, but not entirely trivial, examples and try to outline
 enough of the architecture of the tool or library to allow you to take
 it from there. (The documentation for many open source projects has a
 hard time making the bridge from the trivial, cut-and-paste “Hello,
 World” example to the reference documentation.)

What’s with the Math?

This book contains a certain amount of mathematics. Depending on
 your personal predilection you may find this trivial, intimidating, or
 exciting.
The reality is that if you want to work
 analytically, you will need to develop some
 familiarity with a few mathematical concepts. There is simply no way
 around it. (You can work with data without any math
 skills—look at what any data modeler or database administrator does. But
 if you want to do any sort of analysis, then a
 little math becomes a necessity.)
I have tried to make the text accessible to readers with a minimum
 of previous knowledge. Some college math classes on calculus and similar
 topics are helpful, of course, but are by no means required. Some
 sections of the book treat material that is either more abstract or will
 likely be unreasonably hard to understand without some previous
 exposure. These sections are optional (they are not needed in the
 sequel) and are clearly marked as such.
A somewhat different issue concerns the notation. I use
 mathematical notation wherever it is appropriate and it helps the
 presentation. I have made sure to use only a very small set of symbols;
 check Appendix B if something looks
 unfamiliar.
Couldn’t I have written all the mathematical expressions as
 computer code, using Python or some sort of pseudo-code? The answer is
 no, because quite a few essential mathematical
 concepts cannot be expressed in a finite, floating-point oriented
 machine (anything having to do with a limit process—or real numbers, in
 fact). But even if I could write all math as code, I don’t think I
 should. Although I wholeheartedly agree that mathematical notation can
 get out of hand, simple formulas actually provide the easiest, most
 succinct way to express mathematical concepts.
Just compare. I’d argue that:
[image: What’s with the Math?]
is clearer and easier to read than:
s = 0
for k in range(len(c)):
 s += c[k]/(1+p)**k
and certainly easier than:
s = (c/ (1+p)**numpy.arange(1, len(c)+1)).sum(axis=0)
But that’s only part of the story. More importantly, the first
 version expresses a concept, whereas the second and
 third are merely specific prescriptions for how to perform a certain
 calculation. They are recipes, not ideas.
Consider this: the formula in the first line is a description of a
 sum—not a specific sum, but any sum of this form: it’s the
 idea of this kind of sum. We can now ask how this
 abstract sum will behave under certain conditions—for instance, if we
 let the upper limit n go to infinity. What value
 does the sum have in this case? Is it finite? Can we determine it? You
 would not even be able to ask this question given
 the code versions. (Remember that I am not talking about an
 approximation, such as letting n get “very large.”
 I really do mean: what happens if n goes all the
 way to infinity? What can we say about the sum?)
Some programming environments (like Haskell, for instance) are
 more at ease dealing with infinite data structures—but if you look
 closely, you will find that they do so by being (coarse) approximations
 to mathematical concepts and notations. And, of course, they still won’t
 be able to evaluate such expressions! (All evaluations will only involve
 a finite number of steps.) But once you train your mind to think in
 those terms, you can evaluate them in your mind at
 will.
It may come as a surprise, but mathematics is
 not a method for calculating things. Mathematics is
 a theory of ideas, and ideas—not calculational
 prescriptions—are what I would like to convey in this text. (See the
 discussion at the end of Appendix B for
 more on this topic and for some suggested reading.)
If you feel uncomfortable or even repelled by the math in this
 book, I’d like to ask for just one thing: try! Give it a shot. Don’t
 immediately give up. Any frustration you may experience at first is more
 likely due to lack of familiarity rather than to the difficulty of the
 material. I promise that none of the content is out of your
 reach.
But you have to let go of the conditioned knee-jerk reflex that
 “math is, like, yuck!”

What You’ll Need

This book is written with programmers in mind. Although previous
 programming experience is by no means required, I assume that you are
 able to take an idea and implement it in the programming language of
 your choice—in fact, I assume that this is your prime motivation for
 reading this book.
I don’t expect you to have any particular mathematical background,
 although some previous familiarity with calculus is certainly helpful.
 You will need to be able to count, though!
But the most important prerequisite is not programming experience,
 not math skills, and certainly not knowledge of anything having to do
 with “statistics.” The most important prerequisite is
 curiosity. If you aren’t curious, then this book is
 not for you. If you get a new data set and you are not
 itching to see what’s in it, I won’t be able to
 help you.

What’s Missing

This is a book about data analysis and modeling with an emphasis
 on applications in a business settings. It was written at a
 beginning-to-intermediate level and for a general technical
 audience.
Although I have tried to be reasonably comprehensive, I had to
 choose which subjects to include and which to leave out. I have tried to
 select topics that are useful and relevant in practice and that can
 safely be applied by a nonspecialist. A few topics were omitted because
 they did not fit within the book’s overall structure, or because I did
 not feel sufficiently competent to present them.
Scientific data. This is not a book about
 scientific data analysis. When you are doing scientific research
 (however you wish to define “scientific”), you really need to have a
 solid background (and that probably means formal training) in the field
 that you are working in. A book such as this one on general data
 analysis cannot replace this.
Formal statistical analysis. A different form
 of data analysis exists in some particularly well-established fields. In
 these situations, the environment from which the data arises is fully
 understood (or at least believed to be understood), and the methods and
 models to be used are likewise accepted and well known. Typical examples
 include clinical trials as well as credit scoring. The purpose of an
 “analysis” in these cases is not to find out anything new, but rather to
 determine the model parameters with the highest degree of accuracy and
 precision for each newly generated set of data points. Since this is the
 kind of work where details matter, it should be left to
 specialists.
Network analysis. This is a topic of current
 interest about which I know nothing. (Sorry!) However, it does seem to
 me that its nature is quite different from most problems that are
 usually considered “data analysis”: less statistical, more algorithmic
 in nature. But I don’t know for sure.
Natural language processing and text mining.
 Natural language processing is a big topic all by itself, which has
 little overlap (neither in terms of techniques nor applications) with
 the rest of the material presented here. It deserves its
 own treatment—and several books on this subject are available.
Big data. Arguably the most painful omission
 concerns everything having to do with Big Data. Big
 Data is a pretty new concept—I tend to think of it as relating to data
 sets that not merely don’t fit into main memory, but that no longer fit
 comfortably on a single disk, requiring compute
 clusters and the respective software and algorithms (in practice,
 map/reduce running on Hadoop).
The rise of Big Data is a remarkable phenomenon. When this book
 was conceived (early 2009), Big Data was certainly on the horizon but
 was not necessarily considered mainstream yet. As this book goes to
 print (late 2010), it seems that for many people in the tech field,
 “data” has become nearly synonymous with “Big Data.” That kind of
 development usually indicates a fad. The reality is that, in practice,
 many data sets are “small,” and in particular many
 relevant data sets are small. (Some of the most
 important data sets in a commercial setting are those maintained by the
 finance department—and since they are kept in Excel, they
 must be small.)
Big Data is not necessarily “better.” Applied carelessly, it can
 be a huge step backward. The amazing insight of classical statistics is
 that you don’t need to examine every single member of a population to
 make a definitive statement about the whole: instead you can sample! It
 is also true that a carefully selected sample may lead to better results
 than a large, messy data set. Big Data makes it easy to forget the
 basics.
It is a little early to say anything definitive about Big Data,
 but the current trend strikes me as being something quite
 different: it is not just classical data analysis
 on a larger scale. The approach of classical data analysis and
 statistics is inductive. Given a part, make
 statements about the whole: from a sample, estimate parameters of the
 population; given an observation, develop a theory for the underlying
 system. In contrast, Big Data (at least as it is currently being used)
 seems primarily concerned with individual data points. Given that
 this specific user liked this
 specific movie, what other specific
 movie might he like? This is a very different question than asking which
 movies are most liked by what people in general!
Big Data will not replace general, inductive data analysis. It is
 not yet clear just where Big Data will deliver the greatest bang for the
 buck—but once the dust settles, somebody should definitely write a book
 about it!

Part I. Graphics: Looking at Data

Chapter 2. A Single Variable: Shape and Distribution

WHEN
 DEALING WITH UNIVARIATE DATA, WE ARE USUALLY MOSTLY CONCERNED WITH THE
 OVERALL SHAPE OF the
 distribution. Some of the initial questions we may ask include:
	Where are the data points located, and how far do they spread?
 What are typical, as well as minimal and maximal, values?

	How are the points distributed? Are they spread out evenly or
 do they cluster in certain areas?

	How many points are there? Is this a large data set or a
 relatively small one?

	Is the distribution symmetric or asymmetric? In other words,
 is the tail of the distribution much larger on one side than on the
 other?

	Are the tails of the distribution relatively heavy
 (i.e., do many data points lie far away from
 the central group of points), or are most of the points—with the
 possible exception of individual outliers—confined to a restricted
 region?

	If there are clusters, how many are there? Is there only one,
 or are there several? Approximately where are the clusters located,
 and how large are they—both in terms of spread and in terms of the
 number of data points belonging to each cluster?

	Are the clusters possibly superimposed on some form of
 unstructured background, or does the entire data set consist only of
 the clustered data points?

	Does the data set contain any significant outliers—that is,
 data points that seem to be different from all the others?

	And lastly, are there any other unusual or significant
 features in the data set—gaps, sharp cutoffs, unusual values,
 anything at all that we can observe?

As you can see, even a simple, single-column data set can
 contain a lot of different features!
To make this concrete, let’s look at two examples. The first
 concerns a relatively small data set: the number of months that the
 various American presidents have spent in office. The second data set is
 much larger and stems from an application domain that may be more
 familiar; we will be looking at the response times from a web
 server.
Dot and Jitter Plots

Suppose you are given the following data set, which shows all
 past American presidents and the number of months each spent in
 office.[1] Although this data set has three columns, we can treat
 it as univariate because we are interested only in the times spent in
 office—the names don’t matter to us (at this point). What can we say
 about the typical tenure?
 1 Washington 94
 2 Adams 48
 3 Jefferson 96
 4 Madison 96
 5 Monroe 96
 6 Adams 48
 7 Jackson 96
 8 Van Buren 48
 9 Harrison 1
10 Tyler 47
11 Polk 48
12 Taylor 16
13 Filmore 32
14 Pierce 48
15 Buchanan 48
16 Lincoln 49
17 Johnson 47
18 Grant 96
19 Hayes 48
20 Garfield 7
21 Arthur 41
22 Cleveland 48
23 Harrison 48
24 Cleveland 48
25 McKinley 54
26 Roosevelt 90
27 Taft 48
28 Wilson 96
29 Harding 29
30 Coolidge 67
31 Hoover 48
32 Roosevelt 146
33 Truman 92
34 Eisenhower 96
35 Kennedy 34
36 Johnson 62
37 Nixon 67
38 Ford 29
39 Carter 48
40 Reagan 96
41 Bush 48
42 Clinton 96
43 Bush 96
This is not a large data set (just over 40 records), but it is a
 little too big to take in as a whole. A very simple way to gain an
 initial sense of the data set is to create a dot
 plot. In a dot plot, we plot all points on a single
 (typically horizontal) line, letting the value of each data point
 determine the position along the horizontal axis. (See the top part of
 Figure 2-1.)
A dot plot can be perfectly sufficient for a small data set such
 as this one. However, in our case it is slightly misleading because,
 whenever a certain tenure occurs more than once in the data set, the
 corresponding data points fall right on top of each other, which makes
 it impossible to distinguish them. This is a frequent problem,
 especially if the data assumes only integer values or is otherwise
 “coarse-grained.” A common remedy is to shift each point by a small
 random amount from its original position; this technique is called
 jittering and the resulting plot is a
 jitter plot. A jitter plot of this data set is
 shown in the bottom part of Figure 2-1.
What does the jitter plot tell us about the data set? We see two
 values where data points seem to cluster, indicating that these values
 occur more frequently than others. Not surprisingly, they are located
 at 48 and 96 months, which correspond to one and two full four-year
 terms in office. What may be a little surprising, however, is the
 relatively large number of points that occur
 outside these clusters. Apparently, quite a few
 presidents left office at irregular intervals! Even in this simple
 example, a plot reveals both something expected (the clusters at 48
 and 96 months) and the unexpected (the larger number of points outside
 those clusters).
Before moving on to our second example, let me point out a few
 additional technical details regarding jitter plots.
	It is important that the amount of “jitter” be small
 compared to the distance between points. The only purpose of the
 random displacements is to ensure that no two points fall exactly
 on top of one another. We must make sure that points are not
 shifted significantly from their true location.
[image: Dot and jitter plots showing the number of months U.S. presidents spent in office.]

Figure 2-1. Dot and jitter plots showing the number of months U.S.
 presidents spent in office.

	We can jitter points in either the horizontal or the
 vertical direction (or both), depending on the data set and the
 purpose of the graph. In Figure 2-1, points were
 jittered only in the vertical direction, so that their horizontal
 position (which in this case corresponds to the actual
 data—namely, the number of months in office) is not altered and
 therefore remains exact.

	I used open, transparent rings as symbols for the data
 points. This is no accident: among different symbols of equal
 size, open rings are most easily recognized as separate even when
 partially occluded by each other. In contrast, filled symbols tend
 to hide any substructure when they overlap, and symbols made from
 straight lines (e.g., boxes and crosses) can
 be confusing because of the large number of parallel lines; see
 the top part of Figure 2-1.

Jittering is a good trick that can be used in many different
 contexts. We will see further examples later in the book.

Histograms and Kernel Density Estimates

Dot and jitter plots are nice because they are so simple.
 However, they are neither pretty nor very intuitive, and most
 importantly, they make it hard to read off
 quantitative information from the graph. In
 particular, if we are dealing with larger data sets, then we need a
 better type of graph, such as a histogram.
[image: A histogram of a server’s response times.]

Figure 2-2. A histogram of a server’s response times.

Histograms

To form a histogram, we divide
 the range of values into a set of “bins” and then count the number
 of points (sometimes called “events”) that fall into each bin. We
 then plot the count of events for each bin as a function of the
 position of the bin.
Once again, let’s look at an example. Here is the beginning of
 a file containing response times (in milliseconds) for queries
 against a web server or database. In contrast to the previous
 example, this data set is fairly large, containing 1,000 data
 points.
 452.42
 318.58
 144.82
 129.13
1216.45
 991.56
1476.69
 662.73
1302.85
1278.55
 627.65
1030.78
 215.23
 44.50
...
Figure 2-2
 shows a histogram of this data set. I divided the horizontal axis
 into 60 bins of 50 milliseconds width and then counted the number of
 events in each bin.
What does the histogram tell us? We observe a rather
 sharp cutoff at a nonzero value on the left, which means that there
 is a minimum completion time below which no request can be
 completed. Then there is a sharp rise to a maximum at the “typical”
 response time, and finally there is a relatively large tail on the
 right, corresponding to the smaller number of requests that take a
 long time to process. This kind of shape is rather typical for a
 histogram of task completion times. If the data set had contained
 completion times for students to finish their homework or for
 manufacturing workers to finish a work product, then it would look
 qualitatively similar except, of course, that the time scale would
 be different. Basically, there is some minimum time that nobody can
 beat, a small group of very fast champions, a large majority, and
 finally a longer or shorter tail of “stragglers.”
It is important to realize that a data set does not determine
 a histogram uniquely. Instead, we have to fix
 two parameters to form a histogram: the bin
 width and the alignment of the bins.
The quality of any histogram hinges on the proper choice of
 bin width. If you make the width too large, then you lose too much
 detailed information about the data set. Make it too small and you
 will have few or no events in most of the bins, and the shape of the
 distribution does not become apparent. Unfortunately, there is no
 simple rule of thumb that can predict a good bin width for a given
 data set; typically you have to try out several different values for
 the bin width until you obtain a satisfactory result. (As a first
 guess, you can start with Scott’s rule for the
 bin width [image:], where σ is the standard deviation for the
 entire data set and n is the number of points.
 This rule assumes that the data follows a Gaussian distribution;
 otherwise, it is likely to give a bin width that is too wide. See
 the end of this chapter for more information on the standard
 deviation.)
The other parameter that we need to fix (whether we realize it
 or not) is the alignment of the bins on the x
 axis. Let’s say we fixed the width of the bins at 1. Where do we now
 place the first bin? We could put it flush left, so that its left
 edge is at 0, or we could center it at 0. In fact, we can move all
 bins by half a bin width in either direction.
Unfortunately, this seemingly insignificant (and often
 overlooked) parameter can have a large influence on the appearance
 of the histogram. Consider this small data set:
1.4
1.7
1.8
1.9
2.1
2.2
2.3
2.6
Figure 2-3
 shows two histograms of this data set. Both use the same bin width
 (namely, 1) but have different alignment of the bins. In the top
 panel, where the bin edges have been aligned to
 coincide with the whole numbers (1, 2, 3,...), the data set appears
 to be flat. Yet in the bottom panel, where the bins have been
 centered on the whole numbers, the data set appears to have a rather strong central peak
 and symmetric wings on both sides. It should be clear that we can
 construct even more pathological examples than this. In the next
 section we shall introduce an alternative to histograms that avoids
 this particular problem.
[image: Histograms can look quite different, depending on the choice of anchoring point for the first bin. The figure shows two histograms of the same data set, using the same bin width. In the top panel, the bin edges are aligned on whole numbers; in the bottom panel, bins are centered on whole numbers.]

Figure 2-3. Histograms can look quite different, depending on the
 choice of anchoring point for the first bin. The figure shows two
 histograms of the same data set, using the same bin width. In the
 top panel, the bin edges are aligned on whole numbers; in the
 bottom panel, bins are centered on whole numbers.

Before moving on, I’d like to point out some additional
 technical details and variants of histograms.
	Histograms can be either normalized or unnormalized. In an
 unnormalized histogram, the value plotted
 for each bin is the absolute count of events in that bin. In a
 normalized histogram, we divide each count
 by the total number of points in the data set, so that the value
 for each bin becomes the fraction of points in that bin. If we
 want the percentage of points per bin instead, we simply
 multiply the fraction by 100.

	So far I have assumed that all bins have the same width.
 We can relax this constraint and allow bins of differing
 widths—narrower where points are tightly clustered but wider in
 areas where there are only few points. This method can seem very
 appealing when the data set has outliers or areas with widely
 differing point density. Be warned, though, that now there is an
 additional source of ambiguity for your histogram: should you
 display the absolute number of points per bin regardless of the
 width of each bin; or should you display the density of points
 per bin by normalizing the point count per bin by the bin width?
 Either method is valid, and you cannot assume that your audience
 will know which convention you are following.

	It is customary to show histograms with rectangular boxes
 that extend from the horizontal axis, the way I have drawn Figure 2-2 and Figure 2-3. That is
 perfectly all right and has the advantage of explicitly
 displaying the bin width as well. (Of course, the boxes should
 be drawn in such a way that they align in the same way that the
 actual bins align; see Figure 2-3.) This
 works well if you are only displaying a histogram for a single
 data set. But if you want to compare two or more data sets, then
 the boxes start to get in the way, and you are better off
 drawing “frequency polygons”: eliminate the boxes, and instead
 draw a symbol where the top of the box would have been. (The
 horizontal position of the symbol should be at the center of the
 bin.) Then connect consecutive symbols with straight lines. Now
 you can draw multiple data sets in the same plot without
 cluttering the graph or unnecessarily occluding points.

	Don’t assume that the defaults of your graphics program
 will generate the best representation of a histogram! I have
 already discussed why I consider frequency polygons to be almost
 always a better choice than to construct a histogram from boxes.
 If you nevertheless choose to use boxes, it is best to avoid
 filling them (with a color or hatch pattern)—your histogram will
 probably look cleaner and be easier to read if you stick with
 just the box outlines. Finally, if you want to compare several
 data sets in the same graph, always use a frequency polygon, and
 stay away from stacked or clustered bar graphs, since these are
 particularly hard to read. (We will return to the problem of
 displaying composition problems in Chapter 5.)

Histograms are very common and have a nice, intuitive
 interpretation. They are also easy to generate: for a moderately
 sized data set, it can even be done by hand, if necessary. That
 being said, histograms have some serious problems. The most
 important ones are as follows.
	The binning process required by all histograms loses
 information (by replacing the location of individual data points
 with a bin of finite width). If we only have a few data points,
 we can ill afford to lose any information.

	Histograms are not unique. As we saw in Figure 2-3, the
 appearance of a histogram can be quite different. (This
 nonuniqueness is a direct consequence of the information loss
 described in the previous item.)

	On a more superficial level, histograms are ragged and not
 smooth. This matters little if we just want to draw a picture of
 them, but if we want to feed them back into a computer as input
 for further calculations, then a smooth curve would be easier to
 handle.

	Histograms do not handle outliers gracefully. A single
 outlier, far removed from the majority of the points, requires
 many empty cells in between or forces us to use bins that are
 too wide for the majority of points. It is the possibility of
 outliers that makes it difficult to find an acceptable bin width
 in an automated fashion.

[image: Histogram and kernel density estimate of the distribution of the time U.S. presidents have spent in office.]

Figure 2-4. Histogram and kernel density estimate of the distribution
 of the time U.S. presidents have spent in office.

Fortunately, there is an alternative to classical
 histograms that has none of these problems. It is called a
 kernel density estimate.

Kernel Density Estimates

Kernel density estimates (KDEs) are a relatively new
 technique. In contrast to histograms, and to many other classical
 methods of data analysis, they pretty much
 require the calculational power of a reasonably
 modern computer to be effective. They cannot be done “by hand” with
 paper and pencil, even for rather moderately sized data sets. (It is
 interesting to see how the accessibility of computational and
 graphing power enables new ways to think about data!)
To form a KDE, we place a kernel—that is,
 a smooth, strongly peaked function—at the position of each data
 point. We then add up the contributions from all kernels to obtain a
 smooth curve, which we can evaluate at any point along the
 x axis.
Figure 2-4
 shows an example. This is yet another representation of the data set
 we have seen before in Figure 2-1. The dotted
 boxes are a histogram of the data set (with bin width equal to 1),
 and the solid curves are two KDEs of the same data set with
 different bandwidths (I’ll explain this concept in a moment). The
 shape of the individual kernel functions can be seen clearly—for
 example, by considering the three data points below 20. You can also
 see how the final curve is composed out of the individual kernels,
 in particular when you look at the points between 30 and 40.
[image: Graphs of some frequently used kernel functions.]

Figure 2-5. Graphs of some frequently used kernel functions.

We can use any smooth, strongly peaked function as a
 kernel provided that it integrates to 1; in other words, the area
 under the curve formed by a single kernel must be 1. (This is
 necessary to make sure that the resulting KDE is properly
 normalized.) Some examples of frequently used kernel functions
 include (see Figure 2-5):
[image: Graphs of some frequently used kernel functions.]
The box kernel and the Epanechnikov kernel are zero outside a
 finite range, whereas the Gaussian kernel is nonzero everywhere but
 negligibly small outside a limited domain. It turns out that the
 curve resulting from the KDE does not depend strongly on the
 particular choice of kernel function, so we are free to use the
 kernel that is most convenient. Because it is so easy to work with,
 the Gaussian kernel is the most widely used. (See Appendix B for more information on the
 Gaussian function.)
Constructing a KDE requires two things: first, we must move
 the kernel to the position of each point by shifting it
 appropriately. For example, the function
 K(x -
 xi)
 will have its peak at
 xi,
 not at 0. Second, we have to choose the kernel
 bandwidth, which controls the spread of the
 kernel function. To make sure that the area under the curve stays
 the same as we shrink the width, we have to make the curve higher
 (and lower if we increase the width). The final expression for the
 shifted, rescaled kernel function of bandwidth
 h is:
[image: Graphs of some frequently used kernel functions.]
[image: The Gaussian kernel for three different bandwidths. The height of the kernel increases as the width decreases, so the total area under the curve remains constant.]

Figure 2-6. The Gaussian kernel for three different bandwidths. The
 height of the kernel increases as the width decreases, so the
 total area under the curve remains constant.

This function has a peak at
 xi,
 its width is approximately h, and its height is
 such that the area under the curve is still 1. Figure 2-6 shows some
 examples, using the Gaussian kernel. Keep in mind that the area
 under all three curves is the same.
Using this expression, we can now write down a formula for the
 KDE with bandwidth h for any data set
 {x1,
 x2,...,
 xn}.
 This formula can be evaluated for any point x
 along the x axis:
[image: The Gaussian kernel for three different bandwidths. The height of the kernel increases as the width decreases, so the total area under the curve remains constant.]
All of this is straightforward and easy to implement in any
 computer language. Be aware that for large data sets (those with
 many thousands of points), the required number of kernel evaluations
 can lead to performance issues, especially if the function
 D(x) needs to be evaluated
 for many different positions (i.e., many
 different values of x). If this becomes a
 problem for you, you may want to choose a simpler kernel function or
 not evaluate a kernel if the distance x –
 xi
 is significantly greater than the bandwidth h.
 [2]
Now we can explain the wide gray line in Figure 2-4: it is a KDE
 with a larger bandwidth. Using such a large bandwidth makes it
 impossible to resolve the individual data points, but it does
 highlight entire periods of greater or smaller
 frequency. Which choice of bandwidth is right for you depends on
 your purpose.
A KDE constructed as just described is similar to a classical
 histogram, but it avoids two of the aforementioned problems. Given
 data set and bandwidth, a KDE is unique; a KDE is also smooth,
 provided we have chosen a smooth kernel function, such as the
 Gaussian.

Optional: Optimal Bandwidth Selection

We still have to fix the bandwidth. This is a different
 kind of problem than the other two: it’s not
 just a technical problem, which could be resolved through a better
 method; instead, it’s a fundamental problem that relates to the data
 set itself. If the data follows a smooth distribution, then a wider
 bandwidth is appropriate, but if the data follows a very wiggly
 distribution, then we need a smaller bandwidth to retain all
 relevant detail. In other words, the optimal bandwidth is a property
 of the data set and tells us something about the nature of the
 data.
So how do we choose an optimal value for the bandwidth?
 Intuitively, the problem is clear: we want the bandwidth to be
 narrow enough to retain all relevant detail but wide enough so that
 the resulting curve is not too “wiggly.” This is a problem that
 arises in every approximation problem: balancing the faithfulness of
 representation against the simplicity of behavior. Statisticians
 speak of the “bias–variance trade-off.”
To make matters concrete, we have to define a specific
 expression for the error of our approximation, one that takes into
 account both bias and variance. We can then choose a value for the
 bandwidth that minimizes this error. For KDEs, the generally
 accepted measure is the “expected mean-square error” between the
 approximation and the true density. The problem is that we don’t
 know the true density function that we are trying to approximate, so
 it seems impossible to calculate (and minimize) the error in this
 way. But clever methods have been developed to make progress. These
 methods fall broadly into two categories. First, we could try to
 find explicit expressions for both bias and variance. Balancing them
 leads to an equation that has to be solved numerically or—if we make
 additional assumptions (e.g., that the
 distribution is Gaussian)—can even yield explicit expressions
 similar to Scott’s rule (introduced earlier when talking about
 histograms). Alternatively, we could realize that the KDE is an
 approximation for the probability density from which the original
 set of points was chosen. We can therefore choose points from this
 approximation (i.e., from the probability
 density represented by the KDE) and see how well they replicate the
 KDE that we started with. Now we change the bandwidth until we find
 that value for which the KDE is best replicated: the result is the
 estimate of the “true” bandwidth of the data. (This latter method is
 known as cross-validation.)
Although not particularly hard, the details of both methods
 would lead us too far afield, and so I will skip them here. If you
 are interested, you will have no problem picking up the details from one of the references at the end of
 this chapter. Keep in mind, however, that these methods find the
 optimal bandwidth with respect to the mean-square
 error, which tends to overemphasize bias over variance
 and therefore these methods lead to rather narrow bandwidths and
 KDEs that appear too wiggly. If you are using KDEs to generate
 graphs for the purpose of obtaining intuitive visualizations of
 point distributions, then you might be better off with a bit of
 manual trial and error combined with visual inspection. In the end,
 there is no “right” answer, only the most suitable one for a given
 purpose. Also, the most suitable to develop intuitive understanding
 might not be the one that minimizes a particular mathematical
 quantity.

The Cumulative Distribution Function

The main advantage of histograms and kernel density estimates is
 that they have an immediate intuitive appeal: they tell us how
 probable it is to find a data point with a certain value. For example,
 from Figure 2-2 it is
 immediately clear that values around 250 milliseconds are very likely
 to occur, whereas values greater than 2,000 milliseconds are quite
 rare.
But how rare, exactly? That is a question that is much harder to
 answer by looking at the histogram in Figure 2-2. Besides wanting
 to know how much weight is in the tail, we might also be interested to
 know what fraction of requests completes in the typical band between
 150 and 350 milliseconds. It’s certainly the majority of events, but
 if we want to know exactly how many, then we need to sum up the
 contributions from all bins in that region.
The cumulative distribution function (CDF)
 does just that. The CDF at point x tells us what
 fraction of events has occurred “to the left” of
 x. In other words, the CDF is the fraction of all
 points
 xi
 with
 xi ≤
 x.
Figure 2-7
 shows the same data set that we have already encountered in Figure 2-2, but here the
 data is represented by a KDE (with bandwidth h =
 30) instead of a histogram. In addition, the figure also includes the
 corresponding CDF. (Both KDE and CDF are normalized to 1.)
We can read off several interesting observations directly from
 the plot of the CDF. For instance, we can see that at
 t = 1,500 (which certainly puts us into the tail
 of the distribution) the CDF is still smaller than 0.85; this means
 that fully 15 percent of all requests take longer than 1,500
 milliseconds. In contrast, less than a third of all requests are
 completed in the “typical” range of 150–500 milliseconds. (How do we
 know this? The CDF for t = 150 is about 0.05 and
 is close to 0.40 for t = 500. In other words,
 about 40 percent of all requests are completed in less than 500
 milliseconds; of these, 5 percent are completed in less than 150
 milliseconds. Hence about 35 percent of all requests have response
 times of between 150 and 500 milliseconds.)
[image: Kernel density estimate and cumulative distribution function of the server response times shown in .]

Figure 2-7. Kernel density estimate and cumulative distribution function
 of the server response times shown in Figure 2-2.

It is worth pausing to contemplate these findings, because they
 demonstrate how misleading a histogram (or KDE) can be despite (or
 because of) their intuitive appeal! Judging from the histogram or KDE
 alone, it seems quite reasonable to assume that “most” of the events
 occur within the major peak near t = 300 and that
 the tail for t > 1,500 contributes relatively
 little. Yet the CDF tells us clearly that this is not so. (The problem
 is that the eye is much better at judging distances than areas, and we
 are therefore misled by the large values of the histogram near its
 peak and fail to see that nevertheless the area beneath the peak is
 not that large compared to the total area under the curve.)
CDFs are probably the least well-known and most underappreciated
 tool in basic graphical analysis. They have less immediate intuitive
 appeal than histograms or KDEs, but they allow us to make the kind of
 quantitative statement that is very often required but is difficult
 (if not impossible) to obtain from a histogram.
Cumulative distribution functions have a number of important
 properties that follow directly from how they are calculated.
	Because the value of the CDF at position
 x is the fraction of points to the left of
 x, a CDF is always monotonically increasing
 with x.

	CDFs are less wiggly than a histogram (or KDE) but contain
 the same information in a representation that is inherently less
 noisy.

	Because CDFs do not involve any binning, they do not lose
 information and are therefore a more faithful representation of
 the data than a histogram.

	All CDFs approach 0 as x goes
 to negative infinity. CDFs are usually normalized so that they
 approach 1 (or 100 percent) as x goes to
 positive infinity.

	A CDF is unique for a given data set.

If you are mathematically inclined, you have probably already
 realized that the CDF is (an approximation to) the antiderivative of
 the histogram and that the histogram is the derivative of the
 CDF:
[image: Kernel density estimate and cumulative distribution function of the server response times shown in .]
Cumulative distribution functions have several uses. First, and
 most importantly, they enable us to answer questions such as those
 posed earlier in this section: what fraction of points falls between
 any two values? The answer can simply be read off from the graph.
 Second, CDFs also help us understand how imbalanced a distribution
 is—in other words, what fraction of the overall weight is carried by
 the tails.
Cumulative distribution functions also prove useful when we want
 to compare two distributions. It is notoriously difficult to compare
 two bell-shaped curves in a histogram against each other. Comparing
 the corresponding CDFs is usually much more conclusive.
One last remark, before leaving this section: in the literature,
 you may find the term quantile plot. A quantile
 plot is just the plot of a CDF in which the x and
 y axes have been switched. Figure 2-8 shows an example
 using once again the server response time data set. Plotted this way,
 we can easily answer questions such as, “What response time
 corresponds to the 10th percentile of response times?” But the
 information contained in this graph is of course exactly the same as
 in a graph of the CDF.
Optional: Comparing Distributions with Probability Plots and
 QQ Plots

Occasionally you might want to confirm that a given set of
 points is distributed according to some specific, known
 distribution. For example, you have a data set and would like to
 determine whether it can be described well by a Gaussian (or some
 other) distribution.
You could compare a histogram or KDE of the data set directly
 against the theoretical density function, but it is notoriously
 difficult to compare distributions that way—especially out in the
 tails. A better idea would be to compare the cumulative distribution
 functions, which are easier to handle because they are less wiggly
 and are always monotonically increasing. But this is still not easy.
 Also keep in mind that most probability distributions depend on
 location and scale parameters (such as mean and variance), which you
 would have to estimate before being able to
 make a meaningful comparison. Isn’t there a way to compare a set of
 points directly against a theoretical distribution and, in the
 process, read off the estimates for all the parameters
 required?
[image: Quantile plot of the server data. A quantile plot is a graph of the CDF with the x and y axes interchanged. Compare to .]

Figure 2-8. Quantile plot of the server data. A quantile plot is a
 graph of the CDF with the x and
 y axes interchanged. Compare to Figure 2-7.

[image: Jitter plot, histogram, and cumulative distribution function for a Gaussian data set.]

Figure 2-9. Jitter plot, histogram, and cumulative distribution
 function for a Gaussian data set.

As it turns out, there is. The method is technically easy to
 do, but the underlying logic is a bit convoluted and tends to trip
 up even experienced practitioners.
Here is how it works. Consider a set of points
 {xi}
 that we suspect are distributed according to the Gaussian
 distribution. In other words, we expect the cumulative distribution
 function of the set of points,
 yi
 =
 cdf(xi),
 to be the Gaussian cumulative distribution function Φ
 ((x – μ)/σ) with mean μ and standard deviation
 σ:
[image: Jitter plot, histogram, and cumulative distribution function for a Gaussian data set.]
[image: Probability plot for the data set shown in .]

Figure 2-10. Probability plot for the data set shown in Figure 2-9.

Here,
 yi
 is the value of the cumulative distribution function corresponding
 to the data point
 xi;
 in other words,
 yi
 is the quantile of the point
 xi.
Now comes the trick. We apply the inverse
 of the Gaussian distribution function to both sides of the
 equation:
[image: Probability plot for the data set shown in .]
With a little bit of algebra, this becomes
xi
 = μ +
 σΦ–1(yi)
In other words, if we plot the values in the data set as a
 function of
 Φ–1(yi),
 then they should fall onto a straight line with slope σ and zero
 intercept μ. If, on the other hand, the points do not fall onto a
 straight line after applying the inverse transform, then we can
 conclude that the data is not distributed according to a Gaussian
 distribution.
The resulting plot is known as a probability
 plot. Because it is easy to spot deviation from a
 straight line, a probability plot provides a relatively sensitive
 test to determine whether a set of points behaves according to the
 Gaussian distribution. As an added benefit, we can read off
 estimates for the mean and the standard deviation directly from the
 graph: μ is the intercept of the curve with the
 y axis, and σ is given by the slope of the
 curve. (Figure 2-10
 shows the probability plot for the Gaussian data set displayed in
 Figure 2-9.)
One important question concerns the units
 that we plot along the axes. For the vertical axis the case is
 clear: we use whatever units the original data was measured in. But
 what about the horizontal axis? We plot the data as a function of
 Φ–1(yi),
 which is the inverse Gaussian distribution function, applied to the
 percentile
 yi
 for each point
 xi.
 We can therefore choose between two different ways to dissect the
 horizontal axis: either using the percentiles
 yi
 directly (in which case the tick marks will not be distributed
 uniformly), or dividing the horizontal axis uniformly. In the latter
 case we are using the width of the standard Gaussian
 distribution as a unit. You can convince yourself that
 this is really true by realizing that
 Φ–1(y) is the
 inverse of the Gaussian distribution function
 Φ(x). Now ask yourself: what units is
 x measured in? We use the same units for the
 horizontal axis of a Gaussian probability plot. These units are
 sometimes called probits. (Figure 2-10 shows both sets
 of units.) Beware of confused and confusing explanations of this
 point elsewhere in the literature.
There is one more technical detail that we need to discuss: to
 produce a probability plot, we need not only the data itself, but
 for each point
 xi
 we also need its quantile
 yi
 (we will discuss quantiles and percentiles in more detail later in
 this chapter). The simplest way to obtain the quantiles, given the
 data, is as follows:
	Sort the data points in ascending order.

	Assign to each data point its rank (basically, its line
 number in the sorted file), starting at 1 (not at 0).

	The quantile
 yi
 now is the rank divided by n + 1, where
 n is the number of data points.

This prescription guarantees that each data point is assigned
 a quantile that is strictly greater than 0 and strictly less than 1.
 This is important because
 Φ–1(x) is defined
 only for 0 < x < 1. This prescription is
 easy to understand and easy to remember, but you may find other,
 slightly more complicated prescriptions elsewhere. For all practical
 purposes, the differences are going to be small.
Finally, let’s look at an example where the data is clearly
 not Gaussian. Figure 2-11 shows the
 server data from Figure 2-2 plotted in a
 probability plot. The points don’t fall on a straight line at
 all—which is no surprise since we already knew from Figure 2-2 that the data
 is not Gaussian. But for cases that are less clear-cut, the
 probability plot can be a helpful tool for detecting deviations from
 Gaussian behavior.
A few additional comments are in order here.
	Nothing in the previous discussion requires that the
 distribution be Gaussian! You can use almost any other commonly
 used distribution function (and its inverse) to generate the
 respective probability plots. In particular, many of the
 commonly used probability distributions depend on location and
 scale parameters in exactly the same way as the Gaussian
 distribution, so all the arguments discussed earlier go through
 as before.
[image: A probability plot of the server response times from . The data does not follow a Gaussian distribution and thus the points do not fall on a straight line.]

Figure 2-11. A probability plot of the server response times from
 Figure 2-2.
 The data does not follow a Gaussian distribution and thus the
 points do not fall on a straight
 line.

	So far, I have always assumed that we want to compare an
 empirical data set against a
 theoretical distribution. But there may
 also be situations where we want to compare two empirical data
 sets against each other—for example, to find out whether they
 were drawn from the same family of distributions (without having
 to specify the family explicitly). The process is easiest to
 understand when both data sets we want to compare contain the
 same number of points. You sort both sets and then align the
 points from both data sets that have the same rank (once
 sorted). Now plot the resulting pairs of points in a regular
 scatter plot (see Chapter 3); the
 resulting graph is known as a QQ plot. (If
 the two data sets do not contain the same number of points, you
 will have to interpolate or truncate them so that they
 do.)

Probability plots are a relatively advanced, specialized
 technique, and you should evaluate whether you really need them.
 Their purpose is to determine whether a given data set stems from a
 specific, known distribution. Occasionally, this is of interest in
 itself; in other situations subsequent analysis depends on proper
 identification of the underlying model. For example, many
 statistical techniques assume that the errors or residuals are
 Gaussian and are not applicable if this condition is violated.
 Probability plots are a convenient technique for testing this
 assumption.

Rank-Order Plots and Lift Charts

There is a technique related to histograms and CDFs that
 is worth knowing about. Consider the following scenario. A company
 that is selling textbooks and other curriculum materials is planning
 an email marketing campaign to reach out to its existing customers.
 For this campaign, the company wants to use personalized email
 messages that are tailored to the job title of each recipient (so that
 teachers will receive a different email than their principals). The
 problem is the customer database contains about 250,000 individual
 customer records with over 16,000 different job titles among them! Now
 what?
The trick is to sort the job titles by the number of individual
 customer records corresponding to each job title. The first few
 records are shown in Table 2-1. The four
 columns give the job title, the number of customers for that job
 title, the fraction of all customers having that job title, and
 finally the cumulative fraction of customers. For the last column, we
 sum up the number of customers for the current and all previously seen
 job titles, then divide by the total number of customer records. This
 is the equivalent of the CDF we discussed earlier.
We can see immediately that fully two thirds of all customers
 account for only 10 different job titles. Using just the top 30 job
 titles gives us 75 percent coverage of customer records. That’s much
 more manageable than the 16,000 job titles we started with!
Let’s step back for a moment to understand how this example is
 different from those we have seen previously. What is important to
 notice here is that the independent variable has no
 intrinsic ordering. What does this mean?
For the web-server example, we counted the number of events for
 each response time; hence the count of events per bin was the
 dependent variable, and it was determined by the independent
 variable—namely, the response time. In that case, the independent
 variable had an inherent ordering: 100 milliseconds are always less
 than 400 milliseconds (and so on). But in the case of counting
 customer records that match a certain job title, the independent
 variable (the job title) has no corresponding ordering relation. It
 may appear otherwise since we can sort the job titles alphabetically,
 but realize that this ordering is entirely arbitrary! There is nothing
 “fundamental” about it. If we choose a different font encoding or
 locale, the order will change. Contrast this with the ordering
 relationship on numbers—there are no two ways about it: 1 is always
 less than 2.
In cases like this, where the independent variable does not have
 an intrinsic ordering, it is often a good idea to sort entries by the
 dependent variable. That’s what we did in the
 example: rather than defining some (arbitrary) sort order on the job
 titles, we sorted by the number of records (i.e.,
 by the dependent variable). Once the records have been sorted in this
 way, we can form a histogram and a CDF as before.
Table 2-1. The first 30 job titles and their relative
 frequencies.
	Title
	Number of
 customers
	Fraction of
 customers
	Cumulative
 fraction

	Teacher
	66,470
	0.34047
	0.340

	Principal
	22,958
	0.11759
	0.458

	Superintendent
	12,521
	0.06413
	0.522

	Director
	12,202
	0.06250
	0.584

	Secretary
	4,427
	0.02267
	0.607

	Coordinator
	3,201
	0.01639
	0.623

	Vice Principal
	2,771
	0.01419
	0.637

	Program Director
	1,926
	0.00986
	0.647

	Program Coordinator
	1,718
	0.00880
	0.656

	Student
	1,596
	0.00817
	0.664

	Consultant
	1,440
	0.00737
	0.672

	Administrator
	1,169
	0.00598
	0.678

	President
	1,114
	0.00570
	0.683

	Program Manager
	1,063
	0.00544
	0.689

	Supervisor
	1,009
	0.00516
	0.694

	Professor
	961
	0.00492
	0.699

	Librarian
	940
	0.00481
	0.704

	Project Coordinator
	880
	0.00450
	0.708

	Project Director
	866
	0.00443
	0.713

	Office Manager
	839
	0.00429
	0.717

	Assistant Director
	773
	0.00395
	0.721

	Administrative
 Assistant
	724
	0.00370
	0.725

	Bookkeeper
	697
	0.00357
	0.728

	Intern
	693
	0.00354
	0.732

	Program Supervisor
	602
	0.00308
	0.735

	Lead Teacher
	587
	0.00300
	0.738

	Instructor
	580
	0.00297
	0.741

	Head Teacher
	572
	0.00292
	0.744

	Program Assistant
	572
	0.00292
	0.747

	Assistant Teacher
	546
	0.00279
	0.749

This trick of sorting by the dependent variable is useful
 whenever the independent variable does not have a meaningful ordering
 relation; it is not limited to situations where we count events per
 bin. Figure 2-12 and
 Figure 2-13 show two
 typical examples.
Figure 2-12 shows
 the sales by a certain company to different countries. Not only the
 sales to each country but also the cumulative sales are shown, which
 allows us to assess the importance of the remaining “tail” of the
 distribution of sales.
In this example, I chose to plot the independent variable along
 the vertical axis. This is often a good idea when the values are
 strings, since they are easier to read this way. (If you plot them
 along the horizontal axis, it is often necessary to rotate the strings
 by 90 degrees to make them fit, which makes hard to read.)
Figure 2-13
 displays what in quality engineering is known as a Pareto
 chart. In quality engineering and process improvement, the
 goal is to reduce the number of defects in a certain product or
 process. You collect all known causes of defects and observe how often
 each one occurs. The results can be summarized conveniently in a chart
 like the one in Figure 2-13. Note that the
 causes of defects are sorted by their frequency of occurrence. From
 this chart we can see immediately that problems with the engine and
 the electrical system are much more common than problems with the air
 conditioning, the brakes, or the transmission. In fact, by looking at the cumulative
 error curve, we can tell that fixing just the first two problem areas
 would reduce the overall defect rate by 80 percent.
[image: A rank-order plot of sales per country. The independent variable has been plotted along the vertical axis to make the text labels easier to read.]

Figure 2-12. A rank-order plot of sales per country. The independent
 variable has been plotted along the vertical
 axis to make the text labels easier to read.

[image: The Pareto chart is another example of a rank-order plot.]

Figure 2-13. The Pareto chart is another example of a rank-order
 plot.

Two more bits of terminology: the term “Pareto chart” is not
 used widely outside the specific engineering disciplines mentioned in
 the previous paragraph. I personally prefer the expression
 rank-order chart for any plot generated by first
 sorting all entries by the dependent variable
 (i.e., by the rank of the
 entry). The cumulative distribution curve is occasionally referred to
 as a lift curve, because it tells us how much
 “lift” we get from each entry or range of entries.

Only When Appropriate: Summary Statistics and Box Plots

You may have noticed that so far I have not spoken at all about
 such simple topics as mean and median, standard deviation, and
 percentiles. That is quite intentional. These summary
 statistics apply only under certain assumptions and are
 misleading, if not downright wrong, if those assumptions are not
 fulfilled. I know that these quantities are easy to understand and
 easy to calculate, but if there is one message I would like you to
 take away from this book it is this: the fact that something is
 convenient and popular is no reason to follow suit. For any method
 that you want to use, make sure you understand the underlying
 assumptions and always check that they are
 fulfilled for the specific application you have in mind!
Mean, median, and related summary statistics apply only to
 distributions that have a single, central peak—that is, to
 unimodal distributions. If this basic assumption
 is not fulfilled, then conclusions based on simple summary statistics
 will be wrong. Even worse, nothing will tip you off that they are
 wrong: the numbers will look quite reasonable. (We will see an example
 of this problem shortly.)
Summary Statistics

If a distribution has only a single peak, then it makes sense
 to ask about the properties of that peak: where is it located, and
 what is its width? We may also want to know whether the distribution
 is symmetric and whether any outliers are present.
Mean and standard deviation are two popular measures for
 location and spread. The mean or average is
 both familiar and intuitive:
[image: Summary Statistics]
The standard deviation measures how far points spread “on
 average” from the mean: we take all the differences between each
 individual point and the mean, and then calculate the average of all
 these differences. Because data points can either overshoot or
 undershoot the mean and we don’t want the positive and negative
 deviations to cancel each other, we sum the square of
 the individual deviations and then take the mean of the square
 deviations. (The second equation is very useful in practice and can
 be found from the first after plugging in the definition of the
 mean.)
[image: Summary Statistics]
The quantity
 s2 calculated in
 this way is known as the variance and is the
 more important quantity from a theoretical point of view. But as a
 measure of the spread of a distribution, we are better off using its
 square root, which is known as the standard
 deviation. Why take the square root? Because then both
 measure for the location, and the measure for the spread will have
 the same units, which are also the units of the actual data. (If our
 data set consists of the prices for a basket of goods, then the
 variance would be given in “square dollars,” whereas the standard
 deviation would be given in dollars.)
For many (but certainly not all!) data sets arising in
 practice, one can expect about two thirds of all data points to fall
 within the interval [m –
 s, m +
 s] and 99 percent of all points to fall within
 the wider interval [m –
 3s, m +
 3s].
Mean and standard deviation are easy to calculate, and have
 certain nice mathematical properties—provided the data is symmetric
 and does not contain crazy outliers. Unfortunately, many data sets
 violate at least one of these assumptions. Here is an example for
 the kind of trouble that one may encounter. Assume we have 10 items
 costing $1 each, and one item costing $20. The mean item price comes
 out to be $2.73, even though no item has a price anywhere near this
 value. The standard deviation is even worse: it comes out to $5.46,
 implying that most items have a price between $2.73 – $5.46 and
 $2.73 + $5.46. The “expected range” now includes negative prices—an
 obviously absurd result. Note that the data set itself is not
 particularly pathological: going to the grocery store and picking up
 a handful of candy bars and a bottle of wine will do it (pretty good
 wine, to be sure, but nothing outrageous).
A different set of summary statistics that is both more
 flexible and more robust is based on the concepts of
 median and quantiles or
 percentiles. The median is conventionally
 defined as the value from a data set such that half of all points in
 the data set are smaller and the other half greater that that value.
 Percentiles are the generalization of this concept to other
 fractions (the 10th percentile is the value such that 10 percent of
 all points in the data set are smaller than it, and so on).
 Quantiles are similar to percentiles, only that they are taken with
 respect to the fraction of points, not the percentage of points (in
 other words, the 10th percentile equals the 0.1 quantile).
Simple as it is, the percentile concept is nevertheless
 ambiguous, and so we need to work a little harder to make it really
 concrete. As an example of the problems that occur, consider the
 data set {1, 2, 3}. What is the median? It is not possible to break
 this data set into two equal parts each containing exactly half the
 points. The problem becomes even more uncomfortable when we are
 dealing with arbitrary percentile values (rather than the median
 only).
The Internet standard laid down in RFC 2330 (“Framework for IP
 Performance Metrics”) gives a definition of percentiles in terms of
 the CDF, which is unambiguous and practical, as follows. The
 pth percentile is the smallest value
 x, such that the cumulative distribution
 function of x is greater or equal
 p/100.
pth percentile: smallest
 x for which cdf(x) ≥
 p/100
This definition assumes that the CDF is normalized to 1, not
 to 100. If it were normalized to 100, the condition would be
 cdf(x) ≥ p.
With this definition, the median (i.e.,
 the 50th percentile) of the data set {1, 2, 3} is 2 because the
 cdf(1) = 0.33 ..., cdf(2) = 0.66 ..., and cdf(3) = 1.0. The median
 of the data set {1, 2} would be 1 because now cdf(1) = 0.5, and
 cdf(2) = 1.0.
The median is a measure for the location of the distribution,
 and we can use percentiles to construct a measure for the width of
 the distribution. Probably the most frequently used quantity for
 this purpose is the inter-quartile range (IQR),
 which is the distance between the 75th percentile and 25th
 percentile.
When should you favor median and percentile over mean and
 standard deviation? Whenever you suspect that your distribution is
 not symmetric or has important outliers.
If a distribution is symmetric and well behaved, then mean and
 median will be quite close together, and there is little difference
 in using either. Once the distribution becomes skewed, however, the
 basic assumption that underlies the mean as a measure for the
 location of the distribution is no longer fulfilled, and so you are
 better off using the median. (This is why the average wage is
 usually given in official publications as the median family income,
 not the mean; the latter would be significantly distorted by the few
 households with extremely high incomes.) Furthermore, the moment you
 have outliers, the assumptions behind the standard deviation as a
 measure of the width of the distribution are violated; in this case
 you should favor the IQR (recall our shopping basket example
 earlier).
If median and percentiles are so great, then why don’t we
 always use them? A large part of the preference for mean and
 variance is historical. In the days before readily available
 computing power, percentiles were simply not practical to calculate.
 Keep in mind that finding percentiles requires to
 sort the data set whereas to find the mean
 requires only to add up all elements in any order. The latter is an
 [image:](n) process, but the
 former is an [image:](n2)
 process, since humans—being nonrecursive—cannot be taught Quicksort
 and therefore need to resort to much less efficient sorting
 algorithms. A second reason is that it is much harder to prove
 rigorous theorems for percentiles, whereas mean and variance are
 mathematically very well behaved and easy to work with.

Box-and-Whisker Plots

There is an interesting graphical way to represent
 these quantities, together with information about potential
 outliers, known as a box-and-whisker plot, or
 box plot for short. Figure 2-15 illustrates
 all components of a box plot. A box plot consists of:
	A marker or symbol for the median as
 an indicator of the location of the
 distribution

	A box, spanning the inter-quartile
 range, as a measure of the width of the
 distribution

	A set of whiskers, extending from the
 central box to the upper and lower adjacent values, as an
 indicator of the tails of the distribution
 (where “adjacent value” is defined in the next paragraph)

	Individual symbols for all values
 outside the range of adjacent values, as a representation for
 outliers

You can see that a box plot combines a lot of information in a
 single graph. We have encountered almost all of these concepts
 before, with the exception of upper and lower adjacent
 values. While the inter-quartile range is a measure for
 the width of the central “bulk” of the distribution, the adjacent
 values are one possible way to express how far its tails reach. The
 upper adjacent value is the largest value in the data set that is
 less than twice the inter-quartile range greater than the median. In
 other words: extend the whisker upward from the median to twice the
 length of the central box. Now trim the whisker down to the largest
 value that actually occurs in the data set; this value is the upper
 adjacent value. (A similar construction holds for the lower adjacent
 value.)
You may wonder about the reason for this peculiar
 construction. Why not simply extend the whiskers to, say, the 5th
 and 95th percentile and be done with it? The problem with this
 approach is that it does not allow us to recognize true outliers!
 Outliers are data points that are, when compared to the
 width of the distribution, unusually far from the center.
 Such values may or may not be present. The top and bottom 5 percent,
 on the other hand, are always present even for very compact
 distributions. To recognize outliers, we therefore cannot simply
 look at the most extreme values, instead we must compare
 their distance from the center to the overall width of the
 distribution. That is what box-and-whisker plots, as
 described in the previous paragraph, do.
The logic behind the preceding argument is extremely important
 (not only in this application but more generally), so I shall
 reiterate the steps: first we calculated a
 measure for the width of the distribution, then
 we used this width to identify outliers as those points that are far
 from the center, where (and this is the crucial step) “far” is
 measured in units of the width of the distribution. We neither
 impose an arbitrary distance from the outside, nor do we simply
 label the most extreme x percent of the
 distribution as outliers—instead, we determine the width of the
 distribution (as the range into which points “typically” fall) and
 then use it to identify outliers as those points that deviate from
 this range. The important insight here is that the distribution
 itself determines a typical scale, which
 provides a natural unit in which to measure other properties of the
 distribution. This idea of using some typical property
 of the system to describe other parts of the system will come up
 again later (see Chapter 8).
Box plots combine many different measures of a distribution
 into a single, compact graph. A box plot allows us to see whether
 the distribution is symmetric or not and how the weight is
 distributed between the central peak and the tails. Finally,
 outliers (if present) are not dropped but shown explicitly.
Box plots are best when used to compare several distributions
 against one another—for a single distribution, the overhead of
 preparing and managing a graph (compared to just quoting the
 numbers) may often not appear justified. Here is an example that
 compares different data sets against each other.
Let’s say we have a data set containing the index of
 refraction of 121 samples of glass.[3] The data set is broken down by the type of glass: 70
 samples of window glass, 29 from headlamps, 13 from containers of
 various kinds, and 9 from tableware. Figure 2-14 and Figure 2-15 are two
 representations of the same data, the former as a kernel density
 estimate and the latter as a box plot.
The box plot emphasizes the overall structure of the data sets
 and makes it easy to compare the data sets based on their location
 and width. At the same time, it also loses much information. The KDE
 gives a more detailed view of the data—in particular showing the
 occurrence of multiple peaks in the distribution functions—but makes
 it more difficult to quickly sort and classify the data sets.
 Depending on your needs, one or the other technique may be
 preferable at any given time.
Here are some additional notes on box plots.
	The specific way of drawing a box plot that I described
 here is especially useful but is far from universal. In
 particular, the specific definition of the adjacent values is
 often not properly understood. Whenever you find yourself
 looking at a box plot, always ask what exactly is shown, and
 whenever you prepare one, make sure to include an
 explanation.

	The box plot described here can be modified and enhanced.
 For example, the width of the central box
 (i.e., the direction orthogonal to the
 whiskers) can be used to indicate the size of the underlying
 data set: the more points are included, the wider the box.
 Another possibility is to abandon the rectangular shape of the
 box altogether and to use the local width of the box to display
 the density of points at each location—which brings us almost
 full circle to KDEs.

[image: Comparing data sets using KDEs: refractive index of different types of glass. (Compare .)]

Figure 2-14. Comparing data sets using KDEs: refractive index of
 different types of glass. (Compare Figure 2-15.)

Workshop: NumPy

The NumPy module provides efficient and convenient
 handling of large numerical arrays in Python. It is the successor to
 both the earlier Numeric and the alternative numarray modules. (See
 the Appendix A for
 more on the history of scientific computing with Python.) The NumPy
 module is used by many other libraries and projects and in this sense
 is a “base” technology.
Let’s look at some quick examples before delving a bit deeper
 into technical details.
NumPy in Action

NumPy objects are of type ndarray. There are different ways of
 creating them. We can create an ndarray by:
	Converting a Python list

	Using a factory function that returns a populated
 vector

	Reading data from a file directly into a NumPy
 object

The listing that follows shows five different ways to create
 NumPy objects. First we create one by converting a Python list. Then
 we show two different factory routines that generate equally spaced
 grid points. These routines differ in how they interpret the
 provided boundary values: one routine includes both boundary values,
 and the other includes one and excludes the other. Next we create a
 vector filled with zeros and set each element in a loop. Finally, we
 read data from a text file. (I am showing only the simplest or
 default cases here—all these routines have many more options that
 can be used to influence their behavior.)
[image: Comparing data sets using box plots: refractive index of different types of glass. (Compare .)]

Figure 2-15. Comparing data sets using box plots: refractive index of
 different types of glass. (Compare Figure 2-14.)

Five different ways to create a vector...

import numpy as np

From a Python list
vec1 = np.array([0., 1., 2., 3., 4.])

arange(start inclusive, stop exclusive, step size)
vec2 = np.arange(0, 5, 1, dtype=float)

linspace(start inclusive, stop inclusive, number of elements)
vec3 = np.linspace(0, 4, 5)

zeros(n) returns a vector filled with n zeros
vec4 = np.zeros(5)
for i in range(5):
 vec4[i] = i

read from a text file, one number per row
vec5 = np.loadtxt("data")
In the end, all five vectors contain identical data. You
 should observe that the values in the Python list used to initialize
 vec1 are floating-point values
 and that we specified the type desired for the
 vector elements explicitly when using the arange() function to create vec2. (We will come back to types in a
 moment.)
Now that we have created these objects, we can operate
 with them (see the next listing). One of the major conveniences
 provided by NumPy is that we can operate with NumPy objects as if
 they were atomic data types: we can add, subtract, and multiply them
 (and so forth) without the need for explicit
 loops. Avoiding explicit loops makes our code clearer. It
 also makes it faster (because the entire operation is performed in C
 without overhead—see the discussion that follows).
... continuation from previous listing

Add a vector to another
v1 = vec1 + vec2

Unnecessary: adding two vectors using an explicit loop
v2 = np.zeros(5)
for i in range(5):
 v2[i] = vec1[i] + vec2[i]

Adding a vector to another in place
vec1 += vec2

Broadcasting: combining scalars and vectors
v3 = 2*vec3
v4 = vec4 + 3

Ufuncs: applying a function to a vector, element by element
v5 = np.sin(vec5)

Converting to Python list object again
lst = v5.tolist()
All operations are performed element by element: if we add two
 vectors, then the corresponding elements from each vector are
 combined to give the element in the resulting vector. In other
 words, the compact expression vec1 +
 vec2 for v1 in the
 listing is equivalent to the explicit loop construction used to
 calculate v2. This is true even
 for multiplication: vec1 * vec2
 will result in a vector in which the corresponding elements of both
 operands have been multiplied element by element. (If you want a
 true vector or “dot” product, you must use the dot() function instead.) Obviously, this
 requires that all operands have the same number of
 elements!
Now we shall demonstrate two further convenience features that
 in the NumPy documentation are referred to as
 broadcasting and ufuncs
 (short for “universal functions”). The term “broadcasting” in this
 context has nothing to do with messaging. Instead, it means that if
 you try to combine two arguments of different shapes, then the
 smaller one will be extended (“cast broader”) to match the larger
 one. This is especially useful when combining scalars with vectors:
 the scalar is expanded to a vector of appropriate size and whose
 elements all have the value given by the scalar; then the operation
 proceeds, element by element, as before. The term “ufunc” refers to
 a scalar function that can be applied to a NumPy object. The
 function is applied, element by element, to all entries in the NumPy
 object, and the result is a new NumPy object with the same shape as
 the original one.
Using these features skillfully, a function to calculate a
 kernel density estimate can be written as a
 single line of code:
Calculating kernel density estimates

from numpy import *

z: position, w: bandwidth, xv: vector of points
def kde(z, w, xv):
 return sum(exp(-0.5*((z-xv)/w)**2)/sqrt(2*pi*w**2))

d = loadtxt("presidents", usecols=(2,))

w = 2.5

for x in linspace(min(d)-w, max(d)+w, 1000):
 print x, kde(x, w, d)
This program will calculate and print the data needed to
 generate Figure 2-4
 (but it does not actually draw the graph—that will have to wait
 until we introduce matplotlib in
 the Workshop of Chapter 3).
Most of the listing is boilerplate code, such as reading and
 writing files. All the actual work is done in the one-line function
 kde(z, w, xv). This function
 makes use of both “broadcasting” and “ufuncs” and is a good example
 for the style of programming typical of NumPy. Let’s dissect
 it—inside out.
First recall what we need to do when evaluating a KDE: for
 each location z at which we want to evaluate
 the KDE, we must find its distance to all the points in the data
 set. For each point, we evaluate the kernel for this distance and
 sum up the contributions from all the individual kernels to obtain
 the value of the KDE at z.
The expression z-xv
 generates a vector that contains the distance between z and all the points in xv (that’s broadcasting). We then divide
 by the required bandwidth, multiply by 1/2, and square each element.
 Finally, we apply the exponential function exp() to this vector (that’s a ufunc). The
 result is a vector that contains the exponential function evaluated
 at the distances between the points in the data set and the location
 z. Now we only need to sum all
 the elements in the vector (that’s what sum() does) and we are done, having
 calculated the KDE at position z.
 If we want to plot the KDE as a curve, we have to repeat this
 process for each location we wish to plot—that’s what the final loop
 in the listing is for.

NumPy in Detail

You may have noticed that none of the warm-up examples in the
 listings in the previous section contained any matrices or other
 data structures of higher dimensionality—just one-dimensional
 vectors. To understand how NumPy treats objects with dimensions
 greater than one, we need to develop at least a superficial
 understanding for the way NumPy is implemented.
It is misleading to think of NumPy as a “matrix package for
 Python” (although it’s commonly used as such). I find it more
 helpful to think of NumPy as a wrapper and access layer for
 underlying C buffers. These buffers are contiguous blocks of C
 memory, which—by their nature—are one-dimensional data structures.
 All elements in those data structures must be of the same size, and
 we can specify almost any native C type (including C structs) as the
 type of the individual elements. The default type corresponds to a C
 double and that is what we use in
 the examples that follow, but keep in mind that other choices are
 possible. All operations that apply to the data overall are
 performed in C and are therefore very fast.
To interpret the data as a matrix or other multi-dimensional
 data structure, the shape or layout is imposed during element
 access. The same 12-element data structure can therefore be
 interpreted as a 12-element vector or a 3 × 4 matrix or a 2 × 2 × 3
 tensor—the shape comes into play only through the way we access the
 individual elements. (Keep in mind that although reshaping a data
 structure is very easy, resizing is not.)
The encapsulation of the underlying C data structures is not
 perfect: when choosing the types of the atomic elements, we specify
 C data types not Python types. Similarly, some features provided by
 NumPy allow us to manage memory manually, rather than have the
 memory be managed transparently by the Python runtime. This is an
 intentional design decision, because NumPy has been designed to
 accommodate large data structures—large enough
 that you might want (or need) to exercise a greater degree of
 control over the way memory is managed. For this reason, you have
 the ability to choose types that take up less space as elements in a
 collection (e.g., C float elements rather than the default
 double). For the same reason, all
 ufuncs accept an optional argument pointing to an (already
 allocated) location where the results will be placed, thereby
 avoiding the need to claim additional memory themselves. Finally,
 several access and structuring routines return a
 view (not a copy!) of the same underlying data.
 This does pose an aliasing problem that you need to watch out
 for.
The next listing quickly demonstrates the concepts of shape
 and views. Here, I assume that the commands are entered at an
 interactive Python prompt (shown as >>> in the listing). Output
 generated by Python is shown without a prompt:
>>> import numpy as np

>>> # Generate two vectors with 12 elements each
>>> d1 = np.linspace(0, 11, 12)
>>> d2 = np.linspace(0, 11, 12)

>>> # Reshape the first vector to a 3x4 (row x col) matrix
>>> d1.shape = (3, 4)
>>> print d1
[[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [8. 9. 10. 11.]]

>>> # Generate a matrix VIEW to the second vector
>>> view = d2.reshape((3,4))

>>> # Now: possible to combine the matrix and the view
>>> total = d1 + view

>>> # Element access: [row,col] for matrix
>>> print d1[0,1]
1.0
>>> print view[0,1]
1.0
>>> # ... and [pos] for vector
>>> print d2[1]
1.0

>>> # Shape or layout information
>>> print d1.shape
(3,4)
>>> print d2.shape
(12,)
>>> print view.shape
(3,4)

>>> # Number of elements (both commands equivalent)
>>> print d1.size
12
>>> print len(d2)
12

>>> # Number of dimensions (both commands equivalent)
>>> print d1.ndim
2
>>> print np.rank(d2)
1
Let’s step through this. We create two vectors of 12 elements
 each. Then we reshape the first one into a 3 ×
 4 matrix. Note that the shape
 property is a data member—not an accessor function! For the second
 vector, we create a view in the form of a 3 × 4
 matrix. Now d1 and the newly
 created view of d2 have the same
 shape, so we can combine them (by forming their sum, in this case).
 Note that even though reshape()
 is a member function, it does not change the
 shape of the instance itself but instead returns a new view object:
 d2 is still a one-dimensional
 vector. (There is also a standalone version of this function, so we
 could also have written view = np.reshape(
 d2, (3,4)). The presence of such redundant functionality
 is due to the desire to maintain backward compatibility with both of
 NumPy’s ancestors.)
We can now access individual elements of the data
 structures, depending on their shape. Since both d1 and view are matrices, they are indexed by a
 pair of indices (in the order [row,col]). However, d2 is still a one-dimensional vector and
 thus takes only a single index. (We will have more to say about
 indexing in a moment.)
Finally, we examine some diagnostics regarding the shape of
 the data structures, emphasizing their precise semantics. The
 shape is a tuple, giving the
 number of elements in each dimension. The size is the total number of elements and
 corresponds to the value returned by len() for the entire data structure.
 Finally, ndim gives the number of
 dimensions (i.e., d.ndim == len(d.shape)) and is equivalent
 to the “rank” of the entire data structure. (Again, the redundant
 functionality exists to maintain backward compatibility.)
Finally, let’s take a closer look at the ways in which we can
 access elements or larger subsets of an ndarray. In the previous listing we saw
 how to access an individual element by fully specifying an index for
 each dimension. We can also specify larger subarrays of a data
 structure using two additional techniques, known as
 slicing and advanced
 indexing. The following listing shows some representative
 examples. (Again, consider this an interactive Python
 session.)
>>> import numpy as np

>>> # Create a 12-element vector and reshape into 3x4 matrix
>>> d = np.linspace(0, 11, 12)
>>> d.shape = (3,4)
>>> print d
[[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [8. 9. 10. 11.]]

>>> # Slicing...
>>> # First row
>>> print d[0,:]
[0. 1. 2. 3.]

>>> # Second col
>>> print d[:,1]
[1. 5. 9.]

>>> # Individual element: scalar
>>> print d[0,1]
1.0

>>> # Subvector of shape 1
>>> print d[0:1,1]
[1.]

>>> # Subarray of shape 1x1
>>> print d[0:1,1:2]
[[1.]]
>>> # Indexing...
>>> # Integer indexing: third and first column
>>> print d[:, [2,0]]
[[2. 0.]
 [6. 4.]
 [10. 8.]]

>>> # Boolean indexing: second and third column
>>> k = np.array([False, True, True])
>>> print d[k, :]
[[4. 5. 6. 7.]
 [8. 9. 10. 11.]]
We first create a 12-element vector and reshape it into a 3 ×
 4 matrix as before. Slicing uses the standard Python slicing syntax
 start:stop:step, where the start
 position is inclusive but the stopping position is exclusive. (In
 the listing, I use only the simplest form of slicing, selecting all
 available elements.)
There are two potential “gotchas” with slicing. First of all,
 specifying an explicit subscripting index (not a slice!) reduces the
 corresponding dimension to a scalar. Slicing, though, does not
 reduce the dimensionality of the data structure. Consider the two
 extreme cases: in the expression d[0,1], indices for both dimensions are
 fully specified, and so we are left with a scalar. In contrast,
 d[0:1,1:2] is sliced in both
 dimensions. Neither dimension is removed, and the resulting object
 is still a (two-dimensional) matrix but of smaller size: it has
 shape 1 × 1.
The second issue to watch out for is that slices
 return views, not copies.
Besides slicing, we can also index an ndarray with a vector of indices, by an
 operation called “advanced indexing.” The previous listing showed
 two simple examples. In the first we use a Python list object, which
 contains the integer indices (i.e., the
 positions) of the desired columns and in the desired order, to
 select a subset of columns. In the second example, we form an
 ndarray of Boolean entries to
 select only those rows for which the Boolean evaluates to
 True.
In contrast to slicing, advanced indexing returns
 copies, not views.
This completes our overview of the basic capabilities of the
 NumPy module. NumPy is easy and convenient to use for simple use
 cases but can get very confusing otherwise. (For example, check out
 the rules for general broadcasting when both operators are
 multi-dimensional, or for advanced indexing).
We will present some more straightforward applications in
 Chapter 3 and
 Chapter 4.

Further Reading

	The Elements of Graphing
 Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
A book-length discussion of graphical methods for data
 analysis such as those described in this chapter. In particular,
 you will find more information here on topics such as box plots
 and QQ plots. Cleveland’s methods are particularly careful and
 well thought-out.

	All of Statistics: A Concise Course in
 Statistical Inference. Larry Wasserman. Springer. 2004.
A thoroughly modern treatment of mathematical statistics,
 very advanced and condensed. You will find some additional
 material here on the theory of “density estimation”—that is, on
 histograms and KDEs.

	Multivariate Density
 Estimation. David W. Scott. 2nd ed., Wiley. 2006.
A research monograph on density estimation written by the
 creator of Scott’s rule.

	Kernel Smoothing. M. P. Wand and M. C. Jones. Chapman & Hall.
 1995.
An accessible treatment of kernel density estimation.

[1] The inspiration for this example comes from a paper by
 Robert W. Hayden in the Journal of Statistics
 Education. The full text is available at
 http://www.amstat.org/publications/jse/v13n1/datasets.hayden.html.

[2] Yet another strategy starts with the realization that
 forming a KDE amounts to a convolution of the kernel function
 with the data set. You can now take the Fourier transform of
 both kernel and data set and make use of the Fourier convolution
 theorem. This approach is suitable for very large data sets but
 is outside the scope of our discussion.

[3] The raw data can be found in the “Glass Identification
 Data Set” on the UCI Machine Learning Repository at
 http://archive.ics.uci.edu/ml/.

Chapter 3. Two Variables: Establishing Relationships

WHEN WE
 ARE DEALING WITH A DATA SET THAT CONSISTS OF TWO
 VARIABLES (THAT IS, A BIVARIATE DATA
 SET), we are mostly interested in seeing whether
 some kind of relationship exists between the two variables and, if so,
 what kind of relationship this is.
Plotting one variable against another is pretty straightforward,
 therefore most of our effort will be spent on various tools and
 transformations that can be applied to characterize the nature of the
 relationship between the two inputs.
Scatter Plots

Plotting one variable against another is simple—you just
 do it! In fact, this is precisely what most
 people mean when they speak about “plotting” something. Yet there are
 differences, as we shall see.
Figure 3-1 and
 Figure 3-2 show two
 examples. The data in Figure 3-1 might come from
 an experiment that measures the force between two surfaces separated
 by a short distance. The force is clearly a complicated function of
 the distance—on the other hand, the data points fall on a relatively
 smooth curve, and we can have confidence that it represents the data
 accurately. (To be sure, we should ask for the accuracy of the
 measurements shown in this graph: are there significant error bars
 attached to the data points? But it doesn’t matter; the data itself
 shows clearly that the amount of random noise in
 the data is small. This does not mean that there aren’t problems with
 the data but only that any problems will be
 systematic ones—for instance, with the
 apparatus—and statistical methods will not be helpful.)
[image: Data that clearly shows that there is a relationship, albeit a complicated one, between x and y.]

Figure 3-1. Data that clearly shows that there is a relationship, albeit
 a complicated one, between x and
 y.

In contrast, Figure 3-2 shows the kind
 of data typical of much of statistical analysis. Here we might be
 showing the prevalence of skin cancer as a function of the mean income
 for a group of individuals or the unemployment rate as a function of
 the frequency of high-school drop-outs for a number of counties, and
 the primary question is whether there is any relationship at all
 between the two quantities involved. The situation here is quite
 different from that shown in Figure 3-1, where it was
 obvious that a strong relationship existed between
 x and y, and therefore our
 main concern was to determine the precise nature of that
 relationship.
A figure such as Figure 3-2 is referred to
 as a scatter plot or xy
 plot. I prefer the latter term because scatter plot sounds
 to me too much like “splatter plot,” suggesting that the data
 necessarily will be noisy—but we don’t know that! Once we plot the
 data, it may turn out to be very clean and regular, as in Figure 3-1; hence I am more
 comfortable with the neutral term.
When we create a graph such as Figure 3-1 or Figure 3-2, we usually want
 to understand whether there is a relationship between
 x and y as well as what the
 nature of that relationship is. Figure 3-3 shows four
 different possibilities that we may find: no relationship; a strong,
 simple relationship; a strong, not-simple relationship; and finally a
 multivariate relationship (one that is not unique).

Conquering Noise: Smoothing

When data is noisy, we are more concerned with establishing
 whether the data exhibits a meaningful
 relationship, rather than establishing its precise character. To see
 this, it is often helpful to find a smooth curve that represents the
 noisy data set. Trends and structure of the data may be more easily
 visible from such a curve than from the cloud of points.
[image: A noisy data set. Is there any relationship between x and y?]

Figure 3-2. A noisy data set. Is there any relationship between
 x and y?

[image: Four types of functional relationships (left to right, top to bottom): no relationship; strong, simple relationship; strong, not-simple relationship; multivariate relationship.]

Figure 3-3. Four types of functional relationships (left to right, top to
 bottom): no relationship; strong, simple relationship; strong,
 not-simple relationship; multivariate relationship.

Two different methods are frequently used to provide
 smooth representation of noisy data sets: weighted
 splines and a method known as LOESS
 (or LOWESS), which is short for locally weighted regression.
Both methods work by approximating the data in a small
 neighborhood (i.e., locally) by a polynomial of
 low order (at most cubic). The trick is to string the various local
 approximations together to form a single smooth curve. Both methods
 contain an adjustable parameter that controls the “stiffness” of the
 resulting curve: the stiffer the curve, the smoother it appears but
 the less accurately it can follow the individual data points. Striking
 the right balance between smoothness and accuracy is the main
 challenge when it comes to smoothing methods.
Splines

Splines are constructed from piecewise polynomial functions
 (typically cubic) that are joined together in a smooth fashion. In
 addition to the local smoothness requirements at each joint, splines
 must also satisfy a global smoothness condition by optimizing the
 functional:
[image: Splines]
Here s(t) is the
 spline curve,
 (xi,
 yi)
 are the coordinates of the data points, the
 wi
 are weight factors (one for each data point), and α is a mixing
 factor. The first term controls how “wiggly” the spline is overall,
 because the second derivative measures the curvature of
 s(t) and becomes large if
 the curve has many wiggles. The second term captures how accurately
 the spline represents the data points by measuring the squared
 deviation of the spline from each data point—it becomes large if the
 spline does not pass close to the data points. Each term in the sum
 is multiplied by a weight factor
 wi,
 which can be used to give greater weight to data points that are
 known with greater accuracy than others. (Put differently: we can
 write
 wi
 as [image:], where
 di
 measures how close the spline should pass by
 yi
 at
 xi.)
 The mixing parameter α controls how much weight we give to the first
 term (emphasizing overall smoothness) relative to the second term
 (emphasizing accuracy of representation). In a plotting program, α
 is usually the dial we use to tune the spline for a given data
 set.
To construct the spline explicitly, we form cubic
 interpolation polynomials for each consecutive pair of points and
 require that these individual polynomials have the same values, as
 well as the same first and second derivatives, at the points where
 they meet. These smoothness conditions lead to a set of linear
 equations for the coefficients in the polynomials, which can be
 solved. Once these coefficients have been found, the spline curve
 can be evaluated at any desired location.

LOESS

Splines have an overall
 smoothness goal, which means that they are less responsive to
 local details in the data set. The LOESS
 smoothing method addresses this concern. It consists of
 approximating the data locally through a low-order (typically
 linear) polynomial (regression), while weighting all the data points
 in such a way that points close to the location of interest
 contribute more strongly than do data points farther away (local
 weighting).
Let’s consider the case of first-order (linear) LOESS, so that
 the local approximation takes the particularly simple form
 a + bx. To find the “best
 fit” in a least-squares sense, we must minimize:
[image: LOESS]
with respect to the two parameters a and
 b. Here, w(x) is the
 weight function. It should be smooth and strongly peaked—in fact, it
 is basically a kernel, similar to those we encountered in Figure 2-5 when we
 discussed kernel density estimates. The kernel most often used with
 LOESS is the “tri-cube” kernel [image:] for |x| < 1,
 K(x) = 0 otherwise; but
 any of the other kernels will also work. The weight depends on the
 distance between the point x where we want to
 evaluate the LOESS approximation and the location of the data
 points. In addition, the weight function also depends on the
 parameter h, which controls the bandwidth of
 the kernel: this is the primary control parameter for LOESS
 approximations. Finally, the value of the LOESS approximation at
 position x is given by
 y(x) =
 a + bx, where
 a and b minimize the
 expression for χ2 stated earlier.
This is the basic idea behind LOESS. You can see that it is
 easy to generalize—for example, to two or more dimensions or two
 higher-order approximation polynomials. (One problem, though:
 explicit, closed expressions for the parameters
 a and b can be found only
 if you use first-order polynomials; whereas for quadratic or higher
 polynomials you will have to resort to numerical minimization
 techniques. Unless you have truly compelling reasons, you want to
 stick to the linear case!)
LOESS is a computationally intensive method. Keep in mind that
 the entire calculation must be performed for
 every point at which we want to obtain a
 smoothed value. (In other words, the parameters
 a and b that we calculated
 are themselves functions of x.) This is in
 contrast to splines: once the spline coefficients have been
 calculated, the spline can be evaluated easily at any point that we
 wish. In this way, splines provide a summary or approximation to the
 data. LOESS, however, does not lend itself easily to semi-analytical
 work: what you see is pretty much all you get.
One final observation: if we replace the linear function
 a + bx in the fitting
 process with the constant function a, then
 LOESS becomes simply a weighted moving average.
[image: The 1970 draft lottery: draft number versus birth date (the latter as given in days since the beginning of the year). Two LOESS curves with different values for the smoothing parameter h indicate that men born later in the year tended to have lower draft numbers. This would not be easily recognizable from a plot of the data points alone.]

Figure 3-4. The 1970 draft lottery: draft number versus birth date (the
 latter as given in days since the beginning of the year). Two
 LOESS curves with different values for the smoothing parameter
 h indicate that men born later in the year
 tended to have lower draft numbers. This would not be easily
 recognizable from a plot of the data points alone.

Examples

Let’s look at two examples where smoothing reveals
 behavior that would otherwise not be visible.
The first is a famous data set that has been analyzed in many
 places: the 1970 draft lottery. During the Vietnam War, men in the
 U.S. were drafted based on their date of birth. Each possible birth
 date was assigned a draft number between 1 and 366 using a lottery
 process, and men were drafted in the order of their draft numbers.
 However, complaints were soon raised that the lottery was
 biased—that men born later in the year had a greater chance of
 receiving a low draft number and, consequentially, a greater chance
 of being drafted early.[4]
Figure 3-4
 shows all possible birth dates (as days since the beginning of the
 year) and their assigned draft numbers. If the lottery had been
 fair, these points should form a completely random pattern. Looking at the data alone, it is
 virtually impossible to tell whether there is any structure in the
 data. However, the smoothed LOESS lines reveal a strong falling
 tendency of the draft number over the course of the year: later
 birth dates are indeed more likely to have a lower draft
 number!
The LOESS lines have been calculated using a Gaussian kernel.
 For the solid line, I used a kernel bandwidth equal to 5, but for
 the dashed line, I used a much larger bandwidth of 100. For such a
 large bandwidth, practically all points in the data set contribute
 equally to the smoothed curve, so that the LOESS operation reverts
 to a linear regression of the entire data set. (In other words: if
 we make the bandwidth very large, then LOESS amounts to a
 least-squares fit of a straight line to the data.)
In this draft number example, we mostly cared about a
 global property of the data: the presence or
 absence of an overall trend. Because we were looking for a global
 property, a stiff curve (such as a straight line) was sufficient to
 reveal what we were looking for. However, if we want to extract more
 detail—in particular if we want to extract
 local features—then we need a “softer” curve,
 which can follow the data on smaller scales.
Figure 3-5
 shows an amusing example.[5] Displayed are the finishing times (separately for men
 and women) for the winners in a marathon. Also shown are the “best
 fit” straight-line approximations for all events up to 1990.
 According to this (straight-line) model, women should start
 finishing faster than men before the year 2000 and then continue to
 become faster at a dramatic rate! This expectation is not borne out
 by actual observations: finishing times for women (and men) have
 largely leveled off.
This example demonstrates the danger of attempting to describe
 data by using a model of fixed form (a “formula”)—and a straight
 line is one of the most rigid models out there! A model that is not
 appropriate for the data will lead to incorrect conclusions.
 Moreover, it may not be obvious that the model is inappropriate.
 Look again at Figure 3-5: don’t the
 straight lines seem reasonable as a description of the data prior to
 1990?
Also shown in Figure 3-5 are smoothed
 curves calculated using a LOESS process. Because these curves are
 “softer” they have a greater ability to capture features contained
 in the data. Indeed, the LOESS curve for the women’s results does
 give an indication that the trend of dramatic improvements, seen
 since they first started competing in the mid-1960s, had already
 begun to level off before the year 1990. (All curves are based
 strictly on data prior to 1990.) This is a good example of how an
 adaptive smoothing curve can highlight local behavior that is
 present in the data but may not be obvious from merely looking at
 the individual data points.
[image: Winning times (in minutes) for an annual marathon event, separately for men and women. Also shown are the straight-line and smooth-curve approximations. All approximations are based entirely on data points prior to 1990.]

Figure 3-5. Winning times (in minutes) for an annual marathon event,
 separately for men and women. Also shown are the straight-line and
 smooth-curve approximations. All approximations are based entirely
 on data points prior to 1990.

Residuals

Once you have obtained a smoothed approximation to the
 data, you will usually also want to check out the
 residuals—that is, the remainder when you
 subtract the smooth “trend” from the actual data.
There are several details to look for when studying
 residuals.
	Residuals should be balanced: symmetrically distributed
 around zero.

	Residuals should be free of a trend. The presence of a
 trend or of any other large-scale systematic behavior in the
 residuals suggests that the model is inappropriate! (By
 construction, this is never a problem if the smooth curve was
 obtained from an adaptive smoothing model; however, it is an
 important indicator if the smooth curve comes from an analytic
 model.)

	Residuals will necessarily straddle the zero value; they
 will take on both positive and negative values. Hence you may
 also want to plot their absolute values to evaluate whether the
 overall magnitude of the residuals is the same for the entire
 data set or not. The assumption that the magnitude of the
 variance around a model is constant throughout
 (“homoscedasticity”) is often an important condition in
 statistical methods. If it is not satisfied, then such methods
 may not apply.

	Finally, you may want to use a QQ plot (see Chapter 2) to check
 whether the residuals are distributed according to a Gaussian
 distribution. This, too, is an assumption that is often
 important for more advanced statistical methods.

[image: Residuals for the women’s marathon results, both for the LOESS smoothing curve and the straight-line linear regression model. The residuals for the latter show an overall systematic trend, which suggests that the model does not appropriately describe the data.]

Figure 3-6. Residuals for the women’s marathon results, both for the
 LOESS smoothing curve and the straight-line linear regression
 model. The residuals for the latter show an overall systematic
 trend, which suggests that the model does not appropriately
 describe the data.

It may also be useful to apply a smoothing routine to
 the residuals in order to recognize their
 features more clearly. Figure 3-6 shows the
 residuals for the women’s marathon results (before 1990) both for
 the straight-line model and the LOESS smoothing curve. For the LOESS
 curve, the residuals are small overall and hardly exhibit any trend.
 For the straight-line model, however, there is a strong systematic
 trend in the residuals that is increasing in magnitude for years
 past 1985. This kind of systematic trend in the residuals is a clear
 indicator that the model is not appropriate for the data!

Additional Ideas and Warnings

Here are some additional ideas that you might want to play
 with.
As we have discussed before, you can calculate the residuals
 between the real data and the smoothed approximation. Here an
 isolated large residual is certainly odd: it suggests that the
 corresponding data point is somehow “different” than the other
 points in the neighborhood—in other words, an outlier. Now we argue
 as follows. If the data point is an outlier, then it should
 contribute less to the smoothed curve than other points. Taking this
 consideration into account, we now introduce an additional weight
 factor for each data point into the expression for
 J[s] or
 χ2 given previously. The magnitude of
 this weight factor is chosen in such a way that data points with
 large residuals contribute less to the smooth curve. With this new
 weight factor reducing the influence of points with large residuals,
 we calculate a new version of the smoothed
 approximation. This process is iterated until the smooth curve no
 longer changes.
[image: A “smooth tube” for the men’s marathon results. The solid line is a smooth representation of the entire data set; the dashed lines are smooth representations of only those points that lie above (or below) the solid line.]

Figure 3-7. A “smooth tube” for the men’s marathon results. The solid
 line is a smooth representation of the entire data set; the dashed
 lines are smooth representations of only those points that lie
 above (or below) the solid line.

Another idea is to split the original data points into
 two classes: those that give rise to a positive residual and those
 with a negative residual. Now calculate a smooth curve for each
 class separately. The resulting curves can be interpreted as
 “confidence bands” for the data set (meaning that the majority of
 points will lie between the upper and the lower smooth curve). We
 are particularly interested to see whether the width of this band
 varies along the curve. Figure 3-7 shows an
 example that uses the men’s results from Figure 3-5.
Personally, I am a bit uncomfortable with either of these
 suggestions. They certainly have an unpleasant air of circular
 reasoning about them.
There is also a deeper reason. In my opinion, smoothing
 methods are a quick and useful but entirely nonrigorous way to
 explore the structure of a data set. With some of the more
 sophisticated extensions (e.g., the two
 suggestions just discussed), we abandon the simplicity of the
 approach without gaining anything in rigor! If we need or want
 better (or deeper) results than simple graphical methods can give
 us, isn’t it time to consider a more rigorous toolset?
This is a concern that I have with many of the more
 sophisticated graphical methods you will find discussed in the
 literature. Yes, we certainly can squeeze ever
 more information into a graph using lines, colors, symbols,
 textures, and what have you. But this does not necessarily mean that
 we should. The primary benefit of a graph is
 that it speaks to us directly—without the need for formal training
 or long explanations. Graphs that require training or complicated
 explanations to be properly understood are missing their mark no
 matter how “clever” they may be otherwise.
Similar considerations apply to some of the more
 involved ways of graph preparation. After all, a smooth curve such
 as a spline or LOESS approximation is only a rough approximation to
 the data set—and, by the way, contains a huge degree of
 arbitrariness in the form of the smoothing parameter (α or
 h, respectively). Given this situation, it is
 not clear to me that we need to worry about such details as the
 effect of individual outliers on the curve.
Focusing too much on graphical methods may also lead us to
 miss the essential point. For example, once we start worrying about
 confidence bands, we should really start thinking more
 deeply about the nature of the local distribution of
 residuals (Are the residuals normally distributed? Are they
 independent? Do we have a reason to prefer one statistical model
 over another?)—and possibly consider a more reliable estimation
 method (e.g., bootstrapping; see Chapter 12)—rather than continue with hand-waving
 (semi-)graphical methods.
Remember: The purpose of computing is insight, not pictures!
 (L. N. Trefethen)

Logarithmic Plots

Logarithmic plots are a standard tool of scientists, engineers,
 and stock analysts everywhere. They are so popular because they have
 three valuable benefits:
	They rein in large variations in the data.

	They turn multiplicative variations into additive
 ones.

	They reveal exponential and power law behavior.

In a logarithmic plot, we graph the
 logarithm of the data instead of the raw data.
 Most plotting programs can do this for us (so that we don’t have to
 transform the data explicitly) and also take care of labeling the axes
 appropriately.
There are two forms of logarithmic plots:
 single or semi-logarithmic
 plots and double logarithmic or
 log-log plots, depending whether only one
 (usually the vertical or y axis) or both axes
 have been scaled logarithmically.
All logarithmic plots are based on the fundamental property of
 the logarithm to turn products into sums and powers into
 products:
log(xy) = log(x) +
 log(y)
log(xk)
 = k log(x)
Let’s first consider semi-log plots. Imagine you have data
 generated by evaluating the function:
y = C
 exp(αx) where C and α are
 constants
[image: A semi-logarithmic plot.]

Figure 3-8. A semi-logarithmic plot.

on a set of x values. If you plot
 y as a function of x, you
 will see an upward- or downward-sloping curve, depending on the sign
 of α (see Appendix B). But if you
 instead plot the logarithm of
 y as a function of x, the
 points will fall on a straight line. This can be easily understood by
 applying the logarithm to the preceding equation:
log y = αx + log
 C
In other words, the logarithm of y is a
 linear function of x with slope α and with offset
 log C. In particular, by measuring the slope of
 the line, we can determine the scale factor α, which is often of great
 interest in applications.
Figure 3-8 shows an example of a
 semi-logarithmic plot that contains some experimental data points as
 well as an exponential function for comparison. I’d like to point out
 a few details. First, in a logarithmic plot, we plot the logarithm of
 the values, but the axes are usually labeled with the actual values
 (not their logarithms). Figure 3-8 shows
 both: the actual values on the left and the logarithms on the right
 (the logarithm of 100 to base 10 is 2, the logarithm of 1,000 is 3,
 and so on). We can see how, in a logarithmic plot, the logarithms are
 equidistant, but the actual values are not. (Observe that the distance
 between consecutive tick marks is constant on the right, but not on
 the left.)
Another aspect I want to point out is that on a semi-log plot,
 all relative changes have the same size no matter
 how large the corresponding absolute change. It is this property that
 makes semi-log plots popular for long-running stock charts and the
 like: if you lost $100, your reaction may be quite different if
 originally you had invested $1,000 versus $200: in the first case you
 lost 10 percent but 50 percent in the second. In other words, relative
 change is what matters.
[image: Heart rate versus body mass for a range of mammals. Compare to .]

Figure 3-9. Heart rate versus body mass for a range of mammals. Compare
 to Figure 3-10.

The two scale arrows in Figure 3-8 have the same length and correspond
 to the same relative change, but the underlying absolute change is
 quite different (from 1 to 3 in one case, from 100 to 300 in the
 other). This is another application of the fundamental property of the
 logarithm: if the value before the change is
 y1 and if
 y2 = γ
 y1 after the change (where
 γ = 3), then the change in absolute terms is:
y2 –
 y1 = γ
 y1 –
 y1 = (γ –
 1)y1
which clearly depends on
 y1. But if we consider the
 change in the logarithms, we find:
log y2 – log
 y1 = log(γ
 y1) – log
 y1 = log γ + log
 y1 – log
 y1 = log γ
which is independent of the underlying value and depends only on
 γ, the size of the relative change.
Double logarithmic plots are now easy to understand—the only
 difference is that we plot logarithms of both x
 and y. This will render all
 power-law relations as straight lines—that is, as functions of the
 form y =
 Cxk
 or y =
 C/xk,
 where C and k are constants.
 (Taking logarithms on both sides of the first equation yields log
 y = k log
 x + log C, so that now log
 y is a linear function of log
 x with a slope that depends on the exponent
 k.)
Figure 3-9 and
 Figure 3-10 provide
 stunning example for both uses of double logarithmic plots: their
 ability to render data spanning many order of magnitude accessible and
 their ability to reveal power-law relationships by turning them into
 straight lines. Figure 3-9 shows the typical
 resting heart rate (in beats per minute) as a function of the body
 mass (in kilograms) for a selection of mammals from the hamster to
 large whales. Whales weigh in at 120 tons—nothing else even comes
 close! The consequence is that almost all of the data points are
 squished against the lefthand side of the graph, literally crushed by
 the whale.
[image: The same data as in but now plotted on a double logarithmic plot. The data points seem to fall on a straight line, which indicates a power-law relationship between resting heart rate and body mass.]

Figure 3-10. The same data as in Figure 3-9 but now plotted
 on a double logarithmic plot. The data points seem to fall on a
 straight line, which indicates a power-law relationship between
 resting heart rate and body mass.

On the double logarithmic plot, the distribution of data
 points becomes much clearer. Moreover, we find that the data points
 are not randomly distributed but instead seem to fall roughly on a
 straight line with slope –1/4: the signature of power-law behavior. In
 other words, a mammal’s typical heart rate is related to its mass:
 larger animals have slower heart beats. If we let
 f denote the heart rate and
 m the mass, we can summarize this observation
 as:
f ~
 m–1/4
This surprising result is known as allometric
 scaling. It seems to hold more generally and not just for
 the specific animals and quantities shown in these figures. (For
 example, it turns out that the lifetime of an individual organism also
 obeys a 1/4 power-law relationship with the body mass: larger animals
 live longer. The surprising consequence is that the total number of
 heartbeats per life of an individual is approximately constant for all
 species!) Allometric scaling has been explained in terms of the
 geometric constraints of the vascular network (veins and arteries),
 which brings nutrients to the cells making up a biological system. It
 is sufficient to assume that the network must be a space-filling
 fractal, that the capillaries where the actual exchange of nutrients
 takes place are the same size in all animals, and that the overall
 energy required for transport through the network is minimized, to
 derive the power-law relationships observed experimentally![6] We’ll have more to say about scaling laws and their uses
 in Part II.

Banking

Smoothing methods and logarithmic plots are both tools
 that help us recognize structure in a data set. Smoothing methods
 reduce noise, and logarithmic plots help with data sets spanning many
 orders of magnitude.
Banking (or “banking to 45 degrees”) is another graphical
 method. It is different than the preceding ones because it does not
 work on the data but on the plot as a whole by
 changing its aspect ratio.
We can recognize change
 (i.e., the slopes of curves) most easily if they
 make approximately a 45 degree angle on the graph. It is much harder
 to see change if the curves are nearly horizontal or (even worse)
 nearly vertical. The idea behind banking is
 therefore to adjust the aspect ratio of the entire plot in such a way
 that most slopes are at an approximate 45 degree angle.
Chances are, you have been doing this already by changing the
 plot ranges. Often when we “zoom” in on a graph
 it’s not so much to see more detail as to adjust the slopes of curves
 to make them more easily recognizable. The purpose is even more
 obvious when we zoom out. Banking is a more
 suitable technique to achieve the same effect and opens up a way to
 control the appearance of a plot by actively adjusting the aspect
 ratio.
Figure 3-11 and
 Figure 3-12 show the
 classical example for this technique: the annual number of sunspots
 measured over the last 300 years.[7] In Figure 3-11, the oscillation
 is very compressed, and so it is difficult to make out much detail
 about the shape of the curve. In Figure 3-12, the aspect
 ratio of the plot has been adjusted so that most line segments are now
 at roughly a 45 degree angle, and we can make an interesting
 observation: the rising edge of each sunspot cycle is steeper than the
 falling edge. We would probably not have recognized this by looking at
 Figure 3-11.
Personally, I would probably not use a graph such as Figure 3-12: shrinking the
 vertical axis down to almost nothing loses too much detail. It also
 becomes difficult to compare the behavior on the far left and far
 right of the graph. Instead, I would break up the time series and plot
 it as a cut-and-stack plot, such as the one in
 Figure 3-13. Note that
 in this plot the aspect ratio of each subplot is such that the lines
 are, in fact, banked to 45 degrees.
As this example demonstrates, banking is a good technique but
 can be taken too literally. When the aspect ratio required to achieve
 proper banking is too skewed, it is usually better to rethink the
 entire graph. No amount of banking will make the data set in Figure 3-9 look right—you
 need a double logarithmic transform.
There is also another issue to consider. The purpose of banking
 is to improve human perception of the graph (it is, after all, exactly
 the same data that is displayed). But graphs with highly skewed aspect ratios violate the great
 affinity humans seem to have for proportions of roughly 4 by 3 (or 11
 by 8.5 or [image:] by 1). Witness the abundance of display formats
 (paper, books, screens) that adhere approximately to these proportions
 the world over. Whether we favor this display format because we are so
 used to it or (more likely, I think) it is so predominant because it
 works well for humans is rather irrelevant in this context. (And keep
 in mind that squares seem to work particularly badly—notice how
 squares, when used for furniture or appliances, are considered a
 “bold” design. Unless there is a good reason for them, such as
 graphing a square matrix, I recommend you avoid square
 displays.)
[image: The annual sunspot numbers for the last 300 years. The aspect ratio of the plot makes it hard to recognize the details of each cycle.]

Figure 3-11. The annual sunspot numbers for the last 300 years. The aspect
 ratio of the plot makes it hard to recognize the details of each
 cycle.

[image: The same data as in . The aspect ratio has been changed so that rising and falling flanks of the curve make approximately a 45 degree angle with the horizontal (banking to 45 degrees), but the figure has become so small that it is hard to recognize much detail.]

Figure 3-12. The same data as in Figure 3-11. The aspect
 ratio has been changed so that rising and falling flanks of the
 curve make approximately a 45 degree angle with the horizontal
 (banking to 45 degrees), but the figure has become so small that it
 is hard to recognize much detail.

Linear Regression and All That

Linear regression is a method for finding a straight line
 through a two-dimensional scatter plot. It is simple to calculate and
 has considerable intuitive appeal—both of which together make it
 easily the single most-often misapplied technique in all of
 statistics!
There is a fundamental misconception regarding linear
 regression—namely that it is a good and particularly rigorous way to
 summarize the data in a two-dimensional scatter
 plot. This misconception is often associated with the
 notion that linear regression provides the “best fit” to the
 data.
[image: A cut-and-stack plot of the data from . By breaking the time axis into three chunks, we can bank each century to 45 degrees and still fit all the data into a standard-size plot. Note how we can now easily recognize an important feature of the data: the rising flank tends to be steeper than the falling one.]

Figure 3-13. A cut-and-stack plot of the data from Figure 3-11. By breaking
 the time axis into three chunks, we can bank each century to 45
 degrees and still fit all the data into a standard-size plot. Note
 how we can now easily recognize an important feature of the data:
 the rising flank tends to be steeper than the falling one.

This is not so. Linear regression is not a particularly good way
 to summarize data, and it provides a “best fit” in a much more limited
 sense than is generally realized.
Linear regression applies to situations where we have a set of
 input values (the controlled variable) and, for each of them, we
 measure an output value (the response variable). Now we are looking
 for a linear function f(x) =
 a + bx as a function of the
 controlled variable x that reproduces the
 response with the least amount of error. The result of a linear
 regression is therefore a function that minimizes the error in the
 responses for a given set of inputs.
This is an important understanding: the purpose of a regression
 procedure is not to summarize the data—the
 purpose is to obtain a function that allows us to
 predict the value of the response variable (which
 is affected by noise) that we expect for a certain value of the input
 variable (which is assumed to be known exactly).
As you can see, there is a fundamental asymmetry between the two
 variables: the two are not interchangeable. In fact, you will obtain a
 different solution when you regress
 x on y than when you regress
 y on x. Figure 3-14 demonstrates this
 effect: the same data set is fitted both ways: y
 = a + bx and
 x = c +
 dy. The resulting straight lines are quite
 different.
This simple observation should dispel the notion that linear
 regression provides the best fit—after all, how
 could there be two different “best fits” for a single data set?
 Instead, linear regression provides the most faithful representation
 of an output in response to an input. In other words, linear
 regression is not so much a best fit as a best
 predictor.
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]

Figure 3-14. The first data set from Anscombe’s quartet (Table 3-1), fit both ways:
 y = a +
 bx and x =
 c + dy. The thin lines
 indicate the errors, the squares of which are summed to give
 χ2. Depending on what you consider the
 input and the response variable, the “best fit” turns out to be
 different!

How do we find this “best predictor”? We require it to minimize
 the error in the responses, so that we will be able to make the most
 accurate predictions. But the error in the responses is simply the sum
 over the errors for all the individual data points. Because errors can
 be positive or negative (as the function over- or undershoots the real
 value), they may cancel each other out. To avoid this, we do not sum
 the errors themselves but their squares:
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]
where
 (xi,
 yi)
 with i = 1 ... n are the
 data points. Using the values for the parameters
 a and b that minimize this
 quantity will yield a function that best explains
 y in terms of x.
Because the dependence of χ2 on
 a and b is particularly
 simple, we can work out expressions for the optimal choice of both
 parameters explicitly. The results are:
[image: The first data set from Anscombe’s quartet (), fit both ways: y = a + bx and x = c + dy. The thin lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the response variable, the “best fit” turns out to be different!]
[image: Anscombe’s quartet: all summary statistics (in particular the regression coefficients) for all four data sets are numerically equal, yet only data set A is well represented by the linear regression function.]

Figure 3-15. Anscombe’s quartet: all summary statistics (in particular the
 regression coefficients) for all four data sets are numerically
 equal, yet only data set A is well represented by the linear
 regression function.

Table 3-1. Anscombe’s quartet.
	A
	B
	C
	D

	x
	y
	x
	y
	x
	y
	x
	y

	10.0
	8.04
	10.0
	9.14
	10.0
	7.46
	8.0
	6.58

	8.0
	6.95
	8.0
	8.14
	8.0
	6.77
	8.0
	5.76

	13.0
	7.58
	13.0
	8.74
	13.0
	12.74
	8.0
	7.71

	9.0
	8.81
	9.0
	8.77
	9.0
	7.11
	8.0
	8.84

	11.0
	8.33
	11.0
	9.26
	11.0
	7.81
	8.0
	8.47

	14.0
	9.96
	14.0
	8.10
	14.0
	8.84
	8.0
	7.04

	6.0
	7.24
	6.0
	6.13
	6.0
	6.08
	8.0
	5.25

	4.0
	4.26
	4.0
	3.10
	4.0
	5.39
	19.0
	12.50

	12.0
	10.84
	12.0
	9.13
	12.0
	8.15
	8.0
	5.56

	7.0
	4.82
	7.0
	7.26
	7.0
	6.42
	8.0
	7.91

	5.0
	5.68
	5.0
	4.74
	5.0
	5.73
	8.0
	6.89

These results are simple and beautiful—and, in their simplicity,
 very suggestive. But they can also be highly misleading. Table 3-1 and Figure 3-15 show a famous
 example, Anscombe’s quartet. If you calculate the
 regression coefficients a and
 b for each of the four data sets shown in Table 3-1, you will find that they are
 exactly the same for all four data sets! Yet when you look at the
 corresponding scatter plots, it is clear that only the first data set
 is properly described by the linear model. The second data set is not
 linear, the third is corrupted by an outlier, and the fourth does not
 contain enough independent x values to form a
 regression at all! Looking only at the results of the linear
 regression, you would never know this.
I think this example should demonstrate once and for all
 how dangerous it can be to rely on linear regression (or on any form
 of aggregate statistics) to summarize a data set. (In fact, the
 situation is even worse than what I have presented: with a little bit
 more work, you can calculate confidence intervals on the linear
 regression results, and even they turn out to be
 equal for all four members of Anscombe’s quartet!)
Having seen this, here are some questions to ask
 before computing linear regressions.
Do you need regression?
	Remember that regression coefficients are not a particularly
 good way to summarize data. Regression only
 makes sense when you want to use it for
 prediction. If this is not the case, then
 calculating regression coefficients is not useful.

Is the linear assumption
 appropriate?
	Linear regression is appropriate only if the data can be
 described by a straight line. If this is obviously not the case
 (as with the second data set in Anscombe’s quartet), then linear
 regression does not apply.

Is something else entirely going on?
	Linear regression, like all summary statistics, can be led
 astray by outliers or other “weird” data sets, as is demonstrated
 by the last two examples in Anscombe’s quartet.

Historically, one of the attractions of linear regression has
 been that it is easy to calculate: all you need to do is to calculate
 the four sums
 Σxi,
 [image:],
 Σyi,
 and
 Σxiyi,
 which can be done in a single pass through the data set. Even with
 moderately sized data sets (dozens of points), this is arguably easier
 than plotting them using paper and pencil! However, that argument
 simply does not hold anymore: graphs are easy to produce on a computer
 and contain so much more information than a set of regression
 coefficients that they should be the preferred way to analyze,
 understand, and summarize data.
Remember: The purpose of computing is insight, not numbers! (R.
 W. Hamming)

Showing What’s Important

Perhaps this is a good time to express what I believe to be the
 most important principle in graphical analysis:
Plot the pertinent quantities!
As obvious as it may appear, this principle is often overlooked
 in practice.
For example, if you look through one of those books that show
 and discuss examples of poor graphics, you will find that most
 examples fall into one of two classes. First, there are those graphs
 that failed visually, with garish fonts,
 unhelpful symbols, and useless embellishments. (These are mostly
 presentation graphics gone wrong, not examples of bad graphical
 analysis.)
The second large class of graphical failures consists of those
 plots that failed conceptually or, one might
 better say, analytically. The problem with these
 is not in the technical aspects of drawing the graph but in the
 conceptual understanding of what the graph is trying to show. These
 plots displayed something, but they failed to present what was most
 important or relevant to the question at hand.
The problem, of course, is that usually it is not at all obvious
 what we want to see, and it is certainly not
 obvious at the beginning. It usually takes several iterations, while a
 mental model of the data is forming in your head, to articulate the
 proper question that a data set is suggesting and to come up with the
 best way of answering it. This typically involves some form of
 transformation or manipulation of the data: instead of the raw data,
 maybe we should show the difference between two data sets. Or the
 residual after subtracting a trend or after subtracting the results
 from a model. Or perhaps we need to normalize data sets from different
 sources by subtracting their means and dividing by their spreads. Or
 maybe we should not use the original variables to display the data but
 instead apply some form of transformation on them (logarithmic scales
 are only the simplest example of such transformations). Whatever we
 choose to do, it will typically involve some form of transformation of
 the data—it’s rarely the raw data that is most interesting; but any
 deviation from the expected is almost always an interesting
 discovery.
Very roughly, I think we can identify a three-step (maybe
 four-step) process. It should be taken not in the sense of a
 prescriptive checklist but rather in the sense of a gradual process of
 learning and discovery.
First: The basics. Initially, we are mostly
 concerned with displaying what is there.
	Select proper ranges.

	Subtract a constant offset.

	Decide whether to use symbols (for scattered data), lines
 (for continuous data), or perhaps both (connecting individual
 symbols can help emphasize trends in sparse data sets).

Second: The appearance. Next, we work with
 aspects of the plot that influence its overall appearance.
	Log plots.

	Add a smoothed curve.

	Consider banking.

Third: Build a model. At this point, we
 start building a mathematical model and compare it against the raw
 data. The comparison often involves finding the differences between
 the model and the data (typically subtracting the model or forming a
 ratio).
	Subtract a trend.

	Form the ratio to a base value or baseline.

	Rescale a set of curves to collapse them onto each
 other.

Fourth (for presentation graphics only): Add
 embellishments. Embellishments and decorations (labels,
 arrows, special symbols, explanations, and so on) can make a graph
 much more informative and self-explanatory. However, they are intended
 for an audience beyond the actual creator of the graph. You will
 rarely need them during the analysis phase, when
 you are trying to find out something new about the data set, but they
 are an essential part when presenting your
 results. This step should only occur if you want to communicate your
 results to a wider and more general audience.

Graphical Analysis and Presentation Graphics

I have used the terms graphical analysis
 and presentation graphics without explaining them
 properly. In short:
Graphical analysis
	Graphical analysis is an investigation of data using
 graphical methods. The purpose is the discovery of
 new information about the underlying data
 set. In graphical analysis, the proper question to ask is often
 not known at the outset but is discovered as part of the
 analysis.

Presentation graphics
	Presentation graphics are concerned with the communication
 of information and results that are already
 understood. The discovery has been made, and now it
 needs to be communicated clearly.

The distinction between these two activities is important,
 because they do require different techniques and yield different work
 products.
During the analysis process, convenience and ease of use are the
 predominant concerns—any amount of polishing is too much! Nothing
 should keep you from redrawing a graph, changing some aspect of it,
 zooming in or out, applying transformations, and changing styles.
 (When working with a data set I haven’t seen before, I probably create
 dozens of graphs within a few minutes—basically, “looking at the data
 from all angles.”) At this stage, any form of embellishment (labels,
 arrows, special symbols) is inappropriate—you know what you are
 showing, and creating any form of decoration on the graph will only
 make you more reluctant to throw the graph away and start over.
For presentation graphics, the opposite applies. Now you already
 know the results, but you would like to communicate them to others.
 Textual information therefore becomes very important: how else will
 people know what they are looking at?
You can find plenty of advice elsewhere on how to prepare “good”
 presentation graphics—often strongly worded and with an unfortunate
 tendency to use emotional responses (ridicule or derision) in place of
 factual arguments. In the absence of good empirical evidence one way
 or the other, I will not add to the discussion. But I present a
 checklist below, mentioning some points that are
 often overlooked when preparing graphs for presentation:
	Try to make the text self-explanatory. Don’t rely on
 a (separate) caption for basic information—it might be removed
 during reproduction. Place basic information on the graph
 itself.

	Explain what is plotted on the axes. This can be done with
 explicit labels on the axes or through explanatory text elsewhere.
 Don’t forget the units!

	Make labels self-explanatory. Be careful with nonstandard
 abbreviations. Ask yourself: If this is all the context provided,
 are you certain that the reader will be able
 to figure out what you mean? (In a recent book on data graphing, I
 found a histogram labeled Married,
 Nvd, Dvd,
 Spd, and Wdd. I could
 figure out most of them, because at least
 Married was given in long form, but I
 struggled with Nvd for quite a while!)

	Given how important text is on a graph,
 make sure to pick a suitable font. Don’t automatically rely on the
 default provided by your plotting software. Generally, sans-serif
 fonts (such as Helvetica) are preferred for short labels, such as
 those on a graph, whereas serif fonts (such as Times) are more
 suitable for body text. Also pick an appropriate size—text fonts
 on graphics are often too large, making them look garish. (Most
 text fonts are used at 10-point to 12-point size; there is no need
 for type on graphics to be much larger.)

	If there are error bars, be sure to explain their meaning.
 What are they: standard deviations, inter-quartile ranges, or the
 limits of experimental apparatus? Also, choose an appropriate
 measure of uncertainty. Don’t use standard deviations for highly
 skewed data.

	Don’t forget the basics. Choose appropriate plot ranges.
 Make sure that data is not unnecessarily obscured by
 labels.

	Proofread graphs! Common errors include: typos in textual
 labels, interchanged data sets or switched labels, missing units,
 and incorrect order-of-magnitude qualifiers
 (e.g., milli- versus micro-).

	Finally, choose an appropriate output format for your graph!
 Don’t use bitmap formats (GIF, JPG, PNG) for print publication—use
 a scalable format such as PostScript or PDF.

One last piece of advice: creating good presentation graphics is
 also a matter of taste, and taste can be
 acquired. If you want to work with data, then you should develop an
 interest in graphs—not just the ones you create yourself, but all that
 you see. If you notice one that seems to work (or not), take a moment
 to figure out what makes it so. Are the lines too thick? The labels
 too small? The choice of colors just right? The combination of curves
 helpful? Details matter.

Workshop: matplotlib

The matplotlib module is a Python module for creating
 two-dimensional xy plots, scatter plots, and
 other plots typical of scientific applications. It can be used in an
 interactive session (with the plots being shown immediately in a GUI
 window) or from within a script to create graphics files using common
 graphics file formats.
Let’s first look at some examples to demonstrate how matplotlib
 can be used from within an interactive session. Afterward, we will
 take a closer look at the structure of the library and give some
 pointers for more detailed investigations.
Using matplotlib Interactively

To begin an interactive matplotlib session, start IPython (the
 enhanced interactive Python shell) with the -pylab option, entering the following
 command line like at the shell prompt:
ipython -pylab
This will start IPython, load matplotlib
 and NumPy, and import both into the global
 namespace. The idea is to give a Matlab-like experience of
 interactive graphics together with numerical and matrix operations.
 (It is important to use IPython here—the flow of control between the
 Python command interpreter and the GUI eventloop for the graphics
 windows requires it. Other interactive shells can be used, but they
 may require some tinkering.)
We can now create plots right away:
In [1]: x = linspace(0, 10, 100)

In [2]: plot(x, sin(x))
Out[2]: [<matplotlib.lines.Line2D object at 0x1cfefd0>]
This will pop up a new window, showing a graph like the one in
 Figure 3-16 but
 decorated with some GUI buttons. (Note that the sin() function is a ufunc from the NumPy
 package: it takes a vector and returns a vector of the same size,
 having applied the sine function to each element in the input
 vector. See the Workshop in Chapter 2.)
We can now add additional curves and decorations to the plot.
 Continuing in the same session as before, we add another curve and
 some labels:
In [3]: plot(x, 0.5*cos(2*x))
Out[3]: [<matplotlib.lines.Line2D object at 0x1cee8d0>]

In [4]: title("A matplotlib plot")
Out[4]: <matplotlib.text.Text object at 0x1cf6950>

In [5]: text(1, -0.8, "A text label")
Out[5]: <matplotlib.text.Text object at 0x1f59250>

In [6]: ylim(-1.1, 1.1)
Out[6]: (-1.1000000000000001, 1.1000000000000001)
[image: A simple matplotlib figure (see text).]

Figure 3-16. A simple matplotlib figure (see text).

In the last step, we increased the range of values plotted on
 the vertical axis. (There is also an axis() command, which allows you to
 specify limits for both axes at the same time. Don’t confuse it with
 the axes() command, which creates
 a new coordinate system.) The plot should now look like the one in
 Figure 3-17, except
 that in an interactive terminal the different lines are
 distinguished by their color, not their dash pattern.
Let’s pause for a moment and point out a few details. First of
 all, you should have noticed that the graph in the plot window was
 updated after every operation. That is typical for the interactive
 mode, but it is not how matplotlib works in a script: in general,
 matplotlib tries to delay the (possibly expensive) creation of an
 actual plot until the last possible moment. (In a script, you would
 use the show() command to force
 generation of an actual plot window.)
Furthermore, matplotlib is “stateful”: a new plot command does
 not erase the previous figure and, instead, adds to it. This
 behavior can be toggled with the hold() command, and the current state can
 be queried using ishold().
 (Decorations like the text labels are not affected by this.) You can
 clear a figure explicitly using clf().
This implicit state may come as a surprise: haven’t we learned
 to make things explicit, when possible? In fact, this stateful
 behavior is a holdover from the way Matlab works. Here is another
 example. Start a new session and execute the following
 commands:
In [1]: x1 = linspace(0, 10, 40)

In [2]: plot(x1, sqrt(x1), 'k-')
Out[2]: [<matplotlib.lines.Line2D object at 0x1cfef50>]
[image: The plot from with an additional curve and some decorations added.]

Figure 3-17. The plot from Figure 3-16 with an
 additional curve and some decorations added.

In [3]: figure(2)
Out[3]: <matplotlib.figure.Figure object at 0x1cee850>

In [4]: x2 = linspace(0, 10, 100)

In [5]: plot(x1, sin(x1), 'k--', x2, 0.2*cos(3*x2), 'k:')
Out[5]:
[<matplotlib.lines.Line2D object at 0x1fb1150>,
 <matplotlib.lines.Line2D object at 0x1fba250>]

In [6]: figure(1)
Out[6]: <matplotlib.figure.Figure object at 0x1cee210>

In [7]: plot(x1, 3*exp(-x1/2), linestyle='None', color='white', marker='o',
 ...: markersize=7)
Out[7]: [<matplotlib.lines.Line2D object at 0x1d0c150>]

In [8]: savefig('graph1.png')
This snippet of code demonstrates several things. We begin as
 before, by creating a plot. This time, however, we pass a third
 argument to the plot() command
 that controls the appearance of the graph elements. That matplotlib
 library supports Matlab-style mnemonics for plot styles; the letter
 k stands for the color “black”
 and the single dash - for a solid
 line. (The letter b stands for
 “blue.”)
Next we create a second figure in a new window and switch to
 it by using the figure(2)
 command. All graphics commands will now be directed to this second
 figure—until we switch back to the first figure using figure(1). This is another example of
 “silent state.” Observe also that figures are counted starting from
 1, not from 0.
In line 5, we see another way to use the plot
 command—namely, by specifying two sets of curves to be plotted
 together. (The formatting commands request a dashed and a dotted
 line, respectively.) Line 7 shows yet a different way to specify
 plot styles: by using named (keyword) arguments.
Finally, we save the currently active plot
 (i.e., figure 1) to a PNG file. The savefig() function determines the desired
 output format from the extension of the filename given. Other
 formats that are supported out of the box are PostScript, PDF, and
 SVG. Additional formats may be available, depending on the libraries
 installed on your system.

Case Study: LOESS with matplotlib

As a quick example of how to put the different aspects of
 matplotlib together, let’s discuss the script used to generate Figure 3-4. This also
 gives us an opportunity to look at the LOESS method in a bit more
 detail.
To recap: LOESS stands for locally
 weighted linear regression. The difference between LOESS
 and regular linear regression is the introduction of a weight
 factor, which emphasizes those data points that are close to the
 location x at which we want to evaluate the
 smoothed curve. As explained earlier, the expression for squared
 error (which we want to minimize) now becomes:
[image: Case Study: LOESS with matplotlib]
Keep in mind that this expression now depends on
 x, the location at which we want to evaluate
 the smoothed curve!
If we minimize this expression with respect to the parameters
 a and b, we obtain the
 following expressions for a and
 b (remember that we will have to evaluate them
 from scratch for every point x):
[image: Case Study: LOESS with matplotlib]
This can be quite easily translated into NumPy and plotted
 with matplotlib. The actual LOESS calculation is contained entirely
 in the function loess(). (See the
 Workshop in Chapter 2 for a
 discussion of this type of programming.)
from pylab import *

x: location; h: bandwidth; xp, yp: data points (vectors)
def loess(x, h, xp, yp):
 w = exp(-0.5*(((x-xp)/h)**2)/sqrt(2*pi*h**2))

 b = sum(w*xp)*sum(w*yp) - sum(w)*sum(w*xp*yp)
 b /= sum(w*xp)**2 - sum(w)*sum(w*xp**2)
 a = (sum(w*yp) - b*sum(w*xp))/sum(w)

 return a + b*x

d = loadtxt("draftlottery")

s1, s2 = [], []
for k in d[:,0]:
 s1.append(loess(k, 5, d[:,0], d[:,1]))
 s2.append(loess(k, 100, d[:,0], d[:,1]))

xlabel("Day in Year")
ylabel("Draft Number")

gca().set_aspect('equal')

plot(d[:,0], d[:,1], 'o', color="white", markersize=7, linewidth=3)
plot(d[:,0], array(s1), 'k-', d[:,0], array(s2), 'k--')

q = 4
axis([1-q, 366+q, 1-q, 366+q])

savefig("draftlottery.eps")
We evaluate the smoothed curve at the locations of all
 data points, using two different values for the bandwidth, and then
 proceed to plot the data together with the smoothed curves. Two
 details require an additional word of explanation. The function
 gca() returns the current “set of
 axes” (i.e., the current coordinate system on
 the plot—see below for more information on this function), and we
 require the aspect ratio of both x and
 y axes to be equal (so that the plot is a
 square). In the last command before we save the figure to file, we
 adjust the plot range by using the axis() command. This function must
 follow the plot() commands, because the plot() command automatically adjusts the
 plot range depending on the data.

Managing Properties

Until now, we have ignored the values returned by the various
 plotting commands. If you look at the output generated by IPython,
 you can see that all the commands that add graph elements to the
 plot return a reference to the object just created. The one
 exception is the plot() command
 itself, which always returns a list of objects
 (because, as we have seen, it can add more than one “line” to the
 plot).
These references are important because it is through them that
 we can control the appearance of graph elements once they have been
 created. In a final example, let’s study how we can use them:
In [1]: x = linspace(0, 10, 100)

In [2]: ps = plot(x, sin(x), x, cos(x))

In [3]: t1 = text(1, -0.5, "Hello")

In [4]: t2 = text(3, 0.5, "Hello again")

In [5]: t1.set_position([7, -0.5])

In [6]: t2.set(position=[5, 0], text="Goodbye")
Out[6]: [None, None]

In [7]: draw()

In [8]: setp([t1, t2], fontsize=10)
Out[8]: [None, None]

In [9]: t2.remove()

In [10]: Artist.remove(ps[1])

In [11]: draw()
In the first four lines, we create a graph with two curves and
 two text labels, as before, but now we are holding on to the object
 references. This allows us to make changes to these graph elements.
 Lines 5, 6, and 8 demonstrate different ways to do this: for each
 property of a graph element, there is an explicit, named accessor
 function (line 5). Alternatively, we can use a generic setter with
 keyword arguments—this allows us to set several properties (on a
 single object) in a single call (line 6). Finally, we can use the
 standalone setp() function, which
 takes a list of graph elements and applies the requested property
 update to all of them. (It can also take a single graph element
 instead of a one-member list.) Notice that setp() generates a redraw event whereas
 individual property accessors do not; this is why we must generate
 an explicit redraw event in line 7. (If you are confused by the
 apparent duplication of functionality, read on: we will come back to
 this point in the next section.)
Finally, we remove one of the text labels and one of the
 curves by using the remove()
 function. The remove() function
 is defined for objects that are derived from the Artist class, so we can invoke it using
 either member syntax (as a “bound” function, line 9) or the class
 syntax (as an “unbound” function, line 10). Keep in mind that
 plot() returns a
 list of objects, so we need to index into the
 list to access the graph objects themselves.
There are some useful functions that can help us handle object
 properties. If you issue setp(r)
 with only a single argument in an interactive session, then it will
 print all properties that are available for object r together with information about the
 values that each property is allowed to take on. The getp(r) function on the other hand prints
 all properties of r together with
 their current values.
Suppose we did not save the references to the objects we
 created, or suppose we want to change the properties of an object
 that we did not create explicitly. In such cases we can use the
 functions gcf() and gca(), which return a reference to the
 current figure or axes object, respectively. To make use of them, we need to
 develop at least a passing familiarity with matplotlib’s object
 model.

The matplotlib Object Model and Architecture

The object model for matplotlib is constructed similarly to
 the object model for a GUI widget set: a plot is represented by a
 tree of widgets, and each widget is able to render itself. Perhaps
 surprisingly, the object model is not flat. In other words, the plot
 elements (such as axes, labels, arrows, and so on) are not
 properties of a high-level “plot” or “figure” object. Instead, you
 must descend down the object tree to find the element that you want
 to modify and then, once you have an explicit reference to it,
 change the appropriate property on the element.
The top-level element (the root node of the tree) is an object
 of class Figure. A figure
 contains one or more Axes
 objects: this class represents a “coordinate system” on which actual
 graph elements can be placed. (By contrast, the actual axes that are
 drawn on the graph are objects of the Axis class!) The gcf() and gca() functions therefore return a
 reference to the root node of the entire figure or to the root node
 of a single plot in a multiplot figure.
Both Figure and Axes are subclasses of Artist. This is the base class of all
 “widgets” that can be drawn onto a graph. Other important subclasses
 of Artist are Line2D (a polygonal line connecting
 multiple points, optionally with a symbol at each point), Text, and Patch (a geometric shape that can be
 placed onto the figure). The top-level Figure instance is owned by an object of
 type FigureCanvas (in the
 matplotlib.backend_bases module).
 Most likely you won’t have to interact with this class yourself
 directly, but it provides the bridge between the (logical) object
 tree that makes up the graph and a backend, which does the actual
 rendering. Depending on the backend, matplotlib creates either a
 file or a graph window that can be used in an interactive GUI
 session.
Although it is easy to get started with matplotlib from within
 an interactive session, it can be quite challenging to really get
 one’s arms around the whole library. This can become painfully clear
 when you want to change some tiny aspect of a plot—and can’t figure
 out how to do that.
As is so often the case, it helps to investigate how things
 came to be. Originally, matplotlib was conceived as a plotting
 library to emulate the behavior found in Matlab. Matlab
 traditionally uses a programming model based on functions and, being
 30 years old, employs some conventions that are no longer popular
 (i.e., implicit state). In contrast, matplotlib
 was implemented using object-oriented design principles in Python,
 with the result that these two different paradigms clash.
One consequence of having these two different paradigms side
 by side is redundancy. Many operations can be performed in several
 different ways (using standalone functions, Python-style keyword
 arguments, object attributes, or a Matlab-compatible alternative
 syntax). We saw examples of this redundancy in the
 third listing when we changed object properties. This duplication of
 functionality matters because it drastically increases the size of
 the library’s interface (its application programming interface or
 API), which makes it that much harder to develop a comprehensive
 understanding. What is worse, it tends to spread information around.
 (Where should I be looking for plot attributes—among functions,
 among members, among keyword attributes? Answer: everywhere!)
Another consequence is inconsistency. At least in its favored
 function-based interface, matplotlib uses some conventions that are
 rather unusual for Python programming—for instance, the way a figure
 is created implicitly at the beginning of every
 example, and how the pointer to the current figure is maintained
 through an invisible “state variable” that is opaquely manipulated
 using the figure() function. (The
 figure() function actually
 returns the figure object just created, so the invisible state
 variable is not even necessary.) Similar surprises can be found
 throughout the library.
A last problem is namespace pollution (this is another Matlab
 heritage—they didn’t have namespaces back then). Several operations
 included in matplotlib’s function-based interface are not actually
 graphics related but do generate plots as side
 effects. For example, hist() calculates (and plots) a histogram,
 acorr() calculates (and plots) an
 autocorrelation function, and so on. From a user’s perspective, it
 makes more sense to adhere to a separation of tasks: perform all
 calculations in NumPy/SciPy, and then pass the results explicitly to
 matplotlib for plotting.

Odds and Ends

There are three different ways to import and use matplotlib.
 The original method was to enter:
from pylab import *
This would load all of NumPy as well as matplotlib and import
 both APIs into the global namespace! This is no longer the preferred
 way to use matplotlib. Only for interactive use with IPython is it
 still required (using the -pylab
 command-line option to IPython).
The recommended way to import matplotlib’s function-based
 interface together with NumPy is by using:
import matplotlib.pyplot as plt
import numpy as np
The pyplot interface is a
 function-based interface that uses the same Matlab-like stateful
 conventions that we have seen in the examples of this section;
 however, it does not include the NumPy
 functions. Instead, NumPy must be imported separately (and into its
 own namespace).
Finally, if all you want is the object-oriented API to
 matplotlib, then you can import just the explicit modules from
 within matplotlib that contain the class definitions you need
 (although it is customary to import pyplot instead and thereby obtain access
 to the whole collection).
Of course, there are many details that we have not discussed.
 Let me mention just a few:
	Many more options (to configure the axes and tick marks,
 to add legend or arrows).

	Additional plot types (density or “false-color” plots,
 vector plots, polar plots).

	Digital image processing—matplotlib can read and
 manipulate PNG images and can also call into the Python Image
 Library (PIL) if it is installed.

	Matplotlib can be embedded in a GUI and can handle GUI
 events.

The Workshop of Chapter 4 contains
 another example that involves matplotlib being called from a script
 to generate image files.

Further Reading

In addition to the books listed below, you may check the
 references in Chapter 10 for additional
 material on linear regression.
	The Elements of Graphing
 Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
This is probably the definitive reference on graphical
 analysis (as opposed to presentation graphics). Cleveland is the
 inventor of both the LOESS and the banking techniques discussed in
 this chapter. My own thinking has been influenced strongly by
 Cleveland’s careful approach. A companion volume by the same
 author, entitled Visualizing Data, is also
 available.

	Exploratory Data Analysis with
 MATLAB. Wendy L. Martinez and Angel R. Martinez. Chapman &
 Hall/CRC. 2004.
This is an interesting book—it covers almost the same topics
 as the book you are reading but in opposite
 order, starting with dimensionality reduction and clustering
 techniques and ending with univariate distributions! Because it
 demonstrates all techniques by way of Matlab, it does not develop
 the conceptual background in great depth. However, I found the
 chapter on smoothing to be quite useful.

[4] More details and a description of the lottery process can
 be found in The Statistical Exorcist. M.
 Hollander and F. Proschan. CRC Press. 1984.

[5] This example was inspired by Graphic Discovery:
 A Trout in the Milk and Other Visual Adventures.
 Howard Wainer. 2nd ed., Princeton University Press. 2007.

[6] The original reference is “A General Model for the Origin of
 Allometric Scaling Laws in Biology.” G. B. West, J. H. Brown, and
 B. J. Enquist. Science 276 (1997), p. 122.
 Additional references can be found on the Web.

[7] The discussion here is adapted from my book
 Gnuplot in Action. Manning Publications.
 2010.

Chapter 4. Time As a Variable: Time-Series Analysis

IF WE
 FOLLOW THE VARIATION OF SOME QUANTITY OVER TIME, WE ARE DEALING WITH A
 TIME SERIES. TIME series are
 incredibly common: examples range from stock market movements to the
 tiny icon that constantly displays the CPU utilization of your desktop
 computer for the previous 10 seconds. What makes time series so common
 and so important is that they allow us to see not only a single quantity
 by itself but at the same time give us the typical “context” for this
 quantity. Because we have not only a single value but a bit of history
 as well, we can recognize any changes from the typical behavior
 particularly easily.
On the face of it, time-series analysis is a bivariate problem
 (see Chapter 3).
 Nevertheless, we are dedicating a separate chapter to this topic. Time
 series raise a different set of issues than many other bivariate
 problems, and a rather specialized set of methods has been developed to
 deal with them.
Examples

To get started, let’s look at a few different time series to
 develop a sense for the scope of the task.
Figure 4-1
 shows the concentration of carbon dioxide (CO2)
 in the atmosphere, as measured by the observatory on Mauna Loa on
 Hawaii, recorded at monthly intervals since 1959.
This data set shows two features we often find in a time-series
 plot: trend and seasonality. There is clearly a steady, long-term
 growth in the overall concentration of CO2;
 this is the trend. In addition, there is also a
 regular periodic pattern; this is the
 seasonality. If we look closely, we see that the
 period in this case is exactly 12 months, but we will use the term
 “seasonality” for any regularly recurring feature,
 regardless of the length of the period. We should also note that the
 trend, although smooth, does appear to be nonlinear, and in itself may
 be changing over time.
[image: Trend and seasonality: the concentration of CO2 (in parts per million) in the atmosphere as measured by the observatory on Mauna Loa, Hawaii, at monthly intervals.]

Figure 4-1. Trend and seasonality: the concentration of
 CO2 (in parts per million) in the atmosphere
 as measured by the observatory on Mauna Loa, Hawaii, at monthly
 intervals.

Figure 4-2
 displays the concentration of a certain gas in the exhaust of a gas
 furnace over time. In many ways, this example is the exact opposite of
 the previous example. Whereas the data in Figure 4-1 showed a lot of
 regularity and a strong trend, the data in Figure 4-2 shows no trend
 but a lot of noise.
Figure 4-3
 shows the dramatic drop in the cost of a typical long-distance phone
 call in the U.S. over the last century. The strongly nonlinear trend
 is obviously the most outstanding feature of this data set. As with
 many growth or decay processes, we may suspect an exponential time
 development; in fact, in a semi-logarithmic plot (Figure 4-3, inset) the data
 follows almost a straight line, confirming our expectation. Any
 analysis that fails to account explicitly for this behavior of the
 original data is likely to lead us astray. We should therefore work
 with the logarithms of the cost, rather than with the absolute
 cost.
There are some additional questions that we should ask when
 dealing with a long-running data set like this. What exactly is a
 “typical” long-distance call, and has that definition changed over the
 observation period? Are the costs adjusted for inflation or not? The
 data itself also begs closer scrutiny. For instance, the
 uncharacteristically low prices for a couple of years in the late
 1970s make me suspicious: are they the result of a clerical error (a
 typo), or are they real? Did the breakup of the AT&T system have
 anything to do with these low prices? We will not follow up on these
 questions here because I am presenting this example only as an
 illustration of an exponential trend, but any serious analysis of this
 data set would have to follow up on these questions.
[image: No trend but relatively smooth variation over time: concentration of a certain gas in a furnace exhaust (in arbitrary units).]

Figure 4-2. No trend but relatively smooth variation over time:
 concentration of a certain gas in a furnace exhaust (in arbitrary
 units).

[image: Nonlinear trend: cost of a typical long-distance phone call in the U.S.]

Figure 4-3. Nonlinear trend: cost of a typical long-distance phone call
 in the U.S.

Figure 4-4
 shows the development of the Japanese stock market as represented by
 the Nikkei Stock Index over the last 40 years, an example of a time
 series that exhibits a marked change in behavior. Clearly, whatever
 was true before the New Year’s Day 1990 was no longer true afterward.
 (In fact, by looking closely, you can make out a second change in
 behavior that was more subtle than the bursting of the big Japanese
 bubble: its beginning, sometime around 1985–1986.)
[image: Change in behavior: the Nikkei Stock Index over the last 40 years.]

Figure 4-4. Change in behavior: the Nikkei Stock Index over the last 40
 years.

This data set should serve as a cautionary example. All
 time-series analysis is based on the assumption that the processes
 generating the data are stationary in time. If the rules of the game
 change, then time-series analysis is the wrong tool for the task;
 instead we need to investigate what caused the break in behavior. More
 benign examples than the bursting of the Japanese bubble can be found:
 a change in sales or advertising strategy may significantly alter a
 company’s sales patterns. In such cases, it is more important to
 inquire about any further plans that the sales department might have,
 rather than to continue working with data that is no longer
 representative!
After these examples that have been chosen for their “textbook”
 properties, let’s look at a “real-world” data set. Figure 4-5 shows the number
 of daily calls placed to a call center for a time period slightly
 longer than two years. In comparison to the previous examples, this
 data set has a lot more structure, which makes it hard to determine
 even basic properties. We can see some high-frequency variation, but
 it is not clear whether this is noise or has some form of regularity
 to it. It is also not clear whether there is any sort of regularity on
 a longer time scale. The amount of variation makes it hard to
 recognize any further structure. For instance, we cannot tell if there
 is a longer-term trend in the data. We will come back to this example
 later in the chapter.
[image: A real-world data set: number of daily calls placed to a call center. The data exhibits short- and long-term seasonality, noise, and possibly changes in behavior. Also shown is the result of applying a 31-point Gaussian smoothing filter.]

Figure 4-5. A real-world data set: number of daily calls placed to a call
 center. The data exhibits short- and long-term seasonality, noise,
 and possibly changes in behavior. Also shown is the result of
 applying a 31-point Gaussian smoothing filter.

The Task

After this tour of possible time-series scenarios, we
 can identify the main components of every time series:
	Trend

	Seasonality

	Noise

	Other(!)

The trend may be linear or nonlinear, and we may want to
 investigate its magnitude. The seasonality pattern may be either
 additive or multiplicative. In the first case, the seasonal change has
 the same absolute size no matter what the
 magnitude of the current baseline of the series is; in the latter
 case, the seasonal change has the same relative
 size compared with the current magnitude of the series. Noise
 (i.e., some form of random variation) is almost
 always part of a time series. Finding ways to reduce the noise in the
 data is usually a significant part of the analysis process. Finally,
 “other” includes anything else that we may observe in a time series,
 such as particular significant changes in overall behavior, special
 outliers, missing data—anything remarkable at all.
Given this list of components, we can summarize what it means to
 “analyze” a time series. We can distinguish three basic tasks:
	Description

	Prediction

	Control

Description attempts to identify components of a time series
 (such as trend and seasonality or abrupt changes in behavior).
 Prediction seeks to forecast future values. Control in this context
 means the monitoring of a process over time with the purpose of
 keeping it within a predefined band of values—a typical task in many
 manufacturing or engineering environments. We can distinguish the
 three tasks in terms of the time frame they address: description looks
 into the past, prediction looks to the future, and control
 concentrates on the present.
Requirements and the Real World

Most standard methods of time-series analysis make a number of
 assumptions about the underlying data.
	Data points have been taken at equally spaced time steps,
 with no missing data points.

	The time series is sufficiently long (50 points are often
 considered as an absolute minimum).

	The series is stationary: it has no
 trend, no seasonality, and the character (amplitude and
 frequency) of any noise does not change with time.

Unfortunately, most of these assumptions will be more or less
 violated by any real-world data set that you are likely to
 encounter. Hence you may have to perform a certain amount of data
 cleaning before you can apply the methods described in this
 chapter.
If the data has been sampled at irregular time steps or if
 some of the data points are missing, then you can try to interpolate
 the data and resample it at equally spaced intervals. Time series
 obtained from electrical systems or scientific experiments can be
 almost arbitrarily long, but most series arising in a business
 context will be quite short and contain possibly no more than two
 dozen data points. The exponential smoothing methods introduced in
 the next section are relatively robust even for relatively short
 series, but somewhere there is a limit. Three or four data points
 don’t constitute a series! Finally, most interesting series will not
 be stationary in the sense of the definition just given, so we may
 have to identify and remove trend and seasonal components explicitly
 (we’ll discuss how to do that later). Drastic changes in the nature
 of the series also violate the stationarity condition. In such cases
 we must not continue blindly but instead deal with the break in the
 data—for example, by treating the data set as two different series
 (one before and one after the event).

Smoothing

An important aspect of most time series is, the presence of
 noise—that is, random (or apparently random)
 changes in the quantity of interest. Noise occurs in many real-world
 data sets, but we can often reduce the noise by
 improving the apparatus used to measure the data or by collecting a
 larger sample and averaging over it. But the particular structure of
 time series makes this impossible: the sales figures for the last 30
 days are fixed, and they constitute all the data we have. This means
 that removing noise, or at least reducing its influence, is of
 particular importance in time-series analysis. In other words, we are
 looking for ways to smooth the signal.
[image: Simple and a Gaussian weighted moving average: the weighted average is less affected by sudden jumps in the data.]

Figure 4-6. Simple and a Gaussian weighted moving average: the weighted
 average is less affected by sudden jumps in the data.

Running Averages

The simplest smoothing algorithm that we can devise is the
 running, moving, or
 floating average. The idea is straightforward:
 for any odd number of consecutive points, replace the centermost
 value with the average of the other points (here, the
 {xi}
 are the data points and the smoothed value at position
 i is
 si):
[image: Running Averages]
This naive approach has a serious problem, as you can see in
 Figure 4-6. The
 figure shows the original signal together with the 11-point moving
 average. Unfortunately, the signal has some sudden jumps and
 occasional large “spikes,” and we can see how the smoothed curve is
 affected by these events: whenever a spike enters the smoothing
 window, the moving average is abruptly distorted by the single,
 uncommonly large value until the outlier leaves the smoothing window
 again—at which point the floating average equally abruptly drops
 again.
We can avoid this problem by using a
 weighted moving average, which places less
 weight on the points at the edge of the smoothing window. Using such
 a weighted average, any new point that enters the smoothing window
 is only gradually added to the average and then gradually removed
 again:
[image: Running Averages]
Here the wj are
 the weighting factors. For example, for a 3-point moving average, we
 might use (1/4, 1/2, 1/4). The particular choice of weight factors
 is not very important provided they are peaked at the center, drop
 toward the edges, and add up to 1. I like to use the Gaussian
 function:
[image: Running Averages]
to build smoothing weight factors. The parameter σ in the
 Gaussian controls the width of the curve, and the function is
 essentially zero for values of x larger than
 about 3.5σ. Hence f(x, 1)
 can be used to build a 9-point kernel by evaluating
 f(x, 1) at the positions
 [–4, –3, –2, –1, 0, 1, 2, 3, 4]. Setting σ = 2, we can form a
 15-point kernel by evaluating the Gaussian for all integer arguments
 between –7 and +7. And so on.

Exponential Smoothing

All moving-average schemes have a number of problems.
	They are painful to evaluate. For each point, the
 calculation has to be performed from scratch. It is not possible
 to evaluate weighted moving averages by updating a previous
 result.

	Moving averages can never be extended to the true edge of
 the available data set, because of the finite width of the
 averaging window. This is especially problematic because often
 it is precisely the behavior at the leading edge of a data set
 that we are most interested in.

	Similarly, moving averages are not defined
 outside the range of the existing data set.
 As a consequence, they are of no use in forecasting.

Fortunately, there exists a very simple calculational scheme
 that avoids all of these problems. It is called
 exponential smoothing or Holt–Winters
 method. There are various forms of exponential smoothing:
 single exponential smoothing for series that have neither trend nor
 seasonality, double exponential smoothing for series exhibiting a
 trend but no seasonality, and triple exponential smoothing for
 series with both trend and seasonality. The term “Holt–Winters
 method” is sometimes reserved for triple exponential smoothing
 alone.
All exponential smoothing methods work by updating the result
 from the previous time step using the new information contained in
 the data of the current time step. They do so by “mixing” the new
 information with the old one, and the relative weight of old and new
 information is controlled by an adjustable mixing parameter. The
 various methods differ in terms of the number of quantities they
 track and the corresponding number of mixing parameters.
The recurrence relation for single exponential smoothing is
 particularly simple:
	si
 =
 αxi
 + (1 – α)si –
 1
	with 0 ≤ α ≤ 1

Here
 si
 is the smoothed value at time step i, and
 xi
 is the actual (unsmoothed) data at that time step. You can see how
 si
 is a mixture of the raw data and the previous smoothed value
 si–1.
 The mixing parameter α can be chosen anywhere between 0 and 1, and
 it controls the balance between new and old information: as α
 approaches 1, we retain only the current data point
 (i.e., the series is not smoothed at all); as α
 approaches 0, we retain only the smoothed past
 (i.e., the curve is totally flat).
Why is this method called “exponential” smoothing? To see
 this, simply expand the recurrence relation:
[image: Exponential Smoothing]
What this shows is that in exponential smoothing,
 all previous observations contribute to the
 smoothed value, but their contribution is suppressed by increasing
 powers of the parameter α. That observations further in the past are
 suppressed multiplicatively is characteristic of exponential
 behavior. In a way, exponential smoothing is like a floating average
 with infinite memory but with exponentially falling weights. (Also
 observe that the sum of the weights,
 Σj α(1 –
 α)j, equals 1 as
 required by virtue of the geometric series
 Σi
 qi
 = 1/(1 – q) for q < 1.
 See Appendix B for information on the
 geometric series.)
The results of the simple exponential smoothing procedure can
 be extended beyond the end of the data set and thereby used to make
 a forecast. The forecast is extremely simple:
xi+h
 =
 si
where
 si
 is the last calculated value. In other words, single exponential
 smoothing yields a forecast that is absolutely flat for all
 times.
Single exponential smoothing as just described works
 well for time series without an overall trend. However, in the
 presence of an overall trend, the smoothed values tend to lag behind
 the raw data unless α is chosen to be close to 1; however, in this
 case the resulting curve is not sufficiently smoothed.
Double exponential smoothing corrects for this shortcoming by
 retaining explicit information about the trend. In other words, we
 maintain and update the state of two quantities: the smoothed signal
 and the smoothed trend. There are two equations
 and two mixing parameters:
si
 =
 αxi
 + (1 –
 α)(si–1
 +
 ti–1)
ti
 =
 β(si
 –
 si–1)
 + (1 –
 β)ti–1
Let’s look at the second equation first. This equation
 describes the smoothed trend. The current unsmoothed “value” of the
 trend is calculated as the difference between the current and the
 previous smoothed signal; in other words, the current trend tells us
 how much the smoothed signal changed in the last step. To form the
 smoothed trend, we perform a simple exponential smoothing process on
 the trend, using the mixing parameter β. To obtain the smoothed
 signal, we perform a similar mixing as before but consider not only
 the previous smoothed signal but take the trend into account as
 well. The last term in the first equation is the best guess for the
 current smoothed signal—assuming we followed the previous trend for
 a single time step.
To turn this result into a forecast, we take the last smoothed
 value and, for each additional time step, keep adding the last
 smoothed trend to it:
xi+h
 =
 si
 + h
 ti
Finally, for triple exponential smoothing we add yet a third
 quantity, which describes the seasonality. We have to distinguish
 between additive and multiplicative seasonality. For the additive
 case, the equations are:
	si
	=
 α(xi
 –
 pi–k)
 + (1 –
 α)(si–1
 +
 ti–1)

	ti
	=
 β(si
 –
 si–1)
 + (1 –
 β)ti–1

	pi
	=
 γ(xi
 –
 si)
 + (1 – γ)
 pi–k

	xi+h
	=
 si
 +
 hti
 +
 pi–k+h

For the multiplicative case, they are:
[image: Exponential Smoothing]
Here,
 pi
 is the “periodic” component, and k is the
 length of the period. I have also included the expressions for
 forecasts.
All exponential smoothing methods are based on
 recurrence relations. This means that we need to fix the start-up
 values in order to use them. Luckily, the specific choice for these
 values is not very critical: the exponential damping implies that
 all exponential smoothing methods have a short “memory,” so that
 after only a few steps, any influence of the initial values is
 greatly diminished. Some reasonable choices for start-up values
 are:
[image: Exponential Smoothing]
and:
	t0
 = 0
	or
	t0
 = x1 –
 x0

For triple exponential smoothing we must provide one full
 season of values for start-up, but we can simply fill them with 1s
 (for the multiplicative model) or 0s (for the additive model). Only
 if the series is short do we need to worry seriously about finding
 good starting values.
The last question concerns how to choose the mixing parameters
 α, β, and γ. My advice is trial and error. Try a few values between
 0.2 and 0.4 (very roughly), and see what results you get.
 Alternatively, you can define a measure for the error (between the
 actual data and the output of the smoothing algorithm), and then use
 a numerical optimization routine to minimize this error with respect
 to the parameters. In my experience, this is usually more trouble
 than it’s worth for at least the following two reasons. The
 numerical optimization is an iterative process that is not
 guaranteed to converge, and you may end up spending way too much
 time coaxing the algorithm to convergence. Furthermore, any such
 numerical optimization is slave to the expression you have chosen
 for the “error” to be minimized. The problem is that the parameter
 values minimizing that error may not have some other property you
 want to see in your solution (e.g., regarding
 the balance between the accuracy of the approximation and the
 smoothness of the resulting curve) so that, in the end, the manual
 approach often comes out ahead. However, if you have many series to
 forecast, then it may make sense to expend the effort and build a
 system that can determine the optimal parameter values
 automatically, but it probably won’t be easy to really make this
 work.
Finally, I want to present an example of the kind of results
 we can expect from exponential smoothing. Figure 4-7 is a classical
 data set that shows the monthly number of international airline
 passengers (in thousands of passengers).[8] The graph shows the actual data together with a triple
 exponential approximation. The years 1949 through 1957 were used to
 “train” the algorithm, and the years 1958 through 1960 are
 forecasted. Note how well the forecast agrees with the actual
 data—especially in light of the strong seasonal pattern—for a rather
 long forecasting time frame (three full years!). Not bad for a
 method as simple as this.
[image: Triple exponential smoothing in action: comparison between the raw data (solid line) and the smoothed curve (dashed). For the years after 1957, the dashed curve shows the forecast calculated with only the data available in 1957.]

Figure 4-7. Triple exponential smoothing in action: comparison between
 the raw data (solid line) and the smoothed curve (dashed). For the
 years after 1957, the dashed curve shows the forecast calculated
 with only the data available in 1957.

Don’t Overlook the Obvious!

On a recent consulting assignment, I was discussing monthly
 sales numbers with the client when he made the following comment: “Oh,
 yes, sales for February are always somewhat lower—that’s an after
 effect of the Christmas peak.” Sales are always lower in
 February? How interesting.
Sure enough, if you plotted the monthly sales numbers for the
 last few years, there was a rather visible dip from the overall trend
 every February. But in contrast, there wasn’t much of a Christmas
 spike! (The client’s business was not particularly seasonal.) So why
 should there be a corresponding dip two months later?
By now I am sure you know the answer already: February is
 shorter than any of the other months. And it’s
 not a small effect, either: with 28 days, February is about three days
 shorter than the other months (which have 30–31 days). That’s about 10
 percent—close to the size of the dip in the client’s sales
 numbers.
When monthly sales numbers were normalized by the number of days
 in the month, the February dip all but disappeared, and the
 adjusted February numbers were perfectly in line
 with the rest of the months. (The average number of days per month is
 365/12 = 30.4.)
Whenever you are tracking aggregated numbers in a time series
 (such as weekly, monthly, or quarterly results), make sure that you
 have adjusted for possible variation in the aggregation time frame.
 Besides the numbers of days in the month, another likely candidate for hiccups is the number of
 business days in a month (for months with five
 weekends, you can expect a 20 percent drop for most business metrics).
 But the problem is, of course, much more general and can occur
 whenever you are reporting aggregate numbers
 rather than rates. (If the client had been
 reporting average sales per day for each month, then there would never
 have been an anomaly.)
This specific problem (i.e., nonadjusted
 variations in aggregation periods) is a particular concern for all
 business reports and dashboards. Keep an eye out for it!

The Correlation Function

The autocorrelation function is the primary
 diagnostic tool for time-series analysis. Whereas the smoothing
 methods that we have discussed so far deal with the raw data in a very
 direct way, the correlation function provides us with a rather
 different view of the same data. I will first explain how the
 autocorrelation function is calculated and will then discuss what it
 means and how it can be used.
The basic algorithm works as follows: start with two copies of
 the data set and subtract the overall average from all values. Align
 the two sets, and multiply the values at corresponding time steps with
 each other. Sum up the results for all time steps. The result is the
 (unnormalized) correlation coefficient at lag 0.
 Now shift the two copies against each other by a single time step.
 Again multiply and sum: the result is the correlation coefficient at
 lag 1. Proceed in this way for the entire length of the time series.
 The set of all correlation coefficients for all lags is the
 autocorrelation function. Finally, divide all coefficients by the
 coefficient for lag 0 to normalize the correlation function, so that
 the coefficient for lag 0 is now equal to 1.
All this can be written compactly in a single formula for
 c(k)—that is the correlation
 function at lag k:
[image: The Correlation Function]
Here, N is the number of points in the data
 set. The formula follows the mathematical convention to start indexing
 sequences at 1, rather than the programming convention to start
 indexing at 0. Notice that we have subtracted the overall average μ
 from all values and that the denominator is simply the expression of
 the numerator for lag k = 0. Figure 4-8 illustrates the
 process.
The meaning of the correlation function should be clear.
 Initially, the two signals are perfectly aligned and the correlation
 is 1. Then, as we shift the signals against each other, they slowly
 move out of phase with each other, and the correlation drops. How
 quickly it drops tells us how much “memory” there is in the data. If
 the correlation drops quickly, we know that, after a few steps, the
 signal has lost all memory of its recent past. However, if the
 correlation drops slowly, then we know that we are dealing with a
 process that is relatively steady over longer periods of time. It is
 also possible that the correlation function first drops and then rises
 again to form a second (and possibly a third, or fourth,...) peak.
 This tells us that the two signals align again if we shift them far
 enough—in other words, that there is periodicity
 (i.e., seasonality) in the data set. The position
 of the secondary peak gives us the number of time steps per
 season.
[image: Algorithm to compute the correlation function.]

Figure 4-8. Algorithm to compute the correlation function.

Examples

Let’s look at a couple of examples. Figure 4-9 shows the
 correlation function of the gas furnace data in Figure 4-2. This is a
 fairly typical correlation function for a time series that has only
 short time correlations: the correlation falls quickly, but not
 immediately, to zero. There is no periodicity; after the initial
 drop, the correlation function does not exhibit any further
 significant peaks.
[image: The correlation function for the exhaust gas data shown in . The data has only short time correlations and no seasonality; the correlation function falls quickly (but not immediately) to zero, and there are no secondary peaks.]

Figure 4-9. The correlation function for the exhaust gas data shown in
 Figure 4-2. The
 data has only short time correlations and no seasonality; the
 correlation function falls quickly (but not immediately) to zero,
 and there are no secondary peaks.

Figure 4-10 is the
 correlation function for the call center data from Figure 4-5. This data set
 shows a very different behavior. First of all, the time series has a
 much longer “memory”: it takes the correlation function almost 100
 days to fall to zero, indicating that the frequency of calls to the
 call center changes more or less once per quarter but not more
 frequently. The second notable feature is the pronounced secondary
 peak at a lag of 365 days. In other words, the call center data is
 highly seasonal and repeats itself on a yearly basis. The third
 feature is the small but regular sawtooth structure. If we look
 closely, we will find that the first peak of the sawtooth is at a
 lag of 7 days and that all repeating ones occur at multiples of 7.
 This is the signature of the high-frequency component that we could
 see in Figure 4-5:
 the traffic to the call center exhibits a secondary seasonal
 component with 7-day periodicity. In other words, traffic is weekday
 dependent (which is not too surprising).

Implementation Issues

So far I have talked about the correlation function mostly
 from a conceptual point of view. If we want to proceed to an actual
 implementation, there are some fine points we need to worry
 about.
The autocorrelation function is intended for time series that
 do not exhibit a trend and have zero mean. Therefore, if the series
 we want to analyze does contain a trend, then we must remove it
 first. There are two ways to do this: we can either subtract the
 trend or we can difference the series.
[image: The correlation function for the call center data shown in . There is a secondary peak after exactly 365 days, as well as a smaller weekly structure to the data.]

Figure 4-10. The correlation function for the call center data shown in
 Figure 4-5. There
 is a secondary peak after exactly 365 days, as well as a smaller
 weekly structure to the data.

Subtracting the trend is straightforward—the only
 problem is that we need to determine the trend first! Sometimes we
 may have a “model” for the expected behavior and can use it to
 construct an explicit expression for the trend. For instance, the
 airline passenger data from the previous section, describes a growth
 process, and so we should suspect an exponential trend
 (a
 exp(x/b)). We can now try
 guessing values for the two parameters and then subtract the
 exponential term from the data. For other data sets, we might try a
 linear or power-law trend, depending on the data set and our
 understanding of the process generating the data. Alternatively, we
 might first apply a smoothing algorithm to the data and then
 subtract the result of the smoothing process from the raw data. The
 result will be the trend-free “noise” component of the time
 series.
A different approach consists of
 differencing the series: instead of dealing
 with the raw data, we instead work with the
 changes in the data from one time step to the
 next. Technically, this means replacing the original series
 xi
 with one consisting of the differences of consecutive elements:
 xi+1
 –
 xi.
 This process can be repeated if necessary, but in most cases, single
 differencing is sufficient to remove the trend entirely.
Making sure that the time series has zero mean is easier:
 simply calculate the mean of the (de-trended!) series and subtract
 it before calculating the correlation function. This is done
 explicitly in the formula for the correlation function given
 earlier.
Another technical wrinkle concerns how we implement the sum in
 the formula for the numerator. As written, this sum is slightly
 messy, because its upper limit depends on the lag. We can simplify
 the formula by padding one of the data sets
 with N zeros on the right and letting the sum
 run from i = 1 to i =
 N for all lags. In fact, many computational
 software packages assume that the data has been
 prepared in this way (see the Workshop section in this
 chapter).
[image: A filter chain: each filter applied to a signal yields another signal, which itself can be filtered.]

Figure 4-11. A filter chain: each filter applied to a signal yields
 another signal, which itself can be filtered.

The last issue you should be aware of is that there are two
 different normalization conventions for the autocorrelation
 function, which are both widely used. In the first variant,
 numerator and denominator are not normalized separately—this is the
 scheme used in the previous formula. In the second variant, the
 numerator and denominator are each normalized by the number of
 nonzero terms in their respective sum. With this convention, the
 formula becomes:
[image: A filter chain: each filter applied to a signal yields another signal, which itself can be filtered.]
Both conventions are fine, but if you want to compare results
 from different sources or different software packages, then you will
 have to make sure you know which convention each of them is
 following!

Optional: Filters and Convolutions

Until now we have always spoken of time series in a direct
 fashion, but there is also a way to describe them (and the operations
 performed on them) on a much higher level of abstraction. For this, we
 borrow some concepts and terminology from electrical engineering,
 specifically from the field of digital signal processing (DSP).
In the lingo of DSP, we deal with signals
 (time series) and filters (operations). Applying
 a filter to a signal produces a new (filtered) signal. Since filters
 can be applied to any signal, we can apply another filter to the
 output of the first and in this way chain filters together (see Figure 4-11). Signals can
 also be combined and subtracted from each other.
As it turns out, many of the operations we have seen so far
 (smoothing, differencing) can be expressed as filters. We can
 therefore use the convenient high-level language of DSP when referring
 to the processes of time-series analysis. To make this concrete, we
 need to understand how a filter is represented and what it means to
 “apply” a filter to a signal.
Each digital filter is represented by a set of coefficients or
 weights. To apply the filter, we multiply the coefficients with a
 subset of the signal. The sum of the products is the value of the
 resulting (filtered) signal:
[image: Optional: Filters and Convolutions]
This should look familiar! We used a similar expression
 when talking about moving averages earlier in the chapter. A moving
 average is simply a time series run through an
 n-point filter, where every coefficient is equal
 to 1/n. A weighted moving average filter
 similarly consists of the weights used in the expression for the
 average.
The filter concept is not limited to smoothing operations. The
 differencing step discussed in the previous section can be viewed as
 the application of the filter [1, –1]. We can even shift an entire
 time series forward in time by using the filter [0, 1].
The last piece of terminology that we will need concerns the
 peculiar sum of a product that we have encountered several times by
 now. It’s called a convolution. A convolution is
 a way to combine two sequences to yield a third sequence, which you
 can think of as the “overlap” between the original sequences. The
 convolution operation is usually defined as follows:
[image: Optional: Filters and Convolutions]
Symbolically, the convolution operation is often expressed
 through an asterisk: y = w *
 x, where y,
 w, and x are
 sequences.
Of course, if one or both of the sequences have only a finite
 number of elements, then the sum also contains only a finite number of
 terms and therefore poses no difficulties. You should be able to
 convince yourself that every application of a filter to a time series
 that we have done was in fact a convolution of the signal with the
 filter. This is true in general: applying a filter to a signal means
 forming the convolution of the two. You will find that many numerical
 software packages provide a convolution operation as a built-in
 function, making filter operations particularly convenient to
 use.
I must warn you, however, that the entire machinery of digital
 signal processing is geared toward signals of infinite (or almost
 infinite) length, which makes good sense for typical electrical
 signals (such as the output from a microphone or a radio receiver).
 But for the rather short time series that we are likely to deal with,
 we need to pay close attention to a variety of edge
 effects. For example, if we apply a smoothing or
 differencing filter, then the resulting series will be shorter, by
 half the filter length, than the original series. If we now want to
 subtract the smoothed from the original signal, the operation will
 fail because the two signals are not of equal length. We therefore
 must either pad the smoothed signal or truncate the original one. The
 constant need to worry about padding and proper alignment detracts
 significantly from the conceptual beauty of the signal-theoretic
 approach when used with time series of relatively short
 duration.

Workshop: scipy.signal

The scipy.signal package
 provides functions and operations for digital signal processing that
 we can use to good effect to perform calculations for time-series
 analysis. The scipy.signal package
 makes use of the signal processing terminology introduced in the
 previous section.
The listing that follows shows all the commands used to create
 graphs like Figure 4-5 and Figure 4-10, including the
 commands required to write the results to file. The code is heavily
 commented and should be easy to understand.
from scipy import *
from scipy.signal import *
from matplotlib.pyplot import *

filename = 'callcenter'

Read data from a text file, retaining only the third column.
(Column indexes start at 0.)
The default delimiter is any whitespace.
data = loadtxt(filename, comments='#', delimiter=None, usecols=(2,))

The number of points in the time series. We will need it later.
n = data.shape[0]

Finding a smoothed version of the time series:
1) Construct a 31-point Gaussian filter with standard deviation = 4
filt = gaussian(31, 4)
2) Normalize the filter through dividing by the sum of its elements
filt /= sum(filt)
3) Pad data on both sides with half the filter length of the last value
(The function ones(k) returns a vector of length k, with all elements 1.)
padded = concatenate((data[0]*ones(31//2), data, data[n-1]*ones(31//2)))
4) Convolve the data with the filter. See text for the meaning of "mode".
smooth = convolve(padded, filt, mode='valid')

Plot the raw data together with the smoothed data:
1) Create a figure, sized to 7x5 inches
figure(1, figsize=(7, 5))
2) Plot the raw data in red
plot(data, 'r')
3) Plot the smoothed data in blue
plot(smooth, 'b')
4) Save the figure to file
savefig(filename + "_smooth.png")
5) Clear the figure
clf()

Calculate the autocorrelation function:
1) Subtract the mean
tmp = data - mean(data)
2) Pad one copy of data on the right with zeros, then form correlation fct
The function zeros_like(v) creates a vector with the same dimensions
as the input vector v but with all elements zero.
corr = correlate(tmp, concatenate((tmp, zeros_like(tmp))), mode='valid')
3) Retain only some of the elements
corr = corr[:500]
4) Normalize by dividing by the first element
corr /= corr[0]

Plot the correlation function:
figure(2, figsize=(7, 5))
plot(corr)
savefig(filename + "_corr.png")
clf()
The package provides the Gaussian filter as well as many others.
 The filters are not normalized, but this is easy enough to
 accomplish.
More attention needs to be paid to the appropriate padding and
 truncating. For example, when forming the smoothed version of the
 data, I pad the data on both sides by half the filter length to ensure
 that the smoothed data has the same length as the original set. The
 mode argument to the convolve() and correlate functions determines which pieces
 of the resulting vector to retain. Several modes are possible. With
 mode="same", the returned vector
 has as many elements as the largest input vector (in our case, as the
 padded data vector), but the elements closest to the ends would be
 corrupted by the padded values. In the listing, I therefore use
 mode="valid", which retains only
 those elements that have full overlap between the data and the
 filter—in effect, removing the elements added in the padding
 step.
Notice how the signal processing machinery leads in this
 application to very compact code. Once you strip out the comments and
 plotting commands, there are only about 10 lines of code that perform
 actual operations and calculations. However, we had to pad all data
 carefully and ensure that we kept only those pieces of the result that
 were least contaminated by the padding.

Further Reading

	The Analysis of Time Series. Chris Chatfield. 6th ed., Chapman & Hall. 2003.
This is my preferred text on time-series analysis. It
 combines a thoroughly practical approach with mathematical depth
 and a healthy preference for the simple over the obscure. Highly
 recommended.

[8] This data is available in the “airpass.dat” data set from
 R. J. Hyndman’s Time Series Data Library at http://www.robjhyndman.com/TSDL.

Chapter 5. More Than Two Variables: Graphical Multivariate Analysis

AS SOON
 AS WE ARE DEALING WITH MORE THAN TWO VARIABLES SIMULTANEOUSLY, THINGS
 BECOME MUCH MORE complicated—in particular,
 graphical methods quickly become impractical. In this chapter, I’ll
 introduce a number of graphical methods that can be applied to
 multivariate problems. All of them work best if the number of variables
 is not too large (less than 15–25).
The borderline case of three variables can be
 handled through false-color plots, which we will
 discuss first.
If the number of variables is greater (but not much greater) than
 three, then we can construct multiplots from a collection of individual
 bivariate plots by scanning through the various parameters in a
 systematic way. This gives rise to scatter-plot matrices and
 co-plots.
Depicting how an overall entity is composed out of its constituent
 parts can be a rather nasty problem, especially if the composition
 changes over time. Because this task is so common, I’ll treat it
 separately in its own section.
Multi-dimensional visualization continues to be a research topic,
 and in the last sections of the chapter, we look at some of the more
 recent ideas in this field.
One recurring theme in this chapter is the need for adequate
 tools: most multidimensional visualization techniques are either not
 practical with paper and pencil, or are outright impossible without a
 computer (in particular when it comes to animated techniques). Moreover,
 as the number of variables increases, so does the need to look at a data
 set from different angles; this leads to the idea of using interactive
 graphics for exploration. In the last section, we look at some ideas in
 this area.
[image: A simple but effective way to show three variables: treat one as parameter and draw a separate curve for several parameter values.]

Figure 5-1. A simple but effective way to show three variables: treat one
 as parameter and draw a separate curve for several parameter
 values.

False-Color Plots

There are different ways to display information in three
 variables (typically, two independent variables and one dependent
 variable). Keep in mind that simple is sometimes best! Figure 5-1 shows the
 function f(x,
 a) =
 x4/2 +
 ax2 –
 x/2 + a/4 for various values
 of the parameter a in a simple, two-dimensional
 xy plot. The shape of the function and the way it
 changes with a are perfectly clear in this graph.
 It is very difficult to display this function in any other way with
 comparable clarity.
Another way to represent such trivariate data is in the form of
 a surface plot, such as the one shown in Figure 5-2. As a rule,
 surface plots are visually stunning but are of very limited practical
 utility. Unless the data set is very smooth and allows for a viewpoint
 such that we can look down onto the surface, they
 simply don’t work! For example, it is pretty much impossible to
 develop a good sense for the behavior of the function plotted in Figure 5-1 from a surface
 plot. (Try it!) Surface plots can help build intuition for the overall
 structure of the data, but it is notoriously difficult to read off
 quantitative information from them.
In my opinion, surface plots have only two uses:
	To get an intuitive impression of the “lay of the land” for
 a complicated data set

	To dazzle the boss (not that this isn’t important at
 times)

[image: Surface plots are often visually impressive but generally don’t represent quantitative information very well.]

Figure 5-2. Surface plots are often visually impressive but generally
 don’t represent quantitative information very well.

[image: Grayscale version of a false-color plot of the function shown as a surface plot in . Here white corresponds to positive values of the function, and black corresponds to negative values.]

Figure 5-3. Grayscale version of a false-color plot of the function shown
 as a surface plot in Figure 5-2. Here white
 corresponds to positive values of the function, and black
 corresponds to negative values.

Another approach is to project the function into the
 base plane below the surface in Figure 5-2. There are two
 ways in which we can represent values: either by showing contours of
 constant alleviation in a contour plot or by
 mapping the numerical values to a palette of colors in a
 false-color plot. Contour plots are familiar from
 topographic maps—they can work quite well, in particular if the data
 is relatively smooth and if one is primarily interested in local
 properties.
The false-color plot is an alternative and quite versatile
 technique that can be used for different tasks and on a wide variety
 of data sets. To create a false-color plot, all values of the
 dependent variable z are mapped to a palette of
 colors. Each data point is then plotted as a region of the appropriate
 color. Figure 5-3
 gives an example (where the color has been replaced by grayscale
 shading).
I like false-color plots because one can represent a lot of
 information in a them in a way that retains quantitative information.
 However, false-color plots depend crucially on the quality of the
 palette—that is, the mapping that has been used to associate colors
 with numeric values.
Let’s quickly recap some information on color and computer
 graphics. Colors for computer graphics are usually specified by a
 triple of numbers that specify the intensity of their red, green, and
 blue (RGB) components. Although RGB triples make good sense
 technically, they are not particularly intuitive. Instead, we tend to
 think of color in terms of its hue, saturation, and value
 (i.e., luminance or lightness). Conventionally,
 hue runs through all the colors of the rainbow (from red to yellow,
 green, blue, and magenta). Curiously, the spectrum of hues seems to
 circle back onto itself, since magenta smoothly transforms back to
 red. (The reason for this behavior is that the hues in the rainbow
 spectrum are arranged in order of their dominant electromagnetic
 frequency. For violet/magenta, no frequency dominates; instead, violet
 is a mixture of low-frequency reds and high-frequency blues.) Most
 computer graphics programs will be able to generate color graphics
 using a hue–saturation–value (HSV) triple.
It is surprisingly hard to find reliable recommendations on good
 palette design, which is even more unfortunate given that convenience
 and what seems like common sense often lead to particularly
 bad palettes. Here are some ideas and suggestions
 that you may wish to consider:
Keep it simple
	Very simple palettes using red, white, and blue often work
 surprisingly well. For continuous color changes you could use a
 blue-white-red palette, for segmentation tasks you could use a
 white-blue-red-white palette with a sharp blue–red transition at
 the segmentation threshold.

Distinguish between segmentation tasks and the display
 of smooth changes
	Segmentation tasks (e.g., finding all
 points that exceed a certain threshold, finding the locations
 where the data crosses zero) call for palettes with sharp color
 transitions at the respective thresholds, whereas representing
 smooth changes in a data set calls for continuous color gradients.
 Of course, both aspects can be combined in a single palette:
 gradients for part of the palette and sharp transitions
 elsewhere.

Try to maintain an intuitive sense of
 ordering
	Map low values to “cold” colors and higher values to “hot”
 colors to provide an intuitive sense of ordering in your palette.
 Examples include the simple blue-red palette and the “heat scale”
 (black-red-yellow-white—I’ll discuss in a moment why I don’t
 recommend the heat scale for use). Other palettes that convey a
 sense of ordering (if only by convention) are the “improved
 rainbow” (blue-cyan-green-yellow-orange-red-magenta) and the
 “geo-scale” familiar from topographic maps
 (blue-cyan-green-brown-tan-white).

Place strong visual gradients in regions with
 important changes
	Suppose that you have a data set with values that span the
 range from –100 to +100 but that all the really interesting or
 important change occurs in the range –10 to +10. If you use a
 standard palette (such as the improved rainbow) for such a data
 set, then the actual region of interest will appear to be all of
 the same color, and the rest of the spectrum will be “wasted” on
 parts of the data range that are not that interesting. To avoid
 this outcome, you have to compress the rainbow so that it maps
 only to the region of interest. You might want to consider mapping
 the extreme values (from –100 to –10 and from 10 to 100) to some
 unobtrusive colors (possibly even to a grayscale) and reserving
 the majority of hue changes for the most relevant part of the data
 range.

Favor subtle changes
	This is possibly the most surprising recommendation. When
 creating palettes, there is a natural tendency to “crank it up
 full” by using fully saturated colors at maximal brightness
 throughout. That’s not necessarily a good idea, because the
 resulting effect can be so harsh that details are easily lost.
 Instead, you might want to consider using soft, pastel colors or
 even to experiment with mixed hues in favor of the pure primaries
 of the standard rainbow. (Recent versions of Microsoft Excel
 provide an interesting and easily accessible demonstration for
 this idea: all default colors offered for shading the background
 of cells are soft, mixed pastels—to good effect.) Furthermore, the
 eye is quite good at detecting even subtle variations. In
 particular, when working with luminance-based palettes, small
 changes are often all that is required.

Avoid changes that are hard to
 detect
	Some visual changes are especially hard to perceive
 visually. For example, it is practically impossible to distinguish
 between different shades of yellow, and the transition from yellow
 to white is even worse! (This is why I don’t recommend the heat
 scale, despite its nice ordering property: the bottom third
 consists of hard-to-distinguish dark reds, and the entire upper
 third consists of very hard-to-distinguish shades of light
 yellow.)

Use hue- and luminance-based palettes for different
 purposes
	In particular, consider using a luminance-based palette to
 emphasize fine detail and using hue- or saturation-based palettes
 for smooth, large-scale changes. There is some empirical evidence
 that luminance-based palettes are better suited for images that
 contain a lot of fine detail and that hue-based palettes are
 better suited for bringing out smooth, global changes. A pretty
 striking demonstration of this observation can be found when
 looking at medical images (surely an application where details
 matter!): a simple grayscale representation, which is pure
 luminance, often seems much clearer than a multicolored
 representation using a hue-based rainbow palette. This rule is
 more relevant to image processing of photographs or similar images
 (such as that in our medical example) than to visualization of the
 sort of abstract information that we consider here, but it is
 worth keeping in mind.

Don’t forget to provide a color box
	No matter how intuitive you think your palette is, nobody
 will know for sure what you are showing unless you provide a color
 box (or color key) that shows the values and the colors they are
 mapped to. Always, always, provide one.

One big problem not properly addressed by these recommendations
 concerns visual uniformity. For example, consider
 palettes based on the “improved rainbow,” which is created by
 distributing the six primaries in the order
 blue-cyan-green-yellow-red-magenta across the palette. If you place
 these primaries at equal distances across from each other and
 interpolate linearly between them in color space, then the fraction of
 the palette occupied by green appears to be much larger than the
 fraction occupied by either yellow or cyan. Another example is that
 when placing a fully saturated yellow next to a fully saturated blue,
 then the blue region will appear to be more intense
 (i.e., saturated) than the yellow. Similarly, the
 browns that occur in a geo-scale easily appear darker than the other
 colors in the palette. This is a problem with our
 perception of color: simple interpolations in
 color space do not necessarily result in visually uniform
 gradients!
There is a variation of the HSV color space, called the
 HCL (hue–chroma–luminance) space that takes
 visual perception into account to generate visually uniform color maps
 and gradients. The HCL color model is more complicated to use than the
 HSV model, because not all combinations of hue, chroma, and luminance
 values exist. For instance, a fully saturated yellow appears lighter
 than a fully saturated blue, so a palette at full chroma and with high
 luminance will include the fully saturated yellow but not the blue. As
 a result, HCL-based palettes that span the entire rainbow of hues tend
 naturally toward soft, pastel colors. A disadvantage of palettes in
 the HCL space is that they often degrade particularly poorly when
 reproduced in black and white.[9]
A special case of false-color plots are geographic
 maps, and cartographers have significant
 experience developing color schemes for various purposes. Their needs
 are a little different and not all of their recommendations may work
 for general data analysis purposes, but it is worthwhile to become
 familiar with what they have learned.[10]
Finally, I’d like to point out two additional problems with all
 plots that depend on color to convey critical information.
	Color does not reproduce well. Once photocopied or printed
 on a black-and-white laser printer, a false-color plot will become
 useless!

	Also keep in mind that about 10 percent of all men
 are at least partially color blind; these individuals won’t be
 able to make much sense of most images that rely heavily or
 exclusively on color.

Either one of these problems is potentially serious enough that
 you might want to reconsider before relying entirely on color for the
 display of information.
In my experience, preparing good false-color plots is often a
 tedious and time-consuming task. This is one area where better tools
 would be highly desirable—an interactive tool that could be used to
 manipulate palettes directly and in real time would be very nice to
 have. The same is true for a publicly available set of well-tested
 palettes.

A Lot at a Glance: Multiplots

The primary concern in all multivariate visualizations is
 finding better ways to put more “stuff” on a graph. In addition to
 color (see the previous section), there are basically two ways we can
 go about this. We can make the graph elements themselves richer, so
 that they can convey additional information beyond their position on
 the graph; or we can put several similar graphs next to each other and
 vary the variables that are not explicitly displayed in a systematic
 fashion from one subgraph to the next. The first idea leads to
 glyphs, which we will introduce later in this
 chapter, whereas the latter idea leads to scatter-plot matrices and
 co-plots.
The Scatter-Plot Matrix

For a scatter-plot matrix (occasionally
 abbreviated SPLOM), we construct all possible two-dimensional
 scatter plots from a multivariate data set and then plot them
 together in a matrix format (Figure 5-4). We can now
 scan all of the graphs for interesting behavior, such as a marked
 correlation between any two variables.
The data set shown in Figure 5-4 consists of
 seven different properties of a sample of 250 wines.[11] It is not at all clear how these properties should
 relate to each other, but by studying the scatter-plot matrix, we
 can make a few interesting observations. For example, we can see
 that sugar content and density are positively correlated: if the
 sugar content goes up, so does the density. The opposite is true for
 alcohol content and density: as the alcohol content goes up, density
 goes down. Neither of these observations should come as a surprise
 (sugar syrup has a higher density than water and alcohol a lower
 one). What may be more interesting is that the wine quality seems to
 increase with increasing alcohol content: apparently, more potent
 wines are considered to be better!
[image: In a scatter-plot matrix (SPLOM), a separate scatter plot is shown for each pair of variables. All scatter plots in a given row or column have the same plot range, so that we can compare them easily.]

Figure 5-4. In a scatter-plot matrix (SPLOM), a separate scatter plot
 is shown for each pair of variables. All scatter plots in a given
 row or column have the same plot range, so that we can compare
 them easily.

One important detail that is easy to overlook is that all
 graphs in each row or column show the same plot range; in other
 words, they use shared scales. This makes it
 possible to compare graphs across the entire matrix.
The scatter-plot matrix is symmetric across the diagonal: the
 subplots in the lower left are equal to the ones in the upper right
 but rotated by 90 degrees. It is nevertheless customary to plot both
 versions because this makes it possible to scan a single row or
 column in its entirety to investigate how one quantity relates to
 each of the other quantities.
Scatter-plot matrices are easy to prepare and easy to
 understand. This makes them very popular, but I think they can be
 overused. Once we have more than about half a dozen variables, the
 individual subplots become too small as that we could still
 recognize anything useful, in particular if the number of points
 is large (a few hundred points or more). Nevertheless, scatter-plot
 matrices are a convenient way to obtain a quick overview and to find
 viewpoints (variable pairings) that deserve a closer look.

The Co-Plot

In contrast to scatter-plot matrices, which always show all
 data points but project them onto different
 surfaces of the parameter space, co-plots
 (short for “conditional plots”) show various
 slices through the parameter space such that
 each slice contains only a subset of the data points. The slices are
 taken in a systematic manner, and we can form an image of the entire
 parameter space by mentally gluing the slices back together again
 (the salami principle). Because of the regular layout of the
 subplots, this technique is also known as a trellis
 plot.
Figure 5-5
 shows a trivariate data set projected onto the two-dimensional
 xy plane. Although there is clearly structure
 in the data, no definite pattern emerges. In particular, the
 dependence on the third parameter is entirely obscured!
Figure 5-6
 shows a co-plot of the same data set that is sliced or
 conditioned on the third parameter
 a. The bottom part of the graph shows six
 slices through the data corresponding to different ranges of
 a. (The slice for the
 smallest values of a is in
 the lower left, and the one for the largest values of
 a is in the upper righthand corner.) As we look
 at the slices, the structure in the data stands out clearly, and we
 can easily follow the dependence on the third parameter
 a.
The top part of Figure 5-6 shows the range
 of values that a takes on for each of the
 slices. If you look closely, you will find that there are some
 subtle issues hidden in (or rather revealed by) this panel, because
 it provides information on the details of the slicing
 operation.
Two decisions need to be made with regard to the
 slicing:
	By what method should the overall parameter range be cut
 into slices?

	Should slices overlap or not?

In many ways, the most “natural” answer to these questions
 would be to cut the entire parameter range into a set of adjacent
 intervals of equal width. It is interesting to observe (by looking
 at the top panel in Figure 5-6) that in the
 example graph, a different decision was made in regard to both
 questions! The slices are not of equal width in the range of
 parameter values that they span; instead, they have been made in
 such a way that each slice contains the same number of
 points. Furthermore, the slices are not adjacent but
 partially overlap each other.
The first decision (to have each slice contain the same number
 of points, instead of spanning the same range of values) is
 particularly interesting because it provides additional information
 on how the values of the parameter a are
 distributed. For instance, we can see that large values of
 a (larger than about a =
 –1) are relatively rare, whereas values of a
 between –4 and –2 are much more frequent. This kind of behavior
 would be much harder to recognize precisely if we had chopped the
 interval for a into six slices of equal width.
 The other decision (to make the slices overlap partially) is more
 important for small data sets, where otherwise each slice contains
 so few points that the structure becomes hard to see. Having the
 slices overlap makes the data “go farther” than if the slices were
 entirely disjunct.
[image: Projection of a trivariate data set onto the xy plane. How does the data vary with the third variable?]

Figure 5-5. Projection of a trivariate data set onto the
 xy plane. How does the data vary with the
 third variable?

Co-plots are especially useful if some of the variables in a
 data set are clearly “control” variables, because co-plots provide a
 systematic way to study the dependence of the remaining (“response”)
 variables on the controls.

Variations

The ideas behind scatter-plot matrices and co-plots are pretty
 generally applicable, and you can develop different variants
 depending on your needs and tastes. Here are some ideas:
	In the standard scatter-plot matrix, half of the
 individual graphs are redundant. You can remove the individual
 graphs from half of the overall matrix and replace them with
 something different—for example, the numerical value of the
 appropriate correlation coefficient. However, you will then lose the
 ability to visually scan a full row or column to see how the
 corresponding quantity correlates with all other
 variables.
[image: A co-plot of the same data as in . Each scatter plot includes the data points for only a certain range of a values; the corresponding values of a are shown in the top panel. (The scatter plot for the smallest value of a is in the lower left corner, and that for the largest value of a is in the upper right.)]

Figure 5-6. A co-plot of the same data as in Figure 5-5. Each
 scatter plot includes the data points for only a certain range
 of a values; the corresponding values of
 a are shown in the top panel. (The
 scatter plot for the smallest value of a
 is in the lower left corner, and that for the largest value of
 a is in the upper right.)

	Similarly, you can place a histogram showing the
 distribution of values for the quantity in question on the
 diagonal of the scatter-plot matrix.

	The slicing technique used in co-plots can be used with
 other graphs besides scatter plots. For instance, you might want
 to use slicing with rank-order plots (see Chapter 2), where
 the conditioning “parameter” is some quantity not explicitly
 shown in the rank-order plot itself. Another option is to use it
 with histograms, making each subplot a histogram of a subset of
 the data where the subset is determined by the values of the
 control “parameter” variable.

	Finally, co-plots can be extended to
 two conditioning variables, leading to a
 matrix of individual slices.

By their very nature, all multiplots consist of many
 individual plot elements, sometimes with nontrivial interactions
 (such as the overlapped slicing in certain co-plots). Without a
 good tool that handles most of these issues
 automatically, these plot types lose most of their appeal. For the
 plots in this section, I used R (the statistical package), which
 provides support for both scatter-plot matrices and co-plots as
 built-in functionality.

Composition Problems

Many data sets describe a composition
 problem; in other words, they describe how some overall
 quantity is composed out of its parts. Composition problems pose some
 special challenges because often we want to visualize two
 different aspects of the data simultaneously: on
 the one hand, we are interested in the relative magnitude of the
 different components, and on the other, we also care about their
 absolute size.
For one-dimensional problems, this is not too difficult (see
 Chapter 2). We can
 use a histogram or a similar graph to display the absolute size for
 all components; and we can use a cumulative distribution plot (or even
 the much-maligned pie chart) to visualize the relative contribution
 that each component makes to the total.
But once we add additional variables into the mix, things can
 get ugly. Two problems stand out: how to visualize
 changes to the composition over time and how to
 depict the breakdown of an overall quantity along multiple
 axes at the same time.
Changes in Composition

To understand the difficulties in tracking compositional
 problems over time, imagine a company that makes five products
 labeled A, B, C, D, and E. As we track the daily production numbers
 over time, there are two different questions that we are likely to
 be interested in: on the one hand, we’d like to know how many items
 are produced overall; on the other hand, we would like to understand
 how the item mix is changing over time.
Figure 5-7,
 Figure 5-8, and
 Figure 5-9 show
 three attempts to plot this kind of data. Figure 5-7 simply shows
 the absolute numbers produced per day for each of the five product
 lines. That’s not ideal—the graph looks messy because some of the
 lines obscure each other. Moreover, it is not possible to understand
 from this graph how the total number of items changes over time.
 Test yourself: does the total number of items go up over time, does
 it go down, or does it stay about even?
Figure 5-8 is
 a stacked plot of the same data. The daily
 numbers for each product are added to the numbers for the products
 that appear lower down in the diagram—in other words, the line
 labeled B gives the number of items produced in product lines A
 and B. The topmost line in this diagram shows
 the total number of items produced per day (and answers the question
 posed in the previous paragraph: the total number of items does
 not change appreciably over the long run—a
 possibly surprising observation, given the appearance of Figure 5-7).
Stacked plots can be compelling because they have intuitive
 appeal and appear to be clear and uncluttered. In reality, however,
 they tend to hide the details in the development of the individual
 components because the changing baseline makes comparison difficult
 if not impossible. For example, from Figure 5-7 it is pretty
 clear that production of item D increased for a while but then
 dropped rapidly over the last 5 to 10 days. We would never guess
 this fact from Figure 5-8, where the
 strong growth of product line A masks the smaller changes in the
 other product lines. (This is why you should order the components in
 a stacked graph in ascending order of variation—which was
 intentionally not done in Figure 5-8.)
[image: Absolute number of items produced per product line and day.]

Figure 5-7. Absolute number of items produced per product line and
 day.

[image: Stacked graph of the number of items produced per product line and day.]

Figure 5-8. Stacked graph of the number of items produced per product
 line and day.

[image: Stacked graph of the relative contribution that each product line makes to the total.]

Figure 5-9. Stacked graph of the relative contribution that each
 product line makes to the total.

Figure 5-9 shows still
 another attempt to visualize this data. This figure is also a
 stacked graph, but now we are looking not at the absolute numbers of
 items produced but instead at the relative fraction that each
 product line contributes to the daily total. Because the change in
 the total number of items produced has been eliminated, this graph
 can help us understand how the item mix varies over time (although
 we still have the changing baseline problem common to all stacked
 graphs). However, information about the total number of items
 produced has been lost.
All things considered, I don’t think any one of these graphs
 succeeds very well. No single graph can satisfy both of our
 conflicting goals—to monitor both absolute numbers as well as
 relative contributions—and be clear and visually attractive at the
 same time.
I think an acceptable solution for this sort of problem will
 always involve a combination of graphs—for example, one for the
 total number of items produced and another for the relative item
 mix. Furthermore, despite their aesthetic appeal, stacked graphs
 should be avoided because they make it too difficult to recognize
 relevant information in the graph. A plot such as Figure 5-7 may seem
 messy, but at least it can be read accurately and reliably.

Multidimensional Composition: Tree and Mosaic Plots

Composition problems are generally difficult even when we do
 not worry about changes over time. Look at the following
 data:
Male BS NYC Engineering
Male MS SFO Engineering
Male PhD NYC Engineering
Male BS LAX Engineering
Male MS NYC Finance
Male PhD SFO Finance
Female PhD NYC Engineering
Female MS LAX Finance
Female BS NYC Finance
Female PhD SFO Finance
The data set shows information about ten employees of
 some company, and for each employee, we have four pieces of
 information: gender, highest degree obtained, office where they are
 located (given by airport code—NYC: New York, SFO: San Francisco,
 LAX: Los Angeles), and their department. Keep in mind that each line
 corresponds to a single person.
The usual way to summarize such data is in the form of a
 contingency table. Table 5-1 summarizes
 what we know about the relationship between an employee’s gender and
 his or her department. Contingency tables are used to determine
 whether there is a correlation between categorical variables: in
 this case, we notice that men tend to work in engineering and women
 in finance. (We may want to divide by the total number of records to
 get the fraction of employees in each cell of
 the table.)
The problem is that contingency tables only work for two
 dimensions at a time. If we also want to include the breakdown by
 degree or location, we have no other choice than to repeat the basic
 structure from Table 5-1 several times:
 once for each office or once for each degree.
A mosaic plot is an attempt to find a
 graphical representation for this kind of data. The construction of
 a mosaic plot is essentially recursive and proceeds as follows (see
 Figure 5-10):
	Start with a square.

	Select a dimension, and then divide the square
 proportionally according to the counts for this
 dimension.

	Pick a second dimension, and then divide each subarea
 according to the counts along the second dimension, separately
 for each subarea.

	Repeat for all dimensions, interchanging horizontal and
 vertical subdivisions for each new dimension.

Table 5-1. A contingency table: breakdown of male and female employees
 across two departments
	 	Male
	Female
	Total

	Engineering
	4
	1
	5

	Finance
	2
	3
	5

	Total
	6
	4
	10

[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]
[image: Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice how the sort order changes the appearance of the graph!]

Figure 5-10. Mosaic plots. In the top row, we start by dividing by
 gender, then also by department. In the bottom row, we have
 divided by gender, department, and location, with doctorate
 degrees shaded. The graph on the left uses the same sort order of
 dimensions as the graphs in the top row, whereas the graph on the
 bottom right uses a different sort order. Notice how the sort
 order changes the appearance of the graph!

In the lower left panel of Figure 5-10, location is
 shown as a secondary vertical subdivision in addition to the gender
 (from left to right: LAX, NYC, SFO). In addition, the degree is
 shown through shading (shaded sections correspond to employees with
 a Ph.D.).
Having seen this, we should ask how much mosaic plots actually
 help us understand this data set. Obviously, Figure 5-10 is difficult
 to read and has to be studied carefully. Keep in mind that the
 information about the number of data points within each category is
 represented by the area—recursively at all levels. Also note that
 some categories are empty and therefore invisible (for instance,
 there are no female employees in either the Los Angeles or San
 Francisco engineering departments).
[image: A tree map (left) and the corresponding tree (right). The numbers give the weight of each node and, if applicable, also the weight of the entire subtree.]
[image: A tree map (left) and the corresponding tree (right). The numbers give the weight of each node and, if applicable, also the weight of the entire subtree.]

Figure 5-11. A tree map (left) and the corresponding tree (right). The
 numbers give the weight of each node and, if applicable, also the
 weight of the entire subtree.

I appreciate mosaic plots because they represent a new idea
 for how data can be displayed graphically, but I have not found them
 to be useful. In my own experience, it is easier to understand a
 data set by poring over a set of contingency tables than by drawing
 mosaic plots. Several problems stand out.
	The order in which the dimensions are applied matters
 greatly for the appearance of the plot. The lower right panel in
 Figure 5-10
 shows the same data set yet again, but this time the data was
 split along the location dimension first and along the gender
 dimension last. Shading again indicates employees with a Ph.D.
 Is it obvious that this is the same data set? Is one
 representation more helpful than the other?

	Changing the sort order changes more than just the
 appearance, it also influences what we are likely to recognize
 in the graph. Yet even with an interactive tool, I find it
 thoroughly confusing to view a large number of mosaic plots with
 changing layouts.

	It seems that once we have more than about four or five
 dimensions, mosaic plots become too cluttered to be useful. This
 is not a huge advance over the two dimensions presented in basic
 contingency tables!

	Finally, there is a problem common to all visualization
 methods that rely on area to indicate
 magnitude: human perception is not that good at comparing areas,
 especially areas of different shape. In the lower right panel in
 Figure 5-10, for
 example, it is not obvious that the sizes of the two shaded
 areas for engineering in NYC are the same. (Human perception
 works by comparing visual objects to each other, and the easiest
 to compare are lengths, not areas or angles. This is also why
 you should favor histograms over pie charts!)

In passing, let’s quickly consider a different but related
 concept: tree maps. Tree maps are area-based
 representations of hierarchical tree structures. As shown in Figure 5-11, the area of
 each parent node in the tree is divided according to the weight of
 its children.
Tree maps are something of a media phenomenon.
 Originally developed for the purpose of finding large files in a
 directory hierarchy, they seem to be more talked about then used.
 They share the problems of all area-based visualizations already
 discussed, and even their inventors report that people find them
 hard to read—especially if the number of levels in the hierarchy
 increases. Tree maps lend themselves well to interactive
 explorations (where you can “zoom in” to deeper levels of the
 hierarchy).
My greatest concern is that tree maps have abandoned the
 primary advantage of graphical methods without gaining sufficiently
 in power, namely intuition: looking at a tree
 map does not conjure up the image of, well, a
 tree! (I also think that the focus on treelike
 hierarchies is driven more by the interests of computer science,
 rather than by the needs of data analysis—no wonder if the
 archetypical application consisted of browsing a file
 system!)

Novel Plot Types

Most of the graph types I have described so far (with the
 exception of mosaic plots) can be described as “classical”: they have
 been around for years. In this section, we will discuss a few
 techniques that are much more recent—or, at least, that have only
 recently received greater attention.
Glyphs

We can include additional information in any simple plot (such
 as a scatter plot) if we replace the simple symbols used for
 individual data points with glyphs: more
 complicated symbols that can express additional bits of information
 by themselves.
An almost trivial application of this idea occurs if we put
 two data sets on a single scatter plot and use different symbols
 (such as squares and crosses) to mark the data points from each data
 set. Here the symbols themselves carry meaning but only a simple,
 categorical one—namely, whether the point belongs to the first or
 second data set.
But if we make the symbols more complicated, then they can
 express more information. Textual labels (letters and digits) are
 often surprisingly effective when it comes to conveying more
 information—although distinctly low-tech, this is a technique to
 keep in mind!
The next step up in sophistication are arrows, which can
 represent both a direction and a magnitude (see Figure 5-12), but we need
 not stop there. Each symbol can be a fully formed graph (such as a
 pie chart or a histogram) all by itself. And even that is not the
 end—probably the craziest idea in this realm are “Chernoff faces,”
 where different quantities are encoded as facial
 features (e.g., size of the mouth,
 distance between the eyes), and the faces are used as symbols on a
 plot!
[image: Simple glyphs: using arrows to indicate both direction and magnitude of a field. Notice that the variation in the data is smooth and that the data itself has been recorded on a regular grid.]

Figure 5-12. Simple glyphs: using arrows to indicate both direction and
 magnitude of a field. Notice that the variation in the data is
 smooth and that the data itself has been recorded on a regular
 grid.

As you can see, the problem lies not so much in
 putting more information on a graph as in being able to interpret
 the result in a useful manner. And that seems to depend mostly on
 the data, in particular on the presence of
 large-scale, regular structure in it. If such structure is missing,
 then plots using glyphs can be very hard to decode and quite
 possibly useless.
Figure 5-12
 and Figure 5-13 show
 two extreme examples. In Figure 5-12, we visualize
 a four-dimensional data set using arrows (each point of the
 two-dimensional plot area has both a direction and a magnitude, so
 the total number of dimensions is four). You can think of the system
 as flow in a liquid, as electrical or magnetic field lines, or as
 deformations in an elastic medium—it does not matter, the overall
 nature of the data becomes quite clear. But Figure 5-13 is an entirely
 different matter! Here we are dealing with a data set in seven
 dimensions: the first two are given by the position of the symbol on
 the plot, and the remaining five are represented via distortions of
 a five-edged polygon. Although we can make out some regularities
 (e.g., the shapes of the symbols in the lower
 lefthand corner are all quite similar and different from the shapes
 elsewhere), this graph is hard to read and does not reveal the
 overall structure of the data very well. Also keep in mind that the
 appearance of the graph will change if we map a different pair of
 variables to the main axes of the plot, or even if we change the
 order of variables in the polygons.

Parallel Coordinate Plots

As we have seen, a scatter plot can show two variables. If we
 use glyphs, we can show more, but not all variables are treated
 equally (some are encoded in the glyphs, some are encoded by the
 position of the symbol on the plot). By using parallel
 coordinate plots, we can show all the variables of a
 multivariate data set on equal footing. The price we pay is that we
 end up with a graph that is neither pretty nor particularly
 intuitive, but that can be useful for exploratory work
 nonetheless.
[image: Complex glyphs: each polygon encodes five different variables, and its position on the plot adds another two.]

Figure 5-13. Complex glyphs: each polygon encodes five different
 variables, and its position on the plot adds another two.

In a regular scatter plot in two (or even three) dimensions,
 the coordinate axes are at right angles to each other. In a parallel
 coordinate plot, the coordinate axes instead are
 parallel to each other. For every data point,
 its value for each of the variables is marked on the corresponding
 axis, and then all these points are connected with lines. Because
 the axes are parallel to each other, we don’t run out of spatial
 dimensions and therefore can have as many of them as we need. Figure 5-14 shows what a
 single record looks like in such a plot, and Figure 5-15 shows the
 entire data set. Each record consists of nine different quantities
 (labeled A through J).
The main use of parallel coordinate plots is to find clusters
 in high-dimensional data sets. For example, in Figure 5-15, we can see
 that the data forms two clusters for the quantity labeled B: one
 around 0.8 and one around 0. Furthermore, we can see that most
 records for which B is 0, tend to have higher values of C than those
 that have a B near 0.8. And so on.
A few technical points should be noted about parallel
 coordinate plots:
	You will usually want to rescale the values in each
 coordinate to the unit interval via the linear transformation
 (also see Appendix B):
[image: Complex glyphs: each polygon encodes five different variables, and its position on the plot adds another two.]
[image: A single record (i.e., a single data point) from a multivariate data set shown in a parallel coordinate plot.]

Figure 5-14. A single record (i.e., a single
 data point) from a multivariate data set shown in a parallel
 coordinate plot.

[image: All records from the data set shown in a parallel coordinate plot. The record shown in is highlighted.]

Figure 5-15. All records from the data set shown in a parallel
 coordinate plot. The record shown in Figure 5-14 is
 highlighted.

This is not mandatory, however. There may be situations
 where you care about the absolute positions of the points along
 the coordinate axis or about scaling to a different
 interval.

	The appearance of parallel coordinate plots depends
 strongly on the order in which the coordinate lines are drawn:
 rearranging them can hide or reveal structure. Ideally, you have
 access to a tool that lets you reshuffle the coordinate axis
 interactively.

	Especially for larger data sets (several hundreds
 of points or more), overplotting of lines becomes a problem. One
 way to deal with this is through “alpha blending”: lines are
 shown as semi-transparent, and their visual effects are combined
 where they overlap each other.

	Similarly, it is often highly desirable to be able to
 select a set of lines and highlight them throughout the entire
 graph—for example, to see how data points that are clustered in
 one dimension are distributed in the other dimensions.

	Instead of combining points on adjacent coordinate axes
 with straight lines that have sharp kinks at the coordinate
 axes, one can use smooth lines that pass the coordinate axes
 without kinks.

All of these issues really are tool
 issues, and in fact parallel coordinates don’t make sense without a
 tool that supports them natively and includes good implementations
 of the features just described. This implies that parallel
 coordinate plots serve less as finished, static graphs than as an
 interactive tool for exploring a data set.
Parallel coordinate plots still seem pretty novel. The idea
 itself has been around for about 25 years, but even today, tools
 that support parallel coordinates plots well
 are far from common place.
What is not yet clear is how useful parallel coordinate plots
 really are. On the one hand, the concept seems straightforward and
 easy enough to use. On the other hand, I have found the experience
 of actually trying to apply them frustrating and not very fruitful.
 It is easy to get bogged down in technicalities of the plot
 (ordering and scaling of coordinate axes) with little real, concrete
 insight resulting in the end. The erratic tool situation of course
 does not help. I wonder whether more computationally intensive
 methods (e.g., principal component analysis—see
 Chapter 14) do not
 give a better return on investment overall. But the jury is still
 out.

Interactive Explorations

All the graphs that we have discussed so far (in this and the
 preceding chapters) were by nature static. We
 prepared graphs, so that we then could study them, but this was the
 extent of our interaction. If we wanted to see something different, we
 had to prepare a new graph.
In this section, I shall describe some ideas for
 interactive graphics: graphs that we can change
 directly in some way without having to re-create them anew.
Interactive graphics cannot be produced with paper and pencil,
 not even in principle: they require a computer.
 Conversely, what we can do in this area is even more strongly limited
 by the tools or programs that are available to us than for other types
 of graphs. In this sense, then, this section is more about
 possibilities than about
 realities because the tool support for
 interactive graphical exploration seems (at the time of this writing)
 rather poor.
Querying and Zooming

Interaction with a graph does not have to be
 complicated. A very simple form of interaction consists of the
 ability to select a point (or possibly a group of points) and have
 the tool display additional information about it. In the simplest
 case, we hover the mouse pointer over a data point and see the
 coordinates (and possibly additional details) in a tool tip or a
 separate window. We can refer to this activity as
 querying.
Another simple form of interaction would allow us to change
 aspects of the graph directly using the mouse. Changing the plot
 range (i.e., zooming) is
 probably the most common application, but I could also imagine to
 adjust the aspect ratio, the color palette, or smoothing parameters
 in this way. (Selecting and highlighting a subset of points in a
 parallel coordinate plot, as described earlier, would be another
 application.)
Observe that neither of these activities is inherently
 “interactive”: they all would also be possible if we used paper and
 pencil. The interactive aspect consists of our ability to invoke
 them in real time and by using a graphical input device (the
 mouse).

Linking and Brushing

The ability to interact directly with graphs becomes much more
 interesting once we are dealing with multiple graphs at the same
 time! For example, consider a scatter-plot matrix like the one in
 Figure 5-4. Now
 imagine we use the mouse to select and highlight a group of points
 in one of the subplots. If the graphs are
 linked, then the symbols corresponding to the
 data points selected in one of the subplots will also be highlighted
 in all other subplots as well.
Usually selecting some points and then highlighting their
 corresponding symbols in the linked subgraphs requires two separate
 steps (or mouseclicks). A real-time version of the same idea is
 called brushing: any points currently under the
 mouse pointer are selected and highlighted in all of the linked
 subplots.
Of course, linking and brushing are not limited to
 scatter-plot matrices, but they are applicable to any group of
 graphs that show different aspects of the same data set. Suppose we
 are working with a set of histograms of a multivariate data set,
 each histogram showing only one of the quantities. Now I could
 imagine a tool that allows us to select a bin in
 one of the histograms and then highlights the
 contribution from the points in that bin in all the other
 histograms.

Grand Tours and Projection Pursuits

Although linking and brushing allow us to interact with the
 data, they leave the graph itself static. This changes when we come
 to Grand Tours and Projection
 Pursuits. Now we are talking about truly animated
 graphics!
Grand Tours and Projection Pursuits are attempts to enhance
 our understanding of a data set by presenting many closely related
 projections in the form of an animated “movie.”
The concept is straightforward: we begin with some
 projection and then continuously move the viewpoint around the data
 set. (For a three-dimensional data set, you can imagine the
 viewpoint moving on a sphere that encloses the data.)
In Grand Tours, the viewpoint is allowed to perform
 essentially a random walk around the data set. In Projection
 Pursuits, the viewpoint is moved so that it will improve the value
 of an index that measures how “interesting” a specific projection
 will appear. Most indices currently suggested measure properties
 such as deviation from Gaussian behavior. At each step of a Pursuit,
 the program evaluates several possible projections and then selects
 the one that most improves the chosen index. Eventually, a Pursuit
 will reach a local maximum for the index, at which time it needs to
 be restarted from a different starting point.
Obviously, Tours and Pursuits require specialized tools that
 can perform the required projections—and do so in real time. They
 are also exclusively exploratory techniques and not suitable for
 preserving results or presenting them to a general audience.
Although the approach is interesting, I have not found Tours
 to be especially useful in practice. It can be confusing to watch a
 movie of essentially random patterns and frustrating to interact
 with projections when attempting to explore the neighborhood of an
 interesting viewpoint.

Tools

All interactive visualization techniques require suitable
 tools and computer programs; they cannot be done using
 paper-and-pencil methods. This places considerable weight on the
 quality of the available tools. Two issues stand out.
	It seems difficult to develop tools that support
 interactive features and are sufficiently general at the same
 time. For example, if we expect the plotting program to show
 additional detail on any data point that we select with the
 mouse, then the input (data) file will have to contain this
 information—possibly as metadata. But now we are talking about
 relatively complicated data sets, which require more
 complicated, structured file formats that will be specific to
 each tool. So before we can do anything with the data, we will
 have to transform it into the required format. This is a
 significant burden, and it may make these methods infeasible in
 practice. (Several of the more experimental programs mentioned
 in the Workshop section in this chapter are nearly unusable on
 actual data sets for exactly this reason.)

	A second problem concerns performance. Brushing, for
 instance, makes sense only if it truly occurs in real
 time—without any discernible delay as the mouse pointer moves.
 For a large data set and a scatter-plot matrix of a dozen
 attributes, this means updating a few thousand points in real
 time. Although by no means infeasible, such responsiveness does
 require that the tool is written with an eye toward performance
 and using appropriate technologies. (Several of the tools
 mentioned in the Workshop exhibit serious performance issues on
 real-world data sets.)

A final concern involves the overall design of the
 user interface. It should be easy to learn and easy to use, and it
 should support the activities that are actually required. Of course,
 this concern is not specific to data visualization tools but common
 to all programs with a graphical user interface.

Workshop: Tools for Multivariate Graphics

Multivariate graphs tend to be complicated and therefore require
 good tool support even more strongly than do other forms of graphs. In
 addition, some multivariate graphics are highly specialized
 (e.g., mosaic plots) and cannot be easily
 prepared with a general-purpose plotting tool.
That being said, the tool situation is questionable at best.
 Here are three different starting points for exploration—each with its
 own set of difficulties.
R

R is not a plotting tool per se; it is a statistical analysis
 package and a full development environment as well. However, R has
 always included pretty extensive graphing capabilities. R is
 particularly strong at “scientific” graphs: straightforward but
 highly accurate line diagrams.
Because R is not simply a plotting tool, but instead a full
 data manipulation and programming environment, its learning curve is
 rather steep; you need to know a lot of different things before you
 can do anything. But once you are up and running, the large number
 of advanced functions that are already built in can make working
 with R very productive. For example, the scatter-plot matrix in
 Figure 5-4 was
 generated using just these three commands:
d <- read.delim("wines", header=T)

pairs(d)

dev.copy2eps(file="splom.eps")
(the R command pairs()
 generates a plot of all pairs—i.e., a
 scatter-plot matrix). The scatter plot in Figure 5-5 and the
 co-plot in Figure 5-6 were generated
 using:
d <- read.delim("data", header=F)
names(d) <- c("x", "a", "y")

plot(y ~ x, data=d)
dev.copy2eps(file='coplot1.eps')

coplot(y ~ x | a, data=d)
dev.copy2eps(file='coplot2.eps')
Note that these are the entire command
 sequences, which include reading the data from file and writing the
 graph back to disk! We’ll have more to say about R in the Workshop
 sections of Chapter 10 and Chapter 14.
R has a strong culture of user-contributed add-on
 packages. For multiplots consisting of subplots arranged on a
 regular grid (in particular, for generalized co-plots), you should
 consider the lattice package,
 which extends or even replaces the functionality of the basic R
 graphic systems. This package is part of the standard R
 distribution.

Experimental Tools

If you want to explore some of the more novel graphing ideas,
 such as parallel coordinate plots and mosaic plots, or if you want
 to try out interactive ideas such as brushing and Grand Tours, then
 there are several options open to you. All of them are academic
 research projects, and all are highly experimental. (In a way, this
 is a reflection of the state of the field: I don’t think any of
 these novel plot types have been refined to a point where they are
 clearly useful.)
	The ggobi project (http://www.ggobi.org) allows brushing
 in scatter-plot matrices and parallel coordinate plots and
 includes support for animated tours and pursuits.

	Mondrian (http://www.rosuda.org/mondrian) is a
 Java application that can produce mosaic plots (as well as some
 other multivariate graphs).

Again, both tools are academic research projects—and it shows.
 They are technology demonstrators intended to try out and experiment
 with new graph ideas, but neither is anywhere near production
 strength. Both are rather fussy about the required data input
 format, their graphical user interfaces are clumsy, and neither
 includes a proper way to export graphs to file (if you want to save
 a plot, you have to take a screenshot). The interactive brushing
 features in ggobi are slow, which makes them nearly unusable for
 realistically sized data sets. There are some lessons here (besides
 the intended ones) to be learned about the design of tools for
 statistical graphics. (For instance, GUI widget sets do not seem
 suitable for interactive visualizations: they are too slow. You have
 to use a lower-level graphics library instead.)
Other open source tools you may want to check out are Tulip
 (http://tulip.labri.fr)
 and ManyEyes (http://manyeyes.alphaworks.ibm.com/manyeyes).
 The latter project is a web-based tool and community that allows you
 to upload your data set and generate plots of it online.
A throwback to a different era is OpenDX (http://www.research.ibm.com/dx).
 Originally designed by IBM in 1991, it was donated to the open
 source community in 1999. It certainly feels overly complicated and
 dated, but it does include a selection of features not found
 elsewhere.

Python Chaco Library

The Chaco library (http://code.enthought.com/projects/chaco/)
 is a Python library for two-dimensional plotting. In addition to the
 usual line and symbol drawing capabilities, it includes easy support
 for color and color manipulation as well as—more importantly—for
 real-time user interaction.
Chaco is an exciting toolbox if you plan to experiment with
 writing your own programs to visualize data and interact with it.
 However, be prepared to do some research: the best available
 documentation seems to be the set of demos that ship with it.
Chaco is part of the Enthought Tool Suite, which is developed
 by Enthought, Inc., and is available under a BSD-style
 license.

Further Reading

	Graphics of Large Datasets: Visualizing a
 Million. Antony Unwin, Martin Theus, and Heike Hofmann. Springer.
 2006.
This is a modern book that in many ways describes the state
 of the art in statistical data visualization. Mosaic plots, glyph
 plots, parallel coordinate plots, Grand Tours—all are discussed
 here. Unfortunately, the basics are neglected: standard tools like
 logarithmic plots are never even mentioned, and simple things like
 labels are frequently messed up. This book is nevertheless
 interesting as a survey of some of the state of the art.

	The Elements of Graphing
 Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.
This book provides an interesting counterpoint to the book
 by Unwin and colleagues. Cleveland’s graphs often look pedestrian,
 but he thinks more deeply than almost anyone else about ways to
 incorporate more (and more quantitative) information in a graph.
 What stands out in his works is that he explicitly takes human
 perception into account as a guiding principle when developing new
 graphs. My discussion of scatter-plot matrices and co-plots is
 heavily influenced by his careful treatment.

	Gnuplot in Action: Understanding Data with
 Graphs. Philipp K. Janert. Manning Publications. 2010.
Chapter 9 of this
 book contains additional details on and examples for the use of
 color to prepare false-color plots, including explicit recipes to
 create them using gnuplot. But the principles are valid more
 generally, even if you use different tools.

	Why Should Engineers and Scientists Be Worried
 About Color? B. E. Rogowitz and L. A. Treinish. http://www.research.ibm.com/people/l/lloydt/color/color.HTM.
 1995. This paper contains important lessons for false-color
 plots, including the distinction between segmentation and smooth
 variation as well as the difference between hue- and
 luminance-based palettes. The examples were prepared using IBM’s
 (now open source) OpenDX graphical Data Explorer.

	Escaping RGBland: Selecting Colors for
 Statistical Graphics. A. Zeileis, K. Hornik, and P. Murrell. http://statmath.wu.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2009.pdf.
 2009. This is a more recent paper on the use of color in
 graphics. It emphasizes the importance of perception-based color
 spaces, such as the HCL model.

[9] An implementation of the transformations between HCL and RGB
 is available in R and C in the “colorspace” module available from
 CRAN.

[10] An interesting starting point is Cynthia Brewer’s online
 ColorBrewer at http://colorbrewer2.org/.

[11] The data can be found in the “Wine Quality” data set,
 available at the UCI Machine Learning repository at
 http://archive.ics.uci.edu/ml/.

Chapter 6. Intermezzo: A Data Analysis Session

OCCASIONALLY I GET THE QUESTION: “HOW DO YOU ACTUALLY
 WORK?” OR “HOW DO YOU COME UP WITH THIS stuff?” As
 an answer, I want to take you on a tour through a new data set. I will
 use gnuplot, which is my preferred tool for this kind of interactive
 data analysis—you will see why. And I will share my observations and
 thoughts as we go along.
A Data Analysis Session

The data set is a classic: the CO2
 measurements above Mauna Loa on Hawaii. The inspiration for this
 section comes from Cleveland’s Elements of Graphical
 Analysis,[12] but the approach is entirely mine.
First question: what’s in the data set? I see that the first
 column represents the date (month and year) while the second contains
 the measured CO2 concentration in parts per
 million. Here are the first few lines:
Jan-1959 315.42
Feb-1959 316.32
Mar-1959 316.49
Apr-1959 317.56
...
The measurements are regularly spaced (in fact, monthly), so I
 don’t need to parse the date in the first column; I simply plot the
 second column by itself. (In the figure, I have added tick labels on the horizontal axis for clarity,
 but I am omitting the commands required here—they are not
 essential.)
[image: The first look at the data: plot “data”u1wl]

Figure 6-1. The first look at the data: plot
 “data”u1wl

plot "data" u 2 w l
The plot shows a rather regular short-term variation overlaid on
 a nonlinear upward trend. (See Figure 6-1.)
The coordinate system is not convenient for mathematical
 modeling: the x axis is not numeric, and for
 modeling purposes it is usually helpful if the graph goes through the
 origin. So, let’s make it do so by subtracting the vertical offset
 from the data and expressing the horizontal position as the number of
 months since the first measurement. (This corresponds to the line
 number in the data file, which is accessible in a gnuplot session
 through the pseudo-column with column number 0.)
plot "data" u 0:($2-315) w l
A brief note on the command: the specification after the
 u (short for using) gives the columns to be used for the
 x and y coordinates,
 separated by a colon. Here we use the line number (which is in the
 pseudo-column 0) for the x coordinate. Also, we
 subtract the constant offset 315 from the values in the second column
 and use the result as the y value. Finally, we
 plot the result with lines
 (abbreviated w l) instead of using
 points or other symbols. See Figure 6-2.
The most predominant feature is the trend. What can we say about
 it? First of all, the trend is nonlinear: if we ignore the short-term
 variation, the curve is convex downward. This suggests a power law
 with an as-yet-unknown exponent:
 xk.
 All power-law functions go through the origin (0, 0) and also through
 the point (1, 1). We already made sure that the data passes through
 the origin, but to fix the upper-right corner, we need to rescale both
 axes: if
 xk
 goes through (1, 1), then [image:] goes through (a,
 b).
[image: Making the x values numeric and subtracting the constant vertical offset: plot “data” u 0:($2-315) w l]

Figure 6-2. Making the x values numeric and
 subtracting the constant vertical offset: plot “data” u
 0:($2-315) w l

[image: Adding a function: plot “data” u 0:($2-315) w l, 35*(x/350)**2]

Figure 6-3. Adding a function: plot “data” u 0:($2-315) w l,
 35*(x/350)**2

What’s the value for the exponent k? All I
 know about it right now is that it must be greater than 1 (because the
 function is convex). Let’s try k = 2. (See Figure 6-3.)
plot "data" u 0:($2-315) w l, 35*(x/350)**2
Not bad at all! The exponent is a bit too large—some fiddling
 suggests that k = 1.35 would be a good value (see
 Figure 6-4).
plot "data" u 0:($2-315) w l, 35*(x/350)**1.35
To verify this, let’s plot the residual; that is, we subtract
 the trend from the data and plot what’s left. If our guess for the
 trend is correct, then the residual should not exhibit any trend
 itself—it should just straddle y = 0 in a
 balanced fashion (see Figure 6-5).
plot "data" u 0:($2-315 - 35*($0/350)**1.35) w l
[image: Getting the exponent right:]

Figure 6-4. Getting the exponent right: [image:]

[image: The residual, after subtracting the function from the data.]

Figure 6-5. The residual, after subtracting the function from the
 data.

It might be hard to see the longer-term trend in this data, so
 we may want to approximate it by a smoother curve. We can use the
 weighted-spline approximation built into gnuplot for that purpose. It
 takes a third parameter, which is a measure for the smoothness: the
 smaller the third parameter, the smoother the resulting curve; the
 larger the third parameter, the more closely the spline follows the
 original data (see Figure 6-6).
plot "data" u 0:(2 − 315 − 35 * (0/350)**1.35) w l, \
 "" u 0:($2-315 - 35*($0/350)**1.35):(0.001) s acs w l
At this point, the expression for the function that we use to
 approximate the data has become unwieldy. Thus it now makes sense to
 define it as a separate function:
f(x) = 315 + 35*(x/350)**1.35
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Plotting a smoothed version of the residual together with the unsmoothed residual to test whether there is any systematic trend remaining in the residual.]

Figure 6-6. Plotting a smoothed version of the residual together with the
 unsmoothed residual to test whether there is any systematic trend
 remaining in the residual.

From the smoothed line we can see that the overall
 residual is pretty much flat and straddles zero. Apparently, we have
 captured the overall trend quite well: there is little evidence of a
 systematic drift remaining in the residuals.
With the trend taken care of, the next feature to tackle is the
 seasonality. The seasonality seems to consist of rather regular
 oscillations, so we should try some combination of sines and cosines.
 The data pretty much starts out at y = 0 for
 x = 0, so we can try a sine by itself. To make a
 guess for its wavelength, we recall that the data is meteorological
 and has been taken on a monthly basis—perhaps there is a
 year-over-year periodicity. This would imply that the data is the same
 every 12 data points. If so, then a full period of the sine, which
 corresponds to 2π, should equal a horizontal distance of 12 points.
 For the amplitude, the graph suggests a value close to 3 (see Figure 6-7).
plot "data" u 0:($2-f($0)) w l, 3*sin(2*pi*x/12) w l
Right on! In particular, our guess for the wavelength worked out
 really well. This makes sense, given the origin of the data.
Let’s take residuals again, employing splines to see the bigger
 picture as well (see Figure 6-8):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12)
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
The result is pretty good but not good enough. There is clearly
 some regularity remaining in the data, although at a higher frequency
 than the main seasonality. Let’s zoom in on a smaller interval of the
 data to take a closer look. The data in the interval [60:120] appears particularly regular, so
 let’s look there (see Figure 6-9):
plot [60:120] "data" u 0:($2-f($0)) w lp, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Fitting the seasonality with a sine wave:]

Figure 6-7. Fitting the seasonality with a sine wave: [image:]

[image: Residuals after subtracting both trend and seasonality.]

Figure 6-8. Residuals after subtracting both trend and
 seasonality.

I have indicated the individual data points using gnuplot’s
 linespoints (lp) style. We can now count the number of
 data points between the main valleys in the data: 12 points. This is
 the main seasonality. But it seems that between any two primary
 valleys there is exactly one secondary valley. Of course: higher
 harmonics! The original seasonality had a period of exactly 12 months,
 but its shape was not entirely symmetric: its rising flank comprised 7
 months but the falling flank only 5 (as you can see by zooming in on
 the original data with only the trend removed). This kind of asymmetry
 implies that the seasonality cannot be represented by a simple sine
 wave alone but that we have to take into account higher harmonics—that
 is, sine functions with frequencies that are integer multiples of the
 primary seasonality. So let’s try the first higher harmonic, again
 punting a little on the amplitude (see Figure 6-10):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6)
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
[image: Zooming in for a closer look. Individual data points are marked by symbols.]

Figure 6-9. Zooming in for a closer look. Individual data points are
 marked by symbols.

[image: Residual after removing trend and the first and second harmonic of the seasonality.]

Figure 6-10. Residual after removing trend and the first and second
 harmonic of the seasonality.

Now we are really pretty close. Look at the residual—in
 particular, for values of x greater than about
 150. The data starts to look quite “random,” although there is some
 systematic behavior for x in the range [0:70] that we don’t really capture. Let’s
 add some constant ranges to the plot for comparison (see Figure 6-11):
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1
It looks as if the residual is skewed toward positive values, so
 let’s adjust the vertical offset by 0.1 (see Figure 6-12):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1
plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1
[image: Adding some grid lines for comparison.]

Figure 6-11. Adding some grid lines for comparison.

[image: The final residual.]

Figure 6-12. The final residual.

That’s now really close. You should notice how small the last
 adjustment was—we started out with data ranging from 300 to 350, and
 now we are making adjustments to the parameters on the order of 0.1.
 Also note how small the residual has become: mostly in the range from
 –0.7 to 0.7. That’s only about 3 percent of the total variation in the
 data.
Finally, let’s look at the original data again, this time
 together with our analytical model (see Figure 6-13):
f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1
plot "data" u 0:2 w l, f(x)
All in all, pretty good.
[image: The raw data with the final fit.]

Figure 6-13. The raw data with the final fit.

So what is the point here? The point is that we started out with
 nothing—no idea at all of what the data looked like. And then, layer
 by layer, we peeled off components of the data, until only random
 noise remained. We ended up with an explicit, analytical formula that
 describes the data remarkably well.
But there is something more. We did so entirely “manually”: by
 plotting the data, trying out some approximations, and wiggling the
 numbers until they agreed reasonably well with the data. At no point
 did we resort to a black-box fitting routine—because we didn’t have
 to! We did just fine. (In fact, after everything was finished, I tried
 to perform a nonlinear fit using the functional form of the analytical
 model as we have worked it out—only to have it explode terribly! The
 model depends on seven parameters, which means that convergence of a
 nonlinear fit can be a bit precarious. In fact, it took me
 longer to try to make the fit work than it took
 me to work the parameters out manually as just demonstrated.)
I’d go even further. We learned more by
 doing this work manually than if we had used a fitting routine. Some
 of the observations (such as the idea to include higher harmonics)
 arose only through direct interaction with the data. And it’s not even
 true that the parameters would be more accurate if they had been
 calculated by a fitting routine. Sure, they would contain 16 digits
 but not more information. Our manual wiggling of the parameters
 enabled us to see quickly and directly the point at which changes to
 the parameters are so small that they no longer influence the
 agreement between the data and the model. That’s when we have
 extracted all the information from the data—any further “precision” in
 the parameters is just insignificant noise.
You might want to try your hand at this yourself and also
 experiment with some variations of your own. For example, you may
 question the choice of the power-law behavior for the long-term trend.
 Does an exponential function (like exp(x)) give a
 better fit? It is not easy to tell from the data, but it makes
 a huge difference if we want to project our findings significantly (10
 years or more) into the future. You might also take a closer look at
 the seasonality. Because it is so regular—and especially since its
 period is known exactly—you should be able to isolate just the
 periodic part of the data in a separate model by averaging
 corresponding months for all years. Finally, there is 20 years’ worth
 of additional data available beyond the “classic” data set used in my
 original exploration.[13] Figure 6-14 shows all the
 available data together with the model that we have developed. Does
 the fit continue to work well for the years past 1990?
[image: The extended data set up to early 2010 together with the model (up to 1990).]

Figure 6-14. The extended data set up to early 2010 together with the
 model (up to 1990).

Workshop: gnuplot

The example commands in this chapter should have given you a
 good idea what working with gnuplot is like, but let’s take a quick
 look at some of the basics.
Gnuplot (http://www.gnuplot.info) is command-line
 oriented: when you start gnuplot, it presents you with a text prompt
 at which to enter commands; the resulting graphs are shown in a
 separate window. Creating plots is simple—the command:
plot sin(x) with lines, cos(x) with linespoints
will generate a plot of (you guessed it) a sine and a cosine.
 The sine will be drawn with plain lines, and the cosine will be drawn
 with symbols (“points”) connected by lines. (Many gnuplot keywords can
 be abbreviated: instead of with
 lines I usually type: w
 l, or w lp instead of
 with linespoints. These short forms
 are a major convenience although rather cryptic in the beginning. In
 this short introductory section, I will make sure to only use the full
 forms of all commands.)
To plot data from a file, you also use the plot command; for instance:
plot "data" using 1:2 with lines
When plotting data from a file, we use the using keyword to specify which columns from
 the file we want to plot—in the command just given, we use entries
 from the first column as x values and use entries
 from the second column for y values.
One of the nice features of gnuplot is that you can apply
 arbitrary transformations to the data as it is being plotted. To do
 so, you put parentheses around each entry in the column specification
 that you want to apply a transform to. Within these parentheses you
 can use any mathematical expression. The data from each column is
 available by prefixing the column index by the dollar sign. An example
 will make this more clear:
plot "data" using (1/$1):($2+$3) with lines
This command plots the sum of the second and third columns (that
 is: $2+$3) as a function of one
 over the value in the first column (1/$1).
It is also possible to mix data and functions in a single plot
 command (as we have seen in the examples in this chapter):
plot "data" using 1:2 with lines, cos(x) with lines
This is different from the Matlab-style of plotting, where a
 function must be explicitly evaluated for a set
 of points before the resulting set of values can be plotted.
We can now proceed to add decorations (such as labels and
 arrows) to the plot. All kinds of options are available to customize
 virtually every aspect of the plot’s appearance: tick marks, the
 legend, aspect ratio—you name it. When we are done with a plot, we can
 save all the commands used to create it (including all decorations)
 via the save command:
save "plot.gp"
Now we can use load "plot.gp"
 to re-create the graph.
As you can see, gnuplot is extremely straightforward to use. The
 one area that is often regarded as somewhat clumsy is the creation of
 graphs in common graphics file formats. The reason for this is
 historical: the first version of gnuplot was written in 1985, a time
 when one could not expect every computer to be connected to a
 graphics-capable terminal and when many of our current file formats
 did not even exist! The gnuplot designers dealt with this situation by
 creating the so-called “terminal” abstraction. All hardware-specific
 capabilities were encapsulated by this abstraction so that the rest of
 gnuplot could be as portable as possible. Over time, this “terminal”
 came to include different graphics file formats
 as well (not just graphics hardware terminals), and this usage
 continues to this day. Exporting a graph to a common file format (such as GIF,
 PNG, PostScript, or PDF) requires a five-step process:
set terminal png
set output "plot.png"
replot
set terminal wxt
set output
In the first step, we choose the output device or “terminal”:
 here, a PNG file. In the second step, we choose the file name. In the
 third step, we explicitly request that the graph be regenerated for
 this newly chosen device. The remaining commands restore the
 interactive session by selecting the interactive wxt terminal (built on top of the wxWidgets
 widget set) and redirecting output back to the interactive terminal.
 If you find this process clumsy and error-prone, then you are not
 alone, but rest assured: gnuplot allows you to write macros, which can
 reduce these five steps to one!
I should mention one further aspect of gnuplot: because it has
 been around for 25 years, it is extremely mature and robust when it
 comes to dealing with typical day-to-day problems. For example,
 gnuplot is refreshingly unpicky when it comes to parsing input files.
 Many other data analysis or plotting programs that I have seen are
 pretty rigid in this regard and will bail when encountering unexpected
 data in an input file. This is the right thing to do in theory, but in
 practice, data files are often not clean—with ad hoc formats and
 missing or corrupted data points. Having your plotting program balk
 over whitespace instead of tabs is a major
 nuisance when doing real work. In contrast, gnuplot usually does an
 amazingly good job at making sense of almost any input file you might
 throw at it, and that is indeed a great help. Similarly, gnuplot
 recognizes undefined mathematical expressions (such as 1/0, log(0),
 and so on) and discards them. This is also very helpful, because it
 means that you don’t have to worry about the domains over which
 functions are properly defined while you are in the thick of things.
 Because the output is graphical, there is usually very little risk
 that this silent discarding of undefined values will lead you to miss
 essential behavior. (Things are different in a computer program, where
 silently ignoring error conditions usually only compounds the
 problem.)

Further Reading

	Gnuplot in Action: Understanding Data with
 Graphs. Philipp K. Janert. Manning Publications. 2010.
If you want to know more about gnuplot, then you may find
 this book interesting. It includes not only explanations of all
 sorts of advanced options, but also helpful hints for working with
 gnuplot.

[12] The Elements of Graphing Data. William
 S. Cleveland. Hobart Press. 1994. The data itself (in a slightly
 different format) is available from StatLib: http://lib.stat.cmu.edu/datasets/visualizing.data.zip
 and from many other places around the Web.

[13] You can obtain the data from the observatory’s official
 website at http://www.esrl.noaa.gov/gmd/ccgg/trends/.
 Also check out the narrative (with photos of the apparatus!) at
 http://celebrating200years.noaa.gov/datasets/mauna/welcome.html.

Part II. Analytics: Modeling Data

Chapter 7. Guesstimation and the Back of the Envelope

LOOK
 AROUND THE ROOM YOU ARE SITTING IN AS YOU READ THIS. NOW ANSWER THE
 FOLLOWING QUESTION: how many Ping-Pong balls would
 it take to fill this room?
Yes, I know it’s lame to make the reader do jot’em-dot’em
 exercises, and the question is old anyway, but please make the effort to
 come up with a number. I am trying to make a point here.
Done? Good—then, tell me, what is the margin of error in your
 result? How many balls, plus or minus, do you think the room might
 accommodate as well? Again, numbers, please! Look at the margin of
 error: can you justify it, or did you just pull some numbers out of thin
 air to get me off your back? And if you found an argument to base your
 estimate on: does the result seem right to you? Too large, too
 small?
Finally, can you state the assumptions you made when answering the
 first two questions? What did or did you not take into account? Did you
 take the furniture out or not? Did you look up the size of a Ping-Pong
 ball, or did you guess it? Did you take into account different ways to
 pack spheres? Which of these assumptions has the largest effect on the
 result? Continue on a second sheet of paper if you need more space for
 your answer.
The game we just played is sometimes called
 guesstimation and is a close relative to the
 back-of-the-envelope calculation. The difference is
 minor: the way I see it, in guesstimation we worry primarily about
 finding suitable input values, whereas in a typical back-of-the-envelope
 calculation, the inputs are reasonably well known and the challenge is
 to simplify the actual calculation to the point that it can be done on
 the back of the proverbial envelope. (Some people seem to prefer napkins
 to envelopes—that’s the more sociable crowd.)
Let me be clear about this: I consider proficiency at
 guesstimation and similar techniques the absolute hallmark of the
 practical data analyst—the person who goes out and solves
 real problems in the real
 world. It is so powerful because it connects a conceptual understanding
 (no matter how rough) with the concrete reality of the problem domain;
 it leaves no place to hide. Guesstimation also generates
 numbers (not theories or models) with their
 wonderful ability to cut through vague generalities and opinion-based
 discussions.
For all these reasons, guesstimation is a crucial skill. It is
 where the rubber meets the road.
The whole point of guesstimation is to come up with an approximate
 answer—quickly and easily. The flip side of this is that it forces us to
 think about the accuracy of the result: first how to estimate the
 accuracy and then how to communicate it. That will be the program for
 this chapter.
Principles of Guesstimation

Let’s step through our introductory Ping-Pong ball example
 together. This will give me an opportunity to point out a few
 techniques that are generally useful.
First consider the room. It is basically rectangular in shape. I
 have bookshelves along several walls; this helps me estimate the
 length of each wall, since I know that shelves are 90 cm (3 ft)
 wide—that’s a pretty universal standard. I also know that I am 1.80 m
 (6 ft) tall, which helps me estimate the height of the room. All told,
 this comes to 5 m by 3.5 m by 2.5 m or about 50
 m3.
Now, the Ping-Pong ball. I haven’t had one in my hands for a
 long time, but I seem to remember that they are about 2.5 cm (1 in) in
 diameter. That means I can line up 40 of them in a meter, which means
 I have 403 in a cubic meter. The way I
 calculate this is: 403 =
 43 · 103 =
 26 · 1,000 = 64,000. That’s the number of
 Ping-Pong balls that fit into a cubic meter.
Taking things together, I can fit 50 · 64,000 or approximately
 3,000,000 Ping-Pong balls into this room. That’s a large number. If
 each ball costs me a dollar at a sporting goods store, then the value
 of all the balls required to fill this room would be many times
 greater than the value of the entire house!
Next, the margins of error. The uncertainty in each dimension is
 at least 10 percent. Relative errors are added to each other in a
 multiplication (we will discuss error propagation later in this
 chapter), so the total error turns out to be 3 · 10 percent = 30
 percent! That’s pretty large—the number of balls required might be as
 low as two million or as high as four million. It is uncomfortable to
 see how the rather harmless-looking 10 percent error in each
 individual dimension has compounded to lead to a 30 percent
 uncertainty.
The same problem applies to the diameter of the
 Ping-Pong balls. Maybe 2.5 cm is a bit low—perhaps 3 cm is more like
 it. Now, that’s a 20 percent increase, which means that the number of
 balls fitting into one cubic meter is reduced by 60 percent (3 times
 the relative error, again): now we can fit only about 30,000 of them
 into a cubic meter. The same goes for the overall estimate: a decrease
 by half if balls are 5 mm larger than initially assumed. Now the range
 is something between one and two million.
Finally, the assumptions. Yes, I took the furniture out. Given
 the uncertainty in the total volume of the room, the space taken up by
 the furniture does not matter much. I also assumed that balls would
 stack like cubes, when in reality they pack tighter if we arrange them
 in the way oranges (or cannonballs) are stacked. It’s a slightly
 nontrivial exercise in geometry to work out the factor, but it comes
 to about 15 percent more balls in the same space.
So, what can we now say with certainty? We will need a few
 million Ping-Pong balls—probably not less than one million and
 certainly not more than five million. The biggest uncertainty is the
 size of the balls themselves; if we need a more accurate estimate than
 the one we’ve obtained so far, then we can look up their exact
 dimensions and adjust the result accordingly.
(After I wrote this paragraph, I finally looked up the size of a
 regulation Ping-Pong ball: 38–40 mm. Oops. This means that only about
 15,000 balls fit into a cubic meter, and so I must adjust all my
 estimates down by a factor of 4.)
This example demonstrates all important aspects of
 guesstimation:
	Estimate sizes of things by comparing them to something you
 know.

	Establish functional relationships by using simplifying
 assumptions.

	Originally innocuous errors can compound dramatically, so
 tracking the accuracy of an estimate is crucial.

	And finally, a few bad guesses on things that are not very
 familiar can have a devastating effect (I really haven’t played
 Ping-Pong in a long time), but they can be corrected easily when
 better input is available.

Still, we did find the order of magnitude, one way or the other:
 a few million.
Estimating Sizes

The best way to estimate the size of an object is to compare
 it to something you know. The shelves played this role in the
 previous example, although sometimes you have to work a little
 harder to find a familiar object to use as reference in any given
 situation.
Obviously, this is easier to do the more you know, and it can
 be very frustrating to find yourself in a situation where you don’t
 know anything you could use as a reference. That being said, it is usually possible to go quite far
 with just a few data points to use as reference values.
(There are stories from the Middle Ages of how soldiers would
 count how many rows of stone blocks were used in the walls of a
 fortress before mounting an attack, the better to estimate the
 height of the walls. Obtaining an accurate value was necessary to
 prepare scaling ladders of the appropriate length: if the ladders
 were too short, then the top of the wall could not be reached; if
 they were too long, the defenders could grab the overhanging tops
 and topple the ladders back over. Bottom line: you’ve got to find
 your reference objects where you can.)
Knowing the sizes of things is therefore the first order of
 business. The more you know, the easier it is to form an estimate;
 but also the more you know, the more you develop a feeling for the
 correct answer. That is an important step when operating with
 guesstimates: to perform an independent “sanity check” at the end to
 ensure we did not make some horrible mistake along the way. (In
 fact, the general advice is that “two (independent) estimates are
 better than one”; this is certainly true but not always possible—at
 least I can’t think of an independent way to work out the Ping-Pong
 ball example we started with.)
Knowing the sizes of things can be
 learned. All it takes is a healthy interest in
 the world around you—please don’t go through the dictionary,
 memorizing data points in alphabetical order. This is not about
 beating your buddies at a game of Trivial Pursuit! Instead, this is
 about becoming familiar (I’d almost say intimate) with the world you
 live in. Feynman once wrote about Hans A. Bethe that “every number
 was near something he knew.” That is the ideal.
The next step is to look things up. In
 situations where one frequently needs relatively good approximations
 to problems coming from a comparably small problem domain,
 special-purpose lookup tables can be a great help. I vividly
 remember a situation in a senior physics lab where we were working
 on an experiment (I believe, to measure the muon lifetime), when the
 instructor came by and asked us some guesstimation problem—I forget
 what it was, but it was nontrivial. None of us had a clue, so he
 whipped out from his back pocket a small booklet the size of a
 playing card that listed the physical properties of all kinds of
 subnuclear particles. For almost any situation that could arise in
 the lab, he had an approximate answer right there.
Specialized lookup tables exist in all kinds of disciplines,
 and you might want to make your own as necessary for whatever it is
 you are working on. The funniest I have seen gave typical sizes (and
 costs) for all elements of a manufacturing plant or warehouse: so
 many square feet for the office of the general manager, so many
 square feet for his assistant (half the size of the boss’s), down to
 the number of square feet per toilet stall, and—not to forget—how
 many toilets to budget for every 20 workers per 8-hour shift.
Finally, if we don’t know anything close and we can’t look
 anything up, then we can try to estimate “from the ground up”:
 starting just with what we know and then piling up arguments to arrive at an estimate. The problem with
 this approach is that the result may be way
 off. We have seen earlier how errors compound, and the more steps we
 have in our line of arguments the larger the final error is likely
 to be—possibly becoming so large that the result will be useless. If
 that’s the case, we can still try and find a cleverer argument that
 makes do with fewer argument steps. But I have to acknowledge that
 occasionally we will find ourselves simply stuck: unable to make an
 adequate estimate with the information we have.
The trick is to make sure this happens only rarely.

Establishing Relationships

Establishing relationships that get us from what we know to
 what we want to find is usually not that hard. This is true in
 particular under common business scenarios, where the questions
 often revolve around rather simple relationships (how something fits
 into something else, how many items of a kind there are, and the
 like). In scientific applications, this type of argument can be
 harder. But for most situations that we are likely to encounter
 outside the science lab, simple geometric and counting arguments
 will suffice.
In the next chapter, we will discuss in more detail the kinds
 of arguments you can use to establish relationships. For now, just
 one recommendation: make it simple! Not:
 keep it simple because, more likely than not,
 initially the problem is not simple; hence you
 have to make it so in order to make it tractable.
Simplifying assumptions let you cut through the fog and get to
 the essentials of a situation. You may incur an error as you
 simplify the problem, and you will want to estimate its effect, but
 at least you are moving toward a result.
An anecdote illustrates what I mean. When working for
 Amazon.com, I had a discussion with a rather sophisticated
 mathematician about how many packages Amazon can typically fit onto
 a tractor-trailer truck, and he started to work out the different
 ways you can stack rectangular boxes into the
 back of the truck! This is entirely missing the point because, for a
 rough calculation, we can make the simplifying assumption that the
 packages can take any shape at all (i.e., they
 behave like a liquid) and simply divide the total volume of the
 truck by the typical volume of a package. Since the individual
 package is tiny compared to the size of the truck, the specific
 shapes and arrangements of individual packages are irrelevant: their
 effect is much smaller than the errors in our estimates for the size
 of the truck, for instance. (We’ll discuss this in more detail in
 Chapter 8, where we discuss
 the mean-field approximation.)
The point of back-of-the-envelope estimates is to retain only
 the core of the problem, stripping away as much nonessential detail
 as possible. Be careful that your sophistication does not get in the
 way of finding simple answers.

Working with Numbers

When working with numbers, don’t automatically reach
 for a calculator! I know that I am now running the risk of sounding
 ridiculous—praising the virtues of old-fashioned reading, ‘riting,
 and ‘rithmetic. But that’s not my point. My point is that it is
 all right to work with numbers. There is no
 reason to avoid them.
I have seen the following scenario occur countless times: a
 discussion is under way, everyone is involved, ideas are flying,
 concentration is intense—when all of a sudden we need a few numbers
 to proceed. Immediately, everything comes to a
 screeching halt while several people grope for their calculators and
 others fire up their computers, followed by hasty attempts to get
 the required answer, which invariably (given the haste) leads to
 numerous keying errors and false starts, followed by arguments about
 the best calculator software to use. In any case, the whole creative
 process just died. It’s a shame.
Besides forcing you to switch context, calculators remove you
 one step further from the nature of the problem. When working out a
 problem in your head, you get a feeling for the significant digits
 in the result: for which digits does the result change as the inputs
 take on any value from their permissible range? The surest sign that
 somebody has no clue is when they quote the results from a
 calculation based on order-of-magnitude inputs to 16 digits!
The whole point here is not to be religious about it—either
 way. If it actually becomes more complicated to work out a numerical
 approximation in your head, then by all means use a calculator. But
 the compulsive habit to avoid working with numbers at all cost
 should be restrained.
There are a few good techniques that help with the kinds of
 calculations required for back-of-the-envelope estimates and that
 are simple enough that they still (even today) hold their own
 against uncritical calculator use. Only the first is a must-have;
 the other two are optional.
Powers of ten

The most important technique for deriving order-of-magnitude
 estimates is to work with orders of magnitudes directly—that is,
 with powers of ten.
It quickly gets confusing to multiply 9,000 by 17 and then
 to divide by 400, and so on. Instead of trying to work with the
 numbers directly, split each number into the most significant
 digit (or digits) and the respective power of ten. The
 multiplications now take place among the digits only while the
 powers of ten are summed up separately. In the example I just
 gave, we split 9,000 = 9 · 1,000, 17 = 1.7 · 10 ≈ 2 · 10, and 400
 = 4 · 100. From the leading digits we have 9 times 2 divided by 4
 equals 4.5, and from the powers of ten we have 3 plus 1 minus 2
 equals 2; so then 4.5 · 102 = 450. That
 wasn’t so hard, was it? (I have replaced 17 with 2 · 10 in this
 approximation, so the result is a bit on the high side, by about 15 percent. I might want to correct
 for that in the end—a better approximation would be closer to 390.
 The exact value is 382.5.)
More systematically, any number can be split into a decimal
 fraction and a power of ten. It will be most convenient to require
 the fraction to have exactly one digit before the decimal point,
 like so:
123.45 = 1.2345 · 102
1,000,000 = 1.0 · 106
0.00321 = 3.21 · 10–3
The fraction is commonly known as the
 mantissa (or the
 significand in most recent usage), whereas
 the power of ten is always referred to as the
 exponent.
This notation significantly simplifies multiplication and
 division between numbers of very different magnitude: the
 mantissas multiply (involving only single-digit multiplications,
 if we restrict ourselves to the most significant digit), and the
 exponents add. The biggest challenge is to keep the two different
 tallies simultaneously in one’s head.

Small perturbations

The techniques in this section are part of a much larger
 family of methods known as perturbation
 theory, methods that play a huge role in applied
 mathematics and related fields. The idea is always the same—we
 split the original problem into two parts: one that is easy to
 solve and one that is somehow “small” compared to the first. If we
 do it right, the effect of the latter part is only a “small
 perturbation” to the first, easy part of the problem. (You may
 want to review Appendix B if some of
 this material is unfamiliar to you.)
The easiest application of this idea is in the calculation
 of simple powers, such as 123. Here is
 how we would proceed:
	123 =
 (10 + 2)3
	= 103
 + 3 · 102 · 2 + 3 · 10 ·
 22 +
 23

	 	= 1,000 + 600 +
 ···

	 	= 1,600 + ···

In the first step, we split 12 into 10 + 2: here 10 is the
 easy part (because we know how to raise 10 to an integer power)
 and 2 is the perturbation (because 2 ≪ 10). In the next step, we
 make use of the binomial formula (see Appendix B), ignoring everything except
 the linear term in the “perturbation.” The final result is pretty
 close to the exact value.
The same principle can be applied to many other situations.
 In the context of this chapter, I am interested in this concept
 because it gives us a way to estimate and correct for the error
 introduced by ignoring all but the first digit in powers-of-ten
 calculations. Let’s look at another example:
32 · 430
Using only the most significant digits, this is (3 ·
 101) · (4 ·
 102) = (3 · 4) ·
 101+2 = 12,000. But this is clearly not
 correct, because we dropped some digits from the factors.
We can consider the nonleading digits as small
 perturbations to the result and treat them separately.
 In other words, the calculation becomes:
(3 + 0.2) · (4 + 0.3) · 103 ≈ 3(1
 + 0.1 ...) · 4(1 + 0.1 ...) ·
 103
where I have factored out the largest
 factor in each term. On the righthand side I did not write out the
 correction terms in full—for our purposes, it’s enough to know
 that they are about 0.1.
Now we can make use of the binomial formula:
(1 + ϵ)2 = 1 + 2ϵ +
 ϵ2
We drop the last term (since it will be very small compared
 to the other two), but the second term gives us the size of the
 correction: +2ϵ. In our case, this amounts to about 20 percent,
 since ϵ is one tenth.
I will admit that this technique seems somewhat out of place
 today, although I do use it for real calculations when I don’t
 have a calculator on me. But the true value of this method is that
 it enables me to estimate and reason about the effect that changes
 to my input variables will have on the overall outcome. In other
 words, this method is a first step toward sensitivity
 analysis.

Logarithms

This is the method by which generations before us performed
 numerical calculations. The crucial insight is that we can use
 logarithms for products (and exponentiation) by making use of the
 functional equation for logarithms:
log(xy) = log(x) +
 log(y)
In other words, instead of multiplying
 two numbers, we can add their logarithms. The
 slide rule was a mechanical calculator based on this idea.
Amazingly, using logarithms for multiplication is
 still relevant—but in a slightly different
 context. For many statistical applications (in particular when
 using Bayesian methods), we need to multiply the probabilities of
 individual events in order to arrive at the probability for the
 combination of these events. Since probabilities are by
 construction less than 1, the product of any two probabilities is
 always smaller than the individual factors. It does not take many
 probability factors to underflow the floating-point precision of
 almost any standard computer. Logarithms to the rescue! Instead of
 multiplying the probabilities, take logarithms of the individual
 probabilities and then add the logarithms. (The logarithm of a
 number that is less than 1 is negative, so one usually works with
 –log(p).) The resulting numbers, although
 mathematically equivalent, have much better numerical properties.
 Finally, since in many applications we mostly care which of a
 selection of different events has the maximum probability, we
 don’t even need to convert back to probabilities: the event with
 maximum probability will also be the one with the maximum
 (negative) logarithm.

More Examples

We have all seen this scene in many a Hollywood movie: the
 gangster comes in to pay off the hitman (or pay for the drug deal,
 or whatever it is). Invariably, he hands over an elegant briefcase
 with the money—cash, obviously. Question: how much is in the
 case?
Well, a briefcase is usually sized to hold two letter-size
 papers next to each other; hence it is about 17 by 11 inches wide,
 and maybe 3 inches tall (or 40 by 30 by 7 centimeters). A bank note
 is about 6 inches wide and 3 inches tall, which means that we can
 fit about six per sheet of paper. Finally, a 500-page ream of
 printer paper is about 2 inches thick. All told, we end up with 2 ·
 6 · 750 = 9,000 banknotes. The highest dollar denomination in
 general circulation is the $100 bill,[14] so the maximum value of that payoff was about $1
 million, and certainly not more than $5 million.
Conclusion: for the really big jobs, you need to pay by check.
 Or use direct transfer.
For a completely different example, consider the following
 question. What’s the typical takeoff weight of a large,
 intercontinental jet airplane? It turns out that you can come up
 with an approximate answer even if you don’t know
 anything about planes.
A plane is basically an aluminum tube with wings. Ignore the
 wings for now; let’s concentrate on the tube. How big is it? One way
 to find out is to check your boarding pass: it will display your row
 number. Unless you are much classier than your author, chances are
 that it shows a row number in the range of 40–50. You can estimate
 that the distance between seats is a bit over 50 cm—although it
 feels closer. (When you stand in the aisle, facing sideways, you can
 place both hands comfortably on the tops of two consecutive seats;
 your shoulders are about 30 cm apart, so the distance between seats
 must be a tad greater than that.) Thus we have the length: 50 · 0.5
 m. We double this to make up for first and business class, and to
 account for cockpit and tail. Therefore, the length of the tube is
 about 50 m. How about its diameter? Back in economy, rows are about
 9 seats abreast, plus two aisles. Each seat being just a bit wider
 than your shoulders (hopefully), we end up with a diameter of about
 5 m. Hence we are dealing with a tube that is 50 m long and 5 m in
 diameter.
As you walked through the door, you might have noticed the
 strength or thickness of the tube: it’s about 5 mm. Let’s make that
 10 mm (1 cm) to account for “stuff”: wiring, seats, and all kinds of
 other hardware that’s in the plane. Imagining now that you unroll
 the entire plane (the way you unroll aluminum foil), the result is a
 sheet that is 50 · π · 5 · 0.01m3. The
 density of aluminum is a little higher than water (if you have ever
 been to a country that uses aluminum coins, you know that you can
 barely make them float), so let’s say it’s 3
 g/cm3.
Table 7-1. Approximate measurements for some common intercontinental
 jets
	 	Length
	Width
	Diameter
	Weight (empty)
	Weight (full)
	Passengers

	B767
	50 m
	50 m
	5 m
	90 t
	150 t
	200

	B747
	70 m
	60 m
	6.5 m
	175 t
	350 t
	400

	A380
	75 m
	80 m
	7 m
	275 t
	550 t
	500

It is at this point that we need to employ the proverbial back
 of the envelope (or the cocktail napkin they gave you with the
 peanuts) to work out the numbers. It will help to realize that there
 are 1003 = 106
 cubic centimeters in a cubic meter and that the density of aluminum
 can therefore be written as 3 tons per cubic meter. The final mass
 of the “tube” comes out to about 25 ton. Let’s double this to take
 into account the wings (wings are about as long as the fuselage is
 wide—if you look at the silhouette of a plane in the sky, it forms
 an approximate square); this yields 50 ton just for the “shell” of
 the airplane. It does not take into account the engines and most of
 the other equipment inside the plane.
Now let’s compare this number with the load. We have 50 rows,
 half of them with 9 passengers and the other half with 5; this gives
 us an average of 7 passengers per row or a total of 350 passengers
 per plane. Assuming that each passenger contributes 100 kg (body
 weight and baggage), the load amounts to 35 ton: comparable to the
 weight of the plane itself. (This weight-to-load ratio is actually
 not that different than for a car, fully occupied by four people. Of
 course, if you are driving alone, then the ratio for the car is
 much worse.)
How well are we doing? Actually, not bad at all: Table 7-1 lists typical
 values for three planes that are common on transatlantic routes: the
 mid size Boeing 767, the large Boeing 747 (the “Jumbo”), and the
 extra-large Airbus 380. That’s enough to check our calculations. We
 are not far off.
(What we totally missed is that planes don’t fly on air and
 in-flight peanuts alone: in fact, the greatest single contribution
 to the weight of a fully loaded and fuelled airplane is the weight
 of the fuel. You can estimate its weight as
 well, but to do so, you will need one additional bit of information:
 the fuel consumption of a modern jet airplane per passenger and mile
 traveled is less than that of a typical compact car with only a
 single passenger.)
That was a long and involved estimation, and I won’t blame you
 if you skipped some of the intermediate steps. In case you are just
 joining us again, I’d like to emphasize one point: we came up with a
 reasonable estimate without having to resort to any “seat of the
 pants” estimates—even though we had no prior knowledge! Everything
 that we used, we could either observe directly (such as the number of
 rows in the plane or the thickness of the fuselage walls) or could
 relate to something that was familiar to us (such as the distance
 between seats). That’s an important takeaway!
But not all calculations have to be complicated. Sometimes,
 all you have to do is “put two and two together.” A friend told me
 recently that his company had to cut their budget by a million
 dollars. We knew that the overall budget for this company was about
 five million dollars annually. I also knew that, since it was mostly
 a service company, almost all of its budget went to payroll (there
 was no inventory or rent to speak of). I could therefore tell my
 friend that layoffs were around the corner—even with a salary
 reduction program, the company would have to cut at least 15 percent
 of their staff. The response was: “Oh, no, our management would
 never do that.” Two weeks later, the company
 eliminated one third of all positions.

Things I Know

Table 7-2 is a
 collection of things that I know and frequently use to make
 estimates. Of course, this list may seem a bit whimsical, but it is
 actually pretty serious. For instance, note the
 range of areas from which these items are
 drawn! What domains can you reason about, given the information in
 this table?
Also notice the absence of systematic “scales.” That is no
 accident. I don’t need to memorize the weights of a mouse, a cat,
 and a horse—because I know (or can guess) that a mouse is 1,000
 times smaller than a human, a cat 10 times smaller, and a horse 10
 times larger. The items in this table are not
 intended to be comprehensive; in fact, they are the bare minimum.
 Knowing how things relate to each other lets me take it from
 there.
Of course, this table reflects my personal history and
 interests. Yours will be different.

How Good Are Those Numbers?

Remember the Ping-Pong ball question that started out this
 chapter? I once posted that question as a homework problem in a class,
 and one student’s answer was something like 1,020,408.16327. (Did you
 catch both mistakes? Not only does the result of
 this rough estimate pretend to be accurate to within a single ball;
 but the answer also includes a fractional part—which is meaningless,
 given the context.) This type of confusion is incredibly common: we
 focus so much on the calculation (any calculation) that we forget to
 interpret the result!
This story serves as a reminder that there are two questions
 that we should ask before any calculation as well
 as one afterward. The two questions to ask before
 we begin are:
	What level of correctness do I
 need?

	What level of correctness can I
 afford?

Table 7-2. Reference points for guesstimations
	Size of an atomic data
 type
	10 bytes

	A page of text
	55 lines of 80 characters, or about
 4,500 characters total

	A record (of
 anything)
	100–1,000 bytes

	A car
	4 m long, 1 ton
 weight

	A person
	2 m tall, 100 kg
 weight

	A shelf
	1 m wide, 2 m tall

	Swimming pool (not
 Olympic)
	25 × 12.5 meters

	A story in a commercial
 building
	4 m high

	Passengers on a large
 airplane
	350

	Speed of a jetliner
	1,000 km/hr

	Flight time from NY
	6 hr (to the West Coast or
 Europe)

	Human, walking
	1 m/s (5 km/hr)

	Human, maximum power
 output
	200 W (not
 sustainable)

	Power consumption of a water
 kettle
	2 kW

	Electricity grid
	100 V (U.S.), 220 V
 (Europe)

	Household fuse
	16 A

	3 · 3
	10 (minus 10%)

	π
	3

	Large city
	1 million

	Population, Germany or
 Japan
	100 million

	Population, USA
	300 million

	Population, China or
 India
	1 billion

	Population, Earth
	7 billion

	U.S. median annual
 income
	$60,000

	U.S. federal income tax
 rate
	25% (but also as low as 0% and as
 high as 40%)

	Minimum hourly wage
	$10 per hour

	Billable hours in a
 year
	2,000 (50 weeks at 40 hours per
 week)

	Low annual inflation
	2%

	High annual inflation
	8%

	Price of a B-2 bomber
	$2 billion

	American Civil War; Franco-Prussian
 War
	1860s; 1870s

	French Revolution
	1789

	Reformation
	1517

	Charlemagne
	800

	Great Pyramids
	3000 B.C.E.

	Hot day
	35 Celsius

	Very hot kitchen oven
	250 Celsius

	Steel melts
	1200 Celsius

	Density of water
	1
 g/cm3

	Density of aluminum
	3
 g/cm3

	Density of lead
	13
 g/cm3

	Density of gold
	20
 g/cm3

	Ionization energy of
 hydrogen
	13.6 eV

	Atomic diameter (Bohr
 radius)
	10–10
 m

	Energy of X-ray
 radiation
	keV

	Nuclear binding energy per
 particle
	MeV

	Wavelength of the sodium
 doublet
	590 nm

The question to ask afterward is:
	What level of correctness did I
 achieve?

I use the term “correctness” here a bit loosely to refer to the
 quality of the result. There are actually two different concepts
 involved: accuracy and
 precision.
Accuracy
	Accuracy expresses how close the result of a calculation or
 measurement comes to the “true” value. Low accuracy is due to
 systematic error.

Precision
	Precision refers to the “margin of error” in the calculation
 or the experiment. In experimental situations, precision tells us
 how far the results will stray when the experiment is repeated
 several times. Low precision is due to random noise.

Said another way: accuracy is a measure for the correctness of
 the result, and precision is a measure of the result’s
 uncertainty.
Before You Get Started: Feasibility and Cost

The first question (what level of correctness is needed) will
 define the overall approach—if I only need an order-of-magnitude
 approximation, then the proverbial back of the envelope will do; if
 I need better results, I might need to work harder. The second
 question is the necessary corollary: it asks whether I will be able
 to achieve my goal given the available resources. In other words,
 these two questions pose a classic engineering trade-off
 (i.e., they require a regular cost–benefit
 analysis).
This obviously does not matter much for a throwaway
 calculation, but it matters a lot for bigger projects. I once
 witnessed a huge project (involving a dozen developers for over a
 year) to build a computation engine that had failed to come clear on
 both counts until it was too late. The project was eventually
 canceled when it turned out that it would cost
 more to achieve the accuracy required than the
 project was supposed to gain the company in increased revenue!
 (Don’t laugh—it could happen to you. Or at least in your
 company.)
This story points to an important fact: correctness is usually
 expensive, and high correctness is often
 disproportionally more expensive. In other
 words, a 20 percent approximation can be done on the back of an
 envelope, a 5 percent solution can be done in a couple of months,
 but the cost for a 1 percent solution may be astronomical. It is
 also not uncommon that there is no middle ground
 (e.g., an affordable 10 percent
 solution).
I have also seen the opposite problem: projects chasing
 correctness that is not really necessary—or not achievable because
 the required input data is not available or of poor quality. This is
 a particular risk if the project involves the opportunity to play
 with some attractive new technology.
Finding out the true cost or benefit of higher-quality results
 can often be tricky. I was working on a project to forecast the
 daily number of visitors viewing the company’s website, when I was
 told that “we must have absolute forecast accuracy; nothing else
 matters.” I suggested that if this were so, then we
 should take the entire site down, since doing
 so would guarantee a perfect forecast (zero page views). Yet because
 this would also imply zero revenue from display advertising, my
 suggestion focused the client’s mind wonderfully to define more
 clearly what “else” mattered.

After You Finish: Quoting and Displaying Numbers

It is obviously pointless to report or quote results to more
 digits than is warranted. In fact, it is misleading or at the very
 least unhelpful, because it fails to communicate to the reader
 another important aspect of the result—namely its
 reliability!
A good rule (sometimes known as Ehrenberg’s
 rule) is to quote all digits up to and including the
 first two variable digits. Starting from the
 left, you keep all digits that do not change over the entire range
 of numbers from one data point to the next; then you also keep the
 first two digits that vary over the entire
 range from 0 to 9 as you scan over all data points. An
 example will make this clear. Consider the following data
 set:
121.733
122.129
121.492
119.782
120.890
123.129
Here, the first digit (from the left) is always 1 and the
 second digit takes on only two values (1 and 2), so we retain them
 both. All further digits can take on any value between 0 and 9, and
 we retain the first two of them—meaning that we retain a total of
 four digits from the left. The two right-most
 digits therefore carry no significance, and we can drop them when
 quoting results. The mean (for instance) should be reported
 as:
121.5
Displaying further digits is of no value.
This rule—to retain the first two digits that vary over the
 entire range of values and all digits to the left of them—works well
 with the methods described in this chapter. If you are working with
 numbers as I suggested earlier, then you also develop a sense for
 the digits that are largely unaffected by reasonable variations in
 the input parameters as well as for the position in the result after
 which uncertainties in the input parameters corrupt the
 outcome.
Finally, a word of warning. The accuracy level of a numerical
 result should be established from the outset, since doing so later
 will trigger resistance. I have encountered a system that reported
 projected sales numbers (which were typically in the hundreds of
 thousands) to six “significant” digits (e.g.,
 as 324,592 or so). But because these were forecasts that were
 at best accurate to within 30 percent,
 all digits beyond the first were absolute junk!
 (Note that 30 percent of 300,000 is 100,000, which means that the
 confidence band for this result was 200,000–400,000.)
 However, a later release of the same software, which now reported
 only the actually significant digits, was met by violent opposition
 from the user community because it was “so much less
 precise”!

Optional: A Closer Look at Perturbation Theory and Error
 Propagation

I already mentioned the notion of “small perturbations.” It is
 one of the great ideas of applied mathematics, so it is worth a closer
 look.
Whenever we can split a problem into an “easy” part and a part
 that is “small,” the problem lends itself to a perturbative solution.
 The “easy” part we can solve directly (that’s what we mean by “easy”),
 and the part that is “small” we solve in an approximative fashion. By
 far the most common source of approximations in this area is based on
 the observation that every function (every curve) is linear (a
 straight line) in a sufficiently small neighborhood: we can therefore
 replace the full problem by its linear approximation when dealing with
 the “small” part—and linear problems are always solvable.
As a simple example, let’s calculate [image:]. Can we split this into a “simple” and a
 “small” problem? Well, we know that 16 = 42
 and so [image:]. That’s the simple part, and we therefore now
 write [image:]. Obviously 1 ≪ 16, so there’s the “small” part
 of the problem. We can now rewrite our problem as follows:
[image: Optional: A Closer Look at Perturbation Theory and Error Propagation]
It is often convenient to factor out everything so that we are
 left with 1 + small stuff as in the second line
 here. At this point, we also replaced the small part with ϵ (we will
 put the numeric value back in at the end).
So far everything has been exact, but to make progress we need
 to make an approximation. In this case, we replace the square root by
 a local approximation around 1. (Remember: ϵ is small, and
 [image:] is easy.) Every smooth function can be replaced
 by a straight line locally, and if we don’t go too far, then that
 approximation turns out to be quite good (see Figure 7-1). These
 approximations can be derived in a systematic fashion by a process
 known as Taylor expansion. The figure shows both
 the simplest approximation, which is just a straight line, and also
 the next-higher (second-order) approximation, which is even
 better.
Taylor expansions are so fundamental that they are almost
 considered a fifth basic operation (after
 addition, subtraction, multiplication, and division). See Appendix B for a little more information on
 them.
[image: The square-root function and the first two approximations around x = 0.]

Figure 7-1. The square-root function [image:] and the first two approximations around
 x = 0.

With the linear approximation in place, our problem has now
 become quite tractable:
[image: The square-root function and the first two approximations around x = 0.]
We can now plug the numeric value ϵ = 1/16 back in:
 [image:]. The exact value is [image:] Our approximation is pretty good.
Error Propagation

Error propagation considers situations where we have some
 quantity x and an associated uncertainty
 δx. We write x ±
 δx to indicate that we expect the true value to
 lie anywhere in the range from x –
 δx to x +
 δx. In other words, we have not just a single
 value for the quantity x, but instead a whole
 range of possible values.
Now suppose we have several quantities—each with its own error
 term—and we need to combine them in some fashion. We probably know
 how to work with the quantities themselves, but what about the
 uncertainties? For example, we know both the height and width of a
 rectangle to within some range: h +
 δh and w +
 δw. We also know that the area is
 A = hw (from basic
 geometry). But what can we say about the uncertainty in the
 area?
This kind of scenario is ideal for the perturbative methods
 discussed earlier: the uncertainties are “small,” so we can use
 simplifying approximations to deduce their behavior.
Let’s work through the area example:
[image: Error Propagation]
Here again we have factored the primary terms out, to end up
 with terms of the form 1 + small stuff, because
 that makes life easier. This also means that, instead of expressing
 the uncertainty through the absolute error
 δh or δw, we express them
 through the relative error
 δh/h or
 δw/w. (Observe that if
 δh ≪ h, then
 δh/h ≪ 1.)
So far, everything has been exact. Now comes the
 approximation: the error terms are small (in fact, smaller than 1);
 hence their product is extra-small, and we can therefore drop it.
 Our final result is thus [image:] or, in words: “When multiplying two
 quantities, their relative errors add.” So if I know both the width
 and the height to within 10 percent each, then my uncertainty in the
 area will be 20 percent.
Here are a few more results of this form, which are useful
 whenever you work with quantities that have associated uncertainties
 (you might want to try deriving some of these yourself):
[image: Error Propagation]
The most important ones are the first two: when adding (or
 subtracting) two quantities, their absolute errors add; and when
 multiplying (or dividing) two quantities, their relative errors add.
 This implies that, if one of two quantities has a significantly
 larger error than the other, then the larger error dominates the
 final uncertainty.
Finally, you may have seen a different way to calculate errors
 that gives slightly tighter bounds, but it is only appropriate if
 the errors have been determined by calculating the variances in
 repeated measurements of the same quantity.
 Only in that case are the statistical assumptions valid upon which
 this alternative calculation is based. For guesstimation, the simple
 (albeit more pessimistic) approach described here is more
 appropriate.

Workshop: The Gnu Scientific Library (GSL)

What do you do when a calculation becomes too involved
 to do it in your head or even on the back of an envelope? In
 particular, what can you do if you need the extra
 precision that a simple order-of-magnitude estimation (as practiced in
 this chapter) will not provide? Obviously, you reach for a numerical
 library!
The Gnu Scientific Library, or GSL, (http://www.gnu.org/software/gsl/) is the
 best currently available open source library for numerical and
 scientific calculations that I am aware of. The list of included
 features is comprehensive, and the implementations are of high
 quality. Thanks to some unifying conventions, the API, though
 forbidding at first, is actually quite easy to learn and comfortable
 to use. Most importantly, the library is mature, well documented, and
 reliable.
Let’s use it to solve two rather different problems; this will
 give us an opportunity to highlight some of the design choices
 incorporated into the GSL. The first example involves matrix and
 vector handling: we will calculate the singular value decomposition
 (SVD) of a matrix. The second example will demonstrate how the GSL
 handles non-linear, iterative problems in numerical analysis as we
 find the minimum of a nonlinear function.
The listing that follows should give you a flavor of what vector
 and matrix operations look like when using the GSL. First, we allocate
 a couple of (two-dimensional) vectors and assign values to their
 elements. We then perform some basic vector operations: adding one
 vector to another and performing a dot product. (The result of a dot
 product is a scalar, not another vector.) Finally, we allocate and
 initialize a matrix and calculate its SVD. (See Chapter 14 for more
 information on vector and matrix operations.)
/* Basic Linear Algebra using the GSL */

#include <stdio.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>

int main() {
 double r;

 gsl_vector *a, *b, *s, *t;
 gsl_matrix *m, *v;

 /* --- Vectors --- */
 a = gsl_vector_alloc(2); /* two dimensions */
 b = gsl_vector_alloc(2);

 /* a = [1.0, 2.0] */
 gsl_vector_set(a, 0, 1.0);
 gsl_vector_set(a, 1, 2.0);
 /* b = [3.0, 6.0] */
 gsl_vector_set(b, 0, 3.0);
 gsl_vector_set(b, 1, 6.0);

 /* a += b (so that now a = [4.0, 8.0]) */
 gsl_vector_add(a, b);
 gsl_vector_fprintf(stdout, a, "%f");

 /* r = a . b (dot product) */
 gsl_blas_ddot(a, b, &r);
 fprintf(stdout, "%f\n", r);

 /* --- Matrices --- */
 s = gsl_vector_alloc(2);
 t = gsl_vector_alloc(2);

 m = gsl_matrix_alloc(2, 2);
 v = gsl_matrix_alloc(2, 2);

 /* m = [[1, 2],
 [0, 3]] */
 gsl_matrix_set(m, 0, 0, 1.0);
 gsl_matrix_set(m, 0, 1, 2.0);
 gsl_matrix_set(m, 1, 0, 0.0);
 gsl_matrix_set(m, 1, 1, 3.0);

 /* m = U s V^T (SVD : singular values are in vector s) */
 gsl_linalg_SV_decomp(m, v, s, t);
 gsl_vector_fprintf(stdout, s, "%f");

 /* --- Cleanup --- */
 gsl_vector_free(a);
 gsl_vector_free(b);
 gsl_vector_free(s);
 gsl_vector_free(t);

 gsl_matrix_free(m);
 gsl_matrix_free(v);

 return 0;
}
It is becoming immediately (and a little painfully) clear that
 we are dealing with plain C, not C++ or any other more modern,
 object-oriented language! There is no operator overloading; we must
 use regular functions to access individual vector and matrix elements.
 There are no namespaces, so function names tend to be lengthy. And of
 course there is no garbage collection!
What is not so obvious is that element
 access is actually boundary checked: if you try to access a vector
 element that does not exist (e.g., gsl_vector_set(a, 4, 1.0);), then the GSL
 internal error handler will be invoked. By default, it will halt the
 program and print a message to the screen. This is quite generally
 true: if the library detects an error—including bad inputs, failure to
 converge numerically, or an out-of-memory situation—it will invoke its
 error handler to notify you. You can provide your own error handler to
 respond to errors in a more flexible fashion. For a fully tested
 program, you can also turn range checking on vector and matrix
 elements off completely, to achieve the best
 possible runtime performance.
Two more implementation details before leaving the linear
 algebra example: although the matrix and vector elements are of type
 double in this example, versions of
 all routines exist for integer and complex data types as well.
 Furthermore, the GSL will use an optimized implementation of the BLAS
 (Basic Linear Algebra Subprograms) API if one is available; if not,
 the GSL comes with its own, basic implementation.
Now let’s take a look at the second example. Here we use the GSL
 to find the minimum of a one-dimensional function. The function to
 minimize is defined at the top of the listing:
 x2
 log(x). In general, nonlinear problems such as
 this must be solved iteratively: we start with a guess, then calculate
 a new trial solution based on that guess, and so on until the result
 meets whatever stopping criteria we care to define.
At least that’s what the introductory textbooks tell you.
In the main part of the program, we instantiate a “minimizer,”
 which is an encapsulation of a specific minimization algorithm (in
 this case, Golden Section Search—others are available, too) and
 initialize it with the function to minimize as well as our initial
 guess for the interval containing the minimum.
Now comes the surprising part: an explicit loop! In this loop,
 the “minimizer” takes a single step in the iteration
 (i.e., calculates a new, tighter interval
 bounding the minimum) but then essentially hands control back to us.
 Why so complicated? Why can’t we just specify the desired accuracy of
 the interval and let the library handle the entire iteration for us?
 The reason is that real problems more often than not don’t converge as
 obediently as the textbooks suggest! Instead they can (and do) fail in
 a variety of ways: they converge to the wrong solution, they attempt
 to access values for which the function is not defined, they attempt
 to make steps that (for reasons of the larger system of which the
 routine is only a small part) are either too large or too small, or
 they diverge entirely. Based on my experience, I have come to the
 conclusion that every nonlinear problem is
 different (whereas every linear problem is the same), and
 therefore generic black-box routines don’t work!
This brings us back to the way this minimization routine is
 implemented: the required iteration is not a black box and instead is
 open and accessible to us. We can simply monitor its progress (as we
 do in this example, by printing every iteration step to the screen),
 but we could also interfere with it—for instance to enforce some
 invariant that is specific to our problem. The “minimizer” does as
 much as it can by calculating and proposing a new interval;
 ultimately, however, we are in control over how the iteration
 progresses. (For the textbook example used here, this doesn’t matter,
 but it makes all the difference when you are doing serious numerical
 analysis on real problems!)
/* Minimizing a function with the GSL */

#include <stdio.h>
#include <gsl/gsl_min.h>

double fct(double x, void *params) {
 return x*x*log(x);
}

int main() {
 double a = 0.1, b = 1; /* interval which bounds the minimum */

 gsl_function f; /* pointer to the function to minimize */
 gsl_min_fminimizer *s; /* pointer to the minimizer instance */

 f.function = &fct; /* the function to minimize */
 f.params = NULL; /* no additional parameters needed */

 /* allocate the minimizer, choosing a particular algorithm */
 s = gsl_min_fminimizer_alloc(gsl_min_fminimizer_goldensection);

 /* initialize the minimizer with a function an an initial interval */
 gsl_min_fminimizer_set(s, &f, (a+b)/2.0, a, b);

 while (b-a > 1.e-6) {
 /* perform one minimization step */
 gsl_min_fminimizer_iterate(s);

 /* obtain the new bounding interval */
 a = gsl_min_fminimizer_x_lower(s);
 b = gsl_min_fminimizer_x_upper(s);

 printf("%f\t%f\n", a, b);
 }

 printf("Minimum Position: %f\tValue: %f\n",
 gsl_min_fminimizer_x_minimum(s), gsl_min_fminimizer_f_minimum(s));

 gsl_min_fminimizer_free(s);

 return 0;
}
Obviously, we have only touched on the GSL. My primary intention
 in this section was to give you a sense for the way the GSL is
 designed and for what kinds of considerations it incorporates. The
 list of features is extensive—consult the documentation for more
 information.

Further Reading

	Guesstimation: Solving the World’s Problems on
 the Back of a Cocktail Napkin. Lawrence Weinstein and John A. Adam. Princeton University
 Press. 2008.
This little book contains about a hundred guesstimation
 problems (with solutions!) from all walks of life. If you are
 looking for ideas to get you started, look no further.

	Programming Pearls. Jon Bentley. 2nd ed., Addison-Wesley. 1999; also,
 More Programming Pearls: Confessions of a
 Coder. Jon Bentley. Addison-Wesley. 1989.
These two volumes of reprinted magazine columns are
 delightful to read, although (or because) they breathe the
 somewhat dated atmosphere of the old Bell Labs. Both volumes
 contain chapters on guesstimation problems in a programming
 context.

	Back-of-the-Envelope
 Physics. Clifford E. Swartz. Johns Hopkins University Press.
 2003.
Physicists regard themselves as the inventors of
 back-of-the-envelope calculations. This book contains a set of
 examples from introductory physics (with solutions).

	The Flying Circus of
 Physics. Jearl Walker. 2nd ed., Wiley. 2006.
If you’d like some hints on how to take an interest in the
 world around you, try this book. It contains hundreds of everyday
 observations and challenges you to provide an explanation for
 each. Why are dried coffee stains always darker around the rim?
 Why are shower curtains pulled inward? Remarkably, many of these
 observations are still not fully understood! (You might also want
 to check out the rather different and more challenging first
 edition.)

	Pocket Ref. Thomas J. Glover. 3rd ed., Sequoia Publishing.
 2009.
This small book is an extreme example of the “lookup” model.
 It seems to contain almost everything: strength of wood beams,
 electrical wiring charts, properties of materials, planetary data,
 first aid, military insignia, and sizing charts for clothing. It
 also shows the limitations of an overcomplete collection of
 trivia: I simply don’t find it all that useful, but it is
 interesting for the breadth of topics covered.

[14] Larger denominations exist but—although legal tender—are
 not officially in circulation and apparently fetch far more than
 their face value among collectors.

Chapter 8. Models from Scaling Arguments

AFTER
 FAMILIARIZING YOURSELF WITH THE DATA THROUGH PLOTS AND GRAPHS, THE NEXT
 STEP IS TO START building a model for the data.
 The meaning of the word “model” is quite hazy, and I don’t want to spend
 much time and effort attempting to define this concept in an abstract
 way. For our purposes, a model is a mathematical
 description of the data that ideally is guided by our understanding of
 the system under consideration and that relates the various variables of
 the system to each other: a “formula.”
Models

Models like this are incredibly important. It is at this point
 that we go from the merely descriptive (plots and
 graphs) to the prescriptive: having a model
 allows us to predict what the system will do under a certain set of
 conditions. Furthermore, a good or truly useful model—because it helps
 us to understand how the system works—allows us
 to do so without resorting to the model itself or having to evaluate
 any particular formula explicitly. A good model ties the different
 variables that control the system together in such a way that we can
 see how varying any one of them will influence the outcome. It is this
 use of models—as an aide to or expression of our understanding—that is
 the most important one. (Of course, we must still evaluate the model
 formulas explicitly in order to obtain actual numbers for a specific
 prediction.)
I should point out that this view of models and what they can do
 is not universal, and you will find the term used quite differently
 elsewhere. For instance, statistical models (and this includes
 machine-learning models) are much more descriptive: they do not
 purport to explain the observed behavior in the
 way just described. Instead, their purpose is to predict expected
 outcomes with the greatest level of accuracy possible (numbers in,
 numbers out). In contrast, my training is in theoretical physics,
 where the development of conceptual understanding
 of the observed behavior is the ultimate goal. I will use all
 available information about the system and how it works (or how I
 suspect it works!) wherever I can; I don’t
 restrict myself to using only the information contained in the data
 itself. (This is a practice that statisticians traditionally frown
 upon, because it constitutes a form of “pollution” of the data. They
 may very well be right, but my purpose is different: I don’t want to
 understand the data, I want to understand the
 system!) At the same time, I don’t consider the
 absolute accuracy of a model paramount: a model that yields only
 order-of-magnitude accuracy but helps me understand the system’s
 behavior (so that I can, for instance, make informed trade-off
 decisions) is much more valuable to me than a model that yields
 results with 1 percent accuracy but that is a black box
 otherwise.
To be clear: there are situations when achieving the best
 possible accuracy is all that matters and conceptual understanding is
 of little interest. (Often these cases involve repeatable processes in
 well-understood systems.) If this describes your situation, then you
 need to use different methods that are appropriate to your problem
 scenario.
Modeling

As should be clear from the preceding description, building
 models is basically a creative process. As such, it is difficult (if
 not impossible) to teach: there are no established techniques or
 processes for arriving at a useful model in any given scenario. One
 common approach to teaching this material is to present a large
 number of case studies, describing the problem situations and
 attempts at modeling them. I have not found this style to be very
 effective. First of all, every (nontrivial) problem is different,
 and tricks and fortuitous insights that work well for one example
 rarely carry over to a different problem. Second, building effective
 models often requires fairly deep insight into the particulars of
 the problem space, so you may end up describing lots of tedious
 details of the problem when actually you wanted
 to talk about the model (or the
 modeling).
In this chapter, we will take a different approach. Effective
 modeling is often an exercise in determining “what to leave out”:
 good models should be simple (so that they are workable) yet retain
 the essential features of the system—certainly those that we are
 interested in.
As it turns out, there are a few essential arguments and
 approximations that prove helpful again and again to make a complex
 problem tractable and to identify the dominant behavior. That’s what
 I want to talk about.

Using and Misusing Models

Just a reminder: models are not reality. They are descriptions
 or approximations of reality—often quite coarse ones! We need to
 ensure that we only place as much confidence in a model as is
 warranted.
How much confidence is warranted? That depends on how
 well-tested the model is. If a model is based on a good theory,
 agrees well with a wide range of data sets, and has shown it can
 predict observations correctly, then our confidence may be quite
 strong.
At the other extreme are what one might call “pie in the sky”
 models: ad hoc models, involving half a dozen (or so) parameters—all
 of which have been estimated independently and not verified against
 real data. The reliability of such a model is highly dubious: each
 of the parameters introduces a certain degree of uncertainty, which
 in combination can make the results of the model meaningless. Recall
 the discussion in Chapter 7: three
 parameters known to within 10 percent produce an uncertainty in the
 final result of 30 percent—and that assumes that the parameters are
 actually known to within 10 percent! With four to six parameters
 that possibly are known, only much less precisely than 10 percent,
 the situation is correspondingly worse. (Many business models fall
 into this category.)
Also keep in mind that virtually all models have only a
 limited region of validity. If you try to apply an existing model to
 a drastically different situation or use input values that are very
 different from those that you used to build the model, then you may
 well find that the model makes poor predictions. Be sure to check
 that the assumptions on which the model is based are actually
 fulfilled for each application that you have in mind!

Arguments from Scale

Next to the local stadium there is a large, open parking lot.
 During game days, the parking lot is filled with cars, and—for obvious
 reasons—a line of portable toilets is set up all along one of the
 edges of the parking lot. This poses an interesting balancing problem:
 will this particular arrangement work for all situations, no matter
 how large the parking lot in question?
The answer is no. The number of people in the parking lot grows
 with the area of the parking lot, which grows with the square of the
 edge length (i.e., it “scales as”
 L2); but the number of
 toilets is proportional to the edge length itself (so it scales as
 L). Therefore, as we make the parking lot bigger
 and bigger, there comes a point where the number of people overwhelms
 the number of available facilities. Guaranteed.
Scaling Arguments

This kind of reasoning is an example of a scaling
 argument. Scaling arguments try to capture how some
 quantity of interest depends on a control parameter. In particular,
 a scaling argument describes how the output quantity will change as
 the control parameter changes. Scaling arguments are a particularly
 fruitful way to arrive at symbolic expressions for phenomena
 (“formulas”) that can be manipulated analytically.
You should have observed that the expressions I gave in the
 introductory example were not “dimensionally consistent.” We had
 people expressed as the square of a length and toilets expressed as
 length—what is going on here? Nothing, I merely omitted some detail
 that was not relevant for the argument I tried to make. A car takes
 up some amount of space on a parking lot; hence given the size of
 the parking lot (its area), we can figure out how many cars it can
 accommodate. Each car seats on average two people (on a game day),
 so we can figure out the number of people as well. Each person has a
 certain probability of using a bathroom during the duration of the
 game and will spend a certain number of minutes there. Given all
 these parameters, we can figure out the required “toilet
 availability minutes.” We can make a similar argument to find the
 “availability minutes” provided by the installed facilities. Observe
 that none of these parameters depend on the size of the parking lot:
 they are constants. Therefore, we don’t need to worry about them if
 all we want to determine is whether this particular arrangement
 (with toilets all along one edge, but nowhere else) will work for
 parking lots of any size. (It is a widely followed convention to use
 the tilde, as in A ~
 B, to express that A
 “scales as” B, where A and
 B do not necessarily have the same
 dimensions.)
On the other hand, if we actually want to know the exact
 number of toilets required for a specific parking lot size, then we
 do need to worry about these factors and try to obtain the best
 possible estimates for them.
Because scaling arguments free us from having to think about
 pesky numerical factors, they provide such a convenient and powerful
 way to begin the modeling process. At the beginning, when things are
 most uncertain and our understanding of the system is least
 developed, they free us from having to worry about low-level details
 (e.g., how long does the average person spend
 in the bathroom?) and instead help us concentrate on the system’s
 overall behavior. Once the big picture has become clearer (and if
 the model still seems worth pursuing), we may want to derive some
 actual numbers from it as well. Only at this point do we need to
 concern ourselves with numerical constants, which we must either
 estimate or derive from available data.
A recurring challenge with scaling models is to find the
 correct scales. For example, we implicitly assumed that the parking
 lot was square (or at least nearly so) and would remain that shape
 as it grew. But if the parking lot were growing in one direction
 only (i.e., becoming longer and longer, while
 staying the same width), then its area would no longer scale as
 L2 but instead scale
 as L, where L is now the
 “long” side of the lot. This changes the argument, for if the
 portable toilets were located along the long side of the lot then
 the balance between people and available facilities would be the
 same no matter how large the lot became! On the other hand, if the
 facilities were set up along the short side, then their number would
 remain constant while the long side grew, resulting again in an
 imbalanced situation.
Finding the correct scales is a bit of an experience issue—the
 important point here is that it is not as simple as saying: “It’s an
 area, therefore it must scale as length squared.” It depends on the
 shape of the area and on which of its lengths controls the
 size.
[image: Heights and weights of a group of middle-school students.]

Figure 8-1. Heights and weights of a group of middle-school
 students.

The parking lot example demonstrates one typical
 application of high-level scaling arguments: what I call a “no-go
 argument.” Even without any specific numbers, the scaling behavior
 alone was enough to determine that this particular arrangement of
 toilets to visitors will break down at some point.

Example: A Dimensional Argument

Figure 8-1
 shows the heights and weights of a class of female middle-school
 students.[15] Also displayed is the function m
 = 0.84h – 84.0, where m
 stands for the mass (or weight) and h for the
 height. The fit seems to be quite close—is this a good model?
The answer is no, because the model makes unreasonable
 predictions. Look at it: the model suggests that students have no
 weight unless they are at least 84 centimeters (almost 3 feet) tall;
 if they were shorter, their weight would be
 negative. Clearly, this model is no good
 (although it does describe the data over the
 range shown quite well). We expect that people who have no height
 also have no weight, and our model should reflect that.
Rather than a model of the form ax +
 b, we might instead try
 axb,
 because this is the simplest function that gives the expected result
 for x = 0.
[image: A double logarithmic plot of the data from . The cubic function m = ah3 seems to describe the data much better than the linear function m = ah.]

Figure 8-2. A double logarithmic plot of the data from Figure 8-1. The cubic
 function m =
 ah3 seems to
 describe the data much better than the linear function
 m = ah.

Figure 8-2
 shows the same data but on a double logarithmic plot. Also indicated
 are functions of the form y =
 ax and y =
 ax3. The cubic
 function ax3 seems
 to represent the data quite well—certainly better than the linear
 function.
But this makes utmost sense! The weight of a body is
 proportional to its volume—that is, to height
 times width times depth or h · w ·
 d. Since body proportions are pretty much the
 same for all humans (i.e., a person who is
 twice as tall as another will have shoulders that are twice as wide,
 too), it follows that the volume of a person’s body (and hence its
 mass) scales as the third power of the height: mass ~
 height3.
Figure 8-3
 shows the data one more time and together with the model
 m = 1.25 ·
 10–5h3.
 Notice that the model makes reasonable predictions even for values
 outside the range of available data points, as you can see by
 comparing the model predictions with the average body measurements
 for some different age groups. (The figure also shows the possible
 limitations of a model that is built using less than perfectly
 representative data: the model underestimates adult weights because
 middle-school students are relatively light for their size. In
 contrast, two-year-olds are notoriously “chubby.”)
Nevertheless, this is a very successful model. On the one
 hand, although based on very little data, the model successfully
 predicts the weight to within 20 percent accuracy over a range of
 almost two orders of magnitude in height. On the other hand, and
 arguably more importantly, it captures the general relationship
 between body height and weight—a relationship that makes sense but
 that we might not necessarily have guessed without looking at the
 data.
[image: The data from , together with the cubic model and the linear approximation to this model around h = 150 cm. Note that the approximation is good over the range of the actual data set but is wildly off farther away from it.]

Figure 8-3. The data from Figure 8-1, together
 with the cubic model and the linear approximation to this model
 around h = 150 cm. Note that the approximation is good over the
 range of the actual data set but is wildly off farther away from
 it.

The last question you may ask is why the initial
 description, m = 0.84x –
 84 in Figure 8-1
 seemed so good. The answer is that this is exactly the linear
 approximation to the correct model, m = 1.25 ·
 10–5h3,
 near h = 150 cm. (See Appendix B.) As with all linear
 approximations, it works well in a small region but fails for values
 farther away.

Example: An Optimization Problem

Another application of scaling arguments is to cast a question
 as an optimization problem. Consider a group of people scheduled to
 perform some task (say, a programming team). The amount of work that
 this group can perform in a fixed amount of time (its “throughput”)
 is obviously proportional to the number n of
 people on the team: ~ n. However, the members
 of the team will have to coordinate with each other. Let’s assume
 that each member of the team needs to talk to every other member of
 the team at least once a day. This implies a communication overhead
 that scales the square of the number of people:
 ~ –n2. (The minus
 sign indicates that the communication overhead results in a loss in
 throughput.) This argument alone is enough to show that for this
 task, there is an optimal number of people for which the realized
 productivity will be highest. (Also see Figure 8-4.)
To find the optimal staffing level, we want to maximize the
 productivity P with respect to the number of
 workers on the team n:
P(n) =
 cn –
 dn2
[image: The work achievable by a team as a function of its size: the raw amount of work that can be accomplished grows with the team size, but the communication overhead grows even faster, which leads to an optimal team size.]

Figure 8-4. The work achievable by a team as a function of its size:
 the raw amount of work that can be accomplished grows with the
 team size, but the communication overhead grows even faster, which
 leads to an optimal team size.

where c is the number of minutes
 each person can contribute during a regular workday, and
 d is the effective number
 of minutes consumed by each communication event. (I’ll return to the
 cautious “effective” modifier shortly.)
To find the maximum, we take the derivative of
 P(n) with respect to
 n, set it equal to 0, and solve for
 n (see Appendix B). The result is:
[image: The work achievable by a team as a function of its size: the raw amount of work that can be accomplished grows with the team size, but the communication overhead grows even faster, which leads to an optimal team size.]
Clearly, as the time consumed by each communication event
 d grows larger, the optimal team size
 shrinks.
If we now wish to find an actual number for the optimal
 staffing level, then we need to worry about the numerical factors,
 and this is where the “effective” comes in. The total number of
 hours each person can put in during a regular workday is easy to
 estimate (8 hours at 60 minutes, less time for diversions), but the
 amount of time spent in a single communication event is more
 difficult to determine. There are also additional effects that I
 would lump into the “effective” parameter: for example, not
 everybody on the team needs to talk to everybody else. Adjustments
 like this can be lumped into the parameter d
 which increasingly turns it into a synthetic parameter and less one
 that can be measured directly.

Example: A Cost Model

Models don’t have to be particularly complicated to provide
 important insights. I remember a situation where we were trying to
 improve the operation of a manufacturing environment. One particular
 job was performed on a special machine that had to be retooled for
 each different type of item to be produced. First the machine would
 be set up (which took about 5 to 10 minutes), and then a worker
 would operate the machine to produce a batch of 150 to 200 identical
 items. The whole cycle lasted a bit longer than an hour and a half
 to complete the batch, and then the machine was retooled for the
 next batch.
The retooling part of the cycle was a constant source of
 management frustration: for 10 minutes (while the machine was being
 set up), nothing seemed to be happening. Wasted time! (In
 manufacturing, productivity—defined as “units per hour”—is the most
 closely watched metric.) Consequently, there had been a long string
 of process improvement projects dedicated to making the retooling
 part more efficient and thereby faster. By the time I arrived, it
 had been streamlined very well. Nevertheless, there were constant
 efforts underway to reduce the time it took—after all, the sight of
 the machine sitting idle for 10 minutes seemed to be all the proof
 that was needed.
It is interesting to set up a minimal cost model for this
 process. The relevant quantity to study is “minutes per unit.” This
 is essentially the inverse of the productivity, but I find it easier
 to think in terms of the time it takes to produce a single unit than
 the other way around. Also note that “time per unit” equates to
 “cost per unit” after we take the hourly wage into account. Thus,
 the time per unit is the time T it takes to
 produce an entire batch, divided by the number of items
 n in the batch. The total processing time
 itself consists of the setup time
 T1 and
 n times the amount of time
 t required to produce a single item:
[image: Example: A Cost Model]
The first term on the righthand side is the amount of the
 setup time that can be attributed to a single item; the second term,
 of course, is the time it takes to actually produce the item. The
 larger the batch size, the smaller the contribution of the setup
 time to the cost of each item as the setup time is “amortized” over
 more units.
This is one of those situations where the numerical factors
 actually matter. We know that
 T1 is in the range of
 300–600 seconds, and that n is between 150 and
 200, so that the setup time per item,
 T1/n,
 is between 1–4 seconds. We can also find the time
 t required to actually produce a single item if
 we recall that the cycle time for the entire batch was about 90
 minutes; therefore t = 90 ·
 60/n, which is about 30 seconds per item. In
 other words, the setup time that caused management so much grief
 actually accounted for less than 10 percent of the total time to
 produce an item!
But we aren’t finished yet. Let’s assume that, through some
 strenuous effort, we are able to reduce the setup time by 10
 percent. (Not very likely, given that this part of the process had
 already received a lot of attention, but let’s assume—best case!)
 This would mean that we can reduce the setup time per
 item to 1–3.5 seconds. However, this means that the
 total time per item is reduced by only 1 or 2
 percent! This is the kind of efficiency gain that makes sense only in very, very controlled situations
 where everything else is completely optimized.
 In contrast, a 10 percent reduction in t, the
 actual work time per item, would result in (almost) a 10 percent
 improvement in overall productivity (because the amount of time that
 it takes to produce an item is so much greater than the fraction of
 the setup time attributable to a single item).
[image: Total time required to process a unit, as a function of the batch size.]

Figure 8-5. Total time required to process a unit, as a function of the
 batch size.

We can see this in Figure 8-5 which shows
 the “loaded” time per unit (including the setup time) for two
 typical values of the setup time as a function of the number of
 items produced in a single batch. Although the setup time
 contributes significantly to the per-item time when there are fewer
 than about 50 items per batch, its effect is very small for batch
 sizes of 150 or more. For batches of this size, the time it takes to
 actually make an item dominates the time to
 retool the machine.
The story is still not finished. We eventually launched a
 project to look at ways to reduce t for a
 change, but it was never strongly supported and shut down at the
 earliest possible moment by plant management in favor of a project
 to look at, you guessed it, the setup time! The sight of the machine
 sitting idle for 10 minutes was more than any self-respecting plant
 manager could bear.

Optional: Scaling Arguments Versus Dimensional
 Analysis

Scaling arguments may seem similar to another concept you may
 have heard of: dimensional analysis. Although
 they are related, they are really quite different. Scaling concepts,
 as introduced here, are based on our intuition of how the system
 behaves and are a way to capture this intuition in a mathematical
 expression.
Dimensional analysis, in contrast, applies to physical
 systems, which are described by a number of quantities that have
 different physical dimensions, such as length,
 mass, time, or temperature. Because equations describing a physical
 system must be dimensionally consistent, we can try to deduce the
 form of these equations by forming dimensionally consistent
 combinations of the relevant variables.
Let’s look at an example. Everybody is familiar with the
 phenomenon of air resistance, or drag: there is a force
 F that acts to slow a moving body down. It
 seems reasonable to assume that this force depends on the
 cross-sectional area of the body A and the
 speed (or velocity) ν. But it must also depend on some property of
 the medium (air, in this case) through which the body moves. The
 most basic property is the density ρ, which is the mass (in grams or
 kilograms) per volume (in cubic centimeters or meters):
F =
 f(A, υ, ρ)
Here, f(x,
 y, z) is an as-yet-unknown
 function.
Force has units of mass ·
 length/time2, area has units of
 length2, velocity of length/time, and
 density has units of mass/length3. We can
 now try to combine A, υ, and ρ to form a
 combination that has the same dimensions as force. A little
 experimentation leads us to:
F = cρ
 Aυ2
where c is a pure (dimensionless) number.
 This equation expresses the well-known result that air resistance
 increases with the square of the speed. Note that we arrived at it
 using purely dimensional arguments without any insight into the
 physical mechanisms at work.
This form of reasoning has a certain kind of magic to it: why
 did we choose these specific quantities? Why did we not include the
 viscosity of air, the ambient air pressure, the temperature, or the
 length of the body? The answer is (mostly) physical intuition. The
 viscosity of air is small (viscosity measures the resistance to
 shear stress, which is the force transmitted by a fluid captured
 between parallel plates moving parallel to each other but in
 opposite directions—clearly, not a large effect for air at
 macroscopic length scales). The pressure enters indirectly through
 the density (at constant temperature, according to the ideal gas
 law). And the length of the body is hidden in the numerical factor
 c, which depends on the shape of the body and
 therefore on the ratio of the cross-sectional radius
 [image:] to the length. In summary: it is impressive
 how far we came using only very simple arguments, but it is hard to
 overcome a certain level of discomfort entirely.
Methods of dimensional analysis appear less arbitrary when the
 governing equations are known. If this is the case, then we can use
 dimensional arguments to reduce the number of independently variable
 quantities. For example: assume that we already
 know the drag force is described by F =
 cρ
 Aυ2. Suppose further
 that we want to perform experiments to determine
 c for various bodies by measuring the drag
 force on them under various conditions. Naively, it might appear as
 if we had to map out the full three-dimensional parameter space by making measurements for all
 combinations of (ρ, A, υ). But these three
 parameters only occur in the combination γ =
 ρAυ2, therefore it
 is sufficient to run a single series of tests that varies γ over the
 range of values that we are interested in. This constitutes a
 significant simplification!
Dimensional analysis relies on dimensional consistency and
 therefore works best for physical and engineering systems, which are
 described by independently measurable, dimensional quantities. It is
 particularly prevalent in areas such as fluid dynamics, where the
 number of variables is especially high, and the physical laws are
 complicated and often not well understood. It is much less
 applicable in economic or social settings, where there are fewer (if
 any) rigorously established, dimensionally consistent
 relationships.

Other Arguments

There are other arguments that can be useful when attempting
 to formulate models. They come from the physical sciences, and (like
 dimensional analysis) they may not work as well in social and
 economic settings, which are not governed by strict physical
 laws.
Conservation laws
	Conservation laws tell us that some quantity does not
 change over time. The best-known example is the law of
 conservation of energy. Conservation laws can be very powerful
 (in particular when they are exact, as opposed to only
 approximate) but may not be available: after all, the entire
 idea of economic growth and (up to a point) manufacturing itself
 rest on the assumption that more comes out than is being put
 in!

Symmetries
	Symmetries, too, can be helpful in reducing complexity.
 For example, if an apparently two-dimensional system exhibits
 the symmetry of a circle, then I know that I’m dealing with a
 one-dimensional problem: any variation can occur only in the
 radial direction, since a circle looks the
 same in all directions. When looking for symmetries, don’t
 restrict yourself to geometric considerations—for instance,
 items entering and leaving a buffer at the same rate exhibit a
 form of symmetry. In this case, you might only need to solve one
 of the two processes explicitly while treating the other as a
 mirror image of the first.

Extreme-value considerations
	How does the system behave at the extremes? If there are
 no customers, messages, orders, or items? If there are
 infinitely many? What if the items are extremely large or
 vanishingly small, or if we wait an infinite amount of time?
 Such considerations can help to “sanity check” an existing
 model, but they can also provide inspiration when first
 establishing a model. Limiting cases are often easier to treat
 because only one effect dominates, which eliminates the
 complexities arising out of the interplay of different
 factors.

Mean-Field Approximations

The term mean-field approximation
 comes from statistical physics, but I use it only as a convenient and
 intuitive expression for a much more general approximation
 scheme.
Statistical physics deals with large systems of interacting
 particles, such as gas molecules in a piston or atoms on a crystal
 lattice. These systems are extraordinarily complicated because every
 particle interacts with every other particle. If you move one of the
 particles, then this will affect all the other particles, and so they
 will move, too; but their movement will, in turn, influence the first
 particle that we started with! Finding exact solutions for such large,
 coupled systems is often impossible. To make progress, we ignore the
 individual interactions between explicit pairs of particles. Instead,
 we assume that the test particle experiences a field, the
 “mean-field,” that captures the “average” effect of all the other
 particles.
For example, consider N gas atoms in a
 bottle of volume V. We may be interested to
 understand how often two gas atoms collide with each other. To
 calculate that number exactly, we would have to follow every single
 atom over time to see whether it bumps into any of the other atoms.
 This is obviously very difficult, and it certainly seems as if we
 would need to keep track of a whole lot of detail that should be
 unnecessary if we are only interested in macroscopic
 properties.
Realizing this, we can consider this gas in a mean-field
 approximation: the probability that our test particle collides with
 another particle should be proportional to the average density of
 particles in that bottle ρ =
 N/V. Since there are
 N particles in the bottle, we expect that the
 number of collisions (over some time frame) will be proportional to
 Nρ. This is good enough to start making some
 predictions—for example, note that this expression is proportional to
 N2. Doubling the
 number of particles in the bottle therefore means that the number of
 collisions will grow by a factor of 4. In contrast, reducing the
 volume of the container by half will increase the number of collisions
 only by a factor of 2.
You will have noticed that in the previous argument, I omitted
 lots of detail—for example, any reference to the time frame over which
 I intend to count collisions. There is also a constant of
 proportionality missing: Nρ is not really the
 number of collisions but is merely proportional to it. But if all I
 care about is understanding how the number of collisions depends on
 the two variables I consider explicitly (i.e., on
 N and V), then I don’t need
 to worry about any of these details. The argument so far is sufficient
 to work out how the number of collisions scales with both
 N and V.
You can see how mean-field approximations and scaling arguments
 enhance and support each other. Let’s step back and look at the
 concept behind mean-field approximations more closely.
Table 8-1. Mean-field approximations replace an average over functions
 with functions of averages.
	Exact
	Mean-Field

	[image: Mean-field approximations replace an average over functions with functions of averages.]
	[image: Mean-field approximations replace an average over functions with functions of averages.]

Background and Further Examples

If mean-field approximations were limited to systems of
 interacting particles, they would not be of much interest in this
 book. However, the concept behind them is much more general and is
 very widely applicable.
Whenever we want to calculate with a quantity whose values are
 distributed according to some probability distribution, we face the
 challenge that this quantity does not have a single, fixed value.
 Instead, it has a whole spectrum of possible values, each more or
 less likely according to the probability distribution. Operating
 with such a quantity is difficult because at least in principle we
 have to perform all calculations for each possible outcome and then
 weight the result of our calculation by the appropriate probability.
 At the very end of the calculation, we eventually form the average
 (properly weighted according to the probability factors) to arrive
 at a unique numerical value.
Given the combinatorial explosion of possible outcomes,
 attempting to perform such a calculation exactly invariably starts
 to feel like wading in a quagmire—and that assumes that the
 calculation can be carried out exactly at all!
The mean-field approach cuts through this difficulty by
 performing the average before embarking on the
 actual calculation. Rather than working with all possible outcomes
 (and averaging them at the end), we determine the average outcome
 first and then only work with that value alone. Table 8-1 summarizes the
 differences.
This may sound formidable, but it is actually something we do
 all the time. Do you ever try to estimate how high the bill is going
 to be when you are waiting in line at the supermarket? You can do
 this explicitly—by going through all the items individually and
 adding up their prices (approximately) in your head—or you can apply
 a mean-field approximation by realizing that the items in your cart
 represent a sample, drawn “at random,” from the selection of goods
 available. In the mean-field approximation, you would estimate the
 average single-item price for goods from that store (probably about
 $5–$7) and then multiply that value by the number of items in your
 cart. Note that it should be much easier to count the items in your
 cart than to add up their individual prices explicitly.
This example also highlights the potential pitfalls with
 mean-field arguments: it will only be reliable if the average item
 price is a good estimator. If your cart contains two bottles of
 champagne and a rib roast for a party of eight, then an estimate
 based on a typical item price of $7 is going to be
 way off.
To get a grip on the expected accuracy of a mean-field
 approximation, we can try to find a measure for the width of the
 original distribution (e.g., its standard
 deviation or inter-quartile range) and then repeat our calculations
 after adding (and subtracting) the width from the mean value. (We
 may also treat the width as a small perturbation to the average
 value and use the perturbation methods discussed in Chapter 7.)
Another example: how many packages does UPS (or any comparable
 freight carrier) fit onto a truck (to be clear: I don’t mean a
 delivery truck, but one of these 53 feet tractor-trailer
 long-hauls)? Well, we can estimate the “typical” size of a package
 as about a cubic foot (0.33
 m3), but it might also be as small as
 half that or as large as twice that size. To find an estimate for
 the number of packages that will fit, we divide the volume of the
 truck (17 m long, 2 m wide, 2.5 m high—we can estimate height and
 width if we realize that a person can stand upright in these things)
 by the typical size of a package: (17 · 2 ·
 2.5/0.33) ≈ 3,000 packages. Because the
 volume (not the length!) of each package might vary by as much as a
 factor of 2, we end up with lower and upper bounds of (respectively)
 1,500 to 6,000 packages.
This calculation makes use of the mean-field idea twice.
 First, we work with the “average” package size. Second, we don’t
 worry about the actual spatial packing of boxes inside the truck;
 instead, we pretend that we can reshape them like putty. (This also
 is a form of “mean-field” approximation.)
I hope you appreciate how the mean-field idea has turned this
 problem from almost impossibly difficult to trivial—and I don’t just
 mean with regard to the actual computation and the eventual
 numerical result; but more importantly in the way we thought about
 it. Rather than getting stuck in the enormous technical difficulties
 of working out different stacking orders for packages of different
 sizes, the mean-field notion reduced the problem description to the
 most fundamental question: into how many small pieces can we divide
 a large volume? (And if you think that all of this is rather
 trivial, I fully agree with you—but the “trivial” can easily be
 overlooked when one is presented with a complex problem in all of
 its ugly detail. Trying to find mean-field descriptions helps strip
 away nonessential detail and helps reveal the fundamental questions
 at stake.)
One common feature of mean-field solutions is that they
 frequently violate some of the system’s properties. For example, at
 Amazon, we would often consider the typical order to contain 1.7
 items, of which 0.9 were books, 0.3 were CDs, and the remaining 0.5
 items were other stuff (or whatever the numbers were). This is
 obviously nonsense, but don’t let this disturb you! Just carry on as
 if nothing happened, and work out the correct breakdown of things at
 the end. This approach doesn’t always work: you’ll still have to
 assign a whole person to a job, even it requires only one tenth of a
 full-time worker. However, this kind of argument is often sufficient
 to work out the general behavior of things.
There is a story involving Richard Feynman working on the
 Connection Machine, one of the earliest massively parallel
 supercomputers. All the other people on the team were computer scientists, and when a certain problem came
 up, they tried to solve it using discrete methods and exact
 enumerations—and got stuck with it. In contrast, Feynman worked with
 quantities such as “the average number of 1 bits in a message
 address” (clearly a mean-field approach). This allowed him to cast
 the problem in terms of partial differential equations, which were
 easier to solve.[16]

Common Time-Evolution Scenarios

Sometimes we can propose a model based on the way the system
 under consideration evolves. The “proper” way to do this is to write
 down a differential equation that describes the system (in fact, this
 is exactly what the term “modeling” often means) and then proceed to
 solve it, but that would take us too far afield. (Differential
 equations relate the change in some quantity, expressed through its
 derivative, to the quantity itself. These equations can be solved to
 yield the quantity for all times.)
However, there are a few scenarios so fundamental and so common
 that we can go ahead and simply write down the solution in its final
 form. (I’ll give a few notes on the derivation as well, but it’s the
 solutions to these differential equations that should be committed to
 memory.)
Unconstrained Growth and Decay Phenomena

The simplest case concerns pure growth (or death) processes.
 If the rate of change of some quantity is
 constant in time, then the quantity will follow an
 exponential growth (or decay). Consider a cell
 culture. At every time step, a certain fraction of all cells in
 existence at that time step will split (i.e.,
 generate offspring). Here the fraction of cells
 that participate in the population growth at every time step is
 constant in time; however, because the population itself grows, the
 total number of new cells at each time step is larger than at the
 previous time step. Many pure growth processes exhibit this
 behavior—compound interest on a monetary amount is another example
 (see Chapter 17).
Pure death processes work similarly, only in this case a
 constant fraction of the population dies or disappears at each time
 step. Radioactive decay is probably the best-known example; but
 another one is the attenuation of light in a transparent medium
 (such as water). For every unit of length that light penetrates into
 the medium, its intensity is reduced by a constant fraction, which
 gives rise to the same exponential behavior. In this case, the
 independent variable is space, not time, but the argument is exactly
 the same.
Mathematically, we can express the behavior of a cell culture
 as follows: if N(t) is the
 number of cells alive at time t and if a
 fraction f of these cells split into new cells,
 then the number of cells at the next time step
 t + 1 will be:
N(t + 1) =
 N(t) + f
 N(t)
The first term on the righthand side comes from the cells
 which were already alive at time t, whereas the
 second term on the right comes from the “new” cells created at
 t. We can now rewrite this equation as
 follows:
N(t + 1) –
 N(t) = f
 N(t)
This is a difference equation. If we can
 assume that the time “step” is very small, we can replace the
 lefthand side with the derivative of N (this
 process is not always quite as simple as in this example—you may
 want to check Appendix B for more
 details on difference and differential quotients):
[image: Unconstrained Growth and Decay Phenomena]
This equation is true for growth processes; for pure death
 processes instead we have an additional minus sign on the righthand
 side.
These equations can be solved or integrated explicitly, and
 their solutions are:
	N(t)
 = N0
 et/T
	Pure birth process

	N(t)
 = N0
 e–t/T
	Pure death process

Instead of using the “fraction” f of new
 or dying cells that we used in the difference equation, here we
 employ a characteristic time scale
 T, which is the time over which the number of
 cells changes by a factor e or
 1/e, where e = 2.71828
 The value for this time scale will depend on the actual system:
 for cells that multiply rapidly, T will be
 smaller than for another species that grows more slowly. Notice that
 such a scale factor must be there to make the
 argument of the exponential function dimensionally consistent!
 Furthermore, the parameter
 N0 is the number of
 cells in existence at the beginning t =
 0.
Exponential processes (either birth or death) are very
 important, but they never last very long. In a pure death process,
 the population very quickly dwindles to practically nothing. At
 t = 3T, only 5 percent of
 the original population are left; at t =
 10T, less than 1 in 10,000 of the original
 cells has survived; at t =
 20T, we are down to one in a billion. In other
 words, after a time that is a small multiple of
 T, the population will have all but
 disappeared.
Pure birth processes face the opposite problem: the population
 grows so quickly that, after a very short while, it will exceed the
 capacity of its environment. This is so generally true that it is
 worth emphasizing: exponential growth is not sustainable over
 extended time periods. A process may start out as exponential, but
 before long, it must and will saturate. That brings us to the next
 scenario.

Constrained Growth: The Logistic Equation

Pure birth processes never continue for very long: the
 population quickly grows to a size that is unsustainable, and then
 the growth slows. A common model that takes this behavior into
 account assumes that the members of the population start to “crowd”
 each other, possibly competing for some shared resource such as food
 or territory. Mathematically, this can be expressed as
 follows:
[image: Constrained Growth: The Logistic Equation]
The first term on the righthand side (which equals
 λKN) is the same as in the exponential growth
 equation. By itself, it would lead to an exponentially growing
 population N(t) =
 C exp(λKt). But the second
 term (–λN2)
 counteracts this: it is negative, so its effect is to
 reduce the population; and it is proportional
 to N2, so it grows
 more strongly as N becomes large. (You can
 motivate the form of this term by observing that it measures the
 number of collisions between members of the population and therefore
 expresses the “crowding” effect.)
This equation is known as the logistic differential
 equation, and its solution is the logistic
 function:
[image: Constrained Growth: The Logistic Equation]
This is a complicated function that depends on three
 parameters:
	λ
	The characteristic growth
 rate

	K
	The carrying capacity
 K =
 N(t →
 ∞)

	N0
	The initial number
 N0 =
 N(t = 0) of
 cells

Compared to a pure (exponential) growth process, the
 appearance of the parameter K is new. It stands
 for the system’s “carrying capacity”—that is the maximum number of
 cells that the environment can support. You should convince yourself
 that the logistic function indeed tends to K as
 t becomes large. (You will find different forms
 of this function elsewhere and with different parameters, but the
 form given here is the most useful one.) Figure 8-6 shows the
 logistic function for a selection of parameter values.
I should point out that determining values for the three
 parameters from data can be extraordinarily difficult especially
 when the only data points available are those to the left of the
 inflection point (the point with maximum slope, about halfway
 between N0 and
 K). Many different combinations of λ,
 K, and
 N0 may seem to fit the
 data about equally well. In particular, it is difficult to assess
 K from early-stage data alone. You may want to
 try to obtain an independent estimate (even a very rough one) for
 the carrying capacity and use it when determining the remaining
 parameters from the data.
[image: Logistic growth for different values of the growth rate λ. The initial population N0 and the overall carrying capacity K are the same in all cases.]

Figure 8-6. Logistic growth for different values of the growth rate λ.
 The initial population
 N0 and the overall
 carrying capacity K are the same in all
 cases.

The logistic function is the most common model for all
 growth processes that exhibit some form of saturation. For example,
 infection rates for contagious diseases can be modeled using the
 logistic equation, as can the approach to equilibrium for cache hit
 rates.

Oscillations

The last of the common dynamical behaviors occurs in systems
 in which some quantity has an equilibrium value and that respond to
 excursions from that equilibrium position with a restoring effect,
 which drives the system back to the equilibrium position. If the
 system does not come to rest in the equilibrium position but instead
 overshoots, then the process will continue, going back and forth
 across the neutral position—in other words, the system undergoes
 oscillation. Oscillations occur in many
 physical systems (from tides to grandfather clocks to molecular
 bonds), but the “restore and overshoot” phenomenon is much more
 general. In fact, oscillations can be found almost everywhere: the
 pendulum that has “swung the other way” is proverbial, from the
 political scene to personal relationships.
Oscillations are periodic: the system undergoes the same
 motion again and again. The simplest functions that exhibit this
 kind of behavior are the trigonometric functions
 sin(x) and cos(x) (also
 see Appendix B), therefore we can
 express any periodic behavior, at least approximately, in terms of
 sines or cosines. Sine and cosine are periodic with period 2π. To
 express an oscillation with period D, we
 therefore need to rescale x by
 2π/D. It may also be necessary to shift
 x by a phase factor ϕ: an expression like
 sin(2π(x – ϕ)/D) will at
 least approximately describe any periodic data set.
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]

Figure 8-7. The sawtooth function can be composed out of sine functions
 and their higher harmonics.

But it gets better: a powerful theorem states that
 every periodic function, no matter how crazy,
 can be written as a (possibly infinite) combination of trigonometric
 functions called a Fourier series. A Fourier
 series looks like this:
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]
where I have assumed that ϕ = 0. The important point is that
 only integer multiples of 2π/D are being used
 in the argument of the sine—the so-called “higher harmonics” of
 sin(2π x/D). We need to
 adjust the coefficients
 an
 to describe a data set. Although the series is in principle
 infinite, we can usually get reasonably good results by truncating
 it after only a few terms. (We saw an example for this in Chapter 6, where we used
 the first two terms to describe the variation in
 CO2 concentration over Mauna Loa on
 Hawaii.)
If the function is known exactly, then the coefficients
 an
 can be worked out. For the sawtooth function (see Figure 8-7), the
 coefficients are simply 1, 1/2, 1/3, 1/4,... with alternating
 signs:
[image: The sawtooth function can be composed out of sine functions and their higher harmonics.]
You can see that the series converges quite rapidly—even for
 such a crazy, discontinuous function as the sawtooth.

Case Study: How Many Servers Are Best?

To close out this chapter, let’s discuss an additional simple
 case study in model building.
[image: Costs associated with provisioning a data center, as a function of the number of servers.]

Figure 8-8. Costs associated with provisioning a data center, as a
 function of the number of servers.

Imagine you are deciding how many servers to purchase to power
 your ecommerce site. Each server costs you a fixed amount
 E per day—this includes both the operational cost
 for power and colocation as well as the amortized acquisition cost
 (i.e., the purchase price divided by the number
 of days until the server is obsolete and will be replaced). The total
 cost for n servers is therefore
 nE.
Given the expected traffic, one server should be sufficient to
 handle the load. However, each server has a finite probability
 p of failing on any given day. If your site goes
 down, you expect to lose B in profit before a new
 server can be provisioned and brought back online. Therefore, the
 expected loss when using a single server is
 pB.
Of course, you can improve the reliability of your site by using
 multiple servers. If you have n servers, then
 your site will be down only if all of them fail simultaneously. The
 probability for this event is
 pn.
 (Note that
 pn
 < p, since p is a
 probability and therefore p < 1.)
The total daily cost C that you incur can
 now be written as the combination of the fixed cost
 nE and the expected loss due to server downtime
 pn
 B (also see Figure 8-8):
C =
 pn
 B + nE
Given p, B, and
 E, you would like to minimize this cost with
 respect to the number of servers n. We can do
 this either analytically (by taking the derivative of
 C with respect to n) or
 numerically.
But wait, there’s more! Suppose we also have an alternative
 proposal to provision our data center with servers from a different
 vendor. We know that their reliability q is worse
 (so that q >
 p), but their price F is
 significantly lower (F ≪ E).
 How does this variant compare to the previous one?
The answer depends on the values for p,
 B, and E. To make a
 decision, we must evaluate not only the location
 of the minimum in the total cost (i.e., the
 number of servers required) but also the actual
 value of the total cost at the minimum position.
 Figure 8-8 includes
 the total cost for the alternative proposal that uses less reliable
 but much cheaper servers. Although we need more servers under this
 proposal, the total cost is nevertheless lower than in the first
 one.
(We can go even further: how about a mix of different servers?
 This scenario, too, we can model in a similar fashion and evaluate it
 against its alternatives.)

Why Modeling?

Why worry about modeling in a book on data
 analysis? It seems we rarely have touched any
 actual data in the examples of this chapter.
It all depends on your goals when working with data. If all you
 want to do is to describe it, extract some features, or even decompose
 it fully into its constituent parts, then the “analytic” methods of
 graphical and data analysis will suffice. However, if you intend to
 use the data to develop an understanding of the
 system that produced the data, then looking at
 the data itself will be only the first (although important)
 step.
I consider conceptual modeling to be extremely important,
 because it is here that we go from the descriptive to the
 prescriptive. A conceptual model by itself may well be the most
 valuable outcome of an analysis. But even if not, it will at the very
 least enhance the purely analytical part of our work, because a
 conceptual model will lead us to additional hypothesis and thereby
 suggest additional ways to look at and study the data in an iterative
 process—in other words, even a purely conceptual model will point us
 back to the data but with added insight.
The methods described in this chapter and the next are the
 techniques that I have found to be the most practically useful when
 thinking about data and the processes that generated it. Whenever
 looking at data, I always try to understand the system behind it, and
 I always use some (if not all) of the methods from these two
 chapters.

Workshop: Sage

Most of the tools introduced in this book work with
 numbers, which makes sense given that we are
 mostly interested in understanding data. However, there is a different
 kind of tool that works with formulas instead: computer
 algebra systems. The big (commercial) brand names for such
 systems have been Maple and Mathematica; in the open source world, the
 Sage project (http://www.sagemath.org) has become somewhat
 of a front runner.
Sage is an “umbrella” project that attempts to combine
 several existing open source projects (SymPy, Maxima, and others)
 together with some added functionality into a single, coherent,
 Python-like environment. Sage places heavy emphasis on features for
 number theory and abstract algebra (not exactly everyone’s cup of tea)
 and also includes support for numerical calculations and graphics, but
 in this section we will limit ourselves to basic calculus and a little
 linear algebra. (A word of warning: if you are not really comfortable
 with calculus, then you probably want to skip the rest of this
 section. Don’t worry—it won’t be needed in the rest of the
 book.)
Once you start Sage, it drops you into a text-based command
 interpreter (a REPL, or read-eval-print loop). Sage makes it easy to
 perform some simple calculations. For example, let’s define a function
 and take its derivative:
sage: a, x = var('a x')
sage: f(x) = cos(a*x)
sage: diff(f, x)
x |--> -a*sin(a*x)
In the first line we declare a and x
 as symbolic variables—so that we can refer to them later and Sage
 knows how to handle them. We then define a function using the
 “mathematical” notation f(x) =
 Only functions defined in this way can be used in symbolic
 calculations. (It is also possible to define Python functions using
 regular Python syntax, as in def f(x, a):
 return cos(a*x), but such functions can only be evaluated
 numerically.) Finally, we calculate the first derivative of the
 function just defined.
All the standard calculus operations are available. We can
 combine functions to obtain more complex ones, we can find integrals
 (both definite and indefinite), and we can even evaluate
 limits:
sage: # Indefinite integral:
sage: integrate(f(x,a) + a*x^2, x)
1/3*a*x^3 + sin(a*x)/a
sage:
sage: # Definite integral on [0,1]:
sage: integrate(f(x,a) + a*x^2, x, 0, 1)
1/3*(a^2 + 3*sin(a))/a
sage:
sage: # Definite integral on [0,pi], assigned to function:
sage: g(x,a) = integrate(f(x,a) + a*x^2, x, 0, pi)
sage:
sage: # Evaluate g(x,a) for different a:
sage: g(x,1)
1/3*pi^3
sage: g(x,1/2)
1/6*pi^3 + 2
sage: g(x,0)
--
RuntimeError

(some output omitted...)
RuntimeError: power::eval(): division by zero
sage: limit(g(x,a), a=0)
pi
In the next-to-last command, we tried to evaluate an expression
 that is mathematically not well defined: the function g(x,a) includes a term of the form
 sin(πa)/a, which we can’t
 evaluate for a = 0 because we can’t divide by
 zero. However, the limit [image:] exists and is found by the limit() function.
As a final example from calculus, let’s evaluate some Taylor
 series (the arguments are: the function to expand, the variable to
 expand in, the point around which to expand, and the degree of the
 desired expansion):
sage: taylor(f(x,a), x, 0, 5)
1/24*a^4*x^4 - 1/2*a^2*x^2 + 1
sage: taylor(sqrt(1+x), x, 0, 3)
1/16*x^3 - 1/8*x^2 + 1/2*x + 1
So much for basic calculus. Let’s also visit an example from
 linear algebra. Suppose we have the linear system of equations:
	ax +
 by
	= 1

	2x +
 ay
	+
 3z
	= 2

	b2x
	–
 z
	=
 a

and that we would like to find those values of
 (x, y,
 z) that solve this system. If all the
 coefficients were numbers, then we could use a numeric routine to
 obtain the solution; but in this case, some coefficients are known
 only symbolically (as a and
 b), and we would like to express the solution in
 terms of these variables.
Sage can do this for us quite easily:
sage: a, b, x, y, z = var('a b x y z')
sage:
sage: eq1 = a*x + b*y == 1
sage: eq2 = 2*x + a*y + 3*z == 2
sage: eq3 = b^2 - z == a
sage:

sage: solve([eq1,eq2,eq3], x,y,z)
[[x == (3*b^3 - (3*a + 2)*b + a)/(a^2 - 2*b),
 y == -(3*a*b^2 - 3*a^2 - 2*a + 2)/(a^2 - 2*b),
 z == b^2 - a]]
As a last example, let’s demonstrate how to calculate the
 eigenvalues of the following matrix:
[image: Workshop: Sage]
Again, if the matrix were given numerically, then we could use a
 numeric algorithm, but here we would like to obtain a symbolic
 solution.
Again, Sage can do this easily:
sage: m = matrix([[a,b,a],[b,c,b],[a,b,0]])
sage: m.eigenvalues()
[-1/18*(-I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3
*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2
*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4
)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) - 1/2*(I*sqrt(3) + 1)
*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sq
rt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3
 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3
))^(1/3) + 1/3*a + 1/3*c, -1/18*(I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/5
4*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*
a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*
a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/
3) - 1/2*(-I*sqrt(3) + 1)*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(
15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6
+ 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*
b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) + 1/3*a + 1/3*c, 1/3*a + 1/3*c + 1/9*(4*a^2 - a
*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 -
 c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a
^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38
*a*b^4)*c)*sqrt(3))^(1/3) + (11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18
*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^
6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^
3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3)]
Whether these results are useful to us is a different
 question!
This last example demonstrates something I have found to be
 quite generally true when working with computer algebra systems: it
 can be difficult to find the right kind of problem for them.
 Initially, computer algebra systems seem like pure magic, so
 effortlessly do they perform tasks that took us
 years to learn (and that we still get wrong). But
 as we move from trivial to more realistic problems, it is often
 difficult to obtain results that are actually useful. All too often we
 end up with a result like the one in the eigenvalue example,
 which—although “correct”—simply does not shed much light on the
 problem we tried to solve! And before we try manually to simplify an
 expression like the one for the eigenvalues, we might be better off
 solving the entire problem with paper and pencil, because using paper
 and pencil, we can can introduce new variables for frequently
 occurring terms or even make useful approximations as we go
 along.
I think computer algebra systems are most useful in scenarios
 that require the generation of a very large
 number of terms (e.g., combinatorial problems),
 which in the end are evaluated (numerically or otherwise) entirely by
 the computer to yield the final result without providing a “symbolic”
 solution in the classical sense at all. When these conditions are
 fulfilled, computer algebra systems enable you to tackle problems that
 would simply not be feasible with paper and pencil. At the same time,
 you can maintain a greater level of accuracy because numerical
 (finite-precision) methods, although still required to obtain a useful
 result, are employed only in the final stages of the calculation
 (rather than from the outset). Neither of these conditions is
 fulfilled for relatively straightforward ad hoc symbolic
 manipulations. Despite their immediate “magic” appeal, computer
 algebra systems are most useful as specialized tools for specialized
 tasks!
One final word about the Sage project. As an open source
 project, it leaves a strange impression. You first become aware of
 this when you attempt to download the binary distribution: it consists
 of a 500 MB bundle, which unpacks to 2 GB on your disk! When you
 investigate what is contained in this huge package, the answer turns
 out to be everything. Sage ships with
 all of its dependencies. It ships with its own
 copy of all libraries it requires. It ships with its own copy of R. It
 ships with its own copy of Python! In short, it ships with its own
 copy of everything.
This bundling is partially due to the well-known difficulties
 with making deeply numerical software portable, but is also an
 expression of the fact that Sage is an umbrella project that tries to
 combine a wide range of otherwise independent projects. Although I
 sincerely appreciate the straightforward pragmatism of this solution,
 it also feels heavy-handed and ultimately unsustainable. Personally,
 it makes me doubt the wisdom of the entire “all under one roof”
 approach that is the whole purpose of Sage: if this is what it takes,
 then we are probably on the wrong track. In other words, if it is not
 feasible to integrate different projects in a more organic way, then
 perhaps those projects should remain independent, with the user free
 to choose which to use.

Further Reading

There are two or three dozen books out there specifically on the
 topic of modeling, but I have been disappointed by most of them. Some
 of the more useful (from the elementary to the quite advanced) include
 the following.
	How to Model It: Problem Solving for the
 Computer Age. A. M. Starfield, K. A. Smith, and A. L. Bleloch.
 Interaction Book Company. 1994.
Probably the best elementary introduction to modeling that I
 am aware of. Ten (ficticious) case studies are presented and
 discussed, each demonstrating a different modeling method.
 (Available directly from the publisher.)

	An Introduction to Mathematical
 Modeling. Edward A. Bender. Dover Publications. 2000. Short and
 idiosyncratic. A bit dated but still insightful.

	Concepts of Mathematical
 Modeling. Walter J. Meyer. Dover Publications. 2004.
This book is a general introduction to many of the topics
 required for mathematical modeling at an advanced beginner level.
 It feels more dated than it is, and the presentation is a bit
 pedestrian; nevertheless, it contains a lot of accessible, and
 most of all practical, material.

	Introduction to the Foundations of Applied
 Mathematics. Mark H. Holmes. Springer. 2009.
This is one of the few books on modeling that places
 recurring mathematical techniques, rather than case studies, at
 the center of its discussion. Much of the material is advanced,
 but the first few chapters contain a careful discussion of
 dimensional analysis and nice introductions to perturbation
 expansions and time-evolution scenarios.

	Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.
This is a book by a physicist (not a mathematician, applied
 or otherwise), and it demonstrates how a physicist thinks about
 building models. The examples are rich, but mostly of theoretical
 interest. Conceptually advanced, mathematically not too
 difficult.

	Practical Applied
 Mathematics. Sam Howison. Cambridge University Press. 2005.
This is a very advanced book on applied mathematics with a
 heavy emphasis on partial differential equations. However, the
 introductory chapters, though short, provide one of the most
 insightful (and witty) discussions of models, modeling, scaling
 arguments, and related topics that I have seen.

The following two books are not about the process of modeling.
 Instead, they provide examples of modeling in action (with a
 particular emphasis on scaling arguments):
	The Simple Science of
 Flight. Henk Tennekes. 2nd ed., MIT Press. 2009.
This is a short yet fascinating book about the physics and
 engineering of flying, written at the “popular science” level. The
 author makes heavy use of scaling laws throughout. If you are
 interested in aviation, then you will be interested in this
 book.

	Scaling Concepts in Polymer
 Physics. Pierre-Gilles de Gennes. Cornell University Press.
 1979.
This is a research monograph on polymer physics and probably
 not suitable for a general audience. But the treatment, which
 relies almost exclusively on a variety of scaling arguments, is
 almost elementary. Written by the master of the scaling
 models.

[15] A description of this data set can be found in A
 Handbook of Small Data Sets. David J. Hand, Fergus
 Daly, K. McConway, D. Lunn, and E. Ostrowski. Chapman &
 Hall/CRC. 1993.

[16] This story is reported in “Richard Feynman and the
 Connection Machine.” Daniel Hillis. Physics
 Today 42 (February 1989), p. 78. The paper can also
 be found on the Web.

Chapter 9. Arguments from Probability Models

WHEN
 MODELING SYSTEMS THAT EXHIBIT SOME FORM OF RANDOMNESS, THE CHALLENGE IN
 THE MODELING process is to find a way to handle
 the resulting uncertainty. We don’t know for sure what the system will
 do—there is a range of outcomes, each of which is more or less likely,
 according to some probability distribution. Occasionally, it is possible
 to work out the exact probabilities for all possible events; however,
 this quickly becomes very difficult, if not impossible, as we go from
 simple (and possibly idealized systems) to real applications. We need to
 find ways to simplify life!
In this chapter, I want to take a look at some of the “standard”
 probability models that occur frequently in practical problems. I shall
 also describe some of their properties that make it possible to reason
 about them without having to perform explicit calculations for all
 possible outcomes. We will see that we can reduce the behavior of many
 random systems to their “typical” outcome and a narrow range around
 that.
This is true for many situations but not for all! Systems
 characterized by power-law distribution functions can
 not be summarized by a narrow regime around a
 single value, and you will obtain highly misleading (if not outright
 wrong) results if you try to handle such scenarios with standard
 methods. It is therefore important to recognize this kind of behavior
 and to choose appropriate techniques.
The Binomial Distribution and Bernoulli Trials

Bernoulli trials are random trials that can have only two
 outcomes, commonly called Success and Failure. Success occurs with
 probability p, and Failure occurs with
 probability 1 – p. We further assume that
 successive trials are independent and that the probability parameter
 p stays constant throughout.
Although this description may sound unreasonably limiting, in
 fact many different processes can be expressed in terms of Bernoulli
 trials. We just have to be sufficiently creative when defining the
 class of events that we consider “Successes.” A few examples:
	Define Heads as Success in n successive
 tosses of a fair coin. In this case, p =
 1/2.

	Using fair dice, we can define getting an “ace” as Success
 and all other outcomes as Failure. In this case,
 p = 1/6.

	We could just as well define not
 getting an “ace” as Success. In this case, p
 = 5/6.

	Consider an urn that contains b black
 tokens and r red tokens. If we define drawing
 a red token as Success, then repeated drawings (with replacement!)
 from the urn constitute Bernoulli trials with
 p =
 r/(r +
 b).

	Toss two identical coins and define obtaining two Heads as
 Success. Each toss of the two coins together
 constitutes a Bernoulli trial with p =
 1/4.

As you can see, the restriction to a binary outcome is not
 really limiting: even a process that naturally has more than two
 possible outcomes (such as throwing dice) can be cast in terms of
 Bernoulli trials if we restrict the definition of Success
 appropriately. Furthermore, as the last example shows, even
 combinations of events (such as tossing two coins or, equivalently,
 two successive tosses of a single coin) can be expressed in terms of
 Bernoulli trials.
The restricted nature of Bernoulli trials makes it possible to
 derive some exact results (we’ll see some in a moment). More
 importantly, though, the abstraction forced on us by the limitations
 of Bernoulli trials can help to develop simplified conceptual models
 of a random process.
Exact Results

The central formula for Bernoulli trials gives the
 probability of observing k Successes in N trials with
 Success probability p, and it is also known as the
 Binomial distribution (see Figure 9-1):
[image: Exact Results]
This should make good sense: we need to obtain
 k Successes, each occurring with probability
 p, and N –
 k Failures, each occurring with probability 1 –
 p. The term:
[image: Exact Results]
consisting of a binomial coefficient is
 combinatorial in nature: it gives the number of distinct
 arrangements for k successes and
 N – k failures. (This is
 easy to see. There are N! ways to arrange N distinguishable items:
 you have N choices for the first item,
 N – 1 choices for the second, and so on.
 However, the k Successes are indistinguishable
 from each other, and the same is true for the N
 – k Failures. Hence the total number of
 arrangements is reduced by the number of ways in which the Successes
 can be rearranged, since all these rearrangements are identical to
 each other. With k Successes, this means that
 k! rearrangements are indistinguishable, and
 similarly for the N – k
 failures.) Notice that the combinatorial factor does not depend on
 p.
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]

Figure 9-1. The Binomial distribution: the probability of obtaining
 k Successes in N trials
 with Success probability p.

This formula gives the probability of obtaining a specific
 number k of Successes. To find the expected
 number of Successes μ in N Bernoulli trials, we
 need to average over all possible outcomes:
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]
This result should come as no surprise. We use it intuitively
 whenever we say that we expect “about five Heads in ten tosses of
 fair coin” (N = 10, p =
 1/2) or that we expect to obtain “about ten aces in sixty tosses of
 a fair die” (N = 60, p =
 1/6).
Another result that can be worked out exactly is the standard
 deviation:
[image: The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.]
The standard deviation gives us the range over which
 we expect the outcomes to vary. (For example, assume that we perform
 m experiments, each consisting of
 N tosses of a fair coin. The expected number of
 Successes in each experiment is Np, but of
 course we won’t obtain exactly this number in each experiment.
 However, over the course of the m experiments,
 we expect to find the number of Successes in the majority of them to
 lie between [image:] and [image:].
Notice that σ grows more slowly with the number of trials than
 does μ (σ ~ [image:] versus μ ~ N). The
 relative width of the outcome distribution therefore shrinks as we
 conduct more trials.

Using Bernoulli Trials to Develop Mean-Field Models

The primary reason why I place so much emphasis on the concept
 of Bernoulli trials is that it lends itself naturally to the
 development of mean-field models (see Chapter 8). Suppose we try to
 develop a model to predict the staffing level required for a call
 center to deal with customer complaints. We know from experience
 that about one in every thousand orders will lead to a complaint
 (hence p = 1/1000). If we shipped a million
 orders a day, we could use the Binomial distribution to work out the
 probability to receive 1, 2, 3,..., 999,999, 1,000,000 complaints a
 day and then work out the required staffing levels accordingly—a
 daunting task! But in the spirit of mean-field theories, we can cut
 through the complexity by realizing that we will receive “about
 Np = 1,000” complaints a day. So rather than
 working with each possible outcome (and its associated probability),
 we limit our attention to a single expected
 outcome. (And we can now proceed to determine how many calls a
 single person can handle per day to find the required number of
 customer service people.) We can even go a step further and
 incorporate the uncertainty in the number of complaints by
 considering the standard deviation, which in this example comes out
 to [image:]. (Here I made use of the fact that 1 –
 p is very close to 1 for the current value of
 p.) The spread is small compared to the
 expected number of calls, lending credibility to our initial
 approximation of replacing the full distribution with only its
 expected outcome. (This is a demonstration for the observation we
 made earlier that the width of the resulting distribution grows much
 more slowly with N than does the expected value
 itself. As N gets larger, this effect becomes
 more drastic, which means that mean-field theory gets
 better and more reliable the more urgently we
 need it! The tough cases can be situations where
 N is of moderate size—say, in the range of
 10,..., 100. This size is too large to work out all outcomes exactly
 but not large enough to be safe working only with the expected
 values.)
Having seen this, we can apply similar reasoning to more
 general situations. For example, notice that the number of orders
 shipped each day will probably not equal exactly one
 million—instead, it will be a random quantity itself. So, by using
 N = 1,000,000 we have employed the mean-field
 idea already. It should be easy to generalize to other situations
 from here.
[image: The Gaussian probability density.]

Figure 9-2. The Gaussian probability density.

The Gaussian Distribution and the Central Limit Theorem

Probably the most ubiquitous formula in all of
 probability theory and statistics is:
[image: The Gaussian Distribution and the Central Limit Theorem]
This is the formula for the Gaussian (or
 Normal) probability density. This is the
 proverbial “Bell Curve.” (See Figure 9-2 and Appendix B for additional details.)
Two factors contribute to the elevated importance of the
 Gaussian distribution: on the foundational side, the Central Limit
 Theorem guarantees that the Gaussian distribution will arise naturally
 whenever we take averages (of almost anything). On the sheerly
 practical side, the fact that we can actually explicitly work out most
 integrals involving the Gaussian means that such expressions make good
 building blocks for more complicated theories.
The Central Limit Theorem

Imagine you have a source of data points that are distributed
 according to some common distribution. The data could be numbers
 drawn from a uniform random-number generator, prices of items in a
 store, or the body heights of a large group of people.
Now assume that you repeatedly take a sample of
 n elements from the source
 (n random numbers, n items
 from the store, or measurements for n people)
 and form the total sum of the values. You can also divide by
 n to get the average. Notice that these sums
 (or averages) are random quantities themselves: since the points are
 drawn from a random distribution, their sums will also be random
 numbers.
Note that we don’t necessarily know the distributions from
 which the original points come, so it may seem it would be
 impossible to say anything about the distribution of their sums.
 Surprisingly, the opposite is true: we can make very precise
 statements about the form of the distribution according to which the
 sums are distributed. This is the content of the Central Limit
 Theorem.
The Central Limit Theorem states that the
 sums of a bunch of random quantities will be distributed according
 to a Gaussian distribution. This statement is not strictly true; it
 is only an approximation, with the quality of the approximation
 improving as more points are included in each sample (as
 n gets larger, the approximation gets better).
 In practice, though, the approximation is excellent even for quite
 moderate values of n.
This is an amazing statement, given that we made no
 assumptions whatsoever about the original distributions (I will
 qualify this in a moment): it seems as if we got something for
 nothing! After a moment’s thought, however, this result should not
 be so surprising: if we take a single point from the original
 distribution, it may be large or it may be small—we don’t know. But
 if we take many such points, then the highs and the lows will
 balance each other out “on average.” Hence we should not be too
 surprised that the distribution of the sums is a
 smooth distribution with a central
 peak. It is, however, not obvious that this distribution
 should turn out to be the Gaussian specifically.
We can now state the Central Limit Theorem formally.
 Let
 {xi}
 be a sample of size n, having the following
 properties:
	All xn are mutually
 independent.

	All
 xn
 are drawn from a common
 distribution.

	The mean μ and the standard
 deviation σ for the distribution of the
 individual data points
 xi
 are finite.

Then the sample average
 [image:] is distributed according to a
 Gaussian with mean μ and standard deviation
 [image:]. The approximation improves as the sample
 size n increases. In other words, the probability of
 finding the value x for the sample mean
 [image:] becomes Gaussian as n
 gets large:
[image: The Central Limit Theorem]
Notice that, as for the binomial distribution, the width of
 the resulting distribution of the average is smaller than the width
 of the original distribution of the individual data points. This
 aspect of the Central Limit Theorem is the formal justification for
 the common practice to “average out the noise”: no matter how widely
 the individual data points scatter, their averages will scatter
 less.
On the other hand, the reduction in width is not as fast as
 one might want: it is not reduced linearly with the number
 n of points in the sample but only by
 [image:]. This means that if we take 10 times as many
 points, the scatter is reduced to only [image:] percent of its original value. To reduce it
 to 10 percent, we would need to increase the sample size by a factor
 of 100. That’s a lot!
Finally, let’s take a look at the Central Limit Theorem in
 action. Suppose we draw samples from a uniform distribution that
 takes on the values 1, 2,..., 6 with equal probability—in other
 words, throws of a fair die. This distribution has mean μ = 3.5
 (that’s pretty obvious) and standard deviation [image:] (not as obvious but not terribly hard to work
 it out, or you can look it up).
We now throw the die a certain number of times and evaluate
 the average of the values that we observe. According to the Central
 Limit Theorem, these averages should be distributed according to a
 Gaussian distribution that becomes narrower as we increase the
 number of throws used to obtain an average. To see the distribution
 of values, we generate a histogram (see Chapter 2). I use 1,000
 “repeats” to have enough data for a histogram. (Make sure you
 understand what is going on here: we throw the die a certain number
 of times and calculate an average based on those throws; and this
 entire process is repeated 1,000 times.)
The results are shown in Figure 9-3. In the
 upper-left corner we have thrown the die only once and thus form the
 “average” over only a single throw. You can see that all of the
 possible values are about equally likely: the distribution is
 uniform. In the upper-right corner, we throw the dice
 twice every time and form the average over both
 throws. Already a central tendency in the distribution of the
 average of values can be observed! We then
 continue to make longer and longer averaging runs. (Also shown is
 the Gaussian distribution with the appropriately adjusted width:
 [image:], where n is the number
 of throws over which we form the average.)
I’d like to emphasize two observations in particular. First,
 note how quickly the central tendency becomes apparent—it only takes
 averaging over two or three throws for a central peak to becomes
 established. Second, note how well the properly scaled Gaussian
 distribution fits the observed histograms. This is the Central Limit
 Theorem in action.

The Central Term and the Tails

The most predominant feature of the Gaussian density function
 is the speed with which it falls to zero as |x|
 (the absolute value of x—see Appendix B) becomes large. It is worth
 looking at some numbers to understand just how quickly it does
 decay. For x = 2, the standard Gaussian with
 zero mean and unit variance is approximately
 p(2, 0, 1) = 0.05 For
 x = 5, it is already on the order of
 10–6; for x = 10
 it’s about 10–22; and not much further
 out, at x = 15, we find
 p(15, 0, 1) ≈ 10–50.
 One needs to keep this in perspective: the age of the universe is
 currently estimated to be about 15 billion years, which is about 4 ·
 1017 seconds. So, even if we had made
 a thousand trials per second since the beginning of
 time, we would still not have found a value as large or
 larger than x = 10!
[image: The Central Limit Theorem in action. Distribution of the average number of points when throwing a fair die several times. The boxes show the histogram of the value obtained; the line shows the distribution according to the Central Limit Theorem.]

Figure 9-3. The Central Limit Theorem in action. Distribution of the
 average number of points when throwing a fair die several times.
 The boxes show the histogram of the value obtained; the line shows
 the distribution according to the Central Limit Theorem.

Although the Gaussian is defined for all
 x, its weight is so strongly concentrated
 within a finite, and actually quite small, interval (about [–5, 5])
 that values outside this range will not occur. It is not just that
 only one in a million events will deviate from the mean by more than
 5 standard deviations: the decline continues, so that fewer than one
 in 1022 events will deviate by more than
 10 standard deviations. Large outliers are not just rare—they don’t
 happen!
This is both the strength and the limitation of the Gaussian
 model: if the Gaussian model applies, then we
 know that all variation in the data will be relatively small and
 therefore “benign.” At the same time, we know that for some systems,
 large outliers do occur in practice. This means that, for such
 systems, the Gaussian model and theories based on
 it will not apply, resulting in bad guidance or outright
 wrong results. (We will return to this problem shortly.)

Why Is the Gaussian so Useful?

It is the combination of two properties that makes the
 Gaussian probability distribution so common and useful: because of
 the Central Limit Theorem, the Gaussian distribution will occur whenever we we dealing with averages; and
 because so much of the Gaussian’s weight is concentrated in the
 central region, almost any expression can be approximated by
 concentrating only on the central region, while largely disregarding
 the tails.
As we will discuss in Chapter 10 in more
 detail, the first of these two arguments has been put to good use by
 the creators of classical statistics: although we may not know
 anything about the distribution of the actual data points, the
 Central Limit Theorem enables us to make statements about their
 averages. Hence, if we concentrate on estimating the sample
 average of any quantity, then we are on much
 firmer ground, theoretically. And it is impressive to see how
 classical statistics is able to make rigorous statements about the
 extent of confidence intervals for parameter estimates while using
 almost no information beyond the data points themselves! I’d like to
 emphasize these two points again: through clever application of the
 Central Limit Theorem, classical statistics is able to give
 rigorous (not just intuitive) bounds on
 estimates—and it can do so without requiring detailed knowledge of
 (or making additional assumptions about) the system under
 investigation. This is a remarkable achievement!
The price we pay for this rigor is that we lose much of the
 richness of the original data set: the distribution of points has
 been boiled down to a single number—the average.
The second argument is not so relevant from a conceptual
 point, but it is, of course, of primary practical importance: we can
 actually do many integrals involving Gaussians, either exactly or in
 very good approximation. In fact, the Gaussian is so convenient in
 this regard that it is often the first choice when an integration
 kernel is needed (we have already seen examples of this in Chapter 2, in the
 context of kernel density estimates, and in Chapter 4, when we
 discussed the smoothing of a time series).

Optional: Gaussian Integrals

The basic idea goes like this: we want to evaluate an integral
 of the form:
[image: Optional: Gaussian Integrals]
We know that the Gaussian is peaked around
 x = 0, so that only nearby points will
 contribute significantly to the value of the integral. We can
 therefore expand f(x) in a
 power series for small x. Even if this
 expansion is no good for large x, the result
 will not be affected significantly because those points are
 suppressed by the Gaussian. We end up with a series of integrals of
 the form
[image: Optional: Gaussian Integrals]
which can be performed exactly. (Here,
 an
 is the expansion coefficient from the expansion of
 f(x).)
We can push this idea even further. Assume that the kernel is
 not exactly Gaussian but is still strongly peaked:
[image: Optional: Gaussian Integrals]
where the function
 g(x) has a minimum at some
 location (otherwise, the kernel would not have a peak at all). We
 can now expand g(x) into a
 Taylor series around its minimum (let’s assume it is at
 x = 0), retaining only the first two terms:
 g(x) ≈
 g(0) + g″
 (0)x2/2 + ···. The
 linear term vanishes because the first derivative
 g′ must be zero at a minimum. Keeping in mind
 that the first term in this expansion is a constant not depending on
 x, we have transformed the original integral to
 one of Gaussian type:
[image: Optional: Gaussian Integrals]
which we already know how to solve.
This technique goes by the name of Laplace’s
 method (not to be confused with “Gaussian integration,”
 which is something else entirely).

Beware: The World Is Not Normal!

Given that the Central Limit Theorem is a rigorously proven
 theorem, what could possibly go wrong? After all, the Gaussian
 distribution guarantees the absence of outliers, doesn’t it? Yet we
 all know that unexpected events do
 occur.
There are two things that can go wrong with the discussion so
 far:
	The Central Limit Theorem only applies to sums or averages
 of random quantities but not necessarily to the random
 quantities themselves. The distribution of individual data
 points may be quite different from a Gaussian, so if we want to
 reason about individual events (rather than about an aggregate
 such as their average), then we may need different methods. For
 example, although the average number of
 items in a shipment may be Gaussian distributed around a typical
 value of three items per shipment, there is no guarantee that
 the actual distribution of items per shipment will follow the
 same distribution. In fact, the distribution will probably be
 geometrical, with shipments containing only a single item being
 much more common than any other shipment size.

	More importantly, the Central Limit Theorem may
 not apply. Remember the three conditions listed as
 requirements for the Central Limit Theorem to hold? Individual
 events must be independent, follow the same distribution, and
 must have a finite mean and standard deviation. As it turns out,
 the first and second of these conditions can be weakened
 (meaning that individual events can be somewhat correlated and
 drawn from slightly different distributions), but the third
 condition cannot be weakened: individual
 events must be drawn from a distribution of
 finite width.
Now this may seem like a minor matter: surely, all
 distributions occurring in practice are of finite width, aren’t
 they? As it turns out, the answer is no!
 Apparently “pathological” distributions of this kind are much
 more common in real life than one might expect. Such
 distributions follow power-law behavior,
 and they are the topic of the next section.

Power-Law Distributions and Non-Normal Statistics

Let’s start with an example. Figure 9-4 shows a histogram
 for the number of visits per person that a sample of visitors made to
 a certain website over one month. Two things stand out: the huge
 number of people who made a handful of visits (fewer than 5 or 6) and,
 at the other extreme, the huge number of visits that a few people
 made. (The heaviest user made 41,661 visits: that’s about one per
 minute over the course of the month—probably a bot or monitor of some
 sort.)
This distribution looks nothing like the “benign” case in Figure 9-2. The distribution in Figure 9-4 is not merely
 skewed—it would be no exaggeration to say that it consists
 entirely of outliers! Ironically, the “average”
 number of visits per person—calculated naively, by summing the visits
 and dividing by the number of unique visitors—equals 26 visits per
 person. This number is clearly not representative of anything: it
 describes neither the huge majority of light users on the lefthand
 side of the graph (who made one or two visits), nor the small group of
 heavy users on the right. (The standard deviation is ±437, which
 clearly suggests that something is not right, given that the mean is
 26 and the number of visits must be positive.)
This kind of behavior is typical for distributions with
 so-called fat or heavy
 tails. In contrast to systems ruled by a Gaussian
 distribution or another distribution with short tails, data values are
 not effectively limited to a narrow domain. Instead, we can find a
 nonnegligible fraction of data points that are very far away from the
 majority of points.
Mathematically speaking, a distribution is heavy-tailed if it
 falls to zero much slower than an exponential function. Power laws
 (i.e., functions that behave as ~
 1/xβ for some exponent
 β > 0) are usually used to describe such behavior.
In Chapter 3,
 we discussed how to recognize power laws: data points falling onto a
 straight line on a double logarithmic plot. A double logarithmic plot
 of the data from Figure 9-4 is shown in Figure 9-5, and we see that
 eventually (i.e., for more than five visits per
 person), the data indeed follows a power law (approximately ~
 x–1.9). On the
 lefthand side of Figure 9-5
 (i.e., for few visits per person), the behavior
 is different. (We will come back to this point later.)
Power-law distributions like the one describing the data set in
 in Figure 9-4 and
 Figure 9-5 are
 surprisingly common. They have been observed in a number of different
 (and often colorful) areas: the frequency with which words are used in
 texts, the magnitude of earthquakes, the size of files, the copies of
 books sold, the intensity of wars, the sizes of sand particles and
 solar flares, the population of cities, and the distribution of
 wealth. Power-law distributions go by different names in different
 contexts—you will find them referred to as “Zipf” of “Pareto”
 distributions, but the mathematical structure is always the same. The
 term “power-law distribution” is probably the most widely accepted,
 general term for this kind of heavy-tailed distribution.
[image: A histogram of the number of visitors who made x number of visits to a certain website. Note the extreme skewness of the distribution: most visitors made one or two visits, but a few made tens of thousands of visits.]

Figure 9-4. A histogram of the number of visitors who made
 x number of visits to a certain website. Note
 the extreme skewness of the distribution: most visitors made one or
 two visits, but a few made tens of thousands of visits.

Whenever they were found, power-law distributions were met with
 surprise and (usually) consternation. The reason is that they possess
 some unexpected and counterintuitive properties:
	Observations span a wide range of values, often many orders
 of magnitude.

	There is no typical scale or value that could be used to
 summarize the distribution of points.

	The distribution is extremely skewed, with many data points
 at the low end and few (but not negligibly few) data points at
 very high values.

	Expectation values often depend on the sample size. Taking
 the average over a sample of n points may
 yield a significantly smaller value than taking the average over
 2n or 10n data points.
 (This is in marked contrast to most other distributions, where the
 quality of the average improves when it is based on more points.
 Not so for power-law distributions!)

[image: The data from but on double logarithmic scales. The righthand side of this curve is well described by the power law 1/x1.9.]

Figure 9-5. The data from Figure 9-4 but on double
 logarithmic scales. The righthand side of this curve is well
 described by the power law
 1/x1.9.

It is the last item that is the most disturbing. After
 all, didn’t the Central Limit Theorem tell us that the scatter of the
 average was always reduced by a factor of 1/[image:] as the sample size increases? Yes, but remember
 the caveat at the end of the last section: the Central Limit Theorem
 applies only to those distributions that have a finite mean and
 standard deviation. For power-law distributions, this condition is not
 necessarily fulfilled, and hence the Central Limit Theorem does
 not apply.
The importance of this fact cannot be overstated. Not only does
 much of our intuition go out the window but most of statistical
 theory, too! For the most part, distributions without expectations are
 simply not treated by standard probability theory and
 statistics.[17]
Working with Power-Law Distributions

So what should you do when you encounter a situation described
 by a power-law distribution? The most important thing is to
 stop using classical methods. In particular,
 the mean-field approach (replacing the distribution by its mean) is
 no longer applicable and will give misleading or incorrect
 results.
From a practical point of view, you can try segmenting the
 data (and, by implication, the system) into different groups: the
 majority of data points at small values (on the lefthand side in
 Figure 9-5), the
 set of data points in the tail of the distribution (for relatively
 large values), and possibly even a group of data points
 making up the intermediate regime. Each such group is now more
 homogeneous, so that standard methods may apply. You will need
 insight into the business domain of the data, and you should
 exercise discretion when determining where to make those cuts,
 because the data itself will not yield a natural “scale” or other
 quantity that could be used for this purpose.
There is one more practical point that you should be aware of
 when working with power-law distributions: the form ~
 1/xβ is only valid
 “asymptotically” for large values of x. For
 small x, this rule must be supplemented, since
 it obviously cannot hold for x → 0 (we can’t
 divide by zero). There are several ways to augment the original form
 near x = 0. We can either impose a minimum
 value xmin of
 x and consider the distribution only for values
 larger than this. That is often a reasonable approach because such a
 minimum value may exist naturally. For example there is an obvious
 “minimum” number of pages (i.e., one page) that
 a website visitor can view and still be considered a “visitor.”
 Similar considerations hold for the population of a city and the
 copies of books sold—all are limited on the left by
 xmin = 1. Alternatively,
 the behavior of the observed distribution may be different for small
 values. Look again at Figure 9-5: for values
 less than about 5, the curve deviates from the power-law behavior
 that we find elsewhere.
Depending on the shape that we require near zero, we can
 modify the original rule in different ways. Two examples stand out:
 if we want a flat peak for x = 0, then we can
 try a form like ~ 1/(a +
 xβ) for some
 a > 0, and if we require a peak at a nonzero
 location, we can use a distribution like ~
 exp(–C/x)/xβ
 (see Figure 9-6).
 For specific values of β, two distributions of this kind have
 special names:
[image: Working with Power-Law Distributions]

Optional: Distributions with Infinite Expectation
 Values

The expectation value
 E(f) of a function
 f(x), which in turn
 depends on some random quantity x, is nothing
 but the weighted average of that function in which we use the
 probability density p(x)
 of x as the weight function:
[image: Optional: Distributions with Infinite Expectation Values]
Of particular importance are the expectation values for simple
 powers of the variable x, the so called
 moments of the distribution:
[image: Optional: Distributions with Infinite Expectation Values]
[image: The Lévy distribution for several values of the parameter c.]

Figure 9-6. The Lévy distribution for several values of the parameter
 c.

The first expression must always equal 1, because we expect
 p(x) to be properly
 normalized. The second is the familiar mean, as the weighted average
 of x. The last expression is used in the
 definition of the standard deviation:
[image: The Lévy distribution for several values of the parameter c.]
For power-law distributions, which behave as ~
 1/xβ with β > 1
 for large x, some of these integrals may not
 converge—in this case, the corresponding moment “does not exist.”
 Consider the kth moment (C
 is the normalization constant C =
 E(1) = ∫
 p(x)
 dx):
[image: The Lévy distribution for several values of the parameter c.]
Unless β – k > 1, this integral does
 not converge at the upper limit of integration. (I assume that the
 integral is proper at the lower limit of integration, through a
 lower cutoff xmin or
 another one of the methods discussed previously.) In particular, if
 β < 2, then the mean and all higher moments do not exist; if β
 < 3, then the standard deviation does not exist.
We need to understand that this is an analytical result—it
 tells us that the distribution is ill behaved and that, for
 instance, the Central Limit Theorem does not apply in this case. Of
 course, for any finite sample of
 n data points drawn from such a distribution,
 the mean (or other moment) will be perfectly finite. But these
 analytical results warn us that, if we continue to draw additional
 data points from the distribution, then their average (or other
 moment) will not settle down: it will grow as the number of data
 points in the sample grows. Any summary statistic calculated from a
 finite sample of points will therefore not be a good estimator for
 the true (in this case: infinite) value of that statistic. This
 poses an obvious problem because, of course, all practical samples
 contain only a finite number of points.
Power-law distributions have no parameters that could (or
 need) be estimated—except for the exponent, which we know how to
 obtain from a double logarithmic plot. There is also a maximum
 likelihood estimator for the exponent:
[image: The Lévy distribution for several values of the parameter c.]
where x0 is the
 smallest value of x for which the asymptotic
 power-law behavior holds.

Where to Go from Here

If you want to dig deeper into the theory of heavy-tail
 phenomena, you will find that it is a mess. There are two reasons
 for that: on the one hand, the material is technically hard (since
 one must make do without two standard tools: expectation values and
 the Central Limit Theorem), so few simple, substantial, powerful
 results have been obtained—a fact that is often covered up by
 excessive formalism. On the other hand, the “colorful” and multi
 disciplinary context in which power-law distributions are found has
 led to much confusion. Similar results are being discovered and
 re-discovered in various fields, with each field imposing its own
 terminology and methodology, thereby obscuring the mathematical
 commonalities.
The unexpected and often almost paradoxical consequences of
 power-law behavior also seem to demand an explanation for
 why such distributions occur in practice and
 whether they might all be expressions of some common mechanisms.
 Quite a few theories have been proposed toward this end, but none
 has found widespread acceptance or proved particularly useful in
 predicting new phenomena—occasionally grandiose claims to the
 contrary notwithstanding.
At this point, I think it is fair to say that we don’t
 understand heavy-tail phenomena: not when and why they occur, nor
 how to handle them if they do.

Other Distributions

There are some other distributions that describe common
 scenarios you should be aware of. Some of the most important (or most
 frequently used) ones are described in this section.
[image: The geometric distribution: p(k, p) = p(1 – p)k–1.]

Figure 9-7. The geometric distribution:
 p(k,
 p) = p(1 –
 p)k–1.

Geometric Distribution

The geometric distribution (see Figure 9-7):
p(k,
 p) = p(1 –
 p)k–1
 with k = 1, 2, 3,...
is a special case of the binomial distribution. It can be
 viewed as the probability of obtaining the first Success at the
 kth trial (i.e., after
 observing k – 1 failures). Note that there is
 only a single arrangement of events for this outcome, hence the
 combinatorial factor is equal to one. The geometric distribution has
 mean μ = 1/p and standard deviation
 [image:].

Poisson Distribution

The binomial distribution gives us the probability of
 observing exactly k events in
 n distinct trials. In contrast, the Poisson
 distribution describes the probability of finding
 k events during some continuous observation
 interval of known length. Rather than being
 characterized by a probability parameter and a number of trials (as
 for the binomial distribution), the Poisson distribution is
 characterized by a rate λ and an
 interval length t.
The Poisson distribution
 p(k,
 t, λ) gives the probability of observing
 exactly k events during an interval of length
 t when the rate at which events occur is λ (see
 Figure 9-8):
[image: Poisson Distribution]
[image: The Poisson distribution: .]

Figure 9-8. The Poisson distribution: [image:].

Because t and λ only occur together, this
 expression is often written in a two-parameter form as
 p(k, υ) =
 e–υ
 υk/k!.
 Also note that the term
 e–λt
 does not depend on k at all—it is merely there
 as a normalization factor. All the action is in the fractional part
 of the equation.
Let’s look at an example. Assume that phone calls arrive at a
 call center at a rate of 15 calls per hour (so that λ = 0.25
 calls/minute). Then the Poisson distribution
 p(k, 1, 0.25) will give us
 the probability that k = 0, 1, 2,... calls will
 arrive in any given minute. But we can also use it to calculate the
 probability that k calls will arrive during any
 5-minute time period: p(k,
 5, 0.25). Note that in this context, it makes no sense to speak of
 independent trials: time passes continuously, and the expected
 number of events depends on the length of the observation
 interval.
We can collect a few results. Mean μ and standard deviation σ
 for the Poisson distribution are given by:
[image: The Poisson distribution: .]
Notice that only a single parameter (λt)
 controls both the location and the width of the distribution. For
 large λ, the Poisson distribution approaches a Gaussian distribution
 with μ = λ and [image:]. Only for small values of λ (say, λ < 20)
 are the differences notable. Conversely, to estimate the parameter λ
 from observations, we divide the number k of
 events observed by the length t of the
 observation period: λ =
 k/t. Keep in mind that
 when evaluating the formula for the Poisson
 distribution, the rate λ and the length t of
 the interval of interest must be of compatible units. To find the
 probability of k calls over 6 minutes in our
 call center example above, we can either use t
 = 6 minutes and λ = 0.25 calls per minute or t
 = 0.1 hours and λ = 15 calls per hour, but we cannot mix them. (Also
 note that 6 · 0.25 = 0.1 · 15 = 1.5, as it should.)
The Poisson distribution is appropriate for processes in which
 discrete events occur independently and at a constant rate: calls to
 a call center, misprints in a manuscript, traffic accidents, and so
 on. However, you have to be careful: it applies only if you can
 identify a rate at which events occur and if
 you are interested specifically in the number of events that occur
 during intervals of varying length. (You cannot expect every
 histogram to follow a Poisson distribution just because “we are
 counting events.”)

Log-Normal Distribution

Some quantities are inherently asymmetrical. Consider, for
 example, the time it takes people to complete a certain task:
 because everyone is different, we expect a distribution of values.
 However, all values are necessarily positive (since times cannot be
 negative). Moreover, we can expect a particular shape of the
 distribution: there will be some minimum time that nobody can beat,
 then a small group of very fast champions, a peak at the most
 typical completion time, and finally a long tail of stragglers.
 Clearly, such a distribution will not be well described by a
 Gaussian, which is defined for both positive and negative values of
 x, is symmetric, and has short tails!
The log-normal distribution is an example of an asymmetric
 distribution that is suitable for such cases. It is related to the
 Gaussian: a quantity follows the log-normal distribution if its
 logarithm is distributed according to a Gaussian.
The probability density for the log-normal distribution looks
 like this:
[image: Log-Normal Distribution]
(The additional factor of x in the
 denominator stems from the Jacobian in the change of variables from
 x to log x.) You may often
 find the log-normal distribution written slightly
 differently:
[image: Log-Normal Distribution]
This is the same once you realize that
 log(x/μ) = log(x) – log(μ)
 and make the identification [image:]. The first form is much better because it
 expresses clearly that μ is the typical scale
 of the problem. It also ensures that the argument of the logarithm
 is dimensionless (as it must be).
[image: The log-normal distribution.]

Figure 9-9. The log-normal distribution.

Figure 9-9 shows the
 log-normal distribution for a few different values of σ. The
 parameter σ controls the overall “shape” of the curve, whereas the
 parameter μ controls its “scale.” In general, it can be difficult to
 predict what the curve will look like for different values of the
 parameters, but here are some results (the mode
 is the position of the peak).
[image: The log-normal distribution.]
Values for the parameters can be estimated from a data set as
 follows:
[image: The log-normal distribution.]
The log-normal distribution is important as an example of a
 standard statistical distribution that provides an alternative to
 the Gaussian model for situations that require an asymmetrical
 distribution. That being said, the log-normal distribution can be
 fickle to use in practice. Not all asymmetric point distributions
 are described well by a log-normal distribution, and you may not be
 able to obtain a good fit for your data using a log-normal
 distribution. For truly heavy-tail phenomena in particular, you will
 need a power-law distribution after all. Also keep in mind that the
 log-normal distribution approaches the Gaussian as σ becomes small compared to
 μ (i.e., σ/μ ≪ 1), at which point it becomes
 easier to work with the familiar Gaussian directly.

Special-Purpose Distributions

Many additional distributions have been defined and studied.
 Some, such as the gamma distribution, are mostly of theoretical
 importance, whereas others—such as the chi-square,
 t, and F distributions—are
 are at the core of classical, frequentist statistics (we will
 encounter them again in Chapter 10). Still others
 have been developed to model specific scenarios occurring in
 practical applications—especially in reliability engineering, where
 the objective is to make predictions about likely failure rates and
 survival times.
I just want to mention in passing a few terms that you may
 encounter. The Weibull distribution is used to
 express the probability that a device will fail after a certain
 time. Like the log-normal distribution, it depends on both a shape
 and a scale parameter. Depending on the value of the shape
 parameter, the Weibull distribution can be used to model different
 failure modes. These include “infant mortality” scenarios, where
 devices are more likely to fail early but the failure rate declines
 over time as defective items disappear from the population, and
 “fatigue death” scenarios, where the failure rate rises over time as
 items age.
Yet another set of distributions goes by the name of
 extreme-value or Gumbel
 distributions. They can be used to obtain the probability that the
 smallest (or largest) value of some random quantity will be of a
 certain size. In other words, they answer the question: what is the
 probability that the largest element in a set of random numbers is
 precisely x?
Quite intentionally, I don’t give formulas for these
 distributions here. They are rather advanced and specialized tools,
 and if you want to use them, you will need to consult the
 appropriate references. However, the important point to take away
 here is that, for many typical scenarios involving random
 quantities, people have developed explicit models and studied their
 properties; hence a little research may well turn up a solution to
 whatever your current problem is.

Optional: Case Study—Unique Visitors over Time

To put some of the ideas introduced in the last two chapters
 into practice, let’s look at an example that is a bit more involved.
 We begin with a probabilistic argument and use it to develop a
 mean-field model, which in turn will lead to a differential equation
 that we proceed to solve for our final answer. This example
 demonstrates how all the different ideas we have been introducing in
 the last few chapter can fit together to tackle more complicated
 problems.
Imagine you are running a website. Users visit this website
 every day of the month at a rate that is roughly constant. We can also
 assume that we are able to track the identity of these users (through
 a cookie or something like that). By studying those cookies, we can
 see that some users visit the site only once in any given month while
 others visit it several times. We are interested in the number of
 unique users for the month and, in particular,
 how this number develops over the course of the month. (The number of
 unique visitors is a key metric in Internet advertising, for
 instance.)
The essential difficulty is that some users visit several times
 during the month, and so the number of unique visitors is smaller than
 the total number of visitors. Furthermore, we will observe a
 “saturation effect”: on the first day, almost every user is new; but
 on the last day of the month, we can expect to have seen many of the
 visitors earlier in the month already.
We would like to develop some understanding for the number of
 unique visitors that can be expected for each day of the month
 (e.g., to monitor whether we are on track to meet
 some monthly goal for the number of unique visitors). To make
 progress, we need to develop a model.
To see more clearly, we use the following idealization, which is
 equivalent to the original problem. Consider an urn that contains
 N identical tokens (total number of potential
 visitors). At each turn (every day), we draw k
 tokens randomly from the urn (average number of visitors per day). We
 mark all of the drawn tokens to indicate that we have “seen” them and
 then place them back into the urn. This cycle is repeated for every
 day of the month.
Because at each turn we mark all unmarked tokens from the random
 sample drawn at this turn, the number of marked tokens in the urn will
 increase over time. Because each token is marked at most once, the
 number of marked tokens in the urn at the end of the month is the
 number of unique visitors that have visited during that time
 period.
Phrased this way, the process can be modeled as a sequence of
 Bernoulli trials. We define drawing an already marked token as
 Success. Because the number of marked tokens in the urn is increasing,
 the success probability p will change over time.
 The relevant variables are:
	N
	Total number of tokens in
 urn

	k
	Number of tokens drawn at each
 turn

	m(t)
	Number of already-marked tokens
 drawn at turn t

	n(t)
	Total number of marked tokens in urn
 at time t

	[image:]
	Probability of drawing an
 already-marked token at turn
 t

Each day consists of a new Bernoulli trial in which
 k tokens are drawn from the urn. However, because
 the number of marked tokens in the urn increases every day, the
 probability p(t) is
 different every day.
On day t, we have
 n(t) marked tokens in the
 urn. We now draw k tokens, of which we expect
 m(t) =
 kp(t) to be marked
 (Successes). This is simply an application of the basic result for the
 expectation value of Bernoulli trials, using the current value for the
 probability. (Working with the expectation value in this way
 constitutes a mean-field approximation.)
The number of unmarked tokens in the current drawing is:
k –
 m(t) =
 k –
 kp(t) =
 k(1 –
 p(t))
We now mark these tokens and place them back into the urn, which
 means that the number of marked tokens in the urn grows by
 k(1 –
 p(t)):
n(t + 1) =
 n(t) +
 k(1 –
 p(t))
This equation simply expresses the fact that the new number of
 marked tokens n(t + 1)
 consists of the previous number of marked tokens
 n(t)
 plus the newly marked tokens
 k(1 –
 p(t)).
We can now divide both sides by N (the
 total number of tokens). Recalling that
 p(t) =
 n(t)/N,
 we write:
[image: Optional: Case Study—Unique Visitors over Time]
This is a recurrence relation for
 p(t), which can be rewritten
 as:
p(t + 1) –
 p(t) =
 f(1 –
 p(t))
In the continuum limit, we replace the difference between the
 “new” and the “old” values by the derivative at
 time t, which turns the recurrence relation into
 a more convenient differential equation:
[image: Optional: Case Study—Unique Visitors over Time]
with initial condition
 p(t = 0) = 0 (because
 initially there are no marked tokens in the urn). This differential
 equation has the solution:
p(t) = 1 –
 e–ft
Figure 9-10 shows
 p(t) for various values of
 the parameter f. (The parameter
 f has an obvious interpretation as size of each
 drawing expressed as a fraction of the total number of tokens in the
 urn.)
This is the result that we have been looking for. Remember that
 p(t) =
 n(t)/N;
 hence the probability is directly proportional to the number of unique
 visitors so far. We can rewrite it more explicitly as:
[image: Optional: Case Study—Unique Visitors over Time]
[image: Fraction of unique visitors seen on day t. The parameter f is the number of daily users expressed as a fraction of all potential users.]

Figure 9-10. Fraction of unique visitors seen on day
 t. The parameter f is the
 number of daily users expressed as a fraction of all potential
 users.

In this form, the equation gives us, for each day of the month,
 the number of unique visitors for the month up to that date. There is
 only one unknown parameter: N, the total number
 of potential visitors. (We know
 k, the average number of total visitors per day,
 because this number is immediately available from the web-server
 logs.) We can now try to fit one or two months’ worth of data to this
 formula to obtain a value for N. Once we have
 determined N, the formula predicts the expected
 number of unique visitors for each day of the month. We can use this
 information to track whether the actual number of unique visitors for
 the current month is above or below expectations.
The steps we took in this little example are typical of a lot of
 modeling. We start with a real problem in a specific situation. To
 make headway, we recast it in an idealized format that tries to retain
 only the most relevant information. (In this example: mapping the
 original problem to an idealized urn model.) Expressing things in
 terms of an idealized model helps us recognize the problem as one we
 know how to solve. (Urn models have been studied extensively; in this
 example, we could identify it with Bernoulli trials, which we know how
 to handle.) Finding a solution often requires that we make actual
 approximations in addition to the abstraction from the problem domain
 to an idealized model. (Working with the expectation value was one
 such approximation to make the problem tractable; replacing the
 recurrence relation with a differential equation was another.)
 Finally, we end up with a “model” that involves some unknown
 parameters. If we are mostly interested in developing conceptual
 understanding, then we don’t need to go any further, since we can read
 off the model’s behavior directly from the formula.
However, if we actually want to make numerical
 predictions, then we’ll need to find numerical values for those
 parameters, which is usually done by fitting the model to some already
 available data. (We should also try to validate the model to see
 whether it gives a good “fit”; refer to the discussion in Chapter 3 on examining
 residuals, for instance.)
Finally, I should point out that the model in this example is
 simplified—as models usually are. The most critical simplification
 (which would most likely not be correct in a real
 application) is that every token in the urn has the same probability
 of being drawn at each turn. In contrast, if look at the behavior of
 actual visitors, we will find that some are much more likely to visit
 more frequently while others are less likely to visit. Another
 simplification is that we assumed the total number of potential
 visitors to be constant. But if we have a website that sees
 significant growth from one month to the next, this assumption may not
 be correct, either. You may want to try and build an improved model
 that takes these (and perhaps other) considerations into account. (The
 first one in particular is not easy—in fact, if you succeed, then let
 me know how you did it!)

Workshop: Power-Law Distributions

The crazy effects of power-law distributions have to be seen to
 be believed. In this workshop, we shall generate (random) data points
 distributed according to a power-law distribution and begin to study
 their properties.
First question: how does one actually generate nonuniformly
 distributed random numbers on a computer? A random generator that
 produces uniformly distributed numbers is available in almost all
 programming environments, but generating random numbers distributed
 according to some other distribution requires a little bit more work.
 There are different ways of going about it; some are specific to
 certain distributions only, whereas others are designed for speed in
 particular applications. We’ll discuss a simple method that works for
 distributions that are analytically known.
The starting point is the cumulative distribution function for
 the distribution in question. By construction, the distribution
 function is strictly monotonic and takes on values in the interval [0,
 1]. If we now generate uniformly distributed numbers between 0 and 1,
 then we can find the locations at which the cumulative distribution
 function assumes these values. These points will be distributed
 according to the desired distribution (see Figure 9-11).
(A good way to think about this is as follows. Imagine you
 distribute n points
 uniformly on the interval [0, 1] and find the
 corresponding locations at which the cumulative distribution function
 assumes these values. These locations are spaced according to the
 distribution in question—after all, by construction, the probability
 grows by the same amount between successive locations. Now use points
 that are randomly distributed, rather than uniformly, and you end up
 with random points distributed according to the desired
 distribution.)
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]

Figure 9-11. Generating random numbers from the Gaussian distribution:
 generate uniformly distributed numbers between 0 and 1, then find
 the locations values at which the Gaussian distribution function
 assumes these values. The locations follow a Gaussian
 distribution.

For power-law distributions, we can easily work out the
 cumulative distribution function and its inverse. Let the probability
 density p(x) be:
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
This is known as the the “standard” form of the Pareto
 distribution. It is valid for values of x greater
 than 1. (Values of x < 1 have zero probability
 of occurring.) The parameter α is the “shape parameter” and must be
 greater than zero, because otherwise the probability is not
 normalizable. (This is a different convention than the one we used
 earlier: β = 1 + α.)
We can work out the cumulative distribution function
 P(x):
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
This expression can be inverted to give:
[image: Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The locations follow a Gaussian distribution.]
If we now use uniformly distributed random values for
 y, then the values for x
 will be distributed according to the Pareto distribution that we
 started with. (For other distributions, such as the Gaussian,
 inverting the expression for the cumulative distribution function is
 often harder, and you may have to find a numerical library that
 includes the inverse of the distribution function explicitly.)
Now remember what we said earlier. If the exponent in the
 denominator is less than 2 (i.e., if β ≤ 2 or α ≤
 1), then the “mean does not exist.” In practice, we can evaluate the
 mean for any sample of points, and for any finite
 sample the mean will, of course, also be finite. But as we take more
 and more points, the mean does not settle down—instead it keeps on
 growing. On the other hand, if the exponent in the denominator is
 strictly greater than 2 (i.e., if β > 2 or α
 > 1), then the mean does exist, and its value does not depend on
 the sample size.
I would like to emphasize again how counterintuitive the
 behavior for α ≤ 1 is. We usually expect that larger samples will give
 us better results with less noise. But in this particular scenario,
 the opposite is true!
We can explore behavior of this type using the simple program
 shown below. All it does is generate 10 million random numbers
 distributed according to a Pareto distribution. I generate those
 numbers using the method described at the beginning of this section;
 alternatively, I could have used the paretovariate() function in the standard
 random module. We maintain a
 running total of all values (so that we can form the mean) and also
 keep track of the largest value seen so far. The results for two runs
 with α = 0.5 and α = 1.2 are shown in Figure 9-12 and Figure 9-13,
 respectively.
import sys, random

def pareto(alpha):
 y = random.random()
 return 1.0/pow(1-y, 1.0/alpha)

alpha = float(sys.argv[1])

n, ttl, mx = 0, 0, 0

while n<1e7:
 n += 1

 v = pareto(alpha)

 ttl += v
 mx = max(mx, v)

 if(n%50000 == 0):
 print n, ttl/n, mx
The typical behavior for situations with α ≤ 1 versus α > 1
 is immediately apparent: whereas in Figure 9-13, the mean
 settles down pretty quickly to a finite value, the mean in Figure 9-12 continues to
 grow.
We can also recognize clearly what drives this behavior. For α ≤
 1, very large values occur relatively frequently. Each such occurrence
 leads to an upward jump in the total sum of values seen, which is
 reflected in a concomitant jump in the mean. Over time, as more trials
 are conducted, the denominator in the mean grows, and hence the value
 of the mean begins to fall. However (and this is what is different for
 α ≤ 1 versus α > 1), before the mean has fallen back to its
 previous value, a further extraordinarily large
 value occurs, driving the sum (and hence the mean) up again, with the
 consequence that the numerator of the expression ttl/n in the example program grows faster
 than the denominator.
[image: Sampling from the Pareto distribution . Both the mean and the maximum value grow without bound.]

Figure 9-12. Sampling from the Pareto distribution [image:]. Both the mean and the maximum value grow
 without bound.

You may want to experiment yourself with this kind of system.
 The behavior at the borderline value of α = 1 is particularly
 interesting. You may also want to investigate how quickly ttl/n grows with different values of α.
 Finally, don’t restrict yourself only to the mean. Similar
 considerations hold for the standard deviation (see our discussion
 regarding this point earlier in the chapter).

Further Reading

	An Introduction to Probability Theory and Its
 Applications, vol. 1. William Feller. 3rd ed., Wiley. 1968.
Every introductory book on probability theory covers most of
 the material in this chapter. This classic is my personal favorite
 for its deep, yet accessible treatment and for its large selection
 of interesting or amusing examples.

	An Introduction to Mathematical Statistics and
 Its Applications. Richard J. Larsen and Morris L. Marx. 4th ed., Prentice
 Hall. 2005.
This is my favorite book on theoretical statistics. The
 first third contains a good, practical introduction to many of
 this chapter’s topics.
[image: Sampling from the Pareto distribution . Both the mean and the maximum reach a finite value and retain it as we continue to make further drawings.]

Figure 9-13. Sampling from the Pareto distribution [image:]. Both the mean and the maximum reach a
 finite value and retain it as we continue to make further
 drawings.

	NIST/SEMATECH e-Handbook of Statistical
 Methods. NIST. http://www.itl.nist.gov/div898/handbook/.
 2010.
This free ebook is made available by the National Institute
 for Standards and Technology (NIST). There is a wealth of
 reliable, high-quality information here.

	Statistical Distributions. Merran Evans, Nicholas Hastings, and Brian Peacock. 3rd
 ed., Wiley. 2000.
This short and accessible reference includes basic
 information on 40 of the most useful or important probability
 distributions. If you want to know what distributions exist and
 what their properties are, this is a good place to start.

	“Power Laws, Pareto Distributions and Zipf’s Law.” M. E. J.
 Newman. Contemporary Physics 46 (2005), p.
 323.
This review paper provides a knowledgeable yet very readable
 introduction to the field of power laws and heavy-tail phenomena.
 Highly recommended. (Versions of the document can be found on the
 Web.)

	Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.
Chapter 8 of this
 book provides a succinct and level-headed overview of the current
 state of research into power-law phenomena.

[17] The comment on page 48 (out of 440) of Larry Wasserman’s
 excellent All of Statistics is typical: “From
 now on, whenever we discuss expectations, we implicitly assume
 that they exist.”

Chapter 10. What You Really Need to Know About Classical Statistics

BASIC
 CLASSICAL STATISTICS HAS ALWAYS BEEN SOMEWHAT OF A MYSTERY TO ME: A
 TOPIC FULL OF OBSCURE notions, such as
 t-tests and p-values, and
 confusing statements like “we fail to reject the null hypothesis”—which
 I can read several times and still not know if it is saying yes, no, or
 maybe.[18] To top it all off, all this formidable machinery is then
 used to draw conclusions that don’t seem to be all that interesting—it’s
 usually something about whether the means of two data sets are the same
 or different. Why would I care?
Eventually I figured it out, and I also figured out why the field
 seemed so obscure initially. In this chapter, I want to explain what
 classical statistics does, why it is the way it is, and what it is good
 for. This chapter does not attempt to teach you how to perform any of
 the typical statistical methods: this would require a separate book. (I
 will make some recommendations for further reading on this topic at the
 end of this chapter.) Instead, in this chapter I will tell you what all
 these other books omit.
Let me take you on a trip. I hope you know where your towel
 is.
Genesis

To understand classical statistics, it is necessary to realize
 how it came about. The basic statistical methods that we know today
 were developed in the late 19th and early 20th centuries, mostly in
 Great Britain, by a very small group of people. Of those, one worked
 for the Guinness brewing company and another—the most influential one
 of them—worked at an agricultural research lab (trying to increase
 crop yields and the like). This bit of historical context tells us
 something about their working conditions and primary
 challenges.
No computational capabilities
	All computations had to be performed with paper and
 pencil.

No graphing capabilities, either
	All graphs had to be generated with pencil, paper, and a
 ruler. (And complicated graphs—such as those requiring prior
 transformations or calculations using the data—were especially
 cumbersome.)

Very small and very expensive data
 sets
	Data sets were small (often not more than four to five
 points) and could be obtained only with great difficulty. (When it
 always takes a full growing season to generate a new data set, you
 try very hard to make do with the data you
 already have!)

In other words, their situation was almost entirely the opposite
 of our situation today:
	Computational power that is essentially free (within
 reason)

	Interactive graphing and visualization capabilities on every
 desktop

	Often huge amounts of data

It should therefore come as no surprise that the methods
 developed by those early researchers seem so out of place to us: they
 spent a great amount of effort and ingenuity solving problems we
 simply no longer have! This realization goes a long way toward
 explaining why classical statistics is the way it is and why it often
 seems so strange to us today.
By contrast, modern statistics is very
 different. It places greater emphasis on nonparametric methods and
 Bayesian reasoning, and it leverages current computational
 capabilities through simulation and resampling methods. The book by
 Larry Wasserman (see the recommended reading at the end of this
 chapter) provides an overview of a more contemporary point of
 view.
However, almost all introductory statistics
 books—that is, those books one is likely to pick up as a
 beginner—continue to limit themselves to the same selection of
 slightly stale topics. Why is that? I believe it is a combination of
 institutional inertia together with the expectations of the “end-user”
 community. Statistics has always been a support science for other
 fields: originally agriculture but also medicine, psychology,
 sociology, and others. And these fields, which merely apply statistics
 but are not engaged in actively developing it themselves, continue to
 operate largely using classical methods. However, the machine-learning
 community—with its roots in computer science but great demand for
 statistical methods—provides a welcome push for the widespread
 adoption of more modern methods.
Keep this historical perspective in mind as we take a
 closer look at statistics in the rest of this chapter.

Statistics Defined

All of statistics deals with the following scenario: we have a
 population—that is the set of all possible
 outcomes. Typically, this set is large: all male U.S. citizens, for
 example, or all possible web-server response times. Rather than
 dealing with the total population (which might be impossible,
 infeasible, or merely inconvenient), we instead work with a
 sample. A sample is a subset of the total
 population that is chosen so as to be representative of the overall
 population. Now we may ask: what conclusions about the overall
 population can we draw given one specific
 sample? It is this particular question that
 classical statistics answers via a process known as
 statistical inference: properties of the
 population are inferred from properties of a sample.
Intuitively, we do this kind of thing all the time. For example,
 given the heights of five men (let’s say 178 cm, 180 cm, 179 cm, 178
 cm, and 180 cm), we are immediately comfortable calculating the
 average (which is 179 cm) and concluding that the “typical” body size
 for all men in the population (not just the five in the sample!) is
 179 cm, “more or less.” This is where formal classical statistics
 comes in: it provides us with a way of making the vague “more or less”
 statement precise and quantitative. Given the
 sample, statistical reasoning allows us to make specific statements
 about the population, such as, “We expect x
 percent of men to be between y and
 z cm tall,” or, “We expect fewer than
 x percent of all men to be taller than
 y cm,” and so on.
Classical statistics is mostly concerned with two procedures:
 parameter estimation (or “estimation” for short)
 and hypothesis testing. Parameter estimation
 works as follows. We assume that the population is described by some
 distribution—for example, the Gaussian:
[image: Statistics Defined]
and we seek to estimate values for the parameters (μ and σ this
 case) from a sample. Note that once we have estimates for the
 parameters, the distribution describing the population is fully
 determined, and we can (at least in principle) calculate any desired
 property of the population directly from that distribution. Parameter
 estimation comes in two flavors: point estimation
 and interval estimation. The first just gives us
 a specific value for the parameter, whereas the second gives us a
 range of values that is supposed to contain the true value.
Compared with parameter estimation, hypothesis testing is the
 weirder of the two procedures. It does not attempt to quantify the
 size of an effect; it merely tries to determine whether there is any
 effect at all. Note well that this is a largely theoretical argument; from a practical point of view, the existence
 of an effect cannot be separated entirely from its size. We will come
 back to this point later, but first let’s understand how hypothesis
 testing works.
Suppose we have developed a new fertilizer but don’t know yet
 whether it actually works. Now we run an experiment: we divide a plot
 of land in two and treat the crops on half of the plot with the new
 fertilizer. Finally, we compare the yields: are they different? The
 specific amounts of the yield will almost surely differ, but is this
 difference due to the treatment or is it merely a chance fluctuation?
 Hypothesis testing helps us decide how large the difference needs to
 be in order to be statistically
 significant.
Formal hypothesis testing now proceeds as follows. First we set
 up the two hypotheses between which we want to decide: the
 null hypothesis (no effect; that is there is no
 difference between the two experiments) and the alternate
 hypothesis (there is an effect so that the two experiments
 have significantly different outcomes). If the difference between the
 outcomes of the two experiments is statistically significant, then we
 have sufficient evidence to “reject the null hypothesis,” otherwise we
 “fail to reject the null hypothesis.” In other words: if the outcomes
 are not sufficiently different, then we retain the null hypothesis
 that there is no effect.
This convoluted, indirect line of reasoning is required because,
 strictly speaking, no hypothesis can ever be proved correct by
 empirical means. If we find evidence against a
 hypothesis, then we can surely reject it. But if we
 don’t find evidence against the hypothesis, then
 we retain the hypothesis—at least until we do find evidence against it
 (which may possibly never happen, in which case we retain the
 hypothesis indefinitely).
This, then, is the process by which hypothesis testing proceeds:
 because we can never prove that a treatment was successful, we instead
 invent a contradicting statement that we can prove to be
 false. The price we pay for this double negative
 (“it’s not true that there is
 no effect”) is that the test results mean exactly
 the opposite from what they seem to be saying: “retaining the null
 hypothesis,” which sounds like a success, means that the treatment had
 no effect; whereas “rejecting the null hypothesis” means that the
 treatment did work. This is the first problem with hypothesis testing:
 it involves a convoluted, indirect line of reasoning and a terminology
 that seems to be saying the exact opposite from what it means.
But there is another problem with hypothesis testing: it makes a
 statement that has almost no practical meaning! In reducing the
 outcome of an experiment to the Boolean choice between “significant”
 and “not significant,” it creates an artificial dichotomy that is not
 an appropriate view of reality. Experimental outcomes are not either
 strictly significant or strictly nonsignificant: they form a
 continuum. In order to judge the results of an experiment, we need to
 know where along the continuum the experimental outcome falls
 and how robust the estimate is. If we have this
 information, we can decide how to interpret the experimental result
 and what importance to attach to it.
Classical hypothesis testing exhibits two well-known traps. The
 first is that an experimental outcome that is
 marginally outside the statistical significance
 level abruptly changes the interpretation of the experiment from
 “significant” to “not significant”—a discontinuity in interpretation
 that is not borne out by the minimal change in the actual outcome of
 the experiment. The other problem is that almost any effect, no matter
 how small, can be made “significant” by increasing the sample size.
 This can lead to “statistically significant” results that nevertheless
 are too small to be of any practical importance. All of this is
 compounded by the arbitrariness of the chosen “significance level”
 (typically 5 percent). Why not 4.99 percent? Or 1 percent, or 0.1
 percent? This seems to render the whole hypothesis testing machinery
 (at least as generally practiced) fundamentally inconsistent: on the
 one hand, we introduce an absolutely sharp cutoff into our
 interpretation of reality; and on the other hand, we choose the
 position of this cutoff in an arbitrary manner. This does not seem
 right.
(There is a third trap: at the 5 percent significance level, you
 can expect 1 out of 20 tests to give the wrong result. This means that
 if you run enough tests, you will always find one that supports
 whatever conclusion you want to draw. This practice is known as
 data dredging and is strongly frowned
 upon.)
Moreover, in any practical situation, the actual size of the
 effect is so much more important than its sheer existence. For this
 reason, hypothesis testing often simply misses the point. A project I
 recently worked on provides an example of this. The question arose as
 to whether two events were statistically independent (this is a form
 of hypothesis testing). But, for the decision that was ultimately
 made, it did not matter whether the events truly were independent
 (they were not) but that treating them as independent made no
 measurable difference to the company’s balance sheet.
Hypothesis testing has its place but typically in rather
 abstract or theoretical situations where the mere existence of an
 effect constitutes an important discovery (“Is this coin loaded?” “Are
 people more likely to die a few days after their birthdays than
 before?”). If this describes your situation, then you will quite
 naturally employ hypothesis tests. However, if the
 size of an effect is of interest to you, then you
 should feel free to ignore tests altogether and instead work out an
 estimate of the effect—including its confidence interval. This will
 give you the information that you need. You are not “doing it wrong”
 just because you haven’t performed a significance test somewhere along
 the way.
Finally, I’d like to point out that the statistics community
 itself has become uneasy with the emphasis that is placed on tests in
 some fields (notably medicine but also social sciences). Historically,
 hypothesis testing was invented to deal with sample sizes so small
 (possibly containing only four or five events) that drawing any
 conclusion at all was a challenge. In such cases, the broad
 distinction between “effect” and “no effect” was about the best one
 could do. If interval estimates are available, there is no reason to
 use statistical tests. The Wikipedia entry on
 p-values (explained below) provides some starting
 points to the controversy.
I have devoted quite a bit of space to a topic that may
 not seem especially relevant. However, hypothesis tests feature so
 large in introductory statistics books and courses and, at the same
 time, are so obscure and counterintuitive, that I found it important
 to provide some background. In the next section, we will take a more
 detailed look at some of the concepts and terminology that you are
 likely to find in introductory (or not-so-introductory) statistics
 books and courses.

Statistics Explained

In Chapter 9, we
 already encountered several well-known probability distributions,
 including the binomial (used for trials resulting in Success or
 Failure), the Poisson (applicable in situations where events are
 evenly distributed according to some density), and the ubiquitous
 Normal, or Gaussian, distribution. All of these distributions describe
 real-world, observable phenomena.
In addition, classical statistics uses several distributions
 that describe the distribution of certain quantities that are not
 observed but calculated. These distributions are not (or not usually)
 used to describe events in the real world. Instead, they describe how
 the outcomes of specific typical calculations involving random
 quantities will be distributed. There are four of these distributions,
 and they are known as sampling
 distributions.
The first of these (and the only one having much use outside of
 theoretical statistics) is the Gaussian distribution. As a sampling
 distribution, it is of interest because we already know that it
 describes the distribution of a sum of independent, identically
 distributed random variables. In other words, if
 X1,
 X2,...,
 Xn
 are random variables, then Z =
 X1 +
 X2 + ··· +
 Xn
 will be normally distributed and (because we can divide by a constant)
 the average m =
 (X1 +
 X2 + ··· +
 Xn)/n
 will also follow a Gaussian. It is this last property that makes the
 Gaussian important as a sampling distribution: it describes
 the distribution of averages. One caveat: to
 arrive at a closed formula for the Gaussian, we need to know the
 variance (i.e., the width) of the distribution
 from which the individual
 Xi
 are drawn. For most practical situations this is not a realistic
 requirement, and in a moment we will discuss what to do if the
 variance is not known.
The second sampling distribution is the
 chi-square (χ2)
 distribution. It describes the distribution of
 the sum of squares of independent, identically
 distributed Gaussian random variables. Thus, if
 X1,
 X2,...,
 Xn
 are Gaussian random variables with unit variance, then
 [image:] will follow a chi-square distribution. Why
 should we care? Because we form this kind of sum every time we
 calculate the variance. (Recall that the variance is defined as
 [image:].) Hence, the chi-square distribution is used to
 describe the distribution of variances. The
 number n of elements in the sum is referred to as
 the number of degrees of freedom of the
 chi-square distribution, and it is an additional parameter we need to
 know to evaluate the distribution numerically.
The third sampling distribution describes the behavior
 of the ratio T of a normally (Gaussian)
 distributed random variable Z and a
 chi-square-distributed random variable U. This
 distribution is the famous Student
 t distribution.
 Specifically, let Z be distributed according to
 the standard Gaussian distribution and U
 according to the chi-square distribution with n
 degrees of freedom. Then [image:] is distributed according to the
 t distribution with n
 degrees of freedom. As it turns out, this is the correct formula to
 use for the distribution of the average if the variance is
 not known but has to be determined from the sample together
 with the average.
The t distribution is a symmetric,
 bell-shaped curve like the Gaussian but with fatter tails. How fat the
 tails are depends on the number of degrees of freedom
 (i.e., on the number of data points in the
 sample). As the number of degrees of freedom increases, the
 t distribution becomes more and more like the
 Gaussian. In fact, for n larger than about 30,
 the differences between them are negligible. This is an important
 point to keep in mind: the distinction between the
 t distribution and the Gaussian matters only for
 small samples—that is, samples containing less than approximately 30
 data points. For larger samples, it is all right to use the Gaussian
 instead of the t distribution.
The last of the four sampling distributions is
 Fisher’s F
 distribution, which describes the behavior of the
 ratio of two chi-square random variables. We care about this when we
 want to compare two variances against each other
 (e.g., to test whether they are equal or
 not).
These are the four sampling distributions of classical
 statistics. I will neither trouble you with the formulas for these
 distributions, nor show you their graphs—you can find them in every
 statistics book. What is important here is to understand what they are
 describing and why they are important. In short, if you have
 n independent but identically distributed
 measurements, then the sampling distributions describe how the
 average, the variance, and their ratios will be distributed. The
 sampling distributions therefore allow us to reason about averages and
 variances. That’s why they are important and why statistics books
 spend so much time on them.
One way to use the sampling distribution is to construct
 confidence intervals for an estimate. Here is how it works. Suppose we
 have n observations. We can find the average and
 variance of these measurements as well as the ratio of the two.
 Finally, we know that the ratio is distributed according to the
 t distribution. Hence we can find the interval
 that has a 95 percent probability of containing the true value (see
 Figure 10-1). The
 boundaries of this range are the 95 percent confidence interval; that
 is, we expect the true value to fall outside this confidence range in
 only 1 out 20 cases.
A similar concept can be applied to hypothesis testing, where
 sampling distributions are often used to calculate so-called
 p-values. A p-value is an
 attempt to express the strength of the evidence in a hypothesis test
 and, in so doing, to soften the sharp binary distinction between
 significant and not significant outcomes mentioned earlier. A
 p-value is the probability of obtaining
 a value as (or more) extreme than the one actually observed
 under the assumption that the null hypothesis is true (see Figure 10-2). In other words,
 if the null hypothesis is that there is no effect, and if the observed
 effect size is x, then the
 p-value is the probability of observing an effect
 at least as large as x. Obviously, a large effect
 is improbable (small p-value) if the null
 hypothesis (zero effect) is true; hence a small
 p-value is considered strong evidence against the
 null hypothesis. However, a p-value is not “the
 probability that the null hypothesis is true”—such an interpretation
 (although appealing!) is incorrect. The p-value
 is the probability of obtaining an effect as large or larger than the
 observed one if the null hypothesis is true.
 (Classical statistics does not make probability statements about the
 truth of hypotheses. Doing so would put us into the realm of Bayesian
 statistics, a topic we will discuss toward the end of this
 chapter.)
[image: The shaded area contains 95 percent of the area under the curve; the boundaries of the shaded region are the bounds on the 95 percent confidence interval.]

Figure 10-1. The shaded area contains 95 percent of the area under the
 curve; the boundaries of the shaded region are the bounds on the 95
 percent confidence interval.

By the way, if you are thinking that this approach to hypothesis
 testing—with its sliding p-values—is quite
 different from the cut-and-dried significant–not significant approach
 discussed earlier, then you are right. Historically, two competing
 theories of significance tests have been developed and have generated
 quite a bit of controversy; even today they sit a little awkwardly
 next to each other. (The approach based on sliding
 p-values that need to be interpreted by the
 researcher is due to Fisher; the decision-rule approach was developed
 by Pearson and Neyman.) But enough, already. You can consult any
 statistics book if you want to know more details.
[image: The p-value is the probability of observing a value as large or larger than the one actually observed if the null hypothesis is true.]

Figure 10-2. The p-value is the probability of observing a value as large
 or larger than the one actually observed if the null hypothesis is
 true.

Example: Formal Tests Versus Graphical Methods

Historically, classical statistics evolved as it did
 because working with actual data was hard. The
 early statisticians therefore made a number of simplifying
 assumptions (mostly that data would be normally distributed) and
 then proceeded to develop mathematical tools (such as the sampling
 distributions introduced earlier in the chapter) that allowed them
 to reason about data sets in a general way and required only the
 knowledge of a few, easily calculated summary statistics (such as
 the mean). The ingenuity of it all is amazing, but it has led to an
 emphasis on formal technicalities as opposed to the direct insight
 into the data. Today our situation is different, and we should take
 full advantage of that.
An example will demonstrate what I mean. The listing below
 shows two data sets. Are they the same, or are they different (in
 the sense that their means are the same or different)?[19]
0.209 0.225
0.205 0.262
0.196 0.217
0.210 0.240
0.202 0.230
0.207 0.229
0.224 0.235
0.223 0.217
0.220
0.201
[image: Box-and-whisker plots of the two Quintus Curtius Snodgrass data sets. There is almost no overlap between the two.]

Figure 10-3. Box-and-whisker plots of the two Quintus Curtius Snodgrass
 data sets. There is almost no overlap between the two.

In case study 9.2.1 of their book, Larsen and Marx
 (see the recommended reading at the end of this chapter) labor for
 several pages and finally conclude that the data sets are different
 at the 99 percent level of significance.
Figure 10-3
 shows a box plot for each of the data sets. Case closed.
(In fairness, the formal test does something that a graphical
 method cannot do: it gives us a quantitative criterion by which to
 make a decision. I hope that the discussion in this chapter has
 convinced you that this is not always an advantage, because it can
 lead to blind faith in “the number.” Graphical methods require you
 to interpret the results and take responsibility for the
 conclusions. Which is why I like them: they keep you honest!)

Controlled Experiments Versus Observational Studies

Besides the machinery of formal statistical inference (using the
 sampling distributions just discussed), the early statistics pioneers
 also developed a general theory of how best to undertake statistical
 studies. This conceptual framework is sometimes known as
 Design of Experiment and is worth knowing
 about—not least because so much of typical data mining activity does
 not make use of it.
The most important distinction formalized by the Design of
 Experiment theory is the one between an observational
 study and a controlled experiment. As
 the name implies, a controlled experiment allows us to control many aspects of the
 experimental setup and procedure; in particular, we control which
 treatment is applied to which experimental unit (we will define these
 terms shortly). For example, in an agricultural experiment, we would
 treat some (but not all) of the plots with a new fertilizer and then
 later compare the yields from the two treatment groups. In contrast,
 with an observational study, we merely collect data as it becomes (or
 already is) available. In particular, retrospective studies are always
 observational (not controlled).
In a controlled experiment, we are able to control the “input”
 of an experiment (namely, the application of a treatment) and
 therefore can draw much more powerful conclusions from the output. In
 contrast to observational studies, a properly conducted controlled
 experiment can provide strong support for cause-and-effect
 relationships between two observations and can be used to rule out
 hidden (or confounding) causes. Observational studies can merely
 suggest the existence of a relationship between
 two observations; however, they can neither prove that one observation
 is caused by the other nor rule out that additional (unobserved)
 factors have played a role.
The following (intentionally whimsical) example will serve to
 make the point. Let’s say we have data that suggests that cities with
 many lawyers also have many espresso stands and that cities with few
 lawyers have few espresso stands. In other words, there is strong
 correlation between the two quantities. But what conclusions can we
 draw about the causal relationship between the two? Are lawyers
 particularly high consumers of expensive coffee? Or does caffeine make
 people more litigious? In short, there is no way for us to determine
 what is cause and what is effect in this example. In contrast, if the
 fertilized yields in the controlled agricultural experiment are higher
 than the yields from the untreated control plots, we have strong
 reason to conclude that this effect is due to the fertilizer
 treatment.
In addition to the desire to establish that the treatment indeed
 causes the effect, we also want to rule out the possibility of
 additional, unobserved factors that might account for the observed
 effect. Such factors, which influence the outcome of a study but are
 not themselves part of it, are known as
 confounding (or “hidden” or “lurking”) variables.
 In our agricultural example, differences in soil quality might have a
 significant influence on the yield—perhaps a greater influence than
 the fertilizer. The spurious correlation between the number of lawyers
 and espresso stands is almost certainly due to confounding: larger
 cities have more of everything! (Even if we account for this effect
 and consider the per capita density of lawyers
 and espresso stands, there is still a plausible confounding factor:
 the income generated per head in the city.) In the next section, we
 will discuss how randomization can help to remove
 the effect of confounding variables.
The distinction between controlled experiments and observational
 studies is most critical. Many of the most controversial scientific or
 statistical issues involve observational studies. In particular,
 reports in the mass media often concern studies that (inappropriately)
 draw causal inferences from observational studies (about topics such
 as the relationship between gun laws and homicide rates, for example).
 Sometimes controlled experiments are not possible, with the result
 that it becomes almost impossible to settle certain questions once and
 for all. (The controversy around the connection between smoking and
 lung cancer is a good example.)
In any case, make sure you understand clearly the difference
 between controlled and observational studies, as well as the
 fundamental limitations of the latter!
Design of Experiments

In a controlled experiment, we divide the
 experimental units that constitute our sample
 into two or more groups and then apply different
 treatments or treatment
 levels to the units in each group. In our agricultural
 example, the plots correspond to the experimental units,
 fertilization is the treatment, and the options “fertilizer” and “no
 fertilizer” are the treatment levels.
Experimental design involves several techniques to improve the
 quality and reliability of any conclusions drawn from a controlled
 experiment.
Randomization
	Randomization means that treatments (or treatment levels)
 are assigned to experimental units in a random fashion. Proper
 randomization suppresses systematic errors. (If we assign
 fertilizer treatment randomly to plots, then we remove the
 systematic influence of soil quality, which might otherwise be a
 confounding factor, because high-quality and low-quality plots
 are now equally likely to receive the fertilizer treatment.)
 Achieving true randomization is not as easy as it looks—I’ll
 come back to this point shortly.

Replication
	Replication means that the same treatment is applied to
 more than one experimental unit. Replication serves to reduce
 the variability of the results by averaging over a larger
 sample. Replicates should be independent of each other, since
 nothing is gained by repeating the same experiment on the same
 unit multiple times.

Blocking
	We sometimes know (or at least strongly suspect) that not
 all experimental units are equal. In this case, it may make
 sense to group equivalent experimental units into “blocks” and
 then to treat each such block as a separate sample. For example,
 if we know that plots A and C have poor soil quality and that B
 and D have better soil, then we would form two blocks—consisting
 of (A, C) and (B, D), respectively—before proceeding to make a
 randomized assignment of treatments for each block
 separately. Similarly, if we know that web traffic is
 drastically different in the morning and the afternoon, we
 should collect and analyze data for both time periods
 separately. This also is a form of blocking.

Factorization
	The last of these techniques applies only to experiments
 involving several treatments (e.g.,
 irrigation and fertilization, to stay within our agricultural
 framework). The simplest experimental design would make only a
 single change at any given time, so that we would observe yields
 with and without irrigation as well as with and without
 fertilizer. But this approach misses the possibility that there
 are interactions between the two
 treatments—for example, the effect of the fertilizer may be
 significantly higher when coupled with improved irrigation.
 Therefore, in a factorial experiment all possible combinations
 of treatment levels are tried. Even if a fully factorial
 experiment is not possible (the number of combinations goes up
 quickly as the number of different treatments grows), there are
 rules for how best to select combinations of treatment levels
 for drawing optimal conclusions from the study.

Another term you may come across in this context is ANOVA
 (analysis of variance), which is a standard way of summarizing
 results from controlled experiments. It emphasizes the variations
 within each treatment group for easy comparison with the variances
 between the treatments, so that we can determine whether the
 differences between different treatments are significant compared to
 the variation within each treatment group. ANOVA is a clever
 bookkeeping technique, but it does not introduce particularly
 noteworthy new statistical concepts.
A word of warning: when conducting a controlled experiment,
 make sure that you apply the techniques properly; in particular,
 beware of pseudo-randomization and
 pseudo-replication.
Pseudo-randomization occurs if the assignment of treatments to
 experimental units is not truly random. This can occur relatively
 easily, even if the assignment seems to be
 random. For example, if you would like to try out two different
 drugs on lab rats, it is not sufficient to “pick a rat at random”
 from the cage to administer the treatment. What does “at random”
 mean? It might very well mean picking the most active rat first
 because it comes to the cage door. Or maybe the least
 aggressive-looking one. In either case, there is a systematic
 bias!
Here is another example, perhaps closer to home: the web-lab.
 Two different site designs are to be presented to viewers, and the
 objective is to measure conversion rate or click-throughs or some
 other metric. There are multiple servers, so we dedicate one of them
 (chosen “at random”) to serve the pages with the new design. What’s
 wrong with that?
Everything! Do you have any indication
 that web requests are assigned to servers in a random fashion? Or
 might servers have, for example, a strong geographic bias? Let’s
 assume the servers are behind some “big-IP” box that routes requests
 to the servers. How is the routing conducted—randomly, or
 round-robin, or based on traffic intensity? Is the routing smart, so
 that servers with slower response times get fewer hits? What about
 sticky sessions, and what about the relationship between sticky
 sessions and slower response times? Is the router reordering the
 incoming requests in some way? That’s a lot of questions—questions
 that randomization is intended to avoid. In
 fact, you are not running a controlled experiment at all: you are
 conducting an observational study!
The only way that I know to run a controlled
 experiment is by deciding ahead of time which experimental unit will
 receive which treatment. In the lab rat example, rats should have
 been labeled and then treatments assigned to the labels using a
 (reliable) random number generator or random table. In the
 web-server example it is harder to achieve true randomization,
 because the experimental units are not known ahead of time. A simple
 rule (e.g., show the new design to every
 nth request) won’t work, because there may be
 significant correlation between subsequent requests. It’s not so
 easy.
Pseudo-replication occurs when experimental units are not
 truly independent. Injecting the same rat five times with the same
 drug does not reduce variability! Similarly, running the same query
 against a database could be misleading because of changing cache
 utilization. And so on. In my experience, pseudo-replication is
 easier to spot and hence tends to be less of a problem than
 pseudo-randomization.
Finally, I should mention one other term that often comes up
 in the context of proper experimental process:
 blind and double-blind
 experiments. In a blind experiment, the experimental unit should not
 know which treatment it receives; in a double-blind experiment, the
 investigator—at the time of the experiment—does not know either. The
 purpose of blind and double-blind experiments is to prevent the
 knowledge of the treatment level from becoming a confounding factor.
 If people know that they have been given a new drug, then this
 knowledge itself may contribute to their well-being. An investigator
 who knows which field is receiving the fertilizer might weed that
 particular field more vigorously and thereby introduce some
 invisible and unwanted bias. Blind experiments play a huge role in
 the medical field but can also be important in other contexts.
 However, I would like to emphasize that the question of “blindness”
 (which concerns the experimental procedure) is a different issue
 than the Design of Experiment prescriptions (which are intended to
 reduce statistical uncertainty).

Perspective

It is important to maintain an appropriate perspective on
 these matters.
In practice, many studies are observational, not controlled.
 Occasionally, this is a painful loss and only due to the inability
 to conduct a proper controlled experiment (smoking and lung cancer,
 again!). Nevertheless, observational studies can be of great value:
 one reason is that they may be exploratory and discover new and
 previously unknown behavior. In contrast, controlled experiments are
 always confirmatory in deciding between the effectiveness or
 ineffectiveness of a specific “treatment.”
Observational studies can be used to derive predictive models
 even while setting aside the question of causation. The
 machine-learning community, for instance, attempts to develop
 classification algorithms that use descriptive
 attributes or features of the unit to predict
 whether the unit belongs to a given class. They work entirely
 without controlled experiments and have developed methods for
 quantifying the accuracy of their results. (We will describe some in
 Chapter 18.)
That being said, it is important to understand the
 limitations of observational studies—in particular, their inability
 to support strong conclusions regarding cause-and-effect
 relationships and their inability to rule out confounding factors.
 In the end, the power of controlled experiments can be their
 limitation, because such experiments require a level of control that
 limits their application.

Optional: Bayesian Statistics—The Other Point of View

There is an alternative approach to statistics that is based on
 a different interpretation of the concept of
 probability itself. This may come as a surprise,
 since probability seems to be such a basic concept. The problem is
 that, although we have a very strong intuitive sense of what we mean
 by the word “probability,” it is not so easy to give it a rigorous
 meaning that can be used to develop a mathematical theory.
The interpretation of probability used by classical statistics
 (and, to some degree, by abstract probability theory) treats
 probability as a limiting frequency: if you toss
 a fair coin “a large number of times,” then you will obtain Heads
 about half of the time; hence the probability for Heads is 1/2.
 Arguments and theories starting from this interpretation are often
 referred to as “frequentist.”
An alternative interpretation of probability views it as the
 degree of our ignorance about an outcome: since we don’t know which
 side will be on top in the next toss of a fair coin, we assign each
 possible outcome the same probability—namely 1/2. We can therefore
 make statements about the probabilities associated with individual
 events without having to invoke the notion of a large number of
 repeated trials. Because this approach to probability and statistics
 makes use of Bayes’ theorem at a central step in
 its reasoning, it is usually called Bayesian
 statistics and has become increasingly popular in recent
 years. Let’s compare the two interpretations in a bit more
 detail.
The Frequentist Interpretation of Probability

In the frequentist interpretation, probability is viewed as
 the limiting frequency of each outcome of an experiment that is
 repeated a large number of times. This “frequentist” interpretation
 is the reason for some of the peculiarities of classical statistics.
 For example, in classical statistics it is incorrect to say that a
 95 percent confidence interval for some parameter has a 95 percent
 chance of containing the true value—after all, the true value is
 either contained in the interval or not; period. The only statement
 that we can make is that, if we perform an experiment to measure
 this parameter many times, then in about 95 percent of all cases the
 experiment will yield a value for this parameter that lies within
 the 95 percent confidence interval.
This type of reasoning has a number of drawbacks.
	It is awkward and clumsy, and liable to (possibly even
 unconscious) misinterpretations.

	The constant appeal to a “large number of trials”
 is artificial even in situations where such a sequence of trials
 would—at least in principle—be possible (such as tossing a
 coin). But it becomes wholly ficticious in situations where the
 trial cannot possibly be repeated. The weather report may state:
 “There is an 80 percent chance of rain tomorrow.” What is that
 supposed to mean? It is either going to rain tomorrow or not!
 Hence we must again invoke the unlimited sequence of trials and
 say that in 8 out of 10 cases where we observe the current
 meteorological conditions, we expect rain on the following day.
 But even this argument is illusionary, because we will never
 observe these precise conditions ever
 again: that’s what we have been learning from chaos theory and
 related fields.

	We would frequently like to make statements such as the
 one about the chance of rain, or similar ones—for example, “The
 patient has a 60 percent survival probability,” and “I am 25
 percent certain that the contract will be approved.” In all such
 cases the actual outcome is not of a probabilistic nature: it
 will rain or it will not; the patient will survive or not; the
 contract will be approved or not. Even so, we’d like to express
 a degree of certainty about the expected outcome even if
 appealing to an unlimited sequence of trials is neither
 practical nor even meaningful.

From a strictly frequentist point of view, a statement like
 “There is an 80 percent chance of rain tomorrow” is nonsensical.
 Nevertheless, it seems to make so much intuitive sense. In what way
 can this intuition be made more rigorous? This question leads us to
 Bayesian statistics or Bayesian
 reasoning.

The Bayesian Interpretation of Probability

To understand the Bayesian point of view, we first need to
 review the concept of conditional probability.
 The conditional probability
 P(A|B)
 gives us the probability for the event A,
 given (or assuming) that event
 B has occurred. You can easily convince
 yourself that the following is true:
[image: The Bayesian Interpretation of Probability]
where P(A ∩
 B) is the joint
 probability of finding both event A
 and event B. For example, it is well known that
 men are much more likely than women to be color-blind: about 10
 percent of men are color-blind but fewer than 1 percent of women are
 color-blind. These are conditional
 probabilities—that is, the probability of being color-blind
 given the gender:
P(color-blind|male) = 0.1
P(color-blind|female) = 0.01
In contrast, if we “randomly” pick a person off the street,
 then we are dealing with the joint probability
 that this person is color-blind and male. The
 person has a 50 percent chance of being male and a 10 percent conditional probability of
 being color-blind, given that the person is male. Hence, the joint
 probability for a random person to be color-blind
 and male is 5 percent, in agreement with the
 definition of conditional probability given previously.
One can now rigorously prove the following equality, which is
 known as Bayes’ theorem:
[image: The Bayesian Interpretation of Probability]
In words: the probability of finding A
 given B is equal to the probability of finding
 B given A multiplied by
 the probability of finding A and divided by the
 probability of finding B.
Now, let’s return to statistics and data analysis. Assume
 there is some parameter that we attempt to determine through an
 experiment (say, the mass of the proton or the survival rate after
 surgery). We are now dealing with two “events”: event
 B is the occurrence of the specific set of
 measurements that we have observed, and the parameter taking some
 specific value constitutes event A. We can now
 rewrite Bayes’ theorem as follows:
P(parameter|data)
 ∝
 P(data|parameter)P(parameter)
(I have dropped the denominator, which I can do because the
 denominator is simply a constant that does not depend on the
 parameter we wish to determine. The left- and righthand sides are
 now no longer equal, so I have replaced the equality sign with ∝ to
 indicate that the two sides of the expression are merely
 proportional: equal to within a numerical constant.)
Let’s look at this equation term by term.
On the lefthand side, we have the probability of
 finding a certain value for the parameter, given the
 data. That’s pretty exciting, because this is an
 expression that makes an explicit statement about the
 probability of an event (in this case, that the
 parameter has a certain value), given the data. This probability is
 called the posterior probability, or simply
 the posterior, and is defined solely through
 Bayes’ theorem without reference to any unlimited sequence of
 trials. Instead, it is a measure of our “belief” or “certainty”
 about the outcome (i.e., the value of the
 parameter) given the data.
The first term on the righthand side,
 P(data|parameter),
 is known as the likelihood function. This is a
 mathematical expression that links the parameter to the probability
 of obtaining specific data points in an actual experiment. The
 likelihood function constitutes our “model” for the system under
 consideration: it tells us what data we can expect to observe, given
 a particular value of the parameter. (The example in the next
 section will help to clarify the meaning of this term.)
Finally, the term
 P(parameter) is known as
 the prior probability, or simply the
 prior, and captures our “prior” (prior to the experiment)
 belief of finding a certain outcome—specifically our prior belief
 that the parameter has a certain value. It is the existence of this prior that makes the Bayesian
 approach so controversial, because it seems to introduce an
 inappropriately subjective element into the analysis. In reality,
 however, the influence of the prior on the final result of the
 analysis is typically small, in particular when there is plenty of
 data. One can also find so-called “noninformative” priors that
 express our complete ignorance about the possible outcomes. But the
 prior is there, and it forces us to think about our assumptions
 regarding the experiment and to state some of these assumptions
 explicitly (in form of the prior distribution function).

Bayesian Data Analysis: A Worked Example

All of this will become much clearer once we demonstrate these
 concepts in an actual example. The example is very simple, so as not
 to distract from the concepts.
Assume we have a coin that has been tossed 10 times, producing
 the following set of outcomes (H for Heads, T for Tails):
T H H H H T T H H H
If you count the outcomes, you will find that we obtained 7
 Heads and 3 Tails in 10 tosses of the coin.
Given this data, we would like to determine whether the coin
 is fair or not. Specifically, we would like to determine the
 probability p that a toss of this coin will
 turn out Heads. (This is the “parameter” we would like to estimate.)
 If the coin is fair, then p should be close to
 1/2.
Let’s write down Bayes’ equation, adapted to this
 system:
P(p| {T H H H H T T
 H H H}) ∝ P({T H H H H T T H H H} |
 p)P(p)
Notice that at this point, the problem has become
 parametric. All that is left to do is to
 determine the value of the parameter p or, more
 precisely, the posterior probability distribution for all values of
 p.
To make progress, we need to supply the likelihood function
 and the prior. Given this system, the likelihood function is
 particularly simple:
 P(H|p) =
 p and
 P(T|p) = 1 –
 p. You should convince yourself that this
 choice of likelihood function gives us exactly what we want: the
 probability to obtain Heads or Tails, given
 p.
We also assume that the tosses are independent, which implies
 that only the total number of Heads or Tails matters but not the
 order in which they occurred. Hence we don’t need to find the
 combined likelihood for the specific sequence of 10 tosses; instead,
 the likelihood of the set of events is simply the product of the 10
 individual tosses. (The likelihood “factors” for independent
 events—this argument occurs frequently in Bayesian analysis.)
[image: The (unnormalized) posterior probability of obtaining 7 Heads in 10 tosses of a coin as a function of p.]

Figure 10-4. The (unnormalized) posterior probability of obtaining 7
 Heads in 10 tosses of a coin as a function of p.

Finally, we know nothing about this coin. In
 particular, we have no reason to believe that any value of
 p is more likely than any other, so we choose
 as prior probability distribution the “flat” distribution
 P(p) = 1 for all
 p.
Collecting everything, we end up with the following expression
 (where I have dropped some combinatorial factors that do not depend
 on p):
P(p| {7 Heads, 3
 Tails}) ∝ p7(1 –
 p)3
This is the posterior probability distribution for the
 parameter p based on the experimental data (see
 Figure 10-4). We can
 see that it has a peak near p = 0.7, which is
 the most probable value for p. Note that the
 absence of tick marks on the y axis in Figure 10-4: the
 denominator, which we dropped earlier, is still undetermined, and
 therefore the overall scale of the function is not yet fixed. If we
 are interested only in the location of the
 maximum, this does not matter.
But we are not restricted to a single (point) estimate for
 p—the entire distribution function is available
 to us! We can now use it to construct confidence intervals for
 p. And because we are now talking about
 Bayesian probabilities, it would be legitimate to state that “the
 confidence interval has a 95 percent chance of containing the true
 value of p.”
We can also evaluate any function that depends on
 p by integrating it against the posterior
 distribution for p. As a particularly simple
 example, we could calculate the expectation value of
 p to obtain the single “best” estimate of
 p (rather than use the most probable value as
 we did before):
[image: The (unnormalized) posterior probability of obtaining 7 Heads in 10 tosses of a coin as a function of p.]
[image: The (unnormalized) posterior probability of obtaining 70 percent Heads in 10 and in 30 tosses of a coin. The more data there is, the more strongly peaked the posterior distribution becomes.]

Figure 10-5. The (unnormalized) posterior probability of obtaining 70
 percent Heads in 10 and in 30 tosses of a coin. The more data
 there is, the more strongly peaked the posterior distribution
 becomes.

Here we finally need to worry about all the factors that we
 dropped along the way, and the denominator in the formula is our way
 of fixing the normalization “after the fact.” To ensure that the
 probability distribution is properly normalized, we divide
 explicitly by the integral over the whole range of values, thereby
 guaranteeing that the total probability equals 1 (as it
 must).
It is interesting to look at the roles played by the
 likelihood and the prior in the result. In Bayesian analysis, the
 posterior “interpolates” between the prior and the data-based
 likelihood function. If there is only very little data, then the
 likelihood function will be relatively flat, and therefore the
 posterior will be more influenced by the prior. But as we collect
 more data (i.e., as the empirical evidence
 becomes stronger), the likelihood function becomes more and more
 narrowly peaked at the most likely value of p,
 regardless of the choice of prior. Figure 10-5 demonstrates
 this effect. It shows the posterior for a total of 10 trials and a
 total of 30 trials (while keeping the same ratio of Heads to Tails):
 as we gather more data, the uncertainty in the resulting posterior
 shrinks.
[image: The effect of a nonflat prior: posterior probabilities for data sets of different sizes, calculated using a Gaussian prior.]

Figure 10-6. The effect of a nonflat prior: posterior probabilities for
 data sets of different sizes, calculated using a Gaussian
 prior.

Finally, Figure 10-6 demonstrates
 the effect of the prior. Whereas the posterior distributions shown
 in Figure 10-5 were
 calculated using a flat prior, those in Figure 10-6 were
 calculated using a Gaussian prior—which expresses a rather strong
 belief that the value of p will be between 0.35
 and 0.65. The influence of this prior belief is rather significant
 for the smaller data set, but as we take more and more data points,
 its influence is increasingly diminished.

Bayesian Inference: Summary and Discussion

Let’s summarize what we have learned about Bayesian data
 analysis or Bayesian inference and discuss what
 it can do for us—and what it can’t.
First of all, the Bayesian (as opposed to the frequentist)
 approach to inference allows us to compute a true probability
 distribution for any parameter in question. This has great intuitive
 appeal, because it allows us to make statements such as “There is a
 90 percent chance of rain tomorrow” without having to appeal to the
 notion of extended trials of identical experiments.
The posterior probability distribution arises as the product
 of the likelihood function and the prior. The likelihood links
 experimental results to values of the parameter, and the prior
 expresses our previous knowledge or belief about the
 parameter.
The Bayesian approach has a number of appealing features. Of
 course, there is the intuitive nature of the results obtained using
 Bayesian arguments: real probabilities and 95 percent confidence
 intervals that have exactly the kind of interpretation one would
 expect! Moreover, we obtain the posterior probability distribution
 in full generality and without having to make limiting assumptions
 (e.g., having to assume that the data is
 normally distributed).
Additionally, the likelihood function enters the calculation
 in a way that allows for great flexibility in how we build “models.”
 Under the Bayesian approach, it is very easy to deal with missing
 data, with data that is becoming available over time, or with
 heterogeneous data sets (i.e., data sets in
 which different attributes are known about each data point). Because
 the result of Bayesian inference is a probability distribution
 itself, it can be used as input for a new model that builds on the
 previous one (hierarchical models). Moreover, we can use the prior
 to incorporate previous (domain) knowledge that we may have about
 the problem under consideration.
On the other hand, Bayesian inference has some problems,
 too—even when we concentrate on practical applications only, leaving
 the entire philosophical debate about priors and subjectivity
 aside.
First of all, Bayesian inference is always
 parametric; it is never just exploratory or
 descriptive. Because Bayesian methods force us to supply a
 likelihood function explicitly, they force us to be specific about
 our choice of model assumptions: we must already have a likelihood
 function in mind, for otherwise we can’t even get started (hence
 such analysis can never be exploratory). Furthermore, the result of
 a Bayesian analysis is always a posterior distribution—that is, a
 conditional probability of something, given the
 data. Here, that “something” is some form of hypothesis that we
 have, and the posterior gives us the probability that this
 hypothesis is true. To make this prescription operational (and, in
 particular, expressible through a likelihood function), we pretty
 much have to parameterize the hypothesis. The inference then
 consists of finding the best value for this parameter, given the
 data—which is a parametric problem, given a specific choice for the
 model (i.e., the likelihood function). (There
 are so-called “nonparametric” Bayesian methods, but in reality they
 boil down to parametric models with very large numbers of
 parameters.)
Additionally, actual Bayesian calculations are often
 difficult. Recall that Bayesian inference gives us the full explicit
 posterior distribution function. If we want to summarize this
 function, we either need to find its maximum or integrate it to
 obtain an expectation value. Both of these problems are hard,
 especially when the likelihood function is complicated and there is
 more than one parameter that we try to estimate. Instead of
 explicitly integrating the posterior, one can
 sample it—that is, draw random points that are
 distributed according to the posterior distribution, in order to
 evaluate expectation values. This is clearly an expensive process
 that requires computer time and specialized software (and the
 associated know-how). There can also be additional problems. For
 example, if the parameter space is very high-dimensional, then
 evaluating the likelihood function (and hence the posterior) may be
 difficult.
In contrast, frequentist methods tend to make more
 assumptions up front and rely more strongly on general analytic
 results and approximations. With frequentist methods, the hard work
 has typically already been done (analytically), leading to an
 asymptotic or approximate formula that you only need to plug in.
 Bayesian methods give you the full, nonapproximate result but leave
 it up to you to evaluate it. The disadvantage of the plug-in
 approach, of course, is that you might be plugging into an
 inappropriate formula—because some of the assumptions or
 approximations that were used to derive it do not apply to your
 system or data set.
To bring this discussion to a close, I’d like to end with a
 cautionary note. Bayesian methods are very appealing and even
 exciting—something that is rarely said about classical frequentist
 statistics. On the other hand, they are probably not very suitable
 for casual uses.
	Bayesian methods are parametric and specific; they are
 never exploratory or descriptive. If we already know what
 specific question to ask, then Bayesian methods may be the best
 way of obtaining an answer. But if we don’t yet know the proper
 questions to ask, then Bayesian methods are not
 applicable.

	Bayesian methods are difficult and require a fair deal of
 sophistication, both in setting up the actual model (likelihood
 function and prior) and in performing the required
 calculations.

As far as results are concerned, there is not much difference
 between frequentist and Bayesian analysis. When there is sufficient
 data (so that the influence of the prior is small), then the end
 results are typically very similar, whether they were obtained using
 frequentist methods or Bayesian methods.
Finally, you may encounter some other terms and concepts in
 the literature that also bear the “Bayesian” moniker: Bayesian
 classifier, Bayesian network, Bayesian risk, and more. Often, these
 have nothing to do with Bayesian (as opposed to frequentist)
 inference as explained in this chapter. Typically, these methods
 involve conditional probabilities and therefore appeal at some point
 to Bayes’ theorem. A Bayesian classifier, for instance, is the
 conditional probability that an object belongs to a certain class,
 given what we know about it. A Bayesian network is a particular way
 of organizing the causal relationships that exist among events that
 depend on many interrelated conditions. And so on.

Workshop: R

R is an environment for data manipulation and numerical
 calculations, specifically statistical applications. Although it can
 be used in a more general fashion for programming or computation, its
 real strength is the large number of built-in (or user-contributed)
 statistical functions.
R is an open source clone of the S programming language,
 which was originally developed at Bell Labs in the 1970s. It was one
 of the first environments to combine the capabilities that today we
 expect from a scripting language (e.g., memory
 management, proper strings, dynamic typing, easy file handling) with
 integrated graphics and intended for an interactive usage
 pattern.
I tend to stress the word environment when
 referring to R, because the way it integrates its various components
 is essential to R. It is misleading to think of R as a programming
 language that also has an interactive shell (like Python or Groovy).
 Instead, you might consider it as a shell but for handling data
 instead of files. Alternatively, you might want to view R as a
 text-based spreadsheet on steroids. The “shell” metaphor in particular
 is helpful in motivating some of the design choices made by R.
The essential data structure offered by R is the so-called
 data frame. A data frame encapsulates a data set
 and is the central abstraction that R is built on. Practically all
 operations involve the handling and manipulation of frames in one way
 or the other.
Possibly the best way to think of a data frame is as being
 comparable to a relational database table. Each
 data frame is a rectangular data structure consisting of rows and
 columns. Each column has a designated data type,
 and all entries in that column must be of that type. Consequently,
 each row will in general contain entries of
 different types (as defined by the types of the columns), but all rows
 must be of the same form. All this should be familiar from relational
 databases. The similarities continue: operations on frames can either
 project out a subset of columns, or filter out a subset of rows;
 either operation results in a new data frame. There is even a command
 (merge) that can perform a join of
 two data frames on a common column. In addition (and in contrast to
 databases), we will frequently add columns to an
 existing frame—for example, to hold the results of an intermediate
 calculation.
We can refer to columns by name. The names are either read from
 the first line of the input file, or (if not provided) R will
 substitute synthetic names of the form V1, V2,
 In contrast, we filter out a set of rows through various forms of
 “indexing magic.” Let’s look at some examples.
Consider the following input file:
Name Height Weight Gender
Joe 6.2 192.2 0
Jane 5.5 155.4 1
Mary 5.7 164.3 1
Jill 5.6 166.4 1
Bill 5.8 185.8 0
Pete 6.1 201.7 0
Jack 6.0 195.2 0
Let’s investigate this data set using R, placing particular
 emphasis on how to handle and manipulate data with R—the full session
 transcript is included below. The commands entered at the command
 prompt are prefixed by the prompt >, while R output is shown without the
 prompt:
> d <- read.csv("data", header = TRUE, sep = "\t")
> str(d)
'data.frame': 7 obs. of 4 variables:
 $ Name : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2
 $ Height: num 6.2 5.5 5.7 5.6 5.8 6.1 6
 $ Weight: num 192 155 164 166 186 ...
 $ Gender: int 0 1 1 1 0 0 0
>
> mean(d$Weight)
[1] 180.1429
> mean(d[,3])
[1] 180.1429
>
> mean(d$Weight[d$Gender == 1])
[1] 162.0333
> mean(d$Weight[2:4])
[1] 162.0333
>
> d$Diff <- d$Height - mean(d$Height)
> print(d)
 Name Height Weight Gender Diff
1 Joe 6.2 192.2 0 0.35714286
2 Jane 5.5 155.4 1 -0.34285714
3 Mary 5.7 164.3 1 -0.14285714
4 Jill 5.6 166.4 1 -0.24285714
5 Bill 5.8 185.8 0 -0.04285714
6 Pete 6.1 201.7 0 0.25714286
7 Jack 6.0 195.2 0 0.15714286
> summary(d)
 Name Height Weight Gender Diff
 Bill:1 Min. :5.500 Min. :155.4 Min. :0.0000 Min. :-3.429e-01
 Jack:1 1st Qu.:5.650 1st Qu.:165.3 1st Qu.:0.0000 1st Qu.:-1.929e-01
 Jane:1 Median :5.800 Median :185.8 Median :0.0000 Median :-4.286e-02
 Jill:1 Mean :5.843 Mean :180.1 Mean :0.4286 Mean : 2.538e-16
 Joe :1 3rd Qu.:6.050 3rd Qu.:193.7 3rd Qu.:1.0000 3rd Qu.: 2.071e-01
 Mary:1 Max. :6.200 Max. :201.7 Max. :1.0000 Max. : 3.571e-01
 Pete:1
>
> d$Gender <- factor(d$Gender, labels = c("M", "F"))
> summary(d)
 Name Height Weight Gender Diff
 Bill:1 Min. :5.500 Min. :155.4 M:4 Min. :-3.429e-01
 Jack:1 1st Qu.:5.650 1st Qu.:165.3 F:3 1st Qu.:-1.929e-01
 Jane:1 Median :5.800 Median :185.8 Median :-4.286e-02
 Jill:1 Mean :5.843 Mean :180.1 Mean : 2.538e-16
 Joe :1 3rd Qu.:6.050 3rd Qu.:193.7 3rd Qu.: 2.071e-01
 Mary:1 Max. :6.200 Max. :201.7 Max. : 3.571e-01
 Pete:1
>
> plot(d$Height ~ d$Gender)
> plot(d$Height ~ d$Weight, xlab="Weight", ylab="Height")

> m <- lm(d$Height ~ d$Weight)
> print(m)

Call:
lm(formula = d$Height ~ d$Weight)

Coefficients:
(Intercept) d$Weight
 3.39918 0.01357

> abline(m)
> abline(mean(d$Height), 0, lty=2)
Let’s step through this session in some detail and explain what
 is going on.
First, we read the file in and assign it to the variable
 d, which is a data frame as
 discussed previously. The function str(d) shows us a string representation of
 the data frame. We can see that the frame consists of five named
 columns, and we can also see some typical values for each column.
 Notice that R has assigned a data type to each column: height and
 weight have been recognized as floating-point values; the names are
 considered a “factor,” which is R’s way of indicating a categorical
 variable; and finally the gender flag is interpreted as an integer.
 This is not ideal—we will come back to that.
> d <- read.csv("data", header = TRUE, sep = "\t")
> str(d)
'data.frame': 7 obs. of 4 variables:
 $ Name : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2
 $ Height: num 6.2 5.5 5.7 5.6 5.8 6.1 6
 $ Weight: num 192 155 164 166 186 ...
 $ Gender: int 0 1 1 1 0 0 0
Let’s calculate the mean of the weight column to demonstrate
 some typical ways in which we can select rows and columns. The most
 convenient way to specify a column is by name: d$Weight. The use of the dollar-sign
 ($) to access members of a data
 structure is one of R’s quirks that one learns to live with. Think of
 a column as a shell variable! (By contrast, the dot (.) is not an operator and can be part of a
 variable or function name—in the same way that an underscore (_) is
 used in other languages. Here again the shell metaphor is useful:
 recall that shells allow the dot as part of filenames!)
> mean(d$Weight)
[1] 180.1429
> mean(d[,3])
[1] 180.1429
Although its name is often the most convenient method to specify
 a column, we can also use its numeric index. Each element in a data
 frame can be accessed using its row and column index via the familiar
 bracket notation: d[row,col]. Keep
 in mind that the vertical (row) index comes first, followed by the
 horizontal (column) index. Omitting one of them selects all possible
 values, as we do in the listing above: d[,3] selects all rows
 from the third column. Also note that indices in R start at 1
 (mathematical convention), not at 0 (programming convention).
Now that we know how to select a column, let’s see how to select
 rows. In R, this is usually done through various forms of “indexing
 magic,” two examples of which are shown next in the listing. We want
 to find the mean weight of only the women in the sample. To do so, we
 take the weight column but now index it with a logical expression.
 This kind of operation takes some getting used to: inside the
 brackets, we seem to compare a column (d$Gender) with a scalar—and then use the
 result to index another column. What is going on here? Several things:
 first, the scalar on the righthand side of the comparison is expanded
 into a vector of the same length as the operator on the lefthand side.
 The result of the equality operator is then a
 Boolean vector of the same length as d$Gender or d$Weight. A Boolean vector of the
 appropriate length can be used as an index and selects only those rows
 for which it evaluates as True—which it does in this case only for the
 women in the sample. The second line of code is much more
 conventional: the colon operator (:) creates a range of numbers, which are
 used to index into the d$Weight column. (Remember that indices start
 at 1, not at 0!)
> mean(d$Weight[d$Gender == 1])
[1] 162.0333
> mean(d$Weight[2:4])
[1] 162.0333
These kinds of operation are very common in R: using some form
 of creative indexing to filter out a subset of rows (there are more
 ways to do this, which I don’t show) and mixing vectors and scalars in
 expressions. Here is another example:
> d$Diff <- d$Height - mean(d$Height)
Here we create an additional column, called d$Diff, as the residual that remains when
 the mean height is subtracted from each individual’s height. Observe
 how we mix a column with a scalar expression to obtain another
 vector.
summary(d)
Next, we calculate the summary of the entire data frame with the
 new column added. Take a look at the gender column: because R
 interpreted the gender flag as an integer, it went ahead and
 calculated its “mean” and other quantities. This is meaningless, of
 course; the values in this column should be treated as categorical.
 This can be achieved using the factor() function, which also allows us to
 replace the uninformative numeric labels with more convenient string
 labels.
> d$Gender <- factor(d$Gender, labels = c("M", "F"))
As you can see when we run summary(d) again, R treats categorical
 variables differently: it counts how often each value occurs in the
 data set.
Finally, let’s take a look at R’s plotting capabilities. First,
 we plot the height “as a function of” the gender. (R uses the tilde
 (~) to separate control and
 response variables; the response variable is always on the
 left.)
> plot(d$Height ~ d$Gender)
[image: A box plot, showing the distribution of heights by gender.]

Figure 10-7. A box plot, showing the distribution of heights by
 gender.

This gives us a box plot, which is shown in Figure 10-7. On the other
 hand, if we plot the height as a function of the weight, then we
 obtain a scatter plot (see Figure 10-8—without the lines; we will
 add them in a moment).
> plot(d$Height ~ d$Weight, xlab="Weight", ylab="Height")
Given the shape of the data, we might want to fit a linear model
 to it. This is trivially easy to do in R—it’s a single line of
 code:
> m <- lm(d$Height ~ d$Weight)
Notice once again the tilde notation used to indicate control
 and response variable.
We may also want to add the linear model to the scatter plot
 with the data. This can be done using the abline() function, which plots a line given
 its offset (“a”) and slope (“b”). We can either specify both
 parameters explicitly, or simply supply the result m of the fitting procedure; the abline function can use either. (The
 parameter lty selects the line
 type.)
> abline(m)
> abline(mean(d$Height), 0, lty=2)
This short example should have given you an idea of what working
 with R is like.
R can be difficult to learn: it uses some unfamiliar idioms
 (such as creative indexing) as well as some obscure function and
 parameter names. But the greatest challenge to the newcomer (in my
 opinion) is its indiscriminate use of function overloading. The same
 function can behave quite differently depending on the (usually
 opaque) type of inputs it is given. If the default choices made by R
 are good, then this can be very convenient, but it can be hellish if
 you want to exercise greater, manual control.
[image: A scatter plot with a linear fit.]

Figure 10-8. A scatter plot with a linear fit.

Look at our example again: the same plot() command generates entirely different
 plot types depending on whether the control
 variable is categorical or numeric (box plot in the first case,
 scatter plot in the latter). For the experienced user, this kind of
 implicit behavior is of course convenient, but for the beginner, the
 apparent unpredictability can be very confusing. (In Chapter 14, we will see
 another example, where the same plot() command generates yet a different
 type of plot.)
These kinds of issues do not matter much if you use R
 interactively because you see the results immediately or, in the worst
 case, get an error message so that you can try something else.
 However, they can be unnerving if you approach R with the mindset of a
 contemporary programmer who prefers for operations to be explicit. It
 can also be difficult to find out which operations are available in a
 given situation. For instance, it is not at all obvious that the
 (opaque) return type of the lm()
 function is admissible input to the abline() function—it certainly doesn’t look
 like the explicit set of parameters used in the second call to
 abline(). Issues of this sort make
 it hard to predict what R will do at any point, to develop a
 comprehensive understanding of its capabilities, or how to achieve a
 desired effect in a specific situation.

Further Reading

The number of introductory statistics texts seems almost
 infinite—which makes it that much harder to find good ones. Below are
 some texts that I have found useful:
	An Introduction to Mathematical Statistics and
 Its Applications. Richard J. Larsen and Morris L. Marx. 4th ed., Prentice
 Hall. 2005.
This is my preferred introductory text for the mathematical
 background of classical statistics: how it all works. This is a
 math book; you won’t learn how to do
 practical statistical fieldwork from it. (It contains a large
 number of uncommonly interesting examples; however, on close
 inspection many of them exhibit serious flaws in their
 experimental design—at least as described in this book.) But as a
 mathematical treatment, it very neatly blends accessibility with
 sufficient depth.

	Statistics for Technology: A Course in Applied
 Statistics. Chris Chatfield. 3rd ed., Chapman & Hall/CRC.
 1983.
This book is good companion to the book by Larsen and Marx.
 It eschews most mathematical development and instead concentrates
 on the pragmatics of it, with an emphasis on engineering
 applications.

	The Statistical Sleuth: A Course in Methods of
 Data Analysis. Fred Ramsey and Daniel Schafer. 2nd ed., Duxbury Press.
 2001.
This advanced undergraduate textbook emphasizes the
 distinction between observational studies and controlled
 experiments more strongly than any other book I am aware of. After
 working through some of their examples, you will not be able to
 look at the description of a statistical study without immediately
 classifying it as observational or controlled (and questioning the
 conclusions if it was merely observational). Unfortunately, the
 development of the general theory gets a little lost in the
 detailed description of application concerns.

	The Practice of Business
 Statistics. David S. Moore, George P. McCabe, William M. Duckworth,
 and Layth Alwan. 2nd ed., Freeman. 2008.
This is a “for business” version of a popular beginning
 undergraduate textbook. The coverage of topics is comprehensive,
 and the presentation is particularly easy to follow. This book can
 serve as a first course, but will probably not provide sufficient
 depth to develop proper understanding.

	Problem Solving: A Statistician’s
 Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC. 1995;
 and Statistical Rules of Thumb. Gerald van
 Belle. 2nd ed., Wiley. 2008.
Two nice books with lots of practical advice on statistical
 fieldwork. Chatfield’s book is more general; van Belle’s contains
 much material specific to epidemiology and related
 applications.

	All of Statistics: A Concise Course in
 Statistical Inference. Larry Wasserman. Springer. 2004.
A thoroughly modern treatment of mathematical statistics,
 this book presents all kinds of fascinating and powerful topics
 that are sorely missing from the standard introductory curriculum.
 The treatment is advanced and very condensed, requiring general
 previous knowledge in basic statistics and a solid grounding in
 mathematical methods.

	Bayesian Methods for Data
 Analysis. Bradley P. Carlin, and Thomas A. Louis. 3rd ed., Chapman
 & Hall. 2008.
This is a book on Bayesian methods applied to data analysis
 problems (as opposed to Bayesian theory only). It is a thick book,
 and some of the topics are fairly advanced. However, the early
 chapters provide the best introduction to Bayesian methods that I
 am aware of.

	“Sifting the Evidence—What’s Wrong with Significance Tests?”
 Jonathan A. C. Sterne and George Davey Smith. British
 Medical Journal 322 (2001), p. 226.
This paper provides a penetrating and nonpartisan overview
 of the problems associated with classical hypothesis tests, with
 an emphasis on applications in medicine (although the conclusions
 are much more generally valid). The full text is freely available
 on the Web; a search will turn up multiple locations.

[18] I am not alone—even professional statisticians have the same
 experience. See, for example, the preface of Bayesian
 Statistics. Peter M. Lee. Hodder & Arnold.
 2004.

[19] This is a famous data set with history that is colorful
 but not really relevant here. A Web search for “Quintus Curtius
 Snodgrass” will turn up plenty of references.

Chapter 11. Intermezzo: Mythbusting—Bigfoot, Least Squares, and All
 That

EVERYBODY
 HAS HEARD OF BIGFOOT, THE MYSTICAL FIGURE THAT LIVES IN THE WOODS, BUT
 NOBODY HAS EVER actually seen him. Similarly,
 there are some concepts from basic statistics that everybody has heard
 of but that—like Bigfoot—always remain a little shrouded in mystery.
 Here, we take a look at three of them: the average of averages, the
 mystical standard deviation, and the ever-popular least squares.
How to Average Averages

Recently, someone approached me with the following question:
 given the numbers in Table 11-1, what number
 should be entered in the lower-right corner? Just adding up the
 individual defect rates per item and dividing by 3 (in effect,
 averaging them) did not seem right—if only because it would come out
 to about 0.75, which is pretty high when one considers that
 most of the units produced (100 out of 103) are
 not actually defective. The specific question asked was: “Should I
 weight the individual rates somehow?”
This situation comes up frequently but is not always recognized:
 we have a set of rates (or averages) and would like to summarize them
 into an overall rate (or overall average). The problem is that the naive way of doing so (namely, to
 add up the individual rates and then to divide by the number of rates)
 will give an incorrect result. However, this is
 rarely noticed unless the numbers involved are as extreme as in the
 present example.
Table 11-1. Defect rates: what value should go into the lower-right
 corner?
	Item type
	Units produced
	Defective units
	Defect rate

	A
	2
	1
	0.5

	B
	1
	1
	1.0

	C
	100
	1
	0.01

	Total defect rate
	???

The correct way to approach this task is to start from scratch.
 What is the “defect rate,” anyway? It is the number of defective items
 divided by the number of items produced. Hence, the
 total defect rate is the total number of
 defective items divided by the total number of items produced: 3/103 ≈
 0.03. There should be no question about that.
Can we arrive at this result in a different way by starting with
 the individual defect rates? Absolutely—provided
 we weight them appropriately. Each individual defect rate should
 contribute to the overall defect rate in the same way that the
 corresponding item type contributes to the total item count. In other
 words, the weight for item type A is 2/103, for B is 1/103, and for C
 it is 100/103. Pulling all this together, we have: 0.5 · 2/103 + 1.0 ·
 1/103 + 0.01 · 100/103 = (1 + 1 + 1)/103 = 3/103 as before.
To show that this agreement is not accidental, let’s write
 things out in greater generality:
	nk
	Number of items of type
 k

	dk
	Number of defective items of type
 k

	[image:]
	Defect rate for type
 k

	[image:]
	Contribution of type
 k to total production

Now look at what it means to weight each individual defect
 rate:
[image: Defect rates: what value should go into the lower-right corner?]
In other words, weighting the individual defect rate
 ϵk by the appropriate
 weight factor
 fk
 has the effect of turning the defect rate back to
 the the defect count
 dk
 (normalized by total number of items).
In this example, each item could get only one of two “grades,”
 namely 1 (for defective) or 0 (for not defective), and so the “defect
 rate” was a measure of the “average defectiveness” of a single item.
 The same logic as just demonstrated applies if you have a greater (or
 different) range of values. (You can make up your own example: give
 items grades from 1 to 5, and then calculate the overall “average
 grade” to see how it works.)
Simpson’s Paradox

Since we are talking about mystical figures that can sometimes
 be found in tables, we should also mention Simpson’s
 paradox. Look at Table 11-2 which shows
 applications and admissions to a fictional college in terms the
 applicants’ gender and department.
Table 11-2. Simpson’s paradox: applications and admissions by gender of
 applicant.
	 	Male
	Female
	Overall

	Department A
	80/100 = 0.8
	9/10 = 0.9
	89/110 = 0.81

	Department B
	5/10 = 0.5
	60/100 = 0.6
	65/110 = 0.59

	Total
	85/110 = 0.77
	69/110 = 0.63
	

If you look only at the bottom line with the totals, then it
 might appear that the college is discriminating against women, since
 the acceptance rate for male applicants is higher than that for
 female applicants (0.77 versus 0.63).[20] But when you look at the rates for each individual
 department within the college, it turns out that women have
 higher acceptance rates than men for
 every department. How can that be?
The short and intuitive answer is that many more women apply
 to department B, which has a lower overall admission rate than
 department A (0.59 versus 0.81), and this drags down their
 (gender-specific) acceptance rate.
The more general explanation speaks of a “reversal of
 association due to a confounding factor.” When considering only the
 totals, it may seem as if there is an association between gender and
 admission rates, with male applicants being accepted more
 frequently. However, this view ignores the presence of a hidden but
 important factor: the choice of department. In fact, the choice of
 department has a greater influence on the
 acceptance rate than the original explanatory variable (the gender).
 By lumping the observations for the different departments into a
 single number, we have in fact masked the influence of this
 factor—with the consequence that the association between acceptance
 rate (which favors women for each department) and gender was
 reversed.
The important insight here is that such “reversal of
 association” due to a confounding factor is always possible.
 However, both conditions must occur: the confounding factor must be
 sufficiently strong (in our case, the acceptance rates for
 departments A and B were sufficiently different), and the assignment
 of experimental units to the levels of this factor must be
 sufficiently imbalanced (in our case, many more women applied to
 department B than to department A).
As opposed to Bigfoot, Simpson’s paradox is known to occur in
 the real world. The example in this section, for instance, was based
 on a well-publicized case involving the University of California
 (Berkeley) in the early 1970s. A quick Internet search will turn up
 additional examples.

The Standard Deviation

The fabled standard deviation is another close relative
 of Bigfoot. Everybody (it seems) has heard of it, everybody knows how
 to calculate it, and—most importantly—everybody knows that 68 percent
 of all data points fall within 1 standard deviation, 95 percent within
 2, and virtually all (that is: 99.7 percent) within 3.
Problem is: this is utter nonsense.
It is true that the standard deviation is a measure for the
 spread (or width) of a distribution. It is also true that, for a given
 set of points, the standard deviation can always be calculated. But
 that does not mean that the standard deviation is always a
 good or appropriate measure for the width of a
 distribution; in fact, it can be quite misleading if applied
 indiscriminately to an unsuitable data set. Furthermore, we must be
 careful how to interpret it: the whole 68 percent business applies
 only if the data set satisfies some very specific requirements.
In my experience, the standard deviation is probably the most
 misunderstood and misapplied quantity in all of statistics.
Let me tell you a true story (some identifying details have been
 changed to protect the guilty). The story is a bit involved, but this
 is no accident: in the same way that Bigfoot sightings never occur in
 a suburban front yard on a sunny Sunday morning, severe
 misunderstandings in mathematical or statistical methods usually don’t
 reveal themselves as long as the applications are as clean and simple
 as the homework problems in a textbook. But once people try to apply
 these same methods in situations that are a bit less standard,
 anything can happen. This is what happened in
 this particular company.
I was looking over a bit of code used to identify outliers in
 the response times from a certain database server. The purpose of this
 program was to detect and report on uncommonly slow responses. The
 piece of code in question processed log files containing the response
 times and reported a threshold value: responses that took longer than
 this threshold were considered “outliers.”
An existing service-level agreement defined an outlier as any
 value “outside of 3 standard deviations.” So what did this piece of
 code do? It sorted the response times to identify the top 0.3 percent
 of data points and used those to determine the threshold. (In other
 words, if there were 1,000 data points in the log file, it reported
 the response time of the third slowest as threshold.) After all, 99.7
 percent of data points fall within 3 standard deviations.
 Right?
After reading Chapter 2, I hope you can
 immediately tell where the original programmer went wrong: the
 threshold that the program reported had nothing at
 all to do with standard deviations—instead, it reported the
 top 0.3 percentile. In other words, the program completely failed to
 do what it was supposed to do. Also, keep in mind that it is incorrect
 to blindly consider the top x percent of any
 distribution as outliers (review the discussion of box plots in Chapter 2 if you need a
 reminder).
But the story continues. This was a database server whose
 typical response time was less than a few seconds. It was clear that
 anything that took longer than one or two minutes had to be considered
 “slow”—that is, an outlier. But when the program was run, the
 threshold value it reported (the 0.3 percentile) was on the order of
 hours. Clearly, this threshold value made no
 sense.
In what must have been a growing sense of desperation, the
 original programmer now made a number of changes: from selecting the
 top 0.3 percent, to the top 1 percent, then the top 5 percent and
 finally the top 10 percent. (I could tell, because each such change
 had dutifully been checked into source control!) Finally, the
 programmer had simply hard-coded some seemingly “reasonable” value
 (such as 47 seconds or something) into the program, and that’s what
 was reported as “3 standard deviations” regardless of the
 input.
It was the only case of outright technical fraud that I have
 ever witnessed: a technical work product that—with the original
 author’s full knowledge—in no way did what it claimed to do.
What went wrong here? Several things. First, there was a
 fundamental misunderstanding about the definition of the standard
 deviation, how it is calculated, and some of the properties that in
 practice it often (but not always) has. The second mistake was
 applying the standard deviation to a situation where it is not a
 suitable measure.
Let’s recap some basics: we often want to characterize a point
 distribution by a typical value (its location) and its spread around
 this location. A convenient measure for the location is the mean:
 [image:]. Why is the mean so convenient? Because it is
 easy to calculate: just sum all the values and divide by
 n.
To find the width of the distribution, we would like see how far
 points “typically” stray from the mean. In other words, we would like
 to find the mean of the
 deviations
 xi –
 μ. But since the deviations can be positive and negative, they would
 simply cancel, so instead we calculate the mean of the
 squared deviations: [image:]. This quantity is called the
 variance, and its square root is the
 standard deviation. Why do we bother with the
 square root? Because it has the same units as the mean, whereas in the
 variance the units are raised to the second power.
Now, if and only if the point distribution
 is well behaved (which in practice means: it is Gaussian),
 then it is true that about 68 percent of points
 will fall within the interval [μ – σ, μ + σ] and that 95 percent fall
 within the interval [μ – 2σ, μ + 2σ] and so on. The inverse is
 not true: you cannot conclude that 68 percent of
 points define a “standard deviation” (this is where the programmer in
 our story made the first mistake). If the point distribution is not
 Gaussian, then there are no particular patterns by which fractions of
 points will fall within 1, 2, or any number of standard deviations
 from the mean. However, keep in mind that the definitions of the mean
 and the standard deviation (as given by the previous equations) both
 retain their meaning: you can calculate them for any distribution and
 any data set.
However (and this is the second mistake that was made), if the
 distribution is strongly asymmetrical, then mean and standard
 deviation are no longer good measures of location and spread,
 respectively. You can still calculate them, but
 their values will just not be very informative. In particular, if the
 distribution has a fat tail then both mean and standard deviation will
 be influenced heavily by extreme values in the tail.
In this case, the situation was even worse: the distribution of
 response times was a power-law distribution,
 which is extremely poorly summarized by quantities such as mean and
 standard deviation. This explains why the top 0.3 percent of response
 times were on the order of hours: with power-law distributions, all
 values—even extreme ones—can (and do!) occur; whereas for Gaussian or
 exponential distributions, the range of values that do occur in
 practice is pretty well limited. (See Chapter 9 for more information on
 power-law distributions.)
To summarize, the standard deviation, defined as
 [image:], is a measure of the width of a distribution
 (or a sample). It is a good measure for the width only if the
 distribution of points is well behaved (i.e.,
 symmetric and without fat tails). Points that are far away from the
 center (compared to the width of the distribution) can be considered
 outliers. For distributions that are less well behaved, you will have
 to use other measures for the width (e.g., the
 inter-quartile range); however, you can usually still identify
 outliers as points that fall outside the typical range of values. (For
 power-law distributions, which do not have a “typical” scale, it
 doesn’t make sense to define outliers by statistical means; you will
 have to justify them differently—for instance by appealing to
 requirements from the business domain.)
How to Calculate

Here is a good trick for calculating the standard deviation
 efficiently. At first, it seems you need to make two passes over the
 data in order to calculate both mean and standard deviation. In the
 first pass you calculate the mean, but then you need to make a
 second pass to calculate the deviations from that mean:
[image: How to Calculate]
It appears as if you can’t find the deviations until the mean
 μ is known.
However, it turns out that you can calculate both quantities
 in a single pass through the data. All you need to do is to maintain
 both the sum of the values [image:] and the sum of the squares of the values
 [image:], because you can write the preceding equation
 for σ2 in a form that depends only on those two sums:
[image: How to Calculate]
This is a good trick that is apparently too little known. Keep
 it in mind; similar situations crop up in different contexts from
 time to time. (To be sure, the floating-point properties of both
 methods are different, but if you care enough to worry about the
 difference, then you should be using a library anyway.)

Optional: One over What?

You may occasionally see the standard deviation defined with
 an n in the denominator and sometimes with a
 factor of n – 1 instead.
[image: Optional: One over What?]
What really is the difference, and which
 expression should you use?
The factor 1/n applies only if you know
 the exact value of the mean μ ahead of time. This is usually not the
 case; instead, you will usually have to calculate the mean from the
 data. This adds a bit of uncertainty, which leads to the widening of
 the proper estimate for the standard deviation. A theoretical
 argument then leads to the use of the factor
 1/(n – 1) instead of
 1/n.
In short, if you calculated the mean from the data (as is
 usually the case), then you should really be using the
 1/(n – 1) factor. The difference is going to be
 small, unless you are dealing with very small data sets.

Optional: The Standard Error

While we are on the topic of obscure sources of confusion,
 let’s talk about the standard error.
[image: Fitting for statistical parameter estimation: data affected by random noise. What is the slope of the straight line?]

Figure 11-1. Fitting for statistical parameter estimation: data affected
 by random noise. What is the slope of the straight line?

The standard error is the standard deviation of an
 estimated quantity. Let’s say we estimate some quantity
 (e.g., the mean). If we repeatedly take
 samples, then the means calculated from those samples will scatter
 around a little, according to some distribution. The standard
 deviation of this distribution is the “standard error” of the
 estimated quantity (the mean, in this example).
The following observation will make this clearer. Take a
 sample of size n from a normally distributed
 population with standard deviation σ. Then 68 percent of the members
 of the sample will be within ±σ from the
 estimated mean (i.e., the sample mean).
However, the mean itself is normally distributed (because of
 the Central Limit Theorem, since the mean is a sum of random
 variables) with standard deviation [image:] (again because of the Central Limit Theorem).
 So if we take several samples, each of size n,
 then we can expect 68 percent of the estimated means to lie within
 [image:] of the true mean
 (i.e., the mean of the overall
 population).
In this situation, the quantity [image:] is therefore the standard error of
 the mean.

Least Squares

Everyone loves least squares. In the confusing and uncertain
 world of data and statistics, they provide a sense of
 security—something to rely on! They give you, after all, the “best”
 fit. Doesn’t that say it all?
Problem is, I have never (not once!) seen
 least squares applied appropriately, and I have come to doubt that it
 should ever be considered a suitable technique. In fact, when today I
 see someone doing anything involving “least-squares
 fitting,” I am pretty certain this person is at wit’s end—and probably
 does not even know it!
[image: Fitting a function to approximate a curve known only at discrete locations. Is the fit a good representation of the data?]

Figure 11-2. Fitting a function to approximate a curve known only at
 discrete locations. Is the fit a good representation of the
 data?

There are two problems with least squares. The first is that it
 is used for two very different purposes that are commonly confused.
 The second problem is that least-squares fitting is usually not the
 best (or even a suitable) method for either purpose. Alternative
 techniques should be used, depending on the overall purpose (see first
 problem) and on what, in the end, we want to do with the
 result.
Let’s try to unravel these issues.
Why do we ever want to “fit” a function to data to begin with?
 There are two different reasons.
Statistical Parameter Estimation
	Data is corrupted by random noise, and we want to extract
 parameters from it.

Smooth Interpolation or
 Approximation
	Data is given as individual points, and we would like either
 to find a smooth interpolation to arbitrary positions between
 those points or to determine an analytical “formula” describing
 the data.

These two scenarios are conceptually depicted in Figure 11-1 and Figure 11-2.
Statistical Parameter Estimation

Statistical parameter estimation is the more legitimate of the
 two purposes. In this case, we have a control variable
 x and an outcome y. We set
 the former and measure the latter, resulting in a data set of pairs:
 {(x1,
 y1),
 (x2,
 y2),...}. Furthermore,
 we assume that the outcome is related to the control variable
 through some function f(x;
 {a, b,
 c,...}) of known form that depends on the
 control variable x and also on a set of
 (initially unknown) parameters {a,
 b, c,...}. However, in
 practice, the actual measurements are affected by some random noise
 ϵ, so that the measured values
 yi
 are a combination of the “true” value and the noise term:
yi
 =
 f(xi,
 {a, b,
 c,...}) +
 ϵi
We now ask: how should we choose values for the parameters
 {a, b,
 c,...}, such that the function
 f(x,
 {a, b,
 c,...}) reproduces the measured values of
 y most faithfully? The usual answer is that we
 want to choose the parameters such that the total
 mean-square error
 E2 (sometimes called
 the residual sum of squares):
[image: Statistical Parameter Estimation]
is minimized. As long as the distribution of errors is
 reasonably well behaved (not too asymmetric and without heavy
 tails), the results are adequate. If, in addition, the noise is
 Gaussian, then we can even invoke other parts of statistics and show
 that the estimates for the parameters obtained by the least-squares
 procedure agree with the “maximum likelihood estimate.” Thus the
 least-squares results are consistent with alternative ways of
 calculation.
But there is another important aspect to least-squares
 estimation that is frequently lost: we can obtain not only
 point estimates for the parameters
 {a, b,
 c,...} but also confidence
 intervals, through a self-consistent argument that links
 the distribution of the parameters to the distribution of the
 measured values.
I cannot stress this enough: a point estimate by itself is of
 limited use. After all, what good is knowing that the point estimate
 for a is 5.17 if I have no idea whether this
 means a = 5.17 ± 0.01 or a
 = 5.17 ± 250? We must have some way of judging
 the range over which we expect our estimate to vary, which is the
 same as finding a confidence interval for it. Least squares works,
 when applied in a probabilistic context like this, because it gives
 us not only an estimate for the parameters but also for their
 confidence intervals.
One last point: in statistical applications, it is rarely
 necessary to perform the minimization of
 E2 by numerical
 means. For most of the functions
 f(x,
 {a, b,
 c,...}) that are commonly used in statistics,
 the conditions that will minimize
 E2 can be worked out
 explicitly. (See Chapter 3 for the
 results when the function is linear.) In general, you should be
 reluctant to resort to numerical minimization procedures—there might
 be better ways of obtaining the result.

Function Approximation

In practice, however, least-squares fitting is often
 used for a different purpose. Consider the situation in Figure 11-2, where we have
 a set of individual data points. These points clearly seem to fall
 on a smooth curve. It would be convenient to have an explicit
 formula to summarize these data points rather than having to work
 with the collection of points directly. So, can we “fit” a formula
 to them?
Observe that, in this second application of least-squares
 fitting, there is no random noise. In fact,
 there is no random component at all! This is an important insight,
 because it implies that statistical methods and arguments don’t
 apply.
This becomes relevant when we want to determine the degree of
 confidence in the results of a fit. Let’s say we have performed a
 least-squares routine and obtained some values for the parameters.
 What confidence intervals should we associate with the parameters,
 and how good is the overall fit? Whatever errors we may incur in the
 fitting process, they will not be of a random nature, and we
 therefore cannot make probabilistic arguments about them.
The scenario in Figure 11-2 is typical:
 the plot shows the data together with the best fit for a function of
 the form f(x;
 a, b) =
 a/(1 +
 x)b,
 with a = 1.08 and b =
 1.77. Is this a good fit? And what uncertainty do we have in the
 parameters? The answer depends on what you want to do with the
 results—but be aware that the deviations between the fit and the
 data are not at all “random” and hence that statistical “goodness of
 fit” measures are inappropriate. We have to find other ways to
 answer our questions. (For instance, we may find the largest of the
 residuals between the data points and our fitted function and report
 that the fit “represents the data with a maximum deviation of
 ”)
This situation is typical in yet another way: given how smooth
 the curve is that the data points seem to fall on, our “best fit”
 seems really bad. In particular, the fit
 exhibits a systematic error: for 0 < x <
 1.5, the curve is always smaller than the data, and for
 x > 1.5, it is always greater. Is this
 really the best we can do? The answer is yes, for functions of the
 form a/(1 +
 x)b.
 However, a different choice of function might give much better
 results. The problem here is that the least-squares approach forces
 us to specify the functional form of the function we are attempting
 to fit, and if we get it wrong, then the results won’t be any good.
 For this reason, we should use less constraining approaches (such as
 nonparametric or local approximations) unless we have good reasons
 to favor a particular functional form.
In other words, what we really have here is a problem of
 function interpolation or approximation: we know the function on a
 discrete set of points, and we would like to extend it smoothly to
 all values. How we should do this depends on what we want to do with
 the results. Here is some advice for common scenarios:
	To find a “smooth curve” for plotting purposes, you should
 use one of the smoothing routines discussed in Chapter 3, such as
 splines or LOESS. These nonparametric methods have the advantage
 that they do not impose a particular functional form on the data
 (in contrast to the situation in Figure 11-2).

	If you want to be able to evaluate the function easily at
 an arbitrary location, then you should use a local interpolation
 method. Such methods build a local approximation by using the
 three or four data points closest to the desired location. It is
 not necessary to find a global expression in this case: the
 local approximation will suffice.

	Sometimes you may want to summarize the behavior of the
 data set in just a few “representative” values
 (e.g., so you can more easily compare one
 data set against another). This is tricky—it is probably a
 better idea to compare data sets directly
 against each other using similarity metrics such as those
 discussed in Chapter 13. If you still
 need to do this, consider a basis function
 expansion using Fourier, Hermite, or wavelet
 functions. (These are special sets of functions that enable you
 to extract greater and greater amounts of detail from a data
 set. Expansion in basis functions also allows you to evaluate
 and improve the quality of the approximation in a systematic
 fashion.)

	At times you might be interested in some particular
 feature of the data: for example, you suspect that the data
 follows a power law
 xb
 and you would like to extract the exponent; or the data is
 periodic and you need to know the length of one period. In such
 cases, it is usually a better idea to transform the data in such
 a way that you can obtain that particular feature directly,
 rather than fitting a global function. (To extract exponents,
 you should consider a logarithmic transform. To obtain the
 length of an oscillatory period, measure the peak-to-peak (or,
 better still, the zero-to-zero) distance.)

	Use specialized methods if available and applicable. Time
 series, for instance, should be treated with the techniques
 discussed in Chapter 4.

You may have noticed that none of these suggestions involve
 least squares!

Further Reading

Every introductory statistics book covers the standard deviation
 and least squares (see the book recommendations in Chapter 10). For the
 alternatives to least squares, consult a book on numerical analysis,
 such as the one listed here.
	Numerical Methods That (Usually)
 Work. Forman S. Acton. 2nd ed., Mathematical Association of
 America. 1997.
Although originally published in 1970, this book does not
 feel the least bit dated—it is still one of the best introductions
 to the art of numerical analysis. Neither a cookbook nor a
 theoretical treatise, it stresses practicality and understanding
 first and foremost. It includes an inimitable chapter on “What
 Not to Compute.”

[20] You should check that the entries in the bottom row have
 been calculated properly, per the discussion in the previous
 section!

Part III. Computation: Mining Data

Chapter 12. Simulations

IN THIS
 CHAPTER, WE LOOK AT SIMULATIONS AS A WAY TO UNDERSTAND DATA. IT MAY SEEM
 STRANGE TO FIND simulations included in a book on
 data analysis: don’t simulations just generate even
 more data that needs to be analyzed? Not
 necessarily—as we will see, simulations in the form of
 resampling methods provide a family of techniques
 for extracting information from data. In addition, simulations can be
 useful when developing and validating models, and in this way, they
 facilitate our understanding of data. Finally, in the context of this
 chapter we can take a brief look at a few other relevant topics, such as
 discrete event simulations and queueing theory.
A technical comment: I assume that your programming environment
 includes a random-number generator—not only for uniformly distributed
 random numbers but also for other distributions (this is a pretty safe
 bet). I also assume that this random-number generator produces random
 numbers of sufficiently high quality. This is probably a reasonable
 assumption, but there’s no guarantee: although the theory of
 random-number generators is well understood, broken implementations
 apparently continue to ship. Most books on simulation methods will
 contain information on random-number generators—look there if you feel
 that you need more detail.
A Warm-Up Question

As a warm-up to demonstrate how simulations can help us analyze
 data, consider the following example. We are given a data set with the
 results of eight tosses of a coin: six Heads and two Tails. Given this
 data, would we say the coin is biased?
[image: The likelihood function p6(1 – p)2 of observing six Heads and two Tails in eight tosses of a coin, as a function of the coin’s “balance parameter” p.]

Figure 12-1. The likelihood function p6(1 –
 p)2 of observing six Heads and two Tails
 in eight tosses of a coin, as a function of the coin’s “balance
 parameter” p.

The problem is that the data set is small—if there had been
 80,000 tosses of which 60,000 came out Heads, then we would have no
 doubt that the coin was biased. But with just eight tosses, it seems
 plausible that the imbalance in the results might be due to chance
 alone—even with a fair coin.
It was for precisely this kind of question that formal
 statistical methods were developed. We could now either invoke a
 classical frequentist point of view and calculate the probability of
 obtaining six or more Heads in eight tosses of a fair coin
 (i.e., six or more successes in eight Bernoulli
 trials with p = 0.5). The probability comes out
 to 37/256 ≈ 0.14, which is not enough to “reject the null hypothesis
 (that the coin is fair) at the 5 percent level.” Alternatively, we
 could adopt a Bayesian viewpoint and evaluate the appropriate
 likelihood function for the given data set with a noninformative prior
 (see Figure 12-1). The
 graph suggests that the coin is not balanced.
But what if we have forgotten how to evaluate either quantity,
 or (more likely!) if we are dealing with a problem more intricate than
 the one in this example, so that we neither know the appropriate model
 to choose nor the form of the likelihood function? Can we find a quick
 way to make progress on the question we started with?
Given the topic of this chapter, the answer is easy. We can
 simulate tosses of a coin, for various degrees of
 imbalance, and then compare the simulation results to our data
 set.
import random

repeats, tosses = 60, 8
[image: Results of 60 simulation runs, each consisting of eight tosses of a coin, for different values of the coin’s “balance parameter” p. Shown are the number of Heads observed in each run. Although a slight balance toward Heads (p ≈ 0.7) seems most probable, note that as many as six Heads can occasionally be observed even with a coin that is balanced toward Tails.]

Figure 12-2. Results of 60 simulation runs, each consisting of eight
 tosses of a coin, for different values of the coin’s “balance
 parameter” p. Shown are the number of Heads observed in each run.
 Although a slight balance toward Heads (p ≈ 0.7) seems most
 probable, note that as many as six Heads can occasionally be
 observed even with a coin that is balanced toward Tails.

def heads(tosses, p):
 h = 0
 for x in range(0, tosses):
 if random.random() < p: h += 1
 return h

p = 0
while p < 1.01:
 for t in range(0, repeats):
 print p, "\t", heads(tosses, p)
 p += 0.05
The program is trivial to write, and the results, in the form of
 a jitter plot, are shown in Figure 12-2. (For each value
 of the parameter p, which controls the imbalance
 of the coin, we have performed 60 repeats of 8 tosses each and counted
 the number of Heads in each repeat.)
The figure is quite clear: for p = 0.5
 (i.e., a balanced coin), it is pretty unlikely to
 obtain six or more Heads, although not at all impossible. On the other
 hand, given that we have observed six Heads, we would expect the
 parameter to fall into the range p = 0.6,...,
 0.7. We have thus not only answered the question we started with but
 also given it some context. The simulation therefore not only helped
 us understand the actual data set but also allowed us to explore the
 system that produced it. Not bad for 15 lines of code.

Monte Carlo Simulations

The term Monte Carlo simulation is
 frequently used to describe any method that involves the generation of
 random points as input for subsequent operations.
Monte Carlo techniques are a major topic all by themselves.
 Here, I only want to sketch two applications that are particularly
 relevant in the context of data analysis and modeling. First,
 simulations allow us to verify analytical work and to experiment with
 it further; second, simulations are a way of obtaining results from
 models for which analytical solutions are not available.
Combinatorial Problems

Many basic combinatorial problems can be solved exactly—but
 obtaining a solution is often difficult. Even when one is able to
 find a solution, it is surprisingly easy to arrive at incorrect
 conclusions, missing factors like 1/2 or 1/n!
 and so on. And lastly, it takes only innocuous looking changes to a
 problem formulation to render the problem intractable.
In contrast, simulations for typical combinatorial problems
 are often trivially easy to write. Hence they are a great way to
 validate theoretical results, and they can be extended to explore
 problems that are not tractable otherwise.
Here are some examples of questions that can be answered
 easily in this way:
	If we place n balls into
 n boxes, what is the probability that no
 more than two boxes contain two or more balls? What if I told
 you that exactly m
 boxes are empty? What if at most
 m boxes are empty?

	If we try keys from a key chain containing
 n different keys, how many keys will we
 have to try before finding the one that fits the lock? How is
 the answer different if we try keys randomly (with replacement)
 as opposed to in order (without replacement)?

	Suppose an urn contains 2n tokens
 consisting of n pairs of items. (Each item
 is marked in such a way that we can tell to which pair it
 belongs.) Repeatedly select a single token from the urn and put
 it aside. Whenever the most recently selected token is the
 second item from a pair, take both items
 (i.e., the entire pair) and return them to
 the urn. How many “broken pairs” will you have set aside on
 average? How does the answer change if we care about triples
 instead of pairs? What fluctuations can we expect around the
 average value?

The last problem is a good example of the kind of problem for
 which the simple case (average number of broken pairs) is fairly
 easy to solve but that becomes rapidly more complicated as we make
 seemingly small modifications to the original problem
 (e.g., going from pairs to triples). However,
 in a simulation such changes do not pose any special
 difficulties.
Another way that simulations can be helpful concerns
 situations that appear unfamiliar or even paradoxical. Simulations
 allow us to see how the system behaves and
 thereby to develop intuition for it. We already encountered an
 example in the Workshop section of Chapter 9, where we studied
 probability distributions without expectation values. Let’s look at
 another example.
Suppose, we are presented with a choice of three closed
 envelopes. One envelope contains a prize, the other two are empty.
 After we have selected an envelope, it is revealed that one of the
 envelopes that we had not selected is empty. We
 are now permitted to choose again. What should we do? Stick with our
 initial selection? Randomly choose between the two remaining
 envelopes? Or pick the remaining envelope—that is, not the one that
 we selected initially and not the one that has been opened?
This is a famous problem, which is sometimes known as the
 “Monty Hall Problem” (after the host of a game show that featured a
 similar game).
As it turns out, the last strategy (always switch to the
 remaining envelope) is the most beneficial. The problem appears to
 be paradoxical because the additional information that is revealed
 (that an envelope we did not select is empty) does not seem to be
 useful in any way. How can this information affect the probability
 that our initial guess was correct?
The argument goes as follows. Our initial selection is correct
 with probability p = 1/3 (because one envelope
 among the original three contains the prize). If we stick with our
 original choice, then we should therefore have a 33 percent chance
 of winning. On the other hand, if in our second choice, we choose
 randomly from the remaining options (meaning that we are as likely
 to pick the initially chosen envelope or the remaining one), then we
 will select the correct envelope with probability
 p = 1/2 (because now one out of two envelopes
 contains the prize). A random choice is therefore better than
 staying put!
But this is still not the best strategy. Remember that our
 initial choice only had a p = 1/3 probability
 of being correct—in other words, it has probability
 q = 2/3 of being wrong.
 The additional information (the opening of an empty envelope) does
 not change this probability, but it removes all
 alternatives. Since our original choice is wrong with
 probability q = 2/3 and since now there is only
 one other envelope remaining, switching to this remaining envelope
 should lead to a win with 66 percent probability!
I don’t know about you, but this is one of those cases where I
 had to “see it to believe it.” Although the argument above seems
 compelling, I still find it hard to accept. The program in the
 following listing helped me do exactly that.
 import sys
 import random as rnd

 strategy = sys.argv[1] # must be 'stick', 'choose', or 'switch'

 wins = 0
 for trial in range(1000):

 # The prize is always in envelope 0 ... but we don't know that!
 envelopes = [0, 1, 2]

 first_choice = rnd.choice(envelopes)

 if first_choice == 0:
 envelopes = [0, rnd.choice([1,2])] # Randomly retain 1 or 2
 else:
 envelopes = [0, first_choice] # Retain winner and first choice

 if strategy == 'stick':
 second_choice = first_choice
 elif strategy == 'choose':
 second_choice = rnd.choice(envelopes)
 elif strategy == 'switch':
 envelopes.remove(first_choice)
 second_choice = envelopes[0]

 # Remember that the prize is in envelope 0
 if second_choice == 0:
 wins += 1

print wins
The program reads our strategy from the command line:
 the possible choices are stick,
 choose, and switch. It then performs a thousand trials
 of the game. The “prize” is always in envelope 0, but we don’t know that. Only if our
 second choice equals envelope 0
 we count the game as a win.
The results from running this program are consistent with the
 argument given previously: stick
 wins in one third of all trials, choose wins half the time, but switch amazingly wins in two thirds of all
 cases.

Obtaining Outcome Distributions

Simulations can be helpful to verify with combinatorial
 problems, but the primary reason for using simulations is that they
 allow us to obtain results that are not available analytically. To
 arrive at an analytical solution for a model, we usually have to
 make simplifying assumptions. One particularly common one is to
 replace all random quantities with their most probable value (the
 mean-field approximation; see Chapter 8). This allows us to solve
 the model, but we lose information about the distribution of
 outcomes. Simulations are a way of retaining the effects of
 randomness when determining the consequences of a model.
Let’s return to the case study discussed at the end of Chapter 9. We had a visitor
 population making visits to a certain website. Because individual
 visitors can make repeat visits, the number of
 unique visitors grows more slowly than the
 number of total visitors. We found an
 expression for the number of unique visitors over time but had to
 make some approximations in order to make progress. In particular,
 we assumed that the number of total visitors per day would be the
 same every day, and be equal to the average number of visitors per
 day. (We also assumed that the fraction of actual repeat visitors on
 any given day would equal the fraction of repeat visitors in the
 total population.)
Both of these assumptions are of precisely the nature
 discussed earlier: we replaced what in reality is a random quantity
 with its most probable value. These approximations made the problem
 tractable, but we lost all sense of the accuracy of the result.
 Let’s see how simulations can help provide additional insight to
 this situation.
The solution which in Chapter 9 was a
 model: an analytical (mean-field) model. The
 short program that follows is another model of the same system, but
 this time it is a simulation model. It is a
 model in the sense that again everything that is not absolutely
 essential has been stripped away: there is no website, no actual
 visits, no browsing behavior. But the model retains two aspects that
 are important and that were missing from the mean-field model.
 First, the number of visitors per day is no longer fixed, instead it
 is distributed according to a Gaussian distribution. Second, we have
 a notion of individual visitors (as elements of the list has_visited), and on every “day” we make a
 random selection from this set of visitors to determine who does
 visit on this day and who does not.
import random as rnd

n = 1000 # total visitors
k = 100 # avg visitors per day
s = 50 # daily variation

def trial():
 visitors_for_day = [0] # No visitors on day 0

 has_visited = [0]*n # A flag for each visitor
 for day in range(31):
 visitors_today = max(0, int(rnd.gauss(k, s)))

 # Pick the individuals who visited today and mark them
 for i in rnd.sample(range(n), visitors_today):
 has_visited[i] = 1

 # Find the total number of unique visitors so far
 visitors_for_day.append(sum(has_visited))

return visitors_for_day

for t in range(25):
 r = trial()
 for i in range(len(r)):
 print i, r[i]

 print
 print
[image: Unique visitors as a function of time: results from the simulation run, together with predictions from the analytical model. All data points are jittered horizontally to minimize overplotting. The solid line is the most probable number of visitors according to the model; the dashed lines indicate a confidence band.]

Figure 12-3. Unique visitors as a function of time: results from the
 simulation run, together with predictions from the analytical
 model. All data points are jittered horizontally to minimize
 overplotting. The solid line is the most probable number of
 visitors according to the model; the dashed lines indicate a
 confidence band.

The program performs 25 trials, where each trial consists of a
 full, 31-day month of visits. For each day, we find the number of
 visitors for that day (which must be a positive integer) and then
 randomly select the same number of “visitors” from our list of
 visitors, setting a flag to indicate that they have visited.
 Finally, we count the number of visitors that have the flag set and
 print this number (which is the number of unique visitors so far)
 for each day. The results are shown in Figure 12-3.
Figure 12-3
 also includes results from the analytical model. In Chapter 9, we found that the
 number of unique visitors on day t was given
 by:
[image: Unique visitors as a function of time: results from the simulation run, together with predictions from the analytical model. All data points are jittered horizontally to minimize overplotting. The solid line is the most probable number of visitors according to the model; the dashed lines indicate a confidence band.]
where N is the total number of visitors
 (N = 1,000 in the simulation) and
 k is the average number of visitors per day
 (k = 100 in the simulation). Accordingly, the
 solid line in Figure 12-3 is given by
 n(t) = 1,000
 [image:].
The simulation includes a parameter that was not part of the
 analytical model—namely the width s of the
 daily fluctuations in visitors. I have chosen the value
 s = 50 for the simulation runs. The dashed
 lines in Figure 12-3
 show the analytical model, with values of k ±
 s/2 (i.e.,
 k = 75 and k = 125) to
 provide a sense for the predicted spread, according to the
 mean-field model.
First of all, we should note that the analytical model agrees
 very well with the data from the simulation run: that’s a nice
 confirmation of our previous result! But we should also note the
 differences; in particular, the simulation results are consistently
 higher than the theoretical predictions. If we
 think about this for a moment, this makes sense. If on any day there
 are unusually many visitors, then this irrevocably bumps the number
 of unique visitors up: the number of unique
 visitors can never shrink, so any outlier above the average can
 never be neutralized (in contrast to an outlier below the average,
 which can be compensated by any subsequent high-traffic day).
We can further analyze the data from the simulation run,
 depending on our needs. For instance, we can calculate the most
 probable value for each day, and we can estimate proper confidence
 intervals around it. (We will need more than 25 trials to obtain a
 good estimate of the latter.)
What is more interesting about the simulation model developed
 here is that we can use it to obtain additional
 information that would be difficult or impossible to calculate from
 the analytical formula. For example, we may ask for the
 distribution of visits per user
 (i.e., how many users have visited once, twice,
 three times, and so on). The answer to this question is just a snap
 of the fingers away! We can also extend the model and ask for the
 number of unique visitors who have paid two or
 more visits (not just one). (For two visits per person,
 this question can be answered within the framework of the original
 analytical model, but the calculations rapidly become more tedious
 as we are asking for higher visit counts per person.)
Finally, we can extend the simulation to include features not
 included in the analytical model at all. For instance, for a real
 website, not all possible visitors are equally likely to visit: some
 individuals will have a higher probability of visiting the website
 than do others. It would be very difficult to incorporate this kind
 of generalization into the approach taken in Chapter 9, because it
 contradicts the basic assumption that the fraction of actual repeat
 visitors equals the fraction of repeat visitors in the total
 population. But it is not at all difficult to model this behavior in
 a simulation model!

Pro and Con

Basic simulations of the kind discussed in this section are
 often easy to program—certainly as compared with the effort required
 to develop nontrivial combinatorial arguments! Moreover, when we
 start writing a simulation project, we can be fairly certain of
 being successful in the end; whereas there is no guarantee that an
 attempt to find an exact answer to a combinatorial problem will lead
 anywhere.
On the other hand, we should not forget that a simulation
 produces numbers, not insight! A simulation is always only one step
 in a larger process, which must include a proper analysis of the
 results from the simulation run and, ideally, also involves an
 attempt to incorporate the simulation data into a larger conceptual
 model. I always get a little uncomfortable when presented with a
 bunch of simulation results that have not been fit into a larger
 context. Simulations cannot replace analytical modeling.
In particular, simulations do not yield the kind of
 insight into the mechanisms driving certain developments that a good
 analytical model affords. For instance, recall the case study near
 the end of Chapter 8, in
 which we tried to determine the optimal number of servers. One
 important insight from that model was that the probability
 pn
 for a total failure dropped extremely rapidly as the number
 n of servers increased: the exponential decay
 (with n) is much more important than the
 reliability p of each individual server. (In
 other words, redundant commodity hardware beats expensive
 supercomputers—at least for situations in which this simplified cost
 model holds!) This is the kind of insight that would be difficult to
 gain simply by looking at results from simulation runs.
Simulations can be valuable for verifying analytical work and
 for extending it by incorporating details that would be difficult or
 impossible to treat in an analytical model. At the same time, the
 benefit that we can derive from simulations is enhanced by the
 insight gained from the analytical, conceptual modeling of the the
 mechanisms driving a system.
The two methods are complementary—although I will give primacy
 to analytical work. Analytical models without simulation may be
 crude but will still yield insight, whereas simulations without
 analysis produce only numbers, not insight.

Resampling Methods

Imagine you have taken a sample of n points
 from some population. It is now a trivial exercise to calculate the
 mean from this sample. But how reliable is this mean? If we repeatedly
 took new samples (of the same size) from the population and calculated
 their means, how much would the various values
 for the mean jump around?
This question is important. A point estimate (such as the mean
 by itself) is not very powerful: what we really want is an interval
 estimate which also gives us a sense of the reliability of the
 answer.
If we could go back and draw additional samples, then we could
 obtain the distribution of the mean directly as a histogram of the
 observed means. But that is not an option: all we have are the
 n data points of the original sample.
Much of classical statistics deals with precisely this question:
 how can we make statements about the reliability of an estimate based
 only on a set of observations? To make progress, we need to make some
 assumptions about the way values are distributed. This is where the
 sampling distributions of classical statistics
 come in: all those Normal, t, and chi-square
 distributions (see Chapter 10). Once we have a
 theoretical model for the way points are distributed, we can use this
 model to establish confidence intervals.
Being able to make such statements is one of the outstanding
 achievements of classical statistics, but at the same time, the
 difficulties in getting there are a major factor in making classical
 statistics seem so obscure. Two problems stand out:
	Our assumptions about the shape of those
 distributions may not be correct, or we may not be able to
 formulate those distributions at all—in particular, if we are
 interested in more complicated quantities than just the sample
 mean or if we are dealing with populations that are ill behaved
 (i.e., not even remotely Gaussian).

	Even if we know the sampling distribution, determining
 confidence limits from it may be tedious, opaque, and
 error-prone.

The Bootstrap

The bootstrap is an alternative approach
 for finding confidence intervals and similar quantities directly
 from the data. Instead of making assumptions about the distribution
 of values and then employing theoretical arguments, the bootstrap
 goes back to the original idea: what if we could draw
 additional samples from the population?
We can’t go back to the original population, but the sample
 that we already have should be a fairly good approximation to the
 overall population. We can therefore create additional samples (also
 of size n) by sampling with
 replacement from the original sample. For each of these
 “synthetic” samples, we can calculate the mean (or any other
 quantity, of course) and then use this set of values for the mean to
 determine a measure of the spread of its distribution via any
 standard method (e.g., we might calculate its
 inter-quartile range; see Chapter 2).
Let’s look at an example—one that is simple enough that we can
 work out the analytical answer and compare it directly to the
 bootstrap results. We draw n = 25 points from a
 standard Gaussian distribution (with mean μ = 0 and standard
 deviation σ = 1). We then ask about the (observed) sample mean and
 more importantly, about its standard error. In this case, the answer
 is simple: we know that the error of the mean is [image:] (see Chapter 11), which
 amounts to 1/5 here. This is the analytical result.
To find the bootstrap estimate for the standard error, we draw
 100 samples, each containing n = 25 points,
 from our original sample of 25 points. Points are drawn randomly
 with replacement (so that each point can be selected multiple
 times). For each of these bootstrap samples, we calculate the mean.
 Now we ask: what is the spread of the distribution of these 100
 bootstrap means?
The data is plotted in Figure 12-4. At the bottom,
 we see the 25 points of the original data sample; above that, we see
 the means calculated from the 100 bootstrap samples. (All points are
 jittered vertically to minimize overplotting.) In addition, the
 figure shows kernel density estimates (see Chapter 2) of the
 original sample and also of the bootstrap means. The latter is the
 answer to our original question: if we repeatedly took samples from
 the original distribution, the sample means
 would be distributed similarly to the bootstrap means.
(Because in this case we happen to know the original
 distribution, we can also plot both it and the theoretical
 distribution of the mean, which happens to be Gaussian as well but
 with a reduced standard deviation of [image:]. As we would expect, the theoretical
 distributions agree reasonably well with the kernel density
 estimated calculated from the data.)
[image: The bootstrap. The points in the original sample are shown at the bottom; the means calculated from the bootstrap samples are shown above. Also displayed are the original distribution and the distribution of the sample means, both using the theoretical result and a kernel density estimate from the corresponding samples.]

Figure 12-4. The bootstrap. The points in the original sample are shown
 at the bottom; the means calculated from the bootstrap samples are
 shown above. Also displayed are the original distribution and the
 distribution of the sample means, both using the theoretical
 result and a kernel density estimate from the corresponding
 samples.

Of course, in this example the bootstrap procedure was not
 necessary. It should be clear, however, that the bootstrap provides
 a simple method for obtaining confidence intervals even in
 situations where theoretical results are not available. For
 instance, if the original distribution had been highly skewed, then
 the Gaussian assumption would have been violated. Similarly, if we
 had wanted to calculate a more complicated quantity than the mean,
 analytical results might have been hard to obtain.
Let me repeat this, because it’s important: bootstrapping is a
 method to estimate the spread of some quantity.
 It is not a method to obtain “better” estimates of the original
 quantity itself—for that, it is necessary to obtain a larger sample
 by making additional drawings from the original population. The
 bootstrap is not a way to give the appearance of a larger sample
 size by reusing points!

When Does Bootstrapping Work?

As we have seen, the bootstrap is a simple, practical, and
 relatively transparent method to obtain confidence intervals for
 estimated quantities. This begs the question: when does it work? The
 following two conditions must be fulfilled.
	The original sample must provide a good representation of
 the entire population.

	The estimated quantity must depend “smoothly” on the data
 points.

The first condition requires the original sample to be
 sufficiently large and relatively clean. If the sample size is too
 small, then the original estimate for the actual quantity in
 question (the mean, in our example) won’t be very good.
 (Bootstrapping in a way exacerbates this problem because data points
 have a greater chance of being reused repeatedly in the bootstrap
 samples.) In other words, the original sample has to be large enough
 to allow meaningful estimation of the primary quantity. Use common
 sense and insight into your specific application area to establish
 the required sample size for your situation.
Additionally, the sample has to be relatively clean: crazy
 outliers, for instance, can be a problem. Unless the sample size is
 very large, outliers have a significant chance of being reused in a
 bootstrap sample, distorting the results.
Another problem exists in situations involving power-law
 distributions. As we saw in Chapter 9, estimated values for
 such distributions may not be unique but depend on the sample
 size. Of course, the same considerations apply
 to bootstrap samples drawn from such distributions.
The second condition suggests that bootstrapping does not work
 well for quantities that depend critically on only a few data
 points. For example, we may want to estimate the maximum value of
 some distribution. Such an estimate depends critically on the
 largest observed value—that is, on a single data point. For such
 applications, the bootstrap is not suitable. (In contrast, the mean
 depends on all data points and with equal
 weight.)
Another questions concerns the number of bootstrap samples to
 take. The short answer is: as many as you need to obtain a
 sufficiently good estimate for the spread you are calculating. If
 the number of points in the original sample is very small, then
 creating too many bootstrap samples is counterproductive because you
 will be regenerating the same bootstrap samples over and over again.
 However, for reasonably sized samples, this is not much of a
 problem, since the number of possible bootstrap samples grows very
 quickly with the number of data points n in the
 original sample. Therefore, it is highly unlikely that the same
 bootstrap example is generated more than once—even if we generate
 thousands of bootstrap samples.
The following argument will help to develop a sense for the
 order of magnitudes involved. The problem of choosing
 n data points with replacement from the
 original n-point sample is equivalent to
 assigning n elements to n
 cells. It is a classical problem in occupancy theory to show that
 there are:
[image: When Does Bootstrapping Work?]
ways of doing this. This number grows extremely quickly: for
 n = 5 it is 126, for n =
 10 we have 92,378, but for n = 20 it already
 exceeds 1010.
(The usual proof proceeds by observing that assigning
 r indistinguishable objects to
 n bins is equivalent to aligning
 r objects and n – 1 bin
 dividers. There are r + n
 – 1 spots in total, which can be occupied by either an object or a
 divider, and the assignment amounts to choosing
 r of these spots for the r
 objects. The number of ways one can choose r
 elements out of n + r – 1
 is given by the binomial coefficient [image:]. Since in our case r =
 n, we find that the number of different
 bootstrap samples is given by the expression above.)

Bootstrap Variants

There are a few variants of the basic bootstrap idea. The
 method so far—in which points are drawn directly from the original
 sample—is known as the nonparametric bootstrap.
 An alternative is the parametric bootstrap: in
 this case, we assume that the original population follows some
 particular probability distribution (such as the Gaussian), and we
 estimate its parameters (mean and standard deviation, in this case)
 from the original sample. The bootstrap samples are then drawn from
 this distribution rather than from the original sample. The
 advantage of the parametric bootstrap is that the bootstrap values
 do not have to coincide exactly with the known data points. In a
 similar spirit, we may use the original sample to compute a kernel
 density estimate (as an approximation to the population
 distribution) and then draw bootstrap samples from it. This method
 combines aspects of both parametric and nonparametric approaches: it
 is nonparametric (because it make no assumption about the form of
 the underlying population distribution), yet the bootstrap samples
 are not restricted to the values occurring in the original sample.
 In practice, neither of these variants seems to provide much of an
 advantage over the original idea (in part because the number of
 possible bootstrap samples grows so quickly with the number of
 points in the sample that choosing the bootstrap samples from only
 those points is not much of a restriction).
Another idea (which historically predates the bootstrap) is
 the so-called jackknife. In the jackknife, we
 don’t draw random samples. Instead, given an original sample
 consisting of n data points, we calculate the
 n estimates of the quantity of interest by
 successively omitting one of the data points from the sample. We can
 now use these n values in a similar way that we
 used values calculated from bootstrap samples. Since the jackknife
 does not contain any random element, it is an entirely deterministic
 procedure.

Workshop: Discrete Event Simulations with SimPy

All the simulation examples that we considered so far were
 either static (coin tosses, Monty Hall problem) or extremely stripped
 down and conceptual (unique visitors). But if we are dealing with the
 behavior and time development of more complex systems—consisting of
 many different particles or actors that interact with each other in
 complicated ways—then we want a simulation that expresses all these
 entities in a manner that closely resembles the problem domain. In
 fact, this is probably exactly what most of us think of when we hear
 the term “simulation.”
There are basically two different ways that we can set up such a
 simulation. In a continuous time simulation, time
 progresses in “infinitesimally” small increments. At each time step,
 all simulation objects are advanced while taking possible
 interactions or status changes into account. We would typically choose
 such an approach to simulate the behavior of particles moving in a
 fluid or a similar system.
But in other cases, this model seems wasteful. For instance,
 consider customers arriving at a bank: in such a situation, we only
 care about the events that change the state of
 the system (e.g., customer arrives, customer
 leaves)—we don’t actually care what the customers do while waiting in
 line! For such system we can use a different simulation method, known
 as discrete event simulation. In this type of
 simulation, time does not pass continuously; instead, we determine
 when the next event is scheduled to occur and then jump ahead to
 exactly that moment in time.
Discrete event simulations are applicable to a wide variety of
 problems involving multiple users competing for access to a shared
 server. It will often be convenient to phrase the description in terms
 of the proverbial “customers arriving at a bank,” but exactly the same
 considerations apply, for instance, to messages on a computer
 network.
Introducing SimPy

The SimPy package (http://simpy.sourceforge.net/) is a Python
 project to build discrete event simulation models. The framework
 handles all the event scheduling and messaging “under the covers” so
 that the programmer can concentrate on describing the behavior of
 the actors in the simulation.
All actors in a SimPy simulation must be subclasses of the
 class Process. Congestion points
 where queues form are modeled by instances of the Resource class or its subclasses. Here is
 a short example, which describes a customer visiting a bank:
from SimPy.Simulation import *

class Customer(Process):
 def doit(self):
 print "Arriving"
 yield request, self, bank

 print "Being served"
 yield hold, self, 100.0

 print "Leaving"
 yield release, self, bank

Beginning of main simulation program
initialize()

bank = Resource()

cust = Customer()
cust.start(cust.doit())

simulate(until=1000)
Let’s skip the class definition of the Customer object for now and concentrate on
 the rest of the program. The first function to call in any SimPy
 program is the initialize()
 method, which sets up the simulation run and sets the “simulation
 clock” to zero. We then proceed to create a Resource object (which models the bank)
 and a single Customer object.
 After creating the Customer, we
 need to activate it via the start() member function. The start() function takes as argument the
 function that will be called to advance the Customer through its life cycle (we’ll
 come back to that). Finally, we kick off the actual simulation,
 requiring it to stop after 1,000 time steps on the simulation clock
 have passed.
The Customer subclasses
 Process, therefore its instances
 are active agents, which will be scheduled by the framework to
 receive events. Each agent must define a process execution
 method (PEM), which defines its behavior and which will
 be invoked by the framework whenever an event occurs.
For the Customer class, the
 PEM is the doit() function.
 (There are no restrictions on its name—it can be called anything.)
 The PEM describes the customer’s behavior: after the customer
 arrives, the customer requests a resource
 instance (the bank in this case).
 If the resource is not available (because it is busy, serving other
 customers), then the framework will add the customer to the waiting
 list (the queue) for the requested resource.
 Once the resource becomes available, the customer is being serviced.
 In this simple example, the service time is a fixed value of 100
 time units, during which the customer instance is
 holding—just waiting until the time has passed.
 When service is complete, the customer releases
 the resource instance. Since no additional actions are listed in the
 PEM, the customer is not scheduled for future events and will
 disappear from the simulation.
Notice that the Customer
 interacts with the simulation environment through Python yield statements, using special yield
 expressions of the form shown in the example. Yielding control back
 to the framework in this way ensures that the Customer retains its state and its current
 spot in the life cycle between invocations. Although there are no
 restrictions on the name and argument list permissible for a PEM,
 each PEM must contain at least one of these
 special yield statements. (But of
 course not necessarily all three, as in this case; we are free to
 define the behavior of the agents in our simulations at
 will.)

The Simplest Queueing Process

Of course the previous example which involved only a
 single customer entering and leaving the bank,
 is not very exciting—we hardly needed a simulation for that! Things
 change when we have more than one customer in the system at the same
 time.
The listing that follows is very similar to the previous
 example, except that now there is an infinite stream of customers
 arriving at the bank and requesting service. To generate this
 infinite sequence of customers, the listing makes use of an idiom
 that’s often used in SimPy programs: a “source” (the CustomerGenerator instance).
from SimPy.Simulation import *
import random as rnd

interarrival_time = 10.0
service_time = 8.0

class CustomerGenerator(Process):
 def produce(self, b):
 while True:
 c = Customer(b)
 c.start(c.doit())
 yield hold, self, rnd.expovariate(1.0/interarrival_time)

class Customer(Process):
 def __init__(self, resource):
 Process.__init__(self)
 self.bank = resource

 def doit(self):
 yield request, self, self.bank
 yield hold, self, self.bank.servicetime()
 yield release, self, self.bank

class Bank(Resource):
 def servicetime(self):
 return rnd.expovariate(1.0/service_time)

initialize()

bank = Bank(capacity=1, monitored=True, monitorType=Monitor)

src = CustomerGenerator()
activate(src, src.produce(bank))

simulate(until=500)

print bank.waitMon.mean()
print

for evt in bank.waitMon:
 print evt[0], evt[1]
The CustomerGenerator is
 itself a subclass of Process and
 defines a PEM (produce()).
 Whenever it is triggered, it generates a new Customer and then goes back to sleep for a
 random amount of time. (The time is distributed according to an
 exponential distribution—we will discuss this particular choice in a
 moment.) Notice that we don’t need to keep track of the Customer instances explicitly: once they
 have been activated using the start() member function, the framework
 ensures that they will receive scheduled events.
There are two changes to the Customer class. First of all, we
 explicitly inject the resource to request (the bank) as an additional argument to the
 constructor. By contrast, the Customer in the previous example found the
 bank reference via lookup in the
 global namespace. That’s fine for small programs but becomes
 problematic for larger ones—especially if there is more than one
 resource that may be requested. The second change is that the
 Customer now asks the
 bank for the service time. This is in the
 spirit of problem domain modeling—it’s usually the server (in this
 case, the bank) that controls the time it takes to complete a
 transaction. Accordingly, we have introduced Bank as subclass of Resource in order to accommodate this
 additional functionality. (The service time is also exponentially
 distributed but with a different wait time than that used for the
 CustomerGenerator.)
Subtypes of the Process
 class are used to model actors in a SimPy simulation. Besides these
 active simulation objects, the next most important abstraction
 describes congestion points, modeled by the Resource class and its subclasses. Each
 Resource instance models a shared
 resource that actors may request, but its more important function is
 to manage the queue of actors currently waiting
 for access.
Each Resource instance
 consists of a single queue and one or more actual “server units”
 that can fulfill client requests. Think of the typical queueing
 discipline followed in banks and post offices (in the U.S.—other
 countries have different conventions!): a single line but multiple
 teller windows, with the person at the head of the line moving to
 the next available window. That is the model represented by each
 Resource instance. The number of
 server units is controlled through the keyword argument capacity to the Resource constructor. Note that all server
 units in a single Resource
 instance are identical. Server units are also “passive”: they have
 no behavior themselves. They only exist so that a Process object can acquire them, hold them
 for a period of time, and then release them (like a mutex).
Although a Resource
 instance may have multiple server units, it can contain only a
 single queue. If you want to model a supermarket checkout situation,
 where each server unit has its own queue, you therefore need to set
 up multiple Resource instances,
 each with capacity=1: one for
 each checkout stand and each managing its own queue of
 customers.
For each Resource instance,
 we can monitor the length of the queue and the events that change it
 (arrivals and departures) by registering an observer object with the
 Resource. There are two types of
 such observers in SimPy: a Monitor records the time stamp and new
 queue length for every event that affects the queue, whereas a
 Tally only keeps enough
 information to calculate summary information (such as the average
 queue length). Here we have registered a Monitor object with the Bank. (We’ll later see an example of a
 Tally.)
As before, we run the simulation until the internal simulation
 clock reaches 1,000. The CustomerGenerator produces an infinite
 stream of Customer objects, each
 requesting service from the Bank,
 while the Monitor records all
 changes to the queue.
[image: Number of customers in queue over time.]

Figure 12-5. Number of customers in queue over time.

After the simulation has run to completion, we
 retrieve the Monitor object from
 the Bank: if an observer had been
 registered with a Resource, then
 it is available in the waitMon
 member variable. We print out the average queue length over the
 course of the simulation as well as the full time series of events.
 (The Monitor class is a List subclass, so we can iterate over it
 directly.) The time evolution of the queue is shown in Figure 12-5.
One last implementation detail: if you look closely, you will
 notice that the CustomerGenerator
 is activated using the standalone function activate(). This function is an
 alternative to the start() member
 function of all Process objects
 and is entirely equivalent to it.

Optional: Queueing Theory

Now that we have seen some of these concepts in action
 already, it is a good time to step back and fill in some
 theory.
A queue is a specific example of a stochastic
 process. In general, the term “stochastic process” refers
 to a sequence of random events occurring in time. In the queueing
 example, customers are joining or leaving the queue at random times,
 which makes the queue grow and shrink accordingly. Other examples of
 stochastic processes include random walks, the movement of stock
 prices, and the inventory levels in a store. (In the latter case,
 purchases by customers and possibly even deliveries by suppliers
 constitute the random events.)
In a queueing problem, we are concerned only about
 arrivals and departures. A particularly important special case
 assumes that the rate at which customers arrive is constant over
 time and that arrivals at different times are independent of each
 other. (Notice that these are reasonable assumptions in many cases.)
 These two conditions imply that the number of arrivals during a
 certain time period t follows a Poisson
 distribution, since the Poisson distribution:
[image: Optional: Queueing Theory]
gives the probability of observing k
 Successes (arrivals, in our case) during an interval of length
 t if the “rate” of Successes is λ (see Chapter 9).
Another consequence is that the times between arrivals are
 distributed according to an exponential distribution:
p(t, λ) =
 λe–λt
The mean of the exponential distribution can be calculated
 without difficulty and equals 1/λ. It will often be useful to work
 with its inverse
 ta
 = 1/λ, the average interarrival time.
(It’s not hard to show that interarrival times are distributed
 according to the exponential distribution when the number of
 arrivals per time interval follows a Poisson distribution. Assume
 that an arrival occurred at t = 0. Now we ask
 for the probability that no arrival has
 occurred by t = T; in
 other words, p(0, T, λ) =
 e–λT
 because x0 = 1 and
 0! = 1. Conversely, the probability that the next arrival will have
 occurred sometime between t = 0 and
 t = T is 1 –
 p(0, T, λ). This is the
 cumulative distribution function for the interarrival time, and from
 it, we find the probability density for an arrival to occur at
 t as [image:]
The appearance of the exponential distribution as the
 distribution of interarrival times deserves some comment. At first
 glance, it may seem surprising because this distribution is greatest
 for small interarrival times, seemingly favoring very short
 intervals. However, this observation has to be balanced against the
 infinity of possible interarrival times, all of which may occur!
 What is more important is that the exponential distribution is in a
 sense the most “random” way that interarrival times can be
 distributed: no matter how long we have waited since the last
 arrival, the probability that the next visitor will arrive after
 t more minutes is always the
 same: p(t, λ) =
 λe–λt. This property
 is often referred to as the lack of memory of
 the exponential distribution. Contrast this with a distribution of
 interarrival times that has a peak for some nonzero time: such a
 distribution describes a situation of scheduled
 arrivals, as we would expect to occur at a bus stop. In this
 scenario, the probability for an arrival to occur within the next
 t minutes will change with time.
Because the exponential distribution arises naturally from the
 assumption of a constant arrival rate (and from the independence of
 different arrivals), we have used it as the distribution of
 interarrival times in the CustomerGenerator in the previous example.
 It is less of a natural choice for the distribution of service times
 (but it makes some theoretical arguments simpler).
The central question in all queueing problems concerns the
 expected length of the queue—not only how large it is but also
 whether it will settle down to a finite value at all, or whether it
 will “explode,” growing beyond all bounds.
In the simple memoryless, single-server–single-queue scenario
 that we have been investigating, the only two control parameters are
 the arrival rate λa and
 the service or exit rate
 λe; or rather their
 ratio:
[image: Optional: Queueing Theory]
which is the fraction of time the server is busy. The quantity
 u is the server’s
 utilization. It is intuitively clear that if
 the arrival rate is greater than the exit rate
 (i.e., if customers are arriving at a faster
 rate then the server can process them), then the queue length will
 explode. However, it turns out that even if the arrival rate
 equals the service rate (so that
 u = 1), the queue length still grows beyond all
 bounds. Only if the arrival rate is strictly lower than the service
 rate will we end up with a finite queue.
Let’s see how this surprising result can be derived. Let
 pn
 be the probability of finding exactly n
 customers waiting in the queue. The rate at which the queue grows is
 λa, but the rate at
 which the queue grows from exactly n to exactly
 n + 1 is
 λa
 pn,
 since we must take into account the probability of the queue having
 exactly n members. Similarly, the probability
 of the queue shrinking from n + 1 to
 n members is
 λe
 pn+1.
In the steady state (which is the requirement for a finite
 queue length), these two rates must be equal:
λa
 pn
 = λe
 pn+1
which we can rewrite as:
[image: Optional: Queueing Theory]
This relationship must hold for all n,
 and therefore we can repeat this argument and write
 pn
 =
 upn–1
 and so on. This leads to an expression for
 pn
 in terms of p0:
pn
 =
 un
 p0
The probability p0
 is the probability of finding no customer in
 the queue—in other words, it is the probability that the server is
 idle. Since the utilization is the probability for the server to be
 busy, the probability p0
 for the server to be idle must be
 p0 = 1 –
 u.
We can now ask about the expected length
 L of the queue. We already know that the queue
 has length n with probability
 pn
 =
 un
 p0. Finding the expected
 queue length L requires that we sum over all
 possible queue lengths, each one weighted by the appropriate
 probability:
[image: Optional: Queueing Theory]
Now we employ a trick that is often useful for sums of this
 form: observe that [image:] and hence that [image:]. Using this expression in the sum for
 L leads to:
[image: Optional: Queueing Theory]
where we have used the sum of the geometric series (see Appendix B) and the expression for
 p0 = 1 –
 u. We can rewrite this expression directly in
 terms of the arrival and exit rates as:
[image: Optional: Queueing Theory]
This is a central result. It gives us the expected length of
 the queue in terms of the utilization (or in terms of the arrival
 and exit rates). For low utilization (i.e., an
 arrival rate that is much lower than the service rate or,
 equivalently, an interarrival time that is much larger than the
 service time), the queue is very short on average. (In fact,
 whenever the server is idle, then the queue length equals 0, which
 drags down the average queue length.) But as the arrival rate
 approaches the service rate, the queue grows in length and becomes
 infinite when the arrival rate equals the service rate. (An
 intuitive argument for why the queue length will explode when the
 arrival rate equals the service time is that, in this case, the
 server never has the opportunity to “catch up.” If the queue becomes
 longer due to a chance fluctuation in arrivals, then this backlog
 will persist forever, since overall the server is only capable of
 keeping up with arrivals. The cumulative effect of such chance
 fluctuations will eventually make the queue length diverge.)

Running SimPy Simulations

In this section, we will try to confirm the previous result
 regarding the expected queue length by simulation. In the process,
 we will discuss a few practical points of using SimPy to understand
 queueing systems.
First of all, we must realize that each simulation run
 is only a particular realization of the sequence of events. To draw
 conclusions about the system in general, we therefore always need to
 perform several simulation runs and average their results.
In the previous listing, the simulation framework maintained
 its state in the global environment. Hence, in order to rerun the
 simulation, you had to restart the entire program! The program in
 the next listing uses an alternative interface that encapsulates the
 entire environment for each simulation run in an instance of class
 Simulation. The global functions
 initialize(), activate(), and simulate() are now member functions of
 this Simulation object. Each
 instance of the Simulation class
 provides a separate, isolated simulation environment. A completely
 new simulation run now requires only that we create a new instance
 of this class.
The Simulation class is
 provided by SimPy. Using it does not require any changes to the
 previous program, except that the current instance of the Simulation class must be passed explicitly
 to all simulation objects (i.e., instances of
 Process and Resource and their subclasses):
from SimPy.Simulation import *
import random as rnd

interarrival_time = 10.0

class CustomerGenerator(Process):
 def produce(self, bank):
 while True:
 c = Customer(bank, sim=self.sim)
 c.start(c.doit())
 yield hold, self, rnd.expovariate(1.0/interarrival_time)

class Customer(Process):
 def __init__(self, resource, sim=None):
 Process.__init__(self, sim=sim)
 self.bank = resource

 def doit(self):
 yield request, self, self.bank
 yield hold, self, self.bank.servicetime()
 yield release, self, self.bank

class Bank(Resource):
 def setServicetime(self, s):
 self.service_time = s

 def servicetime(self):
 return rnd.expovariate(1.0/self.service_time)

def run_simulation(t, steps, runs):
 for r in range(runs):

 sim = Simulation()
 sim.initialize()

 bank = Bank(monitored=True, monitorType=Tally, sim=sim)
 bank.setServicetime(t)

 src = CustomerGenerator(sim=sim)
 sim.activate(src, src.produce(bank))

 sim.startCollection(when=steps//2)
 sim.simulate(until=steps)

 print t, bank.waitMon.mean()

t = 0
while t <= 11.0:
 t += 0.5
 run_simulation(t, 100000, 10)
Another important change is that we don’t start recording
 until half of the simulation time steps have passed (that’s what the
 startCollection() method is for).
 Remember that we are interested in the queue length in the
 steady state—for that reason, we don’t want to
 start recording until the system has settled down and any transient
 behavior has disappeared.
To record the queue length, we now use a Tally object instead of a Monitor. The Tally will not allow us to replay the
 entire sequence of events, but since we are only interested in the
 average queue length, it is sufficient for our current
 purposes.
Finally, remember that as the utilization approaches
 u = 1 (i.e., as the
 service time approaches the interarrival time), we expect the queue
 length to become infinite. Of course, in any finite simulation it is
 impossible for the queue to grow to infinite length: the length of
 the queue is limited by the finite duration of the simulation run.
 The consequence of this observation is that, for utilizations near
 or above 1, the queue length that we will observe depends on the
 number of steps that we allow in the simulation. If we terminate the
 simulation too quickly, then the system will not have had time to
 truly reach its fully developed steady state and so our results will
 be misleading.
Figure 12-6
 shows the results obtained when running the example program with
 1,000 and 100,000 simulation steps. For low utilization
 (i.e., short queue lengths), the results from
 both data sets agree with each other (and with the theoretical
 prediction). However, as the service time approaches the
 interarrival time, the short simulation run does not last long
 enough for the steady state to form, and so the observed queue
 lengths are too short.

Summary

This concludes our tour of discrete event simulation with
 SimPy. Of course, there is more to SimPy than mentioned here—in
 particular, there are two additional forms of resources: the
 Store and Level abstractions. Both of them not only
 encapsulate a queue but also maintain an inventory (of individual
 items for Store and of an
 undifferentiated amount for Level). This inventory can be consumed or
 replenished by simulation objects, allowing us to model inventory
 systems of various forms. Other SimPy facilities to explore include
 asynchronous events, which can be received by simulation objects as
 they are waiting in queue and additional recording and tracing
 functionality. The project documentation will provide further
 details.
[image: Average queue length as a function of the service time for a fixed interarrival time of ta = 10.]

Figure 12-6. Average queue length as a function of the service time for
 a fixed interarrival time of ta =
 10.

Further Reading

	A First Course in Monte
 Carlo. George S. Fishman. Duxbury Press. 2005.
This book is a nice introduction to Monte Carlo simulations
 and includes many topics that we did not cover. Requires
 familiarity with calculus.

	Bootstrap Methods and Their
 Application. A. C. Davison and D. V. Hinkley. Cambridge University
 Press. 1997.
The bootstrap is actually a fairly simple and practical
 concept, but most books on it are very theoretical and difficult,
 including this one. But it is comprehensive and relatively
 recent.

	Applied Probability Models. Do Le Paul Minh. Duxbury Press. 2000.
The theory of random processes is difficult, and the results
 often don’t seem commensurate with the amount of effort required
 to obtain them. This book (although possibly hard to find) is one
 of the more accessible ones.

	Introduction to Stochastic
 Processes. Gregory F. Lawler. Chapman & Hall/CRC. 2006.
This short book is much more advanced and theoretical than
 the previous one. The treatment is concise and to the
 point.

	Introduction to Operations
 Research. Frederick S. Hillier and Gerald J. Lieberman. 9th ed.,
 McGraw-Hill. 2009.
The field of operations research encompasses a set of
 mathematical methods that are relevant for many problems arising
 in a business or industrial setting, including queueing theory.
 This text is a standard introduction.

	Fundamentals of Queueing
 Theory. Donald Gross, John F. Shortle, James M. Thompson, and Carl
 M. Harris. 4th ed., Wiley. 2008.
The standard textbook on queueing theory. Not for the faint
 of heart.

Chapter 13. Finding Clusters

THE TERM
 CLUSTERING REFERS TO THE PROCESS OF FINDING GROUPS
 OF POINTS WITHIN A DATA SET THAT ARE IN some way
 “lumped together.” It is also called unsupervised
 learning—unsupervised because we don’t know ahead of time
 where the clusters are located or what they look like. (This is in
 contrast to supervised learning or
 classification, where we attempt to assign data
 points to preexisting classes; see Chapter 18.)
I regard clustering as an exploratory method:
 a computer-assisted (or even computationally driven) approach to
 discovering structure in a data set. As an exploratory technique, it
 usually needs to be followed by a confirmatory analysis that validates
 the findings and makes them more precise.
Clustering is a lot of fun. It is a rich topic with a wide variety
 of different problems, as we will see in the next section, where we
 discuss the different kinds of cluster one may
 encounter. The topic also has a lot of intuitive appeal, and most
 clustering methods are rather straightforward. This allows for all sorts
 of ad hoc modifications and enhancements to accommodate the specific
 problem one is working on.
What Constitutes a Cluster?

Clustering is not a very rigorous field: there are precious few
 established results, rigorous theorems, or algorithmic guarantees. In
 fact, the whole notion of a “cluster” is not particularly well
 defined. Descriptions such as “groups of points that are similar” or
 “close to each other” are insufficient, because clusters must also be
 well separated from each other. Look at Figure 13-1: some points are
 certainly closer to each other than to other points, yet there are no
 discernible clusters. (In fact, it is an interesting exercise to
 define what constitutes the absence of clusters.)
 This leads to one possible definition of clusters:
 contiguous regions of high data point density separated by
 regions of lower point density. Although not particularly
 rigorous either, this description does seem to capture the essential
 elements of typical clusters. (For a different point of view, see the
 next section.)
[image: A uniform point distribution. Any “clusters” that we may recognize are entirely spurious.]

Figure 13-1. A uniform point distribution. Any “clusters” that we may
 recognize are entirely spurious.

The definition just proposed allows for very different kinds of
 clusters. Figure 13-2
 and Figure 13-3 show
 two very different types. Of course, Figure 13-2 is the “happy”
 case, showing a data set consisting of well-defined and clearly
 separated regions of high data point density. The clusters in Figure 13-3 are of a
 different type, one that is more easily thought of by means of
 nearest-neighbor (graph) relationships than by point density. Yet in
 this case as well, there are higher density regions separated by lower
 density regions—although we might want to exploit the nearest-neighbor
 relationship instead of the higher density when developing with a
 practical algorithm for this case.
Clustering is not limited to points in space. Figure 13-4 and Figure 13-5 show two rather
 different cases for which it nevertheless makes sense to speak of
 clusters. Figure 13-4
 shows a bunch of street addresses. No two of them are exactly the
 same, but if we look closely, we will easily recognize that all of
 them can be grouped into just a few neighborhoods. Figure 13-5 shows a bunch of
 different time series: again, some of them are more alike than others.
 The challenge in both of these examples is finding a way to express
 the “similarity” among these nonnumeric, nongeometric objects!
Finally, we should keep in mind that clusters may have
 complicated shapes. Figure 13-6 shows two very
 well-behaved clusters as distinct regions of high point density.
 However, complicated and intertwined shapes of the regions will
 challenge many commonly used clustering algorithms.
[image: The “happy” case: three well-separated, globular clusters.]

Figure 13-2. The “happy” case: three well-separated, globular
 clusters.

[image: Examples of non-globular clusters in a smiley face. Some of the clusters are nested, meaning that they are entirely contained within other clusters.]

Figure 13-3. Examples of non-globular clusters in a smiley face. Some of
 the clusters are nested, meaning that they are entirely contained
 within other clusters.

A bit of terminology can help to distinguish different
 cluster shapes. If the line connecting any two points lies entirely
 within the cluster itself (as in Figure 13-2), then the
 cluster is convex. This is the easiest shape to
 handle. A cluster is convex only if the connecting line between two
 points lies entirely within the cluster for all
 pairs of points. Sometimes this is not the case, but we can still find
 at least one point (the center) such that the
 connecting line from the center to any other point lies entirely
 within the cluster: such a cluster is called star convex. Notice that the
 clusters in Figure 13-6 are neither
 convex nor star convex. Sometimes one cluster is entirely surrounded
 by another cluster without actually being part of it: in this case we
 speak of a nested cluster. Nested clusters can be
 particularly challenging (see Figure 13-3).
[image: Clustering strings. Although none of these strings are identical, we can make out several groups of strings that are similar to each other.]

Figure 13-4. Clustering strings. Although none of these strings are
 identical, we can make out several groups of strings that are
 similar to each other.

[image: Six time series. We can recognize groups of time series that seem more similar to each other than to others.]

Figure 13-5. Six time series. We can recognize groups of time series that
 seem more similar to each other than to others.

A Different Point of View

In the absence of a precise (mathematical) definition, a
 cluster can be whatever we consider as one. That is important
 because our minds have a different, alternative way of grouping
 (“clustering”) objects: not by proximity or density but rather by
 the way objects fit into a larger structure. Figure 13-7 and Figure 13-8 show two
 examples.
Intuitively, we have no problem grouping the points in Figure 13-7 into two
 overlapping clusters. Yet, the density-based definition of a cluster
 we proposed earlier will not support such a conclusion. Similar
 considerations apply to the set of points in Figure 13-8. The distance
 between any two adjacent points is the same, but we perceive the
 larger structures of the vertical and horizontal arrangements and
 assign points to clusters based on them.
[image: Two clusters that are well separated but not globular. Some algorithms (e.g., the k-means algorithm) will not be able to handle such clusters.]

Figure 13-6. Two clusters that are well separated but not globular. Some
 algorithms (e.g., the k-means algorithm) will not be able to
 handle such clusters.

[image: An impossible situation for most clustering algorithms: although we believe to recognize two crossed clusters, no strictly local algorithm will be able to separate them.]

Figure 13-7. An impossible situation for most clustering algorithms:
 although we believe to recognize two crossed clusters, no strictly
 local algorithm will be able to separate them.

This notion of a cluster does not hinge on the similarity or
 proximity of any pair of points to each other but instead on the
 similarity between a point and a property of the entire
 cluster. For any algorithm that considers a single point
 (or a single pair of points) at a time, this leads to a problem: to
 determine cluster membership, we need the property of the whole
 cluster; but to determine the properties of the cluster, we must
 first assign points to clusters.
[image: The two clusters are distinguished not by a local property between pairs of points but rather by a global property of the entire cluster.]

Figure 13-8. The two clusters are distinguished not by a local property
 between pairs of points but rather by a global property of the
 entire cluster.

To handle such situations, we would need to perform
 some kind of global structure analysis—a task our minds are
 incredibly good at (which is why we tend to think of clusters this
 way) but that we have a hard time teaching computers to do. For
 problems in two dimensions, digital image
 processing has developed methods to recognize and extract
 certain features (such as edge detection). But general clustering
 methods, such as those described in the rest of this chapter, deal
 only with local properties and therefore can’t handle problems such
 as those in Figure 13-7 and Figure 13-8.

Distance and Similarity Measures

Given how strongly our intuition about clustering is shaped by
 geometric problems such as those in Figure 13-2 and Figure 13-3, it is an
 interesting and perhaps surprising observation that clustering does
 not actually require data points to be embedded into a geometric
 space: all that is required is a distance or
 (equivalently) a similarity measure for any
 pair of points. This makes it possible to perform
 clustering on a set of strings, such as those in Figure 13-4 that do not map
 to points in space. However, if the data points have properties of a
 vector space (see Appendix C), then we can
 develop more efficient algorithms that exploit these
 properties.
A distance is any function
 d(x, y)
 that takes two points and returns a scalar value that is a measure for
 how different these points are: the more different, the larger the
 distance. Depending on the problem domain, it may make more sense to
 express the same information in terms of a
 similarity function
 s(x,
 y), which returns a scalar that tells us how
 similar two points are: the more different they are, the smaller the
 similarity. Any distance can be transformed into a similarity and vice
 versa. For example if we know that our similarity measure
 s can take on values only in the range [0, 1],
 then we can form an equivalent distance by setting
 d = 1 – s. In other
 situations, we might decide to use d =
 1/s, or s =
 e–d,
 and so on; the choice will depend on the problem we are working on. In
 what follows, I will express problems in terms of either distances or
 similarities, whichever seems more natural. Just keep in mind that you
 can always transform between the two.
How we define a distance function is largely up to us, and we
 can express different semantics about the data set through the
 appropriate choice of distance. For some problems, a particular
 distance measure will present itself naturally (if the data points are
 points in space, then we will most likely employ the Euclidean
 distance or a measure similar to it), but for other problems, we have
 more freedom to define our own metric. We will see several examples
 shortly.
There are certain properties that a distance (or similarity)
 function should have. Mathematicians have developed a set of
 properties that a function must possess to be considered a metric (or
 distance) in a mathematical sense. These properties can provide
 valuable guidance, but don’t take them too seriously: for our
 purposes, different properties might be more important. The four
 axioms of a mathematical metric are:
	d(x,
 y)
	≥ 0
	
	d(x,
 y)
	= 0
	if and only if
 x = y

	d(x,
 y)
	=
 d(y,
 x)

	d(x,
 y) +
 d(y,
 z)
	≥
 d(x,
 z)

The first two axioms state that a distance is always positive
 and that it is null only if the two points are equal. The third
 property (“symmetry”) states that the distance between
 x and y is the same as the
 distance between y and x—no
 matter which way we consider the pair. The final property is the
 so-called triangle inequality, which states that to get from
 x to z, it is never shorter
 to take a detour through a third point y instead
 of going directly (see Figure 13-9).
This all seems rather uncontroversial, but these conditions are
 not necessarily fulfilled in practice. A funny example for an
 asymmetric distance occurs if you ask everyone in a group of people
 how much they like every other member of the group and then use the
 responses to construct a distance measure: it is not at all guaranteed
 that the feelings of person A for person B are requited by B. (Using
 the same example, it is also possible to construct scenarios that
 violate the triangle inequality.) For technical reasons, the symmetry
 property is usually highly desirable. You can always construct a
 symmetric distance function from an asymmetric one:
[image: Distance and Similarity Measures]
is always symmetric.
[image: The triangle inequality: the direct path from x to z is always shorter than any path that goes through an intermediate point y.]

Figure 13-9. The triangle inequality: the direct path from x to z is
 always shorter than any path that goes through an intermediate point
 y.

One property of great practical importance but not
 included among the distance axioms is smoothness.
 For example, we could define a rather simple-minded distance function
 that is 0 if and only if both points are equal to each other and that
 is 1 if the two points are not equal:
[image: The triangle inequality: the direct path from x to z is always shorter than any path that goes through an intermediate point y.]
You can convince yourself that this distance fulfills all four
 of the distance axioms. However, this is not a very informative
 distance measure, because it gives us no information about
 how different two nonidentical points are! Most
 clustering algorithms require this information. A certain kind of
 tree-based algorithm, for example, works by successively considering
 the pairs of points with the smallest distance between them. When
 using this binary distance, the algorithm will make only limited
 progress before having exhausted all information available to
 it.
The practical upshot of this discussion is that a good distance
 function for clustering should change smoothly as its inputs become
 more or less similar. (For classification tasks, a binary one as in
 the example just discussed might be fine.)
Common Distance and Similarity Measures

Depending on the data set and the purpose of our analysis,
 there are different distance and similarity measures
 available.
First, let’s clarify some terminology. We are looking for ways
 to measure the distance between any two data points. Very often, we
 will find that a point has a number of
 dimensions or features.
 (The first usage is more common for numerical data, the latter for
 categorical data.) In other words, each point is a collection of
 individual values: x =
 {x1,
 x2,...,
 xd},
 where d is the number of dimensions (or
 features). For example, the data point {0, 1} has two dimensions and
 describes a point in space; whereas the tuple ['male', 'retired', 'Florida'], which
 describes a person, has three features.
Table 13-1. Commonly used distance and similarity measures for numeric
 data
	Name
	Definition

	Manhattan

 Euclidean
 Maximum

 Minkowski
	[image:]

	Dot product

 Correlation coefficient
	[image:]

For any given data set containing n
 elements, we can form
 n2 pairs of points.
 The set of all distances for all possible pairs of points can be
 arranged in a quadratic table known as the distance
 matrix. The distance matrix embodies all information
 about the mutual relationships between all points in the data set.
 If the distance function is symmetric, as is usually the case, then
 the matrix is also symmetric. Furthermore, the entries along the
 main diagonal typically are all 0, since
 d(x,
 x) = 0 for most well-behaved distance
 functions.
Numerical data

If the data is numerical and also “mixable” or vector-like
 (in the sense of Appendix C), then the
 data points bear a strong resemblance to points in space; hence we
 can use a metric such as the familiar Euclidean
 distance. The Euclidean distance is the most commonly
 used from a large family of related distance measures, which also
 contains the so-called Manhattan (or
 taxicab) distance and
 the maximum (or
 supremum) distance. All
 of these are in fact special cases of a more general
 Minkowski or
 p-distance.[21] Table 13-1 shows some
 examples. (The Manhattan distance is so named because it measures
 distances the way a New York taxicab moves: at right angles, along
 the city blocks. The Euclidean distance measures distances “as the
 crow flies.” Finally, it is an amusing exercise to show that the
 maximum distance corresponds to the Minkowski
 p-distance as p →
 ∞.)
All these distance measures have very similar properties,
 and the differences between them usually do not matter much. The
 Euclidean distance is by far the most commonly used. I list the
 others here mostly to give you a sense of the kind of leeway that
 exists in defining a suitable distance measure—without
 significantly affecting the results!
If the data is numeric but not
 mixable (so that it does not make sense to add a random fraction
 of one data set to a random fraction of a different data set),
 then these distance measures are not appropriate. Instead, you may
 want to consider a metric based on the
 correlation between two data points.
Correlation-based measures are measures of
 similarity: they are large when objects are
 similar and small when the objects are dissimilar. There are two
 related measures: the dot product and the
 correlation coefficient, which are also
 defined in Table 13-1. The only
 difference is that when calculating the correlation coefficient,
 we first center both data points by subtracting their respective
 means.
In both measures, we multiply entries for the same
 “dimension” and sum the results; then we divide by the correlation
 of each data point with itself. Doing so provides a
 normalization and ensures that the
 correlation of any point with itself is always 1. This
 normalization step makes correlation-based distance measures
 suitable for data sets containing data points with widely
 different numeric values.
By construction, the value of a dot product always falls in
 the interval [0, 1], and the correlation coefficient always falls
 in the interval [–1, 1]. You can therefore transform either one
 into a distance measure if need be (e.g., if
 d is the dot product, then 1 –
 d is a proper distance).
I should point out that the dot product has a geometric
 meaning. If we regard the data points as vectors in some suitable
 space, then the dot product of two points is the cosine of the
 angle that the two vectors make with each other. If they are
 perfectly aligned (i.e., they fall onto each
 other), then the angle is 0 and the cosine (and the correlation)
 is 1. If they are at right angles to each other, the cosine is
 0.
Correlation-based distance measures are suitable whenever
 numeric data is not readily mixable—for instance, when evaluating
 the similarity of the time series in Figure 13-5.

Categorical data

If the data is categorical, then we can count the number of
 features that do not agree in both data
 points (i.e., the number of mismatched
 features); this is the Hamming distance. (We
 might want to divide by the total number of features to obtain a
 number between 0 and 1, which is the fraction of
 mismatched features.)
In certain data mining problems, the number of features is
 large, but only relatively few of them will be present for each
 data point. Moreover, the features may be binary: we care only
 whether or not they are present, but their values don’t matter.
 (As an example, imagine a patient’s health record: each possible
 medical condition constitutes a feature, and we want to know
 whether the patient has ever suffered from it.) In such
 situations, where features are not merely categorical but binary
 and sparse (meaning that just a few of the features are On), we
 may be more interested in matches between features that are On
 than in matches between features that are Off. This leads us to
 the Jaccard coefficient
 sJ,
 which is the number of matches between features that are On for
 both points, divided by the number of features that are On in at least one
 of the data points. The Jaccard coefficient is a
 similarity measure; the corresponding
 distance function is the Jaccard distance
 dJ
 = 1 –
 sJ
 .
	n00
	features that are Off in both
 points

	n10
	features that are On in the
 first point, and Off in the second point

	n01
	features that are Off in the
 first point, and On in the second point

	n11
	features that are On in both
 points

	[image:]

There are many other measures of similarity or dissimilarity
 for categorical data, but the principles are always the same. You
 calculate some fraction of matches, possibly emphasizing one
 aspect (e.g., the presence or absence of
 certain values) more than others. Feel free to invent your own—as
 far as I can see, none of these measures has achieved universal
 acceptance or is fundamentally better than any other.

String data

If the data consists of strings, then we can use a form of
 Hamming distance and count the number of mismatches. If the
 strings in the data set are not all of equal length, we can pad
 the shorter string and count the number of characters added as
 mismatches.
If we are dealing with many strings that are rather similar
 to each other (distorted through typos, for instance), then we can
 use a more detailed measure of the difference between them—namely
 the edit or Levenshtein
 distance. The Levenshtein distance is the minimum
 number of single-character operations (insertions, deletions, and
 substitutions) required to transform one string into the other. (A
 quick Internet search will give many references to the actual
 algorithm and available implementations.)
Another approach is to find the length of the
 longest common subsequence. This metric is
 often used for gene sequence analysis in computational
 biology.
This may be a good place to make a more general point: the
 best distance measure to use does not follow automatically from
 data type; rather, it depends on the semantics of the data—or,
 more precisely, on the semantics that you care about for your
 current analysis! In some cases, a simple metric that only
 calculates the difference in string length may be perfectly
 sufficient. In another case, you might want to use the Hamming
 distance. If you really care about the details of otherwise
 similar strings, the Levenshtein distance is most appropriate. You
 might even want to calculate how often each letter appears in a
 string and then base your comparison on that. It all depends on
 what the data means and on what aspect of it you are interested at
 the moment (which may also change as the analysis progresses).
 Similar considerations apply everywhere—there are no “cookbook”
 rules.

Special-purpose metrics

A more abstract measure for the similarity of two
 points is based on the number of neighbors that the two points
 have in common; this metric is known as the shared
 nearest neighbor (SNN) similarity. To calculate the SNN
 for two points x and y,
 you find the k nearest neighbors (using any
 suitable distance function) for both x and
 y. The number of neighbors shared by both
 points is their mutual SNN.
The same concept can be extended to cases in which there is
 some property that the two points may have in common. For example,
 in a social network we could define the “closeness” of two people
 by the number of friends they share, by the number of movies they
 have both seen, and so on. (This application is equivalent to the
 Hamming distance.) Nearest-neighbor-based metrics are particularly
 suitable for high-dimensional data, where other distance measures
 can give spuriously small results.
Finally, let me remind you that sometimes the solution does
 not consist of inventing a new metric. Instead, the trick is to
 map the problem to a different space that already has a
 predefined, suitable metric.
As an example, consider the problem of measuring the degree
 of similarity between different text documents (we here assume
 that these documents are long—hundreds or thousands of words). The
 standard approach to this problem is to count how often each word
 appears in each document. The resulting data structure is referred
 to as the document vector. You can now form a
 dot product between two document vectors as a measure of their
 correspondence.
Technically speaking, we have mapped each document to a
 point in a (high-dimensional) vector space. Each distinct word
 that occurs in any of the documents spans a new dimension, and the
 frequency with which each word appears in a document provides the
 position of that document along this axis. This is very
 interesting, because we have transformed highly structured data
 (text) into numerical, even vector-like data and can therefore now
 manipulate it much more easily. (Of course, the benefit comes at a
 price: in doing so we have lost all information about the sequence
 in which words appeared in the text. It is a separate
 consideration whether this is relevant for our purpose.)
One last comment: one can overdo it when defining distance
 and similarity measures. Complicated or sophisticated definitions
 are usually not necessary as long as you capture the fundamental
 semantics. The Hamming distance and the document vector
 correlation are two good examples of simplified metrics that
 intentionally discard a lot of information yet still turn out to
 be highly successful in practice.

Clustering Methods

In this section, we will discuss several very different
 clustering algorithms. As you will see, the basic ideas behind all
 three algorithms are rather simple, and it is straightforward to
 come up with perfectly adequate implementations of them
 yourself. These algorithms are also important as starting points for
 more sophisticated clustering routines, which usually augment them
 with various heuristics or combine ideas from different
 algorithms.
Different algorithms are suitable for different kinds of
 problems—depending, for example, on the shape and structure of the
 clusters. Some require vector-like data, whereas others require only a
 distance function. Different algorithms tend to be misled by different
 kinds of pitfalls, and they all have different performance
 (i.e., computational complexity) characteristics.
 It is therefore important to have a variety of different algorithms at
 your disposal so that you can choose the one most appropriate for your
 problem and for the kind of solution you seek!
 (Remember: it is pretty much the choice of algorithm that defines what
 constitutes a “cluster” in the end.)
Center Seekers

One of the most popular clustering methods is the
 k-means algorithm. The
 k-means algorithm requires the number of
 expected clusters k as input. (We will later
 discuss how to determine this number.) The
 k-means algorithm is an iterative scheme. The
 main idea is to calculate the position of each cluster’s center (or
 centroid) from the positions of the points
 belonging to the cluster and then to assign points to their nearest
 centroid. This process is repeated until sufficient convergence is
 achieved. The basic algorithm can be summarized as follows:
choose initial positions for the cluster centroids

repeat:
 for each point:
 calculate its distance from each cluster centroid
 assign the point to the nearest cluster

 recalculate the positions of the cluster centroids
The k-means algorithm is
 nondeterministic: a different choice of starting values may result
 in a different assignment of points to clusters. For this reason, it
 is customary to run the k-means algorithm
 several times and then compare the results. If you have previous
 knowledge of likely positions for the cluster centers, you can use
 it to precondition the algorithm. Otherwise, choose random data
 points as initial values.
What makes this algorithm efficient is that you don’t have to
 search the existing data points to find one that would make a good
 centroid—instead you are free to construct a
 new centroid position. This is usually done by calculating the
 cluster’s center of mass. In two dimensions, we would have:
[image: Center Seekers]
where each sum is over all points in the cluster.
 (Generalizations to higher dimensions are straightforward.) You can
 only do this for vector-like data, however, because only such data
 allows us to form arbitrary “mixtures” in this way.
For strictly categorical data (such as the strings in Figure 13-4), the
 k-means algorithm cannot be used (because it is
 not possible to “mix” different points to construct a new centroid).
 Instead, we have to use the k-medoids
 algorithm. The k-medoids algorithm works in the
 same way as the k-means algorithm except that,
 instead of calculating the new centroid, we search through all
 points in the cluster to find the data point (the
 medoid) that has the smallest average distance
 to all other points in the cluster.
The k-means algorithm is surprisingly
 modest in its resource consumption. On each iteration, the algorithm
 evaluates the distance function once for each cluster and each
 point; hence the computational complexity per iteration is
 [image:](k ·
 n), where k is the number
 of clusters and n is the number of points in
 the data set. This is remarkable because it means that the algorithm
 is linear in the number of points. The number
 of iterations is usually pretty small: 10–50 iterations are typical.
 The k-medoids algorithm is more costly because
 the search to find the medoid of each cluster is an
 [image:](n2)
 process. For very large data sets this might be prohibitive, but you
 can try running the k-medoids algorithm on
 random samples of all data points. The results
 from these runs can then be used as starting points for a run using
 the full data set.
Despite its cheap-and-cheerful appearance, the
 k-means algorithm works surprisingly well. It
 is pretty fast and relatively robust. Convergence is usually quick.
 Because the algorithm is simple and highly intuitive, it is easy to
 augment or extend it—for example, to incorporate points with
 different weights. You might also want to experiment with different
 ways to calculate the centroid, possibly using the median position
 rather than the mean, and so on.
That being said, the k-means algorithm
 can fail—annoyingly in situations that exhibit especially strong
 clustering! Because of its iterative nature, the algorithm works
 best in situations that involve gradual density changes. If your
 data sets consists of very dense and widely separated clusters, then
 the k-means algorithm can get “stuck” if
 initially two centroids are assigned to the same cluster: moving one
 centroid to a different cluster would require a large move, which is
 not likely to be found by the mostly local steps taken by the
 k-means algorithm.
Among variants, a particularly important one is
 fuzzy clustering. In fuzzy clustering, we don’t
 assign each point to a single cluster; instead, for each point and
 each cluster, we determine the probability that the point belongs to
 that cluster. Each point therefore acquires a set of
 k probabilities or weights (one for each
 cluster; the probabilities must sum to 1 for each point). We then
 use these probabilities as weights when calculating the centroid
 positions. The probabilities also make it possible to declare
 certain points as “noise” (having low probability of belonging to
 any cluster) and thus can help with data
 sets that contain unclustered “noise” points and with
 ambiguous situations such as the one shown in Figure 13-7.
To summarize:
	The k-means algorithms and its
 variants work best for globular (at least star-convex) clusters.
 The results will be meaningless for clusters with complicated
 shapes and for nested clusters (Figure 13-6 and Figure 13-3,
 respectively).

	The expected number of clusters is required as an input.
 If this number is not known, it will be necessary to repeat the
 algorithm with different values and compare the results.

	The algorithm is iterative and nondeterministic; the
 specific outcome may depend on the choice of starting
 values.

	The k-means algorithm requires vector
 data; use the k-medoids algorithm for
 categorical data.

	The algorithm can be misled if there are clusters of
 highly different size or different density.

	The k-means algorithm is linear in
 the number of data points; the k-medoids
 algorithm is quadratic in the number of points.

Tree Builders

Another way to find clusters is by successively combining
 clusters that are “close” to each other into a larger cluster until
 only a single cluster remains. This approach is known as
 agglomerative hierarchical clustering, and it
 leads to a treelike hierarchy of clusters. Clusters that are close
 to each other are joined early (near the leaves of the tree) and
 more distant clusters are joined late (near the root of the tree).
 (One can also go in the opposite direction, continually splitting
 the set of points into smaller and smaller clusters. When applied to
 classification problems, this leads to a decision
 tree—see Chapter 18.)
The basic algorithm proceeds exactly as just outlined:
	Examine all pairs of clusters.

	Combine the two clusters that are closest to each other
 into a single cluster.

	Repeat.

What do we mean by the distance between
 clusters? The distance measures that we have
 defined are valid only between points! To apply them, we need to
 select (or construct) a single “representative” point from each
 cluster. Depending on this choice, hierarchical clustering will lead
 to different results. The most important alternatives are as
 follows.
Minimum or single link
	We define the distance between two clusters as the
 distance between the two points (one from each cluster) that are
 closest to each other. This choice leads to
 extended, thinly connected clusters. Because of this, this
 approach can handle clusters of complicated shapes, such as
 those in Figure 13-6, but it
 can be sensitive to noise points.

Maximum or complete link
	The distance between two clusters is defined as the
 distance between the two points (one from each cluster) that are
 farthest away from each other. With this
 choice, two clusters are not joined until all points within each
 cluster are connected to each other—favoring compact, globular
 clusters.

Average
	In this case, we form the average over the distances
 between all pairs of points (one from each cluster). This choice
 has characteristics of both the single- and complete-link
 approaches.

Centroid
	For each cluster, we calculate the position of a centroid
 (as in k-means clustering) and define the
 distance between clusters as the distance between
 centroids.

Ward’s method
	Ward’s method measures the distance between two clusters
 in terms of the decrease in coherence that occurs when the two
 clusters are combined: if we combine clusters that are closer
 together, the resulting cluster should be more coherent than if
 we combine clusters that are farther apart. We can measure
 coherence as the average distance of all points in the cluster
 from a centroid, or as their average distance from each other.
 (We’ll come back to cohesion and other cluster properties
 later.)

The result of hierarchical clustering is not actually a set of
 clusters. Instead, we obtain a treelike structure that contains the
 individual data points at the leaf nodes. This structure can be
 represented graphically in a dendrogram (see
 Figure 13-10). To
 extract actual clusters from it, we need to walk the tree, evaluate
 the cluster properties for each subtree, and then cut the tree to
 obtain clusters.
Tree builders are expensive: we need at least the full
 distance matrix for all pairs of points (requiring
 [image:](n2)
 operations to evaluate). Building the complete tree takes
 [image:](n) iterations: there are
 n clusters (initially, points) to start with,
 and at each iteration, the number of clusters is reduced by one
 because two clusters are combined. For each iteration, we need to
 search the distance matrix for the closest pair of clusters—naively
 implemented, this is an [image:](n2)
 operation that leads to a total complexity of [image:](n3)
 operations. However, this can be reduced to [image:](n2
 log n) by using indexed lookup.
One outstanding feature of hierarchical clustering is that it
 does more than produce a flat list of clusters; it also shows their
 relationships in an explicit way. You need to decide whether this
 information is relevant for your needs, but keep in mind that the
 choice of measure for the cluster distance (single- or
 complete-link, and so on) can have a significant influence on the
 appearance of the resulting tree structure.
[image: A typical dendrogram for data like the data in . Individual data points are at the leaf nodes. The vertical distance between the tree nodes represents the dissimilarity between the nodes.]

Figure 13-10. A typical dendrogram for data like the data in Figure 13-5. Individual
 data points are at the leaf nodes. The vertical distance between
 the tree nodes represents the dissimilarity between the
 nodes.

Neighborhood Growers

A third kind of clustering algorithm could be dubbed
 “neighborhood growers.” They work by connecting points that are
 “sufficiently close” to each other to form a cluster and then keep
 doing so until all points have been classified. This approach makes
 the most direct use of the definition of a cluster as a region of
 high density, and it makes no assumptions about the overall
 shape of the cluster. Therefore, such methods
 can handle clusters of complicated shapes (as in Figure 13-6), interwoven
 clusters, or even nested clusters (as in Figure 13-3). In general,
 neighborhood-based clustering algorithms are more of a
 special-purpose tool: either for cases that other algorithms don’t
 handle well (such as the ones just mentioned) or for polishing, in a
 second pass, the features of a cluster found by a general-purpose
 clustering algorithm such as k-means.
The DBSCAN algorithm which we will introduce in this section
 is one such algorithm, and it demonstrates some typical concepts. It
 requires two parameters. One is the minimum
 density that we expect to prevail inside of a
 cluster—points that are less densely packed will not be considered
 part of any cluster. The other parameter is the size of
 the region over which we expect this density to be
 maintained: it should be larger than the average distance between
 neighboring points but smaller than the entire cluster. The choice
 of parameters is rather subtle and clearly requires an appropriate
 balance.
In a practical implementation, it is easier to work with two
 slightly different parameters: the neighborhood radius
 r and the minimum number of points
 n that we expect to find within the
 neighborhood of each point in a cluster. The DBSCAN algorithm
 distinguishes between three types of points: noise, edge, and core
 points. A noise point is a point which has
 fewer than n points in its neighborhood of
 radius r, such a point does not belong to any
 cluster. A core point of a cluster has more
 than n neighbors. An edge
 point is a point that has fewer neighbors than required
 for a core point but that is itself the neighbor of a core point.
 The algorithm discards noise points and concentrates on core points.
 Whenever it finds a core point, the algorithm assigns a cluster
 label to that point and then continues to add all its neighbors, and
 their neighbors recursively to the cluster,
 until all points have been classified.
This description is simple enough, but actually deriving a
 concrete implementation that is both correct and efficient is less
 than straightforward. The pseudo-code in the original paper[22] appears needlessly clumsy; on the other hand, I am not
 convinced that the streamlined version that can be found (for
 example) on Wikipedia is necessarily correct. Finally, the basic
 algorithm lends itself to elegant recursive implementations, but
 keep in mind that the recursion will not unwind until the current
 cluster is complete. This means that, in the worst case (of a single
 connected cluster), you will end up putting the entire data set onto
 the stack!
As pointed out earlier, the main advantage of the DBSCAN
 algorithm is that it handles clusters of complicated shapes and
 nested clusters gracefully. However, it does depend sensitively on
 the appropriate choice of values for its two control parameters, and
 it provides little help in finding them. If a data set contains
 several clusters with widely varying densities, then a single set of
 parameters may not be sufficient to classify all of the clusters.
 These problems can be ameliorated by coupling the DBSCAN algorithm
 with the k-means algorithm: in a first pass,
 the k-means algorithm is used to identify
 candidates for clusters. Moreover, statistics on these subsets of
 points (such as range and density) can be used as input to the
 DBSCAN algorithm.
The DBSCAN algorithm is dominated by the calculations required
 to find the neighboring points. For each point in the data set, all
 other points have to be checked; this leads to a complexity of
 [image:](n2).
 In principle, algorithms and data structures exist to find
 candidates for neighboring points more efficiently
 (e.g., kd-trees and global
 grids), but their implementations are subtle and carry their own
 costs (grids can be very memory intensive). Coupling the DBSCAN
 algorithm with a more efficient first-pass algorithm (such as
 k-means) may therefore be a better
 strategy.

Pre- and Postprocessing

The core algorithm for grouping data points into
 clusters is usually only part (though the most important one) of the
 whole strategy. Some data sets may require some cleanup or
 normalization before they are suitable for clustering: that’s the
 first topic in this section.
Furthermore, we need to inspect the results of every clustering
 algorithm in order to validate and characterize the clusters that have
 been found. We will discuss some concepts and quantities used to
 describe clusters and to measure the clustering quality.
Finally, several cluster algorithms require certain input
 parameters (such as the number of clusters to find), and we need to
 confirm that the values we provided are consistent with the outcome of
 the clustering process. That will be our last topic in this
 section.
Scale Normalization

Look at Figure 13-11 and Figure 13-12. Wouldn’t you
 agree that the data set in Figure 13-11 exhibits two
 reasonably clearly defined and well-separated clusters while the
 data set in Figure 13-12 does not? Yet
 both figures show the same data set—only drawn
 to different scales! In Figure 13-12, I used
 identical units for both the x axis and the
 y axis; whereas Figure 13-11 was drawn to
 maintain a suitable aspect ratio for this data set.
This example demonstrates that clustering is not independent
 of the units in which the data is measured. In fact, for the data
 set shown in Figure 13-11 and Figure 13-12, points in two
 different clusters may be closer to each other than to other points
 in the same cluster! This is clearly a problem.
If, as in this example, your data spans very different ranges
 along different dimensions, you need to normalize the data before
 starting a clustering algorithm. An easy way to achieve this is to
 divide the data, dimension for dimension, by the range of the data
 along that dimension. Alternatively, you might want to divide by the
 standard deviation along that dimension. This process is sometimes
 called whitening or
 prewhitening, particularly in signal-theoretic
 literature.
You only need to worry about this problem if you are working
 with vector-like data and are using a distance measure like the
 Euclidean distance. It does not affect correlation-based similarity
 measures. In fact, there is a special variant of the Euclidean
 distance that performs the appropriate rescaling for each dimension
 on the fly: the Mahalanobis distance.

Cluster Properties and Evaluation

It is easiest to think about cluster properties in the context
 of vector-like data and a straightforward clustering algorithm such
 as k-means. The algorithm already gives us the
 coordinates of the cluster centroids directly, hence
 we have the cluster location. Two additional
 quantities are the mass of the cluster
 (i.e., the number of points in the cluster) and
 its radius. The radius is simply the average
 deviation of all points from the cluster center—basically the
 standard deviation, when using the Euclidean distance:
[image: Cluster Properties and Evaluation]
[image: It is easy to argue that there are two clusters in this graph. (Compare .)]

Figure 13-11. It is easy to argue that there are two clusters in this
 graph. (Compare Figure 13-12.)

in two dimensions (equivalently in higher dimensions). Here
 xc
 and
 yc
 are the coordinates of the center of the cluster, and the sum runs
 over all points i in the cluster. Dividing the
 mass by the radius gives us the density of the
 cluster. (These values can be used to construct input values for the
 DBSCAN algorithm.)
We can apply the same principles to develop a measure for the
 overall quality of the clustering. The key concepts are
 cohesion within a cluster and
 separation between clusters. The average
 distance for all points within one cluster is a measure of the
 cohesion, and the average distance between all points in one cluster
 from all points in another cluster is a measure of the separation
 between the two clusters. (If we know the centroids of the clusters,
 we can use the distance between the centroids as a measure for the
 separation.) We can go further and form the average (weighted by the
 cluster mass) of the cohesion for all clusters as a measure for the
 overall quality.
If a data set can be cleanly grouped into clusters, then we
 expect the distance between the clusters to be large compared to the
 radii of the clusters. In other words, we expect the ratio:
[image: It is easy to argue that there are two clusters in this graph. (Compare .)]
to be large.
[image: It is difficult to recognize two well-separated clusters in this figure. Yet the data is the same as in but drawn to a different scale! (Compare the horizontal and vertical scales in both graphs.)]

Figure 13-12. It is difficult to recognize two well-separated clusters in
 this figure. Yet the data is the same as in Figure 13-11 but drawn to
 a different scale! (Compare the horizontal and vertical scales in
 both graphs.)

A particular measure based on this concept is the
 silhouette coefficient S.
 The silhouette coefficient is defined for individual points as
 follows. Let
 ai
 be the average distance (the cohesion) that point
 i has from all other points in the cluster to
 which it belongs. Evaluate the average distance that point
 i has from all points in any cluster to which
 it does not belong, and let
 bi
 be the smallest such value (i.e.,
 bi
 is the separation from the “closest” other cluster). Then the
 silhouette coefficient of point i is defined
 as:
[image: It is difficult to recognize two well-separated clusters in this figure. Yet the data is the same as in but drawn to a different scale! (Compare the horizontal and vertical scales in both graphs.)]
The numerator is a measure for the “empty space” between
 clusters (i.e., it measures the amount of
 distance between clusters that is not occupied by the original
 cluster). The denominator is the greater of the two length scales in
 the problem—namely the cluster radius and the distance between
 clusters.
By construction, the silhouette coefficient ranges from –1 to
 1. Negative values indicate that the cluster radius is
 greater than the distance between clusters, so
 that clusters overlap; this suggests poor clustering. Large values
 of S suggest good clustering. We can form the
 average of the silhouette coefficients for all points belonging to a
 single cluster and thereby develop a measure for the quality of the
 entire cluster. We can further define the average over the
 silhouette coefficients for all individual points as the overall
 silhouette coefficient for the entire data set; this would be a
 measure for the quality of the clustering result.
The overall silhouette coefficient can be useful to determine
 the number of clusters present in the data set. If we run the
 k-means algorithm several times for different
 values of the expected number of clusters and calculate the
 overall silhouette coefficient each time, then it should exhibit a
 peak near the optimal number of clusters.
[image: How many clusters are in this data set?]

Figure 13-13. How many clusters are in this data set?

Let’s work through an example to see how the the silhouette
 coefficient performs in practice. Figure 13-13 shows the
 points of a two-dimensional data set. This is an interesting data
 set because, even though it exhibits clear clustering, it is not at
 all obvious how many distinct clusters there
 really are—any number between six and eight seems plausible. The
 total silhouette coefficient (averaged over all points in the data
 set) for this data set (see Figure 13-14) confirms this
 expectation, clearly leaning toward the lower end of this range. (It
 is interesting to note that the data set was generated, using a
 random-number generator, to include 10 distinct
 clusters, but some of those clusters are overlapping so strongly
 that it is not possible to distinguish them.) This example also
 serves as a cautionary reminder that it may not always be so easy to
 determine what actually constitutes a cluster!
Another interesting question concerns distinguishing
 legitimate clusters from a random (unclustered) background. Of the
 algorithms that we have seen, only the DBSCAN algorithm explicitly
 labels some points as background; the k-means
 and the tree-building algorithm perform what is known as
 complete clustering by assigning every point to
 a cluster. We may want to relax this behavior by trimming those
 points from each cluster that exceed the average cohesion within the
 cluster by some amount. This is easiest for fuzzy clustering
 algorithms, but it can be done for other algorithms as well.

Other Thoughts

The three types of clustering algorithms introduced in this
 chapter are probably the most popular and widely used, but they
 certainly don’t exhaust the range of possibilities.
[image: The silhouette coefficient for the data in . According to this measure, six or seven clusters give optimal results for this data set.]

Figure 13-14. The silhouette coefficient for the data in Figure 13-13. According to
 this measure, six or seven clusters give optimal results for this
 data set.

Here is a brief list of other ideas that can (and have)
 been used to develop clustering algorithms.
	We can impose a specific topology, such
 as a grid on the data points. Each data point will fall into a
 single grid cell, and we can use this information to find cells
 containing unusually many points and so guide clustering.
 Cell-based methods will perform poorly in many dimensions, because
 most cells will be empty and have few occupied neighbors (the
 “curse of dimensionality”).

	Among grid-based approaches, Kohonen maps (which we will
 discuss in Chapter 14) have a lot
 of intuitive appeal.

	Some special methods have been suggested to address the
 challenges posed by high-dimensional feature spaces. In
 subspace clustering, for example, clustering
 is performed on only a subset of all available features. These
 results are then successively extended by including features
 ignored in previous iterations.

	Remember kernel density estimates (KDEs) from Chapter 2? If the
 dimensionality is not too high, then we can generate a KDE for the
 data set. The KDE provides a smooth approximation to the local
 point density. We can then identify clusters by finding the maxima
 of this density directly, using standard methods from numerical
 analysis.

	The QT (“quality threshold”) algorithm is a center-seeking
 algorithm that does not require the number of clusters as input;
 instead, we have to fix a maximum radius. The
 QT algorithm treats every point in the
 cluster as a potential centroid and adds neighboring points (in
 the order of increasing distance from the centroid) until the
 maximum radius is exceeded. Once all candidate clusters have been
 completed in this way, the cluster with the greatest number of points
 is removed from the data set, and then the process starts again
 with the remaining points.

	There is a well-known correspondence between graphs and
 distance matrices. Given a set of points, a graph tells us which
 points are directly connected to each other—but so does a distance
 matrix! We can exploit this equivalence by treating a distance
 matrix as the adjacency matrix of a graph. The distance matrix is
 pruned (by removing connections that are too long) to obtain a
 sparse graph, which can be interpreted as the backbone of a
 cluster.

	Finally, spectral clustering uses
 powerful but abstract methods from linear algebra (similar to
 those used for principal component analysis; see Chapter 14) to
 structure and simplify the distance matrix.

Obviously, much depends on our prior knowledge about the data
 set: if we expect clusters to be simple and convex, then the
 k-means algorithm suggests itself. On the other
 hand, if we have a sense for the typical radius of the clusters that
 we expect to find, then QT clustering would be a more natural
 approach. If we expect clusters of complicated shapes or nested
 clusters, then an algorithm like DBSCAN will be required. Of course,
 it might be difficult to develop this kind of intuition—especially for
 problems that have significantly more than two or three
 dimensions!
Besides thinking of different ways to combine points into
 clusters, we can also think of different ways to define clusters to
 begin with. All methods discussed so far have relied (directly or
 indirectly) on the information contained in the distance between any
 two points. We can extend this concept and begin to think about
 three-point (or higher) distance
 functions. For example, it is possible to determine the
 angle between any three consecutive points and
 use this information as the measure of the similarity between points.
 Such an approach might help with cases like the one shown in Figure 13-8. Yet another idea
 is to measure not the similarity between points
 but instead the similarity between a point and a property of
 the cluster. For example, there is a straightforward
 generalization of the k-means algorithm in which
 the centroids are no longer pointlike but are straight lines,
 representing the “axis” of an elongated cluster. Rather than measuring
 the distance for each point from the centroid, this algorithm
 calculates the distance from this axis when assigning points to
 clusters. This algorithm would be suitable for cases like that shown
 in Figure 13-7. I
 don’t think any of these ideas that try to generalize beyond pairwise
 distances have been explored in detail yet.

A Special Case: Market Basket Analysis

Which items are frequently bought together? This and similar
 questions arise in market basket analysis or—more
 generally—in association analysis. Because
 association analysis is looking for items that occur together, it is
 in some ways related to clustering. However, the specific nature of
 the problem is different enough to require a separate toolset.
The starting point for association analysis is usually a
 data set consisting of transactions—that is,
 items that have been purchased together (we will often stay with the
 market basket metaphor when illustrating these concepts). Each
 transaction corresponds to a single “data point” in regular
 clustering.
For each transaction, we keep track of all items that have
 occurred together but typically ignore whether or not any particular
 item was purchased multiple times: all attributes are Boolean and
 indicate only the presence or absence of a certain item. Each item
 spans a new dimension: if the store sells N
 different items, then each transaction can have up to
 N different (Boolean) attributes, although each
 transaction typically contains only a tiny subset of the entire
 selection. (Note that we do not necessarily need to know the
 dimensionality N ahead of time: if we don’t know
 it, we can infer an approximation from the number of different items
 that actually occur in the data set.)
From this description, you can already see how association
 analysis differs from regular clustering: data points in association
 analysis are typically very high-dimensional but also very sparse. It
 also differs from clustering (as we have discussed it so far) in that
 we are not necessarily interested in grouping entire “points”
 (i.e., transactions) but would like to identify
 those dimensions that frequently occur together.
A group of zero or more items occurring together is known as an
 item set (or itemset). Each
 transaction consists of an item set, but every one of its subsets is
 also an item set. We can construct arbitrary item sets from the
 selection of available items. For each such item set, its
 support count is the number of actual
 transactions that contain the candidate item set as a subset.
Besides simply identifying frequent item sets, we can also try
 to derive association rules—that is, rules of the
 form “if items A and B are bought, then item C is also likely to be
 bought.” Two measures are important when evaluating the strength of an
 association rule: its support s and its
 confidence c. The support of
 a rule is the fraction of transactions in the entire data set that
 contain the combined item set (i.e., the fraction
 of transactions that contain all three items A, B, and C). A rule with
 low support is not very useful because it is rarely applicable.
The confidence is a measure for the
 reliability of an association rule. It is defined as the number of
 transactions in which the rule is correct,
 divided by the number of transactions in which it is
 applicable. In our example, it would be the
 number of times A, B, and C occur together divided by the number of
 times A and B occur together.
How do we go about finding frequent item sets (and association
 rules)? Rather than performing an open-ended search for the “best”
 association rule, it is customary to set thresholds for the minimum
 support (such as 10 percent) and confidence (such as 80 percent)
 required of a rule and then to generate all rules that meet these
 conditions.
To identify rules, we generate candidate item sets and
 then evaluate them against the set of transactions to determine
 whether they exceed the required thresholds. However, the naive
 approach—to create and evaluate all possible item
 sets of k elements—is not feasible because of the
 huge number (2k) of
 candidate item sets that could be generated, most of which will
 not be frequent! We must find a way to generate
 candidate item sets more efficiently.
The crucial observation is that an item set can occur
 frequently only if all of its subsets occur frequently.
 This insight is the basis for the so-called apriori
 algorithm, which is the most fundamental algorithm for
 association analysis.
The apriori algorithm is a two-step algorithm: in the first
 step, we identify frequent item sets; in the second step, we extract
 association rules. The first part of the algorithm is the more
 computationally expensive one. It can be summarized as follows.
Find all 1-item item sets that meet the minimum support threshold.

repeat:
 from the current list of k-item item sets, construct (k+1)-item item sets
 eliminate those item sets that do not meet the minimum support threshold
 stop when no (k+1)-item item set meets the minimum support threshold
The list of frequent item sets may be all that we require, or we
 may postprocess the list to extract explicit association rules. To
 find association rules, we split each frequent item set into two sets,
 and evaluate the confidence associated with this pair. From a
 practical point of view, rules that have a 1-item item set on the
 “righthand side” are the easiest to generate and the most important.
 (In other words, rules of the form “people who bought A and B also
 bought C,” rather than rules of the form “people who bought A and B
 also bought C and D.”)
This basic description leaves out many technical details, which
 are important in actual implementations. For example: how exactly do
 we create a (k + 1)-item item set from the list
 of k-item item sets? We might take every single
 item that occurs among the k-item item sets and
 add it, in turn, to every one of the k-item item
 sets; however, this would generate a large number of duplicate item
 sets that need to be pruned again. Alternatively, we might combine two
 k-item item sets only if they agree on all but
 one of their items. Clearly, appropriate data structures are essential
 for obtaining an efficient implementation. (Similar considerations
 apply when determining the support count of a candidate item set, and
 so on.)[23]
Although the apriori algorithm is probably the most popular
 algorithm for association analysis, there are also very different
 approaches. For example, the FP-Growth Algorithm
 (where FP stands for “Frequent Pattern”) identifies frequent item sets
 using something like a string-matching algorithm. Items in
 transactions are sorted by their support count, and a treelike data
 structure is built up by exploiting data sets that agree in the first
 k items. This tree structure is then searched for
 frequently occurring item sets.
Association analysis is a relatively complicated problem that
 involves many technical (as opposed to conceptual) challenges as well.
 The discussion in this section could only introduce the topic and
 attempt to give a sense of the kinds of approaches that are available.
 We will see some additional problems of a similar nature in Chapter 18.

A Word of Warning

Clustering can lead you astray, and when done carelessly it can
 become a huge waste of time. There are at least two reasons for this:
 although the algorithms are deceptively simple, it can be surprisingly
 difficult to obtain useful results from them. Many of them depend
 quite sensitively on several heuristic parameters, and you can spend
 hours fiddling with the various knobs. Moreover, because the
 algorithms are simple and the field has so much intuitive appeal, it
 can be a lot of fun to play with implementations and to develop all
 kinds of modifications and variations.
And that assumes there actually are any clusters present! (This
 is the second reason.) In the absence of rigorous, independent
 results, you will actually spend more time on
 data sets that are totally worthless—perpetually hunting for those
 clusters that “the stupid algorithm just won’t find.” Perversely,
 additional domain knowledge does not necessarily make the task any
 easier: knowing that there should be exactly 10 clusters present in
 Figure 13-13 is of no
 help in finding the clusters that actually can be identified!
Another important question concerns the value that you
 ultimately derive from clustering (assuming now that at least one of
 the algorithms has returned something apparently meaningful). It can
 be difficult to distinguish spurious results from real ones: like
 clustering algorithms, cluster evaluation methods are not particularly
 rigorous or unequivocal either (Figure 13-14 does not exactly
 inspire confidence). And we still have not answered the question of
 what you will actually do with the
 results—assuming that they turn out to be significant.
I have found that understanding the actual question that needs
 to be answered, developing some pertinent hypotheses and models around
 it, and then verifying them on the data through specific, focused
 analysis is usually a far better use of time than to go off on a
 wild-goose clustering search.
Finally, I should emphasize that, in keeping with the spirit of
 this book, the algorithms in this chapter are suitable for moderately
 sized data sets (a few thousand data points and a dozen dimensions, or
 so) and for problems that are not too pathological. Highly developed
 algorithms (e.g., CURE and BIRCH) exist for very
 large or very high-dimensional problems; these algorithms usually
 combine several different cluster-finding approaches together with a set of heuristics. You need to evaluate
 whether such specialized algorithms make sense for your
 situation.

Workshop: Pycluster and the C Clustering Library

The C Clustering Library (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm)
 is a mature and relatively efficient clustering library originally
 developed to find clusters among gene expressions in microarray
 experiments. It contains implementations of the
 k-means and k-medoids
 algorithms, tree clustering, and even self-organized (Kohonen) maps.
 It comes with its own GUI frontend as well as excellent Perl and
 Python bindings. It is easy to use and very well documented. In this
 Workshop, we use Python to demonstrate the library’s center-seeker
 algorithms.
import Pycluster as pc
import numpy as np
import sys

Read data filename and desired number of clusters from command line
filename, n = sys.argv[1], int(sys.argv[2])

x and y coordinates, whitespace-separated
data = np.loadtxt(filename, usecols=(0,1))

Perform clustering and find centroids
clustermap = pc.kcluster(data, nclusters=n, npass=50)[0]
centroids = pc.clustercentroids(data, clusterid=clustermap)[0]

Obtain distance matrix
m = pc.distancematrix(data)

Find the masses of all clusters
mass = np.zeros(n)
for c in clustermap:
 mass[c] += 1

Create a matrix for individual silhouette coefficients
sil = np.zeros(n*len(data))
sil.shape = (len(data), n)

Evaluate the distance for all pairs of points
for i in range(0, len(data)):
 for j in range(i+1, len(data)):
 d = m[j][i]

 sil[i, clustermap[j]] += d
 sil[j, clustermap[i]] += d

Normalize by cluster size (that is: form average over cluster)
for i in range(0, len(data)):
 sil[i,:] /= mass

Evaluate the silhouette coefficient
s = 0
for i in range(0, len(data)):
 c = clustermap[i]
 a = sil[i,c]
 b = min(sil[i, range(0,c)+range(c+1,n)])
 si = (b-a)/max(b,a) # This is the silhouette coeff of point i
 s += si

Print overall silhouette coefficient
print n, s/len(data)
The listing shows the code used to generate Figure 13-14, showing how the
 silhouette coefficient depends on the number of clusters. Let’s step
 through it.
We import both the Pycluster
 library itself as well as the NumPy package. We will use some of the
 vector manipulation abilities of the latter. The point coordinates are
 read from the file specified on the command line. (The file is assumed
 to contain the x and y
 coordinates of each point, separated by whitespace; one point per
 line.) The point coordinates are then passed to the kcluster() function, which performs the
 actual k-means algorithm. This function takes a
 number of optional arguments: nclusters is the desired number of clusters,
 and npass holds the number of
 trials that should be performed with different
 starting values. (Remember that k-means
 clustering is nondeterministic with regard to the initial guesses for
 the positions of the cluster centroids.) The kcluster() function will make npass different trials and report on the
 best one.
The function returns three values. The first return value is an
 array that, for each point in the original data set, holds the index
 of the cluster to which it has been assigned. The second and third
 return values provide information about the quality of the clustering
 (which we ignore in this example). This function signature is a
 reflection of the underlying C API, where you pass in an array of the
 same length as the data array and then the cluster assignments of each
 point are communicated via this additional array. This frees the
 kcluster() function from having to
 do its own resource management, which makes sense in C (and possibly
 also for extremely large data sets).
All information about the result of the clustering procedure are
 contained in the clustermap data
 structure. The Pycluster library
 provides several functions to extract this information; here we
 demonstrate just one: we can pass the clustermap to the clustercentroids() function to obtain the
 coordinates of the cluster centroids. (However, we won’t actually use
 these coordinates in the rest of the program.)
You may have noticed that we did not specify the distance
 function to use in the listing. The C Clustering Library does
 not give us the option of a user-defined distance
 function with k-means. It does include several
 standard distance measures (Euclidean, Manhattan, correlation, and
 several others), which can be selected through a keyword argument to
 kcluster() (the default is to use
 the Euclidean distance). Distance calculations can be a rather
 expensive part of the algorithm, and having them implemented in C
 makes the overall program faster. (If we want to define our own
 distance function, then we have to use the kmedoids() function, which we will discuss
 in a moment.)
[image: The result of running the k-means algorithm on the data from , finding six clusters. Different clusters are shown in black and gray, and the cluster centroids are indicated by filled dots.]

Figure 13-15. The result of running the k-means algorithm on the data from
 Figure 13-13, finding
 six clusters. Different clusters are shown in black and gray, and
 the cluster centroids are indicated by filled dots.

To evaluate the silhouette coefficient we need the
 point-to-point distances, and so we obtain the distance matrix from
 the Pycluster library. We will also
 need the number of points in each cluster (the cluster’s “mass”)
 later.
Next, we calculate the individual silhouette coefficients for
 all data points. Recall that the silhouette coefficient involves both
 the average distance to the all points in the
 same cluster as well as the average distance to
 all points in the nearest cluster. Since we don’t
 know ahead of time which one will be the nearest cluster to each
 point, we simply go ahead and calculate the average distance to
 all clusters. The results are stored in the
 matrix sil.
(In the implementation, we make use of some of the vector
 manipulation features of NumPy: in the expression sil[i,:] /= mass, each entry in row i is divided componentwise by the
 corresponding entry in mass.
 Further down, we make use of “advanced indexing” when looking for the
 minimum distance between the point i and a cluster to which it does not belong:
 in the expression b = min(sil[i,
 range(0,c)+range(c+1,n)]), we construct an indexing vector
 that includes indices for all clusters except the one that the point
 i belongs to. See the Workshop in
 Chapter 2 for more
 details.)
Finally, we form the average over all single-point silhouette
 coefficients and print the results. Figure 13-14 shows them as a
 graph.
Figure 13-15 and
 Figure 13-16 show how
 the program assigned points to clusters in two runs, finding 6 and 10
 clusters, respectively. These results agree with Figure 13-14:
 k = 6 is close to the optimal number of clusters,
 whereas k = 10 seems to split some clusters
 artificially.
[image: Similar to but for k = 10. Ten seems too high a number of clusters for this data set, which agrees with the results from calculating the silhouette coefficient in .]

Figure 13-16. Similar to Figure 13-15 but for k = 10.
 Ten seems too high a number of clusters for this data set, which
 agrees with the results from calculating the silhouette coefficient
 in Figure 13-14.

The next listing demonstrates the kmedoids() function, which we have to use if
 we want to provide our own distance function. As implemented by the
 Pycluster library, the
 k-medoids algorithm does not
 require the data at all—all it needs is the distance matrix!
import Pycluster as pc
import numpy as np
import sys

Our own distance function: maximum norm
def dist(a, b):
 return max(abs(a - b))

Read data filename and desired number of clusters from command line
filename, n = sys.argv[1], int(sys.argv[2])

x and y coordinates, whitespace-separated
data = np.loadtxt(filename, usecols=(0,1))
k = len(data)

Calculate the distance matrix
m = np.zeros(k*k)
m.shape = (k, k)

for i in range(0, k):
 for j in range(i, k):
 d = dist(data[i], data[j])
 m[i][j] = d
 m[j][i] = d

Perform the actual clustering
clustermap = pc.kmedoids(m, n, npass=20)[0]

Find the indices of the points used as medoids, and the cluster masses
medoids = {}
for i in clustermap:
 medoids[i] = medoids.get(i,0) + 1

Print points, grouped by cluster
for i in medoids.keys():
 print "Cluster=", i, " Mass=", medoids[i], " Centroid: ", data[i]

 for j in range(0, len(data)):
 if clustermap[j] == i:
 print "\t", data[j]
In the listing, we calculate the distance matrix using the
 maximum norm (which is not supplied by Pycluster) as distance function. Obviously,
 we could use any other function here—such as the Levenshtein distance
 if we wanted to cluster the strings in Figure 13-4.
We then call the kmedoids()
 function, which returns a clustermap data structure similar to the one
 returned by kcluster(). For the
 kmedoids() function, the data
 structure contains—for each data point—the index of the data point
 that is the centroid of the assigned cluster.
Finally, we calculate the masses of the clusters and print the
 coordinates of the cluster medoids as well as the coordinates of all
 points assigned to that cluster.
The C Clustering Library is small and relatively easy to use.
 You might also want to explore its tree-clustering implementation. The
 library also includes routines for Kohonen maps and principal
 component analysis, which we will discuss in Chapter 14.

Further Reading

	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
 Addison-Wesley. 2005.
This is my favorite book on data mining. The presentation is
 compact and more technical than in most other books on this topic.
 The section on clustering is particularly strong.

	Data Clustering: Theory, Algorithms, and
 Applications. Guojun Gan, Chaoqun Ma, and Jianhong Wu. SIAM.
 2007.
This book is a recent survey of results from clustering
 research. The presentation is too terse to be useful, but it
 provides a good source of concepts and keywords for further
 investigation.

	Algorithms for Clustering
 Data. Anil K. Jain and Richard C. Dubes. Prentice Hall. 1988. An
 older book on clustering as freely available at http://www.cse.msu.edu/~jain/Clustering_Jain_Dubes.pdf.

	Metric Spaces: Iteration and
 Application. Victor Bryant. Cambridge University Press. 1985. If you
 are interested in thinking about distance measures in arbitrary
 spaces in a more abstract way, then this short (100-page) book
 is a wonderful introduction. It requires no more than some
 passing familiarity with real analysis, but it does a remarkable
 job of demonstrating the power of purely abstract reasoning—both
 from a conceptual point of view but also with an eye to real
 applications.

[21] The Minkowski distance defined here
 should not be confused with the Minkowski
 metric, which defines the metric of the
 four-dimensional space-time in special relativity.

[22] “A Density-Based Algorithm for Discovering Clusters in
 Large Spatial Databases with Noise.” Martin Ester, Hans-Peter
 Kriegel, Jörg Sander, and Xiaowei Xu. Proceedings of 2nd
 International Conference on Knowledge Discovery and Data Mining
 (KDD-96). 1996.

[23] An open source implementation of the apriori algorithm (and
 many other algorithms for frequent pattern identification),
 together with notes on efficient implementation, can be found at
 http://borgelt.net/apriori.html. The
 arules package for R is an
 alternative. It can be found on CRAN.

Chapter 14. Seeing the Forest for the Trees: Finding Important
 Attributes

WHAT DO
 YOU DO WHEN YOU DON’T KNOW WHERE TO START? WHEN YOU ARE DEALING WITH A
 DATA SET THAT offers no structure that would
 suggest an angle of attack?
For example, I remember looking through a company’s contracts with
 its suppliers for a certain consumable. These contracts all differed in
 regards to the supplier, the number of units ordered, the duration of
 the contract and the lead time, the destination location that the items
 were supposed to be shipped to, the actual shipping date, and the
 procurement agent that had authorized the contract—and, of course, the
 unit price. What I tried to figure out was which of these quantities had
 the greatest influence on the unit price.
This kind of problem can be very difficult: there are so many
 different variables, none of which seems, at first glance, to be
 predominant. Furthermore, I have no assurance that the variables are all
 independent; many of them may be expressing related information. (In
 this case, the supplier and the shipping destination may be related,
 since suppliers are chosen to be near the place where the items are
 required.)
Because all variables arise on more or less equal footing, we
 can’t identify a few as the obvious “control” or independent variables
 and then track the behavior of all the other variables in response to
 these independent variables. We can try to look at all possible
 pairings—for example, using graphical techniques such as scatter-plot
 matrices (Chapter 5)—but that may not
 really reveal much either, particularly if the number of variables is
 truly large. We need some form of computational guidance.
In this chapter, we will introduce a number of different
 techniques for exactly this purpose. All of them help us select the most
 important variables or features from a multivariate
 data set in which all variables appear to arise on equal footing. In
 doing so, we reduce the dimension of the data set from the original
 number of variables (or features) to a smaller set, which (hopefully)
 captures most of the “interesting” behavior of the data. These methods
 are therefore also known as feature selection or
 dimensionality reduction techniques.
A word of warning: the material in this chapter is probably the
 most advanced and least obvious in the whole book, both conceptually and
 also with respect to actual implementations. In particular, the
 following section (on principal component analysis) is very abstract,
 and it may not make much sense if you haven’t had some previous exposure
 to matrices and linear algebra (including eigentheory). Other sections
 are more accessible.
I include these techniques here nevertheless, because they are of
 considerable practical importance but also to give you a sense of the
 kinds of (more advanced) techniques that are available, and also as a
 possible pointer for further study.
Principal Component Analysis

Principal component analysis (PCA) is the primary tool for
 dimensionality reduction in multivariate problems. It is a
 foundational technique that finds applications as part of many other,
 more advanced procedures.
Motivation

To understand what PCA can do for us, let’s consider a simple
 example. Let’s go back to the contract example given earlier and now
 assume that there are only two variables for each contract: its lead
 time and the number of units to be delivered. What can we say about
 them? Well, we can draw histograms for each to understand the
 distribution of values and to see whether there are “typical” values
 for either of these quantities. The histograms (in the form of
 kernel density estimates—see Chapter 2) are shown in
 Figure 14-1 and
 don’t reveal anything of interest.
Because there are only two variables in this case, we can also
 plot one variable against the other in a scatter plot. The resulting
 graph is shown in Figure 14-2 and is very
 revealing: the lead time of the contract grows with its size. So
 far, so good.
But we can also look at Figure 14-2 in a different
 way. Recall that the contract data depends on two variables (lead
 time and number of items), so that we would expect the points to
 fill the two-dimensional space spanned by the two axes (lead time
 and number of items). But in reality, all the points fall very close
 to a straight line. A straight line, however, is only
 one-dimensional, and this means that we need only a
 single variable to describe the position of
 each point: the distance along the straight line. In other words,
 although it appears to depend on two variables, the contract data
 mostly depends on a single variable that lies
 halfway between the original ones. In this sense, the data is of
 lower dimensionality than it originally appeared.
[image: Contract data: distribution of points for the lead time and the number of units per order. The distributions do not reveal anything in particular about the data.]

Figure 14-1. Contract data: distribution of points for the lead time and
 the number of units per order. The distributions do not reveal
 anything in particular about the data.

[image: Contract data: individual contracts in a scatter plot spanned by the two original variables. All the points fall close to a straight line that is not parallel to either of the original coordinate axes.]

Figure 14-2. Contract data: individual contracts in a scatter plot
 spanned by the two original variables. All the points fall close
 to a straight line that is not parallel to either of the original
 coordinate axes.

Of course, the data still depends on two variables—as it did
 originally. But most of the variation in the
 data occurs along only one direction. If we were to measure the data
 only along this direction, we would still capture most of what is
 “interesting” about the data. In Figure 14-3, we see another
 kernel density estimate of the same data, but this time not taken
 along the original variables but instead showing the distribution of
 data points along the two “new” directions indicated by the arrows in
 the scatter plot of Figure 14-2. In contrast to
 the variation occurring along the “long” component, the “short”
 component is basically irrelevant.
[image: Contract data: distribution of points along the principal directions. Most of the variation is along the “long” direction, whereas there is almost no variation perpendicular to it. (The vertical scales have been adjusted to make the curves comparable.)]

Figure 14-3. Contract data: distribution of points along the principal
 directions. Most of the variation is along the “long” direction,
 whereas there is almost no variation perpendicular to it. (The
 vertical scales have been adjusted to make the curves
 comparable.)

For this simple example, which had only two variables to begin
 with, it was easy enough to find the lower-dimensional
 representation just by looking at it. But that won’t work when there
 are significantly more than two variables involved. If there aren’t
 too many variables, then we can generate a scatter-plot matrix (see
 Chapter 5)
 containing all possible pairs of variables, but even this becomes
 impractical once there are more than seven or eight variables.
 Moreover, scatter-plot matrices can never show us more than the
 combination of any two of the original variables. What if the data
 in a three-dimensional problem falls onto a straight line that runs
 along the space diagonal of the original
 three-dimensional data cube? We will not find this by plotting the
 data against any (two-dimensional!) pair of the original
 variables.
Fortunately, there is a calculational scheme that—given a set
 of points—will give us the principal directions (in essence, the
 arrows in Figure 14-2) as a
 combination of the original variables. That is the topic of the next
 section.

Optional: Theory

We can make progress by using a technique that works for many
 multi-dimensional problems. If we can summarize the available
 information regarding the multi-dimensional system in
 matrix form, then we can invoke a large and
 powerful body of results from linear algebra to transform this matrix into a form that
 reveals any underlying structure (such as the structure visible in
 Figure 14-2).
In what follows, I will often appeal to the two-dimensional
 example of Figure 14-2, but the real
 purpose here is to develop a procedure that will be applicable to
 any number of dimensions. These techniques become necessary when the
 number of dimensions exceeds two or three so that simple
 visualizations like the ones discussed so far will no longer
 work.
To express what we know about the system, we first need to ask
 ourselves how best to summarize the way any two variables relate to
 each other. Looking at Figure 14-2, the
 correlation coefficient suggests itself. In
 Chapter 13, we introduced the correlation
 coefficient as a measure for the similarity between two
 multi-dimensional data points
 x and y. Here, we use the
 same concept to express the similarity between two
 dimensions in a multivariate data set. Let
 x and y be two different
 dimensions (“variables”) in such a data set, then the correlation
 coefficient is defined by:
[image: Optional: Theory]
where the sum is over all data points, x̄ and ȳ are the means
 of the
 xi
 and the
 yi,
 respectively, and [image:] is the standard deviation of
 x (and equivalently for
 y). The denominator in the expression of the
 correlation coefficient amounts to a rescaling of the values of both
 variables to a standard interval. If that is not what we want, then
 we can instead use the covariance between the
 xi
 and the
 yi:
[image: Optional: Theory]
All of these quantities can be defined for
 any two variables (just supply values for, say
 xi
 and
 zi).
 For a p-dimensional problem, we can find all
 the p(p – 1)/2 different
 combinations (remember that these coefficients are symmetric:
 cov(x, y) =
 cov(y, x)).
It is now convenient to group the values in a matrix, which is
 typically called Σ (not to be confused with the summation
 sign!)
[image: Optional: Theory]
and similarly for the correlation matrix. Because the
 covariance (or correlation) itself is symmetric under an interchange
 of its arguments, the matrix Σ is also symmetric (so that it equals
 its transpose).
We can now invoke an extremely important result from
 linear algebra, known as the spectral decomposition
 theorem, as follows. For any real,
 symmetric N × N
 matrix A, there
 exists an orthogonal matrix U
 such that:
[image: Optional: Theory]
is a diagonal matrix.
Let’s explain some of the terminology. A matrix is
 diagonal if its only nonzero entries are along
 the main diagonal from the top left to the bottom right. A matrix is
 orthogonal if its transpose equals its inverse:
 UT
 = U–1 or
 UT
 U =
 UUT
 = 1.
The entries λi in
 the diagonal matrix are called the eigenvalues
 of matrix A, and the column vectors of
 U are the eigenvectors.
 The spectral theorem also implies that all eigenvectors are mutually
 orthogonal. Finally, the ith column vector in
 U is the eigenvector “associated” with the
 eigenvalue λi; each
 eigenvalue has an associated eigenvector.
What does all of this mean? In a nutshell, it means that we
 can perform a change of variables that turns any symmetric matrix
 A into a diagonal matrix
 B. Although it may not be obvious, the matrix
 B contains the same information as
 A—it’s just packaged differently.
The change of variables required for this transformation
 consists of a rotation of the original
 coordinate system into a new coordinate system in which the
 correlation matrix has a particularly convenient (diagonal) shape.
 (Notice how in Figure 14-2, the new
 directions are rotated with respect to the original horizontal and
 vertical axes.)
When expressed in the original coordinate system
 (i.e., the original variables that the problem
 was initially expressed in), the matrix Σ is a complicated object
 with off-diagonal entries that are nonzero. However, the
 eigenvectors span a new coordinate system that is rotated with
 respect to the old one. In this new coordinate system, the matrix
 takes on a simple, diagonal form in which all entries that are not
 on the diagonal vanish. The arrows in Figure 14-2 show the
 directions of the new coordinate axes, and the histogram in Figure 14-3 measures the
 distribution of points along these new directions.
The purpose of performing a matrix diagonalization is to find
 the directions of this new coordinate system, which is more suitable
 for describing the data than was the original coordinate
 system.
Because the new coordinate system is merely rotated relative
 to the original one, we can express its coordinate axes as linear
 combinations of the original ones. In Figure 14-2, for instance,
 to make a step in the new direction (along the diagonal), you take a
 step along the (old) x axis, followed by a step
 along the (old) y axis. We can therefore
 express the new direction (call it [image:]) in terms of the old ones: [image:] (the factor [image:] is just a normalization factor).

Interpretation

The spectral decomposition theorem applies to
 any symmetric matrix. For any such matrix, we
 can find a new coordinate system, in which the matrix is diagonal.
 But the interpretation of the results (what do
 the eigenvalues and eigenvectors mean?) depends on the specific
 application. In our case, we apply the spectral theorem to the
 covariance or correlation matrix of a set of points, and the results
 of the decomposition will give us the principal axes of
 the distribution of points (hence the name of the
 technique).
Look again at Figure 14-2. Points are
 distributed in a region shaped like an extremely stretched ellipse.
 If we calculate the eigenvalues and eigenvectors of the correlation
 matrix of this point distribution, we find that the
 eigenvectors lie in the directions of the
 principal axes of the ellipse while the
 eigenvalues give the relative length of the
 corresponding principal axes.
Put another way, the eigenvalues point along the directions of
 greatest variance: the data is most stretched out if we measure it
 along the principal directions. Moreover, the eigenvalue
 corresponding to each eigenvector is a measure of the width of the
 distribution along this direction.
(In fact, the eigenvalue is the square of the standard
 deviation along that direction; remember that the diagonal entries
 of the covariance matrix Σ are [image:]. Once we diagonalize Σ, the entries along the
 diagonal—that is, the eigenvalues—are the variances along the “new”
 directions.)
You should also observe that the variables measured along the
 principal directions are uncorrelated with each other. (By
 construction, their correlation matrix is diagonal, which means that
 the correlation between any two different variables is zero.)
This, then, is what the principal component analysis does for
 us: if the data points are distributed as a globular cloud in the
 space spanned by all the original variables (which may be more than
 two!), then the eigenvectors will give us the
 directions of the principal axes of the
 ellipsoidal cloud of data points and the eigenvalues will give us
 the length of the cloud along each of these
 directions. The eigenvectors and eigenvalues therefore describe the
 shape of the point distribution. This becomes especially useful if
 the data set has more than just two dimensions, so that a simple
 plot (as in Figure 14-2) is no longer
 feasible. (There are special varieties of PCA, such as “Kernel PCA”
 or “ISOMAP,” that work even with point distributions that do not
 form globular ellipsoids but have more complicated, contorted
 shapes.)
The description of the shape of the point distribution
 provided by the PCA is already helpful. But it gets even better,
 because we may suspect that not all of the original variables are really needed. Some of them may be
 redundant (expressing more or less the same thing), and others may
 be irrelevant (carrying little information).
An indication that variables may be redundant
 (i.e., express the “same thing”) is that they
 are correlated. (That’s pretty much the definition of correlation:
 knowing that if we change one variable, then there will be a
 corresponding change in the other.) The PCA uses the information
 contained in the mutual correlations between variables to identify
 those that are redundant. By construction, the principal coordinates
 are uncorrelated (i.e.,
 not redundant), which means that the information contained in the
 original (redundant) set of variables has been concentrated in only
 a few of the new variables while the remaining variables have become
 irrelevant. The irrelevant variables are those corresponding to
 small eigenvalues: the point distribution will have only little
 spread in the corresponding directions (which means that these
 variables are almost constants and can therefore be ignored).
The price we have to pay for the reduction in dimensions is
 that the new directions will not, in general, map neatly to the
 original variables. Instead, the new directions will correspond to
 combinations of the original variables.
There is an important consequence of the preceding discussion:
 the principal component analysis works with the correlation between
 variables. If the original variables are uncorrelated, then there is
 no point in carrying out a PCA! For instance, if the data points in
 Figure 14-2 had shown
 no structure but had filled the entire two-dimensional parameter
 space randomly, then we would not have been able to simplify the
 problem by reducing it to a one-dimensional one consisting of the
 new direction along the main diagonal.

Computation

The theory just described would be of only limited interest if
 there weren’t practical algorithms for calculating both eigenvalues
 and eigenvectors. These calculations are always numerical. You may
 have encountered algebraic methods matrix diagonalization methods in
 school, but they are impractical for matrices larger than 2 × 2 and
 infeasible for matrices larger than about 4 × 4.
However, there are several elegant
 numerical algorithms to invert and diagonalize
 matrices, and they tend to form the foundational part of any
 numerical library. They are not trivial to understand, and
 developing high-quality implementations (that avoid, say round-off
 error) is a specialized skill. There are no good reasons to write
 your own, so you should always use an established library. (Every
 numerical library or package will include the required
 functionality.)
Matrix operations are relatively expensive, and run time
 performance can be a serious concern for large matrices. Matrix
 operations tend to be of [image:](N3)
 complexity, which means that doubling the size of the matrix will
 increase the time to perform an operation by a factor of 23 = 8. In
 other words, doubling the problem size will result in nearly a
 tenfold increase in runtime! This is not an
 issue for small matrices (up to 100 × 100 or so), but you will hit a
 brick wall at a certain size (somewhere between 5,000 × 5,000 and
 50,000 × 50,000). Such large matrices do occur in practice but
 usually not in the context of the topic of this chapter. For even
 larger matrices there are alternative algorithms—which, however,
 calculate only the most important of the eigenvalues and
 eigenvectors.
I will not go into details about different algorithms, but I
 want to mention one explicitly because it is of particular
 importance in this context. If you read about principal component
 analysis (PCA), then you will likely encounter the term
 singular value decomposition (SVD); in fact,
 many books treat PCA and SVD as equivalent expressions for the same
 thing. That is not correct; they are really quite different. PCA is
 the application of spectral methods to covariance or correlation
 matrices; it is a conceptual technique, not an algorithm. In
 contrast, the SVD is a specific algorithm that can be applied to
 many different problems one of which is the PCA.
The reason that the SVD features so prominently in discussions
 of the PCA is that the SVD combines two required steps into one. In
 our discussion of the PCA, we assumed that you first calculate the
 covariance or correlation matrix explicitly from the set of data
 points and then diagonalize it. The SVD performs these two steps in
 one fell swoop: you pass the set of data points directly to the SVD,
 and it calculates the eigenvalues and eigenvectors of the
 correlation matrix directly from those data points.
The SVD is a very interesting and versatile algorithm, which
 is unfortunately rarely included in introductory classes on linear
 algebra.

Practical Points

As you can see, principal component analysis is an involved
 technique—although with the appropriate tools it becomes almost
 ridiculously easy to perform (see the Workshop in this chapter). But
 convenient implementations don’t make the conceptual difficulties go
 away or ensure that the method is applied appropriately.
First, I’d like to emphasize that the mathematical operations
 underlying principal component analysis (namely, the diagonalization
 of a matrix) are very general: they consist of a set of formal
 transformations that apply to any symmetric
 matrix. (Transformations of this sort are used for many different
 purposes in literally all fields of science and engineering.)
In particular, there is nothing specific to data analysis
 about these techniques. The PCA thus does not involve any of the
 concepts that we usually deal with in statistics or analysis: there
 is no mention of populations, samples, distributions, or models.
 Instead, principal component analysis is a set of formal
 transformations, which are applied to the covariance matrix of a
 data set. As such, it can be either exploratory
 or preparatory.
As an exploratory technique, we may inspect its
 results (the eigenvalues and eigenvectors) for anything that helps
 us develop an understanding of the data set. For example, we may
 look at the contributions to the first few principal components to
 see whether we can find an intuitive interpretation of them (we will
 see an example of this in the Workshop section). Biplots (discussed
 in the following section) are a graphical technique that can be
 useful in this context.
But we should keep in mind that this kind of investigation is
 exploratory in nature: there is no guarantee that the results of a
 principal component analysis will turn up anything useful. In
 particular, we should not expect the principal components to have an
 intuitive interpretation in general.
On the other hand, PCA may also be used as a preparatory
 technique. Keep in mind that, by construction, the principal
 components are uncorrelated. We can therefore transform any
 multivariate data set into an equivalent form, in which all
 variables are mutually independent, before performing any subsequent
 analysis. Identifying a subset of principal components that captures
 most of the variability in the data set—for the purpose of reducing
 the dimensionality of the problem, as we discussed earlier—is
 another preparatory use of principal component analysis.
As a preparatory technique, principal component analysis is
 always applicable but may not always be useful. For instance, if the
 original variables are already uncorrelated, then the PCA cannot do
 anything for us. Similarly, if none of the eigenvalues are
 significantly smaller (so that their corresponding principal
 components can be dropped), then again we gain nothing from the
 PCA.
Finally, let me reiterate that PCA is just a mathematical
 transformation that can be applied to any symmetric matrix. This
 means that its results are not uniquely determined by the data set
 but instead are sensitive to the way the inputs are prepared. In
 particular, the results of a PCA depend on the actual
 numerical values of the data points and
 therefore on the units in which the
 measurements have been recorded. If the numerical values for one of
 the original variables are consistently larger than the values of
 the other variables, then the variable with the large values will
 unduly dominate the spectrum of eigenvalues. (We will see an example
 of this problem in the Workshop.) To avoid this kind of problem, all
 variables should be of comparable scale. A systematic way to achieve
 this is to work with the correlation matrix (in which all entries
 are normalized by their autocorrelation) instead of the covariance
 matrix.
Biplots

Biplots are an interesting way to visualize the results of a
 principal component analysis. In a biplot, we plot the data points
 in a coordinate system spanned by the first two principal
 components (i.e., those two of the
 new variables corresponding to the largest
 eigenvalues). In addition, we also plot a representation of the
 original variables but now projected into
 the space of the new variables. The data points are
 represented by symbols, whereas the directions of the original
 variables are represented by arrows. (See Figure 14-5 in the
 Workshop section.)
In a biplot, we can immediately see the distribution of
 points when represented through the new variables (and can also
 look for clusters, outliers, or other interesting features).
 Moreover, we can see how the original variables relate to the
 first two principal components and to each other: if any of the
 original variables are approximately aligned with the horizontal
 (or vertical) axis, then they are approximately aligned with the
 first (or second) principal component (because in a biplot, the
 horizonal and vertical axes coincide with the first and second
 principal components). We can thus see which of the original
 variables contribute strongly to the first principal components,
 which might help us develop an intuitive interpretation for those
 components. Furthermore, any of the original variables that are
 roughly redundant will show up as more or less parallel to each
 other in a biplot—which can likewise help us identify such
 combinations of variables in the original problem.
Biplots may or may not be helpful. There is a whole
 complicated set of techniques for interpreting biplots and reading
 off various quantities from them, but these techniques seem rarely
 used, and I have not found them to be very practical. If I do a
 PCA, I will routinely also draw a biplot: if it tells me something
 worthwhile, that’s great; but if not, then I’m not going to spend
 much time on it.

Visual Techniques

Principal component analysis is a rigorous prescription, and
 example of a “data-centric” technique: it transforms the original data
 in a precisely prescribed way, without ambiguity and without making
 further assumptions. The results are an expression of properties of
 the data set. It is up to us to interpret them, but the results are
 true regardless of whether we find them useful or not.
In contrast, the methods described in this section are
 convenience methods that attempt to make multi-dimensional data sets
 more “palatable” for human consumption. These methods do not calculate
 any rigorous properties inherent in the data set; instead, they try to
 transform the data in such a way that it can be plotted while at the
 same time trying to be as faithful to the data as possible.
We will not discuss any of these methods in depth, since
 personally, I do not find them worth the effort: on the one hand, they
 are (merely) exploratory in nature; on the other hand, they require
 rather heavy numerical computations and some nontrivial theory. Their
 primary results are projections (i.e., graphs) of
 data sets, which can be difficult to interpret if the number of data
 points or their dimensionality becomes large—which is exactly when I
 expect a computationally intensive method to be helpful! Nevertheless,
 there are situations where you might find these methods
 useful, and they do provide some interesting concepts for how to
 think about data. This last reason is the most
 important to me, which is why this section emphasizes concepts while
 skipping most of the technical details.
The methods described in this section try to calculate specific
 “views” or projections of the data into a lower number of dimensions.
 Instead of selecting a specific projection, we can also try to display
 many of them in sequence, leaving it to the human observer to choose
 those that are “interesting.” That is the method we introduced in
 Chapter 5, when we
 discussed Grand Tours and Projection Pursuits—they provide yet another
 approach to the problem of dimensionality reduction for multivariate
 data sets.
Multidimensional Scaling

Given a set of data points (i.e., the
 coordinates of each data point), we can easily
 find the distance between any pair of points (see Chapter 13 for a discussion of distance
 measures). Multidimensional scaling (MDS) attempts to answer the
 opposite question: given a distance matrix, can we recover the
 explicit coordinates of the points?
This question has a certain intellectual appeal in its own
 right, but of course, it is relevant in situations where our
 information about a certain system is limited to the differences
 between data points. For example, in usability studies or surveys we
 may ask respondents to list which of a set of cars (or whiskeys, or
 pop singers) they find the most or the least alike; in fact, the
 entire method was first developed for use in psychological studies.
 The question is: given such a matrix of relative preferences or
 distances, can we come up with a set of absolute positions for each
 entry?
First, we must choose the desired number of dimensions of our
 points. The dimension D = 2 is used often, so
 that the results can be plotted easily, but other values for
 D are also possible.
If the distance measure is Euclidean—that is, if the distance
 between two points is given by:
[image: Multidimensional Scaling]
where the sum is running over all dimensions—then it turns out
 that we can invert this relationship explicitly and find expressions
 for the coordinates in terms of the distances. (The only additional
 assumption we need to make is that the center of mass of the entire
 data set lies at the origin, but this amounts to no more than an
 arbitrary translation of all points.) This technique is known as
 classical or metric
 scaling.
The situation is more complicated if we cannot assume that the
 distance measure is Euclidean. Now we can no longer invert the
 relationship exactly and must resort instead to iterative
 approximation schemes. Because the resulting coordinates may not
 replicate the original distances exactly, we include an
 additional constraint: the distance matrix calculated from the new
 positions must obey the same rank order as the original distance
 matrix: if the original distances between any three points obeyed
 the relationship d(x,
 y) <
 d(x,
 z), then the calculated coordinates of the
 three points must satisfy this also. For this reason, this version
 of multidimensional scaling is known as ordinal
 scaling.
The basic algorithm makes an initial guess for the coordinates
 and calculates a distance matrix based on the guessed coordinates.
 The coordinates are then changed iteratively to minimize the
 discrepancy (known as the “stress”) between the new distance matrix
 and the original one.
Both versions of multidimensional scaling lead to a set of
 coordinates in the desired number of dimensions (usually two), which
 we can use to plot the data points in a form of scatter plot. We can
 then inspect this plot for clusters, outliers, or other
 features.

Network Graphs

In passing, I’d like to mention force-based
 algorithms for drawing network graphs because they are
 similar in spirit to multidimensional scaling.
Imagine we have a network consisting of nodes, some of which
 are connected by vertices (or edges), and we would like to find a
 way to plot this network in a way that is “attractive” or
 “pleasing.” One approach is to treat the edges as springs, in such a
 way that each spring has a preferred extension and exerts an
 opposing force—in the direction of the spring—if compressed or
 extended beyond its preferred length. We can now try to find a
 configuration (i.e., a set of coordinates for
 all nodes) that will minimize the overall tension of the
 springs.
There are basically two ways we can go about this. We can
 write down the the total energy due to the distorted springs and
 then minimize it with respect to the node coordinates using a
 numerical minimization algorithm. Alternatively, we can “simulate”
 the system by initializing all nodes with random coordinates and
 then iteratively moving each node in response to the spring forces
 acting on it. For smaller networks, we can update all nodes at the
 same time; for very large networks, we may randomly choose a single
 node at each iteration step for update and continue until the
 configuration no longer changes. It is easy to see how this basic
 algorithm can be extended to include richer situations—for instance,
 edges carrying different weights.
Note that this algorithm makes no guarantees regarding the
 distances that are maintained between the nodes in the final
 configuration. It is purely a visualization technique.

Kohonen Maps

Self-organizing maps (SOMs), often called Kohonen maps after
 their inventor, are different from the techniques discussed so far. In
 both principal component analysis and multidimensional scaling, we
 attempted to find a new, more favorable arrangement of points by
 moving them about in a continuous fashion. When constructing a Kohonen
 map, however, we map the original data points to cells in a
 lattice. The presence of a lattice forces a fixed
 topology on the system; in particular, each point in a lattice has a
 fixed set of neighbors. (This property is typically and confusingly
 called “ordering” in most of the literature on Kohonen maps.)
The basic process of constructing a Kohonen map works as
 follows. We start with a set of k data points in
 p dimensions, so that each data point consists of
 a tuple of p numeric values. (I intentionally
 avoid the word “vector” here because there is no requirement that the
 data points must satisfy the “mixable” property characteristic of
 vectors—see Appendix C and Chapter 13.)
Next we prepare a lattice. For simplicity, we consider a
 two-dimensional square lattice consisting of n ×
 m cells. Each cell contains a
 p-dimensional tuple, similar to a data point,
 which is called the reference tuple. We
 initialize this tuple with random values. In other words, our lattice
 consists of a collection of random data points, arranged on a regular
 grid.
Now we perform the following iteration. For each data point, we
 find that cell in the lattice with the smallest distance between its
 contained p-tuple and the data point; then we
 assign the data point to this cell. Note that multiple data points can
 be assigned to the same cell if necessary.
Once all the data points have been assigned to cells in the
 lattice, we update the p-tuples of all cells
 based on the values of the data points assigned to the cell itself and
 to its neighboring cells. In other words, we use the data points
 assigned to each cell, as well as those assigned to the cell’s
 neighbors, to compute a new tuple for the cell.
When all lattice points have been updated, we restart the
 iteration and begin assigning data points to cells again (after
 erasing the previous assignments). We stop the iteration if the
 assignments no longer change or if the differences between the
 original cell values and their updates are sufficiently small.
This is the basic algorithm for the construction of a Kohonen
 map. It has certain similarities with the k-means
 algorithm discussed in Chapter 13. Both are
 iterative procedures in which data points are assigned to cells or
 clusters, and the cell or cluster is updated based on the points
 assigned to it. However, two features are specific to Kohonen
 maps:
	Each data point is mapped to a cell in the lattice, and this
 implies that each data point is placed in a specific neighborhood
 of other data points (which have been mapped to neighboring
 cells).

	Because the updating step for each cell relies not only on
 the current cell but also on neighboring cells, the resulting map
 will show a “smooth” change of values: changes are averaged or
 “smeared out” over all cells in the neighborhood. Viewed the other
 way around, this implies that points that are similar to each
 other will map to lattice cells that are in close proximity to
 each other.

Although the basic algorithm seems fairly simple, we still need
 to decide on a number of technical details if we want to develop a
 concrete implementation. Most importantly, we still need to give a
 specific prescription for how the reference tuples will be updated by
 the data points assigned to the current cell and its
 neighborhood.
In principle, it would be possible to recalculate the values for
 the reference tuple from scratch every time by forming a componentwise
 average of all data points assigned to the cell. In practice, this may
 lead to instability during iteration, and therefore it is usually
 recommended to perform an incremental update of the reference value
 instead, based on the difference between the current value of the
 reference tuple and the assigned data points. If
 yi(t)
 is the value of the reference tuple at position i
 and at iteration t, then we can write its value
 at the next iteration step t + 1 as:
[image: Kohonen Maps]
where
 xk(j;
 t) is the data point k which
 has been assigned to lattice point j at iteration
 step t and where the sum runs over all data
 points. The weight function
 h(i, j;
 t) is now chosen to be a decreasing function of
 the distance between the lattice cells i and
 j, and it is also made to shrink in value as the
 iteration progresses. A typical choice is a Gaussian:
[image: Kohonen Maps]
where
 dij
 is the Euclidean distance between lattice points
 i and j and where
 α(t) and σ(t) are decreasing
 functions of t. Choices other than the Gaussian
 are also possible—for instance, we may choose a step function to
 delimit the effective neighborhood.
Even with these definitions, we still need to decide on further
 details:
	What is the topology of the lattice? Square lattices (like
 quad-ruled paper) are convenient but strongly single out two
 specific directions. Hexagonal lattices (like a honeycomb) are
 more isotropic. We also need to fix the boundary conditions. Do
 cells at the edge of the lattice have fewer neighbors than cells
 in the middle of the lattice, or do we wrap the lattice around and
 connect the opposite edges to form periodic boundary
 conditions?

	What is the size of the lattice? Obviously, the number of
 cells in the lattice should be smaller than the number of data
 points (otherwise, we end up with unoccupied cells). But how much
 smaller? Is there a preferred ratio between data points and
 lattice cells? Also, should the overall lattice be square
 (n × n) or rectangular
 (n × m)? In principle,
 we can even consider lattices of different shape—triangular, for
 example, or circular. However, if we choose a lattice of higher
 symmetry (square or circular), then the
 orientation of the final result within the
 lattice is not fixed; for this reason, it has been suggested that
 the lattice should always be oblongated
 (e.g., rectangular rather than
 square).

	We need to choose a distance or similarity measure for
 measuring the distance between data points and reference
 tuples.

	We still need to fix the numerical range of
 α(t) and σ(t) and define
 their behavior as functions of t.

In addition, there are many opportunities for low-level tuning,
 in particular with regard to performance and convergence. For example,
 we may find it beneficial to initialize the lattice points with values
 other than random numbers.
Finally, we may ask what we can actually do with the resulting
 lattice of converged reference tuples. Here are some ideas.
	We can use the lattice to form a smooth, “heat map”
 visualization of the original data set. Because cells in the
 lattice are closely packed, a Kohonen map interpolates smoothly
 between different points. This is in contrast to the result from
 either PCA or MDS, which yield only individual, scattered
 points.

	One problem when plotting a Kohonen map is deciding which
 feature to show. If the original data set was
 p-dimensional, you may have to plot
 p different graphs to see the distribution of
 all features.

	The situation is more favorable if one of the features of
 interest is categorical and has only a few possible values. In
 this case, you can plot the labels on the graph and study their
 relationships (which labels are close to each other, and so on).
 In this situation, it is also possible to use a “trained” Kohonen
 map to classify new data points or data points with missing
 data.

	If the number of cells in the lattice was chosen much
 smaller than the number of original data points, then you can try
 mapping the reference tuples back into the
 original data space—for example, to use them as
 prototypes for clustering purposes.

Kohonen maps are an interesting technique that occupy a space
 between clustering and dimensionality reduction. Kohonen maps group
 similar points together like a clustering algorithm, but they also
 generate a low-dimensional representation of all data points by
 mapping all points to a low-dimensional lattice. The entire concept is
 very ad hoc and heuristic; there is little rigorous theory, and thus
 there is little guidance on the choice of specific details.
 Nonetheless, the hands-on, intuitive nature of Kohonen maps lends
 itself to exploration and experimentation in a way that a more
 rigorous (but also more abstract) technique like PCA does not.

Workshop: PCA with R

Principal component analysis is a complicated technique, so it
 makes sense to use specialized tools that hide most of the complexity.
 Here we shall use R, which is the best-known open source package for
 statistical calculations. (We covered some of the basics of R in the
 Workshop section of Chapter 10; here I want to
 demonstrate some of the advanced functionality built into R.)
Let’s consider a nontrivial example. For a collection of nearly
 5,000 wines, almost a dozen physico-chemical properties were measured,
 and the results of a subjective “quality” or taste test were recorded
 as well.[24] The properties are:
 1 - fixed acidity
 2 - volatile acidity
 3 - citric acid
 4 - residual sugar
 5 - chlorides
 6 - free sulfur dioxide
 7 - total sulfur dioxide
 8 - density
 9 - pH
10 - sulphates
11 - alcohol
12 - quality (score between 0 and 10)
This is a complicated data set, and having to handle 11 input
 variables is not comfortable. Can we find a way to make sense of them
 and possibly even find out which are most important in determining the
 overall quality of the wine?
This is a problem that is perfect for an application of the PCA.
 And as we will see, R makes this really easy for us.
For this example, I’ll take you on a slightly roundabout route.
 Be prepared that our initial attempt will lead to an incorrect
 conclusion! I am including this detour here for a number of reasons. I
 want to remind you that real data analysis, with real and interesting
 data sets, usually does not progress linearly. Instead, it is very
 important that, as we work with a data set, we constantly keep
 checking and questioning our results as we go along. Do they make
 sense? Might we be missing something? I also want to demonstrate how
 R’s interactive programming model facilitates the required exploratory
 work style: try something and look at the results; if they look wrong,
 go back and make sure you are on the right track, and so on.
Although it can be scripted for batch operations, R is primarily
 intended for interactive use, and that is how we will use it here. We
 first load the data set into a heterogeneous “data frame” and then
 invoke the desired functions on it. Functions in turn may return data
 structures themselves that can be used as input to other functions,
 that can be printed in a human readable format to the screen, or that
 can be plotted.
R includes many statistical functions as built-in functions. In
 our specific case, we can perform an entire principal component
 analysis in a single command:
wine <- read.csv("winequality-white.csv", sep=';', header=TRUE)
pc <- prcomp(wine)
plot(pc)
[image: A scree plot: the values of the principal components, from largest to smallest. Here, the largest component totally dominates the spectrum. But be careful: this result is spurious! (See text.)]

Figure 14-4. A scree plot: the values of the principal components, from
 largest to smallest. Here, the largest component totally dominates
 the spectrum. But be careful: this result is spurious! (See
 text.)

This snippet of code reads the data from a file and
 assigns the resulting data frame to the variable wine. The prcomp() function performs the actual
 principal component analysis and returns a data structure containing
 the results, which we assign to the variable pc. We can now examine this returned data
 structure in various ways.
R makes heavy use of function overloading—a function such as
 plot() will accept different forms
 of input and try to find the most useful action to perform, given the
 input. For the data structure returned by prcomp(), the plot() function constructs a so-called
 scree plot[25] (see Figure 14-4), showing the
 magnitudes of the variances for the various principal components, from
 the greatest to the smallest.
We see that the first eigenvalue entirely dominates the
 spectrum, suggesting that the corresponding new variable is all that
 matters (which of course would be great). To understand in more detail
 what is going on, we look at the corresponding eigenvector. The
 print() function is another
 overloaded function, which for this particular data structure prints
 out the eigenvalues and eigenvectors:
print(pc)

(some output omitted...)

 PC1 PC2 PC3
fixed.acidity -1.544402e-03 -9.163498e-03 -1.290026e-02
volatile.acidity -1.690037e-04 -1.545470e-03 -9.288874e-04
citric.acid -3.386506e-04 1.403069e-04 -1.258444e-03
residual.sugar -4.732753e-02 1.494318e-02 -9.951917e-01

chlorides -9.757405e-05 -7.182998e-05 -7.849881e-05
free.sulfur.dioxide -2.618770e-01 9.646854e-01 2.639318e-02
total.sulfur.dioxide -9.638576e-01 -2.627369e-01 4.278881e-02
density -3.596983e-05 -1.836319e-05 -4.468979e-04
pH -3.384655e-06 -4.169856e-05 7.017342e-03
sulphates -3.409028e-04 -3.611112e-04 2.142053e-03
alcohol 1.250375e-02 6.455196e-03 8.272268e-02

(some output omitted...)
This is disturbing: if you look closely, you will notice that
 both the first and the second eigenvector are dominated by the sulfur
 dioxide concentration—and by a wide margin! That does not seem right.
 I don’t understand much about wine, but I would not think that the
 sulfur dioxide content is all that matters in the end.
Perhaps we were moving a little too fast. What do we actually
 know about the data in the data set? Right: absolutely nothing! Time
 to find out. One quick way to do so is to use the summary() function on the
 original data:
summary(wine)
fixed.acidity volatile.acidity citric.acid residual.sugar
Min. : 3.800 Min. :0.0800 Min. :0.0000 Min. : 0.600
1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700 1st Qu.: 1.700
Median : 6.800 Median :0.2600 Median :0.3200 Median : 5.200
Mean : 6.855 Mean :0.2782 Mean :0.3342 Mean : 6.391
3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900 3rd Qu.: 9.900
Max. :14.200 Max. :1.1000 Max. :1.6600 Max. :65.800
 chlorides free.sulfur.dioxide total.sulfur.dioxide density
Min. :0.00900 Min. : 2.00 Min. : 9.0 Min. :0.9871
1st Qu.:0.03600 1st Qu.: 23.00 1st Qu.:108.0 1st Qu.:0.9917
Median :0.04300 Median : 34.00 Median :134.0 Median :0.9937
Mean :0.04577 Mean : 35.31 Mean :138.4 Mean :0.9940
3rd Qu.:0.05000 3rd Qu.: 46.00 3rd Qu.:167.0 3rd Qu.:0.9961
Max. :0.34600 Max. :289.00 Max. :440.0 Max. :1.0390
 pH sulphates alcohol quality
Min. :2.720 Min. :0.2200 Min. : 8.00 Min. :3.000
1st Qu.:3.090 1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000
Median :3.180 Median :0.4700 Median :10.40 Median :6.000
Mean :3.188 Mean :0.4898 Mean :10.51 Mean :5.878
3rd Qu.:3.280 3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000
Max. :3.820 Max. :1.0800 Max. :14.20 Max. :9.000
I am showing the output in its entire length to give you a sense
 of the kind of output generated by R. If you look through this
 carefully, you will notice that the two sulfur dioxide columns have
 values in the tens to hundreds, whereas all other columns have values
 between 0.01 and about 10.0. This explains a lot: the two sulfur
 dioxide columns dominate the eigenvalue spectrum simply because they
 were measured in units that make the numerical values much larger than
 the other quantities. As explained before, if this is the case, then
 we need to scale the input variables before
 performing the PCA. We can achieve this by passing the scale option to the prcomp() command, like so:
pcx <- prcomp(wine, scale=TRUE)
Before we examine the result of this operation, I’d like to
 point out something else. If you look really closely, you will notice
 that the quality column is not what it claims to be. The description
 of the original data set stated that quality was graded on a scale
 from 1 to 10. But as we can see from the data summary, only grades
 between 3 and 9 have actually been assigned. Worse, the first quartile
 is 5 and the third quartile is 6, which means that at least half of all entries in the data set have a quality
 ranking of either 5 or 6. In other words, the actual range of
 qualities is much narrower than we might have expected (given the
 original description of the data) and is strongly dominated by the
 center. This makes sense (there are more mediocre wines than
 outstanding or terrible ones), but it also makes this data set much
 less interesting because whether a wine will be ranked 5 versus 6
 during the sensory testing is likely a toss-up.
We can use the table()
 function to see how often each quality ranking occurs in the data set
 (remember that the dollar sign is used to select a single column from
 the data frame):
table(wine$quality)

 3 4 5 6 7 8 9
20 163 1457 2198 880 175 5
As we suspected, the middling ranks totally dominate the
 distribution. We might therefore want to change our goal and instead
 try to predict the outliers, either good or bad, rather than spending
 too much effort on the undifferentiated middle.
Returning to the results of the scaled PCA, we can look at the
 spectrum of eigenvalues for the scaled version by using the summary() function (again, overloaded!) on
 the return value of prcomp():
summary(pcx)
Importance of components:
 PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.829 1.259 1.171 1.0416 0.9876 0.9689
Proportion of Variance 0.279 0.132 0.114 0.0904 0.0813 0.0782
Cumulative Proportion 0.279 0.411 0.525 0.6157 0.6970 0.7752
 PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 0.8771 0.8508 0.7460 0.5856 0.5330 0.14307
Proportion of Variance 0.0641 0.0603 0.0464 0.0286 0.0237 0.00171
Cumulative Proportion 0.8393 0.8997 0.9460 0.9746 0.9983 1.00000
No single eigenvalue dominates now, and the first 5 (out of 12)
 eigenvalues account for only 70 percent of the total variance. That’s
 not encouraging—it doesn’t seem that we can significantly reduce the
 number of variables this way.
As a last attempt, we can create a biplot. This, too, is very
 simple; all we need to do is execute (see Figure 14-5)
biplot(pcx)
This is actually a fascinating graph! We see that three of the
 original variables—alcohol content, sugar content, and density—are
 parallel to the first principal component (the horizontal axis).
 Moreover, alcohol content is aligned in the direction opposite to the
 other two quantities.
But this makes utmost sense. If you recall from chemistry class,
 alcohol has a lower density than water, and sugar syrup has a higher
 density. So the result of the PCA reminds us that density, sugar
 concentration, and alcohol content are not independent: if you change
 one, the others will change accordingly. And because these variables
 are parallel to the first principal component, we can conclude that
 the overall density of the wine is an important quantity.
[image: A biplot: symbols correspond to the individual data points projected onto the plane spanned by the two largest principal components. Also shown are the original variables projected onto the same plane.]

Figure 14-5. A biplot: symbols correspond to the individual data points
 projected onto the plane spanned by the two largest principal
 components. Also shown are the original variables projected onto the
 same plane.

The next set of variables that we can read off are the fixed
 acidity, the citric acid concentration, and the pH value. Again, this
 makes sense: the pH is a measure of the acidity of a solution (with
 higher pH values indicating less acidity). In other words, these three
 variables are also at least partially redundant.
The odd one out, then, is the overall sulfur content, which is a
 combination of sulfur dioxide and sulphate concentration.
And finally, it is interesting to see that the quality seems to
 be determined primarily by the alcohol content and the acidity. This
 suggests that the more alcoholic and the less sour the wine, the more
 highly it is ranked—quite a reasonable conclusion!
We could have inferred all of this from the original description
 of the data set, but I must say that I, for one, failed to see these
 connections when initially scanning the list of columns. In this
 sense, the PCA has been a tremendous help in interpreting and
 understanding the content of the data set.
Finally, I’d like to reflect one more time on our use of R in
 this example. This little application demonstrates both the power and
 the shortcomings of R. On the one hand, R comes with many high-level,
 powerful functions built in, often for quite advanced statistical
 techniques (even an unusual and specialized graph like a biplot can be
 created with a single command). On the other hand, the heavy reliance
 on high-level functions with implicit behavior leads to opaque
 programs that make it hard to understand exactly what is going on. For
 example, such a critical question as deciding whether or not to
 rescale the input data is handled as a rather obscure option to the
 prcomp() command. In particular,
 the frequent use of overloaded functions—which can exhibit widely
 differing functionality depending on their input—makes it hard to
 predict the precise outcome of an operation and makes discovering ways
 to perform a specific action uncommonly difficult.

Further Reading

	Introduction to Multivariate
 Analysis. Chris Chatfield and Alexander Collins. Chapman &
 Hall/CRC. 1981.
A bit dated but still one of the most practical, hands-on
 introductions to the mathematical theory of multivariate analysis.
 The section on PCA is particularly clear and practical but
 entirely skips computational issues and makes no mention of the
 SVD.

	Principal Component
 Analysis. I. T. Jolliffe. 2nd ed., Springer. 2002.
The definitive reference on principal component analysis.
 Not an easy read.

	Multidimensional Scaling. Trevor F. Cox and Michael A. A. Cox. Chapman &
 Hall/CRC. 2001.
The description of multidimensional scaling given in this
 chapter is merely a sketch—mostly, because I find it hard to
 imagine scenarios where this technique is truly useful. However,
 it has a lot of appeal and is fun to tinker with. Much more
 information, including some extensions, can be found in this
 book.

	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
 Addison-Wesley. 2005.
This is my favorite reference on data mining. The
 presentation is compact and more technical than in most other
 books on this topic.

Linear Algebra

Linear algebra is a foundational topic. It is here
 that one encounters for the first time abstract concepts such as
 spaces and mappings treated as objects of interest in their own
 right. It takes time and some real mental effort to get used to
 these notions, but one gains a whole different perspective on
 things.
The material is also of immense practical value—particularly
 its central result, which is the spectral decomposition theorem. The
 importance of this result cannot be overstated: it is used in
 every multi-dimensional problem in mathematics,
 science, and engineering.
However, the material is abstract and unfamiliar, which makes
 it hard for the beginner. Most introductory books on linear algebra
 try to make the topic more palatable by emphasizing applications,
 but that only serves to confuse matters even more, because it never
 becomes clear why all that abstract machinery is needed when looking
 at elementary examples. The abstract notions at the heart of linear
 algebra are best appreciated, and most easily understood, when
 treated in their own right.
The resources listed here are those I have found most helpful
 in this regard.
	Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004. The book lives
 up to its grandiose title. It treats linear algebra as an
 abstract theory of mappings but on a very accessible, advanced
 undergraduate level. Highly recommended but probably not as
 the first book on the topic.

	Matrix Methods in Data Mining and Pattern
 Recognition. Lars Eldén. SIAM. 2007. This short book is an
 introduction to linear algebra with a particular eye to
 applications in data mining. The pace is fast and probably
 requires at least some previous familiarity with the
 subject.

	Understanding Complex Datasets: Data Mining
 with Matrix Decompositions. David Skillicorn. Chapman & Hall/CRC. 2007.
An advanced book, concentrating mostly on applications of
 the SVD and its variants.

	“A Singularly Valuable Decomposition: The SVD of a
 Matrix.” Dan Kalman. The College Mathematics
 Journal 27 (1996), p. 2. This article, which can be
 found on the Web, is a nice introduction to the SVD. It’s not
 for beginners, however.

[24] This example is taken from the “Wine Quality” data set,
 available at the UCI Machine Learning repository at
 http://archive.ics.uci.edu/ml/.

[25] Scree is the rubble that collects at
 the base of mountain cliffs.

Chapter 15. Intermezzo: When More Is Different

WHEN
 DEALING WITH SOME OF THE MORE COMPUTATIONALLY INTENSIVE DATA ANALYSIS OR
 MINING algorithms, you may encounter an unexpected
 obstacle: the brick wall. Programs or algorithms
 that seemed to work just fine turn out not to work once in production.
 And I don’t mean that they work slower than expected. I mean they do not
 work at all!
Of course, performance and scalability problems are familiar to
 most enterprise developers. However, the kinds of problems that arise in
 data-centric or computationally intensive applications are different,
 and most enterprise programmers (and, in fact, most computer science
 graduates) are badly prepared for them.
Let’s try an example: Table 15-1 shows the time
 required to perform 10 matrix multiplications for square matrices of
 various size. (The details of matrix multiplication don’t concern us
 here; suffice it to say that it’s the basic operation in almost all
 problems involving matrices and is at the heart of operator
 decomposition problems, including the principal component analysis
 introduced in Chapter 14.)
Table 15-1. Time required to perform 10 matrix multiplications for square
 matrices of different sizes
	Size
 n
	Time [seconds]

	100
	0.00

	200
	0.06

	500
	2.12

	1,000
	22.44

	2,000
	176.22

Would you agree that the data in Table 15-1 does not look too
 threatening? For a 2,000 × 2,000 matrix, the time required is a shade
 under three minutes. How long might it take to perform the same
 operation for a 10,000 × 10,000 matrix? Five, maybe ten minutes? Yeah,
 right. It takes five hours! And if you need to go a
 little bit bigger still—say, 30,000 × 30,000, the computation will take
 five days.
What we observe here is typical of many computationally intensive
 algorithms: they consume disproportionately more time as the problem
 size becomes larger. Of course, we have all heard about this in school,
 but our intuition for the reality of this phenomenon is usually not very
 good. Even if we run a few tests on small data sets, we fail to spot the
 trouble: sure, the program takes longer as the data sets get larger, but
 it all seems quite reasonable. Nevertheless, we tend to be unprepared
 for what appears to be a huge jump in the required
 time as we increase the data set by a seemingly not very large factor.
 (Remember: what took us from three minutes to five hours was an increase
 in the problem size by a factor of 5—not even an order of
 magnitude!)
The problem is that, unless you have explicitly worked on either a
 numerical or a combinatorial problem in the past, you probably have
 never encountered the kind of scaling behavior exhibited by
 computational or combinatorial problems. This skews our
 perception.
Where are you most likely to encounter perceptible performance
 problems in an enterprise environment? Answer: slow database queries! We
 all have encountered the frustration resulting from queries that perform
 a full table scan instead of using an indexed lookup (regardless whether
 no index is available or the query optimizer fails to use it). Yet a
 query that performs a full table scan rather than using an index
 exhibits one of the most benign forms of scaling: from
 [image:](log n) (meaning that the
 response time is largely insensitive to the size of the table) to
 [image:](n) (meaning that doubling
 the table size will double the response time).
In contrast, matrix operations—such as the matrix multiplication
 encountered in the earlier example—scale as [image:](n3);
 this means that if the problem doubles in size, then the time required
 grows by a factor of 8 (because
 23 = 8). In other words, as you go from a
 2,000 × 2,000 matrix to a 4,000 × 4,000 matrix, the problem will take
 almost 10 times as long; and if you go to a 10,000 × 10,000 matrix, it
 will take 53 = 125 times as long.
 Oops.
And this is the good news. Many combinatorial problems (such as
 the Traveling Salesman problem and similar problems) don’t scale
 according to a power law (such as [image:](n3))
 but instead scale exponentially ([image:](en)).
 In these cases, you will hit the brick wall much
 faster and much more brutally. For such problems, an incremental
 increase in the size of the problem (i.e., from
 n to n + 1) will typically at
 least double the runtime. In other words, the last
 element to calculate takes as much time as all the previous elements
 taken together. System sizes of around
 n = 50 are frequently the end of the line. With
 extreme effort you might be able to push it to n =
 55, but n = 100 will be entirely out of
 reach.
The reason I stress this kind of problem so much is that in my
 experience, not only are most enterprise developers unprepared for the
 reality of it but also that the standard set of software engineering
 practices and attitudes is entirely inadequate to deal with them. I once
 heard a programmer say, “It’s all just engineering” in response to
 challenges about the likely performance problems of a computational
 system he was working on. Nothing could be further from the truth: no
 amount of low-level performance tuning will save a program of this
 nature that is algorithmically hosed—and no amount of faster hardware,
 either. Moreover, “standard software engineering practices” are either
 of no help or are even entirely inapplicable (we’ll see an example in a
 moment).
Most disturbing to me was his casual, almost blissful
 ignorance—this coming from a guy who definitely
 should have known better.
A Horror Story

I was once called into a project in its thirteenth hour—they had
 far exceeded both their budget and their schedule and were about to be
 shut down for good because they could not make their system work. They
 had been trying to build an internal tool that was intended to solve
 what was, essentially, a combinatorial problem. The tool was supposed
 to be used interactively: the user supplies some inputs and receives
 an answer within, at most, a few minutes. By the time I got involved,
 the team had labored for over a year, but the minimum response time
 achieved by their system exceeded 12 hours—even
 though it ran on a very expensive (and very expensive to operate)
 supercomputer.
After a couple of weeks, I came up with an improved algorithm
 that calculated answers in real time and could run on a laptop.
No amount of “engineering” will be able to deliver that kind of
 speed-up.
How was this possible? By attacking the problem on many
 different levels. First of all, we made sure we fully
 understood the problem domain. The original
 project team had always been a little vague about what exactly the
 program was trying to calculate, as a result their “domain model” was
 not truly logically consistent. Hence the first thing to do was to put
 the whole problem on sound mathematical footing. Second, we
 redefined the problem: the original program had
 attempted to calculate a certain quantity by explicit enumeration of
 all possible combinations, whereas the new solution calculated an
 approximation instead. This was warranted because the input data was
 not known very precisely, anyway, and because we were able to show
 that the uncertainty introduced by the approximation was less than the
 uncertainty already present in the data. Third, we treated
 hot spots differently than the happy case: the new
 algorithm could calculate the result to higher accuracy, but it did so
 only when the added accuracy was needed. Fourth, we used efficient
 data structures and implemented some core pieces ourselves instead of
 relying on general-purpose libraries; we also judiciously
 precalculated and cached some frequently used intermediate
 results.
After putting the whole effort on a conceptually
 consistent footing, the most important contribution was changing the
 problem definition: dropping the exact approach, which was unnecessary
 and infeasible, and adopting an approximate solution that was cheap
 and all that was required.

Some Suggestions

Computational and combinatorial programming is really different.
 It runs into different limits and requires different techniques. Most
 important is the appropriate choice of algorithm at the outset, since
 no amount of low-level tuning or “engineering” will save a program
 that is algorithmically flawed.
Here is a list of recommendations in case you find yourself
 setting out on a project that involves heavy computation or deals with
 combinatorial complexity issues:
Do your homework. Understand computational
 complexity, know the complexity of the algorithm you intend to use,
 and research the different algorithms (and their trade-offs) available
 for your kind of problem. Read broadly—although the exact problem as
 specified may turn out to be intractable, you may find that a small
 change in the requirements may lead to a much simpler problem. It is
 definitely worth it to renegotiate the problem with the customer or
 end users than setting out on a project that is infeasible from the
 outset. (Skiena’s Algorithm Design Manual is a
 particularly good resource for algorithms grouped by problems.)
Run a few numbers. Do a few tests with
 small programs and evaluate their scaling performance. Don’t just look
 at the actual numbers themselves—also consider the scaling behavior as
 you vary the problem size. If the program does not exhibit the scaling
 behavior you expect theoretically, it has a bug. If so, fix the bug
 before proceeding! (In general, algorithms follow the theoretical
 scaling prediction quite closely for all but the smallest of problem
 sizes.) Extrapolate to real-sized problems: can you live with the
 expected runtime predictions?
Forget standard software engineering
 practices. It is a standard assumption in current software
 engineering that developer time is the scarcest resource and that
 programs should be designed and implemented accordingly.
 Computationally intensive programs are one case where this is not
 true: if you are likely to max out the machine, then it’s worth having
 the developer—rather than the computer—go the extra mile. Additional
 developer time may very well make the difference between an
 “infeasible” problem and a solved one.
For instance, in situations where you are pressed for space, it
 might very well make sense to write your own container implementations
 instead of relying on the system-provided hash map. Beware of the trap
 of conditioned thinking, though: in one project I worked on, we knew
 that we would have a memory size problem and that we therefore had to
 keep the size of individual elements small. On the other
 hand, it was not clear at first whether the 4-byte Java int data type would be sufficient to
 represent all required values or whether we would have to use the
 8-bye Java long type. In response,
 someone suggested that we wrap the atomic data
 type in an object so we could swap out the implementation, in case the
 4-byte int turned out to be
 insufficient. That’s a fine approach in a standard software
 engineering scenario (“encapsulation” and all that), but in this
 situation—where space was at a premium—it missed the point entirely:
 the space that the Java wrapper would have consumed (in addition to
 its data members) would have been larger than the payload!
Remember: standard software engineering practices are typically
 intended to trade machine resources for developer resources. However,
 for computationally intensive problems, machine resources (not
 developer time) are the limiting factor.
Don’t assume that parallelization will be
 possible. Don’t assume that you’ll be able to partition the
 problem in such a way that simultaneous execution on multiple machines
 (i.e., parallelization) will be possible, until
 you have developed an actual, concrete, implementable algorithm—many
 computational problems don’t parallelize well. Even if you can come up
 with a parallel algorithm, performance may be disappointing: hidden
 costs (such as communication overhead) often lead to performance that
 is much poorer than predicted; a cluster consisting of twice as many
 nodes often exhibits a behavior much less than
 double the original one! Running realistic tests (on realistically
 sized data sets and on realistically sized clusters) is harder for
 parallel programs than for single processor implementations—but even
 more important.
Leave yourself some margin. Assume that the
 problem size will be larger by a factor of 3 and that hardware will
 deliver only 50 percent of theoretically predicted performance.
If the results are not wholly reassuring, explore
 alternatives. Take the results for the expected runtime and
 memory requirements that you obtained from theoretical predictions and
 the tests that you have performed seriously. Unless you seem able to
 meet your required benchmarks comfortably,
 explore alternatives. Consider better algorithms, research whether the
 problem can be simplified or whether the problem can be approached in
 an entirely different manner, and look into approximate or heuristic
 solutions. If you feel yourself stuck, get help!
If you can’t make it work on paper, STOP.
 It won’t work in practice, either. It is a surprisingly common
 anti-pattern to see the warning signs early but to press on regardless
 with the hopeful optimism that “things will work themselves out during
 implementation.” This is entirely misguided: nothing will work out
 better as you proceed with an implementation; everything is always a
 bit worse than expected.
Unless you can make it work on paper and make it work
 comfortably, there is no point in
 proceeding!
The recurring recommendation here is that nobody is helped by a
 project that ultimately fails, because it was impossible (or at least
 infeasible) from the get-go. Unless you can demonstrate at least the
 feasibility of a solution (at an acceptable price point!), there is no
 use to proceed. And everybody is much better off knowing this ahead of
 time.

What About Map/Reduce?

Won’t the map/reduce family of techniques make most of these
 considerations obsolete? The answer, in general, is
 no.
It is important to understand that map/reduce is not actually a
 clever algorithm or even an algorithm at all. It is a piece of
 infrastructure that makes naive algorithms
 convenient.
That’s a whole different ball game. The map/reduce approach does
 not speed up any particular algorithm at all. Instead, it makes the
 parallel execution of many subproblems convenient. For map/reduce to
 be applicable, therefore, it must be possible to
 partition the problem in such a way that
 individual partitions don’t need to talk to each other. Search is such
 an application that is trivially parallelizable, and many (if not all)
 successful current applications of map/reduce that I am aware of seem
 to be related to generalized forms of search.
This is not to say that map/reduce is not a very important
 advance. (Any device that makes an existing technique orders of
 magnitudes more convenient is an important innovation!) At the moment,
 however, we are still in the process of figuring how which problems
 are most amenable to the map/reduce approach and how best to adapt
 them. I suspect that the algorithms that will work best on map/reduce
 will not be straightforward generalizations of
 serial algorithms but instead will be algorithms that would be
 entirely unattractive on a serial computer.
It is also worth remembering that parallel computation is not
 new. What has killed it in the past was the need for different
 partitions of the problem to communicate with each other: very
 quickly, the associated communication overhead annihilated the benefit
 from parallelization. This problem has not gone away, it is merely
 masked by the current emphasis on search and searchlike problems,
 which allow trivial parallelization without any need for communication
 among partitions. I worry that more strictly computational
 applications (such as the matrix multiplication problem discussed
 earlier or the simulation of large physical systems) will require so
 much sharing of information among nodes that the map/reduce approach
 will appear unattractive.
Finally, amid the excitement currently generated by map/reduce,
 it should not be forgotten that its total cost of ownership (including
 the long-term operational cost of maintaining the
 required clusters as well as the associated network and storage
 infrastructure) is not yet known. Although map/reduce installations
 make distributed computing “freely” available to the individual
 programmer, the required hardware installations and their operations
 are anything but “free.”
In the end, I expect map/reduce to have an effect similar to the
 one that compilers had when they came out. The code that they produced
 was less efficient than handcoded assembler code, but the overall
 efficiency gain far outweighed this local disadvantage.
But keep in mind that even the best compilers have rendered
 neither Quicksort nor indexed lookup obsolete.

Workshop: Generating Permutations

Sometimes, you have to see it to believe it. In this spirit,
 let’s write a program that calculates all permutations
 (i.e., all possible rearrangements) of a set.
 (That is, if the set is [1,2,3],
 then the program will generate [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].) You can imagine this routine to be
 part of a larger program: in order to solve the Traveling Salesman
 problem exactly, for example, one needs to generate all possible trips
 (i.e., all permutations of the cities to visit)
 and evaluate the associated distances.
Of course, we all “know” that the number of permutations grows
 as n! = 1 · 2 · 3 ··· n,
 where n is the number of elements in the set and
 that the factorial function grows “quickly.” Nevertheless, you have to
 see it to believe it. (Even I was shocked by what I found when
 developing and running the program below!)
The program that follows reads a positive integer n from the command line and then generates
 all permutations of a list of n
 elements, using a recursive algorithm. (It successively removes one
 element of the list, generates all permutations of the remainder, and
 then tacks the removed element back on to the results.) The time
 required is measured and printed.
import sys, time

def permutations(v):
 if len(v) == 1: return [[v[0]]]

 res = []
 for i in range(0, len(v)):
 w = permutations(v[:i] + v[i+1:])
 for k in w:
 k.append(v[i])
 res += w

 return res

n = int(sys.argv[1])
v = range(n)
t0 = time.clock()
z = permutations(v)
t1 = time.clock();

print n, t1-t0
(You may object to the use of recursion here, pointing out that
 Python does not allow infinite depth of recursion. This is true but is
 not a factor: we will run into trouble long before that constraint
 comes into play.)
I highly recommend that you try it. Because we know (or suspect)
 that this program might take a while to run when the number of
 elements is large, we probably want to start out with three elements.
 Or with four. Then maybe we try five, six, or seven. In all cases, the
 program finishes almost instantaneously. Then go
 ahead and run it with n=10. Just 10
 elements. Go ahead, do it. (But I suggest you save all files and clean
 up your login session first, so you can reboot without losing too much
 work if you have to.)
Go ahead. You have to see it to believe
 it![26]

Further Reading

	The Algorithm Design Manual. Steven S. Skiena. 2nd ed., Springer. 2008.
This is an amazing book, because it presents algorithms not
 as abstract entities to be studied for their own beauty but as
 potential solutions to real problems. Its second half consists of
 a “hitchhiker’s guide to algorithms”: a catalog of different
 algorithms for common problems. It helps you find an appropriate
 algorithm by asking detailed questions about your specific problem
 and provides pointers to existing implementations. In addition,
 the author’s “war stories” of past successes and failures in the
 real world provide a vivid reminder that algorithms are
 real.

[26] Anybody who scoffs that this example is silly, because “you
 should not store all the intermediate results; use a generator” or
 because “everyone knows you can’t find all permutations
 exhaustively; use heuristics” is absolutely correct—and entirely
 missing the point. I know that this implementation is naive,
 but—cross your heart—would you really have assumed that the naive
 implementation would be in trouble for n =
 10? Especially, when it didn’t even blink for
 n = 7?

Part IV. Applications: Using Data

Chapter 16. Reporting, Business Intelligence, and Dashboards

DATA
 ANALYSIS DOES NOT JUST CONSIST OF CRUNCHING NUMBERS. IT ALSO INCLUDES
 NAVIGATING THE CONTEXT and environment in which
 the need for data analysis arises. In this chapter and the next, we will
 look at two areas that often have a demand for data analysis and
 analytical modeling but that tend to be unfamiliar if you come from a
 technical background: in this chapter, we discuss business intelligence
 and corporate metrics; in the next chapter, financial calculations and
 business plans.
This material may seem a little out of place because it is largely
 not technical. But that is precisely why it is important to include this
 topic here: to a person with a technical background, this material is
 often totally new. Yet it is precisely in these areas that sound
 technical and analytical advice is often required: the primary consumers
 of these services are “business people,” who may not have the necessary
 background and skills to make appropriate decisions without help. This
 places additional responsibility on the person working with the data to
 understand the problem domain thoroughly, in order to make suitable
 recommendations.
This is no joke. I have seen otherwise very smart people at
 high-quality companies completely botch business metrics programs simply
 because they lacked basic software engineering and math skills. As the
 person who (supposedly!) “understands data,” I see it as part of my
 responsibility to understand what my clients actually want to
 do with the data—and advise them accordingly on the
 things they should be doing. But to do so
 effectively, it is not enough to understand the data—I also need to
 understand my clients.
That’s the spirit in which these chapters are intended. The aim is
 to describe some of the ways that demand for data arises in a business
 environment, to highlight some of the traps for the unwary, and to give
 some advice on using data more successfully.
Business Intelligence

Businesses have been trying to make use of the data that
 they collect for years and, in the process, have accumulated a fair
 share of disappointments. I think we need to accept that the problem
 is hard: you need to find a way to represent, store, and make
 accessible a comprehensive view of all available data in such a way
 that is useful to anybody and for any purpose. That’s just hard. In
 addition, to be comprehensive, such an initiative has to span the
 entire company (or at least a very large part of it), which brings
 with it a whole set of administrative and political problems.
This frustrating state of affairs has brought forth a number of
 attempts to solve what is essentially a conceptual and political
 problem using technical means. In particular, the
 large enterprise tool vendors saw (and see) this problem space as an
 opportunity!
The most recent iteration on this theme was data warehouses—that
 is, long-term, comprehensive data stores in which data is represented
 in a denormalized schema that is intended to be more general than the
 schema of the transactional databases and also easier to use for
 nontechnical users. Data is imported into the data warehouse from the
 transactional databases using so-called ETL (extraction,
 transformation, and load) processes.
Overall, there seems to be a feeling that data warehouses fell
 short of expectations for three reasons. First of all, since data
 warehouses are enterprise-wide, they respond slowly to changes in any
 one business unit. In particular, changes to the transactional data
 schema tend to propagate into the data warehouse at a glacial pace, if
 at all. The second reason is that accessing the data in the data
 warehouse never seems to be as convenient as it should be. The third
 and final reason is that doing something useful with the data (once
 obtained) turns out to be difficult—in part because the typical query
 interface is often clumsy and not designed for analytic work.
While data warehouses were the most recent iteration in the
 quest for making company data available and useful, the current trend
 goes by the name of business intelligence, or BI.
 The term is not new (Wikipedia tells me that it was first used in the
 1950s), but only in the last one or two years have I seen the term
 used regularly.
The way I see it, business intelligence is an accessibility
 layer sitting on top of a data warehouse or similar data store, trying
 to make the underlying data more useful through better reporting,
 improved support for ad hoc data analysis, and even some attempts at
 canned predictive analytics.
Because it sits atop a database, all business intelligence stays
 squarely within the database camp; and what it aspires to do is
 constrained by what a database (or a database developer!) can do. The
 “analytics” capabilities consist mostly of various aggregate
 operations (sums, averages, and so on) that are typically supported by
 OLAP (Online Analytical Processing) cubes. OLAP
 cubes are multi-dimensional contingency tables
 (i.e., with more than two dimensions) that are
 precomputed and stored in the database and that allow for (relatively)
 quick summaries or projections along any of the axes. These “cubes”
 behave much like spreadsheets on steroids, which makes them familiar
 and accessible to the large number of people comfortable with
 spreadsheets and pivot tables.
In my experience, the database heritage (in contrast to a
 software engineering heritage) of BI has another consequence: the way
 people involved with business intelligence relate to it. While almost
 all software development has an element of
 product development to it, business intelligence
 often feels like infrastructure maintenance. And
 while the purpose of the former typically involves innovation and the
 development of new ways to please the customer, the latter tends to be
 more reactive and largely concerned with “keeping the trains on time.”
 This is not necessarily a bad thing, as long as one pays attention to
 the difference in cultures.
What is the take away here? First of all, I think it is
 important to have realistic expectations: when it comes right down to
 it, business intelligence initiatives are mostly about better
 reporting. That is fine as far as it goes, but it does not require (or
 provide) much data analysis per se. The business users who are the
 typical customers of such projects usually don’t need much help in
 defining the numbers they would like to see. There may be a need for
 help with visualization and overall user interface design, but the
 possibilities here tend to be mostly defined (and that means limited)
 by the set of tools being used.
More care needs to be taken when any of the “canned” analysis
 routines are being used that come bundled with many BI packages. Most
 (if not all) of these tools are freebies, thrown in by the vendor to
 pad the list of supported features, but they are likely to lack
 production strength and instead emphasize “ease of use.” These tools
 will produce results, all right—but it will be our job to decide how
 significant and how relevant
 these results are.
We should first ask what these routines are actually doing
 “under the hood.” For example, a clustering package may employ any one
 of a whole range of clustering algorithms (as we saw in Chapter 13) or even use a combination of algorithms
 together with various heuristics. Once we understand what the package
 does, we can then begin asking questions about the quality and, in
 particular, the significance of the results. Given that the routine is
 largely a black box to us, we will not have an intuitive sense
 regarding the extent of the region of validity of its results, for
 example. And because it is intended as an easy-to-use give away, it is
 not likely to have support for (or report at length about) nasty
 details such as confidence limits on the results. Finally, we should
 ask how relevant and useful these results are. Was there an original
 question that is being addressed—or was the answer mostly motivated by
 the ease with which it could be obtained?
One final observation: when there are no commercial tool
 vendors around, there is not much momentum for developing business
 intelligence implementations. Neither of the two major open source
 databases (MySQL and Postgres) has developed BI functionality or the
 kinds of ad hoc analytics interfaces that are typical of BI tools.
 (There are, however, a few open source projects that provide reporting
 and OLAP functionality.)
Reporting

The primary means by which data is used for “analysis”
 purposes in an enterprise environment is via reports. Whether we
 like it or not, much of “business intelligence” revolves around
 reporting, and “reporting” is usually a big part of what companies
 do with their data.
It is also one of the greatest sources of frustration. Given
 the ubiquity of reporting and the resources spent on it, one would
 think that the whole area would be pretty well figured out by now.
 But this is not so: in my experience, nobody seems to like what the
 reporting team is putting out—including the reporting team
 itself.
I have come to the conclusion that reporting, as currently
 understood and practiced, has it all wrong. Reporting is the one
 region of the software universe that has so far been barely touched
 by the notions of “agility” and “agile development.” Reporting
 solutions are invariably big, bulky, and bureaucratic, slow to
 change, and awkward to use. Moreover, I think with regards to two
 specific issues they get it exactly
 wrong:
	In an attempt to conserve resources, reporting solutions
 are often built generically: a single reporting system that
 supports all the needs of all the users. The reality, of course,
 is that the system does not serve the needs of
 any user (certainly not well), even as the
 overhead of the general-purpose architecture drives the cost
 through the roof.

	Most reporting that I have seen confuses “up to date” with
 “real time.” Data for reports is typically pulled in immediate
 response to a user’s query, which ensures that the data is up to
 date but also (for many reports) that it will take a while
 before the report is available—often quite a while! I believe
 that this delay is the single greatest source of frustration
 with all reports, anywhere. For a user, it typically matters
 much more to get the data right this minute
 than to get it up to this minute!

Can we conceive of an alternative to the current style of
 reporting, one that actually delivers on its promise and is easy and
 fun to use? I think so (in fact, I have seen it in action), but
 first we need to slaughter a sacred cow: namely, that
 one reporting system should be able to handle
 all kinds of different requirements. In
 particular, I think it will be helpful to distinguish very clearly
 between operational and
 representative reports.
Representative reports are those intended for external users.
 Quarterly filings certainly fall into this category, as do reports
 the company may provide to its customers on various metrics. In
 short, anything that gets published.
Operational reports, in contrast, are those used by managers
 within the company to actually run the business. Such reports
 include information on the the number of orders shipped today, the
 size of the backlog, or the CPU loads of various servers.
These two report types have almost nothing in common!
 Operational reports need to be fast and convenient—little else
 matters. Representative reports need to be definitive and optically
 impressive. It is not realistic to expect a single reporting system
 to support both requirements simultaneously! I’d go further and say
 that the preparation of representative reports is always somewhat of
 a special operation and should be treated as such: “making it look
 good.” If you have to do this a lot (e.g.,
 because you regularly send invoices to a large number of customers),
 then by all means automate the process—but don’t kid yourself into
 thinking that this is still merely “reporting.” (Billing is a
 core business activity for all service
 businesses!)
When it comes to operational reports, there are several ideas
 to consider:
Think “simple, fast, convenient.” Reports
 should be simple to understand, quick (instantaneous) to run, and
 convenient to use. Convenience dictates that the users
 must not be required to fill in an input mask
 with various parameters. The most the user can be expected to do is
 to select one specific report from a fixed list of available
 ones.
Don’t waste real estate. The whole point
 of having a report is the data. Don’t waste
 space on other things, especially if they never change. I have seen
 reports in which fully one third of the screen was taken up by a
 header showing the company logo! In another case, a similar amount
 of space was taken up by an input mask. Column headers and
 explanations are another common culprit: once people have seen the
 report twice, they will know what the columns are. (You will still
 need headers, but they can be short.) Move explanatory material to a
 different location and provide a link to it. Remember: the reason
 people ran the report is to see the
 data.
Make reports easy to read. In particular,
 this means putting lots of data onto a single page that can be read
 by scrolling (instead of dividing the data across several pages that
 require reloading those pages). Use a large enough font and consider
 (gently!) highlighting every second line. Less is more.
Consider expert help for the visual
 design. Reports don’t have to be ugly. It may be worth
 enlisting an expert to design and implement a report that
 looks pleasant and is easy to use. Good design
 will emphasize the content and avoid distracting embellishments.
 Developing good graphic designs is a specialized skill, and some
 people are simply better at this task than others. Remember: a
 report’s ease of use is not an unnecessary detail but an essential
 quality!
Provide raw data, and let the user handle filtering
 and aggregation. This is a potentially radical idea:
 instead of providing a complicated input mask whereby the user has
 to specify a bunch of selection criteria and the columns to return,
 a report can simply return everything (within
 reason, of course) and leave it to the user to perform any desired
 filtering and aggregation. This idea is based on the realization
 that most people who use reports are going to be comfortable working
 with Excel (or an equivalent spreadsheet program). Hence, we can
 regard a report not as an end product but rather as a data feed for
 spreadsheets.
This approach has a number of advantages: it is simple, cheap,
 and flexible (because users are free to design their own reports).
 It also implies that the report needs to include additional columns,
 which are required for user-level filtering and aggregation.
Consider cached reports instead of real-time
 queries. Once the input mask has been removed, the
 content of a report is basically fixed. But once it is fixed, it can
 be run ahead of time and cached—which means that we can return the
 data to the user instantaneously. It also means that the database is
 hit only once no matter how often the report is viewed.
Find out what your users are doing with reports—and
 then try to provide it for them. I cannot tell how often
 I’ve witnessed the following scenario. The reporting team spends
 significant time and effort worrying about the details and layout of
 its reports. But a few doors down the hall, the first thing that the
 report’s actual users do is cut-and-paste the results from the
 reporting system and import them into, yes, Excel. And then they
 often spend a lot of time manually editing and formatting the
 results so that they reflect the information that the users actually
 need. This occurs every day (or every week, or
 every hour—each time the report is accessed).
These edits are often painfully simple: the users need the
 report sorted on some numerical column, but this is impossible
 because the entry in that column is text: “Quantity 17.” Or they
 need the difference between two columns rather than the raw values.
 In any case, it’s usually something that could be implemented in
 half an hour, solving the problem once and for all. (These informal
 needs tend not to be recognized in formal “requirements” meetings,
 but they become immediately apparent if you spend a couple of hours
 tracking the the users’ daily routines.)
Reports are for consumers, not producers.
 A common response to the previous item is that every user seems to
 have his own unique set of needs, and trying to meet all of them
 would lead to a proliferation of different reports.
There is of course some truth to that. But in my experience,
 certain reports are used by work groups in a fairly standard
 fashion. It is in these situations that the time spent on
 repetitive, routine editing tasks (such as those just described) is
 especially painful—and avoidable. In such cases it might also be
 worthwhile to work with the group (or its management) to standardize
 their processes, so that in the end, a single report can meet
 everybody’s needs.
But there is a bigger question here, too. Whose convenience is
 more important—the producers’ or the users’? More broadly: for
 whom are the reports intended—for the reporting
 team or for the people looking at them?
Think about the proper metrics to show.
 For reports that show some form of summary statistics (as opposed to
 raw counts), think about which quantities to show. Will a mean
 (e.g., “average time spent in queue”) be
 sufficient, or is the distribution of values skewed, so that the
 median would be more appropriate? Do you need to include a measure
 for the width of the distribution (standard deviation or
 inter-quartile range)? (Answer: probably!) Also, don’t neglect
 cumulative information (see Chapter 2).
Don’t mix drill-down functionality with standard
 reporting. This may be a controversial item. In my
 opinion, reports are exactly that: standard overviews of the status
 of the system. Every time I run a report, I expect to find the same
 picture. (The numbers will change, of course, but not the overall
 view.) Drill-downs, on the other hand, are always different. After
 all, they are usually conducted in response to something out of the
 ordinary. Hence I don’t think it makes sense devising a
 general-purpose framework for them; ad hoc work is best done using
 ad hoc tools.
Consider this: general-purpose frameworks are always clumsy
 and expensive yet they rarely deliver the functionality required.
 Would it be more cost-effective to forget about maintaining
 drill-down functionality in the reporting system itself and instead
 deploy the resources (i.e., the developers)
 liberated thereby to address drill-down tasks on an ad hoc
 basis?
Don’t let your toolset strangle you.
 Don’t let your toolset limit the amount of value you can deliver.
 Many reporting solutions that I have seen can be awfully limiting in
 terms of the kind of information you can display and the formatting
 options that are available. As with any tool: if it gets in the way,
 evaluate again whether it is a net gain!
This is the list. I think the picture I’m trying to paint is
 pretty clear: fast, simple, and convenient
 reports that show lots of data but little else. Minimal overhead and
 a preference for cheap one-offs as opposed to expensive,
 general-purpose solutions. It’s not all roses—in particular, the
 objection that a large number of cheap one-off reports might incur a
 significant total cost of ownership in the long run is well taken.
 On the other hand, every general-purpose reporting solution that I
 have seen incurred a similar cost of ownership—but did not deliver
 the same level of flexibility and convenience.
I think it is time to rethink reporting. The agile movement
 (whether right or wrong in all detail) has brought fresh life to
 software development processes. We should start applying its lessons
 to reporting.
Finally, a word about reporting tools. The promise of the
 reporting tools that I have seen is to consume data from “many
 sources” and to deliver reports to “many formats” (such as HTML,
 PDF, and Excel).
I have already suggested why I consider this largely an
 imaginary problem: I cannot conceive of a situation where you really
 need to deliver the same report in both HTML and PDF versions. If
 there is a requirement to support both formats, on close examination
 we will probably find that the HTML report is an operational report,
 whereas the PDF report is to be representational. There are probably
 additional differences between the two versions (besides the output
 format), in terms of layout, content, life cycle, and audience—just
 about everything.
Similar considerations apply regarding the need to pull data
 from many sources. Although this does occur,
 does it occur often enough that it should form the basis for the
 entire reporting architecture? Or does, in reality, most of the data
 come from relational databases and the odd case where some
 information comes from a different source
 (e.g., an XML document, an LDAP server, or a
 proprietary data store) is best handled as a special case? (If you
 do in fact need to pull data from very different sources, then you
 should consider implementing a proper intermediate layer, one that
 extracts and stores data from all sources in a
 robust, common format. Reporting requires a solid and reliable data
 model. In other words, you want to isolate your reporting solution
 from the vagaries of the data sources—especially if these sources
 are “weird.”)
The kinds of problems that reporting tools promise to solve
 strike me as classic examples of cases where a framework
 seems like a much better idea than it actually
 is. Sure, a lot of the tasks involved in reporting are lame and
 repetitive. However, designing a framework that truly has the
 flexibility required to function as a general-purpose tool is
 difficult, which leads to frameworks that are hard to use for
 everyone—and you still have to work around their limitations. The
 alternative is to write some boring but straightforward and most of
 all simple boilerplate code that solves
 your specific problems simply and well. I tend
 to think that some simple, problem-specific boilerplate code is in
 every way preferable to a big, complicated, all-purpose
 framework.
As for the actual delivery technology, I am all for simple
 tables and static, precomputed graphics—provided they are useful and
 well thought-out (which is not always as easy as it may seem).
 Specifically, I don’t think that animated or interactive
 graphics—for example, using Adobe Flash, Microsoft Silverlight, or
 some other “Thick Client” technology—work well for reporting. Test
 yourself: how often do you want to wait for 5–10 seconds while some
 bar chart is slowly rendering itself (with all the animated bars
 growing individually from the base line)? Once you have seen this a
 few times, the “cute” effect has worn off, and the waiting becomes a
 drag. Remember that reports should be convenient, and that mostly
 means quick.
Thick clients do make sense as technologies for
 building “control consoles”: complex user interfaces designed to
 operate a complex system that needs to be controlled in real time.
 But that’s a very different job than reporting and should be (and
 usually is) treated as a core product with a dedicated software
 team.

Corporate Metrics and Dashboards

It is always surprising when a company doesn’t have good,
 real-time, and consistent visibility into some of its own fundamental
 processes. It can be amazingly difficult to obtain insight into data
 such as: orders fulfilled today, orders still pending, revenue by item
 type, and so on.
But this lack of visibility should not come as surprise because
 up close, the problem is harder than it appears. Any business of
 sufficient size will have complex business rules, which furthermore
 may be inconsistent across divisions or include special exceptions for
 major customers. The IT infrastructure that provides the data will
 have undergone several iterations over the years and be a mixture of
 “legacy” and more current systems—none of which were primarily
 designed for our current purposes! The difficulties in presenting the
 desired data are nothing more than a reflection of the complexity of
 the business.
You may encounter two concepts that try to address the
 visibility problem just described: special
 dashboards and more general metrics
 programs. The goals of a metrics program are to
 define those quantities that are most relevant
 and should be tracked and to design and develop the infrastructure
 required to collect the appropriate data and make it
 accessible.
A dashboard might be the visible outcome of a metrics program.
 The purpose of a dashboard is to provide a high-level view of all
 relevant metrics in a single report (rather than a collection of
 individual, more detailed reports). Dashboards often include
 information on whether any given metric is within its desired
 range.
Dashboard implementations can be arbitrarily fancy, with various
 forms of graphical displays for individual quantities. An unfortunate
 misunderstanding results from taking the word “dashboard” too
 seriously and populating the report with graphical images of dials, as
 one might find in a car. Of course, this is beside the point and
 actually detracts from a legitimate, useful idea: to have a
 comprehensive, unified view of the whole set of relevant
 metrics.
I think it is important to keep dashboards simple. Stick to the
 original idea of all the relevant data on a single page—together with
 clear indications of whether each value is within the desired range or
 not.
As already explained when discussing reports, I do not believe
 that drill-down functionality should be part of the overall
 infrastructure. The purpose of the dashboard is to highlight areas
 that need further attention, but the actual work on these areas is
 better done using individual, detailed research.
Recommendations for a Metrics Program

In case you find yourself on a project team to implement a
 metrics program, tasked to define the metrics to track and to design
 the required infrastructure, here are some concrete recommendations
 that you might want to consider.
Understand the cost of metrics programs.
 Metrics aren’t free. They require development effort and deployment
 infrastructure of production-level strength, both of which have
 costs and overhead. Once in production, these systems will also
 require regular maintenance. None of this is free.
I think the single biggest mistake is to assume that a
 successful metrics program can be run as an add-on project without
 additional resources. It can’t.
Have realistic expectations for the achievable
 benefit. The short-term effect of any sort of metrics
 program is likely to be small and possibly nondetectable. Metrics
 provide visibility and only visibility, but
 they don’t improve performance. Only the decisions based on these
 metrics will (perhaps!) improve performance. But here the
 marginal gain can be quite small, since many of
 the same decisions might have been made anyway, based on routine and
 gut feeling.
The more important effect of a metrics program stems from the
 long-term effect it has on the organizational culture. A greater
 sense of accountability, or even the realization that there
 are different levels of performance, can change
 the way the business runs. But these effects take time to
 materialize.
Start with the actions that the metrics should
 drive. When setting out to define a set of metrics to
 collect, make sure to ask yourself: what decision would I make
 differently in response to the value of this metric? If none comes
 to mind, you don’t need to collect it!
Don’t define what you can’t measure. This
 is a good one. I remember a metrics program where the set of metrics
 to track had been decided at the executive management level, based
 on what would be “useful” to see. Problem was, for a significant
 fraction of those quantities, no data was being collected and none
 could be collected because of limitations in the physical
 processes.
Build appropriate infrastructure. For a
 metrics program to be successful, it must be technically reliable,
 and the data must be credible. In other words, the systems that
 support it must be of production-level quality
 in regard to robustness, uptime, and reliability. For a company of
 any size, this requires databases, network infrastructure,
 monitoring—the whole nine yards. Plan on them! It will be difficult
 to be successful with only flat files and a CGI script (or with
 Excel sheets on a SharePoint, for that matter).
There is an important difference here between a more
 comprehensive program that purports to be
 normative and widely available, and an ad hoc report. Ad hoc reports
 can be extremely effective precisely because they do not require any
 infrastructure beyond a CGI script (or an Excel sheet), but they
 do not scale. They won’t scale to more metrics,
 larger groups of users, more facilities, longer historical time
 frames, or whatever it is.
That being said, if all you need is an ad hoc report, by all
 means go for it.
Steer clear of manually collected
 metrics. First of all, manually collected metrics are
 neither reliable nor credible (people will forget to enter numbers
 and, if pressed, will make them up). Second, most people will resist
 having to enter numbers (especially in detail—think timesheets!),
 which will destroy the acceptance and credibility of the program.
 Avoid manually collected metrics at all cost.
Beware of aggregates. It can be very
 appealing to aggregate values as much as possible: “Just give me
 one number so that I see how my business is
 doing.” The problem is that every aggregation step loses information
 that is impossible to regain: you can’t unscramble an egg. And
 actionable information is typically
 detailed information. Knowing that my
 aggregated performance score has tanked is not actionable but
 knowing which specific system has failed
 is!
This leads us to questions about user interface design,
 roll-ups, and drill-downs. I think most of this is unnecessary. All
 that’s required is a simple, high-level report. If details are
 required, one can always dig deeper in an ad hoc fashion.
Think about the math involved. The math
 required for corporate metrics is rarely advanced, but it still
 offers opportunities for mistakes. A common example occurs whenever
 we are forming a ratio—for example, to calculate the defect rate as
 the number of defects divided by the number of items produced. The
 problem is that the denominator can become zero (no items produced
 during the observation time frame), which makes it impossible to
 calculate a defect rate. There are different ways you can handle
 this (report as “not available,” treat zero items produced as a
 special case, especially slick: add a small number to the
 denominator in your definition of the defect rate, so that it can
 never become zero), but you need to handle this possibility somehow
 (also see Appendix B).
There are other problems for which careful thinking about the
 best mathematical representation can be helpful. For example, to
 compare metrics they need to be normalized through rescaling by an
 appropriate scaling factor. For quantities that vary over many
 orders of magnitude, it might be more useful to track the logarithm
 instead of the raw quantity. Consider getting expert help: a
 specialist with sufficient analytical background can recognize
 trouble spots and make recommendations for how
 best to deal with them that may not be obvious.
Be careful with statistical methods that
 might not apply. Mean and standard deviation are good
 representations for the typical value and the typical spread only if
 the distribution of data points is roughly symmetrical. In many
 practical situations, this is not the
 case—waiting times, for instance, can never be negative and,
 although the “typical” waiting time may be quite short, there is
 likely to be a tail of events that take a very long time to
 complete. This tail will corrupt both mean and standard deviation.
 In such cases, median-based statistics are a better bet (see Chapter 2 and Chapter 9).
In general, it is necessary to study the nature of the data
 before settling on an appropriate way to
 summarize it. Again, consider expert help if you don’t have the
 competency in-house.
Don’t buy what you don’t need. It is
 tempting to ask for a lot of detail that is not really required.
 Generally, it is not necessary to track sales numbers on a
 millisecond basis because we cannot respond to changes at that
 speed—and even if we could, the numbers would not be very meaningful
 because sales normally fluctuate over the course of a day.
Establish a meaningful time scale or the frequency with which
 to track changes. This time scale should be similar to the time
 scale in which we can make decisions and also similar to the time
 scale after which we see the results of those decisions. Note that
 this time scale might vary drastically: daily is probably good
 enough for sales, but for, say, the reactor temperature, a much
 shorter time scale is certainly appropriate!
Don’t oversteer. This recommendation is
 the logical consequence of the previous one. Every “system” has a
 certain response time within which it reacts to changes. Applying
 changes more frequently than this response time is useless and
 possibly harmful (because it prevents the system from reaching a
 steady state).
Learn to distinguish trend and variation.
 Most metrics will be tracked over time, so what we have learned
 about time-series analysis (see Chapter 4) applies. The
 most important skill is to develop an understanding for the duration
 and magnitude of typical “noise” fluctuations and to distinguish
 them from significant changes (trends) in the data. Suppose sales
 dipped today by 20 percent: this is no cause for alarm if we know
 that sales fluctuate by ±25 percent from day to day. But if sales
 fall by 5 percent for five days in a row, that could possibly be a
 warning sign.
Don’t forget the power of perverted
 incentives. When metrics are used to manage staff
 performance, this often means changing from a vague yet broad sense
 of “performance” to a much narrower focus on specifically those
 quantities that are being measured. This development can result in
 creating perverted incentives.
Take, for instance, the primary performance metric in
 a customer service call center: the number of calls a worker handles
 per hour, or “calls per hour.” The best way for a call center worker
 who is evaluated solely in terms of calls per hour to improve her
 standing is by picking up the phone when it rings and hanging up
 immediately! By making calls per hour the dominant metric, we have
 implicitly deemphasized other important aspects, such as customer
 satisfaction (i.e., quality).
Beware of availability bias. Some
 quantities are easier to measure than others and therefore tend to
 receive greater attention. In my experience, productivity is
 generally easier to measure than quality, with all the unfortunate
 consequences this entails.
Just because it can’t be measured does not mean it
 does not exist. Some quantities cannot be measured. This
 includes “soft” factors such as culture, commitment, and fun; but
 also some very “hard” factors like customer satisfaction. You can’t
 measure that—all you can measure directly are proxies
 (e.g., the return rate). An alternative are
 surveys, but because participants decide themselves whether they
 reply, the results may be misleading. (This is known as
 self-selection bias.)
Above all, don’t forget that a metrics program is intended to
 help the business by providing visibility—it should never become an
 end in itself. Also keep in mind that it is an effort to support
 others, not the other way around.

Data Quality Issues

All reporting and metrics efforts depend on the availability and
 quality of the underlying data. If the required data is improperly
 captured (or not captured at all), there is nothing to work
 with!
The truth of the matter is that if a company wants to have a
 successful business intelligence or metrics program, then its data
 model and storage solution must be designed with reporting
 needs in mind. By the time the demand for data analysis
 services rolls around, it is too late to worry about data
 modeling!
Two problems in particular occur frequently when one is trying
 to prepare reports or metrics: data may not be
 available or it may not be
 consistent.
Data Availability

Data may not be collected at all, often with the innocent
 argument that “nobody wanted to use it.” That’s silly: data that’s
 directly related to a company’s business is always relevant—whether
 or not anybody is looking at it right now.
If data is not available, this does not necessarily mean that
 it is not being collected. Data may be collected but not at the
 required level of granularity. Or it is collected but immediately
 aggregated in a way that loses the details required for later
 analysis. (For instance, if server logs are aggregated daily into
 hits per page, then we lose the ability to associate a specific user
 to a page, and we also lose information about the order in which
 pages were visited.)
Obviously, there is a trade-off between the amount of data
 that can be stored and the level of detail that we can achieve in an
 analysis. My recommendation: try to keep as much detail as you can,
 even if you have to spool it out to tape (or whatever offline
 storage mechanism is available). Keep in mind that operational data,
 once lost, can never be restored. Furthermore,
 gathering new data takes time and cannot be
 accelerated. If you know that data will be needed for some planned
 analysis project, start collecting it today.
 Don’t wait for the “proper” extraction and storage solution to be in
 place—that could easily take weeks or even months. If necessary, I
 do not hesitate to pull daily snapshots of relevant data to my local
 desktop, to preserve it temporarily, while a long-term storage
 solution is being worked out. Remember: every day that data is not
 collected is another day by which your results will be
 delayed.
Even when data is in principle collected at the appropriate
 level of detail, it may still not be available in a practical sense,
 if the storage schema was not designed with reporting needs in mind.
 (I assume here that the data in question comes from a corporate
 database—certainly the most likely case by far.) Three problems
 stand out to me in this context: lack of revision history, business
 logic commingled with data, and awkward encodings.
Some entities have a nontrivial life cycle: orders will go
 through several status updates, contracts have revisions, and so on.
 In such cases, it is usually important to preserve the full revision
 history—that is, all life-cycle events. The best way to do this is
 to model the time-varying state as a separate
 entity. For instance, you might have the Order entity (which contains, for example,
 the order ID and the customer ID) and the OrderStatus, which represents the actual
 status of the order (placed, accepted, shipped, paid, completed,
 ...), as well as a timestamp for the time that the status change
 took place. The current status is the one with the most recent
 status change. (A good way to handle this is with two timestamps:
 ValidFrom and ValidTo, where the latter is NULL for the current status.) Such a model
 preserves all the information necessary to study quantities like the
 typical time that orders remain in any one state. (In contrast, the
 presence of history tables with OldValue and NewValue columns suggests improper
 relational modeling.)
The important principle is that data is never
 updated—we only append to the revision history.
 Keep in mind that every time a database field is updated, the
 previous value is destroyed. Try to avoid this whenever you can!
 (I’d go so far as to say that CRUD—create, read, update, delete—is
 indeed a four-letter word. The only two operations that should ever
 be used are create and read. There may be valid operational reasons
 to move very old data to offline storage, but the data model should
 be designed in such a way that we never clobber existing data. In my
 experience, this point is far too little understood and even less
 heeded.)
The second common problem is business logic that is
 commingled with data in such a way that the data alone does not
 present an accurate picture of the business. A sure sign of this
 situation is a statement like the following: “Don’t try to read from
 the database directly—you have to go through the access layer API to
 get all the business rules.” What this is saying is that the DB
 schema was not designed so that the data can stand by itself: the
 business rules in the access layer are required to interpret the
 data correctly. (Another indicator is the presence of long,
 complicated stored procedures. This is worse, in fact, because it
 suggests that the situation developed inadvertently, whereas the
 presence of an access layer is proof of at least some degree of
 foreplanning.)
From a reporting point of view, the difficulty with a
 mandatory access layer like this is that a reporting system
 typically has to consume the data in bulk, whereas
 application-oriented access layers tend to access individual records
 or small collections of items. The problem is not the access layer
 as such—in fact, an abstraction layer between the database and the
 application (or applications) often makes sense. But it should be
 exactly that: an abstraction and access layer without embedded
 business logic, so that it can be bypassed if necessary.
Finally, the third problem that sometimes arises is the use of
 weird data representations, which (although complete) make bulk
 reporting excessively difficult. As an example, think of a database
 that stores only updates (to inventory levels, for example) but not
 the grand total. To get a view of the current state, it is now
 necessary to replay the entire transaction history since the
 beginning of time. (This is why your bank statement lists both a
 transaction history and an account balance!) In
 such situations it may actually make sense to invest in the required
 infrastructure to pull out the data and store it in a more
 manageable fashion. Chances are good that plenty of uses for the
 sanitized data will appear over time (build it, and they will
 come).

Data Consistency

Problems of data consistency (as opposed to data availability)
 occur in every company of sufficient size, and they are simply an
 expression of the complexity of the underlying business. Here are
 some typical examples that I have encountered.
	Different parts of the company use different definitions
 for the same metric. Operations, for example, may consider an
 order to be completed when it has left the warehouse, whereas
 the finance department does consider an order to be complete
 once the payment for it has been received.

	Reporting time frames may not be aligned with operational
 process flows. A seemingly simple question such as, “How many
 orders did we complete yesterday?” can quickly become
 complicated, depending on whose definition of “yesterday” we
 use. For example, in a warehouse, we may only be able to obtain
 a total for the number of orders completed per shift—but then
 how do we account for the shift that stretches from 10 at night
 to 6 the next morning? How do we deal with time zones? Simply
 stating that “yesterday” refers to the local time
 at the corporate headquarters sounds simple but is probably not
 practical, since all the facilities will naturally do their
 bookkeeping and reporting according to their local time.

	Time flows backward. How does one account for an order
 that was later returned? If we want to recognize revenue in the
 quarter in which the order was completed but an item is later
 returned, then we have a problem. We can still report on the
 revenue accurately—but not in a timely manner. (In other words,
 final quarterly revenue reports cannot be produced until the
 time allowed to return an item has elapsed. Keep in mind that
 this may be a long time in the case of
 extended warranties or similar arrangements.)

Additional difficulties will arise if information has been
 lost—for instance, because the revision history of a contract has
 not been kept (recall our earlier discussion). You can probably
 think of still other scenarios in which problems of data or metric
 inconsistency occur.
The answer to this set of problems is not technical but
 administrative or political. Basically it comes down to agreeing on
 a common definition of all metrics. An even more drastic
 recommendation to deal with conflicting metrics is to declare one
 data source as the “normative” one; this does not make the data any
 more accurate, but it can help to stop fruitless efforts to
 reconcile different sources at any cost. At least that’s the theory.
 Unfortunately, if the manager of an off-site facility can expect to
 have his feet held to the fire by the CEO over why the facility
 missed its daily goal of two million produced units by a handful of
 units last Friday, he will look for ways to pass the blame. And
 pointing to inconsistencies in the reports is an easy way out. (In
 my experience, one major drawback of all metrics programs is the
 amount of work generated to reconcile minute inconsistencies between
 different versions of the same data. The costs—in terms of
 frustration and wasted developer time—can be stunning.)
As practical advice I recommend striving as much as possible
 for clear definitions of all metrics, so that at least we know what
 we’re talking about. Furthermore, wherever possible, try to make
 those metrics normative that are practical to
 gather, rather than those “correct” from a theoretical point of view
 (e.g., report metrics in local instead of
 global time coordinates). Apply conversion factors behind the
 scenes, if necessary, but try to make sure that humans only need to
 deal with quantities that are meaningful and familiar to
 them.

Workshop: Berkeley DB and SQLite

For analysis purposes, the most suitable data format is usually
 the flat file. Most of the time, we will want all (or almost all) of
 the records in a data set for our analysis. It therefore makes more
 sense to read the whole file, possibly filter out the unneeded
 records, and process the rest, rather than to do an indexed lookup of
 only the records that we want.
Common as this scenario is, it does not always apply.
 Especially when it comes to reporting, it can be highly desirable to
 have access to a data storage solution that supports structured data,
 indexed lookup, and even the ability to merge and aggregate data. In
 other words, we want a database.
The problem is that most databases are
 expensive—and I don’t (just) mean in terms of
 money. They require their own process (or processes), they require
 care and feeding, they require network access (so that people and
 processes can actually get to them). They must be designed, installed,
 and provisioned; very often, they require architectural approval
 before anything else. (The latter point can become such an ordeal that
 it makes anything requiring changes to the database environment
 virtually impossible; one simply has to invent solutions that do
 without them.) In short, most databases are expensive: both
 technically and politically.
Fortunately, other people have recognized this and developed
 database solutions that are cheap: so-called embedded
 databases. Their distinguishing feature is that they do not
 run in a separate process. Instead, embedded databases store their
 data in a regular file, which is accessed through a library linked
 into the application. This eliminates most of the overhead for
 provisioning and administration, and we can replicate the entire
 database simply by copying the data file! (This is occasionally very
 useful to “deploy” databases.)
Let’s take a look at the two most outstanding examples of (open
 source) embedded databases: the Berkeley DB, which is a key/value hash
 map stored on disk, and SQLite, which is a complete relational
 database “in a box.” Both have bindings to almost any programming
 language—here, we demonstrate them from Python. (Both are included in
 the Python Standard Library and therefore should already be available
 wherever Python is.)
Berkeley DB

The Berkeley DB is a key/value hash map (a “dictionary”)
 persisted to disk. The notion of a persistent key/value database
 originated on Unix; the first implementation being the Unix dbm facility. Various reimplementations
 (ndbm, gdbm, and so on) exist. The original
 “Berkeley DB” was just one specific implementation that added some
 additional capabilities—mostly multiuser concurrency support. It was
 developed and distributed by a commercial company (Sleepycat) that
 was acquired by Oracle in 2008. However, the name “Berkeley DB” is
 often used generically for any key/value database.
Through the magic of operator overloading, a Berkeley DB also
 looks like a dictionary to the
 programmer[27] (with the requirement that keys and values must be
 strings):
import dbm

db = dbm.open("data.db", 'c')
db['abc'] = "123"
db['xyz'] = "Hello, World!"
db['42'] = "42"

print db['abc']

del db['xyz']

for k in db.keys():
 print db[k]

db.close()
That’s all there is to it. In particular, notice that the
 overhead (“boilerplate”) required is precisely zero. You can’t do
 much better than that.
I used to be a great fan of the Berkeley DB, but over time I
 have become more aware of its limitations. Berkeley DBs store
 single-key/single-value pairs—period. If that’s what you want to do,
 then a Berkeley DB is great. But as soon as that’s not
 exactly what you want to do, then the Berkeley
 DB simply is the wrong solution. Here are a few things you
 cannot do with a Berkeley DB:
	Range searches: 3 < x <
 17

	Regular expression searches: x
 like 'Hello%'

	Aggregation: count(*)

	Duplicate keys

	Result sets consisting of multiple records and iteration
 over result sets

	Structured data values

	Joins

In fairness, you can achieve some of these features, but you
 have to build them yourself (e.g., provide your
 own serialization and deserialization to support structured data
 values) or be willing to lose almost all of the benefit provided by
 the Berkeley DB (you can have range or regular expression searches,
 as long as you are willing to suck in all the
 keys and process them sequentially in a loop).
Another area in which Berkeley DBs are weak is administrative
 tasks. There are no standard tools for browsing and (possibly)
 editing entries, with the consequence that you have to write your
 own tools to do so. (Not hard but annoying.) Furthermore, Berkeley
 DBs don’t maintain administrative information about themselves (such
 as the number of records, most recent access times, and so on). The
 obvious solution—which I have seen implemented in just about every
 project using a Berkeley DB—is to maintain this information explicitly and to store it in the DB under
 a special, synthetic key. All of this is easy enough, but it does
 bring back some of the “boilerplate” code that we hoped to avoid by
 using a Berkeley DB in the first place.

SQLite

In contrast to the Berkeley DB, SQLite (http://www.sqlite.org/) is a full-fledged
 relational database, including tables, keys, joins, and WHERE clauses. You talk to it in the
 familiar fashion through SQL. (In Python, you can use the DB-API 2.0
 or one of the higher-level frameworks built on top of it.)
SQLite supports almost all features found in standard SQL with
 very few exceptions. The price you pay is that you have to design
 and define a schema. Hence SQLite has a bit more overhead than a
 Berkeley DB: it requires some up-front design as well as a certain
 amount of boilerplate code.
A simple example exercising many features of SQLite is shown
 in the following listing. It should pose few (if any) surprises, but
 it does demonstrate some interesting features of SQLite:
import sqlite3

Connect and obtain a cursor
conn = sqlite3.connect('data.dbl')
conn.isolation_level = None # use autocommit!
c = conn.cursor()

Create tables
c.execute("""CREATE TABLE orders
 (id INTEGER PRIMARY KEY AUTOINCREMENT,
 customer)""")
c.execute("""CREATE TABLE lineitems
 (id INTEGER PRIMARY KEY AUTOINCREMENT,
 orderid, description, quantity)""")

Insert values
c.execute("INSERT INTO orders (customer) VALUES ('Joe Blo')")
id = str(c.lastrowid)
c.execute("""INSERT INTO lineitems (orderid, description, quantity)
 VALUES (?, 'Widget 1', '2')""", (id,))
c.execute("""INSERT INTO lineitems (orderid, description, quantity)
 VALUES (?, 'Fidget 2', '1')""", (id,))
c.execute("""INSERT INTO lineitems (orderid, description, quantity)
 VALUES (?, 'Part 17', '5')""", (id,))

c.execute("INSERT INTO orders (customer) VALUES ('Jane Doe')")
id = str(c.lastrowid)
c.execute("""INSERT INTO lineitems (orderid, description, quantity)
 VALUES (?, 'Fidget 2', '3')""", (id,))
c.execute("""INSERT INTO lineitems (orderid, description, quantity)
 VALUES (?, 'Part 9', '2')""", (id,))

Query
c.execute("""SELECT li.description FROM orders o, lineitems li
 WHERE o.id = li.orderid AND o.customer LIKE '%Blo'""")
for r in c.fetchall():
 print r[0]

c.execute("""SELECT orderid, sum(quantity) FROM lineitems
 GROUP BY orderid ORDER BY orderid desc""")
for r in c.fetchall():
 print "OrderID: ", r[0], "\t Items: ", r[1]

Disconnect
conn.close()
Initially, we “connect” to the database—if it doesn’t exist
 yet, it will be created. We specify autocommit mode so that each
 statement is executed immediately. (SQLite also supports concurrency
 control through explicit transaction.)
Next we create two tables. The first column is specified as a
 primary key (which implies that it will be indexed automatically)
 with an autoincrement feature. All other columns do not have a data
 type associated with them, because basically all values are stored
 in SQLite as strings. (It is also possible to declare certain type
 conversions that should be applied to the values, either in the
 database or in the Python interface.)
We then insert two orders and some associated line items. In
 doing so, we make use of a convenience feature provided by the
 sqlite3 module: the last value of
 an autoincremented primary key is available through the lastrowid attribute (data member) of the
 current cursor object.
Finally, we run two queries. The first one demonstrates a join
 as well as the use of SQL wildcards; the second uses an aggregate
 function and also sorts the result set. As you can see, basically
 everything you know about relational databases carries over directly
 to SQLite!
SQLite supports some additional features that I have not
 mentioned. For example, there is an “in-memory” mode, whereby the
 entire database is kept entirely in memory: this can be very helpful
 if you want to use SQLite as a part of a performance-critical
 application. Also part of SQLite is the command-line utility
 sqlite3, which allows you to
 examine a database file and run ad hoc queries against it.
I have found SQLite to be extremely useful—basically
 everything you expect from a relational database but without most of
 the pain. I recommend it highly.

Further Reading

	Information Dashboard Design: The Effective
 Visual Communication of Data. Stephen Few. O’Reilly. 2006.
This book addresses good graphical design of dashboards and
 reports. Many of the author’s points are similar in spirit to the
 recommendations in this chapter. After reading his book, you might
 consider hiring a graphic or web designer to design your reports
 for you!

[27] In Perl, you use a “tied hash” to the same effect.

Chapter 17. Financial Calculations and Modeling

I
 RECENTLY RECEIVED A NOTICE FROM A MAGAZINE REMINDING ME THAT MY
 SUBSCRIPTION WAS RUNNING OUT. It’s a relatively
 expensive weekly magazine, and they offered me three different plans to
 renew my subscription: one year (52 issues) for $130, two years for
 $220, or three years for $275. Table 17-1 summarizes these
 options and also shows the respective cost per issue.
Table 17-1. Pricing plans for a magazine subscription
	Subscription
	Total price
	Price per issue

	Single issue
	n/a
	6.00

	1 year
	130
	2.50

	2 years
	220
	2.12

	3 years
	275
	1.76

Assuming that I want to continue the subscription, which of these
 three options makes the most sense? From Table 17-1, we can see that
 each issue of the magazine becomes cheaper as I commit myself to a
 longer subscription period, but is this a good deal? In fact, what does
 it mean for a proposal like this to be a “good deal”? Somehow, stomping
 up nearly three hundred dollars right now seems like a stretch, even if
 I remind myself that it saves me more than half the price on each
 issue.
This little story demonstrates the central topic of this chapter:
 the time value of money, which expresses the notion
 that a hundred dollars today are worth more than a hundred dollars a
 year from now. In this chapter, I shall introduce some standard concepts
 and calculational tools that are required whenever we need to
 make a choice between different investment decisions—whether they
 involve our own personal finances or the evaluation of business cases
 for different corporate projects.
I find the material in this chapter fascinating—not because it is
 rocket science (it isn’t) but because it is so fundamental to how the
 economy works. Yet very few people, in particular, very few tech people,
 have any understanding of it. (I certainly didn’t.) This is a shame, not
 just because the topic is obviously important but also because it is not
 really all that mystical. A little familiarity with the basic concepts
 goes a long way toward removing most of the confusion (and, let’s face
 it, the intimidation) that many of us experience when reading the Wall
 Street pages.
More important in the context of this book is that a lot of data
 analysis is done specifically to evaluate different business proposals
 and to support decisions among them. To be able to give effective,
 appropriate advice, you want to understand the concepts and terminology
 of this particular problem domain.
The Time Value of Money

Let’s return to the subscription problem. The essential insight
 is that—instead of paying for the second and third year of the
 subscription now—I could invest that money, reap
 the investment benefit, and pay for the subsequent years of the
 subscription later. In other words, the discount offered by the
 magazine must be greater than the investment
 income I can expect if I were instead to invest the sum.
It is this ability to gain an investment benefit that makes
 having money now more valuable than having the
 same amount of money later. Note well that this
 has nothing to do with the concept of inflation,
 which is the process by which a certain amount of money tends to buy a
 lesser amount of goods as time passes. For our purposes, inflation is
 an external influence over which we have no control. In contrast,
 investment and purchasing decisions (such as the earlier magazine
 subscription problem) are under our control, and time value of money
 calculations can help us make the best possible decisions in this
 regard.
A Single Payment: Future and Present Value

Things are easiest when there is only a single payment
 involved. Imagine we are given the following choice: receive $1,000
 today, or receive $1,050 a year from now. Which one should we
 choose?
Well, that depends on what we could do with $1,000 right now.
 For this kind of analysis, it is customary to assume that we would
 put the money in a “totally safe form of investment” and use the
 returns generated in this way as a benchmark for
 comparison.[28] Now we can compare the alternatives against the
 interest that would be generated by this “safe” investment. For
 example, assume that the current interest rate that we could gain on
 a “safe” investment is 5 percent annually. If we invest $1,000 for a
 full year, then at the year’s end, we will receive back our
 principal ($1,000) and, in addition, the accrued interest (0.05 ·
 $1000 = $50), for a total of $1,050.
In this example, both options lead to the same amount of money
 after one year; we say that they are
 equivalent. In other words, receiving $1,000
 now is equivalent to receiving $1,050 a year
 from now, given that the current interest rate
 on a safe form of investment is 5 percent annually. Equivalence
 always refers to a specific time frame and interest rate.
Clearly, any amount of money that we now possess has a
 future value (or future
 worth) at any point in the future; likewise, a payment
 that we will receive at some point in the future has a
 present value (or present
 worth) now. Both values depend on the interest rate that
 we could achieve by investing in a safe alternative investment
 instead. The present or future values must be equivalent at equal
 times.
There is a little bit of math behind this that is not
 complicated but is often a little messy. The future value
 Vf
 of some base amount M (the
 principal), after a single time period during
 which the amount earns p percent of interest,
 is calculated as follows:
[image: A Single Payment: Future and Present Value]
The first term on the righthand side expresses that we get our
 principal back, and the second term is the amount of interest we
 receive in addition. Here and in what follows, I explicitly show the
 denominator 100 that is used to translate a statement such as
 “p percent” into the equivalent numerical
 factor p/100.
Conversely, if we want to know how much a certain amount of
 money in the future is worth today, then we have to
 discount that amount to its present value. To
 find the present value, we work the preceding equation backward. The
 present value
 Vp
 is unknown, but we do know the amount of money
 M that we will have at some point in the
 future, hence the equation becomes:
[image: A Single Payment: Future and Present Value]
This can be solved for
 Vp:
[image: A Single Payment: Future and Present Value]
Note how we find the future or present value by
 multiplying the base amount by an appropriate
 equivalencing factor—namely, the future-worth
 factor 1 + p/100 and the present-worth factor
 1/(1 + p/100). Because most such calculations
 involve discounting a future payment to the present value, the
 percentage rate p used in these formulas is
 usually referred to as the discount
 rate.
This example was the simplest possible because there was only
 a single payment involved—either at the beginning or at the end of
 the period under consideration. Next, we look at scenarios where
 there are multiple payments occurring over time.

Multiple Payments: Compounding

Matters become a bit more complicated when there is not just a
 single payment involved as in the example above but a series of
 payments over time. Each of these payments must be discounted by the
 appropriate time-dependent factor, which leads us to
 cash-flow analysis. In addition, payments made
 or received may alter the base amount on which we operate, this
 leads to the concept of compounding.
Let’s consider compounding first, since it is so fundamental.
 Again, the idea is simple: if we put a sum of money into an
 interest-bearing investment and then reinvest
 the generated interest, we will start to receive interest on the
 interest itself. In other words, we will start receiving
 compound interest.
Here is how it works: we start with principal
 M and invest it at interest rate
 p. After one year, we have:
[image: Multiple Payments: Compounding]
In the second year, we receive interest on the combined sum of
 the principal and the interest from the first year:
[image: Multiple Payments: Compounding]
and so on. After n years, we will
 have:
[image: Multiple Payments: Compounding]
These equations tell us the future worth of our investment at
 any point in time. It works the other way around, too: we can
 determine the present value of a payment that we expect to receive
 n years from now by working the equations
 backward (much as we did previously for a single payment) and
 find:
[image: Multiple Payments: Compounding]
We can see from these equations that, if we continue to
 reinvest our earnings, then the total amount of money grows
 exponentially with time (i.e., as
 at
 for some constant a)—in other words,
 fast. The growth law that applies to compound
 interest is the same that describes the growth of bacteria cultures
 or similar systems, where at each time step new members are added to
 the population and start producing offspring
 themselves. In such systems, not only does the population grow, but
 the rate at which it grows is constantly increasing as well.
On the other hand, suppose you take out a loan without making
 payments and let the lender add the accruing interest back onto your
 principal. In this case, you not only get deeper into debt every
 month, but you do so at a faster rate as time goes by.

Calculational Tricks with Compounding

Here is a simple trick that is quite convenient when making
 approximate calculations of future and present worth. The
 single-payment formula for future worth, V = (1
 + p/100)M, is simple and
 intuitive: the principal plus the interest
 after one period. In contrast, the corresponding formula for present
 worth [image:], seems to make less intuitive sense and is
 harder to work with (how much is $1,000 divided by 1.05?). But this
 is again one of those situations where guesstimation techniques (see
 Chapter 7; also
 see Appendix B) can be brought to
 bear. We can approximate the discounting factor as follows:
[image: Calculational Tricks with Compounding]
Since p is typically small (single
 digits), it follows that p/100 is very small,
 and so we can terminate the expansion after the first term. Using
 this approximation, the discounting equation for the present worth
 becomes V = (1 –
 p/100)M, which has an
 intuitive interpretation: the present value is equal to the future
 value, less the interest that we will have received by then.
We can use similar formulas even in the case of compounding,
 since:
[image: Calculational Tricks with Compounding]
However, keep in mind that the overall perturbation must be
 small for the approximation to be valid. In particular, as the
 number of years n grows, the perturbation term
 np/100 may no longer be small. Still, even for
 5 percent over 5 years, the approximation gives 1 ± 25/100 = 1.25 or
 0.75, respectively. Compare this with the exact values of 1.28 and
 0.79. However, for 10 percent over 10 years, the approximation
 starts to break down, yielding 2 and 0, respectively, compared to
 the exact values of 2.59 and 0.39.
Similar logic is behind “Einstein’s Rule of 72.” This rule of
 thumb states that if you divide 72 by the applicable interest rate,
 you obtain the number of years it would take for your investment to
 double. So if you earn 7 percent interest, your money will double in
 10 years, but if you only earn 3.5 percent, it will take 20 years to
 double.
What’s the basis for this rule? By now, you can probably
 figure it out yourself, but here is the solution in a nutshell: for
 your investment to double, the compounding factor must equal 2.
 Therefore, we need to solve (1 +
 p/100)n
 = 2 for n. Applying logarithms on both sides we
 find n = log(2)/log(1 +
 p/100). In a second step, we expand the
 logarithm in the denominator (remember that
 p/100 is a small perturbation!) and end up with
 n = log(2) · (100/p) =
 69/p, since the value of log(2) is
 approximately 0.69. The number 69 is awkward to work with, so it is
 usually replaced by the number 72—which has the advantage of being
 evenly divisible by 2, 3, 4, 6, 8, and 9 (you can replace 72 with 70
 for interest rates of 5 or 7 percent).
Here is another calculational tool that you may find useful.
 Strictly speaking, an expression such as
 xn
 is defined only for integer n. For general
 exponents, the power function is defined as
 xn
 = exp(n log x). We can use
 this when calculating compounding factors as follows:
[image: Calculational Tricks with Compounding]
where in the second step we have expanded the logarithm again
 and truncated the expansion after the first term. This form of the
 compounding factor is often convenient (e.g.,
 it allows us to use arbitrary values for the time period
 n, not just full years). It becomes exact in
 the limit of continuous compounding (discussed shortly).
Interest rates are conventionally quoted “per year,” as in “5
 percent annually.” But payments may occur more frequently than that.
 Savings accounts, for example, pay out any accrued interest on a
 monthly basis. That means that (as long as we don’t withdraw
 anything) the amount of money that earns us interest grows every
 month; we say it is compounded monthly. (This
 is in contrast to other investments, which pay out interest or
 dividends only on a quarterly or even annual basis.) To take
 advantage of the additional compounding, it is of course in our
 interest (pun intended) to receive payments as early as
 possible.
This monthly compounding is the reason for the difference
 between the nominal interest rate and the
 annual yield that you will find stated on your
 bank’s website: the nominal interest rate is the rate
 p that is used to determine the amount of
 interest paid out to you each month. The yield tells you by how much
 your money will grow over the course of the year when the monthly
 compounding has been factored in. With our knowledge, we can now
 calculate the yield from the nominal rate:
[image: Calculational Tricks with Compounding]
One more bit of terminology: the interest rate
 p/12 that is used to determine the value of the
 monthly payout is known as the effective
 interest rate.
Of course, other payment periods are possible. Many mutual
 funds pay out quarterly. In contrast, many credit cards compound
 daily. In theory, we can imagine payments being made constantly (but
 at an appropriately reduced effective interest rate); this is the
 case of continuous compounding mentioned
 earlier. In this case, the compounding factor is given by the
 exponential function. (Mathematically, you replace the 12 in the
 last formula by n and then let
 n go to infinity, using the identity
 limn→∞(1
 +
 x/n)n
 = exp(x).)

The Whole Picture: Cash-Flow Analysis and Net Present
 Value

We now have all the tools at our disposal to evaluate the
 financial implications of any investment decision, no matter how
 complicated. Imagine we are running a manufacturing plant (or
 perhaps an operation like Amazon’s, where books and other goods are
 put into boxes and mailed to customers—that’s how
 I learned about all these things). We may
 consider buying some piece of automated equipment for some part of
 the process (e.g., a sorting machine that sorts
 boxes onto different trucks according to their destination).
 Alternatively, we can have people do the same job manually. Which of
 these two alternatives is better from an economic point of
 view?
The manual solution has a simple structure: we just have to
 pay out the required wages every year. If we decide to buy the
 machine, then we have to pay the purchase price now (this is also
 known as the first cost) and also pay a small
 maintenance fee each year. For the sake of the argument, assume also
 that we expect to use the machine for ten years and then sell it on
 for scrap value.
In economics texts, you will often find the sequence of
 payments visualized using cash-flow diagrams
 (see Figure 17-1).
 Time progresses from left to right; inflows are indicated by
 upward-pointing arrows and outflows by downward-pointing
 arrows.
To decide between different alternatives, we now proceed as
 follows:
	Determine all individual net cash flows
 (net cash flows, because we offset annual
 costs against revenues).

	Discount each cash flow to its present value.

	Add up all contributions.

The quantity obtained in the last step is known either as the
 net present value (NPV) or the
 discounted net cash flow: it is the total value
 of all cash flows, each properly discounted to its present value. In
 other words, our financial situation will be the same, whether we
 execute the entire series of cash flows or
 receive the net present value today. Because the net present value
 contains all inflows and outflows (properly discounted to the
 present value), it is a comprehensive single measure that can be
 used to compare the financial outcomes of different investment
 strategies.
[image: Examples of cash-flow diagrams. Arrows pointing up correspond to money received; arrows pointing down, to money spent.]

Figure 17-1. Examples of cash-flow diagrams. Arrows pointing up
 correspond to money received; arrows pointing down, to money
 spent.

We can express the net present value of a series of cash flows
 in a single formula:
[image: Examples of cash-flow diagrams. Arrows pointing up correspond to money received; arrows pointing down, to money spent.]
where c(i) is the
 net cash flow at payment period i and 1/(1 +
 p/100)i
 is the associated discounting factor.
There is one more concept that is interesting in this context.
 What should we use for the discount rate p in
 the second step above? Instead of supplying a value, we can ask how
 much interest we would have to receive elsewhere (on a “safe”
 investment) to obtain the same (or higher) payoff than that expected
 from the planned project. Let’s consider an example. Assume we are
 evaluating a project that would require us to purchase some piece of
 equipment at the beginning but that would then result in a series of
 positive cash flows over the next so many years. Is this a “good”
 investment? It is if its net present value is positive! (That’s
 pretty much the definition of “net present value”: the NPV takes
 into account the first cost to purchase the equipment as well as the
 subsequent positive cash flows. If the discounted cash flows are
 greater than the first cost, we come out ahead.) But the net present
 value depends on the discount rate p, so we
 need to find that value of p for which the NPV
 first becomes zero: if we can earn a higher interest rate elsewhere,
 then the project does not make financial sense and we should instead
 take our money to the bank. But if the bank would pay us less than
 the rate of return just calculated, then the
 project is financially the better option. (To find a numeric value
 for the rate of return, plug your cash flow structure
 c(i) into the equation for
 NPV and then solve for p. Unless the cash flows
 are particularly simple, you will have to do this
 numerically.)
The net present value is such an important criterion
 when making investment decisions because it provides us with a
 single number that summarizes the financial results of any planned
 project. It gives us an objective (financial) quantity to decide
 among different investment alternatives.
Up to a point, that is. The process described here is only as
 good as its inputs. In particular, we have assumed that we know all
 inputs perfectly—possibly for many years into the future. Of course
 we don’t have perfect knowledge, and so we better accommodate for
 that uncertainty somehow. That will be the topic of the next
 section.
There is another, more subtle problem when evaluating
 different options solely based on net present value: different
 investment alternatives may have nonfinancial benefits or drawbacks
 that are not captured by the net present value. For example, using
 manual labor may lead to greater flexibility: if business grows more
 strongly than expected, then the company can hire additional
 workers, and if business slows down, then it can reduce the number
 of workers. In contrast, any piece of equipment has a maximum
 capacity, which may be a limiting factor if business grows more
 strongly than expected. The distinction arising here is that between
 fixed and variable cost, and we will come back to it toward the end
 of the chapter.

Uncertainty in Planning and Opportunity Costs

Now we are ready to revisit the magazine subscription problem
 from the beginning of this chapter. Let’s consider only two
 alternatives: paying the entire amount for a two-year subscription up
 front or making two single-year payments. The NPV for the second
 option is (1 + 1/(1 + p/100))
 C1yr, where we have left
 the discount rate p undetermined for the moment.
 We can now ask: what interest rate would we have to earn elsewhere to
 make the second option worthwhile? In other words, we want to know the
 discount rate we’d have to apply to make the NPV of the
 multiple-payment option equal to the cost of the single-payment
 plan:
[image: Uncertainty in Planning and Opportunity Costs]
This equation can be solved for p. The
 result is p = 30 percent! In other words, the
 two-year subscription is so much cheaper that we would have to find an
 investment yielding 30 percent annually before it would be worthwhile
 to pay for the subscription year by year and invest the saved money
 elsewhere. No investment (and certainly no “safe” investment) yields
 anywhere near that much. Clearly, something is amiss. (Exercise for
 the reader: find the net present value for the three-year subscription
 and verify that it leads to the same value for
 p.)
Using Expectation Values to Account for Uncertainty

The two- and three-year plans carry a hidden cost for us: once
 we have signed up, we can no longer freely decide over our
 money—we’re committed ourselves for the long haul. In contrast, if
 we pay on a yearly basis, then we can reevaluate every year whether
 we want to continue the subscription. The price for this freedom is
 a higher subscription fee. However, we will probably not find it
 easy to determine the exact dollar value that this freedom is worth
 to us.
From the magazine’s perspective, the situation is simpler.
 They can simply ask how much money they expect to make from an
 individual subscriber under either option. If I sign up for the
 two-year subscription, they make
 C2yr with certainty; if
 I sign up for the one-year subscription, they make
 C1yr with certainty now
 and another C1yr
 later—provided I renew my subscription! In this
 case, then, the amount of money the magazine expects to make on me
 is C1yr +
 γC1yr, where γ is the
 probability that I will renew the subscription. From the magazine’s
 perspective, both options must be equally favorable (otherwise they
 would adjust the price of the two-year subscription to make them
 equal), so we can equate the expected revenues and solve for γ. The
 result comes out to about γ = 0.7—in other words, the magazine
 expects (based on past experience, and so on) that about 70 percent
 of its current subscribers will renew their subscription. For three
 years, the equation becomes (1 + γ +
 γ2)C1yr
 = C3yr because, to sign
 up for three years, a subscriber must decide
 twice to renew the subscription. If you work
 through the algebra, you will find that γ again comes out to about γ
 = 0.7, providing a nice consistency check.
There are two takeaways in this example that are worth
 emphasizing: the first concerns making economic decisions that are
 subject to uncertainty. The second is the concept of opportunity
 cost, which is the topic of the following section.
When making economic decisions that are subject to
 uncertainty, you may want to take this uncertainty into account by
 replacing the absolute cash flows with their expected values. A
 simple probability model for the likely payout is often sufficient.
 In the magazine example there were just two outcomes: the subscriber
 renews with probability γ = 0.7 and value
 C1yr, or the subscriber
 does not renew with probability γ = 0.3 and value 0, hence the
 expected value is 0.3 · 0 + 0.7 ·
 C1yr. If your situation
 warrants it and if you can specify the probability distribution for
 various payout alternatives in more detail, then you can calculate
 the expected value accordingly. (See Chapter 8 and Chapter 9 for more information
 on how to build models to support this kind of conclusion.)
Working with expectation values is convenient, because once
 you have determined the expected value of the payout, you no longer
 need to worry about the probabilities for the various outcomes: they
 have been entirely absorbed into the expectation values. What you
 lose is insight into the probable spread of outcomes. For a quick
 order-of-magnitude check, that’s acceptable, but for a more serious
 study, an estimate of the spread should be included. There are two
 ways to do this: repeat your calculation multiple times using
 different values (low, medium, high) for the expected payouts at
 every step to develop a sense for the range of possible outcomes.
 (If there are many different options, you may want to do this
 through simulation; see Chapter 12.)
 Alternatively, you can evaluate both the expectation value and the spread directly from the
 probability distribution to obtain a range for each estimated value:
 μ ± σ. Now you can use this sum in your calculations, treating σ as
 a small perturbation and evaluate the effect of this perturbation on
 your model (see Chapter 7).

Opportunity Costs

The second point that I would like to emphasize is the concept
 of opportunity cost. Opportunity costs arise
 when we miss out on some income (the “opportunity”) because we were
 not in a position to take advantage of it. Opportunity costs
 formalize the notion that resources are finite and that, if we apply
 them to one purpose, then those resources are not available for
 other uses. In particular, if we commit resources to a project, then
 we want that project to generate a benefit greater than the
 opportunity costs that arise, because those resources are no longer
 available for other uses.
I find it easiest to think about opportunity cost in the
 context of certain business situations. For instance, suppose a
 company takes on a project that pays $15,000. While this contract is
 under way, someone else offers the company a project that would pay
 $20,000. Assuming that the company cannot break its initial
 engagement, it is now incurring an opportunity cost of
 $5,000.
I find the concept of opportunity cost
 useful as a way to put a price on alternatives, particularly when no
 money changes hands. In textbooks, this is often demonstrated by the
 example of the student who takes a trip around the world instead of
 working at a summer job. Not only does the student have to pay the
 actual expenses for the trip but also incurs an opportunity cost
 equal to the amount of forgone wages. The concept of opportunity
 cost allows us to account for these forgone wages, which would
 otherwise be difficult because they do not show up on any account
 statement (since they were never actually paid).
On the other hand, I often find opportunity cost a somewhat
 shadowy concept because it totally hinges on a competing opportunity
 actually arising. Imagine you try to decide between two
 opportunities: an offer for a project that would pay $15,000 and the
 prospect of a project paying $20,000. If you take the first job and
 then the second opportunity comes through as well, you are incurring
 an opportunity cost of $5,000. But if the second project falls
 through, your opportunity cost just dropped to zero! (The rational
 way to make this decision would be to calculate the total revenue
 expected from each prospect but weighted by the
 probability that the contract will actually be signed.
 This brings us back to calculations involving
 expected payouts, as discussed in the preceding
 section.)
To be clear: the concept of opportunity cost has nothing to do
 with uncertainty in planning. It is merely a way to evaluate the
 relative costs of competing opportunities. However, when evaluating
 competing deals, we must often decide between plans that have a
 different likelihood of coming to fruition, and therefore
 opportunity cost and planning for uncertainty often arise
 together.

Cost Concepts and Depreciation

The methods described in the previous sections might
 suggest that the net present value is all there is to financial
 considerations. This is not so—other factors may influence our
 decision. Some factors are entirely outside the financial realm
 (e.g., ethical or strategic considerations);
 others might have direct business implications but are not
 sufficiently captured by the quantities we have discussed so
 far.
For example, let’s go back to the situation discussed earlier
 where we considered the choice between two alternatives: buying a
 sorting machine or having the same task performed manually. Once we
 identify all arising costs and discount them properly to their present
 value, it would seem we have accounted for all financial implications.
 But that would be wrong: the solution employing manual labor is more
 flexible, for instance. If the pace of the business varies over the
 course of the year, then we need to buy a sorting machine that is
 large enough to handle the busiest season—which means it will be
 underutilized during the rest of the year. If we rely on manual labor,
 then we can more flexibly scale capacity up through temporary labor or
 overtime—and we can likewise respond to unexpectedly strong (or weak)
 growth of the overall business more flexibly, again by adjusting the
 number of workers. (This practice may have further consequences—for
 example, regarding labor relations.) In short, we need to look at the
 costs, and how they arise, in more detail.
To understand the cost structure of a business or an operation
 better, it is often useful to discuss it in terms of three pairs of
 complementary concepts:
	Direct versus indirect cost

	Fixed versus variable cost

	Capital expenditure versus operating cost

For good measure, I’ll also throw in the concept of
 depreciation, although it is not a cost in the
 strict sense of the word.
Direct and Indirect Costs

Labor and materials that are applied in creating the
 product (i.e., in the
 creation of something the company will sell)
 are considered direct labor or direct materials cost. Indirect
 costs, on the other hand, arise from activities that the company
 undertakes to maintain itself: management,
 maintenance, and administrative tasks (payroll and accounting) but
 also training, for example. Another term for such indirect costs is
 overhead.
I should point out that this is a slightly different
 definition of direct and indirect costs than the one you will find
 in the literature. Most textbooks define direct cost as the cost
 that is “easily attributable” to the production process, whereas
 indirect cost is “not easily attributable.” This definition makes it
 seem as if the distinction between direct and indirect costs is mostly one of convenience.
 Furthermore, the textbook definition provides no reason why, for
 example, maintenance and repair activities are usually considered
 indirect costs. Surely, we can keep track of which machine needed
 how much repair and therefore assign the associated cost to the
 product made on that specific machine. On the other hand, by my
 definition, it is clear that maintenance should be considered an
 indirect cost because it is an activity the company undertakes to
 keep itself in good order—not to generate value
 for the customer.
I have used the term “product” for whatever the company is
 selling. For manufacturing or retail industries this is a
 straightforward concept, but for a service industry the “product”
 may be intangible. Nevertheless, in probably all businesses we can
 introduce the concept of a single produced unit or unit of
 production. In manufacturing and retail there are actual
 “units,” but in other industries the notion of a produced unit is a
 bit more artificial: in service industries, for instance, one often
 uses “billable hours” as a measure of production. Other industries
 have specialized conventions: the airline industry uses “passenger
 miles,” for example.
The unit is an important concept because it is the basis for
 the most common measure of productivity—namely the unit cost or
 cost per unit (CPU). The cost per unit is
 obtained by dividing the total (dollar) amount spent during a time
 period (per month, for instance) by the total number of units
 produced during that time. If we include not only the direct cost
 but also the indirect cost in this calculation, we obtain what is
 called the loaded or
 burdened cost per unit.
We can go further and break out the various contributions to
 the unit cost. For example, if there are multiple production steps,
 then we can determine how much each step contributes to the total
 cost. We can also study how much indirect costs contribute to the
 overall cost as well as how material costs relate to labor.
 Understanding the different contributions to the total cost per unit
 is often a worthwhile exercise because it points directly to where
 the money is spent. And appearances can be deceiving. I have seen
 situations where literally hundreds of people were required for a
 certain processing step whereas, next door, a single person was
 sufficient to oversee a comparable but highly automated process. Yet
 once you calculated the cost per unit, it all looked very different:
 because the number of units going through the automated process was
 low, its total cost per unit was actually higher than for the manual
 process. And because so many units where processed manually, their
 labor cost per unit turned out to be very
 low.
In general, it is desirable to have low overhead relative to
 the direct cost: a business should spend relatively less time and
 money on managing itself than on generating value for the customer.
 In this way, the ratio of direct to indirect cost can be a telling
 indicator for “top-heavy” organizations that seem mostly occupied
 with managing themselves. On the other hand, overeager attempts to
 improve the direct/indirect cost ratio can lead to pretty unsanitary
 manipulations. For example, imagine a company that considers
 software engineers direct labor, while any form
 of management (team leads and project managers) is considered indirect.
 The natural consequence is that management responsibilities are
 pushed onto developers to avoid “indirect” labor. Of course, this
 does not make these tasks go away; they just become invisible. (It
 also leads to the inefficient use of a scarce resource: developers
 are always in short supply—and they are expensive.) In short, beware
 the danger of perverted incentives!

Fixed and Variable Costs

Compared to the previous distinction (between direct and
 indirect costs), the distinction between fixed and variable costs is
 clearer. The variable costs are those that
 change in response to changing demand, while
 fixed costs don’t. For a car manufacturer, the
 cost of steel is a variable cost: if fewer cars are being built,
 less steel is consumed. Whether labor costs are fixed or variable
 depends on the type of labor and the employment contracts. But the
 capital cost for the machines in the production line is a fixed
 cost, because it has to be paid regardless of whether the machines
 are busy or idle.
It is important not to confuse direct and variable costs.
 Although direct costs are more likely to be variable (and overhead,
 in general, is fixed), these are unrelated concepts; one can easily
 find examples of fixed, yet direct costs. For example, consider a
 consultancy with salaried employees: their staff of consultants is a
 direct cost, yet it is also a
 fixed cost because the consultants expect their
 wages regardless of whether the consultancy has projects for them or
 not. (We’ll see another example in a moment.)
In general, having high fixed costs relative to variable ones
 makes a business or industry less flexible and more susceptible to
 downturns. An extreme example is the airline industry: its cost
 structure is almost exclusively fixed (pretty much the only variable
 cost is the price of the in-flight meal), but its demand pattern is
 subject to extreme cyclical swings.
The numbers are interesting. Let’s do a calculation in the
 spirit of Chapter 7. A modern jet
 airplane costs about $100M new and has a useful service life of
 about 10 years. The cost attributable to a single 10-hour
 transatlantic flight (the depreciation—see below) comes to about
 $30k (i.e., $100M/(10 · 365)—half that, if the
 plane is turned around immediately, completing a full round-trip
 within 24 hours). Fuel consumption is about 6 gallons per mile; if
 we assume a fuel price of $2 per gallon, then the 4,000-mile flight
 between New York and Frankfurt (Germany) will cost $50k for fuel.
 Let’s say there are 10 members of the cabin crew at $50k yearly
 salary and two people in the cockpit at $150k each. Double these
 numbers for miscellaneous benefits, and we end up with about $2M in
 yearly labor costs, or $10k attributable to this one flight. In
 contrast, the cost of an in-flight meal (wholesale) is probably less
 than $10 per person. For a flight with 200 passengers, this amounts
 to $1,000–2,000 dollars total. It is interesting to see that—all
 things considered—the influence of the in-flight meal on the overall
 cost structure of the flight is as high as it is: about 2 percent of
 the total. In a business with thin margins, improving profitability
 by 2 percent is usually seen as worthwhile. In other words, we
 should be grateful that we get anything at
 all! A final cross-check: the cost per passenger for the entire
 flight from the airline’s point of view is $375—and at the time of
 this writing, the cheapest fare I could find was $600 round-trip,
 equivalent to $300 for a single leg. As is well known, airlines
 break even on economy class passengers but don’t make any
 profits.

Capital Expenditure and Operating Cost

Our final distinction is the one between capital
 expenditure (CapEx) and operating
 expense (OpEx—the abbreviation is rarely used). Capital
 expenses are money spent to purchase long-lived and typically
 tangible assets: equipment, installations, real estate. Operating
 expenses are everything else: payments for rents, raw materials,
 fees, salaries. In most companies, separate budgets exist for both
 types of expense, and the availability of funds may be quite
 different for each. For example, in a company that is financially
 strapped but does have a revenue stream, it might be quite
 acceptable to hire and “throw people” at a problem (even at great
 cost), but it might very well be impossible to buy a piece of
 equipment that would take care of the problem for good. Conversely,
 in companies that do have money in the bank, it is often
 easier to get a lump sum approved for a
 specific purchase than to hire more people or to perform
 maintenance. Decision makers often are more inclined to approve
 funding for an identifiable and visible purchase than for spending
 money on “business as usual.” Political and vanity considerations
 may play a role as well.
The distinction between CapEx and operating costs is important
 because, depending on the availability of funds from either source,
 different solutions will be seen as feasible. (I refer to such
 considerations as “color of money” issues—although all dollars are
 green, some are greener than others!)
In the context of capital expenditure, there is one more
 concept that I’d like to introduce because it provides an
 interesting and often useful way of thinking about money: the notion
 of depreciation.[29] The idea is this: any piece of equipment that we
 purchase will have a useful service life. We can now distribute the
 total cost of that purchase across the entire life of the asset. For
 example, if I purchase a car for $24,000 and expect to drive it for
 10 years, then I can say that this car costs me $200 per month “in
 depreciation” alone and before taking into account any operating
 costs (such as gas and insurance). I may want to compare this number
 with monthly lease payment options on the same kind of
 vehicle.
In other words, depreciation is a formalized way of capturing
 how an asset loses value over time. There are different standard
 ways to calculate it: “straight-line” distributes the purchase cost
 (less any salvage value that we might expect to
 obtain for the asset at the end of its life) evenly over the service
 life. The “declining balance” method assumes that the asset loses a
 certain constant fraction of its value every year. And so on.
 (Interestingly, land is never depreciated—because it does not wear
 out in the way a machine does and therefore does not have a finite
 service life.)
I find depreciation a useful concept, because it provides a
 good way to think about large capital expenses: as an ongoing cost
 rather than as an occasional lump sum. But depreciation is just
 that: a way of thinking. It is important to understand that
 depreciation is not a cash flow and therefore
 does not show up in any sort of financial accounting. What’s in the
 books is the money actually spent, when it is spent.
The only occasion where depreciation is treated as a cash flow
 is when it comes to taxes. The IRS (the U.S. tax authority) requires
 that certain long-lived assets purchased for business purposes be
 depreciated over a number of years, with the annual depreciation
 counted as a business expense for that year. For this reason,
 depreciation is usually introduced in conjunction with tax
 considerations. But I find the concept more generally useful as a
 way to think about and account for the cost of assets and their
 declining value over time.

Should You Care?

What does all this talk about money, business plans, and
 investment decisions have to do with data analysis? Why should you
 even care?
That depends. If you take a purely technical stance, then all of
 these questions are outside your area of competence and
 responsibility. That’s a valid position to take, and many
 practitioners will make exactly that decision.
Personally, I disagree. I don’t see it as my job to provide
 answers to questions. I see
 it as my responsibility to provide solutions to
 problems, and to do this effectively, I need to
 understand the context in which questions arise, and I need to
 understand how answers will be evaluated and used. Furthermore, when
 it comes to questions having to do with abstract topics like data and
 mathematical modeling, I have found that few clients are in a good
 position to ask meaningful questions. Coaching
 the client on what makes a good question (one that is both operational
 for me and actionable for the client) is therefore a large part of
 what I do—and to do that, I must understand and speak the client’s
 language.
There are two more reasons why I find it important to understand
 issues such as those discussed in this (and the previous) chapter: to
 establish my own credibility and to provide
 advice and counsel on the mathematical details
 involved.
The decision makers—that is, the people who request and use the
 results of a data analysis study—are “business people.” They tend to
 see decisions as investment decisions and thus
 will evaluate them using the methods and terminology introduced in
 this chapter. Unless I understand how they will look at my results and
 unless I can defend my results in those terms, I will be on weak
 ground—especially since I am supposed to be “the expert.” I learned
 this the hard way: once, while presenting the results of a rather
 sophisticated and involved analysis, some MBA bully fresh out of
 business school challenged me with: “OK, now which of these options
 has the best discounted net cash flow?” I had no idea what he was
 talking about. I looked like an idiot. That did
 not help my credibility! (No matter how right I
 was in everything else I was presenting.)
Another reason why I think it is important to understand the
 concepts in this chapter is that the math can get a little tricky.
 This is why the standard textbooks resort to large collections of
 precooked scenarios—which is not only confusing but can become
 downright misleading if none of them fit exactly and people start
 combining several of the standard solutions in ad hoc (and probably
 incorrect) ways. Often the most important skill I bring to the table
 is basic calculus. In one place I worked for, which was actually
 staffed by some of the smartest people in the industry, I discovered a
 problem because people did not fully understand the difference between
 1/x and –x. Of course, if
 you put it like this, everybody understands the difference. But if you
 muddy the waters a little bit and present the problem in the business
 domain setting in which it arose, it’s no longer so easy to see the
 difference. (And I virtually guarantee you that nobody will understand
 why 1/(1 – x) is actually close to 1 –
 x for small x, when
 1/x is not equal –x.)
In my experience, the correct and meaningful application of
 basic math outside a purely mathematical environment poses a nearly
 insurmountable challenge even for otherwise very bright people.
 Understanding exactly what people are trying to do
 (e.g., in calculating a total rate of return)
 allows me to help them avoid serious mistakes.
But in the end, I think the most important reason for mastering
 this material is to be able to understand the
 context in which questions arise and to be able
 to answer those questions appropriately with a sense for the
 purpose driving the original request.

Is This All That Matters?

In this chapter, we discussed several financial concepts and how
 to use them when deciding between different business or investment
 options.
This begs the question: are these the only issues that matter?
 Should you automatically opt for the choice with the highest net
 present value and be done with it?
Of course, the short answer is no. Other aspects matter and may
 even be more important (strategic vision, sustainability, human
 factors, personal interest, commitment). What makes these factors
 different is that they are intangible. You have
 to decide on them yourself.
The methods and concepts discussed in this chapter deal
 specifically and exclusively with the financial
 implications of certain decisions. Those concerns are
 important—otherwise, you would not even be in
 business. But this focus should not be taken to imply that financial
 considerations are the only ones that
 matter.
[image: Simulation results for the newsvendor problem: total revenue as a function of the initial inventory, for several values of the sales price c1. Also shown is the (theoretical) locus of the initial inventory size that leads to maximum revenue.]

Figure 17-2. Simulation results for the newsvendor problem: total revenue
 as a function of the initial inventory, for several values of the
 sales price c1. Also
 shown is the (theoretical) locus of the initial inventory size that
 leads to maximum revenue.

However, I am in no better position than you to give
 advice on ethical questions. It’s up to each of us individually—what
 kind of life do we want to live?

Workshop: The Newsvendor Problem

In this workshop, I’d like to introduce one more idea that is
 often relevant when dealing with business plans and calculations on
 how to find the optimal price or, alternatively, the optimal inventory
 level for some item. The basic problem is often presented in the
 following terms.
Imagine you run a newsstand. In the morning, you buy a certain
 number n of newspapers at price
 c0. Over the course of the
 day, you try to sell this inventory at price
 c1; anything that isn’t
 sold in the evening is discarded (no salvage value). If you knew how
 many papers you would actually sell during the course of the day (the
 demand m), then it would be
 easy: you would buy exactly m papers in the
 morning. However, the demand is not known exactly, although we know
 the probability p(k) of
 selling exactly k copies. The question is: how
 many papers should you buy in the morning in order to maximize your
 net earnings (the revenue)?
A first guess might be to use the average number of papers that
 we expect to sell—that is, the mean of
 p(k). However, this approach
 may not be good enough: suppose that
 c1 is much larger than
 c0 (so that your markup is
 high). In that case, it makes sense to purchase more papers in the
 hope of selling them, because the gain from selling an additional
 paper outweighs the loss from having purchased too many. (In other
 words, the opportunity cost that we incur if we
 have too few papers to satisfy all demand is greater than the cost of
 purchasing the inventory.) The converse also holds: if the markup is
 small, then each unsold paper significantly reduces our overall
 revenue.
This problem lends itself nicely to simulations. The listing
 that follows shows a minimal program for simulating the newsvendor
 problem. We fix the purchase price
 c0 at $1 and read the
 projected sales price c1
 from the command line. For the demand, we assume a Gaussian
 distribution with mean μ = 100 and standard deviation σ = 10. Now, for
 each possible initial level of inventory n, we
 make 1,000 random trials. Each trial corresponds to a single “day”; we
 randomly generate a level of demand m and
 calculate the resulting revenue for that day. The revenue consists of
 the sales price for the number of units that were actually sold
 less the purchase price for the inventory. You
 should convince yourself that the number of units sold is the lesser
 of the inventory and the demand: in the first case, we sold out; in
 the second case, we ended up discarding inventory. Finally, we average
 all trials for the current level of starting inventory and print the
 average revenue generated. The results are shown in Figure 17-2 for several
 different sales prices
 c1:
from sys import argv
from random import gauss

c0, c1 = 1.0, float(argv[1])
mu, sigma = 100, 10
maxtrials = 1000

for n in range(mu-5*sigma, mu+5*sigma):
 avg = 0
 for trial in range(maxtrials):
 m = int(0.5 + gauss(mu, sigma))
 r = c1*min(n, m) - c0*n
 avg += r

 print c1, n, avg/maxtrials
Of course, the total revenue depends on the actual sales
 price—the higher the price, the more we take home. But we can also see
 that, for each value of the sales price, the revenue curve has a
 maximum at a different horizontal location. The corresponding value of
 n gives us the optimal initial inventory level
 for that sales price. Thus we have achieved our objective: we have
 found the optimal number of newspapers to buy at the beginning of the
 day to maximize our earnings.
This simple idea can be extended in different ways. More
 complicated situations may involve different
 types of items, each with its own demand distribution. How much of
 each item should we hold in inventory now? Alternatively, we can turn
 the problem around by asking: given a fixed inventory, what would be
 the optimal price to maximize earnings? To answer
 this question, we need to know how the demand varies as we change the
 price—that is, we need to know the demand curve,
 which takes the role of the demand distribution in our example.
Optional: Exact Solution

For this particular example, involving only a single type of
 product at a fixed price, we can actually work out the optimum
 exactly. (This means that running a simulation wasn’t strictly
 necessary in this case. Nevertheless, this is one of those cases
 where a simulation may actually be easier to do and less error-prone
 than an analytical model. For more complicated scenarios, such as
 those involving different types of items with different demands,
 simulations are unavoidable.)
To solve this problem analytically, we want to find the
 optimum of the expected revenue. The revenue—as we already saw in
 our example simulation program—is given by
r(m) =
 c1
 min(n, m) –
 c0n
The revenue depends on the demand m.
 However, the demand is a random quantity: all that we know is that
 it is distributed according to some distribution
 p(m). The
 expected revenue
 E[r(m)]
 is the average of the revenue over all possible values of
 m, where each value is weighted by the
 appropriate probability factor:
[image: Optional: Exact Solution]
We can now plug in the previous expression for
 r(m), using the lesser of
 n and m in the
 integral:
[image: Optional: Exact Solution]
where we have made use of the fact that [image:] and that [image:].
We now want to find the maximum of the expected revenue with
 respect to the initial inventory level n. To
 locate the maximum, we first take the derivative with respect to
 n:
[image: Optional: Exact Solution]
where we have used the product rule and the fundamental
 theorem of calculus: [image:].
Next we equate the derivative to zero (that is the condition
 for the maximum) and rearrange terms to find
[image: Optional: Exact Solution]
This is the final result. The lefthand side is the
 cumulative distribution function of the demand,
 and the righthand side is a simple expression involving the ratio of
 the purchase price and the sales price. Given the cumulative
 distribution function for the demand, we can now find the value of
 n for which the cumulative distribution
 function equals 1 –
 c0/c1—that
 value of n is the optimal initial inventory
 level.
The lighter dotted line in Figure 17-2 shows the
 location of the optimum revenue obtained by plugging the optimal
 inventory calculated in this way back into the expression for the
 revenue. As we would expect, this line goes right through the peaks
 in all the revenue curves. Notice that the maximum in the revenue
 curve occurs for n < 100 for
 c1 < 2.00: in other
 words, our markup has to be at least 100 percent, before it makes
 sense to hold more inventory than the expected
 average demand. (Remember that we expect to sell 100 papers on
 average.) If our markup is less than that, then we are better-off
 selling our inventory out entirely, rather than having to discard
 some items. (Of course, details such as these depend on the specific
 choice of the probability distribution
 p(m) that is used to model
 the demand.)

Further Reading

If you want to read up on some of the details that I have (quite
 intentionally) skipped, you should look for material on “engineering
 economics” or “engineering economic analysis.” Some books that I have
 found useful include the following.
	Industrial Mathematics: Modeling in Industry,
 Science and Government. Charles R. MacCluer. Prentice Hall. 1999.
In his preface, MacCluer points out that most engineers
 leaving school “will have no experience with problems
 incorporating the unit $.” This observation was part of the
 inspiration for this chapter. MacCluer’s book contains an overview
 over many more advanced mathematical techniques that are relevant
 in practical applications. His choice of topics is excellent, but
 the presentation often seems a bit aloof and too terse for the
 uninitiated. (For instance, the material covered in this chapter
 is compressed into only three pages.) Available as a 2010 Dover
 edition under the title A Survey of Industrial
 Mathematics.

	Schaum’s Outline of Engineering
 Economics. Jose Sepulveda, William Souder, and Byron Gottfried.
 McGraw-Hill. 1984.
If you want a quick introduction to the details left out of
 my presentation, then this inexpensive book is a good choice.
 Includes many worked examples.

	Engineering Economy. William G. Sullivan, Elin M. Wicks, and C. Patrick
 Koelling. 14th ed., Prentice Hall. 2008.
Engineering Economic
 Analysis. Donald Newnan, Jerome Lavelle, and Ted Eschenbach. 10th
 ed., Oxford University Press. 2009.
Principles of Engineering Economic
 Analysis. John A. White, Kenneth E. Case, and David B. Pratt. 5th
 ed., Wiley. 2000.
Three standard, college-level textbooks that treat largely
 the same material on many more pages.

The Newsvendor Problem

	Pricing and Revenue
 Optimization. Robert Phillips. Stanford Business Books. 2005.
Finding the optimal price for a given demand is the
 primary question in the field of “revenue optimization.” This
 book provides an accessible introduction.

	Introduction to Operations
 Research. Frederick S. Hillier and Gerald J. Lieberman. 9th ed.,
 McGraw-Hill. 2009.
The field of operations research encompasses a set of
 mathematical methods that are useful for many problems that
 arise in a business setting, including inventory management.
 This text is a standard introduction.

[28] This used to mean investing in U.S. Treasury Bonds or the
 equivalent, but at the time of this writing, even these are no
 longer considered sacrosanct. But that’s leaving the scope of
 this discussion!

[29] Do not confuse to depreciate, which
 is the process by which an asset loses value over time, with
 to deprecate, which is an expression of
 disapproval. The latter word is used most often to mark certain
 parts of a software program or library as
 deprecated, meaning that they should no
 longer be used in future work.

Chapter 18. Predictive Analytics

DATA
 ANALYSIS CAN TAKE MANY DIFFERENT FORMS—NOT ONLY IN THE TECHNIQUES THAT
 WE APPLY BUT ALSO in the kind
 of results that we ultimately achieve. Looking back over the material
 that we have covered so far, we see that the results obtained in Part I were mostly
 descriptive: we tried to figure out what the data
 was telling us and to describe it. In contrast, the results in Part II were primarily
 prescriptive: data was used as a guide for building
 models which could then be used to infer or prescribe phenomena,
 including effects that had not actually been observed yet. In this form
 of analysis, data is not used directly; instead it is used only
 indirectly to guide (and verify) our intuition when building models.
 Additionally, as I tried to stress in those chapters, we don’t just
 follow data blindly, but instead we try to develop an understanding of
 the processes that generate the data and to capture this understanding
 in the models we develop. The predictive power of such models derives
 from this understanding we develop by studying data
 and the circumstances in which it is generated.[30]
In this chapter, we consider yet another way to use data—we can
 call it predictive, since the purpose will be to
 make predictions about future events. What is different is that now we
 try to make predictions directly from the data
 without necessarily forming the kind of conceptual model (and the
 associated deeper understanding of the problem domain) as discussed in
 Part II. This difference is
 obviously both a strength and a weakness. It’s a strength in that it
 enables us to deal with problems for which we have no hope of developing
 a conceptual model, given the complexity of the situation. It is also a
 weakness because we may end up with only a black-box solution and no
 deeper understanding.
There are technical difficulties also: this form of
 analysis tends to require huge data sets because we are lacking the
 consistency and continuity guarantees provided by a conceptual model.
 (We will come back to this point.)
Topics in Predictive Analytics

The phrase predictive analytics is a bit of
 an umbrella term (others might say: marketing term) for various tasks
 that share the intent of deriving predictive information directly from
 data. Three different specific application areas stand out:
Classification or supervised
 learning
	Assign each record to exactly one of a set of predefined
 classes. For example, classify credit card transactions as “valid”
 or “fraudulent.” Spam filtering is another example. Classification
 is considered “supervised,” because the classes are known ahead of
 time and don’t need to be inferred from the data. Algorithms are
 judged on their ability to assign records to the correct
 class.

Clustering or unsupervised learning
	Group records into clusters, where the size and shape—and
 often even the number—of clusters is unknown. Clustering is
 considered “unsupervised,” because no information about the
 clusters is available ahead of the clustering procedure.

Recommendation
	Recommend a suitable item based on past interest or
 behavior. Recommendation can be seen as a form of clustering,
 where you start with an anchor and then try to find items that are
 similar or related to it.

A fourth topic that is sometimes included is time-series
 forecasting. However, I find that it does not share many
 characteristics with the other three, so I usually don’t consider it
 part of predictive analytics itself. (We discussed time-series
 analysis and forecasting in Chapter 4.)
Of the three application areas, classification is arguably the
 most important and the best developed; the rest of this chapter will
 try to give an overview over the most important classification
 algorithms and techniques. We discussed unsupervised learning in Chapter 13 on clustering techniques—and I’ll repeat
 my impression that clustering is more an exploratory than a predictive
 technique. Recommendations are the youngest branch of predictive
 analytics and quite different from the other two. (There are at least
 two major differences. First, on the technical side, many
 recommendation techniques boil down to network or graph algorithms,
 which have little in common with the statistical techniques used for
 classification and clustering. Second, recommendations tend to be
 explicitly about predicting human behavior; this
 poses additional difficulties not shared by systems that follow
 strictly deterministic laws.) For these reasons, I won’t have much to
 say about recommendation techniques here.
Table 18-1. The confusion matrix for a binary classification
 problem
	 	Predicted: A
	Predicted: B

	Actual:
 A
	Correct
	Incorrect

	Actual:
 B
	Incorrect
	Correct

Let me emphasize that this chapter can serve only as an overview
 of classification. Entire books could (and have!) been written about
 it. But we can outline the problem, introduce some terminology, and
 give the flavor of different solution approaches.

Some Classification Terminology

We begin with a data set containing multiple elements, records,
 or instances. Each instance consists of several
 attributes or features. One
 of the features is special: it denotes the record’s
 class and is known as the class
 label. Each record belongs to exactly one class.
A large number of classification problems are binary, consisting
 only of two classes (valid or fraudulent, spam or not spam); however,
 multiclass scenarios do also occur. Many classification algorithms can
 deal only with binary problems, but this is not a real limitation
 because any multiclass problem can be treated as a
 set of binary problems (belongs to the target
 class or does belong to any other class).
A classifier takes a record
 (i.e., a set of attribute values) and produces a
 class label for this record. Building and using a classifier generally
 follows a three-step process of training, testing, and actual
 application.
We first split the existing data set into a training
 set and a test set. In the training
 phase, we present each record from the training set to the
 classification algorithm. Next we compare the class label produced by
 the algorithm to the true class label of the record in question; then
 we adjust the algorithm’s “parameters” to achieve the greatest
 possible accuracy or, equivalently, the lowest possible error rate.
 (Of course, the details of this “fitting” process vary greatly from
 one algorithm to the next; we will look at different ways of how this
 is done in the next section.)
The results can be summarized in a so-called confusion
 matrix whose entries are the number of records in each
 category. (Table 18-1
 shows the layout of a generic confusion matrix.)
Unfortunately, the error rate derived from the training set (the
 training error) is typically way too optimistic
 as an indicator of the error rate the classifier would achieve on new
 data—that is, on data that was not used during the learning phase.
 This is the purpose of the test set: after we have optimized the
 algorithm using only the training data, we let
 the classifier operate on the elements of the test set to see how well
 it classifies them. The error rate obtained in this way is the
 generalization error and is a much more reliable
 indicator of the accuracy of the classifier.
[image: Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.]

Figure 18-1. Overfitting: as a model becomes more complex, it becomes
 increasingly able to represent the training data. However, such a
 model is overfitted and will not generalize well to data that was
 not used during training.

To understand the need for a separate testing phase
 (using a separate data set!), keep in mind that as long as we use
 enough parameters (i.e., making the classifier
 more and more complex) we can always tweak a classifier until it works
 very well on the training set. But in doing so, we train the
 classifier to memorize every aspect of the training set, including
 those that are atypical for the system in general. We therefore need
 to find the right level of complexity for the classifier. On the one
 hand, if it is too simple, then it cannot represent the desired
 behavior very well, and both its training and generalization error
 will be poor; this is known as underfitting. On
 the other hand, if we make the classifier too complex, then it will
 perform very well on the training set (low training error) but will
 not generalize well to unknown data points (high generalization
 error); this is known as overfitting. Figure 18-1 summarizes these
 concepts.
Once a classifier has been developed and tested, it can be used
 to classify truly new and unknown data points—that is, data points for
 which the correct class label is not known. (This is in contrast to
 the test set, where the class labels were known but not used by the
 classifier when making a prediction.)

Algorithms for Classification

At least half a dozen different families of classification
 algorithms have been developed. In this section, we briefly
 characterize the basic idea underlying each algorithm, emphasizing how
 it differs from competing methods. The first two algorithms
 (nearest-neighbor and Bayesian classifiers) are simpler, both
 technically and conceptually, than the other; I discuss them in more detail since you may want to
 implement them yourself. For the other algorithms, you probably want
 to use existing libraries instead!
Instance-Based Classifiers and Nearest-Neighbor
 Methods

The idea behind instance-based classifiers is dead simple: to
 classify an unknown instance, find an existing instance that is
 “most similar” to the new instance and assign the class label of the
 known instance to the new one!
This basic idea can be generalized in a variety of ways. First
 of all, the notion of “most similar” brings us back to the notion of
 distance and similarity measures introduced in Chapter 13; obviously we have considerable
 flexibility in the choice of which distance measure to use.
 Furthermore, we don’t have to stop at a single “most similar”
 existing instance. We might instead take the nearest
 k neighbors and use them to classify the new
 instance, typically by using a majority rule
 (i.e., we assign the new instance to the class
 that occurs most often among the k neighbors).
 We could even employ a weighted-majority rule whereby “more similar”
 neighbors contribute more strongly than those farther away.
Instance-based classifiers are atypical in that they don’t
 have a separate “training” phase; for this reason, they are also
 known as “lazy learners.” (The only adjustable parameter is the
 extent k of the neighborhood used for
 classification.) However, a (possibly large) set of known instances
 must be kept available during the final application phase. For the
 same reason, classification can be relatively expensive because the
 set of existing instances must be searched for appropriate
 neighbors.
Instance-based classifiers are local:
 they do not take the overall distribution of points into account.
 Additionally, they impose no particular shape or geometry on the
 decision boundaries that they generate. In this sense they are
 especially flexible. On the other hand, the are also susceptible to
 noise.
Finally, instance-based classifiers depend on the proper
 choice of distance measure, much as clustering algorithms do. We
 encountered this situation before, when we discussed the need for
 scale normalization in Chapter 13 and Chapter 14; the same
 considerations apply here as well.

Bayesian Classifiers

A Bayesian classifier takes a probabilistic
 (i.e., nondeterministic) view of
 classification. Given a set of attributes, it calculates the
 probability of the instance to belong to this
 or that class. An instance is then assigned the class label with the
 highest probability.
A Bayesian classifier calculates a
 conditional probability. This is the
 probability of the instance to belong to a specific class
 C, given the set of
 attribute values:
P(class C|
 {x1,
 x2,
 x3,...,
 xn})
Here C is the class label, and the set of
 attribute values is {x1,
 x2,
 x3,...,
 xn}.
 Note that we don’t yet know the value of the probability—if we did,
 we’d be finished.
To make progress, we invoke Bayes’ theorem (hence the name of
 the classifier—see also Chapter 10 for a
 discussion of Bayes’ theorem) to invert this probability expression
 as follows:
[image: Bayesian Classifiers]
where I have collapsed the set of n
 features into
 {xi}
 for brevity.
The first term in the numerator (the likelihood) is the
 probability of observing a set of features
 {xi}
 if the instance belongs to class
 C (in the language of conditional probability:
 given the class label C).
 We can find an empirical value for this probability from the set of
 training instances: it is simply the frequency with which we observe
 the set of specific attribute values
 {xi}
 among instances belonging to class C.
 Empirically, we can approximate this distribution by a set of
 histograms of the
 {xi
 }, one for each class label. The second term in the numerator,
 P(class C), is the prior
 probability of any instance belonging to class
 C. We can estimate this probability from the
 fraction of instances in the training set that belong to class
 C. The denominator does not depend on the class
 label and—as usual with Bayesian computations—is ignored until the
 end, when the probabilities are normalized.
Through the use of Bayes’ theorem, we have been able to
 express the probability for an instance to belong to class
 C, given a set of features, entirely through
 expressions that can be determined from the training set.
At least in theory. In practice, it will be almost impossible
 to evaluate this probability directly. Look closely at the
 expression (now written again in its long form),
 P({x1,
 x2,
 x3,...,
 xn}
 | class C). For each possible combination of
 attribute values, we must have enough examples in our training set
 to be able to evaluate their frequency with some degree of
 reliability. This is a combinatorial nightmare! Assume that each
 feature is binary (i.e., it can take on one of
 only two values). The number of possible combinations is then
 2n, so for
 n = 5 we already have 32 different
 combinations. Let’s say we need about 20 example instances for each
 possible combination in order to evaluate the frequency, then we’ll
 need a training set of at least 600 instances. In practice, the
 problem tends to be worse because features frequently can take more
 than two values, the number of features can easily be larger than
 five, and—most importantly—some combinations of features occur much
 less frequently than others. We therefore need a training set large
 enough to guarantee that even the least-frequent attribute
 combination occurs sufficiently often.
In short, the “brute force” approach of evaluating the
 likelihood function for all possible feature combinations is not
 feasible for problems of realistic size. Instead, one uses one of
 two simplifications.
The naive Bayesian classifier
 assumes that all features are independent of each other, so that we
 can write:
P({x1,
 x2,
 x3,...,
 xn}
 |C) =
 P(x1|C)P(x2|C)P(x3|C)
 ···
 P(xn|C)
This simplifies the problem greatly, because now we need only
 determine the frequencies for each attribute value for a
 single attribute at a time. In other words,
 each probability distribution
 P(xi
 |C) is given as the histogram of a single
 feature
 xi,
 separately for each class label. Despite their simplicity, naive
 Bayesian classifiers are often surprisingly effective. (Many spam
 filters work this way.)
Another idea is to use a Bayesian
 network. Here we prune the set of all possible feature
 combinations by retaining only those that have a causal relationship
 with each other.
Bayesian networks are best discussed through an example.
 Suppose we want to build a classifier that predicts whether we will
 be late to work in the morning, based on three binary
 features:
	Alarm clock went off: Yes or No

	Left the house on time: Yes or No

	Traffic was bad: Yes or No

Although we don’t assume that all
 features are independent (as we did for the naive Bayesian
 classifier), we do observe that the traffic situation is independent
 of the other two features. Furthermore, whether we leave the house
 on time does depend on the proper working of the alarm clock. In
 other words, we can split the full probability:
P(Arrive on time | Alarm clock, Leave on
 time, Traffic)
into the following combination of events:
P(Arrive on time | Leave on time)
P(Leave on time | Alarm clock)
P(Arrive on time | Traffic)
Notice that only two of the terms give the probability for the
 class label (“Arrive on time”) and that one gives the probability of
 an intermediate event (see Figure 18-2).
For such a small example (containing only three features), the
 savings compared with maintaining all feature combinations are not
 impressive. But since the number of combinations grows exponentially
 with the number of features, restricting our attention to only those
 factors that have a causal relationship with each other can
 significantly reduce the number of combinations we need to retain
 for larger problems.
The structure (or topology) of a Bayesian
 network is usually not inferred from the data; instead, we use
 domain knowledge to determine which pathways to keep. This is
 exactly what we did in the example: we “knew” that traffic
 conditions were independent of the situation at home and used this
 knowledge to prune the network accordingly.
[image: The structure of different Bayesian classifiers.]

Figure 18-2. The structure of different Bayesian classifiers.

There are some practical issues that need to be addressed when
 building Bayesian classifiers. The description given here silently
 assumes that all attributes are categorical
 (i.e., take on only a discrete set of values).
 Attributes that take on continuous numerical values either need to
 be discretized, or we need to find the probability
 P({xi}
 | C) through a kernel density estimate (see
 Chapter 2) for all
 the points in class C in the training set. If
 the training set is large, the latter process may be
 expensive.
[image: Using regression for classification: the data points show the they employee type (employee or manager) as a function of the salary; managers tend to have higher salaries. (Data points are jittered in the vertical direction to avoid overplotting.)]

Figure 18-3. Using regression for classification: the data points show
 the they employee type (employee or manager) as a function of the
 salary; managers tend to have higher salaries. (Data points are
 jittered in the vertical direction to avoid overplotting.)

Another tricky detail concerns attribute values that
 do not occur in the training set: the corresponding probability is
 0. But a naive Bayesian classifier consists of a product of
 probabilities and therefore becomes 0 as soon as a single term is 0!
 In particular with small training sets, this is a problem to watch
 out for. On the other hand, naive Bayesian classifiers are robust
 with regard to missing features: when
 information about an attribute value is unknown for some of the
 instances, the corresponding probability simply evaluates to 1 and
 does not affect the final result.

Regression

Sometimes we have reason to believe that there is a functional
 relationship between the class label and the set of features. For
 example, we might assume that there is some relationship between an
 employee’s salary and his status (employee or manager). See Figure 18-3.
If it is reasonable to assume a functional relationship, then
 we can try to build a classifier based on this relationship by
 “fitting” an appropriate function to the data. This turns the
 classification problem into a regression
 problem.
However, as we can see in Figure 18-3, a linear
 function is usually not very appropriate because it takes on all
 values, whereas class labels are discrete. Instead of fitting a
 straight line, we need something like a step function: a function
 that is 0 for points belonging to the one class, and 1 for points
 belonging to the other class. Because of its discontinuity,
 the step function is hard to work with; hence one
 typically uses the logistic function (see Appendix B) as a smooth approximation to the
 step function. The logistic function gives this technique its name:
 logistic regression. Like all regression
 methods, it is a global technique that tries to optimize a fit over
 all points and not just over a particularly relevant subset.
Logistic regression is not only important in practical
 applications but has deep roots in theoretical statistics as well.
 Until the arrival of support vector machines, it was the method of
 choice for many classification problems.

Support Vector Machines

Support vector machines are a relative newcomer among
 classification methods. The name is a bit unfortunate: there is
 nothing particularly “machine-y” about them. They are, in fact,
 based on a simple geometrical construction.
Consider training instances in a two-dimensional feature space
 like the one in Figure 18-4. Now we are
 looking for the “best” dividing line (or decision
 boundary) that separates instances belonging to one class
 from instances belonging to the other.
We need to decide what we mean by “best.” The answer given by
 support vector machines is that the “best” dividing line is one that
 has the largest margin. The margin is the
 space, parallel to the decision boundary, that is free of any
 training instances. Figure 18-4 shows two
 possible decision boundaries and their respective margins. Although
 this example is only two-dimensional, the reasoning generalizes
 directly to higher dimensions. In such cases, the decision boundary
 becomes a hyperplane, and support vector machines therefore find the
 maximum margin hyperplanes (a term you might
 find in the literature).
I will not go through the geometry and algebra required to
 construct a decision boundary from a data set, since you probably
 don’t want to implement it yourself, anyway. (The construction is
 not difficult, and if you have some background in analytic geometry,
 you will be able to do it yourself or look it up elsewhere.) The
 important insight is that support vector machines turn the task of
 finding a decision boundary first into the geometric task of
 constructing a line (or hyperplane) from a set of points (this is an
 elementary task in analytic geometry). The next step—find the
 decision boundary with the largest margin—is then just a
 multi-dimensional optimization problem, with a particularly simple
 and well-behaved objective function (namely, the square of the
 distance of each point from the decision boundary), for which good
 numerical algorithms exist.
One important property of support vector machines is that they
 perform a strict global optimization without having to rely on
 heuristics. Because of the nature of the objective function, the
 algorithm is guaranteed to find the global optimum, not merely a
 local one. On the other hand, the final solution does not depend on
 all points; instead it depends only on those closest to the decision
 boundary, points that lie right on the edge of the margin. (These
 are the support vectors, see Figure 18-4.) This means
 that the decision boundary depends only on instances close to it and
 is not influenced by system behavior far from the decision boundary.
 However, the global nature of the algorithm implies that, for those
 support vectors, the optimal hyperplane will be found!
[image: Two decision boundaries and their margins. Note that the vertical decision boundary has a wider margin than the other one. The arrows indicate the distance between the respective support vectors and the decision boundary.]

Figure 18-4. Two decision boundaries and their margins. Note that the
 vertical decision boundary has a wider margin than the other one.
 The arrows indicate the distance between the respective support
 vectors and the decision boundary.

Two generalizations of this basic concept are of great
 practical importance. First, consider Figure 18-4 again. We were
 lucky that we could find a straight line (in fact, more than one) to
 separate the data points exactly into two classes, so that both
 decision boundaries shown have zero training error. In practice, it
 is not guaranteed that we will always find such a decision boundary,
 and there may be some stray instances that cannot be classified
 correctly by any straight-line decision boundary. More generally, it
 may be advantageous to have a few misclassified training
 instances—in return for a much wider margin—because it is reasonable
 to assume that a larger margin will lead to a lower generalization
 error later on. In other words, we want to find a balance between
 low training error and large margin size. This can be done by
 introducing slack variables. Basically, they
 associate a cost with each misclassified instance, and we then try
 to solve the extended optimization problem, in which we try to
 minimize the cost of misclassified instances while at the same time
 trying to maximize the margins.
The other important generalization allows us to use curves
 other than straight lines as decision boundaries. This is usually
 achieved through kernelization or the “kernel
 trick.” The basic idea is that we can replace the dot product
 between two vectors (which is central to the geometric construction
 required to find the maximum margin hyperplane) with a more general
 function of the two vectors. As long as this function meets certain
 requirements (you may find references to “Mercer’s theorem” in the
 literature), it can be shown that all the previous arguments
 continue to hold.
One disadvantage of support vector machines is that
 they lead to especially opaque results: they truly are black boxes.
 The final classifier may work well in practice, but it does not shed
 much light on the nature of the problem. This is in contrast to
 techniques such as regression or decision trees (see the next
 section), which often lead to results that can be interpreted in
 some form. (In regression problems, for instance, one can often see
 which attributes are the most influential ones, and which are less
 relevant.)

Decision Trees and Rule-Based Classifiers

Decision trees and rule-based classifiers are different from
 the classifiers discussed so far in that they do not require a
 distance measure. For this reason, they are sometimes referred to as
 nonmetric classifiers.
Decision trees consist of a hierarchy of decision points (the
 nodes of the tree). When using a decision tree to classify an
 unknown instance, a single feature is examined at each node of the
 tree. Based on the value of that feature, the next node is selected.
 Leaf nodes on the tree correspond to classes; once we have reached a
 leaf node, the instance in question is assigned the corresponding
 class label. Figure 18-5 shows an
 example of a simple decision tree.
The primary algorithm (Hunt’s algorithm)
 for deriving a decision tree from a training set employs a greedy
 approach. The algorithm is easiest to describe when all features are
 categorical and can take only one of two values (binary attributes).
 If this is the case, then the algorithm proceeds as follows:
	For each instance in the training set, examine each
 feature in turn.

	Split the training instances into two subsets based on the
 value of the current feature.

	Select the feature that results in the “purest” subsets;
 the value of this attribute will be the decision condition
 employed by the current node.

	Repeat this algorithm recursively on the two subsets until
 the resulting subsets are sufficiently pure.

To make this concrete, we must be able to measure the
 purity of a set. Let
 fC
 be the fraction of instances in the set belonging to class
 C. Obviously, if
 fC
 = 1 for any class label C, then the set is
 totally pure because all of its elements belong to the same class.
 We can therefore define the a purity of a set as the frequency of
 its most common constituent. (For example, if a set consists of 60
 percent of items from class A, 30 percent from class B, and 10
 percent from class C, then its purity is 60 percent.) This is not
 the only way to define purity. Other ways of measuring it are
 acceptable provided they reach a maximum when all elements of a set
 belong to the same class and reach a minimum when the elements of
 the set are distributed uniformly across classes.
[image: A very simple decision tree.]

Figure 18-5. A very simple decision tree.

Another important quantity related to decision trees
 is the gain ratio Δ from a parent node to its
 children. This quantity measures the gain in purity from parent to
 children, weighted by the relative size of the subsets:
[image: A very simple decision tree.]
where I is the purity (or impurity) of a
 node,
 Nj
 is the number of elements assigned to child node
 j, and N is the total
 number of elements at the parent node. We want to find a splitting
 that maximizes this gain ratio.
What I have described so far is the outline of the basic
 algorithm. As with all greedy algorithms, there is no guarantee that
 it will find the optimal solution, and therefore various heuristics
 play a large role to ensure that the solution is as good as
 possible. Hence the various published (and proprietary) algorithms
 for decision trees (you may find references to CART, C4.5, and ID3)
 differ in such details such as the following:
	What choice of purity/impurity measure is used?

	At what level of purity does the splitting procedure stop?
 (Continuing to split a training set until all leaf nodes are
 entirely pure usually results in overfitting.)

	Is the tree binary, or can a node have more than
 two children?

	How should noncategorical attributes be treated? (For
 attributes that take on a continuum of values, we need to define
 the optimal splitting point.)

	Is the tree postprocessed? (To reduce overfitting, some
 algorithms employ a pruning step that attempts to eliminate leaf
 nodes having too few elements.)

Decision trees are popular and combine several attractive
 features: with good algorithms, decision trees are relatively cheap
 to build and are always very fast to evaluate. They are also rather
 robust in the presence of noise. It can even be instructive to
 examine the decision points of a decision tree, because they
 frequently reveal interesting information about the distribution of
 class labels (such as when 80 percent of the class information is
 contained in the topmost node). However, algorithms for building
 decision trees are almost entirely black-box and do not lend
 themselves to ad hoc modifications or extensions.
There is an equivalence between decision trees and
 rule-based classifiers. The latter consist of a
 set of rules (i.e., logical conditions on
 attribute values) that, when taken in aggregate, determine the class
 label of a test instance. There are two ways to build a rule-based
 classifier. We can build a decision tree first and then transform
 each complete path through the decision tree into a single rule.
 Alternatively, we can build rule-based classifiers directly from a
 training set by finding a subset of instances that can be described
 by a simple rule. These instances are then removed from the training
 set, and the process is repeated. (This amounts to a bottom-up
 approach, whereas using a variant of Hunt’s algorithm to build a
 decision-tree follows a top-down approach.)

Other Classifiers

In addition to the classifiers discussed so far, you will find
 others mentioned in the literature. I’ll name just two—mostly
 because of their historical importance.
Fisher’s linear discriminant analysis
 (LDA) was one of the first classifiers developed. It is similar to
 principal component analysis (see Chapter 14). Whereas in
 PCA, we introduce a new coordinate system to maximize the spread
 along the new coordinates axes, in LDA we introduce new coordinates
 to maximize the separation between two classes that we try to
 distinguish. The position of the means, calculated separately for
 each class, are taken as the location of each class.
Artificial neural networks were conceived
 as extremely simplified models for biological brains. The idea was
 to have a network of nodes; each node receives input from several
 other nodes, forms a weighted average of its input, and then sends
 it out to the next layer of nodes. During the learning stage, the
 weights used in the weighted average are adjusted to minimize
 training error. Neural networks were very popular for a while but
 have recently fallen out of favor somewhat. One reason is that the
 calculations required are more complicated than for other classifiers; another
 is that the whole concept is very ad hoc and lacks a solid
 theoretical grounding.

The Process

In addition to the primary algorithms for classification,
 various techniques are important for dealing with practical problems.
 In this section, we look at some standard methods commonly used to
 enhance accuracy—especially for the important case when the most
 “interesting” type of class occurs much less frequently than the other
 types.
Ensemble Methods: Bagging and Boosting

The term ensemble methods refers to a set
 of techniques for improving accuracy by combining the results of
 individual or “base” classifiers. The rationale is the same as when
 performing some experiment or measurement multiple times and then
 averaging the results: as long as the experimental runs are
 independent, we can expect that errors will cancel and that the
 average will be more accurate than any individual trial. The same
 logic applies to classification techniques: as long as the
 individual base classifiers are independent, combining their results
 will lead to cancellation of errors and the end result will have
 greater accuracy than the individual contributions.
To generate a set of independent classifiers, we have to
 introduce some randomness into the process by which they are built.
 We can manipulate virtually any aspect of the overall system: we can
 play with the selection of training instances (as in bagging and
 boosting), with the selection of features (often in conjunction with
 random forests), or with parameters that are specific to the type of
 classifier used.
Bagging is an application of the
 bootstrap idea (see Chapter 12) to
 classification. We generate additional training sets by sampling
 with replacement from the original training set. Each of these
 training sets is then used to train a separate classifier instance.
 During production, we let each of these instances provide a separate
 assessment for each item we want to classify. The final class label
 is then assigned based on a majority vote or similar
 technique.
Boosting is another technique to generate
 additional training sets using a bootstrap approach. In contrast to
 bagging, boosting is an iterative process that assigns higher
 weights to instances misclassified in previous rounds. As the
 iteration progresses, higher emphasis is placed on training
 instances that have proven hard to classify correctly. The final
 result consists of the aggregate result of all base classifiers
 generated during the iteration. A popular variant of this technique
 is known as “AdaBoost.”
Random forests apply specifically to
 decision trees. In this technique, randomness is introduced not by
 sampling from the training set but by randomly choosing what
 features to use when building the decision tree. Instead of
 examining all features at every node to find the feature that gives
 the greatest gain ratio, only a subset of features is evaluated for
 each tree.

Estimating Prediction Error

Earlier, we already talked about the difference between the
 training and the generalization error: the training error is the
 final error rate that the classifier achieves on the training set.
 It is usually not a good measure for the accuracy of the classifier
 on new data (i.e., on data
 that was not used to train the classifier). For this reason, we hold
 some of the data back during training, and use it later as a test
 set. The error that the classifier achieves on this test set is a
 much better measure for the generalization error that we can expect
 when using the classifier on entirely new data.
If the original data set is very large, there is no problem in
 splitting it into a training and a test set. In reality, however,
 available data sets are always “too small,” so that we need to make
 sure we use the available data most efficiently, using a process
 known as cross-validation.
The basic idea is that we randomly divide the original data
 set into k equally sized chunks. We then
 perform k training and test runs. In each run,
 we omit one of the chunks from the training set and instead use it
 as the test set. Finally, we average the generalization errors from
 all k runs to obtain the overall expected
 generalization error.
A value of k = 10 is typical, but you can
 also use a value like k = 3. Setting
 k = n, where
 n is the number of available data points, is
 special: in this so-called “leave-one-out” cross-validation, we
 train the classifier on all data points except one and then try to
 predict the omitted data point—this procedure is then repeated for
 all data points. (This prescription is similar to the jackknife
 process that was mentioned briefly in Chapter 12.)
Yet another method uses the idea of random sampling
 with replacement, which is characteristic of
 bootstrap techniques (see Chapter 12). Instead
 of dividing the available data into k
 nonoverlapping chunks, we generate a bootstrap sample by drawing
 n data points with replacement from the
 original n data points. This bootstrap sample
 will contain some of the data points more than once, and some not at
 all: overall, the fraction of the unique data points included in the
 bootstrap sample will be about 1 –
 e–1 ≈ 0.632 of the
 available data points—for this reason, the method is often known as
 the 0.632 bootstrap. The bootstrap sample is
 used for training, and the data points not included in the bootstrap
 sample become the test set. This process can be repeated several
 times, and the results averaged as for cross-validation, to obtain
 the final estimate for the generalization error.
(By the way, this is basically the “unique visitor” problem
 that we discussed in Chapter 9 and Chapter 12—after n days (draws)
 with one random visitor each day (one data point selected per draw),
 we will have seen [image:] unique visitors (unique data points).)
Table 18-2. Terminology for the confusion matrix in the case of class
 imbalance (i.e. “bad” outcomes are much less
 frequent than “good” outcomes)
	 	Predicted:
 Bad
	Predicted:
 Good

	Actually: Bad
	True positive:
 “Hit”
	False negative:
 “Miss”

	Actually: Good
	False positive: “False
 alarm”
	True negative: “Correct
 rejection”

Class Imbalance Problems

A special case of particular importance concerns situations
 where one of the classes occurs much less frequently than any of the
 other classes in the data set—and, as luck would have it, that’s
 usually the class we are interested in! Consider credit card fraud
 detection, for instance: only one of every hundred credit card
 transactions may be fraudulent, but those are exactly the ones we
 are interested in. Screening lab results for patients with elevated
 heart attack risk or inspecting manufactured items for defects falls
 into the same camp: the “interesting” cases are rare, perhaps
 extremely rare, but those are precisely the cases that we want to
 identify.
For cases like this, there is some additional terminology as
 well as some special techniques for overcoming the technical
 difficulties. Because there is one particular class that is of
 greater interest, we refer to an instance belonging to this class as
 a positive event and the class itself as the
 positive class. With this terminology, entries
 in the confusion matrix (see Table 18-1) are often
 referred to as true (or false) positives (or negatives).
I have always found this terminology very confusing, in part
 because what is called “positive” is usually something
 bad: a fraudulent transaction, a defective
 item, a bad heart. Table 18-2 shows a
 confusion matrix employing the special terminology for problems with
 a class imbalance—and also an alternative terminology that may be
 more intuitive.
The two different types of errors may have very different
 costs associated with them. From the point of view of a merchant
 accepting credit cards as payment, a false negative
 (i.e., a fraudulent transaction incorrectly
 classified as “not fraudulent”—a “miss”) results in the total loss
 of the item purchased, whereas a false positive (a valid transaction
 incorrectly classified as “not valid”—a “false alarm”) results only
 in the loss of the profit margin on that item.
The usual metrics by which we evaluate a classifier (such as
 accuracy and error rate), may not be very meaningful in situations
 with pronounced class imbalances: keep in mind that the trivial
 classifier that labels every credit card
 transaction as “valid” is 99 percent accurate—and entirely useless!
 Two metrics that provide better insight into the ability of a
 classifier to detect instances belonging to the positive class are
 recall and precision. The
 precision is the fraction of correct classifications among all
 instances labeled positive; the recall is the fraction of correct
 classifications among all instances labeled negative:
[image: Class Imbalance Problems]
[image: A ROC (receiver operating characteristic) curve: the trade-off between true positives (“hits”) and false positives (“false alarms”), for three different classifier implementations.]

Figure 18-6. A ROC (receiver operating characteristic) curve: the
 trade-off between true positives (“hits”) and false positives
 (“false alarms”), for three different classifier
 implementations.

You can see that we will need to strike a balance. On
 the one hand, we can build a classifier that is very aggressive,
 labeling many transactions as “bad,” but it will have a high
 false-positive rate, and therefore low precision. On the other hand,
 we can build a classifier that is highly selective, marking only
 those instances that are blatantly fraudulent as “bad,” but it will
 have a high rate of false negatives and therefore low recall. These
 two competing goals (to have few false positives and few false
 negatives) can be summarized in a graph known as a
 receiver operating characteristic (ROC) curve.
 (The concept originated in signal processing, where it was used to
 describe the ability of a receiver to distinguish a true signal from
 a spurious one in the presence of noise, hence the name.)
Figure 18-6
 shows an example of a ROC curve. Along the horizontal axis, we plot
 the false positive rate (good events that were labeled as bad—“false
 alarms”) and along the vertical axis we plot the true positive rate
 (bad events labeled as bad—“hits”). The lower-left corner
 corresponds to a maximally conservative classifier, which labels
 every instance as good; the upper-right corner corresponds to a
 maximally aggressive classifier, which labels everything as bad. We
 can now imagine tuning the parameters and thresholds of our
 classifier to shift the balance between “misses” and “false alarms”
 and thereby mapping out the characteristic curve for our classifier.
 The curve for a random classifier (which assigns a positive class
 label with fixed probability p, irrespective of
 attribute values) will be close to the diagonal: it is equally
 likely to classify a good instance as good as it is to classify a
 bad one as good, hence its false positive rate equals its true
 positive rate. In contrast, the ideal classifier would have a true
 positive rate equal to 1 throughout. We want to tune our classifier
 so that it approximates the ideal classifier as nearly as
 possible.
Class imbalances pose some technical issues during the
 training phase: if positive instances are extremely rare, then we
 want to make sure to retain as much of their information as possible
 in the training set. One way to achieve this is by oversampling
 (i.e., resampling) from the positive class
 instances—and undersampling from the negative class instances—when
 generating a training set.

The Secret Sauce

All this detail about different algorithms and processes can
 easily leave the impression that that’s all there is to
 classification. That would be unfortunate, because it leaves out what
 can be the most important but also the most difficult part of the
 puzzle: finding the right attributes!
The choice of attributes matters for successful
 classification—arguably more so than the choice of classification
 algorithm. Here is an interesting case story. Paul Graham has written
 two essays on using Bayesian classifiers for spam filtering.[31] In the second one, he describes how using the
 information contained in the email headers is
 critical to obtaining good classification results, whereas using only
 information in the body is not enough. The punch
 line here is clear: in practice, it matters a lot which features or
 attributes you choose to include.
Unfortunately, when compared with the extremely detailed
 information available on different classifier algorithms and their
 theoretical properties, it is much more difficult to find good
 guidance regarding how best to choose, prepare, and encode features
 for classification. (None of the current books on classification
 discuss this topic at all.)
I think there are several reasons for this relative lack of
 easily available information—despite the importance of the topic. One
 of them is lack of rigor: whereas one can prove rigorous theorems on
 classification algorithms, most recommendations for feature
 preparation and encoding would necessarily be empirical and heuristic.
 Furthermore, every problem domain is different, which makes it
 difficult to come up with recommendations that would be applicable
 more generally. The implication is that factors such as experience,
 familiarity with the problem domain, and lots of time-consuming trial
 and error are essential when choosing attributes for classification.
 (A last reason for the relative lack of available information on this topic may
 be that some prefer to keep their cards a little closer to their
 chest: they may tell you how it works “in theory,” but they won’t
 reveal all the tricks of the trade necessary to fully replicate the
 results.)
The difficulty of developing some recommendations that work in
 general and for a broad range of application domains may also explain
 one particular observation regarding classification: the apparent
 scarcity of spectacular, well-publicized successes. Spam filtering
 seems to be about the only application that clearly works and affects
 many people directly. Credit card fraud detection and credit scoring
 are two other widely used (if less directly visible) applications. But
 beyond those two, I see only a host of smaller, specialized
 applications. This suggests again that every successful classifier
 implementation depends strongly on the details of the particular
 problem—probably more so than on the choice of algorithm.

The Nature of Statistical Learning

Now that we have seen some of the most commonly used algorithms
 for classification as well as some of the related practical
 techniques, it’s easy to feel a bit overwhelmed—there seem to be so
 many different approaches (each nontrivial in its own way) that it can
 be hard to see the commonalities among them: the “big picture” is
 easily lost. So let’s step back for a moment and reflect on the
 specific challenges posed by classification problems and on the
 overall strategy by which the various algorithms overcome these
 challenges.
The crucial problem is that from the outset, we don’t have good
 insight into which features are the most relevant in predicting the
 class—in fact, we may have no idea at all about the processes (if
 any!) that link observable features to the resulting class. Because we
 don’t know ahead of time which features are likely to be most
 important, we need to retain them all and perhaps even expand the
 feature set in an attempt to include any possible clue we can get. In
 this way, the problem quickly becomes very multi-dimensional. That’s
 the first challenge.
But now we run into a problem: multi-dimensional data sets are
 invariably sparse data sets. Think of a histogram
 with (say) 5 bins per dimension. In one dimension, we have 5 bins
 total. If we want on average at least 5 items per bin, we can make do
 with 25 items total. Now consider the same data set in two dimensions.
 If we still require 5 bins per dimension, we have a total of 25 bins,
 so that each bin contains on average only a single element. But it is
 in three dimensions that the situation becomes truly dramatic: now
 there are 125 bins, so we can be sure that the majority of bins will
 contain no element at all! It gets even worse in
 higher dimensions. (Mathematically speaking, the problem is that the
 number of bins grows exponentially with the number of dimensions:
 Nd,
 where d is the number of dimensions and
 N is the number of bins per dimension. No matter
 what you do, the number of cells is going to grow faster than you can
 obtain data. This problem is known as the curse of
 dimensionality.) That’s the second challenge.
It is this combinatorial explosion that drives the need for
 larger and larger data sets. We have just seen that the the number of
 possible attribute value combinations grows exponentially; therefore,
 if we want to have a reasonable chance of finding at least one
 instance of each possible combination in our training data, we need to
 have very large data sets indeed. Yet despite our best efforts, we
 will frequently end up with a sparse data set (as discussed above).
 Nevertheless, we will often deal with inconveniently large data sets.
 That’s the third challenge.
Basically all classification algorithms deal with these
 challenges by using some form of interpolation
 between points in the sparse data set. In other words, they attempt to
 smoothly fill the gaps left in the high-dimensional feature space,
 supported only by a (necessarily sparse) set of points
 (i.e., the training instances).
Different algorithms do this in different ways: nearest-neighbor
 methods and naive Bayesian classifiers explicitly “smear out” the
 training instances to fill the gaps locally, whereas regression and
 support vector classifiers construct global structures to form a
 smooth decision boundary from the sparse set of supporting points.
 Decision trees are similar to nearest-neighbor methods in this regard
 but provide a particularly fast and efficient lookup of the most
 relevant neighbors. Their differences aside, all algorithms aim to
 fill the gaps between the existing data points in some smooth,
 consistent way.
This brings us to the question of what can actually be predicted
 in this fashion. Obviously, class labels must depend on attribute
 values, and they should do so in some smooth, predictable fashion. If
 the relationship between attribute values and class labels is too
 crazy, no classifier will be very useful.
Furthermore, the distribution of attribute values for different
 classes must differ, for otherwise no classifier
 will be able to distinguish classes by examining the attribute
 values.
Unfortunately, there is—to my knowledge—no independent, rigorous
 way of determining whether the information contained in a data set is
 sufficient to allow the data to be classified. To find out, we must
 build an actual classifier. If it works, then obviously there
 is enough information in the data set for
 classification. But if it does not work, we have
 learned nothing, because it is always possible that a different or
 more sophisticated classifier would work. But
 without an independent test, we can spend an infinite amount of time
 building and refining classifiers on data sets that contain no useful
 information. We encountered this kind of difficulty already in Chapter 13 in the context of clustering algorithms,
 but it strikes me as even more of a problem here. The reason is that
 classification is by nature predictive (or at least should be),
 whereas uncertainty of this sort seems more acceptable in an
 exploratory technique such as clustering.
To make this more clear, suppose we have a large, rich data set:
 many records with many features. We then arbitrarily assign class
 labels A and B to the records in the data set. Now, by construction,
 it is clear that there is no way to predict the labels from the
 “data”—they are, after all, purely random! However, there is no
 unambiguous test that will clearly say so. We can calculate the
 correlation coefficients between each feature (or combination of
 features) and the class label, we can look at the distribution of
 feature values and see whether they differ from class to class, and so
 eventually convince ourselves that we won’t be able to build a good
 classifier given this data set. But there is no clear test or
 diagnostic that would give us, for instance, an upper bound on the
 quality of any classifier that could be built based on this data set.
 If we are not careful, we may spend a lot of time vainly attempting to
 build a classifier capable of extracting useful information from this
 data set. This kind of problem is a trap to be aware of!

Workshop: Two Do-It-Yourself Classifiers

With classification especially, it is really easy to end up with
 a black-box solution: a tool or library that provides an
 implementation of a classification algorithm—but one that we would not
 be able to write ourselves if we had to. This kind of situation always
 makes me a bit uncomfortable, especially if the algorithms require any
 parameter tuning to work properly. In order to adjust such parameters
 intelligently, I need to understand the algorithm well enough that I
 could at least provide a rough-cut version myself (much as I am happy
 to rely on the library designer for the high-performance
 version).
In this spirit, instead of discussing an existing classification
 library, I want to show you how to write straightforward (you might
 say “toy version”) implementations for two simple classifiers: a
 nearest-neighbor lazy learner and a naive Bayesian classifier. (I’ll
 give some pointers to other libraries near end of the section.)
We will test our implementations on the
 classic data set in all of classification: Fisher’s Iris data
 set.[32] The data set contains measurements of four different
 parts of an iris flower (sepal length and width, petal length and
 width). There are 150 records in the data set, distributed equally
 among three species of Iris (Iris setosa,
 versicolor, and virginica).
 The task is to predict the species based on a given a set of
 measurements.
First of all, let’s take a quick look at the distributions of
 the four quantities, to see whether it seems feasible to distinguish
 the three classes this way. Figure 18-7 shows histograms
 (actually, kernel density estimates) for all four quantities,
 separately for the three classes. One of the features (sepal width)
 does not seem very promising, but the distributions of the other three
 features seem sufficiently separated that it should be possible to
 obtain good classification results.
[image: The distribution of the four attributes in the Iris data set, displayed separately for the three classes.]

Figure 18-7. The distribution of the four attributes in the Iris data set,
 displayed separately for the three classes.

As preparation, I split the original data set into two parts: a
 training set (in the file iris.trn)
 and a test set (in file iris.tst).
 I randomly selected five records from each class for the test set; the
 remaining records were used for training. The test set is shown in
 full below: the columns are (in order) sepal length, sepal width,
 petal length, petal width, and the class label. (All measurements are
 in centimeters and to millimeter precision.)
5.0,3.6,1.4,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.7,2.8,4.5,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.3,2.9,5.6,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
Our implementation of the nearest-neighbor classifier is shown
 in the next listing. The implementation is exceedingly
 simple—especially once you realize that about two thirds of the
 listing deal with file input and output. The actual “classification”
 is a matter of three lines in the middle:
A Nearest-Neighbor Classifier

from numpy import *

train = loadtxt("iris.trn", delimiter=',', usecols=(0,1,2,3))
trainlabel = loadtxt("iris.trn", delimiter=',', usecols=(4,), dtype=str)

test = loadtxt("iris.tst", delimiter=',', usecols=(0,1,2,3))
testlabel = loadtxt("iris.tst", delimiter=',', usecols=(4,), dtype=str)

hit, miss = 0, 0
for i in range(test.shape[0]):
 dist = sqrt(sum((test[i] - train)**2, axis=1))
 k = argmin(dist)

 if trainlabel[k] == testlabel[i]:
 flag = '+'
 hit += 1
 else:
 flag = '-'
 miss += 1

 print flag, "\t Predicted: ", trainlabel[k], "\t True: ", testlabel[i]

print
print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)
The algorithm loads both the training and the test data set into
 two-dimensional NumPy arrays. Because all elements in a NumPy array
 must be of the same type, we store the class labels (which are
 strings, not numbers) in separate vectors.
Now follows the actual classification step: for each element of
 the test set, we calculate the Euclidean distance to each element in
 the training set. We make use of NumPy “broadcasting” (see the
 Workshop in Chapter 2) to calculate
 the distance of the test instance test[i] from all
 training instances in one fell swoop. (The argument axis=1 is necessary to tell NumPy that the
 sum in the Euclidean distance should be taken over the
 inner (horizontal) dimension of the
 two-dimensional array.) Next, we use the argmin() function to obtain the index of the
 training record that has the smallest distance to the current test
 record: this is our predicted class label. (Notice that we base our
 result only on a single record—namely the closest training
 instance.)
Simple as it is, the classifier works very well (on this data
 set). For the test set shown, all records in the test set are
 classified correctly!
The naive Bayesian classifier implementation is next. A naive
 Bayesian classifier needs an estimate of the probability distribution
 P(class C | feature
 x), which we find from a histogram of attribute
 values, separately for each class. In this case, we need a total of 12
 histograms (3 classes × 4 features). I maintain this data in a triply
 nested data structure: histo[label][feature][value]. The first
 index is the class label, the second index specifies the feature, and
 the third contains the values of the feature that occur in the
 histogram. The value stored in the histogram is the number of times
 that each value has been observed:
A Naive Bayesian Classifier

total = {} # Training instances per class label
histo = {} # Histogram

Read the training set and build up a histogram
train = open("iris.trn")
for line in train:
 # seplen, sepwid, petlen, petwid, label
 f = line.rstrip().split(',')
 label = f.pop()

 if not total.has_key(label):
 total[label] = 0
 histo[label] = [{}, {}, {}, {}]

 # Count training instances for the current label
 total[label] += 1

 # Iterate over features
 for i in range(4):
 histo[label][i][f[i]] = 1 + histo[label][i].get(f[i], 0.0)

train.close()

Read the test set and evaluate the probabilities
hit, miss = 0, 0
test = open("iris.tst")
for line in test:
 f = line.rstrip().split(',')
 true = f.pop()

 p = {} # Probability for class label, given the test features
 for label in total.keys():
 p[label] = 1
 for i in range(4):
 p[label] *= histo[label][i].get(f[i],0.0)/total[label]

 # Find the label with the largest probability
 mx, predicted = 0, -1
 for k in p.keys():
 if p[k] >= mx:
 mx, predicted = p[k], k

 if true == predicted:
 flag = '+'
 hit += 1

 else:
 flag = '-'
 miss += 1

 print flag, "\t", true, "\t", predicted, "\t",
 for label in p.keys():
 print label, ":", p[label], "\t",
 print

print
print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)

test.close()
I’d like to point out two implementation details. The
 first is that the second index is an integer, which I use instead of
 the feature names; this simplifies some of the loops in the program.
 The second detail is more important: I know that the feature values
 are given in centimeters, with exactly one digit after the decimal
 point. In other words, the values are already discretized, and so I
 don’t need to “bin” them any further—in effect, each bin in the
 histogram is one millimeter wide. Because I never need to operate on
 the feature values, I don’t even convert them to numbers: I read them
 as strings from file and use them (as strings) as keys in the
 histogram. Of course, if we wanted to use a different bin width, then
 we would have to convert them into numerical values so that we can
 operate on them.
In the evaluation part, the program reads data points from the
 test set and then evaluates the probability that the record belongs to
 a certain class for all three class labels. We then pick the class
 label that has the highest probability. (Notice that we don’t need an
 explicit factor for the prior probability, since we know that each
 class is equally likely.)
On the test set shown earlier, the Bayesian classifier does a
 little worse than the nearest neighbor classifier: it correctly
 classifies 12 of 15 instances for a total accuracy of 80
 percent.
If you look at the results of the classifier more closely, you
 will immediately notice a couple of problems that are common with
 Bayesian classifiers. First of all, the posterior probabilities are
 small. This should come as no surprise: each
 Bayes factor is smaller than 1 (because it’s a probability), so their
 product becomes very small very quickly. To avoid underflows, it’s
 usually a good idea to add the logarithms of the probabilities instead
 of multiplying the probabilities directly. In fact, if you have a
 greater number of features, this becomes a necessity. The second
 problem is that many of the posterior probabilities come out as
 exactly zero: this occurs whenever no entry in the histogram can be
 found for at least one of the feature values in the test record; in
 this case the histogram evaluates to zero, which means the entire
 product of probabilities is also identical to zero. There are
 different ways of dealing with this problem—in our case, you might
 want to experiment with replacing the histogram of discrete feature
 values with a kernel density estimate (similar to those in Figure 18-7), which, by
 construction, is nonzero everywhere. Keep in mind that you will need
 to determine a suitable bandwidth for each histogram!
Let me be clear: the implementations of both classifiers are
 extremely simpleminded. My intention here is to demonstrate the basic
 ideas behind these algorithms in as few lines of code as possible—and
 also to show that there is nothing mystical about writing a simple
 classifier. Because the implementations are so simple, it is easy to
 continue experimenting with them: can we do better if we use a larger number of
 neighbors in our nearest-neighbor classifier? How about a different
 distance function? In the naive Bayesian classifier, we can experiment
 with different bin widths in the histogram or, better yet, replace the
 histogram of discrete bins with a kernel density estimate. In either
 case, we need to start thinking about runtime efficiency: for a data
 set of only 150 elements this does not matter much, but evaluating a
 kernel density estimate of a few thousand points can be quite
 expensive!
If you want to use an established tool or library, there are
 several choices in the open source world. Three projects have put
 together entire data analysis and mining “toolboxes,” complete with
 graphical user interface, plotting capabilities, and various plug-ins:
 RapidMiner (http://rapid-i.com/) and WEKA
 (http://www.cs.waikato.ac.nz/ml/weka/), which
 are both in Java as well as Orange (http://www.ailab.si/orange/), which is in
 Python. WEKA has been around for a long time and is very well
 established; RapidMiner is part of a more comprehensive tool suite
 (and includes WEKA as a plug-in). Orange is an alternative using
 Python.
All three of these projects use a “pipeline” metaphor: you
 select different processing steps (discretizers, smoothers, principal
 component analysis, regression, classifiers) from a toolbox and string
 them together to build up the whole analysis workflow entirely within
 the tool. Give it a shot—the idea has a lot of appeal, but I must
 confess that I have never succeeded in doing
 anything nontrivial with any of them!
There are some additional libraries worth checking out that have
 Python interfaces: libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 and Shogun (http://www.shogun-toolbox.org/) provide
 implementations of support vector machines, while the Modular toolkit
 for Data Processing (http://mdp-toolkit.sourceforge.net/) is more
 general. (The latter also adheres to the “pipeline” metaphor.)
Finally, all classification algorithms are also available as R
 packages. I’ll mention just three: the class package for nearest-neighbor
 classifiers and the rpart package
 for decision trees (both part of the R standard distribution) as well
 as the e1071 package (which can be
 found on CRAN) for support vector machines and naive Bayesian
 classifiers.

Further Reading

	Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
 Addison-Wesley. 2005.
This is my favorite book on data mining. It contains two
 accessible chapters on classification.

	The Elements of Statistical
 Learning. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2nd
 ed., Springer. 2009.
This book exemplifies some of the problems with current
 machine-learning theory: an entire book of highly nontrivial
 mathematics—and what feels like not a single real-world example or
 discussion of “what to use when.”

[30] The techniques discussed in Part III are different: for the
 most part they were strictly computational and can be applied to any
 purpose, depending on the context.

[31] “A Plan for Spam” (http://www.paulgraham.com/spam.html) and
 “Better Bayesian Filtering” (http://www.paulgraham.com/better.html).

[32] First published in 1936. The data set is available from many
 sources, for example in the “Iris” data set on the UCI Machine
 Learning repository at http://archive.ics.uci.edu/ml/.

Chapter 19. Epilogue: Facts Are Not Reality

THE LAST
 (NOT LEAST) IMPORTANT SKILL WHEN WORKING WITH DATA IS TO KEEP IN MIND
 THAT DATA IS ONLY part of the picture. In
 particular, when one is working intensely with data oneself, it is all
 too easy to forget that just about everyone else will have a different
 perspective.
When the data contradicts appearances, appearances will
 win. Almost always, at least. Abstract “data” will have
 little or no credibility when compared with direct, immediate
 observation. This has been one of my most common experiences. A manager
 observes a pile of defective items—and no amount of “data” will convince
 him that avoiding those defects will cost more than the defects
 themselves. A group of workers spends an enormous amount of effort on
 some task—and no amount of “data” will convince them that their efforts
 make no measurable difference to the quality of the product.
If something strongly appears to be one way,
 then it will be very, very difficult to challenge that appearance based
 on some abstract analysis—no matter how “hard” your facts may be.
And it can get ugly. If your case is watertight, so that your
 analysis cannot be refuted, then you may next find that your
 personal credibility or integrity is being
 challenged.
Never underestimate the persuasive power of appearance.
Data-driven decision making is a contradiction in
 terms. Making a decision means that someone must stick his or
 her neck out and decide. If we wait until the
 situation is clear or let “the data” dictate what we do, then there is
 no longer any decision involved. This also means that if things don’t
 turn out well, then nobody will accept the blame (or the responsibility)
 for the outcome: after all, we did what “the data” told us to do.
It is a fine line. Gut-level decisions can be annoyingly
 random (this way today, that way tomorrow). They can also lead to a lack
 of accountability: “It was my decision to do X that led to Y!”—without a
 confirming look at some data, who can say?
Studying data can help us understand the situation in more detail
 and therefore make better-informed decisions. On the other hand, data
 can be misleading in subtle ways. For instance, by focusing on “data” it
 is easy to overlook aspects that are important but for which no data is
 available (including but not limited to “soft factors”). Also, keep in
 mind that data is always backward looking: there is
 no data available to evaluate any truly novel idea!
Looking at data can help illuminate the situation and thereby help
 us make better decisions. But it should not be used to absolve everyone
 from taking individual responsibility.
Sometimes the only reason you need is that it is the
 right thing to do. Some organizations feel as if you would
 not put out a fire in the mail room, unless you first ran a controlled
 experiment and developed a business case for the various alternatives.
 Such an environment can become frustrating and stifling; if the same
 approach is being applied to human factors such as creature comforts
 (better chairs, larger monitors) or customer service (“sales don’t dip
 proportionally if we lower the quality of our product”), then it can
 start to feel toxic pretty quickly.
Don’t let “data” get in the way of ethical decisions.
The most important things in life can’t be
 measured. It is a fallacy to believe that, just because
 something can’t be measured, it doesn’t matter or doesn’t even exist.
 And a pretty tragic fallacy at that.
Appendix A. Programming Environments for Scientific Computation and Data
 Analysis

MOST DATA ANALYSIS INVOLVES A GOOD
 DEAL OF DATA MANIPULATION AND NUMERICAL COMPUTATION. OF course,
 we use computers for these tasks, hence we also need appropriate
 software.
This appendix is intended to give a brief survey of several popular
 software systems suitable for the kind of data analysis discussed in the
 rest of the book. I am mostly interested in open source software, although
 I also mention some of the most important commercial players.
The emphasis here is on programming
 environments for scientific applications
 (i.e., libraries or packages intended for general
 data manipulation and computation) because being able to operate with data
 easily and conveniently is a fundamental capability for all data analysis
 efforts. On the other hand, I do not include programs intended exclusively
 for graphing data: not because visualization is not important (it is), but
 because the choice of plotting or visualization software is less
 fundamental.
Software Tools

In many ways, our choice of a data manipulation environment
 determines what problems we can solve; it certainly determines which
 problems we consider to be “easy” problems. For data analysis, the hard
 problem that we should be grappling with is always the data and what it
 is trying to tell us—the mechanics of handling it should be sufficiently
 convenient that we don’t even think about them.
Properties I look for in a tool or programming environment
 include:
	Low overhead or ceremony; it must be easy to get started on a
 new investigation.

	Facilitates iterative, interactive use.

	No arbitrary limitations (within reasonable limits).

	Scriptable—not strictly required but often nice to
 have.

	Stable, correct, mature; free of random defects and other
 annoying distractions.

Most of these items are probably not controversial. Given the
 investigative nature of most data analysis, the ability to support
 iterative, interactive use is a requirement. Scriptability and the
 absence of arbitrary limitations are both huge enablers. I have been in
 situations where the ability to generate and compare hundreds of graphs
 revealed obvious similarities and differences that had never been
 noticed before—not least because everyone else was using tools (mostly
 Excel) that allowed graphs to be created only one at a time. (Excel is
 notorious for unnecessarily limiting what can be done, and so is SQL.
 Putting even minimal programming abilities on top of SQL greatly expands
 the range of problems that can be tackled.)
In addition to these rather obvious requirements, I want to
 emphasize two properties that may appear less important, but are, in
 fact, essential for successful data analysis. First, it is very
 important that the tool or environment itself does not impose much
 overhead or “ceremony”: we will be hesitant to investigate an ad hoc
 idea if our programming environment is awkward to use or time-consuming
 to start. Second, the tool must be stable and correct. Random defects
 that we could “work around” if we used it as a component in a larger
 software project are unacceptable when we use the tool by itself.
In short: whatever we use for data manipulation must not get in
 our way! (I consider this more important than how “sophisticated” the
 tool or environment might be: a dumb tool that works is better than a
 cutting-edge solution that does not deliver—a point that is occasionally
 a little bit forgotten.)
Before leaving this section, let me remind you that it is not only
 the size of the toolbox that matters but also our mastery of the various
 elements within it. Only tools we know well enough that using them feels
 effortless truly leverage our abilities. Balancing these opposing trends
 (breadth of tool selection and depth of mastery) is a constant
 challenge. When in doubt, I recommend you opt for depth—superficiality
 does not pay.
Scientific Software Is Different

It is important to realize that scientific software (for a
 sufficiently wide definition of “scientific”) faces some unusual
 challenges. First of all, scientific software is
 hard. Writing high-quality scientific programs is
 difficult and requires rather rare and specialized skills. (We’ll come
 back to this later.) Second, the market for scientific software is
 small, which makes it correspondingly harder for
 any one program or vendor to gain critical mass.
Both of these issues affect all players equally, but a third
 problem poses a particular challenge for open source offerings: many
 users of scientific software are transients. Graduate students
 graduate, moving on from their projects and often leaving the research
 environment entirely. As a result, “abandonware” is
 common among open source scientific software projects. (And not just
 there—the long-term viability of commercial offerings is also far from
 assured.)
Before investing significant time and effort into mastering any
 one tool, it is therefore necessary to evaluate it with regard to two
 questions:
	Is the project of sufficiently high
 quality?

	Does the project have strong enough
 momentum and
 support?

A Catalog of Scientific Software

There are currently three main contenders for interactive, numeric
 programming available: Matlab (and its open source clone, Octave), R
 (and its commercial predecessor, S/S-Plus), and the NumPy/SciPy set of
 libraries for Python. Fundamentally, all three are vector and matrix
 packages: they treat vectors and matrices as atomic data types and allow
 mathematical functions to operate on them directly (addition,
 multiplication, application of a function to all elements in a vector or
 matrix). Besides this basic functionality, all three offer various other
 mathematical operations, such as special functions, support for function
 minimization, or numerical integration and nonlinear equation solving.
 It is important to keep in mind that all three are packages for
 numerical computations that operate with
 floating-point numbers. None of these three packages handles
 symbolic computations, such as the expansion of a
 function into its Taylor series. For this you need a symbolic math
 package, such as Mathematica or Maple (both commercial) or Maxima, Sage,
 or Axiom (all three open source). (Matlab has recently acquired the
 ability to perform symbolic operations as well.)
Matlab

Matlab has been around since the mid-1980s; it has a very large
 user base, mostly in the engineering professions but also in pure
 mathematics and in the machine-learning community. Rather than do all
 the heavy lifting itself, Matlab was conceived as a user-friendly
 frontend to existing high-performance numerical linear algebra
 libraries (LINPACK and EISPACK, which have been replaced by LAPACK).
 Matlab was one of the first widely used languages to treat complex
 data structures (such as vectors and matrices) as atomic data types,
 allowing the programmer to work with them as if they were scalar
 variables and without the need for explicit looping. (In this day and
 age, when object-oriented programming and operator overloading are
 commonly used and entirely mainstream, it is hard to imagine how
 revolutionary this concept seemed when it was first
 developed.[33]) In 2008, The MathWorks (the company that develops
 Matlab) acquired the rights to the symbolic math package MuPAD and
 incorporated it into subsequent Matlab releases.
Matlab was mainly designed to be used interactively, and its
 programming model has serious deficiencies for larger programming
 projects. (There are problems with abstraction and encapsulation as
 well as memory management issues.) It is a commercial product but
 quite reasonably priced.
Matlab places particular emphasis on the quality of its
 numerical and floating-point algorithms and implementations.
There is an open source clone of Matlab called Octave. Octave
 (http://www.gnu.org/software/octave/) strives
 to be fully compatible; however, there are reports of difficulties
 when porting programs back and forth.

R

R is the open source clone of the S/S-Plus statistical package
 originally developed at Bell Labs. R (http://www.r-project.org) has a very large
 user base, mostly in the academic statistics community and a healthy
 tradition of user-contributed packages. The Comprehensive R
 Archive Network (CRAN) is a large central repository of
 user-contributed modules.
When first conceived, S was revolutionary in providing an
 integrated system for data analysis, including capabilities that we
 today associate with scripting languages (built-in support for
 strings, hash maps, easy file manipulations, and so on), together with
 extensive graphics functionality—and all that in an interactive
 environment! On the other hand, S was not conceived as a
 general-purpose programming language but is strongly geared toward
 statistical applications. Its programming model is quite different
 from current mainstream languages, which can make it surprisingly
 difficult for someone with a strong programming background to switch
 to S (or R). Finally, its primarily academic outlook makes for a
 sometimes awkward fit within a commercial enterprise
 environment.
The strongest feature of R is the large number of built-in (or
 user-contributed) functions for primarily
 statistical calculations. In contrast to Matlab,
 R is not intended as a general numerical workbench (although it can,
 with some limitations, be used for that purpose). Moreover—and perhaps
 contrary to expectations—it is not intended as a general-purpose data
 manipulation language, although it can serve as scripting language for
 text and file manipulations and similar tasks.
A serious problem when working with R is its dated programming
 model. It relies strongly on implicit behavior and “reasonable
 defaults,” which leads to particularly opaque programs. Neither the
 language nor the libraries provide strong support for organizing
 information into larger structures, making it uncommonly difficult to
 locate pertinent information. Although it is easy to pick up isolated
 “tricks,” it is notoriously difficult to develop a comprehensive
 understanding of the whole environment.
Like Matlab, R is here to stay. It has proven its worth
 (for 30 years!); it is mature; and it has a strong, high-caliber, and
 vocal user base. Unlike Matlab, it is free and open source, making it
 easy to get started.

Python

Python has become the scripting language of choice for
 scientists and scientific applications, especially in the
 machine-learning field and in the biological and social sciences.
 (Hard-core, large-scale numerical applications in physics and related
 fields continue to be done in C/C++ or even—horresco
 referens—in Fortran.)
The barrier to programming in Python is low, which makes it easy
 to start new projects. This is somewhat of a mixed blessing: on the
 one hand, there is an abundance of exciting Python projects out there;
 on the other hand, they seem to be particularly prone to the
 “abandonware” problem mentioned before. Also, scientists are not
 programmers, and it often shows (especially with regard to long-term,
 architectural vision and the cultivation of a strong and committed
 community).
In addition to a large number of smaller and more specialized
 projects, there have been five major attempts to provide a
 comprehensive Python library for scientific
 applications. It can be confusing to understand how they relate to
 each other, so they are summarized here:[34]
Numeric
	This is the original Python module for the manipulation of
 numeric arrays, initiated in 1995 at MIT. Superceded by
 NumPy.

Numarray
	An alternative implementation from the Space Telescope
 Science Institute (2001). Considered obsolete, replaced by
 NumPy.

NumPy
	The NumPy project was begun in 2005 to provide a unified
 framework for numerical matrix calculations. NumPy builds on (and
 supercedes) Numeric, and it includes the additional functionality
 developed by numarray.

SciPy
	Started in 2001, the SciPy project evolved out of an effort
 to combine several previously separate libraries for scientific
 computing. Builds on and includes NumPy.

ScientificPython
	An earlier (started in 1997) general-purpose library for
 scientific applications. In contrast to SciPy, this library tries
 to stay with “pure Python” implementations for better
 portability.

Today, the NumPy/SciPy project has established itself as
 the clear winner among general-purpose libraries for scientific
 applications in Python, and we will take a closer look at it
 shortly.
A strong point in favor of Python is the convenient support it
 has for relatively fancy and animated graphics. The matplotlib library
 is the most commonly used Python library for generating standard
 plots, and it has a particularly close relationship with NumPy/SciPy.
 Besides matplotlib there are Chaco and Mayavi (for two- and
 three-dimensional graphics, respectively) and libraries such as PyGame
 and Pyglet (for animated and interactive graphics)—and, of course,
 many more.
Uncertainties associated with the future and adoption of Python3
 affect all Python projects, but they are particularly critical for
 many of the scientific and graphics libraries just mentioned: to
 achieve higher performance, these libraries usually rely heavily on C
 bindings, which do not port easily to Python3. Coupled with the issue
 of “abandonware” discussed earlier, this poses a particular challenge
 for all scientific libraries based on Python at this time.
NumPy/SciPy

The NumPy/SciPy project (http://www.scipy.org) has become the
 dominant player in scientific programming for Python. NumPy provides
 efficient vector and matrix operations; SciPy consists of a set of
 higher-level functions built on top of NumPy. Together with the
 matplotlib graphing library and the IPython interactive shell,
 NumPy/SciPy provides functionality resembling Matlab. NumPy/SciPy is
 open source (BSD-style license) and has a large user community; it
 is supported and distributed by a commercial company
 (Enthought).
NumPy is intended to contain low-level routines for handling
 vectors and matrices, and SciPy is meant to contain all higher-level
 functionality. However, some additional functions are included in
 NumPy for backward compatibility, and all NumPy functions are
 aliased into the SciPy namespace for convenience. As a result, the
 distinction between NumPy and SciPy is not very clear in
 practice.
NumPy/SciPy can be a lot of fun. It contains a wide selection
 of features and is very easy to get started with. Creating graphical
 output is simple. Since NumPy/SciPy is built on Python, it is
 trivial to integrate it into other software projects. Moreover, it
 does not require you to learn (yet another) restricted,
 special-purpose language: everything is accessible from a modern,
 widely used scripting language.
On the other hand, NumPy/SciPy has its own share of problems.
 The project has a tendency to emphasize quantity over quality: the
 number of features is very large, but the design appears overly
 complicated and is often awkward to use. Edge and error cases are
 not always handled properly. On the scientific level, NumPy/SciPy
 feels amateurish. The choice of algorithms appears to reflect some
 well-known textbooks more than deep, practical knowledge arising
 from real experience.
What worries me most is that the project does not seem
 to be managed very well: although it has been around for nearly 10
 years and has a large and active user base, it has apparently not
 been able to achieve and maintain a consistent level of reliability
 and maturity throughout. Features seem to be added haphazardly,
 without any long-term vision or discernible direction. Despite
 occasional efforts in this regard, the documentation remains
 patchy.
NumPy/SciPy is interesting because, among scientific and
 numeric projects, it probably has the lowest barrier to entry and is
 flexible and versatile. That makes it a convenient environment for
 getting started and for casual use. However, because of the overall
 quality issues, I would not want to rely on it for “serious”
 production work at this point.

What About Java?

Java is not a strong player when it comes to heavily
 numerical computations—so much so that a Java
 Numerics Working Group ceased operations years ago (around the year
 2002) for lack of interest.
Nevertheless, a lot of production-quality machine-learning
 programming is done in Java, where its relatively convenient string
 handling (compared to C) and its widespread use for
 enterprise programming come into play. One will
 have to see whether these applications will over time lead to the
 development of high-quality numerical libraries as well.
If you want a comfortable programming environment for large
 (possibly distributed) systems that’s relatively fast, then Java is a
 reasonable choice. However, Java programming has become very
 heavy-weight (with tools to manage your frameworks, and so on), which
 does not encourage ad hoc, exploratory programming. Groovy carries
 less programming overhead but is slow. A last issue concerns Java’s
 traditionally weak capabilities for interactive graphics and user
 interfaces, especially on Linux.
Java is very strong in regard to Big Data; in particular,
 Hadoop—the most popular open source map/reduce implementation—is
 written in Java. Java is also popular for text processing and
 searching.
A relatively new project is Incanter (http://incanter.org/), which uses Clojure (a
 Lisp dialect running on top of the Java virtual machine) to develop an
 “R-like statistical computing and graphics environment.” Incanter is
 an interesting project, but I don’t feel that it has stood the test of
 time yet, and one will have to see how it will position itself with
 respect to R.

Other Players

The preceding list of programs and packages is, of course, far
 from complete. Among the other players, I shall briefly mention
 three.
SAS SAS is a classical statistics
 packages with strongly established uses in credit scoring and medical
 trials. SAS was originally developed for OS/360 mainframes, and it
 shows. Its command language has a distinct 1960s feel, and the whole
 development cycle is strongly batch oriented (neither interactive nor
 exploratory). SAS works best when well-defined procedures need to be
 repeated often and on large data sets. A unique feature of SAS is that
 it works well with data sets that are too large to fit into memory and
 therefore need to be processed on disk.
SAS, like the mainframes it used to run on, is very expensive
 and requires specially trained operators—it is not for the casual
 user. (It is not exactly fun, either. The experience has been
 described as comparable to “scraping down the wallpaper with your
 fingernails.”)
SciLab SciLab is an open source project
 similar to Matlab. It was created by the French research institute
 INRIA.
GSL The GSL (Gnu Scientific Library) is a C
 library for classical numerical analysis: special functions, linear
 algebra, nonlinear equations, differential equations, the lot. The GSL
 was designed and implemented by a relatively small team of developers,
 who clearly knew what they were doing—beyond the standard textbook
 treatment. (This is evident from some design choices that specifically
 address ugly but important real-world needs.)
The API is wonderfully clear and consistent, the implementations
 are of high quality, and even the documentation is complete and
 finished. I find the GSL thoroughly enjoyable to use. (If you learned
 numerical analysis from Numerical
 Recipes,[35] this is the software that should have shipped with the
 book—but didn’t.)
The only problem with the GSL is that it is written in C. You
 need to be comfortable with C programming, including memory management
 and function pointers, if you want to use it. Bindings to scripting
 languages exist, but they are not part of the core project and may not
 be as complete or mature as the GSL itself.

Recommendations

So, which to pick? No clear winner emerges, and every single
 program or environment has significant (not just superficial)
 drawbacks. However, here are some qualified recommendations:
	Matlab is the 800-pound gorilla of scientific software. As a
 commercially developed product, it also has a certain amount of
 “polish” that many open source alternatives lack. If you don’t have a preferred programming
 environment yet, and if you can afford it (or
 can make your employer pay for it), then Matlab is probably the
 most comprehensive, most mature, and best supported all-purpose
 tool. Octave is a cheap way to get started and “try before you
 buy.”

	If you work with statisticians or have otherwise a need for
 formal statistical methods (tests, models), then R is a serious
 contender. It can also stand in as a scripting language for data
 manipulation if you don’t already have a favorite one yet. Since
 it is open source software, its financial cost to you is zero, but
 be prepared for a significant investment of time and effort before
 you start feeling comfortable and proficient.

	NumPy/SciPy is particularly easy to get started with and can
 be a lot of fun for casual use. However, you may want to evaluate
 carefully whether it will meet your needs in the long run if you
 are planning to use it for a larger or more demanding
 project.

	NumPy/SciPy, together with some of its associated graphics
 packages, is also of interest if you have a need for fancier,
 possibly interactive, graphics.

	If you have a need for serious numerical analysis
 and you know C well, then the GSL is a
 mature, high-quality library.

I am well aware that this list of options does not cover all
 possibilities that may occur in practice!

Writing Your Own

Given the fragmented tool situation, it may be tempting to write
 your own. There is nothing wrong with that: it can be very effective to
 write a piece of software specifically for your
 particular problem and application domain. It is much harder to write
 general-purpose scientific software.
Just how much harder is generally underappreciated. When P. J.
 Plauger worked on his reference implementation of the standard C
 library,[36] he found that he “spent about as much time writing and
 debugging the functions declared in <math.h> as [he] did all the rest of
 this library combined”! Plauger then went on to state his design goals
 for his implementation of those functions.
This should startle you: design goals? Why
 should a reference implementation need any design goals beyond
 faithfully and correctly representing the standard?
The reason is that scientific and numerical routines can fail in
 more ways than most people expect. For such routines, correctness is not
 so much a binary property, as a floating-point value itself. Numerical
 routines have more complicated contracts than strlen(char *).
My prime example for this kind of problem is the sine function.
 What could possibly go wrong with it? It is analytic everywhere,
 strictly bounded by [–1, 1], perfectly smooth, and with no weird
 behavior anywhere. Nonetheless, it is impossible to evaluate the sine
 accurately for sufficiently large values of x. The
 reason is that the sine sweeps out its entire range of values when
 x changes by as little as 2π. Today’s
 floating-point values carry about 16 digits of precision. Once
 x has become so large that all of these digits are
 required to represent the value of x to the left of
 the decimal point, we are no longer able to resolve the location of
 x within the interval of length 2π with sufficient
 precision to be meaningful—hence the “value” returned by
 sin(x) is basically random. In practice, the
 quality of the results starts to degrade long before we reach this
 extreme regime. (More accurately the problem lies not so much in the
 implementation of the sine but in the inability to express its input
 values with the precision required for obtaining a meaningful result.
 This makes no difference for the present argument.)
There are two points to take away here. First, note how
 “correctness” is a relative quality that can degrade smoothly depending
 on circumstances (i.e., the inputs). Second, you
 should register the sense of surprise that a function, which in
 mathematical theory is perfectly harmless, can turn nasty in the harsh
 reality of a computer program!
Similar examples can be found all over and are not limited to
 function evaluations. In particular for iterative algorithms (and almost
 all numerical algorithms are iterative), one needs to monitor and
 confirm that all intermediate values are uncorrupted—even in cases where
 the final result is perfectly reasonable. (This warning applies to many
 matrix operations, for instance.)
The punch line here is that although it is often not hard to
 produce an implementation that works well for a limited set of input
 values and in a narrow application domain, it is much more difficult to
 write routines that work equally well for all possible arguments. It
 takes a lot of experience to anticipate all possible applications and
 provide built-in diagnostics for likely failure modes. If at all
 possible, leave this work to specialists!

Further Reading

Matlab

	Numerical Computing with
 MATLAB. Cleve B. Moler. Revised reprint, SIAM. 2008.
The literature on Matlab is vast. I mention this title
 because its author is Cleve Moler, the guy who started it
 all.

R

	A Beginner’s Guide to R. Alain F. Zuur, Elena N. Ieno, and Erik H. W. G. Meesters.
 Springer. 2009.
Probably the most elementary introduction into the mechanics
 of R. A useful book to get started, but it won’t carry you very
 far. Obviously very hastily produced.

	R in a Nutshell. Joseph Adler.
 O’Reilly. 2009.
This is the first book on R that is organized by the
 task that you want to perform. This makes it
 an invaluable resource in those situations where you know exactly
 what you want to do but can’t find the appropriate commands that
 will tell R how to do it. The first two thirds of the book address
 data manipulation, programming, and graphics in general; the
 remainder is about statistical methods.

	Using R for Introductory
 Statistics. John Verzani. Chapman & Hall/CRC. 2004.
This is probably my favorite introductory text on how to
 perform basic statistical analysis using R.

NumPy/SciPy

There is no comprehensive introduction to NumPy/SciPy currently
 available that takes a user’s perspective. (The “Guide to NumPy” by
 Travis Oliphant, which can be found on the NumPy website, is too
 concerned with implementation issues.) Some useful bits, together with
 an introduction to Python and some other libraries, can be found in
 either of the following two books.
	Python Scripting for Computational
 Science. Hans Petter Langtangen. 3rd ed., Springer. 2009.

	Beginning Python Visualization: Crafting Visual
 Transformation Scripts. Shai Vaingast. Apress. 2009.

[33] I remember how blown away I personally was when I first read
 about such features in the programming language APL in the
 mid-1980s!

[34] For more information on the history and interrelations of
 these libraries, check out the first chapter in Travis B.
 Oliphant’s “Guide to NumPy,” which can be found on the Web.

[35] Numerical Recipes 3rd Edition: The Art of
 Scientific Computing. William H. Press, Saul A.
 Teukolsky, William T. Vetterling, and Brian P. Flannery. Cambridge
 University Press. 2007.

[36] The Standard C Library. P. J. Plauger.
 Prentice Hall. 1992.

Appendix B. Results from Calculus

IN THIS APPENDIX, WE REVIEW SOME OF
 THE RESULTS FROM CALCULUS THAT ARE EITHER NEEDED EXPLICITLY IN
 the main part of the book or are conceptually sufficiently important when
 doing data analysis and mathematical modeling that you should at least be
 aware that they exist.
Obviously, this appendix cannot replace a class (or two) in
 beginning and intermediate calculus, and this is also not the intent.
 Instead, this appendix should serve as a reminder of things that you
 probably know already. More importantly, the results are presented here in
 a slightly different context than usual. Calculus is generally taught with
 an eye toward the theoretical development—it has to be, because the intent
 is to teach the entire body of knowledge of calculus and therefore the
 theoretical development is most important. However, for applications you
 need a different sort of tricks (based on the same fundamental techniques,
 of course), and it generally takes years of
 experience to make out the tricks from the theory. This appendix assumes
 that you have seen the theory at least once, so I am just reminding you of
 it, but I want to emphasize those elementary techniques that are most
 useful in applications of the kind explained in this book.
This appendix is also intended as somewhat of a teaser: I have
 included some results that are particularly interesting, noteworthy, or
 fascinating as an invitation for further study.
The structure of this appendix is as follows:
	To get a head start, we first look at some common functions and
 their graphs.

	Then we discuss the core concepts of calculus proper:
 derivative, integral, limit.

	Next I mention a few practical tricks and techniques that are
 frequently useful.

	Near the end, there is a section on notation and
 very basic concepts. If you start
 feeling truly confused, check here! (I did not want to
 start with that section because I’m assuming that most readers know
 this material already.)

	I conclude with some pointers for further study.

A note for the mathematically fussy: this appendix quite
 intentionally eschews much mathematical sophistication. I know that many
 of the statements can be made either more general or more precise. But the
 way they are worded here is sufficient for my purpose, and I want to avoid
 the obscurity that is the by-product of presenting mathematical statements
 in their most general form.
Common Functions

Functions are mappings, which map a real number into another real
 number: [image:]. This mapping is always unique: every input value
 x is mapped to exactly one result value
 f(x). (The converse is not
 true: many input values may be mapped to the same result. For example,
 the mapping f(x) = 0, which
 maps all values to zero, is a valid
 function.)
More complicated functions are often built up as combinations of
 simpler functions. The most important simple functions are powers,
 polynomials and rational functions, and trigonometric and exponential
 functions.
Powers

The simplest nontrivial function is the
 linear function:
f(x) =
 ax
The constant factor a is the
 slope: if x increases by 1,
 then f(x) increases by
 a. Figure B-1
 shows linear functions with different slopes.
The next set of elementary functions are the simple
 powers:
f(x) =
 xk
The power k can be greater or smaller than
 1. The exponent can be positive or negative, and it can be an integer
 or a fraction. Figure B-2
 shows graphs of some functions with positive integer powers, and Figure B-3 shows functions
 with fractional powers.
Simple powers have some important properties:
	All simple powers go through the two points (0, 0) and (1,
 1).

	The linear function
 f(x) =
 x is a simple power with
 k = 1.

	The square-root function [image:] is a simple power with
 k = 1/2.

	Integer powers (k = 1, 2, 3,...) can be
 evaluated for negative x, but for fractional
 powers we have to be more careful.

[image: The linear function y = ax.]

Figure B-1. The linear function y =
 ax.

[image: Simple powers: y = axk.]

Figure B-2. Simple powers: y =
 axk.

Powers obey the following laws:
[image: Simple powers: y = axk.]
[image: Fractional powers: y = ap/q.]

Figure B-3. Fractional powers: y =
 ap/q.

If the exponent is negative, it turns the expression
 into a fraction:
[image: Fractional powers: y = ap/q.]
When dealing with fractions, we must always remember that the
 denominator must not become zero. As the denominator of a fraction
 approaches zero, the value of the overall expression goes to infinity.
 We say: the expression diverges and the function
 has a singularity at the position where the
 denominator vanishes. Figure B-4 shows graphs of
 functions with negative powers. Note the divergence for
 x = 0.

Polynomials and Rational Functions

Polynomials are sums of integer powers together with constant
 coefficients:
p(x) =
 anxn
 +
 an–1
 xn–1
 + ... +
 a2x2
 + a1x
 + a0
Polynomials are nice because they are extremely easy to handle
 mathematically (after all, they are just sums of simple integer
 powers). Yet, more complicated functions can be approximated very well
 using polynomials. Polynomials therefore play an important role as
 approximations of more complicated functions.
All polynomials exhibit some “wiggles” and eventually diverge as
 x goes to plus or minus infinity (see Figure B-5). The highest
 power occurring in a polynomial is known as that
 degree of the polynomial.
[image: Negative powers: y = ax–k = a/xk.]

Figure B-4. Negative powers: y =
 ax–k =
 a/xk.

[image: A polynomial: y = 16x5 – 20x3 + 2x2 + 4x.]

Figure B-5. A polynomial: y =
 16x5 –
 20x3 +
 2x2 +
 4x.

Rational functions are fractions that have polynomials in both
 the numerator and the denominator:
[image: A polynomial: y = 16x5 – 20x3 + 2x2 + 4x.]
[image: The exponential function y = ex.]

Figure B-6. The exponential function y =
 ex.

Although they may appear equally harmless, rational
 functions are entirely more complicated beasts than polynomials.
 Whenever the denominator becomes zero, they blow up. The behavior as
 x approaches infinity depends on the relative
 size of the largest powers in numerator and denominator, respectively.
 Rational functions are not simple
 functions.

Exponential Function and Logarithm

Some functions cannot be expressed as polynomials (or as
 fraction of polynomials) of finite degree. Such functions are known as
 transcendental functions. For our purposes, the
 most important ones are the exponential function
 f(x) =
 ex (where
 e = 2.718281 ... is Euler’s number) and its
 inverse, the logarithm.
A graph of the exponential function is shown in Figure B-6. For positive argument
 the exponential function grows very quickly, and
 for negative argument it decays equally quickly. The exponential
 function plays a central role in growth and decay processes.
Some properties of the exponential function follow from the
 rules for powers:
[image: Exponential Function and Logarithm]
The logarithm is the inverse of the exponential function; in
 other words:
	y =
 ex
	⇔
	log y =
 x

	elog(x)
 = x
	and
	log
 (ex) =
 x

[image: The natural logarithm: y = log(x).]

Figure B-7. The natural logarithm: y =
 log(x).

A plot of the logarithm is shown in Figure B-7. The logarithm is
 defined only for strictly positive values of x,
 and it tends to negative infinity as x approaches
 zero. In the opposite direction, as x becomes
 large the logarithm grows without bounds, but it grows almost
 unbelievably slowly. For x = 2, we have log 2 =
 0.69 ... and for x = 10 we find log 10 = 2.30
 ..., but for x = 1,000 and x
 = 106 we have only log 1000 = 6.91 ... and
 log 106 = 13.81 ..., respectively. Yet the
 logarithm does not have an upper bound: it keeps on growing but at an
 ever-decreasing rate of growth.
The logarithm has a number of basic properties:
log(1) = 0
log(x y) = log x + log
 y
log(xk) =
 k log x
As you can see, logarithms turn products into sums and powers
 into products. In other words, logarithms “simplify” expressions. This
 property was (and is!) used in numerical calculations: instead of
 multiplying two numbers (which is complicated), you add their
 logarithms (which is easy—provided you have a logarithm table or a
 slide rule) and then exponentiate the result. This calculational
 scheme is still relevant today, but not for the kinds of simple
 products that previous generations performed using slide rules.
 Instead, logarithmic multiplication can be necessary when dealing with
 products that would generate intermediate over- or underflows even
 though the final result may be of reasonable size. In particular,
 certain kinds of combinatorial and probabilistic problems require
 finding the maximum of expressions such as
 pn(1 –
 p)k,
 where p < 1 is a probability and
 n and k may be large
 numbers. Brute-force evaluation will underflow even for modest values of the exponents, but taking
 logarithms first will result in a numerically harmless
 expression.
[image: The trigonometric functions sin(x) and cos(x).]

Figure B-8. The trigonometric functions sin(x) and
 cos(x).

Trigonometric Functions

The trigonometric functions describe oscillations of all kinds
 and thus play a central role in sciences and engineering. Like the
 exponential function, they are transcendental functions, meaning they
 cannot be written down as a polynomial of finite degree.
Figure B-8
 shows graphs of the two most important trigonometric functions:
 sin(x) and cos(x). The
 cosine is equal to the sine but is shifted by π/2 (90 degrees) to the
 left. We can see that both functions are
 periodic: they repeat themselves
 exactly after a period of length 2π. In other
 words, sin(x + 2π) = sin(x)
 and cos(x + 2π) =
 cos(x).
The length of the period is 2π, which you may recall is the
 circumference of a circle with radius equal to 1.
 This should make sense, because sin(x) and
 cos(x) repeat themselves after advancing by 2π
 and so does the circle: if you go around the circle once, you are back
 to where you started. This similarity between the trigonometric
 functions and the geometry of the circle is no accident, but this is
 not the place to explore it.
Besides their periodicity, the trigonometric functions obey a
 number of rules and properties (“trig identities”), only one of which
 is important enough to mention here:
sin2 x +
 cos2 x = 1 for all
 x
[image: The Gaussian: .]

Figure B-9. The Gaussian: [image:].

Finally, I should mention the tangent function, which is
 occasionally useful:
[image: The Gaussian: .]

Gaussian Function and the Normal Distribution

The Gaussian function arises frequently and in many different
 contexts. It is given by the formula:
[image: Gaussian Function and the Normal Distribution]
and its plot is shown in Figure B-9. (This
 is the form in which the Gaussian should be memorized, with the factor
 1/2 in the exponent and the factor [image:] up front: they ensure that the integral of the
 Gaussian over all x will be equal to 1.)
Two applications of the Gaussian stand out. First of all, a
 strong result from probability theory, the Central Limit
 Theorem states that (under rather weak assumptions) if we
 add many random quantities, then their sum will be distributed
 according to a Gaussian distribution. In particular, if we take
 several samples from a population and calculate the mean for each
 sample, then the sample means will be distributed according to a
 Gaussian. Because of this, the Gaussian arises all the
 time in probability theory and statistics.
It is because of this connection that the Gaussian is often
 identified as “the” bell curve—quite incorrectly so, since there are
 many bell-shaped curves, many of which have drastically different
 properties. In fact, there are important cases where the Central Limit
 Theorem fails, and the Gaussian is
 not a good way to describe the behavior of a
 random system (see the discussion of power-law distributions in Chapter 9).
[image: The Gaussian distribution function.]

Figure B-10. The Gaussian distribution function.

The other context in which the Gaussian arises frequently is as
 a kernel—that is, as a strongly peaked and
 localized yet very smooth function. Although the Gaussian is greater
 than zero everywhere, it falls off to zero so quickly that almost the
 entire area underneath it is concentrated on the interval –3 ≤
 x ≤ 3. It is this last property that makes the
 Gaussian so convenient to use as a kernel. Although the Gaussian is
 defined and nonzero everywhere (so that we don’t need to worry about
 limits of integration), it can be multiplied against almost any
 function and integrated. The integral will retain only those values of
 the function near zero; values at positions far from the origin will
 be suppressed (smoothly) by the Gaussian.
In statistical applications, we are often interested in the area
 under certain parts of the curve because that will provide the answer
 to questions such as: “What is the probability that the point lies
 between –1 and 1?” The antiderivative of the Gaussian cannot be
 expressed in terms of elementary functions; instead it is defined
 through the integral directly:
[image: The Gaussian distribution function.]
This function is known as the Normal distribution
 function (see Figure B-10). As previously mentioned,
 the factor [image:] is a normalization constant that ensures the
 area under the entire curve is 1.
Given the function Φ(x), a question like
 the one just given can be answered easily: the area over the interval
 [–1, 1] is simply Φ(1) – Φ(–1).
[image: The absolute value function y = |x| and the square y = x2.]

Figure B-11. The absolute value function y =
 |x| and the square y =
 x2.

Other Functions

There are some other functions that appear in
 applications often enough that we should be familiar with them but are
 a bit more exotic than the families of functions considered so
 far.
The absolute value function is defined
 as:
[image: Other Functions]
In other words, it is the positive (“absolute”) value of its
 argument. From a mathematical perspective, the absolute value is hard
 to work with because of the need to treat the two possible cases
 separately and because of the kink at x = 0,
 which poses difficulties when doing analytical work. For this reason,
 one instead often uses the square
 x2 to guarantee a
 positive value. The square relieves us of the need to worry about
 special cases explicitly, and it is smooth throughout. However, the
 square is relatively smaller than the absolute value for small values
 of x but relatively larger for large values of
 x. Weight functions based on the square (as in
 least-squares methods, for instance) therefore tend to overemphasize
 outliers (see Figure B-11).
Both the hyperbolic tangent
 tanh(x) (pronounced: tan-sh) and the
 logistic function are S-shaped or sigmoidal
 functions. The latter function is the solution to the
 logistic differential equation, hence the name.
 The logistic differential equation is used to model constrained
 growth processes such as bacteria competing for food and
 infection rates for contagious diseases. Both these functions are
 defined in terms of the exponential functions as follows:
[image: Other Functions]
[image: Two sigmoid (step) functions: the hyperbolic tangent y = tanh(x) and the logistic function y = 1/(1 + e–x).]

Figure B-12. Two sigmoid (step) functions: the hyperbolic tangent
 y = tanh(x) and the
 logistic function y = 1/(1 +
 e–x).

Both functions are smooth approximations to a step function, and
 they differ mostly in the range of values they assume: the
 tanh(x) takes on values in the interval [–1, 1],
 whereas the logistic function takes on only positive values between 0
 and 1 (see Figure B-12). It is not hard
 to show that the two functions can be transformed into each other; in
 fact, we have P(x) =
 (tanh(x/2) + 1)/2.
These two functions are each occasionally referred to as
 the sigmoid function. That is incorrect: there
 are infinitely many functions that smoothly interpolate a step
 function. But among those functions, the two discussed here have the
 advantage that—although everywhere smooth—they basically consist of
 three straight lines: very flat as x goes to plus
 or minus infinity and almost linear in the transition regime. The
 position and steepness of the transition can be changed through a
 standard variable transformation; for example,
 tanh((x –
 m)/a) will have a transition
 at m with local slope
 1/a.
The last function to consider here is the
 factorial: n!. The factorial
 is defined only for nonnegative integers, as follows:
0! = 1
n! = 1 · 2 ····· (n –
 1) · n
The factorial plays an important role in combinatorial
 problems, since it is the number of ways that n
 distinguishable objects can be arranged. (To see this, imagine that
 you have to fill n boxes with
 n items. To fill the first box, you have
 n choices. To fill the second box, you have
 n – 1 choices. And so on. The total number of
 arrangements or permutations is therefore
 n · (n – 1) ··· 1 =
 n!.)
The factorial grows very quickly; it grows
 faster even than the exponential. Because the factorial grows so
 quickly, it is often convenient to work with its logarithm. An
 important and widely used approximation for the logarithm of the
 factorial is Stirling’s approximation:
	log n! ≈
 n log(n) –
 n
	for large
 n

For the curious: it is possible to define a function that
 smoothly interpolates the factorial for all positive numbers (not just
 integers). It is known as the Gamma function, and
 it is another example (besides the Gaussian distribution function) for
 a function defined through an integral:
[image: Two sigmoid (step) functions: the hyperbolic tangent y = tanh(x) and the logistic function y = 1/(1 + e–x).]
The variable t in this expression is just a
 “dummy” variable of integration—it does not appear in the final
 result. You can see that the first term in the integral grows as a
 power while the second falls exponentially, with the effect that the
 value of the integral is finite. Note that the limits of integration
 are fixed. The independent variable x enters the
 expression only as a parameter. Finally, it is easy to show that the
 Gamma function obeys the rule n
 Γ(n) = Γ(n + 1), which is
 the defining property of the factorial function.
We do not need the Gamma function in this book, but it is
 interesting as an example of how integrals can be used to define and
 construct new functions.

The Inverse of a Function

A function maps its argument to a result: given a value for
 x, we can find the corresponding value of
 f(x). Occasionally, we want
 to turn this relation around and ask: given a value of
 f(x), what is the
 corresponding value of x?
That’s what the inverse function does: if
 f(x) is some function, then
 its inverse
 f–1(x)
 is defined as the function that, when applied to
 f(x), returns the original
 argument:
f–1
 (f(x)) =
 x
Sometimes we can invert a function explicitly. For example, if
 f(x) =
 x2, then the inverse
 function is the square root, because [image:] (which is the definition of the inverse
 function). In a similar way, the logarithm is the inverse function of
 the exponential:
 log(ex) =
 x.
[image: The slope of a linear function is the ratio of the growth in the vertical direction, f(b) – f(a), divided by the corresponding growth in the horizontal direction, b – a.]

Figure B-13. The slope of a linear function is the ratio of the growth in
 the vertical direction,
 f(b) –
 f(a), divided by the
 corresponding growth in the horizontal direction,
 b – a.

In other cases, it may not be possible to find an
 explicit form for the inverse function. For example, we sometimes need
 the inverse of the Gaussian distribution function
 Φ(x). However, no simple form for this function
 exists, so we write it symbolically as
 Φ–1(x), which refers
 to the function for which Φ–1
 (Φ(x)) = x is true.

Calculus

Calculus proper deals with the consideration of limit processes:
 how does a sequence of values behave if we make infinitely many steps?
 The slope of a function and the area underneath a function are both
 defined through such limit processes (the derivative and the integral,
 respectively).
Calculus allows us to make statements about properties of
 functions and also to develop approximations.
Derivatives

We already mentioned the slope as the rate of change of a linear
 function. The same concept can be extended to nonlinear functions,
 though for such functions, the slope itself will vary from place to
 place. For this reason, we speak of the local
 slope of a curve at each point.
Let’s examine the slope as the rate of
 change of a function in more detail, because this concept
 is of fundamental importance whenever we want to interpolate or
 approximate some data by a smooth function. Figure B-13 shows the
 construction used to calculate the slope of a linear function. As x
 goes from a to b, the
 function changes from f(a)
 to f(b). The rate of change
 is the ratio of the change in
 f(x) to the change in
 x:
[image: Derivatives]
[image: As bi approaches a, the slope found for these two points becomes closer and closer to the local slope at a.]

Figure B-14. As bi approaches
 a, the slope found for these two points becomes
 closer and closer to the local slope at
 a.

Make sure that you really understand this formula!
Now, let’s apply this concept to a function that is nonlinear.
 Because the slope of the curve varies from point to point, we cannot
 find the slope directly using the previous formula; however, we can
 use the formula to approximate the local
 slope.
Figure B-14
 demonstrates the concept. We fix two points on a curve and put a
 straight line through them. This line has a slope, which is
 [image:]. This is only an approximation to the slope at
 point a. But we can improve the approximation by
 moving the second point b closer to
 a. If we let b go all the
 way to a, we end up with the (local) slope
 at the point a exactly. This
 is called the derivative. (It is a central result
 of calculus that, although numerator and denominator in
 [image:] each go to zero separately in this process, the
 fraction itself goes to a well-defined value.)
The construction just performed was done graphically and for a
 single point only, but it can be carried out analytically in a fully
 general way. The process is sufficiently instructive that we shall
 study a simple example in detail—namely finding a general rule for the
 derivative of the function
 f(x) =
 x2. It will be useful
 to rewrite the interval [a, b] as
Table B-1. Derivatives and antiderivatives (integrals) for a few
 elementary functions.
	Function
	Derivative
	Integral

	xn
	nxn–1
	[image:]

	ex
	ex
	ex

	log
 x
	1/x
	x log
 x – x

	sin
 x
	cos
 x
	–cos
 x

	cos
 x
	–sin
 x
	sin
 x

[x, x + ϵ]. We can now go ahead and form
 the familiar ratio:
[image: Derivatives and antiderivatives (integrals) for a few elementary functions.]
In the second step, the terms not depending on ϵ cancel each
 other; in the third step, we cancel an ϵ between the numerator and the
 denominator, which leaves an expression that is perfectly harmless as
 ϵ goes to zero! The (harmless) result is the sought-for derivative of
 the function. Notice that the result is true for any
 x, so we have obtained an expression for the derivative of
 x2 that holds for all
 x: the derivative of
 x2 is
 2x. Always. Similar rules can be set up for other
 functions (you may try your hand at finding the rule for
 x3 or even
 xk for general
 k). Table B-1 lists a few of
 the most important ones.
There are two ways to indicate the derivative. A short form uses
 the prime, like this: f′(x)
 is the derivative of f(x).
 Another form uses the differential operator
 [image:], which acts on the expression to its right.
 Using the latter, we can write:
[image: Derivatives and antiderivatives (integrals) for a few elementary functions.]

Finding Minima and Maxima

When a smooth function reaches a local minimum or maximum, its
 slope at that point is zero. This is easy to see: as you approach a
 peak, you go uphill (positive slope); once over the top, you go
 downhill (negative slope). Hence, you must have passed a point where
 you were going neither uphill nor downhill—in other words, where the
 slope was zero. (From a mathematically rigorous point of view, this is
 not quite as obvious as it may seem; you may want to check for
 “Rolle’s theorem” in a calculus text.)
[image: The slope of a curve is zero when the curve reaches a maximum, a minimum, or a saddle point. Zeros in the derivative therefore indicate the occurrence of one of those special points.]

Figure B-15. The slope of a curve is zero when the curve reaches a
 maximum, a minimum, or a saddle point. Zeros in the derivative
 therefore indicate the occurrence of one of those special
 points.

The opposite is also true: if the slope
 (i.e., the derivative) is zero somewhere, then
 the function has either a minimum or a maximum at that position.
 (There is also a third possibility: the function has a so-called
 saddle point there. In practice, this occurs less frequently.) Figure B-15 demonstrates all
 these cases.
We can therefore use derivatives to locate minima or maxima of a
 function. First we determine the derivative of the function, and then
 we find the locations where the derivative is zero (the derivative’s
 roots). The roots are the locations of the
 extrema of the original function.
Extrema are important because they are the solution to
 optimization problems. Whenever we want to find
 the “best” solution in some context, we are looking for an extremum:
 the lowest price, the longest duration, the greatest utilization, the
 highest efficiency. Hence, if we have a mathematical expression for
 the price, duration, utilization, or efficiency, we can take its
 derivative with respect to its parameters, set the derivative to zero,
 and solve for those values of the parameters that maximize (or
 minimize) our objective function.

Integrals

Derivatives find the local rate of change of a curve as the
 limit of a sequence of better and better approximations. Integrals
 calculate the area underneath a curve by a similar method.
Figure B-16
 demonstrates the process. We approximate the area underneath a curve
 by using rectangular boxes. As we make the boxes narrower, the
 approximation becomes more accurate. In the limit of infinitely many
 boxes of infinitely narrow width, we obtain the exact area under the
 curve.
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]

Figure B-16. The integral is the area under a curve. It can be
 approximated by filling the area under the curve with narrow
 rectangles and adding up their areas. The approximation improves as
 the width of the rectangles becomes smaller.

Integrals are conceptually very simple but analytically much
 more difficult than derivatives. It is always possible to find a
 closed-form expression for the derivative of a function. This is not
 so for integrals in general, but for some simple functions an
 expression for the integral can be found. Some examples are included
 in Table B-1.
Integrals are often denoted using uppercase letters, and there
 is a special symbol to indicate the “summing” of the area underneath a
 curve:
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]
We can include the limits of the domain over which we want to
 integrate, like this:
[image: The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.]
Notice that A is a
 number, namely the area underneath the curve
 between x = a and
 x = b, whereas the
 indefinite integral (without the limits) is a
 function, which can be evaluated at any
 point.

Limits, Sequences, and Series

The central concept in all of calculus is the notion of
 a limit. The basic idea is as follows. We
 construct some process that continues indefinitely and approximates
 some value ever more closely as the process goes on—but without
 reaching the limit in any finite number of steps, no matter how many.
 The important insight is that, even though the limit is never reached,
 we can nevertheless make statements about the limiting value. The
 derivative (as the limit of the difference ratio) and the integral (as
 the limit of the sum of approximating “boxes”) are examples that we
 have already encountered.
As simpler example, consider the numbers 1/1, 1/2, 1/3, 1/4, ...
 or 1/n in general as n goes
 to infinity. Clearly, the numbers approach zero ever more closely;
 nonetheless, for any finite n, the value of
 1/n is always greater than zero. We call such an
 infinite, ordered set of numbers a sequence, and
 zero is the limit of this particular sequence.
A series is a sum:
[image: Limits, Sequences, and Series]
As long as the number of terms in the series is finite, there is
 no problem. But once we let the number of terms go to infinity, we
 need to ask whether the sum still converges to a finite value. We have
 already seen a case where it does: we defined the integral as the
 value of the infinite sum of infinitely small boxes.
It may be surprising that an infinite sum
 can still add up to a finite value. Yet this can
 happen provided the terms in the sum become smaller rapidly enough.
 Here’s an example: if you sum up 1, 0.1, 0.01, 0.001, 0.0001, ..., you
 can see that the sum approaches 1.1111 ... but will never be larger
 than 1.2. Here is a more dramatic example: I have a piece of
 chocolate. I break it into two equal parts and give you one. Now I
 repeat the process with what I have left, and so on. Obviously, we can
 continue like this forever because I always retain half of what I had
 before. However, you will never accumulate more chocolate than what I
 started out with!
An infinite series converges to a finite value only if the
 magnitude of the terms decreases sufficiently quickly. If the terms do
 not become smaller fast enough, the series diverges
 (i.e., its value is infinite). An important
 series that does not converge is the
 harmonic series:
[image: Limits, Sequences, and Series]
One can work out rigorous tests to determine whether or not a
 given series converges. For example, we can compare the terms of the
 series to those from a series that is known to converge: if the terms
 in the new series become smaller more quickly than in the converging
 series, then the new series will also converge.
Finding the value of an infinite sum is often tricky,
 but there is one example that is rather straightforward. The solution
 involves a trick well worth knowing. Consider the infinite
 geometric series:
[image: Limits, Sequences, and Series]
Now, let’s multiply by q and add 1:
	qs +
 1
	= q(1 +
 q +
 q2 +
 q3 + · · ·) +
 1

	 	= q +
 q2 +
 q3 +
 q4 + · · · +
 1

	 	=
 s

To understand the last step, realize that the righthand side
 equals our earlier definition of s. We can now
 solve the resulting equation for s and
 obtain:
[image: Limits, Sequences, and Series]
This is a good trick that can be applied in similar cases: if
 you can express an infinite series in terms of itself, the result may
 be an equation that you can solve explicitly for the unknown value of
 the infinite series.

Power Series and Taylor Expansion

An especially important kind of series contains consecutive
 powers of the variable x multiplied by the
 constant coefficients ai.
 Such series are called power series. The variable
 x can take on any value (it is a “dummy
 variable”), and the sum of the series is therefore a function of
 x:
[image: Power Series and Taylor Expansion]
If n is finite, then there is only a finite
 number of terms in the series: in fact, the series is simply a
 polynomial (and, conversely, every polynomial is a finite power
 series). But the number of terms can also be infinite, in which case
 we have to ask for what values of x does the
 series converge. Infinite power series are of great theoretical
 interest because they are a (conceptually straightforward)
 generalization of polynomials and hence represent the “simplest”
 nonelementary functions.
But power series are also of the utmost
 practical importance. The reason is a remarkable
 result known as Taylor’s theorem. Taylor’s
 theorem states that any reasonably smooth function can be
 expanded into a power series. This process (and
 the resulting series) is known as the Taylor
 expansion of the function.
Taylor’s theorem gives an explicit construction for the
 coefficients in the series expansion:
[image: Power Series and Taylor Expansion]
[image: The sine function sin(x) and its Taylor expansions around zero, truncated after retaining different numbers of terms. If more terms are kept, the approximation is acceptable over a greater range of values.]

Figure B-17. The sine function sin(x) and its Taylor
 expansions around zero, truncated after retaining different numbers
 of terms. If more terms are kept, the approximation is acceptable
 over a greater range of values.

In other words, the coefficient of the
 nth term is the nth
 derivative (evaluated at zero) divided by n!. The
 Taylor series converges for all x—the factorial
 in the denominator grows so quickly that convergence is guaranteed no
 matter how large x is.
The Taylor series is an exact representation of the function on
 the lefthand side if we retain all (infinitely many) terms. But we can
 also truncate the series after just a few terms
 and so obtain a good local approximation of the
 function in question. The more terms we keep, the larger will be the
 range over which the approximation is good. For the sine function,
 Figure B-17 shows how
 the Taylor expansion improves as a greater number of terms is kept.
 Table B-2 shows the
 Taylor expansions for some functions we have encountered so
 far.
It is this last step that makes Taylor’s theorem so useful from
 a practical point of view: it tells us that we can
 approximate any smooth function locally by a polynomial.
 And polynomials are always easy to work with—often much easier than
 the complicated functions that we started with.
One important practical point: the approximation provided by a
 truncated Taylor series is good only locally—that
 is, near the point around which we expand. This is because in that
 case x is small (i.e.,
 x ≪ 1) and so higher powers become negligible
 fast. Taylor series are usually represented in a form that assumes
 that the expansion takes place around zero. If this is not the case,
 we need to remove or factor out some large quantity so that we are
 left with a “small parameter” in which to expand. As an example,
 suppose we want to obtain an approximation to
 ex for values of
 x near 10. If we expanded in the usual fashion
 around zero, then we would have to sum many terms
 before the approximation becomes good (the terms grow until
 10n < n!, which
 means we need to keep more than 20 terms). Instead, we proceed as
 follows: we write [image:]. In other words, we set it up so that δ is
 small allowing us to expand
 eδ around zero as
 before.
Table B-2. The first few terms of the Taylor expansion of some important
 functions
	Function
	Taylor expansion
	Comment

	ex
	[image:]
	all
 x

	sin
 x
	[image:]
	all
 x

	cos
 x
	[image:]
	all
 x

	log(1 +
 x)
	[image:]
	–1 < x ≤
 1

	[image:]
	[image:]
	|x| ≤
 1

	1/(1 +
 x)
	1 – x +
 x2 –
 x3 ±
 ···
	|x| <
 1

Another important point to keep in mind is that the function
 must be smooth at the point around which we expand: it must not have a
 kink or other singularity there. This is why the logarithm is usually
 expanded around one (not zero): recall that the logarithm diverges as
 x goes to zero.

Useful Tricks

The Binomial Theorem

Probably everyone has encountered the binomial formulas at some
 point:
(a +
 b)2 =
 a2 +
 2ab +
 b2
(a –
 b)2 =
 a2 –
 2ab +
 b2
The binomial theorem provides an extension of this result to
 higher powers. The theorem states that, for an arbitrary integer power
 n, the expansion of the lefthand side can be
 written as:
[image: The Binomial Theorem]
This complicated-looking expression involves the
 binomial coefficients:
[image: The Binomial Theorem]
The binomial coefficients are combinatorial factors that count
 the number of different ways one can choose k
 items from a set of n items, and in fact there is
 a close relationship between the binomial theorem and the binomial
 probability distribution.
As is the case for many exact results, the greatest
 practical use of the binomial theorem comes from an approximate
 expression. Assume that b < a, so that
 b/a < 1. Now we can
 write:
[image: The Binomial Theorem]
Here we have neglected terms involving higher powers of
 b/a, which are small compared to the retained
 terms, since b/a < 1 by
 construction (so that higher powers of b/a, which
 involve multiplying a small number repeatedly by itself, quickly
 become negligible).
In this form, the binomial theorem is frequently useful as a way
 to generate approximate expansions. In particular, the first-order
 approximation:
	(1 +
 x)n
 ≈ 1 + nx
	for |x| < 1

should be memorized.

The Linear Transformation

Here is a quick, almost trivial, trick that is useful enough to
 be committed to memory. Any variable can be transformed to a similar
 variable that takes on only values from the interval [0, 1], via the
 following linear transformation, where
 xmin and
 xmax are the minimum and
 maximum values that x can take on:
[image: The Linear Transformation]
This transformation is frequently useful—for instance, if we
 have two quantities and would like to compare how they develop over
 time. If the two quantities have very different magnitudes, then we
 need to reduce both of them to a common range of values. The
 transformation just given does exactly that.
If we want the transformed quantity to fall
 whenever the original quantity goes up, we can do this by
 writing:
[image: The Linear Transformation]
We don’t have to shift by
 xmin and rescale by the
 original range xmax –
 xmin. Instead, we can
 subtract any “typical” value and divide by any “typical” measure of
 the range. In statistical applications, for example, it is frequently
 useful to subtract the mean μ and to divide by the standard deviation
 σ. The resulting quantity is referred to as the
 z-score:
[image: The Linear Transformation]
Alternatively, you might also subtract the median and
 divide by the inter-quartile range. The exact choice of parameters is
 not crucial and will depend on the specific application context. The
 important takeaway here is that we can normalize any variable
 by:
	Subtracting a typical value (shifting) and

	Dividing by the typical range (rescaling)

Dividing by Zero

Please remember that you cannot divide by
 zero! I am sure you know this—but it’s surprisingly easy to
 forget (until the computer reminds us with a fatal “divide by zero”
 error).
It is instructive to understand what happens if you try to
 divide by zero. Take some fixed number (say, 1), and divide it by a
 sequence of numbers that approach zero:
[image: Dividing by Zero]
In other words, as you divide a constant by numbers that
 approach zero, the result becomes larger and
 larger. Finally, if you let the divisor go to zero, the result grows
 beyond all bounds: it diverges. Figure B-18 shows this
 graphically.
What you should take away from this exercise and Figure B-18 is that you
 cannot replace 1/0 by something else—for instance, it is
 not a smart move to replace 1/0 by 0 “because
 both don’t really mean anything, anyway.” If you need to find a
 numeric value for 1/0, then it should be something like “infinity,”
 but this is not a useful value to operate with in practical
 applications.
Therefore, whenever you encounter a fraction
 [image:] of any kind, you must
 check whether the denominator can become zero and exclude
 these points from consideration.
Failing to do so is one of the most common sources of error.
 What is worse, these errors are difficult to recover from—not just in
 implementations but also conceptually. A typical example involves
 “relative errors,” where we divide the difference between the observed
 and the expected value by the expected value:
[image: Dividing by Zero]
[image: As you divide a constant value by smaller and smaller numbers, the result is getting larger and larger. If you divide by zero, it blows up!]

Figure B-18. As you divide a constant value by smaller and smaller
 numbers, the result is getting larger and larger. If you divide by
 zero, it blows up!

What happens if for one day the expected value drops to zero?
 You are toast. There is no way to assign a meaningful value to the
 error in this case. (If the observed value is also zero, then you can
 treat this as a special case and define the
 relative error to be zero in this case, but if the observed value is
 not zero, then this definition is obviously inappropriate.)
These kinds of problems have an unpleasant ability to sneak up
 on you. A quantity such as the relative error or the defect rate
 (which is also a ratio: the number of defects found divided by the
 number of units produced) is a quantity commonly found in reports and
 dashboards. You don’t want your entire report to crash because no
 units were produced for some product on this day rendering the
 denominator zero in one of your formulas!
There are a couple of workarounds, neither of which is perfect.
 In the case of the defect rate, where you can be sure that the
 numerator will be zero if the denominator is (because no defects can
 be found if no items were produced), you can add a small positive
 number to the denominator and thereby prevent it from ever becoming
 exactly zero. As long as this number is small compared to the number
 of items typically produced in a day, it will not significantly affect
 the reported defect rate, but will relieve you from having to check
 for the [image:] special case explicitly. In the case of
 calculating a relative error, you might want to replace the numerator
 with the average of the expected and the observed values. The
 advantage is that now the denominator can be zero only if the
 numerator is zero, which brings us back to the suggestion for dealing with
 defect rates just discussed. The problem with this method is that when
 no events are observed but some number was expected, the relative
 error is reported as –2 (negative 200 percent instead of negative 100
 percent); this is due to the factor 1/2 in the denominator, which
 comes from calculating the average there.
So, let me say it again: whenever you are dealing with
 fractions, you must consider the case of
 denominators becoming zero. Either rule them out or handle them
 explicitly.

Notation and Basic Math

This section is not intended as a comprehensive overview of
 mathematical notation or as your first introduction to mathematical
 formulas. Rather, it should serve as a general reminder of some basic
 facts and to clarify some conventions used in this book. (All my
 conventions are pretty standard—I have been careful not to use any
 symbols or conventions that are not generally used and
 understood.)
On Reading Formulas

A mathematical formula combines different components, called
 terms, by use of operators. The most basic
 operators are plus and minus
 (+ and –) and multiplied by and divided
 by (· and /). Plus and minus are always written explicitly,
 but the multiplication operator is usually silent—in other words, if
 you see two terms next to each other, with nothing between them, they
 should be multiplied. The division operator can be written in two
 forms: 1/n or [image:], which mean exactly the same thing. The former
 is more convenient in text such as this; the latter is more clear for
 long, “display” equations. An expression such as
 1/n + 1 is ambiguous and should not be used, but
 if you encounter it, you should assume that it means
 [image:] and not 1/(n + 1) (which
 is equivalent to [image:]).
Multiplication and division have higher precedence than addition
 and subtraction, therefore ab +
 c means that first you multiply
 a and b and then add
 c to the result. To change the priority, you need
 to use parentheses: a(b +
 c) means that first you add
 b and c and then multiply
 the result by a. Parentheses can either be round
 (...) or square [...], but their meaning is the same.
Functions take one (or several) arguments and return a result. A
 function always has a name followed by the
 arguments. Usually the arguments are enclosed in
 parentheses: f(x). Strictly
 speaking, this notation is ambiguous because an expression such as
 f (a + b) could mean either
 “add a and b and then
 multiply by f” or “add a and
 b and then pass the result to the function
 f.” However, the meaning is usually clear from
 the context.
(There is a slightly more advanced way to look at this. You can
 think of f as an operator, similar to a
 differential operator like [image:] or an integral operator like ∫
 dt. This operator is now applied to the
 expression to the right of it. If f is a
 function, this means applying the function to the argument; if the operator is a
 differential operator, this means taking the derivative; and if
 f is merely a number, then applying it simply
 means multiplying the term on its right by it.)
A function may take more than one argument; for example, the
 function f (x, y, z) takes three arguments.
 Sometimes you may want to emphasize that not all of these arguments
 are equivalent: some are actual variables, whereas others are
 “parameters,” which are kept constant while the variables change.
 Consider f(x) =
 ax + b. In this function,
 x is the variable (the quantity usually plotted
 along the horizontal axis) while a and
 b would be considered parameters. If we want to
 express that the function f does depend on the
 parameters as well as on the actual variable, we can do this by
 including the parameters in the list of arguments: f (x, a,
 b). To visually separate the parameters from the actual
 variable (or variables), a semicolon is sometimes used: f
 (x; a, b). There are no hard-and-fast
 rules for when to use a semicolon instead of a comma—it’s simply a
 convenience that is sometimes used and other times not.
One more word on functions: several functions are regarded as
 “well known” in mathematics (such as sine and cosine, the exponential
 function, and the logarithm). The names of such well-known functions
 are always written in upright letters, whereas functions in general
 are denoted by an italic letter. (Variables are always written in
 italics.) For well-known functions, the parentheses around the
 arguments can be omitted if the argument is sufficiently simple. (This
 is another example of the “operator” point of view mentioned earlier.)
 Thus we may write sin(x + 1) + log
 x –
 f(x) (note the upright
 letters for sine and logarithm, and the parentheses around the
 argument for the logarithm have been omitted, because it consists of
 only a single term). This has a different meaning than:
 sin(x + 1) + log(x –
 f(x)).

Elementary Algebra

For numbers, the following is generally true:
a(b +
 c) = ab +
 ac
This is often applied in situations like the following, where we
 factor out the a:
a + b =
 a(1 +
 b/a)
If a is much greater than
 b, then we have now converted the original
 expression a + b into
 another expression of the form:
something large · (1 + something
 small)
which makes it easy to see which terms matter and which can be
 neglected in an approximation scheme. (The small term in the
 parentheses is “small” compared to the 1 in the parentheses and can
 therefore be treated as a perturbation.)
Quantities can be multiplied together, which gives rise
 to powers:
a · a =
 a2
a · a ·
 a =
 a3
. . .
The raised quantity (the superscript) is also referred to as the
 exponent. In this book, superscripts always
 denote powers.
The three binomial formulas should be committed to
 memory:
(a +
 b)2 =
 a2 +
 2ab +
 b2
(a –
 b)2 =
 a2 –
 2ab +
 b2
(a +
 b)(a –
 b) =
 a2 –
 b2
Because the easiest things are often the most readily forgotten,
 let me just work out the first of these identities explicitly:
	(a +
 b)2
	= (a +
 b)(a +
 b)

	 	=
 a(a +
 b) +
 b(a +
 b)

	 	=
 a2 +
 ab + ba +
 b2

	 	=
 a2 +
 2ab +
 b2

where I have made use of the fact that ab =
 ba.

Working with Fractions

Let’s review the basic rules for working with fractions. The
 expression on top is called the numerator, the
 one at the bottom is the denominator:
[image: Working with Fractions]
If you can factor out a common factor in both numerator and
 denominator, then this common factor can be canceled:
[image: Working with Fractions]
To add two fractions, you have to bring them onto a common
 denominator in an operation that is the opposite of canceling a common
 factor:
[image: Working with Fractions]
Here is a numeric example:
[image: Working with Fractions]

Sets, Sequences, and Series

A set is a grouping of elements in
 no particular order. In a sequence, the elements
 occur in a fixed order, one after the other.
The individual elements of sets and sequences are usually shown
 with subscripts that denote the index of the element in the set or its
 position in the sequence (similar to indexing into an array). In this
 book, subscripts are used only for the purpose of indexing elements of
 sets or sequences in this way.
Sets are usually indicated by curly braces. The following
 expressions are equivalent:
{x1,
 x2,
 x3, . . .,
 xn}
{xi
 | i = 1, . . ., n}
For brevity, it is customary to suppress the range of the index
 if it can be understood from context. For example, if it is clear that
 there are n elements in the set, I might simply
 write {xi}.
One often wants to sum a finite or infinite sequence of numbers;
 the result is known as a series:
x1 +
 x2 +
 x3 + · · · +
 xn
Instead of writing out the terms explicitly, it is often useful
 to use the sum notation:
[image: Sets, Sequences, and Series]
The meaning of the summation symbol should be clear from this
 example. The variable used as index (here, i) is
 written underneath the summation sign followed by the lower limit
 (here, 1). The upper limit (here, n) is written
 above the summation sign. As a shorthand, any one of these
 specifications can be omitted. For instance, if it is clear from the
 context that the lower limit is 1 and the upper limit is
 n, then I might simply write [image:] or even [image:]. In the latter form, it is understood that the
 sum runs over the index of the summands.
It is often convenient to describe the terms to be summed over
 in words, rather than giving specific limits:
[image: Sets, Sequences, and Series]
Some standard transformations involving the summation notation
 are used fairly often. For example, one frequently needs to shift
 indices. The following three expressions are equal, as you can easily
 see by writing out explicitly the terms of the sum in each
 case:
[image: Sets, Sequences, and Series]
Keep in mind that the summation notation is just a
 shorthand for the explicit form given at the start of this section. If
 you become confused, you can always write out the terms explicitly to
 understand what is going on.
Finally, we may take the upper limit of the sum to be infinity,
 in which case the sum runs over infinitely many terms. Infinite series
 play a fundamental role in the theoretical development of mathematics,
 but all series that you will encounter in applications are, of course,
 finite.

Special Symbols

A few mathematical symbols are either indispensable or so useful
 that I wouldn’t do without them.
Binary relationships

There are several special symbols to describe the relationship
 between two expressions. Some of the most useful ones are listed in
 Table B-3.
Table B-3. Commonly used relational operators
	Operator
	Meaning

	= ≠
	equal to, not equal
 to

	< >
	less than, greater
 than

	≤ ≥
	less than or equal to, greater
 than or equal to

	≪ ≫
	much less than, much greater
 than

	α
	proportional to

	≈
	approximately equal
 to

	~
	scales as

The last three might require a word of explanation. We say two
 quantities are approximately equal when they
 are equal up to a “small” error. Put differently, the difference
 between the two quantities must be small compared to the quantities
 themselves: x and 1.1x are
 approximately equal, x ≈
 1.1x, because the difference (which is
 0.1x) is small compared to
 x.
One quantity is proportional to another
 if they are equal up to a constant factor that has been omitted from
 the expression. Often, this factor will have units associated with
 it. For example, when we say “time is money,” what we really mean
 is:
money α time
Here the omitted constant of proportionality is the hourly
 rate (which is also required to fix the units: hours on the left,
 dollars on the right; hence hourly rate must have units of “dollars
 per hour” to make the equation dimensionally consistent).
We say that a quantity scales as
 some other quantity if we want to express how one quantity depends
 on another one in a very general way. For example, recall that the
 area of a circle is
 πr2 (where
 r is the length of the radius) but that the
 area of a square is
 a2 (where
 a is the length of the side of the square). We
 can now say that “the area scales as the square
 of the length.” This is a more general statement than saying that
 the area is proportional to the square of the length: the latter
 implies that they are equal up to a constant factor, whereas the
 scaling behavior allows for more complicated dependencies. (In this
 example, the constant of proportionality depends on the
 shape of the figure, but the scaling behavior
 area ~ length2 is true for all
 symmetrical figures.)
In particular when evaluating the complexity of algorithms,
 there is another notation to express a very similar notion: the
 so-called big O notation. For example, the
 expression [image:](n2)
 states that the complexity of an algorithm grows (“scales”) with the
 square of the number of elements in the input.

Parentheses and other delimiters

Round parentheses (...) are used for two purposes: to group
 terms together (establishing precedence) and to indicate the
 arguments to a function:
	ab +
 c ≠
 a(b +
 c)
	Parentheses to establish
 precedence

	f(x,
 y) = x +
 y
	Parentheses to indicate function
 arguments

Square brackets [...] are mostly used to indicate an
 interval:
	[a,
 b]
	all x such
 that a ≤ x ≤
 b

For the purpose of this book, we don’t need to worry about the
 distinction between closed and open intervals
 (i.e., intervals that do or don’t contain their
 endpoints, respectively).
Very rarely I use brackets for other purposes—for example as
 an alternative to round parentheses to establish precedence, or
 indicate that a function takes another function
 as its argument, as in the expectation value:
 E[
 f(x)].
Curly braces {...} always denote a set.

Miscellaneous symbols

Two particular constants are indispensable. Everybody has
 heard of π = 3.141592 ..., which is the ratio of the circumference
 of a circle to its diameter:
[image: Miscellaneous symbols]
Equally important is the “base of the natural
 logarithm” e = 2.718281 ..., sometimes called
 Euler’s number. It is defined as the value of the infinite
 series:
[image: Miscellaneous symbols]
The function
 ex obtained by
 raising e to the xth power
 has the property that its derivative also equals
 ex, and it is the
 only function that equals its derivative (up to a multiplicative
 constant, to be precise).
The number e also shows up in the
 definition of the Gaussian function:
e–x2
(Any function that contains e raised to
 –x2 power is called
 a “Gaussian”; what’s crucial is that the x in
 the exponent is squared and enters with a negative sign. Other
 constants may appear also, but the
 –x2 in the exponent
 is the defining property.)
Because the exponents are often complicated expressions
 themselves, there is an alternative notation for the exponential
 function that avoids superscripts and instead uses the function name
 exp(...). The expression exp(x) means exactly
 the same as ex, and
 the following two expressions are equivalent, also—but the one on
 the right is easier to write:
[image: Miscellaneous symbols]
A value of infinite magnitude is indicated by a special
 symbol:
	∞
	a value of infinite
 magnitude

The square root sign [image:] states that:
[image: Miscellaneous symbols]
Finally, the integral sign ∫, which always occurs together
 with an expression of the form dx (or
 dt, or so), is used to denote a generalized
 form of summation: the expression to the right of the integral sign
 is to be “summed” for all values of x (or
 t). If explicit limits of the integration are
 given, they are attached to the integral sign:
[image: Miscellaneous symbols]
This means: “sum all values of
 f(x) for
 x ranging from 0 to 1.”

The Greek Alphabet

Greek letters are used all the time in mathematics and other
 sciences and should be committed to memory. (See Table B-4.)
Table B-4. The Greek alphabet
	Lowercase
	Uppercase
	Name

	α
	A
	Alpha

	β
	B
	Beta

	γ
	Γ
	Gamma

	δ
	Δ
	Delta

	ϵ
	E
	Epsilon

	ζ
	Z
	Zeta

	η
	H
	Eta

	θ
	Θ
	Theta

	ι
	I
	Iota

	κ
	K
	Kappa

	λ
	Λ
	Lambda

	μ
	M
	Mu

	ν
	N
	Nu

	ξ
	Ξ
	Xi

	ο
	Ο
	Omicron

	π
	Π
	Pi

	ρ
	R
	Rho

	σ
	Σ
	Sigma

	τ
	T
	Tau

	υ
	ϒ
	Upsilon

	ϕ
	Φ
	Phi

	χ
	X
	Chi

	ψ
	Ψ
	Psi

	ω
	Ω
	Omega

Where to Go from Here

This appendix can of course only give a cartoon version of the
 topics mentioned, or—if you have seen this material before—at best serve
 as a reminder. But most of all, I hope it serves as a
 teaser: mathematics is a wonderfully rich and
 stimulating topic, and I would hope that in this appendix (and in the
 rest of this book) I have been able to convey some of its
 fascination—and perhaps even convinced you to dig a little
 deeper.
If you want to learn more, here are a couple of hints.
The first topic to explore is calculus (or real analysis). All
 modern mathematics starts here, and it is here that some of the most
 frequently used concepts (derivative, integral, Taylor expansion) are
 properly introduced. It is a must-have.
But if you limit your attention to calculus, you will never get
 over the idea that mathematics is about “calculating something.” To get
 a sense of what math is really all about, you have
 to go beyond analysis. The next topic in a typical college syllabus is
 linear algebra. In linear algebra, we go beyond relatively tangible
 things like curves and numbers and for the first time start to consider
 concepts in a fully abstract way: spaces, transformations, mappings.
 What can we say about them in general without
 having to appeal to any particular realization? Understanding this
 material requires real mental effort—you have to change the way you
 think. (Similarly to how you have to change the way you think if you try
 to learn Lisp or Haskell.) Linear algebra also provides the theoretical
 underpinnings of all matrix operations and hence for most frequently
 used numerical routines. (You can’t do paper-and-pencil mathematics
 without calculus, and you can’t do numerical mathematics without linear
 algebra.)
With these two subjects under your belt, you will be able to pick
 up pretty much any mathematical topic and make sense of it. You might
 then want to explore complex calculus for the elegance and beauty of its
 theorems, or functional analysis and Fourier theory (which blend
 analysis and linear algebra) because of their importance in all
 application-oriented areas, or take a deeper look at probability theory,
 with its obvious importance for anything having to do with random
 data.
On Math

I have observed that there are two misconceptions about
 mathematics that are particularly prevalent among people coming from a
 software or computing background. The first misconception holds that
 mathematics is primarily a prescriptive, calculational (not
 necessarily numerical) scheme and similar to an Algol-derived
 programming language: a pseudo-code for expressing algorithms. The
 other misconception views mathematics as mostly an abstract method for
 formal reasoning, not dissimilar to certain logic programming
 environments: a way to manipulate logic statements.
What both of them miss is that mathematics is not a
 method but first and foremost a body of
 content in its own right. You will never
 understand what mathematics is if you see it only as something you
 use to obtain certain results. Mathematics is,
 first and foremost, a rich and exciting story in itself.
There is an unfortunate perception among nonmathematicians (and
 even partially reinforced by this book) that mathematics is about
 “calculating things.” This is not so, and it is probably the most
 unhelpful misconception about mathematics of all.
In fairness, this point of view is promulgated by many
 introductory college textbooks. In a thoroughly misguided attempt to
 make their subject “interesting,” they try to motivate mathematical
 concepts with phony applications to the design of bridges and
 airplanes, or to calculating the probability of winning at poker. This
 not only obscures the beauty of the subject but also creates the
 incorrect impression of mathematics as a utilitarian fingering
 exercise and almost as a necessary evil.
Finally, I strongly recommend that you stay away from books on
 popular or recreational math, for two reasons. First, they tend to
 focus on a small set of topics that can be treated using “elementary”
 methods (mostly geometry and some basic number theory), and tend to
 omit most of the conceptually important topics. Furthermore, in their
 attempt to present amusing or entertaining snippets of information,
 they fail to display the rich, interconnected structure of
 mathematical theory: all you end up with is a book of (stale)
 jokes.

Further Reading

Calculus

	The Hitchhiker’s Guide to
 Calculus. Michael Spivak. Mathematical Association of America.
 1995.
If the material in this appendix is really new to you, then
 this short (120-page) booklet provides a surprisingly complete,
 approachable, yet mathematically respectable introduction. Highly
 recommended for the curious and the confused.

	Precalculus: A Prelude to
 Calculus. Sheldon Axler. Wiley. 2008.
Axler’s book covers the basics: numbers, basic algebra,
 inequalities, coordinate systems, and functions—including
 exponential, logarithmic, and trigonometric functions—but it stops
 short of derivatives and integrals. If you want to brush up on
 foundational material, this is an excellent text.

	Calculus. Michael Spivak. 4th ed., Publish or Perish. 2008.
This is a comprehensive book on calculus. It concentrates
 exclusively on the clear development of the mathematical theory
 and thereby avoids the confusion that often results from an
 oversupply of (more or less) artificial examples. The presentation
 is written for the reader who is relatively new to formal
 mathematical reasoning, and the author does a good job motivating
 the peculiar arguments required by formal mathematical
 manipulations. Rightly popular.

	Yet Another Introduction to
 Analysis. Victor Bryant. Cambridge University Press. 1990.
This short book is intended as a quick introduction for
 those readers who already possess passing familiarity with the
 topic and are comfortable with abstract operations.

Linear Algebra

	Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004.
This is the best introduction to linear algebra that I am
 aware of, and it fully lives up to its grandiose title. This book
 treats linear algebra as abstract theory of mappings, but on a
 very accessible, advanced undergraduate level. Highly
 recommended.

	Linear Algebra. Klaus Jänich. Springer. 1994.
This book employs a greater amount of abstract mathematical
 formalism than the previous entry, but the author tries very hard
 to explain and motivate all concepts. This book might therefore
 give a better sense of the nature of abstract algebraic arguments
 than Axler’s streamlined presentation. The book is written for a
 first-year course at German universities; the style of the
 presentation may appear exotic to the American reader.

Complex Analysis

	Complex Analysis. Joseph Bak and Donald J. Newman. 2nd ed., Springer.
 1996.
This is a straightforward, and relatively short,
 introduction to all the standard topics of classical complex
 analysis.

	Complex Variables. Mark J. Ablowitz and Athanassios S. Fokas. 2nd ed.,
 Cambridge University Press. 2003.
This is a much more comprehensive and advanced book. It is
 split into two parts: the first part developing the theory, the
 second part discussing several nontrivial applications (mostly to
 the theory of differential equations).

	Fourier Analysis and Its
 Applications. Gerald B. Folland. American Mathematical Society.
 2009.
This is a terrific introduction to Fourier theory. The book
 places a strong emphasis on the solution of partial differential
 equations but in the course of it also develops the basics of
 function spaces, orthogonal polynomials, and eigenfunction
 expansions. The later chapters give an introduction to
 distributions and Green’s functions. This is a very accessible
 book, but you will need a strong grounding in real and complex
 analysis, as well as some linear algebra.

Mindbenders

If you really want to know what math is
 like, pick up any one of these. You don’t have to understand
 everything—just get the flavor of it all. None of them are “useful,”
 all are fascinating.
	A Primer of Analytic Number
 Theory. Jeffrey Stopple. Cambridge University Press. 2003.
This is an amazing book in every respect. The author takes
 one of the most advanced, obscure, and “useless” topics—namely
 analytic number theory—and makes it completely accessible to
 anyone having even minimal familiarity with calculus concepts (and
 even those are not strictly required). In the course of the book,
 the author introduces series expansions, complex numbers, and many
 results from calculus, finally arriving at one of the great
 unsolved problems in mathematics: the Riemann hypothesis. If you
 want to know what math really is, read this
 book!

	The Computer As Crucible: An Introduction to
 Experimental Mathematics. Jonathan Borwein and Keith Devlin. AK Peters. 2008.
If you are coming from a programming background, you might
 be comfortable with this book. The idea behind “experimental
 mathematics” is to see whether we can use a computer to provide us
 with intuition about mathematical results that can later be
 verified through rigorous proofs. Some of the observations one
 encounters in the process are astounding. This book tries to
 maintain an elementary level of treatment.

	Mathematics by Experiment. Jonathan M. Borwein and David H. Bailey. 2nd ed., AK
 Peters. 2008.
This is a more advanced book coauthored by one of the
 authors of the previous entry on much the same topic.

	A Mathematician’s Lament: How School Cheats Us
 Out of Our Most Fascinating and Imaginative Art
 Form. Paul Lockhart. Bellevue Literary Press. 2009. This is not
 a math book at all: instead it is a short essay by a
 mathematician (or math teacher) on what
 mathematics is and why and
 how it should be taught. The author’s
 philosophy is similar to the one I’ve tried to present in the
 observations toward the end of this appendix. Read it and weep.
 (Then go change the world.) Versions are also available on the
 Web (for example, check http://www.maa.org/devlin/devlin_03_08.html).

Appendix C. Working with Data

ONE OF THE UNCOMFORTABLE (AND EASILY
 OVERLOOKED) TRUTHS OF WORKING WITH DATA IS THAT USUALLY only a
 small fraction of the time is spent on the actual “analysis.” Often a far
 greater amount of time and effort is expended on a variety of tasks that
 may appear “menial” by comparison but that are absolutely critical
 nevertheless: obtaining the data; verifying, cleaning and possibly
 reformatting it; and dealing with updates, storage, and archiving. For
 someone new to working with data (and even, periodically, for someone not
 so new), it typically comes as a surprise that these preparatory tasks are
 not only necessary but also take up as much time as they do.
By their nature, these housekeeping and auxiliary tasks tend to be
 very specific: specific to the data, specific to the environment, and
 specific to the particular question being investigated. This implies that
 there is little that can be said about them in generality—it pretty much
 all comes down to ad hoc hackery. Of course, this absence of recognizable
 nontrivial techniques is one of the main reasons these activities receive
 as little attention as they do.
That being said, we can try to increase our awareness of such issues
 typically arising in practical situations.
Sources for Data

The two most common sources for data in an enterprise environment
 are databases and logfiles. As
 data sources, the two sources tend to address different needs. Databases
 will contain data related to the “business,” whereas logfiles are a
 source for “operational” data: databases answer the question “what did
 we sell to whom?” whereas logfiles answer the question “what did we do,
 and when?”
Databases can be either “online transaction processing” (OLTP) or
 “production” databases, or “data warehouses” for long-term storage.
 Production databases tend to be normalized, fast, and busy. You may or
 may not be able to get read access to them for ad hoc queries, depending
 on company policy. Data warehouses tend to be denormalized, slow, and
 often accessed through a batch processing facility (submit your query
 tonight and find out tomorrow that you omitted a field you needed).
 Production databases tend to be owned (at least in spirit) by the
 application development teams. Data warehouses are invariably owned by
 the IT department, which implies a different culture (see also the
 discussion in Chapter 17).
 In either form, databases tend to provide a stable foundation for data
 needs—provided you are interested in something the company already
 considers part of its “business.”
In contrast, logfiles are often an important source of data for
 new initiatives. If you want to evaluate a new business idea, chances
 are that the data required for your analysis will not be available in
 the database—not yet, since there has never been a
 reason to store it before. In such situations you may still be able to
 find the information you need in logfiles that are regularly
 produced.
One very important distinction is that
 databases and logfiles have different life cycles: making changes to the
 design of a database is always a slow (often, excruciatingly slow)
 process, but the data itself lives in the database forever (if the
 database is properly designed). In contrast, logfiles often contain much
 more information than the database, but they are usually deleted very
 quickly. If your organization keeps logfiles for two weeks, consider
 yourself lucky!
Therefore, if you want to begin a project using data contained in
 logfiles then you need to move fast: start saving
 all files to your desktop or another safe location immediately,
 then figure out what you want to do with them!
 Frequently, you will need several weeks’ (or months’) worth of data for
 a conclusive analysis, and every day that you wait can never be made up.
 Also keep in mind that logfiles are usually generated on production
 servers to which access may be heavily restricted. It is not uncommon to
 spend weeks in negotiations with network
 administrators if you need to move significant amounts of data off of
 production systems.
The same consideration applies if information is not available in
 the logfiles, so that existing code needs to be instrumented to support
 collection of the required data. In this situation, you will likely find
 yourself captive to preexisting release schedules and other constraints.
 Again: start to think about collecting data
 early.
Because databases and logfiles are so common and so directly
 useful sources of data in an enterprise environment, it’s easy to forget
 that they’re not the only available sources.
A separate data source that sometimes can be extremely useful is
 the company’s finance department. Companies are required to report on
 various financial metrics, which means that such information
 must be available, although possibly only in a
 highly aggregated form (e.g., quarterly) and
 possibly quite late. On other hand, this information is normative
 and therefore reliable: after all, it’s what the company
 is paying taxes on! (I am ignoring the possibility that the data
 provided by the finance department might be wrong,
 but don’t get me wrong: forensic data analysis is also an interesting
 field of study.)
What works internally may also work with competitors. The
 quarterly filings that publicly listed companies are required to make
 can make interesting reading!
So far we have assumed that you had to find and extract the data
 you need from whatever sources are available; in my experience, this is
 by far the most common scenario. However, your data may also be handed
 to you—for example, if it is experimental data or if it comes from an
 external source. In this case, it may come in a domain-specific file
 format (we’ll return to data formats shortly). The problem with this
 situation is, of course, that now you have no control over what is in
 the data!

Cleaning and Conditioning

Raw data, whether it was obtained from a database query or by
 parsing a logfile, typically needs to be cleaned or conditioned. Here
 are some areas that often need attention.
Missing values
	If individual attributes or entire data points are missing, we
 need to decide how to handle them. Should we discard the whole
 record, mark the information in question as missing, or backfill it
 in some way? Your choice will depend strongly on your specific
 situation and goals.

Outliers
	In general, you should be extremely careful when removing
 outliers—you may be removing the effect that you are looking for.
 Never should data points be removed silently.
 (There is a (partly apocryphal) story[37] that the discovery of the hole in the ozone layer over
 Antarctica was delayed by several years because the automated data
 gathering system discarded readings that it considered to be
 “impossibly low.”)

Junk
	Data that comes over a network may contain nonprintable
 characters or similar junk. Such data is not only useless but can
 also seriously confuse downstream applications that are attempting
 to process the data (e.g., when nonprintable
 characters are interpreted as control characters—many programming
 environments will not issue helpful diagnostics if this happens).
 This kind of problem frequently goes unnoticed, because such junk is
 typically rare and not easily noticed simply by scanning the
 beginning of a data set.

Formatting and normalizing
	Individual values may not be formatted in the most useful way
 for subsequent analysis. Examples of frequently used transformations
 for this purpose include: forcing upper- or lowercase; removing blanks within strings, or
 replacing them with dashes; replacing timestamps with Unix Epoch
 seconds, the Julian day number, or a similar numerical value;
 replacing numeric codes with string labels, or vice versa; and so
 on.

Duplicate records
	Data sets often contain duplicate records that need to be
 recognized and removed (“de-duped”). Depending on what you consider
 “duplicate,” this may require a nontrivial effort. (I once worked on
 a project that tried to recognize misspelled postal addresses and
 assign them to the correctly spelled one. This also is a form of
 de-duping.)

Merging data sets
	The need to merge data sets from different sources is arises
 pretty often—for instance, when the data comes from different
 database instances. Make sure the data is truly compatible,
 especially if the database instances are geographically dispersed.
 Differing time zones are a common trouble spot, but don’t overlook
 things like monetary units. In addition, you may need to be aware of
 localization issues, such as font encodings and date
 formatting.[38]

Reading this list, you should realize that the process of
 cleaning data cannot be separated from
 analyzing it. For instance: outlier detection and
 evaluation require some pretty deep analysis to be reliable. On the
 other hand, you may need to remove outliers before you can calculate
 meaningful values for certain summary statistics. This is an important
 insight, which we will make time and again: data analysis is an
 iterative process, in which each operation is at
 the same time the result of a previous step and the preparation for a
 subsequent step.
Data files may also be defective in ways that only become apparent
 when subsequent analysis fails or produces nonsensical results. Some
 common problems are:
Clerical errors
	These are basically data entry errors: 0.01 instead of 0.001,
 values entered in the wrong column, all that. Because most data
 these days is computer generated, the classic occasional typo seems
 to be mostly a thing of the past. But watch out for its industrial
 counterpart: entire data sets that are systematically corrupted.
 (Once, we didn’t realize that a certain string field in the database
 was of fixed width. As we went from entries of the form ID1, ID2, and so on to entries like ID10, the last character was silently
 truncated by the database. It took a long time before we
 noticed—after all, the results we got back
 looked all right.)

Numerical “special” values
	Missing values in a data set may be encoded using special
 numerical values (such as –1 or 9999). Unless these values are
 filtered out, they will obviously corrupt any statistical analysis.
 There is less of a need for special values like this when data is
 kept in text files (because you can indicate missing values with a
 marker such as ???), but be aware
 that it’s still an issue when you are dealing with binary
 files.

Crazy business rules and overloaded database
 fields
	Bad schema design can thoroughly wreck your analysis. A
 pernicious problem is overloaded database fields: fields that change
 their meaning depending on the values of other
 fields in the database. I remember a case where the Quantity field in a table contained the
 number of items shipped—unless it was zero—in which case it signaled
 a discount, a promotion, or an out-of-stock situation depending on
 whether an entry with the same order ID existed in the Discounts, Promotions, or BackOrders tables—or it contained not the
 number of items shipped but rather the number of multi-item packages
 that had been shipped (if the IsMulti flag was set), or it contained the
 ID (!) of the return order associated with this line item (if some
 other flag was set). What made the situation so treacherous was that
 running a query such as select
 avg(Quantity) from ... would produce a number that
 seemed sensible even though it was, of course,
 complete nonsense. What’s worse, most people were unaware of this
 situation because the data was usually accessed only through
 (massive) stored procedures that took all these crazy business rules
 into account.

Sampling

When dealing with very large data sets, we can often simplify our
 lives significantly by working with a sample
 instead of the full data set—provided the sample is
 representative of the whole. And therein lies the
 problem.
In practice, sampling often means partitioning the data on some
 property of the data: picking all customers whose names begin with the
 letter “t,” for instance, or whose customer ID ends with “0”; or using
 the logfile from one server only (out of 10); or all transactions that
 occurred today. The problem is that it can be very difficult to
 establish a priori whether these subpopulations are at all
 representative of the entire population. Determining this would require
 an in-depth study on the whole population—precisely
 what we wanted to avoid!
Statistical lore is full of (often quite amusing) stories about
 the subtle biases introduced through improper sampling. Choosing all
 customers whose first names end in “a” will probably introduce a bias
 toward female customers. Surveying children for the number of siblings
 will overestimate the number of children per household because it
 excludes households without children. A long-term study of mutual funds
 may report overly optimistic average returns on investment because it
 ignores funds that have been shut down because of poor performance (“survivorship bias”). A
 trailing zero may indicate a customer record that was created long ago
 by the previous version of the software. The server you selected for
 your logfile may be the “overflow” server that comes online during peak
 hours only. And we haven’t even mentioned the problems involved with
 collecting data in the first place! (A phone survey is inherently biased
 against those who don’t have a phone or don’t answer it.) Furthermore,
 strange biases may exist that nobody is aware of. (It is not guaranteed
 that the network administrators will know or understand the algorithm
 that the load balancer uses to assign transactions to servers,
 particularly if the load balancer itself is “smart” and changes its
 logic based on traffic patterns.)
A relatively safe way to create a sample is to take the whole data
 set (or as large a chunk of it as possible) and randomly pick some of
 the records. The keyword is randomly: don’t take
 every tenth record; instead, evaluate each record and retain it with a
 probability of 1/10. Also make sure that the data set does not contain
 duplicates. (For instance, to sample customers given their purchases,
 you must first extract the customer IDs and de-dupe them, then sample
 from the de-duped IDs. Sampling from the transactions alone will
 introduce a bias toward repeat customers.)
Sampling in this way pretty much requires that the data be
 available as a file. In contrast, sampling from a database is more
 difficult because, in general, we don’t have control (or even full
 understanding) over how records are sorted internally. We can dump all
 records to file and then sample from there, but this is rather awkward
 and may not even be feasible for very large tables.
A good trick to enable random sampling from databases is to
 include an additional column, which at the time the record is
 created is filled with a random integer between (say) 0 and
 99. By selecting on this column, we can extract a sample consisting of 1
 percent of all records. This column can even be indexed (although the
 database engine may ignore the index if the result set is too large).
 Even when it is not possible to add such a column to the actual table,
 the same technique can still be used by adding a cross-reference table
 that contains only the primary key of the table we want to sample from
 and the random integer. It is critical that the the random number is
 assigned at the time the record is created and is never changed or
 updated thereafter.
Whichever approach you take, you should verify that your sampling
 process does lead to representative samples. (Take two independent
 samples and compare their properties.)
Sampling can be truly useful—even necessary. Just be very
 careful.

Data File Formats

When it comes to file formats for data, my recommendation is to
 keep it simple, even dead-simple. The simpler the file format, the
 greater flexibility you have in terms of the tools you can use on the
 data. Avoid formats that require a nontrivial parser!
My personal favorite is that old standby, the
 delimiter-separated text file, with one record per line and a single
 data set per file. (Despite the infamous difficulties with the Unix
 make utility, I nevertheless like
 tab-delimited files: since numbers don’t contain tabs, I never need to
 quote or escape anything; and the tabs make it easy to visually inspect
 a file—easier than do commas.) In fairness, delimiter-separated text
 files do not work well for one-to-many relationships or other situations
 where each record can have a varying number of attributes. On the other
 hand, such situations are rare and tend to require special treatment,
 anyway.
One disadvantage of this format is that it does not allow you to
 keep information about the data (“metadata”) within the file itself,
 except possibly the column names as first row. One solution is to use
 two files—one for the data and one for the metadata—and to adopt a
 convenient naming convention (e.g., using the same
 basename for both files while distinguishing them by the extensions
 .data and .names).[39]
In general, I strongly recommend that you stay with text files and
 avoid binary files. Text files are portable (despite the annoying
 newline issue), robust, and self-explanatory. They also compress nicely.
 If you nevertheless decide to use binary files, I suggest that you use
 an established format (for which mature libraries exist!) instead of
 devising an ad hoc format of your own.
I also don’t find XML very suitable as a file format for data: the
 ratio of markup to payload is poor which leads to unnecessarily bloated
 files. XML is also notoriously expensive to parse, in particular for
 large files. Finally, the flexibility provided by XML is rarely
 necessary for data sets, which typically have a very regular structure.
 (It may seem as if XML might be useful for metadata, but even here I
 disagree: the value of XML is to make data machine-readable, whereas the
 primary consumers of metadata are humans!)
Everything I have said so far assumes that the data files are
 primarily for yourself (you don’t want to distribute them) and that you
 are willing to read in the entire file sequentially (so that you don’t
 need to perform seeks within the file). There are file formats that
 allow you to bundle multiple data sets into a single file and
 efficiently extract parts of them (for example, check out the
 Hierarchical Data Format (HDF) and its variants, such as netCDF), but I
 have never encountered them in real life. It should not be lost on you
 that the statistics and machine-learning communities use
 delimiter-separated text almost exclusively as format for data sets on
 their public data repositories. (And if you need indexed lookup, you may
 be better off setting up a minimal standalone database for yourself: see
 the Workshop in Chapter 16.)
Finally, I should point out that some (scientific) disciplines
 have their own specialized file formats as well as the tools designed to
 handle them. Use them when appropriate.

The Care and Feeding of Your Data Zoo

If you work in the same environment for a while, you are
 likely to develop a veritable collection of different data sets. Not
 infrequently, it is this ready access to relevant data sets that makes
 you valuable to the organization (quite aside from your more celebrated
 skills). On the downside, maintaining that
 collection in good order requires a certain amount of effort.
My primary advice is make sure that all data sets are
 self-explanatory and
 reproducible.
To ensure that a data set is self-explanatory, you should not only
 include the minimal metadata with or in the file itself, but include
 all the information necessary to make sense of it.
 For instance, to represent a time series (i.e., a
 data set of measurements taken over time at regular intervals), it is
 strictly necessary to store only the values, the starting time, and the
 length of the interval between data points. However, it is safer to
 store the corresponding timestamp with each measured value—this way, the
 data set still makes sense even if the metadata has been lost or
 garbled. Similar considerations apply more generally: I tend to be
 fairly generous when it comes to including information that might seem
 “redundant.”
To keep data reproducible, you should keep track of its source
 and the cleaning and conditioning transformations.
 This can be tedious because so much of the latter consists of ad hoc,
 manual operations. I usually keep logs with my data sets to record the
 URLs (if the data came from the Web) or the database queries. I also
 capture the commands and pipelines issued at the shell prompt and keep
 copies of all transformation scripts. Finally, if I combine data from
 multiple sources into a single data set, I always retain the original
 data sets.
This kind of housekeeping is very important: not only to produce
 an audit trail (should it ever be needed) but also because data sets
 tend to be reused again and again and for different purposes. Being able
 to determine exactly what is in the data is
 crucial.
I have not found many opportunities to automate these processes;
 the tasks just vary too much. The one exception is the automated
 scheduled collection and archiving of volatile data
 (e.g., copying logfiles to a safe location). Your
 needs may be different.
Finally, here are three pieces of advice on the physical handling
 of data files. They should be obvious but aren’t necessarily.
Keep data files readily available
	Being able to run a minimal script on a file residing on a
 local drive to come up with an answer in seconds (compared to the
 12–24 hour turnaround typical of may data warehouse installations)
 is a huge enabler.

Compress your data files
	I remember a group of statisticians who constantly complained
 about the lack of disk space and kept requesting more storage. None
 of them used compression or had even heard of it. And all their data sets were kept in a
 textlike format that could be compressed by 90 percent! (Also keep
 in mind that gzip can read from
 and write to a pipe, so that the uncompressed file never needs to
 exist on disk.)

Have a backup strategy
	This is important especially if all of your data resides only
 on your local workstation. At the very least, get a second drive and
 mirror files to it. Of course, a remote (and, ideally, managed)
 storage location is much better. Keep in mind that data sets can
 easily become large, so you might want to sit down with your network
 administrators early in the process so that your storage needs can
 be budgeted appropriately.

Skills

I hope that I’ve convinced you that obtaining, preparing, and
 transforming data makes up a large part of day-to-day activities when
 working with data. To be effective in this role, I recommend you acquire
 and develop some skills that facilitate these aspects of your
 role.
For the most part, these skills come down to easy, ad hoc
 programming. If you come from software development, you will hardly find
 anything new here. But if you come from a scientific (or academic)
 background, you might want to broaden your expertise a little.
A special consideration is due to those who come to “data
 analysis” from a database-centric, SQL programming point of view. If
 this describes your situation, I strongly encourage
 you to pick up a language besides SQL. SQL is simply too restricted in
 what it can do and therefore limits the kinds of problems you will
 choose to tackle—whether you realize it or not! It’s also a good idea to
 do the majority of your work “offline” so that there is less of a toll
 on the database (which is, after all, usually a shared resource).
Learn a scripting language
	A scripting language such as Perl, Python, or Ruby is required
 for easy manipulation of data files. Knowledge of a “large-scale”
 programming language like C/C++/Java/C# is not
 sufficient. Scripting languages eliminate the overhead (“boilerplate
 code”) typically associated with common tasks such as input/output
 and file or string handling. This is important because most data
 transformation tasks are tiny and therefore the typical cost of
 overhead, relative to the overall programming task, is simply not
 acceptable.
Note that R (the statistics package) can do double duty as a
 scripting language for these purposes.

Master regular expressions
	If you are dealing with strings (or stringlike objects, such
 as timestamps), then regular expressions are the solution (and an
 amazingly powerful solution) to problems you didn’t even realize you
 had! You don’t need to develop intimate familiarity with the whole
 regular expression bestiary, but working knowledge of the basics is
 required.

Be comfortable browsing a
 database
	Pick a graphical database frontend[40] and become proficient with it. You should be able to
 figure out the schema of a database and the semantics of the data
 simply by browsing the tables and their values, requiring only
 minimal help.

Develop a good relationship with your system
 administrator and DBA
	System administrators and DBAs are in the position to make
 your life significantly easier (by granting you access, creating
 accounts, saving files, providing storage, running jobs for you,
 ...). However, they were not hired to do that—to the contrary, they
 are paid to “keep the trains on time.” A rogue (and possibly
 clueless or oblivious) data analyst, running huge batch jobs during
 the busiest time of the day, does not help with
 that task!
I would like to encourage you to take an interest in the
 situation of your system administrators: try to understand their
 position and the constraints they have to work under. System
 administrators tend to be paranoid—that’s what they’re paid for!
 Their biggest fear is that something will upset
 the system. If you can convince them that you do not pose a great
 risk, you will probably find them to be incredibly helpful.
(Finally, I tend to adopt the attitude that any production job
 by default has higher priority than the research and analysis I am
 working on, and therefore I better be patient.)

Work on Unix
	I mean it. Unix was developed for
 precisely this kind of ad hoc programming with
 files and data, and it continues to provide the most liberating
 environment for such work.
Unix (and its variants, including Linux and Mac OS X) has some
 obvious technical advantages, but its most important property in the
 present context is that it encourages you to devise
 solutions. It does not try (or pretend) to do the job for
 you, but it goes out of its way to give you tools that you might
 find handy—without prescribing how or for what you use them. In
 contrast, other operating systems tend to encourage you to stay
 within the boundaries of certain familiar activity patterns—which
 does not encourage the development of your
 problem-solving abilities (or, more importantly, your
 problem-solving attitudes).
True story: I needed to send a file containing several
 millions of keys to a coworker. (The company did not work on Unix.)
 Since the file was too large to fit safely into an email message, I
 posted it to a web server on my desktop and sent my coworker the
 link. (I dutifully had provided the file with the extension .txt, so that he would be able to open
 it.) Five minutes later, he calls me back: “I can’t open that”—“What
 do you mean?”—“Well, I click the link, but ScrapPaper [the default
 text editor for small text files on this particular system] dies because the file
 is too big.” This coworker was not inept (in fact, he was quite good
 at his primary job), but he displayed the particular
 non-problem-solving attitude that develops in predefined work
 environments: “link, click.” It did not even occur to him to think
 of something else to try. That’s a problem!
If you want to be successful working with data, you want to
 work in an environment that encourages you to devise your own
 solutions.
You want to work on Unix.

Terminology

When working with data, there is some terminology that is
 frequently used.
Types of Data

We can distinguish different types of data. The most important
 distinction is the one between numerical and
 nonnumerical or categorical data.
Numerical data is the most convenient to handle because it
 allows us to perform arbitrary calculations. (In other words, we can
 calculate quantities like the mean.) Numerical data can be
 continuous (taking on all values) or
 discrete (taking on only a discrete set of
 values). It is often necessary to discretize or
 bin continuous data.
You will sometimes find numerical data subdivided further into
 interval and ratio data.
 Interval data is data that does not have a proper origin, whereas
 ratio data does. Examples of interval data (without proper origin) are
 calendar dates and temperatures in units of Fahrenheit or Celsius. You
 can subtract such data to form intervals (there
 are 7 days between 01 April 09 and 07 April 09) but you cannot form
 ratios: it does not make sense to say that 60 Celsius is “twice as
 hot” as 30 Celsius. In contrast, quantities like length or weight
 measurements are ratio data: 0 kilograms truly means “no mass,” and 0
 centimeters truly means “no length.” For ratio data, it makes sense to
 say that a mass of 2 kilograms is “twice as heavy” as a mass of 1
 kilogram.
The distinction between ratio and interval data is not very
 important in practice, because interval data occurs rarely (I can
 think of no examples other than the two just mentioned) and can always
 be avoided through better encoding. The data is numeric by
 construction, so a zero must exist; hence an encoding can be found
 that measures magnitudes from this origin (the Kelvin scale for
 temperatures does exactly that).
All nonnumerical data is categorical—in practice, you will
 usually find categorical data encoded as strings. Categorical data is
 less powerful than numerical data because there are fewer things we
 can do with it. Pretty much the only available operation is counting
 how often each value occurs.
Categorical data can be subdivided into
 nominal and ordinal data.
 The difference is that for ordinal data, a natural sort order between
 values exists, whereas for nominal data no such sort order exists. An
 example for ordinal (sortable) data is a data set consisting of values
 like Like, Dislike, Don't
 Care, which have a clear sort order (namely, Like > Don't
 Care > Dislike). In
 contrast, the colors Red, Blue, Green when used to describe (say) a sweater
 are nominal, because there is no natural order in which to arrange
 these values.
Sortability is an important property because it implies that the
 data is “almost” numerical. If categorical data is sortable then it
 can be mapped to a set of numbers, which are more convenient to
 handle. For example, we can map Like, Dislike, Don't
 Care to the numbers 1, –1, and 0, which allows us to
 calculate an average value after all! However, there is no such thing
 as the “average color” of all sweaters that were sold.
Another property I look for determines whether data is
 “mixable.” Can I combine arbitrary multiples of data points to
 construct a new data point? For data to be mixable in this way, it is
 not enough to be able to combine data points
 (e.g., concatenating two strings) I must also be
 able to combine arbitrary multiples of all data
 points. If I can do this, then I can construct a
 new data point that lies, for example, “halfway”
 between the original ones, like so: x/2 +
 y/2. Being able to construct new data points in
 this way can speed up certain algorithms (see Chapter 13 for some applications).
When data is mixable it is similar to points in space, and a lot
 of geometric intuition can be brought to bear. (Technically, the data
 forms a vector space over the real numbers.)

The Data Type Depends on the Semantics

It is extremely important to realize that the type of
 the data is determined by the semantics of the data. The
 data type is not inherent in the data—it only
 arises from its context.
Postal codes are a good example: although a postal code like
 98101 may look
 like a number, it does not behave like a number.
 It just does not make sense to add two postal codes together or to
 form the average of a bunch of postal codes! Similarly, the colors
 Red, Yellow, Green may be either nominal (if they refer
 to the colors of a sweater) or ordinal (if they are status indicators,
 in which case they obey a sort order akin to that of a traffic
 light).
Whether data is numerical or categorical, sortable or not,
 depends on its meaning. You can’t just look at a data set in isolation
 to determine its type. You need to know what the data
 means.
Data by itself does not provide information. It is only when we
 take the data together with its context that
 defines its semantics that data becomes meaningful. (This point is
 occasionally overlooked by people with an overly formalistic
 disposition.)

Types of Data Sets

Data sets can be classified by the number of variables or
 columns they contain. Depending on the type of data set, we tend to be
 interested in different questions.
Univariate
	A data set containing values only for a single variable. The
 weights of all students in a class, for example, form a univariate
 data set. For univariate data sets, we usually want to know how
 the individual points are distributed: the shape of the
 distribution, whether it is symmetric, does it have outliers, and
 so on.

Bivariate
	A data set containing two variables. For such data sets, we
 are mostly interested in determining whether there is a
 relationship between the two quantities. If we had the heights in
 addition to the weights, for instance, we would ask whether there
 is any discernible relationship between heights and weights
 (e.g., are taller students heavier?).

Multivariate
	If a data set contains more than two variables, then it is
 considered multivariate. When dealing with multivariate problems,
 we typically want to find a smaller group of variables that still
 contains most of the information about the data set.

Of course, any bivariate or multivariate data set can be
 treated as a univariate one if we consider a
 single variable at a time. Again, the nature of the data set is not
 inherent in the data but depends on how we look at it.

Further Reading

	Problem Solving: A Statistician’s
 Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC.
 1995.
This is a highly informative book about all the messy
 realities that are usually not mentioned in
 class: from botched experimental setups to effective communication
 with the public. The book is geared toward professional
 statisticians, and some of the technical discussion may be too
 advanced, but it is worthwhile for the practicality of its general
 advice nonetheless.

	Unix Power Tools. Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides.
 3rd ed., O’Reilly. 2002.
The classic book on getting stuff done with Unix.

	The Art of UNIX Programming. Eric S. Raymond. Addison-Wesley. 2003.
The Unix philosophy has been expounded many times before but
 rarely more eloquently. This is a partisan book, and one need not
 agree with every argument the author makes, but some of his
 observations on good design and desirable features in a programming
 environment are well worth contemplating.

Data Set Repositories

Although I assume that you have your own data sets that you
 would like to analyze, it’s nice to have access to a wider selection
 of data sets—for instance, when you want to try out and learn a new
 method.
Several data set repositories exist on the Web. These are the
 ones that I have found particularly helpful.
	The Data and Story Library at
 statlib. A smaller collection of data sets, together with their
 motivating “stories,” intended for courses in introductory
 statistics. (http://lib.stat.cmu.edu/DASL)

	Data Archive at the Journal of Statistics
 Education. A large collection of often uncommonly interesting data
 sets. In addition to the data sets, the site provides links to
 the full text of the articles in which these data sets were
 analyzed and discussed. (http://www.amstat.org/publications/jse—then
 select “Data Archive” in the navigation bar)

	UCI Machine Learning
 Repository. A large collection of data sets, mostly suitable for
 classification tasks. (http://archive.ics.uci.edu/ml/)

	Time Series Data Library. An extensive collection of times series data.
 Unfortunately, many of the data sets are poorly documented.
 (http://robjhyndman.com/TSDL/)

	Frequent Itemset Mining Dataset
 Repository. A specialized repository with data sets for methods to
 find frequent item sets. (http://fimi.cs.helsinki.fi/data/)

	UCINET IV Datasets. Another specialized collection: this one includes data
 sets with information about social networks. (http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm)

	A Handbook of Small Data
 Sets. David J. Hand, Fergus Daly, K. McConway, D. Lunn, and E.
 Ostrowski. Chapman & Hall/CRC. 1993.
This is a rather curious resource: a book containing over
 500 individual data sets (with descriptions) from all walks of
 life. Most of the data sets are “small,” containing from a handful
 to a few hundred points. The data sets themselves can be found all
 over the Web, but only the book gives you the descriptions as
 well.

[37] http://www.nas.nasa.gov/About/Education/Ozone/history.html.

[38] Regarding time zones, I used to be a strong proponent of
 keeping all date/time information in Coordinated Universal Time
 (UTC, “Greenwich Time”), always. However, I have since learned
 that this is not always appropriate: for some information, such
 as customer behavior, it is the local time
 that matters, not the absolute time. Nevertheless, I would
 prefer to store such information in two parts: timestamp in UTC
 and in addition, the local time zone of the
 user. (Whether we can actually determine the user’s time zone
 accurately is a different matter.)

[39] This convention is used by many data sets available from the
 UCI Machine Learning Repository.

[40] The SQuirreL project (http://squirrel-sql.sourceforge.net)
 is a good choice. Free, open source, and mature, it is also
 written in Java—which means that it can run anywhere and connect
 to any database for which JDBC drivers exist.

Appendix D. About the Author

After previous careers in physics and software development,
 Philipp K. Janert currently provides
 consulting services for data analysis, algorithm development, and
 mathematical modeling. He has worked for small start-ups and in large
 corporate environments, both in the U.S. and overseas. He prefers simple
 solutions that work to complicated ones that don’t, and thinks that
 purpose is more important than process. Philipp is the author of “Gnuplot
 in Action: Understanding Data with Graphs” (Manning Publications), and has
 written for the O’Reilly Network, IBM developerWorks, and IEEE Software.
 He is named inventor on a handful of patents, and is an occasional
 contributor to CPAN. He holds a Ph.D. in theoretical physics from the
 University of Washington. Visit his company website at www.principal-value.com.
Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	absolute value function, Other Functions
	
	accuracy
		defined, How Good Are Those Numbers?
	
	displaying, Before You Get Started: Feasibility and Cost
	

	advanced indexing (NumPy), NumPy in Detail
	
	agglomerative hierarchical clustering, Center Seekers
	
	algebra
		about, On Reading Formulas
	
	linear algebra, Linear Algebra, On Math
	

	algorithms, A Horror Story
		for classification, Some Classification Terminology
	

	allometric scaling, Logarithmic Plots
	
	alternate hypotheses, Statistics Defined
	
	ANOVA (analysis of variance), Design of Experiments
	
	Anscombe’s Quartet, Linear Regression and All That
	
	approximations, function approximation with least
 squares, Least Squares, Function Approximation
		Taylor expansions, Derivatives
	

	apriori algorithm, A Special Case: Market Basket Analysis
	
	arguments, scaling, Using and Misusing Models
	
	artificial neural networks, Decision Trees and Rule-Based Classifiers
	
	aspect ratios, banking, Banking
	
	association analysis, Other Thoughts
	
	autocorrelation function, Don’t Overlook the Obvious!, Examples
	
	averaging averages, Intermezzo: Mythbusting—Bigfoot, Least Squares, and All
 That
	

B
	back-of-the-envelope calculations, Guesstimation and the Back of the Envelope, More Examples
	
	backups, data files, The Care and Feeding of Your Data Zoo
	
	bagging, Other Classifiers
	
	bandwidth selection, KDEs, Histograms, Kernel Density Estimates
	
	banking, Banking
	
	base of the natural logarithm, Miscellaneous symbols
	
	Bayesian classifiers, Algorithms for Classification
	
	Bayesian networks, Bayesian Classifiers
	
	Bayesian statistics, Perspective
		Bayesian interpretation of
 probability, The Frequentist Interpretation of Probability
	
	data analysis example, The Bayesian Interpretation of Probability
	
	frequentist interpretation of probability, Perspective
	
	inference, Bayesian Data Analysis: A Worked Example
	

	Berkeley DB, Data Consistency
	
	Bernoulli trials, Exact Results
	
	binary relationships, notation for, Sets, Sequences, and Series
	
	Binomial distribution and Bernoulli trials, Arguments from Probability Models
	
	binomial theorem, Power Series and Taylor Expansion
	
	biplots, PCA, Practical Points, Workshop: PCA with R
	
	birth processes, Unconstrained Growth and Decay Phenomena
	
	bivariate analysis, Two Variables: Establishing Relationships
		(see also time-series analysis)
	
	banking, Banking
	
	linear regression, Banking
	
	logarithmic plots, Additional Ideas and Warnings
	
	noise and smoothing, Scatter Plots
	
	scatter plots, Two Variables: Establishing Relationships
	

	bivariate data sets, Types of Data Sets
	
	blind experiments, Design of Experiments
	
	blocking, Controlled Experiments Versus Observational Studies
	
	boosting, Other Classifiers
	
	bootstrap, Resampling Methods
	
	box-and-whisker plots
		about, Box-and-Whisker Plots
	
	Quintus Curtius Snodgrass example, Example: Formal Tests Versus Graphical Methods
	

	broadcasting (NumPy), NumPy in Action
	
	brushing and linking, multivariate analysis, Querying and Zooming
	
	business intelligence, Business Intelligence
		(see also financial calculations)
	

C
	C Clustering Library, A Word of Warning
	
	C Library: (see GSL)
	
	calculus, Results from Calculus
		absolute value function, Other Functions
	
	binomial theorem, Power Series and Taylor Expansion
	
	derivatives, The Inverse of a Function
	
	dividing by zero, The Linear Transformation
	
	exponential functions, Polynomials and Rational Functions
	
	factorial function, Other Functions
	
	Gaussian function and the Normal
 distribution, Trigonometric Functions
	
	hyperbolic tangent function, Other Functions
	
	integrals, Finding Minima and Maxima
	
	inverse of a function, Other Functions
	
	limits, sequences and series, Limits, Sequences, and Series
	
	linear transformation, The Binomial Theorem
	
	logarithms, Polynomials and Rational Functions
	
	mathematical notation, Dividing by Zero
	
	minima and maxima, Derivatives
	
	on math, Where to Go from Here
	
	polynomials, Powers
	
	power series and Taylor expansion, Limits, Sequences, and Series
	
	powers, Results from Calculus
	
	rational functions, Powers
	
	trigonometric functions, Exponential Function and Logarithm
	

	capital expenditures (CapEx), Fixed and Variable Costs
	
	carrying capacity (logistic equation), Constrained Growth: The Logistic Equation
	
	cash-flow analysis, A Single Payment: Future and Present Value, Calculational Tricks with Compounding
	
	categorical data
		about, Skills
	
	clustering, Numerical data
	

	CDF (cumulative distribution function), Optional: Optimal Bandwidth Selection
	
	Central Limit Theorem
		Gaussian distribution, The Gaussian Distribution and the Central Limit Theorem, Trigonometric Functions
	
	power-law distributions, Power-Law Distributions and Non-Normal Statistics
	

	centroids, clusters, Clustering Methods, Tree Builders
	
	Chaco library (Python), R
	
	chi-square (χ2) distribution, Statistics Defined
	
	class imbalance problems, Estimating Prediction Error
	
	classical statistics (see statistics)
	
	classification, Predictive Analytics
		(see also predictive analytics)
	
	about, Predictive Analytics
	
	terminology, Topics in Predictive Analytics
	

	cleaning and conditioning data, Sources for Data
	
	clustering, Finding Clusters
		about, Finding Clusters, Predictive Analytics
	
	distance and similarity measures, A Different Point of View
	
	market basket analysis, Other Thoughts
	
	methods, Special-purpose metrics
	
	pre- and postprocessing, Pre- and Postprocessing
	
	Pycluster and the C Clustering Library, A Word of Warning
	

	CO2 measurements above Mauna Loa
 on Hawaii, Examples, Intermezzo: A Data Analysis Session
	
	cohesion, clusters, Cluster Properties and Evaluation
	
	color, false-color plots, False-Color Plots
	
	combinatorial problems, Monte Carlo Simulations
	
	complete clustering, Cluster Properties and Evaluation
	
	composition, multivariate analysis, Variations
	
	compounding, A Single Payment: Future and Present Value
	
	compression, data files, The Care and Feeding of Your Data Zoo
	
	conditional probability, The Frequentist Interpretation of Probability
	
	confidence intervals
		bootstrap, Resampling Methods
	
	example, Statistics Explained
	
	least squares, Statistical Parameter Estimation
	

	confidence, association rules, A Special Case: Market Basket Analysis
	
	confounding variables, Controlled Experiments Versus Observational Studies
	
	confusion matrix, Topics in Predictive Analytics
	
	conservation laws, Optional: Scaling Arguments Versus Dimensional
 Analysis
	
	consistency, data consistency, Data Availability
	
	contingency tables, Multidimensional Composition: Tree and Mosaic Plots
	
	continuous time simulations, When Does Bootstrapping Work?
	
	contour plots, False-Color Plots
	
	convex clusters, What Constitutes a Cluster?
	
	convolution, Implementation Issues
	
	coplots, The Scatter-Plot Matrix
	
	correlation coefficient
		clustering, Numerical data
	
	PCA, Optional: Theory
	

	correlation function, Don’t Overlook the Obvious!
	
	correlations, clustering, Numerical data
	
	costs
		cost concepts and depreciation, Cost Concepts and Depreciation
	
	cost model example, Example: An Optimization Problem
	
	direct and indirect costs, Cost Concepts and Depreciation
	
	fixed and variable costs, Direct and Indirect Costs
	
	opportunity costs, Using Expectation Values to Account for Uncertainty
	

	CPU (cost per unit), Direct and Indirect Costs
	
	cross-validation, Ensemble Methods: Bagging and Boosting
	
	cumulative distribution function (CDF), Optional: Optimal Bandwidth Selection
	
	curse of dimensionality, The Secret Sauce
	

D
	dashboards, Reporting
	
	data, Working with Data
		cleaning and conditioning, Sources for Data
	
	file formats, Sampling
	
	maintenance, The Care and Feeding of Your Data Zoo
	
	quality issues, Recommendations for a Metrics Program
	
	sampling, Cleaning and Conditioning
	
	skills, The Care and Feeding of Your Data Zoo
	
	sources and availability, Recommendations for a Metrics Program, Working with Data
	
	terminology and data types, Skills
	

	data analysis
		bivariate analysis, Two Variables: Establishing Relationships
	
	calculus, Results from Calculus
	
	clustering, Finding Clusters
	
	data, Working with Data
	
	dimensionality reduction, Seeing the Forest for the Trees: Finding Important
 Attributes
	
	financial calculations, Financial Calculations and Modeling
	
	guesstimation, Guesstimation and the Back of the Envelope
	
	multivariate analysis, More Than Two Variables: Graphical Multivariate Analysis
	
	predictive analytics, Predictive Analytics
	
	probability models, Arguments from Probability Models
	
	reporting, business intelligence and
 dashboards, Reporting, Business Intelligence, and Dashboards
	
	scaling, Models from Scaling Arguments
	
	session example, Intermezzo: A Data Analysis Session
	
	simulations, Simulations
	
	software, Programming Environments for Scientific Computation and Data
 Analysis
	
	statistics, What You Really Need to Know About Classical Statistics
	
	time-series analysis, Time As a Variable: Time-Series Analysis
	
	univariate analysis, A Single Variable: Shape and Distribution
	

	data frames (R), Workshop: R
	
	data warehouses, Business Intelligence
	
	data-driven decision making, Epilogue: Facts Are Not Reality
	
	databases
		about, Working with Data
	
	browsing, Skills
	

	DBSCAN algorithm, Neighborhood Growers, Cluster Properties and Evaluation
	
	death processes, Background and Further Examples
	
	decision boundaries, Regression
	
	decision trees, Support Vector Machines
	
	delimiter-separated text files, Data File Formats
	
	delimiters, Binary relationships
	
	dendrograms, Tree Builders
	
	density, clusters, Cluster Properties and Evaluation
	
	depreciation, Fixed and Variable Costs
	
	derivatives, The Inverse of a Function
	
	differencing, time-series, Implementation Issues
	
	digital signal processing (DSP), Implementation Issues
	
	dimensional analysis versus scaling arguments, Example: A Cost Model
	
	dimensional argument example, Scaling Arguments
	
	dimensionality reduction, Seeing the Forest for the Trees: Finding Important
 Attributes
		Kohonen maps, Multidimensional Scaling
	
	principal component analysis (PCA), Seeing the Forest for the Trees: Finding Important
 Attributes, Kohonen Maps
	
	R statistical analysis package, Kohonen Maps
	
	visual techniques, Biplots
	

	dimensionality, curse of, The Secret Sauce
	
	direct costs, Cost Concepts and Depreciation
	
	discrete event simulations, Workshop: Discrete Event Simulations with SimPy
	
	distance matrices, Common Distance and Similarity Measures, Other Thoughts
	
	distance measures, clustering, A Different Point of View, Center Seekers
	
	distributions, Arguments from Probability Models
		(see also Gaussian distribution)
	
	Binomial distribution and Bernoulli trials, Arguments from Probability Models
	
	chi-square (χ2)
 distribution, Statistics Defined
	
	Fisher’s F
 distribution, Statistics Explained
	
	geometric distribution, Geometric Distribution
	
	log-normal distribution, Poisson Distribution
	
	Monte Carlo simulation for outcome
 distributions, Combinatorial Problems
	
	Poisson distribution, Geometric Distribution
	
	posterior probability distribution, Bayesian Data Analysis: A Worked Example, Bayesian Data Analysis: A Worked Example
	
	power-law distributions, Beware: The World Is Not Normal!, Optional: Case Study—Unique Visitors over Time
	
	sampling distributions, Statistics Defined
	
	special-purpose distributions, Log-Normal Distribution
	
	statistics, Statistics Defined
	
	Student t distribution, Statistics Explained
	

	dividing by zero, The Linear Transformation
	
	document vectors, Special-purpose metrics
	
	dot plots, A Single Variable: Shape and Distribution
	
	dot product, Numerical data
	
	double exponential smoothing, Exponential Smoothing
	
	double logarithmic plots, Additional Ideas and Warnings, Logarithmic Plots
	
	double-blind experiments, Design of Experiments
	
	draft lottery, LOESS, Examples
	
	DSP (digital signal processing), Implementation Issues
	
	duplicate records, Cleaning and Conditioning
	

E
	e (base of the natural
 logarithm), Miscellaneous symbols
	
	edit distance, Categorical data
	
	Ehrenberg’s rule, Before You Get Started: Feasibility and Cost
	
	eigenvectors, Optional: Theory, Optional: Theory, Workshop: PCA with R
	
	embedded databases, Workshop: Berkeley DB and SQLite
	
	ensemble methods, Other Classifiers
	
	error propagation, After You Finish: Quoting and Displaying Numbers
	
	estimation, parameter estimation, Genesis
	
	ethics, Epilogue: Facts Are Not Reality
	
	Euclidean distance, Common Distance and Similarity Measures
	
	Euler’s number, Miscellaneous symbols
	
	expectation values
		accounting for uncertainty, The Whole Picture: Cash-Flow Analysis and Net Present
 Value
	
	distributions with infinite expectation
 values, Working with Power-Law Distributions
	

	experiments, versus observational studies, Example: Formal Tests Versus Graphical Methods
	
	exponential distribution, Optional: Queueing Theory
	
	exponential function, Polynomials and Rational Functions
	
	exponential growth or decay, Background and Further Examples
	
	exponential smoothing, Running Averages
	
	exporting files from gnuplot, Workshop: gnuplot
	
	extrema, Finding Minima and Maxima
	
	extreme-value considerations, Optional: Scaling Arguments Versus Dimensional
 Analysis
	

F
	factorial function, Other Functions
	
	factorization, Controlled Experiments Versus Observational Studies
	
	false-color plots, False-Color Plots
	
	feasibility, numerical correctness, How Good Are Those Numbers?
	
	feature selection (see dimensionality reduction)
	
	Feynman, R. P., Estimating Sizes, Background and Further Examples
	
	files
		formats, Workshop: gnuplot, Sampling
	
	maintenance, The Care and Feeding of Your Data Zoo
	

	filters, time-series analysis, Implementation Issues
	
	financial calculations, Financial Calculations and Modeling
		cost concepts and depreciation, Cost Concepts and Depreciation
	
	newsvendor problem, Is This All That Matters?
	
	time value of money, Financial Calculations and Modeling
	
	uncertainty and opportunity costs, The Whole Picture: Cash-Flow Analysis and Net Present
 Value
	

	Fisher’s F distribution, Statistics Explained
	
	Fisher’s Iris data set, The Nature of Statistical Learning
	
	Fisher’s LDA (linear discriminant
 analysis), Decision Trees and Rule-Based Classifiers
	
	fixed costs, Direct and Indirect Costs
	
	floating averages, Smoothing
	
	force-based algorithms, Multidimensional Scaling
	
	format
		data, Sources for Data
	
	file formats, Sampling
	

	Fourier series, Oscillations
	
	FP-Growth Algorithm, A Special Case: Market Basket Analysis
	
	fractions
		about, Elementary Algebra
	
	division by zero, The Linear Transformation
	

	frequentist interpretation of probability, Perspective
	
	function approximation, Function Approximation
	
	functions (see calculus, Gaussian
 distribution)
	
	future value, Financial Calculations and Modeling
	
	fuzzy clustering, Center Seekers
	

G
	gain ratio, Decision Trees and Rule-Based Classifiers
	
	Gaussian distribution (Gaussian function)
		about, Statistics Defined, Trigonometric Functions
	
	Central Limit Theorem, The Gaussian Distribution and the Central Limit Theorem
	
	histograms, Histograms
	
	KDEs, Kernel Density Estimates
	
	moving averages, Running Averages
	

	Gaussian distribution function, Gaussian Function and the Normal Distribution
	
	Gaussian kernel, LOESS, Examples
	
	generalization errors, Topics in Predictive Analytics
	
	geometric distribution, Geometric Distribution
	
	ggobi, R
	
	glyphs, Multidimensional Composition: Tree and Mosaic Plots
	
	Gnu Scientific Library (GSL), Workshop: The Gnu Scientific Library (GSL), Other Players
	
	gnuplot, A Data Analysis Session
	
	grand tours and projection pursuits, multivariate
 analysis, Querying and Zooming
	
	graphical analysis
		defined, Showing What’s Important
	
	interpretation, Additional Ideas and Warnings
	
	process, Linear Regression and All That
	
	versus statistical tests, Example: Formal Tests Versus Graphical Methods
	

	Greek alphabet, Miscellaneous symbols
	
	growth and decay phenomena, unconstrained, Background and Further Examples
	
	growth, the logistic equation, Constrained Growth: The Logistic Equation
	
	GSL (Gnu Scientific Library), Workshop: The Gnu Scientific Library (GSL), Other Players
	
	guesstimation, Guesstimation and the Back of the Envelope
		numerical correctness, More Examples
	
	perturbation theory and error propagation, After You Finish: Quoting and Displaying Numbers
	
	principles, Guesstimation and the Back of the Envelope
	

H
	Hamming distance, Numerical data
	
	HCL (hue–chroma–luminance) space, False-Color Plots
	
	hidden variables, Controlled Experiments Versus Observational Studies
	
	histograms
		about, Histograms
	
	bandwidth selection, Kernel Density Estimates
	
	scatter-plot matrices, Variations
	

	homoscedasticity, LOESS, Residuals
	
	Hunt’s algorithm, Support Vector Machines
	
	hyperbolic tangent function, Other Functions
	
	hypothesis testing, Genesis
	

I
	indirect costs, Cost Concepts and Depreciation
	
	infinite expectation values, distributions, Working with Power-Law Distributions
	
	instance-based classifiers, Algorithms for Classification
	
	integrals
		about, Finding Minima and Maxima
	
	Gaussian integrals, Why Is the Gaussian so Useful?
	

	interpolation, least squares, Least Squares
	
	inverse of a function, Other Functions
	
	item sets, A Special Case: Market Basket Analysis
	

J
	Jaccard coefficient and distance, Numerical data
	
	jackknife, When Does Bootstrapping Work?
	
	Java, NumPy/SciPy
	
	jitter plots, A Single Variable: Shape and Distribution
	
	joint probability, The Frequentist Interpretation of Probability
	

K
	k-means algorithm, Clustering Methods
	
	k-medoids algorithm, Center Seekers
	
	kernel density estimate (KDE), Histograms, Other Thoughts
	
	kernelization, Support Vector Machines
	
	Kohonen maps, Multidimensional Scaling
	

L
	LDA (linear discriminant analysis), Decision Trees and Rule-Based Classifiers
	
	least squares, Optional: The Standard Error
		function approximation, Function Approximation
	
	statistical parameter estimation, Least Squares
	

	Levenshtein distance, Categorical data
	
	lift charts, Rank-Order Plots and Lift Charts
		(see also ROC)
	

	likelihood function, The Bayesian Interpretation of Probability, Bayesian Data Analysis: A Worked Example
	
	limits, calculus, Limits, Sequences, and Series
	
	linear algebra, Linear Algebra
	
	linear discriminant analysis (LDA), Decision Trees and Rule-Based Classifiers
	
	linear functions, Results from Calculus
	
	linear regression
		about, Linear Regression and All That
	
	LOESS, LOESS, Using matplotlib Interactively
	

	linear transformation, calculus, The Binomial Theorem
	
	linking and brushing, multivariate analysis, Querying and Zooming
	
	Linux, Skills
	
	location, clusters, Cluster Properties and Evaluation
	
	LOESS
		about, LOESS
	
	matplotlib case study, Using matplotlib Interactively
	

	log-log plots, Additional Ideas and Warnings
	
	log-normal distribution, Poisson Distribution
	
	logarithmic plots, Additional Ideas and Warnings
	
	logarithms
		about, Small perturbations
	
	calculus, Polynomials and Rational Functions
	

	logfiles, Working with Data
	
	logistic equation, constrained growth, Constrained Growth: The Logistic Equation
	
	longest common subsequence, Categorical data
	
	lurking variables, Controlled Experiments Versus Observational Studies
	

M
	Manhattan distance, Common Distance and Similarity Measures
	
	map/reduce techniques, Some Suggestions
	
	margin of error, How Good Are Those Numbers?
	
	market basket analysis, Other Thoughts
	
	mass, clusters, Cluster Properties and Evaluation
	
	math, What’s with the Workshops?, Results from Calculus
		absolute value function, Other Functions
	
	binomial theorem, Power Series and Taylor Expansion
	
	derivatives, The Inverse of a Function
	
	dividing by zero, The Linear Transformation
	
	exponential functions, Polynomials and Rational Functions
	
	factorial function, Other Functions
	
	Gaussian function and the Normal
 distribution, Trigonometric Functions
	
	hyperbolic tangent function, Other Functions
	
	integrals, Finding Minima and Maxima
	
	inverse of a function, Other Functions
	
	limits, sequences and series, Limits, Sequences, and Series
	
	linear transformation, The Binomial Theorem
	
	logarithms, Polynomials and Rational Functions
	
	mathematical notation, Dividing by Zero
	
	minima and maxima, Derivatives
	
	on math, What’s with the Workshops?, Where to Go from Here
	
	polynomials, Powers
	
	power series and Taylor expansion, Limits, Sequences, and Series
	
	powers, Results from Calculus
	
	rational functions, Powers
	
	trigonometric functions, Exponential Function and Logarithm
	

	mathematics, Results from Calculus
		(see also calculus,
 distributions, financial
 calculations, Gaussian
 distribution)
	
	about, What’s with the Workshops?, Where to Go from Here
	
	notation, Dividing by Zero
	

	Matlab, Scientific Software Is Different, Other Players
	
	matplotlib, Graphical Analysis and Presentation Graphics
		LOESS case study, Using matplotlib Interactively
	
	object model and architecture, Managing Properties
	
	properties, Case Study: LOESS with matplotlib
	
	using interactively, Workshop: matplotlib
	

	matrix operations, Interpretation, Intermezzo: When More Is Different
	
	maximum distance, Common Distance and Similarity Measures
	
	maximum margin hyperplanes, Regression
	
	MDS (multidimensional scaling), Visual Techniques
	
	mean
		about, Rank-Order Plots and Lift Charts
	
	exponential distribution, Optional: Queueing Theory
	

	mean-field approximations, Mean-Field Approximations
	
	mean-field models, Exact Results
	
	mean-square error, KDE bandwidth, Kernel Density Estimates
	
	median, Rank-Order Plots and Lift Charts, Summary Statistics
	
	merging data sets, Cleaning and Conditioning
	
	metrics programs, Reporting
	
	minima and maxima, functions, Derivatives
	
	Minkowski distance, Common Distance and Similarity Measures
	
	missing values, Sources for Data, Cleaning and Conditioning
	
	modeling, Financial Calculations and Modeling
		(see also financial calculations,
 probability models,
 scaling,
 simulations)
	
	about, Introduction
	
	and data analysis, Case Study: How Many Servers Are Best?
	
	principles, Models from Scaling Arguments
	

	Mondrian, R
	
	money (see time value of money)
	
	Monte Carlo simulations, Monte Carlo Simulations
		combinatorial problems, Monte Carlo Simulations
	
	outcome distributions, Combinatorial Problems
	

	mosaic plots, multidimensional composition, Changes in Composition
	
	moving averages, Smoothing
	
	multidimensional scaling (MDS), Visual Techniques
	
	multiplots, False-Color Plots
		coplots, The Scatter-Plot Matrix
	
	scatter-plot matrices, False-Color Plots
	

	multivariate analysis, More Than Two Variables: Graphical Multivariate Analysis
		(see also dimensionality reduction)
	
	composition problems, Variations
	
	false-color plots, False-Color Plots
	
	glyphs, Multidimensional Composition: Tree and Mosaic Plots
	
	interactive explorations, Parallel Coordinate Plots
	
	multiplots, False-Color Plots
	
	parallel coordinate plots, Glyphs
	
	tools, Grand Tours and Projection Pursuits
	

	multivariate data sets, Types of Data Sets
	

N
	naive Bayesian classifier, Bayesian Classifiers
	
	nearest-neighbor methods, Algorithms for Classification
	
	neighborhood growers clustering algorithms, Neighborhood Growers
	
	nested clusters, What Constitutes a Cluster?
	
	net present value (NPV), Calculational Tricks with Compounding
	
	network graphs, Multidimensional Scaling
	
	neural networks, artificial, Decision Trees and Rule-Based Classifiers
	
	noise, Scatter Plots
		examples, Examples
	
	ideas and warnings, Residuals
	
	LOESS, LOESS
	
	residuals, Residuals
	
	splines, Conquering Noise: Smoothing
	
	time-series, The Task
	

	nominal data, Skills
	
	non-normal statistics and power-law
 distributions, Beware: The World Is Not Normal!
	
	nonmetric classifiers, Support Vector Machines
	
	nonnumerical data, Skills
	
	nonparametric bootstrap, When Does Bootstrapping Work?
	
	Normal distribution function, Gaussian Function and the Normal Distribution
	
	normalization
		about, Sources for Data
	
	scale normalization: clustering, Pre- and Postprocessing
	

	normalized histograms, Histograms
	
	NPV (net present value), Calculational Tricks with Compounding
	
	null hypotheses, Statistics Defined
	
	numarray (Python), R
	
	Numeric (Python), R
	
	numerical data
		about, Skills
	
	clustering, Common Distance and Similarity Measures
	

	NumPy (Python), Workshop: NumPy, The matplotlib Object Model and Architecture, R, Python, Recommendations
	

O
	object model, matplotlib, Managing Properties
	
	OLAP (Online Analytical Processing) cubes, Business Intelligence
	
	operating costs, Fixed and Variable Costs
	
	opportunity costs, Using Expectation Values to Account for Uncertainty
	
	optimization problems
		extrema, Finding Minima and Maxima
	
	scaling, Example: A Dimensional Argument
	

	order-of-magnitude estimates, Working with Numbers
	
	ordinal data, Skills
	
	outliers, Sources for Data
	
	overfitting, Some Classification Terminology
	

P
	p-distance, Common Distance and Similarity Measures
	
	p-values, Statistics Explained
	
	parallel coordinate plots, Glyphs
	
	parallelization, Some Suggestions
	
	parameter estimation, Genesis
	
	parametric bootstrap, When Does Bootstrapping Work?
	
	parenthesis and other delimiters, Binary relationships
	
	Pareto charts, Rank-Order Plots and Lift Charts
	
	Pareto distribution, standard form, Workshop: Power-Law Distributions
	
	PCA (principal component analysis), Seeing the Forest for the Trees: Finding Important
 Attributes
		about, Seeing the Forest for the Trees: Finding Important
 Attributes
	
	biplots, Practical Points
	
	computation, Interpretation
	
	interpretation, Optional: Theory
	
	issues, Computation
	
	R statistical analysis package, Kohonen Maps
	
	theory, Motivation
	

	percentiles, Rank-Order Plots and Lift Charts, Summary Statistics
	
	performance
		matrix operations and other computational
 applications, Interpretation, Intermezzo: When More Is Different
	

	permutations, What About Map/Reduce?
	
	perturbation theory, Powers of ten, After You Finish: Quoting and Displaying Numbers
	
	plot command (matplotlib), Case Study: LOESS with matplotlib
	
	plot function (gnuplot), Intermezzo: A Data Analysis Session
	
	plot function (R), Workshop: PCA with R
	
	point estimates, Genesis
		least squares, Statistical Parameter Estimation
	

	Poisson distribution, Geometric Distribution
	
	polynomials
		about, Powers, Power Series and Taylor Expansion
	
	LOESS, LOESS
	
	splines, Conquering Noise: Smoothing
	

	posterior probability (posterior probability
 distribution), The Bayesian Interpretation of Probability, Bayesian Data Analysis: A Worked Example, Bayesian Data Analysis: A Worked Example
	
	power series and Taylor expansion, Limits, Sequences, and Series
	
	power-law distributions
		example, Optional: Case Study—Unique Visitors over Time
	
	non-normal statistics, Beware: The World Is Not Normal!
	

	powers of ten, Working with Numbers
	
	powers, calculus, Results from Calculus
	
	precision
		defined, How Good Are Those Numbers?
	
	metrics, Estimating Prediction Error
	

	predictive analytics, Predictive Analytics
		about, Predictive Analytics
	
	algorithms for classification, Some Classification Terminology
	
	class imbalance problems, Estimating Prediction Error
	
	classification terminology, Topics in Predictive Analytics
	
	do-it-yourself classifiers, The Nature of Statistical Learning
	
	ensemble methods, Other Classifiers
	
	prediction error, Ensemble Methods: Bagging and Boosting
	
	statistical learning, The Secret Sauce
	

	present value, Financial Calculations and Modeling
	
	presentation graphics, defined, Showing What’s Important
	
	prewhitening, Pre- and Postprocessing
	
	principal components analysis (see PCA)
	
	prior probability, The Bayesian Interpretation of Probability
	
	probability
		Bayesian interpretation, The Frequentist Interpretation of Probability
	
	frequentist interpretation, Perspective
	

	probability models, Arguments from Probability Models
		Binomial distribution and Bernoulli trials, Arguments from Probability Models
	
	Gaussian Distribution and the Central Limit
 Theorem, The Gaussian Distribution and the Central Limit Theorem
	
	geometric distribution, Geometric Distribution
	
	log-normal distribution, Poisson Distribution
	
	Poisson distribution, Geometric Distribution
	
	power-law distributions, Beware: The World Is Not Normal!, Optional: Case Study—Unique Visitors over Time
	
	special-purpose distributions, Log-Normal Distribution
	
	unique visitors over time case study, Log-Normal Distribution
	

	probability plots, comparing with
 distributions, The Cumulative Distribution Function
	
	projection pursuits and grand tours, multivariate
 analysis, Querying and Zooming
	
	pseudo-randomization, Design of Experiments
	
	pseudo-replication, Design of Experiments
	
	Pycluster and the C Clustering Library, A Word of Warning
	
	pyplot, The matplotlib Object Model and Architecture
	
	Python
		about, R
	
	matplotlib, The matplotlib Object Model and Architecture
	
	NumPy, Box-and-Whisker Plots
	
	SciPy, R
	
	scipy.signal, Optional: Filters and Convolutions
	
	SimPy, When Does Bootstrapping Work?
	

Q
	QQ plots
		comparing with distributions, The Cumulative Distribution Function
	
	LOESS, Residuals
	

	QT algorithm, Other Thoughts
	
	quality, data quality issues, Recommendations for a Metrics Program
	
	quantile plots, The Cumulative Distribution Function
	
	quantiles, Summary Statistics
	
	querying and zooming, multivariate analysis, Querying and Zooming
	
	queueing problems, When Does Bootstrapping Work?
	

R
	R statistical analysis package, Tools, Bayesian Inference: Summary and Discussion, Kohonen Maps, Matlab, Recommendations
	
	radius, clusters, Cluster Properties and Evaluation
	
	random forests, Other Classifiers
	
	randomization, Controlled Experiments Versus Observational Studies
	
	rank-order plots, Rank-Order Plots and Lift Charts
	
	rational functions, Powers
	
	recall, Estimating Prediction Error
	
	recommendations, Predictive Analytics
	
	recurrence relations, exponential smoothing, Exponential Smoothing
	
	regression, Banking
		(see also linear regression)
	
	using for classification, Bayesian Classifiers
	

	regular expressions, The Care and Feeding of Your Data Zoo
	
	relationships, establishing, Estimating Sizes
	
	replication, Controlled Experiments Versus Observational Studies
	
	reports, Business Intelligence
	
	resampling methods, simulations, Pro and Con
	
	residuals, smoothing, Residuals
	
	reversal of association, Simpson’s Paradox
	
	ROC (receiver operating characteristic) curve, Class Imbalance Problems
	
	rule-based classifiers, Support Vector Machines
	
	running averages, Smoothing
	

S
	Sage, Case Study: How Many Servers Are Best?
	
	sampling distributions, Statistics Defined
	
	sampling, data, Cleaning and Conditioning
	
	SAS, Other Players
	
	scale normalization, clustering, Pre- and Postprocessing
	
	scaling, Models from Scaling Arguments
		arguments, Using and Misusing Models
	
	mean-field approximations, Mean-Field Approximations
	
	modeling principles, Models from Scaling Arguments
	
	time-evolution scenarios, Background and Further Examples
	

	scatter plots, Two Variables: Establishing Relationships
	
	scatter-plot matrices, False-Color Plots
	
	ScientificPython, R
	
	SciLab, Other Players
	
	SciPy, R, Python, Recommendations
	
	scipy.signal, Optional: Filters and Convolutions
	
	scree plots, Workshop: PCA with R
	
	scripting languages, The Care and Feeding of Your Data Zoo
	
	seasonality
		CO2 measurements above Mauna Loa
 on Hawaii, A Data Analysis Session
	
	time-series, Time As a Variable: Time-Series Analysis, The Task
	

	self-organizing maps (SOMs), Multidimensional Scaling
	
	semi-logarithmic plots, Additional Ideas and Warnings
	
	sensitivity analysis, perturbation theory, Small perturbations
	
	separation, clusters, Cluster Properties and Evaluation
	
	sequences, calculus, Limits, Sequences, and Series
	
	series, calculus, Limits, Sequences, and Series
	
	servers case study, Oscillations
	
	sets, sequences and series, Sets, Sequences, and Series
	
	sigmoid function, Other Functions
	
	signals, DSP, Implementation Issues
	
	significance, statistical significance, Statistics Defined
	
	silhouette coefficient, Cluster Properties and Evaluation
	
	similarity measures, clustering, A Different Point of View
	
	Simpson’s paradox, How to Average Averages
	
	SimPy, When Does Bootstrapping Work?
		about, Workshop: Discrete Event Simulations with SimPy
	
	queueing, Introducing SimPy
	
	running simulations, Running SimPy Simulations
	

	simulations, Simulations
		about, Simulations
	
	discrete event simulations with SimPy, When Does Bootstrapping Work?
	
	Monte Carlo simulations, Monte Carlo Simulations
	
	resampling methods, Pro and Con
	

	single logarithmic plots, Additional Ideas and Warnings
	
	singular value decomposition (SVD), Computation
	
	size, estimating, Principles of Guesstimation
	
	slicing (NumPy), NumPy in Detail
	
	smoothing, Scatter Plots
		examples, Examples
	
	ideas and warnings, Residuals
	
	least squares, Least Squares
	
	LOESS, LOESS
	
	residuals, Residuals
	
	splines, Conquering Noise: Smoothing
	
	time-series analysis, The Task
	

	smoothness, clustering, Distance and Similarity Measures
	
	SNN (shared nearest neighbor) similarity, Special-purpose metrics
	
	software, Programming Environments for Scientific Computation and Data
 Analysis
		about, Workshop: Two Do-It-Yourself Classifiers
	
	Berkeley DB, Data Consistency
	
	Chaco, R
	
	ggobi, R
	
	GSL, Workshop: The Gnu Scientific Library (GSL), Other Players
	
	Java, NumPy/SciPy
	
	libSVM, Workshop: Two Do-It-Yourself Classifiers
	
	manyeyes, R
	
	Matlab, Scientific Software Is Different, Other Players
	
	Mondrian, R
	
	NumPy, Workshop: NumPy, The matplotlib Object Model and Architecture, R, Python, Recommendations
	
	Python, The matplotlib Object Model and Architecture, R, Workshop: Sage, A Word of Warning, R
	
	R statistical analysis package, Tools, Bayesian Inference: Summary and Discussion, Kohonen Maps, Matlab, Recommendations
	
	RapidMiner, Workshop: Two Do-It-Yourself Classifiers
	
	Sage, Case Study: How Many Servers Are Best?
	
	SAS, Other Players
	
	ScientificPython, R
	
	SciLab, Other Players
	
	SciPy, R, Python, Recommendations
	
	Shogun, Workshop: Two Do-It-Yourself Classifiers
	
	SimPy, When Does Bootstrapping Work?
	
	skills, The Care and Feeding of Your Data Zoo
	
	SQLite, Berkeley DB
	
	Tulip, R
	
	WEKA, Workshop: Two Do-It-Yourself Classifiers
	

	SOMs (self-organizing maps), Multidimensional Scaling
	
	special symbols, Sets, Sequences, and Series
	
	spectral clustering, Other Thoughts
	
	spectral decomposition theorem, Optional: Theory
	
	splines
		about, Conquering Noise: Smoothing
	
	weighted splines, Conquering Noise: Smoothing
	

	SQLite, Berkeley DB
	
	stacked plots, Variations
	
	standard deviation, Rank-Order Plots and Lift Charts, Exact Results, The Standard Deviation
	
	standard error
		about, How to Calculate
	
	bootstrap estimate, Resampling Methods
	

	star convex clusters, What Constitutes a Cluster?
	
	statistical parameter estimation, Least Squares
	
	statistical significance, Statistics Defined
	
	statistics, What You Really Need to Know About Classical Statistics
		about, Genesis
	
	Bayesian statistics, Perspective
	
	controlled experiments versus observational
 studies, Example: Formal Tests Versus Graphical Methods
	
	distributions, Statistics Defined
	
	historical development, What You Really Need to Know About Classical Statistics
	
	R statistical analysis package, Bayesian Inference: Summary and Discussion
	

	stochastic processes, The Simplest Queueing Process
	
	string data, clustering, Categorical data
	
	Student t distribution, Statistics Explained
	
	subspace clustering, Other Thoughts
	
	summary statistics, Rank-Order Plots and Lift Charts
	
	supervised learning, Predictive Analytics
	
	support count, A Special Case: Market Basket Analysis
	
	support vector machines (SVM), Regression
	
	supremum distance, Common Distance and Similarity Measures
	
	surface plots, False-Color Plots
	
	SVD (singular value decomposition), Computation
	
	symbols, Sets, Sequences, and Series
	
	symmetry
		clustering, Distance and Similarity Measures
	
	models, Optional: Scaling Arguments Versus Dimensional
 Analysis
	

T
	t distribution, Statistics Explained
	
	taxicab distance, Common Distance and Similarity Measures
	
	Taylor expansion, Limits, Sequences, and Series
	
	test sets, Topics in Predictive Analytics
	
	tests
		hypothesis testing, Genesis
	
	versus graphical methods, Example: Formal Tests Versus Graphical Methods
	

	text files, Data File Formats
	
	time value of money, Financial Calculations and Modeling
		cash-flow analysis and net present value, Calculational Tricks with Compounding
	
	compounding, A Single Payment: Future and Present Value
	
	future and present value, Financial Calculations and Modeling
	

	time-evolution scenarios, Background and Further Examples
		constrained growth: the Logistic equation, Constrained Growth: The Logistic Equation
	
	oscillations, Constrained Growth: The Logistic Equation
	
	unconstrained growth and decay phenomena, Background and Further Examples
	

	time-series analysis, Time As a Variable: Time-Series Analysis
		components of, The Task
	
	correlation function, Don’t Overlook the Obvious!
	
	examples, Time As a Variable: Time-Series Analysis
	
	filters and convolutions, Implementation Issues
	
	scipy.signal, Optional: Filters and Convolutions
	
	smoothing, The Task
	

	tools (see software)
	
	topology, Bayesian networks, Bayesian Classifiers
	
	training errors, Ensemble Methods: Bagging and Boosting
	
	training sets, Topics in Predictive Analytics
	
	transcendental functions, Polynomials and Rational Functions
	
	tree plots, multidimensional composition, Changes in Composition
	
	trends
		CO2 measurements above Mauna Loa
 on Hawaii, A Data Analysis Session
	
	time-series, Time As a Variable: Time-Series Analysis, The Task, Examples
	
	versus variations, Recommendations for a Metrics Program
	

	trigonometric functions, Exponential Function and Logarithm
	
	triple exponential smoothing, Exponential Smoothing
	

U
	ufuncs (NumPy), NumPy in Action
	
	uncertainty in planning, The Whole Picture: Cash-Flow Analysis and Net Present
 Value
	
	underfitting, Some Classification Terminology
	
	unique visitors over time case study, Log-Normal Distribution
	
	univariate analysis, A Single Variable: Shape and Distribution
		cumulative distribution function, Optional: Optimal Bandwidth Selection
	
	dot and jitter plots, A Single Variable: Shape and Distribution
	
	histograms and kernel density estimates, Dot and Jitter Plots
	
	rank-order plots and lift charts, Rank-Order Plots and Lift Charts
	
	summary statistics and box plots, Rank-Order Plots and Lift Charts
	

	univariate data sets, Types of Data Sets
	
	Unix, Skills
	
	unnormalized histograms, Histograms
	
	unsupervised learning, Finding Clusters, Predictive Analytics
	

V
	variable costs, Direct and Indirect Costs
	
	vectors
		document vectors, Special-purpose metrics
	
	eigenvectors, Optional: Theory, Optional: Theory, Workshop: PCA with R
	

	visual uniformity, False-Color Plots
	

W
	Ward’s method, Tree Builders
	
	weight functions, Other Functions
	
	weighted moving averages, Running Averages
	
	weighted splines, Conquering Noise: Smoothing
	
	whitening, Pre- and Postprocessing
	

X
	XML data file format, Data File Formats
	

Z
	zero, dividing by, The Linear Transformation
	
	zooming and querying, multivariate analysis, Querying and Zooming
	

About the Author
After previous careers in physics and software development, Philipp K. Janert currently provides consulting services for data analysis, algorithm development, and mathematical modeling. He has worked for small start-ups and in large corporate environments, both in the U.S. and overseas. He prefers simple solutions that work to complicated ones that don't, and thinks that purpose is more important than process. Philipp is the author of "Gnuplot in Action - UnderstandingData with Graphs" (Manning Publications), and has written for the O'Reilly Network, IBM developerWorks, and IEEE Software. He is named inventor on a handful of patents, and is an occasional contributor to CPAN. He holds a Ph.D. in theoretical physics from the University of Washington. Visit his company website at www.principal-value.com.

Colophon
The animal on the cover of Data Analysis with Open Source
 Tools is a common kite, most likely a member of the genus
 Milvus. Kites are medium-size raptors with long wings
 and forked tails. They are noted for their elegant, soaring flight. They
 are also called “gledes” (for their gliding motion) and, like the flying
 toys, they appear to ride effortlessly on air currents.
The genus Milvus is a group of Old World kites,
 including three or four species and numerous subspecies. These kites are
 opportunistic feeders that hunt small animals, such as birds, fish,
 rodents, and earthworms, and also eat carrion, including sheep and cow
 carcasses. They have been observed to steal prey from other birds. They
 may live 25 to 30 years in the wild.
The genus dates to prehistoric times; an Israeli Milvus
 pygmaeus specimen is thought to be between 1.8 million and
 780,000 years old. Biblical references to kites probably refer to birds of
 this genus. In Coriolanus, Shakespeare calls Rome
 “the city of kites and crows,” commenting on the birds’ prevalence in
 urban areas.
The most widespread member of the genus is the black kite
 (Milvus migrans), found in Europe, Asia, Africa, and
 Australia. These kites are very common in many parts of their habitat and
 are well adapted to city life. Attracted by smoke, they sometimes hunt by
 capturing small animals fleeing from fires.
The other notable member of Milvus is the red
 kite (Milvus milvus), which is slightly larger than
 the black kite and is distinguished by a rufous body and tail. Red kites
 are found only in Europe. They were very common in Britain until 1800, but
 the population was devastated by poisoning and habitat loss, and by 1930,
 fewer than 20 birds remained. Since then, kites have made a comeback in
 Wales and have been reintroduced elsewhere in Britain.
The cover image is from Cassell’s Natural
 History, Volume III. The cover font is Adobe ITC Garamond; the
 text font is Adobe’s Meridien-Roman; the heading font is Adobe Myriad
 Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

Data Analysis with Open Source Tools

Philipp K. Janert

Editor
Mike Loukides

Copyright © 2010 Philipp K. Janert

Data Analysis with Open Source
 Tools
by Philipp K. Janert

All rights reserved. Printed in the United States of
 America.
Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North,
 Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more
 information, contact our corporate/institutional sales department: (800)
 998-9938 or
 corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sumita
 Mukherji
Copyeditor: Matt Darnell
Production Services: MPS
 Limited, a Macmillan Company, and Newgen North America, Inc.
Indexer: Fred Brown
Cover Designer: Karen
 Montgomery
Interior Designer: Edie
 Freedman and Ron Bilodeau
Illustrator: Philipp K.
 Janert
Printing History:
November 2010: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media,
 Inc. Data Analysis with Open Source Tools, the
 image of a common kite, and related trade dress are trademarks of
 O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-04-01T07:47:41-07:00

OEBPS/httpatomoreillycomsourceoreillyimages718283.png.jpg
o
l(yi) .

X —

OEBPS/httpatomoreillycomsourceoreillyimages719066.png
Revenue

i

450

350

300

250

150

100

50

¢ =5.50
;=500
;=450
¢y =4.00
;=350
;=800
;=250

;=200

L 1€y =1.50

@

0 75 100 125 150
Initial Inventory

OEBPS/httpatomoreillycomsourceoreillyimages718385.png
0 50 100 150 200 250

OEBPS/httpatomoreillycomsourceoreillyimages718570.png.jpg
N
P(k,N; p) = (k)pk(l - p)N*

OEBPS/httpatomoreillycomsourceoreillyimages719064.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719000.png

OEBPS/httpatomoreillycomsourceoreillyimages719104.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719172.png.jpg
JO)—fla) flx+e—flx)

b—a T (x4e)—x
_teP—x?
T ox4e—x

x% 4 2x€e + €2 — x?
€
2xe + €2
€
=2x+¢€

— 2X as € goes to zero

OEBPS/bk01-toc.html
Data Analysis with Open Source Tools

Table of Contents
		Dedication

		A Note Regarding Supplemental Files

		Preface		Before We Begin

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Introduction		Data Analysis

		What’s in This Book

		What’s with the Workshops?

		What’s with the Math?

		What You’ll Need

		What’s Missing

		I. Graphics: Looking at Data		2. A Single Variable: Shape and Distribution		Dot and Jitter Plots

		Histograms and Kernel Density Estimates		Histograms

		Kernel Density Estimates

		Optional: Optimal Bandwidth Selection

		The Cumulative Distribution Function		Optional: Comparing Distributions with Probability Plots and
 QQ Plots

		Rank-Order Plots and Lift Charts

		Only When Appropriate: Summary Statistics and Box Plots		Summary Statistics

		Box-and-Whisker Plots

		Workshop: NumPy		NumPy in Action

		NumPy in Detail

		Further Reading

		3. Two Variables: Establishing Relationships		Scatter Plots

		Conquering Noise: Smoothing		Splines

		LOESS

		Examples

		Residuals

		Additional Ideas and Warnings

		Logarithmic Plots

		Banking

		Linear Regression and All That

		Showing What’s Important

		Graphical Analysis and Presentation Graphics

		Workshop: matplotlib		Using matplotlib Interactively

		Case Study: LOESS with matplotlib

		Managing Properties

		The matplotlib Object Model and Architecture

		Odds and Ends

		Further Reading

		4. Time As a Variable: Time-Series Analysis		Examples

		The Task		Requirements and the Real World

		Smoothing		Running Averages

		Exponential Smoothing

		Don’t Overlook the Obvious!

		The Correlation Function		Examples

		Implementation Issues

		Optional: Filters and Convolutions

		Workshop: scipy.signal

		Further Reading

		5. More Than Two Variables: Graphical Multivariate Analysis		False-Color Plots

		A Lot at a Glance: Multiplots		The Scatter-Plot Matrix

		The Co-Plot

		Variations

		Composition Problems		Changes in Composition

		Multidimensional Composition: Tree and Mosaic Plots

		Novel Plot Types		Glyphs

		Parallel Coordinate Plots

		Interactive Explorations		Querying and Zooming

		Linking and Brushing

		Grand Tours and Projection Pursuits

		Tools

		Workshop: Tools for Multivariate Graphics		R

		Experimental Tools

		Python Chaco Library

		Further Reading

		6. Intermezzo: A Data Analysis Session		A Data Analysis Session

		Workshop: gnuplot

		Further Reading

		II. Analytics: Modeling Data		7. Guesstimation and the Back of the Envelope		Principles of Guesstimation		Estimating Sizes

		Establishing Relationships

		Working with Numbers		Powers of ten

		Small perturbations

		Logarithms

		More Examples

		Things I Know

		How Good Are Those Numbers?		Before You Get Started: Feasibility and Cost

		After You Finish: Quoting and Displaying Numbers

		Optional: A Closer Look at Perturbation Theory and Error
 Propagation		Error Propagation

		Workshop: The Gnu Scientific Library (GSL)

		Further Reading

		8. Models from Scaling Arguments		Models		Modeling

		Using and Misusing Models

		Arguments from Scale		Scaling Arguments

		Example: A Dimensional Argument

		Example: An Optimization Problem

		Example: A Cost Model

		Optional: Scaling Arguments Versus Dimensional
 Analysis

		Other Arguments

		Mean-Field Approximations		Background and Further Examples

		Common Time-Evolution Scenarios		Unconstrained Growth and Decay Phenomena

		Constrained Growth: The Logistic Equation

		Oscillations

		Case Study: How Many Servers Are Best?

		Why Modeling?

		Workshop: Sage

		Further Reading

		9. Arguments from Probability Models		The Binomial Distribution and Bernoulli Trials		Exact Results

		Using Bernoulli Trials to Develop Mean-Field Models

		The Gaussian Distribution and the Central Limit Theorem		The Central Limit Theorem

		The Central Term and the Tails

		Why Is the Gaussian so Useful?

		Optional: Gaussian Integrals

		Beware: The World Is Not Normal!

		Power-Law Distributions and Non-Normal Statistics		Working with Power-Law Distributions

		Optional: Distributions with Infinite Expectation
 Values

		Where to Go from Here

		Other Distributions		Geometric Distribution

		Poisson Distribution

		Log-Normal Distribution

		Special-Purpose Distributions

		Optional: Case Study—Unique Visitors over Time

		Workshop: Power-Law Distributions

		Further Reading

		10. What You Really Need to Know About Classical Statistics		Genesis

		Statistics Defined

		Statistics Explained		Example: Formal Tests Versus Graphical Methods

		Controlled Experiments Versus Observational Studies		Design of Experiments

		Perspective

		Optional: Bayesian Statistics—The Other Point of View		The Frequentist Interpretation of Probability

		The Bayesian Interpretation of Probability

		Bayesian Data Analysis: A Worked Example

		Bayesian Inference: Summary and Discussion

		Workshop: R

		Further Reading

		11. Intermezzo: Mythbusting—Bigfoot, Least Squares, and All
 That		How to Average Averages		Simpson’s Paradox

		The Standard Deviation		How to Calculate

		Optional: One over What?

		Optional: The Standard Error

		Least Squares		Statistical Parameter Estimation

		Function Approximation

		Further Reading

		III. Computation: Mining Data		12. Simulations		A Warm-Up Question

		Monte Carlo Simulations		Combinatorial Problems

		Obtaining Outcome Distributions

		Pro and Con

		Resampling Methods		The Bootstrap

		When Does Bootstrapping Work?

		Bootstrap Variants

		Workshop: Discrete Event Simulations with SimPy		Introducing SimPy

		The Simplest Queueing Process

		Optional: Queueing Theory

		Running SimPy Simulations

		Summary

		Further Reading

		13. Finding Clusters		What Constitutes a Cluster?		A Different Point of View

		Distance and Similarity Measures		Common Distance and Similarity Measures		Numerical data

		Categorical data

		String data

		Special-purpose metrics

		Clustering Methods		Center Seekers

		Tree Builders

		Neighborhood Growers

		Pre- and Postprocessing		Scale Normalization

		Cluster Properties and Evaluation

		Other Thoughts

		A Special Case: Market Basket Analysis

		A Word of Warning

		Workshop: Pycluster and the C Clustering Library

		Further Reading

		14. Seeing the Forest for the Trees: Finding Important
 Attributes		Principal Component Analysis		Motivation

		Optional: Theory

		Interpretation

		Computation

		Practical Points		Biplots

		Visual Techniques		Multidimensional Scaling

		Network Graphs

		Kohonen Maps

		Workshop: PCA with R

		Further Reading		Linear Algebra

		15. Intermezzo: When More Is Different		A Horror Story

		Some Suggestions

		What About Map/Reduce?

		Workshop: Generating Permutations

		Further Reading

		IV. Applications: Using Data		16. Reporting, Business Intelligence, and Dashboards		Business Intelligence		Reporting

		Corporate Metrics and Dashboards		Recommendations for a Metrics Program

		Data Quality Issues		Data Availability

		Data Consistency

		Workshop: Berkeley DB and SQLite		Berkeley DB

		SQLite

		Further Reading

		17. Financial Calculations and Modeling		The Time Value of Money		A Single Payment: Future and Present Value

		Multiple Payments: Compounding

		Calculational Tricks with Compounding

		The Whole Picture: Cash-Flow Analysis and Net Present
 Value

		Uncertainty in Planning and Opportunity Costs		Using Expectation Values to Account for Uncertainty

		Opportunity Costs

		Cost Concepts and Depreciation		Direct and Indirect Costs

		Fixed and Variable Costs

		Capital Expenditure and Operating Cost

		Should You Care?

		Is This All That Matters?

		Workshop: The Newsvendor Problem		Optional: Exact Solution

		Further Reading		The Newsvendor Problem

		18. Predictive Analytics		Topics in Predictive Analytics

		Some Classification Terminology

		Algorithms for Classification		Instance-Based Classifiers and Nearest-Neighbor
 Methods

		Bayesian Classifiers

		Regression

		Support Vector Machines

		Decision Trees and Rule-Based Classifiers

		Other Classifiers

		The Process		Ensemble Methods: Bagging and Boosting

		Estimating Prediction Error

		Class Imbalance Problems

		The Secret Sauce

		The Nature of Statistical Learning

		Workshop: Two Do-It-Yourself Classifiers

		Further Reading

		19. Epilogue: Facts Are Not Reality

		A. Programming Environments for Scientific Computation and Data
 Analysis		Software Tools		Scientific Software Is Different

		A Catalog of Scientific Software		Matlab

		R

		Python		NumPy/SciPy

		What About Java?

		Other Players

		Recommendations

		Writing Your Own

		Further Reading		Matlab

		R

		NumPy/SciPy

		B. Results from Calculus		Common Functions		Powers

		Polynomials and Rational Functions

		Exponential Function and Logarithm

		Trigonometric Functions

		Gaussian Function and the Normal Distribution

		Other Functions

		The Inverse of a Function

		Calculus		Derivatives

		Finding Minima and Maxima

		Integrals

		Limits, Sequences, and Series

		Power Series and Taylor Expansion

		Useful Tricks		The Binomial Theorem

		The Linear Transformation

		Dividing by Zero

		Notation and Basic Math		On Reading Formulas

		Elementary Algebra

		Working with Fractions

		Sets, Sequences, and Series

		Special Symbols		Binary relationships

		Parentheses and other delimiters

		Miscellaneous symbols

		The Greek Alphabet

		Where to Go from Here		On Math

		Further Reading		Calculus

		Linear Algebra

		Complex Analysis

		Mindbenders

		C. Working with Data		Sources for Data

		Cleaning and Conditioning

		Sampling

		Data File Formats

		The Care and Feeding of Your Data Zoo

		Skills

		Terminology		Types of Data

		The Data Type Depends on the Semantics

		Types of Data Sets

		Further Reading		Data Set Repositories

		D. About the Author

		Index

		About the Author

		Colophon

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages718996.png

OEBPS/httpatomoreillycomsourceoreillyimages718998.png
Silhouette Coefficient

075

07

065

06

0.55

10 15
Number of Clusters

OEBPS/httpatomoreillycomsourceoreillyimages719140.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718303.png

OEBPS/httpatomoreillycomsourceoreillyimages718487.png.jpg
V17~ 44+2/16 =4.125

OEBPS/httpatomoreillycomsourceoreillyimages718481.png.jpg
14+=x

OEBPS/httpatomoreillycomsourceoreillyimages718413.png
,,,,,,,,,
Product A ——
i B
C---
D
, E——

OEBPS/httpatomoreillycomsourceoreillyimages718323.png
1000

01

Power
of 10

20

40

60

80

100

OEBPS/httpatomoreillycomsourceoreillyimages718331.png
200

180

160

140

120

100 |

8

8

8

6

8

a

&

2

o B

1700

Annual Sunspot Number

\

\f‘ ‘
W ‘
| H \

i ““““‘H““W

4\ \\ “ M \‘
\/

W
m

N ‘\HM“

i \
HM‘\‘MM
| UHU‘ \M\H\\U‘\

1 750 1800

1850

1900

1950

2000

OEBPS/httpatomoreillycomsourceoreillyimages718391.png.jpg
with u =

=]~
Mz

OEBPS/httpatomoreillycomsourceoreillyimages718808.png.jpg
N(x; p,0)

1

1
€
V2ro . (

2

(

o

)

OEBPS/httpatomoreillycomsourceoreillyimages719120.png

OEBPS/httpatomoreillycomsourceoreillyimages719118.png

OEBPS/httpatomoreillycomsourceoreillyimages718297.png
Headlamps
Window

Tableware - - - -

Containers

OEBPS/httpatomoreillycomsourceoreillyimages718986.png.jpg
r? _Z(xg xi)* 4 (Ve yi)z

OEBPS/httpatomoreillycomsourceoreillyimages718990.png.jpg
separation
cohesion

OEBPS/httpatomoreillycomsourceoreillyimages718878.png.jpg
VE S —)’

OEBPS/httpatomoreillycomsourceoreillyimages718473.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718796.png
Mean

9e+07

82407

7e407

60407

50407

4e+07

3e+07

20407

16407 |

Mean
 Max Value

le+15

te+14

1e+13

te+12

Te+11

1e+10

Max Value

OEBPS/httpatomoreillycomsourceoreillyimages718812.png.jpg
U =X}
t+ X34+ X2

OEBPS/httpatomoreillycomsourceoreillyimages719206.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718738.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718693.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718952.png
Average Queue Length

120

100

80

60

40

20

1 Simulation Stéps o
100k Simulation Steps 0

L Theory
L [
“\

|

la

F -
la

o

8 q

L ¥

| 660000508 88s6Ed 8¢
X . . .
0 2 4 6 10

Service Time

OEBPS/httpatomoreillycomsourceoreillyimages718978.png
xoy=

i 0 =00 -9

corr(x, y) = N5 el s s

OEBPS/httpatomoreillycomsourceoreillyimages718960.png
First Avenue 35
First Avenue 53
45 Second Street
Furst Avenue 33

1st Avenue 53

48 Second Street
Main Bivd 19
45 Second St
44 second street

Second Street, 48

Main Boulevard 9
Mn Boulevard 11
First Ave 35
Main Boulevrd 1

Main Bulevard 19

OEBPS/httpatomoreillycomsourceoreillyimages719076.png.jpg
d i
d—nE[r(m)] =cnpn) +c (1 —/ P(m)dm) —cinpn) —co
o

=¢',—L‘07L'|/ plm)dm
A

OEBPS/httpatomoreillycomsourceoreillyimages718379.png
700

600

500

400

300

200

100

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

OEBPS/httpatomoreillycomsourceoreillyimages718447.png

OEBPS/httpatomoreillycomsourceoreillyimages719052.png.jpg
p '(p)zz_...
100 ' \100

OEBPS/httpatomoreillycomsourceoreillyimages718828.png
Observed Value

\ p-value
N\ Area Under Curve

OEBPS/httpatomoreillycomsourceoreillyimages718313.png.jpg
K(x)=(1-|xP)

OEBPS/httpatomoreillycomsourceoreillyimages719050.png.jpg
= M
V = 1700

OEBPS/httpatomoreillycomsourceoreillyimages718319.png
s 4
10 - ° 4 4

15 - 1
1or ° ° 1
[
0F o

s

10l

15 | Residual: Straight Line

1965 1970

OEBPS/httpatomoreillycomsourceoreillyimages718994.png.jpg
i

_ bl‘ — a;
" max(a;, b;)

OEBPS/httpatomoreillycomsourceoreillyimages718783.png.jpg
P(x) =
y=[
: p(t) de

o

OEBPS/httpatomoreillycomsourceoreillyimages719180.png

OEBPS/httpatomoreillycomsourceoreillyimages719114.png

OEBPS/httpatomoreillycomsourceoreillyimages719178.png
Maximum

Minimum

OEBPS/httpatomoreillycomsourceoreillyimages719262.png.jpg
circumference

T =———=3.141592...

diameter

OEBPS/httpatomoreillycomsourceoreillyimages718311.png.jpg
X = wx—x;h)(@+bx —y)

i

OEBPS/httpatomoreillycomsourceoreillyimages718269.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718261.png
Epanechnikov

Gaussian

OEBPS/httpatomoreillycomsourceoreillyimages719068.png.jpg
E[r(m)] =/ r(m) p(m)dm
0

OEBPS/httpatomoreillycomsourceoreillyimages719222.png.jpg
A = Amin

Xmax — Xmin

OEBPS/httpatomoreillycomsourceoreillyimages719072.png.jpg
“p(m)ydm =1

OEBPS/httpatomoreillycomsourceoreillyimages719240.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719242.png.jpg
B

OEBPS/httpatomoreillycomsourceoreillyimages718369.png.jpg
K K
s = E w;xi+; where E w; =1
—k /

OEBPS/httpatomoreillycomsourceoreillyimages718552.png.jpg
Fx) = ian sin (27111%)
n=1

OEBPS/httpatomoreillycomsourceoreillyimages718881.png.jpg
21 D
o —nZ(x, ")

OEBPS/httpatomoreillycomsourceoreillyimages719094.png.jpg
N
A = I(parent) — W’I(child)
children j

OEBPS/httpatomoreillycomsourceoreillyimages718339.png.jpg
=) (fa) —y)?

=2 (@+bx -y

OEBPS/httpatomoreillycomsourceoreillyimages719142.png

OEBPS/httpatomoreillycomsourceoreillyimages719220.png.jpg
A = Amin

Xmax — Xmin

OEBPS/httpatomoreillycomsourceoreillyimages718357.png
300

L \(‘
“N\‘ i “»\ | q
dnimiyy U
Al UV L DL “U\‘
HESN W T AN
“‘\ ' L \‘\M\H‘ I i
| v
0 (T o AT
v o Rl
Iy | \‘g)
L i 1
|
| !
0) 100 150 20 250

OEBPS/httpatomoreillycomsourceoreillyimages719226.png.jpg
—
== = O|'_‘

Il
=
I

Il
e
o

Il
i
o

Il
1

I
—_
o

OEBPS/httpatomoreillycomsourceoreillyimages718710.png.jpg
(At)*
0

p(k
5 A) =
oM

OEBPS/httpatomoreillycomsourceoreillyimages718383.png
Lag: 1

Lag: 2

OEBPS/httpatomoreillycomsourceoreillyimages718523.png.jpg
Elx]= >, Fxpk)

all outcomes x

OEBPS/httpatomoreillycomsourceoreillyimages718746.png.jpg
Mode: pe™
Mean: pe?

Standard deviation: /e (e7* — 1)

OEBPS/httpatomoreillycomsourceoreillyimages719058.png.jpg
Dyi Pnominal 12
14 yleld) — (1 12
(" 100 * oo

OEBPS/httpatomoreillycomsourceoreillyimages719080.png.jpg
/Op(m)dmzl—c—o

Cy

OEBPS/httpatomoreillycomsourceoreillyimages718285.png
3000 £00 0

2500 i

2000 -

1500 | -

Milliseconds

1000 -

500 -

Normal Probits

OEBPS/httpatomoreillycomsourceoreillyimages718683.png

OEBPS/httpatomoreillycomsourceoreillyimages718267.png
09

08

07

06

05

Wid: 1

Pos: 0

04

03

-10

OEBPS/httpatomoreillycomsourceoreillyimages718495.png.jpg
x+bx
y+dy

Sum

Product

Fraction

Square root

Logarithm

OEBPS/httpatomoreillycomsourceoreillyimages718497.png
Mass [kg]

55

50

45

40

35

30

o

Data
Model: 0.84* x - 84

130

135

140

145 150
Height [cm]

155

160

165

170

OEBPS/httpatomoreillycomsourceoreillyimages719126.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719090.png

OEBPS/httpatomoreillycomsourceoreillyimages718307.png.jpg
s a2\ *
.l[s]:a/ (%) dr+ (1 =)y wi (i = s(x))?

OEBPS/httpatomoreillycomsourceoreillyimages719006.png
Lead Time

16

L

6 8 10
Number of Units

12

14

OEBPS/httpatomoreillycomsourceoreillyimages719100.png
True Positive Rate

0.4

0.2

Random Classifier

L L L

04 06 08
False Positive Rate

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718940.png.jpg
Pn+1 = T—Pn = UDy

OEBPS/httpatomoreillycomsourceoreillyimages719056.png.jpg
— ”= It 1+ p/100))
(14 155) =expnlog+p/

~ enp/lOO

OEBPS/httpatomoreillycomsourceoreillyimages718293.png.jpg
1 2
2= =N (i —m)
RS

OEBPS/httpatomoreillycomsourceoreillyimages718281.png
5%

Percentage of Points
32% 50% 68%

95%

Data
0.5+

°

L L L

-1 0 1
Multiples of Standard Deviation

OEBPS/httpatomoreillycomsourceoreillyimages718371.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718301.png

OEBPS/httpatomoreillycomsourceoreillyimages718477.png.jpg
V17=V16+1
=V16(1+¢)
=161+ ¢
=41+ ¢

OEBPS/httpatomoreillycomsourceoreillyimages718471.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719196.png.jpg
) = £ + £+ 12 (0) 2 %

x> 4.

OEBPS/httpatomoreillycomsourceoreillyimages718564.png.jpg
H sin(wa)
lim,_.o s

=

OEBPS/httpatomoreillycomsourceoreillyimages719162.png.jpg
f (b) fla)

—a

slope =

OEBPS/httpatomoreillycomsourceoreillyimages718417.png
Bunssuibug

OEBPS/httpatomoreillycomsourceoreillyimages718930.png.jpg
r+n—1

OEBPS/httpatomoreillycomsourceoreillyimages719184.png.jpg
b
A:/ f(x)dx

OEBPS/httpatomoreillycomsourceoreillyimages719014.png.jpg
1 N
cov(x, y) = 2 > (i = D = 3)

OEBPS/httpatomoreillycomsourceoreillyimages718924.png.jpg
(1 —exp (—4pst

1000

OEBPS/httpatomoreillycomsourceoreillyimages718327.png
Heart Rate [beats per minute]

1,000 T

Hamster
Chigken
RaD ey
Cat
100 - . E
Dog .
Fg
Human OV
Horse
Elephant
Large Whale
10
0ot 01 1 10 100 1,000 10000 100,000 1e+06

Body Mass [kg]

OEBPS/httpatomoreillycomsourceoreillyimages718556.png.jpg
sinx sin2x sin3x

f(x)—1 5 5

OEBPS/httpatomoreillycomsourceoreillyimages718249.png.jpg
— c(k)

“— (1 + p)

OEBPS/httpatomoreillycomsourceoreillyimages718289.png
Percentage of Defects Observed

I e
100 R

Cumulative
80 4
60 4

/
Individual
L .

0 L
Engine Electrical System Brakes Air Conditioning Transmission Body Integrity

OEBPS/httpatomoreillycomsourceoreillyimages718429.png

OEBPS/httpatomoreillycomsourceoreillyimages718769.png

OEBPS/httpatomoreillycomsourceoreillyimages719130.png

OEBPS/httpatomoreillycomsourceoreillyimages718876.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718864.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718349.png
A matplotlib plot

OEBPS/httpatomoreillycomsourceoreillyimages719122.png.jpg
Px) anx"t+a x4 ax tax +ag
g(x) bux™ 4+ by x™ V4 ... +byx2+byx + by

r(x) =

OEBPS/httpatomoreillycomsourceoreillyimages718741.png
[

fauees
o
© ES

18

OEBPS/httpatomoreillycomsourceoreillyimages718397.png

OEBPS/httpatomoreillycomsourceoreillyimages718992.png

OEBPS/httpatomoreillycomsourceoreillyimages719078.png.jpg
L [* f(s)ds = f(x)

OEBPS/httpatomoreillycomsourceoreillyimages719182.png.jpg
F(y)=/f()c)dx

OEBPS/httpatomoreillycomsourceoreillyimages718749.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718337.png
16

yonx
xony

20

OEBPS/httpatomoreillycomsourceoreillyimages719150.png.jpg
a ifa>0
jal = ,
—a otherwise

OEBPS/httpatomoreillycomsourceoreillyimages719176.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718968.png

OEBPS/httpatomoreillycomsourceoreillyimages719038.png.jpg
)V,

OEBPS/httpatomoreillycomsourceoreillyimages719156.png.jpg
I'(x) =/ e ! dr

OEBPS/httpatomoreillycomsourceoreillyimages718534.png.jpg
d
TN =AN(K = N) 1K >0 fixed

OEBPS/httpatomoreillycomsourceoreillyimages718763.png.jpg
n(t) = N (1 - e—%’)

OEBPS/httpatomoreillycomsourceoreillyimages718759.png.jpg
d
2O~ £ p(o)

OEBPS/httpatomoreillycomsourceoreillyimages719218.png.jpg
By
(a +b)" =a" (1 + —)
a

(b nn—1) (b)z)
~a"'(1+n-+ = | afes
a 2 a

OEBPS/httpatomoreillycomsourceoreillyimages718599.png
JNp(1 = p) &~ /1000 ~ 30

OEBPS/httpatomoreillycomsourceoreillyimages718602.png
02

OEBPS/httpatomoreillycomsourceoreillyimages719070.png.jpg
o o Yl
Elr(m)] = ¢, /m pm)dm + ¢, / n p(m)dm 7cﬂn/ plm) dm
E . Jo

o n

=q / m p(m)dm +cin (1 7/ p(m)dm) —con
o e

OEBPS/httpatomoreillycomsourceoreillyimages718800.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718433.png

OEBPS/httpatomoreillycomsourceoreillyimages718872.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718451.png
!‘n‘&:‘or‘\))g‘nmmbm
T

WM‘HH HM 11 ”‘u‘ I ‘“\ \HM]
H‘\‘M\H‘\‘ M‘ HH\M “H‘ | I

‘\HM“‘H‘T\\P ‘m I #*”\%H‘\‘{\Tmﬂ‘ M‘VW}]
‘MU‘HM\UM‘w\”\\H‘W‘U\””‘ M

OEBPS/httpatomoreillycomsourceoreillyimages718567.png.jpg
aba
M=1|bch
ab0

OEBPS/httpatomoreillycomsourceoreillyimages719116.png.jpg

OEBPS/ad_files/strata_ebook_ad.jpg
Change the world with data.
We'll show you how.
strataconf.com

OREILLY"

Strata

CONFERENCE
Data Makes a Difference

Sep 25-27, 2013
Boston, MA

% CONFERENCE

i

L Bl| HApboorP

" . l #WORLD
i Oct 28 - 30, 2013

New York, NY

B P,

CONFERENCE
Making Data Work

Nov 11-13, 2013
London, England
A

O'REILLY

Spreading the knowledge of innovators.

OEBPS/httpatomoreillycomsourceoreillyimages718309.png.jpg
w; = 1/d;?

OEBPS/httpatomoreillycomsourceoreillyimages719108.png

OEBPS/httpatomoreillycomsourceoreillyimages718367.png.jpg
Si

T 2%+

K

E Xit)

-

OEBPS/httpatomoreillycomsourceoreillyimages719082.png
Error Rate

Underfitiing

Overlitting

Generalization Error

Training Error

Model Complexity

OEBPS/httpatomoreillycomsourceoreillyimages718485.png.jpg
V1 ~4(1+§+~~)

=4+ Qe

OEBPS/httpatomoreillycomsourceoreillyimages719106.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719060.png
L R

TTTTTTITTTT

OEBPS/httpatomoreillycomsourceoreillyimages719074.png.jpg
': p(m)dm + fﬂx p(m)dm = jom p(m)dm

OEBPS/httpatomoreillycomsourceoreillyimages718519.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718938.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718910.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719192.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718852.png
——— 10 Tosses: 7 Heads, 3 Tails
30 Tosses: 21 Heads, 9 Tails B

“77 7 190 Tosses: 70 Heads, 30 Tails |
rior i

OEBPS/httpatomoreillycomsourceoreillyimages718928.png.jpg
2n—1 _ 2n —1)!
) T nl(n—1)!

OEBPS/httpatomoreillycomsourceoreillyimages718966.png

OEBPS/httpatomoreillycomsourceoreillyimages719040.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719012.png
o) =/ 5 2 (i — %)

OEBPS/httpatomoreillycomsourceoreillyimages719266.png.jpg
Y — exp (_ (x - u>2>
ez

OEBPS/httpatomoreillycomsourceoreillyimages718506.png
Raw Throughput
Communication Overhead
Achieved Throughput - - - -

Team Size

OEBPS/httpatomoreillycomsourceoreillyimages718697.png.jpg
1+

Y oiolog z_é)

OEBPS/httpatomoreillycomsourceoreillyimages718899.png.jpg
\ %Zj(x,»—mz or nilz;(x,»—mz

OEBPS/httpatomoreillycomsourceoreillyimages719046.png.jpg
Vn) = (1 + 1%)" M

OEBPS/httpatomoreillycomsourceoreillyimages719044.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719228.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719194.png.jpg
n
s(x) = Z a;x'
i—0

OEBPS/httpatomoreillycomsourceoreillyimages718345.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718670.png.jpg
1 - .
e Cauchy distribution

c efc/Zx
5 o Lévy distribution
T X

OEBPS/httpatomoreillycomsourceoreillyimages718648.png.jpg
a, /)c"e_"z/2 dx

OEBPS/httpatomoreillycomsourceoreillyimages718423.png
2
Total: 6

OEBPS/httpatomoreillycomsourceoreillyimages719224.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718479.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719026.png.jpg
D
d(x,y) = | Y (i — 3)?

OEBPS/httpatomoreillycomsourceoreillyimages718956.png

OEBPS/httpatomoreillycomsourceoreillyimages718962.png
>

e

e

m

m

Ty N .y
'A/‘ \)‘ /V'\\v\!,\'/‘\/\ﬂ\\«\/&\//\‘/\\/v b‘u/‘/vmw/\"‘/\\ W

WA AR

M’\M\‘M V| m”n/”f\/m‘\»w\/’\‘/“f“h Ul A\/\W\”vﬁw” /

OEBPS/httpatomoreillycomsourceoreillyimages719174.png.jpg
i [=9

OEBPS/httpatomoreillycomsourceoreillyimages719032.png
0002 000k 0

SsoouBLBA

OEBPS/httpatomoreillycomsourceoreillyimages718588.png.jpg
Np — /Np(l — p)

OEBPS/httpatomoreillycomsourceoreillyimages718988.png
0.1

0.2

OEBPS/httpatomoreillycomsourceoreillyimages718373.png.jpg
si = ax; + (1 —a)si—;

=ax; + (1 —a) [axi—; + (1 — @)si_,]
axi + (1 —o)faxi + (1 =) [exi— + (1 = a)sizs]|
=a [x, + (1 —a)xi—) + (1 —a)zx,-,z} + (1 —a)s_s

:ai(l 7at)fx,,,

=0

OEBPS/httpatomoreillycomsourceoreillyimages718641.png
1 throw 2throws.

PR A SO P P P
—— 7 —— 7
3 throws. 5 throws.
—— 7 —— 7
10 throws. 50 throws

OEBPS/httpatomoreillycomsourceoreillyimages718886.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718860.png
Height

T T

T T T
160 170 180 190 200

Weight

OEBPS/httpatomoreillycomsourceoreillyimages719028.png.jpg
yitt +1) = yi(t)+zh(i~j§t)(xk(jlt) = yi(1)
%

OEBPS/httpatomoreillycomsourceoreillyimages718778.png.jpg
p(x) =

o
yatl

x>1,0a>0

OEBPS/httpatomoreillycomsourceoreillyimages718850.png
——— 10 Tosses: 7 Heads, 3 Tails I
30 Tosses: 21 Heads, 9 Tails SN

OEBPS/httpatomoreillycomsourceoreillyimages719002.png

OEBPS/httpatomoreillycomsourceoreillyimages718687.png.jpg
o =/ E(x?) — E(x)?

OEBPS/httpatomoreillycomsourceoreillyimages718561.png
Cost

10

Fixed Cost ———-
Expected Loss
Total Cost
Total Cost, Alternative Vendor

Servers

OEBPS/httpatomoreillycomsourceoreillyimages718831.png
027

0.26

025

024

023

022

021

0.20

019

OEBPS/httpatomoreillycomsourceoreillyimages719230.png.jpg
observed — expected
expected

relative error

OEBPS/httpatomoreillycomsourceoreillyimages718415.png
emale Male

OEBPS/httpatomoreillycomsourceoreillyimages719010.png.jpg
1Y, (i =) —)
N o(x)o(y)

corr(x, y) =

OEBPS/httpatomoreillycomsourceoreillyimages719250.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718449.png
400

300

250

150

100

OEBPS/httpatomoreillycomsourceoreillyimages719152.png.jpg
eX
e

ta —_—
nh(x)
e~
+
e~

P(x)
1
+ e

OEBPS/httpatomoreillycomsourceoreillyimages719248.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719166.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719164.png

OEBPS/httpatomoreillycomsourceoreillyimages718425.png

OEBPS/httpatomoreillycomsourceoreillyimages719244.png.jpg
numerator
denominator

OEBPS/httpatomoreillycomsourceoreillyimages718974.png.jpg
0 ifx=y
d(x,y) =
1 otherwise

OEBPS/httpatomoreillycomsourceoreillyimages719016.png.jpg
cov(x, x) cov(x,y) ...
Y = | cov(y. x) cov(y, y)

OEBPS/httpatomoreillycomsourceoreillyimages719168.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719256.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718816.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719204.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718325.png
Heart Rate [beats per minute]

450

400

350

300

250

200

150

100

50

20,000

40,000

60,000
Body Mass [kg]

L
80,000

100,000

120,000

OEBPS/httpatomoreillycomsourceoreillyimages718437.png
360 L B B
355
350 -
345
340
395 -
330
B
320 | ‘N\‘/‘L VY
315 1 vy

310 B T

Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan
1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991

/v 1

OEBPS/httpatomoreillycomsourceoreillyimages719144.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718315.png
100 10 200 250 300 350

50

JaquinN 3eia

Day in Year

OEBPS/httpatomoreillycomsourceoreillyimages718395.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718475.png.jpg
V17T =16+ 1

OEBPS/httpatomoreillycomsourceoreillyimages718804.png
Mean

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

Max Value

OEBPS/httpatomoreillycomsourceoreillyimages718321.png
180

170

160

150

130

120

1940

1960

OEBPS/httpatomoreillycomsourceoreillyimages718389.png
Signal 1 Signal 2 Signal 3
e e B

OEBPS/httpatomoreillycomsourceoreillyimages718538.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718823.png
95% Confidence Interval
—_—

95% of Area

OEBPS/httpatomoreillycomsourceoreillyimages718982.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718573.png.jpg
(N)_ N!
k) kI(N —k)!

OEBPS/httpatomoreillycomsourceoreillyimages719102.png
Length
1 Selosa.
Versicolor -
Virgnica

Virginica

N
7 s o a5 s
Petal Length Petal Width
I Selosa - — I Selosa.
Versicolor Versicolor
Virgiica Virgiica

OEBPS/httpatomoreillycomsourceoreillyimages719210.png.jpg
1+x

OEBPS/httpatomoreillycomsourceoreillyimages718375.png.jpg
Ai
si=a (1 —a)(sio) +tioy)
ik

i = Blsi —si1) + (1 — B)ti-
Xi
pi=y_+ (I =¥)pi-i

Xiap = (5; + W t;)Pi—pan

OEBPS/httpatomoreillycomsourceoreillyimages718895.png.jpg
02=£Z(x,-—m2
_;Z(xf 2x 0 + 1)
HOIERETS SERTED BY
:%fo—z,u,%in—kuZ%n
=%Zx,~2*2u~u+u2
= Y-
1 , (1 2
:;in —(;ZX{)

OEBPS/httpatomoreillycomsourceoreillyimages718936.png.jpg
(L= p(0,1, 1) =2re™.)

OEBPS/httpatomoreillycomsourceoreillyimages718934.png.jpg
(an)*

e—kt

plk,t, 1) =

OEBPS/httpatomoreillycomsourceoreillyimages718399.png

OEBPS/httpatomoreillycomsourceoreillyimages719008.png

OEBPS/httpatomoreillycomsourceoreillyimages718259.png
{f -+t nnram |
Histogram

r KDE, Bandwidth=2.5]
KDE, Bandwidth=0.8 ——
1

L I i
|

L)’{ i
/

_ A 'J 1) L .

0 60 80 100 120 140

Months in Office

OEBPS/httpatomoreillycomsourceoreillyimages718403.png
Acidity
Sugar
. . o o o o
0
&° 8 b ©o 2
Chlorides
q 8
[S)
o
8
Sulfur Dioxide,
8
8 8
8 -
Density 28
Pe o
o [8 gL
IS
E T
]
o
Alcohol po
q
q glls
o N
r
QO CONBEEEmO O F~
| com— Quality [
q o Lo
o o F
S [o

0.990 1.000 3 5 7 9

OEBPS/httpatomoreillycomsourceoreillyimages718271.png
\ A KDE 1
\
LA
L . L L "
500 1000 1500 2000 2500 3000

Response Time

OEBPS/httpatomoreillycomsourceoreillyimages718329.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718407.png
Given : a

-2

-4

-1

-2

-1

-2

-2

OEBPS/httpatomoreillycomsourceoreillyimages718984.png
]

o'}

80

T T
90 70

Auepwissiq

c0

00

OEBPS/httpatomoreillycomsourceoreillyimages718846.png.jpg
Jp P(p|{7 Heads, 3 Tails}) dp
" [P(p|{7 Heads, 3 Tails}) dp

Elp]

OEBPS/httpatomoreillycomsourceoreillyimages718734.png.jpg
o 1 (log(x) — jt 2
AL E) = V2rox P < 2 (a)

OEBPS/httpatomoreillycomsourceoreillyimages718914.png.jpg
E*=) (fi,{a,b,c,..}) = y)

OEBPS/httpatomoreillycomsourceoreillyimages718409.png
Product A —— 1

& /
or [/
40 - E——

OEBPS/httpatomoreillycomsourceoreillyimages718435.png

OEBPS/httpatomoreillycomsourceoreillyimages718918.png
ol
@O BB
B) 6 °°
5B WP 6 F
BRp QP & &R0 ©
®o RGP EDD 0o
o BHEBB® oo ©
o @ @ Wy Fo Bo
& oW W B0 B
& o FogB B o b
o B WP F oo
OB 08 Bw E@ @ asd ©
o © aw @8 @ o & ooe
© O o P R S
© 0P IS WO ©

OO GG F 4

8 Oco o B T
of & @ @
B WS

888888888

PaAIBSqO SPEsH J0 JaquInN

08

06

Balance Parameter p

02

OEBPS/httpatomoreillycomsourceoreillyimages718926.png
Data
Sample Data ©
Empirical Distribution ——— -
Theoretical Distribution

Bootsirap Means
Bootstrap Means
Bootstrap Distribution
Theoretical Distribution

Sample Mean ——=

2 Bl 0

OEBPS/httpatomoreillycomsourceoreillyimages718661.png
Number of Users

30,000

25,000

20,000

15,000

10,000

5,000

0
0

5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Number of Visits per User

OEBPS/httpatomoreillycomsourceoreillyimages718299.png
Headlamps

Window

Tableware

Containers

1510

F }—U]—{ + |
r f { + 1
L [EE— [E— d
. . .
1.515 1.520 1.525

1530

OEBPS/httpatomoreillycomsourceoreillyimages719098.png.jpg
true positives

precision = — —
true positives + false positives
true positives
recall — -
true positives + false negatives

OEBPS/httpatomoreillycomsourceoreillyimages719086.png
All Combinations

Alarm clock and Leave on time and Traffic Arrive on time

Naive Bayesian

Alarm clock

Leave on time Arrive on time

Traffic

Bayesian Network

‘ Alarm clock Leave on time

Arrive on time

\
Traffic /

OEBPS/httpatomoreillycomsourceoreillyimages718645.png.jpg
/f()c)e‘"z/2 dx

OEBPS/httpatomoreillycomsourceoreillyimages719092.png
Yes

A>10?

No
B<5?
Yes,
A>0?
No

OEBPS/httpatomoreillycomsourceoreillyimages718401.png.jpg

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages719084.png.jpg
P({x;}|class C) - P(class C)
P{x;})

P(class C | {x;})

OEBPS/httpatomoreillycomsourceoreillyimages718964.png

OEBPS/httpatomoreillycomsourceoreillyimages718431.png.jpg
_ A = Xmin
Xscaled =
Xmax — Xmin

OEBPS/httpatomoreillycomsourceoreillyimages718427.png
!
\
\

NN

NS SSNNNN

OEBPS/httpatomoreillycomsourceoreillyimages718836.png.jpg
P(ANB)
P(A|B) = =

OEBPS/httpatomoreillycomsourceoreillyimages718355.png
400

390

380

370

360

350

340

330

320

3

310
1958

il
[e
[Tk
L anflY 4
vy
i
il
r TR 1
i
L AN B
Y
N
t A 1
T
M
Tk
r MY 4
AN
e
Eon Ay B
ML
1964 1970 1976 1982 1988 1994 2000 2006

2012

OEBPS/httpatomoreillycomsourceoreillyimages718755.png.jpg
K
pt+1)=p@)+ f(1 —p@) with f = i

OEBPS/httpatomoreillycomsourceoreillyimages718491.png.jpg
A= (h=xsh)(w=xdw)
n 1 Sh) Sw
v h w
Sh Sdw Shéw
h 1 }
w(h w h w

)

OEBPS/httpatomoreillycomsourceoreillyimages718275.png
Response Time

3000

2500

2000

1500

1000

500

Percentage

100

OEBPS/httpatomoreillycomsourceoreillyimages718932.png
6666666

OEBPS/httpatomoreillycomsourceoreillyimages718291.png.jpg
m:%Zx,-

OEBPS/httpatomoreillycomsourceoreillyimages719124.png

OEBPS/httpatomoreillycomsourceoreillyimages718453.png.jpg
3sin (27 55)

OEBPS/httpatomoreillycomsourceoreillyimages718363.png
LR L L L S
45000 Smoothed —— _

40,000 | E

35,000

30,000 -
25,000
20,000
15,000
10,000 [

5,000

Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

OEBPS/httpatomoreillycomsourceoreillyimages718727.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719208.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718287.png
0
United States

Brazi
Japan

India

Germany
United Kingdom
Russia

France

Indonesia
Turkey
Sweden
Australia

aiwan
Netherlands

Poland
Switzerland

Argentina
Thailand

Phiippines
0

Sales (Millions of Dollars)
15 20 25 30

35

Sales —e—
Percentage —— -

40 60 80
Percentage of Revenue

OEBPS/httpatomoreillycomsourceoreillyimages718419.png
Male

Female

Bunesuibug

8ouRUI4

OEBPS/httpatomoreillycomsourceoreillyimages718862.png.jpg
€ =

dy
ny

OEBPS/httpatomoreillycomsourceoreillyimages718295.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718868.png.jpg
ni dp

Znnk

frek =

OEBPS/httpatomoreillycomsourceoreillyimages719198.png
sin(x)
x
x-x°B!

x- X1+ x/51

x- X1+ x50 X 17

05n

OEBPS/httpatomoreillycomsourceoreillyimages719260.png.jpg
n n+1 n

in = Zx,-,l =X0+in

OEBPS/httpatomoreillycomsourceoreillyimages718839.png.jpg
P(B|A)P(A)
P(A|B) = B

OEBPS/httpatomoreillycomsourceoreillyimages718980.png
d;

2!

Mo +nor + 1
nio +noy

Nyo+ nop +ny

OEBPS/httpatomoreillycomsourceoreillyimages718632.png.jpg
o =+/(6>—1)/12~ 1.71

OEBPS/httpatomoreillycomsourceoreillyimages718465.png
"‘JLI“ r I ‘H |
e T PO I TV P |
(TSI
,,,,,,,, NI ALy LIt T
T \,WW M

H L/ .

50 100 150 200 250 300 350 400

OEBPS/httpatomoreillycomsourceoreillyimages718499.png
Mass [kg]

70

30

Linear - - - -
Cubic

120

130

140 150
Height [cm]

160

170

OEBPS/httpatomoreillycomsourceoreillyimages718950.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719202.png.jpg
1
i
X4
zz*ﬁ
S e

OEBPS/httpatomoreillycomsourceoreillyimages718467.png
360

355
350
345
340
335
330
325
320 |
315
310
0

OEBPS/httpatomoreillycomsourceoreillyimages718705.png.jpg
o =1—p/p

OEBPS/httpatomoreillycomsourceoreillyimages718946.png.jpg
nu" = udiu"
&

OEBPS/httpatomoreillycomsourceoreillyimages718724.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718421.png
SFO

NYC

LAX

Bunssuibug

soueulq

OEBPS/httpatomoreillycomsourceoreillyimages718628.png.jpg
1/4/10 ~ 30

OEBPS/httpatomoreillycomsourceoreillyimages718652.png.jpg
./f(x)efg(x) dx

OEBPS/httpatomoreillycomsourceoreillyimages718791.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719254.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718656.png.jpg
e—g(O) /
f(x)e—g”(O)xz/Z
dx

OEBPS/httpatomoreillycomsourceoreillyimages719212.png.jpg
£ -
I+ &4 45 4

OEBPS/httpatomoreillycomsourceoreillyimages719252.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719030.png.jpg
2
h(i, j;t) = a(t) exp (— 200))

OEBPS/httpatomoreillycomsourceoreillyimages719272.png.jpg
/Olf
(x)d
X

OEBPS/httpatomoreillycomsourceoreillyimages719022.png.jpg
F=04+y)/2

OEBPS/httpatomoreillycomsourceoreillyimages718972.png
dly.2)

dix2) < d(xy) +d(y.2)

OEBPS/httpatomoreillycomsourceoreillyimages719160.png
f(b)

f(a)

OEBPS/httpatomoreillycomsourceoreillyimages718976.png
d(x,y) =37 lxi — vil

d(x, y) = \/ 2! (i = y)?

d(x,y) = maxi|x; — yl

de) = (S = i)

OEBPS/httpatomoreillycomsourceoreillyimages718624.png.jpg
1
2

(

X—p

a/Jn

))

OEBPS/httpatomoreillycomsourceoreillyimages718621.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718954.png

OEBPS/httpatomoreillycomsourceoreillyimages718455.png

OEBPS/httpatomoreillycomsourceoreillyimages718958.png

OEBPS/httpatomoreillycomsourceoreillyimages718701.png
08
07+
06
05+
04
03+

OEBPS/httpatomoreillycomsourceoreillyimages718942.png.jpg
L= an,,

OEBPS/httpatomoreillycomsourceoreillyimages718948.png.jpg
L:pOZu%u"

n=0
d)
=pou— > u"
du
n=0

(geometric series)

OEBPS/httpatomoreillycomsourceoreillyimages718970.png.jpg
dx,y)+d(y,x)
2

dS(xv Y) =

OEBPS/httpatomoreillycomsourceoreillyimages719246.png.jpg
2+4x 2(1 + 2x) 14+ 2x
2 4+ 2sin(y) 2(1 + sin(y) 1+siny

OEBPS/httpatomoreillycomsourceoreillyimages719268.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718786.png.jpg
TS

OEBPS/httpatomoreillycomsourceoreillyimages719062.png.jpg
c(i)
NPV = Z (1 + p/100)

OEBPS/httpatomoreillycomsourceoreillyimages718377.png.jpg
So = Xo

or

.

ZX, withl <n<5,...,1

OEBPS/httpatomoreillycomsourceoreillyimages718273.png.jpg
cdf(x) ~ / * dr histo(t)

histo(x) ~ di cdf(x)
X

OEBPS/httpatomoreillycomsourceoreillyimages718517.png
Seconds per Unit

Setup time' 600 seconds —
00 seconds
Single-tem Time: 30 seconds

40 60 80 100 120 140 160
Items per Batch

OEBPS/httpatomoreillycomsourceoreillyimages718279.png.jpg
— M) only if data is Gaussian

OEBPS/httpatomoreillycomsourceoreillyimages718365.png
20 T T T
Data
Moving Average
Weighted Average — -

20 40 60 8 100 120 140 160 180 200

OEBPS/httpatomoreillycomsourceoreillyimages718257.png
35

25

15

05

®

NOLTON O

DNOLTON O

35

25

15

05

OEBPS/httpatomoreillycomsourceoreillyimages718265.png.jpg
(

X — X;

)

OEBPS/httpatomoreillycomsourceoreillyimages718469.png
400

Data
Model
300 - 1

380 4
370 | 4

360 !

350 | M“A\“‘/
340 | VY B

330

i
W

320

[A A AN
A\f‘y’t“‘ v
310

Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan
1958 1964 1970 1976 1982 1988 1994 2000 2006 2012

OEBPS/httpatomoreillycomsourceoreillyimages719018.png.jpg
A

A

AN

U'AU

OEBPS/httpatomoreillycomsourceoreillyimages718843.png
P(p | (7 Heads, 3 Tails}) « p/(1-p)° /

OEBPS/httpatomoreillycomsourceoreillyimages718944.png.jpg
n—1

OEBPS/httpatomoreillycomsourceoreillyimages718677.png.jpg
E(1) :/p(A') dx (must always equal 1)
E() = / x px) dx Mean or first moment

EG) = / p(o) dx Second moment

OEBPS/httpatomoreillycomsourceoreillyimages718856.png
T
09

T T
65 86
WybleH$P

T
LS

9'S

§'q

d$Gender

OEBPS/httpatomoreillycomsourceoreillyimages718514.png.jpg
N

OEBPS/httpatomoreillycomsourceoreillyimages718820.png.jpg
Tr=7Z/JU/n

OEBPS/httpatomoreillycomsourceoreillyimages718715.png.jpg
plk, 1, 1) =

OEBPS/httpatomoreillycomsourceoreillyimages719042.png.jpg
V) = (1+I%)M

OEBPS/httpatomoreillycomsourceoreillyimages719036.png.jpg
Vi=M+-L_m
=M+ 100

:(1+L)M

OEBPS/httpatomoreillycomsourceoreillyimages718461.png

OEBPS/httpatomoreillycomsourceoreillyimages718459.png

OEBPS/httpatomoreillycomsourceoreillyimages718912.png
12 T T T

Data ©
Fit

OEBPS/httpatomoreillycomsourceoreillyimages718489.png.jpg
V17 =4.12310

OEBPS/httpatomoreillycomsourceoreillyimages719024.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718393.png.jpg
Vg = E Wi Xt 4

i=—k

OEBPS/httpatomoreillycomsourceoreillyimages718547.png
2/ 1 term: sin(x)
2 terms
3terms - - - -

25 terms
Sawtooth

ax

OEBPS/httpatomoreillycomsourceoreillyimages718493.png.jpg
A=hw(lt(E+2))

OEBPS/orm_front_cover.jpg
A Hands-On Guide for Programmers and Data Scientists

with Open Source 100ls

O’REILLY" Philipp K. Janert

OEBPS/httpatomoreillycomsourceoreillyimages719136.png.jpg
tan x

sin(x)
cos(x)

OEBPS/httpatomoreillycomsourceoreillyimages719270.png.jpg
if

y=.x

then

yi=x

OEBPS/httpatomoreillycomsourceoreillyimages718277.png

OEBPS/httpatomoreillycomsourceoreillyimages718381.png.jpg
N-|
Z (i =)Xk — B L&
c(k) = :Ni with u = v Zx,
> = p)? =
i=1

OEBPS/httpatomoreillycomsourceoreillyimages718606.png.jpg
px;pu,o) =

OEBPS/httpatomoreillycomsourceoreillyimages719216.png.jpg
(

n
k

)

n!

Tk (n—k)!

OEBPS/httpatomoreillycomsourceoreillyimages718591.png.jpg
Np + /Np(l — p))

OEBPS/httpatomoreillycomsourceoreillyimages718247.png.jpg
Books online

OEBPS/httpatomoreillycomsourceoreillyimages718615.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719148.png

OEBPS/httpatomoreillycomsourceoreillyimages719020.png
o

OEBPS/httpatomoreillycomsourceoreillyimages719154.png
05 E

tanh(x)
A L P

0 2 4 6

OEBPS/httpatomoreillycomsourceoreillyimages718890.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719214.png.jpg
@+b =3 (:) a
=

—(™\gpo LAY RN n-zp2 . Y\ opn
= (Ve (oo (Y (Vs

OEBPS/httpatomoreillycomsourceoreillyimages718463.png
m \

ﬂu“ﬁﬂw“ulﬁ [‘\‘ 1 ’ H

SR L I
‘J, Ll /Mw;“hiw] J,‘@\i& Wﬂm jdwgﬁ | }?H
I 1L A

50 100 150 200 250 300 350 400

OEBPS/httpatomoreillycomsourceoreillyimages718730.png.jpg
. __ 1 _ 1 (logx/m) 2
p(x; pw, o) —maxexp(2(p)

OEBPS/httpatomoreillycomsourceoreillyimages718457.png
25
|

N M

n? wu\\
05 4‘ ‘ ‘ I
0

‘HM\ ! u‘\.n 1 H I M :
M “H‘/\‘w W }M‘ ‘ﬁ W‘TW Wq

50 50 200 250 300 350 400

OEBPS/httpatomoreillycomsourceoreillyimages718530.png.jpg
iN— —N(t)
dr

OEBPS/httpatomoreillycomsourceoreillyimages718353.png.jpg
Wi wlxiyl_(> wixi)(wi.Vi)

> wi (Z wixiz) = (Z Wi)fi)2
> w;

OEBPS/httpatomoreillycomsourceoreillyimages718543.png
3

Carrying
- Capacity
K=10

10

OEBPS/httpatomoreillycomsourceoreillyimages718906.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718483.png
Exact ——
First Approximation -

Sacond Approximation

-05

0.5

1

15

OEBPS/httpatomoreillycomsourceoreillyimages718343.png

OEBPS/httpatomoreillycomsourceoreillyimages718751.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718920.png.jpg
1,000
900
800
700
600
500
400
300
200

100

Simulation
Model

0 5 10 15 20 25

30

OEBPS/httpatomoreillycomsourceoreillyimages718405.png
o o
o o
o4 ° %o 8
© o o o&, e
o
° 0k o
0998 S8
e8] oo
o
ooooM °g 8 &L
° L
o
oo @ o@ 0o 90
o %oooo % o 00 4
o o o
© %WV o ©9 % ®
o %%O BWOooo © o ° e
00 o% omoo o O &o °
8% %o oo@ 8 o L
© Yo c0@ Yo 00
* 0.99780° °
?°%0 <}
8 g oo °o
2 %00 o © o©
® & o o oo ¢
o D0 g © %00
0% " o L8 %
0.,%00 ©
P00 oo 5 @ L
Ooo%%onmv%o I o
Onﬁﬁ R g &
Oooowoonb o
&
Qmuo@nwnuvo%nmvo
o
°® o ope 50 °
%00 B °C® o L
T T T T T T
(18 ok [*] 0 - ol—

OEBPS/httpatomoreillycomsourceoreillyimages719054.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719170.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719134.png
04

035

03

025

02

0.15

OEBPS/httpatomoreillycomsourceoreillyimages719110.png

OEBPS/httpatomoreillycomsourceoreillyimages719096.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719128.png

OEBPS/httpatomoreillycomsourceoreillyimages719258.png.jpg
2.

all data points

OEBPS/httpatomoreillycomsourceoreillyimages719186.png.jpg
n
Sp = E ay,
i=0

=ay+a, +a,+as+---+a,

OEBPS/httpatomoreillycomsourceoreillyimages718903.png
"pata o
Fit

OEBPS/httpatomoreillycomsourceoreillyimages718359.png
350 T T T T T T T T

300

250

1920 1940 1960 1980 2000

150

100 F

50

0 L L L L -
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

OEBPS/httpatomoreillycomsourceoreillyimages718922.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718916.png
02

04

06

OEBPS/httpatomoreillycomsourceoreillyimages718317.png
1900 1920 1940 1960 1980 2000

OEBPS/httpatomoreillycomsourceoreillyimages718351.png.jpg
x2(x) Zw(x xi5 h) (@ + bx; — ;)

OEBPS/httpatomoreillycomsourceoreillyimages718305.png

OEBPS/httpatomoreillycomsourceoreillyimages719088.png
Manager

Employee

' tvieear 0t
Linear
Logistic
o o @
> o 60 -
0 20000 40000 60,000 80,000 100,000 120,000

Salary

OEBPS/httpatomoreillycomsourceoreillyimages718347.png
10

05

0.0

-05

-10

10

OEBPS/httpatomoreillycomsourceoreillyimages718719.png
04 T T T

or

03 -

OEBPS/httpatomoreillycomsourceoreillyimages718510.png.jpg
Cc
Noptimal = ﬁ

OEBPS/httpatomoreillycomsourceoreillyimages719146.png.jpg
1 /27

OEBPS/httpatomoreillycomsourceoreillyimages718445.png.jpg
f(x) =35 (;To)l.zs

OEBPS/httpatomoreillycomsourceoreillyimages718774.png
Gaussian Distribution Function

with mean ji = 2

and standard deviation o = 3
08+]
06 1
04 4
02]

-10

OEBPS/httpatomoreillycomsourceoreillyimages719048.png.jpg
V(present) =

OEBPS/httpatomoreillycomsourceoreillyimages718411.png
Product A ——
B
[
D
E——

20

30

40 50

OEBPS/httpatomoreillycomsourceoreillyimages718610.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718253.png
Number of Observations

70

60

50

40

30

20

LAl

500

1000

1500
Response Time

2

2500

3000

OEBPS/httpatomoreillycomsourceoreillyimages719236.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719034.png
PC2

-0.05 0.00 0.05

-0.10

-0.10

-50 0 50

) o
fixed alidity 5 3
volatile.
density: alcohol — o
residual.sugar-
e
total.sulfur.dioxide ©
fre€.sul
o O X o
. RPr 3
o
o
I I I
-0.05 0.00 0.05

PCA

OEBPS/httpatomoreillycomsourceoreillyimages718577.png
Probability

035

03

0.25

02

01

0.05

10 Trials,
30 Trials
60 Trials

Success Probability: p = 1/6

Te

10
Number of Successes

X3

OEBPS/httpatomoreillycomsourceoreillyimages718441.png
250

300

350

OEBPS/httpatomoreillycomsourceoreillyimages718637.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719188.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718361.png
35,000 / | 4
|

30,000

25000 -

20,000

15,000

10,000 -

N

5,000 W 1

0 .
1970 1975 1980 1985 1990 1995 2000 2005 2010

OEBPS/httpatomoreillycomsourceoreillyimages718443.png

OEBPS/httpatomoreillycomsourceoreillyimages719200.png.jpg
06 — 01 4864+E ..

OEBPS/httpatomoreillycomsourceoreillyimages718439.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718255.png.jpg
w = 3.50//n

OEBPS/httpatomoreillycomsourceoreillyimages718501.png
Mass [kg]

100

80

60

40

20

o Data

Model: 125 - 10°°

8

Linear Approximation

Two-Year-Old
[

Newborn
[

Adult Man
[l

Adult Woman
=

L

L

100
Height [cm]

150

200

250

OEBPS/httpatomoreillycomsourceoreillyimages719232.png

OEBPS/httpatomoreillycomsourceoreillyimages719264.png.jpg
o0
1
e:Z——2718281

n=0

F

OEBPS/httpatomoreillycomsourceoreillyimages718341.png.jpg
B — nYy Xy — (in) (Z)’i)

ln(zx,?) - (Cx)
a=-— (Zyi _ble)

OEBPS/httpatomoreillycomsourceoreillyimages719004.png
Number of Units ——
Lead Time

OEBPS/httpatomoreillycomsourceoreillyimages719238.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719234.png.jpg
w) e

OEBPS/httpatomoreillycomsourceoreillyimages718674.png.jpg
E(f) = /f(x)p(x) dx

OEBPS/httpatomoreillycomsourceoreillyimages719158.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages719190.png.jpg
.- for |g| <1

OEBPS/httpatomoreillycomsourceoreillyimages719138.png.jpg
P(x) =

1.2

e 2"

OEBPS/httpatomoreillycomsourceoreillyimages718595.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718333.png
200 T
198 L AAAANN A A AN AN,
1700 1750 1800 1850 1900

OEBPS/httpatomoreillycomsourceoreillyimages719132.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718263.png.jpg
PR -
K(x)= box or boxcar kernel
0 otherwise

Km:{;(lﬂz) il <1
0

Epanechnikov kernel
otherwise

1, .
= exp (—5x Gaussian kernel
W (2)

OEBPS/httpatomoreillycomsourceoreillyimages718527.png.jpg
Evel[x] = F (> oox p(x))

all outcomes x

OEBPS/httpatomoreillycomsourceoreillyimages718585.png.jpg
o =+/Np(l —p)

OEBPS/httpatomoreillycomsourceoreillyimages719112.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages718387.png
I
L

Wy

365 Days

of 1
W
02 b 4
0.4 ; ;
0 300 400 500

OEBPS/httpatomoreillycomsourceoreillyimages718335.png
nnnnnnnnnnnn

OEBPS/httpatomoreillycomsourceoreillyimages718581.png.jpg
N
k. N: p)
=3 kP
k

:Np

OEBPS/httpatomoreillycomsourceoreillyimages718665.png
Number of Users

100,000

10,000

1,000

100

Mean:
26 visits

'mi’ﬁ'

1 10 100 1,000

Number of Visits per User

OEBPS/httpatomoreillycomsourceoreillyimages718251.png
XX 0K X X XX X X

&
o

@

8
fclocare]

o &
o g ° e}
o o
°© o 6 &
o 20 40 60 80 100 120 140 160

Months in Office

