

 [image: Fourth Edition]

 Programming Perl

Tom Christiansen

brian d foy

Larry Wall

Jon Orwant

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596004927/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

The Pursuit of Happiness

Perl is a language for getting your job done.
Of course, if your job is programming, you can get your job done
 with any “complete” computer language, theoretically speaking. But we know
 from experience that computer languages differ not so much in what they
 make possible, but in what they make
 easy. At one extreme, the so-called “fourth
 generation languages” make it easy to do some things, but nearly
 impossible to do other things. At the other extreme, so-called
 “industrial-strength” languages make it equally difficult to do almost
 everything.
Perl is different. In a nutshell, Perl is designed to make the easy
 jobs easy, without making the hard jobs impossible.
And what are these “easy jobs” that ought to be easy? The ones you
 do every day, of course. You want a language that makes it easy to
 manipulate numbers and text, files and directories, computers and
 networks, and especially programs. It should be easy to run external
 programs and scan their output for interesting tidbits. It should be easy
 to send those same tidbits off to other programs that can do special
 things with them. It should be easy to develop, modify, and debug your own
 programs, too. And, of course, it should be easy to compile and run your
 programs, and do it portably, on any modern operating system.
Perl does all that, and a whole lot more.
Initially designed as a glue language for Unix, Perl has long since
 spread to most other operating systems. Because it runs nearly everywhere,
 Perl is one of the most portable programming environments available today.
 To program C or C++ portably, you have to put in all those strange
 #ifdef markings for different operating
 systems. To program Java portably, you have to understand the
 idiosyncrasies of each new Java implementation. To program a shell script
 portably, you have to remember the syntax for each operating system’s
 version of each command, and somehow find the common factor that (you
 hope) works everywhere. And to program Visual Basic portably, you just
 need a more flexible definition of the word “portable”. :–)
Perl happily avoids such problems while retaining many of the
 benefits of these other languages, with some additional magic of its own.
 Perl’s magic comes from many sources: the utility of its feature set, the
 inventiveness of the Perl community, and the exuberance of the open source
 movement in general. But much of this magic is simply hybrid vigor; Perl
 has a mixed heritage, and has always viewed diversity as a strength rather
 than a weakness. Perl is a “give me your tired, your poor” language. If
 you feel like a huddled mass longing to be free, then Perl is for
 you.
Perl reaches out across cultures. Much of the explosive growth of
 Perl was fueled by the hankerings of former Unix
 systems programmers who wanted to take along with them as much of the “old
 country” as they could. For them, Perl is the portable distillation of
 Unix culture, an oasis in the wilderness of “can’t get there from here”.
 On the other hand, it also works in the other direction: Windows-based web
 designers are often delighted to discover that they can take their Perl
 programs and run them unchanged on the company’s Unix servers.
Although Perl is especially popular with systems programmers and web
 developers, that’s just because they discovered it first; Perl appeals to
 a much broader audience. From its small start as a text-processing
 language, Perl has grown into a sophisticated, general-purpose programming
 language with a rich software development environment complete with
 debuggers, profilers, cross-referencers, compilers, libraries,
 syntax-directed editors, and all the rest of the trappings of a “real”
 programming language—if you want them. But those are all about making hard
 things possible; and lots of languages can do that. Perl is unique in that
 it never lost its vision for keeping easy things easy.
Because Perl is both powerful and accessible, it is being used daily
 in every imaginable field, from aerospace engineering to molecular
 biology, from mathematics to linguistics, from graphics to document
 processing, from database manipulation to client-server network
 management. Perl is used by people who are desperate to analyze or convert
 lots of data quickly, whether you’re talking DNA sequences, web pages, or
 pork belly futures.
There are many reasons for the success of Perl. Perl was a
 successful open source project long before the open source movement got
 its name. Perl is free, and it will always be free. You can use Perl
 however you see fit, subject only to a very liberal licensing policy. If
 you are in business and want to use Perl, go right ahead. You can embed
 Perl in the commercial applications you write without fee or restriction.
 And if you have a problem that the Perl community can’t fix, you have the
 ultimate backstop: the source code itself. The Perl community is not in
 the business of renting you their trade secrets in the guise of
 “upgrades”. The Perl community will never “go out of business” and leave
 you with an orphaned product.
It certainly helps that Perl is free software. But that’s not enough
 to explain the Perl phenomenon, since many freeware packages fail to
 thrive. Perl is not just free; it’s also fun. People feel like they can be
 creative in Perl, because they have freedom of expression: they get to
 choose what to optimize for, whether that’s computer speed or programmer
 speed, verbosity or conciseness, readability or maintainability or
 reusability or portability or learnability or teachability. You can even
 optimize for obscurity, if you’re entering an Obfuscated Perl
 Contest.
Perl can give you all these degrees of freedom because it’s a
 language with a split personality. It’s simultaneously a very simple
 language and a very rich language. Perl has taken good ideas from nearly
 everywhere, and installed them into an easy-to-use mental framework. To
 those who merely like it, Perl is the Practical Extraction and
 Report Language. To those who love it, Perl is the
 Pathologically Eclectic Rubbish Lister. And to the
 minimalists in the crowd, Perl seems like a pointless exercise in
 redundancy. But that’s okay. The world needs a few reductionists (mainly
 as physicists). Reductionists like to take things apart. The rest of us
 are just trying to get it together.
There are many ways in which Perl is a simple language. You don’t
 have to know many special incantations to compile a Perl program—you can
 just execute it like a batch file or shell script. The types and
 structures used by Perl are easy to use and understand. Perl doesn’t
 impose arbitrary limitations on your data—your strings and arrays can grow
 as large as they like (so long as you have memory), and they’re designed
 to scale well as they grow. Instead of forcing you to learn new syntax and
 semantics, Perl borrows heavily from other languages you may already be
 familiar with (such as C, and awk, and
 BASIC, and Python, and English, and Greek). In fact, just about any
 programmer can read a well-written piece of Perl code and have some idea
 of what it does.
Most important, you don’t have to know everything there is to know
 about Perl before you can write useful programs. You can learn Perl “small
 end first”. You can program in Perl Baby-Talk, and we promise not to
 laugh. Or more precisely, we promise not to laugh any more than we’d
 giggle at a child’s creative way of putting things. Many of the ideas in
 Perl are borrowed from natural language, and one of the best ideas is that
 it’s okay to use a subset of the language as long as you get your point
 across. Any level of language proficiency is acceptable in Perl culture.
 We won’t send the language police after you. A Perl script is “correct” if
 it gets the job done before your boss fires you.
Though simple in many ways, Perl is also a rich language, and there
 is much to be learned about it. That’s the price of making hard things
 possible. Although it will take some time for you to absorb all that Perl
 can do, you will be glad to have access to Perl’s extensive capabilities
 when the time comes that you need them.
Because of its heritage, Perl was a rich language even when it was
 “just” a data-reduction language designed for navigating files, scanning
 large amounts of text, creating and obtaining dynamic data, and printing
 easily formatted reports based on that data. But somewhere along the line,
 Perl started to blossom. It also became a language for filesystem
 manipulation, process management, database administration, client-server
 programming, secure programming, Web-based information management, and
 even for object-oriented and functional programming. These capabilities
 were not just slapped onto the side of Perl—each new capability works
 synergistically with the others, because Perl was designed to be a glue
 language from the start.
But Perl can glue together more than its own features. Perl is
 designed to be modularly extensible. Perl allows you to rapidly design,
 program, debug, and deploy applications, and it also allows you to easily
 extend the functionality of these applications as the need arises. You can
 embed Perl in other languages, and you can embed other languages in Perl.
 Through the module importation mechanism, you can use these external
 definitions as if they were built-in features of Perl. Object-oriented
 external libraries retain their object-orientedness in Perl.
Perl helps you in other ways, too. Unlike a strictly interpreted
 language such as command files or shell scripts, which compile and execute
 a program one command at a time, Perl first compiles your whole program
 quickly into an intermediate format. Like any other compiler, it performs
 various optimizations, and gives you instant feedback on everything from
 syntax and semantic errors to library binding mishaps. Once Perl’s
 compiler frontend is happy with your program, it passes off the
 intermediate code to the interpreter to execute (or optionally to any of
 several modular backends that can emit C or bytecode). This all sounds
 complicated, but the compiler and interpreter are quite efficient, and
 most of us find that the typical compile-run-fix cycle is measured in mere
 seconds. Together with Perl’s many fail-soft characteristics, this quick
 turnaround capability makes Perl a language in which you really can do
 rapid prototyping. Then later, as your program matures, you can tighten
 the screws on yourself, and make yourself program with less flair but more
 discipline. Perl helps you with that, too, if you ask nicely.
Perl also helps you to write programs more securely. In addition to
 all the typical security interfaces provided by other languages, Perl also
 guards against accidental security errors through a unique data tracing
 mechanism that automatically determines which data came from insecure
 sources and prevents dangerous operations before they can happen. Finally,
 Perl lets you set up specially protected compartments in which you can
 safely execute Perl code of dubious origin, masking out dangerous
 operations.
But, paradoxically, the way in which Perl helps you the most has
 almost nothing to do with Perl, and everything to do with the people who
 use Perl. Perl folks are, frankly, some of the most helpful folks on
 earth. If there’s a religious quality to the Perl movement, then this is
 at the heart of it. Larry wanted the Perl community to function like a
 little bit of heaven, and by and large he seems to have gotten his wish,
 so far. Please do your part to keep it that way.
Whether you are learning Perl because you want to save the world, or
 just because you are curious, or because your boss told you to, this
 handbook will lead you through both the basics and the intricacies. And
 although we don’t intend to teach you how to program, the perceptive
 reader will pick up some of the art, and a little of the science, of
 programming. We will encourage you to develop the three great virtues of a
 programmer: laziness, impatience, and hubris. Along the way, we hope you find the
 book mildly amusing in some spots (and wildly amusing in others). And if
 none of this is enough to keep you awake, just keep reminding yourself
 that learning Perl will increase the value of your resume. So keep
 reading.

What’s New in This Edition

What’s not new? It’s been a long time since we’ve updated this book.
 Let’s just say we had a couple of distractions, but we’re all better
 now.
The third edition was published in the middle of 2000, just as Perl
 v5.6 was coming out. As we write this, it’s 12 years later and Perl v5.16
 is coming out soon. A lot has happened in those years, including several
 new releases of Perl 5, and a little thing we call Perl 6. That 6 is
 deceptive though; Perl 6 is really a “kid sister” language to Perl 5, and
 not just a major update to Perl 5 that version numbers have trained you to
 expect. This book isn’t about that other language. It’s still about Perl
 5, the version that most people in the world (even the Perl 6 folks!) are
 still using quite productively.[1]
To tell you what’s new in this book is to tell you what’s new in
 Perl. This isn’t just a facelift to spike book sales. It’s a long
 anticipated major update for a language that’s been very active in the
 past five years. We won’t list everything that’s changed (you can read the
 perldelta pages), but there are some
 things we’d like to call out specifically.
In Perl 5, we started adding major new features, along with a way to
 shield older programs from new keywords. For instance, we finally relented
 to popular demand for a switch-like
 statement. In typical Perl fashion, though, we made it better and more
 fancy, giving you more control to do what you need to do. We call it
 given–when, but you only get that
 feature if you ask for it. Any of these statements enable the
 feature:
use v5.10;
use feature qw(switch);
use feature qw(:5.10);
and once enabled, you have your super-charged switch:
given ($item) {
 when (/a/) { say "Matched an a" }
 when (/bee/) { say "Matched a bee" }
}
You’ll see more about that in Chapter 4, along
 with many of the other new features as they appear where they make the
 most sense.
Although Perl has had Unicode support since v5.6, that support is
 greatly improved in recent versions, including better regular expression
 support than any other language at the moment. Perl’s better-and-better
 support is even acting as a testbed for future Unicode developments. In
 the previous edition of this book, we had all of that Unicode stuff in one
 chapter, but you’ll find it throughout this book when we need it.
Regular expressions, the feature that many people associate with
 Perl, are even better. Other languages stole Perl’s pattern language,
 calling it Perl Compatible Regular Expressions, but also adding some
 features of their own. We’ve stolen back some of those features,
 continuing Perl’s tradition of taking the best ideas from everywhere and
 everything. You’ll also find powerful new features for dealing with
 Unicode in patterns.
Threads are much different today, too. Perl used to support two
 thread models: one we called 5005threads (because that’s when we added them),
 and interpreter threads. As of v5.10, it’s just the interpreter threads.
 However, for various reasons, we didn’t think we could do the topic
 justice in this edition since we dedicated our time to many of the other
 features. If you want to learn about threads, see the perlthrtut
 manpage, which is approximately the same thing as our “Threads” chapter
 would have been. Maybe we can provide a bonus chapter later,
 though.
Other things have come or gone. Some experiments didn’t work out and
 we took them out of Perl, replacing them with other experiments.
 Pseudohashes, for instance, were deprecated, removed, and forgotten. If
 you don’t know what those are, don’t worry about it, but don’t look for
 them in this edition either.
And, since we last updated this book, there’s been a tremendous
 revolution (or two) in Perl programming practice as well as its testing
 culture. CPAN (the Comprehensive Perl Archive Network) continues to grow
 exponentially, making it Perl’s killer feature. This isn’t a book about
 CPAN, though, but we tell you about those modules when they are important.
 Don’t try to do everything with just vanilla Perl.
We’ve also removed two chapters, the list of modules in the Standard
 Library (Chapter 32 in the previous edition) and the diagnostic messages
 (Chapter 33 in the previous edition). Both of these will be out of date
 before the book even gets on your bookshelf. We’ll show you how to get
 that list yourself. For the diagnostic messages, you can find all of them
 in the perldiag
 manpage, or turn warnings into longer messages with the diagnostics pragma.
	Part I, Overview
	Getting started is always the hardest part. This part presents
 the fundamental ideas of Perl in an informal,
 curl-up-in-your-favorite-chair fashion. Not a full tutorial, it
 merely offers a quick jump-start, which may not serve everyone. See
 the section on “Offline Documentation” below for other books that
 might better suit your learning style.

	Part II, The Gory Details
	This part consists of an in-depth, no-holds-barred discussion
 of the guts of the language at every level of abstraction, from data
 types, variables, and regular expressions, to subroutines, modules,
 and objects. You’ll gain a good sense of how the language works, and
 in the process, pick up a few hints on good software design. (And if
 you’ve never used a language with pattern matching, you’re in for a
 special treat.)

	Part III, Perl As Technology
	You can do a lot with Perl all by itself, but this part will
 take you to a higher level of wizardry. Here you’ll learn how to
 make Perl jump through whatever hoops your computer sets up for it,
 everything from dealing with Unicode, interprocess communication and
 multithreading, through compiling, invoking, debugging, and profiling
 Perl, on up to writing your own external extensions in C or C++, or
 interfaces to any existing API you feel like. Perl will be quite
 happy to talk to any interface on your computer—or, for that matter,
 on any other computer on the Internet, weather permitting.

	Part IV, Perl As Culture
	Everyone understands that a culture must have a language, but
 the Perl community has always understood that a language must have a
 culture. This part is where we view Perl programming as a human
 activity, embedded in the real world of people. We’ll cover how you
 can improve the way you deal with both good people and bad people.
 We’ll also dispense a great deal of advice on how you can become a
 better person yourself, and on how to make your programs more useful
 to other people.

	Part V, Reference Material
	Here we’ve put together all the chapters in which you might
 want to look something up alphabetically, everything from special
 variables and functions to standard modules and pragmas. The Glossary will be particularly helpful to those
 who are unfamiliar with the jargon of computer science. For example,
 if you don’t know what the meaning of “pragma” is, you could look it
 up right now. (If you don’t know what the meaning of “is” is, we
 can’t help you with that.)

[1] Since we’re lazy, and since by now you already know this book is
 about Perl 5, we should mention that we won’t always spell out “Perl
 v5.n”—for the rest of this book, if you see
 a bare version number that starts with “v5”, just assume we’re talking
 about that version of Perl.

The Standard Distribution

The official Perl policy, as noted in perlpolicy,
 is that the last two maintenance releases are officially supported. Since
 the current release as we write this is v5.14, that means both v5.12 and
 v5.14 are officially supported. When v5.16 is released, v5.12 won’t be
 supported anymore.
Most operating system vendors these days include Perl as a standard
 component of their systems, although their release cycles might not track
 the latest Perl. As of this writing, AIX, BeOS, BSDI, Debian, DG/UX,
 DYNIX/ptx, FreeBSD, IRIX, LynxOS, Mac OS X, OpenBSD, OS390, RedHat, SINIX,
 Slackware, Solaris, SuSE, and Tru64 all came with Perl as part of their
 standard distributions. Some companies provide Perl on separate CDs of
 contributed freeware or through their customer service groups. Third-party
 companies like ActiveState offer prebuilt Perl distributions for a variety
 of different operating systems, including those from Microsoft.
Even if your vendor does ship Perl as standard, you’ll probably
 eventually want to compile and install Perl on your own. That way you’ll
 know you have the latest version,
 and you’ll be able to choose where to install your libraries and
 documentation. You’ll also be able to choose whether to compile Perl with
 support for optional extensions such as multithreading, large files, or
 the many low-level debugging options available through the –D command-line switch. (The user-level Perl
 debugger is always supported.)
The easiest way to download a Perl source kit is probably to point
 your web browser to Perl’s
 homepage, where you’ll find download information prominently
 featured on the start-up page, along with links to precompiled binaries
 for platforms that have misplaced their C compilers.
You can also head directly to CPAN, described in Chapter 19, using http://www.cpan.org. If
 those are too slow for you (and they might be, because they’re
 very popular), you should find a mirror close to you.
 The MIRRORED.BY file
 there contains a list of all other CPAN sites, so you can just get that
 file and then pick your favorite mirror. Some of them are available
 through FTP, others through HTTP (which makes a difference behind some
 corporate firewalls). The http://www.cpan.org
 multiplexor attempts to do this selection for you. You can change your
 selection if you like later.
Once you’ve fetched the source code and unpacked it into a
 directory, you should read the README
 and the INSTALL files there to learn
 how to build Perl. There may also be an INSTALL.platform
 file for you to read there, where platform
 represents your operating system platform.
If your platform happens to be some
 variety of Unix, then your commands to fetch, configure, build, and
 install Perl might resemble what follows. First, you must choose a command
 to fetch the source code. You can download via the Web using a browser or
 a command-line tool:
% wget http://www.cpan.org/src/5.0/maint.tar.gz
Now unpack, configure, build, and install:
% tar zxf latest.tar.gz # or gunzip first, then tar xf
% cd perl–5.14.2 # or 5.* for whatever number
% sh Configure –des # assumes default answers
% make test && make install # install typically requires superuser
Your platform might already have packages that do this work for you
 (as well as providing platform-specific fixes or enhancements). Even then,
 many platforms already come with Perl, so you might not need to do
 anything.
If you already have Perl but want a different version, you can save
 yourself some work by using the perlbrew tool. It automates all of this for you
 and installs it where you (should) have permissions to install files so
 you don’t need any administrator privileges. It’s on CPAN as App::perlbrew, but you can also install it according to the
 documentation:
% curl –L http://xrl.us/perlbrewinstall | bash
Once installed, you can let the tool do all the work for you:
% ~/perl5/perlbrew/bin/perlbrew install perl–5.14.2
There’s a lot more that perlbrew can do for you, so see its
 documentation.
You can also get enhanced versions of the standard Perl
 distribution. ActiveState offers ActivePerl
 for free for Windows, Mac OS X, and Linux, and for a fee for Solaris,
 HP-UX, and AIX.
Strawberry Perl
 is Windows-only, and it comes with the various tools you need to compile
 and install third-party Perl modules for CPAN.
Citrus Perl is a
 distribution for Windows, Mac OS X, and Linux that bundles wxPerl tools
 for creating GUIs. It’s targeted at people who want to create distributed
 GUI applications with Perl instead of a general-purpose Perl. Its Cava Packager tool helps you do
 that.

Online Documentation

Perl’s extensive online documentation comes as part of the standard Perl
 distribution. (See the next section for offline documentation.) Additional
 documentation shows up whenever you install a module from CPAN.
When we refer to a “Perl manpage” in this book, we’re talking about
 this set of online Perl manual pages, sitting on your computer. The name
 manpage is purely a convention meaning a file containing
 documentation—you don’t need a Unix-style man program to read one. You may even have the
 Perl manpages installed as HTML pages, especially on non-Unix
 systems.
The online manpages for Perl have been divided into separate
 sections so you can easily find what you are looking for without wading
 through hundreds of pages of text. Since the top-level manpage is simply
 called perl, the Unix command
 “man perl” should take you to
 it.[2] That page in turn directs you to more specific pages. For
 example, “man perlre” will display the
 manpage for Perl’s regular expressions. The perldoc command often works on systems when the
 man command won’t. Your port may also
 provide the Perl manpages in HTML format or your system’s native help
 format. Check with your local sysadmin, unless you’re the local sysadmin.
 In which case, ask the monks at http://perlmonks.org.

[2] If you still get a truly humongous page when you do that, you’re
 probably picking up the ancient v4 manpage. Check your MANPATH for archaeological sites. (Say
 “perldoc perl” to find out how to
 configure your MANPATH based on the
 output of “perl
 –V:man.dir”.)

Navigating the Standard Manpages

In the Beginning (of Perl, that is, back in 1987), the perl manpage
 was a terse document, filling about 24 pages when typeset and printed.
 For example, its section on regular expressions was only two paragraphs
 long. (That was enough, if you knew egrep.) In some ways, nearly everything has
 changed since then. Counting the standard documentation, the various
 utilities, the per-platform porting information, and the scads of
 standard modules, we now have thousands of typeset pages of
 documentation spread across many separate manpages. (And that’s not
 counting any CPAN modules you install, which is likely to be quite a
 few.)
But in other ways, nothing has changed: there’s still a
 perl manpage
 kicking around. And it’s still the right place to start when you don’t
 know where to start. The difference is that once you arrive, you can’t
 just stop there. Perl documentation is no longer a cottage industry;
 it’s a supermall with hundreds of stores. When you walk in the door, you
 need to find the you are here to
 figure out which shop or department store sells what you’re shopping
 for. Of course, once you get familiar with the mall, you’ll usually know
 right where to go.
A few of the store signs you’ll see are shown in Table 1.
Table 1. Selected Perl manpages
	Manpage
	Covers

	 perl

	What perl manpages are
 available

	 perldata

	Data types

	 perlsyn

	Syntax

	 perlop

	Operators and
 precedence

	 perlre

	Regular
 expressions

	 perlvar

	Predefined
 variables

	 perlsub

	Subroutines

	 perlfunc

	Built-in
 functions

	 perlmod

	How perl modules
 work

	 perlref

	References

	 perlobj

	Objects

	 perlipc

	Interprocess
 communication

	 perlrun

	How to run Perl commands,
 plus switches

	 perldebug

	Debugging

	 perldiag

	Diagnostic
 messages

That’s just a small excerpt, but it has the important parts. You
 can tell that if you want to learn about an operator, that
 perlop is
 apt to have what you’re looking for. And if you want to find something
 out about predefined variables, you’d check in perlvar.
 If you got a diagnostic message you didn’t understand, you’d go to
 perldiag.
 And so on.
Part of the standard Perl manual is the frequently asked questions
 (FAQ) list. It’s split up into these nine different pages, as shown in
 Table 2.
Table 2. The perlfaq manpages
	Manpage
	Covers

	 perlfaq1

	General questions about
 Perl

	 perlfaq2

	Obtaining and learning
 about Perl

	 perlfaq3

	Programming
 tools

	 perlfaq4

	Data
 manipulation

	 perlfaq5

	Files and
 formats

	 perlfaq6

	Regular
 expressions

	 perlfaq7

	General Perl language
 issues

	 perlfaq8

	System
 interaction

	 perlfaq9

	Networking

Some manpages contain platform-specific notes, as listed in Table P-3.
Table 3. Platform-specific manpages
	Manpage
	Covers

	 perlamiga

	The Amiga
 port

	 perlcygwin

	The Cygwin
 port

	 perldos

	The MS-DOS
 port

	 perlhpux

	The HP-UX
 port

	 perlmachten

	The Power MachTen
 port

	 perlos2

	The OS/2
 port

	 perlos390

	The OS/390
 port

	 perlvms

	The DEC VMS
 port

	 perlwin32

	The MS-Windows
 port

(See also Chapter 22 and the CPAN ports directory
 described earlier for porting information.)

Non-Perl Manpages

When we refer to non-Perl documentation, as in getitimer(2),
 this refers to the getitimer manpage from section 2
 of the Unix Programmer’s Manual.[3] Manpages for syscalls such as getitimer may not be
 available on non-Unix systems, but that’s probably okay, because you
 couldn’t use the Unix syscall there anyway. If you really do need the
 documentation for a Unix command, syscall, or library function, many
 organizations have put their manpages on the Web—a quick search of
 Google for crypt(3) manual will find
 many copies.
Although the top-level Perl manpages are typically installed in
 section 1 of the standard man directories, we will
 omit appending a (1) to those manpage names in this book. You can
 recognize them anyway because they are all of the form “perlmumble”.

[3] Section 2 is only supposed to contain direct calls into the
 operating system. (These are often called “system calls”, but we’ll
 consistently call them syscalls in this book to
 avoid confusion with the system
 function, which has nothing to do with syscalls). However, systems
 vary somewhat in which calls are implemented as syscalls, and which
 are implemented as C library calls, so you could conceivably find
 getitimer(2) in section 3 instead.

Offline Documentation

If you’d like to learn more about Perl, here are some related publications
 that we recommend:
	Perl
 5 Pocket Reference, by Johan Vromans; O’Reilly
 Media (5th Edition, July 2011). This small
 booklet serves as a convenient quick-reference for Perl.

	Perl
 Cookbook, by Tom Christiansen and Nathan
 Torkington; O’Reilly Media (2nd Edition,
 August 2003). This is the companion volume to the book you have in
 your hands right now. This cookbook’s recipes teach you how to cook
 with Perl.

	Learning
 Perl, by Randal Schwartz, brian d foy, and Tom
 Phoenix; O’Reilly Media (6th Edition, June
 2011). This book teaches programmers the 30% of basic Perl they’ll use
 70% of the time, and it is targeted at people writing self-contained
 programs around a couple of hundred lines.

	Intermediate
 Perl, by Randal Schwartz, brian d foy, and Tom
 Phoenix; O’Reilly Media (March 2006). This book picks up where
 Learning
 Perl left off, introducing references, data
 structures, packages, objects, and modules.

	Mastering
 Perl, by brian d foy; O’Reilly Media (July 2007).
 This book is the final book in the trilogy along with
 Learning
 Perl and Intermediate
 Perl. Instead of focusing on language
 fundamentals, it shifts gears to teaching the Perl programmer about
 applying Perl to the work at hand.

	Modern
 Perl, by chromatic; Oynx Neon (October 2010). This
 book provides a survey of modern Perl programming practice and topics,
 suitable for people who know programming already but haven’t paid
 attention to recent developments in Perl.

	Mastering
 Regular Expressions, by Jeffrey Friedl; O’Reilly
 Media (3rd Edition, August 2006). Although
 it doesn’t cover the latest additions to Perl regular expressions,
 this book is an invaluable reference for anyone seeking to learn how
 regular expressions work.

	Object Oriented Perl, by Damian Conway;
 Manning (August 1999). For beginning as well as advanced OO
 programmers, this book explains common and esoteric techniques for
 writing powerful object systems in Perl.

	Mastering Algorithms with Perl, by Jon
 Orwant, Jarkko Hietaniemi, and John Macdonald; O’Reilly Media (1999).
 All the useful techniques from a CS algorithms course but without the
 painful proofs. This book covers fundamental and useful algorithms in
 the fields of graphs, text, sets, and more.

There are many other Perl books and publications out there, and out
 of senility we have undoubtedly forgotten to mention some good ones. (Out
 of mercy we have neglected to mention some bad ones.)
In addition to the Perl-related publications listed above, the
 following books aren’t about Perl directly, but they still come in handy
 for reference, consultation, and inspiration.
	The Art of Computer Programming, by
 Donald Knuth, Volumes 1–4A: “Fundamental Algorithms,” “Seminumerical
 Algorithms,” “Sorting and Searching,” and “Combinatorial Algorithms”;
 Addison-Wesley (2011).

	Introduction to Algorithms, by Thomas
 Cormen, Charles Leiserson, and Ronald Rivest; MIT Press and
 McGraw-Hill (1990).

	Algorithms in C, by Robert Sedgewick;
 Addison-Wesley (1990).

	The Elements of Programming Style, by
 Brian Kernighan and P.J. Plauger; Prentice Hall (1988).

	The Unix Programming Environment, by
 Brian Kernighan and Rob Pike; Prentice Hall (1984).

	POSIX Programmer’s Guide, by Donald
 Lewine; O’Reilly Media (1991).

	Advanced
 Programming in the UNIX Environment, by W. Richard
 Stevens; Addison-Wesley (1–992).

	TCP/IP Illustrated, by W. Richard
 Stevens, Volumes I–III; Addison-Wesley (1992–1996).

	The Lord of the Rings, by J. R. R.
 Tolkien; Houghton Mifflin (U.S.) and Harper Collins (U.K.) (most
 recent printing: 2005).

Additional Resources

The Internet is a wonderful invention, and we’re all still discovering
 how to use it to its full potential. (Of course, some people prefer to
 “discover” the Internet the way Tolkien discovered Middle Earth.)

Perl on the Web

Visit the Perl website.
 It tells what’s new in the Perl world, and contains source code and
 ports, feature articles, documentation, conference schedules, and a lot
 more.
Also visit the Perl Mongers web
 page for a grassroots-level view of Perl’s, er, grassroots,
 which grow quite thickly in every part of the world, except at the South
 Pole, where they have to be kept indoors. Local PM groups hold regular
 small meetings where you can exchange Perl lore with other Perl hackers
 who live in your part of the world.

Bug Reports

In the unlikely event that you should encounter a bug that’s in
 Perl proper and not just in your own program, you should try to reduce
 it to a minimal test case and then report it with the perlbug program that comes with Perl. See
 http://bugs.perl.org for more info.
The perlbug command is really an interface to an instance of the RT bug
 tracking tool.[4] You can just as easily email a report to
 perlbug@perl.org without its help, but perlbug collects various information about
 your installation, such as version and compilation options, that can
 help the perl developers figure out
 your problem.
You can also look at the list of current issues, as someone is
 likely to have run into your problem before. Start at https://rt.perl.org/ and follow the links for the
 perl5 queue.
If you’re dealing with a third-party module from CPAN, you’ll use
 a different RT instance at https://rt.cpan.org/.
 Not every CPAN module makes use of its free RT account, though, so you
 should always check the module documentation for any extra instructions
 on reporting bugs.

[4] Best Practical, the creators of Request Tracker, or RT, donate
 their service for free for major Perl projects including perl itself and every CPAN
 distribution.

Conventions Used in This Book

Some of our conventions get larger sections of their very own.
 Coding conventions are discussed in the section on “Programming with
 Style” in Chapter 21. In a sense, our lexical conventions
 are given in the Glossary.
The following typographic conventions are used in this book:
	small
 capitals
	Is used mostly for the formal names of Unicode characters, and
 for talking about Boolean operators.

	Italic
	Is used for URLs, manpages, pathnames, and programs. New terms
 are also italicized when they first appear in the text. Many of
 these terms will have alternate definitions in the Glossary, if the one in the text doesn’t do it
 for you. It is also used for command names and command-line
 switches. This allows one to distinguish, for example, between the
 –w warnings switch and the
 –w filetest operator.

	Monospace Regular
	Is used in examples to show the text that you enter literally,
 and in regular text to show any literal code. Data values are
 represented by monospace in roman
 quotes, which are not part of the value.

	Monospace Oblique
	Is used for generic code terms for which you must substitute
 particular values. It’s sometimes also used in examples to show
 output produced by a program.

	 Monospace
 Bold
	Is occasionally used for literal text that you would type into
 your command-line shell.

	 Monospace Bold
 Oblique
	Is used for literal output when needed to distinguish it from
 shell input.

We give lots of examples, most of which are pieces of code that
 should go into a larger program. Some examples are complete programs,
 which you can recognize because they begin with a #! line. We start nearly all of our longer
 programs with:
#!/usr/bin/perl
Still other examples are things to be typed on a command line. We’ve
 used % to indicate a generic shell
 prompt:
% perl –e 'print "Hello, world.\n"'
Hello, world.
This style is representative of a standard Unix command line, where
 single quotes represent the “most quoted” form. Quoting and wildcard
 conventions on other systems vary. For example, many command-line
 interpreters under MS-DOS and VMS require double quotes instead of single
 quotes when you need to group arguments with spaces or wildcards in
 them.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 Programming Perl, Fourth Edition, by Tom
 Christiansen, brian d foy & Larry Wall. Copyright 2012 Tom
 Christiansen, brian d foy, Larry Wall, and Jon Orwant, ISBN
 978-0-5960-0492-7.
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

Acknowledgments

Here we say nice things in public about our kibbitzers, consultants,
 and reviewers to make up for all the rude things we said to them in
 private: Abigail, Matthew Barnett, Piers Cawley, chromatic, Damian Conway,
 Dave Cross, Joaquin Ferrero, Jeremiah Foster, Jeff Haemer, Yuriy Malenkiy,
 Nuno Mendes, Steffen Müller, Enrique Nell, David Nicol, Florian Ragwitz,
 Allison Randal, Chris Roeder, Keith Thompson, Leon Timmermans, Nathan
 Torkington, Johan Vromans, and Karl Williamson. Any technical errors are
 our fault, not theirs.
We’d like to express our special gratitude to the entire production
 crew at O’Reilly Media for their heroic efforts in overcoming uncountably
 many unexpected and extraordinary challenges to bring this book to press
 in today’s post-modern publishing world. We wish to thank first and
 foremost our production editor, Holly Bauer, for her infinite patience in
 applying thousands of nitpicking changes and additions long after we had
 turned in the manuscript. We thank Production Manager Dan Fauxsmith for
 chasing down the rare fonts needed for our many Unicode examples and for
 keeping the production pipeline flowing smoothly. We thank Production
 Director Adam Witwer for rolling up his sleeves and dodging the outrageous
 slings and arrows cast by the Antenna House formatting software used to
 generate this book’s camera-ready copy. Finally, we thank Publisher Laurie
 Petrycki not only for supporting all these people in creating the sort of
 book its authors wanted to see printed, but also for encouraging those
 authors to write the sort of books people might enjoy reading.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://safaribooksonline.com.

We’d Like to Hear from You

We have tested and verified all of the information in this book to
 the best of our ability, but you may find that features have changed (or
 even that we have made mistakes!). Please let us know about any errors you
 find, as well as your suggestions for future editions, by writing:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	1-800-998-9938 (in the United States or Canada)
	1-707-829-0515 (international or local)
	1-707-829-0104 (fax)

We have a website for the book, where we’ll list any errata and
 other Camel-related information:
	http://shop.oreilly.com/product/9780596004927.do

Here also you’ll find all the example code from the book available
 for download so you don’t have to type it all in like we did.
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 website at:
	http://www.oreilly.com

Part I. Overview

Chapter 1. An Overview of Perl

Getting Started

We think that Perl is an easy language to learn and use, and we hope to
 convince you that we’re right. One thing that’s easy about Perl is that
 you don’t have to say much before you say what you want to say. In many
 programming languages, you have to declare the types, variables, and
 subroutines you are going to use before you can write the first statement
 of executable code. And for complex problems demanding complex data
 structures, declarations are a good idea. But for many simple, everyday
 problems, you’d like a programming language in which you can simply
 say:
print "Howdy, world!\n";
and expect the program to do just that.
Perl is such a language. In fact, this example is a complete
 program,[5] and if you feed it to the Perl interpreter, it will print
 “Howdy, world!” on your screen. (The
 \n in the example produces a newline at
 the end of the output.)
And that’s that. You don’t have to say much
 after you say what you want to say, either. Unlike
 many languages, Perl thinks that falling off the end of your program is
 just a normal way to exit the program. You certainly
 may call the exit
 function explicitly if you wish, just as you may
 declare some of your variables, or even force
 yourself to declare all your variables. But it’s your choice. With Perl
 you’re free to do The Right Thing, however you care to define it.
There are many other reasons why Perl is easy to use, but it would
 be pointless to list them all here, because that’s what the rest of the
 book is for. The devil may be in the details, as they say, but Perl tries
 to help you out down there in the hot place, too. At every level, Perl is
 about helping you get from here to there with minimum fuss and maximum
 enjoyment. That’s why so many Perl programmers go around with a silly grin
 on their face.
This chapter is an overview of Perl, so we’re not trying to present
 Perl to the rational side of your brain. Nor are we trying to be complete,
 or logical. That’s what the following chapters are for. Vulcans, androids,
 and like-minded humans should skip this overview and go straight to Chapter 2 for maximum information density. If, on the other
 hand, you’re looking for a carefully paced tutorial, you should probably
 get Learning
 Perl. But don’t throw this book out just yet.
This chapter presents Perl to the other side of
 your brain, whether you prefer to call it associative, artistic,
 passionate, or merely spongy. To that end, we’ll be presenting various
 views of Perl that will give you as clear a picture of Perl as the blind
 men had of the elephant. Well, okay, maybe we can do better than that.
 We’re dealing with a camel here (see the cover). Hopefully, at least one
 of these views of Perl will help get you over the hump.

[5] Or script, or application, or executable, or doohickey.
 Whatever.

Natural and Artificial Languages

Languages were first invented by humans, for the benefit of humans.
 In the annals of computer science, this fact has occasionally been
 forgotten.[6] Since Perl was designed (loosely speaking) by an occasional
 linguist, it was designed to work smoothly in the same ways that natural
 language works smoothly. Naturally, there are many aspects to this, since
 natural language works well at many levels simultaneously. We could
 enumerate many of these linguistic principles here, but the most important
 principle of language design is that easy things should be easy, and hard
 things should be possible. (Actually, that’s two principles.) They may
 seem obvious to you, but many computer languages fail at one or the
 other.
Natural languages are good at both because people are continually
 trying to express both easy things and hard things, so the language
 evolves to handle both. Perl was designed first of all to evolve, and
 indeed it has evolved. Many people have contributed to the evolution of
 Perl over the years. We often joke that a camel is a horse designed by a
 committee, but if you think about it, the camel is pretty well adapted for
 life in the desert. The camel has evolved to be relatively
 self-sufficient. (On the other hand, the camel has not evolved to smell
 good. Neither has Perl.) This is one of the many strange reasons we picked
 the camel to be Perl’s mascot, but it doesn’t have much to do with
 linguistics.
Now when someone utters the word “linguistics”, many folks focus in
 on one of two things. Either they think of words, or they think of
 sentences. But words and sentences are just two handy ways to “chunk”
 speech. Either may be broken down into smaller units of meaning or
 combined into larger units of meaning. And the meaning of any unit depends
 heavily on the syntactic, semantic, and pragmatic context in which the
 unit is located. Natural language has words of various sorts: nouns and
 verbs and such. If someone says “dog” in isolation, you think of it as a
 noun, but you can also use the word in other ways. That is, a noun can
 function as a verb, an adjective, or an adverb when the context demands
 it. If you dog a dog during the dog days of summer, you’ll be a dog tired
 dogcatcher.[7] Perl also evaluates words differently in various contexts.
 We will see how it does that later. Just remember that Perl is trying to
 understand what you’re saying, like any good listener does. Perl works
 pretty hard to try to keep up its end of the bargain. Just say what you
 mean, and Perl will usually “get it”. (Unless you’re talking nonsense, of
 course—the Perl parser understands Perl a lot better than either English
 or Swahili.)
But back to nouns. A noun can name a particular object, or it can
 name a class of objects generically without specifying which one is
 currently being referred to. Most computer languages make this
 distinction, only we call the particular one a value and the generic one a
 variable. A value just exists somewhere, who knows where, but a variable
 gets associated with one or more values over its lifetime. So whoever is
 interpreting the variable has to keep track of that association. That
 interpreter may be in your brain or in your computer.

[6] More precisely, this fact has occasionally been
 remembered.

[7] And you’re probably dog tired of all this linguistics claptrap.
 But we’d like you to understand why Perl is different from the typical
 computer language, doggone it!

Variable Syntax

A variable is just a handy place to keep something, a place with a name,
 so you know where to find your special something when you come back
 looking for it later. As in real life, there are various kinds of places
 to store things, some of them rather private, and some of them out in
 public. Some places are temporary, and other places are more permanent.
 Computer scientists love to talk about the “scope” of variables, but
 that’s all they mean by it. Perl has various handy ways of dealing with
 scoping issues, which you’ll be happy to learn later when the time is
 right. Which is not yet. (Look up the adjectives local, my,
 our, and state in Chapter 27, when you
 get curious, or see Scoped Declarations in Chapter 4.)
But a more immediately useful way of classifying variables is by
 what sort of data they can hold. As in English, Perl’s primary type
 distinction is between singular and plural data. Strings and numbers are
 singular pieces of data, while lists of strings or numbers are plural.
 (And when we get to object-oriented programming, you’ll find that the
 typical object looks singular from the outside but plural from the
 inside, like a class of students.) We call a singular variable a scalar, and a plural
 variable an array. Since a string can be stored in
 a scalar variable, we might write a slightly longer (and commented)
 version of our first example like this:
my $phrase = "Howdy, world!\n"; # Create a variable.
print $phrase; # Print the variable.
The my tells Perl that $phrase is a brand new variable, so it
 shouldn’t go and look for an existing one. Note that we do not have to
 be very specific about what kind of variable $phrase is. The $ character tells Perl that phrase is a scalar variable; that is, one
 containing a singular value. An array variable, by contrast, would start
 with an @ character. (It may help you
 to remember that a $ is a stylized
 “s” for “scalar”, while @ is a
 stylized “a” for “array”.)[8]
Perl has some other variable types, with unlikely names like
 “hash”, “handle”, and “typeglob”. Like scalars and arrays, these types
 of variables are also preceded by funny characters, commonly known
 as sigils. For completeness, Table 1-1 lists all the sigils you’ll
 encounter.
Table 1-1. Variable types and their uses
	Type	Sigil	Example	Is a Name For
	Scalar	$	$cents	An individual value (number or string)
	Array	@	@large	A list of values, keyed by number
	Hash	%	%interest	A group of values, keyed by string
	Subroutine	&	&how	A callable chunk of Perl code
	Typeglob	*	*struck	Everything named struck

Some language purists point to these sigils as a reason to abhor
 Perl. This is superficial. Sigils have many benefits, not least of which
 is that variables can be interpolated into strings with no additional
 syntax. Perl scripts are also easy to read (for people who have bothered
 to learn Perl!) because the nouns stand out from verbs. And new verbs
 can be added to the language without breaking old scripts. (We told you
 Perl was designed to evolve.) And the noun analogy is not
 frivolous—there is ample precedent in English and other languages for
 requiring grammatical noun markers. It’s how we think! (We
 think.)
Singularities

From our earlier example, you can see that scalars may be
 assigned a new value with the =
 operator, just as in many other computer languages. Scalar variables
 can be assigned any form of scalar value: integers, floating-point
 numbers, strings, and even esoteric things like references to other
 variables, or to objects. There are many ways of generating these
 values for assignment.
As in the Unix[9] shell, you can use different quoting mechanisms to make
 different kinds of values. Double quotation marks (double quotes)
 do variable interpolation[10] and backslash interpolation
 (such as turning \n
 into a newline), while single quotes suppress interpolation. And
 backquotes (the ones leaning to the left) will execute an external
 program and return the output of the program, so you can capture it as
 a single string containing all the lines of output.
my $answer = 42; # an integer
my $pi = 3.14159265; # a "real" number
my $avocados = 6.02e23; # scientific notation
my $pet = "Camel"; # string
my $sign = "I love my $pet"; # string with interpolation
my $cost = 'It costs $100'; # string without interpolation
my $thence = $whence; # another variable's value
my $salsa = $moles * $avocados; # a gastrochemical expression
my $exit = system("vi $file"); # numeric status of a command
my $cwd = `pwd`; # string output from a command
And while we haven’t covered fancy values yet, we should point
 out that scalars may also hold references to other data structures, including
 subroutines and objects.
my $ary = \@myarray; # reference to a named array
my $hsh = \%myhash; # reference to a named hash
my $sub = \&mysub; # reference to a named subroutine

my $ary = [1,2,3,4,5]; # reference to an unnamed array
my $hsh = {Na => 19, Cl => 35}; # reference to an unnamed hash
my $sub = sub { print $state }; # reference to an unnamed subroutine

my $fido = Camel–>new("Amelia"); # reference to an object
When you create a new scalar variable, but before you assign it a value, it is
 automatically initialized with the value we call undef, which as you might guess means
 “undefined”. Depending on context, this undefined value might be
 interpreted as a slightly more defined null value, such as "" or 0.
 More generally, depending on how you use them, variables will be
 interpreted automatically as strings, as numbers, or as “true” and
 “false” values (commonly called Boolean
 values). Remember how important context is in human languages. In
 Perl, various operators expect certain kinds of singular values as
 parameters, so we will speak of those operators as “providing” or
 “supplying” scalar context to those parameters. Sometimes we’ll be
 more specific and say it supplies a numeric context, a string context,
 or a Boolean context to those parameters. (Later we’ll also talk about
 list context, which is the opposite of scalar context.) Perl will
 automatically convert the data into the form required by the current
 context, within reason. For example, suppose you said this:
my $camels = "123";
print $camels + 1, "\n";
The first assigned value of $camels is a string, but it is converted to
 a number to add 1 to it, and then
 converted back to a string to be printed out as 124. The newline, represented by "\n", is also in string context, but since
 it’s already a string, no conversion is necessary. But notice that we
 had to use double quotes there—using single quotes to say '\n' would result in a two-character string
 consisting of a backslash followed by an “n”, which is not a newline by anybody’s
 definition.
So, in a sense, double quotes and single quotes are yet another
 way of specifying context. The interpretation of the innards of a
 quoted string depends on which quotes you use. (Later,
 we’ll see some other operators that work like quotes syntactically but
 use the string in some special way, such as for pattern matching or
 substitution. These all work like double-quoted strings, too. The
 double-quote context is the “interpolative”
 context of Perl, and it is supplied by many operators that don’t
 happen to resemble double quotes.)
Similarly, a reference behaves as a reference when you give it a “dereference”
 context, but otherwise acts like a simple scalar value. For example,
 we might say:
my $fido = Camel–>new("Amelia");
if (not $fido) { die "dead camel"; }
$fido–>saddle();
Here we create a reference to a Camel object and put it into a
 new variable, $fido. On the next
 line, we test $fido as a scalar
 Boolean to see if it is “true”, and we throw an exception (that is, we
 complain) if it is not true, which in this case would mean that the
 Camel–>new constructor failed to
 make a proper Camel object. But on the last line, we treat $fido as a reference by asking it to look up
 the saddle method for the object
 held in $fido, which happens to be
 a Camel, so Perl looks up the saddle method for Camel objects. More about
 that later. For now, just remember that context is important in Perl
 because that’s how Perl knows what you want without your having to say
 it explicitly, as many other computer languages force you to
 do.

Pluralities

Some kinds of variables hold multiple values that are logically
 tied together. Perl has two types of multivalued variables: arrays and
 hashes. In many ways, these behave like scalars—new ones can be
 declared with my, for instance, and
 they are automatically initialized to an empty state. But they are
 different from scalars in that, when you assign to them, they supply
 list context to the right side of the assignment
 rather than scalar context.
Arrays and hashes also differ from each other. You’d use an
 array when you want to look something up by number. You’d use a hash
 when you want to look something up by name. The two concepts are
 complementary—you’ll often see people using an array to translate
 month numbers into month names, and a corresponding hash to translate
 month names back into month numbers. (Though hashes aren’t limited to
 holding only numbers. You could have a hash that translates month
 names to birthstone names, for instance.)
Arrays

An array is an ordered list of scalars, accessed[11] by the scalar’s position in the list. The list may
 contain numbers, strings, or a mixture of both. (It might also
 contain references to subarrays or subhashes.) To assign a list
 value to an array, simply group the values together (with a set of
 parentheses):
my @home = ("couch", "chair", "table", "stove");
Conversely, if you use @home in list context, such as on the
 right side of a list assignment, you get back out the same list you
 put in. So you could create four scalar variables from the array
 like this:
my ($potato, $lift, $tennis, $pipe) = @home;
These are called list assignments. They logically happen in parallel,
 so you can swap two existing variables by saying:
($alpha,$omega) = ($omega,$alpha);
As in C, arrays are zero-based, so while you would talk about the first through fourth
 elements of the array, you would get to them with subscripts 0
 through 3.[12] Array subscripts are enclosed in square brackets [like this], so if you want to select
 an individual array element, you would refer to it as $home[n], where n is
 the subscript (one less than the element number) you want. See the
 example that follows. Since the element you are dealing with is a
 scalar, you always precede it with a $.
If you want to assign to one array element at a time, you can;
 the elements of the array are automatically created as needed, so
 you could write the earlier assignment as:
my @home;
$home[0] = "couch";
$home[1] = "chair";
$home[2] = "table";
$home[3] = "stove";
Here we see that you can create a variable with my without giving it an initial value. (We
 don’t need to use my on the
 individual elements because the array already exists and knows how
 to create elements on demand.)
Since arrays are ordered, you can do various useful operations
 on them, such as the stack operations push and pop. A stack is, after all, just an
 ordered list with a beginning and an end. Especially an end. Perl
 regards the end of your array as the top of a stack. (Although most
 Perl programmers think of an array as horizontal, with the top of
 the stack on the right.)

Hashes

A hash is an unordered set of scalars, accessed[13] by some string value that is associated with each
 scalar. For this reason hashes are often called
 associative arrays. But that’s too long for
 lazy typists, and we talk about them so often that we decided to
 name them something short and snappy. The other reason we picked the
 name “hash” is to emphasize the fact that they’re disordered. (They
 are, coincidentally, implemented internally using a hash-table
 lookup, which is why hashes are so fast and stay so fast no matter
 how many values you put into them.) You can’t push or pop a hash, though, because it doesn’t
 make sense. A hash has no beginning or end. Nevertheless, hashes are
 extremely powerful and useful. Until you start thinking in terms of
 hashes, you aren’t really thinking in Perl. Figure 1-1 shows the ordered elements of an
 array and the unordered (but named) elements of a hash.
[image: An array and a hash]

Figure 1-1. An array and a hash

Since the keys to a hash are not automatically implied by
 their position, you must supply the key as well as the value when
 populating a hash. You can still assign a list to it like an
 ordinary array, but each pair of items in the
 list will be interpreted as a key and a value. Since we’re dealing
 with pairs of items, hashes use the % sigil to mark hash names. (If you look
 carefully at the % character, you
 can see the key and the value with a slash between them. It may help
 to squint.)
Suppose you wanted to translate abbreviated day names to the
 corresponding full names. You could write the following list
 assignment:
my %longday = ("Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday",
 "Wed", "Wednesday", "Thu", "Thursday", "Fri",
 "Friday", "Sat", "Saturday");
But that’s rather difficult to read, so Perl provides
 the => (equals
 sign, greater-than sign) sequence as an alternative separator to the
 comma. Using this syntactic sugar (and some creative formatting), it is
 much easier to see which strings are the keys and which strings are
 the associated values.
my %longday = (
 "Sun" => "Sunday",
 "Mon" => "Monday",
 "Tue" => "Tuesday",
 "Wed" => "Wednesday",
 "Thu" => "Thursday",
 "Fri" => "Friday",
 "Sat" => "Saturday",
);
Not only can you assign a list to a hash, as we did above, but
 if you mention a hash in list context, it’ll convert the hash back
 to a list of key/value pairs, in a weird order. This is occasionally
 useful. More often people extract a list of just the keys, using the
 (aptly named) keys
 function. The key list is also unordered, but can easily be
 sorted if desired, using the (aptly named) sort function.
 Then you can use the ordered keys to pull out the corresponding
 values in the order you want.
Because hashes are a fancy kind of array, you select an
 individual hash element by enclosing the key in braces (those fancy brackets also known as “curlies”).
 So, for example, if you want to find out the value associated with
 Wed in the hash above, you would
 use $longday{"Wed"}. Note again
 that you are dealing with a scalar value, so you use $ on the front, not %, which would indicate the entire
 hash.
Linguistically, the relationship encoded in a hash is genitive
 or possessive, like the word “of” in English, or like “’s”. The wife
 of Adam is Eve, so we write:
my %wife;
$wife{"Adam"} = "Eve";

Complexities

Arrays and hashes are lovely, simple, flat data structures.
 Unfortunately, the world does not always cooperate with our attempts
 to oversimplify. Sometimes you need to build not-so-lovely,
 not-so-simple, not-so-flat data structures. Perl lets you do this by
 pretending that complicated values are really simple ones. To put it
 the other way around, Perl lets you manipulate simple scalar
 references that happen to refer to complicated arrays and hashes. We
 do this all the time in natural language when we use a simple singular
 noun like “government” to represent an entity that is completely
 convoluted and inscrutable. Among other things.
To extend our previous example, suppose we want to switch from
 talking about Adam’s wife to Jacob’s wife. Now, as it happens, Jacob
 had four wives. (Don’t try this at home.) In trying to represent this
 in Perl, we find ourselves in the odd situation where we’d like to
 pretend that Jacob’s four wives were really one wife. (Don’t try this
 at home, either.) You might think you could write it like this:
$wife{"Jacob"} = ("Leah", "Rachel", "Bilhah", "Zilpah"); # WRONG
But that wouldn’t do what you want, because even parentheses and
 commas are not powerful enough to turn a list into a scalar in Perl.
 (Parentheses are used for syntactic grouping, and commas for syntactic
 separation.) Rather, you need to tell Perl explicitly that you want to
 pretend that a list is a scalar. It turns out that square brackets are powerful enough to do that:
$wife{"Jacob"} = ["Leah", "Rachel", "Bilhah", "Zilpah"]; # ok
That statement creates an unnamed array and puts a reference to
 it into the hash element $wife{"Jacob"}. So we have a named hash
 containing an unnamed array. This is how Perl deals with both
 multidimensional arrays and nested data structures. As with ordinary arrays and
 hashes, you can also assign individual elements, like this:
$wife{"Jacob"}[0] = "Leah";
$wife{"Jacob"}[1] = "Rachel";
$wife{"Jacob"}[2] = "Bilhah";
$wife{"Jacob"}[3] = "Zilpah";
You can see how that looks like a multidimensional array with
 one string subscript and one numeric subscript. To see something that
 looks more tree-structured, like a nested data structure, suppose we
 wanted to list not only Jacob’s wives but all the sons of each of his
 wives. In this case we want to treat a hash as a scalar. We can use
 braces for that. (Inside each hash value we’ll use square brackets to
 represent arrays, just as we did earlier. But now we have an array in
 a hash in a hash.)
my %kids_of_wife;
$kids_of_wife{"Jacob"} = {
 "Leah" => ["Reuben", "Simeon", "Levi", "Judah", "Issachar", "Zebulun"],
 "Rachel" => ["Joseph", "Benjamin"],
 "Bilhah" => ["Dan", "Naphtali"],
 "Zilpah" => ["Gad", "Asher"],
};
That would be more or less equivalent to saying:
my %kids_of_wife;
$kids_of_wife{"Jacob"}{"Leah"}[0] = "Reuben";
$kids_of_wife{"Jacob"}{"Leah"}[1] = "Simeon";
$kids_of_wife{"Jacob"}{"Leah"}[2] = "Levi";
$kids_of_wife{"Jacob"}{"Leah"}[3] = "Judah";
$kids_of_wife{"Jacob"}{"Leah"}[4] = "Issachar";
$kids_of_wife{"Jacob"}{"Leah"}[5] = "Zebulun";
$kids_of_wife{"Jacob"}{"Rachel"}[0] = "Joseph";
$kids_of_wife{"Jacob"}{"Rachel"}[1] = "Benjamin";
$kids_of_wife{"Jacob"}{"Bilhah"}[0] = "Dan";
$kids_of_wife{"Jacob"}{"Bilhah"}[1] = "Naphtali";
$kids_of_wife{"Jacob"}{"Zilpah"}[0] = "Gad";
$kids_of_wife{"Jacob"}{"Zilpah"}[1] = "Asher";
You can see from this that adding a level to a nested data
 structure is like adding another dimension to a multidimensional
 array. Perl lets you think of it either way, but the internal
 representation is the same.
The important point here is that Perl lets you pretend that a
 complex data structure is a simple scalar. On this simple kind of
 encapsulation, Perl’s entire object-oriented structure is built. When
 we earlier invoked the Camel
 constructor like this:
my $fido = Camel–>new("Amelia");
we created a Camel object
 that is represented by the scalar $fido. But the inside of the Camel is more complicated. As well-behaved
 object-oriented programmers, we’re not supposed to care about the
 insides of Camels (unless we happen
 to be the people implementing the methods of the Camel class). But, generally, an object like
 a Camel would consist of a hash
 containing the particular Camel’s
 attributes, such as its name (“Amelia” in this case, not “fido”), and the number of humps (which we
 didn’t specify, but probably defaults to 1; check the front cover).

Simplicities

If your head isn’t spinning a bit from reading that last
 section, then you have an unusual head. People generally don’t like to
 deal with complex data structures, whether governmental or
 genealogical. So, in our natural languages, we have many ways of
 sweeping complexity under the carpet. Many of these fall into the
 category of topicalization, which is just a
 fancy linguistics term for agreeing with someone about what you’re
 going to talk about (and by exclusion, what you’re probably not going
 to talk about). This happens on many levels in language. On a high
 level, we divide ourselves into various subcultures that are
 interested in various subtopics, and we establish sublanguages that
 talk primarily about those subtopics. The lingo of the doctor’s office
 (“indissoluble asphyxiant”) is different from the lingo of the
 chocolate factory (“everlasting gobstopper”). Most of us automatically
 switch contexts as we go from one lingo to another.
On a conversational level, the context switch has to be more
 explicit, so our language gives us many ways of saying what we’re
 about to say. We put titles on our books and headers on our sections.
 On our sentences, we put quaint phrases like “In regard to your recent
 query” or “For all X”. Usually, though, we just say things like, “You
 know that dangly thingy that hangs down in the back of your
 throat?”
Perl also has several ways of topicalizing. One important
 topicalizer is the package declaration.
 Suppose you want to talk about Camels in Perl. You’d likely start off your
 Camel module by saying:
package Camel;
This has several notable effects. One of them is that Perl will
 assume from this point on that any global verbs or nouns are about
 Camels. It does this by
 automatically prefixing any global name[14] with the module name “Camel::”. So if you say:
package Camel;
our $fido = &fetch();
then the real name of $fido
 is $Camel::fido (and the real name
 of &fetch is &Camel::fetch, but we’re not talking
 about verbs yet). This means that if some other module says:
package Dog;
our $fido = &fetch();
Perl won’t get confused, because the real name of this $fido is $Dog::fido, not $Camel::fido. A computer scientist would say
 that a package establishes a namespace. You can
 have as many namespaces as you like, but since you’re only in one of
 them at a time, you can pretend that the other namespaces don’t exist.
 That’s how namespaces simplify reality for you. Simplification is
 based on pretending. (Of course, so is oversimplification, which is
 what we’re doing in this chapter.)
Now it’s important to keep your nouns straight, but it’s just as
 important to keep your verbs straight. It’s nice that &Camel::fetch is not confused with
 &Dog::fetch within the Camel and Dog namespaces, but the really nice thing
 about packages is that they classify your verbs so that
 other packages can use them. When we said:
my $fido = Camel–>new("Amelia");
we were actually invoking the &new verb in the Camel package, which has the full name of
 &Camel::new. And when we
 said:
$fido–>saddle();
we were invoking the &Camel::saddle routine, because $fido remembers that it is pointing to a
 Camel. This is how object-oriented
 programming works.
When you say package Camel,
 you’re starting a new package. But sometimes you just want to borrow
 the nouns and verbs of an existing package. Perl lets you do that with
 a use declaration, which not only
 borrows verbs from another package, but also checks that the module
 you name is loaded in from disk. In fact, you
 must say something like:
use Camel;
before you say:
my $fido = Camel–>new("Amelia");
because otherwise Perl wouldn’t know what a Camel is.
The interesting thing is that you yourself don’t really need to
 know what a Camel is, provided you
 can get someone else to write the Camel module for you. Even better would be
 if someone had already written the Camel module for you. It could be argued
 that the most powerful thing about Perl is not Perl itself, but CPAN
 (Comprehensive Perl Archive Network; see Chapter 19),
 which contains myriad modules that accomplish many different tasks
 that you don’t have to know how to do. You just have to download
 whatever module you like and say:
use Some::Cool::Module;
Then you can use the verbs from that module in a manner
 appropriate to the topic under discussion.
So, like topicalization in a natural language, topicalization
 in Perl “warps” the language that you’ll use from there
 to the end of the scope. In fact, some of the built-in modules don’t
 actually introduce verbs at all, but simply warp the Perl language in
 various useful ways. We call these special modules pragmas (see Chapter 29). For instance, you’ll often see people use the
 pragma strict, like this:
use strict;
What the strict module does is tighten up some of the rules so that you
 have to be more explicit about various things that Perl would
 otherwise guess about, such as how you want your variables to be
 scoped.[15] Making things explicit is helpful when you’re working on
 large projects. By default, Perl is optimized for small projects, but
 with the strict pragma, Perl is
 also good for large projects that need to be more maintainable. Since
 you can add the strict pragma at
 any time, Perl is also good for evolving small projects into large
 ones, even when you didn’t expect that to happen. Which is
 usually.
As Perl evolves, the Perl community also evolves, and one of the
 things that changes is how the community thinks Perl should behave by
 default. (This is in conflict with the desire for Perl to behave as it
 always did.) So, for instance, most Perl programmers now think that
 you should always put “use strict”
 at the front of your program. Over time we tend to accumulate such
 “culturally required” language-warping pragmas. So another built-in
 pragma is just the version number of Perl, which is a kind of
 “metapragma” that tells Perl it’s okay to behave like a more modern
 language in all the ways it should:
use v5.14;
This particular declaration turns on several pragmas including “use
 strict”;[16] it also enables new features like the say verb, which (unlike print) adds a newline for you. So we could
 have written our very first example above as:
use v5.14;
say "Howdy, world!";
The examples in this book all assume the v5.14 release of Perl;
 we will try to remember to include the use
 v5.14 for you when we show you a complete program, but when
 we show you snippets, we will assume you’ve already put in that
 declaration yourself. (If you do not have the latest version of Perl,
 some of our examples may not work. In the case of say, you could change it back to a print with a newline—but it would be better
 to upgrade. You’ll need to say at least use
 v5.10 for say to
 work.)

[8] This is a simplification of the real story of sigils, which
 we’ll tell you more about in Chapter 2.

[9] Here and elsewhere, when we say Unix we mean any operating
 system resembling Unix, including BSD, Mac OS X, Linux, Solaris,
 AIX, and, of course, Unix.

[10] Sometimes called “substitution” by shell programmers, but we
 prefer to reserve that word for something else in Perl. So please
 call it interpolation. We’re using the term in the textual sense
 (“this passage is a Gnostic interpolation”) rather than in the
 mathematical sense (“this point on the graph is an interpolation
 between two other points”).

[11] Or keyed, or indexed, or subscripted, or looked up. Take
 your pick.

[12] If this seems odd to you, just think of the subscript as
 an offset; that is, the count of how many array elements come
 before it. Obviously, the first element doesn’t have any
 elements before it, and so it has an offset of 0. This is how
 computers think. (We think.)

[13] Or keyed, or indexed, or subscripted, or looked up. Take
 your pick.

[14] You can declare global variables using our, which
 looks a lot like my, but tells
 people that it’s a shared variable. A my variable is not shared and cannot be
 seen by anyone outside the current block. When in doubt, use
 my rather than our since unneeded globals just clutter
 up the world and confuse people.

[15] More specifically, use
 strict requires you to use my , state, or our on variable declarations; otherwise,
 it just assumes undeclared variables are package variables, which
 can get you into trouble later. It also disallows various
 constructs that have proven to be error-prone over the
 years.

[16] The implicit strictures feature was added in v5.12. Also see
 the feature pragma in Chapter 29.

Verbs

As is typical of your typical imperative computer language, many
 of the verbs in Perl are commands: they tell the Perl interpreter to do
 something. On the other hand, as is typical of a natural language, the
 meanings of Perl verbs tend to mush off in various directions depending
 on the context. A statement starting with a verb is generally purely
 imperative and evaluated entirely for its side effects. (We sometimes
 call these verbs procedures, especially when
 they’re user-defined.) A frequently seen built-in command (in fact,
 you’ve seen it already) is the say
 command:
say "Adam's wife is $wife{'Adam'}.";
This has the side effect of producing the desired output:
Adam's wife is Eve.
But there are other “moods” besides the imperative mood. Some
 verbs are for asking questions and are useful in conditionals such as
 if statements. Other verbs translate
 their input parameters into return values, just as a recipe tells you
 how to turn raw ingredients into something (hopefully) edible. We tend
 to call these verbs functions, in deference to
 generations of mathematicians who don’t know what the word “functional”
 means in normal English.
An example of a built-in function would be the exponential
 function:
my $e = exp(1); # 2.718281828459 or thereabouts
But Perl doesn’t make a hard distinction between procedures and functions. You’ll find the terms used
 interchangeably. Verbs are also sometimes called operators (when
 built-in), or subroutines (when user-defined).[17] But call them whatever you like—they all return a value,
 which may or may not be a meaningful value, which you may or may not
 choose to ignore.
As we go on, you’ll see additional examples of how Perl behaves
 like a natural language. But there are other ways to look at Perl, too.
 We’ve already sneakily introduced some notions from mathematical
 language, such as subscripts, addition, and the exponential function.
 But Perl is also a control language, a glue language, a prototyping
 language, a text-processing language, a list-processing language, and an
 object-oriented language. Among other things.
But Perl is also just a plain old computer language. And that’s
 how we’ll look at it next.

[17] Historically, Perl required you to put an ampersand character (&) on any calls to user-defined
 subroutines (see $fido =
 &fetch(); earlier). But with Perl v5, the ampersand
 became optional, so user-defined verbs can now be called with the
 same syntax as built-in verbs ($fido =
 fetch();). We still use the ampersand when talking about
 the name of the routine, such as when we take a
 reference to it ($fetcher =
 \&fetch;). Linguistically speaking, you can think of
 the ampersand form &fetch as
 an infinitive, “to fetch”, or the similar form “do fetch”. But we
 rarely say “do fetch” when we can just say “fetch”. That’s the real
 reason we dropped the mandatory ampersand in v5.

An Average Example

Suppose you’ve been teaching a Perl class, and you’re trying to figure out
 how to grade your students. You have a set of exam scores for each member
 of a class, in random order. You’d like a combined list of all the grades
 for each student, plus their average score. You have a text file
 (imaginatively named grades) that looks like
 this:
Noël 25
Ben 76
Clementine 49
Norm 66
Chris 92
Doug 42
Carol 25
Ben 12
Clementine 0
Norm 66
...
You can use the following script to gather all their scores
 together, determine each student’s average, and print them all out in
 alphabetical order. This program assumes rather naïvely that you don’t
 have two Carols in your class. That is, if there is a second entry for
 Carol, the program will assume it’s just another score for the first Carol
 (not to be confused with the first Noël).
By the way, the line numbers are not part of the program, any other
 resemblances to BASIC notwithstanding.
 1 #!/usr/bin/perl
 2 use v5.14;
 3
 4 open(GRADES, "<:utf8", "grades") || die "Can't open grades: $!\n";
 5 binmode(STDOUT, ':utf8');
 6
 7 my %grades;
 8 while (my $line = <GRADES>) {
 9 my ($student, $grade) = split(" ", $line);
10 $grades{$student} .= $grade . " ";
11 }
12
13 for my $student (sort keys %grades) {
14 my $scores = 0;
15 my $total = 0;
16 my @grades = split(" ", $grades{$student});
17 for my $grade (@grades) {
18 $total += $grade;
19 $scores++;
20 }
21 my $average = $total / $scores;
22 print "$student: $grades{$student}\tAverage: $average\n";
23 }
Now, before your eyes cross permanently, we’d better point out that
 this example demonstrates a lot of what we’ve covered so far, plus quite a
 bit more that we’ll explain presently. But if you let your eyes go just a
 little out of focus, you may start to see some interesting patterns. Take
 some wild guesses now as to what’s going on, and then later on we’ll tell
 you if you’re right.
We’d tell you to try running it, but you may not know how
 yet.

How to Do It

Gee, right about now you’re probably wondering how to run a Perl
 program. The short answer is that you feed it to the Perl language
 interpreter program, which coincidentally happens to be named perl. The long answer starts out like this:
 There’s More Than One Way To Do It.[18]
The first way to invoke perl
 (and the way most likely to work on any operating system) is to simply
 call perl explicitly from the command
 line.[19] If you are doing something fairly simple, you can use the
 –e switch (% in the following example represents a
 standard shell prompt, so don’t type it). On Unix, you might
 type:
% perl –e 'print "Hello, world!\n";'
On other operating systems, you may have to fiddle with the quotes
 some. But the basic principle is the same: you’re trying to cram
 everything Perl needs to know into 80 columns or so.[20]
For longer scripts, you can use your favorite text editor (or any
 other text editor) to put all your commands into a file and then,
 presuming you named the script gradation (not to be confused with
 graduation), you’d say:
% perl gradation
You’re still invoking the Perl interpreter explicitly, but at
 least you don’t have to put everything on the command line every time.
 And you no longer have to fiddle with quotes to keep the shell
 happy.
The most convenient way to invoke a script is just to name it
 directly (or click on it), and let the operating system find the
 interpreter for you. On some systems, there may be ways of associating
 various file extensions or directories with a particular application. On
 those systems, you should do whatever it is you do to associate the Perl
 script with the perl interpreter. On
 Unix systems that support the #!
 “shebang” notation (and most Unix systems do, nowadays), you can make
 the first line of your script be magical, so the operating system will
 know which program to run. Put a line resembling line 1 of our example
 into your program:
#!/usr/bin/perl
(If perl v5.14 isn’t in
 /usr/bin, you’ll have to change the
 #! line accordingly.[21]). Then all you have to say is:
% gradation
Of course, this didn’t work because you forgot to make sure the
 script was executable (see the manpage for
 chmod(1)) and in your PATH. If it isn’t in your
 PATH, you’ll have to provide a complete filename so that the operating
 system knows how to find your script. Something like:
% /home/sharon/bin/gradation
Finally, if you are unfortunate enough to be on an ancient Unix
 system that doesn’t support the magic #! line, or if the path to your interpreter is
 longer than 32 characters (a built-in limit on many systems), you may be
 able to work around it like this:
#!/bin/sh –– # perl, to stop looping
eval 'exec /usr/bin/perl –S $0 ${1+"$@"}'
 if 0;
Some operating systems may require variants of this to deal with
 /bin/csh, DCL,
 COMMAND.COM, or whatever happens to be your default
 command interpreter. Ask your Local Expert.
Throughout this book, we’ll just use #!/usr/bin/perl to represent all these notions
 and notations, but you’ll know what we really mean by it.
A random clue: when you write a test script, don’t call your
 script test. Unix systems have a built-in test command, which will likely be executed
 instead of your script. Try try instead.
Now that you know how to run your own Perl program (not to be
 confused with the perl program),
 let’s get back to our example.

[18] That’s the Perl Slogan, and you’ll get tired of hearing it, unless you’re the
 Local Expert, in which case you’ll get tired of saying it. Sometimes
 it’s shortened to TMTOWTDI, pronounced “tim-toady”. But you can
 pronounce it however you like. After all, TMTOWTDI.

[19] Assuming that your operating system provides a command-line
 interface. If not, you should upgrade.

[20] These types of scripts are often referred to as “one-liners”.
 If you ever end up hanging out with other Perl programmers, you’ll
 find that some of us are quite fond of creating intricate
 one-liners. Perl has occasionally been maligned as a write-only
 language because of these shenanigans.

[21] If your /usr/bin/perl is
 an old version, you can compile a new one and put it elsewhere, such
 as /usr/local/bin, as long as
 you fix the #! line to point to
 it.

Filehandles

Unless you’re using artificial intelligence to model a solipsistic
 philosopher, your program needs some way to communicate with the outside
 world. In lines 4 and 8 of our Average Example you’ll see the word
 GRADES, which exemplifies another of
 Perl’s data types, the filehandle. A filehandle is just a name you give to a file, device, socket, or pipe to
 help you remember which one you’re talking about, and to hide some of the
 complexities of buffering and such. (Internally, filehandles are similar
 to streams from a language like C++ or I/O channels from BASIC.)
Filehandles make it easier for you to get input from and send output
 to many different places. Part of what makes Perl a good glue language is
 that it can talk to many files and processes at once. Having nice symbolic
 names for various external objects is just part of being a good glue
 language.[22]
You create a filehandle and attach it to a file by using open. The open function takes at least two parameters: the filehandle and filename
 you want to associate it with. Perl also gives you some predefined (and
 preopened) filehandles. STDIN
 is your program’s normal input channel, while STDOUT is your program’s
 normal output channel. And STDERR is
 an additional output channel that allows your program to
 make snide remarks off to the side while it transforms (or attempts to
 transform) your input into your output.[23] In lines 4 and 5 of our program, we also tell our new
 GRADES filehandle and the existing
 STDOUT filehandle to assume that text
 is encoded in UTF-8, a common representation of Unicode text.
Since you can use the open
 function to create filehandles for various purposes (input, output,
 piping), you need to be able to specify which behavior you want. As you
 might do on the command line, you can simply add characters to the
 filename:
open(SESAME, "filename") # read from existing file
open(SESAME, "< filename") # (same thing, explicitly)
open(SESAME, "> filename") # create file and write to it
open(SESAME, ">> filename") # append to existing file
open(SESAME, "| output–pipe–command") # set up an output filter
open(SESAME, "input–pipe–command |") # set up an input filter
However, the recommended three-argument form of open allows you to specify the open mode in an argument separate from the
 filename itself. This is useful when you’re dealing with filenames that
 aren’t literals and so might already contain characters that look like
 open modes or significant whitespace.
open(SESAME, "<", $somefile) # read from existing file
open(SESAME, ">", $somefile) # create file and write to it
open(SESAME, ">>", $somefile) # append to existing file
open(SESAME, "|–", "output–pipe–command") # set up an output filter
open(SESAME, "–|", "input–pipe–command") # set up an input filter
As we did in our program, this form of open also lets you specify the character
 encoding of the file.
open(SESAME, "< :encoding(UTF–8)", $somefile)
open(SESAME, "> :crlf", $somefile)
open(SESAME, ">> :encoding(MacRoman)", $somefile)
As you can see, the name you pick for the filehandle is arbitrary.
 Once opened, the filehandle SESAME can
 be used to access the file or pipe until it is explicitly closed (with,
 you guessed it, close(SESAME)), or
 until the filehandle is attached to another file by a subsequent open on the same filehandle. Opening an already
 opened filehandle implicitly closes the first file, making it inaccessible
 to the filehandle, and opens a different file. You must be careful that
 this is what you really want to do. Sometimes it happens accidentally,
 like when you say open($handle,$file),
 and $handle happens to contain a
 constant string. Be sure to set $handle
 to something unique, or you’ll just open a new file on the same
 filehandle.
A much better idea is to leave $handle undefined, letting Perl fill it in for
 you. This is handy for when you get tired of choosing your own names for
 filehandles: if you pass open an
 undefined variable (such as my
 creates), Perl will pick the filehandle for you and fill it in
 automatically:
open(my $handle, "< :crlf :encoding(cp1252)", $somefile)
 || die "can't open $somefile: $!";
If the open succeeds, the
 $handle variable is now defined, and
 you can use it wherever a filehandle is expected.
Once you’ve opened a filehandle for input, you can read a line using
 the line reading operator, <>.
 This is also known as the angle operator because it’s made of angle
 brackets. The angle operator encloses the filehandle (<SESAME> if a literal handle, and <$handle> for an indirect one) you want to
 read lines from. The empty angle operator, <>, will read lines from all the files
 specified on the command line, or STDIN
 if no arguments were specified. (This is standard behavior for many filter
 programs.) An example using the STDIN
 filehandle to read an answer supplied by the user would look something
 like this:
print STDOUT "Enter a number: "; # ask for a number
$number = <STDIN>; # input the number
say STDOUT "The number is $number."; # print the number
Did you see what we just slipped by you? What’s that STDOUT doing there in those print and say
 statements? Well, that’s just one of the ways you can use an output
 filehandle. A filehandle may be supplied between the command and its
 argument list, and if present, tells the output where to go. In this case,
 the filehandle is redundant because the output would have gone to STDOUT anyway. Much as STDIN is the default for input, STDOUT is the default for output. (In line 22 of
 our Average Example, we left it out to avoid confusing you until
 now.)
If you try the previous example, you may notice that you get an
 extra blank line. This happens because the line-reading operation does not
 automatically remove the newline from your input line (your input would
 be, for example, "9\n"). For those
 times when you do want to remove the newline, Perl provides the chop and chomp functions. chop will indiscriminately remove (and return)
 the last character of the string, while chomp will only remove the end of record marker
 (generally, "\n") and return the number
 of characters so removed. You’ll often see this idiom for inputting a
 single line:
chomp($number = <STDIN>); # input a number, then remove its newline
which means the same thing as:
$number = <STDIN>; # input a number
chomp($number); # remove trailing newline
One last thing, just because we called our variable $number doesn’t mean it was one. Any string will
 do. Perl only cares whether something is a number if you try to operate on
 that string as though it were a number—down which road lie operators, our
 next topic.

[22] Some of the other things that make Perl a good glue language
 are: it handles non-ASCII data, it’s embeddable, and you can embed
 other things in it via extension modules. It’s concise, and it
 “networks” easily. It’s environmentally conscious, so to speak. You
 can invoke it in many different ways (as we saw earlier). But most of
 all, the language itself is not so rigidly structured that you can’t
 get it to “flow” around your problem. It comes back to that TMTOWTDI
 thing again.

[23] These filehandles are typically attached to your terminal, so
 you can type to your program and see its output, but they may also be
 attached to files (and such). Perl can give you these predefined
 handles because your operating system already provides them, one way
 or another. Under Unix, processes inherit standard input, output, and
 error from their parent process, typically a shell. One of the duties
 of a shell is to set up these I/O streams so that the child process
 doesn’t need to worry about them.

Operators

As we alluded to earlier, Perl is also a mathematical language. This is true
 at several levels, from low-level bitwise logical operations, up through
 number and set manipulation, on up to larger predicates and abstractions
 of various sorts. And as we all know from studying math in school,
 mathematicians love strange symbols. What’s worse, computer scientists
 have come up with their own versions of these strange symbols. Perl has a
 number of these strange symbols, too—but take heart, as most are borrowed
 directly from C, FORTRAN, sed(1) or
 awk(1), so they’ll at least be familiar to users of
 those languages.
The rest of you can take comfort in knowing that, by learning all
 these strange symbols in Perl, you’ve given yourself a head start on all
 those other strange languages.
Perl’s built-in operators may be classified by number of operands
 into unary, binary, and trinary (or ternary) operators. They may be
 classified by whether they’re prefix operators (which go in front of their
 operands) or infix operators (which go in between their operands). They
 may also be classified by the kinds of objects they work with, such as
 numbers, strings, or files. Later, we’ll give you a table of all the
 operators, but first here are some handy ones to get you started.

Some Binary Arithmetic Operators

Arithmetic operators do what you would expect from learning them in
 school. They perform some sort of mathematical function on numbers; see
 Table 1-2.
Table 1-2. Mathematical operators
	Example	Name	Result
	$a +
 $b	Addition	Sum of $a and
 $b
	$a *
 $b	Multiplication	Product of $a and
 $b
	$a %
 $b	Modulus	Remainder of $a divided
 by $b
	$a **
 $b	Exponentiation	$a to the power of $b

Yes, we left out subtraction and division—we suspect you can
 figure out how they should work. Try them and see if you’re right. (Or
 cheat and look in Chapter 3.) Arithmetic operators are
 evaluated in the order your math teacher taught you (exponentiation
 before multiplication; multiplication before addition). You can always
 use parentheses to make it come out differently.

String Operators

There is also an “addition” operator for strings that performs
 concatenation (that is, joining strings end to end). Unlike some
 languages that confuse this with numeric addition, Perl defines a
 separate operator (.) for string
 concatenation:
$a = 123;
$b = 456;
say $a + $b; # prints 579
say $a . $b; # prints 123456
There’s also a “multiply” operator for strings, called the
 repeat operator. Again, it’s a separate operator
 (x) to keep it distinct from numeric
 multiplication:
$a = 123;
$b = 3;
say $a * $b; # prints 369
say $a x $b; # prints 123123123
These string operators bind as tightly as their corresponding
 arithmetic operators. The repeat operator is a bit unusual in taking a
 string for its left argument but a number for its right argument. Note
 also how Perl is automatically converting from numbers to strings. You
 could have put all the literal numbers above in quotes, and it would
 still have produced the same output. Internally, though, it would have
 been converting in the opposite direction (that is, from strings to
 numbers).
A couple more things to think about. String concatenation is also implied by the interpolation
 that happens in double-quoted strings. And when you print out a list of
 values, you’re also effectively concatenating strings. So the following
 three statements produce the same output:
say $a . " is equal to " . $b . "."; # dot operator
say $a, " is equal to ", $b, "."; # list
say "$a is equal to $b."; # interpolation
Which of these you use in any particular situation is entirely up
 to you. (But in our opinion interpolation is often the most
 readable.)
The x operator may seem
 relatively worthless at first glance, but it is quite useful at times,
 especially for things like this:
say "–" x $scrwid;
which draws a line across your screen, presuming $scrwid contains your screen width, and not
 your screw identifier.

Assignment Operators

Although it’s not exactly a mathematical operator, we’ve already made
 extensive use of the simple assignment operator, =   . Try to remember that = means “gets set to” rather than “equals”.
 (There is also a mathematical equality operator == that means “equals”, and if you start out
 thinking about the difference between them now, you’ll save yourself a
 lot of headache later. The ==
 operator is like a function that returns a Boolean value, while = is more like a procedure that is evaluated
 for the side effect of modifying a variable.)
Like the operators described earlier, assignment operators are
 binary infix operators, which means they have an operand on either side
 of the operator. The right operand can be any expression you like, but
 the left operand must be a valid lvalue (which,
 when translated to English, means a valid storage location like a
 variable, or a location in an array). The most common assignment
 operator is simple assignment. It determines the value of the expression
 on its right side, and then sets the variable on the left side to that
 value:
$a = $b;
$a = $b + 5;
$a = $a * 3;
Notice the last assignment refers to the same variable twice; once
 for the computation, once for the assignment. There’s nothing wrong with
 that, but it’s a common enough operation that there’s a shortcut for it
 (borrowed from C). If you say:
lvalue operator= expression
it is evaluated as if it were:
lvalue = lvalue operator expression
except that the lvalue is not computed twice. (This only makes a
 difference if evaluation of the lvalue has side effects. But when it
 does make a difference, it usually does what you
 want. So don’t sweat it.)
So, for example, you could write the previous example as:
$a *= 3;
which reads “multiply $a by 3”.
 You can do this with almost any binary operator in Perl, even some that
 you can’t do it with in C:
$line .= "\n"; # Append newline to $line.
$fill x= 80; # Make string $fill into 80 repeats of itself.
$val ||= "2"; # Set $val to 2 if it isn't already "true".
Line 10 of our Average Example[24] contains two string concatenations, one of which is an
 assignment operator. And line 18 contains a +=.
Regardless of which kind of assignment operator you use, the final
 value of the variable on the left is returned as the value of the
 assignment as a whole.[25] This will not surprise C programmers, who will already
 know how to use this idiom to zero out variables:
$a = $b = $c = 0;
You’ll also frequently see assignment used as the condition of a
 while loop, as in line 8 of our
 Average Example.
What will surprise C programmers is that
 assignment in Perl returns the actual variable as an lvalue, so you can
 modify the same variable more than once in a statement. For instance,
 you could say:
($temp –= 32) *= 5/9;
to do an in-place conversion from Fahrenheit to Celsius. This is
 also why earlier in this chapter we could say:
chop($number = <STDIN>);
and have it chop the final value of $number. Generally speaking, you can use this
 feature whenever you want to copy something and at the same time do
 something else with it.

[24] Thought we’d forgotten it, didn’t you?

[25] This is unlike, say, Pascal, in which assignment is a
 statement and returns no value. We said earlier that assignment is
 like a procedure, but remember that in Perl, even procedures return
 values.

Unary Arithmetic Operators

As if $variable += 1 weren’t short enough, Perl borrows from C an even shorter
 way to increment a variable. The autoincrement (and autodecrement)
 operators simply add (or subtract) one from the value of the variable.
 They can be placed on either side of the variable, depending on when you
 want them to be evaluated; see Table 1-3.
Table 1-3. Increment operators
	Example	Name	Result
	++$a,
 $a++	Autoincrement	Add 1 to $a
	––$a,
 $a––	Autodecrement	Subtract 1 from $a

If you place one of these “auto” operators before the variable, it
 is known as a preincremented (predecremented) variable. Its value will
 be changed before it is referenced. If it is placed after the variable,
 it is known as a postincremented (postdecremented) variable, and its
 value is changed after it is used. For example:
$a = 5; # $a is assigned 5
$b = ++$a; # $b is assigned the incremented value of $a, 6
$c = $a––; # $c is assigned 6, then $a is decremented to 5
Line 19 of our Average Example increments the number of scores by
 one so that we’ll know how many scores we’re averaging. It uses a
 postincrement operator ($scores++),
 but in this case it doesn’t matter since the expression is in void
 context, which is just a funny way of saying that the expression is
 being evaluated only for the side effect of incrementing the variable.
 The value returned is being thrown away.[26]

[26] The optimizer will notice this and optimize the postincrement
 into a preincrement, because that’s a bit faster to execute. (You
 didn’t need to know that, but we hoped it would cheer you
 up.)

Logical Operators

Logical operators, also known as “short-circuit” operators, allow the program
 to make decisions based on multiple criteria without using nested
 if statements. They are known as
 short-circuit operators because they skip (short circuit) the evaluation
 of their right argument if they decide the left argument has already
 supplied enough information to decide the overall value. This is not
 just for efficiency. You are explicitly allowed to depend on this
 short-circuiting behavior to avoid evaluating code in the right argument
 that you know would blow up if the left argument were not “guarding” it.
 You can say “California or bust!” in Perl without busting (presuming you
 do get to California).
Perl actually has two sets of logical operators: a traditional set
 borrowed from C and a newer (but even more traditional) set of
 ultralow-precedence operators borrowed from BASIC. Both sets contribute
 to readability when used appropriately. C’s punctuational operators work
 well when you want your logical operators to bind more tightly than
 commas, while BASIC’s word-based operators work well when you want your
 commas to bind more tightly than your logical operators. Often they work
 the same, and which set you use is a matter of personal preference. (For
 contrastive examples, see the section Logical and, or, not, and xor in
 Chapter 3.) Although the two sets of operators are not
 interchangeable due to precedence, once they’re parsed, the operators
 themselves behave identically; precedence merely governs the extent of
 their arguments. Table 1-4 lists logical
 operators.
Table 1-4. Logical operators
	Example	Name	Result
	$a
 && $b	And	$a if $a is false, $b otherwise
	$a ||
 $b	Or	$a if $a is true, $b otherwise
	!
 $a	Not	True if $a is not true
	$a and
 $b	And	$a if $a is false, $b
 otherwise
	$a or
 $b	Or	$a if $a is true, $b
 otherwise
	not
 $a	Not	True if $a is not true
	$a xor
 $b	Xor	True if $a or $b is true, but not both

Since the logical operators “short circuit” the way they do,
 they’re often used in Perl to conditionally execute code. The following
 line (line 4 from our Average Example) tries to open the file
 grades:
open(GRADES, "<:utf8", "grades") || die "Can't open file grades: $!\n";
If it opens the file, it will jump to the next line of the
 program. If it can’t open the file, it will provide us with an error
 message and then stop execution.
Literally, this line means “Open grades or
 bust!” Besides being another example of natural language, the
 short-circuit operators preserve the visual flow. Important actions are
 listed down the left side of the screen, and secondary actions are
 hidden off to the right. (The $!
 variable contains the error message returned by the operating system—see
 Chapter 25.) Of course, these logical operators can
 also be used within the more traditional kinds of conditional
 constructs, such as the if and
 while statements.

Some Numeric and String Comparison Operators

Comparison, or relational, operators tell us how two scalar values (numbers or strings) relate to
 each other. There are two sets of operators: one does numeric comparison
 and the other does string comparison. (In either case, the arguments
 will be “coerced” to have the appropriate type first.) Assuming left and
 right arguments of $a and $b, Table 1-5 shows
 us what we have.
Table 1-5. Comparison operators
	Comparison	Numeric	String	Return Value
	Equal	==	eq	True if $a is equal to $b
	Not equal	!=	ne	True if $a is not equal to $b
	Less than	<	lt	True if $a is less than $b
	Greater than	>	gt	True if $a is greater than $b
	Less than or equal	<=	le	True if $a not greater than $b
	Greater than or equal	>=	ge	True if $a not less than $b
	Comparison	<=>	cmp	0 if equal, 1 if $a
 greater, −1 if $b
 greater

The last pair of operators (<=> and cmp) are entirely redundant with the earlier
 operators. However, they’re incredibly useful in sort subroutines (see Chapter 27).[27]

[27] Some folks feel that such redundancy is evil because it keeps
 a language from being minimalistic, or orthogonal. But Perl isn’t an
 orthogonal language; it’s a diagonal language. By this we mean that
 Perl doesn’t force you to always go at right angles. Sometimes you
 just want to follow the hypotenuse of the triangle to get where
 you’re going. TMTOWTDI is about shortcuts. Shortcuts are about
 programmer efficiency.

Some File Test Operators

The file test operators allow you to test whether certain file
 attributes are set before you go and blindly muck about with the files.
 The most basic file attribute is, of course, whether the file exists.
 For example, it would be very nice to know whether your mail aliases
 file already exists before you go and open it as a new file, wiping out
 everything that was in there before. Table 1-6
 gives a few of the file test operators.
Table 1-6. File test operators
	Example	Name	Result
	–e
 $a	Exists	True if file named in $a exists
	–r
 $a	Readable	True if file named in $a is readable
	–w
 $a	Writable	True if file named in $a is writable
	–d
 $a	Directory	True if file named in $a is a directory
	–f
 $a	File	True if file named in $a is a regular file
	–T
 $a	Text File	True if file named in $a is a text file

You might use them like this:
–e "/usr/bin/perl" or warn "Perl is improperly installed.\n";
–f "/vmlinuz" and say "I see you are a friend of Linus.";
Note that a regular file is not the same thing as a text file.
 Binary files like /vmlinuz are regular files, but they
 aren’t text files. Text files are the opposite of binary files, while
 regular files are the opposite of “irregular” files like directories and
 devices.
There are a lot of file test operators, many of which we didn’t
 list. Most of the file tests are unary Boolean operators, which is to
 say they take only one operand (a scalar that evaluates to a filename or
 a filehandle), and they return either a true or false value. A few of
 them return something fancier, like the file’s size or age, but you can
 look those up when you need them in the section Named Unary and File Test Operators in Chapter 3.

Control Structures

So far, except for our one large example, all of our examples have
 been completely linear; we executed each command in order. We’ve seen a
 few examples of using the short-circuit operators to cause a single
 command to be (or not to be) executed. While you can write some very
 useful linear programs (a lot of CGI scripts fall into this category), you
 can write much more powerful programs if you have conditional expressions
 and looping mechanisms. Collectively, these are known as control
 structures. So you can also think of Perl as a control language.
But to have control, you have to be able to decide things, and to
 decide things, you have to know the difference between what’s true and
 what’s false.

What Is Truth?

We’ve bandied about the term truth,[28] and we’ve mentioned that certain operators return a true
 or a false value. Before we go any further, we really ought to explain
 exactly what we mean by that. Perl treats truth a little differently
 than most computer languages, but after you’ve worked with it a while,
 it will make a lot of sense. (Actually, we hope it’ll make a lot of
 sense after you’ve read the following.)
Basically, Perl holds truths to be self-evident. That’s a glib way
 of saying that you can evaluate almost anything for its truth value.
 Perl uses practical definitions of truth that depend on the type of
 thing you’re evaluating. As it happens, there are many more kinds of
 truth than there are of nontruth.
Truth in Perl is always evaluated in scalar context. Other than
 that, no type coercion is done. So here are the rules for the various
 kinds of values a scalar can hold:
	Any string is true except for "" and "0".

	Any number is true except for 0.

	Any reference is true.

	Any undefined value is false.

Actually, the last two rules can be derived from the first two.
 Any reference (rule 3) would point to something with an address and
 would evaluate to a number or string containing that address, which is
 never 0 because it’s always defined. And any undefined value (rule 4)
 would always evaluate to 0 or the null string.
And, in a way, you can derive rule 2 from rule 1 if you pretend
 that everything is a string. Again, no string coercion is actually done
 to evaluate truth, but if the string coercion were
 done, then any numeric value of 0 would simply turn into the string
 "0" and be false. Any other number
 would not turn into the string "0",
 and so would be true. Let’s look at some examples so we can understand
 this better:
0 # would become the string "0", so false.
1 # would become the string "1", so true.
10 – 10 # 10 minus 10 is 0, would convert to string "0", so false.
0.00 # equals 0, would convert to string "0", so false.
"0" # is the string "0", so false.
"" # is a null string, so false.
"0.00" # is the string "0.00", neither "" nor "0", so true!
"0.00" + 0 # would become the number 0 (coerced by the +), so false.
\$a # is a reference to $a, so true, even if $a is false.
undef() # is a function returning the undefined value, so false.
Since we mumbled something earlier about truth being evaluated in
 scalar context, you might be wondering what the truth value of a list
 is. Well, the simple fact is none of the operations in Perl will return
 a list in scalar context. They’ll all notice they’re in scalar context
 and return a scalar value instead, and then you apply the rules of truth
 to that scalar. So there’s no problem, as long as you can figure out
 what any given operator will return in scalar context. As it happens,
 both arrays and hashes return scalar values that conveniently happen to
 be true if the array or hash contains any elements. More on that
 later.
The if and unless statements

We saw earlier how a logical operator could function as a conditional.
 A slightly more complex form of the logical operators is the if statement. The if statement evaluates a truth condition
 (that is, a Boolean expression) and executes a block if the condition
 is true:
if ($debug_level > 0) {
 # Something has gone wrong. Tell the user.
 say "Debug: Danger, Will Robinson, danger!";
 say "Debug: Answer was '54', expected '42'.";
}
A block is one or more statements grouped together by a set of
 braces. Since the if statement
 executes a block, the braces are required by definition. If you know a
 language like C, you’ll notice that this is different. Braces are
 optional in C if you have a single statement, but the braces are not
 optional in Perl.
Sometimes just executing a block when a condition is met isn’t
 enough. You may also want to execute a different block if that
 condition isn’t met. While you could certainly
 use two if statements, one the
 negation of the other, Perl provides a more elegant solution. After
 the block, if can take an optional
 second condition, called else, to
 be executed only if the truth condition is false. (Veteran computer
 programmers will not be surprised at this point.)
At times you may even have more than two possible choices. In
 this case, you’ll want to add an elsif truth condition for the other possible
 choices. (Veteran computer programmers may well be surprised by the
 spelling of “elsif”, for which
 nobody here is going to apologize. Sorry.)
if ($city eq "New York") {
 say "New York is northeast of Washington, D.C.";
}
elsif ($city eq "Chicago") {
 say "Chicago is northwest of Washington, D.C.";
}
elsif ($city eq "Miami") {
 say "Miami is south of Washington, D.C. And much warmer!";
}
else {
 say "I don't know where $city is, sorry.";
}
The if and elsif clauses are each computed in turn,
 until one is found to be true or the else condition is reached. When one of the
 conditions is found to be true, its block is executed and all
 remaining branches are skipped. Sometimes, you don’t want to do
 anything if the condition is true, only if it is false. Using an empty
 if with an else may be messy, and a negated if may be illegible; it sounds weird in
 English to say “if not this is true, do something”. In these
 situations, you would use the unless statement:
unless ($destination eq $home) {
 say "I'm not going home.";
}
There is no elsunless though.
 This is generally construed as a feature.

[28] Strictly speaking, this is not true.

The given and when Statements

To test a single value for a bunch of different alternatives, recent
 versions of Perl have what other languages sometimes call switch and case. Because we like to make Perl work like a
 natural language, however, we call these given and when. (Since you’re already putting use v5.14 at the top, you should have this
 functionality, which was introduced in 5.10.)
#!/usr/bin/perl
use v5.14;

print "What is your favorite color? ";
chomp(my $answer = <STDIN>);

given ($answer) {
 when ("purple") { say "Me too." }

 when ("green") { say "Go!" }
 when ("yellow") { say "Slow!" }
 when ("red") { say "Stop!" }

 when ("blue") { say "You may proceed." }
 when (/\w+, no \w+/) { die "AAAUUUGHHHHH!" }

 when (42) { say "Wrong answer." }

 when (['gray','orange','brown','black','white']) {
 say "I think $answer is pretty okay too.";
 }

 default {
 say "Are you sure $answer is a real color?";
 }
}
First the given part takes the
 value of its expression and makes it the topic of conversation, so the
 when statements know which value to
 test. The cases are then evaluated by matching the argument of each
 when against the topic to find the
 first when statement that thinks the
 topic’s value matches. The when
 statements try to match in order, and as soon as one matches, it doesn’t
 try any of the subsequent statements, but drops out of the whole
 given construct.
The form of each when argument
 ("red" vs 42 vs /\w+, no
 \w+/) determines the type of match performed, so strings match
 as strings, numbers match as numbers, and patterns match as, well,
 patterns. Lists of values match if any of them match. The when statement uses an underlying operation
 called “smartmatching” that is designed to match the way you expect most
 of the time, except when it doesn’t. See Smartmatch Operator
 in Chapter 3 for more on that.

Looping Constructs

These statements allow a Perl program to repeatedly execute the
 same code, so they are often known as iterative
 constructs. There are several kinds, which differ primarily in how you
 know when you’re done with the loop and can go on to other
 things.
Conditional loops

The while and until statements test an expression for truth just as the if and unless statements do, except that they’ll
 execute the block repeatedly as long as the condition is satisfied
 each time through. The condition is always checked before each
 iteration. If the condition is met (that is, if it is true for a
 while or false for an until), the block of the statement is
 executed.
print "How many tickets have we sold so far? ";
my $before = <STDIN>;

my $sold = $before;
while ($sold < 10000) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 my $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
 $sold += $purchase;
}

say "This show is sold out, please come back later.";
Note that if the original condition is never met, the loop will
 never be entered at all. For example, if we’ve already sold 10,000
 tickets, we will report the show to be sold out immediately.
In our Average Example earlier, line 8 reads:
while (my $line = <GRADES>) {
This assigns the next line to the variable $line and, as we explained earlier, returns
 the value of $line so that the
 condition of the while statement
 can evaluate $line for truth. You
 might wonder whether Perl will get a false negative on blank lines and
 exit the loop prematurely. The answer is that it won’t. The reason is
 clear if you think about everything we’ve said. The line input
 operator leaves the newline on the end of the string, so a blank line
 has the value "\n". And you know
 that "\n" is not one of the
 canonical false values. So the condition is true, and the loop
 continues even on blank lines.
On the other hand, when we finally do reach the end of the file,
 the line input operator returns the undefined value, which always
 evaluates to false. And the loop terminates, just when we wanted it
 to. There’s no need for an explicit test of the eof function in Perl, because the input
 operators are designed to work smoothly in a conditional
 context.
In fact, almost everything is designed to work smoothly in a
 conditional (Boolean) context. If you mention an array in scalar
 context, the length of the array is returned. So you often see
 command-line arguments processed like this:
while (@ARGV) {
 process(shift @ARGV);
}
The shift operator removes
 one element from the argument list each time through the loop (and
 returns that element). The loop automatically exits when array
 @ARGV is exhausted; that is, when
 its length goes to 0. And 0 is already false in Perl. In a sense, the
 array itself has become “false”.[29]

The three-part loop

Another iterative statement is the three-part loop, also known
 as a C-style for loop. The
 three-part loop runs exactly like the while loop above, but it looks a bit
 different because two of the statements get moved into the official
 definition of the loop. (C programmers will find it very familiar
 though.)
print "How many tickets have we sold so far? ";
my $before = <STDIN>;

for (my $sold = $before; $sold < 10000; $sold += my $purchase) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
}

say "This show is sold out, please come back later.";
Within the loop’s parentheses, the three-part loop takes three
 expressions (hence the name), separated by two semicolons. The first
 expression sets the initial state of the loop variable. The second is
 a condition to test the loop variable; this works just like the
 while statement’s condition. The
 third expression modifies the state of the loop variable; this
 expression is effectively executed at the end of each iteration, just
 as we did explicitly in the previous while loop.
When the three-part loop starts, the initial state is set and
 the truth condition is checked. If the condition is true, the block is
 executed. When the block finishes, the modification expression is
 executed, the truth condition is again checked, and, if true, the
 block is rerun with the next value. As long as the truth condition
 remains true, the block and the modification expression will continue
 to be executed. (Note that only the middle expression is evaluated for
 its value. The first and third expressions are evaluated only for
 their side effects, and the resulting values are thrown away!)
Each of the three expressions may be omitted, but the two
 semicolons are always required. If you leave out the middle
 expression, it assumes you want to loop forever, so you can write an
 infinite loop like this:
for (;;) {
 say "Take out the trash!";
 sleep(5);
}

The foreach loop

The last of Perl’s iterative statements is known as the
 foreach loop.[30] This loop executes the same code for each of a known
 list of scalars, such as you might get from an array:
for my $user (@users) {
 if (–f "$home{$user}/.nexrc") {
 say "$user is cool... they use a perl–aware vi!";
 }
}
Unlike the if and while statements, which provide scalar
 context to a conditional expression, the foreach statement provides
 list context to the expression in parentheses. So the expression is
 evaluated to produce a list, if possible (and, if not, a single scalar
 value will be considered a list of one element). Then each element of
 the list is aliased to the loop variable in turn, and the block of
 code is executed once for each list element. Note that the loop
 variable refers to the element itself, rather than a copy of the
 element. Hence, modifying the loop variable also modifies the original
 array.
You’ll find many more of these loops in the typical Perl program
 than traditional three-part for
 loops, because it’s very easy in Perl to generate the kinds of lists
 that a foreach wants to iterate over. (That’s partly why we stole
 for’s keyword, since we’re lazy and
 think commonly used words should be short.) One idiom you’ll often see
 is a loop to iterate over the sorted keys of a hash:
for my $key (sort keys %hash) {
In fact, line 13 of our Average Example does precisely that, so
 we can print out the students in alphabetical order.

Breaking out: next and last

The next and last operators allow you to modify the flow of your loop. It is not at
 all uncommon to have a special case; you may want to skip it, or you
 may want to quit when you encounter it. For example, if you are
 dealing with Unix accounts, you may want to skip the system accounts
 (like root or lp). The
 next operator would allow you to
 skip to the end of your current loop iteration and start the next
 iteration. The last operator would
 allow you to skip to the end of your block, as if your loop’s test
 condition had returned false. This might be useful if, for example,
 you are looking for a specific account and want to quit as soon as you
 find it.
for my $user (@users) {
 if ($user eq "root" || $user eq "lp") {
 next;
 }
 if ($user eq "special") {
 print "Found the special account.\n";
 # do some processing
 last;
 }
}
It’s possible to break out of multilevel loops by labelling your
 loops and specifying which loop you want to break out of. Together
 with statement modifiers (another form of conditional which we’ll talk
 about later), this can make for extremely readable loop exits (if you
 happen to think English is readable):
LINE: while (my $line = <EMAIL>) {
 next LINE if $line eq "\n"; # skip blank lines
 last LINE if $line =~ /^>/; # stop on first quoted line
 # your ad here
}
You may be saying, “Wait a minute, what’s that funny ^> thing there inside the leaning
 toothpicks? That doesn’t look much like English.” And you’re right.
 That’s a pattern match containing a regular expression (albeit a
 rather simple one). And that’s what the next section is about. Perl is
 just about the best text-processing language in the world, and regular
 expressions are at the heart of Perl’s text processing.

[29] This is how Perl programmers think. So there’s no need to
 compare 0 to 0 to see if it’s false. Despite the fact that other
 languages force you to, don’t go out of your way to write explicit
 comparisons like while (@ARGV !=
 0). That’s just inefficient for both you and the
 computer. And anyone who has to maintain your code.

[30] Historically, it was written with the foreach keyword, hence the name. These
 days we tend to use the for
 keyword instead, since it reads more like English when you include
 a my declaration (and because
 the syntax cannot be confused with the three-part loop). So many
 of us never write foreach
 anymore, though you can still do that if you like.

Regular Expressions

Regular
 expressions (a.k.a. regexes, regexps, or REs) are used by many search programs such as grep and findstr, text-munging programs like sed and awk,
 and editors like vi and emacs. A regular expression is a way of
 describing a set of strings without having to list all the strings in your
 set.[31] Many other computer languages incorporate regular expressions (some of
 them even advertise “Perl5 regular expressions”!), but none of these
 languages integrates regular expressions into the language the way Perl
 does. Regular expressions are used several ways in Perl. First and
 foremost, they’re used in conditionals to determine whether a string
 matches a particular pattern, because in a Boolean context they return
 true and false. So when you see something that looks like /foo/ in a conditional, you know you’re looking
 at an ordinary pattern-matching operator:
if (/Windows 7/) { print "Time to upgrade?\n" }
Second, if you can locate patterns within a string, you can replace
 them with something else. So when you see something that looks like
 s/foo/bar/, you know it’s asking Perl
 to substitute “bar” for “foo”, if possible. We call that the substitution operator. It also happens
 to return true or false depending on whether it succeeded, but usually
 it’s evaluated for its side effect:
s/IBM/lenovo/;
Finally, patterns can specify not only where something is, but also
 where it isn’t. So the split operator uses a regular expression to specify where the data
 isn’t. That is, the regular expression defines the
 separators that delimit the fields of data. Our Average Example has a couple
 of trivial examples of this. Lines 9 and 16 each split strings on
 whitespace in order to return a list of words. But you can split on any
 separator you can specify with a regular expression:
my ($good, $bad, $ugly) = split(/,/, "vi,emacs,teco");
(There are various modifiers you can use in each of these situations
 to do exotic things like ignore case when matching alphabetic characters,
 but these are the sorts of gory details that we’ll cover in Part II when we get to the gory details.)
The simplest use of regular expressions is to match a literal
 expression. In the case of the split
 above, we matched on a single comma character. But if you match on several
 characters in a row, they all have to match sequentially. That is, the
 pattern looks for a substring, much as you’d expect. Let’s say we want to
 show all the lines of an HTML file that contain HTTP links (as opposed to
 FTP links). Let’s imagine we’re working with HTML for the first time, and
 we’re being a little naïve. We know that these links will always have
 “http:” in them somewhere. We could
 loop through our file with this:
while (my $line = <FILE>) {
 if ($line =~ /http:/) {
 print $line;
 }
}
Here, the =~ (pattern binding) is
 telling Perl to look for a match of the regular expression “http:” in the variable $line. If it finds the expression, the operator
 returns a true value and the block (a print statement) is executed.[32]
By the way, if you don’t use the =~ binding operator, Perl will search a default
 string instead of $line. It’s like when
 you say, “Eek! Help me find my contact lens!” People automatically know to
 look around near you without your actually having to tell them that.
 Likewise, Perl knows that there is a default place to search for things
 when you don’t say where to search for them. This default string is
 actually a special scalar variable that goes by the odd name of $_. In fact, it’s not the default just for
 pattern matching; many operators in Perl default to using the $_ variable, so a veteran Perl programmer would
 likely write the last example as:
while (<FILE>) {
 print if /http:/;
}
(Hmm, another one of those statement modifiers seems to have snuck
 in there. Insidious little beasties.)
This stuff is pretty handy, but what if we wanted to find all of the
 link types, not just the HTTP links? We could give a list of link types,
 like “http:”, “ftp:”, “mailto:”, and so on. But that list could get
 long, and what would we do when a new kind of link was added?
while (<FILE>) {
 print if /http:/;
 print if /ftp:/;
 print if /mailto:/;
 # What next?
}
Since regular expressions are descriptive of a set of strings, we
 can just describe what we are looking for: a number of alphabetic
 characters followed by a colon. In regular expression talk (Regexese?),
 that would be /[a–zA–Z]+:/, where the
 brackets define a character
 class. The a–z and A–Z represent all ASCII alphabetic characters
 (the dash means the range of all characters between the starting and
 ending character, inclusive). And the +
 is a special character that says “one or more of whatever was before me”.
 It’s what we call a quantifier, meaning a gizmo that says how many times something is
 allowed to repeat. (The slashes aren’t really part of the regular
 expression, but rather part of the pattern-match operator. The slashes are
 acting like quotes that just happen to contain a regular
 expression.)
Because certain classes like the alphabetics are so commonly used,
 Perl defines shortcuts for them, as listed in Table 1-7.
Table 1-7. Shortcuts for alphabetic characters
	Name	ASCII Definition	Unicode Definition	Shortcut
	Whitespace	[
 \t\n\r\f]	\p{Whitespace}	\s
	Word character	[a–zA–Z_0–9]	[\p{Alphabetic}\p{Digit}\p{Mark}\p{Pc}]	\w
	Digit	[0–9]	\p{Digit}	\d

Note that these match single characters. A
 \w will match any single word
 character, not an entire word. (Remember that + quantifier? You can say \w+ to match a word.) Perl also provides the
 negation of these classes by using the uppercased character, such as
 \D for a nondigit character.
We should note that \w is not
 always equivalent to [a–zA–Z_0–9] (and
 \d is not always [0–9]). Some locales define additional
 alphabetic characters outside the ASCII sequence, and \w respects them. Versions of Perl newer than
 5.8.1 also know about Unicode letter and digit properties and treat
 Unicode characters with those properties accordingly. (Perl also considers
 ideographs and combining marks to be \w
 characters.)
There is one other very special character class, written with a
 “.”, that will match any character
 whatsoever.[33] For example, /a./ will
 match any string containing an “a” that
 is not the last character in the string. Thus, it will match “at” or “am”
 or even “a!”, but not “a”, since there’s nothing after the “a” for the dot to match. Since it’s searching
 for the pattern anywhere in the string, it’ll match “oasis” and “camel”, but not “sheba”. It matches “caravan” on the first “a”. It could match on the second “a”, but it stops after it finds the first
 suitable match, searching from left to right.

[31] A good source of information on regular expression concepts
 is Jeffrey Friedl’s book, Mastering
 Regular Expressions.

[32] This is very similar to what the Unix command grep 'http:' file would do.

[33] Except that it won’t normally match a newline. When you think
 about it, a “.” doesn’t normally
 match a newline in grep(1) either.

Quantifiers

The characters and character classes we’ve talked about all match single
 characters. We mentioned that you could match multiple “word” characters
 with \w+. The + is one kind of quantifier, but there are
 others. All of them are placed after the item being quantified.
The most general form of quantifier specifies both the minimum and
 maximum number of times an item can match. You put the two numbers in
 braces, separated by a comma. For example, if you were trying to match
 North American phone numbers, the sequence \d{7,11} would match at least seven digits,
 but no more than eleven digits. If you put a single number in the
 braces, the number specifies both the minimum and the maximum; that is,
 the number specifies the exact number of times the item can match. (All
 unquantified items have an implicit {1} quantifier.)
If you put the minimum and the comma but omit the maximum, then
 the maximum is taken to be infinity. In other words, it will match at
 least the minimum number of times, plus as many as it can get after
 that. For example, \d{7} will match
 only the first seven digits (a local North American phone number, for
 instance, or the first seven digits of a longer number), while \d{7,} will match any phone number, even an
 international one (unless it happens to be shorter than seven digits).
 There is no special way of saying “at most” a certain number of times.
 Just say .{0,5}, for example, to find
 at most five arbitrary characters.
Certain combinations of minimum and maximum occur frequently, so
 Perl defines special quantifiers for them. We’ve already seen +, which is the same as {1,}, or “at least one of the preceding item”.
 There is also *, which is the same as
 {0,}, or “zero or more of the
 preceding item”, and ?, which is the
 same as {0,1}, or “zero or one of the
 preceding item” (that is, the preceding item is optional).
You need to be careful of a couple things about quantification.
 First of all, Perl quantifiers are by default
 greedy. This means that they will attempt to match
 as much as they can as long as the whole pattern still matches. For
 example, if you are matching /\d+/
 against “1234567890”, it will match
 the entire string. This is something to watch out for especially when
 you are using “.”, any character.
 Often, someone will have a string like:
larry:JYHtPh0./NJTU:100:10:Larry Wall:/home/larry:/bin/bash
and will try to match “larry:”
 with /.+:/. However, since the
 + quantifier is greedy, this pattern
 will match everything up to and including “/home/larry:”, because it matches as much as
 possible before the last colon, including all the other colons.
 Sometimes you can avoid this by using a negated character class; that
 is, by saying /[^:]+:/, which says to
 match one or more noncolon characters (as many as possible), up to the
 first colon. It’s that little caret in there that negates the Boolean
 sense of the character class.[34] The other point to be careful about is that regular
 expressions will try to match as early as possible.
 This even takes precedence over being greedy. Since scanning happens
 left to right, the pattern will match as far left as possible, even if
 there is some other place where it could match longer. (Regular
 expressions may be greedy, but they aren’t into delayed gratification.)
 For example, suppose you’re using the substitution command (s///) on the default string (variable $_, that is), and you want to remove a string
 of x’s from the middle of the string. If you say:
$_ = "fred xxxxxxx barney";
s/x*//;
it will have absolutely no effect! This is because the x* (meaning zero or more “x” characters) will be able to match the
 “nothing” at the beginning of the string, since the null string happens
 to be zero characters wide and there’s a null string just sitting there
 plain as day before the “f” of
 “fred”.[35] There’s one other thing you need to know. By default,
 quantifiers apply to a single preceding character, so /bam{2}/ will match “bamm” but not “bambam”. To apply a quantifier to more than
 one character, use parentheses. So to match “bambam”, use the pattern /(bam){2}/.

[34] Sorry, we didn’t pick that notation, so don’t blame us. That’s
 just how negated character classes are customarily written in Unix
 culture.

[35] Don’t feel bad. Even the authors get caught by this from time
 to time.

Minimal Matching

If you were using a prehistoric version of Perl and you didn’t
 want greedy matching, you had to use a negated character class. (And,
 really, you were still getting greedy matching of a constrained
 variety.)
In modern versions of Perl, you can force nongreedy, minimal
 matching by placing a question mark after any quantifier. Our same
 username match would now be /.*?:/.
 That .*? will now try to match as few
 characters as possible, rather than as many as possible, so it stops at
 the first colon rather than at the last.

Nailing Things Down

Whenever you try to match a pattern, it’s going to try to match in every
 location until it finds a match.
 An anchor allows you to restrict where
 the pattern can match. Essentially, an anchor is something that matches
 a “nothing”, but a special kind of nothing that depends on its
 surroundings. You could also call it a rule, a constraint, or an
 assertion. Whatever you care to call it, it tries to match something of
 zero width and either succeeds or fails. (Failure merely means that the
 pattern can’t match that particular way. The pattern will go on trying
 to match some other way, if there are any other ways left to
 try.)
The special symbol \b matches
 at a word boundary, which is defined as the “nothing” between a word
 character (\w) and a nonword
 character (\W), in either order. (The
 characters that don’t exist off the beginning and end of your string are
 considered to be nonword characters.) For example:
/\bFred\b/
would match “Fred” in both
 “The Great Fred” and “Fred the Great”, but not in “Frederick the Great” because the “d” in “Frederick” is not followed by a nonword
 character.
In a similar vein, there are also anchors for the beginning and
 the end of the string. If it is the first character of a pattern, the
 caret (^) matches the “nothing” at
 the beginning of the string. Therefore, the pattern /^Fred/ would match “Fred” in “Frederick the Great” but not in “The
 Great Fred”, whereas /Fred^/ wouldn’t
 match either. (In fact, it doesn’t even make much sense.) The dollar
 sign ($) works like the caret, except
 that it matches the “nothing” at the end of the string instead of the
 beginning.[36] So now you can probably figure out that when we
 said:
last LINE if $line =~ /^>/;
we meant “Go to the last iteration of the LINE loop if this line happens to begin with a
 > character.”
Earlier we said that the sequence \d{7,11} would match a number from seven to
 eleven digits long. While strictly true, the statement is misleading:
 when you use that sequence within a real pattern-match operator such as
 /\d{7,11}/, it does not preclude
 there being extra unmatched digits after the 11 matched digits! You
 often need to anchor quantified patterns on either or both ends to get
 what you expect.

[36] This is a bit oversimplified, since we’re assuming here that
 your string contains no newlines; ^ and $
 are actually anchors for the beginnings and endings of lines rather
 than strings. We’ll try to straighten this all out in Chapter 5 (to the extent that it can be straightened
 out).

Backreferences

We mentioned earlier that you can use parentheses to group things for
 quantifiers, but you can also use parentheses to remember bits and
 pieces of what you matched. A pair of parentheses around a part of a
 regular expression causes whatever was matched by that part to be
 remembered for later use. It doesn’t change what the part matches, so
 /\d+/ and /(\d+)/ will still match as many digits as
 possible, but in the latter case they will be remembered in a special
 variable to be backreferenced later.
How you refer back to the remembered part of the string depends on
 where you want to do it from. Within the same regular expression, you
 use a backslash followed by an integer. The integer corresponding to a
 given pair of parentheses is determined by counting left parentheses
 from the beginning of the pattern, starting with one. So, for example,
 to match something similar to an HTML tag like “Bold”, you might use
 /<(.*?)>.*?<\/\1>/. This
 forces the two parts of the pattern to match the exact same string, such
 as the “B” in this example.
Outside the regular expression itself, such as in the replacement
 part of a substitution, you use a $
 followed by an integer; that is, a normal scalar variable named by the
 integer. So if you wanted to swap the first two words of a string, for
 example, you could use:
s/(\S+)\s+(\S+)/$2 $1/
The right side of the substitution (between the second and third
 slashes) is mostly just a funny kind of double-quoted string, which is
 why you can interpolate variables there, including backreference
 variables. This is a powerful concept: interpolation (under controlled
 circumstances) is one of the reasons Perl is a good text-processing
 language. The other reason is the pattern matching, of course. Regular
 expressions are good for picking things apart, and interpolation is good
 for putting things back together again. Perhaps there’s hope for Humpty
 Dumpty after all.
If you get tired of numbered backreferences, v5.10 or later also
 supports named backreferences. This is the same substitution as just
 given but this time using named groups:
s/(?<alpha>\S+)\s+(?<beta>\S+)/$+{beta} $+{alpha}/
Table 1-8. Regular expression backreferences
	Where	Numbered Group	Named Group
	Declare	(...
)	(?<NAME> ...
)
	Inside same regex	\1	\k<NAME>
	In regular Perl code	 $1
 	$+{NAME}

It may take longer to type in the code that way, but once your
 patterns grow in size and complexity, you’ll be glad you can name your
 groups with meaningful words instead of just numbers.

List Processing

Much earlier in this chapter, we mentioned that Perl has two main contexts:
 scalar context (for dealing with singular things) and
 list context (for dealing with plural things). Many of the
 traditional operators we’ve described so far have been strictly scalar in
 their operation. They always take singular arguments (or pairs of singular
 arguments for binary operators) and always produce a singular result, even
 in list context. So if you write this:
@array = (1 + 2, 3 – 4, 5 * 6, 7 / 8);
you know that the list on the right side contains exactly four
 values, because the ordinary math operators always produce scalar values,
 even in the list context provided by the assignment to an array.
However, other Perl operators can produce either a scalar or a list
 value, depending on their context. They just “know” whether a scalar or a
 list is expected of them. But how will you know that? It turns out to be
 pretty easy to figure out, once you get your mind around a few key
 concepts.
First, list context has to be provided by something in the
 “surroundings”. In the previous example, the list assignment provides it.
 Earlier we saw that the list of a foreach loop provides it. The print operator also provides it. But you don’t
 have to learn these one by one.
If you look at the various syntax summaries scattered throughout the
 rest of the book, you’ll see various operators that are defined to take a
 LIST as an argument. Those are the operators
 that provide list context. Throughout this book,
 LIST is used as a specific technical term to
 mean “a syntactic construct that provides list context”. For example, if
 you look up sort, you’ll find the
 syntax summary:
sort LIST
That means that sort provides
 list context to its arguments.
Second, at compile time (that is, while Perl is parsing your program
 and translating to internal opcodes), any operator that takes a
 LIST provides list context to each syntactic
 element of that LIST. So every top-level
 operator or entity in the LIST knows at compile
 time that it’s supposed to produce the best list it knows how to produce.
 This means that if you say:
sort @dudes, @chicks, other();
then each of @dudes, @chicks, and other() knows at compile time that it’s supposed
 to produce a list value rather than a scalar value. So the compiler
 generates internal opcodes that reflect this.
Later, at runtime (when the internal opcodes are actually
 interpreted), each of those LIST elements
 produces its list in turn, and then (this is important) all the separate
 lists are joined together, end to end, into a single list. And that
 squashed-flat, one-dimensional list is what is finally handed off to the
 function that wanted the LIST in the first
 place. So if @dudes contains (Fred,Barney), @chicks contains (Wilma,Betty), and the other function returns the single-element list
 (Dino), then the
 LIST that sort sees is:
(Fred,Barney,Wilma,Betty,Dino)
and the LIST that sort returns is:
(Barney,Betty,Dino,Fred,Wilma)
Some operators produce lists (like keys), while some consume them (like print), and others transform lists into other
 lists (like sort). Operators in the
 last category can be considered filters, except that, unlike in the shell,
 the flow of data is from right to left, since list operators operate on
 arguments passed in from the right. You can stack up several list
 operators in a row:
print reverse sort map {lc} keys %hash;
That takes the keys of %hash and
 returns them to the map function, which
 lowercases all the keys by applying the lc operator to each of them, and passes them to
 the sort function, which sorts them,
 and passes them to the reverse
 function, which reverses the order of the list elements, and passes them
 to the print function, which prints
 them.
As you can see, that’s much easier to describe in Perl than in
 English.
There are many other ways in which list processing produces more
 natural code. We can’t enumerate all the ways here, but for an example,
 let’s go back to regular expressions for a moment. We talked about using a
 pattern in scalar context to see whether it matched, but if instead you
 use a pattern in list context, it does something else: it pulls out all
 the backreferences as a list. Suppose you’re searching through a log file
 or a mailbox, and you want to parse a string containing a time of the form
 “12:59:59 am”. You might say this:
my ($hour, $min, $sec, $ampm) = /(\d+):(\d+):(\d+) *(\w+)/;
That’s a convenient way to set several variables simultaneously. But
 you could just as easily say:
my @hmsa = /(\d+):(\d+):(\d+) *(\w+)/;
and put all four values into one array. Oddly, by decoupling the
 power of regular expressions from the power of Perl expressions, list
 context increases the power of the language. We don’t often admit it, but
 Perl is actually an orthogonal language in addition to being a diagonal
 language. Have your cake and eat it, too.

What You Don’t Know Won’t Hurt You (Much)

Finally, allow us to return once more to the concept of Perl as a
 natural language. Speakers of a natural language are allowed to have
 differing skill levels, to speak different subsets of the language, to
 learn as they go, and, generally, to put the language to good use before
 they know the whole language. You don’t know all of Perl yet, just as you
 don’t know all of English. But that’s Officially Okay in Perl culture. You
 can work with Perl usefully, even though we haven’t even told you how to
 write your own subroutines yet. We’ve scarcely begun to explain how to
 view Perl as a system management language, or a rapid prototyping
 language, or a networking language, or an object-oriented language. We
 could write entire chapters about some of these things. (Come to think of
 it, we already did.)
But, in the end, you must create your own view of Perl. It’s your
 privilege as an artist to inflict the pain of creativity on yourself. We
 can teach you how we paint, but we can’t teach you
 how you paint. There’s More Than One Way To Do
 It.
Have the appropriate amount of fun.

Part II. The Gory Details

Chapter 2. Bits and Pieces

We’re going to start small, so this chapter is about the
 elements of Perl.
Since we’re starting small, the progression through the next
 several chapters is necessarily from small to large. That is, we take a
 bottom-up approach, beginning with the smallest components of Perl
 programs and building them into more elaborate structures, much like
 molecules are built out of atoms. The disadvantage of this approach is
 that you don’t necessarily get the Big Picture before getting lost in a
 welter of details. The advantage is that you can understand the examples
 as we go along. (If you’re a top-down person, just turn the book over
 and read the chapters backward.)
Each chapter does build on the preceding chapter (or the
 subsequent chapter, if you’re reading backward), so
 you’ll need to be careful if you’re the sort of person who skips
 around.
You’re certainly welcome to peek at the reference materials toward
 the end of the book as we go along. (That doesn’t count as skipping
 around.) In particular, any isolated word in monospaced font is likely to be found in Chapter 27. And although we’ve tried to stay operating-system
 neutral, if you are unfamiliar with Unix terminology and run into a word
 that doesn’t seem to mean what you think it ought to mean, you should
 check whether the word is in the Glossary. If
 the Glossary doesn’t work, the Index probably will. If that doesn’t work, try
 your favorite search engine.

Atoms

Although there are various invisible things going on behind the
 scenes that we’ll explain presently, the smallest things you generally
 work with in Perl are individual characters. And we do mean
 characters; historically, Perl freely confused bytes with characters
 and characters with bytes, but in this new era of global networking,
 we must be careful to distinguish the two.
Perl may, of course, be written entirely in the 7-bit ASCII
 character set. For historical reasons, bytes in the range 128–255 are
 understood by Perl as being from the ISO-8859-1 (Latin1) character
 set, whose codepoints correspond to Unicode’s. To tell Perl that bytes
 in the current source file are to be treated as Unicode encoded as
 UTF-8, put this declaration at the top of your file:
use utf8;
As described in Chapter 6, Perl has had
 Unicode support since the last millennium. This support is pervasive
 throughout the language: you can use Unicode characters in identifiers
 (variable names and such) as well as within literal strings. When you
 are using Unicode, you don’t need to worry about how many bits or
 bytes it takes to represent a character. Perl just pretends all
 characters are the same size (that is, size 1), even though any given
 character might be represented by multiple bytes internally. Perl
 normally represents characters internally as UTF-8, a variable-length encoding. (For
 instance, a Unicode smiley character ☺, U+263A, would be represented internally
 as a three-byte sequence, but you aren’t supposed to worry about
 that.)
If you’ll let us drive our analogy of the physical elements a
 bit further, characters are atomic in the same sense as the individual
 atoms of the various elements. Yes, they’re composed of smaller
 particles known as bits and bytes, but if you break a character apart
 (in a character accelerator, no doubt), the individual bits and bytes
 lose the distinguishing chemical properties of the character as a
 whole. Just as neutrons are an implementation detail of the U-238
 atom, so too bytes are an implementation detail of the U+263A
 character.
So don’t sweat the small stuff. Let’s move on to bigger and
 better things.

Molecules

Perl is a free-form language, but that
 doesn’t mean that Perl is totally free of form. As computer folks
 usually use the term, a free-form language is one in which you can put
 spaces, tabs, and newlines anywhere you like—except where you
 can’t.
One obvious place you can’t put a whitespace character is in the middle of a token. A token
 is what we call a sequence of characters with a unit of
 meaning, much like a simple word in natural language. But unlike the
 typical word, a token might contain other characters besides letters,
 just as long as they hang together to form a unit of meaning. (In that
 sense, they’re more like molecules, which don’t have to be composed of
 only one particular kind of atom.) For example, numbers and
 mathematical operators are considered tokens. An identifier
 is a token that starts with an alphabetic character (typically a
 letter) or connector punctuation like an underscore and contains only
 alphabetics, combining marks, digits, and underscores. A token may not
 contain whitespace characters because this would split the token into
 two tokens, just as a space in an English word turns it into two
 words.[37]
Although whitespace is allowed between any two tokens,
 whitespace is required only between tokens that
 would otherwise be confused as a single token. All whitespace is
 equivalent for this purpose. Newlines are distinguished from spaces
 and tabs only within quoted strings, formats, and certain
 line-oriented forms of quoting. Specifically, newlines do not
 terminate statements as they do in certain other languages (such as
 FORTRAN or Python). Statements in Perl are terminated with semicolons,
 just as they are in C and various of its derivatives, like C++ and Java.
Unicode whitespace characters are allowed in a Unicode Perl
 program, but you need to be careful. If you use the special Unicode
 paragraph and line separators, be aware that Perl may count line
 numbers differently than your text editor does, so error messages may
 be more difficult to interpret. It’s best to stick with good
 old-fashioned newlines.
Tokens are recognized greedily; if at a particular point the
 Perl parser has a choice between recognizing a short token or a long
 token, it will choose the long one. If you meant it to be two tokens,
 just insert some whitespace between the tokens. (We tend to put extra
 space around most infix operators anyway, just for
 readability.)
Comments are indicated by the # character and extend from there through
 the end of the line. A comment counts as whitespace for separating
 tokens. The Perl language attaches no special meaning to anything you
 might put into a comment:[38]
my $comet = 'Haley'; # This is a comment
One other oddity is that if a line begins with = anywhere a statement would be legal, Perl
 ignores everything from that line down to the next line that begins
 with =cut. The ignored text is
 assumed to be pod, or “plain old documentation”. The Perl distribution has
 programs that will extract pod commentary from Perl modules and turn
 it into flat text, manpages, [image:], or even HTML or XML documents. In a
 complementary fashion, the Perl parser extracts the Perl code from
 Perl modules and ignores the pod. So you may consider this an
 alternate, multiline form of commenting. The code in this pod section isn’t even
 compiled:
=pod

my $dog = 'Spot';
my $cat = 'Buster';

=cut
You may also consider it completely nuts, but Perl modules
 documented this way never lose track of their documentation. See Chapter 23 for details on pod, including a description of
 how to effect multiline comments in Perl.
But don’t look down on the normal comment character. There’s
 something comforting about the visual effect of a nice row of # characters down the left side of a
 multiline comment. It immediately tells your eyes: “This is not code.”
 You’ll note that even in languages with multiline commenting
 mechanisms like C, people often put a row of * characters down the left side of their
 comments anyway. Appearances are often more important than they
 appear:
start of a multiline comment
my $dog = 'Spot';
my $cat = 'Buster';
In Perl, just as in chemistry and in language, you can build
 larger and larger structures out of the smaller ones. We already
 mentioned the statement;
 it’s just a sequence of tokens that make up a command;
 that is, a sentence in the imperative mood. You can combine a sequence
 of statements into a block
 that is delimited by braces (also known affectionately
 as “curlies” by people who confuse braces with suspenders). Blocks can
 in turn be combined into larger blocks. Some blocks function
 as subroutines, which can be combined
 into modules, which can be combined into programs. But
 we’re getting ahead of ourselves—those are subjects for coming
 chapters. Let’s build some more tokens out of characters.

[37] The astute reader will point out that literal strings may contain whitespace characters.
 But strings can get away with it only because they have quotes on
 both ends to keep the spaces from leaking out.

[38] Actually, that’s a small fib. The Perl parser does look for
 command-line switches on an initial #! line (see Chapter 17). It can also interpret the line number
 directives that various preprocessors produce (see the section
 Generating Perl in Other Languages in Chapter 21). Some modules, such as Perl::Critic and Smart::Comments, also use special
 comments to figure out what to do.

Built-in Data Types

Before we start talking about various kinds of tokens you can build from characters,
 we need a few more abstractions. To be specific, we need three data
 types.
Computer languages vary in how many and what kinds of data types
 they provide. Unlike some commonly used languages that provide many
 confusing types for similar kinds of values, Perl provides just a few
 built-in data types. Consider C, in which you might run into char, short, int, long, long
 long, bool, wchar_t, size_t, off_t, regex_t, uid_t, u_longlong_t, pthread_key_t, fp_exception_field_type, and so on. That’s
 just some of the integer types! Then there are floating-point numbers,
 and pointers, and strings.
All these complicated types correspond to just one type in Perl:
 the scalar. (Usually Perl’s simple data types are all you
 need, but if not, you’re free to define fancy dynamic types using
 Perl’s object-oriented features—see Chapter 12.)
 Perl’s three basic data types are: scalars, arrays of scalars, and hashes of scalars (also known as associative arrays). Some
 people may prefer to call these data
 structures rather than types. That’s okay.
Scalars are the fundamental type from which more complicated
 structures are built. A scalar stores a single, simple value—typically
 a string or a number. Elements of this simple type may be combined
 into either of the two aggregate types. An array is an ordered list of scalars that
 you access with an integer subscript (or index). All indexing in Perl
 starts at 0. Unlike many programming languages, however, Perl treats
 negative subscripts as valid: instead of counting from the beginning,
 negative subscripts count back from the end of whatever it is you’re
 indexing into. (This applies to various substring and sublist
 operations as well as to regular subscripting.) A hash, on the other hand, is an unordered
 set of key/value pairs that you access using strings (the keys) as
 subscripts to look up the scalars (the values) corresponding to a given key. Variables are always one
 of these three types. Other than variables, Perl also has other
 abstractions that you can think of as data types, such as filehandles,
 directory handles, formats, subroutines, symbol tables, and symbol
 table entries.
Abstractions are wonderful, and we’ll collect more of them as we
 go along, but they’re also useless in a way. You can’t do anything
 with an abstraction directly. That’s why computer languages have
 syntax. We need to introduce you to the various kinds of syntactic
 terms you can use to pull your abstract data into expressions. We like
 to use the technical term term
 when we want to talk in terms of these syntactic units.
 (Hmm, this could get terminally confusing. Just remember how your math
 teacher used to talk about the terms of an
 equation, and you won’t go terribly wrong.)
Just like the terms in a math equation, the purpose of most
 terms in Perl is to produce values for operators like addition and
 multiplication to operate on. Unlike in a math equation, however, Perl
 has to do something with the values it
 calculates, not just think with a pencil in its hand about whether the
 two sides of the equation are equal. One of the most common things to
 do with a value is to store it somewhere:
$x = $y;
That’s an example of the assignment
 operator (not the numeric equality operator, which is spelled = = in Perl). The assignment gets the value
 from $y and puts it into $x. Notice that we aren’t using the term
 $x for its value; we’re using it
 for its location. (The old value of $x gets clobbered by the assignment.) We say
 that $x is an lvalue, meaning
 it’s the sort of storage location we can use on the left side of an
 assignment. We say that $y is
 an rvalue because it’s used on the
 right side.
There’s also a third kind of value, called a
 temporary value, that you need to understand if you want to know what
 Perl is really doing with your lvalues and rvalues. If we do some
 actual math and say:
$x = $y + 1;
Perl takes the rvalue $y and
 adds the rvalue 1 to it, which
 produces a temporary value that is eventually assigned to the lvalue
 $x. It may help you to visualize
 what is going on if we tell you that Perl stores these temporary
 values in an internal structure called a stack.[39] The terms of an expression (the ones we’re talking about
 in this chapter) tend to push values onto the stack, while the
 operators of the expression (which we’ll discuss in the next chapter)
 tend to pop them back off the stack, perhaps leaving another temporary
 result on the stack for the next operator to work with. The pushes and
 pops all balance out—by the time the expression is done, the stack is
 entirely empty (or as empty as it was when we started). More about
 temporary values later. Some terms can only be rvalues, such as the
 1 above, while others can serve as
 either lvalues or rvalues. In particular, as the assignments above
 illustrate, a variable may function as either. And that’s what our
 next section is about.

[39] A stack works just like one of those spring-loaded plate
 dispensers you see in a buffet restaurant—you can
 push plates onto the top of the stack, or you
 can pop them off again (to use the Comp. Sci.
 vernacular).

Variables

Not surprisingly, there are three variable types corresponding
 to the three abstract data types we mentioned earlier. Each of these
 is prefixed by what we call a sigil.[40] Scalar variables are always named with an initial $, even when referring to a scalar that is part of an array
 or hash. It works a bit like the English word “the”. See Table 2-1.
Table 2-1. Accessing scalar values
	Construct	Meaning
	
 $days
 	Simple scalar value $days
	
 $days[28]
 	29th element of array
 @days
	
 $days{"Feb"}
 	“Feb” value from hash %days

Note that we can use the same name for $days, @days, and %days without Perl getting confused.
There are other, fancier scalar terms that are useful in
 specialized situations that we won’t go into yet. Table 2-2 shows what they look like.
Table 2-2. Syntax for scalar terms
	Construct	Meaning
	
 ${days}
 	Same as $days but unambiguous before
 alphanumerics
	
 $Dog::days
 	Different $days variable, in the Dog package
	
 $#days
 	Last index of array @days
	
 $days–>[28]
 	29th element of array
 pointed to by reference $days
	
 $days[0][2]
 	Multidimensional
 array
	
 $days{2000}{"Feb"}
 	Multidimensional hash
	
 $days{2000,"Feb"}
 	Multidimensional hash
 emulation

Entire arrays (or slices of arrays and
 hashes) are named with the sigil @, which works
 much like the words “these” or “those”. Table 2-3 shows this syntax.
Table 2-3. Syntax for list terms
	Construct	Meaning
	
 @days
 	Array containing ($days[0], $days[1], ...
 $days[N])
	
 @days[3, 4, 5]
 	Array slice containing
 ($days[3], $days[4],
 $days[5])
	
 @days[3..5]
 	Array slice containing
 ($days[3], $days[4],
 $days[5])
	
 @days{"Jan","Feb"}
 	Hash slice containing
 ($days{"Jan"},$days{"Feb"})

Entire hashes are named by %, as shown in
 Table 2-4.
Table 2-4. Syntax for hash terms
	Construct	Meaning
	
 %days
 	
 (Jan
 => 31, Feb => $leap ? 29 : 28, ...)

Any of these constructs may also serve as an lvalue, specifying
 a location you could assign a value to. With arrays, hashes, and
 slices of arrays or hashes, the lvalue provides multiple locations to
 assign to, so you can assign multiple values to them all at once:
@days = 1 .. 7;

[40] Presumably because it takes an ordinary name and makes it
 more magical.

Names

We’ve talked about storing values in variables, but the variables
 themselves (their names and their associated definitions) also need to
 be stored somewhere. In the abstract, these places are known
 as namespaces.
 Perl provides two kinds of namespaces, which are often
 called symbol
 tables and lexical
 scopes.[41] You may have an arbitrary number of symbol tables or
 lexical scopes, but every name you define gets stored in one or the
 other. We’ll explain both kinds of namespaces as we go along. For now
 we’ll just say that symbol tables are global hashes that happen to
 contain symbol table entries for global variables (including the
 hashes for other symbol tables). In contrast, lexical scopes are
 unnamed scratchpads that don’t live in any symbol
 table but are attached to a block of code in your program. They
 contain variables that can only be seen by the block. (That’s what we
 mean by a scope. The
 lexical part just
 means, “having to do with text”, which is not at all what a
 lexicographer would mean by it. Don’t blame us.)
Within any given namespace (whether global or lexical), every
 variable type has its own subnamespace, determined by the sigil. You
 can, without fear of conflict, use the same name for a scalar
 variable, an array, or a hash (or, for that matter, a filehandle, a
 subroutine name, a label, or your pet llama). This means that $foo and @foo are two different variables. Together
 with the previous rules, it also means that $foo[1] is an element of @foo totally unrelated to the scalar
 variable $foo. This may seem a bit
 weird, but that’s okay, because it is
 weird.[42]
Subroutines may be named with an initial &, although the sigil is optional when
 calling the subroutine. Subroutines aren’t generally considered
 lvalues, though you can talk Perl into allowing you to return an
 lvalue from a subroutine and assign to that, so it can look as though
 you’re assigning to the subroutine.
Sometimes you just want a name for “everything named foo”,
 regardless of its sigil. So symbol table entries can be named with an
 initial *, where the asterisk
 stands for all the other sigils. These are called typeglobs, and they have several uses.
 They can also function as lvalues. Assignment to typeglobs is how Perl
 implements importing of symbols from one symbol table to another. More
 about that later.
Like most computer languages, Perl has a list of reserved words that it recognizes as special keywords.
 However, because variable names always start with a sigil, reserved words don’t actually conflict with
 variable names. Certain other kinds of names don’t have sigils,
 though, such as labels and filehandles. With these, you do have to
 worry (a little) about conflicting with reserved words. Since most
 reserved words are entirely lowercase, we recommend that you pick
 label and filehandle names that contain uppercase characters. For
 example, if you say open(LOG,
 logfile) rather than the regrettable open(log, "logfile"), you won’t confuse Perl
 into thinking you’re talking about the built-in log operator (which does logarithms, not
 tree trunks). Using uppercase filehandles also improves
 readability[43] and protects you from conflict with reserved words we
 might add in the future. For similar reasons, user-defined modules are
 typically named with initial capitals so that they’ll look different
 from the built-in modules known as pragmas, which are named in all lowercase. And when we get to
 object-oriented programming, you’ll notice that class names are
 usually capitalized for the same reason.
As you might deduce from the preceding paragraph, case is
 significant in identifiers—FOO,
 Foo, and foo are all different names in Perl.
 Identifiers start with a letter or underscore and may be of any length
 (for values of “any” ranging between 1 and 251, inclusive) and may
 contain letters, digits, and underscores. If you’ve declared your
 source code to be Unicode with use
 utf8, then the rules change a bit: now identifiers must
 start with either connector punctuation (like an underscore) or any
 character with the Unicode XID_Start (XIDS) property, and can be
 followed by any character with the XID_Continue (XIDC) property. This
 gives you access to more than 100,000 different characters[44] for your identifiers, including ideographs, which count
 as letters, but we don’t recommend you use them unless you can read
 them.[45] See Chapter 6.
Names that follow sigils don’t have to be identifiers, strictly
 speaking. They can start with a digit, in which case they may only
 contain more digits, as in $123.
 Names that start with anything other than an alphabetic, digit, or
 connector punctuation are (usually) limited to that one character
 (like $? or $$), and generally have a predefined
 significance to Perl. For example, just as in the Unix shell, $$ is the current process ID, and $? is the exit status of your last child
 process. Perl also has an extensible syntax for internal variable
 names. Any variable of the form ${^NAME} is a special variable reserved for use by
 Perl. All these nonidentifier names are forced to be in the main
 symbol table. See Chapter 25 for some
 examples.
It’s tempting to think of identifiers and names as the same
 thing, but when we say name, we usually mean a
 fully qualified
 name; that is, a name that says which symbol table it lives in. Such
 names may be formed of a sequence of identifiers separated by
 the :: token:
$Santa::Helper::Reindeer::Rudolph::nose
That works just like the directories and filenames in a
 pathname:
/Santa/Helper/Reindeer/Rudolph/nose
In the Perl version of that notion, all the leading identifiers
 are the names of nested symbol tables, and the last identifier is the
 name of the variable within the most deeply nested symbol table. For
 instance, in the variable above, the symbol table is named Santa::Helper::Reindeer::Rudolph::, and the
 actual variable within that symbol table is $nose. (The value of that variable is, of
 course, “red”.)
A symbol table in Perl is also known as a package, so these are often called
 package variables. Package variables are nominally private to the
 package in which they exist, but they are global in the sense that the
 packages themselves are global. That is, anyone can name the package
 to get at the variable; it’s just hard to do this by accident. For
 instance, any program that mentions $Dog::bert is asking for the $bert variable within the Dog:: package. That is an entirely separate
 variable from $Cat::bert. See Chapter 10.
Variables attached to a lexical scope are not in any package, so
 lexically scoped variable names may not contain the :: sequence. (Lexically scoped variables are
 declared with a my, our, or state declaration.)

[41] We also call them packages and
 pads when we’re talking about Perl’s specific
 implementations, but those longer monikers are the generic
 industry terms, so we’re pretty much stuck with them.
 Sorry.

[42] In fact, it’s weird enough that we decided to make it work
 the other way in Perl 6, which is weird in other ways
 instead.

[43] One of the design principles of Perl is that different
 things should look different. Contrast this with languages that
 try to force different things to look the same, to the detriment
 of readability.

[44] As of this writing, in Unicode v6.0.

[45] As of v5.14, Perl does not normalize variable names, so even
 names that look the same might actually be different if one has
 composed characters and another decomposed characters.

Name Lookups

So the question is, what’s in a name? How does Perl figure out what you
 mean if you just say $bert? Glad
 you asked. Here are the rules the Perl parser uses while trying to
 understand an unqualified name in context:
	First, Perl looks earlier in the immediately enclosing
 block to see whether the variable is declared in that same block
 with a my, our, or state declaration (see those entries
 in Chapter 27, as well as the section Scoped Declarations in Chapter 4). If
 there is a my or state declaration, the variable is
 lexically scoped and doesn’t exist in any package—it exists only
 in that lexical scope (that is, in the block’s
 scratchpad). Because lexical scopes are unnamed, nobody outside
 that chunk of program can even name your variable.[46]

	If that doesn’t work, Perl looks for the block enclosing
 that block and tries again for a lexically scoped variable in
 the larger block. Again, if Perl finds one, the variable belongs
 only to the lexical scope from the point of declaration through
 the end of the block in which it is declared—including any
 nested blocks, like the one we just came from in step 1. If Perl
 doesn’t find a declaration, it repeats step 2 until it runs out
 of enclosing blocks.

	When Perl runs out of enclosing blocks, it examines the
 whole compilation unit for declarations as if it were a block.
 (A compilation
 unit is just the entire current file, or the string
 currently being compiled by an eval STRING
 operator.) If the compilation unit is a file, that’s the largest
 possible lexical scope, and Perl will look no further for
 lexically scoped variables, so we go to step 4. If the
 compilation unit is a string, however, things get fancier. A
 string compiled as Perl code at runtime pretends that it’s a
 block within the lexical scope from which the eval STRING
 is running, even though the actual boundaries of the lexical
 scope are the limits of the string containing the code rather
 than any real braces. So if Perl doesn’t find the variable in
 the lexical scope of the string, we pretend that the eval STRING
 is a block and go back to step 2, only this time starting with
 the lexical scope of the eval
 STRING operator instead of the
 lexical scope inside its string.

	If we get here, it means Perl didn’t find any declaration
 (either my or our) for our variable. Perl now gives
 up on lexically scoped variables and assumes that our variable
 is a package variable. If the strict pragma is in effect, we will
 now get an error, unless the variable is one of Perl’s
 predefined variables or has been imported into the current
 package. This is because that pragma disallows the use of
 unqualified global names. However, we aren’t done with lexical
 scopes just yet. Perl does the same search of lexical scopes as
 it did in steps 1 through 3, only this time it searches for
 package declarations instead
 of variable declarations. If it finds such a package
 declaration, it knows that the current code is being compiled
 for the package in question and prepends the declared package
 name to the front of the variable.

	If there is no package declaration in any surrounding
 lexical scope, Perl looks for the variable name in the unnamed
 top-level package, which happens to have the name main when it isn’t going around
 without a name tag. So in the absence of any declarations to the
 contrary, $bert means the
 same as $::bert, which means
 the same as $main::bert. (But
 because main is just another
 package in the top-level unnamed package, it’s also $::main::bert, and $main::main::bert, $::main::main::bert, and so on. This
 could be construed as a useless fact. But see Symbol Tables in Chapter 10.)

There are several implications to these search rules that
 might not be obvious, so we’ll make them explicit.
	Because the file is the largest possible lexical scope, a
 lexically scoped variable can never be visible outside the file
 in which it’s declared. File scopes do not nest.

	Any particular bit of Perl is compiled in at least one
 lexical scope and exactly one package scope. The mandatory
 lexical scope is, of course, the file itself. Additional lexical
 scopes are provided by each enclosing block. All Perl code is
 also compiled in the scope of exactly one package, and although
 the declaration of which package you’re in is lexically scoped,
 packages themselves are not lexically constrained. That is,
 they’re global.

	An unqualified variable name may therefore be searched for
 in many lexical scopes, but only one package scope, whichever
 one is currently in effect (which is lexically
 determined).

	A variable name may only attach to one scope. Although at
 least two different scopes (lexical and package) are active
 everywhere in your program, a variable can only exist in one of
 those scopes.

	An unqualified variable name can therefore resolve to only
 a single storage location, either in the first enclosing lexical
 scope in which it is declared, or else in the current
 package—but not both. The search stops as soon as that storage
 location is resolved, and any storage location that it would
 have found had the search continued is effectively
 hidden.

	The location of the typical variable name can be
 completely determined at compile time.

Now that you know all about how the Perl compiler deals with
 names, you sometimes have the problem that you don’t
 know the name of what you want at compile time.
 Sometimes you want to name something indirectly; we call this the
 problem of indirection.
 So Perl provides a mechanism: you can always replace an alphanumeric
 variable name with a block containing an expression that returns a
 reference to the real
 data. For instance, instead of saying:
$bert
you might say:
${ some_expression() }
and if the some_expression() function returns a
 reference to variable $bert (or
 even the string, "bert"), it will
 work just as if you’d said $bert
 in the first place. On the other hand, if the function returns a
 reference to $ernie, you’ll get
 his variable instead. The syntax shown is the most general (and
 least legible) form of indirection, but we’ll cover several
 convenient variations in Chapter 8.

[46] If you use an our
 declaration instead of a my or state declaration, this only
 declares a lexically scoped alias (a
 nickname) for a package variable, rather than declaring
 a true lexically scoped variable the way my or state does. Outside code can still
 get at the real variable through its package, but in all
 other respects an our
 declaration behaves like a my declaration. This is handy when
 you’re trying to limit your own use of globals with the
 strict pragma (which is on by default if you say
 use v5.14; for details,
 see the strict pragma in
 Chapter 5). But you should always prefer
 my or state if you don’t need a
 global.

Scalar Values

Whether it’s named directly or indirectly, and whether it’s in a
 variable, or an array element, or is just a temporary value, a scalar
 always contains a single value. This value may be a number, a string,
 or a reference to another piece of data. Or, there might even be no
 value at all, in which case the scalar is said to be
 undefined. Although we might speak of a scalar as
 “containing” a number or a string, scalars are typeless: you are not
 required to declare your scalars to be of type integer or floating
 point or string or whatever.
Future versions of Perl might allow you to insert int, num,
 and str type declarations. This is
 not to enforce strong typing, but to give the optimizer hints about
 things that it might not figure out for itself. Some CPAN modules
 already do this for you.
Perl stores strings as sequences of characters, with no
 arbitrary constraints on length or content. In human terms, you don’t
 have to decide in advance how long your strings are going to get, and
 you can include any characters, including null bytes, within your
 string. Perl stores numbers as signed (or unsigned) integers if
 possible, or as double-precision floating-point values in the
 machine’s native format otherwise. Floating-point values are not
 infinitely precise. This is important to remember because comparisons
 like (10/3 == 1/3*10) tend to fail
 mysteriously.
However, you can swap out Perl’s normal notions of numbers using
 the bigint, bigrat, and bignum pragmas. These provide integers, rational numbers (fractions),
 and floating-point numbers of arbitrary precision. This can make
 things work more as you expect them to:
% perl –E 'say 10/3 == 1/3*10 ? "Yes" : "No"'
No

% perl –Mbigrat –E 'say 10/3 == 1/3*10 ? "Yes" : "No"'
Yes

% perl –E 'say 4/3 * 5/12'
0.555555555555555

% perl –Mbigrat –E 'say 4/3 * 5/12'
5/9
Inside your program, instead of on the command line, you’d use
 the declarations use bigint,
 use bigrat, and use bignum to get these fancier
 numbers:
use v5.14;
use bigrat;
say 1/3 * 6/5 * 5/4; # prints "1/2"
Perl converts between the various subtypes as needed, so you can
 treat a number as a string or a string as a number, and Perl will do
 the Right Thing. To convert from string to number, Perl internally
 uses something like the C library’s atof(3)
 function. To convert from number to string, it does the equivalent of
 a sprintf(3) with a format of "%.14g" on most machines. Improper
 conversions of a nonnumeric string like foo to a number count as numeric 0; these
 trigger warnings if you have them enabled, but are silent otherwise.
 See Chapter 5 for examples of detecting what sort of
 data a string holds.
Although strings and numbers are interchangeable for nearly all
 intents, references are a bit different. They’re strongly typed,
 uncastable pointers with built-in reference-counting and destructor
 invocation. That is, you can use them to create complex data types,
 including user-defined objects. But they’re still scalars, for all
 that, because no matter how complicated a data structure gets, you
 often want to treat it as a single value.
By uncastable we mean that you can’t, for
 instance, convert a reference to an array into a reference to a hash.
 References are not castable to other pointer types. However, if you
 use a reference as a number or a string, you will get a numeric or
 string value, which is guaranteed to retain the uniqueness of the
 reference even though the “referenceness” of the value is lost when
 the value is copied from the real reference. You can compare such
 values or extract their type. But you can’t do much else with the
 values, since there’s no way to convert numbers or strings back into
 references. Usually, this is not a problem because Perl doesn’t force
 you to do pointer arithmetic—or even allow it. See Chapter 8 for more on references.

Numeric Literals

Numeric literals are specified in any of several
 customary[47] floating-point or integer formats:
my $x = 12345; # integer
my $x = 12345.67; # floating point
my $x = 6.02e23; # scientific notation
my $x = 4_294_967_296; # underline for legibility
my $x = 0377; # octal
my $x = 0xffff; # hexadecimal
my $x = 0b1100_0000; # binary
Because Perl uses the comma as a list separator, you cannot
 use it to separate the thousands in a large number. Perl does allow
 you to use an underscore character instead. The underscore only
 works within literal numbers specified in your program, not for
 strings functioning as numbers or data read from somewhere else.
 Similarly, the leading 0x for
 hexadecimal, 0b for binary, and 0 for
 octal work only for literals. The automatic conversion of a string
 to a number does not recognize these prefixes—you must do an
 explicit conversion[48] with the oct
 function—which works for hex and binary numbers, too, as it
 happens, provided you supply the 0x or 0b on the front.

[47] Customary in Unix culture, that is. If you’re from a
 different culture, welcome to ours!

[48] Sometimes people think Perl should convert all incoming
 data for them. But there are far too many decimal numbers with
 leading zeros in the world to make Perl do this automatically.
 For example, the zip code for the O’Reilly Media office in
 Cambridge, Massachusetts, is 02140. The postmaster would get
 confused if your mailing label program turned 02140 into 1120 decimal.

String Literals

String literals are usually surrounded by either single or
 double quotes. They work much like Unix shell quotes: double-quoted
 string literals are subject to backslash and variable interpolation,
 but single-quoted strings are not (except for \' and \\ so that you can embed single quotes and
 backslashes into single-quoted strings). If you want to embed any
 other backslash sequences such as \n (newline), you must use the
 double-quoted form. (Backslash sequences are also known as escape
 sequences, because you “escape” the normal
 interpretation of characters temporarily.)
A single-quoted string must be separated from a preceding word
 by a space because a single quote is a valid—though
 archaic—character in an identifier. Its use has been replaced by the
 more visually distinct ::
 sequence. That means that $main'var and $main::var are the same thing, but the
 second is generally considered easier to read for people and
 programs.
Double-quoted strings are subject to various forms of
 character interpolation, as listed in Table 2-5. Many of these will be familiar to
 programmers of other languages.
Table 2-5. Backslashed character escapes
	Code	Meaning
	
 \n
 	Newline (usually LF)
	
 \r
 	Carriage return (usually CR)
	
 \t
 	Horizontal tab
	
 \f
 	Form feed
	
 \b
 	Backspace
	
 \a
 	Alert (bell)
	
 \e
 	ESC character
	
 \033
 	ESC in octal
	
 \o{33}
 	Also ESC in octal
	
 \x7f
 	DEL in hexadecimal
	
 \x{263a}
 	Character number
 0x263A
	
 \N{LATIN SMALL LETTER E WITH
 ACUTE}
 	The named character latin small
 letter e with acute, “é”, which is codepoint 0xE9
 in Unicode
	\N{
 U+E9 }	Character number 0xE9
 again
	
 \cC
 	Control-C

The \N{NAME} notation is usable only in conjunction
 with the charnames pragma described in Chapter 29. This
 allows you to specify character names symbolically, as in \N{GREEK SMALL LETTER SIGMA}, \N{greek:Sigma}, or \N{sigma}—depending on how you call the
 pragma. The notation \N{U+HEXDIGITS} does not require the charnames pragma, and guarantees that
 Unicode semantics will be used on the string or regex it appears in.
 See also Chapter 6.
There are also escape sequences to modify the case or
 “meta-ness” of subsequent characters. See Table 2-6.
Table 2-6. Translation escapes
	Code	Meaning
	
 \u
 	Force next character to titlecase[a]
	
 \l
 	Force next character to lowercase
	
 \U
 	Force all following characters to uppercase; ends at
 \E
	
 \L
 	Force all following characters through \E to lowercase; ends at \E
	
 \F
 	Force all following characters through \E to foldcase;[b] ends at \E
	
 \Q
 	Backslash all following nonalphanumeric
 characters; ends at \E
	
 \E
 	End \U,
 \L, \F, or \Q
	[a] Titlecase is a Unicode case that works mostly like
 uppercase. See Chapter 6.

[b] \F is new to
 v5.16. The foldcase map is a special form used for
 case-insensitive comparison. See Chapter 5 and Chapter 6.

You may also embed newlines directly in your strings; that is,
 they can begin and end on different lines. This is often useful, but
 it also means that if you forget a trailing quote, the error will
 not be reported until Perl finds another line containing the quote
 character, which may be much further on in the script. Fortunately,
 this usually causes an immediate syntax error on the same line, and
 Perl is then smart enough to warn you that you might have a runaway
 string where it thought the string started.
Besides the backslash escapes listed above, double-quoted
 strings are subject to variable interpolation
 of scalar and list values. This means that you can insert the values
 of certain variables directly into a string literal. It’s really
 just a handy form of string concatenation.[49] Variable interpolation may be done for scalar
 variables, entire arrays (but not hashes), single elements from an
 array or hash, or slices (multiple subscripts) of an array or hash.
 Nothing else interpolates. In other words, you may only interpolate
 expressions that begin with $ or
 @, because those are the two
 characters (along with backslash) that the string parser looks for.
 Inside strings, a literal @ that
 is not part of an array or slice identifier but is followed by an
 alphanumeric character must be escaped with a backslash (\@), or else a compilation error will
 result. Although a complete hash specified with a % will not be interpolated into the
 string, single hash values or hash slices are okay because they
 begin with $ and @, respectively.
The following code segment prints out “The price is $100.”:
my $Price = '$100'; # not interpolated
print "The price is $Price.\n"; # interpolated
As in some shells, you can put braces around the identifier to
 distinguish it from following alphanumerics: "How ${verb}able!". An identifier within
 such braces is forced to be a string, as is any single identifier
 within a hash subscript. For example:
$days{"Feb"}
can be written as:
$days{Feb}
and the quotes will be assumed. Anything more complicated in
 the subscript is interpreted as an expression, and then you’d have
 to put in the quotes:
$days{'February 29th'} # Ok.
$days{"February 29th"} # Also ok. "" doesn't have to interpolate.
$days{ February 29th } # WRONG, produces parse error.
In particular, you should always use quotes in slices such
 as:
@days{'Jan','Feb'} # Ok.
@days{"Jan","Feb"} # Also ok.
@days{ Jan, Feb } # Kinda wrong (breaks under use strict)
Apart from the subscripts of interpolated array and hash
 variables, there are no multiple levels of interpolation. Contrary
 to the expectations of shell programmers, backticks do not
 interpolate within double quotes, nor do single quotes impede
 evaluation of variables when used within double quotes.
 Interpolation is extremely powerful but strictly controlled in Perl.
 It happens only inside double quotes, and in certain other
 “double-quotish” operations that we’ll describe in the next
 section:
print "\n"; # Ok, print a newline.
print \n ; # WRONG, no interpolative context.

[49] With warnings enabled, Perl may report undefined values
 interpolated into strings as using the concatenation or join
 operations, even though you don’t actually use those operators
 there. The compiler created them for you anyway.

Pick Your Own Quotes

Although we usually think of quotes as literal values, in Perl they
 function more like operators, providing various kinds of
 interpolating and pattern-matching capabilities. Perl provides the
 customary quote characters for these behaviors, but it also provides
 a more general way for you to choose your quote character for any of
 them. In Table 2-7, any nonalphanumeric,
 nonwhitespace delimiter may be used in place of /. (The newline and space characters are
 no longer allowed as delimiters, although prehistoric versions of
 Perl once allowed this.)
Table 2-7. Quote constructs
	Customary	Generic	Meaning	Interpolates
	
 ''
 	
 q//
 	Literal string	No
	
 ""
 	
 qq//
 	Literal string	Yes
	
 ``
 	
 qx//
 	Command execution	Yes
	
 ()
 	
 qw//
 	Word list	No
	
 //
 	
 m//
 	Pattern match	Yes
	
 s///
 	
 s///
 	Pattern substitution	Yes
	
 tr///
 	
 y///
 	Character translation	No
	
 ""
 	
 qr//
 	Regular expression	Yes

Some of these are simply forms of “syntactic sugar” to let you
 avoid putting too many backslashes into quoted strings, particularly
 into pattern matches where your regular slashes and backslashes tend
 to get all tangled.
If you choose single quotes for delimiters, no variable
 interpolation is done even on those forms that ordinarily
 interpolate. If the opening delimiter is an opening parenthesis,
 bracket, brace, or angle bracket, the closing delimiter will be the
 corresponding closing character. (Embedded occurrences of the
 delimiters must match in pairs.) Examples:
my $single = q!I said, "You said, 'She said it.'"!;

my $double = qq(Can't we get some "good" $variable?);

my $chunk_of_code = q {
 if ($condition) {
 print "Gotcha!";
 }
};
The last example demonstrates that you can use whitespace
 between the quote specifier and its initial bracketing character.
 For two-element constructs like s/// and tr///, if the first pair of quotes is a
 bracketing pair, the second part gets its own starting quote
 character. In fact, the second pair needn’t be the same as the first
 pair. So you can write things like s<foo>(bar) or tr(a–f)[A–F]. Because whitespace is also
 allowed between the two inner quote characters, you could even write
 that last one as:
tr (a–f)
 [A–F];
Whitespace is not allowed, however, when # is being used as the quoting character.
 q#foo# is parsed as the string
 'foo', while q #foo# is parsed as the quote operator
 q followed by a comment. Its
 delimiter will be taken from the next line. Comments can also be
 placed in the middle of two-element constructs, which allows you to
 write:
s {foo} # Replace foo
 {bar}; # with bar.

tr [a–f] # Transliterate lowercase hex
 [A–F]; # to uppercase hex

Or Leave Out the Quotes Entirely

A name that has no other interpretation in the grammar will be treated
 as if it were a quoted string. These are known as
 barewords.[50] As with filehandles and labels, a bareword that
 consists entirely of lowercase ASCII letters risks conflict with
 future reserved words. If you have warnings enabled, Perl will warn
 you about barewords. For example:
my @days = (Mon,Tue,Wed,Thu,Fri);
print STDOUT hello, " ", world, "\n";
sets the array @days to the
 short form of the weekdays and prints “hello world” followed by a newline on
 STDOUT. If you leave the
 filehandle out, Perl tries to interpret hello as a filehandle, resulting in a
 syntax error. Because this is so error-prone, some people may wish
 to avoid barewords entirely. The quoting operators listed earlier
 provide many convenient forms, including the qw// “quote words” construct, which nicely
 quotes a list of space-separated words:
my @days = qw(Mon Tue Wed Thu Fri);
print STDOUT "hello world\n";
You can go as far as to outlaw barewords entirely. If you
 say:
use strict "subs";
then any bareword will produce a compile-time error. The
 restriction lasts through the end of the enclosing scope. An inner
 scope may countermand this by saying:
no strict "subs";
Outlawing barewords is such a good idea that if you say
use v5.12;
or higher, Perl turns on all strictures for you
 automatically.
Note that the bare identifiers in constructs like:
"${verb}able"
$days{Feb}
are not considered barewords since they’re allowed by explicit
 rule rather than by having “no other interpretation in the
 grammar”.
An unquoted name with a trailing double colon, such as
 main:: or Dog::, is always treated as the package
 name. Perl turns the would-be bareword Camel:: into the string “Camel” at compile time, so this usage is
 not subject to rebuke.

[50] Variable names, filehandles, labels, and the like are not
 considered barewords because they have a meaning forced by a
 preceding token or a following token (or both). Predeclared
 names such as subroutines aren’t barewords either. It’s only a
 bareword when the parser has no clue.

Interpolating Array Values

Array variables are interpolated into double-quoted strings by joining
 all elements of the array with the separator specified in the
 $" variable[51] (which contains a space by default). The following are
 equivalent:
my $temp = join($", @ARGV);
print $temp;

print "@ARGV";
Within search patterns, which also undergo double-quotish
 interpolation, there is an unfortunate ambiguity: is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the regular
 expression), or as /${foo[bar]}/
 (where [bar] is the subscript to
 array @foo)? If @foo doesn’t otherwise exist, it’s
 obviously a character class. If @foo exists, Perl takes a good guess about
 [bar] and is almost always
 right.[52] If it does guess wrong, or if you’re just plain
 paranoid, you can force the correct interpretation with braces as
 shown earlier. Even if you’re merely prudent, it’s probably not a
 bad idea.

[51] $LIST_SEPARATOR if you
 use the English module bundled with Perl.

[52] The guesser is too boring to describe in full, but
 basically takes a weighted average of all the things that look
 like character classes (a–z,
 \w, initial ^) versus things that look like
 expressions (variables or reserved words).

“Here” Documents

A line-oriented form of quoting is based on the Unix shell’s
 here-document syntax.
 It’s line-oriented in the sense that the delimiters are lines rather
 than characters. The starting delimiter is the current line, and the
 terminating delimiter is a line consisting of the string you
 specify. Following a <<,
 you specify the string to terminate the quoted material, and all
 lines following the current line down to but not including the
 terminating line are part of the string. The terminating string may
 be either an identifier (a word) or some quoted text. If quoted, the
 type of quote determines the treatment of the text, just as it does
 in regular quoting. An unquoted identifier works as though it were
 in double quotes. A backslashed identifier works as though it were
 in single quotes (for compatibility with shell syntax). There must
 be no space between the << and an
 unquoted identifier, although whitespace is permitted if you specify
 a quoted string instead of the bare identifier. (If you insert a
 space, it will be treated as a null identifier, which is valid but
 deprecated, and matches the first blank line—see the first Hurrah! example below.) The terminating
 string must appear by itself, unquoted and with no extra whitespace
 on either side, on the terminating line.
print <<EOF; # same as earlier example
The price is $Price.
EOF

print <<"EOF"; # same as above, with explicit quotes
The price is $Price.
EOF

print <<'EOF'; # single–quoted quote
All things (e.g. a camel's journey through
A needle's eye) are possible, it's true.
But picture how the camel feels, squeezed out
In one long bloody thread, from tail to snout.
 –– C.S. Lewis
EOF

print <<\EOF; # another single–quoted quote
I could really use $100 about now.
EOF

print << x 10; # print next line 10 times
The camels are coming! Hurrah! Hurrah!

print <<"" x 10; # the preferred way to write that
The camels are coming! Hurrah! Hurrah!

print <<`EOC`; # execute commands
echo hi there
echo lo there
EOC

print <<"dromedary", <<"camelid"; # you can stack them
I said bactrian.
dromedary
She said llama.
camelid

funkshun(<<"THIS", 23, <<'THAT'); # doesn't matter if they're in parens
Here's a line
or two.
THIS
And here's another.
THAT
Just don’t forget that you have to put a semicolon on the end
 to finish the statement, because Perl doesn’t know you’re not going
 to try to do this:
print <<"odd"
2345
odd
 + 10000; # prints 12345
If you want your here docs to be indented with the rest of the
 code, you’ll need to remove leading whitespace from each line
 manually:
(my $quote = <<'QUOTE') =~ s/^\s+//gm;
 The Road goes ever on and on,
 down from the door where it began.
QUOTE
You could even populate an array with the lines of a here
 document as follows:
my @sauces = <<End_Lines =~ m/(\S.*\S)/g;
 normal tomato
 spicy tomato
 green chile
 pesto
 white wine
End_Lines

Version Literals

A literal that begins with a v and
 is followed by one or more dot-separated decimal integers is treated
 as a version number:
use v5.14; # turn on strict and warnings
(These used to be called v-strings, but
 the use of these to produce string values has been deprecated. Now
 you may use this notation only to produce version objects.)

Other Literal Tokens

You should consider any identifier that both begins and ends with
 a double underscore to be reserved for special syntactic use by
 Perl. Two such special literals are _ _LINE_ _ and
 _ _FILE_ _, which represent the
 current line number and filename at that point in your program. They
 may only be used as separate tokens; they will not be interpolated
 into strings. Likewise, _ _PACKAGE_ _ is the name of the package the current code is being
 compiled into. The token _ _END_ _ (or, alternatively, a Control-D or Control-Z
 character) may be used to indicate the logical end of the script
 before the real end-of-file. Any following text is ignored but may
 be read via the DATA
 filehandle.
The _ _DATA_ _ token
 functions similarly to the _ _END_ _ token, but it opens the DATA filehandle within the current
 package’s namespace, so files you require can each have their own DATA filehandles open simultaneously. For
 more information, see DATA in Chapter 25.

Context

Until now we’ve seen several terms that can produce scalar
 values. Before we can discuss terms further, though, we must come to
 terms with the notion of context.

Scalar and List Context

Every operation[53] that you invoke in a Perl script is evaluated in a
 specific context, and how that operation behaves may depend on the
 requirements of that context. There are two major contexts: scalar
 and list. For example, assignment to a scalar variable, or to a
 scalar element of an array or hash, evaluates the righthand side in
 a scalar
 context:
$x = funkshun(); # scalar context
$x[1] = funkshun(); # scalar context
$x{"ray"} = funkshun(); # scalar context
But assignment to an array or a hash, or to a slice of either,
 evaluates the righthand side in a list context, even if the slice
 picks out only one element:
@x = funkshun(); # list context
@x[1] = funkshun(); # list context
@x{"ray"} = funkshun(); # list context
%x = funkshun(); # list context
Assignment to a list of scalars also provides list context to
 the righthand side, even if there’s only one element in the
 list:
($x,$y,$z) = funkshun(); # list context
($x) = funkshun(); # list context
These rules do not change at all when you declare a variable
 by modifying the term with my,
 state, or our, so we have:
my $x = funkshun(); # scalar context
my @x = funkshun(); # list context
my %x = funkshun(); # list context
my ($x) = funkshun(); # list context
You will be miserable until you learn the difference between
 scalar and list context, because certain operators (such as our
 mythical funkshun function above)
 know which context they are in, and they return a list in contexts
 wanting a list but a scalar value in contexts wanting a scalar. (If
 this is true of an operation, it will be mentioned in the
 documentation for that operation.) In computer lingo, the operations
 are overloaded on their
 return type. But it’s a very simple kind of overloading, based only
 on the distinction between singular and plural values, and nothing
 else.
If some operators respond to context, then obviously something
 around them has to supply the context. We’ve shown that assignment
 can supply a context to its right operand, but that’s not terribly
 surprising, since all operators supply some kind of context to each
 of their operands. What you really want to know is
 which operators supply
 which context to their operands. As it happens,
 you can easily tell which ones supply list context because they all
 have LIST in their syntactic
 descriptions. Everything else supplies scalar context. Generally,
 it’s quite intuitive.[54] If necessary, you can force scalar context onto an
 argument in the middle of a LIST by using
 the scalar
 pseudofunction. Perl provides no way to force list context in
 context, because anywhere you would want list context it’s already
 provided by the LIST of some controlling
 function.
Scalar context can be further classified into string context,
 numeric context, and don’t-care context. Unlike the scalar versus
 list distinction we just made, operations never know or care which
 scalar context they’re in. They simply return whatever kind of
 scalar value they want to and let Perl lazily translate numbers to
 strings in string context, and strings to numbers in numeric
 context. Some scalar contexts don’t care whether a string or a
 number or a reference is returned, so no conversion will happen.
 This happens, for example, when you are assigning the value to
 another variable. The new variable just takes on the same subtype as
 the old value.

[53] Here we use the term “operation” loosely to mean either an
 operator or a term. The two concepts fuzz into each other when
 you start talking about functions that parse like terms but look
 like unary operators.

[54] Note, however, that the list context of a
 LIST can propagate down through
 subroutine calls, so it’s not always obvious from inspection
 whether a given statement is going to be evaluated in a scalar
 or list context. The program can find out its context within a
 subroutine by using the wantarray
 function.

Boolean Context

Another special don’t-care scalar context is called Boolean
 context. Boolean context is simply any place where an
 expression is being evaluated to see whether it’s true or false.
 When we say “true” and “false” in this book, we mean the technical
 definition that Perl uses: a scalar value is true if it is not the
 null string "" or the number 0
 (or its string equivalent, "0").
 A reference is always true because it represents an address that is
 never 0. An undefined value (often called undef) is always false because it looks
 like either "" or 0, depending on
 whether you treat it as a string or a number. (List values have no
 Boolean value because list values are never produced in scalar
 context!)
Because Boolean context is a don’t-care context, it never
 causes any scalar conversions to happen, though of course the scalar
 context itself is imposed on any operand that cares. And for many
 operands that care, the scalar they produce in scalar context
 represents a reasonable Boolean value. That is, many operators that
 would produce a list in list context can be used for a true/false
 test in Boolean context. For instance, in list context such as that
 provided by the unlink operator, an array name produces the list of its
 values:
unlink @files; # Delete all files, ignoring errors.
But if you use the array in a conditional (that is, in a
 Boolean context), the array knows it’s in scalar context and returns
 the number of elements in the array, which conveniently is true so
 long as there are any elements left. So supposing you wanted to get
 warnings on each file that wasn’t deleted properly, you might write
 a loop like this:
while (@files) {
 my $file = shift(@files);
 unlink($file) || warn "Can't delete $file: $!";
}
Here, @files is evaluated
 in the Boolean context supplied by the while statement, so Perl evaluates the
 array itself to see whether it’s a “true array” or a “false array”.
 It’s a true array as long as there are filenames in it, but it
 becomes a false array as soon as the last filename is shifted out.
 Note that what we earlier said still holds. Despite the fact that an
 array contains (and can produce) a list value, we are not evaluating
 a list value in scalar context. We are telling the array it’s a
 scalar and asking what it thinks of itself.
Do not be tempted to use defined
 @files for this. It doesn’t work because the defined function is asking whether a
 scalar is equal to undef, but an
 array is not a scalar. The simple Boolean test suffices.

Void Context

Another peculiar kind of scalar context is void context. This context not
 only doesn’t care what the return value’s type is, it doesn’t even
 want a return value. From the standpoint of how
 functions work, it’s no different from an ordinary scalar context.
 But if you have warnings enabled, the Perl compiler will warn you if
 you use an expression with no side effects in a place that doesn’t
 want a value, such as in a statement that doesn’t return a value.
 For example, if you use a string as a statement:
"Camel Lot";
you may get a warning like this:
Useless use of a constant in void context in myprog line 123;

Interpolative Context

We mentioned earlier that double-quoted literal strings do
 backslash interpretation and variable interpolation, but that
 interpolative context (often called “double-quote context” because
 nobody can pronounce “interpolative”) applies to more than just
 double-quoted strings. Some other double-quotish constructs are the
 generalized backtick operator, qx//; the pattern-match operator, m//; the substitution operator, s///; and the quote regex operator,
 qr//. The substitution operator
 does interpolation on its left side before doing a pattern match and
 then does interpolation on its right side each time the left side
 matches.
Interpolative context only happens inside quotes, or things
 that work like quotes, so perhaps it’s not fair to call it a context
 in the same sense as scalar and list contexts. (Then again, maybe it
 is.)

List Values and Arrays

Now that we’ve talked about context, we can talk about list literals
 and how they behave in context. You’ve already seen some list
 literals. List literals are denoted by separating individual values by commas
 (and enclosing the list in parentheses where precedence requires it).
 Because it (almost) never hurts to use extra parentheses, the syntax
 diagram of a list value is usually indicated like this:
(LIST)
Earlier we said that LIST in a syntax
 description indicates something that supplies list context to its
 arguments. However, a bare list literal itself is the one partial
 exception to that rule, in that it supplies list context to its
 arguments only when the list as a whole is in list context. The value
 of a list literal in list context is just the values of the arguments
 in the order specified. As a fancy sort of term in an expression, a
 list literal merely pushes a series of temporary values onto Perl’s
 stack, to be collected off the stack later by whatever operator wants
 the list. In scalar context, however, the list literal doesn’t really
 behave like a LIST, in that it doesn’t
 supply list context to its values. Instead, it merely evaluates each
 of its arguments in scalar context, and returns the value of the final
 element. That’s because it’s really just the C comma operator in
 disguise, which is a binary operator that always throws away the value
 on the left and returns the value on the right. In terms of what we
 discussed earlier, the left side of the comma operator really provides
 context. Because the comma operator is left associative, if you have a
 series of comma-separated values, you always end up with the last
 value because the final comma throws away whatever any previous commas
 produced. So, to contrast the two, the list assignment:
@stuff = ("one", "two", "three");
assigns the entire list value to array @stuff, but the scalar assignment:
$stuff = ("one", "two", "three");
assigns only the value “three” to variable $stuff. Like the @files array we mentioned earlier, the comma
 operator knows whether it is in a scalar or list context, and chooses
 its behavior accordingly.
It bears repeating that a list value is different from an array.
 A real array variable also knows its context, and in list context it
 would return its internal list of values just like a list literal. But
 in scalar context it returns only the length of the array. The
 following assigns to $stuff the
 value 3:
@stuff = ("one", "two", "three");
$stuff = @stuff;
If you expected it to get the value “three”, you were probably making a false
 generalization by assuming that Perl uses the comma operator rule to
 throw away all but one of the temporary values that @stuff put on the stack. But that’s not how
 it works. The @stuff array never
 put all its values on the stack. It never put any of its values on the
 stack, in fact. It only put one value, the length of the array,
 because it knew it was in scalar context. No term
 or operator in scalar context will ever put a list on the stack.
 Instead, it will put one scalar on the stack, whatever it feels like,
 which is unlikely to be the last value of the list it
 would have returned in list context. This is
 because the last value is not likely to be the most useful value in
 scalar context. Got that? (If not, you’d better reread this paragraph
 because it’s important.)
Now back to true LISTs, the ones that
 do list context. Until now we’ve pretended that list literals were
 just lists of literals. But just as a string literal might interpolate
 other substrings, a list literal can interpolate other sublists. Any
 expression that returns values may be used within a list. The values
 so used may be either scalar values or list values, but they all
 become part of the new list value because
 LISTs do automatic interpolation of
 sublists. That is, when a LIST is
 evaluated, each element of the list is evaluated in list context, and
 the resulting list value is flattened into
 LIST just as if each individual element
 were a member of LIST. Thus, arrays lose
 their identity in a LIST.[55] The list:
(@stuff,@nonsense,funkshun())
contains the elements of @stuff, followed by the elements of @nonsense, followed by whatever values the
 subroutine &funkshun decides to
 return when called in list context. Note that any or all of these
 might have interpolated a null (empty) list, in which case it’s as if
 no array or function call had been interpolated at that point. The
 null list itself is represented by the literal (). As with a null array, which interpolates
 as a null list and is therefore effectively ignored, interpolating the
 null list into another list has no effect. Thus, ((),(),()) is equivalent to ().
A corollary to this rule is that you may place an optional comma
 at the end of any list value. This makes it easy to come back later
 and add more elements after the last one:
@releases = (
 "alpha",
 "beta",
 "gamma",
);
Or you can do away with the commas entirely: another way to
 specify a literal list is with the qw (quote words) syntax we mentioned
 earlier. This construct is equivalent to splitting a single-quoted
 string on whitespace. For example:
@froots = qw(
 apple banana carambola
 coconut guava kumquat
 mandarin nectarine peach
 pear persimmon plum
);
(Note that those parentheses are behaving as quote characters,
 not ordinary parentheses. We could just as easily have picked angle
 brackets or braces or slashes. But parens are pretty.)
A list value may also be subscripted like a normal array. You
 must put the list in parentheses (real ones) to avoid ambiguity.
 Though it’s often used to fetch a single value out of a list, it’s
 really a slice of the list, so the syntax is:
(LIST)[LIST]
Examples:
Stat returns list value.
$modification_time = (stat($file))[9];

SYNTAX ERROR HERE.
$modification_time = stat($file)[9]; # OOPS, FORGOT PARENS

Find a hex digit.
$hexdigit = ("a","b","c","d","e","f")[$digit–10];

A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Get multiple values as a slice.
($day, $month, $year) = (localtime)[3,4,5];

[55] Some people seem to think this is a problem, but it’s not.
 You can always interpolate a reference to an array if you do not
 want it to lose its identity. See Chapter 8.

List Assignment

A list may be assigned to only if each element of the list is
 itself legal to assign to:
($a, $b, $c) = (1, 2, 3);

($map{red}, $map{green}, $map{blue}) = (0xff0000, 0x00ff00, 0x0000ff);
You may assign to undef in
 a list. This is useful for throwing away some of the return values
 of a function:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
You can even do this on my
 declarations:
my ($dev, $ino, undef, undef, $uid, $gid) = stat($file);
The final list element may be an array or a hash:
($a, $b, @rest) = split;
my ($a, $b, %rest) = @arg_list;
You can actually put an array or hash anywhere in the list you
 assign to, but the first array or hash in the list will soak up all
 the remaining values, and anything after it will be set to the
 undefined value. This may be useful in a local or my, where you probably want the arrays
 initialized to be empty anyway.
You can even assign to the empty list:
() = funkshun();
That ends up calling your function in list context but
 discarding the return values. If you had just called the function
 without an assignment, it would have instead been called in void
 context, which is a kind of scalar context, and might have caused
 the function to behave completely differently. List assignment in
 scalar context returns the number of elements produced by the
 expression on the right side of the
 assignment:
$x = (($a, $b) = (7,7,7)); # set $x to 3, not 2
$x = (($a, $b) = funk()); # set $x to funk()'s return count
$x = (() = funk()); # also set $x to funk()'s return count
This is handy when you want to do a list assignment in a
 Boolean context, because most list functions return a
 null list when finished, which when assigned produces a 0, which is
 interpreted as false. Here’s how you might use it in a while
 statement:
while (($login, $password) = getpwent) {
 if (crypt($login, $password) eq $password) {
 print "$login has an insecure password!\n";
 }
}

Array Length

You may find the number of elements in the array @days by evaluating @days in scalar context, such as:
@days + 0; # implicitly force @days into scalar context
scalar(@days) # explicitly force @days into scalar context
Note that this only works for arrays. It does not work for
 list values in general. As we mentioned earlier, a comma-separated
 list evaluated in scalar context returns the last value, like the C
 comma operator. But because you almost never actually need to know
 the length of a list in Perl, this is not a problem.
Closely related to the scalar evaluation of @days is $#days. This will return the subscript of
 the last element of the array, or one less than the length, since
 there is a 0<th> element. Assigning to $#days changes the length of the array.
 Shortening an array by this method destroys intervening values. You
 can gain some measure of efficiency by preextending an array that is
 going to get big. (You can also extend an array by assigning to an
 element beyond the end of the array.) You can truncate an array down
 to nothing by assigning the null list () to it. The following two statements are
 equivalent:
@whatever = ();
$#whatever = –1;
And the following is always true:
scalar(@whatever) == $#whatever + 1;
Truncating an array does not recover its memory. You have to
 undef(@whatever) (or let it go
 out of scope) to free its memory back to your process’s memory pool.
 You probably can’t free it all the way back to your system’s memory
 pool because few operating systems support this.

Hashes

As we said earlier, a hash is just a funny kind of array in which
 you look values up using key strings instead of numbers. A hash
 defines associations between keys and values, so hashes are often
 called associative
 arrays by people who are not lazy typists.
There really isn’t any such thing as a hash literal in Perl, but
 if you assign an ordinary list to a hash, each pair of values in the
 list will be taken to indicate one key/value association:
my %map = ("red",0xff0000,"green",0x00ff00,"blue",0x0000ff);
This has the same effect as:
my %map; # an uninitialized hash is born empty
$map{red} = 0xff0000;
$map{green} = 0x00ff00;
$map{blue} = 0x0000ff;
It is often more readable to use the => operator between key/value pairs. The => operator is just a synonym for a
 comma, but it’s more visually distinctive and also quotes any bare
 identifiers to the left of it (just like the identifiers in braces
 above), which makes it convenient for several sorts of operations,
 including initializing hash variables:
my %map = (
 red => 0xff0000,
 green => 0x00ff00,
 blue => 0x0000ff,
);
or initializing anonymous hash references to be used as
 records:
my $rec = {
 NAME => "John Smith",
 RANK => "Captain",
 SERNO => "951413",
};
or using named parameters to invoke complicated
 functions:
my $field = radio_group(
 NAME => "animals",
 VALUES => ["camel", "llama", "ram", "wolf"],
 DEFAULT => "camel",
 LINEBREAK => "true",
 LABELS => \%animal_names,
);
But we’re getting ahead of ourselves again. Back to
 hashes.
You can use a hash variable (%hash) in list context, in which case it
 interpolates all its key/value pairs into the list. But just because
 the hash was initialized in a particular order doesn’t mean that the
 values come back out in that order. Hashes are implemented internally
 using hash tables for speedy lookup, which means that the
 order in which entries are stored is dependent on the internal hash
 function used to calculate positions in the hash table, and not on
 anything interesting. So the entries come back in a seemingly random
 order. (The two elements of each key/value pair come out in the right
 order, of course.) For examples of how to arrange for an output
 ordering, see the keys function in
 Chapter 27.
When you evaluate a hash variable in scalar context, it returns
 a true value only if the hash contains any key/value pairs whatsoever.
 If there are any key/value pairs at all, the value returned is a
 string consisting of the number of used buckets and the number of
 allocated buckets, separated by a slash. This is pretty much only
 useful to find out whether Perl’s (compiled in) hashing algorithm is
 performing poorly on your data set. For example, you stick 10,000
 things in a hash, but evaluating %HASH in scalar context reveals “1/8”, which means only one out of eight
 buckets has been touched. Presumably that one bucket contains all
 10,000 of your items. This isn’t supposed to happen.
To find the number of keys in a hash, use the keys function in
 scalar context:

scalar(keys(%HASH))
You
 can emulate a multidimensional hash by specifying more than one key
 within the braces, separated by commas. The listed keys are
 concatenated together, separated by the contents of $; ($SUBSCRIPT_SEPARATOR), which has a default value of chr(28). The resulting string is used as the
 actual key to the hash. These two lines do the same thing:
$people{ $state, $county } = $census_results;
$people{ join $; => $state, $county } = $census_results;
This feature was originally implemented to support
 a2p, the awk-to-Perl
 translator. These days, you’d usually just use a real (well, realer)
 multidimensional array as described in Chapter 9.
 One place the old style may still be useful is for hashes tied to
 external files that don’t support multidimensional keys, such as DBM
 files.
Don’t confuse multidimensional hash emulations with slices. The
 one represents a scalar value, and the other represents a list value:
$hash{ $x, $y, $z } # a single value
@hash{ $x, $y, $z } # a slice of three values

Typeglobs and Filehandles

Perl uses a special type called a typeglob to hold an entire
 symbol table entry. The symbol table entry *foo contains the values of $foo, @foo, %foo, &foo, and several interpretations of
 plain old foo. The type prefix of a
 typeglob is a * because it
 represents all types.
One use of typeglobs (or references thereto) is for passing or
 storing filehandles, which was especially popular before Perl
 had filehandle references. If you want to save away a bareword
 filehandle, do it this way:
$fh = *STDOUT;
or perhaps as a real reference, like this:
$fh = *STDOUT;
or perhaps accessing the filehandle portion in that symbol table
 entry:
$fh = *STDOUT{IO};
This used to be the preferred way to create a local filehandle.
 For example:
sub newopen {
 my $path = shift;
 local *FH; # not my() nor our()
 open(FH, '<', $path) || return undef;
 return *FH; # not *FH!
}
$fh = newopen("/etc/passwd");
These days, however, it’s almost always better to let Perl pick
 a filehandle and fill in an empty variable for you:
sub newopen {
 my $path = shift;
 open(my $fh, '<', $path) || return undef;
 return $fh;
}
$fh = newopen("/etc/passwd");
The main use of typeglobs nowadays is to alias one symbol table
 entry to another symbol table entry. Think of an alias as a nickname.
 If you say:
*foo = *bar;
it makes everything named “foo” a synonym for every corresponding thing
 named “bar”. You can alias just one
 variable from a typeglob by assigning a reference instead:
*foo = \$bar;
makes $foo an alias for
 $bar, but doesn’t make @foo an alias for @bar, or %foo an alias for %bar. All these affect global (package)
 variables only; lexicals cannot be accessed through symbol table
 entries. Aliasing global variables like this may seem like a silly
 thing to want to do, but it turns out that the entire module
 import-export mechanism is built around this feature, since there’s
 nothing that says the symbol you’re aliasing has to be in your
 namespace. This:
local *Here::blue = \$There::green;
temporarily makes $Here::blue an alias for $There::green, but it doesn’t make
 @Here::blue an alias for @There::green, or %Here::blue an alias for %There::green.
 Fortunately, all these complicated typeglob manipulations are
 hidden away where you don’t have to look at them. See the
 sections Handle References and Symbol Table References in Chapter 8, Symbol Tables in Chapter 10, and Chapter 11 for more discussions on typeglobs and
 importation.

Input Operators

There are several input operators we’ll discuss here because
 they parse as terms. Sometimes we call them pseudoliterals because
 they act like quoted strings in many ways. (Output operators like
 print parse as list operators and
 are discussed in Chapter 27.)

Command Input (Backtick) Operator

First of all, we have the command input operator, also known as the backtick
 operator, because it looks like this:
$info = `perldoc $module`;
A string enclosed by backticks (grave accents, technically)
 first undergoes variable interpolation just like a double-quoted
 string. The result is then interpreted as a command line by the
 system, and the output of that command becomes the value of the
 pseudoliteral. (This is modelled after a similar
 operator in Unix shells.) In scalar context, a single string
 consisting of all the output is returned. In list context, a list of
 values is returned, one for each line of output. (You can set
 $/ to use a different line
 terminator.)
The command is executed each time the pseudoliteral is
 evaluated. The numeric status value of the command is saved in
 $? (see Chapter 25 for the interpretation of $?, also known as $CHILD_ERROR).
 Unlike the csh version of this command, no
 translation is done on the return data—newlines remain newlines.
 Unlike in any of the shells, single quotes in Perl do not hide
 variable names in the command from interpretation. To pass a
 $ through to the shell, you need
 to hide it with a backslash. The $module in our perldoc example above is interpolated by
 Perl, not by the shell. (Because the command undergoes shell
 processing, see Chapter 20 for security
 concerns.)
The generalized form of backticks is qx// (for “quoted execution”), but the
 operator works exactly the same way as ordinary backticks. You just
 get to pick your quote characters. As with similar quoting
 pseudofunctions, if you happen to choose a single quote as your
 delimiter, the command string doesn’t undergo double-quote
 interpolation:
$perl_info = qx(ps $$); # that's Perl's $$
$shell_info = qx'ps $$'; # that's the shell's $$

Line Input (Angle) Operator

The most heavily used input operator is the line input operator, also
 known as the angle operator or the readline function (since that’s what it
 calls internally). Evaluating a filehandle in angle brackets
 (STDIN, for example) yields the
 next line from the associated filehandle. (The newline is included,
 so according to Perl’s criteria for truth, a freshly read line is
 always true, up until end-of-file, at which point an undefined value
 is returned, which is conveniently false.) Ordinarily, you would
 assign the input value to a variable, but there is one situation
 where an automatic assignment happens. If and only if the line input
 operator is the only thing inside the conditional of a while loop, the value is automatically
 assigned to the special variable $_. The
 assigned value is then tested to see whether it is defined. (This
 may seem like an odd thing to you, but you’ll use the construct
 frequently, so it’s worth learning.) Anyway, the following lines are
 equivalent:
while (defined($_ = <STDIN>)) { print $_ } # the longest way
while ($_ = <STDIN>) { print } # explicitly to $_
while (<STDIN>) { print } # the short way
for (;<STDIN>;) { print } # while loop in disguise
print $_ while defined($_ = <STDIN>); # long statement modifier
print while $_ = <STDIN>; # explicitly to $_
print while <STDIN>; # short statement modifier
Remember that this special magic requires a while loop. If you
 use the input operator anywhere else, you must assign the result
 explicitly if you want to keep the value:
while (<FH1> && <FH2>) { ... } # WRONG: discards both inputs
if (<STDIN>) { print } # WRONG: prints old value of $_
if ($_ = <STDIN>) { print } # suboptimal: doesn't test defined
if (defined($_ = <STDIN>)) { print } # best
When you’re implicitly assigning to $_ in a $_ loop, this is the global variable by
 that name, not one localized to the while loop. You can protect an existing
 value of $_ this way:
while (local $_ = <STDIN>) { print } # temporary value to global $_
or this way:
while (my $_ = <STDIN>) { print } # a new, lexical $_
Any previous value is restored when the loop is done. Unless
 declared with my or state, $_ is still a global variable, though, so
 functions called from outside that loop could still access it,
 intentionally or otherwise. You can avoid this, too, by declaring it
 lexical. Better yet, give your lexical variable a proper
 name:
while (my $line = <STDIN>) { print $line } # now private
(Both of these while loops
 still implicitly test for whether the result of the assignment is
 defined, because my, state, local, and our don’t change how assignment is seen by
 the parser.) The filehandles STDIN, STDOUT, and STDERR are predefined and preopened.
 Additional filehandles may be created with the open or sysopen functions. See those functions’
 documentation in Chapter 27 for details on
 this.
In the while loops above,
 we were evaluating the line input operator in scalar context, so the
 operator returns each line separately. However, if you use the
 operator in list context, a list consisting of all remaining input
 lines is returned, one line per list element. It’s easy to make a
 large data space this way, so use this feature
 with care:
$one_line = <MYFILE>; # Get first line.
@all_lines = <MYFILE>; # Get the rest of the lines.
There is no while magic
 associated with the list form of the input operator, because the
 condition of a while loop always
 provides scalar context (as does any conditional).
Using the null filehandle within the angle operator is
 special; it emulates the command-line behavior of typical Unix
 filter programs such as sed and
 awk. When you read lines from <>, it magically gives you all the
 lines from all the files mentioned on the command line. If no files
 were mentioned, it gives you standard input instead, so your program
 is easy to insert into the middle of a pipeline of processes.
Here’s how it works: the first time <> is evaluated, the @ARGV array is checked. If it is null, $ARGV[0] is set
 to “–”, which when opened gives
 you standard input. The @ARGV
 array is then processed as a list of filenames. More explicitly, the
 loop:
while (<>) {
 ... # code for each line
}
is equivalent to the following Perl-like pseudocode:
@ARGV = ("–") unless @ARGV; # assume STDIN iff empty
while (@ARGV) {
 $ARGV = shift @ARGV; # shorten @ARGV each time
 if (!open(ARGV, '<', $ARGV)) {
 warn "Can't open $ARGV: $!\n";
 next;
 }
 while (<ARGV>) {
 ... # code for each line
 }
}
except that it isn’t so cumbersome to say, and will actually
 work. It really does shift array @ARGV and put the current filename into
 the global variable $ARGV. It
 also uses the special filehandle ARGV internally—<> is just a synonym for the more
 explicitly written <ARGV>,
 which is a magical filehandle. (The pseudocode above doesn’t work
 because it treats <ARGV> as
 nonmagical.)
You can modify @ARGV before
 the first <> so long as the
 array ends up containing the list of filenames you really want.
 Because Perl uses its normal open
 function here, a filename of “–”
 counts as standard input wherever it is encountered, and the more
 esoteric features of open are
 automatically available to you (such as ignoring leading or trailing
 whitespace in the filename, or opening a “file” named “gzip –dc < file.gz |”). Line numbers
 ($.) continue as if the input
 were one big happy file. (But see the example under eof in Chapter 27 for how
 to reset line numbers on each file.)
If you want to set @ARGV to
 your own list of files, go right ahead:
default to README file if no args given
@ARGV = ("README") unless @ARGV;
If you want to pass switches into your script, you can use one
 of the Getopt::* modules
 or put a loop on the front, like this:
while (@ARGV and $ARGV[0] =~ /^–/) {
 $_ = shift;
 last if /^––$/;
 if (/^–D(.*)/) { $debug = $1 }
 if (/^–v/) { $verbose++ }
 ... # other switches
}
while (<>) {
 ... # code for each line
}
The <> symbol will
 return false only once. If you call it again after this, it will
 assume you are processing another @ARGV list, and if you haven’t set
 @ARGV, it will input from
 STDIN.
If the string inside the angle brackets is a scalar variable
 (for example, <$foo>), that
 variable contains an indirect filehandle,
 either the name of the filehandle to input from or a reference to
 such a filehandle. For example:
$fh = *STDIN;
$line = <$fh>;
or:
open(my $fh, '<', "data.txt");
$line = <$fh>;

Filename Globbing Operator

You might wonder what happens to a line input operator if you put something fancier
 inside the angle brackets. What happens is that it mutates into a
 different operator. If the string inside the angle brackets is
 anything other than a filehandle name or a scalar variable (even if
 there are just extra spaces), it is interpreted as a filename
 pattern to be “globbed”.[56] The pattern is matched against the files in the
 current directory (or the directory specified as part of the
 fileglob pattern), and the filenames so matched are returned by the
 operator. As with line input, names are returned one at a time in
 scalar context, or all at once in list context. The latter usage is
 more common; you often see things like:
@files = <*.xml>;
As with other kinds of pseudoliterals, one level of variable
 interpolation is done first, but you can’t say <$foo> because that’s an indirect
 filehandle as explained earlier. In older versions of Perl,
 programmers would insert braces to force interpretation as a
 fileglob: <${foo}>. These
 days, it’s considered cleaner to call the internal function directly
 as glob($foo), which is probably
 the right way to have invented it in the first place. So you’d
 write:
@files = glob("*.xml");
if you despise overloading the angle operator for this. Which
 you’re allowed to do.
Whether you use the glob
 function or the old angle-bracket form, the fileglob operator also
 does while magic like the line
 input operator, assigning the result to $_. (That was the rationale for
 overloading the angle operator in the first place.) For example, if
 you wanted to change the permissions on all your C code files, you
 might say:
while (glob "*.c") {
 chmod 0644, $_;
}
which is equivalent to:
while (<*.c>) {
 chmod 0644, $_;
}
The glob function was
 originally implemented as a shell command in older versions of Perl
 (and in even older versions of Unix), which meant it was
 comparatively expensive to execute and, worse still, wouldn’t work
 exactly the same everywhere. Nowadays it’s a built-in, so it’s more
 reliable and a lot faster.
Of course, the shortest and arguably the most readable way to
 do the chmod command
 above is to use the fileglob as a list operator:
chmod 0644, <*.c>;
A fileglob evaluates its (embedded) operand only when starting
 a new list. All values must be read before the operator will start
 over. In list context, this isn’t important because you
 automatically get them all anyway. In scalar context, however, the
 operator returns the next value each time it is called, or a false
 value if you’ve just run out. Again, false is returned only once. So
 if you’re expecting a single value from a fileglob, it is much
 better to say:
($file) = <blurch*>; # list context
than to say:
$file = <blurch*>; # scalar context
because the former returns all matched filenames and resets
 the operator, whereas the latter alternates between returning
 filenames and returning false.
If you’re trying to do variable interpolation, it’s definitely
 better to use the glob operator
 because the older notation can cause confusion with the indirect
 filehandle notation. This is where it becomes apparent that the
 borderline between terms and operators is a bit mushy:
@files = <$dir/*.[ch]>; # Works, but avoid.
@files = glob("$dir/*.[ch]"); # Call glob as function.
@files = glob $some_pattern; # Call glob as operator.
We left the parentheses off of the last example to illustrate
 that glob can be used either as a
 function (a term) or as a unary operator; that
 is, a prefix operator that takes a single argument. The glob operator is an example of a
 named unary operator, which is just one kind of
 operator we’ll talk about in the next chapter. Later, we’ll talk
 about pattern-matching operators, which also parse like terms but
 behave like operators.

[56] Fileglobs have nothing to do with the previously mentioned
 typeglobs, other than that they both use the * character in a wildcard fashion. The
 * character has the nickname
 “glob” when used like this. With typeglobs, you’re globbing
 symbols with the same name from the symbol table. With a
 fileglob, you’re doing wildcard matching on the filenames in a
 directory, just as the various shells do.

Chapter 3. Unary and Binary Operators

In the previous chapter, we talked about the various kinds of terms
 you might use in an expression, but to be honest, isolated terms are a bit
 boring. Many terms are party animals. They like to have relationships with
 one another. The typical young term feels strong urges to identify with and
 influence other terms in various ways, but there are many different kinds of
 social interaction and many different levels of commitment. In Perl, these
 relationships are expressed using operators.
Sociology has to be good for something.
From a mathematical perspective, operators are just ordinary functions with special syntax.
 From a linguistic perspective, operators are just irregular verbs. But as
 any linguist will tell you, the irregular verbs in a language tend to be the
 ones you use most often. And that’s important from an information theory
 perspective because the irregular verbs tend to be shorter and more
 efficient in both production and recognition.
In practical terms, operators are handy.
Operators come in various flavors, depending on their arity (how
 many operands they take), their precedence (how hard
 they try to take those operands away from surrounding operators), and
 their associativity (whether they prefer to do
 things right to left or left to right when associated with operators of the
 same precedence).
Perl operators come in three arities: unary,
 binary, and trinary (or ternary, if your native tongue is Shibboleth).
 Unary operators are always prefix operators (except for the postincrement and
 postdecrement operators).[57] The others are all infix operators—unless you count the list operators, which can
 prefix any number of arguments. But most people just think of list operators
 as normal functions that you can forget to put parentheses around. Here are
 some examples:
! $x # a unary operator
$x * $y # a binary operator
$x ? $y : $z # a trinary operator
print $x, $y, $z # a list operator
An operator’s precedence controls how tightly it binds. Operators with
 higher precedence grab the arguments around them before operators with lower
 precedence. The archetypal example is straight out of elementary math, where
 multiplication takes precedence over addition:
2 + 3 * 4 # yields 14, not 20
The order in which two operators of the same precedence are executed
 depends on their associativity. These rules also follow math conventions to
 some extent:
2 * 3 * 4 # means (2 * 3) * 4, left associative
2 ** 3 ** 4 # means 2 ** (3 ** 4), right associative
2 != 3 != 4 # illegal, nonassociative
Table 3-1 lists the associativity and arity
 of the Perl operators from highest precedence to lowest.
Table 3-1. Operator precedence
	Associativity	Arity	Precedence Class
	None	0	Terms, and list operators
 (leftward)
	Left	2	–>
	None	1	++
 ––
	Right	2	**
	Right	1	! ~
 \ and unary + and
 –
	Left	2	=~
 !~
	Left	2	* / %
 x
	Left	2	+ –
 .
	Left	2	<<
 >>
	Right	0,1	Named unary operators
	None	2	< >
 <= >= lt gt le ge
	None	2	== !=
 <=> eq ne cmp ~~
	Left	2	&
	Left	2	|
 ^
	Left	2	&&
	Left	2	||
 //
	None	2	..
 ...
	Right	3	?:
	Right	2	= += –=
 *= and so on
	Left	2	,
 =>
	Right	0+	List operators (rightward)
	Right	1	not
	Left	2	and
	Left	2	or
 xor

It may seem to you that there are too many precedence levels to
 remember. Well, you’re right, there are. Fortunately, you’ve got two things
 going for you here. First, the precedence levels as they’re defined usually
 follow your intuition, presuming you’re not psychotic. And, second, if
 you’re merely neurotic, you can always put in extra parentheses to relieve
 your anxiety.
Another helpful hint is that any operators borrowed from C keep the
 same precedence relationship with one another, even where C’s precedence is
 slightly screwy. (This makes learning Perl easier for C folks and C++ folks.
 Maybe even Java folks.)
The following sections cover these operators in precedence order. With
 very few exceptions, these all operate on scalar values only, not list
 values. We’ll mention the exceptions as they come up.
Although references are scalar values, using most of these operators
 on references doesn’t make much sense, because the numeric value of a
 reference is only meaningful to the internals of Perl. Nevertheless, if a
 reference points to an object of a class that allows overloading, you can
 call these operators on such objects, and if the class has defined an
 overloading for that particular operator, it will define how the object is
 to be treated under that operator. This is how complex numbers are
 implemented in Perl, for instance. For more on overloading, see Chapter 13.

[57] Though you can think of various quotes and brackets as circumfix
 operators that delimit terms.

Terms and List Operators (Leftward)

Any term is of highest precedence in Perl. Terms include variables, quote
 and quote-like operators, most expressions in parentheses, brackets or
 braces, and any function whose arguments are parenthesized. Actually,
 there aren’t really any functions in this sense, just list operators and
 unary operators behaving as functions because you put parentheses around
 their arguments. Nevertheless, the name of Chapter 27 is
 Functions.
Now listen carefully. Here are a couple of rules that are very
 important and simplify things greatly, but may occasionally produce
 counterintuitive results for the unwary. If any list operator (such as
 print) or any named unary operator
 (such as chdir) is followed by a left
 parenthesis as the next token (ignoring whitespace), the operator and its
 parenthesized arguments are given highest precedence, as if it were a
 normal function call. The rule is this: if it looks
 like a function call, it is a function call. You can
 make it look like a nonfunction by prefixing the parentheses with a unary
 plus, which does absolutely nothing, semantically speaking—it doesn’t even
 coerce the argument to be numeric.
For example, since || has lower precedence than chdir, we get:
chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die
but because * has higher
 precedence than chdir, we get:
chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)
Likewise for any numeric operator that happens to be a named unary
 operator, such as rand:
rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)
In the absence of parentheses, the precedence of list operators such
 as print, sort, or chmod is either very high or very low depending
 on whether you look at the left side or the right side of the operator.
 (That’s what the “Leftward” is doing in the title of this section.) For
 example, in:
my @ary = (1, 3, sort 4, 2);
print @ary; # prints 1324
the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated
 after. In other words, a list operator tends to gobble up all the
 arguments that follow it, and then act like a simple term with regard to
 the preceding expression. You still have to be careful with
 parentheses:
These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
The easiest place to get burned is where you’re using parentheses to group mathematical arguments, and you forget
 that parentheses are also used to group function arguments:
print ($foo & 255) + 1, "\n"; # prints ($foo & 255)
That probably doesn’t do what you expect at first glance.[58] Fortunately, mistakes of this nature generally produce
 warnings like “Useless use of addition (+) in
 void context” and “print (...)
 interpreted as function” when warnings are enabled. The second
 one is reminding you that the parentheses delimit the argument list, and
 that anything after it won’t be part of those arguments. Write that this
 way instead:
print(($foo & 255) + 1, "\n"); # prints ($foo & 255)+1
Also parsed as terms are the do
 {} and eval {} constructs, as
 well as subroutine and method calls, the anonymous array and hash
 composers [] and {}, and the anonymous subroutine composer sub {}.

[58] Which is why we will be fixing it to do what you expect in Perl
 6. Alas, we cannot easily retrofit this fix to Perl 5 without breaking
 a lot of existing code.

The Arrow Operator

Just as in C and C++, the binary –> operator is an infix dereference operator. If the right side
 is a [...] array subscript, a {...} hash subscript, or a (...) subroutine argument list, the left side
 must be a reference[59] to an array, a hash, or a subroutine, respectively:
$aref–>[42] # an array dereference
$href–>{"corned beef"} # a hash dereference
$sref–>(1,2,3) # a subroutine dereference
In an lvalue (assignable) context, if the left side is not a
 reference, it must be a location capable of holding a hard reference, in
 which case such a reference will be autovivified for you.
$aref–>[42] = 'Huh!'; # autovivify an array in $aref
$href–>{"corned beef"} = 0; # autovivify a hash in $href
In either case, it also creates the new individual array or hash
 element with the assigned value. For more on this (and some warnings about
 accidental autovivification), see Chapter 8.
If the right side of the arrow is not one of those brackets, it’s a
 method call of some kind. The right side must be a method name (or a
 simple scalar variable containing the method name or a method reference),
 and the left side must evaluate to either an object (a blessed reference)
 or a class name (that is, a package name):
my $yogi = Bear–>new("Yogi"); # a class method call
$yogi–>swipe('picnic basket'); # an object method call
The method name may be qualified with a package name to indicate in
 which class to start searching for the method, or with the special package
 name, SUPER::, to indicate that the
 search should start in the parent class. See Chapter 12.

[59] This may be a symbolic reference, but only when no strict is in effect. Otherwise, it must
 be a hard reference.

Autoincrement and Autodecrement

The ++ and –– operators work as in C. That is, when placed before a variable, they
 increment or decrement the variable before returning the value; when
 placed after, they increment or decrement the variable after returning the
 value. For example, $a++ increments the
 value of scalar variable $a, returning
 the value it had before the increment. Similarly,
 ––$b{(/(\w+)/)[0]} decrements the
 element of the hash %b indexed by the
 first “word” in the default search variable ($_) and returns the value
 after the decrement.[60] Note that just as in C, Perl doesn’t define when the variable is incremented or decremented.
 You just know it will be done sometime before or after the value is
 returned. This also means that modifying a variable twice in the same
 statement will lead to undefined behavior. Avoid statements like:
$i = $i++;
print ++$i + $i++;
Perl will not guarantee the results of such code.
The autoincrement operator has a little extra built-in magic. If you
 increment a variable that is numeric, or that has ever been used in a
 numeric context, you get a normal increment. If, however, the variable has
 been used only in string contexts since it was set, has a value that is
 not the null string, and matches the pattern /^[a–zA–Z]*[0–9]*\z/, the increment is done as a
 string, preserving each character within its range, with carry:
my $foo;
$foo = "99"; print ++$foo; # prints "100"
$foo = "a9"; print ++$foo; # prints "b0"
$foo = "Az"; print ++$foo; # prints "Ba"
$foo = "zz"; print ++$foo; # prints "aaa"
The undefined value is always treated as numeric, and in particular
 is changed to 0 before incrementing, so
 that a postincrement of an undef value will return 0 rather than undef.
As of this writing, magical autoincrement has not been extended to
 Unicode letters and digits, but it might be in the future.
The autodecrement operator, however, is not magical.

[60] Okay, so that wasn’t exactly fair. We just wanted to make sure
 you were paying attention. Here’s how that expression works. First,
 the pattern match finds the first word in $_ using the regular expression \w+. The parentheses around that cause the
 word to be returned as a single-element list value because the pattern
 match is in list context. The list context is supplied by the list
 slice operator, (...)[0], which
 returns the first (and only) element of the list. That value is used
 as the key for the hash, and then the hash value stored under that key
 is decremented and returned. In general, when confronted with a
 complex expression, analyze it from the inside out to see what order
 things happen in.

Exponentiation

Binary ** is the exponentiation operator. Note that it binds even more
 tightly than unary minus, so –2**4 is
 –(2**4), not (–2)**4. The operator is implemented using C’s
 pow(3) function, which works with floating-point
 numbers internally. It calculates using logarithms, which means that it
 works with fractional powers, but you sometimes get results that aren’t as
 exact as straight multiplication would produce.

Ideographic Unary Operators

Most unary operators just have names (see Named Unary and File Test Operators later in this chapter), but some operators are
 deemed important enough to merit their own special symbolic
 representation. All of these operators seem to have something to do with
 negation. Blame the mathematicians.
Unary ! performs logical
 negation; that is, “not”. See not for a
 lower precedence version of logical negation. The value of a negated
 operand is true (1) if the operand is false (numeric 0, string "0", the null string, or undefined), and false
 ("") if the operand is true.
Unary – performs arithmetic
 negation if the operand is numeric. If the operand is an identifier, a
 string consisting of a minus sign concatenated with the identifier is
 returned. Otherwise, if the string starts with a plus or minus, a string
 starting with the opposite sign is returned. One effect of these rules is
 that –bareword is equivalent to
 "–bareword".[61] If, however, the string begins with a nonalphabetic
 character (excluding “+” or “-”), Perl will attempt to convert the string
 to a numeric and the arithmetic negation is performed. If the string
 cannot be cleanly converted to a numeric, Perl will give the warning
 “Argument "the string" isn't numeric in negation
 (–)”.
Unary ~ performs bitwise
 negation; that is, 1’s complement. For example, 0666 & ~027 is 0640. By definition, this is
 somewhat nonportable when limited by the word size of your machine. For
 example, on a 32-bit machine, ~123 is
 4294967172, while on a 64-bit machine,
 it’s 18446744073709551492. But you knew
 that already.
What you perhaps didn’t know is that if the argument to ~ happens to be a string instead of a number, a
 string of identical length is returned, but with all the bits of the
 string complemented. This is a fast way to flip a lot of bits all at once,
 and it’s a way to flip those bits portably, since it doesn’t depend on the
 word size of your computer. Later we’ll also cover the bitwise logical
 operators, which have string-oriented variants as well.
When complementing strings, if all characters have ordinal values
 under 256, then their complements will also. But if they do not, all
 characters will be in either 32- or 64-bit complements, depending on your
 architecture. So, for example, the expression
 ~"\x{3B1}" is "\x{FFFF_FC4E}" on 32-bit machines and "\x{FFFF_FFFF_FFFF_FC4E}"
 on 64-bit machines.
Unary + has no semantic effect
 whatsoever, even on strings. It is syntactically useful for separating a
 function name from a parenthesized expression that would otherwise be
 interpreted as the complete list of function arguments. (See examples
 under the section Terms and List Operators (Leftward).) If you think about it
 sideways, + negates the effect that
 parentheses have of turning prefix operators into functions.
Unary \ creates a reference to
 whatever follows it. Used on a list, it creates a list of references. See
 the section The Backslash Operator in Chapter 8
 for details. Do not confuse this behavior with the behavior of backslash
 within a string, although both forms do convey the vaguely negational
 notion of protecting the next thing from interpretation. This resemblance
 is not entirely accidental.

[61] This is most useful for Tk programmers, for whom the convention
 was first adopted.

Binding Operators

Binary =~ binds a string expression to a pattern match, substitution, or
 transliteration (loosely called translation). These operations would
 otherwise search or modify the string contained in $_ (the default variable). The string you want
 to bind is put on the left, while the operator itself is put on the right.
 The return value in scalar context generally indicates the success or
 failure of the operator on the right, since the binding operator doesn’t
 really do anything on its own. The exception to this is when using the
 /r modifier with substitution (s///) or transliteration (y///, tr///),
 which returns a copy of the modified string. Behavior in list context
 depends on the particular operator.
If the right argument is an expression rather than a pattern match,
 substitution, or transliteration, it will be interpreted as a search
 pattern at runtime. That is to say, $_ =~
 $pat is equivalent to $_ =~
 /$pat/. This is less efficient than an explicit search, since
 the pattern must be checked and possibly recompiled every time the
 expression is evaluated. You can avoid this recompilation by precompiling
 the original pattern using the qr//
 (quote regex) operator.
Binary !~ is just like =~ except the return value is negated logically.
 Binary “!~” that attempts to use the /r
 modifier for a nondestructive substitution or transliteration is a syntax
 error. Apart from that, the following expressions are functionally
 equivalent:
$string !~ /pattern/
!($string =~ /pattern/)
not $string =~ /pattern/
We said that the return value indicates success, but there are many
 kinds of success. Unless you use the /r
 modifier to make them return their results instead, substitutions return
 the number of successful matches, as do transliterations. (In fact, the
 transliteration operator is often used to count characters.) Since any
 nonzero result is true, it all works out. The most spectacular kind of
 true value is a list assignment of a pattern: in list context, pattern
 matches can return substrings matched by the parentheses in the pattern.
 But, again, according to the rules of list assignment, the list assignment
 itself will return true if anything matched and was assigned, and false
 otherwise. So you sometimes see things like:
if (my ($k,$v) = $string =~ m/(\w+)=(\w*)/) {
 print "KEY $k VALUE $v\n";
}
Let’s pick that apart. The =~ has
 precedence over =, so =~ happens first. The =~ binds $string to the pattern match on the right, which
 is scanning for occurrences of things that look like
 KEY=VALUE in your
 string. It’s in list context because it’s on the right side of a list
 assignment. If the pattern matches, it returns a list to be assigned to
 $k and $v, which are new variables created by my. The list assignment itself is in scalar
 context, so it returns 2, the number of
 values on the right side of the assignment. And 2 happens to be true, since our scalar context
 is also a Boolean context. When the match fails, no values are assigned,
 which returns 0, which is false.
For more on the politics of patterns, see Chapter 5.

Multiplicative Operators

Perl provides the C-like operators * (multiply), / (divide), and % (modulo). The * and / work
 exactly as you would expect, multiplying or dividing their two operands.
 Division is done in floating point, unless you’ve used any of the integer, bigint, bigrat, or bignum pragmatic modules. The %
 operator converts its operands to integers before finding the remainder
 according to integer division. (However, it does this integer division in
 floating point if necessary, so your operands can be up to 15 digits long
 on most 32-bit machines.) Assume that your two operands are called
 $a and $b. Unlike a mathematical remainder function,
 Perl’s % operator defines a sawtooth
 function on the real number line that drops to 0 at the origin and at
 every multiple of the divisor, ramping up to just under the divisor within
 each divisor interval. Unlike a remainder function, it is not symmetric
 around 0, but continues the sawtooth pattern on both sides of 0.
 Mathematically, $a % $b is
 therefore:
$a % $b == $a - (POSIX::floor($a / $b) * $b)
When use integer is in scope,
 % gives you direct access to the
 modulus operator as implemented by your C compiler. This operator is not
 well defined for negative operands, but it will execute faster.
Binary x is the repetition
 operator. Actually, it’s two operators. In scalar context, it returns a
 concatenated string consisting of the left operand repeated the number of
 times specified by the right operand. (For backward compatibility, it also
 does this in list context if the left argument is not in
 parentheses.)
print "–" x 80; # print row of dashes
print "\t" x ($tab/8), " " x ($tab%8); # tab over
In list context, if the left operand is a list in parentheses or is
 a list formed by qw/STRING/,
 the x works as a list replicator rather
 than a string replicator. This is useful for initializing all the elements
 of an array of indeterminate length to the same value:
my @ones = (1) x 80; # a list of 80 1's
@ones = (5) x @ones; # set all elements to 5
Similarly, you can also use x to
 initialize array and hash slices:
my %hash;
my @keys = qw(perls before swine);
@hash{@keys} = ("") x @keys;
If this mystifies you, note that @keys is being used both as a list of keys on
 the left side of the assignment and as a scalar value (returning the array
 length) on the right side of the assignment. The previous example has the
 same effect on %hash as:
$hash{perls} = "";
$hash{before} = "";
$hash{swine} = "";

Additive Operators

Strangely enough, Perl also has the customary + (addition) and – (subtraction) operators. Both operators
 convert their arguments from strings to numeric values, if necessary, and
 return a numeric result.
Additionally, Perl provides the .
 operator, which does string concatenation. For example:
my $almost = "Fred" . "Flintstone"; # returns FredFlintstone
Note that Perl does not place a space between the strings being
 concatenated. If you want the space, or if you have more than two strings
 to concatenate, you can use the join
 operator, described in Chapter 27. Most often, though,
 people do their concatenation implicitly inside a double-quoted
 string:
my $fullname = "$firstname $lastname";

Shift Operators

The bit-shift operators (<<
 and >>) return the value of the left argument shifted to the left
 (<<) or to the right (>>) by the number of bits specified by the
 right argument. The arguments should be integers. For example:
1 << 4; # returns 16
32 >> 4; # returns 2
Be careful, though. Results on large (or negative) numbers may vary
 depending on the number of bits your machine uses to represent integers.
 You can avoid this restriction with the bigint pragma.
use v5.14;
say 500 << 20; # prints 524288000
say 500 << 200; # prints (only) 128000

use bigint;
say 500 << 200;
803469022129495137770981046170581301261101496891396417650688000

Named Unary and File Test Operators

Some of the “functions” described in Chapter 27 are
 really unary operators. Table 3-2 lists all the
 named unary operators.
Table 3-2. Named unary operators
	–X (file
 tests)	fileno	lock	setnetent
	abs	getc	log	setprotoent
	alarm	getgrgid	lstat	setservent
	caller	getgrnam	my	shift
	chdir	gethostbyname	oct	sin
	chomp	getnetbyname	ord	sleep
	chop	getpeername	our	sqrt
	chr	getpgrp	pop	srand
	chroot	getprotobyname	pos	stat
	close	getpwnam	prototype	state
	closedir	getpwuid	quotemeta	study
	cos	getsockname	rand	tell
	dbmclose	glob	readdir	telldir
	defined	gmtime	readline	tied
	delete	hex	readlink	uc
	do	int	readpipe	ucfirst
	each	keys	ref	umask
	eof	lc	reset	undef
	eval	lcfirst	rewinddir	untie
	exists	length	rmdir	values
	exit	local	scalar	write
	exp	localtime	sethostent	any ($) sub
	fc	 	 	

Unlike list operators, unary operators have a higher precedence than some of the binary operators. For
 example:
sleep 4 | 3;
does not sleep for 7 seconds. It sleeps for 4 seconds and then takes
 the return value of sleep (typically
 zero) and bitwise ors
 that with 3, as if the expression were parenthesized as:
(sleep 4) | 3;
Compare this with:
print 4 | 3;
which does take the value of 4 ored with 3 before printing it
 (7, in this case), as if it were written:
print (4 | 3);
This is because print is a list
 operator, not a simple unary operator. Once you’ve learned which operators
 are list operators, you’ll have no trouble telling unary operators and
 list operators apart. When in doubt, you
 can always use parentheses to turn a named unary operator into a function.
 Remember, if it looks like a function, it is a function.
Another funny thing about named unary operators is that many of them
 default to $_ if you don’t supply an
 argument. However, if you omit the argument but the token following the
 named unary operator looks like it might be the start of an argument, Perl
 will get confused because it’s expecting a term. Whenever the Perl tokener
 gets to one of the characters listed in Table 3-3, the tokener returns different token types depending on whether
 it expects a term or operator.
Table 3-3. Ambiguous characters
	Character	Operator	Term
	+	Addition	Unary plus
	–	Subtraction	Unary minus
	*	Multiplication	*typeglob
	/	Division	/pattern/
	<	Less than, left shift	<HANDLE>, <<END
	.	Concatenation	.3333
	?	?:	?pattern? (deprecated)
	%	Modulo	%hash
	&	&,
 &&	&subroutine

So a typical boo-boo is:
next if length < 80;
in which the < looks to the
 parser like the beginning of the <> input symbol (a term) instead of the
 “less than” (an operator) you were thinking of. There’s really no way to
 fix this and still keep Perl pathologically eclectic. If you’re so
 incredibly lazy that you cannot bring yourself to type the two characters
 $_, then use one of these
 instead:
next if length() < 80;
next if (length) < 80;
next if 80 > length;
next unless length >= 80;
When a term is expected, a minus sign followed by a single letter will
 always be interpreted as a file
 test operator. A file test operator is a unary operator that
 takes one argument, either a filename or a filehandle, and tests the
 associated file to see whether something is true about it. If the argument
 is omitted, it tests $_, except for
 –t, which tests STDIN. Unless otherwise documented, it returns
 1 for true and "" for false, or the undefined value if the file
 doesn’t exist or is otherwise inaccessible. Currently implemented file test operators are listed in Table 3-4.
Table 3-4. File test operators
	Operator	Meaning
	–r	File is readable by effective UID/GID.
	–w	File is writable by effective UID/GID.
	–x	File is executable by effective UID/GID.
	–o	File is owned by effective UID.
	–R	File is readable by real UID/GID.
	–W	File is writable by real UID/GID.
	–X	File is executable by real UID/GID.
	–O	File is owned by real UID.
	–e	File exists.
	–z	File has zero size.
	–s	File has nonzero size (returns size).
	–f	File is a plain file.
	–d	File is a directory.
	–l	File is a symbolic link.
	–p	File is a named pipe (FIFO).
	–S	File is a socket.
	–b	File is a block special file.
	–c	File is a character special file.
	–t	Filehandle is opened to a tty.
	–u	File has setuid bit set.
	–g	File has setgid bit set.
	–k	File has sticky bit set.
	–T	File is a text file.
	–B	File is a binary file (opposite of –T).
	–M	Age of file (at startup) in days since
 modification.
	–A	Age of file (at startup) in days since last
 access.
	–C	Age of file (at startup) in days since inode
 change.

These operators are exempt from the “looks like a function rule”
 described above. That is, an opening parenthesis after the operator does
 not affect how much of the following
 code constitutes the argument. That means, for example, that –f($file).".bak" is
 equivalent to –f "$file.bak". Put the
 opening parentheses before the operator to separate it from code that
 follows (this applies only to operators with higher precedence than unary
 operators, of course):
–s($file) + 1024 # probably wrong; same as –s($file + 1024)
(–s $file) + 1024 # correct
Note that –s/a/b/ does not do a
 negated substitution. Saying –exp($foo)
 still works as expected, however—only single letters following a minus are
 interpreted as file tests.
The interpretation of the file permission operators –r, –R,
 –w, –W, –x, and
 –X is based solely on the mode of the
 file and the user and group IDs of the user. There may be other reasons
 you can’t actually read, write, or execute the file, such as if you are on
 a system that uses ACLs (Access Control Lists), and you’re not on the
 list.[62] Also note that for the superuser, –r, –R,
 –w, and –W always return 1, and –x and –X
 return 1 if any execute bit is set in the mode. Thus, scripts run by the
 superuser may need to do a stat in
 order to determine the actual mode of the file, or pretend not to be
 superuser by temporarily setting the UID to something else. The other file
 test operators don’t care who you are. Anybody can use the test for
 “regular” files:
while (<>) {
 chomp;
 next unless –f $_; # ignore "special" files
 ...
}
The –T and –B switches work as follows. The first block or
 so of the file is examined for strange characters such as control codes or
 bytes with the high bit set (that don’t look like UTF-8). If more than a
 third of the bytes appear to be strange, it’s a binary file; otherwise,
 it’s a text file. Also, any file containing ASCII NUL (\0) in the first block is considered a binary
 file. If –T or –B is used on a filehandle, the current input
 (standard I/O or “stdio”) buffer is examined rather than the first block
 of the file. Both –T and –B return true on an empty file, or on a file at
 EOF (end-of-file) when testing a filehandle. Because Perl has to read a
 file to do the –T test, you don’t want to use –T on special files that might hang or give you
 other kinds of grief. So on most occasions you’ll want to test with a
 –f first, as in:
next unless –f $file && –T $file;
If any stat, lstat, or file-test operator is given the
 special filehandle consisting of a solitary underline, then the
 stat structure of the previous file test (or stat operator) is used, thereby saving a system
 call. (This doesn’t work under use
 filetest or with –t, and you
 need to remember that lstat and
 –l will leave values in the
 stat structure for the symbolic link, not the real
 file. Likewise, –l _ will always be
 false after a normal stat.)
Here are a couple of examples:
print "Can do.\n" if –r $a || –w _ || –x _;

stat($filename);
print "Readable\n" if –r _;
print "Writable\n" if –w _;
print "Executable\n" if –x _;
print "Setuid\n" if –u _;
print "Setgid\n" if –g _;
print "Sticky\n" if –k _;
print "Text\n" if –T _;
print "Binary\n" if –B _;
File ages for –M, –A, and –C
 are returned in days (including fractional days) respectively between the
 last file modification, access, or inode change time and when the script
 started running. This start time is stored in the special variable
 $^T ($BASETIME). Thus, if the file changed after the
 script started, you would get a negative time. Note that most time values
 (86,399 out of 86,400, on average) are fractional, so testing for equality
 with an integer without using the int
 function is usually futile. Examples:
next unless –M $file > .5; # files are older than 12 hours
&newfile if –M $file < 0; # file is newer than process
&mailwarning if int(–A) == 90; # file ($_) was accessed 90 days ago today
To reset the script’s start time to the current time, say
 this:
$^T = time;
Starting with v5.10, as a form of purely syntactic sugar, you can
 stack file test operators, making –f –w –x $file
 equivalent to –x $file && –w _ &&
 –f _.

[62] You may, however, override the built-in semantics with the
 filetest pragma. See Chapter 29.

Relational Operators

Perl has two classes of relational operators. One class operates on
 numeric values, the other on string values, as shown in Table 3-5.
Table 3-5. Relational operators
	Numeric	String	Meaning
	>	gt	Greater than
	>=	ge	Greater than or equal to
	<	lt	Less than
	<=	le	Less than or equal to

These operators return 1 for true
 and "" for false. Note that relational
 operators are nonassociating, which means that $a
 < $b < $c is a syntax error.
In the absence of locale declarations, string comparisons are based
 on the numeric Unicode codepoint order of each character in the string.
 With a locale declaration, the collation order specified by the locale is
 used. These legacy, locale-based collation mechanisms do not interact well
 with the Unicode collation mechanisms provided by the Unicode::Collate and Unicode::Collate::Locale modules. It is better to use the modules, not locales.
 Codepoint order is not alphabetic order except in (unicameral) ASCII, so
 Perl’s string operators will produce alphabetic results only on legacy
 ASCII data, not on arbitrary text.

Equality Operators

The equality operators listed in Table 3-6 are
 much like the relational operators.
Table 3-6. Equality operators
	Numeric	String	Meaning
	==	eq	Equal to
	!=	ne	Not equal to
	<=>	cmp	Comparison, with signed result
	~~	~~	Smartmatch

The equal and not-equal operators return 1 for true and "" for false (just as the relational operators
 do). The <=> and cmp operators return –1 if the left operand is less than the right
 operand, 0 if they are equal, and
 +1 if the left operand is greater than
 the right. Although the equality operators appear to be similar to the
 relational operators, they do have a lower precedence level, so $a < $b <=> $c < $d is syntactically
 valid.
For reasons that are apparent to anyone who has seen
 Star
 Wars, the <=>
 operator is known as the “spaceship” operator.
The ~~ operator is described in
 the next section.

Smartmatch Operator

First available in v5.10.1,[63] binary ~~ does a
 “smartmatch” between its arguments. This is mostly used implicitly in the
 when construct, although not all
 when clauses call the smartmatch
 operator. Unique among all of Perl’s operators, the smartmatch operator
 can recurse.
It is also unique in that all other Perl operators impose a context
 (usually string or numeric context) on their operands, autoconverting
 those operands to those imposed contexts. In contrast, smartmatch
 infers contexts from the actual types of its operands
 and uses that type information to select a suitable comparison
 mechanism.
The ~~ operator compares its
 operands “polymorphically”, determining how to compare them according to
 their actual types (numeric, string, array, hash, and so on). Like the
 equality operators with which it shares the same precedence, ~~ returns 1 for true and "" for false. Much like the =~ binding operator, this operator’s right
 argument is considered to be a pattern that either accepts or rejects the
 left argument. However, the notion of “pattern” is generalized greatly,
 and nearly any value can function as a pattern, or as a list of
 patterns.
So ~~ is often best read aloud as
 “matches” or “matches any of”, because the left operand submits itself to
 be accepted or rejected by the right operand (or some part of the right
 operand).
The behavior of a smartmatch depends on what type of things its
 arguments are, as determined by Table 3-7. The
 first row of the table whose types apply determines the smartmatch
 behavior. Because what actually happens is first determined by the type of
 the right operand, and only later by the type of the left operand, the
 table is sorted on the right operand.
The smartmatch implicitly dereferences any nonblessed hash or array
 reference, so the HASH and ARRAY entries apply
 in those cases. For blessed references, the Object entries apply.
 Smartmatches involving hashes only consider hash keys, never hash
 values.
The “Like” column is not always an exact rendition. For example, the
 smartmatch operator short circuits whenever possible, but grep does not. Also, grep in scalar context returns the number of
 matches, but ~~ returns only true or
 false.
Unlike most operators, the smartmatch operator knows to treat
 undef specially:
my @array = (1, 2, 3, undef, 4, 5);
say "some elements undefined" if undef ~~ @array;
Each operand is considered in a modified scalar context, the
 modification being that array and hash variables are passed by reference
 to the operator, which implicitly dereferences them. Both elements of each
 pair are the same:
my %hash = (red => 1, blue => 2, green => 3,
 orange => 4, yellow => 5, purple => 6,
 black => 7, grey => 8, white => 9);

my @array = qw(red blue green);

say "some array elements in hash keys" if @array ~~ %hash;
say "some array elements in hash keys" if \@array ~~ \%hash;

say "red in array" if "red" ~~ @array;
say "red in array" if "red" ~~ \@array;

say "some keys end in e" if /e$/ ~~ %hash;
say "some keys end in e" if /e$/ ~~ \%hash;
Table 3-7. Smartmatch behavior
	Left	Right	Description	Like (But Evaluated in Boolean
 Context)
	
 Any 	undef	Check whether Any is
 undefined	!defined
 Any
	
 Any 	
 Object 	Invoke ~~ overloading on Object, or
 die	
	 	 	 	
	
 HASH 	
 CODE 	Sub returns true on all HASH
 keys[a]	!grep {
 !CODE–>($_) } keys
 HASH
	
 ARRAY 	
 CODE 	Sub returns true on all ARRAY elementsa	!grep {
 !CODE–>($_) }
 ARRAY
	
 Any 	
 CODE 	Sub passed Any returns
 true	CODE–>(Any)
	 	 	 	
	
 HASH1 	
 HASH2 	All same keys in both HASHes	keys
 HASH1 == grep { exists
 HASH2–>{$_} } keys
 HASH1
	
 ARRAY 	
 HASH 	Any ARRAY
 elements exist as HASH
 keys	grep {
 exists HASH–>{$_} }
 ARRAY
	
 Regexp 	
 HASH 	Any HASH keys
 pattern match Regexp	grep {
 /Regexp/ } keys
 HASH
	undef	
 HASH 	Always false (undef can’t be a key)	0 ==
 1
	
 Any 	
 HASH 	HASH key
 existence	exists
 HASH–>{Any}
	 	 	 	
	
 HASH 	
 ARRAY 	Any ARRAY
 elements exist as HASH
 keys	grep {
 exists HASH–>{$_} }
 ARRAY
	
 ARRAY1 	
 ARRAY2 	Recurse on paired elements of
 ARRAY1 and
 ARRAY2[b]	(ARRAY1[0] ~~ ARRAY2[0]) && (ARRAY1[1] ~~
 ARRAY2[1]) && ...
	
 Regexp 	
 ARRAY 	Any ARRAY
 elements pattern match Regexp	grep {
 /Regexp/ }
 ARRAY
	undef	
 ARRAY 	undef in ARRAY	grep {
 !defined } ARRAY
	
 Any 	
 ARRAY 	Smartmatch each ARRAY element[c]	grep {
 Any ~~ $_ }
 ARRAY
	 	 	 	
	
 HASH 	
 Regexp 	Any HASH keys
 match Regexp	grep {
 /Regexp/ } keys
 HASH
	
 ARRAY 	
 Regexp 	Any ARRAY
 elements match Regexp	grep {
 /Regexp/ }
 ARRAY
	
 Any 	
 Regexp 	Pattern match	Any =~
 /Regexp/
	 	 	 	
	
 Object 	
 Any 	Invoke ~~ overloading on Object, or
 fall back to:	
	
 Any 	
 Num 	Numeric equality	Any ==
 Num
	
 Num 	
 numlike [d]	Numeric equality	Num ==
 numlike
	undef	
 Any 	Check whether undefined	!defined(Any)
	
 Any 	
 Any 	String equality	Any eq
 Any
	[a] Empty hashes or arrays match.

[b] That is, each element smart-matches the element of the
 same index in the other
 array.c

[c] If a circular reference is found, fall back to
 referential equality.

[d] Either an actual number or a string that looks like
 one.

Two arrays smartmatch if each element in the first array
 smartmatches (that is, is “in”) the corresponding element in the second
 array, recursively:
my @little = qw(red blue green);
my @bigger = ("red", "blue", ["orange", "green"]);
if (@little ~~ @bigger) { # true!
 say "little is contained in bigger";
}
Because the smartmatch operator recurses on nested arrays, this will
 still report that “red” is in the array:
my @array = qw(red blue green);
my $nested_array = [[[[[[[@array]]]]]]];
say "red in array" if "red" ~~ $nested_array;
If two arrays smartmatch each other, then they are deep copies of
 each other’s values, as this example reports:
my @a = (0, 1, 2, [3, [4, 5], 6], 7);
my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a ~~ @b && @b ~~ @a) {
 say "a and b are deep copies of each other";
}
elsif (@a ~~ @b) {
 say "a smartmatches in b";
}
elsif (@b ~~ @a) {
 say "b smartmatches in a";
}
else {
 say "a and b don't smartmatch each other at all";
}
When you run this, you get:
a and b are deep copies of each other
If you were to set $b[3] = 4,
 then it would instead report that “b smartmatches
 in a”, because the corresponding position in @a contains an array that (eventually) has a 4
 in it.
Smartmatching one hash against another reports whether both contain
 the same keys, no more and no less. This could be used to see whether two
 records have the same field names, without caring what values those fields
 might have. For example:
use v5.10;
sub make_dogtag {
 state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

 my ($class, $init_fields) = @_;

 die "Must supply (only) name, rank, and serial number"
 unless $init_fields ~~ $REQUIRED_FIELDS;

 ...
}
The smartmatch operator is most often used as the implicit operator
 of a when clause. See the section The given Statement in Chapter 4.

[63] The version in v5.10.0 behaved differently on fancy cases, but
 that’s okay because you’re using at least v5.14 now, right?

Smartmatching of Objects

To avoid relying on an object’s underlying representation, if the smartmatch’s
 right operand is an object that doesn’t overload ~~, it raises the exception, “Smart matching a non–overloaded object breaks
 encapsulation”. That’s because one has no business digging
 around to see whether something is “in” an object. These are all illegal
 on objects without a ~~
 overload:
 %hash ~~ $object
 42 ~~ $object
"fred" ~~ $object
However, you can change the way an object is smartmatched by
 overloading the ~~ operator. This is
 allowed to extend the usual smartmatch semantics. For objects that do
 have an ~~ overload, see Chapter 13.
Using an object as the left operand is allowed, although it’s not
 very useful. Smartmatching rules take precedence over overloading, so
 even if the object in the left operand has smartmatch overloading, this
 will be ignored. A left operand that is a nonoverloaded object falls
 back on a string or numeric comparison of whatever the ref operator returns. Meaning:
$object ~~ X
does not invoke the overload method with
 X as an argument. Instead, the above table is
 consulted as normal, and based on the type of
 X, overloading may or may not be invoked. For
 simple strings or numbers, it becomes equivalent to this:
$object ~~ $number "$object" == $number
$object ~~ $string "$object" eq $string
For example, this reports that the handle smells IOish:
use IO::Handle;
my $fh = IO::Handle–>new();
if ($fh ~~ /\bIO\b/) {
 say "handle smells IOish";
}
That’s because it treats $fh as
 a string like "IO::Handle=GLOB(0x8039e0)", then pattern
 matches against that.[64]

[64] But please don’t do this. In the future this is likely to
 change to be closer to Perl 6 semantics, where the type of the right
 argument determines which overloading (string or number) the object
 on the left is supposed to behave like. So please just avoid putting
 objects on the left for now.

Bitwise Operators

Like C, Perl has bitwise and, or, xor
 (exclusive or), and not operators: &, |, ^, and the
 previously described ~. You’ll have
 noticed from your painstaking examination of the table at the start of
 this chapter that bitwise and has a
 higher precedence than the others, but we’ve cheated and combined them in
 this discussion.
These operators work differently on numeric values than they do on
 strings. (This is one of the few places where Perl cares about the
 difference.) If either operand is a number (or has been used as a number),
 both operands are converted to integers, and the bitwise operation is
 performed between the two integers. These integers are guaranteed to be at
 least 32 bits long, but they can be 64 bits on some machines. The point is
 that there’s an arbitrary limit imposed by the machine’s architecture. You
 can get around this restriction with the bigint pragma.
If both operands are strings (and have not been used as numbers
 since they were set), the operators do bitwise operations between
 corresponding bits from the two strings. In this case, there’s no
 arbitrary limit, since strings aren’t arbitrarily limited in size. If one
 string is longer than the other, the shorter string is considered to have
 a sufficient number of 0 bits on the end to make up the difference. Bits
 in each corresponding logical character in the two strings are and’d, or’d,
 or xor’d together.
For example, if you and together
 two strings:
"123.45" & "234.56"
you get another string:
"020.44"
But if you and together a string
 and a number:
"123.45" & 234.56
the string is first converted to a number, giving:
123.45 & 234.56
The numbers are then converted to integers:
123 & 234
which evaluates to 106. Note that all bit strings are true (unless
 they result in the string “0”). This
 means if you want to see whether any byte came out to nonzero, instead of
 writing this:
if ("fred" & "\x01\x02\x03\x04") { ... }
you need to write this:
if (("fred" & "\x01\x02\x03\x04") =~ /[^\0]/) { ... }

C-Style Logical (Short-Circuit) Operators

Like C, Perl provides the && (logical
 and) and || (logical or) operators. Perl also provides a variant of
 ||, the logical defined or operator, //. These evaluate from left to right (with
 && having slightly higher
 precedence than || or //), testing the truth of the statement. These
 operators, shown in Table 3-8, are known as
 short-circuit operators because they determine the truth of the statement
 by evaluating the fewest number of operands possible. For example, if the
 left operand of an && operator
 is false, the right operand is never evaluated because the result of the
 operator is false regardless of the value of the right operand.
Table 3-8. Logical operators
	Example	Name	Result
	$a
 && $b	and	$a if $a is false, $b otherwise
	$a ||
 $b	or	$a if $a is true, $b
 otherwise
	$a //
 $b	Defined or	$a if $a is defined, $b
 otherwise
	$a and
 $b	Low precedence and	$a if $a is false, $b
 otherwise
	$a or
 $b	Low precedence or	$a if $a is true, $b
 otherwise
	$a xor
 $b	Low precedence xor	True if exactly one of $a or $b is true, false otherwise

Such short circuits not only save time but are also frequently used
 to control the flow of evaluation. For example, an oft-appearing idiom in
 Perl programs is:
open(FILE, "<", "somefile") || die "Can't open somefile: $!\n";
In this case, Perl first evaluates the open function. If the value is true (because
 somefile was successfully opened), the execution of
 the die function is unnecessary, and so
 it is skipped. You can read this literally as “Open some file or
 die!”
The // operator is useful for
 functions that indicate failure by returning undef. For example:
my $pid = fork() // die "Can't fork: $!";
if ($pid) {
 # parent code here
 ...
 wait $pid;
} else {
 # child code here
 ...
 exit;
}
It is also useful for detecting missing values from hashes. This
 returns the default if the key is not in the hash or the key has an
 undefined value:
$value = $hash{$key} // "DEFAULT";
The && and || operators differ from C’s in that, rather
 than returning 0 or 1, they return the last value evaluated. In the case
 of ||, this has the delightful result
 that you can select the first of a series of scalar values that happens to
 be true. Thus, a reasonably portable way to find out the user’s home
 directory might be:
my $home = $ENV{HOME}
 || $ENV{LOGDIR}
 || (getpwuid($<))[7]
 || die "You're homeless!\n";
On the other hand, since the left argument is always evaluated in
 scalar context, you can’t use || for
 selecting between two aggregates for assignment:
@a = @b || @c; # This doesn't do the right thing
@a = scalar(@b) || @c; # because it really means this.
@a = @b ? @b : @c; # This works fine, though.
Perl also provides lower precedence and and or
 operators that don’t require parentheses on list operators. Some people
 find this more readable, although others find it less readable. These
 spelled-out operators also short circuit. See Table 3-8 for a complete list.

Range Operators

The .. range operator is really two different operators depending on the
 context.
In scalar context, .. returns a
 Boolean value. The operator is bi-stable, like an electronic flip-flop,
 and emulates the line-range (comma) operator of sed,
 awk, and various editors. Each scalar .. operator maintains its own Boolean state. It
 is false as long as its left operand is false. Once the left operand is
 true, the range operator stays true until the right operand is true,
 after which the range operator becomes false again.
 The operator doesn’t become false until the next time it is evaluated. It
 can test the right operand and become false on the same evaluation as the
 one where it became true (the way awk’s range
 operator behaves), but it still returns true once. If you don’t want it to
 test the right operand until the next evaluation (which is how
 sed’s range operator works), just use three dots
 (...) instead of two.[65] With both .. and ..., the right operand is not evaluated while
 the operator is in the false state, and the left operand is not evaluated
 while the operator is in the true state.
The value returned is either the null string for false or a sequence
 number (beginning with 1) for true. The
 sequence number is reset for each range encountered. The final sequence
 number in a range has the string “E0”
 appended to it, which doesn’t affect its numeric value, but gives you
 something to search for if you want to exclude the endpoint. You can
 exclude the beginning point by waiting for the sequence number to be
 greater than 1. If either operand of scalar .. is a numeric literal, that operand is
 implicitly compared to the $. variable,
 which contains the current line number for your input file.[66]
Examples:
if (101 .. 200) { print } # print 2nd hundred lines
next line if 1 .. /^$/; # skip header lines of a message
s/^/> / if /^$/ .. eof; # quote body of a message
In list context, .. returns a
 list of values counting (by ones) from the left value to the right value.
 This is useful for writing for (1..10)
 loops and for doing slice operations on arrays:
for (101 .. 200) { print } # prints 101102...199200

my @foo = getlist();
@foo = @foo[0 .. $#foo]; # an expensive no–op
@foo = @foo[–5 .. –1]; # slice last 5 items
In the current implementation, no temporary array is created when
 the range operator is used as the expression in foreach loops, but older versions of Perl might
 burn a lot of memory when you write something like this:
for (1 .. 1_000_000) {
 # code
}
If the left value is greater than the right value, a null list is
 returned. (To produce a list in reverse order, see the reverse
 operator.)
If its operands are strings, the range operator makes use of the
 magical autoincrement algorithm discussed earlier. So you can say:
my @alphabet = ("A" .. "Z");
to get all the letters of the (modern English) alphabet, or:
my $hexdigit = (0 .. 9, "a" .. "f")[$num & 15];
to get a hexadecimal digit, or:
my @z2 = ("01" .. "31");
print $z2[$mday];
to get dates with leading zeros. You can also say:
my @combos = ("aa" .. "zz");
to get all two-letter combinations of lowercase ASCII letters.
 However, be careful of something like:
my @bigcombos = ("aaaaaaa" .. "zzzzzzz");
since that will require lots of memory. More precisely, it’ll need
 space to store 8,031,810,176 scalars. Let’s hope you have a 64-bit
 machine. With a terabyte of memory. Fast memory.
 Perhaps you should consider an iterative approach instead.
If the final value specified is not in the sequence that the magical
 increment would produce, the sequence goes until the next value would be
 longer than the final value specified. For example, "W" .. "M" produces “W”, “X”,
 “Y”, and “Z”, but then stops because the next item in the
 sequence, “AA”, is longer than the
 target “M”.
If the initial value specified isn’t part of a magical increment
 sequence (that is, a nonempty string matching /^[a–zA–Z]*[0–9]*\z/), only the initial value is
 returned. So the following will only return an alpha:
use charnames "greek";
my @greek_small = ("\N{alpha}" .. "\N{omega}");
To get lowercase Greek letters, you might use this instead:
use charnames "greek";
my @greek_small = map { chr } (
 ord("\N{alpha}") .. ord("\N{omega}")
);
However, that picks up an extra letter because there are two
 different lowercase sigmas between rho and tau, the extra one being
 "\N{final sigma}". In general, assuming
 codepoint order corresponds to alphabetic order seldom works out.
 See Comparing and Sorting Unicode Text in Chapter 6.

[65] Do not confuse the ... range
 operator with the ... elliptical
 statement, which raises an “Unimplemented” exception when
 executed.

[66] Technically, it contains the number of times the readline operator
 has been called on the last handle it was called on since that handle
 was last closed.

Conditional Operator

As in C, ?: is the only trinary operator. It’s often called the conditional
 operator because it works much like an if-then-else, except that, since
 it’s an expression and not a statement, it can be safely embedded within
 other expressions and function calls. As a trinary operator, its two parts
 separate three expressions:
COND ? THEN : ELSE
If the condition COND is true, only the
 THEN expression is evaluated, and the value of
 that expression becomes the value of the entire expression. Otherwise,
 only the ELSE expression is evaluated, and its
 value becomes the value of the entire expression.
Scalar or list context propagates downward into the second or third
 argument, whichever is selected. (The first argument is always in scalar
 context since it’s a conditional.)
my $a = $ok ? $b : $c; # get a scalar
my @a = $ok ? @b : @c; # get an array
my $a = $ok ? @b : @c; # get a count of an array's elements
You’ll often see the conditional operator embedded in lists of
 values to format with printf, since
 nobody wants to replicate the whole statement just to switch between two
 related values:
printf "I have %d camel%s.\n",
 $n, $n == 1 ? "" : "s";
Conveniently, the precedence of ?: is higher than a comma but lower than most
 operators you’d use inside (such as ==
 in this example), so you don’t usually have to parenthesize anything. But
 you can add parentheses for clarity if you like. For conditional operators
 nested within the THEN parts of other
 conditional operators, we suggest that you put in line breaks and indent
 as if they were ordinary if
 statements:
$leapyear =
 $year % 4 == 0
 ? $year % 100 == 0
 ? $year % 400 == 0
 ? 1
 : 0
 : 1
 : 0;
For conditionals nested within the ELSE
 parts of earlier conditionals, you can do a similar thing:
$leapyear =
 $year % 4
 ? 0
 : $year % 100
 ? 1
 : $year % 400
 ? 0
 : 1;
but it’s usually better to line up all the
 COND and THEN parts
 vertically:
$leapyear =
 $year % 4 ? 0 :
 $year % 100 ? 1 :
 $year % 400 ? 0 : 1;
Lining up the question marks and colons can make sense of even
 fairly cluttered structures:
printf "Yes, I like my %s book!\n",
 $i18n eq "french" ? "chameau" :
 $i18n eq "german" ? "Kamel" :
 $i18n eq "japanese" ? "\x{99F1}\x{99DD}" :
 "camel"
With the utf8 pragma, you don’t even have to escape the Unicode
 characters:
use utf8;
printf "Yes, I like my %s book!\n",
 $i18n eq "french" ? "chameau" :
 $i18n eq "german" ? "Kamel" :
 $i18n eq "japanese" ? "[image:]" :
 "camel"
You can assign to the conditional operator[67] if both the second and third arguments are legal lvalues
 (meaning that you can assign to them), and both are scalars or both are
 lists (otherwise, Perl won’t know which context to supply to the right
 side of the assignment):
($a_or_b ? $a : $b) = $c; # sets either $a or $b to have the value of $c
Bear in mind that the conditional operator binds more tightly than
 the various assignment operators. Usually this is what you want (see the
 $leapyear assignments above, for
 example), but you can’t have it the other way without using parentheses.
 Using embedded assignments without parentheses will get you into trouble,
 and you might not get a parse error because the conditional operator can
 be parsed as an lvalue. For example, you might write this:
$a % 2 ? $a += 10 : $a += 2 # WRONG
But that would be parsed like this:
(($a % 2) ? ($a += 10) : $a) += 2

[67] This is not necessarily guaranteed to contribute to the
 readability of your program. But it can be used to create some cool
 entries in an Obfuscated Perl contest.

Assignment Operators

Perl recognizes the C assignment operators, as well as providing some of its
 own. There are quite a few of them:
= **= += *= &= <<= &&=
 –= /= |= >>= ||=
 .= %= ^= //=
 x=
Each operator requires a target lvalue (typically a variable or
 array element) on the left side and an expression on the right side. For
 the simple assignment operator:
TARGET = EXPR
the value of the EXPR is stored into the
 variable or location designated by TARGET. For
 the other operators, Perl evaluates the expression:
TARGET OP= EXPR
as if it were written:
TARGET = TARGET OP EXPR
That’s a handy mental rule, but it’s misleading in two ways. First,
 assignment operators always parse at the precedence level of ordinary
 assignment, regardless of the precedence that
 OP would have by itself. Second,
 TARGET is evaluated only once. Usually that
 doesn’t matter unless there are side effects, such as an
 autoincrement:
$var[$a++] += $value; # $a is incremented once
$var[$a++] = $var[$a++] + $value; # $a is incremented twice
Unlike in C, the assignment operator produces a valid lvalue.
 Modifying an assignment is equivalent to doing the assignment and then
 modifying the variable to which it was assigned. This is useful for
 modifying a copy of something, like this:
($tmp = $global) += $constant;
which is the equivalent of:
$tmp = $global + $constant;
Likewise:
($a += 2) *= 3;
is equivalent to:
$a += 2;
$a *= 3;
That’s not terribly useful, but here’s an idiom you see
 frequently:
(my $new = $old) =~ s/foo/bar/g;
That can also be written like this in v5.14 or later, using the
 /r modifier to return a copy of the
 changed version instead of acting on the variable that =~ binds to:
my $new = ($old =~ s/foo/bar/gr);
my $new = $old =~ s/foo/bar/gr;
In all cases, the value of the assignment is the new value of the
 variable. Since assignment operators associate right to left, this can be
 used to assign many variables the same value, as in:
$a = $b = $c = 0;
which assigns 0 to $c, and the result of that (still 0) to $b, and
 the result of that (still 0) to $a.
List assignment may be done only with the plain assignment operator,
 =. In list context, list assignment
 returns the list of new values just as scalar assignment does. In scalar
 context, list assignment returns the number of values that were available
 on the right side of the assignment, as mentioned in Chapter 2. This makes it useful for testing functions that
 return a null list when unsuccessful (or no longer successful), as in:
while (my ($key, $value) = each %gloss) { ... }

next unless my ($dev, $ino, $mode) = stat $file;

Comma Operators

Binary “,” is the comma operator. In scalar context it evaluates its left argument in void context, throws that
 value away, then evaluates its right argument in scalar context and
 returns that value. This is just like C’s comma operator. For
 example:
$a = (1, 3);
assigns 3 to $a. Do not confuse the scalar context use with
 the list context use. In list context, a comma is just the list argument
 separator, and it inserts both its arguments into the
 LIST. It does not throw any values away.
For example, if you change the previous example to:
@a = (1, 3);
you are constructing a two-element list, while:
atan2(1, 3);
is calling the function atan2
 with two arguments.
The => digraph is mostly just
 a synonym for the comma operator. It’s useful for documenting arguments
 that come in pairs. It also forces any identifier to its immediate left to
 be interpreted as a string. This autoquoting works only on identifiers,
 not on numeric literals.

List Operators (Rightward)

The right side of a list operator governs all the list operator’s arguments,
 which are comma separated, so the precedence of a list operator is lower
 than a comma if you’re looking to the right. Once a list operator starts
 chewing up comma-separated arguments, the only things that will stop it
 are tokens that stop the entire expression (like semicolons or statement
 modifiers), or tokens that stop the current subexpression (like right
 parentheses or brackets), or the low precedence logical operators we’ll
 talk about next.

Logical and, or, not, and xor

As lower precedence alternatives to &&, ||, and !,
 Perl provides the and, or, and not
 operators. The behavior of these operators is identical—in particular,
 and and or short circuit like their counterparts, which
 makes them useful not only for logical expressions but also for control
 flow.
Since the precedence of these operators is much lower than the ones
 borrowed from C, you can safely use them after a list operator without the
 need for parentheses:
unlink "alpha", "beta", "gamma"
 or gripe(), next LINE;
With the C-style operators you’d have to write it like this:
unlink("alpha", "beta", "gamma")
 || (gripe(), next LINE);
But you can’t just up and replace all instances of || with or.
 Suppose you change this:
$xyz = $x || $y || $z;
to this:
$xyz = $x or $y or $z; # WRONG
That wouldn’t do the same thing at all! The precedence of the
 assignment is higher than or but lower
 than ||, so it would always assign
 $x to $xyz and then do the ors. To get the same effect as ||, you’d have to write:
$xyz = ($x or $y or $z);
The moral of the story is that you still must learn precedence no
 matter which variety of logical operators you use. We suggest you use
 parentheses for any such construct that might confuse the reader, even if
 you’re not confused.[68]
There is also a logical xor
 operator that has no exact counterpart in C or Perl, since the only other
 exclusive or operator (^) works on bits. The xor operator can’t short circuit since both
 sides must be evaluated. The best equivalent for $a xor $b is perhaps !$a != !$b. One could also write !$a ^ !$b or even $a ?
 !$b : !!$b, of course. The point is that both $a and $b
 have to evaluate to true or false in a Boolean context, and the existing
 bitwise operator doesn’t provide a Boolean context without help.

[68] Unless, of course, your intent is to force
 the reader to learn precedence, a position for which we have some
 sympathy.

C Operators Missing from Perl

Here is what C has that Perl doesn’t:
	unary &
	The address-of operator. Perl’s \ operator
 (for taking a reference) fills the same ecological niche,
 however:
$ref_to_var = \$var;
But Perl references are much safer than C pointers.

	unary *
	The dereference-address operator. Since Perl doesn’t have addresses, it doesn’t need
 to dereference addresses. It does have references, though, so Perl’s
 variable prefix characters serve as dereference operators and
 indicate type as well: $,
 @, %, and &. Oddly enough, there actually is a
 * dereference operator, but since
 * is the sigil indicating a
 typeglob, you wouldn’t use it the same way.

	(TYPE)
	The typecasting operator. Nobody likes to be typecast
 anyway.

Chapter 4. Statements and Declarations

A Perl program consists of a sequence of declarations and statements. A
 declaration may be placed anywhere a statement may be
 placed, but its primary effect occurs at compile time. A few
 declarations do double duty as ordinary statements, but most are totally
 transparent at runtime. After compilation, the main sequence of
 statements is executed just once.
In this chapter we cover statements before declarations, but we’d
 just like to mention a few of the more important declarations up
 front.
Unlike many programming languages, Perl does not (by default)
 require variables to be explicitly declared; they spring into existence
 upon their first use, whether you’ve declared them or not. However, if
 you prefer, you may declare your variables using a declarator such as my, our, or state in front of the variable name wherever
 it’s first mentioned, and then the compiler can be pretty sure that your
 variable name isn’t a typo when you mention it again later.
If you try to use a value from a variable that’s never had a value
 assigned to it, it’s quietly treated as 0 when used as a number, as "" (the null string) when used as a string, or
 simply as false when used as a logical value. If you prefer to be warned
 about using undefined values as though they were real strings or
 numbers, the use warnings declaration
 will take care of that.
Similarly, you can use the use
 strict declaration to require yourself to declare all your
 variables in advance. If you use this, any unrecognized variable name
 will be treated as a syntax error. (Saying use
 v5.12 or greater implicitly sets strict, but we recommend use v5.14 so that the examples in this book
 compile and work.) For more on these declarations, see the section Pragmas at the end of this chapter.

Simple Statements

A simple statement is an expression evaluated for its side
 effects. Every simple statement must end in a semicolon, unless it is the final statement in a block. In that
 case, the semicolon is optional—Perl knows that you must be done with
 the statement since you’ve finished the block. But put the semicolon
 in anyway if it’s at the end of a multiline block, because you might
 eventually add another line.
Even though operators like eval
 {}, do {}, and sub {} all look like compound statements,
 they really aren’t. True, they allow multiple statements on the
 inside, but that doesn’t count. From the outside, those operators are
 just terms in an expression, and thus they need an explicit semicolon
 if used as the last item in a statement.
Any simple statement may optionally be followed by a single
 modifier, just before the terminating semicolon (or
 block ending). The possible modifiers are:
if EXPR
unless EXPR
while EXPR
until EXPR
for LIST
when EXPR
The if and unless modifiers work pretty much as they do in English:
$trash–>take("out") if $you_love_me;
shutup() unless $you_want_me_to_leave;
The while and until modifiers evaluate repeatedly. As you might expect, a
 while modifier keeps executing the
 expression as long as its expression remains true, and an until modifier keeps executing only as long
 as it remains false:
$expression++ while –e "$file$expression";
kiss("me") until $I_die;
The for modifier (also spelled foreach if
 you’re trying to wear out your keyboard) evaluates once for each
 element in its LIST, with $_ aliased to the current element:
s/java/perl/ for @resumes;
say "field: $_" foreach split /:/, $dataline;
The while and until modifiers have the usual while-loop
 semantics (conditional evaluated first), except when applied to a
 do BLOCK
 (see Chapter 27), in which case the block executes
 once before the conditional is evaluated. This allows you to write
 loops, like this:
do {
 $line = <STDIN>;
 ...
} until $line eq ".\n";
Note that the loop-control operators described later will not
 work in this construct, since modifiers don’t take loop labels. You
 can always place an extra block around it to terminate early, or
 inside it to iterate early, as described later in the section Bare Blocks as Loops. Or you could write a real loop (see next
 section) with multiple loop controls inside.
The when modifier is an
 experimental feature available if you say use
 v5.14 (or greater). Its pattern-matching semantics are
 equivalent to those of the when
 statement, so see The when Statement and Modifier later in this chapter.

Compound Statements

A sequence of statements within a scope[69] is called a block. Sometimes the scope is the entire file, such as a
 required file or the file
 containing your main program. Sometimes the scope is a string being
 evaluated with eval. But,
 generally, a block is surrounded by braces ({}). When we say scope, we mean any of these
 three. When we mean a block with braces, we’ll use the term
 BLOCK.
Compound statements are built out of expressions and BLOCKs.
 Expressions are built out of terms and operators. In our syntax
 descriptions, we’ll use the word EXPR to
 indicate a place where you can use any scalar expression. To indicate
 an expression evaluated in list context, we’ll say
 LIST.
The following statements may be used to control conditional and
 repeated execution of BLOCKs. (The
 LABEL portion is optional.)
if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK
unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach (LIST) BLOCK
LABEL foreach (LIST) BLOCK continue BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK continue BLOCK
Note that unlike in C and Java, these are defined in terms of
 BLOCKs, not statements. This means that the
 braces are required—no dangling statements allowed. If you want to
 write conditionals without braces, there are several ways to do so.
 The following all do the same thing:
unless (open(FOO, '<', $foo)) { die "Can't open $foo: $!" }
if (!open(FOO, '<', $foo)) { die "Can't open $foo: $!" }

die "Can't open $foo: $!" unless open(FOO, '<', $foo);
die "Can't open $foo: $!" if !open(FOO, '<', $foo);

open(FOO, '<', $foo) || die "Can't open $foo: $!";
open(FOO, '<', $foo) or die "Can't open $foo: $!";
Under most circumstances, we tend to prefer the last pair. These
 forms come with less eye-clutter than the others, especially the
 “or die” version. With the || form, you need to get used to using
 parentheses religiously, but with the or version, it doesn’t usually matter so
 much if you forget.
But the main reason we like the last versions better is because
 of how they pull the important part of the statement right up to the
 front of the line where you’ll see it first. The error handling is
 shoved off to the side so that you don’t have to pay attention to it
 unless you want to.[70] If you tab all your “or
 die” checks over to the same column on the right each time,
 it’s even easier to read:
chdir($dir) or die "chdir $dir: $!";
open(FOO, '<', $file) or die "open $file: $!";
@lines = <FOO> or die "$file is empty?";
close(FOO) or die "close $file: $!";

[69] Scopes and namespaces are described in the section Names in Chapter 2.

[70] (Like this footnote.)

if and unless Statements

The if statement is
 straightforward. Because
 BLOCKs are always bounded by braces, there
 is never any ambiguity regarding which particular if an else or elsif goes with. In any given sequence of
 if/elsif/else BLOCKs, only
 the first one whose condition evaluates to true is executed. If none
 of them is true, then the else
 BLOCK, if there is one, is executed. It’s
 usually a good idea to put an else
 at the end of a chain of elsifs to
 guard against a missed case.
If you use unless in place of
 if, the sense of its test is
 reversed. That is:
unless ($x == 1) ...
is equivalent to:
if ($x != 1) ...
or even to the unsightly:
if (!($x == 1)) ...
The scope of a variable declared in the controlling condition
 extends from its declaration through the rest of that conditional
 only, including any elsifs and the
 final else clause if present, but
 not beyond:
if ((my $color = <STDIN>) =~ /red/i) {
 $value = 0xFF0000;
}
elsif ($color =~ /green/i) {
 $value = 0x00FF00;
}
elsif ($color =~ /blue/i) {
 $value = 0x0000FF;
}
else {
 warn "unknown RGB component '$color', using black instead\n";
 $value = 0x000000;
}
After the else, the $color variable is no longer in scope. If
 you want the scope to extend further, declare the variable
 beforehand.

The given Statement

In the previous example, we kept talking about $color. Linguists call this a
 topic. In v5.10 or later, an alternative to the
 if structure is available, the
 given statement, which functions
 linguistically as a topicalizer. It
 works by setting $_ to the current
 topic. You can then use when
 statements to examine the topic for various values or patterns.
This feature is enabled when you use a version of Perl that is at least
 v5.10:
use v5.12; # at least v5.12, load default features
or when you specifically request the “switch”
 feature:
use feature "switch"; # just get the switch feature
Either of those adds several new keywords to the Perl language:
 given, when, break, continue, and default. Here is one way to recode the
 previous example using the new feature:
use v5.10;

my $value;
given (<STDIN>) {
 when (/red/i) { $value = 0xFF0000 }
 when (/green/i) { $value = 0x00FF00 }
 when (/blue/i) { $value = 0x0000FF; }
 default {
 chomp;
 warn "unknown RGB component '$_', using black instead\n";
 $value = 0x000000;
 }
}
In fact, in v5.10 you had to write it that
 way since given couldn’t return
 values. In v5.14 or later, you can return values, and with the
 statement modifier form of when,
 you may even write it this way:
use v5.14;

my $value = do {
 given (<STDIN>) {
 0xFF0000 when /red/i;
 0x00FF00 when /green/i;
 0x0000FF when /blue/i;
 chomp;
 warn "unknown RGB component '$_', using black instead\n";
 0x000000;
 }
};
The arguments to given and
 when are in scalar context; given binds its argument to the $_ variable to set the topic of its
 BLOCK. The when uses its argument to pick what kind of
 pattern match you want done by looking at the type of the argument.
 The semantics of when are a
 superset of smartmatching. If the argument appears to be a Boolean
 expression, it is evaluated directly. If not, it is passed off to the
 smartmatch operator to be interpreted as $_ ~~ EXPR. This
 may seem complicated, but it really isn’t because the vast majority of
 switches are going to be of the form:
use v5.14;

my $n = somefunc();

given ($n) {
 when (0) { say "zero" }
 when (1) { say "one" }
 when ([3..7]) { say "many" }
 when (/^\d+$/) { say "lots" }
 default { say "unwholesome" }
}
In other words, the when args
 will usually be something that invokes smartmatching (or that you can
 pretend is invoking smartmatching).
Here is a longer example of given:
use feature ":5.10";

given ($n) {

match if !defined($n)
 when (undef) {
 say '$n is undefined';
 }

match if $n eq "foo"
 when ("foo") {
 say '$n is the string "foo"';
 }

match if $n ~~ [1,3,5,7,9]
 when ([1,3,5,7,9]) {
 say '$n is an odd digit';
 continue; # Fall through!!
 }

match if $n < 100
 when ($_ < 100) {
 say '$n is numerically less than 100';
 }

match if complicated_check($n)
 when (\&complicated_check) {
 say 'a complicated check for $n is true';
 }

match if no other cases match
 default {
 die q(I don't know what to do with $n);
 }
}
given(EXPR)
 assigns the value of EXPR to a lexically
 scoped copy of $_, not a
 dynamically scoped alias the way a foreach without my does. That makes it similar to a do block:
do { my $_ = EXPR; ... }
except that a successful when
 (or any explicit break) knows how
 to break out of the block. Since it’s lexically scoped, you can’t use
 given to localize a dynamic value
 of $_ as you could with an
 old-style foreach.[71]
You can use the break keyword to
 break out of the enclosing given
 block. Every when block is
 implicitly ended with a break.
You can use the continue keyword to
 fall through from one case to the start of the next statement, which
 might or might not be another when:
given($foo) {
 when (/x/) { say '$foo contains an x'; continue }
 say "I always get here.";
 when (/y/) { say '$foo contains a y' }
 default { say '$foo does not contain a y' }
}
When a given statement is
 also a valid expression (for example, when it’s the last statement of
 a block), it evaluates to:
	An empty list as soon as an explicit break is encountered.

	The value of the last evaluated expression of the successful
 when/default clause, if there happens to be
 one.

	The value of the last evaluated expression of the given block if no condition is
 true.

The last expression is evaluated in the context that was applied
 to the given block.
Note that, unlike if and
 unless, a failed when statement always evaluates to an empty
 list.
my $price = do {
 given ($item) {
 when (["pear", "apple"]) { 1 }
 break when "vote"; # My vote cannot be bought
 1e10 when /Mona Lisa/;
 "unknown";
 }
};
Note that we must use the do block there
 because given is recognized only as
 a statement, and it would be illegal after an assignment. (We might
 make the do brackets optional in
 some future version.)

[71] This omission is to be construed as a feature, since
 dynamically scoped $_ is
 terribly error-prone as soon as you have two different pieces of
 code fighting over the current topic.

The when Statement and Modifier

Most of the power of a given
 comes from the implicit smartmatching that various data types imply.
 By default, when(EXPR) is treated as an implicit smartmatch of
 $_; that is, $_ ~~ EXPR.
 (See Chapter 3 for more details on smartmatching.)
 However, if the EXPR argument to when is one of the 10 exceptional forms
 listed below, it is evaluated directly for a Boolean result, and no
 smartmatching occurs:
	A user-defined subroutine call or a method
 invocation.

	A regular expression match in the form of /REGEX/, $foo =~
 /REGEX/, or $foo =~
 EXPR.

	A smartmatch that uses an explicit ~~ operator, such as
 EXPR ~~
 EXPR. (You might, for
 instance, want to use an explicit smartmatch against $_ when you need to reverse the
 default polymorphism of when’s built-in smartmatching.)

	A relational operator such as $_
 < 10 or $x eq
 "abc" that returns a Boolean result. This includes the
 six numeric comparisons (<, >, <=, >=, ==, and !=), and the six string comparisons
 (lt, gt, le, ge, eq, and ne).

	The three built-in functions defined, exists, and eof.

	A negated expression, whether !EXPR or
 not(EXPR), or a logical exclusive or,
 EXPR1 xor
 EXPR2. (The bitwise
 versions [~ and ^] are not included.) Negated regular
 expressions also fall in this category, whichever way you write
 them: !/REGEX/, $foo !~
 /REGEX/, or $foo !~
 EXPR.

	A file test operator (apart from –s, –M, –A, and –C, as these return numbers, not
 Booleans).

	The .. and ... flip-flop operators. (Note that
 the ... infix operator is
 completely different from the ... elliptical statement, which is
 recognized only where a statement is expected.)

In these first eight cases, the value of
 EXPR is used directly as a Boolean, so no
 smartmatching is done. You may think of when as a
 smartsmartmatch.[72] To make it even smartsmarter,
 Perl applies these tests recursively to the operands of logical
 operators (that is, “and” and “or”) to decide whether to use
 smartmatching, as follows:
	For EXPR1&&EXPR2
 or EXPR1 and EXPR2,
 the test is applied recursively to both
 EXPR1 and
 EXPR2. Only if
 both operands also pass the test will the
 expression be treated as Boolean. Otherwise, smartmatching is
 used.

	For EXPR1||EXPR2 or
 EXPR1 or
 EXPR2, the test is applied
 recursively to
 EXPR1 only (which might itself be a
 higher-precedence and
 operator, for example, and thus subject to the previous rule),
 not to EXPR2. If
 EXPR1 is to use smartmatching, then
 EXPR2 also does so, no matter what
 EXPR2 contains. But if
 EXPR1 does not get to use
 smartmatching, then the second argument will not get to either.
 This is quite different from the && case just described, so be
 careful. (Note that EXPR1//EXPR2 is
 always considered Boolean because of the implied defined function on the left of the
 // operator.)

All those rules make things appear more complicated than they
 really are. They’re there because Perl 5 has no built-in Boolean
 type.[73] The goal is for them to do what you mean. For
 example:
when (/^\d+$/ && $_ < 75) { ... }
will be treated as a Boolean match because the rules recognize
 both sides of the conjunction as Boolean matches.
Also:
when ([qw(foo bar)] && /baz/) { ... }
will use smartmatching because only the second operand looks
 like a Boolean. The first does not, so smartmatching wins here—or
 maybe everyone loses, unless you were expecting to smartmatch with
 the result of the right side, which is going to
 be 1 or "". Your given probably did not supply one of
 those.
Remember that order is important to disjunctions. If you
 say:
when ([qw(foo bar)] || /^baz/) { ... }
it will use smartmatching based on the first operand.
 However:
when (/^baz/ || [qw(foo bar)]) { ... }
has the (Boolean) regex first, which forces both operands to
 be treated as Boolean—and, again, everyone loses because the second
 argument (an array ref) is always true, so it doesn’t do what you
 expect.
Boolean operators based on constants are still going to be
 optimized away. Don’t be tempted to write:
when ("foo" or "bar") { ... }
This will optimize down to "foo", so "bar" will never be considered (even
 though the rules say to use a smartmatch on "foo"). For an alternation like this, an
 array ref will work, because this will instigate smartmatching,
 which has its own “match any of” semantics:
when (['foo', 'bar']) { ... }
This is how you write a case with multiple “labels”, since
 there’s no equivalent in Perl to C’s fall-through semantics.
default behaves exactly
 like when(1 == 1), which is to
 say, it always matches. Because cases are evaluated in order, it
 must come last; like when, it
 does an implicit break, so you
 will never reach any subsequent code.
As an aid to the semantics of smartmatching, if you use a
 literal array or hash as the argument to given, it is turned into a reference, so
 as not to lose any information. So given(@foo) is the same as given(\@foo), for example. If you really
 want to match the length of @foo,
 you need to say given(scalar
 @foo) instead.
We still consider some of the darker corners of given and when to be experimental, but please be
 assured that in practice most of your switch statements are likely
 to be based on simple string or number matches, and these will
 always work the way you expect.

[72] It may also be useful to think of Booleans as part of
 smartmatching because, in Perl 6, they actually are, and you
 might have to switch mindsets from time to time.

[73] At least, not yet. Future versions of Perl may add a
 Boolean type, in which case these complex rules will fall
 naturally out of smartmatching.

Loop Statements

All loop statements have an optional
 LABEL in their formal syntax. (You can put
 a label on any statement, but it has a special meaning to a
 loop.[74]) If present, the label consists of an identifier
 followed by a colon. It’s customary to make the label uppercase both
 to stand out visually and to avoid potential confusion with reserved
 words. (Perl won’t get confused if you use a label that already has a
 meaning like if or open, but your readers might.)

[74] Prior to v5.14, you couldn’t put a label on a package statement.

while and until Statements

The while statement
 repeatedly executes the block as long as
 EXPR is true. If the word while is replaced by the word until, the sense of the test is reversed;
 that is, it executes the block only as long as
 EXPR remains false. The conditional is
 still tested before the first iteration, though.
The while or until statement can have an optional extra
 block: continue. This block is
 executed every time the block is continued, either by falling off
 the end of the first block or by an explicit next (a loop-control operator that goes to
 the next iteration). The continue
 block is not heavily used in practice, but it’s in here so we can
 define the three-part loop rigorously in the next section.
Unlike the foreach loop
 we’ll see in a moment, a while
 loop has no official “loop variable”.[75] You may, however, declare variables explicitly. A
 variable declared in the test condition of a while or until statement is visible only in the
 block or blocks governed by that test. It is not part of the
 surrounding scope. For example:
while (my $line = <STDIN>) {
 $line = lc $line;
}
continue {
 print $line; # still visible
}
$line now out of scope here
Here, the scope of $line
 extends from its declaration in the control expression throughout
 the rest of the loop construct, including the continue block, but not beyond. If you
 want the scope to extend further, declare the variable before the
 loop.

[75] A consequence of this is that a while never implicitly localizes any
 variables in its test condition. This can have “interesting”
 consequences when while loops
 are used in conjunction with operators that
 do implicitly know about global variables
 such as $_. In particular,
 see the section Line Input (Angle) Operator in Chapter 2 for how implicit assignment to the global
 $_ can occur in certain
 while loops, along with
 examples of how to deal with the problem.

Three-Part Loops

The three-part loop[76] has three semicolon-separated expressions within its
 parentheses. These three expressions are interpreted respectively as
 the initialization, the condition, and the reinitialization of the
 loop. The parentheses around them and the two semicolons between
 them are required, but the expressions themselves are optional. The
 initializer and reinitializer do nothing if omitted. The condition,
 if omitted, is considered to have a true value. (The values of the
 initializer and reinitializer don’t matter since they are evaluated
 only for their side effects.)
The three-part loop can be defined in terms of the
 corresponding while loop,
 relocating its three expressions. When you say this:
LABEL:
 for (my $i = 1; $i <= 10; $i++) {
 ...
 }
it gets rearranged internally to work like this:
{
 my $i = 1;
 LABEL:
 while ($i <= 10) {
 ...
 }
 continue {
 $i++;
 }
}
(except that there’s not really an outer block; we just put
 one there to show how the scope of the my is limited).
If you want to iterate through two variables simultaneously,
 just separate the parallel expressions with commas:
my $i;
my $bit;
for ($i = 0, $bit = 0; $i < 32; $i++, $bit <<= 1) {
 say "Bit $i is set" if $mask & $bit;
}
the values in $i and $bit persist past the loop
Or to declare those variables to be visible only inside the
 loop:
for (my ($i, $bit) = (0, 1); $i < 32; $i++, $bit <<= 1) {
 say "Bit $i is set" if $mask & $bit;
}
loop's versions of $i and $bit now out of scope
Besides the normal looping through array indices, the
 three-part loop can lend itself to many other interesting
 applications. It doesn’t even need an explicit loop variable. Here’s
 one example that avoids the problem you get when you explicitly test
 for end-of-file on an interactive file descriptor, causing your
 program to appear to hang:
$on_a_tty = –t STDIN && –t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {
 # do something
}
Another traditional use of the three-part loop is the
 “infinite loop”. Since all three expressions are optional, and the
 default condition is true, when you write:
for (;;) {
 ...
}
it is the same as writing:
while (1) {
 ...
}
If the notion of infinite loops bothers you, we should point
 out that you can always fall out of the loop at any point with an
 explicit loop-control operator such as last. Of course, if you’re writing the
 code to control a nuclear cruise missile, you may not actually need
 an explicit loop exit. The loop will be terminated automatically at
 the appropriate moment.[77]

[76] Also known as for
 loops, but that’s confusing since Perl has for loops that are not three-part
 loops, so we avoid that term.

[77] That is, the fallout from the loop tends to occur
 automatically.

foreach Loops

This loop iterates over a list of values by setting the control
 variable (VAR) to each successive element
 of the list:
for my VAR (LIST) {
 ...
}
If “my
 VAR” is omitted, the global $_ is used. You can omit the my, but only when use strict is turned off, so don’t.
For historical reasons, the foreach keyword is a synonym for the
 for keyword, so you can use
 for and foreach interchangeably, whichever you
 think is more readable in a given situation. We tend to prefer
 for because we are lazy and
 because it is more readable, especially with
 the my. (Don’t worry—Perl can
 easily distinguish for (@ARGV)
 from for ($i=0; $i <=$#ARGV;
 $i++) because the latter contains semicolons.) Here are
 some examples:
$sum = 0;
for my $value (@array) { $sum += $value }

for my $count (10,9,8,7,6,5,4,3,2,1,"BOOM") { # do a countdown
 say $count;
 sleep(1);
}

for (reverse "BOOM", 1 .. 10) { # same thing
 say;
 sleep(1);
}

for my $field (split /:/, $data) { # any LIST expression
 say "Field contains: '$field'";
}

for my $key (sort keys %hash) {
 say "$key => $hash{$key}";
}
That last one is the canonical way to print out the values of
 a hash in sorted order. See the keys and sort entries in Chapter 27 for more elaborate examples.
There is no way to tell where you are in the list. You may
 compare adjacent elements by remembering the previous one in a
 variable, but sometimes you just have to break down and write a
 three-part loop with subscripts. That’s why we have two different
 loops, after all.
If LIST consists of assignable
 values (meaning variables, generally, not enumerated constants), you
 can modify each of those variables by modifying
 VAR inside the loop. That’s because the
 loop variable becomes an implicit alias for each item in the list
 that you’re looping over. Not only can you modify a single array in
 place, you can also modify multiple arrays and hashes in a single
 list:
for my $pay (@salaries) { # grant 8% raises
 $pay *= 1.08;
}

for (@christmas, @easter) { # change menu
 s/ham/turkey/;
}
s/ham/turkey/ for @christmas, @easter; # same thing

for ($scalar, @array, values %hash) {
 s/^\s+//; # strip leading whitespace
 s/\s+$//; # strip trailing whitespace
}
The loop variable is valid only from within the dynamic or
 lexical scope of the loop and will be implicitly lexical if the
 variable was previously declared with my. This renders it invisible to any
 function defined outside the lexical scope of the variable, even if
 called from within that loop. However, if no lexical declaration is
 in scope, the loop variable will be a localized (dynamically scoped)
 global variable; this allows functions called from within the loop
 to access that variable. In either case, any previous value the
 localized variable had before the loop will be restored
 automatically upon loop exit.
If you prefer, you may explicitly declare which kind of
 variable (lexical or global) to use. This makes it easier for
 maintainers of your code to know what’s really going on; otherwise,
 they’ll need to search back up through enclosing scopes for a
 previous declaration to figure out which kind of variable it
 is:
for my $i (1 .. 10) { ... } # $i always lexical
for our $Tick (1 .. 10) { ... } # $Tick always global
When a declaration accompanies the loop variable, the shorter
 for spelling is preferred over
 foreach, since it reads better in
 English.
Here’s how a C or Java programmer might first think to code up
 a particular algorithm in Perl:
for ($i = 0; $i < @ary1; $i++) {
 for ($j = 0; $j < @ary2; $j++) {
 if ($ary1[$i] > $ary2[$j]) {
 last; # Can't go to outer loop. :–(
 }
 $ary1[$i] += $ary2[$j];
 }
 # this is where that last takes me
}
But here’s how a veteran Perl programmer might do it:
WID: for my $this (@ary1) {
 JET: for my $that (@ary2) {
 next WID if $this > $that;
 $this += $that;
 }
}
See how much easier that was in idiomatic Perl? It’s cleaner,
 safer, and faster. It’s cleaner because it’s less noisy. It’s safer
 because if code gets added between the inner and outer loops later
 on, the new code won’t be accidentally executed, since next (explained below) explicitly iterates
 the outer loop rather than merely breaking out of the inner one. And
 it’s faster than the equivalent three-part loop, since the elements
 are accessed directly instead of through subscripting.
But write it however you like. TMTOWTDI.
Like the while statement,
 the foreach statement can also
 take a continue
 block. This lets you execute a bit of code at the bottom of each
 loop iteration no matter whether you got there in the normal course
 of events or through a next.
Speaking of which, now we can finally say it: next is next.

Loop Control

We mentioned that you can put a LABEL on a
 loop to give it a name. The loop’s LABEL
 identifies the loop for the loop-control operators next, last, and redo. The LABEL
 names the loop as a whole, not just the top of the loop. Hence, a
 loop-control operator referring to the loop doesn’t actually “go to”
 the loop label itself. As far as the computer is concerned, the
 label could just as easily have been placed at the end of the loop.
 But people like things labelled at the top, for some reason.
Loops are typically named for the item the loop is processing
 on each iteration. This interacts nicely with the loop-control
 operators, which are designed to read like English when used with an
 appropriate label and a statement modifier. The archetypal loop
 works on lines, so the archetypal loop label is LINE:, and the archetypal loop-control
 operator is something like this:
next LINE if /^#/; # discard comments
The syntax for the loop-control operators is:
last LABEL
next LABEL
redo LABEL
The LABEL is optional; if omitted,
 the operator refers to the innermost enclosing loop. But if you want
 to jump past more than one level, you must use a
 LABEL to name the loop you want to
 affect. That LABEL does not have to be in
 your lexical scope, though it probably ought to be. But, in fact,
 the LABEL can be anywhere in your dynamic
 scope. If this forces you to jump out of an eval or subroutine, Perl issues a warning
 (upon request).
Just as you may have as many return operators in a function as you
 like, you may have as many loop-control operators in a loop as you
 like. This is not to be considered wicked or even uncool. During the
 early days of structured programming, some people insisted that
 loops and subroutines have only one entry and one exit. The
 one-entry notion is still a good idea, but the one-exit notion has
 led people to write a lot of unnatural code. Much of programming
 consists of traversing decision trees. A decision tree naturally
 starts with a single trunk but ends with many leaves. Write your
 code with the number of loop exits (and function returns) that is
 natural to the problem you’re trying to solve. If you’ve declared
 your variables with reasonable scopes, everything gets automatically
 cleaned up at the appropriate moment, no matter how you leave the
 block.
The last operator
 immediately exits the loop in question. The continue block, if any, is not executed.
 The following example bombs out of the loop on the first blank
 line:
LINE: while (<STDIN>) {
 last LINE if /^$/; # exit when done with mail header
 ...
}
The next operator skips the
 rest of the current iteration of the loop and starts the next one.
 If there is a continue clause on
 the loop, it is executed just before the condition is reevaluated,
 just like the third component of a three-part for loop. Thus, it can be used to
 increment a loop variable, even when a particular iteration of the
 loop has been interrupted by a next:
LINE: while (<STDIN>) {
 next LINE if /^#/; # skip comments
 next LINE if /^$/; # skip blank lines
 ...
} continue {
 $count++;
}
The redo operator restarts
 the loop block without evaluating the conditional again. The
 continue block, if any, is not
 executed. This operator is often used by programs that want to fib
 to themselves about what was just input. Suppose you were processing
 a file that sometimes had a backslash at the end of a line to
 continue the record on the next line. Here’s how you could use
 redo for that:
while (<>) {
 chomp;
 if (s/\\$//) {
 $_ .= <>;
 redo unless eof; # don't read past each file's eof
 }
 # now process $_
}
which is the customary Perl shorthand for the more explicitly
 (and tediously) written version:
LINE: while (defined($line = <ARGV>)) {
 chomp($line);
 if ($line =~ s/\\$//) {
 $line .= <ARGV>;
 redo LINE unless eof(ARGV);
 }
 # now process $line
}
Here’s an example from a real program that uses all three
 loop-control operators. Although this particular strategy of parsing
 command-line arguments is less common now that we have the Getopt::* modules
 bundled with Perl,[78] it’s still a nice illustration of the use of
 loop-control operators on named, nested loops:
ARG: while (@ARGV && $ARGV[0] =~ s/^–(?=.)//) {
 OPT: for (shift @ARGV) {
 m/^$/ && do { next ARG };
 m/^–$/ && do { last ARG };
 s/^d// && do { $Debug_Level++; redo OPT };
 s/^l// && do { $Generate_Listing++; redo OPT };
 s/^i(.*)// && do { $In_Place = $1 || ".bak"; next ARG };
 say_usage("Unknown option: $_");
 }
}
One more point about loop-control operators. You may have
 noticed that we are not calling them “statements”. That’s because
 they aren’t statements—although like any expression, they can be
 used as statements. You can almost think of them as unary operators
 that just happen to cause a change in control flow. So you can use
 them anywhere it makes sense to use them in an expression. In fact,
 you can even use them where it doesn’t make sense. One sometimes
 sees this coding error:
open FILE, '<', $file
 or warn "Can't open $file: $!\n", next FILE; # WRONG
The intent is fine, but the next
 FILE is being parsed as one of the arguments to warn, which is a list operator. So the
 next executes before the warn gets a chance to emit the warning. In
 this case, it’s easily fixed by turning the warn list operator into the warn function call with some suitably
 situated parentheses:
open FILE, '<', $file
 or warn("Can't open $file: $!\n"), next FILE; # okay
However, you might find it easier to read this:
unless (open FILE, '<', $file) {
 warn "Can't open $file: $!\n";
 next FILE;
}

[78] See Mastering
 Perl for a comparison of the main
 command-line argument parsing modules.

Bare Blocks as Loops

A BLOCK by itself (labelled or not)
 is semantically equivalent to a loop that executes once.
 Thus, you can use last to leave
 the block or redo to restart the
 block.[79] Note that this is not true of the blocks in eval {}, sub
 {}, or, much to everyone’s surprise, do {}. These three are not loop blocks
 because they’re not BLOCKs by themselves;
 the keyword in front makes them mere terms in an expression that
 just happen to include a code block. Since they’re not loop blocks,
 they cannot be given a label to apply loop controls to. Loop
 controls may only be used on true loops, just as a return may only be used within a
 subroutine (well, or an eval).
Loop controls don’t work in an if or unless, either, since those aren’t loops.
 But you can always introduce an extra set of braces to give yourself
 a bare block, which does count as a
 loop:
if (/pattern/) {{
 last if /alpha/;
 last if /beta/;
 last if /gamma/;
 # do something here only if still in if()
}}
Here’s how a block can be used to let loop-control operators
 work with a do {} construct. To
 next or redo a do, put a bare block inside:
do {{
 next if $x == $y;
 # do something here
}} until $x++ > $z;
For last, you have to be
 more elaborate:
{
 do {
 last if $x = $y ** 2;
 # do something here
 } while $x++ <= $z;
}
And if you want both loop controls available, you’ll have to
 put a label on those blocks so you can tell them apart:
DO_LAST: {
 do {
DO_NEXT: {
 next DO_NEXT if $x == $y;
 last DO_LAST if $x = $y ** 2;
 # do something here
 }
 } while $x++ <= $z;
 }
But certainly by that point (if not before), you’re better off
 using an ordinary infinite loop with last at the end:
for (;;) {
 next if $x == $y;
 last if $x = $y ** 2;
 # do something here
 last unless $x++ <= $z;
}

[79] For reasons that may (or may not) become clear upon
 reflection, a next also exits
 the once-through block. There is a slight difference, however: a
 next will execute a continue block, but a last won’t.

Loopy Topicalizers

Perl has more than one topicalizer; in addition to given, you can also use a foreach loop as a topicalizer. For
 example, here’s one way to count how many times a particular string
 occurs in an array:
use v5.10.1;
my $count = 0;
for (@array) {
 when ("FNORD") { ++$count }
}
print "\@array contains $count copies of 'FNORD'\n";
Or in a more recent version:
use v5.14;
my $count = 0;
for (@array) {
 ++$count when "FNORD";
}
print "\@array contains $count copies of 'FNORD'\n";
At the end of all when
 blocks inside a foreach loop,
 there is an implicit break,
 which, since you’re in a loop, is equivalent to a next. You can override that with an
 explicit last if you’re only
 interested in the first match.
A when only works if the
 topic is in $_, so you can’t
 specify a loop variable, or if you do, it must be $_:
for my $_ (@answers) {
 say "Life, the Universe, and Everything!" when 42;
}

The goto Operator

Although not for the faint of heart (nor for the pure of heart), Perl
 does support a goto operator. There
 are three forms: goto
 LABEL, goto EXPR, and
 goto
 &NAME.
The goto
 LABEL form finds the statement labelled with
 LABEL and resumes execution there. It can’t
 be used to jump into any construct that requires initialization, such
 as a subroutine or a foreach loop.
 It also can’t be used to jump into a construct that has been optimized
 away (see Chapter 16). It can be used to go almost
 anywhere else within the current block or any block in your dynamic
 scope (that is, a block you were called from). You can even goto out of subroutines, but it’s usually
 better to use some other construct. The author of Perl has never felt
 the need to use the labelled form of goto in Perl (except to test that it
 works).
The goto
 EXPR form is just a generalization of
 goto
 LABEL. It expects the expression to produce
 a label name, whose location obviously has to be resolved dynamically
 by the interpreter. This allows for computed gotos per FORTRAN, but
 isn’t necessarily recommended if you’re optimizing for
 maintainability:
goto(("FOO", "BAR", "GLARCH")[$i]); # hope 0 <= i < 3

@loop_label = qw/FOO BAR GLARCH/;
goto $loop_label[rand @loop_label]; # random teleport
In almost all cases like this, it’s usually a far, far better
 idea to use the structured control-flow mechanisms of next, last, or redo instead of resorting to a goto. For certain applications, a hash of
 references to functions or the catch-and-throw pair of eval and die for exception processing can also be
 prudent approaches.
The goto
 &NAME form is highly magical
 and sufficiently removed from the ordinary goto to exempt its users from the opprobrium
 to which goto users are customarily
 subjected. It substitutes a call to the named subroutine for the
 currently running subroutine. This behavior is used by AUTOLOAD subroutines to load another
 subroutine and then pretend that the other subroutine was called in
 the first place. After the goto,
 not even caller will be able to
 tell that this routine was called first. The autouse, AutoLoader, and SelfLoader modules all use this strategy to define functions the
 first time they’re called, and then to jump right to them without
 anyone ever knowing the functions weren’t there all along. It is not
 particularly lightweight, so don’t think of it as a tailcall
 optimization.

Paleolithic Perl Case Structures

During its first 20 years of existence, Perl had no official switch
 or case statement. Prior to the appearance of given in the v5.10 release, people would
 craft their own case structures using a bare block or a once-through
 foreach loop. Here’s one
 example:
SWITCH: {
 if (/^abc/) { $abc = 1; last SWITCH }
 if (/^def/) { $def = 1; last SWITCH }
 if (/^xyz/) { $xyz = 1; last SWITCH }
 $nothing = 1;
}
and here’s another:
SWITCH: {
 /^abc/ && do { $abc = 1; last SWITCH };
 /^def/ && do { $def = 1; last SWITCH };
 /^xyz/ && do { $xyz = 1; last SWITCH };
 $nothing = 1;
}
or even just:
if (/^abc/) { $abc = 1 }
elsif (/^def/) { $def = 1 }
elsif (/^xyz/) { $xyz = 1 }
else { $nothing = 1 }
In this next example, notice how the last operators conveniently ignore the
 do {} blocks, which aren’t loops,
 and exit the main loop instead:
for ($very_nasty_long_name[$i++][$j++]–>method()) {
 /this pattern/ and do { push @flags, "–e"; last };
 /that one/ and do { push @flags, "–h"; last };
 /something else/ and do { last };
 die "unknown value: '$_'";
}
You’ll see that idiom from time to time in older Perl code,
 since for was the only way to write
 a decent topicalizer until given
 showed up.
Regardless of which topicalizer you use, specifying the value
 only once on repeated compares is much easier to type and, therefore,
 harder to mistype. It avoids possible side effects from evaluating the
 expression again.
Cascading use of the ?:
 operator can also work for simple cases. Here we again use a for for its aliasing property to make
 repeated comparisons more legible:
for ($user_color_preference) {
 $value = /red/ ? 0xFF0000 :
 /green/ ? 0x00FF00 :
 /blue/ ? 0x0000FF :
 0x000000 ; # black if all fail
}
For many situations, though, it’s better to build yourself a
 hash and quickly index into it to pull the answer out. Unlike the
 cascading conditionals we just looked at, a hash scales to an
 unlimited number of entries, and takes no more time to look up the
 first one than the last. You can also add cases at run time. The
 disadvantage is that you can only do an exact lookup, not a pattern
 match. If you have a hash like this:
%color_map = (
 azure => 0xF0FFFF,
 chartreuse => 0x7FFF00,
 lavender => 0xE6E6FA,
 magenta => 0xFF00FF,
 turquoise => 0x40E0D0,
);
then exact string lookups run quickly, and you can still supply
 a default:
$value = $color_map{ lc $user_color_preference } || 0x000000;
Even multiway branching statements, with each case involving
 complicated chunks of code, can be turned into fast hash lookups. You
 just need to use a hash of references to functions, which are a
 first-class data type in Perl. See the section Hashes of Functions in Chapter 9 for how to
 handle those.
All that being said, case structures are not always the best
 tool in your toolbox. The most extensible way to look up polymorphic
 behaviors is by using normal object dispatch instead. See Chapter 12 now if you can’t wait.
One more horrific case structure you might see is this:
goto $data;
ABC: $foo++; goto end;
DEF: $bar++; goto end;
XYZ: $baz++; goto end;
end:
Yes, it works, but…it’s…kinda…slow, and if none of the labels
 matches, it will go looking through your whole program for the missing
 label, and then probably blow up, if you’re lucky. There are better
 ways to blow up, and the next section is about one of them.

The Ellipsis Statement

Beginning with v5.12, Perl accepts a bare ellipsis, “...”, as a stub—that is, a placeholder for
 code that you haven’t implemented yet. Do not confuse this ... statement with the binary flip-flop
 ... operator. Perl doesn’t usually
 confuse them because Perl can tell when it is expecting statements or
 operators most of the time—but see below.
When Perl parses an ellipsis statement, it accepts it silently.
 Later, though, if you try to execute it, Perl loudly throws an
 exception with the text Unimplemented:
sub unimplemented { ... }
eval { unimplemented() };
if ($@ =~ /^Unimplemented/) {
 say "Caught an Unimplemented exception!";
}
You may use the elliptical statement only as a complete
 statement (though a statement modifier is allowed). These examples are
 all legal examples of the ellipsis statement:
{ ... }
sub foo { ... }
...;
eval { ... };
... unless defined &dispatcher;
sub somemeth {
 my $self = shift;
 ...;
}
$x = do {
 my $n;
 ...;
 say "Hurrah!";
 $n;
};
However, ... cannot stand in
 for an expression that is part of a larger statement, since ... is also the three-dot version of the flip-flop operator (see Range Operators in Chapter 3).
 Hence, the following are all considered syntax errors:
print ...; # WRONG
open(my $fh, ">", "/dev/passwd") or ...; # WRONG
if ($condition && ...) { say "Howdy" }; # WRONG
There are times when Perl can’t distinguish an expression from a
 statement. For example, a bare block and an anonymous hash composer
 look the same unless there’s something else inside the braces to give
 Perl the necessary hint:
@transformed = map { ... } @input; # WRONG: syntax error
One workaround is to use a ;
 inside your block to tell Perl that the { ...
 } is a block, not an anonymous hash composer:
@transformed = map {; ... } @input; # ; disambiguates ellipsis

@transformed = map { ...; } @input; # ; disambiguates ellipsis
Folks colloquially refer to this bit of punctuation as the
 “yada-yada”, but you can call it by its technical name “ellipsis” when
 you wish to impress the impressionable. Perl does not yet accept the
 Unicode version, U+2026 horizontal
 ellipsis, as an alias for ..., but maybe someday…

Global Declarations

Subroutine and format declarations are global declarations. No matter
 where you place them, what they declare is global (it’s local to a
 package, but packages are global to the program, so everything in a
 package is visible from anywhere). A global declaration can be put
 anywhere a statement can, but it has no effect on the execution of the
 primary sequence of statements—the declarations take effect at compile
 time.
This means you can’t conditionally declare subroutines or
 formats by hiding them from the compiler inside a runtime conditional
 like an if, since only the
 interpreter pays attention to those conditions. Subroutine and format
 declarations (and use and no declarations) are seen by the compiler no
 matter where they occur.
Global declarations are typically put at the beginning or the
 end of your program, or off in some other file. However, if you’re
 declaring any lexically scoped variables (see the next section),
 you’ll want to make sure your format or subroutine definition falls
 within the scope of the variable declarations—if you expect it to be
 able to access those private variables.
Note that we sneakily switched from talking about declarations
 to definitions. Sometimes it helps to split the
 definition of the subroutine from its
 declaration. The only syntactic difference
 between the two is that the definition supplies a BLOCK
 containing the code to be executed, while the declaration doesn’t. (A
 subroutine definition acts as its own declaration if no declaration
 has been seen.) Splitting the definition from the declaration allows
 you to put the subroutine declaration at the front of the file and the
 definition at the end (with your lexically scoped variable
 declarations happily in the middle):
sub count (@); # Compiler now knows how to call count().
my $x; # Compiler now knows about lexical variable.
$x = count(3,2,1); # Compiler can validate function call.
sub count (@) { @_ } # Compiler now knows what count() means.
As this example shows, subroutines don’t actually have to be
 defined before calls to them can be compiled (indeed, the definition
 can even by delayed until first use, if you use autoloading), but
 declaring subroutines helps the compiler in various ways and gives you
 more options in how you can call them.
Declaring a subroutine allows it to be used without parentheses,
 as if it were a built-in operator, from that point forward in the
 compilation. (We used parentheses to call count in the last example, but we didn’t
 actually need to.) You can declare a subroutine without defining it
 just by saying:
sub myname;
$me = myname $0 or die "can't get myname";
A bare declaration like that declares the function to be a list
 operator, not a unary operator, so be careful to use or there instead of ||. The || operator binds too tightly to use after
 list operators, though you can always use parentheses around the list
 operator’s arguments to turn the list operator back into something
 that behaves more like a function call. Alternatively, you can use the
 prototype ($) to turn the
 subroutine into a unary operator:
sub myname ($);
$me = myname $0 || die "can't get myname";
That now parses as you’d expect, but you still ought to get in
 the habit of using parentheses in that situation. For more on
 prototypes, see Chapter 7.
You do need to define the subroutine at
 some point, or you’ll get an error at runtime indicating that you’ve
 called an undefined subroutine. Other than defining the subroutine
 yourself, there are several ways to pull in definitions from
 elsewhere.
You can load definitions from other files with a simple require statement; this was the best way to
 load files in Perl 4, but there are two problems with it. First, the
 other file will typically insert subroutine names into a package (a
 symbol table) of its own choosing, not into your package. Second, a
 require happens at runtime, so it
 occurs too late to serve as a declaration in the file invoking the
 require. There are times, however,
 when delayed loading is what you want.
A more useful way to pull in declarations and definitions is
 with the use declaration, which
 effectively requires the module at
 compile time (because use counts as
 a BEGIN block) and then lets you
 import some of the module’s declarations into your own program. Thus,
 use can be considered a kind of
 global declaration in that it imports names at compile time into your
 own (global) package just as if you’d declared them yourself. See the
 section Symbol Tables in Chapter 10
 for low-level mechanics on how importation works between packages;
 Chapter 11, for how to set up a module’s imports and
 exports; and Chapter 16 for an explanation of
 BEGIN and its cousins, CHECK, UNITCHECK, INIT, and END, which are also global declarations of a
 sort because they’re dealt with at compile time and can have
 global effects.

Scoped Declarations

Like global declarations, lexically scoped declarations have an
 effect at the time of compilation. Unlike global declarations,
 lexically scoped declarations only apply from the point of the
 declaration through the end of the innermost enclosing scope (block,
 file, or eval—whichever comes
 first). That’s why we call them lexically scoped, though perhaps
 “textually scoped” would be more accurate, since lexical scoping has
 little to do with lexicons. But computer scientists the world over
 know what “lexically scoped” means, so we perpetuate the usage
 here.
Perl also supports dynamically scoped declarations. A dynamic
 scope also extends to the end of the innermost enclosing
 block, but in this case, “enclosing” is defined dynamically at runtime
 rather than textually at compile time. To put it another way, blocks
 nest dynamically by invoking other blocks, not by including them. This
 nesting of dynamic scopes may correlate somewhat to the nesting of
 lexical scopes, but the two are generally not identical, especially
 when any subroutines have been invoked.
We mentioned that some aspects of use could be considered global declarations,
 but other aspects of use are
 lexically scoped. In particular, use not only imports package symbols, it
 also implements various magical compiler hints, known as pragmas (or if you’re into classical
 Greek, pragmata). Most pragmas are lexically
 scoped, including the strict pragma we mention from time to time. See the later
 section Pragmas. (Hence, if it is implicitly
 turned on by use v5.14 at the top
 of your file, it’s on for the whole rest of the file, even if you
 switch packages.)
A package declaration, oddly
 enough, is itself lexically scoped, despite the fact that a package is
 a global entity. But a package
 declaration merely declares the identity of the default package for
 the rest of the enclosing block or, if you use the optional
 BLOCK after the package
 NAMESPACE, then in that specific block.
 Undeclared identifiers used in variable names[80] are looked up in that package. In a sense, a package is
 never declared at all, but springs into existence when you refer to
 something that belongs to that package. It’s all very Perlish.

[80] Also unqualified names of subroutines, filehandles,
 directory handles, and formats.

Scoped Variable Declarations

Most of the rest of this chapter is about using global variables. Or,
 rather, it’s about not using global variables.
 There are various declarations that help you not use global
 variables—or, at least, not use them foolishly.
We already mentioned the package declaration, which was introduced
 into Perl long ago to allow globals to be split up into separate
 packages. This works pretty well for certain kinds of variables.
 Packages are used by libraries, modules, and classes to store their
 interface data (and some of their semiprivate data) to avoid
 conflicting with variables and functions of the same name in your
 main program or in other modules. If you see someone write $Some::stuff,[81] he’s using the $stuff scalar variable from the package
 Some. See Chapter 10.
If this were all there were to the matter, Perl programs would
 quickly become unwieldy as they got longer. Fortunately, Perl’s
 three scoping declarators make it easy to create completely private
 variables (using my or state), or to give selective access to
 global ones (using our). There is
 also a pseudodeclarator to provide temporary values to global variables
 (using local). These declarators
 are placed in front of the variable in question:
my $nose;
our $House;
state $troopers = 0;
local $TV_channel;
If more than one variable is to be declared, the list must be
 placed in parentheses:
my ($nose, @eyes, %teeth);
our ($House, @Autos, %Kids);
state ($name, $rank, $serno);
local (*Spouse, $phone{HOME});
The my, state, and our declarators may only declare simple
 scalar, array, or hash variables, while state may only initialize simple scalar
 variables (although this may contain a reference to anything else
 you’d like), not arrays or hashes. Since local is not a true declarator, the
 constraints are somewhat more relaxed: you may also localize, with
 or without initialization, entire typeglobs and individual elements
 or slices of arrays and hashes. Each of these modifiers offers a
 different sort of “confinement” to the variables they modify. To
 oversimplify slightly: our
 confines names to a scope, local
 confines values to a scope, and my confines both names and values to a
 scope. (And state is just like
 my, but it defines the scope a
 bit differently.) Each of these constructs may be assigned to,
 though they differ in what they actually do with the values since
 they have different mechanisms for storing values. They also differ
 somewhat if you don’t (as we didn’t above)
 assign any values to them: my and
 local cause the variables in
 question to start out with values of undef or (), as appropriate; our, on the other hand, leaves the current
 value of its associated global unchanged. And state, the oddball, starts with whatever
 value it had the last time we were here.
Syntactically, my, our, state, and local are simply modifiers (like
 adjectives) on an lvalue expression. When you assign to an lvalue
 modified by a declarator, it doesn’t change whether the lvalue is
 viewed as a scalar or a list. To determine how the assignment will
 work, just pretend that the declarator isn’t there. So either
 of:
my ($foo) = <STDIN>;
my @array = <STDIN>;
supplies list context to the righthand side, while this
 supplies scalar context:
my $foo = <STDIN>;
Declarators bind more tightly (with higher precedence) than
 the comma does. The following example erroneously declares only one
 variable, not two, because the list following the declarator is not
 enclosed in parentheses:
my $foo, $bar = 1; # WRONG
This has the same effect as:
my $foo;
$bar = 1;
Under strict, you will get
 an error from that since $bar is
 not declared.
In general, it’s best to declare a variable in the smallest
 possible scope that suits it. Since variables declared in a
 control-flow statement are visible only in the block governed by
 that statement, their visibility is reduced. It reads better in
 English this way, too:
sub check_warehouse {
 for my $widget (our @Current_Inventory) {
 say "I have a $widget in stock today.";
 }
}
By far the most frequently seen declarator is my, which declares lexically scoped
 variables for which both the names and values are stored in the
 current scope’s temporary scratchpad; these may not be accessed from
 outside the lexical scope. Always use my unless you know why you want one of the
 others. Use state if you want the
 same degree of privacy but you also want the value to persist from
 call to call.
Closely related is the our
 declaration, which is also persistent, and also enters a lexically
 scoped name in the current scope, but implements its persistence by
 storing its value in a global variable that anyone else can access
 if they wish. In other words, it’s a global variable masquerading as
 a lexical.
In addition to global scoping and lexical scoping, we also
 have what is known as dynamic
 scoping, implemented by local, which despite the word “local”
 really deals with global variables and has nothing to do with the
 local scratchpad. (It would be more aptly named temp, since it temporarily changes the
 value of an existing variable. You might even see temp in Perl 5 programs someday, if the
 keyword is borrowed back from Perl 6.)
The newly declared variable (or value, in the case of local) does not show up until the
 statement after the statement containing the
 declaration. Thus, you could mirror a variable this way:
my $x = $x;
That initializes the new inner $x with the current value $x, whether the current meaning of
 $x is global or lexical.
Declaring a lexical variable name hides any previously
 declared lexical of the same name, whether declared in that scope or
 an outer scope (although you’ll get a warning if you have those
 enabled). It also hides any unqualified global variable of the same
 name, but you can always get to the global variable by explicitly
 qualifying it with the name of the package the global is in, for
 example, $PackageName::varname.

[81] Or the archaic $Some'stuff, which probably shouldn’t
 be encouraged outside of Perl poetry.

Lexically Scoped Variables: my

To help you avoid the maintenance headaches of global
 variables, Perl provides lexically scoped variables, often
 called lexicals for short. Unlike
 globals, lexicals guarantee you privacy. Assuming you don’t hand out
 references to these private variables that would let them be fiddled
 with indirectly, you can be certain that every possible access to
 these private variables is restricted to code within one discrete
 and easily identifiable section of your program. That’s why we
 picked the keyword my, after
 all.
A statement sequence may contain declarations of lexically
 scoped variables. Such declarations tend to be placed at the front
 of the statement sequence, but this is not a requirement; you may
 simply decorate the first use of a variable with a my declarator wherever it occurs (as long
 as it’s in the outermost scope the variable is used). In addition to
 declaring variable names at compile time, the declarations act like
 ordinary runtime statements: each of them is executed within the
 sequence of statements as if it were an ordinary statement without
 the declarator:
my $name = "fred";
my @stuff = ("car", "house", "club");
my ($vehicle, $home, $tool) = @stuff;
These lexical variables are totally hidden from the world
 outside their immediately enclosing scope. Unlike the dynamic
 scoping effects of local (see
 below), lexicals are hidden from any subroutine called from their
 scope. This is true even if the same subroutine is called from
 itself or elsewhere—each instance of the subroutine gets its own
 “scratchpad” of lexical variables. Subroutines defined in the scope
 of a lexical variable, however, can see the variable just like any
 inner scope would.
Unlike block scopes, file scopes don’t nest; there’s no
 “enclosing” going on, at least not textually. If you load code from
 a separate file with do, require, or use, the code in that file cannot access
 your lexicals, nor can you access lexicals from that file.
However, any scope within a file (or even the file itself) is
 fair game. It’s often useful to have scopes larger than subroutine
 definitions, because this lets you share private variables among a
 limited set of subroutines. This is one way to create variables that
 a C programmer would think of as “file static”:
{
 my $state = 0;

 sub on { $state = 1 }
 sub off { $state = 0 }
 sub toggle { $state = !$state }
}
The eval
 STRING operator also works as a nested
 scope, since the code in the eval
 can see its caller’s lexicals (as long as the names aren’t hidden by
 identical declarations within the eval’s own scope). Anonymous subroutines
 can likewise access any lexical variables from their enclosing
 scopes; if they do so, they’re what are known as closures.[82] Combining those two notions, if a block evals a string that creates an anonymous
 subroutine, the subroutine becomes a closure with full access to the
 lexicals of both the eval and the
 block, even after the eval and
 the block have exited. See the section Closures in Chapter 8.

[82] As a mnemonic, note the common element between
 “enclosing scope” and
 “closure”. (The actual definition of
 closure comes from a mathematical notion concerning the
 completeness of sets of values and operations on those
 values.)

Persistent Lexically Scoped Variables: state

A state variable is a lexically scoped variable, just like my. The only difference is that state variables will never be
 reinitialized, unlike my
 variables that are reinitialized each time their enclosing block is
 entered. This is usually so that a function can have a private
 variable that retains its old value between calls to that
 function.
state variables are enabled
 only when the use feature "state"
 pragma is in effect. This will be automatically included if you ask
 to use a version of Perl that’s
 v5.10 or later:
use v5.14;
sub next_count {
 state $counter = 0; # first time through, only
 return ++$counter;
}
Unlike my variables,
 state variables are currently
 restricted to scalars; they cannot be arrays or hashes. This may
 sound like a bigger restriction than it actually is, because you can
 always store a reference to an array or hash in a state variable:
use v5.14;
state $bag = { };
state $vector = [];

...
unless ($bag–>{$item}) { $bag–>{$item} = 1 }
...
push @$vector, $item;

Lexically Scoped Global Declarations: our

In the old days before use
 strict, Perl programs would simply access global variables
 directly. A better way to access globals nowadays is by the our declaration. This declaration is
 lexically scoped in that it applies only through the end of the
 current scope. However, unlike the lexically scoped my or the dynamically scoped local, our does not isolate anything to the
 current lexical or dynamic scope. Instead, it provides “permission”
 in the current lexical scope to access a variable of the declared
 name in the current package. Since it declares a lexical name, it
 hides any previous lexicals of the same name. In this respect,
 our variables act just like
 my variables.
If you place an our
 declaration outside any brace-delimited block, it lasts through the
 end of the current compilation unit. Often, though, people put it
 just inside the top of a subroutine definition to indicate that
 they’re accessing a global variable:
sub check_warehouse {
 our @Current_Inventory;
 my $widget;
 foreach $widget (@Current_Inventory) {
 say "I have a $widget in stock today.";
 }
}
Since global variables are longer in life and broader in
 visibility than private variables, we like to use longer and
 flashier names for them than for temporary variables. This practice
 alone, if studiously followed, can do nearly as much as use strict can toward discouraging the
 overuse of global variables, especially in the less
 prestidigitatorial typists.
Repeated our declarations
 do not meaningfully nest. Every nested my produces a new variable, and every
 nested local a new value. But
 every time you use our, you’re
 talking about the same global variable,
 irrespective of nesting. When you assign to an our variable, the effects of that
 assignment persist after the scope of the declaration. That’s
 because our never creates values;
 it just exposes a limited form of access to the global, which lives
 forever:
our $PROGRAM_NAME = "waiter";
{
 our $PROGRAM_NAME = "server";
 # Code called here sees "server".
 ...
}
Code executed here still sees "server".
Contrast this with what happens under my or local, where, after the block, the outer
 variable or value becomes visible again:
my $i = 10;
{
 my $i = 99;
 ...
}
Code compiled here sees outer 10 variable.

local $PROGRAM_NAME = "waiter";
{
 local $PROGRAM_NAME = "server";
 # Code called here sees "server".
 ...
}
Code executed here sees restored "waiter" value.
It usually only makes sense to assign to an our declaration once, probably at the very
 top of the program or module, or, more rarely, when you preface the
 our with a local of its own:
{
 local our @Current_Inventory = qw(bananas);
 check_warehouse(); # no, we haven't no bananas :–)
}
(But why not just pass it as an argument in this case?)

Dynamically Scoped Variables: local

Using a local operator
 on a global variable gives it a temporary value each
 time local is executed, but it
 does not affect that variable’s global visibility. When the program
 reaches the end of that dynamic scope, this temporary value is
 discarded and the original value is restored. But it’s always still
 a global variable that just happens to hold a temporary value while
 that block is executing. If you call some other function while your
 global contains the temporary value and that function accesses that
 global variable, it sees the temporary value, not the original one.
 In other words, that other function is in your dynamic scope, even
 though it’s presumably not in your lexical scope.[83]
This process is called dynamic scoping
 because the current value of the global variable depends on your
 dynamic context; that is, it depends on which of your parents in the
 call chain might have called local. Whoever did so last before calling
 you controls which value you will see.
If you have a local that
 looks like this:
{
 local $var = $newvalue;
 some_func();
 ...
}
you can think of it purely in terms of runtime
 assignments:
{
 $oldvalue = $var;
 $var = $newvalue;
 some_func();
 ...
}
continue {
 $var = $oldvalue;
}
The difference is that with local the value is restored no matter how
 you exit the block, even if you prematurely return from that scope.
As with my, you can
 initialize a local with a copy of
 the same global variable. Any changes to that variable during the
 execution of a subroutine (and any others called from within it,
 which of course can still see the dynamically scoped global) will be
 thrown away when the subroutine returns. You’d certainly better
 comment what you are doing, though:
WARNING: Changes are temporary to this dynamic scope.
local $Some_Global = $Some_Global;
A global variable then is still completely visible throughout
 your whole program, no matter whether it was explicitly declared
 with our or just allowed to
 spring into existence, or whether it’s holding a local value destined to be discarded when
 the scope exits. In tiny programs, this isn’t so bad, but for large
 ones, you’ll quickly lose track of where in the code all these
 global variables are being used. You can forbid accidental use of
 globals, if you want, through the use
 strict 'vars' pragma, described in the next
 section.
Although both my and
 local confer some degree of
 protection, by and large you should prefer my over local. Sometimes, though, you have to use
 local so you can temporarily
 change the value of an existing global variable, like those listed
 in Chapter 25. Only alphanumeric identifiers may be
 lexically scoped, and many of those special variables aren’t
 strictly alphanumeric. You also need to use local to make temporary changes to a
 package’s symbol table, as shown in the section Symbol Tables in Chapter 10. Finally, you
 can use local on a single element
 or a whole slice of an array or a hash. This even works if the array
 or hash happens to be a lexical variable, layering local’s dynamic scoping behavior on top of
 those lexicals. We won’t talk much more about the semantics of
 local here. See the local entry in Chapter 27
 for more information.

[83] That’s why lexical scopes are sometimes called
 static scopes: to contrast them with
 dynamic scopes and emphasize their compile-time determinability.
 Don’t confuse this use of the term with how static is used in C or C++. The term
 is heavily overloaded, which is why we avoid it.

Pragmas

Many programming languages allow you to give hints to the compiler. In
 Perl, these hints are conveyed to the compiler with the use
 declaration. Some pragmas are:
use warnings;
use strict;
use integer;
use bytes;
use constant pi => (4 * atan2(1,1));
Perl pragmas are all described in Chapter 29,
 but right now we’ll just talk specifically about a couple that are
 most useful with the material covered in this chapter.
Although a few pragmas are global declarations that affect
 global variables or the current package, most are lexically scoped
 declarations whose effects are constrained to last only until the end
 of the enclosing block, file, or eval (whichever comes first). A lexically
 scoped pragma can be countermanded in an inner scope with a no declaration, which works just like
 use but in reverse.

Controlling Warnings

To show how this works, we’ll manipulate the warnings pragma to
 tell Perl whether to issue warnings for questionable
 practices:
use warnings; # or explicitly enable warnings
...
{
 no warnings; # Disable warnings through end of block.
 ...
}
Warnings are automatically enabled again here.
Once warnings are enabled, Perl complains about variables used
 only once, variable declarations that mask other declarations in the
 same scope, improper conversions of strings into numbers, using
 undefined values as legitimate strings or numbers, trying to write
 to files you only opened read-only (or didn’t open at all), and many
 other conditions documented in perldiag.
The warnings pragma is the
 preferred way to control warnings. Old programs could only use the
 –w command-line switch or modify
 the global $^W variable:
{
 local $^W = 0;
 ...
}
It’s much better to use the use
 warnings and no
 warnings pragmas. A pragma is better because it happens at
 compile time, because it’s a lexical declaration and therefore
 cannot affect code it wasn’t intended to affect, and because
 (although we haven’t shown you in these simple examples) it affords
 fine-grained control over discrete classes of warnings. For more
 about the warnings pragma,
 including how to convert merely noisy warnings into fatal errors,
 and how to override the pragma to turn on warnings globally even if
 a module says not to, see warnings in Chapter 29.

Controlling the Use of Globals

Another commonly seen declaration is the strict pragma, which has several functions, one of which is
 to control the use of global variables. Normally, Perl lets you
 create new globals (or, all too often, step on old globals) just by
 mentioning them. No variable declarations are necessary—by default,
 that is. Because unbridled use of globals can make large programs or
 modules painful to maintain, you may sometimes wish to discourage
 their accidental use. As an aid to preventing such accidents, you
 can say:
use v5.14; # Turn on strict implicitly.
use strict "vars"; # Turn on strict explicitly.
This means that any variable mentioned from here to the end of
 the enclosing scope must refer either to a lexical variable declared
 with my, state, or our, or to an explicitly allowed global.
 If it’s not one of those, a compilation error results. A global is
 explicitly allowed if one of the following is true:
	It’s one of Perl’s program-wide special variables (see
 Chapter 25).

	It’s fully qualified with its package name (see Chapter 10).

	It’s imported into the current package (see Chapter 11).

	It’s masquerading as a lexically scoped variable via an
 our declaration. (This is the
 main reason we added our
 declarations to Perl.)

Of course, there’s always the fifth alternative—if the pragma
 proves burdensome, simply countermand it within an inner block
 using:
no strict "vars";
You can also turn on strict checking of symbolic dereferences
 and accidental use of barewords with this pragma. Normally, people
 just say:
use strict;
to enable all three strictures—if they haven’t already
 implicitly enabled them via use
 v5.14 or some such. See the “strict” pragma entry in Chapter 29 for more information.

Chapter 5. Pattern Matching

Perl’s built-in support for pattern matching lets you search large amounts of
 data conveniently and efficiently. Whether you run a huge commercial portal
 site scanning every newsfeed in existence for interesting tidbits, a
 government organization dedicated to figuring out human demographics (or the
 human genome), or an educational institution just trying to get some dynamic
 information up on your website, Perl is the tool of choice, in part because
 of its database connections, but largely because of its pattern-matching
 capabilities. If you take “text” in the widest possible sense, perhaps 90%
 of what you do is 90% text processing. That’s really what Perl is all about
 and always has been about—in fact, it’s even part of Perl’s name: Practical
 Extraction and Report Language. Perl’s patterns provide
 a powerful way to scan through mountains of mere data and extract useful
 information from it.
You specify a pattern by creating a regular expression (or regex), and Perl’s regular expression engine
 (the “Engine”, for the rest of this chapter) then takes that expression and
 determines whether (and how) the pattern matches your data. While most of
 your data will probably be text strings, there’s nothing stopping you from
 using regexes to search and replace any byte sequence, even what you’d
 normally think of as “binary” data. To Perl, bytes are just characters that
 happen to have an ordinal value less than 256. (More on that in Chapter 6.)
If you’re acquainted with regular expressions from some other venue, we should warn you
 that regular expressions are a bit different in Perl. First, they aren’t
 entirely “regular” in the theoretical sense of the word, which means they
 can do much more than the traditional regular expressions taught in computer
 science classes. Second, they are used so often in Perl that they have their
 own special variables, operators, and quoting conventions, which are tightly
 integrated into the language, not just loosely bolted on like any other
 library. Programmers new to Perl often look in vain for functions like
 these:
match($string, $pattern);
subst($string, $pattern, $replacement);
But matching and substituting are such fundamental tasks in Perl that
 they merit one-letter operators: m/PATTERN/ and s/PATTERN/REPLACEMENT/
 (m// and s///, for short). Not only are they syntactically
 brief, they’re also parsed like double-quoted strings rather than ordinary
 operators; nevertheless, they operate like operators, so we’ll call them
 that. Throughout this chapter, you’ll see these operators used to match
 patterns against a string. If some portion of the string fits the pattern,
 we say that the match is successful. There are lots of cool things you can
 do with a successful pattern match. In particular, if you are using s///, a successful match causes the matched
 portion of the string to be replaced with whatever you specified as the
 REPLACEMENT.
This chapter is all about how to build and use patterns. Perl’s
 regular expressions are potent, packing a lot of meaning into a small space.
 They can therefore be daunting if you try to intuit the meaning of a long
 pattern as a whole. But if you can break it up into its parts, and if you
 know how the Engine interprets those parts, you can understand any regular
 expression. It’s not unusual to see a hundred-line C or Java program
 expressed with a one-line regular expression in Perl. That regex may be a
 little harder to understand than any single line out of the longer program;
 on the other hand, the regex will likely be much easier to understand than
 the longer program taken as a whole. You just have to keep these things in
 perspective.

The Regular Expression Bestiary

Before we dive into the rules for interpreting regular expressions,
 let’s see what some patterns look like. Most characters in a regular
 expression simply match themselves. If you string several characters in a
 row, they must match in order, just as you’d expect. So if you write the
 pattern match:
/Frodo/
you can be sure that the pattern won’t match unless the string
 contains the substring “Frodo”
 somewhere. (A substring is just
 a part of a string.) The match could be anywhere in the string, just as
 long as those five characters occur somewhere, next to each other and in
 that order.
Other characters don’t match themselves but “misbehave” in some way.
 We call these metacharacters. (All metacharacters
 are naughty in their own right, but some are so bad that they also cause
 other nearby characters to misbehave as well.)
Here are the miscreants:
\ | () [{ ^ $ * + ? .
Metacharacters are actually very useful and have special meanings
 inside patterns; we’ll tell you all those meanings as we go along. But we
 do want to reassure you that you can always match any of these 12
 characters literally by putting a backslash in front of each. For example,
 backslash is itself a metacharacter, so to match a literal backslash,
 you’d backslash the backslash: \\.
You see, backslash is one of those characters that makes other characters
 misbehave. It just works out that when you make a misbehaving
 metacharacter misbehave, it ends up behaving—a double negative, as it
 were. So backslashing a character to get it to be taken literally works,
 but only on punctuational characters; backslashing an (ordinarily
 well-behaved) alphanumeric character does the opposite: it turns the
 literal character into something special. Whenever you see such a
 two-character sequence:
\b \D \t \3 \s
you’ll know that the sequence is a metasymbol that matches something strange. For instance, \b matches a word boundary, while \t matches an ordinary tab character. Notice
 that a tab is one character wide, while a word boundary is zero characters
 wide because it’s the spot between two characters. So we call \b a zero-width
 assertion. Still, \t and \b are alike in that they both assert something
 about a particular spot in the string. Whenever you assert something in a regular expression,
 you’re just claiming that that particular something has to be true in
 order for the pattern to match.
Most pieces of a regular expression are some sort of assertion,
 including the ordinary characters that simply assert that they match
 themselves. To be precise, they also assert that the
 next thing will match one character later in the
 string, which is why we talk about the tab character being “one character
 wide”. Some assertions (like \t) eat up
 some of the string as they match, and others (like \b) don’t. But we usually reserve the term
 “assertion” for the zero-width assertions. To avoid confusion, we’ll call
 the thing with width an atom. (If
 you’re a physicist, you can think of nonzero-width atoms as massive, in
 contrast to the zero-width assertions, which are massless like
 photons.)
You’ll also see some metacharacters that aren’t assertions; rather,
 they’re structural (just as braces and semicolons define the structure of
 ordinary Perl code but don’t really do anything). These structural
 metacharacters are in some ways the most important ones, because the
 crucial first step in learning to read regular expressions is to teach
 your eyes to pick out the structural metacharacters. Once you’ve learned
 that, reading regular expressions is a breeze.[84]
One such structural metacharacter is the vertical bar, which indicates alternation:
/Frodo|Pippin|Merry|Sam/
That means that any of those strings can trigger a match; this is
 covered in Alternation later in this chapter. And in the
 section Grouping and Capturing before that, we’ll show you how to
 use parentheses around portions of your pattern to do grouping:
/(Frodo|Drogo|Bilbo) Baggins/
or even:
/(Frod|Drog|Bilb)o Baggins/
Another thing you’ll see are what we call quantifiers,
 which say how many of the previous thing should match in a row.
 Quantifiers look like this:
* + ? *? *+ {3} {2,5}
You’ll never see them in isolation like that, though. Quantifiers only make sense when attached to
 atoms—that is, to assertions that have width.[85] Quantifiers attach to the previous atom only, which in human
 terms means they normally quantify only one character. If you want to
 match three copies of “bar” in a row,
 you need to group the individual characters of “bar” into a single “molecule” with parentheses,
 like this:
/(bar){3}/
That will match “barbarbar”. If
 you’d said /bar{3}/, that would match
 “barrr”—which might qualify you as
 Scottish but disqualify you as barbarbaric. (Then again, maybe not. Some
 of our favorite metacharacters are Scottish.) For more on quantifiers, see
 Quantifiers later in this chapter.
Now that you’ve seen a few of the beasties that inhabit regular
 expressions, you’re probably anxious to start taming them. However, before
 we discuss regular expressions in earnest, we need to backtrack a little
 and talk about the pattern-matching operators that make use of regular
 expressions. (And if you happen to spot a few more regex beasties along
 the way, just leave a decent tip for the tour guide.)

[84] Admittedly, a stiff breeze at times, but not something that will
 blow you away.

[85] Quantifiers are a bit like the statement modifiers in Chapter 4, which can only attach to a single statement.
 Attaching a quantifier to a zero-width assertion would be like trying
 to attach a while modifier to a
 declaration—either of which makes about as much sense as asking your
 local apothecary for a pound of photons. Apothecaries only deal in
 atoms and such.

Pattern-Matching Operators

Zoologically speaking, Perl’s pattern-matching operators function as a
 kind of cage for regular expressions, to keep them from getting out. This
 is by design; if we were to let the regex beasties wander throughout the
 language, Perl would be a total jungle. The world needs its jungles, of
 course—they’re the engines of biodiversity, after all—but jungles should
 stay where they belong. Similarly, despite being the engines of
 combinatorial diversity, regular expressions should stay inside
 pattern-match operators where they belong. It’s a jungle in there.
As if regular expressions weren’t powerful enough, the m// and s///
 operators also provide the (likewise confined) power of double-quote
 interpolation. Since patterns are parsed like double-quoted strings, all
 the normal double-quote conventions will work, including variable
 interpolation (unless you use single quotes as the delimiter) and special
 characters indicated with backslash escapes. (See the section Specific Characters later in this chapter.) These are applied before
 the string is interpreted as a regular expression. (This is one of the few
 places in the Perl language where a string undergoes more than one pass of
 processing.) The first pass is not quite normal double-quote interpolation
 in that it knows what it should interpolate and what it should pass on to
 the regular expression parser. So, for instance, any $ immediately followed by a vertical bar,
 closing parenthesis, or the end of the string will be treated not as a
 variable interpolation, but as the traditional regex assertion meaning
 end-of-line. So if you say:
$foo = "bar";
/foo/;
the double-quote interpolation pass knows that those two $ signs are functioning differently. It does the
 interpolation of $foo, then hands this
 to the regular expression parser:
/bar$/;
Another consequence of this two-pass parsing is that the ordinary
 Perl tokener finds the end of the regular expression first, just as if it
 were looking for the terminating delimiter of an ordinary string. Only
 after it has found the end of the string (and done any variable
 interpolation) is the pattern treated as a regular expression. Among other
 things, this means you can’t “hide” the terminating delimiter of a pattern
 inside a regex construct (such as a bracketed character class or a regex
 comment, which we haven’t covered yet). Perl will see the delimiter
 wherever it is and terminate the pattern at that point.
You should also know that interpolating variables whose values keep
 changing into a pattern slows down the pattern matcher, in case it has to
 recompile the pattern. See the section Variable Interpolation
 later in this chapter. You can crudely suppress recompilation with the old
 /o modifier, but it’s normally better
 to factor out the changing bits using the qr// construct, so that only the parts requiring recompilation
 have to be recompiled.
The tr/// transliteration
 operator does not interpolate variables; it doesn’t even use regular
 expressions! (In fact, it probably doesn’t belong in this chapter at all,
 but we couldn’t think of a better place to put it.) It does share one
 feature with m// and s///, however: it binds to variables using the
 =~ and !~ operators.
The =~ and !~ operators, described in Chapter 3, bind the scalar expression on their lefthand side
 to one of three quote-like operators on their right: m// for matching a pattern, s/// for substituting some string for a
 substring matched by a pattern, and tr/// (or its synonym, y///) for transliterating one set of characters to another set. (You
 may write m// as //, without the m, if slashes are used for the delimiter.) If
 the righthand side of =~ or !~ is none of these three, it still counts as a
 m// matching operation, but there’ll be
 no place to put any trailing modifiers (see the next section, Pattern Modifiers), and you’ll have to handle your own
 quoting:
say "matches" if $somestring =~ $somepattern;
Really, there’s little reason not to spell it out explicitly:
say "matches" if $somestring =~ m/$somepattern/;
When used for a matching operation, =~ and !~ are
 sometimes pronounced “matches” and “doesn’t match”, respectively (although
 “contains” and “doesn’t contain” might cause less confusion).
Apart from the m// and s/// operators, regular expressions show up in
 two other places in Perl. The first argument to the split function is a special match operator
 specifying what not to return when breaking a string
 into multiple substrings. See the description and examples for split in Chapter 27. The
 qr// (“quote regex”) operator also
 specifies a pattern via a regex, but it doesn’t try to match anything
 (unlike m//, which does). Instead, the
 compiled form of the regex is returned for future use. See Variable Interpolation for more information.
You apply one of the m//,
 s///, or tr/// operators to a particular string with the
 =~ binding operator (which isn’t a real
 operator, just a kind of topicalizer, linguistically speaking). Here are
 some examples:
$haystack =~ m/needle/ # match a simple pattern
$haystack =~ /needle/ # same thing

$italiano =~ s/butter/olive oil/ # a healthy substitution

$rotate13 =~ tr/a–zA–Z/n–za–mN–ZA–M/ # easy encryption (to break)
Without a binding operator, $_ is
 implicitly used as the “topic”:
/new life/ and # search in $_ and (if found)
 /new civilizations/ # boldly search $_ again

s/sugar/aspartame/ # substitute a substitute into $_

tr/ATCG/TAGC/ # complement the DNA stranded in $_
Because s/// and tr/// change the scalar to which they’re
 applied, you may only use them on valid lvalues:[86]
"onshore" =~ s/on/off/; # WRONG: compile–time error
However, m// works on the result
 of any scalar expression:
if ((lc $magic_hat–>fetch_contents–>as_string) =~ /rabbit/) {
 say "Nyaa, what's up doc?";
}
else {
 say "That trick never works!";
}
But you have to be a wee bit careful since =~ and !~
 have rather high precedence—in our previous example, the parentheses are
 necessary around the left term.[87] The !~ binding operator
 works like =~, but it negates the
 logical result of the operation:
if ($song !~ /words/) {
 say qq/"$song" appears to be a song without words./;
}
Since m//, s///, and tr/// are quote operators, you may pick
 your own delimiters. These work in the same way as the
 quoting operators q//, qq//, qr//,
 and qw// (see the section Pick Your Own Quotes in Chapter 2).
$path =~ s#/tmp#/var/tmp/scratch#;

if ($dir =~ m[/bin]) {
 say "No binary directories please.";
}
When using paired delimiters with s/// or tr///, if the first part is one of the four customary ASCII bracketing pairs (angle, round,
 square, or curly), you may choose different delimiters for the second part
 than you chose for the first:
s(egg)<larva>;
s{larva}{pupa};
s[pupa]/imago/;
Whitespace is allowed in front of the opening delimiters:
s (egg) <larva>;
s {larva} {pupa};
s [pupa] /imago/;
Each time a pattern successfully matches, it sets the $`, $&,
 and $' variables to the text left of
 the match, the whole match, and the text right of the match. This is
 useful for pulling apart strings into their components:
"hot cross buns" =~ /cross/;
say "Matched: <$`> $& <$'>"; # Matched: <hot > cross < buns>
say "Left: <$`>"; # Left: <hot >
say "Match: <$&>"; # Match: <cross>
say "Right: <$'>"; # Right: < buns>
For better granularity and efficiency, use parentheses to capture
 the particular portions that you want to keep around. Each pair of
 parentheses captures the substring corresponding to the subpattern in the parentheses. The pairs
 of parentheses are numbered from left to right by the positions of the
 left parentheses; the substrings corresponding to those subpatterns are
 available after the match in the numbered variables, $1, $2,
 $3, and so on:[88]
$_ = "Bilbo Baggins's birthday is September 22";
/(.*)'s birthday is (.*)/;
say "Person: $1";
say "Date: $2";
$`, $&, $',
 and the numbered variables are global variables implicitly localized to
 the enclosing dynamic scope. They last until the next successful pattern
 match or the end of the current scope, whichever comes first. More on this
 later, in a different scope.
Once Perl sees that you need one of $`, $&,
 or $' anywhere in the program, it
 provides them for every pattern match. This will slow down your program a
 bit. Perl uses a similar mechanism to produce $1, $2, and
 so on, so you also pay a price for each pattern that contains capturing
 parentheses. (See Grouping Without Capturing, later in this
 chapter, to avoid the cost of capturing while still retaining the grouping
 behavior.) But if you never use $`,
 $&, or $', then patterns without
 capturing parentheses will not be penalized. So it’s usually best to avoid
 $`, $&, and $' if you can, especially in library modules.
 But if you must use them once (and some algorithms really appreciate their
 convenience), then use them at will because you’ve already paid the price.
 $& is not so costly as the other
 two in recent versions of Perl.
A better alternative is the /p
 match modifier, discussed below. It preserves the string matched so that
 the ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} variables contain what $`, $&,
 and $' would
 contain, but does so without penalizing the entire program.

[86] Unless you use the /r
 modifier to return the mutated result as an rvalue.

[87] Without the parentheses, the lower-precedence lc would have applied to the whole pattern
 match instead of just the method call on the magic hat object.

[88] Not $0, though, which holds
 the name of your program.

Pattern Modifiers

We’ll discuss the individual pattern-matching operators in a moment, but
 first we’d like to mention another thing they all have in common,
 modifiers.
Immediately following the final delimiter of an m//, s///,
 qr//, y///, or tr/// operator, you may optionally place one
 or more single-letter modifiers, in any order. For clarity, modifiers
 are usually written as “the /i
 modifier” and pronounced “the slash eye modifier”, even though the final
 delimiter might be something other than a slash. (Sometimes people say
 “flag” or “option” to mean “modifier”; that’s okay, too.)
Some modifiers change the behavior of the individual operator, so
 we’ll describe those in detail later. Others change how the regex is
 interpreted, so we’ll talk about them here. The m//, s///,
 and qr// operators[89] all accept the following modifiers after their final
 delimiter; see Table 5-1.
Table 5-1. Regular expression modifiers
	Modifier	Meaning
	/i	Ignore alphabetic case distinctions
 (case-insensitive).
	/s	Let . also match newline.
	/m	Let ^ and $ also match next to embedded \n.
	/x	Ignore (most) whitespace and permit comments in pattern.
	/o	Compile pattern once only.
	/p	Preserve ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} variables.
	/d	Dual ASCII–Unicode mode charset behavior (old
 default).
	/a	ASCII charset behavior.
	/u	Unicode charset behavior (new default).
	/l	The runtime locale’s charset behavior (default under
 use locale).

The /i modifier says to match a
 character in any possible case variation; that is, to match
 case-insensitively, a process also known as casefolding. This means to match not just uppercase and lowercase, but
 also titlecase characters (not used in English). Case-insensitive
 matching is also needed for when characters have several variants that
 are in the same case, like the two lowercase Greek sigmas: the lowercase
 of capital “Σ” is normally “σ”, but becomes “ς” at the end of a word. For example, the
 Greek word Σίσυφος (“Sisyphus” to the rest of us)
 has all three sigmas in it.
Because case-insensitive matching is done according to character,
 not according to language,[90] it can match things whose capitalization would be
 considered wrong in one or another language. So /perl/i would not only match “perl” but also strings like “proPErly” or “perLiter”, which aren’t really correct
 English. Similarly, Greek /σίσυφος/i would match not just “ΣΊΣΥΦΟΣ” and
 “Σίσυφος”, but also the malformed “ςίσυφοσ”, with its outer two
 lowercase sigmas swapped.
That’s because even though we’ve labelled our strings as being
 English or Greek, Perl doesn’t really know that. It just applies its
 case-insensitive matching in a language-ignorant way. Because all case
 variants of the same letter share the same casefold, they all match.
Because Perl supports only 8-bit locales, locale-matching
 codepoints below 256 use the current locale map for determining
 casefolds, but larger codepoints use Unicode rules. Case-insensitive
 matches under locales cannot cross the 255/256 border, and other
 restrictions may apply.
The /s and /m modifiers don’t involve anything kinky.
 Rather, they affect how Perl treats matches against a string that
 contains newlines. But they aren’t about whether your string actually
 contains newlines; they’re about whether Perl should
 assume that your string contains a single line
 (/s) or multiple lines (/m), because certain metacharacters work
 differently depending on whether they’re expected to behave in a
 line-oriented fashion.
Ordinarily, the metacharacter “.” matches any one character
 except a newline, because its traditional meaning
 is to match characters within a line. With /s, however, the “.” metacharacter can also match a newline,
 because you’ve told Perl to ignore the fact that the string might
 contain multiple newlines. If you want the “not a newline” behavior
 under /s, just use \N, which means the same thing as [^\n] but is easier to type.
The /m modifier, on the other
 hand, changes the interpretation of the ^ and $
 metacharacters by letting them match next to newlines within the string
 instead of just at the ends of the string. (/m can disable optimizations that assume you
 are matching a single line, so don’t just sprinkle it everywhere.) See
 the examples in the section Positions later in this
 chapter.
The /p modifier preserves the
 text of the match itself in the special ${^MATCH} variable, any text before the match
 in ${^PREMATCH}, and any text after
 the match in ${^POSTMATCH}.
The now largely obsolete /o
 modifier controls pattern recompilation. These days you need patterns
 more than 10k in length before this modifier has any beneficial effect,
 so it’s something of a relic. In case you bump into it in old code,
 here’s how it works anyway.
Unless the delimiters chosen are single quotes (m'PATTERN',
 s'PATTERN'REPLACEMENT',
 or qr'PATTERN'), any
 variables in the pattern are normally interpolated every time the
 pattern operator is evaluated. At worst, this may cause the pattern to
 be recompiled; at best, it costs a string comparison to see if
 recompilation is needed. If you want such a pattern to be compiled once
 and only once, use the /o modifier.
 This prevents expensive runtime recompilations; it’s useful when the
 value you are interpolating won’t change during execution. However,
 mentioning /o constitutes a promise
 that you won’t change the variables in the pattern. If you do change
 them, Perl won’t even notice. For better control over recompilation, use
 the qr// regex quoting operator. See
 Variable Interpolation later in this chapter for
 details.
The /x is the
 expressive modifier: it allows you to
 exploit whitespace and
 explanatory comments in order to
 expand your pattern’s legibility, even
 extending the pattern across newline
 boundaries.
Er, that is to say, /x modifies
 the meaning of the whitespace characters (and the # character): instead of letting them do
 self-matching as ordinary characters do, it turns them into
 metacharacters that, oddly, now behave as whitespace (and comment
 characters) should. Hence, /x allows
 spaces, tabs, and newlines for formatting, just like regular Perl code.
 It also allows the # character, not
 normally special in a pattern, to introduce a comment that extends
 through the end of the current line within the pattern string.[91] If you want to match a real whitespace character (or the
 # character), then you’ll have to put
 it into a bracketed character class, escape it with a backslash, or
 encode it using an octal or hex escape. (But whitespace is normally
 matched with a \s* or \s+ sequence, so the situation doesn’t arise
 often in practice.)
Taken together, these features go a long way toward making
 traditional regular expressions a readable language. In the spirit of
 TMTOWTDI, there’s now more than one way to write a given regular
 expression. In fact, there’s more than two ways:
m/\w+:(\s+\w+)\s*\d+/; # A word, colon, space, word, space, digits.

m/\w+: (\s+ \w+) \s* \d+/x; # A word, colon, space, word, space, digits.

m{
 \w+: # Match a word and a colon.
 (# (begin capture group)
 \s+ # Match one or more spaces.
 \w+ # Match another word.
) # (end capture group)
 \s* # Match zero or more spaces.
 \d+ # Match some digits
}x;
We’ll explain those new metasymbols later in the chapter. (This
 section was supposed to be about pattern modifiers, but we’ve let it get
 out of hand in our excitement about /x. Ah well.) Here’s a regular expression that
 finds duplicate words in paragraphs, stolen right out of
 Perl
 Cookbook. It uses the /x and /i
 modifiers, as well as the /g modifier
 described later.
Find duplicate words in paragraphs, possibly spanning line boundaries.
Use /x for space and comments, /i to match both 'is'
in "Is is this ok?", and use /g to find all dups.
$/ = ""; # "paragrep" mode
while (<>) {
 while (m{
 \b # start at a word boundary
 (\w\S+) # find a wordish chunk
 (
 \s+ # separated by some whitespace
 \1 # and that chunk again
) + # repeat ad lib
 \b # until another word boundary
 }xig
)
 {
 say "dup word '$1' at paragraph $.";
 }
}
When run on this chapter, it produces warnings like this:
dup word 'that' at paragraph 150
As it happens, we know that that particular instance was
 intentional.
The /u modifier enables Unicode
 semantics for pattern matching. It is automatically set if the pattern
 is internally encoded in UTF-8 or was compiled within the scope of a
 use feature "unicode_strings"
 pragma (unless also compiled in the scope of the old
 use locale or the use bytes pragmas, both of which are mildly
 deprecated).
Under /u, codepoints 128–255
 (that is, between 128 and 255, inclusive) take on their ISO-8859-1
 (Latin-1) meanings, which are the same as Unicode’s. Without /u, \w on a
 non-UTF-8 string matches precisely [A–Za–z0–9_] and nothing more. With a /u, using \w on a non-UTF-8 string also matches all
 Latin-1 word characters in 128–255; namely the micro sign µ, the two ordinal indicators ª and
 º, and the 62 Latin letters. (On UTF-8 strings, \w always matches all those anyway.)
The /a modifier changes
 \d, \s, \w, and
 the POSIX character classes to match codepoints within the ASCII range
 only.[92] These sequences normally match Unicode codepoints, not
 just ASCII. Under /a, \d means only the 10 ASCII digits “0” to “9”,
 \s means only the 5 ASCII whitespace
 characters [\f\n\r\t], and \w means only the 63 ASCII word characters
 [A–Za–z0–9_]. (This also affects
 \b and \B, since they’re defined in terms of \w transitions.) Similarly, all POSIX classes
 like [[:print:]] match ASCII
 characters only under /a.
In one regard, /a acts more
 like /u than you might think: it does
 not guarantee that ASCII characters match ASCII alone. For example,
 under Unicode casefolding rules, “S”,
 “s”, and “ſ” (U+017F latin
 small letter long s) all match each other case-insensitively,
 as do “K”, “k”, and the U+212A kelvin sign, “K”. You can disable this fancy Unicode
 casefolding by doubling up the modifier, making it /aa.
The /l modifier uses the
 current locale’s rules when pattern matching. By “current locale”, we
 mean the one in effect when the match is executed, not whichever locale
 may have been in effect during its compilation. On systems that support
 it, the current locale can be changed using the setlocale function from the POSIX module. This modifier is the default for patterns
 compiled within the scope of a "use
 locale" pragma.
Perl supports single-byte locales only, not multibyte ones. This
 means that codepoints above 255 are treated as Unicode no matter what
 locale may be in effect. Under Unicode rules, case-insensitive matches
 can cross the single-byte boundary between 255 and 256, but these are
 necessarily disallowed under /l.
That’s because under locales, the assignment of codepoints to
 characters is not the same as under Unicode (except for true
 ISO-8859-1). Therefore, the locale character 255 cannot caselessly match
 the character at 376, U+0178 latin capital
 letter y with diaeresis (Ÿ), because 255 might not
 be U+00FF latin small
 letter y with diaeresis (ÿ) in the current locale. Perl has no
 way of knowing whether that character even exists in the locale, much
 less what its codepoint might be.
The /u modifier is the default
 if you’ve explicitly asked Perl to use the v5.14 feature set. If you
 haven’t, your existing code will work as before, just as though you’d
 used a /d modifier on each pattern
 (or /l under use locale). This ensures backward
 compatibility while also providing a cleaner way to do things in the
 future. Traditional Perl pattern-matching behavior is dualistic; hence
 the name /d, which could also stand
 for “it depends”. Under /d, Perl
 matches according to the platform’s native character set rules
 unless there is something else indicating Unicode
 rules should be used. Such things include:
	Either the target string or the pattern itself is internally
 encoded in UTF-8

	Any codepoints above 255

	Properties specified using \p{PROP} or
 \P{PROP}

	Named characters, aliases, or sequences specified using
 \N{NAME}, or by
 codepoint using \N{U+HEXDIGITS}

In the absence of any declaration forcing /u, /a, or
 /l semantics, dual mode, /d, will be assumed. Patterns under /d still might have Unicode behavior—or they
 might not. Historically, this mixture of ASCII and Unicode semantics has
 caused no end of confusion, so it’s no longer the default when you
 use v5.14. Or you can change to the
 more intuitive Unicode mode explicitly. Unicode strings can be enabled
 with any of:
use feature "unicode_strings";
use feature ":5.14";
use v5.14;
use 5.14.0;
Unicode strings can also be turned on using command-line options
 corresponding to the four pragmas given above:
% perl –Mfeature=unicode_strings more arguments
% perl –Mfeature=:5.14 more arguments
% perl –M5.014 more arguments
% perl –M5.14.0 more arguments
Because the –E command-line
 option means to use the current release’s feature set, this also enables
 Unicode strings (in v5.14+):
% perl –E code to eval
As with most pragmas, you can also disable features on a per-scope
 basis, so this pragma:
no feature "unicode_strings";
disables any Unicode character-set semantics that may be declared
 in a surrounding lexical scope.
To make it easier to control regex behavior without adding the
 same pattern modifiers each time, you may now use the re pragma to set or clear default flags in a
 lexical scope.
set default modifiers for all patterns
use re "/msx"; # patterns in scope have those modifiers added

now rescind a few for an inner scope
{
 no re "/ms"; # patterns in scope have those modifiers subtracted
 ...
}
This is especially useful with the pattern modifiers related to
 charset behavior:
use re "/u"; # Unicode mode
use re "/d"; # dual ASCII–Unicode mode
use re "/l"; # 8–bit locale mode
use re "/a"; # ASCII mode, plus Unicode casefolding
use re "/aa"; # ASCIIer mode, without Unicode casefolding
With these declarations you don’t have to repeat yourself to get
 consistent semantics, or even consistently wrong semantics.

[89] The tr/// operator does not
 take regexes, so these modifiers do not apply.

[90] Well, almost. But we really prefer not to
 discuss the Turkıc İ problem, so let’s just say we didn’t.

[91] Be careful not to include the pattern delimiter in the
 comment—because of its “find the end first” rule, Perl has no way of
 knowing you didn’t intend to terminate the pattern at that
 point.

[92] When we talk about ASCII in this platform, anyone still
 running on EBCDIC should make the appropriate changes in her head as
 she reads. Perl’s online documentation discusses EBCDIC ports in
 more details.

The m// Operator (Matching)

m/PATTERN/modifiers
 /PATTERN/modifiers
 ?PATTERN?modifiers (deprecated)

 EXPR =~ m/PATTERN/modifiers
 EXPR =~ /PATTERN/modifiers
 EXPR =~ ?PATTERN?modifiers (deprecated)
The m// operator searches the string in the scalar
 EXPR for PATTERN.
 If / or ? is the delimiter, the initial m is optional. Both ? and '
 have special meanings as delimiters: the first is a once-only match; the
 second suppresses variable interpolation and the seven translation escapes
 (\U and company, described
 later).
If PATTERN evaluates to a null string,
 either because you specified it that way using // or because an interpolated variable
 evaluated to the empty string, the last successfully executed regular
 expression not hidden within an inner block (or within a split, grep, or map) is used instead.
In scalar context, the operator returns true (1) if successful, false ("") otherwise. This form is usually seen in
 Boolean context:
if ($shire =~ m/Baggins/) { ... } # search for Baggins in $shire
if ($shire =~ /Baggins/) { ... } # search for Baggins in $shire

if (m#Baggins#) { ... } # search right here in $_
if (/Baggins/) { ... } # search right here in $_
Used in list context, m//
 returns a list of substrings matched by the capturing parentheses in the
 pattern (that is, $1, $2, $3, and
 so on), as described later under Grouping and Capturing. The
 numbered variables are still set even when the list is returned. If the
 match fails in list context, a null list is returned. If the match
 succeeds in list context but there were no capturing parentheses (nor
 /g), a list value of (1) is returned. Since it returns a null list
 on failure, this form of m// can also
 be used in Boolean context, but only when participating indirectly via a
 list assignment:
if (($key,$value) = /(\w+): (.*)/) { ... }
Valid modifiers for m// (in
 whatever guise) are shown in Table 5-2.
Table 5-2. m// modifiers
	Modifier	Meaning
	/i	Ignore alphabetic case.
	/m	Let ^ and $ also match next to embedded \n.
	/s	Let . also match newline.
	/x	Ignore (most) whitespace and permit comments in pattern.
	/o	Compile pattern once only.
	/p	Preserve the matched string.
	/d	Dual ASCII–Unicode mode charset behavior (old
 default).
	/u	Unicode charset behavior (new default).
	/a	ASCII charset behavior.
	/l	The runtime locale’s charset behavior (default under
 use locale).
	/g	Globally find all matches.
	/cg	Allow continued search after failed /g match.

Most of these modifiers apply to the pattern and were described
 earlier. The last two change the behavior of the match operation itself.
 The /g modifier specifies global
 matching—that is, matching as many times as possible within the string.
 How it behaves depends on context. In list context, m//g returns a list of all matches found. Here
 we find all the places someone mentioned “perl”, “Perl”, “PERL”, and so on:
if (@perls = $paragraph =~ /perl/gi) {
 printf "Perl mentioned %d times.\n", scalar @perls;
}
If there are no capturing parentheses within the /g pattern, then the complete matches are
 returned. If there are capturing parentheses, then only the strings
 captured are returned. Imagine a string like:
$string = "password=xyzzy verbose=9 score=0";
Also imagine you want to use that to initialize a hash, like
 this:
%hash = (password => "xyzzy", verbose => 9, score => 0);
Except, of course, you don’t have a list—you have a string. To get
 the corresponding list, you can use the m//g operator in list context to capture all
 of the key/value pairs from the string:
%hash = $string =~ /(\w+)=(\w+)/g;
The (\w+) sequence captures an
 alphanumeric word. See the upcoming section Grouping and Capturing.
Used in scalar context, the /g
 modifier indicates a progressive match, which makes
 Perl start the next match on the same variable at a position just past
 where the last one stopped. The \G
 assertion represents that position in the string; see Positions, later in this chapter, for a description of
 \G. If you use the /c (for “continue”) modifier in addition to
 /g, then when the /g runs out, the failed match doesn’t reset
 the position pointer.
If a ? is the delimiter, as in
 m?PATTERN?
 (or ?PATTERN?, but the
 version without the m is deprecated),
 this works just like a normal /PATTERN/ search,
 except that it matches only once between calls to the reset operator. This can be a convenient
 optimization when you want to match only the first occurrence of the
 pattern during the run of the program, not all occurrences. The operator
 runs the search every time you call it, up until it finally matches
 something, after which it turns itself off, returning false until you
 explicitly turn it back on with reset. Perl keeps track of the match state for
 you.
The m?? operator is most useful
 when an ordinary pattern match would find the last rather than the first
 occurrence:
open(DICT, "/usr/dict/words") or die "Can't open words: $!\n";
while (<DICT>) {
 $first = $1 if m? (^ neur .*) ?x;
 $last = $1 if m/ (^ neur .*) /x;
}
say $first; # prints "neurad"
say $last; # prints "neurypnology"
The reset operator will reset
 only those instances of ?? compiled
 in the same package as the call to reset. Saying m?? is equivalent to saying ??.

The s/// Operator (Substitution)

s/PATTERN/REPLACEMENT/modifiers

 LVALUE =~ s/PATTERN/REPLACEMENT/modifiers
 RVALUE =~ s/PATTERN/REPLACEMENT/rmodifiers
This operator searches a string for PATTERN
 and, if found, replaces the matched substring with the
 REPLACEMENT text. If
 PATTERN is a null string, the last
 successfully executed regular expression is used instead.
$lotr = $hobbit; # Just copy The Hobbit
$lotr =~ s/Bilbo/Frodo/g; # and write a sequel the easy way.
If the /r modifier is used, the
 return value of an s/// operation is
 the result string, and the target string is left unchanged. Without the
 /r modifier, the return value of an
 s/// operation (in scalar and list
 context alike) is the number of times it succeeded—which can be more
 than once if used with the /g
 modifier, as described earlier. On failure, since it substituted zero
 times, it returns false (""), which
 is numerically equivalent to 0.[93]
if ($lotr =~ s/Bilbo/Frodo/) { say "Successfully wrote sequel." }
$change_count = $lotr =~ s/Bilbo/Frodo/g;
Normally, everything matched by the
 PATTERN is discarded on each substitution,
 but you can “keep” part of that by including \K in your pattern:
$tales_of_Rohan =~ s/Éo\Kmer/wyn/g; # rewriting history
The replacement portion is treated as a double-quoted string. You
 may use any of the dynamically scoped pattern variables described
 earlier ($`, $&, $',
 $1, $2, and so on) in the replacement string, as
 well as any other double-quote gizmos you care to employ. For instance,
 here’s an example that finds all the strings “revision”, “version”, or “release”, and replaces each with its
 capitalized equivalent, using the \u
 escape in the replacement portion:
s/revision|version|release/\u$&/g; # Use | to mean "or" in a pattern
All scalar variables expand in double-quote context, not just
 these strange ones. Suppose you had a %Names hash that mapped revision numbers to
 internal project names; for example, $Names{"3.0"} might be code named “Isengard”. You could use s/// to find version numbers and replace them
 with their corresponding project names:
s/version ([0–9.]+)/the $Names{$1} release/g;
In the replacement string, $1
 returns what the first (and only) pair of parentheses captured. (You
 could use also \1 as you would in the
 pattern, but that usage is deprecated in the replacement. In an ordinary
 double-quoted string, \1 means a
 Control-A.)
Both PATTERN and
 REPLACEMENT are subject to variable
 interpolation, but a PATTERN is interpolated
 each time the s/// operator is
 evaluated as a whole, while the REPLACEMENT
 is interpolated every time the pattern matches. (The
 PATTERN can match multiple times in one
 evaluation if you use the /g
 modifier.)
As before, most of the modifiers in Table 5-3 alter the behavior of the regex; they’re
 the same as in m// and qr//. The last three alter the substitution
 operator itself.
Table 5-3. s/// modifiers
	Modifier	Meaning
	/i	Ignore alphabetic case (when matching).
	/m	Let ^ and $ also match next to embedded \n.
	/s	Let . also match newline.
	/x	Ignore (most) whitespace and permit comments in
 pattern.
	/o	Compile pattern once only.
	/p	Preserve the matched string.
	/d	Dual ASCII–Unicode mode charset behavior (old
 default).
	/u	Unicode charset behavior (new default).
	/a	ASCII charset behavior.
	/l	The runtime locale’s charset behavior (default under
 use locale).
	/g	Replace globally; that is, all occurrences.
	/r	Return substitution and leave the original string
 untouched.
	/e	Evaluate the right side as an expression.

The /g modifier is used with
 s/// to replace every match of
 PATTERN with the
 REPLACEMENT value, not just the first one
 found. A s///g operator acts as a
 global search and replace, making all the changes at once, even in
 scalar context (unlike m//g, which is
 progressive).
The /r (nondestructive)
 modifier applies the substitution to a new copy of the string, which now
 no longer needs to be a variable. It returns the copy whether or not a
 substitution occurred; the original string always remains
 unchanged:
say "Déagol's ring!" =~ s/D/Sm/r; # prints "Sméagol's ring!"
The copy will always be a plain string, even if the input is an
 object or a tied variable. This modifier first appeared in production
 release v5.14.
The /e modifier treats the
 REPLACEMENT as a chunk of Perl code rather
 than as an interpolated string. The result of executing that code is
 used as the replacement string. For example, s/([0–9]+)/sprintf("%#x", $1)/ge would convert
 all numbers into hexadecimal, changing, for example, 2581 into 0xb23. Or suppose that, in our earlier
 example, you weren’t sure that you had names for all the versions, so
 you wanted to leave any others unchanged. With a little creative
 /x formatting, you could say:
s{
 version
 \s+
 (
 [0–9.]+
)
}{
 $Names{$1}
 ? "the $Names{$1} release"
 : $&
}xge;
The righthand side of your s///e (or, in this case, the lowerhand side)
 is syntax checked and compiled at compile time along with the rest of
 your program. Any syntax error is detected during compilation, and
 runtime exceptions are left uncaught. Each additional /e after the first one (like /ee, /eee,
 and so on) is equivalent to calling eval STRING on the
 result of the code, once per extra /e. This evaluates the result of the code
 expression and traps exceptions in the special $@ variable. See Programmatic Patterns, later in this chapter, for more
 details.
Modifying strings en passant

Sometimes you want a new, modified string without clobbering the
 old one upon which the new one was based. Instead of writing:
$lotr = $hobbit;
$lotr =~ s/Bilbo/Frodo/g;
you can combine these into one statement. Due to precedence,
 parentheses are required around the assignment, as they are with most
 combinations applying =~ to an
 expression.
($lotr = $hobbit) =~ s/Bilbo/Frodo/g;
Without the parentheses around the assignment, you’d only change
 $hobbit and get the number of
 replacements stored into $lotr,
 which would make a rather dull sequel.
And, yes, in newer code you can just use /r instead:
$lotr = $hobbit =~ s/Bilbo/Frodo/gr;
But many Perlfolk still use the older idiom.

Modifying arrays en masse

You can’t use a s/// operator
 directly on an array. For that, you need a loop. By a lucky
 coincidence, the aliasing behavior of for/foreach, combined with its use of $_ as the default loop variable, yields the
 standard Perl idiom to search and replace each element in an
 array:
for (@chapters) { s/Bilbo/Frodo/g } # Do substitutions chapter by chapter.
s/Bilbo/Frodo/g for @chapters; # Same thing.
As with a simple scalar variable, you can combine the
 substitution with an assignment if you’d like to keep the original
 values around, too:
@oldhues = ("bluebird", "bluegrass", "bluefish", "the blues");
for (@newhues = @oldhues) { s/blue/red/ }
say "@newhues"; # prints: redbird redgrass redfish the reds
Another way to do the same thing is to combine the /r substitution modifier (new to v5.14) with
 a map operation:
@newhues = map { s/blue/red/r } @oldhues;
The idiomatic way to perform repeated substitutes on the same
 variable is to use a once-through loop. For example, here’s how to
 canonicalize whitespace in a variable:
for ($string) {
 s/^\s+//; # discard leading whitespace
 s/\s+$//; # discard trailing whitespace
 s/\s+/ /g; # collapse internal whitespace
}
which just happens to produce the same result as:
$string = join(" ", split " ", $string);
You can also use such a loop with an assignment, as we did in
 the array case:
for ($newshow = $oldshow) {
 s/Fred/Homer/g;
 s/Wilma/Marge/g;
 s/Pebbles/Lisa/g;
 s/Dino/Bart/g;
}

When a global substitution just isn’t global enough

Occasionally, you can’t just use a /g to get all the changes to occur, either
 because the substitutions overlap or have to happen right to left, or
 because you need the length of $`
 to change between matches. You can usually do what you want by calling
 s/// repeatedly. However, you want
 the loop to stop when the s///
 finally fails, so you have to put it into the conditional, which
 leaves nothing to do in the main part of the loop. So we just write a
 1, which is a rather boring thing
 to do, but bored is the best you can hope for sometimes. Here are some
 examples that use a few more of those odd regex beasties that keep
 popping up:
put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/;

expand tabs to 8–column spacing
1 while s/\t+/" " x (length($&)*8 – length($`)%8)/e;

remove (nested (even deeply nested (like this))) remarks
1 while s/\([^()]*\)//g;

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;
That last one needs a loop because otherwise it would turn
 this:
Paris in THE THE THE THE spring.
into this:
Paris in THE THE spring.
which might cause someone who knows a little French to picture
 Paris sitting in an artesian well emitting iced tea, since “thé” is
 French for “tea”. A Parisian is never fooled, of course.

[93] As with the m// operator
 and many of the more traditional operators described in Chapter 3, this is the special false value that can be
 safely used as the number. This is because, unlike a normal null
 string, this one is exempt from numeric warnings if implicitly
 converted to a number.

The tr/// Operator (Transliteration)

tr/SEARCHLIST/REPLACEMENTLIST/cdsr

 LVALUE =~ tr/SEARCHLIST/REPLACEMENTLIST/cds
 RVALUE =~ tr/SEARCHLIST/REPLACEMENTLIST/cdsr
 RVALUE =~ tr/SEARCHLIST//c
For sed devotees, y/// is provided as a synonym for tr///. This is why you can’t call a function
 named y, any more than you can call a
 function named q or m. In all other respects, y/// is identical to tr///, and we won’t mention it again.
This operator might not appear to fit into a chapter on pattern
 matching since it doesn’t use patterns. This operator scans a string,
 character by character, and replaces each occurrence of a character
 found in SEARCHLIST (which is not a regular
 expression) with the corresponding character from
 REPLACEMENTLIST (which is not a replacement
 string). It looks a bit like m// and
 s///, though, and you can even use
 the =~ or !~ binding operators on it, so we describe it
 here. (qr// and split are pattern-matching operators, but you
 don’t use the binding operators on them, so they’re elsewhere in the
 book. Go figure.)
Transliteration returns the number of characters replaced or
 deleted. If no string is specified via the =~ or !~
 operator, the $_ string is altered.
 The SEARCHLIST and
 REPLACEMENTLIST may define ranges of
 sequential characters with a dash:
$message =~ tr/A–Za–z/N–ZA–Mn–za–m/; # rot13 encryption.
Note that a range like A–Z
 assumes a linear character set like ASCII. But each character set has
 its own ideas of how characters are ordered and thus of which characters
 fall in a particular range. A sound principle is to use only ranges that
 begin from and end at either alphabetics of equal case (a–e, A–E),
 or digits (0–4). Anything else is
 suspect. When in doubt, spell out the character sets in full: ABCDE. Even something as easy as [a–e]
 fails, but [abcde] works because the Latin
 small capital letters’ codepoints are scattered all over the place; see
 Table 5-4.
Table 5-4. Small capitals and their codepoints
	Glyph	Code	Category	Script	Name
	a	U+1D00	GC=Ll	SC=Latin	latin
 letter small capital a
	b	U+0299	GC=Ll	SC=Latin	latin
 letter small capital b
	c	U+1D04	GC=Ll	SC=Latin	latin
 letter small capital c
	d	U+1D05	GC=Ll	SC=Latin	latin
 letter small capital d
	e	U+1D07	GC=Ll	SC=Latin	latin
 letter small capital e

The SEARCHLIST and
 REPLACEMENTLIST are not variable interpolated
 as double-quoted strings; you may, however, use those backslash
 sequences that map to a specific character, such as \n or \015.
Table 5-5 lists the modifiers applicable
 to the tr/// operator. They’re
 completely different from those you apply to m//, s///,
 or qr//, even if some look the
 same.
Table 5-5. tr/// modifiers
	Modifier	Meaning
	/c	Complement
 SEARCHLIST.
	/d	Delete found but unreplaced
 characters.
	/s	Squash duplicate replaced
 characters.
	/r	Return transliteration and
 leave the original string untouched.

If the /r modifier is used, the
 transliteration is on a new copy of the string, which is returned. It
 need not be an LVALUE.
say "Drogo" =~ tr/Dg/Fd/r; # Drogo –> Frodo
If the /c modifier is
 specified, the character set in SEARCHLIST is
 complemented; that is, the effective search list consists of all the
 characters not in
 SEARCHLIST. In the case of Unicode, this can
 represent a lot of characters, but since they’re
 stored logically, not physically, you don’t need to worry about running
 out of memory.
The /d modifier turns tr/// into what might be called the
 “transobliteration” operator: any characters specified by
 SEARCHLIST but not given a replacement in
 REPLACEMENTLIST are deleted. (This is
 slightly more flexible than the –d
 behavior of some tr(1) programs, which delete
 anything they find in SEARCHLIST,
 period.)
If the /s modifier is
 specified, sequences of characters converted to the same character are
 squashed down to a single instance of the character.
If the /d modifier is used,
 REPLACEMENTLIST is always interpreted exactly
 as specified. Otherwise, if REPLACEMENTLIST
 is shorter than SEARCHLIST, the final
 character is replicated until it is long enough. If
 REPLACEMENTLIST is null, the
 SEARCHLIST is replicated, which is
 surprisingly useful if you just want to count characters, not change
 them. It’s also useful for squashing characters using /s. If you’re only counting characters, you
 may use any RVALUE, not just an
 LVALUE.
tr/aeiou/!/; # change any vowel into !
tr{/\\\r\n\b\f. }{_}; # change strange chars into an underscore

$count = ($para =~ tr/\n//); # count the newlines in $para
$count = tr/0–9//; # count the digits in $_

tr/@$%*//d; # delete any of those

change en passant
($HOST = $host) =~ tr/a–z/A–Z/;

same end result, but as an rvalue
$HOST = ($host =~ tr/a–z/A–Z/r);

$pathname =~ tr/a–zA–Z/_/cs; # change all but ASCII alphas
 # to single underbar
If the same character occurs more than once in
 SEARCHLIST, only the first is used.
 Therefore, this:
tr/AAA/XYZ/
will change any single character A to an X (in $_).
Although variables aren’t interpolated into tr///, you can still get the same effect by
 using eval
 EXPR:
$count = eval "tr/$oldlist/$newlist/";
die if $@; # propagates exception from illegal eval contents
One more note: if you want to change your text to uppercase or
 lowercase, don’t use tr///. Use the
 \U or \L sequences in a double-quoted string (or the
 equivalent uc and lc functions) since they will pay attention to
 locale or Unicode information and tr/a–z/A–Z/ won’t. Additionally, in Unicode
 strings, the \u sequence and its
 corresponding ucfirst function
 understand the notion of titlecase, which for some characters may be
 distinct from simply converting to uppercase.
The \F sequence corresponds to
 the fc function; see the fc description in Chapter 27.
 New to v5.16, these are used for simple case-insensitive comparisons, as
 in "\F$a" eq "\F$b" or the equivalent
 fc($a) eq fc($b). The /i modifier has always used casefolding
 internally for case-insensitive matching; \F and fc
 now provide easier access. See also Comparing and Sorting Unicode Text in Chapter 6.

Metacharacters and Metasymbols

Now that we’ve admired all the fancy cages, we can go back to looking at
 the critters in the cages—those funny-looking symbols you put inside the
 patterns. By now you’ll have cottoned to the fact that these symbols
 aren’t regular Perl code like function calls or arithmetic operators.
 Regular expressions are their own little language nestled inside of Perl.
 (There’s a bit of the jungle in all of us.)
For all their power and expressivity, patterns in Perl recognize the
 same 12 traditional metacharacters (the Dirty Dozen, as it were) found in many other regular
 expression packages:
\ | () [{ ^ $ * + ? .
Some of those bend the rules, making otherwise normal characters
 that follow them special. We don’t like to call the longer sequences
 “characters”, so when they make longer sequences, we call them metasymbols (or sometimes just “symbols”). But at the top level, those
 12 metacharacters are all you (and Perl) need to think about. Everything
 else proceeds from there.
Some simple metacharacters stand by themselves, like . and ^ and
 $. They don’t directly affect anything
 around them. Some metacharacters work like prefix operators, governing
 what follows them, like \. Others work
 like postfix operators, governing what immediately precedes them, like
 *, +, and ?. One
 metacharacter, |, acts like an infix
 operator, standing between the operands it governs. There are even
 bracketing metacharacters that work like circumfix operators, governing
 something contained inside them, like (...) and [...]. Parentheses are particularly important,
 because they specify the bounds of | on
 the inside, and of *, +, and ? on
 the outside.
If you learn only one of the 12 metacharacters, choose the
 backslash. (Er…and the parentheses.) That’s because backslash disables the
 others. When a backslash precedes a nonalphanumeric character in a Perl
 pattern, it always makes that next character a literal. If you need to
 match one of the 12 metacharacters in a pattern literally, you write them
 with a backslash in front. Thus, \.
 matches a real dot, \$ a real dollar
 sign, \\ a real backslash, and so on.
 This is known as “escaping” the metacharacter, or “quoting it”, or
 sometimes just “backslashing” it. (Of course, you already know that
 backslash is used to suppress variable interpolation in double-quoted
 strings.)
Although a backslash turns a metacharacter into a literal character,
 its effect upon a following alphanumeric character goes the other
 direction. It takes something that was regular and makes it special. That
 is, together they make a metasymbol. An alphabetical list of these
 metasymbols can be found in Table 5-9.

Metasymbol Tables

In the following tables, the Atomic column says “yes” if the given
 metasymbol is quantifiable (if it can match something with width, more
 or less). Also, we’ve used “...” to
 represent “something else”. (Please see the later discussion to find out
 what “...” means, if it is not clear
 from the one-line gloss in the table.)
Table 5-6 shows the basic traditional
 metasymbols. The first four of these are the structural metasymbols we
 mentioned earlier, while the last three are simple metacharacters. The
 . metacharacter is an example of an
 atom because it matches something with width (the width of a character,
 in this case); ^ and $ are examples of assertions, because they match something of zero width,
 and because they are only evaluated to see whether they’re true.
Table 5-6. General regex metacharacters
	Symbol	Atomic	Meaning
	\...	Varies	(De)meta next (non)alphanumeric
 characteralphanumeric character (maybe)

	...|...	No	Alternation (match one or the
 other)
	(...)	Yes	Grouping (treat as a
 unit)
	[...]	Yes	Character class (match one
 character from a set)
	^	No	True at beginning of string (or
 after any newline, maybe)
	.	Yes	Match one character (except
 newline, normally)
	$	No	True at end of string (or
 before any newline, maybe)

The quantifiers, which are further described in their own section,
 indicate how many times the preceding atom (that is, single character or
 grouping) should match. These are listed in Table 5-7.
Table 5-7. Regex quantifiers
	Maximal	Minimal	Possessive	Allowed Range
	{MIN,MAX}	{MIN,MAX}?	{MIN,MAX}?+	Must occur at least
 MIN times but no more than
 MAX times
	{MIN,}	{MIN,}?	{MIN,}?+	Must occur at least
 MIN times
	{COUNT}	{COUNT}?	{COUNT}?+	Must match exactly
 COUNT times
	*	*?	*+	0 or more times (same as
 {0,})
	+	+?	++	1 or more times (same as
 {1,})
	?	??	?+	0 or 1 time (same as {0,1})

A minimal quantifier tries to match as few
 characters as possible within its allowed range. A maximal quantifier
 tries to match as many characters as possible
 within its allowed range.
For instance, .+ is guaranteed
 to match at least one character of the string, but it will match all of
 them given the opportunity. The opportunities are discussed later in
 this chapter in The Little Engine That /Could(n’t)?/.
A possessive quantifier is just like a maximal one, except under
 backtracking, during which it never gives up anything it’s already
 grabbed, whereas minimal and maximal quantifiers can change how much
 they match during backtracking.
You’ll note that quantifiers may never be quantified. Things like
 ?? and ++ are quantifiers in their own right,
 respectively minimal and possessive, not a normal one-character
 quantifier that has itself been quantified. One can only quantify a
 thing marked atomic, and the quantifiers are not atoms.
We wanted to provide an extensible syntax for new kinds of
 metasymbols. Given that we only had a dozen metacharacters to work with,
 we chose a formerly illegal regex sequence to use for arbitrary
 syntactic extensions. Except for the last one, these metasymbols are all
 of the form (?KEY...); that is,
 a (balanced) parenthesis followed by a question mark, followed by a
 KEY and the rest of the subpattern. The
 KEY character indicates which particular
 regex extension it is. See Table 5-8 for a
 list of these. Most of them behave structurally since they’re based on
 parentheses, but they also have additional meanings. Again, only atoms
 may be quantified because they represent something that’s really there (potentially).
Table 5-8. Extended regex sequences
	Extension	Atomic	Meaning
	(?#...)	No	Comment, discard.
	(?:...)	Yes	Noncapturing group.
	(?>...)	Yes	Possessive group, no capturing
 or backtracking.
	(?adlupimsx–imsx)	No	Enable/disable pattern
 modifiers.
	(?^alupimsx)	No	Reset and enable pattern
 modifiers.
	(?adlupimsx–imsx:...)	Yes	Group-only parentheses plus
 enable/disable modifiers.
	(?^alupimsx:...)	Yes	Group-only parentheses plus
 reset and enable modifiers.
	(?=...)	No	True if lookahead assertion
 succeeds.
	(?!...)	No	True if lookahead assertion
 fails.
	(?<=...)	No	True if lookbehind assertion
 succeeds.
	(?<!...)	No	True if lookbehind assertion
 fails.
	(?|...|...|...)	Yes	Branch reset for numbered
 groups.
	(?<NAME>...)	Yes	Named capture group; also
 (?'NAME'...).
 See \k<NAME>
 below.
	(?{...})	No	Execute embedded Perl
 code.
	(??{...})	Yes	Match regex from embedded Perl
 code.
	(?NUMBER)	Yes	Call the independent
 subexpression in group NUMBER; also
 (?+NUMBER),
 (?–NUMBER),
 (?0), and (?R). Make sure
 not to use an ampersand here.
	(?&NAME)	Yes	Recurse on group
 NAME; make sure you
 do use an ampersand here. Also (?P>NAME).
	(?(COND)...|...)	Yes	Match with if-then-else
 pattern.
	(?(COND)...)	Yes	Match with if-then
 pattern.
	(?(DEFINE)...)	No	Define named groups for later
 “regex subroutine” invocation as (?&NAME).
	(*VERB)	No	Backtracking control verb; also
 (*VERB:NAME).

Backtracking control verbs are still highly experimental and so
 are not discussed here. Nevertheless, you may run into them from time to
 time if you’re meddling in the affairs of wizards. So please check the
 perlre
 manpage if you see any of these:
(*ACCEPT)
(*COMMIT)
(*FAIL) (*F)
(*MARK:NAME) (*:NAME)
(*PRUNE) (*PRUNE:NAME)
(*SKIP) (*SKIP:NAME)
(*THEN) (*THEN:NAME)
Or just run like heck.
And, finally, Table 5-9 shows all of
 your favorite alphanumeric metasymbols. (Symbols that are processed by
 the variable interpolation pass are marked with a dash in the Atomic
 column, since the Engine never even sees them.)
Table 5-9. Alphanumeric regex metasymbols
	Symbol	Atomic	Meaning
	\0	Yes	Match character number zero (U+0000, null, nul).
	\NNN	Yes	Match the character given in octal, up to \377.
	\n	Yes	Match
 nth
 capture group (decimal).
	\a	Yes	Match the alert character (alert, bel).
	\A	No	True at the beginning of a string.
	\b	Yes	Match the backspace char (backspace, bs) (only in char class).
	\b	No	True at word boundary.
	\B	No	True when not at word boundary.
	\c
 X	Yes	Match the control character
 Control-X (\cZ, \c[, etc.).
	\C	Yes	Match one byte (C char) even in UTF-8
 (dangerous!).
	\d	Yes	Match any digit character.
	\D	Yes	Match any nondigit character.
	\e	Yes	Match the escape character (escape, esc, not backslash).
	\E	—	End case (\F,
 \L, \U) or quotemeta (\Q) translation.
	\f	Yes	Match the form feed character (form feed, ff).
	\F	—	Foldcase (not lowercase) until \E.[a]
	\g{GROUP}	Yes	Match the named or numbered capture group.
	\G	No	True at end-of-match position of prior m//g.
	\h	Yes	Match any horizontal whitespace character.
	\H	Yes	Match any character except horizontal whitespace.
	\k<GROUP>	Yes	Match the named capture group; also \k'NAME'.
	\K	No	Keep text to the left of \K out of match.
	\l	—	Lowercase (not foldcase) next character only.
	\L	—	Lowercase (not foldcase) until \E.
	\n	Yes	Match the newline character (usually line feed, lf).
	\N	Yes	Match any character except newline.
	\N{NAME}	Yes	Match the named character,
 alias, or sequence, like \N{greek:Sigma} for “Σ”.
	\o{NNNN}	Yes	Match the character given in octal.
	\p{PROP}	Yes	Match any character with the named property.
	\P{PROP}	Yes	Match any character without the named property.
	\Q	—	Quote (de-meta) metacharacters until \E.
	\r	Yes	Match the return character (usually carriage return, cr).
	\R	Yes	Match any linebreak grapheme (not in char classes).
	\s	Yes	Match any whitespace character.
	\S	Yes	Match any nonwhitespace character.
	\t	Yes	Match the tab character (character
 tabulation, ht).
	\u	—	Titlecase (not uppercase) next character only.
	\U	—	Uppercase (not titlecase) until \E.
	\v	Yes	Match any vertical whitespace character.
	\V	Yes	Match any character except vertical whitespace.
	\w	Yes	Match any “word” character (alphabetics, digits, combining
 marks, and connector punctuation).
	\W	Yes	Match any nonword character.
	\x{abcd}	Yes	Match the character given in hexadecimal.
	\X	Yes	Match grapheme (not in char classes).
	\z	No	True at end of string only.
	\Z	No	True at end of string or before optional newline.
	[a] \F and the
 corresponding fc function
 are new to v5.16.

The braces are optional on \p
 and \P if the property name is one
 character. The braces are optional on \x if the hexadecimal number is two digits or
 less. Leaving the braces off \N means
 a non-newline instead of a named character. The braces are optional on
 \g if the referenced capture group is
 numeric (but please use them anyway).
The \R matches either a carriage return followed by a line feed (possessively), or else any one
 vertical whitespace character. It is equivalent to (?>\r\n|\v). The possessive group means
 that "\r\n" =~ /\R\n/ can never
 match; once it’s seen the two-character CRLF, it will never later change
 that to just the carriage return
 alone, even if something later in the pattern needs the line feed for the overall pattern to
 succeed.
Only metasymbols with “Match the…” or “Match any…” descriptions
 may be used within character classes (square brackets), and then only if
 they match one character, so \R and
 \X are not allowed. That is,
 character classes can only match one character at a time, so they are
 limited to containing specific sets of single characters; within them
 you may only use metasymbols that describe other specific sets of single
 characters, or that describe specific individual characters. Of course,
 these metasymbols may also be used outside character classes, along with
 all the other nonclassificatory metasymbols. But note that \b is two entirely different beasties: it’s
 the backspace character inside a character class, but a word boundary
 assertion outside.
The \K (mnemonic: “Keep” what
 you’ve already matched) does not match anything. Rather, it tells the
 engine to reset anything it’s treasuring up as part of the match proper,
 like the $& or ${^MATCH} variables, or of the lefthand side
 of a substitution. See the examples in the s/// operator.
There is some amount of overlap between the characters that a
 pattern can match and the characters an ordinary double-quoted string
 can interpolate. Since regexes undergo two passes, it is sometimes
 ambiguous which pass should process a given character. When there is
 ambiguity, the variable interpolation pass defers the interpretation of
 such characters to the regular expression parser.
But the variable interpolation pass can only defer to the regex
 parser when it knows it is parsing a regex. You can specify regular
 expressions as ordinary double-quoted strings, but then you must follow
 normal double-quote rules. Any of the previous metasymbols that happen
 to map to actual characters will still work, even though they’re not
 being deferred to the regex parser. But you can’t use any of the other
 metasymbols in ordinary double quotes (or indeed in any double-quote
 context such as `...`, qq(...), qx(...), or an interpolative here document).
 If you want your string to be parsed as a regular expression without
 doing any matching (yet), you should be using the qr// (quote regex) operator.
On the other hand, the case and quotemeta translation escapes
 (\U and friends)
 must be processed during the variable interpolation
 pass because the very purpose of those metasymbols is to influence how
 variables are interpolated. If you suppress variable interpolation with
 single quotes, you won’t get the translation escapes either. Neither
 variables nor translation escapes (\U, etc.) are expanded in any single-quoted
 string, nor in single-quoted m'...'
 or qr'...' operators. Even when you
 do interpolation, these translation escapes are ignored if they show up
 as the result of variable interpolation, since by
 then it’s too late to influence variable interpolation.
Although the transliteration operator doesn’t take regular
 expressions, any metasymbol we’ve discussed that matches a single
 specific character also works in a tr/// operation. The rest do not (except for
 backslash, which continues to work in the backward way it always works).

Specific Characters

As mentioned before, everything that’s not special in a pattern matches itself.
 That means an /a/ matches an
 “a”, an /=/ matches an “=”, and so on. Some characters, though, aren’t
 very easy to type in—and even if you manage that, they’ll just mess up
 your screen formatting. (If you’re lucky. Control characters are notorious for being out-of-control.) To fix that,
 regexes recognize the double-quotish character aliases listed in Table 5-10.
Table 5-10. Double-quotish character aliases
	Escape	Meaning
	\0	Null character (nul,
 null)
	\a	Alarm (bel, alert)
	\e	Escape (esc, escape)
	\f	Form feed (ff, form feed)
	\n	Newline (lf, line feed)
	\r	Return (cr, carriage return)
	\t	Tab (ht, horizontal tab)

Just as in double-quoted strings, patterns also honor the
 following five metasymbols:
	\cX
	A named ASCII control character, like \cC for Control-C, \cZ for Control-Z, \c[for ESC, and \c? for DEL. The resulting ordinal must
 be 0–31 or 127.

	\NNN
	A character specified using its two- or three-digit octal code.
 The leading 0 is optional, except for values less
 than 010 (8 decimal) since
 (unlike in double-quoted strings) the single-digit versions are
 always considered to be references to strings captured by
 that numbered capture group within a pattern. Multiple digits are
 interpreted as the nth reference if you’ve
 captured at least n substrings earlier in the
 pattern (where n is considered as a decimal
 number). Otherwise, they are interpreted as a character specified
 in octal.

	\x{HEXDIGITS}
	A codepoint (character number) specified as one or two hex digits
 ([0–9a–fA–F]), as in \x1B. The one-digit form is usable only
 if the character following it is not a hex digit. If braces are
 used, you may use as many digits as you’d like. For example,
 \x{262f} matches a Unicode
 U+262F yin yang (☯).

	\N{NAME}
	A named character, alias, or sequence, such as \N{GREEK SMALL LETTER EPSILON}, \N{greek:epsilon}, or \N{epsilon}. This requires the charnames pragma described in Chapter 29, which
 also determines which flavors of those names you may use (":full" corresponding to the first style
 just shown, and ":short"
 corresponding to the other two).
You may also specify the character using the \N{U+NUMBER}
 notation. For example, \N{U+263B} means ☻, the black smiling face character. This usage
 does not require the charnames
 pragma.
A list of all Unicode character names can be found in your
 closest Unicode standards document, or generated by iterating
 through charnames::viacode(N)
 for N running from 0 through 0x10_FFFF, remembering to skip the
 surrogates.

	\o{NUMBER}
	A character specified using its octal code. Unlike the ambiguous
 \NNN
 notation, this can be any number of octal digits and will never be
 confused for a capture reference.

Wildcard Metasymbols

Three special metasymbols serve as generic wildcards, each of them matching “any”
 character (for certain values of “any”). These are the dot (“.”), \C,
 and \X. None of these may be used in
 their metacharacter sense in a bracketed character class. You can’t use
 the dot there because it would match (nearly) any character in
 existence, so it’s something of a universal character class in its own
 right. If you’re going to include or exclude everything, there’s not
 much point in having a bracketed character class. The special wildcards
 \C and \X have special structural meanings that don’t
 map well to the notion of choosing a single Unicode character, which is
 the level at which bracketed character classes work.
The dot metacharacter matches any one character other than a
 newline. (And with the /s modifier,
 it matches that, too. In which case use \N to match a non-newline.) Like any of the
 dozen special characters in a pattern, to match a dot literally, you
 must escape it with a backslash. For example, this checks whether a
 filename ends with a dot followed by a one-character extension:
if ($pathname =~ /\.(.)\z/s) {
 say "Ends in $1";
}
The first dot, the escaped one, is the literal character, and the
 second says “match any character”. The \z says to match only at the end of the
 string, and the /s modifier lets the
 dot match a newline as well. (Yes, using a newline as a file extension
 Isn’t Very Nice, but that doesn’t mean it can’t happen.)
The dot metacharacter is most often used with a quantifier. A
 .* matches a maximal number of
 characters, while a .*? matches a
 minimal number of characters. But it’s also sometimes used without a
 quantifier for its width: /(..):(..):(..)/ matches three colon-separated
 fields, each of which is two characters long.
Do not confuse characters with bytes. Back in the day, dot only
 matched a single byte, but now it matches Unicode characters, many of
 which cannot be encoded in a single byte:
use charnames qw[:full];
$BWV[887] = "G\N{MUSIC SHARP SIGN} minor";
my ($note, $black, $mode) = $BWV[887] =~ /^([A–G])(.)\s+(\S+)/;
say "That's lookin' sharp!" if $black eq chr 0x266f; # ♯
The \X metasymbol matches a
 character in a more extended sense. It matches a string of one or more
 Unicode characters known as a “grapheme cluster”. It’s meant to grab
 several characters in a row that together represent a single glyph to
 the user. Typically it’s a base character followed by combining
 diacritics like cedillas or diaereses that combine with that base
 character to form one logical unit. It can also be any Unicode linebreak
 sequence including "\r\n", and,
 because one doesn’t apply marks to linebreaks, it can even be a lone
 mark at the start of the string or line.
Perl’s original \X worked
 mostly like (?>\PM\pM*), but that
 doesn’t work out so well, so Unicode refined its notion of grapheme
 clusters. The exact definition is complicated, but this is close
 enough:
(?> \R
 | \p{Grapheme_Base} \p{Grapheme_Extend}*
 | \p{Grapheme_Extend}+
 | .
)
The point is that \X matches
 one user-visible character (grapheme), even if it takes several
 programmer-visible characters (codepoints) to do so. The length of the
 string matched by /\X/ could exceed
 one character if the \R in the
 pseudoexpansion above matched a CRLF pair, or if a grapheme base
 character were followed by one or more grapheme extend
 characters.[94] The possessive group means \X can’t change its mind once it’s found a
 base character with any extend characters after it. For example,
 /\X.\z/ can never match “cafe\x{301}”, where U+0301 is combining acute accent, because \X cannot be backtracked into.
If you are using Unicode and really want to get at a single byte
 instead of a single character, you could use the
 \C metasymbol. This will always match
 one byte (specifically, one C language char type), even if this gets you out of sync
 with your Unicode character stream. See the appropriate warnings about
 doing this in Chapter 6. This is probably the wrong
 way to go about it, though. Instead, you should probably decode the
 string as bytes (that is, characters whose codepoints are under 256)
 using the Encode module.

[94] Usually combining marks; currently the only nonmark grapheme
 extend characters are zero width
 non-joiner, zero width
 joiner, halfwidth katakana voiced
 sound mark, and halfwidth katakana
 semi-voiced sound mark.

Character Classes

In a pattern match, you may match any character that has—or that does not
 have—a particular property. There are four ways to specify character
 classes. You may specify a character class in the traditional way, using
 square brackets and enumerating the possible characters, or you may use
 any of three mnemonic shortcuts: classic Perl classes like \w, using properties like \p{word}, or using legacy POSIX classes like
 [:word:]. Each of these shortcuts
 matches only one character from its set. Quantify them to match larger
 expanses, such as \d+ to match one or
 more digits. (An easy mistake is to think that \w matches a word. Use \w+ to match a word — provided by “word” you
 mean a programming language identifier with underscores and digits and
 such, not an English-language word.)

Bracketed Character Classes

An enumerated list of characters in square brackets is called a bracketed character
 class and matches any one of the characters in the list. For
 example, [aeiouy] matches a letter
 that can be a vowel in English. To match a right square bracket, either
 backslash it or place it first in the list.
Character ranges may be indicated using a hyphen[95] and the a–z notation.
 Multiple ranges may be combined; for example, [0–9a–fA–F] matches one hex “digit”. You may
 use a backslash to protect a hyphen that would otherwise be interpreted
 as a range separator, or just put it at the beginning or end of the
 class (a practice which is arguably less readable but more
 traditional).
A caret (or circumflex, or hat, or up arrow) at the front of the
 bracketed character class inverts the class, causing it to match any
 single character not in the list. (To match a
 caret, either don’t put it first or, better, escape
 it with a backslash.) For example, [^aeiouy] matches any character that isn’t a
 vowel. Be careful with character class negation, though, because the
 universe of characters is expanding. For example, that bracketed
 character class matches consonants—and also matches spaces, newlines,
 and anything (including vowels) in Cyrillic, Greek, or nearly any other
 script, not to mention every ideograph in Chinese, Japanese, and Korean.
 And someday maybe even Cirth and Tengwar. (Linear B and Etruscan, for
 sure.) So it might be better to specify your consonants explicitly, such
 as [cbdfghjklmnpqrstvwxyz], or
 [b–df–hj–np–tv–z] for short. (This
 also solves the issue of “y” needing
 to be in two places at once, which a set complement would
 preclude.)
Normal character metasymbols that represent a specific character
 are allowed, such as \n, \t, \cX, \xNN, \NNN (meaning the
 octal number, not the backreference), \p{YESPROP}, and
 \N{NAME}.
 Additionally, you may use \b within a
 character class to mean a backspace, just as it does in a double-quoted
 string. Normally, in a pattern match, it means a word boundary. But
 zero-width assertions don’t make any sense in character classes, so here
 \b returns to its normal meaning in
 strings. Any single character can be used as the endpoint of a range,
 whether used as a literal, a classic backslash escape like \t, as its hex or octal codepoint, or using
 named characters.
A character class also allows any metasymbol representing a specific set of characters,
 including negated classes like \P{NOPROP},
 \W, \S, and \D,
 as well as predefined character classes described later in the chapter
 (classic, Unicode, or POSIX). But don’t try to use any of these as
 endpoints of a range—that doesn’t make sense, so the “–” will be interpreted literally. It also
 doesn’t make sense to use something that could be more than one
 character long. That rules out \R
 since that can match both a carriage return and a line feed, \X since that can match multiple codepoints in
 a row, or certain named sequences via \N{NAME} that
 expand to multiple codepoints.
All other metasymbols lose their special meaning inside square
 brackets. In particular, you can’t use any of the three generic
 wildcards: “.”, \X, or \C.
 The first often surprises people, but it doesn’t make much sense to use
 the universal character class within a restricted one, and you often
 want to match a literal dot as part of a character class—when you’re
 matching filenames, for instance. It’s also meaningless to specify
 quantifiers, assertions, or alternation inside a bracketed character
 class, since the characters are interpreted individually. For example,
 [fee|fie|foe|foo] means the same
 thing as [feio|].
A bracketed character class normally matches only one character.
 For this reason, Unicode named sequences cannot be (usefully) used in
 bracketed character classes in v5.14. These look like named characters,
 but are really several characters long. For example, latin capital letter a with macron and grave
 can be used in the \N{...} construct, but that actually expands
 into U+0100 followed by U+0300.
 Inside brackets, that named sequence would look like [\x{100}\x{300}], which is unlikely to be what
 you want.
However, under /i, a bracketed
 character class can sometimes match more than one character. This is
 because under full casefolding, a single character in the string can
 match several in the pattern, or vice versa. For example, this is
 true:
"SS" =~ /^[\xDF]$/iu
That’s because the casefold of U+00DF is “ss”, and the casefold of “SS” is also “ss”. Since the casefolds are the same, the
 match succeeds. However, full casefolding is downgraded to simple
 casefolding under inverted character classes such as [^\xDF], because this would otherwise lead to
 logical contradictions. This is the only time Perl ever uses simple
 casefolding; normally, all casefolding and casemapping in Perl is full,
 not simple.

[95] Actually, by U+002D, hyphen-minus not by U+2010, hyphen.

Classic Perl Character Class Shortcuts

Since the beginning, Perl has provided a number of character class shortcuts.
 These are listed in Table 5-11. All of them
 are backslashed alphabetic metasymbols, and, in each case, the uppercase
 version is the negation of the lowercase version.
These match much more than you might think, because they normally
 work on the full Unicode range not on ASCII alone (and for negated
 classes, even beyond Unicode). In any case, the normal meanings are a
 superset of the old ASCII or locale meanings. For explanations of the
 properties and the legacy POSIX forms, see POSIX-Style Character Classes later in this chapter. To keep the old ASCII
 meanings, you can always use re "/a"
 for that scope, or put a /a or two on
 an individual pattern.
Table 5-11. Classic character classes
	Symbol	Meaning	Normal Property	/a Property	/a Enumerated	Legacy [:POSIX:]
	\d	Digit	\p{X_POSIX_Digit}	\p{POSIX_Digit}	[0–9]	[:digit:]
	\D	Nondigit	\P{X_POSIX_Digit}	\P{POSIX_Digit}	[^0–9]	[:^digit:]
	\w	Word character	\p{X_POSIX_Word}	\p{POSIX_Word}	[_A–Za–z0–9]	[:word:]
	\W	Non-(word character)	\P{X_POSIX_Word}	\P{POSIX_Word}	[^_A–Za–z0–9]	[:^word:]
	\s	Whitespace	\p{X_Perl_Space}	\p{Perl_Space}	[\t\n\f\r]	[:space:] [a]
	\S	Nonwhitespace	\P{X_Perl_Space}	\P{Perl_Space}	[^\t\n\f\r]	[:^space:]
	\h	Horizontal whitespace character	\p{Horiz_Space}	\p{Horiz_Space}	Many	[:blank:]
	\H	Non-(Horizontal whitespace character)	\P{Horiz_Space}	\P{Horiz_Space}	Many	[:^blank:]
	\v	Vertical whitespace character	\p{Vert_Space}	\p{Vert_Space}	Many	—
	\V	Non-(Vertical whitespace character)	\P{Vert_Space}	\P{Vert_Space}	Many	—
	[a] But without VTAB.

(Yes, we know most words don’t have numbers or underscores in
 them; \w is for matching “words” in
 the sense of tokens in a typical programming language. Or Perl, for that
 matter.)
These metasymbols may be used either outside or inside square
 brackets—that is, either standalone or as part of a constructed
 bracketed character class:
if ($var =~ /\D/) { warn "contains a nondigit" }
if ($var =~ /[^\w\s.]/) { warn "contains non–(word, space, dot)" }
Most of these have definitions that follow the Unicode Standard.
 Although Perl uses Unicode internally, many old programs exist that
 don’t realize this, which can lead to surprises. So the traditional
 character class abbreviations in Perl all suffer from a sort of
 multiple-personality disorder in which sometimes they mean one thing and
 sometimes another. Under the /u flag,
 that dual mode goes away, and strings are always given Unicode
 semantics. Since this is the path toward sanity, it is the default under
 use v5.14 or better. (The unicode_strings feature also sets this
 default.)
For traditional reasons, \s is
 not the same as [\h\v], because
 \v includes \cK, the rarely used vertical tab character.
 That is why Perl’s \s isn’t exactly
 equal to Unicode’s \p{Whitespace}
 property.
If you use legacy locales (because of use
 locale or use re "/l"),
 then you get the locale’s sense of these for codepoints below 256, but
 still get the normal sense for codepoints of 256 and above.
On codepoints larger that 255, Perl normally switches to a purely
 character interpretation. That means a codepoint like U+03A9, greek capital letter omega, is
 always a \w
 character.
However, under the /a or
 /aa modifiers, it no longer is.
 Usually, one uses these ASCII-only modifiers to enforce an ASCII-only
 interpretation of old patterns that were designed before Unicode
 existed. Instead of putting a /a on
 every pattern that needs it, you can use the following lexically scoped
 pragma, and the /a will be
 automatically assumed:
use re "/a";
This rules out, for example, certain whitespace characters. It
 also means that the non-ASCII letters from ISO-8859-1 will no longer
 count as letters for \w characters.

Character Properties

Character properties are available using \p{PROP} and its
 set complement, \P{PROP}. For the
 seven major Unicode General Category properties of just one letter, the
 braces on the \p and \P are optional. So you may write \pL for any letter or \pN for any number, but you must use braces
 for anything longer, like \p{Lm} or
 \p{Nl}.
Most properties are directly defined in the Unicode Standard, but
 some, usually composites built out of the standard properties, are
 peculiar to Perl. For example Nl and
 Mn are standard Unicode General
 Categories representing letter-numbers and nonspacing combining marks,
 while Perl_Space is of Perl’s own
 devising.
Properties may be used by themselves or combined in a constructed
 character class:
if ($var =~ /^\p{alpha}+$/) { say "all alphabetic" }
if ($var =~ s/[^\pL\pN]//g) { say "deleted all nonalphanumerics" }
There are a great many properties, and some of those commonly used
 ones each cover more characters than many people imagine. For example,
 the alpha and word properties each cover over 100,000
 characters, with word necessarily
 being the larger of the two as it is a proper superset of alpha.
The current list of properties supported by your release of Perl
 can be found in the perluniprops
 manpage, including how many characters each property matches. Perl
 closely tracks the Unicode Standard, so as new properties are added to
 Unicode, they are also added to Perl. For official Unicode properties,
 see UAX #44: Unicode Character Database, plus the Compatibility
 Properties from Annex C of UTS #18: Unicode Regular Expressions. As if
 all those weren’t enough, you can even define your own properties; see
 Chapter 6 for how to do that.
Among the most commonly used properties are the Unicode General
 Categories. Table 5-12 shows all seven
 one-character categories, including their long forms and
 meanings.
Table 5-12. Unicode General Categories (major)
	Short Property	Long Property	Meaning
	C	Other	Crazy control codes and
 such
	L	Letter	Letters and ideographs
	M	Mark	Combining marks
	N	Number	Numbers
	P	Punctuation	Punctuation marks
	S	Symbol	Symbols, signs, and
 sigils
	Z	Separator	Separators
 (Zeparators?)

Each of those seven is really an alias for all two-character
 General Categories that start with that letter. Table 5-13 gives the complete (and closed) set of
 all General Categories. All characters, even those currently unassigned,
 belong to exactly one of the following General Categories.
Table 5-13. Unicode General Categories (all)
	Short Name	Long Name	Meaning
	Cc	Control	The C0 and C1 control codes
 from ASCII and Latin-1
	Cf	Format	Invisible characters for fancy
 text
	Cn	Unassigned	Codepoints not yet assigned a
 character
	Co	Private Use	Make up your own meanings for
 these
	Cs	Surrogate	noncharacters reserved for
 UTF-16
	Ll	Lowercase_Letter	Minuscule letters
	Lm	Modifier_Letter	Superscript letters and spacing
 diacritics
	Lo	Other_Letter	Unicameral letters and
 ideographs
	Lt	Titlecase_Letter	Initial-only capitals, like the
 first word of a sentence
	Lu	Uppercase_Letter	Majuscule letters, capitals
 used in all-cap text
	Mc	Spacing_Mark	Little combining pieces that
 take up a print column
	Me	Enclosing_Mark	Combining marks that surround
 another character
	Mn	Nonspacing_Mark	Little combining pieces that
 don’t take up a print column
	Nd	Decimal_Number	A digit meaning 0–9 for use in
 bigendian base-10 numbers
	Nl	Letter_Number	Letters serving as numbers,
 like Roman numerals
	No	Other_Number	Any other sort of number, like
 fractions
	Pc	Connector_Punctuation	Joining punctuation like an
 underscore
	Pd	Dash_Punctuation	Any sort of dash or hyphen (but
 not minus)
	Pe	Close_Punctuation	Punctuation like closing
 brackets
	Pf	Final_Punctuation	Punctuation like right
 quotation marks
	Pi	Initial_Punctuation	Punctuation like left quotation
 marks
	Po	Other_Punctuation	All other punctuation
	Ps	Open_Punctuation	Punctuation like opening
 brackets
	Sc	Currency_Symbol	Symbols used with
 currency
	Sk	Modifier_Symbol	Mostly diacritics
	Sm	Math_Symbol	Symbols used with math
	So	Other_Symbol	All other symbols
	Zl	Line_Separator	Just U+2028
	Zp	Paragraph_Separator	Just U+2029
	Zs	Space_Separator	All other noncontrol
 whitespace

All standard Unicode properties are actually composed of two
 parts, as in \p{NAME=VALUE}.
 All one-part properties are therefore additions to official Unicode
 properties. Boolean properties whose values are true can always be
 abbreviated as one-part properties, which allows you to write \p{Lowercase} for \p{Lowercase=True}. Other types of properties
 besides Boolean properties take string, numeric, or enumerated values.
 Perl also provides one-part aliases for all general category, script,
 and block properties, plus the level-one recommendations from Unicode
 Technical Standard #18 on Regular Expressions (version 13, from
 2008-08), such as \p{Any}.
For example, \p{Armenian},
 \p{IsArmenian}, and \p{Script=Armenian} all represent the same
 property, as do \p{Lu}, \p{GC=Lu}, \p{Uppercase_Letter}, and \p{General_Category=Uppercase_Letter}. Other
 examples of binary properties (those whose values are implicitly true)
 include \p{Whitespace}, \p{Alphabetic}, \p{Math}, and \p{Dash}. Examples of properties that aren’t
 binary properties include \p{Bidi_Class=Right_to_Left}, \p{Word_Break=A_Letter}, and \p{Numeric_Value=10}. The perluniprops
 manpage lists all properties and their aliases that Perl supports, both
 standard Unicode properties and the Perl specials, too.
The result is undefined if you try to match a non-Unicode
 codepoint (that is, one above 0x10FFFF) against a Unicode property.
 Currently, a warning is raised by default and the match will fail. In
 some cases, this is counterintuitive, as both these fail:
chr(0x110000) =~ /\p{ahex=true}/ # false
chr(0x110000) =~ /\p{ahex=false}/ # false!

chr(0x110000) =~ /\P{ahex=true}/ # true
chr(0x110000) =~ /\P{ahex=false}/ # true!
User-defined properties can behave however they please, though.
 See the section Building Character in Chapter 6.

POSIX-Style Character Classes

Unlike Perl’s other character class shortcuts, the legacy POSIX-style character-class
 syntax notation, [:CLASS:], is
 available for use only when constructing other
 character classes—that is, inside an additional pair of square brackets.
 For example, /[.,[:alpha:][:digit:]]/
 will search for one character that is either a literal dot (because it’s
 in a bracketed character class), a comma, an alphabetic character, or a
 digit. All may be used as character properties of the same name; for
 example, [.,\p{alpha}\p{digit}].
Except for “punct”, explained
 immediately below, the POSIX character class names can be used as
 properties with \p{} or \P{} with the same meanings. This has two
 advantages: it is easier to type because you don’t need to surround them
 with extra brackets; and, perhaps more importantly, because as
 properties their definitions are no longer affected by charset
 modifiers—they always match as Unicode. In contrast, using the [[:...:]] notation, the POSIX classes
 are affected by modifier flags.
The \p{punct} property differs
 from the [[:punct:]] POSIX class in
 that \p{punct} never matches
 nonpunctuation, but [[:punct:]] (and
 \p{POSIX_Punct} and \p{X_POSIX_Punct}) will. This is because
 Unicode splits what POSIX considers punctuation into two categories:
 Punctuation and Symbols. Unlike \p{punct}, the others just mentioned also will
 match the characters shown in Table 5-14.
Table 5-14. ASCII symbols that count as punctuation
	Glyph	Code	Category	Script	Name
	$	U+0024	GC=Sc	SC=Common	dollar
 sign
	+	U+002B	GC=Sm	SC=Common	plus
 sign
	<	U+003C	GC=Sm	SC=Common	less-than sign
	=	U+003D	GC=Sm	SC=Common	equals
 sign
	>	U+003E	GC=Sm	SC=Common	greater-than sign
	^	U+005E	GC=Sk	SC=Common	circumflex accent
	`	U+0060	GC=Sk	SC=Common	grave
 accent
	|	U+007C	GC=Sm	SC=Common	vertical line
	~	U+007E	GC=Sm	SC=Common	tilde

Another way to think of it is that [[:punct:]] matches all characters that
 Unicode considers punctuation (unless Unicode rules are not in effect),
 plus those nine characters in the ASCII range that Unicode considers
 symbols.
The first column in Table 5-15 shows the
 POSIX classes available as of v5.14.
Table 5-15. POSIX character classes
	Class	Normal Meaning	With /a⁂
	alnum	Any alphanumeric character; that is, any alpha or digit. This includes many nonletters;
 see next entry. Equivalent to \p{X_POSIX_Alnum}.	Only [A–Za–z0–9]. Equivalent to \p{POSIX_Alnum}.⁂
	alpha	Any alphabetic character at all, including all letters
 plus any nonletter character with the property Other_Alphabetic, like Roman numerals,
 circled letter symbols, and the Greek combining iota mark.
 Equivalent to \p{X_POSIX_Alpha}.	Only the 52 ASCII characters
 [A–Za–z]. Equivalent to
 \p{POSIX_Alpha}.⁂
	ascii	Any character with an ordinal value of 0–127.
 Equivalent to \p{ASCII}.	Any character with an ordinal
 value of 0–127. Equivalent to \p{ASCII}.⁂
	blank	Any horizontal whitespace. Equivalent to \p{X_POSIX_Blank}, \p{HorizSpace}, or \h.	Only a space or a tab.
 Equivalent to \p{POSIX_Blank}.
	cntrl	Any character with the property Control. Usually characters that don’t
 produce output as such, but instead control the terminal
 somehow; for example, newline, form feed, and backspace are all
 control characters. This set currently includes any character
 with an ordinal value of 0–31, or 127–159. Equivalent to
 \p{X_POSIX_Cntrl}.	Any character with an ordinal
 value of 0–31, or 127. Equivalent to \p{POSIX_Cntrl}.
	digit	Any character with the Digit property. More formally,
 characters with the property Numeric_Type=Decimal occurring in
 contiguous ranges of 10 characters and whose ascending numeric
 values range from 0 to 9 (Numeric_Value=0..9). Equivalent to
 \p{X_POSIX_Digit} or \d.	The 10 characters “0” through “9”. Equivalent to \p{POSIX_Digit}, or \d under /a.
	graph	Any non-Whitespace character whose General
 Category is neither Control, Surrogate, nor Unassigned. Equivalent to \p{X_POSIX_Graph}.	The ASCII character set minus
 whitespace and control, so any character whose ordinal is
 33–126. Equivalent to \p{POSIX_Graph}.⁂
	lower	Any lowercase character, not necessarily letters only.
 Includes all codepoints of General Category Lowercase_Letter, plus those with the
 property Other_Lowercase.
 Equivalent to \p{X_POSIX_Lower} or \p{Lowercase}. Under /i, also matches any character with
 GC=LC, an abbreviation for
 any of GC=Lu, GC=Lt, and GC=Ll.	Only the 26 ASCII lowercase
 letters [a–z]. Under /i, also includes [A–Z]. Equivalent to \p{POSIX_Lower}.⁂
	print	Any graph or non-cntrl blank character. Equivalent to \p{X_POSIX_Print}.	Any graph or non-cntrl blank character. Equivalent to
 \p{POSIX_Print}.⁂
	punct	Any character whose General Category is Punctuation, plus those nine ASCII
 characters in the Symbol
 General Category. Equivalent to \p{X_POSIX_Punct} or \pP.	Any ASCII character whose
 General Category is either Punctuation or Symbol. Equivalent to
 \p{POSIX_Punct}.
	space	Any character with the Whitespace property, including tab,
 line feed, vertical tab, form feed, carriage return, space,
 nonbreaking space, next line, thin space, hair space, the
 Unicode paragraph separator, and a whole lot more. Equivalent to
 \p{X_POSIX_Space}, [\v\h], or [\s\cK]; \s alone is instead equivalent to
 \p{X_Perl_Space}, which is
 missing \cK, the vertical
 tab.	Any ASCII Whitespace character, so tab, line
 feed, vertical tab, form feed, carriage return, and space.
 Equivalent to \p{POSIX_Space}; \s alone is missing the vertical
 tab.
	upper	Any uppercase (but not titlecase) character, not necessarily
 letters only. Includes all codepoints of General Category
 Uppercase_Letter plus those
 with the property Other_Uppercase. Under /i, also includes any character
 sharing a casefold with any uppercase character. Equivalent to
 \p{X_POSIX_Upper} or \p{Uppercase}.	Only the 26 uppercase ASCII
 letters [A–Z]. Under /i, also includes [a–z]. Equivalent to \p{POSIX_Upper}.⁂
	word	Any character that is an alnum or whose General Category is
 Mark or Connector_Punctuation. Equivalent to
 \p{X_POSIX_Word} or \w. Note that Unicode identifiers,
 including Perl’s, follow their own rules: the first character
 has the ID_Start property,
 and subsequent characters have the ID_Continue property. (Perl also
 allows Connector_Punctuation
 at the start.)	Any ASCII letter, digit, or
 underscore. Equivalent to \p{POSIX_Word}, or to \w under /a.⁂
	xdigit	Any hexadecimal digit, either narrow ASCII characters
 or the corresponding full-width characters. Equivalent to
 \p{X_POSIX_XDigit}, \p{Hex_Digit}, or \p{hex}.	Any hexadecimal digit in the
 ASCII range. Equivalent to [0–9A–Fa–f], \p{POSIX_XDigit}, \p{ASCII_Hex_Digit}, or \p{ahex}.

Anything in the above table marked with
 ⁂ can also match certain non-ASCII characters
 under /ai. This presently
 means:
ſ U+017F GC=Ll SC=Latin LATIN SMALL LETTER LONG S
K U+212A GC=Lu SC=Latin KELVIN SIGN
because the first casefolds to a normal lowercase s, and the
 second to a normal lowercase k. You can suppress this by doubling the
 /a to make /aai.
You can negate the POSIX character classes by prefixing the class
 name with a ^ following the [:. (This is a Perl extension.) See Table 5-16.
Table 5-16. POSIX character classes and their Perl equivalents
	POSIX	Classic
	[:^digit:]	\D
	[:^space:]	\S
	[:^word:]	\W

The brackets are part of the POSIX-style [::] construct, not part of the whole
 character class. This leads to writing patterns like /^[[:lower:][:digit:]]+$/ to match a string
 consisting entirely of lowercase characters or digits (plus an optional
 trailing newline). In particular, this does not work:
42 =~ /^[:digit:]$/ # WRONG
That’s because it’s not inside a character class. Rather, it
 is a character class, the one representing the
 characters “:”, “i”, “t”,
 “g”, and “d”. Perl doesn’t care that you specified
 “:” twice.
Here’s what you need instead:
42 =~ /^[[:digit:]]+$/
The POSIX character classes [.cc.] and [=cc=] are recognized but produce an error
 indicating they are not supported.

Quantifiers

Unless you say otherwise, each item in a regular expression matches
 just once. With a pattern like /nop/,
 each of those characters must match, each right after the other. Words
 like “panoply” or “xenophobia” are fine, because
 where the match occurs doesn’t matter.
If you wanted to match both “xenophobia” and “Snoopy”, you couldn’t use the /nop/
 pattern, since that requires just one “o” between the “n” and the “p”, and Snoopy has two. This is where quantifiers come in handy: they say how
 many times something may match, instead of the default of matching just
 once. Quantifiers in a regular expression are like loops in a program; in
 fact, if you think of a regex as a program, then they
 are loops. Some loops are exact, like “repeat this
 match only five times” ({5}). Others
 give both lower and upper bounds on the match count, like “repeat this
 match at least twice but no more than four times” ({2,4}). Others have no closed upper bound at
 all, like “match this at least twice, but as many times as you’d like”
 ({2,}).
Table 5-17 shows the quantifiers that Perl
 recognizes in a pattern.
Table 5-17. Regex quantifiers compared
	Maximal	Minimal	Possessive	Allowed Range
	{MIN,MAX}	{MIN,MAX}?	{MIN,MAX}?+	Must occur at least
 MIN times but no more than
 MAX times
	{MIN,}	{MIN,}?	{MIN,}?+	Must occur at least
 MIN times
	{COUNT}	{COUNT}?	{COUNT}?+	Must match exactly
 COUNT times
	*	*?	*+	0 or more times (same as {0,})
	+	+?	++	1 or more times (same as {1,})
	?	??	?+	0 or 1 time (same as {0,1})

Something with a * or a ? doesn’t actually have to match. That’s because
 it can match 0 times and still be considered a success. A + may often be a better fit, since it has to be
 there at least once.
Don’t be confused by the use of “exactly” in the previous table. It
 refers only to the repeat count, not the overall string. For example,
 $n =~ /\d{3}/ doesn’t say “is this
 string exactly three digits long?” It asks whether there’s any point
 within $n at which three digits occur
 in a row. Strings like “101 Morris
 Street” test true, but so do strings like “95472” or “1–800–555–1212”. All
 contain three digits at one or more points, which is all you asked
 about. See the section “Positions” later in this chapter for how to use
 positional assertions (as in /^\d{3}$/)
 to nail this down.
Given the opportunity to match something a variable number of times,
 maximal quantifiers will elect to maximize the repeat count. So when we
 say “as many times as you’d like”, the greedy quantifier interprets this
 to mean “as many times as you can possibly get away with”, constrained
 only by the requirement that this not cause specifications later in the
 match to fail. If a pattern contains two open-ended quantifiers, then
 obviously both cannot consume the entire string: characters used by one
 part of the match are no longer available to a later part. Each quantifier
 is greedy at the expense of those that follow it, reading the pattern left
 to right.
That’s the traditional behavior of quantifiers in regular
 expressions. However, Perl permits you to reform the behavior of its
 quantifiers: by placing a ? after that
 quantifier, you change it from maximal to minimal. That doesn’t mean that
 a minimal quantifier will always match the smallest number of repetitions
 allowed by its range any more than a maximal quantifier must always match
 the greatest number allowed in its range. The overall match must still
 succeed, and the minimal match will take as much as it needs to succeed,
 and no more. (Minimal quantifiers value contentment over greed.)
For example, in the match:
"exasperate" =~ /e(.*)e/ # $1 now "xasperat"
the .* matches “xasperat”, the longest possible string for it to
 match. (It also stores that value in $1, as described in the section Grouping and Capturing, later in the chapter.) Although a shorter match
 was available, a greedy match doesn’t care. Given two choices at the same
 starting point, it always returns the longer of the
 two.
Contrast this with this:
"exasperate" =~ /e(.*?)e/ # $1 now "xasp"
Here, the minimal matching version, .*?, is used. Adding the ? to * makes
 *? take on the opposite behavior: now
 given two choices at the same starting point, it always returns the
 shorter of the two.
Although you could read *? as
 saying to match zero or more of something but preferring zero, that
 doesn’t mean it will always match zero characters. If it did so here, for
 example, and left $1 set to "", then the second “e” wouldn’t be found, since it doesn’t
 immediately follow the first one.
You might also wonder why, in minimally matching /e(.*?)e/, Perl didn’t stick “rat” into $1.
 After all, “rat” also falls between two
 es, and it is shorter than “xasp”. In Perl, the minimal/maximal choice
 applies only when selecting the shortest or longest from among several
 matches that all have the same starting point. If two possible matches
 exist, but these start at different offsets in the string, then their
 lengths don’t matter—nor does it matter whether you’ve used a minimal
 quantifier or a maximal one. The earliest of several valid matches always
 wins out over all latecomers. It’s only when multiple possible matches
 start at the same point that you use minimal or maximal matching to break
 the tie. If the starting points differ, there’s no tie to break. Perl’s
 matching is normally leftmost
 longest; with minimal matching, it becomes leftmost
 shortest. But the “leftmost” part never varies and is the
 dominant criterion.[96]
There are two ways to defeat the leftward leanings of the pattern
 matcher. First, you can use an earlier greedy quantifier (typically
 .*) to try to slurp earlier parts of
 the string. In searching for a match for a greedy quantifier, it tries for
 the longest match first, which effectively searches the rest of the string
 right to left:
"exasperate" =~ /.*e(.*?)e/ # $1 now "rat"
But be careful with that, since the overall match now includes the
 entire string up to that point.
The second way to defeat leftmostness is to use positional
 assertions, discussed in the next section.
Just as you can change any maximal quantifier to a minimal one by
 adding a ? afterwards, you can also
 change any maximal quantifier to a possessive one by adding a + afterwards. Possessive matches are a way to
 control backtracking. Both minimal and maximal quantifiers always try all
 possible combinations looking for a match. A possessive quantifier will
 never be backtracked into trying to find another possibility, which can
 improve performance tremendously.
This isn’t often a problem with simple matches, but as soon as you
 have multiple and especially nested quantifiers, it can matter a great
 deal. It won’t usually change the overall success of a match, but it can
 make it fail much, much faster. For example:
("a" x 20 . "b") =~ /(a*a*a*a*a*a*a*a*a*a*a*a*)*[^Bb]$/
will fail—eventually. The regex engine is hard at work, futilely
 trying all possible combinations of allocating as to star groups. It doesn’t realize it’s
 doomed to fail. By changing one or more of those variable * quantifiers to an invariant *+ quantifier, you can make it fail a lot
 faster. In this case, changing the last, other star from maximal to
 possessive gains a couple orders of magnitude in performance, which is
 nothing to laugh at.
Sure, this is a contrived example, but when building complex
 patterns, this sort of thing can crop up before you know. It turns out
 that possessive quantifiers work exactly like the nonbacktracking groups
 we’ll meet later. The possessive match a*+ is the same as (?>a*). Possessive groups are a bit more
 flexible than possessive quantifiers, because you can group together more
 things as a unit that will be invisible to backtracking. But possessive
 quantifiers are a lot easier to type, and they are often all you need to
 avoid catastrophic backtracking.

[96] Not all regex engines work this way. Some believe in overall
 greed, in which the longest match always wins, even if it shows up
 later. Perl isn’t that way. You might say that eagerness holds
 priority over greed (or thrift). For a more formal discussion of this
 principle and many others, see the section The Little Engine That /Could(n’t)?/.

Positions

Some regex constructs represent positions in the
 string to be matched, which is a location just to the left or right of a
 real character. These metasymbols are examples of zero-width
 assertions because they do not correspond to actual characters in the
 string. We often just call them “assertions”. (They’re also known as
 “anchors” because they tie some part of the pattern to a particular
 position, while the rest of the pattern is free to drift with the
 tide.)
You can always manipulate positions in a string without using
 patterns. The built-in substr function
 lets you extract and assign to substrings, measured from the
 beginning of the string, the end of the string, or from a particular
 numeric offset. This might be all you need if you were working with
 fixed-length records, for instance. Patterns are only necessary when a
 numeric offset isn’t sufficient. But, most of the time, substr isn’t sufficient—or at least not
 sufficiently convenient, compared to patterns.

Beginnings: The \A and ^ Assertions

The \A assertion matches only at the beginning of the string, no matter
 what. In contrast, though, the ^
 assertion always matches at the beginning of string; it can also match
 with the more traditional meaning of beginning of line: if the pattern
 uses the /m modifier and the string
 has embedded newlines, ^ also matches
 anywhere inside the string immediately following a newline
 character:
/\Abar/ # Matches "bar" and "barstool"
/^bar/ # Matches "bar" and "barstool"
/^bar/m # Matches "bar" and "barstool" and "sand\nbar"
Used in conjunction with /g,
 the /m modifier lets ^ match many times in the same string:
s/^\s+//gm; # Trim leading whitespace on each line
$total++ while /^./mg; # Count nonblank lines

Endings: The \z, \Z, and $ Assertions

The \z metasymbol matches at the end of the string, no matter what’s inside.
 \Z matches right before the newline
 at the end of the string if there is a newline, or at the end if there
 isn’t. The $ metacharacter usually
 means the same as \Z. However, if the
 /m modifier was specified and the
 string has embedded newlines, then $
 can also match anywhere inside the string right in front of a
 newline:
/bot\z/ # Matches "robot"
/bot\Z/ # Matches "robot" and "abbot\n"
/bot$/ # Matches "robot" and "abbot\n"
/bot$/m # Matches "robot" and "abbot\n" and "robot\nrules"

/^robot$/ # Matches "robot" and "robot\n"
/^robot$/m # Matches "robot" and "robot\n" and "this\nrobot\n"
/\Arobot\Z/ # Matches "robot" and "robot\n"
/\Arobot\z/ # Matches only "robot" — but why didn’t you use eq?
As with ^, the /m modifier lets $ match many times in the same string when
 used with /g. (These examples assume
 that you’ve read a multiline record into $_, perhaps by setting $/ to ""
 before reading.)
s/\s*$//gm; # Trim trailing whitespace on each line in paragraph

while (/^([^:]+):\s*(.*)/gm) { # get mail header
 $headers{$1} = $2;
}
In Variable Interpolation, later in this chapter, we’ll
 discuss how you can interpolate variables into patterns: if $foo is “bc”, then /a$foo/ is equivalent to /abc/. Here, the $ does not match the end of the string. For a
 $ to match the end of the string, it
 must be at the end of the pattern or be immediately followed by a
 vertical bar or closing parenthesis.

Boundaries: The \b and \B Assertions

The \b assertion matches at any
 word boundary, defined as the position between a \w character and a \W character, in either order. If the order is
 \W\w, it’s a beginning-of-word
 boundary, and if the order is \w\W,
 it’s an end-of-word boundary. (The ends of the string count as \W characters here.) The \B assertion matches any position that is
 not a word boundary—that is, the middle of either
 \w\w or \W\W.
/\bis\b/ # matches "what it is" and "that is it"
/\Bis\B/ # matches "thistle" and "artist"
/\bis\B/ # matches "istanbul" and "so—isn't that butter?"
/\Bis\b/ # matches "confutatis" and "metropolis near you"
Because \W includes all
 punctuation characters (except the underscore), there are \b boundaries in the middle of strings like
 “isn't”, “booktech@oreilly.com”, “M.I.T.”, and “key/value”.
Inside a bracketed character class ([\b]), a \b
 represents a backspace rather than a word boundary.

Progressive Matching

When used with the /g modifier, the
 pos function allows you to read or
 set the offset where the next progressive match will start:
$burglar = "Bilbo Baggins";
while ($burglar =~ /b/gi) {
 printf "Found a B at %d\n", pos($burglar)–1;
}
(We subtract one from the position because that was the length of
 the string we were looking for, and pos is always the position just past the
 match.)
The code above prints:
Found a B at 0
Found a B at 3
Found a B at 6
After a failure, the match position normally resets back to the
 start. If you also apply the /c (for
 “continue”) modifier, then when the /g runs out, the failed match doesn’t reset
 the position pointer. This lets you continue your search past that point
 without starting over at the very beginning.
$burglar = "Bilbo Baggins";
while ($burglar =~ /b/gci) { # ADD /c
 printf "Found a B at %d\n", pos($burglar)–1;
}
while ($burglar =~ /i/gi) {
 printf "Found an I at %d\n", pos($burglar)–1;
}
Besides the three Bs it found
 earlier, Perl now reports finding an i at position 10. Without the /c, the second loop’s match would have
 restarted from the beginning and found another i at position 1 first.

Where You Left Off: The \G Assertion

Whenever you start thinking in terms of the pos function, it’s tempting to start carving
 your string up with substr, but this
 is rarely the right thing to do. More often, if you started with pattern
 matching, you should continue with pattern matching. However, if you’re
 looking for a positional assertion, you’re probably looking for \G.
The \G assertion represents
 within the pattern the same point that pos represents outside of it. When you’re
 progressively matching a string with the /g modifier (or you’ve used the pos function to directly select the starting
 point), you can use \G to specify the
 position just after the previous match. That is, it matches the location
 immediately before whatever character would be identified by pos. This allows you to remember where you
 left off:
($recipe = <<'DISH') =~ s/^\s+//gm;
 Preheat oven to 451 deg. Fahrenheit.
 Mix 1 ml. dilithium with 3 oz. NaCl and
 stir in 4 anchovies. Glaze with 1 g.
 mercury. Heat for 4 hours and let cool
 for 3 seconds. Serves 10 aliens.
DISH

$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "deg"
$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "ml"
$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "oz"
The \G metasymbol is often used
 in a loop, as we demonstrate in our next example. We “pause” after every
 digit sequence, and, at that position, we test whether there’s an
 abbreviation. If so, we grab the next two words. Otherwise, we just grab
 the next word:
pos($recipe) = 0; # Just to be safe, reset \G to 0
while ($recipe =~ /(\d+) /g) {
 my $amount = $1;
 if ($recipe =~ / \G (\w{0,3}) \. \s+ (\w+) /x) { # abbrev. + word
 say "$amount $1 of $2";
 } else {
 $recipe =~ / \G (\w+) /x; # just a word
 say "$amount $1";
 }
}
That produces:
451 deg of Fahrenheit
1 ml of dilithium
3 oz of NaCl
4 anchovies
1 g of mercury
4 hours
3 seconds
10 aliens

Grouping and Capturing

Patterns allow you to group portions of your pattern together into
 subpatterns and to remember the strings matched by those subpatterns. We
 call the first behavior grouping and the second one capturing. It is also possible to group
 without capturing. More on that later.

Capturing

To capture a substring for later use, put parentheses around the
 subpattern that matches it. The first pair of parentheses stores its
 substring in $1, the second pair in
 $2, and so on. You may use as many
 parentheses as you like; Perl just keeps defining more numbered
 variables for you to represent these captured strings.
Some examples:
/(\d)(\d)/ # Match two digits, capturing them into $1 and $2
/(\d+)/ # Match one or more digits, capturing them all into $1
/(\d)+/ # Match a digit one or more times, capturing the last into $1
Note the difference between the second and third patterns. The
 second form is usually what you want. The third form does
 not create multiple variables for multiple digits.
 Parentheses are numbered when the pattern is compiled, not when it is
 matched.
Captured strings are often called group references because they refer
 back to parts of the captured text. Historical pattern-matching engines
 restricted group references to backreferences only, but Perl allows
 references to any group, whether back, forward, or the one you’re in the
 middle of solving.
There are actually two ways to get at these capture groups.
 The numbered variables you’ve seen are how you get at
 backreferences outside of a pattern, but that doesn’t work inside the
 pattern. You have to use backreference notation, so either \1, \2,
 \g{1}, \g{2}, \k<some_group>, \k<other_group>, etc.
You can’t use $1 for a group
 reference within the pattern because that would already have been
 interpolated as an ordinary variable back when the regex was compiled.
 So we use the traditional \1 group
 reference notation inside patterns. For two- and three-digit
 backreference numbers, there is some ambiguity with octal character
 notation, but that is neatly solved by considering how many captured
 patterns are available. For instance, if Perl sees a \11 metasymbol, it’s equivalent to $11 only if there are at least 11 substrings
 captured earlier in the pattern. Otherwise, it’s equivalent to \011—that is, a tab character. To avoid this
 ambiguity, refer to a capture group by its number using \g{NUMBER}, and to
 an octal character by number using \o{OCTNUM}. So
 \g{11} is always the
 11th capture group, and \o{11} is always the character whose codepoint
 is octal 11. An even better idea than racking up 11 capture groups is to
 use named groups, described below.
So to find doubled words like “the
 the” or “had had”, you
 might use this pattern:
/\b(\w+) \1\b/i
But most often you’ll be using the $1 form, because you’ll usually apply a
 pattern and then do something with the substrings. Suppose you have some
 text (a mail header) that looks like this:
From: gnat@perl.com
To: camelot@oreilly.com
Date: Mon, 17 Jul 2011 09:00:00 –1000
Subject: Eye of the needle
and you want to construct a hash that maps the text before each
 colon to the text afterward. If you were looping through this text line
 by line (say, because you were reading it from a file), you could do
 that as follows:
while (<>) {
 /^(.*?): (.*)$/; # Pre–colon text into $1, post–colon into $2
 $fields{$1} = $2;
}
Like $`, $&, and $', these numbered variables are dynamically
 scoped through the end of the enclosing block or eval string, or to the next successful pattern
 match, whichever comes first. You can use them in the righthand side
 (the replacement part) of a substitute, too:
s/^(\S+) (\S+)/$2 $1/; # Swap first two words
Groupings can nest and, when they do, the groupings are counted by
 the location of the left parenthesis. So given the string “Primula
 Brandybuck”, the pattern:
/^((\w+) (\w+))$/
would capture “Primula
 Brandybuck” into $1,
 “Primula” into $2, and “Brandybuck” into $3. This is depicted in Figure 5-1.
[image: Creating group references with parentheses]

Figure 5-1. Creating group references with parentheses

As we mentioned earlier, not all group references need to be
 backreferences. You are allowed to refer to any group the pattern knows
 about, even if you haven’t quite gotten around to filling it out yet.
 This is only useful if you’re in some repetition where you’ll revisit
 the same group ref again. The first time you encounter these non-backref
 group references, they fail because they haven’t happened yet. But by
 the time the later visit happens, that group has something more
 interesting in it.
Here are the three types of references to capture groups. The
 first is a traditional backreference, because it has already been
 completed by the time it is first needed:
"foofoobar" =~ /^(foo)\1bar$/ # backref
This, though, is a forward reference:
"foofoobar" =~ /^((\3bar)|(foo))+$/ # forwref
We haven’t even begun the third group the first time through the
 + quantifier’s repetitions, so
 \3 fails and we skip to the other
 alternative, which fills in the third group with the string’s first
 “foo”. On the next repetition of the
 + quantifier, \3 contains “foo”, and we finish up with bar and we’re
 done.
This third example is neither a backreference nor a forward
 reference, because it’s within the very group it’s referring to, making
 it something of a circumref:
"foofoobar" =~ /^(\1bar|(foo))+/ # circumref
Patterns with captures are often used in list context to populate
 a list of values, since the pattern is smart enough to return the
 captured substrings as a list:
($first, $last) = /^(\w+) (\w+)$/;
($full, $first, $last) = /^((\w+) (\w+))$/;
With the /g modifier, a pattern
 can return multiple substrings from multiple matches, all in one list.
 Suppose you had the mail header we saw earlier all in one string (in
 $_, say). You could do the same thing
 as our line-by-line loop, but with one statement:
%fields = /^(.*?): (.*)$/gm;
The pattern matches four times; each time it matches, it finds two
 substrings. The /gm match returns all
 of these as a flat list of eight strings, which the list assignment to
 %fields will conveniently interpret
 as four key/value pairs, thus restoring harmony to the universe.
Several other special variables deal with text captured in pattern
 matches. $& contains the entire
 matched string, $` everything to the
 left of the match, $' everything to
 the right. $+ contains the contents
 of the last capture group.
$_ = "Speak, friend, and enter.";
m[(<.*?>) (.*?) (</.*?>)]x; # A tag, then chars, then an end tag
say "prematch: $`"; # Speak,
say "match: $&"; # friend
say "postmatch: $'"; # , and enter.
say "lastmatch: $+"; #
For more explanation of these magical Elvish variables (and for a
 way to write them in English), see Chapter 25.
The @– (@LAST_MATCH_START) array holds the offsets of
 the beginnings of any submatches, and @+ (@LAST_MATCH_END) holds the offsets of the
 ends:
#!/usr/bin/perl
use feature "say";
$alphabet = "abcdefghijklmnopqrstuvwxyz";
$alphabet =~ /(hi).*(stu)/;

say "The entire match began at $–[0] and ended at $+[0]";
say "The first match began at $–[1] and ended at $+[1]";
say "The second match began at $–[2] and ended at $+[2]";
If you really want to match a literal parenthesis character
 instead of having it interpreted as a metacharacter, backslash
 it:
/\(e.g., .*?\)/
This matches a parenthesized example (e.g.,
 this statement). But since dot is a wildcard, this also matches any
 parenthetical statement with the first letter e and third letter g (ergo, this statement, too).
Numbered capture groups are inherently fragile. Imagine you use
 something like this to match a sequence of duplicated words:
$dupword = qr/ \b (\w+) (?: \s+ \1)+ \b /xi;
If you embed that in a larger pattern that itself has capture
 groups earlier than where your duplicate word pattern appears, then that
 \1 will be wrong. For example, this
 won’t work:
$quoted = qr{ (["']) $dupword \1 }x;
because $dupword
 should be using \2 there if it’s going to wind up embedded in
 $quoted. But you can’t do that
 because while $dupword is being
 compiled, there’s not yet a second capture group to
 refer back to, so it won’t even compile.
A solution that works in this situation is to use relatively
 numbered capture groups. To access them, you need to use the \g{NUMBER}
 notation, which is a numbered reference that refers to capture group
 NUMBER. When
 NUMBER is positive, it’s the same as \NUMBER. But when
 NUMBER is negative, it’s that many previous
 capture groups earlier. So \g{–1} is
 the last capture group, \g{–2} is the
 second to the last one, etc.
A better definition then for the duplicate-word pattern, defined
 in a way that allows it to be more freely embedded in a larger pattern,
 is:
$dupword = qr/ \b (?: (\w+) (?: \s+ \g{–1})+) \b /xi;
Here’s a simple program for finding duplicate word sequences
 paragraph by paragraph in the input stream:
#!/usr/bin/env perl
use v5.14;

my $dupword = qr{ \b (\w+) (?: \s+ \g{-1})+ \b }xi;
my $quoted = qr{ (["']) $dupword \1 }x;
$/ = q(); # cross paragraphs

while (<>) {
 while (/$quoted/pg) {
 printf "%s %d: %s\n", $ARGV, $., ${^MATCH};
 }
} continue {
 close ARGV if eof;
}
Although that program works fine by itself, there’s still a
 serious issue. If $quoted is used in
 a still larger pattern, its use of \1
 will become wrong. Yet it can’t know how many to count back, because it
 shouldn’t have to know how many the unrelated pattern in $dupword has used.
Named capture groups

The only way to resolve the last conundrum requires a new strategy, one
 that doesn’t use numbered capture groups at all. For this (and much
 more) were named capture groups invented. To declare a named capture
 group inside your pattern, use (?<NAME>...).
 This is still a capture group just like a regular parenthesized
 grouping, but its name is NAME.
Or, rather, its name is also
 NAME, because a named capture group is
 still a numbered one, too, just as though it sat in the same spot but
 without a name. This is the same way that named groups behave with
 respect to numbered ones in the most commonly used regular expression
 libraries for Java and Python. However, it’s different from how named
 groups work in the .NET Framework like C♯, where named captures are
 assigned numbers only after all numbered groups. (And in that other
 weird language Perl 6, a capture is given a number for its name
 only if it has no other name. Go figure.)
To refer back to a named capture group in the same pattern, the
 way you used to use \1 or \g{1} with numbered groups, use \k<NAME>.
 We can now address the somewhat problematic definition with $quoted in the previous problem to enable
 its use in larger patterns:
$quoted = qr{ (?<quote> ["']) $dupword \k<quote> }x;
That’s fine for within the pattern, but just as group \1 during pattern matching is accessible as
 $1 afterwards, you will sometimes
 want to access named capture groups’ contents after the pattern has
 run. That’s what the built-in hash variable %+ is for. Its keys are whatever names
 you’ve given your capture groups, and the values are what those groups
 have captured. So given the previous definition of $quoted and of $dupword, you could pull out all the quoted
 duplicate word sequences this way:
say $+{quote} while /$quoted/g;
Here’s another example:
$word = "bookkeeper";
$word =~ s/ (?<letter> \p{alpha}) \k<letter> /$+{letter}/gix;
$word is now "bokeper"
(We used the /x modifier just
 so we could put some whitespace into the pattern to make it easier to
 read. Nobodylikesreadingthiskindofthing.)
If you happen to have more than one group by the same
 NAME in the same pattern, then %+ holds only the first string captured, but
 each entry in the %– hash holds a
 reference to an array of them. Given several groups of the same
 NAME, use @{$–{NAME}} for
 all of them, $–{NAME}[0] for
 the first, $–{NAME}[1] for
 the next, and so on, up to $–{NAME}[–1] for
 the last one.
Imagine you wanted to match either a name then a number, or a
 number then a name. If you had used numbered capture groups, you would
 have a problem knowing which was which:
/ (\d+) \s+ (\pL+) | (\pL+) \s+ (\d+) /x
Because now you don’t know which branch was taken, you don’t
 know whether to grab $1 and
 $2 or $3 and $4. Here’s where the (?|...) branch-reset construct comes in
 handy:
m{
 (?| (\d+) \s+ (\pL+) # these are $1 and $2
 | (\pL+) \s+ (\d+) # and so is this pair!
)
}x
At each alternative, group numbers reset back to whatever they
 were when the branch-reset was entered. This way, no matter which half
 matches, you know the data is in $1
 and $2.
That’s okay for simpler patterns, but using named capture groups
 will work out better in the long run, and for more complex patterns.
 By giving them names like this:
m{
 (?<name> \pL+) \s+ (?<number> \d+)
 |
 (?<number> \d+) \s+ (?<name> \pL+)
}x
it now doesn’t matter which branch of the alternation was taken.
 Access the contents of the match groups after the match like
 so:
$+{name}
$+{number}
However, without the alternation, both captures will be loaded
 twice:
m{
 (?<name> \pL+) \s+ (?<number> \d+)
 \W+
 (?<number> \d+) \s+ (?<name> \pL+)
}x
So, if the pattern matches, there will be two values each for
 both the <name> and <number> groups. When you have the
 same named group loaded more than once, the previous contents in the
 %+ variable are not overwritten;
 only the first one counts. However, the %– variable holds an array of values for
 each name in the hash, so this time new contents are pushed onto the
 end of the anonymous array associated with the named key.
Because the values in %– are
 array references not strings the way they are in %+, you could get at the entire set of
 matches like this:
@{ $–{name} }
@{ $–{number} }
or at individual scalars like this:
$–{name}[0]
$–{name}[1]
$–{number}[0]
$–{number}[1]
Which makes $+{name} the same
 as $–{name}[0].
Speaking of which, if you don’t much like having variables whose
 names are single punctuation marks, the standard Tie::Hash::NamedCapture module lets you use whatever name you’d like for these
 two built-in hashes. Pass an extra argument of all => 1 if you want the version that
 acts like the %– variable;
 otherwise, the tied hash acts like the %+ variable.
use Tie::Hash::NamedCapture;
tie my %first_captured, "Tie::Hash::NamedCapture";
tie my %all_captured, "Tie::Hash::NamedCapture", all => 1;
Now access your named captures through those variables, just as
 you did with %+ and %−, but using your own names.
$first_captured{name}
$first_captured{number}

@{ $all_captured{name} }
@{ $all_captured{number} }

$all_captured{name}[0]
$all_captured{name}[1]
$all_captured{number}[0]
$all_captured{number}[1]
These uses of named captures should already have you convinced
 to prefer them over numbered groups in all but the simplest of
 patterns (and some would say even then). But named captures really
 start to shine when you write recursive patterns and grammars,
 described in the upcoming section Fancy Patterns.

Grouping Without Capturing

Bare parentheses both group and capture. But sometimes you
 don’t want that. Sometimes you just want to group portions of the
 pattern without capturing the string for later use. An extended form of
 parentheses, the (?:PATTERN)
 notation, will do that.
There are at least three reasons you might want to group without
 capturing:
	To quantify something.

	To limit the scope of interior alternation; for example,
 /^cat|cow|dog$/ needs to be
 /^(?:cat|cow|dog)$/ so that the
 cat doesn’t run away with the ^.

	To limit the scope of an embedded pattern modifier to a
 particular subpattern, such as in /foo(?–i:Case_Matters)bar/i. (See the next
 section, Scoped Pattern Modifiers.)

In addition, it’s more efficient to suppress the capture of
 something you’re not going to use. On the minus side, the notation is a
 little noisier, visually speaking.
In a pattern, a left parenthesis immediately followed by a
 question mark denotes a regex extension. The
 current regular expression bestiary is relatively fixed—we don’t dare
 create a new metacharacter for fear of breaking old Perl programs.
 Instead, the extension syntax is used to add new features to the
 bestiary.
In the remainder of this chapter we’ll see many more regex
 extensions, all of which group without capturing, as well as doing
 something else. The (?:PATTERN)
 extension is just special in that it does nothing else. So if you
 say:
@fields = split(/\b(?:a|b|c)\b/)
it’s like:
@fields = split(/\b(a|b|c)\b/)
but doesn’t spit out extra fields. (The split operator is a bit like m//g in that it will emit extra fields for all
 the captured substrings within the pattern. Ordinarily, split only returns what it
 didn’t match. For more on split, see Chapter 27.)

Scoped Pattern Modifiers

You may lexically
 scope the /i, /m, /s,
 /x, /d, /u,
 /a, /l, and /p
 modifiers within a portion of your pattern by inserting them (without
 the slash) between the ? and : of the grouping notation. If you say:
/Harry (?i:s) Truman/
it matches both “Harry S
 Truman” and “Harry s
 Truman”, whereas:
/Harry (?x: [A–Z] \.? \s)?Truman/
matches both “Harry S Truman”
 and “Harry S. Truman”, as well as
 “Harry Truman”; and:
/Harry (?ix: [A–Z] \.? \s)?Truman/
matches all five, by combining the /i and /x
 within the group.
You can also subtract modifiers from a scope with a minus
 sign:
/Harry (?x–i: [A–Z] \.? \s)?Truman/i
This matches any capitalization of the name—but if the middle
 initial is provided, it must be capitalized, since the /i applied to the overall pattern is suspended
 inside the scope.
When subtracting, you may only subtract /i, /m,
 /s, or /x. The /d, /u, /a,
 /l, and /p modifiers may only be added.
By omitting both colon and PATTERN, you
 can export modifier settings to an outer group, turning it into a scope.
 That is, you can selectively turn modifiers on and off for the grouping
 construct one level outside the modifiers’ parentheses, like so:
/(?i)foo/ # Equivalent to /foo/i
/foo((?–i)bar)/i # "bar" must be lower case
/foo((?x–i)bar)/ # Enables /x and disables /i for "bar"
Note that the second and third examples create capture groups. If
 that wasn’t what you wanted, then you should have been using (?–i:bar) and (?x–i:bar), respectively.
Setting modifiers on a portion of your pattern is particularly
 useful when you want “.” to match
 newlines in part of your pattern but not in the rest of it. Setting
 /s on the whole pattern doesn’t help
 you there (unless you use \N to match
 non-newlines).

Alternation

Inside a pattern or subpattern, use the | metacharacter to specify a set of
 possibilities, any one of which could match. For instance:
/Gandalf|Saruman|Radagast/
matches Gandalf or Saruman or Radagast. The alternation extends only as far as
 the innermost enclosing parentheses (whether capturing or not):
/prob|n|r|l|ate/ # Match prob, n, r, l, or ate
/pro(b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate
/pro(?:b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate
The second and third forms match the same strings, but the second
 form captures the variant character in $1 and the third form does not.
At any given position, the Engine tries to match the first
 alternative, and then the second, and so on. The relative length of the
 alternatives does not matter, which means that in this pattern:
/(Sam|Samwise)/
$1 will never be set to Samwise, no matter what string it’s matched
 against, because Sam will always match
 first. When you have overlapping matches like this, put the longer ones at
 the beginning.
But the ordering of the alternatives only matters at a given
 position. The outer loop of the Engine does left-to-right matching, so the
 following always matches the first Sam:
"'Sam I am,' said Samwise" =~ /(Samwise|Sam)/; # $1 eq "Sam"
To force right-to-left scanning, use greedy quantifiers:
"'Sam I am,' said Samwise" =~ /.*(Samwise|Sam)/; # $1 eq "Samwise"
You can defeat left-to-right (or right-to-left) matching by
 including any of the various positional assertions we saw earlier, such as
 \G, ^, and $.
 Here we anchor the pattern to the end of the string:
"'Sam I am,' said Samwise" =~ /(Samwise|Sam)$/; # $1 eq "Samwise"
Notice how we’ve factored the $
 out of the alternation (since we already had a handy pair of parentheses
 to put it after), but in the absence of such parentheses, you could also
 distribute the assertions to any or all of the individual alternatives,
 depending on how you want them to match. This little program displays
 lines that begin with either a _ _DATA_ _ or _ _END_ _ token:
#!/usr/bin/perl
while (<>) {
 print if /^_ _DATA_ _|^_ _END_ _/;
}
But be careful with that. Remember that the first and last
 alternatives (before the first | and
 after the last one) tend to gobble up the other elements of the regular
 expression on either side, out to the ends of the expression, unless there
 are enclosing parentheses. A common mistake is to ask for:
/^cat|dog|cow$/
when you really mean:
/^(cat|dog|cow)$/
The first matches “cat” at the
 beginning of the string, or “dog”
 anywhere, or “cow” at the end of the
 string. The second matches any string consisting solely of “cat” or “dog”
 or “cow”. It also captures $1, which you may not want. Suppress that with
 one of:
/^cat$|^dog$|^cow$/
/^(?:cat|dog|cow)$/
An alternative can be empty, in which case it always matches.
/com(pound|)/; # Matches "compound" or "com"
/com(pound(s|)|)/; # Matches "compounds", "compound", or "com"
This is much like using the ?
 quantifier, which matches 0 times or 1 time:
/com(pound)?/; # Matches "compound" or "com"
/com(pound(s?))?/; # Matches "compounds", "compound", or "com"
/com(pounds?)?/; # Same, but doesn't use $2
There is one difference, though. When you apply the ? to a subpattern that captures into a numbered
 variable, that variable will be undefined if there’s no string to go
 there. If you used an empty alternative, it would still be false, but it
 would be a defined null string instead.

Staying in Control

As any good manager knows, you shouldn’t micromanage your
 employees. Just tell them what you want, and let them figure out the best
 way of doing it. Similarly, it’s often best to think of a regular
 expression as a kind of specification: “Here’s what I want; go find a
 string that fits the bill.”
On the other hand, the best managers also understand the job their
 employees are trying to do. The same is true of pattern matching in Perl.
 The more thoroughly you understand how Perl goes about the task of
 matching any particular pattern, the more wisely you’ll be able to make
 use of Perl’s pattern-matching capabilities.
One of the most important things to understand about Perl’s pattern
 matching is when not to use it.

Letting Perl Do the Work

When people of a certain temperament first learn regular
 expressions, they’re often tempted to see everything as a problem in
 pattern matching. And while that may even be true in the larger sense,
 pattern matching is about more than just evaluating regular expressions.
 It’s partly about looking for your car keys where you dropped them, not
 just under the streetlamp where you can see better. In real life, we all
 know that it’s a lot more efficient to look in the right places than the
 wrong ones.
Similarly, you should use Perl’s control flow to decide which
 patterns to execute and which ones to skip. A regular expression is
 pretty smart, but it’s smart like a horse. It can get distracted if it
 sees too much at once. So sometimes you have to put blinders onto it.
 For example, you’ll recall our earlier example of alternation:
/Gandalf|Saruman|Radagast/
That works as advertised, but not as well as it might, because it
 searches every position in the string for every name before it moves on
 to the next position. Astute readers of The Lord of the
 Rings will recall that, of the three wizards named above,
 Gandalf is mentioned much more frequently than Saruman, and Saruman is
 mentioned much more frequently than Radagast. So it’s generally more
 efficient to use Perl’s logical operators to do the alternation:
/Gandalf/ || /Saruman/ || /Radagast/
This is yet another way of defeating the “leftmost” policy of the
 Engine. It only searches for Saruman
 if Gandalf is nowhere to be seen. And
 it only searches for Radagast if
 Saruman is also absent.
Not only does this change the order in which things are searched,
 it sometimes allows the regular expression optimizer to work better.
 It’s generally easier to optimize searching for a single string than for
 several strings simultaneously. Similarly, anchored searches can often
 be optimized if they’re not too complicated.
You don’t have to limit your control of the control flow to the
 || operator. Often you can control
 things at the statement level. You should always think about weeding out
 the common cases first. Suppose you’re writing a loop to process a
 configuration file. Many configuration files are mostly comments. It’s
 often best to discard comments and blank lines early before doing any
 heavy-duty processing, even if the heavy-duty processing would throw out
 the comments and blank lines in the course of things:
while (<CONF>) {
 next if /^#/;
 next if /^\s*(#|$)/;
 chomp;
 munchabunch($_);
}
Even if you’re not trying to be efficient, you often need to
 alternate ordinary Perl expressions with regular expressions simply
 because you want to take some action that is not possible (or very
 difficult) from within the regular expression, such as printing things
 out. Here’s a useful number classifier:
warn "has nondigits" if /\D/;
warn "not a natural number" unless /^\d+$/; # rejects –3
warn "not an integer" unless /^–?\d+$/; # rejects +3
warn "not an integer" unless /^[+–]?\d+$/;
warn "not a decimal number" unless /^–?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /^–?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"
 unless /^([+–]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+–]?\d+))?$/;
We could stretch this section out a lot longer, but really, that
 sort of thing is what this whole book is about. You’ll see many more
 examples of the interplay of Perl code and pattern matching as we go
 along. In particular, see the later sectionProgrammatic Patterns. (It’s okay to read the intervening material
 first, of course.)

Variable Interpolation

Using Perl’s control-flow mechanisms to control pattern matching has its limits. The
 main difficulty is that it’s an “all or nothing” approach—either you run
 the pattern, or you don’t. Sometimes you know the general outlines of
 the pattern you want, but you’d like to have the capability of
 parameterizing it. Variable interpolation provides that capability, much
 like parameterizing a subroutine lets you have more influence over its
 behavior than just deciding whether to call it or not. (More about
 subroutines in the next chapter.)
One nice use of interpolation is to provide a little abstraction,
 along with a little readability. With regular expressions you may
 certainly write things concisely:
if ($num =~ /^[–+]?\d+\.?\d*$/) { ... }
But what you mean is more apparent when you write:
$sign = '[–+]?';
$digits = '\d+';
$decimal = '\.?';
$more_digits = '\d*';
$number = "$sign$digits$decimal$more_digits";
...
if ($num =~ /^$number$/o) { ... }
We’ll cover this use of interpolation more under Generated patterns later in this chapter. We’ll just point out
 that we used the /o modifier to
 suppress recompilation because we don’t expect $number to change its value over the course of
 the program. This is no longer necessary because Perl has gotten smarter
 about such things, but you may see it in older code.
Another cute trick is to turn your tests inside out and use the
 variable string to pattern match against a set of known strings:
chomp($answer = <STDIN>);
if ("SEND" =~ /^\Q$answer/i) { say "Action is send" }
elsif ("STOP" =~ /^\Q$answer/i) { say "Action is stop" }
elsif ("ABORT" =~ /^\Q$answer/i) { say "Action is abort" }
elsif ("LIST" =~ /^\Q$answer/i) { say "Action is list" }
elsif ("EDIT" =~ /^\Q$answer/i) { say "Action is edit" }
This lets your user perform the “send” action by typing any of
 S, SE, SEN, or
 SEND (in any mixture of upper- and
 lowercase). To “stop”, he’d have to type at least ST (or St,
 or sT, or st).
When backslashes happen

When you think of double-quote interpolation, you usually think
 of both variable and backslash interpolation. But as we mentioned earlier,
 for regular expressions there are two passes, and the interpolation
 pass defers most of the backslash interpretation to the regular
 expression parser (which we discuss later). Ordinarily, you don’t
 notice the difference because Perl takes pains to hide the
 difference.
It’s actually fairly important that the regex parser handle the
 backslashes, because only the regex parser knows which \b means a word boundary and which \b means a backspace. Or suppose you’re
 searching for tab characters in a pattern with a /x modifier:
($col1, $col2) = /(.*?) \t+ (.*?)/x;
If Perl didn’t defer the interpretation of \t to the regex parser, the \t would have turned into whitespace, which
 the regex parser would have ignorantly ignored because of the /x. But Perl is not so ignoble, or
 tricky.
You can trick yourself, though. Suppose you abstracted out the
 column separator like this:
$colsep = "\t+"; # (double quotes)
($col1, $col2) = /(.*?) $colsep (.*?)/x;
Now you’ve just blown it because the \t turns into a real tab before it gets to
 the regex parser, which will think you said /(.*?)+(.*?)/ after it discards the
 whitespace. Oops. To fix, avoid /x,
 or use single quotes. Or better, use qr//. (See the next section.)
The only double-quote escapes that are processed as such are
 named characters and the seven translation escapes: \N{CHARNAME},
 \U, \u, \L,
 \l, \F, \Q,
 and \E. If you ever look into the
 inner workings of the Perl regular expression compiler, you’ll find
 code for handling escapes like \t
 for tab, \n for newline, and so on.
 But you won’t find code for those seven translation escapes. (We only
 listed them in Table 5-9 because people
 expect to find them there.) If you somehow manage to sneak any of them
 into the pattern without going through double-quotish evaluation, they
 won’t be recognized. If you sneak a named character in, it will
 generate an error because the charmap that was active when the string
 was created needs to be the one to resolve what codepoint a name goes
 to. (This is because Perl allows you to create custom character name
 aliases, so it isn’t always the standard set. See charnames in Chapter 29.)
How could they find their way in? Well, you can defeat
 interpolation by using single quotes as your pattern delimiter. In
 m'...', qr'...', and s'...'...', the single quotes suppress
 variable interpolation and the processing of translation escapes, just
 as they would in a single-quoted string. Saying m'\ufrodo' won’t find a capitalized version
 of poor frodo. However, since the “normal” backslash characters aren’t
 really processed on that level anyway, m'\t\d' still matches a real tab followed by
 any digit.
Another way to defeat interpolation is through interpolation
 itself. If you say:
$var = '\U';
/${var}frodo/;
poor frodo remains uncapitalized. Perl won’t redo the
 interpolation pass for you just because you interpolated something
 that looks like it might want to be reinterpolated. You can’t expect
 that to work any more than you’d expect this double interpolation to
 work:
$hobbit = "Frodo";
$var = '$hobbit'; # (single quotes)
/$var/; # means m'$hobbit', not m'Frodo'.
Here’s another example that shows how most backslashes are
 interpreted by the regex parser, not by variable interpolation.
 Imagine you have a simple little grep-style program written in Perl:[97]
#!/usr/bin/perl
$pattern = shift;
while (<>) {
 print if /$pattern/;
}
If you name that program pgrep and call it this way:
% pgrep '\t\d' *.c
then you’ll find that it prints out all lines of all your C
 source files in which a digit follows a tab. You didn’t have to do
 anything special to get Perl to realize that \t was a tab. If Perl’s patterns
 were just double-quote interpolated, you would
 have; fortunately, they aren’t. They’re recognized directly by the
 regex parser.
The real grep program has a
 –i switch that turns off
 case-sensitive matching. You don’t have to add such a switch to your
 pgrep program; it can already
 handle that without modification. You just pass it a slightly fancier
 pattern, with an embedded /i
 modifier:
% pgrep '(?i)ring' LotR*.pod
That now searches for any of “Ring”, “ring”, “RING”, and so on. You don’t see this feature
 too much in literal patterns, since you can always just write /ring/i. But for patterns passed in on the
 command line, in web search forms, or embedded in configuration files,
 it can be a lifesaver. (Speaking of rings.)

The qr/PATTERN/modifiers quote regex operator

Variables that interpolate into patterns necessarily do so at
 runtime, not compile time. This used to noticeably slow down execution
 because Perl had to check whether you’d changed the contents of the
 variable; if so, it would have to recompile the regular expression.
 These days, Perl is a lot smarter, and you’d need to be interpolating
 patterns over 10k in length before you’d notice any benefit from the
 nearly extinct /o option, which
 tells Perl to interpolate and compile only once:
print if /$pattern/o;
Although that works fine in our pgrep program, in the general case, it
 doesn’t. Imagine you have a slew of patterns, and you want to match
 each of them in a loop, perhaps like this:
for my $item (@data) {
 for my $pat (@patterns) {
 if ($item =~ /$pat/) { ... }
 }
}
You couldn’t write /$pat/o
 because the meaning of $pat varies
 each time through the inner loop.
The solution to this is the qr/PATTERN/msixpodual
 operator, which is usually just pronounced qr//, for obvious reasons. This operator
 quotes—and compiles—its PATTERN as a
 regular expression. PATTERN is interpolated
 the same way as in m/PATTERN/.
 If ' is used as the delimiter, no
 interpolation of variables (or the seven translation escapes) is done.
 The operator returns a special value that may be used instead of the
 equivalent literal in a corresponding pattern match or substitute. For
 example:
$regex = qr/my.STRING/is;
s/$regex/something else/;
is equivalent to:
s/my.STRING/something else/is;
So for our nested loop problem above, preprocess your pattern
 first using a separate loop:
@regexes = ();
for my $pat (@patterns) {
 push @regexes, qr/$pat/;
}
or all at once using Perl’s map operator:
@regexes = map { qr/$_/ } @patterns;
And then change the loop to use those precompiled
 regexes:
for my $item (@data) {
 foreach $re (@regexes) {
 if ($item =~ /$re/) { ... }
 }
}
Now when you run the match, Perl doesn’t have to create a
 compiled regular expression on each if test, because it sees that it already has
 one.
The result of a qr// may even
 be interpolated into a larger match, as though it were a simple
 string:
$regex = qr/$pattern/;
$string =~ /foo${regex}bar/; # interpolate into larger patterns
This time, Perl does recompile the pattern, but you could always
 chain several qr// operators
 together into one.
The reason this works is because the qr// operator returns a special kind of
 object that has a stringification overload as described in Chapter 13. If you print out the return value, you’ll see
 the equivalent string:
use v5.14;
$re = qr/my.STRING/is;
say $re; # prints (?^usi:my.STRING) in v5.14
The ^ says to start with the
 default option set. The /u is there
 because the “unicode_strings”
 feature is in scope, because you said use
 v5.14. The /s and /i
 modifiers were enabled in the pattern because they were supplied to
 qr//. The /x and /m
 are not mentioned because they are already disabled in the default
 environment specified by the caret at the start, which says to start
 over with the original modifiers, not the current ones.
Anytime you interpolate strings of unknown provenance into a
 pattern, you should be prepared to handle any exceptions thrown by the
 regex compiler, in case someone fed you a string containing untamable
 beasties:
$re = qr/$pat/is; # might escape and eat you
$re = eval { qr/$pat/is } || warn ... # caught it in an outer cage
For more on the eval
 operator, see Chapter 27.

[97] If you didn’t know what a grep program was before, you will now.
 No system should be without grep—we believe grep is the most useful small program
 ever invented. (It logically follows that we don’t believe Perl is
 a small program.)

The Regex Compiler

After the variable interpolation pass has had its way with the
 string, the regex parser finally gets a shot at trying to understand
 your regular expression. There’s not actually a great deal that can go
 wrong at this point, apart from messing up the parentheses or using a
 sequence of metacharacters that doesn’t mean anything. The parser does a
 recursive-descent analysis of your regular expression and, if it parses,
 turns it into a form suitable for interpretation by the Engine (see the
 next section). Most of the interesting stuff that goes on in the parser
 involves optimizing your regular expression to run as fast as possible.
 We’re not going to explain that part. It’s a trade secret. (Rumors that
 looking at the regular expression code will drive you insane are greatly
 exaggerated. We hope.)
But you might like to know what the parser actually thought of
 your regular expression, and if you ask it politely, it will tell you.
 By saying use re "debug", you can
 examine how the regex parser processes your pattern. (You can also see
 the same information by using the –Dr
 command-line switch, which is available to you if your Perl was compiled
 with the –DDEBUGGING flag during
 installation.)
#!/usr/bin/perl
use re "debug";
"Smeagol" =~ /^Sm(.*)[aeiou]l$/;
The output is below. You can see that prior to execution Perl
 compiles the regex and assigns meaning to the components of the pattern:
 BOL for the beginning of line
 (^), REG_ANY for the dot, and so on:
Compiling REx "^Sm(.*)[aeiou]l$"
Final program:
 1: BOL (2)
 2: EXACT <Sm> (4)
 4: OPEN1 (6)
 6: STAR (8)
 7: REG_ANY (0)
 8: CLOSE1 (10)
 10: ANYOF[aeiou][] (21)
 21: EXACT <l> (23)
 23: EOL (24)
 24: END (0)
anchored "Sm" at 0 floating "l"$ at 3..2147483647 (checking anchored)
anchored(BOL) minlen 4
Some of the lines summarize the conclusions of the regex
 optimizer. It knows that the string must start with “Sm”, and that therefore there’s no reason to
 do the ordinary left-to-right scan. It knows that the string must end
 with an “l”, so it can reject out of
 hand any string that doesn’t. It knows that the string must be at least
 four characters long, so it can ignore any string shorter than that
 right off the bat. It also knows what the rarest character in each
 constant string is, which can help in searching “studied” strings. (See
 the study entry in Chapter 27.)
It then goes on to trace how it executes the pattern:
Guessing start of match in sv for REx "^Sm(.*)[aeiou]l$" against "Smeagol"
Guessed: match at offset 0
Matching REx "^Sm(.*)[aeiou]l$" against "Smeagol"
 0 <> <Smeagol> | 1:BOL(2)
 0 <> <Smeagol> | 2:EXACT <Sm>(4)
 2 <Sm> <eagol> | 4:OPEN1(6)
 2 <Sm> <eagol> | 6:STAR(8)
 REG_ANY can match 5 times
 out of 2147483647...
 7 <Smeagol> <> | 8: CLOSE1(10)
 7 <Smeagol> <> | 10: ANYOF[aeiou][](21)
 failed...
 6 <Smeago> <l> | 8: CLOSE1(10)
 6 <Smeago> <l> | 10: ANYOF[aeiou][](21)
 failed...
 5 <Smeag> | 8: CLOSE1(10)
 5 <Smeag> | 10: ANYOF[aeiou][](21)
 6 <Smeago> <l> | 21: EXACT <l>(23)
 7 <Smeagol> <> | 23: EOL(24)
 7 <Smeagol> <> | 24: END(0)
Match successful!
Freeing REx: "^Sm(.*)[aeiou]l$"
If you follow the stream of whitespace down the middle of Smeagol, you can actually see how the Engine
 overshoots to let the .* be as greedy
 as possible, then backtracks on that until it finds a way for the rest
 of the pattern to match. But that’s what the next section is about.

The Little Engine That /Could(n’t)?/

And now we’d like to tell you the story of the Little Regex Engine that
 says, “I think I can. I think I can. I think I can.”
In this section, we lay out the rules used by Perl’s regular
 expression engine to match your pattern against a string. The Engine is
 extremely persistent and hardworking. It’s quite capable of working even
 after you think it should quit. The Engine doesn’t give up until it’s
 certain there’s no way to match the pattern against the string. The
 Rules below explain how the Engine “thinks it can” for as long as
 possible, until it knows it can or can’t. The
 problem for our Engine is that its task is not merely to pull a train
 over a hill. It has to search a (potentially) very complicated space of
 possibilities, keeping track of where it has been and where it
 hasn’t.
The Engine uses a nondeterministic finite-state automaton (NFA,
 not to be confused with NFL, a nondeterministic football league) to find
 a match. That just means that it keeps track of what it has tried and
 what it hasn’t, and when something doesn’t pan out, it backs up and
 tries something else. This is known as backtracking. (Er, sorry—we didn’t
 invent that term. Really.) The Engine is capable of trying a million
 subpatterns at one spot, then giving up on all those, backing up to
 within one choice of the beginning, and trying the million subpatterns
 again at a different spot. The Engine is not terribly intelligent—just
 persistent, and thorough. If you’re cagey, you can give the Engine an
 efficient pattern that doesn’t let it do a lot of silly
 backtracking.
When someone trots out a phrase like “Regexes choose the leftmost,
 longest match”, that means that Perl generally prefers the leftmost
 match over the longest match. But the Engine doesn’t realize it’s
 “preferring” anything, and it’s not really thinking at all, just gutting
 it out. The overall preferences are an emergent behavior resulting from
 many individual and unrelated choices. Here are those choices:[98]
	Rule 1
	The Engine tries to match as far left in the string as it
 can, such that the entire regular expression matches under Rule
 2.
The Engine starts just before the first character and tries
 to match the entire pattern starting there. The entire pattern
 matches if and only if the Engine reaches the end of the pattern
 before it runs off the end of the string. If it matches, it quits
 immediately—it doesn’t keep looking for a “better” match, even
 though the pattern might match in many different ways.
If it is unable to match the pattern at the first position
 in the string, it admits temporary defeat and moves to the next
 position in the string, between the first and second characters,
 and tries all the possibilities again. If it succeeds, it stops.
 If it fails, it continues on down the string. The pattern match as
 a whole doesn’t fail until it has tried to match the entire
 regular expression at every position in the string, including
 after the last character.
A string of n characters actually
 provides n +
 1 positions to match at. That’s because the beginnings
 and the ends of matches are between the
 characters of the string (or at either end). This rule sometimes
 surprises people when they write a pattern like /x*/ that can match zero or more
 “x” characters. If you try that
 pattern on a string like “fox”,
 it won’t find the “x”. Instead,
 it will immediately match the null string before the “f” and never look further. If you want
 it to match one or more x
 characters, you need to use /x+/ instead. See the quantifiers under
 Rule 5.
A corollary to this rule is that any pattern matching the
 null string is guaranteed to match at the leftmost position in the
 string (in the absence of any zero-width assertions to the
 contrary).

	Rule 2
	When the Engine encounters a set of alternatives (separated
 by | symbols), either at the
 top level or at the current grouping level, it tries them left to
 right, stopping on the first successful match that allows
 successful completion of the entire pattern.
A set of alternatives matches a string if any of the
 alternatives match under Rule 3. If none of the alternatives
 matches, it backtracks to the rule that invoked this rule, which
 is usually Rule 1, but could be Rule 4 or 6, if we’re within a
 group. That rule will then look for a new position at which to
 apply Rule 2.
If there’s only one alternative, then either it matches or
 it doesn’t, and Rule 2 still applies. (There’s no such thing as
 zero alternatives because a null string always matches.)

	Rule 3
	Any particular alternative matches if every
 item listed in the alternative matches
 sequentially according to Rules 4 and 5 (such that the entire
 regular expression can be satisfied).
An item consists of either an assertion, which is covered in
 Rule 4, or a quantified atom, covered by Rule
 5. Items that have choices on how to match are given a “pecking
 order” from left to right. If the items cannot be matched in
 order, the Engine backtracks to the next alternative under Rule
 2.
Items that must be matched sequentially aren’t separated in
 the regular expression by anything syntactic—they’re merely
 juxtaposed in the order they must match. When you ask to match
 /^foo/, you’re actually asking
 for four items to be matched one after the other. The first is a
 zero-width assertion, matched under Rule 4, and the other three
 are ordinary characters that must match themselves, one after the
 other, under Rule 5.
The left-to-right pecking order means that in a pattern
 like:
/x*y*/
x* gets to pick one way
 to match, and then y* tries all
 its ways. If that fails, then x* gets to pick its second choice and
 make y* try all of its ways
 again. And so on. The items to the right “vary faster”, to borrow
 a phrase from multidimensional arrays.

	Rule 4
	If an assertion does not match at the current position, the
 Engine backtracks to Rule 3 and retries higher-pecking-order items
 with different choices.
Some assertions are fancier than others. Perl supports many
 regex extensions, some of which are zero-width assertions. For
 example, the positive lookahead (?=...) and the negative lookahead
 (?!...) don’t actually match
 any characters but merely assert that the regular expression
 represented by ... would (or
 would not) match at this point, were we to attempt it,
 hypothetically speaking.[99]

	Rule 5
	A quantified atom matches only if the atom itself matches
 some number of times that is allowed by the quantifier. (The atom
 itself is matched according to Rule 6.)
Different quantifiers require different numbers of matches,
 and most of them allow a range of numbers of matches. Multiple
 matches must all match in a row; that is, they must be adjacent
 within the string. An unquantified atom is assumed to have a
 quantifier requiring exactly one match (that is, /x/ is the same as /x{1}/). If no match can be found at the
 current position for any allowed quantity of the atom in question,
 the Engine backtracks to Rule 3 and retries higher-pecking-order
 items with different choices.
The quantifiers are *,
 +, ?, *?, +?, ??, *+, ++, ?+, and the various brace forms. If you
 use the {COUNT} form,
 then there is no choice, and the atom must match exactly that
 number of times or not at all. Otherwise, the atom can match over
 a range of quantities, and the Engine keeps track of all the
 choices so that it can backtrack if necessary. But then the
 question arises as to which of these choices to try first. One
 could start with the maximal number of matches and work down, or
 the minimal number of matches and work up.
The traditional quantifiers (without a trailing question
 mark) specify greedy
 matching; that is, they attempt to match as many characters as
 possible. To find the greediest match, the Engine has to be a
 little bit careful. Bad guesses are potentially rather expensive,
 so the Engine doesn’t actually count down from the maximum value,
 which after all could be Very Large and cause millions of bad
 guesses. What the Engine actually does is a little bit smarter: it
 first counts up to find out how many matching
 atoms (in a row) are really there in the string, and then it uses
 that actual maximum as its first choice. (It
 also remembers all the shorter choices in case the longest one
 doesn’t pan out.) It then (at long last) tries to match the rest
 of the pattern, assuming the longest choice to be the best. If the
 longest choice fails to produce a match for the rest of the
 pattern, it backtracks and tries the next longest.
If you say /.*foo/, for
 example, it will try to match the maximal number of “any”
 characters (represented by the dot) clear out to the end of the
 line before it ever tries looking for “foo”; and then when the “foo” doesn’t match there (and it can’t,
 because there’s not enough room for it at the end of the string),
 the Engine will back off one character at a time until it finds a
 “foo”. If there is more than
 one “foo” in the line, it’ll
 stop on the last one, since that will really be the
 first one it encounters as it backtracks.
 When the entire pattern succeeds using some particular length of
 .*, the Engine knows it can
 throw away all the other shorter choices for .* (the ones it would have used had the
 current “foo” not panned
 out).
By placing a question mark after any greedy quantifier, you
 turn it into a frugal quantifier that chooses the smallest
 quantity for the first try. So if you say /.*?foo/, the .*? first tries to match 0 characters,
 then 1 character, then 2, and so on, until it can match the
 “foo”. Instead of backtracking
 backward, it backtracks forward, so to speak, and ends up finding
 the first “foo” on the line
 instead of the last.

	Rule 6
	Each atom matches according to the designated semantics of
 its type. If the atom doesn’t match (or does match, but doesn’t
 allow a match of the rest of the pattern), the Engine backtracks
 to Rule 5 and tries the next choice for the atom’s
 quantity.
Atoms match according to the following types:
	A regular expression in parentheses, (...), matches whatever the regular
 expression (represented by ...) matches according to Rule 2.
 Parentheses therefore serve as a grouping operator for
 quantification. Bare parentheses also have the side effect of
 capturing the matched substring for later use in a
 group reference, often known as a
 backreference.
 This side effect can be suppressed by using (?:...) instead, which has only the
 grouping semantics—it doesn’t store anything in $1, $2, and so on. Other forms of
 parenthetical atoms (and assertions) are possible—see the rest
 of this chapter.

	A dot matches any character, except maybe
 newline.

	A list of characters in square brackets (a
 bracketed character class) matches any
 one of the characters specified by the list.

	A backslashed letter matches an abstract sequence,
 typically either a particular character or one of a set of
 characters, as listed in Table 5-9.

	Any other backslashed character matches that
 character.

	Any character not mentioned above matches itself.

That all sounds rather complicated, but the upshot of it is that,
 for each set of choices given by a quantifier or alternation, the Engine
 has a knob it can twiddle. It will twiddle those knobs until the entire
 pattern matches. The Rules just say in which order the Engine is allowed
 to twiddle those knobs. Saying the Engine prefers the leftmost match
 merely means it twiddles the start position knob the slowest. And
 backtracking is just the process of untwiddling the knob you just
 twiddled in order to try twiddling a knob higher in the pecking
 order—that is, one that varies slower.
Here’s a more concrete example. This program detects when two
 consecutive words share a common ending and beginning:
$a = "nobody";
$b = "bodysnatcher";
if ("$a $b" =~ /^(\w+)(\w+) \2(\w+)$/) {
 say "$2 overlaps in $1–$2–$3";
}
This prints:
body overlaps in no–body–snatcher
You might think that $1 would
 first grab up all of “nobody” due to
 greediness. And, in fact, it does—at first. But once it’s done so, there
 aren’t any further characters to put in $2, which needs characters put into it because
 of the + quantifier. So the Engine
 backs up and $1 begrudgingly gives up
 one character to $2. This time the
 space character matches successfully, but then it sees \2, which represents a measly “y”. The next character in the string is not a
 “y”, but a “b”. This makes the Engine back up character by
 character all the way, eventually forcing $1 to surrender the body to $2. Habeas corpus, as it were.
Actually, that won’t quite work out if the overlap is itself the
 product of a doubling, as in the two words “rococo” and “cocoon”. The algorithm above would have
 decided that the overlapping string, $2, must be just “co” rather than “coco”. But we don’t want a “rocococoon”; we want a “rococoon”. Here’s one of those places you can
 outsmart the Engine. Adding a minimal matching quantifier to the
 $1 part gives the much better pattern
 /^(\w+?)(\w+) \2(\w+)$/, which does
 exactly what we want.
For a much more detailed discussion of the pros and cons of
 various kinds of regular expression engines, see Jeffrey Friedl’s book, Mastering
 Regular Expressions. Perl’s regular expression
 Engine works very well for many of the everyday problems you want to
 solve with Perl, and it even works okay for those not-so-everyday
 problems—if you give it a little respect and understanding.

[98] Some of these choices may be skipped if the regex optimizer
 has any say, which is equivalent to the Little Engine simply jumping
 through the hill via quantum tunnelling. But for this discussion
 we’re pretending the optimizer doesn’t exist.

[99] In actual fact, the Engine does
 attempt it. The Engine goes back to Rule 2 to test the
 subpattern, and then wipes out any record of how much string
 was eaten, returning only the success or failure of the
 subpattern as the value of the assertion. (It does, however,
 remember any captured substrings.)

Fancy Patterns

Lookaround Assertions

Sometimes you just need to sneak a peek. There are four regex
 extensions that help you do just that, and we call them
 lookaround assertions because they let you scout
 around in a hypothetical sort of way, without committing to matching any
 characters. What these assertions assert is that some pattern would (or
 would not) match if we were to try it. The Engine works it all out for
 us by actually trying to match the hypothetical pattern, and then
 pretending that it didn’t match (if it did).
When the Engine peeks ahead from its current position in the
 string, we call it a lookahead
 assertion. If it peeks backward, we call it a lookbehind
 assertion. The lookahead patterns can be any regular expression, but the
 lookbehind patterns may only be fixed width, since they have to know
 from where to start the hypothetical match.
While these four extensions are all zero-width assertions, and
 hence do not consume characters (at least, not officially), you can in
 fact capture substrings within them if you supply extra levels of
 capturing parentheses.
	(?=PATTERN)
 (positive lookahead)
	When the Engine encounters (?=PATTERN),
 it looks ahead in the string to ensure that
 PATTERN occurs. If you’ll recall, in
 our earlier duplicate word remover, we had to write a loop because
 the pattern ate too much each time through:
$_ = "Paris in THE THE THE THE spring.";

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;
Whenever you hear the phrase “ate too much”, you should
 always think “lookahead assertion” (well, almost always). By
 peeking ahead instead of gobbling up the second word, you can
 write a one-pass duplicate word remover like this:
s/ \b(\w+) \s (?= \1\b) //gxi;
Of course, this isn’t quite right, since it will mess up
 valid phrases like “The clothes you DON
 DON't fit.”
Lookahead assertions can be used to implement overlapping
 matches. For example:
"0123456789" =~ /(\d{3})/g
returns only three strings: 012, 345, and 678. By wrapping the capture group with
 a lookahead assertion:
"0123456789" =~ /(?=(\d{3}))/g
you now retrieve all of 012, 123, 234, 345, 456, 567, 678, and 789. This works because this tricky
 assertion does a stealthy sneakahead to run up and grab what’s
 there and stuff its capture group with it, but being a lookahead,
 it reneges and doesn’t technically consume any of it. When the
 engine sees that it should try again because of the /g, it steps one character past where
 last it tried.

	(?!PATTERN)
 (negative lookahead)
	When the Engine encounters (?!PATTERN),
 it looks ahead in the string to ensure that
 PATTERN does not
 occur. To fix our previous example, we can add a negative
 lookahead assertion after the positive assertion to weed out the
 case of contractions:
s/ \b(\w+) \s (?= \1\b (?! '\w))//xgi;
That final \w is
 necessary to avoid confusing contractions with words at the ends
 of single-quoted strings. We can take this one step further, since
 earlier in this chapter we intentionally used “that that
 particular”, and we’d like our program to not “fix” that for us.
 So we can add an alternative to the negative lookahead in order to
 pre-unfix that “that” (thereby
 demonstrating that any pair of parentheses can be used to group
 alternatives):
s/ \b(\w+) \s (?= \1\b (?! '\w | \s particular))//gix;
Now we know that that particular phrase is safe.
 Unfortunately, the Gettysburg Address is still broken. So we add
 another exception:
s/ \b(\w+) \s (?= \1\b (?! '\w | \s particular | \s nation))//igx;
This is just starting to get out of hand. So let’s do an
 Official List of Exceptions, using a cute interpolation trick with
 the $" variable to separate the
 alternatives with the |
 character:
@thatthat = qw(particular nation);
local $" = '|';
s/ \b(\w+) \s (?= \1\b (?! '\w | \s (?: @thatthat)))//xig;

	(?<=PATTERN)
 (positive lookbehind)
	When the Engine encounters (?<=PATTERN),
 it looks backward in the string to ensure that
 PATTERN already occurred.
Our example still has a problem. Although it now lets Honest
 Abe say things like “that that
 nation”, it also allows “Paris,
 in the the nation of France”. We can add a positive
 lookbehind assertion in front of our exception list to make sure
 that we apply our @thatthat
 exceptions only to a real “that
 that”.
s/ \b(\w+) \s (?= \1\b (?! '\w | (?<= that) \s (?: @thatthat)))//ixg;
Yes, it’s getting terribly complicated, but that’s why this
 section is called “Fancy Patterns”, after all. If you need to
 complicate the pattern any more than we’ve done so far, judicious
 use of comments and qr// will
 help keep you sane. Or at least saner.
Or consider using \K to
 lie to the Engine about where the official match started. The
 preceding pattern will then function as a kind of lookbehind to
 the official part of the pattern, but it will be scanned from left
 to right. This is especially useful if you find yourself wanting a
 variable-width lookbehind, which is something the Engine can’t. Or
 at least won’t.

	(?<!PATTERN)
 (negative lookbehind)
	When the Engine encounters (?<!PATTERN),
 it looks backward in the string to ensure that
 PATTERN did not occur.
Let’s go for a really simple example this time. How about
 the easy version of that old spelling rule, “I before E except
 after C”? In Perl, you spell it:
s/(?<!c)ei/ie/g
You’ll have to weigh for yourself whether you want to handle
 any of the exceptions. (For example, “weird” is spelled weird, especially when
 you spell it “wierd”.)

Possessive Groups

As described in The Little Engine That /Could(n’t)?/, the Engine
 often backtracks as it proceeds through the pattern. You
 can block the Engine from backtracking back through a particular set of
 choices by creating a nonbacktracking subpattern. A
 possessive group looks like (?>PATTERN), and
 it works exactly like a simple noncapturing group (?:PATTERN), except
 that once PATTERN has found a match, it
 suppresses backtracking on any of the quantifiers or alternatives inside
 the subpattern. (Hence, it is meaningless to use this on a
 PATTERN that doesn’t contain quantifiers or
 alternatives.) The only way to get it to change its mind is to backtrack
 to something before the subpattern and reenter the subpattern from the
 left.
It’s like going into a car dealership. After a certain amount of
 haggling over the price, you deliver an ultimatum: “Here’s my best
 offer; take it or leave it.” If they don’t take it, you don’t go back to
 haggling again. Instead, you backtrack clear out the door. Maybe you go
 to another dealership and start haggling again. You’re allowed to haggle
 again, but only because you reentered the nonbacktracking pattern again
 in a different context.
For devotees of Prolog or SNOBOL, you can think of this as a
 scoped cut or fence operator.
Consider how in "aaab" =~
 /(?:a*)ab/, the a* first
 matches three as, but then gives up
 one of them because the last a is
 needed later. The subgroup sacrifices some of what it wants in order for
 the whole match to succeed. (Which is like letting the car salesman talk
 you into giving him more of your money because you’re afraid to walk
 away from the deal.) In contrast, the subpattern in "aaab" =~ /(?>a*)ab/ will never give up
 what it grabs, even though this behavior causes the whole match to fail.
 (As the song says, you have to know when to hold ’em, when to fold ’em,
 and when to walk away.)
Although (?>PATTERN) is
 useful for changing the behavior of a pattern, it’s mostly used for
 speeding up the failure of certain matches that you know will fail
 anyway (unless they succeed outright). The Engine can take a
 spectacularly long time to fail, particularly with nested quantifiers.
 The following pattern will succeed almost instantly:
$_ = "aab";
/a*[Bb]/;
But success is not the problem. Failure is. If you remove that
 final “b” from the string, the
 pattern will probably run for many, many years before failing. Many,
 many millennia. Actually, billions and billions of years.[100] You can see by inspection that the pattern can’t succeed
 if there’s no “b” on the end of the
 string, but the regex optimizer is not smart enough (as of this writing)
 to figure out that /[Bb]/ will never match some other
 way. But if you give it a hint, you can get it to fail quickly while
 still letting it succeed where it can:
/(?>a*)[Bb]/;
For a (hopefully) more realistic example, imagine a program that’s
 supposed to read in a paragraph at a time and show just the lines that
 are continued, where continuation lines are specified with trailing
 backslashes. Here’s a sample from Perl’s Makefile that uses this line-continuation
 convention:
Files to be built with variable substitution before miniperl
is available.
sh = Makefile.SH cflags.SH config_h.SH makeaperl.SH makedepend.SH \
 makedir.SH myconfig.SH writemain.SH
You could write your simple program this way:
#!/usr/bin/perl –00p
use feature "say";
while (/((.+) ((?<=\\) \n .*)+) /gx) {
 say "GOT $.: $1\n";
}
That works, but it’s really quite slow. That’s because the Engine
 backtracks a character at a time from the end of the line, shrinking
 what’s in $1. This is pointless. And
 writing it without the extraneous captures doesn’t help much.
 Using:
(.+(?:(?<=\\)\n.*)+)
for a pattern is somewhat faster, but not much. This is where a
 nonbacktracking subpattern helps a lot. The pattern:
((?>.+)(?:(?<=\\)\n.*)+)
does the same thing, but more than an order of magnitude faster
 because it doesn’t waste time backtracking in search of something that
 isn’t there.
You’ll never get a success with (?>...) that you wouldn’t get with (?:...), or even a simple (...). But if you’re going to fail, it’s best
 to fail quickly and get on with your life.
By the way, since our example contains only a single quantifier,
 (?>.+) may be more succinctly
 written as .++.

[100] Actually, it’s more on the order of septillions and
 septillions. We don’t know exactly how long it would take. We didn’t
 care to wait around watching it not fail. In any event, your
 computer is likely to crash before the heat death of the universe,
 and this regular expression takes longer than either of
 those.

Programmatic Patterns

Most Perl programs tend to follow an imperative (also called procedural)
 programming style, like a series of discrete commands laid out in a
 readily observable order: “Preheat oven, mix, glaze, heat, cool, serve
 to aliens.” Sometimes into this mix you toss a few dollops of functional
 programming (“use a little more glaze than you think you need, even
 after taking this into account, recursively”), or sprinkle it with bits
 of object-oriented techniques (“but please hold the anchovy objects”).
 Often it’s a combination of all of these.
But the regular expression Engine takes a completely different
 approach to problem solving, more of a declarative approach. You
 describe goals in the language of regular expressions, and the Engine
 implements whatever logic is needed to solve your goals. Logic
 programming languages (such as Prolog) don’t always get as much exposure
 as the other three styles, but they’re more common than you’d think.
 Perl couldn’t even be built without make(1) or
 yacc(1), both of which could be considered—if not
 purely declarative languages—at least hybrids that blend imperative and
 logic programming together.
You can do this sort of thing in Perl, too, by blending goal
 declarations and imperative code together more miscibly than we’ve done
 so far, drawing upon the strengths of both. You can programmatically
 build up the string you’ll eventually present to the regex Engine, in a
 sense creating a program that writes a new program on the fly.
You can also supply ordinary Perl expressions as the replacement
 part of s/// via the /e modifier. This allows you to dynamically
 generate the replacement string by executing a bit of code every time
 the pattern matches.
Even more elaborately, you can interject bits of code wherever
 you’d like in the middle of a pattern using the (?{ CODE })
 extension, and that code will be executed every time the Engine
 encounters that code as it advances and recedes in its intricate
 backtracking dance.
Finally, you can use s///ee or
 (??{ CODE
 }) to add another level of indirection: the
 results of executing those code snippets will
 themselves be reevaluated for further use, creating bits of program and
 pattern on the fly, just in time.
Generated patterns

It has been said[101] that programs that write programs are the happiest
 programs in the world. In Jeffrey Friedl’s book Mastering
 Regular Expressions, the final tour de force
 demonstrates how to write a program that produces a regular expression
 to determine whether a string conforms to the RFC 822 standard; that
 is, whether it contains a standards-compliant, valid mail header. The
 pattern produced is several thousand characters long, and it’s about
 as easy to read as a crash dump in pure binary. But Perl’s pattern
 matcher doesn’t care about that; it just compiles up the pattern
 without a hitch and, even more interestingly, executes the match very
 quickly—much more quickly, in fact, than many short patterns with
 complex backtracking requirements.
That’s a very complicated example. Earlier we showed you a very
 simple example of the same technique when we built up a $number pattern out of its components (see
 the earlier section Variable Interpolation). But to show you
 the power of this programmatic approach to producing a pattern, let’s
 work out a problem of medium complexity.
Suppose you wanted to pull out all the words with a certain
 vowel‒consonant sequence; for example, “audio” and “eerie” both follow a VVCVV pattern. Although
 describing what counts as a consonant or a vowel is easy, you wouldn’t
 ever want to type that in more than once. Even for our simple VVCVV
 case, you’d need to type in a pattern that looked something like
 this:
^[aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy]$
A more general-purpose program would accept a string like
 “VVCVV” and programmatically
 generate that pattern for you. For even more flexibility, it could
 accept a word like “audio” as input
 and use that as a template to infer “VVCVV” and, from that, the long pattern
 above. It sounds complicated, but it really isn’t because we’ll let
 the program generate the pattern for us. Here’s a simple cvmap program that does all of that:
#!/usr/bin/perl
use v5.14;
use feature "say";
use warnings;

my $vowels = "aeiouy";
my $cons = "cbdfghjklmnpqrstvwxzy";
my %map = (C => $cons, V => $vowels); # init map for C and V

for my $class ($vowels, $cons) { # now for each type
 for (split //, $class) { # get each letter of that type
 $map{$_} .= $class; # and map the letter back to the type
 }
}

my $pat = "";
for my $char (split //, shift) { # for each letter in template word
 $pat .= "[$map{$char}]"; # add appropriate character class
}

my $re = qr/^${pat}$/i; # compile the pattern
say "REGEX is $re"; # debugging output
@ARGV = ("/usr/share/dict/words") # pick a default dictionary
 if –t && !@ARGV;

while (<>) { # and now blaze through the input
 print if /$re/; # printing any line that matches
}
The %map variable holds all
 the interesting bits. Its keys are each letter of the alphabet, and
 the corresponding value is all the letters of its type. We throw in C
 and V, too, so you can specify either “VVCVV” or “audio”, and still get out “eerie”. Each character in the argument
 supplied to the program is used to pull out the right character class
 to add to the pattern. Once the pattern is created and compiled up
 with qr//, the match (even a very
 long one) will run quickly. Here’s what you might get if you run this
 program on “fortuitously”:
% cvmap fortuitously /usr/dict/words
 REGEX is (?^ui:^[cbdfghjklmnpqrstvwxzy][aeiouy][cbdfghjklmnpqrstvw
 xzy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][a
 eiouy][aeiouy][cbdfghjklmnpqrstvwxzy][cbdfghjklmnpqrstvwxzy][aeiouyc
 bdfghjklmnpqrstvwxzy]$)
 carriageable
 circuitously
 fortuitously
 languorously
 marriageable
 milquetoasts
 sesquiquarta
 sesquiquinta
 villainously
Looking at that REGEX, you
 can see just how much villainous typing you saved by programming
 languorously, albeit circuitously.

Substitution evaluations

When the /e modifier
 (“e” is for expression evaluation) is used on an
 s/PATTERN/CODE/e
 expression, the replacement portion is interpreted as a Perl
 expression, not just as a double-quoted string. It’s like an embedded
 do { CODE
 }. Even though it looks like a string, it’s really just a
 code block that gets compiled at the same time as the rest of your
 program, long before the substitution actually happens.
You can use the /e modifier
 to build replacement strings with fancier logic than double-quote
 interpolation allows. This shows the difference:
s/(\d+)/$1 * 2/; # Replaces "42" with "42 * 2"
s/(\d+)/$1 * 2/e; # Replaces "42" with "84"
And this converts Celsius temperatures into Fahrenheit:
$_ = "Preheat oven to 233C.\n";
s/\b(\d+\.?\d*)C\b/int($1 * 1.8 + 32) . "F"/e; # convert to 451F
Applications of this technique are limitless. Here’s a filter
 that modifies its files in place (like an editor) by adding 100 to
 every number that starts a line (and that is followed by a colon,
 which we only peek at but don’t actually match or replace):
% perl –pi –e 's/^(\d+)(?=:)/100 + $1/e' filename
Now and then you want to do more than just use the string you
 matched in another computation. Sometimes you want that string to
 be a computation, whose own evaluation you’ll use
 for the replacement value. Each additional /e modifier after the first wraps an
 eval around the code to execute.
 The following two lines do the same thing, but the first one is easier
 to read:
s/PATTERN/CODE/ee
s/PATTERN/eval(CODE)/e
You could use this technique to replace mentions of simple
 scalar variables with their values:
s/(\$\w+)/$1/eeg; # Interpolate most scalars' values
Because it’s really an eval,
 the /ee even finds lexical
 variables. A slightly more elaborate example calculates a replacement
 for simple arithmetical expressions on (nonnegative) integers:
$_ = "I have 4 + 19 dollars and 8/2 cents.\n";
s{ (
 \d+ \s* # find an integer
 [+*/–] # and an arithmetical operator
 \s* \d+ # and another integer
)
}{ $1 }eegx; # then expand $1 and run that code
print; # "I have 23 dollars and 4 cents."
Like any other eval
 STRING, compile-time errors (like syntax
 problems) and runtime exceptions (like dividing by zero) are trapped.
 If so, the $@ ($EVAL_ERROR) variable says what went
 wrong.

Match-time code evaluation

In most programs that use regular expressions, the surrounding program’s
 runtime control structure drives the logical execution flow. You write
 if or while loops, or make function or method
 calls, that wind up calling a pattern-matching operation now and then.
 Even with s///e, it’s the
 substitution operator that is in control, executing the replacement
 code only after a successful match.
With code
 subpatterns, the normal relationship between regular
 expression and program code is inverted. As the Engine is applying its
 Rules to your pattern at match time, it may come across a regex
 extension of the form (?{
 CODE }). When triggered, this
 subpattern doesn’t do any matching or any looking about. It’s a
 zero-width assertion that always “succeeds”, evaluated only for its
 side effects. Whenever the Engine needs to progress over the code
 subpattern as it executes the pattern, it runs that code.
"glyph" =~ /.+ (?{ say "hi" }) ./x; # Prints "hi" twice.
As the Engine tries to match glyph against this pattern, it first lets
 the .+ eat up all five letters.
 Then it prints “hi”. When it finds
 that final dot, all five letters have been eaten, so it needs to
 backtrack back to the .+ and make
 it give up one of the letters. Then it moves forward through the
 pattern again, stopping to print “hi” again before assigning h to the final dot and completing the match
 successfully.
The braces around the CODE fragment
 are intended to remind you that it is a block of Perl code, and it
 certainly behaves like a block in the lexical sense. That is, if you
 use my to declare a lexically
 scoped variable in it, it is private to the block. But if you use
 local to localize a dynamically
 scoped variable, it may not do what you expect. A (?{ CODE })
 subpattern creates an implicit dynamic scope that is valid throughout
 the rest of the pattern, until it either succeeds or backtracks
 through the code subpattern. One way to think of it is that the block
 doesn’t actually return when it gets to the end. Instead, it makes an
 invisible recursive call to the Engine to try to match the rest of the
 pattern. Only when that recursive call is finished does it return from
 the block, delocalizing the localized variables.[102] In the next example, we initialize $i to 0
 by including a code subpattern at the beginning of the pattern. Then,
 we match any number of characters with .*—but we place another code subpattern in
 between the . and the * so we can count how many times . matches.
$_ = "lothlorien";
m/ (?{ $i = 0 }) # Set $i to 0
 (. (?{ $i++ }))* # Update $i, even after backtracking
 lori # Forces a backtrack
 /x;
The Engine merrily goes along, setting $i to 0
 and letting the .* gobble up all 10
 characters in the string. When it encounters the literal lori in the pattern, it backtracks and gives
 up those four characters from the .*. After the match, $i will still be 10.
If you wanted $i to reflect
 how many characters the .* actually
 ended up with, you could make use of the dynamic scope within the
 pattern:
$_ = "lothlorien";
m/ (?{ $i = 0 })
 (. (?{ local $i = $i + 1; }))* # Update $i, backtracking–safe.
 lori
 (?{ $result = $i }) # Copy to non–local()ized location.
 /x;
Here we use local to ensure
 that $i contains the number of
 characters matched by .*,
 regardless of backtracking. $i will
 be forgotten after the regular expression ends, so the code
 subpattern, (?{ $result = $i }),
 ensures that the count will live on in $result.
The special variable $^R
 (described in Chapter 25) holds the result of the
 last (?{ CODE
 }) that was executed as part of a successful match.
You can use a (?{
 CODE }) extension as the
 COND of a (?(COND)IFTRUE|IFFALSE).
 If you do this, $^R will not be
 set, and you may omit the parentheses around the conditional:
"glyph" =~ /.+(?(?{ $foo{bar} gt "symbol" }).|signet)./;
Here we test whether $foo{bar} is greater than symbol. If so, we include . in the pattern; if not, we include
 signet in the pattern. Stretched
 out a bit, it might be construed as more readable:
"glyph" =~ m{
 .+ # some anythings
 (?(?{ # if
 $foo{bar} gt "symbol" # this is true
 })
 . # match another anything
 | # else
 signet # match signet
)
 . # and one more anything
}x;
When use re "eval" is in
 effect, a regex is allowed to contain (?{ CODE }) subpatterns even if the regular
 expression interpolates variables:
/(.*?) (?{length($1) < 3 && warn}) $suffix/; # Error without
 # use re "eval"
This is normally disallowed since it is a potential security
 risk. Even though the pattern above may be innocuous because $suffix is innocuous, the regex parser can’t
 tell which parts of the string were interpolated and which ones
 weren’t, so it just disallows code subpatterns entirely if there were
 any interpolations.
If the pattern is obtained from tainted data, even use re "eval" won’t allow the pattern match
 to proceed.
When use re "taint" is in
 effect and a tainted string is the target of a regex, the captured
 subpatterns (either in the numbered variables or in the list of values
 returned by m// in list context)
 are tainted. This is useful when regex operations on tainted data are
 meant not to extract safe substrings, but merely to perform other
 transformations. See Chapter 20 for more on tainting.
 For the purpose of this pragma, precompiled regular expressions
 (usually obtained from qr//) are
 not considered to be interpolated:
/foo${pat}bar/
This is allowed if $pat is a
 precompiled regular expression, even if $pat contains (?{
 CODE }) subpatterns.
Earlier we showed you a bit of what use re
 'debug' prints out. A more
 primitive debugging solution is to use (?{
 CODE }) subpatterns to print out
 what’s been matched so far during the match:
"abcdef" =~ / .+ (?{say "Matched so far: $&"}) .cdef $/x;
This prints:
Matched so far: abcdef
Matched so far: abcde
Matched so far: abcd
Matched so far: abc
Matched so far: ab
Matched so far: a
showing the .+ grabbing all
 the letters and giving them up one by one as the Engine backtracks.

Match-time pattern interpolation

You can build parts of your pattern from within the pattern
 itself. The (??{
 CODE }) extension allows you to
 insert code that evaluates to a valid pattern. It’s like saying
 /$pattern/, except that you can
 generate $pattern at runtime—more
 specifically, at match time. For instance:
/\w (??{ if ($threshold > 1) { "red" } else { "blue" } }) \d/x;
This is equivalent to /\wred\d/ if $threshold is greater than 1, and /\wblue\d/ otherwise.
You can include group references inside the evaluated code to
 derive patterns from just-matched substrings (even if they will later
 become unmatched through backtracking). For instance, this matches all
 strings that read the same backward as forward (known as
 palindromedaries, phrases with a hump in the middle):
/^ (.+) .? (??{quotemeta reverse $1}) $/xi;
You can balance parentheses like so:
$text =~ /(\(+) (.*?) (??{ '\)' x length $1 })/x;
This matches strings of the form (shazam!) and (((shazam!))), sticking shazam! into $2. Unfortunately, it doesn’t notice whether
 the parentheses in the middle are balanced. For that we need
 recursion.
Fortunately, you can do recursive patterns, too. One way is to
 have a compiled pattern that uses (??{
 CODE }) to refer to itself.
 Recursive matching is pretty irregular, as regular expressions go. Any
 text on regular expressions will tell you that a standard regex can’t
 match nested parentheses correctly. And that’s correct. It’s also
 correct that Perl’s regexes aren’t standard. The following
 pattern[103] matches a set of nested parentheses, however deep they
 go:
$np = qr{
 \(
 (?:
 (?> [^()]+) # Non–parens without backtracking
 |
 (??{ $np }) # Group with matching parens
)*
 \)
 }x;
You could use it like this to match a function call:
$funpat = qr/\w+$np/;
"myfunfun(1,(2*(3+4)),5)" =~ /^$funpat$/; # Matches!

Conditional interpolation

The (?(COND)IFTRUE|IFFALSE)
 regex extension is similar to Perl’s ?: operator. If
 COND is true, the
 IFTRUE pattern is used; otherwise, the
 IFFALSE pattern is used. The
 COND can be a group reference (expressed as
 a bare integer, without the \ or
 $), a lookaround assertion, or a
 code subpattern. (See the sections Lookaround Assertions
 and Match-time code evaluation, earlier in this
 chapter.)
If the COND is an integer, it is
 treated as a group reference. For instance, consider:
#!/usr/bin/perl
use feature "say";
$x = "Perl is free.";
$y = 'ManagerWare costs $99.95.';

foreach ($x, $y) {
 /^(\w+) (?:is|(costs)) (?(2)(\$\d+)|\w+)/; # Either (\$\d+) or \w+
 if ($3) {
 say "$1 costs money."; # ManagerWare costs money.
 } else {
 say "$1 doesn't cost money."; # Perl doesn't cost money.
 }
}
Here, the COND is (2), which is true if a second group
 reference exists. If that’s the case, (\$\d+) is included in the pattern at that
 point (creating the $3 capture
 variable); otherwise, \w+ is
 used.
If the COND is a lookaround or code
 subpattern, the truth of the assertion is used to determine whether to
 include IFTRUE or
 IFFALSE:
/[ATGC]+(?(?<=AA)G|C)$/;
This uses a lookbehind assertion as the
 COND to match a DNA sequence that ends in
 either AAG, or some other base
 combination and C.
You can omit the |IFFALSE
 alternative. If you do, the IFTRUE pattern
 will be included in the pattern as usual if the
 COND is true; but if the condition isn’t
 true, the Engine will move on to the next portion of the pattern.

[101] By Andrew Hume, the famous Unix philosopher.

[102] People who are familiar with recursive descent parsers may
 find this behavior confusing because such compilers return from a
 recursive function call whenever they figure something out. The
 Engine doesn’t do that—when it figures something out, it goes
 deeper into recursion (even when exiting a
 parenthetical group!). A recursive descent parser is at a minimum
 of recursion when it succeeds at the end, but the Engine is at a
 local maximum of recursion when it succeeds
 at the end of the pattern. You might find it helpful to dangle the
 pattern from its left end and think of it as a skinny
 representation of a call graph tree. If you can get that picture
 into your head, the dynamic scoping of local variables will make
 more sense. (And if you can’t, you’re no worse off than
 before.)

[103] Note that you can’t declare the variable in the same
 statement in which you’re going to use it. You can always declare
 it earlier, of course.

Recursive Patterns

When you reference a capture group from within the pattern, whatever was
 actually captured by that group is what gets used for the
 backreference.
/\b (\p{alpha}+) \s+ \1 \b /x # numbered backref
/\b (\p{alpha}+) \s+ \g{1} \b /x # alternate syntax
/\b (\p{alpha}+) \s+ \g{–1} \b /x # relative backref
/\b (?<word> \p{alpha}+) \s+ \k<word> \b /x # named backref
Those four examples all use backreferences to match the same word twice in a row. But
 sometimes you want to match two different words with the same
 pattern.
For that, a different syntax is used: (?NUMBER) calls
 back into the pattern of a numbered group, whereas (?&NAME) does
 so for a named group. (The latter is reminiscent of the & form of subroutine calls.)
/\b (\p{alpha}+) \s+ (?–1) \b /x # "call" numbered group
/\b (?<word> \p{alpha}+) \s+ (?&word) \b /x # "call" named group
With the NUMBER form, a leading minus
 sign counts groups right to left from the current location, so –1 means to call the previous group; you don’t
 have to know the absolute position of it. On the other hand, if the
 number has a plus sign in front, (?+NUMBER), you
 count forward that many groups to the right of where you are.
You are even allowed to call a group that you’re already in the
 middle of, causing the matching engine to recurse on itself. This is a
 normal thing to want to do. Here’s one way to match balanced
 parentheses:
/ (\((?: [^()]++ | (?1))*+ \))/x
Because the entire pattern is enclosed by capture parentheses, you
 can omit them altogether and use (?0)
 to call “group zero”, which means the whole pattern:
/ \((?: [^()]++ | (?0))*+ \) /x
That works fine here, but it may not do what you expect when you
 write a qr// that gets used in some
 other pattern. In that case, you should stick with a relatively numbered
 group. Here we define a regex that matches an identifier followed by
 balanced parentheses:
$funcall = qr/\w+ (\((?: [^()]++ | (?–1))*+ \))/x
Then we call it like this:
while (<>) {
 say $1 if /^ \s* ($funcall) \s* ; \s* $/x;
}
This conveniently leaves only the desired result in $1. The subrule is an example of Position
 Independent Code: it doesn’t care about its absolute position in the
 overall scheme of things.
Numbered groups are okay for simple patterns, but for anything
 more complicated, you’ll find named groups to be more readable:
$funcall = qr/\w+ (?<paren> \((?: [^()]++ | (?&paren))*+ \))/x
while (<>) {
 say $+{func} if /^ \s* (?<func> $funcall) \s* ; \s* $/x;
}
In fact, named groups are the only way to retain sanity as you
 scale up the size of your parsing problem.
Note that a subcall does not return its captures to the outer
 pattern; it only returns its final match position. Often this is what
 you want because it controls side effects, but sometimes you’ll want to
 keep around pieces of whatever it is you’re parsing. More on that in
 just a moment.
Speaking of parsing, you may by now have realized that you have
 almost everything you need for real parsing. By real parsing we don’t
 mean the simple state machines that NFAs and DFAs are good for, but
 actual recursive descent parsing. With the features explained in this
 section and the next, a Perl pattern becomes fully equivalent to a
 recursive descent parser. With just a few more bells and whistles,
 you’ll be able to easily write full grammars that look a lot like a
 yacc file or a grammar in Backus–Naur Form.

Grammatical Patterns

Grammars work by parsing subpatterns recursively. Since capture groups
 can work as subpatterns, they can be used as productions in a grammar.
 What you haven’t seen yet is a way to define all your productions
 separate from calling them.
Obviously, if we’re just using a capture group as a subpattern, it
 doesn’t matter whether it has actually been used to match anything yet.
 In fact, when you’re writing a grammar, you generally
 don’t want your subpatterns called the first time
 you define them; you’d just like to define them all and then start using
 them later. What you really want is a way to wall off a part of your
 pattern for definitions alone, not for execution.
The (?(DEFINE)...) block does
 just that. Technically, it’s really just a conditional, like the
 (?(COND)...)
 conditional we saw earlier. Here, the condition is DEFINE, which turns out to always be
 false.[104] So anything you put in a DEFINE block is
 guaranteed not to be executed.
The smart-aleck in the class will now point out that the compiler
 is free to discard any unused code in a conditional that is always
 false. The teacher will point out, however, that this policy applies
 only to executable code, not to declarations. And it happens that groups
 within the DEFINE block are
 considered declarative, so they are not thrown away. They remain quite
 callable as subpatterns from elsewhere within the same pattern.
So that’s where we’ll put our grammar. You can put your DEFINE block anywhere you’d like, but usually
 people put it either before the main pattern or afterwards. Within the
 block, the order of definition doesn’t matter either. So all your
 patterns end up looking pretty much like this:
qr{
 (?&abstract_description_of_what_is_being_matched)

 (?(DEFINE)
 (?<abstract_description_of_what_is_being_matched>
 (?&component1)
 (?&component2)
 (?&component3)
 ...
)
 (?<component1> ...)
 (?<component2> ...)
 (?<component3> ...)
 ...
)
 }x;
The only executable portion of that pattern is the part outside
 the DEFINE block, which calls the top
 rule that calls all the others.
This starts to look like not just a conventional grammar, but also
 a conventional program. Unlike the left-to-right processing of a normal
 pattern, this one now has the general form of top-down programming, full
 of subroutines calling each other iteratively and recursively. The
 importance of this development model cannot be overstated, because
 giving good names to your abstractions is the single most important
 thing you can do toward making your pattern matching easy to develop,
 debug, and maintain. It’s no different from normal programming that
 way.
And it’s easy to recognize where you are missing an abstraction;
 if you’re repeating yourself somewhere, that repeated functionality
 probably needs to be factored out and named. And if you give it a
 memorable name that tells what it’s for, this helps you organize and
 maintain your code. If you later want to modify that code, you only have
 to do so in one place; subroutine calls were the original code-reuse
 paradigm. Subpatterns are just subroutine calls in disguise.
This style of pattern matching is completely addictive, once you
 get the hang of it: nontrivial patterns will stop looking like classic
 regular expressions and start looking like their powerful cousins,
 grammars. You will no longer put up with having to write:
/\b(?=(?=[\p{Alphabetic}\p{Digit}])\X)(?:(?=[\p{Alphabetic}\p{Digit}])\X
|['\x{2019}]|(?=[^\x{2014}])\p{dash})+(?!(?=[\p{Alphabetic}\p{Digit}])\X|)/
Instead, here’s how you’ll prefer to write
 it, as a grammatical pattern for pulling words out:
$word_rx = qr{ (?&one_word)
 (?(DEFINE)
 (?<a_letter> (?= [\p{Alphabetic}\p{Digit}]) \X)
 (?<some_letters> (?: (?&a_letter) | (?&tick) | (?&dash)) +)
 (?<tick> ['\N{RIGHT SINGLE QUOTATION MARK}])
 (?<dash> (?= [^\N{EM DASH}]) \p{dash})
 (?<one_word>
 \b
 (?= (?&a_letter))
 (?&some_letters)
 (?! (?&a_letter)
 | (?&dash)
)
)
) # end define block
}x;
The top-level pattern merely calls the one_word regex subroutine, which does all the
 work. You could use that pattern to print out all words in a file, one
 per line, like this:
while (/($word_rx)/) {
 say $1;
}
As those examples show, sometimes you can write a grammatical
 pattern as an old-fashioned, ungrammatical one that doesn’t have any
 regex subroutines in it. But you really don’t want to do that because
 it’s too hard to read, write, debug, and maintain a complicated pattern
 all jammed together like that. But beyond that, you just get a lot more
 power with grammars. Many interesting problems lie beyond the reach of
 classic regexes. Let’s look at an example of something easily matched by
 Perl patterns but which no classic regex could ever solve. (Two such
 examples, as it turns out, one balanced and the other mirrored.)
This book is itself written in pod, Perl’s lightweight
 documentation system. You can read more about it in Chapter 23, but in some ways pod looks a bit like any other
 SGML-derived markup language. It has tags and pointy brackets. And just
 like most other markup languages, these tags can nest in a way that
 completely defeats any attempt to search or manipulate them using a
 simple-minded, old-school regex tool like the venerable grep. That’s because they’re nested
 structures, which means your searches and manipulators on these also
 need to have nested structure. And nesting is something that your
 textbook regular expressions just don’t do. Fortunately for you, Perl’s
 regexes are not textbook, so they can be used to parse fancy markup
 languages like XML and HTML. And pod.
Pod tags always begin with a single capital letter immediately
 followed by one or more opening left-angle brackets. That much is easy.
 The hard part is finding the closer, the right-angle bracket (or
 brackets) to end the tag. And there are two ways to do that, depending
 on whether the opener is followed by whitespace.
X​<stuff> # balanced style
X​<< stuff >> # mirrored style
Without whitespace, you are dealing with a balanced tag, where the
 number of close brackets must balance the number of open brackets seen
 before, including any brackets in the “stuff”.
With whitespace, your tag is not balanced but mirrored: it ends
 when you come to whitespace followed by the same number of closing
 brackets as there were opening ones. Within that, you may have whatever
 you like for angle brackets, whether open or close, and they do not have
 to nest because they are not counted.
Here are a few of the hairier examples in actual use in this
 book:
B​<–0xR​<HHH...>>
C​<<< >>= >>>
C​<0..(2Y​<R​<BITS>>)–1>
C​<< BZ​<><touch> SZ​<><BZ​<><–t> IZ​<><time>> IZ​<><file> >>
C​<(?E​<lt>!...)>
C​<< !grep { !R​<CODE>–>($_) } keys R​<HASH> >>
C​<<< <HANDLE>, <<END >>>
C​<(?(R​<COND>)R​<IFTRUE>|R​<IFFALSE>)>
C​<<< << R​<EXPR> >>>
C​<s/R​<PATTERN>/R​<REPLACEMENT>/>
I​<Santa MarE​<iacute>a>
X​<<< < (left angle bracket);<< (left–shift) operator:@leftleft >>>
Here is the start of a grammar to do this:
podtag:: capital either
capital:: uppercase_letter
either:: < balanced | mirrored >
These translate directly into subpatterns:
(?<podtag> (?&capital) (?&either))
(?<capital> \p{uppercase_letter})
(?<either> (?&balanced) | (?&mirrored))
A balanced angle group is just text surrounded by properly nested
 angle brackets, such as with B​<–0xR​<​HHHH>>. Balanced things
 we already know how to do, because it works just like the earlier
 problem to find balanced parentheses.
(?<balanced> < ([^<>]++ | (?&balanced))* >)
That brings us to the last piece of our grammar, the mirrored tag.
 Mirrored tags are the ones that look like C​<<< << R​<​EXPR>
 >>>. We have to look for as many closing brackets as
 we saw opening ones, but we don’t need to worry about counting opening
 and closing brackets in between there. Well, almost.
(?<mirrored> (?<open> <{2,}+) \s++
 \s+
 (?: (?&podtag) | \p{Any}) *?
 \s+
 \s++ (??{ ">" x length $MATCH{open} })
)
The start of <mirrored>
 grabs up two or more open brackets, possessively, and stores them in the
 <open> group so we can later
 use them as a backreference when we need to count them. Note that we are
 merely using <open> as a named
 capture, not a named subrule, since a named rule would hide its internal
 captures.
The middle part pulls in the tag contents. Here we have to be
 careful, because those guts can contain other pod tags, and
 those tags may be of the balanced sort. But if it’s
 anything else but a mirrored tag, it doesn’t count. We use the \p{Any}, which is Unicode-speak for what Perl
 calls (?s:.); in other words, match
 any character at all, even a newline.[105]
The last line interpolates the result of that expression to
 generate as many closing angle brackets as we’d seen at line 1.
Here then is the whole program.
#!/usr/bin/env perl
demo–podtags–core
use v5.14;
use strict;
use warnings;
use open qw(:std :utf8); # an all–UTF–8 workflow
use warnings FATAL => "utf8"; # in case there are input encoding errors
use re "/x"; # always want legible patterns
our %MATCH; *MATCH = \%+; # alias %MATCH to %+ for legibility

my $RX = qr{
 (?(DEFINE)
 (?<podtag> (?&capital) (?&either))
 (?<capital> \p{upper})
 (?<either> (?&mirrored) | (?&balanced))
 (?<balanced> < (?&contents) >)
 (?<contents> (?: (?&podtag) | (?&unangle))*)
 (?<unangle> [^<>]+)
 (?<mirrored> (?<open> <{2,}+)
 \s+
 (?: (?&podtag) | \p{Any}) *?
 \s+
 (??{ ">" x length $MATCH{open} })
)
)
};

@ARGV = glob("*.pod") if @ARGV == 0 && –t STDIN;
die "usage: $0 [pods]\n" if @ARGV == 0 && –t STDIN;

$/ = ""; # paragraph mode, since tags can cross \n but not \n\n
$| = 1; # faster output for the impatient

while (<>) {
 while (/ (?<TAG> (?&podtag)) $RX /g) {
 say $MATCH{TAG};
 }
}
A few things to notice. To print out our match, we had to
 explicitly save it into something in our own scope, the group named
 <​TAG>. Sure, we could have
 used $& or ${^MATCH} or such, but the point is that
 anything that was saved in capture groups within
 the call to <​podtag> is lost
 upon its return.
So while you can use this technique to validate input, it has its
 points of frustration when it comes to pulling out the pieces that
 you’ve just worked so hard to parse. While you could pepper your code
 with (?{ CODE
 }) inserts to do something to save pieces of the parse on the
 way through, that gets tedious fast. A better solution is to use the
 helper module described in the next section.
Grammars

Damian Conway’s Regexp::Grammars CPAN module was designed to address this, and quite a
 bit more. It makes writing grammars in Perl even easier than what we
 went through in the previous example. This module is a truly fantastic
 tool, and it is much too fancy for us to explain here; look to its
 manpage for details. But this should whet your appetite.
Regexp::Grammars is really a
 grammar compiler, much in the way that yacc is. Except instead of spitting out a C
 program the way yacc does, Regexp::Grammars spits out a pattern that
 you can use just as you would any other pattern. It does this using a
 trick we’ll talk about in the next section: it overloads the qr// operator and rewrites the pattern you
 give it into a different one that does the dirty work.
Here we’ve rewritten the previous program to use Damian’s
 module.
#!/usr/bin/env perl
demo–podtags–grammar
use v5.14;
use strict;
use warnings;
use open qw(:std :utf8); # an all–UTF–8 workflow
use warnings FATAL => "utf8"; # in case there are input encoding errors
use re "/x"; # always want legible patterns

my $podtag = do { use Regexp::Grammars; qr{
 <podtag>

 <token: podtag> <capital> <either>
 <token: capital> \p{upper}
 <token: either> <mirrored> | <balanced>
 <token: balanced> \< <contents> \>
 <token: contents> (?: <[podtag]> | <[unangle]>) *
 <token: unangle> [^<>]+
 <token: mirrored> <open=(\< {2,})>
 \s+
 (?: <podtag> | \p{Any}) *?
 \s+
 </open>
 }xms;
};

@ARGV = glob("*.pod") if @ARGV == 0 && –t STDIN;
die "usage: $0 [pods]\n" if @ARGV == 0 && –t STDIN;

$/ = ""; # paragraph mode, since tags can cross \n but not \n\n
$| = 1; # faster output for the impatient

while (<>) {
 while (/$podtag/g) {
 say $/{podtag}{capital},
 $/{podtag}{either}{""};
 }
}
This program parses the same input as the previous one; the
 grammar looks almost the same. But it’s better in many ways. It was
 easier to write, and we think it’s easier to read, too. It also does
 things the other version could not do. Look at the <​mirrored> subroutine. Here we use a
 feature of Regexp::Grammars that
 allows us to capture the opening left-angle brackets to the group
 named <​open>, then implicitly
 match the corresponding number of closing right-angle brackets just by
 saying <​/open>.
Perhaps more important, our pattern match and output statement
 are a bit different. The match is simpler, and the print is fancier.
 The hash variable named %/ holds
 the nested data structure created by any successful match of a grammar
 regex.
What you don’t see here with just this printout is that the
 %/ variable is structured. It
 exactly matches the parse taken. Suppose you feed the program input
 like “Left C​<B​<nested>> an I​<<
 N​<inside>un>tag >> gets X​<indexed> right”.
 After the parse, we’ll use the Data::Dump module to show you what you’ll find in %/.
use Data::Dump; # from CPAN
do the match, then
dd \%/; # pass ref to results hash
And you’ll get this output:
{
 "" => "C​<B​<nested>>",
 "podtag" => {
 "" => "C​<B​<nested>>",
 "capital" => "C",
 "either" => {
 "" => "​<B​<nested>>",
 "balanced" => {
 "" => "​<B​<nested>>",
 "contents" => {
 "" => "B​<nested>",
 "podtag" => [
 {
 "" => "B​<nested>",
 "capital" => "B",
 "either" => {
 "" => "​<nested>",
 "balanced" => {
 "" => "​<nested>",
 "contents" => { "" => "nested", "unangle" => ["nested"] },
 },
 },
 },
],
 },
 },
 },
 },
}
{
 "" => "I​<​< N​<inside>un>tag >>",
 "podtag" => {
 "" => "I​<​< N​<inside>un>tag >>",
 "capital" => "I",
 "either" => {
 "" => "​<​< N​<inside>un>tag >>",
 "mirrored" => {
 "" => "​<​< N​<inside>un>tag >>",
 "open" => "​<​<",
 "podtag" => {
 "" => "N​<inside>",
 "capital" => "N",
 "either" => {
 "" => "​<inside>",
 "balanced" => {
 "" => "​<inside>",
 "contents" => { "" => "inside", "unangle" => ["inside"] },
 },
 },
 },
 },
 },
 },
}
{
 "" => "X​<indexed>",
 "podtag" => {
 "" => "X​<indexed>",
 "capital" => "X",
 "either" => {
 "" => "​<indexed>",
 "balanced" => {
 "" => "​<indexed>",
 "contents" => { "" => "indexed", "unangle" => ["indexed"] },
 },
 },
 },
}
As you see, inside the hash is essentially a trace of every
 production the grammar executed in running the parse, including nested
 tags. Regexp::Grammars is a lot
 more sophisticated than we can show here. Plus, once you’ve gone to so
 much trouble to set up your grammars, your grammars can even share
 each other’s regex subroutines if you’d like. That’s a lot more
 sharing than you get in the simpler grammars shown in the previous
 section, which had none at all. It’s worth taking a serious look at if
 you have complicated parsing to do.

[104] Yes, it’s a hack, but it’s a neat hack. Otherwise, we’d be
 forced to use a postfix {0}
 quantifier as Ruby does, to the detriment of readability.

[105] This isn’t technically true. At higher levels of conformance
 than Perl provides, \p{Any} could
 match locale-specific linguistic elements like digraphs and
 trigraphs.

Defining Your Own Assertions

You can’t (easily: see next section) change how Perl’s Engine works, but if you’re sufficiently
 warped, you can change how it sees your pattern. Since Perl interprets
 your pattern similarly to double-quoted strings, you can use the wonder
 of overloaded string constants to see to it that text sequences of your
 choosing are automatically translated into other text sequences.
In the example below, we specify two transformations to occur when
 Perl encounters a pattern. First, we define \tag so that, when it appears in a pattern,
 it’s automatically translated to (?:<.*?>), which matches most HTML and
 XML tags. Second, we “redefine” the \w metasymbol so that it handles only English
 letters.
We’ll define a package called Tagger that hides the overloading from our
 main program. Once we do that, we’ll be able to say:
use Tagger;
$_ = "<I>camel</I>";
say "Tagged camel found" if /\tag\w+\tag/;
Here’s Tagger.pm, couched in
 the form of a Perl module (see Chapter 11):
package Tagger;
use overload;

sub import { overload::constant "qr" => \&convert }

sub convert {
 my $re = shift;
 $re =~ s/ \\tag /<.*?>/xg;
 $re =~ s/ \\w /[A–Za–z]/xg;
 return $re;
}

1;
The Tagger module is handed the
 pattern immediately before interpolation, so you can bypass the
 overloading by bypassing interpolation, as follows:
$re = '\tag\w+\tag'; # This string begins with \t, a tab
print if /$re/; # Matches a tab, followed by an "a"...
If you wanted the interpolated variable to be customized, call the
 convert function directly:
$re = '\tag\w+\tag'; # This string begins with \t, a tab
$re = Tagger::convert $re; # expand \tag and \w
print if /$re/; # $re becomes <.*?>[A–Za–z]+<.*?>
Now if you’re still wondering what those sub thingies are in the Tagger module, you’ll find out soon enough
 because that’s what Chapter 7 is all about.

Alternate Engines

Starting with v5.10, you can even swap out Perl’s entire regex engine and
 replace it with an alternate pattern-matching library. The underlying
 mechanics that make this possible are documented in the perlreapi
 manpage. It’s pretty tough reading, meant for seriously hardcore hackers
 only.
But you may be in luck. Thanks to CPAN, Perl plug-ins for the
 alternate regex engine of your choice may already exist. When you use
 these, you write your patterns normally and, come time to execute them,
 the alternate engine takes charge. Table 5-18
 shows some CPAN modules that let you use other languages’ regex engines
 in your Perl code (as they exist on CPAN in autumn 2011). There may be
 more by the time you read this, so look around.
Table 5-18. Alternate regex engines
	Module	Description	Version	Updated	Current Maintainer
	re::engine::LPEG 	The LPEG regex engine	0.05	2010-07-09	François Perrad
	re::engine::RE2 	Russ Cox’s RE2 regex
 engine	0.08	2011-04-22	David Leadbeater
	re::engine::Plugin 	General API for writing custom
 regex engines	0.09	2011-04-05	Vincent Pit
	re::engine::Plan9 	Regexes from Plan9!	0.16	2010-03-31	Ævar Arnfjörð Bjarmason
	re::engine::Oniguruma 	Ruby’s Oniguruma regex
 engine	0.05	2011-07-10	 [image:]
	re::engine::Lua 	Lua’s regex engine	0.06	2008-12-20	François Perrad
	re::engine::PCRE 	Phil Hazel’s Perl-Compatible
 RegEx engine	0.17	2011-Jan-29	Ævar Arnfjörð Bjarmason

(Notice anything about those authors? More than two-thirds of them
 have names you can’t even talk about in ASCII.
 Welcome to the global 21st century!)
One engine of special note is Russ Cox’s RE2 library. It’s a C and C++ library that’s
 used in the Go programming language, among many other places. The
 interesting thing is that it maintains a high level of Perl
 compatibility, including good UTF-8 support, while avoiding the
 potential pitfalls of catastrophic backtracking. It does this because
 unlike Perl, whose engine is a recursive backtracker, RE2 uses a hybrid
 NFA/DFA approach that never gets bogged down in pathological
 cases.
This can be critical in time-sensitive applications where you want
 to let users provide their own pattern, but you cannot risk letting
 their search take forever. First written for Google’s Code Search, where
 time is of the essence, RE2 is also used via its Perl interface at
 http://grep.cpan.me. This site lets you enter a
 search pattern that runs over everything in CPAN.
Once you’ve installed re::engine::RE2,[106] using it is as easy as putting a use re::engine::RE2 in the lexical scope whose
 regexes you want to use RE2’s engine instead of the native Perl one.
 That’s all.
Here’s an example of the kind of place where RE2 blows the socks
 off any recursive backtracker. First, timings running regular
 Perl:
% time perl -E 'say (("a" x 17) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 1.564u 0.005s 0:01.57
% time perl -E 'say (("a" x 23) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 17.757u 0.025s 0:17.84
% time perl -E 'say (("a" x 29) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 127.965u 0.180s 2:09.20
Now again but using the RE2 engine instead:
% time perl –Mre::engine::RE2 –E 'say (("a" x 500) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 0.004u 0.002s 0:00.00
% time perl –Mre::engine::RE2 –E 'say (("a" x 5000) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 0.004u 0.002s 0:00.00
% time perl –Mre::engine::RE2 –E 'say (("a" x 50000) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 0.004u 0.002s 0:00.00
As you see, with RE2, the run time no longer grows proportionately
 to the input size, but only to the regex size. When your input string is
 as large as all of CPAN, this can matter a great deal. Yes, it’s
 something of a contrived demo, but patterns that show the same sort of
 issue come up surprisingly frequently.
You can configure re::engine::RE2 to use RE2 for patterns it can
 handle and to fall back to native Perl for those it can’t, which makes
 it 100% compatible. Or, if you’re providing an external service, you can
 configure it to use only RE2 without a fallback, and that way never risk
 falling into a denial-of-service situation in your server.
For more about the design of RE2 and about finite automata in
 general, see Russ Cox’s three-paper series “Regular Expression Matching
 Can Be Simple and Fast”, “Regular Expression Matching: The Virtual
 Machine Approach”, and “Regular Expression Matching in the Wild”.

[106] See the directions in Chapter 19 if you don’t
 already know how.

Chapter 6. Unicode

If you’ve never heard of Unicode, you must have been living on a desert island with
 nothing but a manual typewriter for the last 20 years. Unicode
 celebrated its 20th birthday back in early
 2010. Even if you have heard of it, you may not really know what it is,
 or how to work with it. This is not something to be embarrassed about;
 the fact of the matter is that everyone is still
 learning about Unicode, including its inventors. Although we can’t hope
 to cover all the nuanced intricacies of Unicode in this chapter or even
 this book, we can certainly get you started using Unicode in Perl.
Working with Unicode these days isn’t an option: it’s a necessity.
 The majority of the Web is in Unicode,[107] and many large corpora are 100% Unicode. Because web
 browsers do their best to make do with whatever character set web
 servers give them, you probably haven’t noticed how much Unicode is
 really out there now. Programming languages without solid Unicode
 support are decades behind the curve, as are programs written in those
 languages. They might have worked okay in the 1980s, even the 1990s, but
 today we need the real thing.
So how did we get here?
Computers store characters as numbers. In the early days these
 were small integers, 5, 6, 7, or 8 bits long. EBCDIC used 8 bits and was
 based on punch cards. ASCII used up only 7 bits, leaving precisely 1 bit
 in each byte for other purposes—many, many other purposes, all
 contradictory, as it turned out.
So, in those days, pretty much everyone in western lands confused
 characters with small numbers in the range 0 to 127, or 0 to 255. Even
 though that’s more characters than you likely have keys on your
 keyboard, it really wasn’t very many, and people in different parts of
 the world had their own ideas of which particular character each of
 those numbers represented.
That might be enough to send off a telegram in simple English, but
 it isn’t enough to handle all the characters needed by the Latin, Greek,
 and Cyrillic alphabets, let alone the many Asian ones. The Asians were
 forced to develop various mutually incompatible 16-bit codes. It was
 extremely difficult, and often impossible, to include text from several
 alphabets in the same text document, since the same number meant one
 letter in one alphabet but a different letter in a different
 alphabet.
Historically, people made up character sets to reflect what they
 needed to do in the context of their own culture. Since people of all
 cultures are naturally lazy, they’ve tended to include only the symbols
 they needed, excluding the ones they didn’t need. That worked fine as
 long as we were all isolationists communicating only with other people
 of our own culture. But now that we’re starting to use the Internet for
 cross‐cultural communication, we’re running into problems with the
 exclusive approach. It’s hard enough to figure out how to use an
 American keyboard to type basic Latin characters with accent marks on
 them, let alone some of the more exotic characters.
So along came the idea of Unicode: a single system of characters
 that everyone can use interchangeably for nearly every textual purpose.
 Unicode covers not just all modern writing systems plus most of the
 ancient ones we know much about, it also includes specialist characters
 used in typesetting, mathematics, linguistics, and many other fields,
 including even the emoticons used on cell phones. See Table 6-1.
Table 6-1. Sample Unicode characters
	Latin Letters	Å ǽ ç ð é ﬃ ï İ ñ ø œ š ſ ß ȝ
 þ
	Greek Letters	α ᾁ β Γ γ Δ δ ϝ θ λ Ξ ξ π Σ σ ς
 φ χ Ψ Ώ ᾦ
	Cyrillic Letters	а Б б д ж з И и к Л с т У у Ф ф Ш ь Э Ю я
	Math Letters	

 [image:]

	Math Symbols	÷ × ± ≤ ≠ ≈ ≣ ∅ ∈ ∛ ∆ Ω ⊆ ∞ ∫ ∂
 ∴ ℵ₀
	Currency Symbols	¢ $ £ ₤ € ₡ ₢ ₣ ƒ ₧ ₩ ¥
	Dots	. ⋅ · ∘ ◦ • ¨ ‥ … ⋯ ⋱ ⋰ ⋮
	Dashes	-
 ‐ ⁃ –
 − ‒ ―
 —
	Quotation Marks	‘ “ ‘ ’ “ ” ‹ › « » 「 」

As you can see, some of those look rather similar. Unicode
 distinguishes characters not by how they look, but what they do. It’s a
 semantic code, really, and only secondarily a glyph code, and that’s
 only because representing glyphs is a part of its semantics. Unlike
 ASCII, which is just a small set of characters with few properties
 defined for those characters, Unicode is much more than that. It’s too
 easy to think of Unicode as just an overgrown form of ASCII, with a
 bunch more characters. But Unicode is more than just more
 characters—it’s also all the rules for categorizing and handling that
 bunch of characters.
Along with the characters and properties, Unicode also defines how
 to deal with casemapping and casefolding; combining characters; grapheme
 clusters; normalization forms; collation; character properties for use
 in pattern matching, including character names, categories, and scripts;
 numeric equivalences (e.g., telling you that
 U+216B, “Ⅻ”, has the value 12); print widths; bidirectionality; rules
 for word- and linebreaking; and glyph variations. Just to name a
 few…
Perl first introduced tentative support for Unicode in v5.6,
 although it wasn’t until v5.8 that we finally managed to resolve the
 important I/O issues. By v5.12, most of the remaining kinks were worked
 out, and as of v5.14 Perl—coincident with v6.0 of the Unicode
 Standard—you should be able to use Unicode and Perl together seamlessly.
 Mostly. Well, better than other languages do it, anyway.
What we mean is that we’ve made the easy things easy without
 forbidding the possibility of tackling hard things, too. The first easy
 thing to notice is that Perl lets your strings contain characters of
 arbitrarily large ordinal values. ASCII limits characters to 7-bit
 ordinals, Latin-1 to 8-bit ordinals, and Unicode to 21-bit
 ordinals.[108] But Perl’s characters are not limited to such tiny
 numbers. Currently, Perl’s characters are limited to 64 bits on 64-bit
 machines, but that’s still 18,446,744,073,708,437,504 more codepoints
 than Unicode itself provides. (Well, we did say “arbitrarily large”, and
 that’s pretty arbitrary.)
In Unicode, every character has its own unique number, called
 its codepoint. That’s why it’s called
 Unicode: a unique, universal code for every different character. For
 example, the character named latin capital
 letter a has the character number 65 decimal, 0x41 hex. This is
 often written U+0041; the “U+” prefix is a convention that says it’s not
 just any old number, but a number that represents a Unicode
 codepoint.
If you’ve ever mistaken an “l”
 for a “1”, an “O” for a “0”, or a “,” for a “.”, you know how easy it is for a human to get
 characters mixed up. You also know that the computer is never fooled. It
 doesn’t matter what the character might look like in one or another
 font. All that matters is what it does. For example, the characters
 shown in Table 6-2 usually all look mostly
 alike in most fonts.
Table 6-2. Unicode confusables for capital A
	Glyph	Code	Category	Script	Name
	A	U+00041	Lu	Latin	latin capital letter a
	A	U+0FF21	Lu	Latin	fullwidth latin capital letter a
	Α	U+00391	Lu	Greek	greek capital letter alpha
	А	U+00410	Lu	Cyrillic	cyrillic capital letter a
	[image:]	U+1D5A0	Lu	Common	mathematical sans-serif capital a
	[image:]	U+1D670	Lu	Common	mathematical monospace capital
 a

The first column in the table is the glyph for the character. You
 can use Unicode literals like those in your own code only if you’ve said
 use utf8 in the current lexical
 scope. Most mainstream editors and windowing systems will have various
 ways of entering such characters, though they may not be turned on by
 default, so a little research may be in order—if you’re not too lazy.
 But hey, that’s okay, too: if you don’t know how to type in a character,
 you can always find one somewhere else, grab it with your mouse, and
 paste it in.
Outside of looking at it, the glyph is in some ways the least
 useful aspect of a character, because you cannot know how or even
 whether it will display in anyone else’s font but your own. A glyph may
 look okay to you, but never trust your eyes—trust the numbers. The
 second column is the standard Unicode notation for a character’s numeric
 code. Here are some ways of talking about codepoints in Perl:
if (ord($somechar) == 0x0391) { }
$alpha = "\x{391}";
$alpha = "\N{U+391}";
$alpha = chr(0x391);
After the codepoint comes two of the codepoints’ most important
 properties: its General Category property, listed as CATEGORY, and its
 Script property, listed as SCRIPT. Codepoint
 properties are most often used as named character classes in patterns,
 where a \p{PROPERTY}
 matches any codepoint with that property, and \P{PROPERTY}
 matches any codepoint without that property.
/^\p{GC=Lu}+$/ # all capital letters
/^\p{script=Greek}+$/ # it's greek to me
/[\P{script=Latin}\P{script=Common}]/ # not intersection
The last one is true for strings that contain any codepoint that’s
 either non-Latin or non-Common. Because case, whitespace, and underscore
 don’t count in property names, you can format them however you like. So
 if you think it’s more readable to write \p{gc=modifier_letter} in all lowercase and
 \P{SC=INHERITED} in all uppercase, go
 right ahead: Perl won’t care. Or do the opposite, if you like it that
 way.
Besides two-part properties like those above, Perl also provides
 one-element aliases for all general categories and scripts, so you can
 just use \p{Lu} and \p{Greek} if you’d like. For example, if you
 wanted to make sure your string only had Latin and Greek characters in
 it, you could do this:
$mylang = qr/[\p{Latin}\p{Greek}\p{Common}\p{Inherited}]/;
if ($string =~ /\A$mylang+\z/) { ... }
We added Common for things that are common to more than one
 script, like digits and punctuation, and Inherited for things like
 combining marks (usually diacritics) that take on the script of whatever
 base codepoint they’re attached to. Combining codepoints are completely
 unlike anything in ASCII, so they’re something that ASCII-speakers first
 coming to Unicode may find confusing. Perhaps the nearest concept in
 ASCII is overstriking using backspace, except that in Unicode combining
 codepoints automatically apply to the previous codepoint, so no
 backspace is necessary. We talk all about them in the upcoming section
 Graphemes and Normalization.
You’ll note that we’ve started differentiating the term
 “codepoint” from the term “character” in this chapter. In other places
 (including other chapters in this book), they are often used
 interchangeably, and character is also used sometimes to mean
 “grapheme”, but here we need to be just a bit more precise. A codepoint
 is specifically one of the individual integers that make up the string
 when seen as a list of integers, while a character can fuzzily mean
 either codepoint or a grapheme in its human context. More generally, you
 should be aware that people might mean three or four different things
 when they say “character”.
The last field in our table is the character’s name. Er, the
 codepoint’s name. To specify the names of codepoints in your code, you
 first have to load them in with the charnames module, after which you may refer to them using \N{...} like this:
use charnames qw(:full);

$alpha = "\N{GREEK CAPITAL LETTER ALPHA}";
$alpha_code = ord "\N{GREEK CAPITAL LETTER ALPHA}";
if ($string =~ /\N{GREEK CAPITAL LETTER ALPHA}/) { ... }
Talking about codepoints by name is a lot better than talking
 about them by number. It makes your code more understandable.
For other nifty things you can do with \N{...}, see charnames in Chapter 29.

[107] In the UTF-8 encoding of Unicode, to be precise.

[108] Strictly speaking, they’re only 20.087463 bits, since Unicode
 has only 0x110000 codepoints, not 0x200000.

Show, Don’t Tell

If a picture is worth a thousand words, putting the actual
 characters you want into your program has to be worth at least fifty
 or so. So you’ll want to start off by telling Perl that your source
 code really is in Unicode characters, not just in bytes.[109] You don’t have to do this, but it makes some things
 easier if you can enter real Unicode into your source.
So far, Perl assumes every source unit is in ASCII unless you tell it otherwise
 (though, arguably, the default should change to Unicode someday). You
 can always specify Unicode codepoints through the circumlocutions we
 mentioned above, but literals will be treated as separate bytes. If
 Perl sees a literal UTF-8 character, it won’t realize it should treat
 it as one logical character, and it will show up as one, two, three,
 or even four separate Perl characters, all with ordinals under 256.
 You don’t want that to happen, so use these declarations:
use v5.14; # includes the unicode_strings feature
use utf8; # handles UTF–8 literals
The first makes sure that codepoints with ordinals in the tricky range of 128–255
 are treated as Unicode strings, while the second tells the Perl
 compiler that this entire source file is in the UTF-8 encoding of
 Unicode. Under the utf8 pragma, you can
 now use Unicode in your string and regex literals.
my $dwarf = "Þórinn Eikinskjaldi";
my $search = "búsqueda";
my $measure = "Ångström";
my $how = "à contre–cœur";
my $motto = "[image:]";
That’s a lot easier to read, although maybe not as easy to type
 as writing:
use charnames qw(:full);

my $dwarf = "\N{LATIN CAPITAL LETTER THORN}\N{LATIN SMALL LETTER
 O WITH ACUTE}rinn Eikinskjaldi";
my $search = "b\N{LATIN SMALL LETTER U WITH ACUTE}squeda";
my $measure = "A\N{COMBINING RING ABOVE}ngstro\N{COMBINING DIAERESIS}m";
my $how = "\N{LATIN SMALL LETTER A WITH GRAVE} contre–c\N{LATIN
 SMALL LIGATURE OE}ur";
my $motto = "\N{FAMILY}\N{GROWING HEART}\N{DROMEDARY CAMEL}";
Which in turn are both preferable to putting secret magic
 numbers in code, like this:
my $dwarf = "\x{DE}\x{F3}rinn Eikinskjaldi";
my $search = "b\x{FA}squeda";
my $measure = "\x{C5}ngstr\x{F6}m";
my $how = "\x{E0} contre–c\x{153}ur";
my $motto = "\x{1F46A}\x{1F497}\x{1F42A}";
But that’s not all. Under utf8, you can now use Unicode in Perl identifiers.
a few character sets
my @iso = qw(Latin1 Latin2 Latin15);
my @μsoft = qw(cp852 cp1251 cp1252);
my @[image:] = qw(koi8–f koi8–u koi8–r);

whether to include answers that return no results
my $INCLUÍR_NINGUNOS = 0;

whether diacritics matter
my $SI_IMPORTAN_MARCAS_DIACRÍTICAS = 0;

think of << as the "hasta" operator :)
my @ciudades_españolas = ordenar_a_la_española(<<'LA_ÚLTIMA' =~ /\S.*\S/g);
.....
.....
LA_ÚLTIMA

my $déjà_imprimée; # le nom d'une ville

Greek hypermegas
my @ὑπέρμεγας = ();

Ok, now we’re just showing off :–)
my [image:]($input);
In practice, if you’re using non-English names for your
 identifiers, you’ll probably want your comments in the corresponding
 language. All this makes it easier for people all over the world to
 write Perl in their own language, instead of forcing them all to learn
 English.
Currently, you should limit Unicode identifiers to private
 variables only. This is because of how global variables are stored,
 and also because of how module names map to the local filesystem. The
 first of these restrictions is expected to be removed in the near
 future, although the second one is still a matter for research.

[109] You may prefer to call them “octets”; that’s okay, but we
 think the two words are pretty much synonymous these days, so
 we’ll stick with the blue‐collar word.

Getting at Unicode Data

Internally, Perl keeps all codepoints in a format that’s compatible with Unicode,
 meaning that the bottom 21 bits are the same as Unicode’s, just as
 Unicode’s bottom 8 bits are the same as Latin-1’s. How these
 codepoints are actually stored internally is not something average
 Perl users should ever have to worry about.
However, as soon as you have to interact with the outside world,
 you are going to have to interpret the input data being fed to you
 and, in turn, generate output data that’s in a format the receiving
 program finds palatable. Characters inside Perl have been
 decoded from their external format into abstract
 characters, but when you need to emit those characters, you’ll have to
 encode them into whatever format is expected of
 you. If you forget to do this, you’re liable to generate mutterings
 about “wide character” or “Malformed UTF-8 character”.
Perl has two main ways to mark the encoding of an entire stream,
 plus various shortcuts to make this even easier. If your stream is
 already opened, you can set its encoding by passing a second argument
 to the binmode
 function:
binmode(STDIN, ":encoding(CP1252)")
 || die "can't binmode to cp1252: $!";
binmode(STDOUT, ":encoding(UTF–8)")
 || die "can't binmode to UTF–8: $!";
If you haven’t opened the file yet, then you can use the mode
 argument in a call to open to specify the
 encoding right there.
open(OUTPUT, "> :raw :encoding(UTF–16LE) :crlf", $filename)
 || die "can't open $filename: $!";
print OUTPUT for @stuff;
close(OUTPUT) || die "couldn't close $filename: $!";
On output, the :crlf layer
 translates \n into \r\n; on input, it does the opposite. This
 layer is enabled by default under Windows when opening files in “text”
 mode, but you must specify it explicitly on Unix if you want that
 behavior. See the PerlIO manpage for more about
 I/O layers.
But \n and \r\n aren’t the only possible line
 terminators under Unicode. Currently, Unicode recognizes eight
 different linebreak sequences—these seven codepoints plus the
 two-codepoint \r\n grapheme:
U+000A LINE FEED (LF)
U+000B LINE TABULATION
U+000C FORM FEED (FF)
U+000D CARRIAGE RETURN (CR)
U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR
There is no special layer for handling Unicode linebreak
 sequences generically, but if you can afford to read the entire file
 into memory, it is easy to convert them all into newlines:
$complete_file =~ s/\R/\n/g;
Or split them into a list of lines, all without their line
 terminator:
@lines = split(/\R/, $complete_file);
The open pragma can be used
 to set the encoding on all newly opened filehandles. For example, to
 say that any open without a
 specified encoding will default to UTF-8, as will STDIN, STDOUT, and STDERR:
use open qw(:encoding(UTF–8) :std);
If you just want your standard streams set to UTF-8 instead of
 binary, you can use the –CS
 command-line option on a per-execution basis, or you can set the
 PERL_UNICODE environment
 variable to “S”. If you set
 them to “D”, then all handles that
 are not opened with an encoding layer default to UTF-8 text instead of
 binary byte data. See Chapter 17.
Using either the –C
 command-line option or the PERL_UNICODE environment variable makes
 calling binmode even on Unix
 programs necessary for binary streams, something normally only Windows
 users—or people writing portable programs—have to do. It will break
 existing Unix programs that assume if they say nothing, they get
 binary not text. But it will unbreak existing programs that don’t know
 to decode their UTF-8 text.
Ranked from highest to lowest (such that anything occurring
 higher in the list always overrides any settings from something that
 comes lower down), the precedence of the various mechanisms to set the
 stream encoding is as follows:
	Explicitly calling binmode on an already-open
 filehandle.

	Including a layer in the second out of three or more
 arguments to open.

	The open pragma.

	The –C command-line
 switch.

	The PERL_UNICODE
 environment variable.

One exception to all this is the DATA handle. It isn’t covered either by the use utf8 or the open pragmas,
 so you’ll still need to set its encoding yourself:
binmode(DATA, ":encoding(UTF–8)");
Because of the way the utf8
 and UTF–8 encoding layers are
 implemented, they do not normally throw exceptions on malformed input.
 Add this to your code to make them do so:
use warnings FATAL => "utf8";
As of v5.14, Perl has three subwarnings that are part of the
 “utf8” warning group, which you may
 at times wish to distinguish. These are:
	nonchar
	Unicode sets aside 66 codepoints as noncharacter
 codepoints. These all have the Unassigned (Cn) General Category,
 and they will never be assigned. They may not be used in open
 interchange so that code can mix them in with character data as
 internal sentinels, and they will always be distinguishable from
 that data. The noncharacter codepoints are the 32 from U+FDD0 to U+FDEF, and 34
 codepoints comprising the last two codepoints from each plane
 (whose hex codes therefore end with FFFE or FFFF). Under some
 circumstances you may wish to permit these codepoints, such as
 between two cooperating processes that are using them for shared
 sentinels. If so, you would want to say:
no warnings "nonchar";

	surrogate
	These codepoints are reserved for use by UTF-16. There is
 really never any reason to enable these, and no conformant
 processes can interchange them because UTF-16 agents would be
 unable to process them (though UTF-8 and UTF-32 agents could do
 so, were they so inclined).

	non_unicode
	The maximum Unicode codepoint is U+10FFFF, but Perl knows
 how to accept codepoints up to the maximum permissible unsigned
 number available on the platform. Depending on various settings
 and the phase of the moon, Perl may warn (using the warning
 category “non_unicode”, which is a subcategory of “utf8”) if an
 attempt is made to operate on or output codes larger than
 normal. For example, “uc(0x11_0000)” will generate this
 warning, returning the input parameter as its result, as the
 uppercase of every non-Unicode codepoint is the codepoint
 itself.

Of those, the non-Unicode codepoints are by far the most useful,
 and you quite probably want to allow them for your own internal
 use.
no warnings "non_unicode";
Here is just one possible use for them. What this does for
 ASCII:
tr[\x00–\x7F][\x80–\xFF];
this does for Unicode:
tr[\x{00_0000}–\x{10_FFFF}][\x{20_0000}–\x{30_FFFF}];
That is, they remap all codepoints from the legal range of their
 respective character sets into an illegal range. Why would you do
 that? It’s one way to mark text that you never want to match again.
 Just make sure to put them back when you’re done.

The Encode Module

The standard Encode module is most often used implicitly, not explicitly.
 It’s loaded automatically whenever you pass an :encoding(ENC)
 argument to binmode or to
 open.
However, you’ll sometimes find yourself with a bit of
 encoded data that didn’t come from a stream whose
 encoding you’ve set, so you’ll have to decode it manually before you
 can work with it. These encoded strings might come from anywhere
 outside your program, like an environment variable, a program
 argument, a CGI parameter, or a database field. Alas, you’ll even
 see “text” files where some lines have one encoding but other lines
 have different encodings. You are guaranteed to see mojibake.
In all these situations, you’ll need to turn to the Encode module to manage encoding and
 decoding more explicitly. The functions you’ll most often use from
 it are, surprise, encode and
 decode. If you have raw external
 data that’s still in some encoded form stored as bytes, call
 decode to turn that into abstract
 internal characters. On the flip side, if you have abstract internal
 characters and you want to convert them to some particular encoding
 scheme, you call encode.
use Encode qw(encode decode);
$chars = decode("shiftjis", $bytes);
$bytes = encode("MIME–Header–ISO_2022_JP", $chars);
For example, if you knew for sure that your terminal encoding
 was set to UTF-8, you could decode @ARGV this way:
this works just like perl –CA
if (grep /\P{ASCII}/ => @ARGV) {
 @ARGV = map { decode("UTF–8", $_) } @ARGV;
}
For people who don’t run an all-UTF-8 environment, it’s not a
 good idea to assume the terminal is always in UTF-8. It may be in a
 locale encoding. Although the standard Encode module doesn’t support
 locale-sensitive operations, the CPAN Encode::Locale module does. Use it like this:
use Encode;
use Encode::Locale;

use "locale" as an arg to encode/decode
@ARGV = map { decode(locale => $_) } @ARGV;

or as a stream for binmode or open
binmode $some_fh, ":encoding(locale)";

binmode STDIN, ":encoding(console_in)" if –t STDIN;
binmode STDOUT, ":encoding(console_out)" if –t STDOUT;
binmode STDERR, ":encoding(console_out)" if –t STDERR;
Databases are one area where you may have to deal with manual
 encoding and decoding. It depends on the database system. With
 simple DBM files, the underlying library expects bytes not codepoint
 strings, so you cannot directly use regular Unicode text on DBM
 files. If you try, you will get a Wide
 character in subroutine exception. To store a Unicode
 key-data pair in a %dbhash DBM
 hash, encode them to UTF-8 first:
use Encode qw(encode decode);

assuming $uni_key and $uni_value are abstract Unicode strings

$enc_key = encode("UTF–8", $uni_key);
$enc_value = encode("UTF–8", $uni_value);
$dbhash{$enc_key} = $enc_value;
The reciprocal action to retrieve a Unicode value, therefore,
 requires first encoding the key before you use it, then decoding the
 value returned after you fetch it:
use DB_File;
use Encode qw(encode decode);

tie %dbhash, "DB_File", "pathname";

$uni_key holds a normal Perl string (abstract Unicode)
$enc_key = encode("UTF–8", $uni_key);

$enc_value = $dbhash{$enc_key};
$uni_value = decode("UTF–8", $enc_value);
Now you can work with the returned $uni_value as with any other Perl string.
 Before that, it just has bytes, which are nothing but integers under
 256 stored in string form. (And those integers are very much
 not Unicode codepoints.)
Alternately, starting with v5.8.4, you can use the standard
 DBM_Filter module to transparently handle the encoding and
 decoding for you.
use DB_File;
use DBM_Filter;

use Encode qw(encode decode);

$dbobj = tie %dbhash, "DB_File", "pathname";
$dbobj–>Filter_Value_Push("utf8");

$uni_key holds a normal Perl string (abstract Unicode)
$uni_value = $dbhash{$uni_key};

A Case of Mistaken Identity

If you only know ASCII, nearly all your assumptions about how text
 behaves with respect to case will be invalid in Unicode. In ASCII,
 there are uppercase letters and lowercase letters, but in Unicode, there is also a third
 sort of case, called titlecase. This isn’t something we make much use of in
 English, but it does occur in various other writing systems derived
 from Latin or Greek.
Usually titlecase is the same as uppercase, but not always. It’s
 used when only the first letter should be capitalized but not the
 rest. Some Unicode codepoints look like two letters printed side by
 side, but they are really just one codepoint. When used on a word
 that’s supposed to have only its first part capitalized but not the
 rest, the titlecase version only capitalizes the appropriate part.
 These mostly exist to support legacy encodings, and today it is more
 common to use codepoints whose titlecase map produces two separate
 codepoints, one each in uppercase and lowercase. Here’s an example of
 one of the legacy characters:
use v5.14;
use charnames qw(:full);
my $beast = "\N{LATIN SMALL LETTER DZ}ur";
say for $beast, ucfirst($beast), uc($beast);
That prints out “dzur”, “Dzur”, and “DZUR”, each of which is
 only three codepoints long.
Some letters have no case, and some nonletters do have case.
 Lettercase is comparatively rare in the world’s writing systems. Only
 eight out of Unicode v6.0’s nearly 100 supported scripts have cased
 characters in them: Armenian, Coptic, Cyrillic, Deseret, Georgian,
 Glagolitic, Greek, and Latin scripts, plus some from Common and
 Inherited. None of the rest do.
A string can change length when casemapped. Under
 simple casemapping, the casemap of a string is
 always the same length as the original, but under full
 casemapping, it need not be. For example, the uppercase of
 “tschüß” is “TSCHÜSS”, one character longer.
Different strings in one case can map to the same string in
 another case. Both lowercase Greek sigmas, “σ” and “ς”, have the same
 uppercase form, “Σ”, and that’s just a simple example. To address all
 these variations sanely (or less insanely), a fourth casemap
 called foldcase is required for case-insensitive comparisons.
 Strings with the same foldcase are by definition
 case-insensitive equivalent.
Perl has always supported case-insensitive matching using the
 /i pattern modifier, which compares their casefolds. Starting with v5.16, the
 fc function is supported directly, allowing you to compare the foldcase
 of two strings to decide whether they are case variants of each other.
 Before v5.16, you can get the fc
 function from the Unicode::CaseFold CPAN module.
Check your copy of the perlfunc
 manpage and your release notes in perldelta
 to see whether this feature exists yet in your release. If so, it will
 probably have an interpolated translation escape called \F that works like \L and \U, but for foldcase instead.
Another un-ASCII surprise is that casemapping is not guaranteed
 to be a reversible operation. For example,
 lc("[image:]") is
 “[image:]”, but
 uc("[image:]") is “SS” and
 lc("SS") is
 “ss”, which is not at all where we started from. It doesn’t take
 exotic two-character combinations to show that you cannot guarantee a
 round trip back to where you started. Remember our Greek sigmas: “σ”
 is the normal form, but “ς” is used at the end of the word, and both
 of those have the same uppercase form, “Σ”. The round trip fails in
 that
 lc(uc("ς"))
 does not bring you back to the “ς” you started with, but only to
 “σ”.
Not all cased characters change when casemapped. In Unicode,
 just because something is (say) lowercase doesn’t mean that it even
 has a casemap for uppercase or titlecase. For
 example, uc("McKinley") is “McKINLEY”,
 because that modifier letter small c
 is lowercase but doesn’t change case when casemapped—it wouldn’t look
 right. Similarly, the small capitals are actually lowercase letters
 because they all fit within the x-height of the font. In “Boulder Camera”, the first letter of each word is in
 uppercase and the rest in lowercase.
Not all characters considered lowercase are even letters. Case
 is a property distinct from the General Categories. Roman numerals are
 cased numbers—for example, “Ⅷ” vs “viii”. There are even letters that
 are considered lowercase but are GC=Lm not GC=Ll.
The typical ASCII strategy of putting a word into “headline”
 case using ucfirst(lc($s)) is
 not guaranteed to work correctly in Unicode, because titlecasing the
 lowercase version is not always the same as titlecasing the original.
 This is also true of the other combinations. The correct way is to
 titlecase the first letter by itself and lowercase the remainder,
 either by calling the functions explicitly or with a regex
 substitution:
$tc = ucfirst(substr($s, 0, 1)) . lc(substr($s, 1));

s/(\w)(\w*)/\u$1\L$2/g;
Apart from the General Categories, Unicode has quite a few other
 properties related to lettercase. Table 6-3
 shows the ones available in Unicode v6.0. They’re all binary
 properties, so you can just use their one-element form if you’d like.
 So instead of saying \p{CWCM=Yes}
 and \p{CWCM=No}, you can write
 \p{CWCM} for any codepoint that has
 that property, and \P{CWCM} for any
 codepoint that lacks it.
Table 6-3. Case-related properties
	Short	Long
	Cased	Cased
	Lower	Lowercase
	Title	Titlecase
	Upper	Uppercase
	CWL	Changes_When_Lowercased
	CWT	Changes_When_Titlecased
	CWU	Changes_When_Uppercased
	CWCM	Changes_When_Casemapped
	CWCF	Changes_When_Casefolded
	CWKCF	Changes_When_NFKC_Casefolded
	CI	Case_Ignorable
	SD	Soft_Dotted

The Lower and Upper properties match all codepoints with
 the appropriate property, not letters alone. There are currently no
 nonletter titlecase codepoints, so Title is (for now) the same as gc=Lt. However, under /i, all three of them are the same as the
 Cased property, which is not
 letter-specific. Using gc=Lt
 case-insensitively is only the same as Case_Letter.

Graphemes and Normalization

We already mentioned characters like latin
 small letter dz that occupy one codepoint but that may look
 like two characters to the end user. The opposite situation also
 exists and is much more common. That is, a single user-visible
 character (a grapheme) can
 require more than a single codepoint to represent it. Think of a letter
 plus one or more diacritics, like both és in “résumé”. Those might
 each be one codepoint, or two. It’s even possible that one é of them
 is a letter codepoint but the other is a letter followed by a
 combining mark. By design, you can never tell the difference just by
 looking at them because they are considered canonically equivalent.
 This has serious ramifications for almost all text handling, and it
 very nearly contradicts what we said earlier about glyphs not being
 important. In this particular sense they are the most
 important.
Combining characters are used to change an “n” into an “ñ”, a
 “c” into a “ç”, an “o” into an “ô”, or a “u” into a “ǘ”. The first
 three transformations require one combining mark, while the last one
 requires two combining marks. In fact, there’s no limit to these. You
 can keep piling them on as long as you’d like, and you can create
 things people have never seen before.
All this requires quite a bit of serious rethinking and
 rewriting of all kinds of software. Just think about what the font
 system has to do. (No, giving up is not a valid option.) Your own
 programs that process text may need serious overhauling. Even
 something as simple in concept as reversing a string goes awry,
 because if you reverse by codepoint instead of grapheme, you’ll move
 the combining characters from one base to another. Niño, María, and
 François become õniN, áiraM, and sio̧cnarF.
Consider a grapheme made up of a base alphabetic codepoint, A,
 followed by two combining marks, call them X and Y. Does the order
 those marks get applied matter? Are AXY and AYX the same? Sometimes
 they are, sometimes they aren’t. With a grapheme like
 “[image:]” it doesn’t matter, since one mark
 goes on the top and the other on the bottom. Since it doesn’t matter,
 your program needs to treat a grapheme that shows up as a latin small letter o followed by a combining ogonek and then a combining macron the same way as it treats
 one where the combining marks come in the opposite order. But with
 something where both marks go on the same part of the letter, order
 does matter. More on that in a moment.
It gets harder. Unicode has certain characters that are
 precomposed to allow round trip translation from legacy character sets
 to Unicode and back. Latin has around 500 of these, and Greek has
 around 250. There are lots more, too.
For example, an “é” could be codepoint U+00E9, a latin small letter e with acute. That’s just
 a single codepoint. But here’s the thing: it needs to be treated just
 as you would if the grapheme showed up as a latin small letter e followed by a combining acute accent.
With graphemes that logically have more than one mark, you could
 have even more variation, as some of them may start with one or
 another precomposed character that already has a mark built right into
 it, and then adds the other one.
To help cope with all this, Unicode has a well-defined procedure
 called normalization.
 Per the Unicode Glossary at http://unicode.org/glossary/, normalization “removes
 alternate representations of equivalent sequences from textual data,
 to convert the data into a form that can be binary-compared for
 equivalence.” In other words, it gives a single, unique identity to
 each semantic entity that needs one, so all the one-to-many mappings
 go away.
Here are the four Unicode normalization forms:
	Normalization Form D (NFD) is formed by canonical
 decomposition.

	Normalization Form C (NFC) is formed by canonical decomposition followed by canonical
 composition.

	Normalization Form KD (NFKD) is formed by compatibility decomposition.

	Normalization Form KC (NFKC) is formed by compatibility decomposition followed by canonical
 composition.

Normally you want to use the canonical forms, because
 normalizing to the compatibility forms loses information. For example,
 NFKD("™") returns the regular,
 two-character string “TM”. This may
 be what you want in searching and related applications, but canonical
 decomposition normally works better than compatibility decomposition
 for most applications.
Unless you normalize it yourself, a string does not necessarily
 show up to your program in either NFD or NFC; there are strings that
 are in neither. Consider something like “ȭ”, which is just a letter
 Latin small letter “o” with a tilde and a macron (as opposed to a
 macron and tilde) over it. That particular grapheme takes anywhere
 from 1–3 codepoints, depending on normalization: "\x{22D}" in NFC, "\x{6F}\x{303}\x{304}" in NFD, or "\x{F5}\x{304}", which is neither. Table 6-4 shows seven variants of a Latin small
 letter “o” with a tilde and sometimes a macron.
Table 6-4. Canonical conundra
	N	Glyph	NFC?	NFD?	Literal	Codepoints
	1	õ	✓	─	
 "\x{F5}"
 	
 latin small letter o with
 tilde

	2	õ	─	✓	
 "o\x{303}"
 	
 latin small letter o, combining
 tilde

	3	ȭ	✓	─	
 "\x{22D}"
 	
 latin small letter o with tilde and
 macron

	4	ȭ	─	─	
 "\x{F5}\x{304}"
 	
 latin small letter o with tilde, combining
 macron

	5	ȭ	─	✓	
 "o\x{303}\x{304}"
 	
 latin small letter o, combining tilde,
 combining macron

	6	
 [image:]
 	─	✓	
 "o\x{304}\x{303}"
 	
 latin small letter o, combining macron,
 combining tilde

	7	
 [image:]
 	✓	─	
 "\x{14D}\x{303}"
 	
 latin small letter o with macron, combining
 tilde

In Perl, the standard Unicode::Normalize module handles normalization functions for you. A good
 rule of thumb is to run all Unicode input through NFD as the first
 thing you do to it, and all Unicode output through NFC as the last
 thing you do with it. In other words, like this:
use v5.14;
use strict;
use warnings;
use warnings FATAL => "utf8"; # throw encoding error exceptions
use open qw(:std :utf8);

use Unicode::Normalize qw(NFD NFC);

while (my $line = <>) {
 $line = NFD($line);
 ...
} continue {
 print NFC($line);
}
That reads in UTF-8 input and automatically decodes it, throwing
 an exception if there is a problem with malformed UTF-8. The first
 thing it does inside the loop is normalize the input string into its
 canonically decomposed form. In other words, it breaks apart all
 precomposed characters completely, to the delight of reductionists
 everywhere. It also reorders all marks that attach to different points
 on the base codepoint[110] into a reliable ordering.
Unless you normalize, you cannot even begin to deal with
 combining character issues. Consider the different graphemes we
 presented in Table 6-4.
	Number 4 is in neither NFC
 nor NFD. These things happen.

	Assuming you enforce NFD, 1 turns into 2, both 3 and 4 turn
 into 5, and 7 turns into 6.

	Assuming you enforce NFC, 2 turns into 1, both 4 and 5 turn
 into 3, and 6 turns into 7.

	That means that by normalizing to
 either NFD or NFC, you
 can do a simple eq to get 1–2,
 3–5, and 6–7 to each respectively test equal to one
 another.

	Notice, however, that it’s three different sets. ☹

One piece of good news is that Perl patterns have pretty good
 support for graphemes, provided you know how to use it. A \X in a regex matches a single user-visible
 character, which in Unicode-speak is called a grapheme
 cluster.[111]
Not all grapheme clusters are a base codepoint plus zero or more
 combining codepoints, but most are. One extremely common two-character
 grapheme that has no combining characters is "\r\n", commonly called CRLF. \X matches a CRLF as a single grapheme
 cluster because it is just one user-perceived character. Japanese also
 has two grapheme extenders that are not combining marks, halfwidth katakana voiced sound mark and
 halfwidth katakana semi-voiced sound
 mark.
But, for the most part, you can think of a grapheme cluster as a
 base character (\p{Grapheme_Base})
 with any number of combining characters, variation selectors, Japanese
 voice marks, or zero-width joiners or nonjoiners (\p{Grapheme_Extend}*) immediately following
 it, with an exception made for the CRLF pair.
Actually, you can probably just think of a grapheme cluster as a
 grapheme.[112]
A \X in a Perl pattern
 matches any of those seven cases above indiscriminately, and it
 doesn’t even need them in canonical form. Yes, but now what? This is
 where it stops being easy. Because if you want to know more about the
 grapheme than that it is a grapheme, you have to
 be moderately clever with your pattern matching. NFD is assumed
 and required for the following to work:
	/^o/ reports that all
 seven start with an “o”.

	/^o\N{COMBINING TILDE}/
 reports that 1–5 start with an “o” and a tilde, but that misses 6 and
 7.

	You’d need /^o\pM*?\N{COMBINING
 TILDE}/ to get all seven matching.

And here is a stab at a solution to match a complete character,
 with various issues still unresolved, like whether to use \p{Grapheme_Extend} instead of \pM and \p{Grapheme_Base} (were there any) instead
 of \PM:
$o_tilde_rx = qr{ o \pM *? \N{COMBINING TILDE} \pM* }x;
For a much easier approach to accent-insensitive string
 comparisons, see the next section, Comparing and Sorting Unicode Text.
The only thing in the Perl core that knows about graphemes is
 \X in a pattern. Built-in functions
 like substr, length, index, rindex, and pos access strings at the granularity of the
 codepoint, not of the grapheme. So \X is your hammer, and all of Unicode starts
 to look like nails. A lot of nails.
Imagine reversing “crème brûlée” codepoint by codepoint.
 Assuming normalization to NFD, you’d end up with [image:] when you really want “eélûrb emèrc”. Instead,
 use \X to extract a list of
 graphemes, then reverse that.
use v5.14;
use utf8;
my $cb = "crème brûlée";
my $bc = join("" => reverse($cb =~ /\X/g));
say $bc; # "eélûrb emèrc"
Assuming $cb below is always
 “crème brûlée”, contrast operating
 on codepoints compared with operating on graphemes:
my $char_length = length($cb); # 15 or 12
my $graph_count = 0;
$graph_count++ while $cb =~ /\X/g; # 12
You could pull out the first bit this way:
my $piece = substr($cb, 0, 5); # "crèm" or "crème"
my($piece) = $cb =~ /(\X{5})/; # "crème"
And change the last bit this way:
substr($cb, –6) = "fraîche"; # "crème brfraîche" or "crème fraîche"
$cb =~ s/\X{6}$/fraîche/; # "crème fraîche"
While this inserts “
 bien”:
substr($cb, 5, 0) = " bien"; # "crèm biene brûlée" or "crème bien brûlée"
$cb =~ s/^\X{5}\K/ bien/; # "crème bien brûlée"
Notice how the codepoint-based approach is unreliable. The first
 answer is when the string is in NFD, and the second in NFC. You might
 think keeping or putting it in NFC will somehow solve all your
 problems, but it won’t. For one thing, there are infinitely more
 graphemes without a precomposed form than those that have one, so NFC
 by no means guarantees you won’t have any combining marks.
Furthermore, NFC is actually harder to work with, which is why
 we recommend always normalizing to NFD on input. Consider how you’d
 spot a word with two es in it, like
 “crème” and “brûlée”. The simplest and only reliable way
 to do it:
/ e .*? e /x
will work only in NFD, not NFC. And while you might think that
 if you could instead guarantee NFC, that you could write:
/ [eéè] .*? [eéè] /x
But that breaks when the crêpes show up. Adding an ê only appears to help, because pretty soon
 you end up with crazy things like this:
/ [] [] /x # two e's in a row
which won’t work if someone gives you an underlined e, since there is no precomposed character
 for that. If (but only if) your strings are in NFD, then this always
 works:
/ (?: (?=e) \X){2} /x
This provides a reliable and nondestructive way to do
 accent-insensitive matching: match a grapheme with \X and impose a restriction that it must be
 one that starts with the grapheme base character you’re looking for.
 The only sort of thing you can’t get at this way by first running
 everything through NFD (or maybe NFKD) are the letters that don’t
 decompose, because they are considered letters in their own
 right.
So, for example, you won’t find any os in “smørrebrød”, because latin small letter o with stroke has no
 decomposition that separates out the os. And while you would find two os in the decomposition of “Ævar Arnfjörð Bjarmason”, you wouldn’t find
 any es or ds, because latin
 capital letter ae doesn’t break up into an a plus an e, and latin small
 letter eth doesn’t ever turn into a d.
Not under decomposition, at least. However, a comparison using a
 collator object from Unicode::Collate set to check only the primary strength would indeed
 find all three of those. In the following section, Comparing and Sorting Unicode Text, we show you how to do that.
Having to recast Perl’s built-in string functions in terms of
 \X every time is a bit clunky. An
 alternate approach is to use the Unicode::GCString CPAN module. Regular Perl strings are always codepoint
 oriented, but this object-oriented module lets you access Unicode
 Grapheme Cluster Strings as graphemes instead. Here’s how you’d use
 its methods to manipulate a string of graphemes in the same ways we
 did earlier:
my $gs = Unicode::GCString–>new("crème brûlée");

say $gs–>length();
say $gs–>substr(0,5);
$gs–>substr(–6, 6, "fraîche");
$gs–>substr(5, 0, " bien");
Now normalization forms don’t matter anymore, so the length method returns an answer in
 graphemes, the substr method
 operates on graphemes.
Possibly this module’s most useful method is columns. Imagine you wanted to print out
 some menu items like this:
crème brûlée £5.00
trifle £4.00
toffee ice cream £4.00
How do you get everything to line up? Even assuming your are
 using a fixed-width font, you can’t use:
printf("%–25s £%.2f\n", $item, $price);
because Perl will assume every codepoint is exactly one column,
 which just isn’t true.
The columns method tells you
 how many print columns a string would occupy if printed. Often this is
 the same as a string’s length in graphemes, but often it is not.
 Unicode considers some characters to be “wide” in that they take up
 two columns when printed. These are so common in East Asian scripts
 that Unicode has properties like East_Asian_Width=Wide and East_Asian_Width=FullWidth, indicating characters
 that take up two print columns.
Other characters take up none at all, and not just because
 they’re combining marks: they might be control or format characters.
 Plus, some combining marks are considered spacing marks, which
 actually do take up print columns. About the only thing you can
 generally rely on is that in a fixed-width font, each character’s
 width will be some integer multiple of the width of a column.
One approach, then, for printing a string padded to a certain
 width would be something along these lines:
sub pad {
 my($s, $width) = @_;
 my $gs = Unicode::GCString–>new($s);
 return $gs . (" " x ($width – $gs–>columns));
}

printf("%s £%.2f\n", pad($item, 25), $price);
Now your columns will align even if your strings have formatting
 characters, combining marks, or wide characters in them.
Interesting and useful as it is, the Unicode::GCString is really just a helper module for a larger module that
 tackles a much harder problem: the Unicode::LineBreak module from CPAN. This module implements the Unicode
 Line Breaking Algorithm from UAX #14. It’s what you have to use if you
 want to format your Unicode text into paragraphs like the Unix
 fmt(1) program. The unifmt
 program from the CPAN Unicode::Tussle suite is an example of this. It does the Right Thing
 even in the face of East Asian wide characters, tabs, combining
 characters, and invisible formatting codes.

[110] The fancy term is that they are reordered according to their
 canonical combining classes.

[111] Very technically speaking, Perl’s
 \X matches what the Unicode
 Standard refers to as an extended grapheme
 cluster. Standards writers apparently get paid by the word.

[112] That’s what we do. We aren’t getting paid by the
 word.

Comparing and Sorting Unicode Text

When you use Perl’s built-in sort
 or cmp operators, strings are not compared alphabetically.
 Instead, the numeric codepoint of each character in one string is
 compared with the numeric codepoint of the corresponding character in
 the other string. This doesn’t work so well on text where some letters
 are shared between languages and other letters are peculiar to each
 language. It’s not just letters that have misordered
 codepoints—numbers and other supposedly contiguous sequences can do
 that, too, because some were added to the character sets when they
 were small, and others were added after the character sets grew, like
 Topsy. For instance, squares and cubes were added to Latin-1 early on.
 Notice how they sort early, too:
use v5.14;
use utf8;
my @exes = qw(x⁷ x⁰ x⁸ x³ x⁶ x⁵ x⁴ x² x⁹ x¹);
@exes = sort @exes;
say "@exes";

prints: x² x³ x¹ x⁰ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹
Because codepoint order does not correspond to alphabetic order,
 your data will come out in an order that, while not exactly random,
 isn’t what someone looking for a lexicographic sort wants. The default
 sort is good mostly for providing
 fast access to an ordering that will be the same every time, even
 though it isn’t usefully alphabetic. It’s just deterministic.
 Sometimes that’s good enough, but other times…
Enter the standard Unicode::Collate module, which implements the Unicode Collation
 Algorithm (UCA), a highly customizable, multilevel sort specifically
 designed for Unicode data. The module has a lot of fancy features, but
 often you can just call its default sort method:
use v5.14;
use utf8;
use Unicode::Collate;
my @exes = qw(x⁷ x⁰ x⁸ x³ x⁶ x⁵ x⁴ x² x⁹ x¹);
@exes = Unicode::Collate–>new–>sort(@exes);
say "@exes";

prints: x⁰ x¹ x² x³ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹
By default, the module provides an alphanumeric sort. To a first
 approximation, it’s like first throwing out all nonalphanumerics and
 then sorting whatever’s left case-insensitively, not according to
 numeric codepoint order, but in sequential order of the alphabetics in
 the string. This is the kind of sort that dictionaries use, which is
 why it’s sometimes called a dictionary sort or a lexicographic
 sort.
Before everyone got used to computers that didn’t understand how
 to sort text, this was how everything was expected to be sorted, and
 often still is. A book title with a comma after the first word should
 not suddenly hare off to a completely different place than the same
 title without the comma. Commas shouldn’t matter, at least not unless
 everything else is tried. Commas are not part of any natural sequence
 like an alphabet or the integers.
Consider what happens with Perl’s built-in sort (which is the same as the default
 string sort found in the shell command and most programming
 languages):
% perl –e 'print sort <>' little–reds
Little Red Mushrooms
Little Red Riding Hood
Little Red Tent
Little Red, More Blue
Little, Red Rider
What kind of nonsense is that? “More” should come before “Mushrooms”, “Rider” and “Riding” should go together, and “Tent” should go at the end. Even on pure
 ASCII, that isn’t an alphabetic sort; this is:
% perl –MUnicode::Collate –e '
 print for Unicode::Collate–>new–>sort(<>)' little–reds
Little Red, More Blue
Little Red Mushrooms
Little, Red Rider
Little Red Riding Hood
Little Red Tent
We think you’ll like Unicode’s sort so much that you’ll want to
 keep a little script around to sort your regular text. This one
 assumes UTF-8 input and produces UTF-8 output:
#!/usr/bin/perl
use warnings;
use open qw(:std :utf8);
use warnings qw(FATAL utf8);
use Unicode::Collate;
print for Unicode::Collate–>new–>sort(<>);
A more featureful version of that program can be found in the
 ucsort program, part of the CPAN
 Unicode::Tussle suite.
Most people find that, left to its defaults, the module’s sort
 produces aesthetically pleasing results. It already knows how to order
 letters and numbers, plus all the weirdnesses of Unicode that mess up
 ASCII sorts, like letters that aren’t numerically close to each other
 needing to sort together, all the fancy Unicode casing rules,
 canonically equivalent strings, and quite a bit more.
Plus, if it isn’t quite to your liking, its potential for
 customization is unbounded. Here’s a simple tweak that works well on
 English-language book or movie titles. This time we’ll sort uppercase
 before lowercase, remove leading articles before sorting, and zero-pad
 numbers on the left so that 101 Dalmations sorts
 after 7 Brides for 7 Brothers.[113]
my $collator = Unicode::Collate–>new(
 upper_before_lower => 1,
 preprocess => sub {
 local $_ = shift;
 s/^ (?: The | An?) \h+ //x; # strip articles
 s/ (\d+) / sprintf "%020d", $1 /gex;
 return $_;
 },
);
We’ve already shown how an alphabetic sort looks better than a
 codepoint sort on ASCII. On non-ASCII Unicode, it’s even more
 dramatic. Even if you are “only” using English, you still need to deal
 with more than ASCII. What if your data has a 10¢ stamp or a £5 note?
 Even in purely English text you encounter curly quotes, fancy dashes,
 and all kinds of specialists symbols that ASCII doesn’t handle. Even
 if we’re only talking about words such as you’d find in the English
 dictionary, that doesn’t let you off the hook. Here are just a few of
 the non-ASCII entries from the Oxford English
 Dictionary, sorted (column-major) with the UCA in default
 mode:
	Allerød	fête	Niçoise	smørrebrød
	après-ski	feuilleté	piñon	soirée
	Bokmål	flügelhorn	plaçage	tapénade
	brassière	Gödelian	prêt-à-porter	vicuña
	caña	jalapeño	Provençal	vis-à-vis
	crème	Madrileño	quinceañera	Zuñi
	crêpe	Möbius	Ragnarök	α-ketoisovaleric acid
	désœuvrement	Mohorovičić discontinuity	résumé	(α-)lipoic acid
	Fabergé	moiré	Schrödinger	(β-)nornicotine
	façade	naïve	Shijō	ψ-ionone

You don’t want to see what happens if you sort those next to
 similar words that are only in ASCII. It is not a pretty picture. And
 that’s just Latin text. Consider these figures from Greek mythology,
 sorted using the default codepoint sort:
	Δύσις	Άσβολος	Διόνυσος	Φάντασος	Μεγαλήσιος
	Ασβετος	Αγχίσης	Έσπερίς	Ἄγδιστις	Τελεσφόρος
	Ασωπός	Λάχεσις	Ἓσπερος	Ἀστραῖος	Χρυσόθεμις
	Θράσος	Νέμεσις	Εύνοστος	Ασκληπιός	Ἀριστόδημος
	Ιάσιος	Περσεύς	Ήφαιστος	Ἥφαιστος	Ἀριστόμαχος
	Νέσσος	Άδραστος	Ηωσφόρος	Ἀρισταῖος	Λαιστρυγόνες
	Πέρσης	Άλκηστις	Θρασκίας	Ἀσκάλαφος	
	Πίστις	Αίγισθος	Πάσσαλος	Βορυσθενίς	
	Χρύσος	Αργέστης	Πρόφασις	Ἑσπερίδες	

Even if you can’t read the Greek alphabet, you can tell how
 seriously broken sorting by codepoint is: just scan down the first
 letter in each column. See how they jump around? Under a default UCA
 sort, they now come right:
	Ἄγδιστις	Ασβετος	Ἑσπερίδες	Ιάσιος	Πίστις
	Αγχίσης	Άσβολος	Έσπερίς	Λαιστρυγόνες	Πρόφασις
	Άδραστος	Ἀσκάλαφος	Ἓσπερος	Λάχεσις	Τελεσφόρος
	Αίγισθος	Ασκληπιός	Εύνοστος	Μεγαλήσιος	Φάντασος
	Άλκηστις	Ἀστραῖος	Ἥφαιστος	Νέμεσις	Χρυσόθεμις
	Αργέστης	Ασωπός	Ήφαιστος	Νέσσος	Χρύσος
	Ἀρισταῖος	Βορυσθενίς	Ηωσφόρος	Πάσσαλος	
	Ἀριστόδημος	Διόνυσος	Θρασκίας	Περσεύς	
	Ἀριστόμαχος	Δύσις	Θράσος	Πέρσης	

Convinced? Let’s first look at how the UCA really works, and
 then how to configure it a bit.
The Unicode Collation Algorithm is a multilevel sort. You’ve
 seen these before. Imagine you were writing your comparison function
 to pass to the built-in sort that
 looked like this:
@collated_text = sort {

 primary($a) <=> primary($b)
 ||
 secondary($a) <=> secondary($b)
 ||
 tertiary($a) <=> tertiary($b)
 ||
 quaternary($a) <=> quaternary($b)

} @random_text;
That’s a multilevel sort, and at a certain level of
 simplification, that’s pretty much what the UCA is doing. Each of
 those four functions returns a number that represents the sort weight
 at that strength. Only when primary strengths are the same does it fall
 through to compare secondary strengths, and so on down the
 levels.
This is a little bit of a simplification, but it works
 essentially this way:
	Primary strength: compare letters
	Compare whether the basic letters[114] are the same. Ignore nonletters at this stage;
 just skip ahead until you find a letter. If the letters aren’t
 the same for the same relative position, there is an established
 dictionary order about what goes first.
If you are a user of the Latin alphabet sorting Latin
 text, this will be in the order of the abcs you learned in
 school, so “Fred” comes
 before “freedom”, as does
 “free beer”. The reason it
 put “free beer” in front of
 “freedom” is because the
 fifth letter in the first string is “b”, and that comes before the fifth
 letter in the second string, which is “d”. See how that works? That’s
 dictionary order. We aren’t doing a field sort here.

	Secondary strength: compare diacritics
	If the letters are the same, then check whether the
 diacritics (technically, the combining marks; diacritics and
 marks mostly overlap, but not completely) are the same. By
 default we resolve ties by looking at the diacritics reading
 left to right, but this can be flipped to do so right to left,
 as is needed in French. (The classic demo is that normal LTR
 tie-breaking order sorts cote < coté
 < côte < côté, whereas the French RTL
 tie-breaking order for diacritics sorts cote < côte < coté < côté; in
 other words, the middle two words exchange positions in French
 ordering. It has to do with their inflectional morphology, which
 is tail-based.)

	Tertiary strength: compare case
	If the letters and the diacritics are the same, then check
 whether the case is the same. By default, lowercase precedes
 uppercase, but this is easy to flip using the upper_before_lower => 1 option when
 you construct your collator object.

	Quaternary strength: compare everything else
	If the letters, the diacritics, and the case are all the
 same for a given position, now you go back and reconsider any
 nonletters, like punctuation and symbols and whitespace, that
 you temporarily ignored at earlier levels. Here, everything
 counts.

You don’t have to do all those if you don’t want. You can, for
 example, tell it to use only the primary strength, which only
 considers basic letters and absolutely nothing else.
That’s how you do an “accent-insensitive” string comparison,
 using your collator object’s eq
 method.
Normalization won’t always help you enough. For example, you
 can’t use it to get “o”, “õ”, and “ø” to look the same, because latin small letter o with stroke has no
 decomposition to something with an “o” in it. On the other hand, when comparing
 whether letters are the same, Unicode::Collate does count “o”, “õ”,
 and “ø” as the same
 letter—normally. Not in Swedish or Hungarian, though.
Similarly, with “d” and
 “ð” — you can’t decompose latin small letter eth to anything with a
 “d” in it, but the UCA treats them
 as the same letter. Er, except in Icelandic (the “is” locale), where “d” and “ð” are now diﬀerent letters in their own
 right.
If you wanted your collator object to ignore case but consider
 accents for level one ties, you’d set it to do only the first two
 stages and skip the rest by passing the constructor an option pair of
 level => 2.
Here’s the full syntax for all the optional configuration
 parameters in the constructor as of its v0.81 release:
$Collator = Unicode::Collate–>new(
 UCA_Version => $UCA_Version,
 alternate => $alternate, # alias for 'variable'
 backwards => $levelNumber, # or \@levelNumbers
 entry => $element,
 hangul_terminator => $term_primary_weight,
 ignoreName => qr/$ignoreName/,
 ignoreChar => qr/$ignoreChar/,
 ignore_level2 => $bool,
 katakana_before_hiragana => $bool,
 level => $collationLevel,
 normalization => $normalization_form,
 overrideCJK => \&overrideCJK,
 overrideHangul => \&overrideHangul,
 preprocess => \&preprocess,
 rearrange => \@charList,
 rewrite => \&rewrite,
 suppress => \@charList,
 table => $filename,
 undefName => qr/$undefName/,
 undefChar => qr/$undefChar/,
 upper_before_lower => $bool,
 variable => $variable,
);
Consult the module’s manpage for the sort of arguments its
 constructor accepts. Although the module is bundled with Perl, it is
 also available as a dual-lived CPAN module. That way it can get
 updated independently from the Perl core. The version released with
 Perl v5.14 shipped with v0.73 of Unicode::Collate, so it’s obviously been updated since then. You don’t
 have to have a cutting-edge release of Perl to run the latest version
 of the module. It supports Perl releases dating back to v5.6, and has
 built-in forward compatibility with later Unicode releases via its
 UCA_Version constructor argument.

[113] The padding is needed because although Unicode knows an
 individual numeric codepoint’s numeric value, it doesn’t know that
 “9” should come before “10”—unless you do something like
 this.

[114] And digits, and a few things you might not realize are
 letters; just pretend we said all those things when we say
 letter here.

Using the uca with Perl’s
 sort

In real code, the sort
 built-in is usually called in one of two ways. Either it’s
 called with no sort routine at all, or it’s called with a block
 argument that serves as the custom comparison function. The Unicode::Collate’s sort method is a
 fine substitute for the first flavor, but not the second. For that,
 you’d use a different method from your collator object, called
 getSortKey.
Suppose you have a program that uses the built-in sort, like this:
@srecs = sort {
 $b–>{AGE} <=> $a–>{AGE}
 ||
 $a–>{NAME} cmp $b–>{NAME}
} @recs;
But then you decide you want the text to sort alphabetically
 on your NAME fields, not just by
 numeric codepoints. To do this, just ask the collator object to give
 you back the binary sort key for each text string you will
 eventually wish to sort. Unlike the regular text, if you pass this
 binary sort key to the cmp
 operator, it will magically sort in the order you want.
The block you pass to sort
 now looks like this:
my $collator = Unicode::Collate–>new();
for my $rec (@recs) {
 $rec–>{NAME_key} = $collator–>getSortKey($rec–>{NAME});
}
@srecs = sort {
 $b–>{AGE} <=> $a–>{AGE}
 ||
 $a–>{NAME_key} cmp $b–>{NAME_key}
} @recs;
You can pass the constructor any optional arguments to do
 anything special, including preprocessing.
Another thing you can do with collator objects is use them to
 do simple accent- and case-insensitive matching. It makes sense; if
 you have the ability to tell when things are ordered, you also have
 the ability to tell when they are equivalent in a given ordering. So
 you just have to pick the right ordering semantics. For example, if
 you set the collation level to 1, it only considers whether things
 are the same letter, diacritics and case notwithstanding. Your
 collator object has methods on it like eq, substr, and index to help with this. (You have to set
 it not to normalize, though, because otherwise your codepoint
 offsets would be wrong.) Here’s an example:
use v5.14;
use utf8;
use Unicode::Collate;
my $Collator = Unicode::Collate–>new(
 level => 1,
 normalization => undef,
);

my $full = "Gabriel García Márquez";
for my $sub (qw[MAR CIA]) {
 if (my($pos,$len) = $Collator–>index($full, $sub)) {
 my $match = substr($full, $pos, $len);
 say "Found match of literal ‹$sub› in ‹$full› as ‹$match›";
 }
}
When run, that prints out:
Found match of literal ‹MAR› in ‹Gabriel García Márquez› as ‹Már›
Found match of literal ‹CIA› in ‹Gabriel García Márquez› as ‹cía›
Please don’t tell the CIA.

Locale Sorting

Although the default UCA works well for English and a lot of other
 languages—including Irish Gaelic, Indonesian, Italian, Georgian,
 Dutch, Portuguese, and German (except in phonebooks!)—it needs some
 modification to work the way speakers of many other languages expect
 their alphabets to sort. Or nonalphabets, as the case may be.
For example, the Nordic languages place some of their letters
 with diacritics after z instead of next to the
 regular letters. Even Spanish does things a little differently: the
 ñ isn’t considered a regular
 n with a tilde on it the way
 ã and õ are in Portuguese.
 Instead, it’s its own letter (named eñe, of
 course) that falls after n and before
 o in the Spanish alphabet. That means these
 words should sort in this order in Spanish: radio, ráfaga,
 ranúnculo, raña, rápido, rastrillo. Notice how
 ranúnculo comes before
 raña instead of after it.
The way to address locale-specific sorting of Unicode data is
 to use the Unicode::Collate::Locale module. It’s part of the Unicode::Collate distribution, so it comes standard with v5.14 and is
 included with its companion module if you separately install either
 from CPAN.
The only difference in the two
 modules’ APIs is that the Unicode::Collate::Locale takes an extra parameter to the
 constructor: the locale. As of this
 writing, 70 different locales are supported, including
 variants like German phonebook (umlauted vowels collate as though
 they were the regular vowel plus an e following
 them), traditional Spanish (ch and
 ll count as graphemes with their own ordering
 in the alphabet), Japanese, and five different ways of sorting
 Chinese.
Using these locales is really easy:
use Unicode::Collate::Locale;

$coll = Unicode::Collate::Locale–>new(locale => "fr");

@french_text = $coll–>sort(@french_text);
Because Unicode::Collate::Locale is a subclass of
 Unicode::Collate, its constructor
 accepts the same optional arguments that its superclass’s does, and
 its objects support the same methods, so you can use these objects
 for locale-sensitive searches the same way as before. Here we select
 the “German phonebook” locale, where (for example)
 ae and ä count as the same
 letter. You can just compare them outright like this:
state $coll = new Unicode::Collate::Locale::
 locale => "de_ _phonebook",
 ;

if ($coll–>eq($a, $b)) { ... }
And here’s a way to search:
use Unicode::Collate::Locale;
my $Collator = new Unicode::Collate::Locale::
 locale => "de_ _phonebook",
 level => 1,
 normalization => undef,
 ;

my $full = "Ich müß Perl studieren.";
my $sub = "MUESS";
if (my ($pos,$len) = $Collator–>index($full, $sub)) {
 my $match = substr($full, $pos, $len);
 say "Found match of literal ‹$sub› in ‹$full› as ‹$match›";
}
When run, that says:
Found match of literal ‹MUESS› in ‹Ich müß Perl studieren.› as ‹müß›

More Goodies

One thing to always be aware of is that, by default, the Perl shortcuts like
 \w, \s, and even \d match many Unicode characters based on
 particular character properties. These are described in Table 5-11, and are intended to match the formal
 definitions given in Annex C: Compatibility Properties from Unicode
 Technical Standard #18, “Unicode Regular Expressions”, version 13,
 from August 2008.
If you are used to matching (\d+) to grab a whole number and use it like
 a number, that will not always work correctly with Unicode data. As of
 Unicode v6.0, 420 codepoints are matched by \d. If you don’t want that, you may specify
 /\d/a or /(?a:\d)/, or you may use the more
 particular property, \p{POSIX_Digit}.
However, if you mean to match any run of decimal digits in any
 one script and need to use that match as a number in Perl, the
 Unicode::UCD module’s num
 function will help you do that.
use v5.14;
use utf8;
use Unicode::UCD qw(num);
my $num;
if ("४५६७" =~ /(\d+)/) {
 $num = num($1);
 printf "Your number is %d\n", $num;
 # Your number is 4567
}
Although regexes can ask whether a character has some property,
 they can’t tell you what properties the character has (at least, not
 without testing all of them). And sometimes you really do want to know
 that. For example, suppose you want to know what Script a codepoint
 has been assigned, or what its General Category is. To do that, you
 use the same Unicode::UCD module
 again. Here is a program to print out useful properties you can use in
 pattern matching.
use v5.14;
use utf8;
use warnings;

use Unicode::UCD qw(charinfo);
use Unicode::Normalize qw(NFD);

uncomment next line for decomposed forms
my $mystery = ## NFD
 "७¾çὯ";

for my $chr (split //, $mystery) {
 my $ci = charinfo(ord $chr);
 print "U+", $$ci{code};
 printf ' \N{%s}'."\n\t", $$ci{name};
 print " gc=", $$ci{category};
 print " script=", $$ci{script};
 print " BC=", $$ci{bidi};
 print " mirrored=", $$ci{mirrored};
 print " ccc=", $$ci{combining};
 print " nv=", $$ci{numeric};
 print "\n";
}
When run, that program prints out:
U+096D \N{DEVANAGARI DIGIT SEVEN}
 gc=Nd script=Devanagari BC=L mirrored=L ccc=0 nv=7
U+00BE \N{VULGAR FRACTION THREE QUARTERS}
 gc=No script=Common A BC=ON mirrored=ON ccc=0 nv=3/4
U+00E7 \N{LATIN SMALL LETTER C WITH CEDILLA}
 gc=Ll script=Latin BC=L mirrored=L ccc=0 nv=
U+1F6F \N{GREEK CAPITAL LETTER OMEGA WITH DASIA AND PERISPOMENI}
 gc=Lu script=Greek BC=L mirrored=L ccc=0 nv=
However, if you remove the comment blocking NFD from running, you get:
U+096D \N{DEVANAGARI DIGIT SEVEN} gc=Nd script=Devanagari
 BC=L mirrored=L ccc=0 nv=7
U+00BE \N{VULGAR FRACTION THREE QUARTERS}
 gc=No script=Common BC=ON mirrored=ON ccc=0 nv=3/4
U+0063 \N{LATIN SMALL LETTER C}
 gc=Ll script=Latin BC=L mirrored=L ccc=0 nv=
U+0327 \N{COMBINING CEDILLA}
 gc=Mn script=Inherited BC=NSM mirrored=NSM ccc=202 nv=
U+03A9 \N{GREEK CAPITAL LETTER OMEGA}
 gc=Lu script=Greek BC=L mirrored=L ccc=0 nv=
U+0314 \N{COMBINING REVERSED COMMA ABOVE}
 gc=Mn script=Inherited BC=NSM mirrored=NSM ccc=230 nv=
U+0342 \N{COMBINING GREEK PERISPOMENI}
 gc=Mn script=Inherited BC=NSM mirrored=NSM ccc=230 nv=

Custom Regex Boundaries

A \b for a word boundary
 and \B for a
 non-(word boundary) both rely on your current definition of \w (meaning that they change right along
 with \w if you switch to ASCII
 semantics with the /a or /aa modifier).
If those aren’t quite the kind of boundaries you’re looking
 for, you can always write your own boundary assertions based on
 arbitrary edge conditions, like script boundaries. Here is the
 definition of \b:
(?(?<= \w) # if there is a word character to the left
 (?! \w) # then there must be no word character to the right
 | (?= \w) # else there must be a word character to the right
)
And here is the definition of \B:
(?(?<= \w) # if there is a word character to the left
 (?= \w) # then there must be a word character to the right
 | (?! \w) # else there must be no word character to the right
)
Now that you know exactly how word boundaries and
 nonboundaries work, you can craft your own boundaries by swapping in
 your own condition wherever you see \w in the patterns above. You just need to
 be careful to specify a fixed-width condition so that it can be used
 in a lookbehind. That means you can’t use things like \X or \R, which are variable width. The easiest
 way to do that is to use a property or other character class. For
 example, you could use \p{Greek}
 for characters in the Greek script—but best add Inherited so you
 don’t miss the combining characters, so use [\p{Greek}\p{Inherited}] instead.
For example, this might provide regex subroutines suitable for
 that kind of work:
(?(DEFINE)
 (?<greeklish> [\p{Greek}\p{Inherited}])
 (?<ungreeklish> [^\p{Greek}\p{Inherited}])
 (?<greek_boundary>
 (?(?<= (?&greeklish))
 (?! (?&greeklish))
 | (?= (?&greeklish))
)
)
 (?<greek_nonboundary>
 (?(?<= (?&greeklish))
 (?= (?&greeklish))
 | (?! (?&greeklish))
)
)
)
For character classes that are the result of adding,
 subtracting, negating, and intersecting existing Unicode properties,
 like the <greeklish> regex
 subroutine is above, you might prefer to implement these as custom
 properties. Custom properties look just like normal properties. For
 example:
sub IsGreeklish {
 return <<'END';
+utf8::IsGreek
+utf8::IsInherited
END
}
Now you may use \p{IsGreeklish} and \P{IsGreeklish} in patterns compiled in
 the same package as that subroutine. See the next section for how to
 put these together.

Building Character

To define your own property, you need to write a subroutine with the
 name of the property you want (see Chapter 7). For
 security reasons, this subroutine’s (unqualified) name must begin
 with either Is or In. The subroutine should be defined in
 the package that needs the property (see Chapter 10), which means that if you want to use it in
 multiple packages, you’ll either have to import it from a module
 (see Chapter 11), or inherit it as a class method
 from the package in which it is defined (see Chapter 12).
Once you’ve got that all settled, the subroutine should return
 data in the same format as the files in
 PATH_TO_PERLLIB/unicode/Is
 directory. That is, just return a list of characters or character
 ranges in hexadecimal, one per line. If there is a range, the two
 numbers are separated by a tab. Suppose you wanted a property that
 would be true if your character is in the range of either of the
 Japanese syllabaries, known as hiragana and katakana (together
 they’re known as kana). You can just put in the two ranges like
 this:
sub InKana {
 return <<'END';
3040 309F
30A0 30FF
END
}
Alternatively, you could define it in terms of existing
 property names:
sub InKana {
 return <<'END';
+utf8::InHiragana
+utf8::InKatakana
END
}
You can also do set subtraction using a “–” prefix. Suppose you only wanted the
 actual characters, not just the block ranges of characters. You
 could weed out all the undefined ones like this:
sub IsKana {
 return <<'END';
+utf8::InHiragana
+utf8::InKatakana
–utf8::IsCn
END
}
You can also start with a complemented character set using the
 “!” prefix:
sub IsNotKana {
 return <<'END';
!utf8::InHiragana
–utf8::InKatakana
+utf8::IsCn
END
}
Intersection, specified with the “&” prefix, is useful for getting the
 common characters matched by two (or more) classes.
sub IsGraecoRomanTitle {<<'END_OF_SET'}
+utf8::IsLatin
+utf8::IsGreek
&utf8::IsTitle
END_OF_SET

sub IsGreekTitle {<<'END_OF_SET'}
+main::IsGraecoRomanTitle
–utf8::IsLatin
END_OF_SET
It’s important to remember not to use “&” for the first
 set; that would be intersecting with nothing, resulting in an empty
 set.
Perl itself uses exactly the same tricks to define the
 meanings of its “classic” character classes (like \w) when you include them in your own
 custom character classes (like [–.\w\s]). You might think that the more
 complicated you get with your rules, the slower they will run. But,
 in fact, once Perl has calculated the bit pattern for a particular
 64-bit swatch of your property, it caches it so it never has to
 recalculate the pattern again. (It does it in 64-bit swatches so
 that it doesn’t even have to decode your UTF-8 to do its lookups.)
 Thus, all character classes, built-in or custom, run at essentially
 the same speed (fast) once they get going.
For a different take on customization just by changing the
 syntax of square-bracketed character classes, check out the CPAN
 Unicode::Regex::Set module.
Together with custom names, custom properties can make even
 private-use codepoints manageable without having to resort to ugly
 numbers. For example, Unicode hasn’t yet incorporated Tengwar (an
 elvish script) into its official repertoire (although it’s on the
 roadmap—there are, after all, many maps of Middle Earth). That
 doesn’t stop font designers from creating beautiful and useful
 Tengwar fonts. Although some fonts do use the block of codepoints
 that Unicode has reserved for eventually putting Tengwar into, most
 use codepoints from a private use area. Either way, however, those
 codepoints do not yet have assigned names or properties.
This is no barrier to Perl, because it’s easy to create your
 own names for characters and properties. One existing Tengwar module
 in Perl provides for named characters like:
TENGWAR LETTER TINCO TENGWAR DIGIT ZERO
TENGWAR LETTER PARMA TENGWAR DIGIT ONE
TENGWAR LETTER CALMA TENGWAR DIGIT TWO
TENGWAR LETTER QUESSE TENGWAR DIGIT THREE
This lets you write things like:
if ($elvish =~ /\N{TENGWAR LETTER SILME NUQUERNA}/) {...}
without a hitch. You can even use charnames::viacode
 on a Tengwar codepoint to get back its custom name. Even better, it
 provides Tengwar character properties like:
In_Tengwar In_Tengwar_Numerals
In_Tengwar_Consonants Is_Tengwar_Decimal
In_Tengwar_Vowels Is_Tengwar_Duodecimal
In_Tengwar_Alphabetics In_Tengwar_Marks
In_Tengwar_Punctuation In_Tengwar_Alphanumerics
which leads to Perl code that looks like:
print "W" if /\p{In_Tengwar_Alphanumerics}/;
print "A" if /\p{In_Tengwar_Alphabetics}/;
print "C" if /\p{In_Tengwar_Consonants}/;
print "V" if /\p{In_Tengwar_Vowels}/;
or even:
$TENGWAR_GRAPHEME = qr{
 (?>
 (?= \p{In_Tengwar}) \P{In_Tengwar_Marks}
 \p{In_Tengwar_Marks} *
) | \p{In_Tengwar_Marks}
}x;
Trying to write that sort of code without being able to name
 your abstractions, both characters and properties, is a bit like
 trying to program a computer with only numeric memory addresses and
 no variable names. Sure, you can do it if you want to badly enough,
 but it won’t fit in smoothly with existing facilities, and it
 probably won’t be readable or maintainable. By letting you craft
 your own special-purpose language even for such custom applications
 as private use areas, Perl helps you write code that’s simple
 and clear.

References

Perl closely tracks the published Unicode Standard wherever
 possible. That Standard includes various annexes and technical
 reports. Some of those applicable to material discussed in this
 chapter include:
	UAX #44: Unicode Character Database
	

	UTS #18: Unicode Regular Expressions
	

	UAX #15: Unicode Normalization Forms
	

	UTS #10: Unicode Collation Algorithm
	

	UAX #29: Unicode Text Segmentation
	

	UAX #14: Unicode Line Breaking Algorithm
	

	UAX #11: East Asian Width
	

Chapter 7. Subroutines

Like many languages, Perl provides for user-defined subroutines.[115] These subroutines may be defined anywhere in the main
 program, loaded in from other files via the do, require, or use keywords, or generated at runtime using
 eval. You can even load them at
 runtime with the mechanism described in the section Autoloading in Chapter 10. You can call a
 subroutine indirectly, using a variable containing either its name or a
 reference to the routine, or through an object, letting the object
 determine which subroutine should really be called. You can generate
 anonymous subroutines, accessible only through references, and if you
 want, use these to clone new, nearly identical functions via
 closures (which are covered in the section by that
 name in Chapter 8).

[115] We’ll also call them functions, but
 functions are the same thing as subroutines in Perl. Sometimes we’ll
 even call them methods, which are defined the
 same way, but called differently.

Syntax

To declare a named subroutine without defining it, use one of these
 forms:
sub NAME
sub NAME PROTO
sub NAME ATTRS
sub NAME PROTO ATTRS
To declare and define a named subroutine, add a
 BLOCK:
sub NAME BLOCK
sub NAME PROTO BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO ATTRS BLOCK
To create an anonymous subroutine or closure, leave out the
 NAME:
sub BLOCK
sub PROTO BLOCK
sub ATTRS BLOCK
sub PROTO ATTRS BLOCK
PROTO and
 ATTRS stand for the prototype and
 attributes, each of which is discussed in its own section later in
 this chapter. They’re not so important—the
 NAME and the
 BLOCK are the essential parts, even when
 they’re missing.
For the forms without a NAME, you
 still have to provide some way of calling the subroutine. So be sure
 to save the return value since this form of sub declaration is not only compiled at
 compile time as you would expect, but also produces a runtime return
 value:
$subref = sub BLOCK;
To import subroutines defined in another module, say:
use MODULE qw(NAME1 NAME2 NAME3 ...);
To call subroutines directly, say:
NAME(LIST) # & is optional with parentheses.
NAME LIST # Parens optional if sub predeclared/imported.
&NAME # Exposes current @_ to that subroutine,
 # (and circumvents prototypes).
To call subroutines indirectly (by name or by reference), use
 any of these:
&$subref(LIST) # The & is not optional on indirect call
$subref–>(LIST) # (unless using infix notation).
&$subref # Exposes current @_ to that subroutine.
The official name of a subroutine includes the & prefix. A subroutine may be called
 using the prefix, but the & is
 usually optional, and so are the parentheses if the subroutine has
 been predeclared. However, the & is not optional when you’re just
 naming the subroutine, such as when it’s used as an argument to
 defined or undef, or when you want to generate a
 reference to a named subroutine by saying $subref = \&name. Nor is the & optional when you want to make an
 indirect subroutine call using the &$subref() or &{$subref}() constructs. However, the
 more convenient $subref–>()
 notation does not require it. See Chapter 8 for more
 about references to subroutines.
Perl doesn’t force a particular capitalization style on your
 subroutine names. However, one loosely held convention is that
 functions called indirectly by Perl’s runtime system (like BEGIN, UNITCHECK, CHECK, INIT, END, AUTOLOAD, DESTROY, and all the functions mentioned in
 Chapter 14) are in all capitals, so you might want to
 avoid using that style. (But subroutines used for constant values are
 customarily named with all caps, too. That’s okay. We hope…)

Semantics

Before you get too worked up over all that syntax, just remember that
 the normal way to define a simple subroutine ends up looking like
 this:
sub razzle {
 print "Ok, you've been razzled.\n";
}
and the normal way to call it is simply:
razzle();
In this case, we ignored inputs (arguments) and outputs (return
 values). But the Perl model for passing data into and out of a
 subroutine is really quite simple: all function parameters are passed
 as one single, flat list of scalars, and multiple return values are
 likewise returned to the caller as one single, flat list of scalars.
 As with any LIST, any arrays or hashes
 passed in these lists will interpolate their values into the flattened
 list, losing their identities—but there are several ways to get around
 this, and the automatic list interpolation is frequently quite useful.
 Both parameter lists and return lists may contain as many or as few
 scalar elements as you’d like (though you may put constraints on the
 parameter list by using prototypes). Indeed, Perl is designed around
 this notion of variadic functions (those taking any number of arguments), unlike
 C, where they’re sort of grudgingly kludged in so that you can call
 printf(3).
Now, if you’re going to design a language around the notion of
 passing varying numbers of arbitrary arguments, you’d better make it
 easy to process those arbitrary lists of arguments. Any arguments
 passed to a Perl routine come in as the array @_. If you call a function with two
 arguments, they are accessible inside the function as the first two
 elements of that array: $_[0] and
 $_[1]. Since @_ is just a regular array with an irregular
 name, you can do anything to it you’d normally do to an
 array.[116] The array @_ is a
 local array, but its values are aliases to the actual scalar
 parameters. (This is known as pass-by-reference semantics.) Thus, you can modify the
 actual parameters if you modify the corresponding element of @_. (This is rarely done, however, since
 it’s so easy to return interesting values in Perl.)
The return value of the subroutine (or of any other block, for
 that matter) is the value of the last expression evaluated. Or, you
 may use an explicit return
 statement to specify the return value and exit the subroutine from any
 point in the subroutine. Either way, as the subroutine is called in a
 scalar or list context, so also is the final expression of the routine
 evaluated in that same scalar or list context.

[116] This is an area where Perl is more
 orthogonal than the typical programming language.

Tricks with Parameter Lists

Perl does not yet have named formal parameters, but in practice all you do is
 copy the values of @_ to a
 my list, which serves nicely for
 a list of formal parameters. (Not coincidentally, copying the values
 changes the pass-by-reference semantics into pass by value, which is
 how people usually expect parameters to work anyway, even if they
 don’t know the fancy computer science terms for it.) Here’s a
 typical example:
sub maysetenv {
 my($key, $value) = @_;
 $ENV{$key} = $value unless $ENV{$key};
}
But you aren’t required to name your parameters, which is the
 whole point of the @_ array. For
 example, to calculate a maximum, you can just iterate over @_ directly:
sub max {
 my $max = shift(@_);
 for my $item (@_) {
 $max = $item if $max < $item;
 }
 return $max;
}

$bestday = max($mon,$tue,$wed,$thu,$fri);
Positional parameters work well for functions with short
 argument lists, but as the number of parameters increases, it
 becomes awkward to remember which argument does what, make some of
 them optional, or have default values. A more flexible approach that
 addresses all these issues has the caller supply arguments using
 pairs of parameter names and values. The first element of each pair
 is the argument name; the second, its value. This makes for
 self-documenting code because you can see the parameters’ intended
 meanings without having to read the full function definition. Even
 better, programmers using your function no longer have to remember
 the argument order, and they can leave unspecified any extraneous,
 unused arguments. We strongly recommend this style of using named
 parameters.
The trick is to assign the @_ argument list to a hash.
configuration(PASSWORD => "xyzzy", VERBOSE => 9, SCORE => 0);

sub configuration {
 my %options = @_;
 print "Maximum verbosity.\n" if $options{VERBOSE} == 9;
}
To show you how flexible this is, here is an example from
 Perl Cookbook’s recipe on “Passing by Named
 Parameter” from its “Subroutines” chapter.
thefunc(INCREMENT => "20s", START => "+5m", FINISH => "+30m");
thefunc(START => "+5m", FINISH => "+30m");
thefunc(FINISH => "+30m");
thefunc(START => "+5m", INCREMENT => "15s");
Then, in the subroutine, create a hash loaded up with default
 values plus the array of named pairs.
sub thefunc {
 my %args = (
 INCREMENT => "10s",
 FINISH => 0,
 START => 0,
 @_, # actual args override defaults
);
 if ($args{INCREMENT} =~ /m$/) { ... }
 ...
}
By giving each argument value a name and then assigning
 @_ to the %args hash, you no longer have to remember
 any required ordering, and you can omit whichever of them you please
 to have them assume some default value.
On the other hand, here’s an example of not naming your formal
 arguments so that you can modify your actual arguments:
upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {
 for (@_) { $_ = uc($_) }
}
You aren’t allowed to modify constants in this way, of course.
 If an argument were actually a scalar literal like "hobbit" or read-only scalar variable like
 $1, and you tried to change it,
 Perl would raise an exception (presumably fatal, possibly
 career-threatening). For example, this won’t work:
upcase_in("frederick");
It would be much safer if the upcase_in function were written to return
 a copy of its parameters instead of changing them in place:
($v3, $v4) = upcase($v1, $v2);
sub upcase {
 my @parms = map { uc } @_;
 # Check whether we were called in list context.
 return wantarray ? @parms : $parms[0];
}
Notice how this (unprototyped) function doesn’t care whether
 it was passed real scalars or arrays. Perl will smash everything
 into one big, long, flat @_
 parameter list. This is one of the places where Perl’s simple
 argument-passing style shines. The upcase function will work perfectly well
 without changing the upcase
 definition, even if we feed it things like this:
@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);
Do not, however, be tempted to do this:
(@a, @b) = upcase(@list1, @list2); # WRONG
Why not? Because, like the flat incoming parameter list in
 @_, the return list is also flat.
 So this stores everything in @a
 and empties out @b by storing the
 null list there. See the later section Passing References
 for alternatives.

Error Indications

If you want your function to return in such a way that the caller will
 realize there’s been an error, the most natural way to do this in
 Perl is to use a bare return
 statement without an argument. That way when the function is used in
 scalar context, the caller gets undef; when used in list context, the
 caller gets a null list.
Under extraordinary circumstances, you might choose to raise
 an exception to indicate an error. Use this measure sparingly,
 though; otherwise, your whole program will be littered with
 exception handlers. For example, failing to open a file in a generic
 file-opening function is hardly an exceptional event. However,
 ignoring that failure might well be. The wantarray built-in returns undef if your function was called in void
 context, so you can tell if you’re being ignored:
if ($something_went_awry) {
 return if defined wantarray; # good, not void context.
 die "Pay attention to my error, you danglesocket!!!\n";
 }

Scoping Issues

Subroutines may be called recursively because each call gets its own
 argument array, even when the routine calls itself. If a subroutine
 is called using the & form,
 the argument list is optional. If the & is used but the argument list is
 omitted, something special happens: the @_ array of the calling routine is
 supplied implicitly. This is an efficiency mechanism that new users
 may wish to avoid.
&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() gets current args, like foo(@_), but faster!
foo; # like foo() if sub foo predeclared, else bareword "foo"
Not only does the &
 form make the argument list optional, but it also disables any
 prototype checking on the arguments you do provide. This is partly
 for historical reasons and partly to provide a convenient way to
 cheat if you know what you’re doing. See the section Prototypes later in this chapter.
Variables you access from inside a function that haven’t been
 declared private to that function are not necessarily global
 variables; they still follow the normal block-scoping rules of Perl.
 As explained in the “Names” section of Chapter 2,
 this means they look first in the surrounding lexical scope (or
 scopes) for resolution, then on to the single package scope. From
 the viewpoint of a subroutine, then, any my or state variables from an enclosing lexical
 scope are still perfectly visible.
For example, the bumpx
 function below has access to the file-scoped $x lexical variable because the scope
 where the my was declared—the
 file itself—hasn’t been closed off before the subroutine is
 defined:
top of file
my $x = 10; # declare and initialize variable
sub bumpx { $x++ } # function can see outer lexical variable
C and C++ programmers would probably think of $x as a “file static” variable. It’s
 private as far as functions in other files are concerned, but global
 from the perspective of functions declared after the my. C programmers who come to Perl looking
 for what they would call “static variables” for files or functions
 find no such keyword in Perl. Perl programmers generally avoid the
 word “static” because static systems are dead and boring, and
 because the word is so muddled in historical usage.
Although Perl doesn’t include the word “static” in its
 lexicon, Perl programmers have no problem creating variables that
 are private to a function and persist across function calls using
 the similar concept of state variables,
 explained below. But that’s not the only way to do it. Perl’s richer
 scoping primitives combine with automatic memory management in ways
 that someone looking for a “static” keyword might never think of
 trying.
Lexical variables don’t get automatically garbage collected just because their
 scope has exited; they wait to get recycled until they’re no longer
 used, which is much more important. To create
 private variables that aren’t automatically reset across function
 calls, enclose the whole function in an extra block and put both the
 my declaration and the function
 definition within that block. You can even put more than one
 function there for shared access to an otherwise private
 variable:
{
 my $counter = 0;
 sub next_counter { return ++$counter }
 sub prev_counter { return ––$counter }
}
As always, access to the lexical variable is limited to code
 within the same lexical scope. The names of the two functions, on
 the other hand, are globally accessible (within the package), and,
 since they were defined inside $counter’s scope, they can still access
 that variable even though no one else can.
If this function is loaded via require or use, then this is probably just fine. If
 it’s all in the main program, you’ll need to make sure any runtime
 assignment to my is executed
 early enough, either by putting the whole block before your main
 program or, alternatively, by placing a BEGIN or INIT block around it to make sure it gets
 executed before your program starts:
BEGIN {
 my @scale = ("A" .. "G");
 my $note = –1;
 sub next_pitch { return $scale[($note += 1) %= @scale] };
}
The BEGIN doesn’t affect
 the subroutine definition, nor does it affect the persistence of any
 lexicals used by the subroutine. It’s just there to ensure the
 variables get initialized before the subroutine is ever called. For
 more on declaring private and global variables, see the sections
 my, state, and our,
 respectively, in Chapter 27. The BEGIN and INIT constructs are explained in Chapter 16.
To make it easier to keep a variable’s declaration close to
 its use, the “state” feature
 allows for a variant of the my
 keyword. To enable them, declare that you’re using a version of Perl
 that’s at least v5.10.
Now you can use the state
 keyword to declare a lexical variable that will be initialized only
 the first time through:
use v5.14;

sub bumpx {
 state $x = 10; # init only 1st time through
 return $x++;
}
That function will now behave just like the previous one,
 returning first 10, then 11, then 12, and so on. Here’s a function
 that has a persistent, private hash for keeping track of how many
 times something has been seen:
sub seen_count {
 state %count;
 my $item = shift();
 return ++$count{$item};
}
Unlike other variable declarations, initialization of state variables is restricted to simple
 scalar variables only. You can still use arrays and hashes as
 state variables, but you can’t
 magically initialize them the way you can with scalars. This isn’t
 actually the limitation it might appear to be, because you can
 always store a reference to the type you want, and that
 is a scalar. For example, instead of:
can't use state %hash = (....)
my %hash = (
 READY => 1,
 WILLING => 1,
 ABLE => 1,
);
as a state variable, you
 would use:
state $hashref = {
 READY => 1,
 WILLING => 1,
 ABLE => 1,
};
To implement the next_pitch
 function described above using state variables, you’d do this:
sub next_pitch {
 state $scale = ["A" .. "G"];
 state $note = –1;
 return $scale–>[($note += 1) %= @$scale];
}
The main point with state
 variables is that you don’t have to use a BEGIN (or UNITCHECK) block to make sure the
 initialization happens before the function is called.
Finally, when we say that a state variable is initialized only once,
 we don’t mean to imply that state
 variables in separate closures are the same variables. They aren’t,
 so each gets its own initialization. This is how state variables differ from static variables in other
 languages.
For example, in both versions of the code below, $epoch is a lexical that’s private to the
 closure that’s returned. However, in timer_then, it’s initialized before that
 closure is returned, while in timer_now, initialization of $epoch is delayed until the closure that’s
 returned is first called:
sub timer_then {
 my $epoch = time();
 return sub {
 ...
 };
}

sub timer_now {
 return sub {
 state $epoch = time();
 ...
 };
}

Passing References

If you want to pass more than one array or hash into or out of a
 function, and you want them to maintain their integrity, then you’ll
 need to use an explicit pass-by-reference mechanism. Before you do
 that, you need to understand references as detailed in Chapter 8. This section may not make much sense to you
 otherwise. But, hey, you can always look at the pictures…
Here are a few simple examples. First, let’s define a function
 that expects a reference to an array. When the array is large, it’s
 much faster to pass it in as a single reference than a long list of
 values:
$total = sum (\@a);

sub sum {
 my ($aref) = @_;
 my ($total) = 0;
 for (@$aref) { $total += $_ }
 return $total;
}
Let’s pass in several arrays to a function and have it pop each of them, returning a new list of
 all their former last elements:
@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
 my @retlist = ();
 for my $aref (@_) {
 push @retlist, pop @$aref;
 }
 return @retlist;
}
Here’s how you might write a function that does a kind of set
 intersection by returning a list of keys occurring in all the hashes
 passed to it:
@common = inter(\%foo, \%bar, \%joe);
sub inter {
 my %seen;
 for my $href (@_) {
 while (my $k = each %$href) {
 $seen{$k}++;
 }
 }
 return grep { $seen{$_} == @_ } keys %seen;
}
So far, we’re just using the normal list return mechanism. What
 happens if you want to pass or return a hash? Well, if you’re only
 using one of them, or you don’t mind them concatenating, then the
 normal calling convention is okay, although a little expensive.
As we explained earlier, where people get into trouble is
 here:
(@a, @b) = func(@c, @d);
or here:
(%a, %b) = func(%c, %d);
That syntax simply won’t work. It just sets @a or %a
 and clears @b or %b. Plus, the function doesn’t get two
 separate arrays or hashes as arguments: it gets one long list in
 @_, as always.
You may want to arrange for your functions to use references for
 both input and output. Here’s a function that takes two array
 references as arguments and returns the two array references ordered
 by the number of elements they have in them:
($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {
 my ($cref, $dref) = @_;
 if (@$cref > @$dref) {
 return ($cref, $dref);
 } else {
 return ($dref, $cref);
 }
}
For passing filehandles or directory handles into or out of
 functions, see the sections
 “Handle References” and “Symbol Table References” in Chapter 8.

Prototypes

Perl lets you define your own functions to be called like Perl’s
 built-in functions. Consider push(@array,
 $item), which must tacitly receive a reference to @array, not just the list values held in
 @array, so that the array can be
 modified. Prototypes let you declare subroutines
 to take arguments just like many of the built-ins―that is, with
 certain constraints on the number and types of arguments. We call them
 “prototypes”, but they work more like automatic templates for the
 calling context than like what C or Java programmers would think of as
 prototypes. With these templates, Perl will automatically add implicit
 backslashes, or calls to scalar, or
 whatever else it takes to get things to show up in a way that matches
 the template. For instance, if you declare:
sub mypush (+@);
then mypush takes arguments
 exactly like push does. For this to
 work, the declaration of the function to be called must be visible at
 compile time. The prototype only affects the interpretation of
 function calls when the &
 character is omitted. In other words, if you call it like a built-in
 function, it behaves like a built-in function. If you call it like an
 old-fashioned subroutine, then it behaves like an old-fashioned
 subroutine. The & suppresses
 prototype checks and associated contextual effects.
Because prototypes are taken into consideration only at compile
 time, it naturally falls out that they have no influence on subroutine
 references like \&foo or on
 indirect subroutine calls like &{$subref} or $subref–>(). Method calls are not
 influenced by prototypes, either. That’s because the actual function
 to be called is indeterminate at compile time, depending as it does on
 inheritance, which is dynamically determined in Perl.
Since the intent is primarily to let you define subroutines that
 work like built-in functions, Table 7-1
 gives some prototypes you might use to emulate the corresponding
 built-ins.
Table 7-1. Prototypes to emulate built-ins
	Declared As	Called As
	
 sub
 mylink ($$)
 	
 mylink $old, $new

	
 sub
 myreverse (@)
 	
 myreverse $a,$b,$c

	
 sub
 myjoin ($@)
 	
 myjoin ":",$a,$b,$c

	
 sub
 mypop (;+)
 	
 mypop @array

	
 sub
 mysplice (+;$$@)
 	
 mysplice
 @array,@array,0,@pushme

	
 sub
 mykeys (+)
 	
 mykeys %{$hashref}

	
 sub
 mypipe (**)
 	
 mypipe READHANDLE,
 WRITEHANDLE

	
 sub
 myindex ($$;$)
 	
 myindex &getstring,
 "substr"

	 	
 myindex &getstring, "substr",
 $start

	
 sub
 mysyswrite (*$;$$)
 	
 mysyswrite OUTF, $buf

	 	
 mysyswrite OUTF, $buf, length($buf)–$off,
 $off

	
 sub
 myopen (*;$@)
 	
 myopen HANDLE

	 	
 myopen HANDLE, $name

	 	
 myopen HANDLE, "–|", @cmd

	
 sub
 mysin (_)
 	
 mysin $a

	 	
 mysin

	
 sub
 mygrep (&@)
 	
 mygrep { /foo/ } $a,$b,$c

	
 sub
 myrand ($)
 	
 myrand 42

	
 sub
 mytime ()
 	
 mytime

Any backslashed prototype character (shown between parentheses in the left column above)
 represents an actual argument (exemplified in the right column), which
 absolutely must start with that character. Just as the first argument
 to keys must start with % or $,
 so too must the first argument to mykeys. The special + prototype takes care of this for you as a
 shortcut for \[@%].[117]
You can use the backslash group notation, \[], to specify more than one allowed
 backslashed argument type. For example:
sub myref (\[$@%&*])
allows calling myref as any
 of these, where Perl will arrange that the function receives a
 reference to the indicated argument:
myref $var
myref @array
myref %hash
myref &sub
myref *glob
A semicolon separates mandatory arguments from optional arguments.
 (It would be redundant before @ or
 %, since lists can be null.)
 Unbackslashed prototype characters have special meanings. Any
 unbackslashed @ or % eats all the rest of the actual arguments
 and forces list context. (It’s equivalent to
 LIST in a syntax description.) An argument
 represented by $ has scalar context
 forced on it. An & requires a
 reference to a named or anonymous subroutine.
As the last character of a prototype, or just before a
 semicolon, you can use _ in place
 of $. If this argument is not
 provided, the current $_ variable
 will be used instead. For example:
sub mymkdir(_;$) {
 my $dirname = shift();
 my $mask = @_ ? shift() : 0777;
 my $mode = $mask &~ umask();
 ...
}

mymkdir($path, 01750);
mymkdir($path);
mymkdir(); # passes in $_
The + prototype is a special
 alternative to $ that acts like
 \[@%] when passed a literal array
 or hash variable, but it will otherwise force scalar context on the
 argument. This is useful for functions that take for an argument not
 only a literal array (or hash) but also a reference to one:
sub mypush (+@) {
 my $aref = shift;
 die "Not an array or arrayref" unless ref($aref) eq "ARRAY";
 push @$aref, @_;
}
When using the + prototype,
 your function should always test that the argument is of an acceptable
 type. (We’ve intentionally written this in a way that doesn’t work on
 objects because doing so would encourage violation of the object’s
 encapsulation.)
A * allows the subroutine to
 accept anything in that slot that would be accepted by a built-in as a
 filehandle: a bare name, a constant, a scalar expression, a typeglob,
 or a reference to a typeglob. The value will be available to the
 subroutine either as a simple scalar or (in the latter two cases) as a
 reference to the typeglob. If you wish to always convert such
 arguments to a typeglob reference, use Symbol::qualify_to_ref as follows:
use Symbol "qualify_to_ref";

sub myfileno (*) {
 my $fh = qualify_to_ref(shift, caller);
 ...
}
Note how the last three examples in the table are treated
 specially by the parser. mygrep is
 parsed as a true list operator, myrand is parsed as a true unary operator
 with unary precedence the same as rand, and mytime is truly argumentless, just like
 time.
That is, if you say:
mytime +2;
you’ll get mytime() + 2, not
 mytime(2), which is how it would be
 parsed without the prototype, or with a unary prototype.
The mygrep example also
 illustrates how & is treated
 specially when it is the first argument. Ordinarily, an & prototype would demand an argument
 like \&foo or sub{}. When it is the first argument,
 however, you can leave off the sub
 of your anonymous subroutine and just pass a bare block in the
 “indirect object” slot (with no comma after it). So one nifty thing
 about the & prototype is that
 you can generate new syntax with it, provided the & is in the initial position:
sub try (&$) {
 my ($try, $catch) = @_;
 eval { &$try };
 if ($@) {
 local $_ = $@;
 &$catch;
 }
}
sub catch (&) { $_[0] }

try {
 die "phooey";
} # not the end of the function call!
catch {
 /phooey/ && print "unphooey\n";
};
This prints “unphooey”. What
 happens is that try is called with
 two arguments: the anonymous function {die
 "phooey";} and the return value of the catch function, which in this case is
 nothing but its own argument―the entire block of yet another anonymous
 function. Within try, the first
 function argument is called while protected within an eval block to trap anything that blows up.
 If something does blow up, the second function is called with a local
 version of the global $_ variable
 set to the raised exception.[118] If this all sounds like pure gobbledygook, you’ll have
 to read about die and eval in Chapter 27, and
 then go check out anonymous functions and closures in Chapter 8. On the other hand, if it intrigues you, you
 might check out the Try::Tiny module on CPAN, which uses this to implement
 elaborately structured exception handling with try, catch, and finally clauses.
Here’s a reimplementation of the grep
 BLOCK operator[119] (the built-in one is more efficient, of course):
sub mygrep (&@) {
 my $coderef = shift;
 my @result;
 for my $_ (@_) {
 push(@result, $_) if &$coderef;
 }
 return @result;
}
Some folks would prefer to see full alphanumeric prototypes.
 Alphanumerics have been intentionally left out of prototypes for the
 express purpose of someday adding named, formal parameters. (Maybe.)
 The current mechanism’s main goal is to let module writers enforce a
 certain amount of compile-time checking on module users.
The built-in function prototype retrieves the prototype of
 user-defined and built-in functions; see Chapter 27.
 To change a function’s prototype on the fly, use the set_prototype function from the standard
 Scalar::Util module. For example, if you wanted the NFD and NFC functions from Unicode::Normalize to act like they have a prototype of “_”, you could do this:
use Unicode::Normalize qw(NFD NFC);

BEGIN {
 use Scalar::Util "set_prototype";
 set_prototype(\&NFD => "_");
 set_prototype(\&NFC => "_");
}

[117] The prototype for the hash operators have changed over the
 years. In v5.8 it was \%, in
 v5.12 it was \[@%], and in
 v5.14 it’s +.

[118] Yes, there are still unresolved issues having to do with the
 visibility of @_. We’re
 ignoring that question for the moment.

[119] It’s not possible to reimplement the grep EXPR
 form.

Inlining Constant Functions

Functions prototyped with (),
 meaning that they take no arguments at all, are parsed like the
 time built-in. More
 interestingly, the compiler treats such functions as potential
 candidates for inlining. If the result of that function, after
 Perl’s optimization and constant-folding pass, is either a constant
 or a lexically scoped scalar with no other references, then that
 value will be used in place of calls to that function. Calls made
 using &NAME are
 never inlined, however, just as they are not subject to any other
 prototype effects. (See the constant pragma in Chapter 29 for an easy way
 to declare such constants.)
Both versions of these functions to compute π will be inlined
 by the compiler:
sub pi () { 3.14159 } # Not exact, but close
sub PI () { 4 * atan2(1, 1) } # As good as it gets
In fact, all of the following functions are inlined because
 Perl can determine everything at compile time:
sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_GLARCH () { (0x1B58 & FLAG_MASK) == 0 }
sub GLARCH_VAL () {
 if (OPT_GLARCH) { return 23 }
 else { return 42 }
}

sub N () { int(GLARCH_VAL) / 3 }
BEGIN { # compiler runs this block at compile time
 my $prod = 1; # persistent, private variable
 for (1 .. N) { $prod *= $_ }
 sub NFACT () { $prod }
}
In the last example, the NFACT function is inlined because it has a
 void prototype and the variable it returns is not changed by that
 function; furthermore, it can’t be changed by anyone else since it’s
 in a lexical scope. So the compiler replaces uses of NFACT with that value, which was
 precomputed at compile time because of the surrounding BEGIN.
If you redefine a subroutine that was eligible for inlining,
 you’ll get a mandatory warning. (You can use this warning to tell
 whether the compiler inlined a particular subroutine.) The warning
 is considered severe enough not to be optional, because previously
 compiled invocations of the function will still use the old value of
 the function. If you need to redefine the subroutine, ensure that it
 isn’t inlined either by dropping the () prototype (which changes calling
 semantics, so beware) or by thwarting the inlining mechanism in some
 other way, such as:
sub not_inlined () {
 return 23 if $$;
}
See Chapter 16 for more about what happens
 during the compilation and execution phases of your program’s
 life.

Care with Prototypes

It’s probably best to put prototypes on new functions, not retrofit
 prototypes onto older ones. These are context templates, not ANSI C
 prototypes, so you must be especially careful about silently
 imposing a different context. Suppose, for example, you decide that
 a function should take just one parameter, like this:
sub func ($) {
 my $n = shift;
 print "you gave me $n\n";
}
That makes it a unary operator (like the rand built-in) and changes how the
 compiler determines the function’s arguments. With the new
 prototype, the function consumes just one scalar-context argument
 instead of many arguments in list context. If someone has been
 calling it with an array or list expression, even if that array or
 list contained just a single element, where before it worked, now
 you’ve got something completely different:
func @foo; # counts @foo elements
func split /:/; # counts number of fields returned
func "a", "b", "c"; # passes "a" only, discards "b" and "c"
func("a", "b", "c"); # suddenly, a compiler error!
You’ve just supplied an implicit scalar in front of the argument list,
 which can be more than a bit surprising. The old @foo that used to hold one thing doesn’t
 get passed in. Instead, 1 (the number of elements in @foo) is now passed to func. And the split, being called in scalar context,
 scribbles all over your @_
 parameter list. In the third example, because func has been prototyped as a unary
 operator, only “a” is passed in;
 then the return value from func
 is discarded as the comma operator goes on to evaluate the next two
 items and return “c.” In the
 final example, the user now gets a syntax error at compile time on
 code that used to compile and run just fine.
If you’re writing new code and would like a unary operator
 that takes only a scalar variable, not any old scalar expression,
 you could prototype it to take a scalar
 reference:
sub func (\$) {
 my $nref = shift;
 print "you gave me $$nref\n";
}
Now the compiler won’t let anything by that doesn’t start with
 a dollar sign:
func @foo; # compiler error, saw @, want $
func split/:/; # compiler error, saw function, want $
func $s; # this one is ok –– got real $ symbol
func $a[3]; # and this one
func $h{stuff}[–1]; # or even this
func 2+5; # scalar expr still a compiler error
func ${ \(2+5) }; # ok, but is the cure worse than the disease?
If you aren’t careful, you can get yourself into trouble with
 prototypes. But if you are careful, you can do a lot of neat things
 with them. This is all very powerful, of course, and should only be
 used in moderation to make the world a better place.

Prototypes of Built-in Functions

For reference, Table 7-2 lists the
 actual prototypes of the overridable built-ins as of
 v5.14.
Table 7-2. Prototypes for built-in functions
	Prototype	Keywords
	
 ()
 	and, break, continue, dump, endgrent, endhostent, endnetent, endprotoent, endpwent, endservent, fork, getgrent, gethostent, getlogin, getnetent, getppid, getprotoent, getpwent, getservent, or, setgrent, setpwent, time, times, wait, wantarray
	
 (_)
 	abs, alarm, chr, chroot, cos, exp, fc, hex, int, lc, lcfirst, length, log, oct, ord, quotemeta, readlink, readpipe, ref, rmdir, sin, sqrt, uc, ucfirst
	
 (;$)
 	caller, chdir, exit, getpgrp, gmtime, localtime, rand, reset, sleep, srand, umask,
	
 (;*)
 	close, eof, getc, readline, select, tell, write
	
 (;+)
 	pop, shift
	
 (@)
 	chmod, chown, die, kill, reverse, unlink, utime, warn
	
 (_;$)
 	
 mkdir

	
 (;$$)
 	
 setpgrp

	
 ($)
 	getgrgid, getgrnam, gethostbyname, getnetbyname, getprotobyname, getprotobynumber, getpwnam, getpwuid, sethostent, setnetent, setprotoent, setservent
	
 (*)
 	closedir, fileno, getpeername, getsockname, lstat, readdir, rewinddir, stat, telldir
	
 (+)
 	each, keys, values
	
 (\$)
 	
 lock

	
 (\%)
 	
 dbmclose

	
 (\[$@%*])
 	tied, untie
	
 ($;$)
 	bless, unpack
	
 (*;$)
 	
 binmode

	
 (*;$@)
 	
 open

	
 (+;$$@)
 	
 splice

	
 ($$)
 	atan2, crypt, gethostbyaddr, getnetbyaddr, getpriority, getservbyname, getservbyport, link, msgget, rename, semop, symlink, truncate, waitpid
	
 ($@)
 	formline, join, pack, sprintf, syscall
	
 (+@)
 	push, unshift
	
 (*$)
 	bind, connect, flock, listen, opendir, seekdir, shutdown
	
 (**)
 	accept, pipe
	
 ($$;$)
 	index, rindex
	
 ($$;$$)
 	
 substr

	
 (*$;$$)
 	
 syswrite

	
 (\[$@%*]$@)
 	
 tie

	
 ($$$)
 	msgctl, msgsnd, semget, setpriority, shmctl, shmget, vec
	
 (*$$)
 	fcntl, getsockopt, ioctl, seek, sysseek
	
 (\%$$)
 	
 dbmopen

	
 (*$$;$)
 	send, sysopen
	
 (*\$$;$)
 	read, sysread
	
 ($$$$)
 	semctl, shmread, shmwrite
	
 (*$$$)
 	setsockopt, socket
	
 (*\$$$)
 	
 recv

	
 ($$$$$)
 	
 msgrcv

	
 (**$$$)
 	
 socketpair

Subroutine Attributes

A subroutine declaration or definition may have a list of
 attributes associated with it. If such an attribute list is present,
 it is broken up at whitespace or colon boundaries and treated as
 though a use attributes had been
 seen. See the attributes pragma in Chapter 29 for internal
 details. There are two standard attributes for subroutines: method and lvalue.

The method Attribute

The method attribute
 can be used by itself:
sub afunc : method { ... }
Currently, this only has the effect of marking the subroutine
 so as not to trigger the “Ambiguous call
 resolved as CORE::%s” warning. (We may make it mean more
 someday.)
The attribute system is user-extensible, letting you create
 your own attribute names. These new attributes must be valid as
 simple identifier names (without any punctuation other than the
 “_” character). They may have a
 parameter list appended, which is currently only checked for whether
 its parentheses nest properly.
Here are examples of valid syntax (even though the attributes
 are unknown):
sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : _5x5 { ... }
Here are examples of invalid syntax:
sub fnord : switch(10,foo(); # ()–string not balanced
sub snoid : Ugly("("); # ()–string not balanced
sub xyzzy : 5x5; # "5x5" not a valid identifier
sub plugh : Y2::north; # "Y2::north" not a simple identifier
sub snurt : foo + bar; # "+" not a colon or space
The attribute list is passed as a list of constant strings to
 the code that associates them with the subroutine. Exactly how this
 works (or doesn’t) is highly experimental. Check
 attributes(3) for current details on attribute
 lists and their manipulation.

The lvalue Attribute

It is possible to return a modifiable scalar value from a subroutine,
 but only if you declare the subroutine to return an lvalue:
my $val;
sub canmod : lvalue {
 $val;
}
sub nomod {
 $val;
}

canmod() = 5; # Assigns to $val.
nomod() = 5; # ERROR
If you’re passing parameters to an lvalued subroutine, you’ll
 usually want parentheses to disambiguate what’s being
 assigned:
canmod $x = 5; # assigns 5 to $x first!
canmod 42 = 5; # can't change a constant; compile–time error
canmod($x) = 5; # this is ok
canmod(42) = 5; # and so is this
If you want to be sneaky, you can get around this in the
 particular case of a subroutine that takes one argument. Declaring
 the function with a prototype of ($) causes the function to be parsed with
 the precedence of a named unary operator. Since named unaries have
 higher precedence than assignment, you no longer need the
 parentheses. (Whether this is desirable or not is left up to the
 style police.)
You don’t have to be sneaky in the particular case of a
 subroutine that allows zero arguments (that is, with a () prototype). Without ambiguity, you can
 say this:
canmod = 5;
That works because no valid term begins with =. Similarly, lvalued method calls can
 omit the parentheses when you don’t pass any arguments:
$obj–>canmod = 5;
We promise not to break those two constructs in future
 versions of Perl 5. They’re handy when you want to wrap object
 attributes in method calls (so that they can be inherited like
 method calls but accessed like variables).
The scalar or list context of both the lvalue subroutine and
 the righthand side of an assignment to that subroutine is determined
 as if the subroutine call were replaced by a scalar. For example,
 consider:
data(2,3) = get_data(3,4);
Both subroutines here are called in scalar context, while
 in:
(data(2,3)) = get_data(3,4);
and in:
(data(2),data(3)) = get_data(3,4);
all the subroutines are called in list context.
The current implementation does not allow arrays and hashes to
 be returned from lvalue subroutines directly. You can always return
 a reference instead.

Chapter 8. References

For both practical and philosophical reasons, Perl has always been
 biased in favor of flat, linear data structures. And for many problems,
 this is just what you want.
Suppose you wanted to build a simple table (two-dimensional array)
 showing vital statistics—age, eye color, and weight—for a group of
 people. You could do this by first creating an array for each
 individual:
@john = (47, "brown", 186);
@mary = (23, "hazel", 128);
@bill = (35, "blue", 157);
You could then construct a single, additional array consisting of
 the names of the other arrays:
@vitals = ("john", "mary", "bill");
To change John’s eyes to “red” after a night on the town, we want
 a way to change the contents of the @john array given only the simple string
 “john”. This is the basic problem of
 indirection, which various languages solve in
 various ways. In C, the most common form of indirection is the pointer,
 which lets one variable hold the memory address of another variable. In
 Perl, the most common form of indirection is the reference.

What Is a Reference?

In our example, $vitals[0]
 has the value “john”. That is, it
 contains a string that happens to be the name of another (global)
 variable. We say that the first variable refers
 to the second, and this sort of reference is called a
 symbolic reference, since Perl has to look up @john in a symbol table to find it. (You
 might think of symbolic references as analogous to symbolic links in
 the filesystem.) We’ll talk about symbolic references later in this
 chapter.
The other kind of reference is a hard
 reference, and this is what most Perl programmers use to accomplish
 their indirections (if not their indiscretions). We call them hard
 references not because they’re difficult, but because they’re real and
 solid. If you like, think of hard references as real references and
 symbolic references as fake references. It’s like the difference
 between true friendship and mere name-dropping. When we don’t specify
 which type of reference we mean, it’s a hard reference. Figure 8-1 depicts a variable named $bar referring to the contents of a scalar
 named $foo, which has the value
 “bot”.
[image: A hard reference and a symbolic reference]

Figure 8-1. A hard reference and a symbolic reference

Unlike a symbolic reference, a real reference refers not to the
 name of another variable (which is just a container for a value) but
 to an actual value itself, some internal glob of data. There’s no good
 word for that thing, but when we have to, we’ll call it a referent.
 Suppose, for example, that you create a hard reference to a lexically
 scoped array named @array. This
 hard reference, and the referent it refers to, will continue to exist
 even after @array goes out of
 scope. A referent is only destroyed when all the references to it are
 eliminated.
A referent doesn’t really have a name of its own, apart from the
 references to it. To put it another way, every Perl variable name
 lives in some kind of symbol table, holding one hard reference to its
 underlying (otherwise nameless) referent. That referent might be
 simple, like a number or string, or complex, like an array or hash.
 Either way, there’s still exactly one reference from the variable to
 its value. You might create additional hard references to the same
 referent but, if so, the variable doesn’t know (or care) about
 them.[120]
A symbolic reference is just a string that happens to name
 something in a package symbol table. It’s not so much a distinct type
 as it is something you do with a string. But a hard reference is a
 different beast entirely. It is the third of the three kinds of
 fundamental scalar data types―the other two being strings and numbers. A hard reference doesn’t know
 something’s name just to refer to it, and it’s actually completely
 normal for there to be no name to use in the
 first place. Such totally nameless referents are called
 anonymous; we discuss them in Anonymous Data,
 later in this chapter.
To reference a
 value, in the terminology of this chapter, is to create
 a hard reference to it. (There’s a special operator for this creative
 act.) The reference so created is simply a scalar, which behaves in
 all familiar contexts just like any other scalar. To
 dereference this scalar means to use the reference to get at the
 referent. Both referencing and dereferencing occur only when you
 invoke certain explicit mechanisms; implicit referencing or
 dereferencing never occurs in Perl 5. Well, almost never.[121]
A function call can use implicit pass-by-reference semantics—if it has a prototype
 declaring it that way. If so, the caller of the function doesn’t
 explicitly pass a reference, although you still have to dereference it
 explicitly within the function. See the section Prototypes in Chapter 7. And to be
 perfectly honest, there’s also some behind-the-scenes dereferencing
 happening when you use certain kinds of filehandles, but that’s for
 backward compatibility and is transparent to the casual user. Two
 built-in functions, bless and lock, each take a reference for their
 argument but implicitly dereference it to work their magic on what
 lies behind. Finally, as of the v5.14 release, built-in functions that
 specifically operate on arrays and hashes[122] now accept a reference to the correct type and
 dereference it as needed. But those confessions aside, the basic
 principle still holds that Perl isn’t interested in muddling your
 levels of indirection.
A reference can point to any data structure. Since references are scalars, you can
 store them in arrays and hashes, and thus build arrays of arrays,
 arrays of hashes, hashes of arrays, arrays of hashes and functions,
 and so on. There are examples of these in Chapter 9.
Keep in mind, though, that Perl arrays and hashes are internally
 one-dimensional. That is, their elements can hold only scalar values
 (strings, numbers, and references). When we use a phrase like “array
 of arrays”, we really mean “array of references to arrays”, just as
 when we say “hash of functions”, we really mean “hash of references to
 subroutines”. But since references are the only way to implement such
 structures in Perl, it follows that the shorter, less accurate phrase
 is not so inaccurate as to be false; therefore, it should not be
 totally despised, unless you’re into that sort of thing.

[120] If you’re curious, you can determine the underlying refcount
 with the Devel::Peek module, bundled with Perl.

[121] And in Perl 6, it’s almost always, just to keep you
 confused.

[122] keys, values, each, pop, push, shift, unshift, and splice.

Creating References

There are several ways to create references, most of which we will
 describe before explaining how to use (dereference) the resulting
 references.

The Backslash Operator

You can create a reference to any named variable or subroutine with a backslash. (You may also use it on
 an anonymous scalar value like 7
 or "camel", although you won’t
 often need to.) This operator works like the & (address-of) operator in C—at least
 at first glance.
Here are some examples:
$scalarref = \$foo;
$constref = \186_282.42;
$arrayref = \@ARGV;
$hashref = \%ENV;
$coderef = \&handler;
$globref = *STDOUT;
The backslash operator can do more than produce a single
 reference. It will generate a whole list of references if applied to
 a list. See the upcoming sectionOther Tricks You Can Do with Hard References for
 details.

Anonymous Data

In the examples just shown, the backslash operator merely makes a duplicate of a reference that
 is already held in a variable name—with one exception. The 186_282.42 isn’t referenced by a named
 variable—it’s just a value. It’s one of those
 anonymous referents we mentioned earlier. Anonymous referents are accessed
 only through references. This one happens to be a number, but you
 can create anonymous arrays, hashes, and subroutines as well.
The anonymous array composer

You can create a reference to an anonymous array with square
 brackets:
$arrayref = [1, 2, ["a", "b", "c", "d"]];
Here we’ve composed an anonymous array of three elements,
 whose final element is a reference to an anonymous array of four
 elements (depicted in Figure 8-2). (The
 multidimensional syntax described later can be used to access
 this. For example, $arrayref–>[2][1] would have the
 value “b”.)
[image: A reference to an array, whose third element is itself an array reference]

Figure 8-2. A reference to an array, whose third element is itself an
 array reference

We now have one way to represent the table at the beginning
 of the chapter:
$table = [["john", 47, "brown", 186],
 ["mary", 23, "hazel", 128],
 ["bill", 35, "blue", 157]];
Square brackets work like this only where the Perl parser is
 expecting a term in an expression. They should not be confused
 with the brackets in an expression like $array[6]—although the mnemonic
 association with arrays is intentional. Inside a quoted string,
 square brackets don’t compose anonymous arrays; instead, they
 become literal characters in the string. (Square brackets do still
 work for subscripting in strings, or you wouldn’t be able to print
 string values like "VAL=$array[6]\n". And to be totally
 honest, you can in fact sneak anonymous array composers into
 strings, but only when embedded in a larger expression that is
 being interpolated. We’ll talk about this cool feature later in
 the chapter because it involves dereferencing as well as
 referencing.)

The anonymous hash composer

You can create a reference to an anonymous hash with braces:
$hashref = {
 "Adam" => "Eve",
 "Clyde" => $bonnie,
 "Antony" => "Cleo" . "patra",
};
For the values (but not the keys) of the hash, you can
 freely mix other anonymous array, hash, and subroutine composers
 to produce as complicated a structure as you like.
We now have another way to represent the table at the
 beginning of the chapter:
$table = {
 "john" => [47, "brown", 186],
 "mary" => [23, "hazel", 128],
 "bill" => [35, "blue", 157],
};
That’s a hash of arrays. Choosing the best data structure is
 a tricky business, and the next chapter is devoted to it. But, as
 a teaser, we could even use a hash of hashes for our table:
$table = {
 "john" => { age => 47,
 eyes => "brown",
 weight => 186,
 },
 "mary" => { age => 23,
 eyes => "hazel",
 weight => 128,
 },
 "bill" => { age => 35,
 eyes => "blue",
 weight => 157,
 },
 };
As with square brackets, braces work like this only where
 the Perl parser is expecting a term in an expression. They should
 not be confused with the braces in an expression like $hash{key}—although the mnemonic
 association with hashes is (again) intentional. The same caveats
 apply to the use of braces within strings.
There is one additional caveat that didn’t apply to square
 brackets. Since braces are also used for several other things
 (including blocks), you may occasionally have to disambiguate
 braces at the beginning of a statement by putting a + or a return in front, so that Perl realizes
 the opening brace isn’t starting a block. For example, if you want
 a function to make a new hash and return a reference to it, you
 have these options:
sub hashem { { @_ } } # Silently WRONG — returns @_.
sub hashem { +{ @_ } } # Ok.
sub hashem { return { @_ } } # Ok.

The anonymous subroutine composer

You can create a reference to an anonymous subroutine by
 using sub without a subroutine
 name:
$coderef = sub { print "Boink!\n" }; # Now &$coderef prints "Boink!"
Note the presence of the semicolon, required here to
 terminate the expression. (It isn’t required after the more common
 usage of sub
 NAME {} that declares and defines a named
 subroutine.) A nameless sub {}
 is not so much a declaration as it is an operator—like do {} or eval
 {}—except that the code inside isn’t executed
 immediately. Instead, it just generates a reference to the code,
 which in our example is
 stored in $coderef. However, no
 matter how many times you execute the line shown above, $coderef will still refer to the same
 anonymous subroutine.[123]

[123] But even though there’s only one anonymous subroutine,
 there may be several copies of the lexical variables in use by
 the subroutine, depending on when the subroutine reference was
 generated. These are discussed later in the section Closures.

Object Constructors

Subroutines can also return references. That may sound trite, but
 sometimes you are supposed to use a subroutine
 to create a reference rather than creating the reference yourself.
 In particular, special subroutines called constructors create and return
 references to objects. An object is simply a special kind of
 reference that happens to know which class it’s associated with, and
 constructors know how to create that association. They do so by
 taking an ordinary referent and turning it into an object with
 the bless operator, so
 we can speak of an object as a blessed reference. There’s nothing
 religious going on here; since a class acts as a user-defined type,
 blessing a referent simply makes it a user-defined type in addition
 to a built-in one. Constructors are often named new—especially by C++ and Java
 programmers—but they can be named anything in Perl.
Constructors can be called in any of these ways:
$objref = Doggie::–>new(Tail => "short", Ears => "long"); #1
$objref = new Doggie:: Tail => "short", Ears => "long"; #2
$objref = Doggie–>new(Tail => "short", Ears => "long"); #3
$objref = new Doggie Tail => "short", Ears => "long"; #4
The first and second invocations are the same. They both call
 a function named new that is
 supplied by the Doggie module.
 The third and fourth invocations are the same as the first two, but
 are slightly more ambiguous: the parser will get confused if you
 define your own subroutine named Doggie. (Which is why people typically
 stick with lowercase names for subroutines and uppercase for
 modules.) The fourth invocation can also get confused if you’ve
 defined your own new subroutine
 and don’t happen to have done either a require or a use of the Doggie module, either of which has the
 effect of declaring the module. Always declare your modules if you
 want to use #4. (And watch out for stray Doggie subroutines.)
See Chapter 12 for a discussion of Perl
 objects.

Handle References

References to filehandles or directory handles can be created by
 referencing the typeglob of the same name:
splutter(*STDOUT);

sub splutter {
 my $fh = shift;
 say $fh "her um well a hmmm";
}

$rec = get_rec(*STDIN);
sub get_rec {
 my $fh = shift;
 return scalar <$fh>;
}
If you’re passing around filehandles, you can also use the
 bare typeglob to do so: in the example above, you could have used
 *STDOUT or *STDIN instead of *STDOUT and *STDIN.
Although you can usually use typeglobs and references to typeglobs interchangeably,
 there are a few places where you can’t. Simple typeglobs can’t be
 blessed into objectdom, and
 typeglob references can’t be passed back out of the scope of a
 localized typeglob.
When generating new filehandles, older code would often do
 something like this to open a list of files:
for $file (@names) {
 local *FH;
 open(*FH, $file) || next;
 $handle{$file} = *FH;
}
That still works, but it’s often preferable to let an
 undefined variable autovivify an anonymous typeglob:
for $file (@names) {
 my $fh;
 open($fh, $file) || next;
 $handle{$file} = $fh;
}
Anytime you have a variable that contains a filehandle instead
 of a bareword handle, you have an indirect filehandle. It doesn’t
 matter whether you use strings, typeglobs, references to typeglobs,
 or one of the more exotic I/O objects. You just use a scalar
 that—one way or another—gets interpreted as a filehandle. For most
 purposes, you can use either a typeglob or a typeglob reference
 almost indiscriminately. As we admitted earlier, there is some
 implicit dereferencing magic going on here.

Symbol Table References

In unusual circumstances, you might not know what type of
 reference you need when your program is written. A reference can be
 created by using a special syntax, affectionately known as the
 *foo{THING} syntax. *foo{THING} returns a reference to the
 THING slot in *foo, which is the symbol table entry
 holding the values of $foo,
 @foo, %foo, and friends.
$scalarref = *foo{SCALAR}; # Same as \$foo
$arrayref = *ARGV{ARRAY}; # Same as \@ARGV
$hashref = *ENV{HASH}; # Same as \%ENV
$coderef = *handler{CODE}; # Same as \&handler
$globref = *foo{GLOB}; # Same as *foo
$ioref = *STDIN{IO}; # Er...
$formatref = *foo{FORMAT}; # More er...
All of these are self-explanatory except for the last two.
 *foo{FORMAT} is how to get at the
 object that was declared using the format statement. There isn’t much you can
 do with one of those that’s very interesting.
On the other hand, *STDIN{IO} yields the actual internal
 IO::Handle object that the typeglob contains; that is, the part
 of the typeglob that the various I/O functions are actually
 interested in. For compatibility with old versions of Perl, *foo{FILEHANDLE} was once a synonym for
 the hipper *foo{IO} notation, but
 that use is now deprecated.
In theory, you can use a *HANDLE{IO}
 anywhere you’d use a *HANDLE or a
 *HANDLE, such
 as for passing handles into or out of subroutines, or storing them
 in larger data structures. (In practice, there are still some
 wrinkles to be ironed out.) The advantage of them is that they
 access only the real I/O object you want, not the whole typeglob, so
 you run no risk of clobbering more than you want to through a
 typeglob assignment (although if you always assign to a scalar
 variable instead of to a typeglob, you’ll be okay). One disadvantage
 is that there’s no way to autovivify one as of yet:[124]
splutter(*STDOUT); splutter(*STDOUT{IO});

sub splutter {
 my $fh = shift; print $fh "her um well a hmmm\n";
}
Both invocations of splutter print “her um well a hmmm”.
The *foo{THING}
 thing returns undef if that
 particular THING hasn’t been seen by the
 compiler yet, except when THING is
 SCALAR. It so happens that
 *foo{SCALAR} returns a reference
 to an anonymous scalar even if $foo hasn’t been seen yet. (Perl always
 adds a scalar to any typeglob as an optimization to save a bit of
 code elsewhere. But don’t depend on it to stay that way in future
 releases.)

[124] Currently, open my $fh
 autovivifies a typeglob instead of an IO::Handle object, but someday we may
 fix that, so you shouldn’t rely on the typeglobbedess of what
 open currently
 autovivifies.

Implicit Creation of References

You’ve seen some sly references to autovivifying, which is our
 final method for creating references—though it’s not really a method
 at all. References of an appropriate type simply spring into
 existence if you dereference them in an lvalue context that assumes
 they exist. This is extremely useful and is also What You Expect.
 This topic is covered later in this chapter, where we’ll discuss how
 to dereference all of the references we’ve created so far. Oh, hey,
 we’re already there.

Using Hard References

Just as there are numerous ways to create references, there are also
 several ways to use, or dereference, a reference. There is
 just one overriding principle: Perl does no implicit referencing or
 dereferencing.[125] When a scalar is holding a reference, it always behaves
 like a simple scalar. It doesn’t magically start being an array or
 hash or subroutine; you have to tell it explicitly to do so, by
 dereferencing it.

[125] We already confessed that this was a small fib. We’re not
 about to do so again.

Using a Variable As a Variable Name

When you encounter a scalar like $foo, you should be thinking “the scalar
 value of foo.” That is, there’s a
 foo entry in the symbol table,
 and the $ funny character, known
 as a sigil, is a way of
 looking at whatever scalar value might be inside. If what’s inside
 is a reference, you can look inside that
 (dereferencing $foo) by
 prepending another sigil. Or, looking at it the other way around,
 you can replace the literal foo
 in $foo with a scalar variable
 that points to the actual referent. This is true of any variable
 type, so not only is $$foo the
 scalar value of whatever $foo
 refers to, but @$bar is the array
 value of whatever $bar refers to,
 %$glarch is the hash value of
 whatever $glarch refers to, and
 so on. The upshot is that you can put an extra sigil on the front of
 any simple scalar variable to dereference it:
$foo = "three humps";
$scalarref = \$foo; # $scalarref is now a reference to $foo
$camel_model = $$scalarref; # $camel_model is now "three humps"
Here are some other dereferences:
$bar = $$scalarref;

push(@$arrayref, $filename);
$$arrayref[0] = "January"; # Set the first element of @$arrayref
@$arrayref[4..6] = qw/May June July/; # Set several elements of @$arrayref

%$hashref = (KEY => "RING", BIRD => "SING"); # Initialize whole hash
$$hashref{KEY} = "VALUE"; # Set one key/value pair
@$hashref{"KEY1","KEY2"} = ("VAL1","VAL2"); # Set two more pairs

&$coderef(1,2,3);

say $handleref "output";
This form of dereferencing can only make use of a simple
 scalar variable (one without a subscript). That is, dereferencing
 happens before (or binds tighter than) any
 array or hash lookups. Let’s use some braces to clarify what we
 mean: an expression like $$arrayref[0] is equivalent to ${$arrayref}[0] and means the first
 element of the array referred to by $arrayref. That is not at all the same as
 ${$arrayref[0]}, which is
 dereferencing the first element of the (probably nonexistent) array
 named @arrayref. Likewise,
 $$hashref{KEY} is the same as
 ${$hashref}{KEY}, and has nothing
 to do with ${$hashref{KEY}},
 which would be dereferencing an entry in the (probably nonexistent)
 hash named %hashref. You will be
 miserable until you understand this.
You can achieve multiple levels of referencing and
 dereferencing by concatenating the appropriate sigils. The following
 prints “howdy”:
$refrefref = \\\"howdy";
print $$$$refrefref;
You can think of the dollar signs as operating right to left.
 But the beginning of the chain must still be a simple, unsubscripted
 scalar variable. There is, however, a way to get fancier, which we
 already sneakily used earlier, and which we’ll explain in the next
 section.

Using a block As a Variable
 Name

Not only can you dereference a simple variable name, you can also
 dereference the contents of a BLOCK.
 Anywhere you’d put an alphanumeric identifier as part of a variable
 or subroutine name, you can replace the identifier with a
 BLOCK returning a reference of the
 correct type. In other words, the earlier examples could all be
 disambiguated like this:
$bar = ${$scalarref};
push(@{$arrayref}, $filename);
${$arrayref}[0] = "January";
@{$arrayref}[4..6] = qw/May June July/;
${$hashref}{"KEY"} = "VALUE";
@{$hashref}{"KEY1","KEY2"} = ("VAL1","VAL2");
&{$coderef}(1,2,3);
not to mention:
$refrefref = \\\"howdy";
print ${${${$refrefref}}};
Admittedly, it’s silly to use the braces in these simple
 cases, but the BLOCK can contain any
 arbitrary expression. In particular, it can contain subscripted
 expressions. In the following example, $dispatch{$index} is assumed to contain a
 reference to a subroutine (sometimes called a “coderef”). The
 example invokes the subroutine with three arguments:
&{ $dispatch{$index} }(1, 2, 3);
Here, the BLOCK is necessary.
 Without that outer pair of braces, Perl would have treated $dispatch as the coderef instead of
 $dispatch{$index}.

Using the Arrow Operator

For references to arrays, hashes, or subroutines, a third method of
 dereferencing involves the use of the –> infix operator. This form of
 syntactic sugar makes it easier to get at individual array or hash
 elements, or to call a subroutine indirectly.
The type of the dereference is determined by the right
 operand―that is, by what follows directly after the arrow. If the
 next thing after the arrow is a bracket or brace, the left operand
 is treated as a reference to an array or a hash, respectively, to be
 subscripted by the expression on the right. If the next thing is a
 left parenthesis, the left operand is treated as a reference to a
 subroutine, to be called with whatever parameters you supply in the
 parentheses on the right.
Each of these next trios is equivalent, corresponding to the
 three notations we’ve introduced. (We’ve inserted some spaces to
 line up equivalent elements.)
$ $arrayref [2] = "Dorian"; #1
${ $arrayref }[2] = "Dorian"; #2
 $arrayref–>[2] = "Dorian"; #3

$ $hashref {KEY} = "F#major"; #1
${ $hashref }{KEY} = "F#major"; #2
 $hashref–>{KEY} = "F#major"; #3

& $coderef (Presto => 192); #1
&{ $coderef }(Presto => 192); #2
 $coderef–>(Presto => 192); #3
You can see that the initial sigil is missing from the third
 notation in each trio. The sigil is guessed at by Perl, which is why
 it can’t be used to dereference complete arrays, complete hashes, or
 slices of either. As long as you stick with scalar values, though,
 you can use any expression to the left of the –>, including another dereference,
 because multiple arrow operators associate left to right:
print $array[3]–>{"English"}–>[0];
You can deduce from this expression that the fourth element of
 @array is intended to be a hash
 reference, and the value of the “English” entry in that hash is intended to
 be an array reference.
Note that $array[3] and
 $array–>[3] are not the same.
 The first is talking about the fourth element of @array, while the second one is talking
 about the fourth element of the (possibly anonymous) array whose
 reference is contained in $array.
Suppose now that $array[3]
 is undefined. The following statement is still legal:
$array[3]–>{"English"}–>[0] = "January";
This is one of those cases mentioned earlier in which
 references spring into existence (or “autovivify”) when used as an
 lvalue (that is, when a value is being assigned to it). If $array[3] was undefined, it’s
 automatically defined as a hash reference so that we can set a value
 for $array[3]–>{"English"} in
 it. Once that’s done, $array[3]–>{"English"} is automatically
 defined as an array reference so that we can assign something to the
 first element in that array. Note that rvalues are a little
 different: print
 $array[3]–>{"English"}–>[0] only defines $array[3] and $array[3]–>{"English"}, not $array[3]–>{"English"}–>[0], since
 the final element is not an lvalue. (The fact that it defines the
 first two at all in an rvalue context could be considered a bug. We
 may fix that someday.)
The arrow is optional between brackets or braces, or between a
 closing bracket or brace and a parenthesis for an indirect function
 call. So you can shrink the previous code down to:
$dispatch{$index}(1, 2, 3);
$array[3]{"English"}[0] = "January";
In the case of ordinary arrays, this gives you
 multidimensional arrays that are just like C’s array:
$answer[$x][$y][$z] += 42;
Well, okay, not entirely like C’s arrays.
 For one thing, C doesn’t know how to grow its arrays on demand,
 while Perl does. Also, some constructs that are similar in the two
 languages parse differently. In Perl, the following two statements
 do the same thing:
$listref–>[2][2] = "hello"; # Pretty clear
$$listref[2][2] = "hello"; # A bit confusing
This second of these statements may disconcert the C
 programmer, who is accustomed to using *a[i] to mean “what’s pointed to by the
 ith element of
 a”. But in Perl, the five
 characters ($ @ * % &)
 effectively bind more tightly than braces or
 brackets.[126] Therefore, it is $$listref and not $listref[2] that is taken to be a
 reference to an array. If you want the C behavior, either you have
 to write ${$listref[2]} to force
 the $listref[2] to get evaluated
 before the leading $
 dereferencer, or you have to use the –> notation:
$listref[2]–>[$greeting] = "hello";

[126] But not because of operator precedence. The sigils in Perl
 are not operators in that sense. Perl’s grammar simply prohibits
 anything more complicated than a simple variable or block from
 following the initial sigil.

Using Object Methods

If a reference happens to be a reference to an object, then the class
 that defines that object probably provides methods to access the
 innards of the object, and you should generally stick to those
 methods if you’re merely using the class (as opposed to implementing
 it). In other words, be nice and don’t treat an object like a
 regular reference, even though Perl lets you when you really need
 to. Perl does not enforce encapsulation. We are not totalitarians
 here. We do expect some basic civility, however.
In return for this civility, you get complete orthogonality
 between objects and data structures. Any data structure can behave
 as an object when you want it to―or not, when you don’t.

Pseudohashes

A pseudohash
 used to be a way to treat an array as though it were a
 hash so you could fake an ordered hash. Pseudohashes were an
 experiment that turned out to be not such a great idea, so they have
 been removed from Perl as of v5.10, but some people are stuck on
 even earlier versions, so we’ll leave in a note, even though you
 shouldn’t use them. If you used them, you should have used the
 fields module’s phash and
 new functions.
The fields::phash interface
 is no longer available as of v5.10, although fields::new still works. Nonetheless, you
 should consider using restricted hashes from the standard Hash::Util module instead.

Other Tricks You Can Do with Hard References

As mentioned earlier, the backslash operator is usually used on a single
 referent to generate a single reference, but it doesn’t have to be.
 When used on a list of referents, it produces a list of
 corresponding references. The second line of the following example
 does the same thing as the first line, since the backslash is
 automatically distributed throughout the whole list:
@reflist = (\$s, \@a, \%h, \&f); # List of four references
@reflist = \($s, @a %h, &f); # Same thing
If a parenthesized list contains exactly one array or hash,
 then all of its values are interpolated, and references to each are
 returned:
@reflist = \(@x); # Interpolate array, then get refs
@reflist = map { \$_ } @x; # Same thing
This also occurs when there are internal parentheses:
@reflist = \(@x, (@y)); # But only single aggregates expand
@reflist = (\@x, map { \$_ } @y); # Same thing
If you try this with a hash, the result will contain
 references to the values (as you’d expect), but also references to
 copies of the keys (as you might not
 expect).
Since array and hash slices are really just lists, you can
 backslash a slice of either of these to get a list of references.
 Each of the next three lines does exactly the same thing:
@envrefs = \@ENV{"HOME", "TERM"}; # Backslashing a slice
@envrefs = \($ENV{HOME}, $ENV{TERM}); # Backslashing a list
@envrefs = (\$ENV{HOME}, \$ENV{TERM}); # A list of two references
Since functions can return lists, you can apply a backslash to
 them. If you have more than one function to call, first interpolate
 each function’s return values into a larger list, and then backslash
 the whole thing:
@reflist = \fx();
@reflist = map { \$_ } fx(); # Same thing

@reflist = \(fx(), fy(), fz());
@reflist = (\fx(), \fy(), \fz()); # Same thing
@reflist = map { \$_ } fx(), fy(), fz(); # Same thing
The backslash operator always supplies list context to its
 operand, so those functions are all called in list context. If the
 backslash is itself in scalar context, you’ll end up with a
 reference to the last value of the list returned by the
 function:
@reflist = \localtime(); # Ref to each of nine time elements
$lastref = \localtime(); # Ref to whether it's daylight savings time
In this regard, the backslash behaves like the named Perl list
 operators, such as print,
 reverse, and sort, which always supply list context on
 their right no matter what might be happening on their left. As with
 named list operators, use an explicit scalar to force what follows into scalar
 context:
$dateref = \scalar localtime(); # \"Tue Oct 18 07:23:50 2011"
You can use the ref operator to
 determine what a reference is pointing to. Think of ref as a “typeof” operator that returns
 true if its argument is a reference and false otherwise. The value
 returned depends on the type of thing referenced. Built-in types
 include SCALAR, ARRAY, HASH, CODE, GLOB, REF, VSTRING, IO, LVALUE, FORMAT, and REGEXP, plus the classes version, Regexp, and IO::Handle. Here we use the ref operator to check subroutine
 arguments:
sub sum {
 my $arrayref = shift;
 warn "Not an array reference" if ref($arrayref) ne "ARRAY";
 return eval join("+", @$arrayref);
 }

 say sum([1..100]); # 5050, by Euler's trick
If you use a hard reference in a string context, it’ll be
 converted to a string containing both the type and the address:
 SCALAR(0x1fc0e). (The reverse
 conversion cannot be done since reference count information is lost
 during stringification—and also because it would be dangerous to let
 programs access a memory address named by an arbitrary
 string.)
You can use the bless
 operator to associate a referent with a package functioning as an
 object class. When you do this, ref returns the class name instead of the
 internal type. An object reference used in a string context returns
 a string with the external and internal
 types, as well as the address in memory: MyType=HASH(0x20d10) or IO::Handle=IO(0x186904). See Chapter 12 for more details about
 objects.
Since the way in which you dereference something always
 indicates what sort of referent you’re looking for, a typeglob can
 be used the same way a reference can, despite the fact that a
 typeglob contains multiple referents of various types. So ${*main::foo} and ${\$main::foo} both access the same scalar
 variable, although the latter is more efficient.
Here’s a trick for interpolating the return value of a
 subroutine call into a string:
say "My sub returned @{[mysub(1,2,3)]} that time.";
It works like this. At compile time, when the @{...} is seen within the double-quoted
 string, it’s parsed as a block that returns a reference. Within the
 block, there are square brackets that create a reference to an
 anonymous array from whatever is in the brackets. So at runtime,
 mysub(1,2,3) is called in list
 context, and the results are loaded into an anonymous array, a
 reference to which is then returned within the block. That array
 reference is then immediately dereferenced by the surrounding
 @{...}, and the array value is
 interpolated into the double-quoted string just as an ordinary array
 would be. This chicanery is also useful for arbitrary expressions,
 such as:
say "We need @{ [$n + 5] } widgets!";
Be careful though: square brackets supply list context to
 their expression. In this case it doesn’t matter, although the
 earlier call to mysub might care.
 When it does matter, use an explicit scalar to force the context:
say "mysub returns @{ [scalar mysub(1,2,3)] } now.";

Closures

Earlier we talked about creating anonymous subroutines with a
 nameless sub {}. You can think of
 those subroutines as defined at runtime, which means that they have
 a time of generation as well as a location of definition. Some
 variables might be in scope when the subroutine is created, and
 different variables might be in scope when the subroutine is
 called.
Forgetting about subroutines for a moment, consider a
 reference that refers to a lexical variable:
{
 my $critter = "camel";
 $critterref = \$critter;
}
The value of $$critterref
 will remain “camel” even though
 $critter disappears after the
 closing curly brace. But $critterref could just as well have
 referred to a subroutine that refers to $critter:
{
 my $critter = "camel";
 $critterref = sub { return $critter };
}
This is a closure, which is a notion out
 of the functional programming world of LISP and Scheme.[127] It means that when you define an anonymous function in
 a particular lexical scope at a particular moment, it pretends to
 run in that scope even when later called from outside that scope. (A
 purist would say it doesn’t have to pretend—it actually
 does run in that scope.)
In other words, you are guaranteed to get the same copy of a
 lexical variable each time, even if other instances of that lexical
 variable have been created before or since for other instances of
 that closure. This gives you a way to set values used in a
 subroutine when you define it, not just when you call it.
You can also think of closures as a way to write a subroutine
 template without using eval. The
 lexical variables act as parameters for filling in the template,
 which is useful for setting up little bits of code to run later.
 These are commonly called callbacks in event-based
 programming, where you associate a bit of code with a keypress,
 mouse click, window exposure, and so on. When used as callbacks,
 closures do exactly what you expect, even if you don’t know the
 first thing about functional programming. (Note that this closure
 business only applies to
 my
 (and state)
 variables. Global variables work as they’ve always worked, since
 they’re neither created nor destroyed the way lexical variables
 are.)
Another use for closures is within function generators; that is,
 functions that create and return brand new functions. Here’s an
 example of a function generator implemented with closures:
sub make_saying {
 my $salute = shift;
 my $newfunc = sub {
 my $target = shift;
 say "$salute, $target!";
 };
 return $newfunc; # Return a closure
}

$f = make_saying("Howdy"); # Create a closure
$g = make_saying("Greetings"); # Create another closure

Time passes...

$f–>("world");
$g–>("earthlings");
This prints:
Howdy, world!
Greetings, earthlings!
Note in particular how $salute continues to refer to the actual
 value passed into make_saying,
 despite the fact that the my
 $salute has gone out of scope by
 the time the anonymous subroutine runs. That’s what closures are all
 about. Since $f and $g hold references to functions that, when
 called, still need access to the distinct versions of $salute, those versions automatically
 stick around. If you now overwrite $f, its version of
 $salute would automatically
 disappear. (Perl only cleans up when you’re not looking.)
Perl doesn’t provide references to object methods (described
 in Chapter 12), but you can get a similar effect
 using a closure. Suppose you want a reference not just to the
 subroutine the method represents, but one which, when invoked, would
 call that method on a particular object. You can conveniently
 remember both the object and the method as lexical variables bound
 up inside a closure:
sub get_method_ref {
 my ($self, $methodname) = @_;
 my $methref = sub {
 # the @_ below is not the same as the one above!
 return $self–>$methodname(@_);
 };
 return $methref;
}

my $dog = new Doggie::
 Name => "Lucky",
 Legs => 3,
 Tail => "clipped";

our $wagger = get_method_ref($dog, "wag");
$wagger–>("tail"); # Calls $dog–>wag("tail").
Not only can you get Lucky to wag what’s left of his tail now,
 even once the lexical $dog
 variable has gone out of scope and Lucky is nowhere to be seen, the
 global $wagger variable can still
 get him to wag his tail, wherever he is.
Closures as function templates

Using a closure as a function template allows you to generate many
 functions that act similarly. Suppose you want a suite of
 functions that generate HTML font changes for various
 colors:
print "Be ", red("careful"), " with that ", green("light"), "!!!";
The red and green functions would be very similar.
 We’d like to name our functions, but closures don’t have names
 since they’re just anonymous subroutines with an attitude. To get
 around that, we’ll perform the cute trick of naming our anonymous
 subroutines. You can bind a coderef to an existing name by
 assigning it to a typeglob of the name of the function you want.
 (See the section Symbol Tables in Chapter 10.) In this case, we’ll bind it to two
 different names, one uppercase and one lowercase:
@colors = qw(red blue green yellow orange purple violet);
for my $name (@colors) {
 no strict "refs"; # Allow symbolic references
 *$name = *{uc $name} = sub { "@_" };
}
Now you can call functions named red, RED, blue, BLUE, and so on, and the appropriate
 closure will be invoked. This technique reduces compile time and
 conserves memory, and is less error-prone as well, since syntax
 checks happen during compilation. It’s critical that any variables
 in the anonymous subroutine be lexicals in order to create a
 closure. That’s the reason for the my above.
This is one of the few places where giving a prototype to a
 closure makes sense. If you wanted to impose scalar context on the
 arguments of these functions (probably not a wise idea for this
 example), you could have written it this way instead:
*$name = sub ($) { "$_[0]" };
That’s almost good enough. However, since prototype checking
 happens during compile time, the runtime assignment above happens
 too late to be of much use. You could fix this by putting the
 whole loop of assignments within a BEGIN block, forcing it to occur during
 compilation. (More likely, you’d put it out in a module that you
 use at compile time.) Then the
 prototypes will be visible during the rest of the
 compilation.

Nested subroutines

If you are accustomed (from other programming languages) to
 using subroutines nested within other subroutines, each with their
 own private variables, you’ll have to work at it a bit in Perl.
 Named subroutines do not nest properly, although anonymous ones
 do.[128] Anyway, we can emulate nested, lexically scoped
 subroutines using closures. Here’s an example:
sub outer {
 my $x = $_[0] + 35;
 local *inner = sub { return $x * 19 };
 return $x + inner();
}
Now, inner can only be
 called from within outer
 because of the temporary assignments of the closure. But when it
 is, it has normal access to the lexical variable $x from the scope of outer.
This has the interesting effect of creating a function local
 to another function, something not normally supported in Perl.
 Because local is dynamically
 scoped, and because function names are global to their package,
 any other function that outer
 called could also call the temporary version of inner. To prevent that, you’d need an
 extra level of indirection:
sub outer {
 my $x = $_[0] + 35;
 my $inner = sub { return $x * 19 };
 return $x + $inner–>();
}

[127] In this context, the word “functional” should not be
 construed as an antonym of “dysfunctional”.

[128] To be more precise, globally named
 subroutines don’t nest. Unfortunately, that’s the only kind of
 named subroutine declaration we have. We haven’t yet
 implemented lexically scoped, named subroutines (known as
 my subs), but when we do,
 they should nest correctly.

Symbolic References

What happens if you try to dereference a value that is not a hard
 reference? The value is then treated as a symbolic reference. That is,
 the reference is interpreted as a string representing the
 name of a global variable.
Here is how this works:
$name = "bam";
$$name = 1; # Sets $bam
$name–>[0] = 4; # Sets the first element of @bam
$name–>{X} = "Y"; # Sets the X element of %bam to Y
@$name = (); # Clears @bam
keys %$name; # Yields the keys of %bam
&$name; # Calls &bam
This is very powerful, and slightly dangerous, in that it’s
 possible to intend (with the utmost sincerity) to use a hard
 reference, but to accidentally use a symbolic reference instead. To
 protect against that, you can say:
use strict "refs";
and then only hard references will be allowed for the rest of
 the enclosing block. An inner block may countermand the decree
 with:
no strict "refs";
It is also important to understand the difference between the
 following two lines of code:
${identifier}; # Same as $identifier.
${"identifier"}; # Also $identifier, but a symbolic reference.
Because the second form is quoted, it is treated as a symbolic
 reference and will generate an error if use
 strict "refs" is in effect. Even if strict "refs" is not in effect, it can only
 refer to a package variable. But the first form is identical to the
 unbracketed form, and it will refer to even a lexically scoped
 variable if one is declared. The next example shows this (and the next
 section discusses it).
Only package variables are accessible through symbolic
 references, because symbolic references always go through the package
 symbol table. Since lexical variables aren’t in a package symbol
 table, they are therefore invisible to this mechanism. For
 example:
our $value = "global";
{
 my $value = "private";
 print "Inside, mine is ${value}, ";
 say "but ours is ${"value"}.";
}
say "Outside, ${value} is again ${"value"}.";
which prints:
Inside, mine is private, but ours is global.
Outside, global is again global.

Braces, Brackets, and Quoting

In the previous section, we pointed out that ${identifier} is not treated as a symbolic
 reference. You might wonder how this interacts with reserved words, and
 the short answer is that it doesn’t. Despite the fact that push is a reserved word, these two
 statements print “pop on
 over”:
$push = "pop on ";
print "${push}over";
The reason is that, historically, this use of braces is how Unix
 shells have isolated a variable name from subsequent alphanumeric text
 that would otherwise be interpreted as part of the name. It’s how many
 people expect variable interpolation to work, so we made it work the
 same way in Perl. But with Perl, the notion extends further and
 applies to any braces used in generating references, whether or not
 they’re inside quotes. This means that:
print ${push} . "over";
or even (since spaces never matter):
print ${ push } . "over";
both print “pop on over”,
 even though the braces are outside of double quotes. The same rule
 applies to any identifier used for subscripting a hash. So instead of
 writing:
$hash{ "aaa" }{ "bbb" }{ "ccc" }
you can just write:
$hash{ aaa }{ bbb }{ ccc }
or:
$hash{aaa}{bbb}{ccc}
and not worry about whether the subscripts are reserved words.
 So this:
$hash{ shift }
is interpreted as $hash{"shift"}. You can force interpretation
 as a reserved word by adding anything that makes it more than a mere
 identifier:
$hash{ shift() }
$hash{ +shift }
$hash{ shift @_ }

References Don’t Work As Hash Keys

Hash keys are stored internally as strings.[129] If you try to store a reference as a key in a hash,
 the key value will be converted into a string:
$x{ \$a } = $a;
($key, $value) = each %x;
print $$key; # WRONG
We mentioned earlier that you can’t convert a string back to a
 hard reference. So if you try to dereference $key, which contains a mere string, it
 won’t return a hard dereference, but rather a symbolic
 dereference—and since you probably don’t have a variable named
 SCALAR(0x1fc0e), you won’t
 accomplish what you’re attempting. You might want to do something
 more like:
$r = \@a;
$x{ $r } = $r;
Then at least you can use the hash value,
 which will be a hard reference, instead of the key, which
 won’t.
Although you can’t store a reference as a key, if (as in the
 earlier example) you use a hard reference in a string context, it
 is guaranteed to produce a unique string. This
 is because the address of the reference is included as part of the
 resulting string. So you can in fact use a reference as a unique
 hash key; you just can’t dereference it later.
There is one special kind of hash in which you
 are able to use references as keys. Through the
 magic[130] of the Tie::RefHash module bundled with Perl, the thing we just said you
 couldn’t do, you can do:
use Tie::RefHash;
tie my %h, "Tie::RefHash";
%h = (
 ["this", "here"] => "at home",
 ["that", "there"] => "elsewhere",
);
while (my($keyref, $value) = each %h) {
 say "@$keyref is $value";
}
In fact, by tying different implementations to the built-in
 types, you can make scalars, hashes, and arrays behave in many of
 the ways we’ve said you can’t. That’ll show us! Stupid
 authors…
For more about tying, see Chapter 14.

[129] They’re also stored externally as
 strings, such as when you put them into a DBM file. In fact, DBM
 files require that their keys (and values)
 be strings.

[130] Yes, that is a technical term, as
 you’ll notice if you muddle through the mg.c file in the Perl source
 distribution.

Garbage Collection, Circular References, and Weak
 References

High-level languages typically allow programmers not to worry about
 deallocating memory when they’re done using it. This automatic
 reclamation process is known as garbage
 collection. For most purposes, Perl uses a fast and
 simple reference-based garbage collector.
When a block is exited, its locally scoped variables are
 normally freed up, but it is possible to hide your garbage so that
 Perl’s garbage collector can’t find it. One serious concern is that
 unreachable memory with a nonzero reference count will normally not
 get freed. Therefore, circular references are a bad idea:
{ # make $a and $b point to each other
 my ($a, $b);
 $a = \$b;
 $b = \$a;
}
or more simply:
{ # make $a point to itself
 my $a;
 $a = \$a;
}
Even though $a should be
 deallocated at the end of the block, it isn’t. When building
 recursive data structures, you’ll have to break (or weaken; see
 below) the self-reference yourself if you want to reclaim the memory
 before your program (or thread) exits. (Upon exit, the memory will
 be reclaimed for you automatically via a costly but complete
 mark-and-sweep garbage collection.) If the data structure is an
 object, you can use a DESTROY
 method to break the reference automatically; see Garbage Collection with destroy
 Methods in Chapter 12.
A similar situation can occur with caches—repositories of data designed for
 faster-than-normal retrieval. Outside the cache there are references
 to data inside the cache. The problem occurs when all of those
 references are deleted, but the cache data with its internal
 reference remains. The existence of any reference prevents the
 referent from being reclaimed by Perl, even though we want cache
 data to disappear as soon as it’s no longer needed. As with circular
 references, we want a reference that doesn’t affect the reference
 count, and therefore doesn’t delay garbage collection.
Here’s another example, this time of an explicitly circular
 double-linked list:
$ring = {
 VALUE => undef,
 NEXT => undef,
 PREV => undef,
};
$ring–>{NEXT} = $ring;
$ring–>{PREV} = $ring;
The underlying hash has an underlying refcount of three, and
 undeffing $ring or letting it go out of scope will
 only decrement that count by one, resulting in a whole hashfull of
 memory irrecoverable by Perl.
To address this situation, Perl introduced the concept
 of weak
 references. A weak reference is just like any other
 regular reference (meaning a “hard” reference, not a “symbolic” one)
 except for two critical properties: it no longer contributes to the
 reference count on its referent, and when its referent is garbage
 collected, the weak reference itself becomes undefined. These
 properties make weak references perfect for data structures that
 hold internal references to themselves. That way, those internal
 references do not count toward the structure’s reference count, but
 external ones still do.
Although Perl supported weak reference starting in v5.6, there
 was no standard weaken function
 to access them from Perl itself until the v5.8.1 release, when the
 weaken function was first
 included standard with the Scalar::Util module. That module also provides an is_weak function
 that reports whether its reference argument has been weakened or
 not.
Here’s how you would use it on the ring example just
 given:
use Scalar::Util qw(weaken);

$ring = {
 VALUE => undef,
 NEXT => undef,
 PREV => undef,
};
$ring–>{NEXT} = $ring;
$ring–>{PREV} = $ring;
weaken($ring–>{NEXT});
weaken($ring–>{PREV});
Weak references work like normal (hard) references as far as
 the ref operator is concerned: it
 reports the type of referent. However, when a weak reference’s
 referent gets garbage collected, the variable holding that weak
 reference will suddenly become undefined, since it no longer refers
 to something that exists.
Copying a weak reference creates a regular reference. If you
 need another weak reference, you’ll have to weaken the copy
 afterwards.
For a longer example of managing weak references, see
 Recipe 11.15, “Coping
 with Circular Data Structures using Weak References,” in
 Perl Cookbook.

Chapter 9. Data Structures

Perl provides for free many of the data structures that you have
 to build yourself in other programming languages. The stacks and queues
 that budding computer scientists learn about are both just arrays in
 Perl. When you push and pop (or unshift and shift) an array, it’s a stack; when you
 push and shift (or unshift and pop) an array, it’s a queue. And many of the
 tree structures in the world are built only to provide fast, dynamic
 access to a conceptually flat lookup table. Hashes, of course, are built
 into Perl, and they provide fast, dynamic access to a conceptually flat
 lookup table, only without the mind-numbingly recursive data structures
 that are claimed to be beautiful by people whose minds have been
 suitably numbed already.
But sometimes you want nested data structures because they most
 naturally model the problem you’re trying to solve. So Perl lets you
 combine and nest arrays and hashes to create arbitrarily complex data
 structures. Properly applied, they can be used to create linked lists,
 binary trees, heaps, B-trees, sets, graphs, and anything else you can
 devise. See Mastering
 Algorithms with Perl, Perl
 Cookbook, the “Data Structure Cookbook” in
 perldsc,
 or CPAN, the central repository for all such modules. But simple
 combinations of arrays and hashes may be all you ever need, so they’re
 what we’ll talk about in this chapter.

Arrays of Arrays

There are many kinds of nested data structures. The simplest kind to
 build is an array of arrays, also called a two-dimensional array or a
 matrix. (The obvious generalization applies: an array of arrays of
 arrays is a three-dimensional array, and so on for higher dimensions.)
 It’s reasonably easy to understand, and nearly everything that applies
 here will also be applicable to the fancier data structures we’ll
 explore in subsequent sections.

Creating and Accessing a Two-Dimensional Array

Here’s how to put together a two-dimensional array:
Assign a list of array references to an array.
@AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);

print $AoA[2][1]; # prints "marge"
The overall list is enclosed by parentheses, not brackets,
 because you’re assigning a list and not a reference. If you wanted a
 reference to an array instead, you’d use brackets:
Create a reference to an array of array references.
$ref_to_AoA = [
 ["fred", "barney", "pebbles", "bamm bamm", "dino",],
 ["homer", "bart", "marge", "maggie",],
 ["george", "jane", "elroy", "judy",],
];

print $ref_to_AoA–>[2][3]; # prints "judy"
Remember that there is an implied –> between every pair of adjacent
 braces or brackets. Therefore, these two lines:
$AoA[2][3]
$ref_to_AoA–>[2][3]
are equivalent to these two lines:
$AoA[2]–>[3]
$ref_to_AoA–>[2]–>[3]
There is, however, no implied –> before the first pair of brackets,
 which is why the dereference of $ref_to_AoA requires the initial –>. Also remember that you can count
 backward from the end of an array with a negative index, so:
$AoA[0][–2]
is the next-to-last element of the first row.

Growing Your Own

Those big list assignments are well and good for creating a
 fixed data structure, but what if you want to calculate each element
 on the fly, or otherwise build the structure piecemeal?
Let’s read in a data structure from a file. We’ll assume that
 it’s a plain text file, where each line is a row of the structure,
 and each line consists of elements delimited by whitespace. Here’s
 how to proceed:[131]
while (<>) {
 @tmp = split; # Split elements into an array.
 push @AoA, [@tmp]; # Add an anonymous array reference to @AoA.
}
Of course, you don’t need to name the temporary array, so you
 could also say:
while (<>) {
 push @AoA, [split];
}
If you want a reference to an array of arrays, you can do
 this:
while (<>) {
 push @$ref_to_AoA, [split];
}
Both of those examples add new rows to the array of arrays.
 What about adding new columns? If you’re just dealing with
 two-dimensional arrays, it’s often easiest to use simple
 assignment:[132]
for $x (0 .. 9) { # For each row...
 for $y (0 .. 9) { # For each column...
 $AoA[$x][$y] = func($x, $y); # ...set that cell
 }
}

for $x (0..9) { # For each row...
 $ref_to_AoA–>[$x][3] = func2($x); # ...set the fourth column
}
It doesn’t matter in what order you assign the elements, nor
 does it matter whether the subscripted elements of @AoA are already there or not; Perl will
 gladly create them for you, setting intervening elements to the
 undefined value as need be. Perl will even create the original
 reference in $ref_to_AoA for you
 if it needs to in the code above. If you just want to append to a
 row, you have to do something a bit funnier:
Append new columns to an existing row.
push @{ $AoA[0] }, "wilma", "betty";
You might be wondering whether you could get away with
 skipping that dereference and just write:
push $AoA[0], "wilma", "betty"; # compiler error < v5.14
We were wondering the same thing ourselves. For the longest
 time that wouldn’t even compile, because the argument to push must be a real array, not just a
 reference to an array. Therefore, its first argument always had to
 begin with an @ character, but
 what came after the @ was
 somewhat negotiable.
As of v5.14, you can sometimes get away
 with omitting an explicit dereference when calling certain built-in
 functions. Those functions are pop, push, shift, unshift, and splice for arrays, and keys, values, and each for hashes. These no longer require
 their first argument to begin with a literal @ or %.
 If passed a valid reference to the appropriate type of aggregate,
 they dereference it as needed; unlike explicit dereferencing, this
 implicit dereferencing never triggers autovivification. If passed an
 invalid reference, a runtime exception is raised. Since running your
 spiffy new code on older releases causes those venerable compilers
 to choke, you should notify users that your code is of a new vintage
 by putting a use
 VERSION pragma at the
 top of the file:
use 5.014; # no new wine in old bottles
use v5.14; # no new patches on old cloth

[131] Here, as in other chapters, we omit (for clarity) the
 my declarations that you
 would ordinarily put in. In this example, you’d normally write
 my @tmp = split.

[132] As with the temp assignment earlier, we’ve simplified; the
 loops in this chapter would likely be written for my $x in real code.

Access and Printing

Now let’s print the data structure. If you only want one element, this is
 sufficient:
print $AoA[3][2];
But if you want to print the whole thing, you can’t just
 say:
print @AoA; # WRONG
It’s wrong because you’ll see stringified references instead
 of your data. Perl never automatically dereferences for you.
 Instead, you have to roll yourself a loop or two. The following code
 prints the whole structure, looping through the elements of @AoA and dereferencing each inside the
 say statement:
for $row (@AoA) {
 say "@$row";
}
If you want to keep track of subscripts, you might do
 this:
for $i (0 .. $#AoA) {
 say "row $i is: @{$AoA[$i]}";
}
or maybe even this (notice the inner loop):
for $i (0 .. $#AoA) {
 for $j (0 .. $#{$AoA[$i]}) {
 say "element $i $j is $AoA[$i][$j]";
 }
}
As you can see, things are getting a bit complicated. That’s
 why sometimes it’s easier to use a temporary variable on your way
 through:
for $i (0 .. $#AoA) {
 $row = $AoA[$i];
 for $j (0 .. $#{$row}) {
 say "element $i $j is $row–>[$j]";
 }
}
When you get tired of writing a custom print for your data
 structures, you might look at the standard Dumpvalue or Data::Dumper modules. The former is what the Perl debugger uses,
 while the latter generates parsable Perl code. For example:
use v5.14; # using the + prototype, new to v5.14

sub show(+) {
 require Dumpvalue;
 state $prettily = new Dumpvalue::
 tick => q("),
 compactDump => 1, # comment these two lines out
 veryCompact => 1, # if you want a bigger dump
 ;
 dumpValue $prettily @_;
}

Assign a list of array references to an array.
my @AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);
push $AoA[0], "wilma", "betty";
show @AoA;
will print out:
0 0..3 "fred" "barney" "wilma" "betty"
1 0..2 "george" "jane" "elroy"
2 0..2 "homer" "marge" "bart"
Whereas if you comment out the two lines we said you might
 wish to, then it shows you the array contents this way
 instead:
0 ARRAY(0x8031d0)
 0 "fred"
 1 "barney"
 2 "wilma"
 3 "betty"
1 ARRAY(0x803d40)
 0 "george"
 1 "jane"
 2 "elroy"
2 ARRAY(0x803e10)
 0 "homer"
 1 "marge"
 2 "bart"
A CPAN module that we like to use for displaying our data
 dumps is Data::Dump. Here’s what it looks like:
use v5.14; # for push on scalars
use Data::Dump qw(dump); # CPAN module

my @AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);
push $AoA[0], "wilma", "betty";
dump \@AoA;
That produces this output:
[
 ["fred", "barney", "wilma", "betty"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
]

Slices

If you want to access a slice (part of a row) of a multidimensional
 array, you’re going to have to do some fancy subscripting. The
 pointer arrows give us a nice way to access a single element, but no
 such convenience exists for slices. You can always use a loop to
 extract the elements of your slice one by one:
@part = ();
for ($y = 7; $y < 13; $y++) {
 push @part, $AoA[4][$y];
}
This particular loop could be replaced with an array
 slice:
@part = @{ $AoA[4] } [7..12];
If you want a two-dimensional slice, say,
 with $x running from 4..8 and $y from 7..12, here’s one way to do it:
@newAoA = ();
for ($startx = $x = 4; $x <= 8; $x++) {
 for ($starty = $y = 7; $y <= 12; $y++) {
 $newAoA[$x – $startx][$y – $starty] = $AoA[$x][$y];
 }
}
In this example, the individual values within our destination
 two-dimensional array, @newAoA,
 are assigned one by one, taken from a two-dimensional subarray of
 @AoA. An alternative is to create
 anonymous arrays, each consisting of a desired slice of an @AoA subarray, and then put references to
 these anonymous arrays into @newAoA. We would then be writing
 references into @newAoA
 (subscripted once, so to speak) instead of subarray values into a
 twice-subscripted @newAoA. This
 method eliminates the innermost loop:
for ($x = 4; $x <= 8; $x++) {
 push @newAoA, [@{ $AoA[$x] } [7..12]];
}
Of course, if you do this often, you should probably write a
 subroutine called something like extract_rectangle. And if you do it very
 often with large collections of multidimensional data, you should
 probably use the PDL (Perl Data Language) module, available from
 CPAN.

Common Mistakes

As mentioned earlier, Perl arrays and hashes are one-dimensional. In Perl,
 even “multidimensional” arrays are actually one-dimensional, but the
 values along that dimension are references to other arrays, which
 collapse many elements into one. If you print these values out
 without dereferencing them, you will get the stringified references
 rather than the data you want. For example, these two lines:
@AoA = ([2, 3], [4, 5, 7], [0]);
print "@AoA";
result in something like:
ARRAY(0x83c38) ARRAY(0x8b194) ARRAY(0x8b1d0)
On the other hand, this line displays 7:
print $AoA[1][2];
When constructing an array of arrays, remember to compose new
 references for the subarrays. Otherwise, you will just create an
 array containing the element counts of the subarrays, like
 this:
for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = @array; # WRONG!
}
Here, @array is being
 accessed in scalar context, and therefore yields the count of its
 elements, which is dutifully assigned to $AoA[$i]. The proper way to assign the
 reference will be shown in a moment.
After making the previous mistake people realize they need to
 assign a reference, so the next mistake people naturally make
 involves taking a reference to the same memory location over and
 over again:
for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = \@array; # WRONG AGAIN!
}
Every reference generated by the second line of the for loop is the same, namely, a reference
 to the single array @array. Yes,
 this array changes on each pass through the loop, but when
 everything is said and done, $AoA
 contains 10 references to the same array, which now holds the last
 set of values assigned to it. print
 @{$AoA[1]} will reveal the same values as print @{$AoA[2]}.
Here’s a more successful approach:
for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = [@array]; # RIGHT!
}
The brackets around @array
 create a new anonymous array, into which the elements of @array are copied. We then store a
 reference to that new array.
A similar result—though more difficult to read—would be
 produced by:
for $i (1..10) {
 @array = somefunc($i);
 @{$AoA[$i]} = @array;
}
Since $AoA[$i] needs to be
 a new reference, the reference springs into existence. Then, the
 preceding @ dereferences this new
 reference, with the result that the values of @array are assigned (in list context) to
 the array referenced by $AoA[$i].
 You might wish to avoid this construct for clarity’s sake.
But there is a situation in which you
 might use it. Suppose @AoA is
 already an array of references to arrays. That is, you’ve made
 assignments like:
$AoA[3] = \@original_array;
And now suppose that you want to change @original_array (that is, you want to
 change the fourth row of $AoA) so
 that it refers to the elements of @array. This code will work:
@{$AoA[3]} = @array;
In this case, the reference itself does not change, but the
 elements of the referenced array do. This overwrites the values of
 @original_array.
Finally, the following dangerous-looking code actually works
 fine:
for $i (1..10) {
 my @array = somefunc($i);
 $AoA[$i] = \@array;
}
That’s because the lexically scoped my @array variable is created afresh on
 each pass through the loop. So even though it looks as though you’ve
 stored the same variable reference each time, you haven’t. This is a
 subtle distinction, but the technique can produce more efficient
 code—at the risk of misleading less-enlightened programmers. (It’s
 more efficient because there’s no copy in the final assignment.) On
 the other hand, if you have to copy the values anyway (which the
 first assignment in the loop is doing), then you might as well use
 the copy implied by the brackets and avoid the temporary
 variable:
for $i (1..10) {
 $AoA[$i] = [somefunc($i)];
}
In summary:
$AoA[$i] = [@array]; # Safest, sometimes fastest
$AoA[$i] = \@array; # Fast but risky, depends on my–ness of array
@{ $AoA[$i] } = @array; # A bit tricky
Once you’ve mastered arrays of arrays, you’ll want to tackle
 more complex data structures. If you’re looking for C structures or
 Pascal records, you won’t find any special reserved words in Perl to
 set these up for you. What you get instead is a more flexible
 system. If your idea of a record structure is less flexible than
 this, or if you’d like to provide your users with something more
 opaque and rigid, then you can use the object-oriented features
 detailed in Chapter 12.
Perl has just two ways of organizing data: as ordered lists
 stored in arrays and accessed by position, or as unordered key/value
 pairs stored in hashes and accessed by name. The best way to
 represent a record in Perl is with a hash reference, but how you
 choose to organize such records will vary. You might want to keep an
 ordered list of these records that you can look up by number, in
 which case you’d use an array of hash references to store the
 records. Or, you might wish to look up the records by name, in which
 case you’d maintain a hash of hash references.
In the following sections, you will find code examples
 detailing how to compose (from scratch), generate (from other
 sources), access, and display several different data structures. We
 first demonstrate three straightforward combinations of arrays and
 hashes, followed by a hash of functions and more irregular data
 structures. We end with a demonstration of how these data structures
 can be saved. These examples assume that you have already
 familiarized yourself with the explanations set forth earlier in
 this chapter.

Hashes of Arrays

Use a hash of arrays when you want to look up each array by a
 particular string rather than merely by an index number. In our
 example of television characters, instead of looking up the list of
 names by the zeroth show, the first show, and so on, we’ll set it up
 so we can look up the cast list given the name of the show.
Because our outer data structure is a hash, we can’t order the
 contents, but we can use the sort function to
 specify a particular output order.

Composition of a Hash of Arrays

You can create a hash of anonymous arrays as follows:
We customarily omit quotes when the keys are identifiers.
%HoA = (
 flintstones => ["fred", "barney"],
 jetsons => ["george", "jane", "elroy"],
 simpsons => ["homer", "marge", "bart"],
);
To add another array to the hash, you can simply say:
$HoA{teletubbies} = ["tinky winky", "dipsy", "laa–laa", "po"];

Generation of a Hash of Arrays

Here are some techniques for populating a hash of arrays. To read
 from a file with the following format:
flintstones: fred barney wilma dino
jetsons: george jane elroy
simpsons: homer marge bart
you could use either of the following two loops:
while (<>) {
 next unless s/^(.*?):\s*//;
 $HoA{$1} = [split];
 }

 while ($line = <>) {
 ($who, $rest) = split /:\s*/, $line, 2;
 @fields = split " ", $rest;
 $HoA{$who} = [@fields];
 }
If you have a subroutine get_family that returns an array, you can
 use it to stuff %HoA with either
 of these two loops:
for $group ("simpsons", "jetsons", "flintstones") {
 $HoA{$group} = [get_family($group)];
}

for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoA{$group} = [@members];
}
You can append new members to an existing array like
 so:
push @{ $HoA{flintstones} }, "wilma", "pebbles";

Access and Printing of a Hash of Arrays

You can set the first element of a particular array as
 follows:
$HoA{flintstones}[0] = "Fred";
To capitalize the second Simpson, apply a substitution to the
 appropriate array element:
$HoA{simpsons}[1] =~ s/(\w)/\u$1/;
You can print all of the families by looping through the keys
 of the hash:
for $family (keys %HoA) {
 say "$family: @{ $HoA{$family} }";
}
With a little extra effort, you can add array indices as
 well:
for $family (keys %HoA) {
 print "$family: ";
 for $i (0 .. $#{ $HoA{$family} }) {
 print " $i = $HoA{$family}[$i]";
 }
 print "\n";
}
Or sort the arrays by how many elements they have:
for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
 say "$family: @{ $HoA{$family} }"
}
Or even sort the arrays by the number of elements and then
 order the elements ASCIIbetically (or, to be precise,
 utf8ically):
Print the whole thing sorted by number of members and name.
for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
 say "$family: ", join(", " => sort @{ $HoA{$family} });
}
If you have non-ASCII Unicode or even just punctuation of any
 sort in your family names, then sorting by codepoint order won’t
 produce an alphabetic sort. Instead, do this:
use Unicode::Collate;
my $sorter = Unicode::Collate–>new(); # normal alphabetic sort
say "$family: ",
 join ", " => $sorter–>sort(@{ $HoA{$family} });

Arrays of Hashes

An array of hashes is useful when you have a bunch of records that
 you’d like to access sequentially, and each record itself
 contains key/value pairs. Arrays of hashes are used less
 frequently than the other structures in this chapter.

Composition of an Array of Hashes

You can create an array of anonymous hashes as follows:
@AoH = (
 {
 husband => "barney",
 wife => "betty",
 son => "bamm bamm",
 },
 {
 husband => "george",
 wife => "jane",
 son => "elroy",
 },
 {
 husband => "homer",
 wife => "marge",
 son => "bart",
 },
);
To add another hash to the array, you can simply say:
push @AoH, { husband => "fred", wife => "wilma", daughter => "pebbles" };

Generation of an Array of Hashes

Here are some techniques for populating an array of hashes. To
 read from a file with the following format:
husband=fred friend=barney
you could use either of the following two loops:
while (<>) {
 $rec = {};
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec–>{$key} = $value;
 }
 push @AoH, $rec;
}

while (<>) {
 push @AoH, { split /[\s=]+/ };
}
If you have a subroutine get_next_pair that returns key/value
 pairs, you can use it to stuff @AoH with either of these two
 loops:
while (@fields = get_next_pair()) {
 push @AoH, { @fields };
}

while (<>) {
 push @AoH, { get_next_pair($_) };
}
You can append new members to an existing hash like so:
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa’s little helper";

Access and Printing of an Array of Hashes

You can set a key/value pair of a particular hash as
 follows:
$AoH[0]{husband} = "fred";
To capitalize the husband of the second array, apply a
 substitution:
$AoH[1]{husband} =~ s/(\w)/\u$1/;
You can print all of the data as follows:
for $href (@AoH) {
 print "{ ";
 for $role (keys %$href) {
 print "$role=$href–>{$role} ";
 }
 print "}\n";
}
and with indices:
for $i (0 .. $#AoH) {
 print "$i is { ";
 for $role (keys %{ $AoH[$i] }) {
 print "$role=$AoH[$i]{$role} ";
 }
 print "}\n";
}

Hashes of Hashes

A multidimensional hash is the most flexible of Perl’s nested structures.
 It’s like building up a record that itself contains other records. At
 each level, you index into the hash with a string (quoted when
 necessary). Remember, however, that the key/value pairs in the hash
 won’t come out in any particular order; you can use the sort function to retrieve the pairs in
 whatever order you like.

Composition of a Hash of Hashes

You can create a hash of anonymous hashes as follows:
%HoH = (
 flintstones => {
 husband => "fred",
 pal => "barney",
 },
 jetsons => {
 husband => "george",
 wife => "jane",
 "his boy" => "elroy", # Key quotes needed.
 },
 simpsons => {
 husband => "homer",
 wife => "marge",
 kid => "bart",
 },
);
To add another anonymous hash to %HoH, you can simply say:
$HoH{ mash } = {
 captain => "pierce",
 major => "burns",
 corporal => "radar",
 };

Generation of a Hash of Hashes

Here are some techniques for populating a hash of hashes. To
 read from a file with the following format:
flintstones: husband=fred pal=barney wife=wilma pet=dino
you could use either of the following two loops:
while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $HoH{$who}{$key} = $value;
 }
}

while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 $rec = {};
 $HoH{$who} = $rec;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec–>{$key} = $value;
 }
}
If you have a subroutine get_family that returns a list of
 key/value pairs, you can use it to stuff %HoH with either of these three
 snippets:
for $group ("simpsons", "jetsons", "flintstones") {
 $HoH{$group} = { get_family($group) };
}

for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoH{$group} = { @members };
}

sub hash_families {
 my @ret;
 for $group (@_) {
 push @ret, $group, { get_family($group) };
 }
 return @ret;
}
%HoH = hash_families("simpsons", "jetsons", "flintstones");
You can append new members to an existing hash like so:
%new_folks = (
 wife => "wilma",
 pet => "dino";
);
for $what (keys %new_folks) {
 $HoH{flintstones}{$what} = $new_folks{$what};
}

Access and Printing of a Hash of Hashes

You can set a key/value pair of a particular hash as
 follows:
$HoH{flintstones}{wife} = "wilma";
To capitalize a particular key/value pair, apply a
 substitution to an element:
$HoH{jetsons}{"his boy"} =~ s/(\w)/\u$1/;
You can print all the families by looping through the keys of
 the outer hash and then looping through the keys of the inner
 hash:
for $family (keys %HoH) {
 print "$family: ";
 for $role (keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}
In very large hashes, it may be slightly faster to retrieve
 both keys and values at the same time using each (which precludes sorting):
while (($family, $roles) = each %HoH) {
 print "$family: ";
 while (($role, $person) = each %$roles) {
 print "$role=$person ";
 }
 print "\n";
}
(Unfortunately, it’s the large hashes that really need to be
 sorted, or you’ll never find what you’re looking for in the
 printout.) You can sort the families and then the roles as
 follows:
for $family (sort keys %HoH) {
 print "$family: ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}
To sort the families by the number of members (instead of
 ASCIIbetically [or utf8ically]), you can use keys in scalar context:
for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}
To sort the members of a family in some fixed order, you can
 assign ranks to each:
$i = 0;
for (qw(husband wife son daughter pal pet)) { $rank{$_} = ++$i }

for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: ";
 for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}

Hashes of Functions

When writing a complex application or network service in Perl, you
 might want to make a large number of commands available to your users.
 Such a program might have code like this to examine the user’s
 selection and take appropriate action:
if ($cmd =~ /^exit$/i) { exit }
elsif ($cmd =~ /^help$/i) { show_help() }
elsif ($cmd =~ /^watch$/i) { $watch = 1 }
elsif ($cmd =~ /^mail$/i) { mail_msg($msg) }
elsif ($cmd =~ /^edit$/i) { $edited++; editmsg($msg); }
elsif ($cmd =~ /^delete$/i) { confirm_kill() }
else {
 warn "Unknown command: '$cmd'; Try 'help' next time\n";
}
You can also store references to functions in your data
 structures, just as you can store references to arrays or
 hashes:
%HoF = (# Compose a hash of functions
 exit => sub { exit },
 help => \&show_help,
 watch => sub { $watch = 1 },
 mail => sub { mail_msg($msg) },
 edit => sub { $edited++; editmsg($msg); },
 delete => \&confirm_kill,
);

if ($HoF{lc $cmd}) { $HoF{lc $cmd}–>() } # Call function
else { warn "Unknown command: '$cmd'; Try 'help' next time\n" }
In the second to last line, we check whether the specified
 command name (in lowercase) exists in our “dispatch table”, %HoF. If so, we invoke the appropriate
 command by dereferencing the hash value as a function, and then pass
 that function an empty argument list. We could also have dereferenced
 it as &{ $HoF{lc $cmd} }(), or,
 as of the v5.6 release of Perl, simply $HoF{lc $cmd}().

More Elaborate Records

So far, what we’ve seen in this chapter are simple, two-level,
 homogeneous data structures: each element contains the same kind of
 referent as all the other elements at that level. It certainly doesn’t
 have to be that way. Any element can hold any kind of scalar, which
 means that it could be a string, a number, or a reference to anything
 at all. The reference could be an array or hash reference, or a
 reference to a named or anonymous function, or an object. The only
 thing you can’t do is stuff multiple referents into one scalar. If you
 find yourself trying to do that, it’s a sign that you need an array or
 hash reference to collapse multiple values into one.
In the sections that follow, you will find code examples
 designed to illustrate many of the possible types of data you might
 want to store in a record, which we’ll implement using a hash
 reference. The keys are uppercase strings, a convention sometimes
 employed (and occasionally unemployed, but only briefly) when the hash
 is being used as a specific record type.

Composition, Access, and Printing of More Elaborate
 Records

Here is a record with six disparate fields:
$rec = {
 TEXT => $string,
 SEQUENCE => [@old_values],
 LOOKUP => { %some_table },
 THATCODE => \&some_function,
 THISCODE => sub { $_[0] ** $_[1] },
 HANDLE => *STDOUT,
};
The TEXT field is a simple string, so you can just print it:
print $rec–>{TEXT};
SEQUENCE and
 LOOKUP are regular array and hash
 references:
print $rec–>{SEQUENCE}[0];
$last = pop @{ $rec–>{SEQUENCE} };

print $rec–>{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec–>{LOOKUP} };
THATCODE is a named subroutine and
 THISCODE is an anonymous subroutine, but
 they’re invoked identically:
$that_answer = $rec–>{THATCODE}–>($arg1, $arg2);
$this_answer = $rec–>{THISCODE}–>($arg1, $arg2);
With an extra pair of braces, you can treat $rec–>{HANDLE}
 as an indirect object:
print { $rec–>{HANDLE} } "a string\n";
If you’re using the IO::Handle module, you can even treat the handle as a regular
 object:
use IO::Handle;
$rec–>{HANDLE}–>autoflush(1);
$rec–>{HANDLE}–>print("a string\n");

Composition, Access, and Printing of Even More Elaborate
 Records

Naturally, the fields of your data structures can themselves
 be arbitrarily complex data structures in their own right:
%TV = (
 flintstones => {
 series => "flintstones",
 nights => ["monday", "thursday", "friday"],
 members => [
 { name => "fred", role => "husband", age => 36, },
 { name => "wilma", role => "wife", age => 31, },
 { name => "pebbles", role => "kid", age => 4, },
],
 },

 jetsons => {
 series => "jetsons",
 nights => ["wednesday", "saturday"],
 members => [
 { name => "george", role => "husband", age => 41, },
 { name => "jane", role => "wife", age => 39, },
 { name => "elroy", role => "kid", age => 9, },
],
 },

 simpsons => {
 series => "simpsons",
 nights => ["monday"],
 members => [
 { name => "homer", role => "husband", age => 34, },
 { name => "marge", role => "wife", age => 37, },
 { name => "bart", role => "kid", age => 11, },
],
 },
);

Generation of a Hash of Complex Records

Because Perl is quite good at parsing complex data structures, you might just put
 your data declarations in a separate file as regular Perl code, and
 then load them in with the do or
 require built-in functions.
 Another popular approach is to use a CPAN module (such as XML::Parser) to load in arbitrary data structures expressed in
 some other language (such as XML).
You can build data structures piecemeal:
$rec = {};
$rec–>{series} = "flintstones";
$rec–>{nights} = [find_days()];
Or read them in from a file (here, assumed to be in field=value syntax):
@members = ();
while (<>) {
 %fields = split /[\s=]+/;
 push @members, { %fields };
}
$rec–>{members} = [@members];
And fold them into larger data structures keyed by one of the
 subfields:
$TV{ $rec–>{series} } = $rec;
You can use extra pointer fields to avoid duplicate data. For
 example, you might want a "kids"
 field included in a person’s record, which might be a reference to
 an array containing references to the kids’ own records. By having
 parts of your data structure refer to other parts, you avoid the
 data skew that would result from updating the data in one place but
 not in another:
for $family (keys %TV) {
 my $rec = $TV{$family}; # temporary pointer
 @kids = ();
 for $person (@{$rec–>{members}}) {
 if ($person–>{role} =~ /kid|son|daughter/) {
 push @kids, $person;
 }
 }
 # $rec and $TV{$family} point to same data!
 $rec–>{kids} = [@kids];
}
The $rec–>{kids} = [@kids
] assignment copies the array contents—but they are merely
 references to uncopied data. This means that if you age Bart as
 follows:
$TV{simpsons}{kids}[0]{age}++; # increments to 12
then you’ll see the following result, because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2] both point to
 the same underlying anonymous hash table:
print $TV{simpsons}{members}[2]{age}; # also prints 12
Now to print the entire %TV
 structure:
for $family (keys %TV) {
 print "the $family";
 print " is on ", join (" and ", @{ $TV{$family}{nights} }), "\n";
 print "its members are:\n";
 for $who (@{ $TV{$family}{members} }) {
 print " $who–>{name} ($who–>{role}), age $who–>{age}\n";
 }
 print "children: ";
 print join (", ", map { $_–>{name} } @{ $TV{$family}{kids} });
 print "\n\n";
}

Saving Data Structures

If you want to save your data structures for use by another program
 later, there are many ways to do it. The easiest way is to use Perl’s
 Data::Dumper module, which turns a (possibly self-referential) data
 structure into a string that can be saved externally and later
 reconstituted with eval or do.
use Data::Dumper;
$Data::Dumper::Purity = 1; # since %TV is self–referential
open (FILE, "> tvinfo.perldata") || die "can't open tvinfo: $!";
print FILE Data::Dumper–>Dump([\%TV], ['*TV']);
close(FILE) || die "can't close tvinfo: $!";
A separate program (or the same program) can then read in the
 file later:
open (FILE, "< tvinfo.perldata") || die "can't open tvinfo: $!";
undef $/; # read in file all at once
eval <FILE>; # recreate %TV
die "can't recreate tv data from tvinfo.perldata: $@" if $@;
close(FILE) || die "can't close tvinfo: $!";
print $TV{simpsons}{members}[2]{age};
or simply:
do "tvinfo.perldata" || die "can't recreate tvinfo: $! $@";
print $TV{simpsons}{members}[2]{age};
Storable, another standard module, writes out data structures in
 very fast, packed binary format. It also supports automatic file
 locking (provided your system implements the flock function), and it even has fancy hooks
 so object classes can handle their own serialization. Here’s how you
 might save that same structure using Storable:
use Storable qw(lock_nstore);
lock_nstore(\%TV, "tvdata.storable");
And here’s how to restore it into a variable that will hold a
 reference to the retrieved hash:
use Storable qw(lock_retrieve);
$TV_ref = lock_retrieve("tvdata.storable");
Storable also provides a
 dclone function that creates a
 “deep” copy of a multilevel data structure, which is usually easier
 than writing your own version.
use Storable qw(dclone);
%TV_copy = % { dclone \%TV };
For other tricks you can do with Data::Dumper and Storable, consult their
 documentation.
Many other solutions are available, with storage formats ranging
 from packed binary (very fast) to XML (very interoperable). YAML is a
 good intermediate choice that is actually quite readable. Check out a
 CPAN mirror near you today!

Chapter 10. Packages

In this chapter, we get to start having fun, because we get to start
 talking about software design. If we’re going to talk about good
 software design, we have to talk about Laziness, Impatience, and Hubris,
 the basis of good software design.
We’ve all fallen into the trap of using cut and paste when we
 should have defined a higher-level abstraction, if only just a loop or
 subroutine.[133] To be sure, some folks have gone to the opposite extreme
 of defining ever-growing mounds of higher-level abstractions when they
 should have used cut and paste.[134] Generally, though, most of us need to think about using
 more abstraction rather than less.
Caught somewhere in the middle are the people who have a balanced
 view of how much abstraction is good, but who jump the gun on writing
 their own abstractions when they should be reusing existing
 code.[135] Whenever you’re tempted to do any of these things, you
 need to sit back and think about what will do the most good for you and
 your neighbor over the long haul. If you’re going to pour your creative
 energies into a lump of code, why not make the world a better place
 while you’re at it? (Even if you’re only aiming for the program to
 succeed, you need to make sure it fits the right
 ecological niche.)
The first step toward ecologically sustainable programming is
 simply this: don’t litter in the park. When you write a chunk of code,
 think about giving the code its own namespace so that your variables and functions don’t
 clobber anyone else’s, or vice versa. A namespace is a bit like your
 home, where you’re allowed to be as messy as you like, so long as you
 keep your external interface to other citizens moderately civil. In
 Perl, a namespace is called a package.
 Packages provide the fundamental
 building block upon which the higher-level concepts of modules and
 classes are constructed.
Like the notion of “home”, the notion of “package” is a bit
 nebulous. Packages are independent of files. You can have many packages
 in a single file, or a single package that spans several files, just as
 your home could be one small garret in a larger building (if you’re a
 starving artist), or it could comprise several buildings (if your name
 happens to be Queen Elizabeth). But the usual size of a home is one
 building, and the usual size of a package is one file. Perl provides
 some special help for people who want to put one package in one file, as
 long as you’re willing to give the file the same name as the package and
 use an extension of .pm, which is
 short for “perl module”. The module is the fundamental unit of
 reusability in Perl. Indeed, the way you use a module is with the
 use command, which is a compiler
 directive that controls the importation of subroutines and variables
 from a module. Every example of use
 you’ve seen until now has been an example of module reuse.
The Comprehensive Perl Archive Network, or CPAN, is where you
 should put your modules if other people might find them useful. Perl has
 thrived because of the willingness of programmers to share the fruits of
 their labor with the community. Naturally, CPAN is also where you can
 find modules that others have thoughtfully uploaded for everyone to use.
 See Chapter 19 and http://www.cpan.org for details.
The trend over the last 25 years or so has been to design computer
 languages that enforce a state of paranoia. You’re expected to program
 every module as if it were in a state of siege. Certainly there are some
 feudal cultures where this is appropriate, but not all cultures are like
 this. In Perl culture, for instance, you’re expected to stay out of
 someone’s home because you weren’t invited in, not because there are
 bars on the windows.[136]
This is not a book about object-oriented methodology, and we’re
 not here to convert you into a raving object-oriented zealot, even if
 you want to be converted. There are already plenty of books out there
 for that. Perl’s philosophy of object-oriented design fits right in with
 Perl’s philosophy of everything else: use object-oriented design where
 it makes sense, and avoid it where it doesn’t. Your call.
In OO-speak, every object belongs to a grouping called a
 class. In Perl, classes and
 packages and modules are all so closely related that novices can often
 think of them as being interchangeable. The typical class is implemented
 by a module that defines a package with the same name as the class.
 We’ll explain all of this in the next few chapters.
When you use a module, you
 benefit from direct software reuse. With classes, you benefit from
 indirect software reuse when one class uses another through inheritance.
 And with classes, you get something more: a clean interface to another
 namespace. Everything in a class is accessed indirectly, insulating the
 class from the outside world.
As we mentioned in Chapter 8, object-oriented
 programming in Perl is implemented using references whose referents know
 to which class they belong. In fact, now that you know references, you
 know almost everything difficult about objects. The rest of it just
 “lays under the fingers”, as a pianist would say. You will need to
 practice a little, though.
One of your basic finger exercises consists of learning how to
 protect different chunks of code from inadvertently tampering with one
 another’s variables. Every chunk of code belongs to a particular
 package, which determines what
 variables and subroutines are available to it. As Perl encounters a
 chunk of code, it is compiled into what we call the current package. The initial current
 package is called “main”, but you can
 switch the current package to another one at any time with the package declaration.
 The current package determines which symbol table is used to find your
 variables, subroutines, I/O handles, and formats.

[133] This is a form of False Laziness.

[134] This is a form of False Hubris.

[135] You guessed it—this is False Impatience. But if you’re
 determined to reinvent the wheel, at least try to invent a better
 one.

[136] But Perl provides some bars if you want them, too. See Handling Insecure Code in Chapter 20.

Symbol Tables

The contents of a package are collectively called a symbol
 table. Symbol tables are stored in a hash whose name is the
 same as the package, but with two colons appended. The main symbol table’s name is thus %main::. Since main also happens to be the default package,
 Perl provides %:: as an
 abbreviation for %main::.
Likewise, the symbol table for the Red::Blue package is named %Red::Blue::. As it happens, the main symbol table contains all other
 top-level symbol tables, including itself, so %Red::Blue:: is also %main::Red::Blue::.
When we say that a symbol table “contains” another symbol table,
 we mean that it contains a reference to the other symbol table. Since
 main is the top-level package, it
 contains a reference to itself, making %main:: the same as %main::main::, and %main::main::main::, and so on, ad
 infinitum. It’s important to check for this special case if you write
 code that traverses all symbol tables.
Inside a symbol table’s hash, each key/value pair matches a
 variable name to its value. The
 keys are the symbol identifiers, and the values are the corresponding
 typeglobs. So when you use the *NAME typeglob
 notation, you’re really just accessing a value in the hash that holds
 the current package’s symbol table. In fact, the following have
 (nearly) the same effect:
*sym = *main::variable;
*sym = $main::{"variable"};
The first is more efficient because the main symbol table is accessed at compile
 time. It will also create a new typeglob by that name if none
 previously exists, whereas the second form will not.
Since a package is a hash, you can look up the keys of the
 package and get to all the variables of the package. Since the values
 of the hash are typeglobs, you can dereference them in several ways.
 Try this:
foreach $symname (sort keys %main::) {
 local *sym = $main::{$symname};
 print "\$$symname is defined\n" if defined $sym;
 print "\@$symname is nonnull\n" if @sym;
 print "\%$symname is nonnull\n" if %sym;
}
Since all packages are accessible (directly or indirectly)
 through the main package, you can
 write Perl code to visit every package variable in your program. The
 Perl debugger does precisely that when you ask it to dump all your
 variables with the V command. Note
 that if you do this, you won’t see variables declared with my since those are independent of packages,
 although you will see variables declared with our. See Chapter 18.
Earlier we said that only identifiers are stored in packages
 other than main. That was a bit of
 a fib: you can use any string you want as the key in a symbol table
 hash—it’s just that it wouldn’t be valid Perl if you tried to use a
 non-identifier directly:
$!@#$% = 0; # WRONG, syntax error.
${'!@#$%'} = 1; # Ok, though unqualified.

${'main::!@#$%'} = 2; # Can qualify within the string.
print ${ $main::{'!@#$%'} } # Ok, prints 2!
Assignment to a typeglob is an aliasing operation; that
 is,
*dick = *richard;
causes variables, subroutines, formats, and file and directory
 handles accessible via the identifier richard to also be accessible via the symbol
 dick. If you want to alias only a
 particular variable or subroutine, assign a reference instead:
*dick = \$richard;
That makes $richard and
 $dick the same variable, but leaves
 @richard and @dick as separate arrays. Tricky, eh?
This is how the Exporter works when importing symbols from one package to
 another. For example:
*SomePack::dick = \&OtherPack::richard;
imports the &richard
 function from package OtherPack
 into SomePack, making it available
 as the &dick function. (The
 Exporter module is described in the
 next chapter.) If you precede the assignment with a local, the aliasing will only last as long
 as the current dynamic scope.
This mechanism may be used to retrieve a reference from a
 subroutine, making the referent available as the appropriate data
 type:
*units = populate() ; # Assign \%newhash to the typeglob
print $units{kg}; # Prints 70; no dereferencing needed!

sub populate {
 my %newhash = (km => 10, kg => 70);
 return \%newhash;
}
Likewise, you can pass a reference into a subroutine and use it
 without dereferencing:
%units = (miles => 6, stones => 11);
fillerup(\%units); # Pass in a reference
print $units{quarts}; # Prints 4

sub fillerup {
 local *hashsym = shift; # Assign \%units to the typeglob
 $hashsym{quarts} = 4; # Affects %units; no dereferencing needed!
}
These are tricky ways to pass around references cheaply when you
 don’t want to have to explicitly dereference them. Note that both
 techniques only work with package variables; they would not have
 worked had we declared %units with
 my.
Another use of symbol tables is for making “constant”
 scalars:
*PI = \3.14159265358979;
Now you cannot alter $PI,
 which is probably a good thing, all in all. This isn’t the same as a
 constant subroutine, which is optimized at compile time. A constant
 subroutine is one prototyped to take no arguments and to return a
 constant expression; see the section “Inlining Constant Functions” in
 Chapter 7, for details. The use constant pragma (see Chapter 29) is a convenient shorthand:
use constant PI => 3.14159;
Under the hood, this uses the subroutine slot of *PI, instead of the scalar slot used
 earlier. It’s equivalent to the more compact (but less
 readable):
*PI = sub () { 3.14159 };
That’s a handy idiom to know anyway—assigning a sub {} to a typeglob is the way to give a
 name to an anonymous subroutine at run time.
Assigning a typeglob reference to another typeglob (*sym = *oldvar) is the same as assigning
 the entire typeglob, because Perl automatically dereferences the
 typeglob reference for you. And when you set a typeglob to a simple
 string, you get the entire typeglob named by that string, because Perl
 looks up the string in the current symbol table. The following are all
 equivalent to one another, though the first two compute the symbol
 table entry at compile time, while the last two do so at run
 time:
*sym = *oldvar;
*sym = *oldvar; # autodereference
*sym = *{"oldvar"}; # explicit symbol table lookup
*sym = "oldvar"; # implicit symbol table lookup
When you make any of the following assignments, you’re replacing
 just one of the references within the typeglob:
*sym = \$frodo;
*sym = \@sam;
*sym = \%merry;
*sym = \&pippin;
If you think about it sideways, the typeglob itself can be
 viewed as a kind of hash, with entries for the different variable
 types in it. In this case, the keys are fixed, since a typeglob can
 contain exactly one scalar, one array, one hash, and so on. But you
 can pull out the individual references, like this:
*pkg::sym{SCALAR} # same as \$pkg::sym
*pkg::sym{ARRAY} # same as \@pkg::sym
*pkg::sym{HASH} # same as \%pkg::sym
*pkg::sym{CODE} # same as \&pkg::sym
*pkg::sym{GLOB} # same as *pkg::sym
*pkg::sym{IO} # internal file/dir handle, no direct equivalent
*pkg::sym{NAME} # "sym" (not a reference)
*pkg::sym{PACKAGE} # "pkg" (not a reference)
You can say *foo{PACKAGE} and
 *foo{NAME} to find out what name
 and package the *foo symbol table
 entry comes from. This may be useful in a subroutine that is passed
 typeglobs as arguments:
sub identify_typeglob {
 my $glob = shift;
 print "You gave me ", *{$glob}{PACKAGE}, "::", *{$glob}{NAME}, "\n";
}

identify_typeglob(*foo);
identify_typeglob(*bar::glarch);
This prints:
You gave me main::foo
You gave me bar::glarch
The *foo{THING} notation can be used to obtain references
 to individual elements of *foo. See
 the section “Symbol Table References” in Chapter 8
 for details.
This syntax is primarily used to get at the internal filehandle
 or directory handle reference, because the other internal references
 are already accessible in other ways. (The old *foo{FILEHANDLE} is no longer supported to
 mean *foo{IO}.) But we thought we’d
 generalize it because it looks kind of pretty. Sort of. You probably
 don’t need to remember all this unless you’re planning to write
 another Perl debugger.

Qualified Names

You can refer to identifiers[137] in other packages by prefixing (“qualifying”) the identifier with the
 package name and a double colon: $Package::Variable. If the package name is
 null, the main package is assumed.
 That is, $::sail is equivalent to
 $main::sail.[138]
The old package delimiter was a single quote, so in very old
 Perl programs you’ll see variables like $main'sail and $somepack'horse. But the double colon is now
 the preferred delimiter, in part because it’s more readable to humans,
 and in part because it’s more readable to emacs macros. It also makes C++ programmers
 feel like they know what was going on—as opposed to using the single
 quote as the separator, which was there to make Ada programmers feel
 like they knew what’s going on. Because the old-fashioned syntax is
 still supported for backward compatibility, if you try to use a string
 like "This is $owner's house",
 you’ll be accessing $owner::s; that
 is, the $s variable in package
 owner, which is probably not what
 you meant. Use braces to disambiguate, as in "This is ${owner}'s house".
The double colon can be used to chain together identifiers in a
 package name: $Red::Blue::var. This
 means the $var belonging to the
 Red::Blue package. The Red::Blue package has nothing to do with any
 Red or Blue packages that might happen to exist.
 That is, a relationship between Red::Blue and Red or Blue may have meaning to the person writing
 or using the program, but it means nothing to Perl. (Well, other than
 the fact that, in the current implementation, the symbol table
 Red::Blue happens to be stored in
 the symbol table Red. But the Perl
 language makes no use of that directly.)
Long ago, variables beginning with an underscore were forced
 into the main package, but we
 decided it was more useful for package writers to be able to use a
 leading underscore to indicate semiprivate identifiers meant for
 internal use by that package only. (Truly private variables can be
 declared as file-scoped lexicals, but that works best when the package
 and module have a one-to-one relationship, which is common but not
 required.)
The %SIG hash (which is for
 trapping signals; see Chapter 15) is also special. If
 you define a signal handler as a string, it’s assumed to refer to a
 subroutine in the main package
 unless another package name is explicitly used. Use a fully qualified
 signal handler name if you want to specify a particular package, or
 avoid strings entirely by assigning a typeglob or a function reference
 instead:
$SIG{QUIT} = "Pkg::quit_catcher"; # fully qualified handler name
$SIG{QUIT} = "quit_catcher"; # implies "main::quit_catcher"
$SIG{QUIT} = *quit_catcher; # forces current package's sub
$SIG{QUIT} = \&quit_catcher; # forces current package's sub
$SIG{QUIT} = sub { print "Caught SIGQUIT\n" }; # anonymous sub

[137] By identifiers, we mean the names used as symbol table keys
 for accessing scalar variables, array variables, hash variables,
 subroutines, file or directory handles, and formats. Syntactically
 speaking, labels are also identifiers, but they aren’t put into a
 particular symbol table; rather, they are attached directly to the
 statements in your program. Labels cannot be
 package-qualified.

[138] To clear up another bit of potential confusion, in a
 variable name like $main::sail,
 we use the term “identifier” to talk about main and sail, but not main::sail together. We call that a
 variable name instead, because identifiers cannot contain
 colons.

The Default Package

The default package is main, just like the top-level subroutine
 name in C. Unless you say otherwise (coming up), all variables are in
 this package. These are the same:
#!/usr/bin/perl

$name = 'Amelia';
$main::name = 'Amelia';

$type = 'Camel';
$main::type = 'Camel';
Under strict, you have to say otherwise because that pragma doesn’t
 let you use undeclared variables:
#!/usr/bin/perl

use v5.12;

$name = 'Amelia'; # compile–time error
$main::name = 'Amelia';

$type = 'Camel'; # compile–time error
$main::type = 'Camel';
Only identifiers (names starting with letters or an underscore)
 are stored in a package’s symbol table. All other symbols are kept in
 the main package, including the
 nonalphabetic variables, like $!,
 $?, and $_.[139] In addition, when unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC,
 and SIG are forced to be in package
 main, even when used for other
 purposes than their built-in ones. Don’t name your package m, s,
 y, tr, q,
 qq, qr, qw,
 or qx unless you’re looking for a
 lot of trouble. For instance, you won’t be able to use the qualified
 form of an identifier as a filehandle because it will be interpreted
 instead as a pattern match, a substitution, or a
 transliteration.

[139] You can have a lexical $_
 in v5.10, though.

Changing the Package

The notion of “current package” is both a compile-time and
 runtime concept. Most variable name lookups happen at compile time,
 but runtime lookups happen when symbolic references are dereferenced,
 and also when new bits of code are parsed under eval. In particular, when you eval a string, Perl knows which package the
 eval was invoked in and propagates
 that package inward when evaluating the string. (You can always switch
 to a different package inside the eval string, of course, since an eval string counts as a block, just like a
 file loaded in with do, require, or use.)
For this reason, every package declaration must declare a complete package name. No package name
 ever assumes any kind of implied “prefix”, even if (seemingly) it is
 declared within the scope of some other package declaration.
Alternatively, if an eval
 wants to find out what package it’s in, the special symbol _ _PACKAGE_ _ contains the current package name. Since you can treat
 it as a string, you could use it in a symbolic reference to access a
 package variable. But if you were doing that, chances are you should
 have declared the variable with our
 instead so it could be accessed as if it were a lexical.
Any variable not declared with my (or state) is associated with a package—even
 seemingly omnipresent variables like $_ and %SIG. Other variables use the current
 package, unless they are qualified:
$name = 'Amelia'; # name in current package

$Animal::name = 'Camelia'; # name in Animal package
The package declaration
 changes the default package for the rest of the scope (block, file, or
 eval—whichever comes first) or
 until another package declaration
 at the same level, which supersedes the earlier one (this is a common
 practice):
package Animal;

$name = 'Camelia'; # $Animal::name
It’s important to note, and to repeat, that the package does not create a scope, so it
 cannot hide lexical variables in the same scope:
my $type = 'Camel';

package Animal;

print "Type is $type\n"; # the lexical $type, so, "Camel"
$type = 'Ram';

package Zoo;

print "Type is $type\n"; # the lexical $type, so, "Ram"
To preferentially use the package version of a variable with the
 same name as a lexical variable in the same scope, use our. Beware, though. This makes the version
 for the current package the default for the rest of the scope, even if
 the default package changes:
my $type = 'Camel';

package Animal;

our $type = 'Ram';
print "Type is $type\n"; # the package $type, so, "Ram"

package Zoo;

print "Type is $type\n"; # the Animal $type, so, "Ram"
In package Zoo, $type is still the $Animal::type version. The our applies for the rest of the scope, not
 the rest of the package declaration. This can be slightly confusing.
 Remember, the package only changes
 the default package name; it does not end or begin scopes. Once you
 change the package, all subsequent undeclared identifiers are placed
 in the symbol table belonging to the current package. That’s
 it.
Typically, a package
 declaration will be the first statement of a file meant to be included
 by require or use. But again, that’s by convention. You
 can put a package declaration
 anywhere you can put a statement. You could even put it at the end of
 a block, in which case it would have no effect whatsoever. You can
 switch into a package in more than one place; a package declaration
 merely selects the symbol table to be used by the compiler for the
 rest of that block. This is how a given package can span more than one
 file.
As of recent versions, the version of a package may be specified
 on the package declaration line:
package Zoo v3.1.4;
Additionally, a bracketed form that looks more like standard
 blocks is available in v5.14 and later. This limits the package’s
 scope to the inside of the block. We could avoid the problem of name
 spillage mentioned earlier by using this feature:
my $type = 'Camel';

package Animal {
 our $type = 'Ram';
 print "Type is $type\n"; # the package $type, so, "Ram"
}

package Zoo v3.1.4 {
 print "Type is $type\n"; # the outer $type, so, "Camel"
}

Autoloading

Normally, you can’t call a subroutine that isn’t defined. However, if
 there is a subroutine named AUTOLOAD in the undefined subroutine’s
 package (or in the case of an object method, in the package of any of
 the object’s base classes), then the AUTOLOAD subroutine
 is called with the same arguments that would have been passed to the
 original subroutine. You can define the AUTOLOAD subroutine to return values just
 like a regular subroutine, or you can make it define the routine that
 didn’t exist and then call that as if it’d been there all
 along.
The fully qualified name of the original subroutine magically
 appears in the package-global $AUTOLOAD variable,
 in the same package as the AUTOLOAD
 routine. Here’s a simple example that gently warns you about undefined
 subroutine invocations instead of exiting:
sub AUTOLOAD {
 our $AUTOLOAD;
 warn "Attempt to call $AUTOLOAD failed.\n";
}

blarg(10); # our $AUTOLOAD will be set to main::blarg
print "Still alive!\n";
Or, you can return a value on behalf of the undefined
 subroutine:
sub AUTOLOAD {
 our $AUTOLOAD;
 return "I see $AUTOLOAD(@_)\n";
}

print blarg(20); # prints: I see main::blarg(20)
Your AUTOLOAD subroutine
 might load a definition for the undefined subroutine using eval or require, or use the glob assignment trick
 discussed earlier, and then execute that subroutine using the special
 form of goto that can erase the
 stack frame of the AUTOLOAD routine
 without a trace. Here we define the subroutine by assigning a closure
 to the glob:
sub AUTOLOAD {
 my $name = our $AUTOLOAD;
 *$AUTOLOAD = sub { print "I see $name(@_)\n" };
 goto &$AUTOLOAD; # Restart the new routine.
}

blarg(30); # prints: I see main::blarg(30)
glarb(40); # prints: I see main::glarb(40)
blarg(50); # prints: I see main::blarg(50)
The standard AutoSplit module is used by module writers to split their modules
 into separate files (with filenames ending in .al), each holding one routine. The files
 are placed in the auto/ directory
 of your system’s Perl library, after which the files can be autoloaded
 on demand by the standard AutoLoader module.
A similar approach is taken by the SelfLoader module, except that it autoloads functions from the
 file’s own DATA area, which is less
 efficient in some ways and more efficient in others. Autoloading of
 Perl functions by AutoLoader and
 SelfLoader is analogous to dynamic
 loading of compiled C functions by DynaLoader, except that autoloading is done at the granularity of
 the function call, whereas dynamic loading is done at the granularity
 of the complete module, and will usually link in many C or C++
 functions all at once. (Note that many Perl programmers get along just
 fine without the AutoSplit,
 AutoLoader, SelfLoader, or DynaLoader modules. You just need to know
 that they’re there in case you can’t get along
 just fine without them.)
One can have great fun with AUTOLOAD routines that serve as wrappers to
 other interfaces. For example, let’s pretend that any function that
 isn’t defined should just call system with its arguments. All you’d do is
 this:
sub AUTOLOAD {
 my $program = our $AUTOLOAD;
 $program =~ s/.*:://; # trim package name
 system($program, @_);
}
(Congratulations, you’ve now implemented a rudimentary form of
 the Shell module that comes standard with Perl.) You can call
 your autoloader (on Unix) like this:
date();
who("am", "i");
ls("–l");
echo("Abadugabudabuda...");
In fact, if you predeclare the functions you want to call that
 way, you can pretend they’re built-ins and omit the parentheses on the
 call:
sub date (;$$); # Allow zero to two arguments.
sub who (;$$$$); # Allow zero to four args.
sub ls; # Allow any number of args.
sub echo ($@); # Allow at least one arg.

date;
who "am", "i";
ls "–l";
echo "That's all, folks!";
As of v5.8, AUTOLOAD can have
 an :lvalue attribute.
package Chameau;
use v5.14;

sub new { bless {}, $_[0] }

sub AUTOLOAD :lvalue {
 our $AUTOLOAD;
 my $method = $AUTOLOAD =~ s/.*:://r;
 $_[0]–>{$method};
}

1;
With that method, you can access it or assign to it:
use v5.14;
use Chameau;

my $chameau = Chameau–>new;

$chameau–>awake = 'yes';

say $chameau–>awake;
Or, you can make the last value a symbolic reference:
package Trampeltier;

sub new { bless {}, $_[0] }
sub AUTOLOAD :lvalue { no strict 'refs'; *{$AUTOLOAD} }

1;
so you can define the method by assigning to it:
use Trampeltier;

my $trampeltier = Trampeltier–>new;

$trampeltier–>name = sub { 'Amelia' };
We’re not sure that you’d ever want to do that, though.

Chapter 11. Modules

The module is the fundamental unit of code reuse in Perl. Under the hood, it’s
 just a package defined in a file of the same name (with .pm on the end). In this chapter, we’ll explore
 how you can use other people’s modules and create your own.
Perl comes bundled with hundreds of useful modules, which you can find
 in the lib directory of your Perl
 distribution, which are decided at the time you (or someone) built perl. You can see where these directories are with
 the –V switch:
% perl –V
Summary of my perl5 (revision 5 version 14 subversion 1) configuration:

...
Built under darwin
Compiled at Jul 5 2011 21:43:59
@INC:
 /usr/local/perl/lib/site_perl/5.14.2/darwin–2level
 /usr/local/perl/lib/site_perl/5.14.2
 /usr/local/perl/lib/5.14.2/darwin–2level
 /usr/local/perl/lib/5.14.2
 .
You can see all of the modules that come with perl with corelist, which also comes with perl:
% corelist –v 5.014
All standard modules also have extensive online documentation, which (horrors) will most likely be
 more up to date than this book. Try the perldoc command to read the documentation:
% perldoc Digest::MD5
The Comprehensive Perl Archive Network (CPAN) contains a worldwide
 repository of modules contributed by the Perl community, and is discussed in
 Chapter 19. See also http://www.cpan.org.

Loading Modules

Modules come in two flavors: traditional and object-oriented. Traditional
 modules define subroutines and variables for the caller to import and use.
 Object-oriented modules function as class definitions and are accessed
 through method calls, described in Chapter 12. Some
 modules do both.
Perl modules are typically included in your program by
 saying:
use MODULE;
This is equivalent to:
BEGIN {
 require MODULE;
 MODULE–>import();
}
This happens during the compile phase, so any code in the module
 runs during the compile phase. This usually isn’t a problem since most
 code in modules lives in subroutines or methods. Some modules may load
 additional modules, XS code, and other code components. Since Perl handles
 a use when it runs into it, any
 modifications to @INC need to happen
 before the use. You probably want the
 lib pragma (see Chapter 29), which you also
 load with use.
If you want to load the module during the run phase, perhaps
 delaying its inclusion until you run a subroutine that needs it, you can
 use require:
require MODULE;
MODULE must be a package name that
 translates to the module’s file. The use translates :: to / and
 then appends a .pm to the end. It
 looks for that name in @INC. If your
 module is named Animal::Mammal::HoneyBadger, this will look for
 Animal/Mammal/HoneyBadger.pm. Once
 loaded, the path where Perl found the file shows up in %INC. Perl loads a file once. Before it tries to
 load a file, it looks in %INC to see
 whether it is already loaded. If so, it can reuse the result.
You can load files directly with require, using the right
 path separator (which may not be portable):
require FILE;
require 'Animal/Mammal/HoneyBadger.pm';
In general, however, use is
 preferred over require because it looks
 for modules during compilation, so you learn about any mistakes
 sooner.
Some modules offer additional functionality in their import lists.
 This list becomes the argument list for import:
use MODULE LIST;
like this:
BEGIN {
 require MODULE;
 MODULE–>import(LIST);
}
A module’s import can do whatever
 it likes, but most modules stick with a version they inherit from Exporter, which we’ll talk more about later. Typically, the import puts symbols (subroutines and variables)
 in the current namespace so they are available for the rest of the
 compilation unit. Some modules have a default import list.
For example, the Hash::Util module exports several symbols for special hash action. The
 use pulls in the lock_keys symbol, which is then available for
 the rest of the compilation unit:
use Hash::Util qw(lock_keys);

lock_keys(my %hash, qw(name location));
Even without a LIST, it might import some
 symbols based on the module’s default list.[140] The File::Basename module automatically imports a basename, dirname, and fileparse:
use File::Basename;

say basename($ARGV[0]);
If you want absolutely no imports, you can supply an explicit empty
 list:
use MODULE ();
Sometimes you want to use a specific version (or later) of a module,
 usually to avoid known issues in an earlier version or to use a newer,
 nonbackward-compatible API:
use MODULE VERSION LIST;
Normally, any version greater than or equal to
 VERSION is fine. You can’t specify exactly a
 version or a range of versions. However, the module might decide to do
 something different, since it’s really the VERSION method that decides what to do.

[140] This is generally considered impolite now. Making people specify
 what they want helps to head off conflicts in two different modules
 importing the same thing.

Unloading Modules

The opposite of use is no. Instead of calling import, it calls unimport. That method can do whatever it likes. The syntax is the
 same:
no MODULE;
no MODULE LIST;
no MODULE VERSION;
no MODULE VERSION LIST;
You may only want some symbols available for a short time. For
 instance, the Moose module, an object system built on top of Perl’s built-in
 features, imports many convenience methods. The has method declares attributes, but once you are
 done with those names, they don’t need to stick around. At the end of the
 section that needs them, you can unimport them with no:
package Person;
use Moose;

has "first_name" => (is => "rw", isa => "Str");
has "last_name" => (is => "rw", isa => "Str");

sub full_name {
 my $self = shift;
 $self–>first_name . " " . $self–>last_name
}

no Moose; # keywords are removed from the Person package
To temporarily turn off a strict feature, unimport the feature
 that’s in the way. Use the smallest scope possible so you don’t miss other
 problems:
my $value = do {
 no strict "refs";

 ${ "${class}::name}" }; # symbolic reference
};
Similarly, you might need to temporarily turn off a type of warning,
 so you unimport that type of warning:
use warnings;
{
 no warnings 'redefine';
 local *badger = sub { ... };
 ...;
}

Creating Modules

In this chapter, we’ll merely show you the code portion of a module. There’s
 a lot more to creating a distribution, which we cover in Chapter 19.

Naming Modules

A good name is one of the most important parts of creating a module. Once you
 choose a name and people start using your module, you have to live with
 that name virtually forever as your users refuse to update their code.
 If you are uploading your module to CPAN, you want people to be able to
 find it easily, too. You can read some naming guidelines at PAUSE.
Module names should be capitalized unless they’re functioning as
 pragmas. Pragmas (see Chapter 29) are in
 effect compiler directives (hints for the compiler), so we reserve the
 lowercase pragma names for future use.
If you want to make a private module whose name should never
 conflict with a module in the Standard Library or on CPAN, you can use
 the Local namespace. It’s not
 forbidden from CPAN, but by convention it’s not used.

A Sample Module

Earlier, we said that there are two flavors of modules: traditional or
 object-oriented. We’ll show you
 the shortest examples of each.
An object-oriented module is the easy one to show since it doesn’t
 need much infrastructure to communicate with its user. Everything
 happens through methods:
package Bestiary::OO 1.001;

sub new {
 my($class, @args) = @_;
 bless {}, $class;
}

sub camel { "one–hump dromedary" }
sub weight { 1024 }

more methods here

1;
A program that uses it does all its work through methods:
use v5.10;
use Bestiary::OO;

my $bestiary = Bestiary::OO–>new; # class method

say "Animal is ", $bestiary–>camel(),
 " has weight ", $bestiary–>weight();
To construct a traditional module called Bestiary, create a file called Bestiary.pm that looks like this:
package Bestiary 1.001;
use parent qw(Exporter);

our @EXPORT = qw(camel); # Symbols to be exported by default
our @EXPORT_OK = qw($weight); # Symbols to be exported on request

Include your variables and functions here

sub camel { "one–hump dromedary" }

$weight = 1024;

1; # end with an expression that evaluates to true
A program can now say use
 Bestiary to be able to access the camel function (but not the $weight variable), and use Bestiary qw(camel $weight) to access both
 the function and the variable:
use v5.10;

use Bestiary qw(camel $weight);

say "Animal is ", camel(), " has weight $weight";
You can also create modules that dynamically load code written in
 C, although we don’t cover that here.

Module Privacy and the Exporter

Perl does not automatically patrol private/public borders within its
 modules—unlike languages such as C++, Java, and Ada, Perl isn’t obsessed
 with enforced privacy. A Perl module would prefer that you stay out of
 its living room because you weren’t invited, not because it has a
 shotgun.
The module and its user have a contract, part of which is common
 law and part of which is written. Part of the common law contract is
 that a module refrain from changing any namespace it wasn’t asked to
 change. The written contract for the module (that is, the documentation)
 may make other provisions. But then, having read the contract, you
 presumably know that when you say use
 RedefineTheWorld you’re redefining the world, and you’re
 willing to risk the consequences. The most common way to redefine worlds
 is to use the Exporter module. As we’ll see later in this chapter, you can even
 redefine built-ins with this module.
When you use a module, the
 module typically makes some variables or functions available to your
 program or, more specifically, to your program’s current package. This
 act of exporting symbols from the module (and thus importing them into
 your program) is sometimes called polluting your
 namespace. Most modules use Exporter
 to do this; that’s why near the top most modules say something like one
 of these:
use parent qw(Exporter);

require Exporter;
our @ISA = ("Exporter");
These two lines make the module inherit from the Exporter class. Inheritance is described in
 the next chapter, but all you need to know is our Bestiary module can now export symbols into
 other packages with lines like these:
our @EXPORT = qw($camel %wolf ram); # Export by default
our @EXPORT_OK = qw(leopard @llama $emu); # Export by request
our %EXPORT_TAGS = (# Export as group
 camelids => [qw($camel @llama)],
 critters => [qw(ram $camel %wolf)],
);
From the viewpoint of the exporting module, the @EXPORT array contains
 the names of variables and functions to be exported by default: what
 your program gets when it says use
 Bestiary. Variables and functions in @EXPORT_OK are
 exported only when the program specifically requests them in the
 use statement. Finally, the key/value
 pairs in %EXPORT_TAGS allow the
 program to include particular groups of the symbols listed in @EXPORT and @EXPORT_OK.
From the viewpoint of the importing package, the use statement specifies a list of symbols to
 import, a group named in %EXPORT_TAGS, a pattern of symbols, or nothing
 at all, in which case the symbols in @EXPORT would be imported from the module into
 your program.
You can include any of these statements to import symbols from the
 Bestiary module:
use Bestiary; # Import @EXPORT symbols
use Bestiary (); # Import nothing
use Bestiary qw(ram @llama); # Import the ram function and @llama array
use Bestiary qw(:camelids); # Import $camel and @llama
use Bestiary qw(:DEFAULT); # Import @EXPORT symbols
use Bestiary qw(/am/); # Import $camel, @llama, and ram
use Bestiary qw(/^\$/); # Import all scalars
use Bestiary qw(:critters !ram); # Import the critters, but exclude ram
use Bestiary qw(:critters !:camelids);
 # Import critters, but no camelids
Leaving a symbol off the export lists (or removing it explicitly
 from the import list with the exclamation point) does not render it
 inaccessible to the program using the module. The program can always
 access the contents of the module’s package by fully qualifying the
 package name, like %Bestiary::gecko.
 (Because lexical variables do not belong to packages, privacy is still
 possible; see Private Methods in the next
 chapter.)
You can say BEGIN { $Exporter::Verbose=1
 } to see how the specifications are being processed and what
 is actually being imported into your package.
The Exporter is itself a Perl
 module, and, if you’re curious, you can see the typeglob trickery it
 uses to export symbols from one package into another. Inside the
 Exporter module, the key function is
 named import, which performs the
 necessary aliasing to make a symbol in one package appear to be in
 another. In fact, a use Bestiary
 LIST statement is exactly equivalent
 to:
BEGIN {
 require Bestiary;
 import Bestiary LIST;
}
This means that your modules don’t have to use the Exporter. A module can do anything it jolly
 well pleases when it’s used, since use just calls the ordinary import method for the module, and you can
 define that method to do anything you like.
Exporting without using Exporter’s import method

The Exporter defines a method called export_to_level, used when (for some reason)
 you can’t directly call Exporter’s
 import method. The export_to_level method is invoked like
 this:
MODULE–>export_to_level($where_to_export, @what_to_export);
where $where_to_export is an
 integer indicating how far up the calling stack to export your
 symbols, and @what_to_export is an
 array listing the symbols to export (usually @_).
For example, suppose our Bestiary had an import function of its own:
package Bestiary;
@ISA = qw(Exporter);
@EXPORT_OK = qw ($zoo);

sub import {
 $Bestiary::zoo = "menagerie";
}
The presence of this import
 function prevents Exporter’s
 import function from being
 inherited. If you want Bestiary’s
 import function to behave just like
 Exporter’s import function once it sets $Bestiary::zoo, you’d define it as
 follows:
sub import {
 $Bestiary::zoo = "menagerie";
 Bestiary–>export_to_level(1, @_);
}
This exports symbols to the package one level “above” the
 current package. That is, to whatever program or module is using the
 Bestiary.
If this is all you need, however, you probably don’t want to
 inherit from Exporter. You can
 import the import method:
package Bestiary;
use Exporter qw(import); # v5.8.3 and later

Version checking

If your module defines a $VERSION variable, a
 program using your module can ensure that the module is sufficiently
 recent. For example:
use Bestiary 3.14; # The Bestiary must be version 3.14 or later
use Bestiary v1.0.4; # The Bestiary must be version 1.0.4 or later
These are converted into calls to Bestiary–>VERSION, which you inherit from
 UNIVERSAL (see Chapter 12).
If you use require, you can
 still check the version by calling VERSION directly:
require Bestiary;
Bestiary–>VERSION('2.71828');
Now, module versions are a more complicated thing than they
 should be, and some of that is inescapable history. Versions started
 off as whatever Perl would find in $VERSION in the module’s package. That could
 be a number, a string, or the result of an operation. For many years,
 there was no standardization of version strings, so people would make
 exotic versions like “1.23alpha”.[141] These turn out to be the same thing:
our $VERSION = 1.002003;
our $VERSION = '1.002003';
our $VERSION = v1.2.3;

use version;
our $VERSION = version–>new("v1.2.3");
That was fine for awhile, but then Perl changed its own version
 number scheme between 5.005 and v5.6, just like that. Now that was a
 v-string, a special sort of
 literal that represented a version and could contain as many dots as
 you liked. These v-strings were really integers packed as characters.
 Next, Perl got the idea of the version object and the version module. If you have to support truly ancient versions
 of Perl (first, we’re sorry: v5.6 came out last millennium already),
 best stick to simple strings.
Perl assumes that the part after the decimal point is three
 places, which makes comparisons odd. So version 1.9 comes before version 1.10, even though the .9 sorts after the .1 lexicographically. Perl sees those each
 as 1.009 and 1.010. Do you have to like that? No. Do you
 have to live with it? Yes. (But, by all means, use the v1.9 form everywhere you can get away with
 it, since that will be future compatible.)
In addition to all of that, a convention for developmental,
 nonreleased versions developed. Putting a _ or –TRIAL in your version, many of the CPAN
 tools won’t consider it a stable release. This lets authors upload to
 CPAN with the benefit of CPAN Testers and prerelease user testing
 without forcing everyone else to use the potentially broken release
 (see Chapter 19).
our $VERSION = '1.234_001';
The quotes are necessary there to preserve the underscore, which
 would otherwise be parsed away, because the compiler permits them in
 numeric literals.
David Golden says more about this in “Version numbers should be
 boring” (http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/).
Note that in very recent Perls you can get rid of the our declaration entirely, and just
 write:
package Bestiary v1.2.3;

Managing unknown symbols

In some situations, you may want to prevent
 certain symbols from being exported. Typically, this applies to
 modules that have functions or constants that might not make sense on
 some systems. You can prevent the Exporter from exporting those symbols by
 placing them in the @EXPORT_FAIL
 array.
If a program tries to import any of these symbols, the Exporter gives the module an opportunity to
 respond in some way before generating an error. It does this by
 calling an export_fail method with
 a list of the failed symbols, which you might define as follows
 (assuming your module uses the Carp module):
use Carp;
sub export_fail {
 my $class = shift;
 carp "Sorry, these symbols are unavailable: @_";
 return @_;
}
The Exporter provides a
 default export_fail method, which
 simply returns the list unchanged and makes the use fail with an exception raised for each
 symbol. If export_fail returns an
 empty list, no error is recorded and all requested symbols are
 exported.

Tag-handling utility functions

Since the symbols listed within %EXPORT_TAGS must also appear in either
 @EXPORT or @EXPORT_OK, the Exporter provides two functions to let you
 add those tagged sets of symbols:
%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

Exporter::export_tags("foo"); # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags("bar"); # add aa, cc and dd to @EXPORT_OK
Specifying names that are not tags is erroneous.

[141] For a sampling of some of the nonsense, see the work that
 the CPAN::DistnameInfo module does to recognize a version.

Overriding Built-in Functions

Many built-in functions may be overridden, although (like knocking holes in your walls) you should do
 this only occasionally and for good reason. Typically, this might be done
 by a package attempting to emulate missing built-in functionality on a
 non-Unix system. (Do not confuse overriding with overloading, which adds additional
 object-oriented meanings to built-in operators, but doesn’t override much
 of anything. See the discussion of the overload module in Chapter 13
 for more on that.)
Overriding may be done only by importing the name from a
 module—ordinary predeclaration isn’t good enough. To be perfectly
 forthcoming, it’s the assignment of a code reference to a typeglob that triggers the override, as in *open = \&myopen. Furthermore, the
 assignment must occur in some other package; this makes accidental
 overriding through typeglob aliasing intentionally difficult. However, if
 you really want to do your own overriding, don’t despair, because the
 subs pragma lets you predeclare
 subroutines via the import syntax, so those names then override the
 built-in ones:
use subs qw(chdir chroot chmod chown);
chdir $somewhere;
sub chdir { ... }
In general, modules should not export built-in names like open or chdir
 as part of their default @EXPORT list,
 since these names may sneak into someone else’s namespace and change the
 semantics unexpectedly. If the module includes the name in the @EXPORT_OK list instead, importers will be
 forced to explicitly request that the built-in name be overridden, thus
 keeping everyone honest.
The original versions of the built-in functions are always
 accessible via the CORE pseudopackage.
 Therefore, CORE::chdir will always be
 the version originally compiled into Perl, even if the chdir keyword has been overridden.
Well, almost always. The foregoing mechanism for overriding built-in
 functions is restricted, quite deliberately, to the package that requests
 the import. But there is a more sweeping mechanism you can use when you
 wish to override a built-in function everywhere, without regard to
 namespace boundaries. This is achieved by defining the function in the
 CORE::GLOBAL pseudopackage. Below is an
 example that replaces the glob operator
 with something that understands regular expressions. (Note that this
 example does not implement everything needed to cleanly override Perl’s
 built-in glob, which behaves differently depending on whether it appears in
 a scalar or list context. Indeed, many Perl built-ins have such
 context-sensitive behaviors, and any properly written override should
 adequately support these. For a fully functional example of glob
 overriding, study the File::Glob module bundled with Perl.) Anyway, here’s the antisocial
 version:
*CORE::GLOBAL::glob = sub {
 my $pat = shift;
 my @got;
 local *D;
 if (opendir D, ".") {
 @got = grep /$pat/, readdir D;
 closedir D;
 }
 return @got;
 }

 package Whatever;

 print <^[a–z_]+\.pm\$>; # show all pragmas in the current directory
By overriding glob globally, this
 preemptively forces a new (and subversive) behavior for the glob operator in every
 namespace, without the cognizance or cooperation of modules that own those
 namespaces. Naturally, this must be done with extreme caution—if it must
 be done at all. And it probably mustn’t.
Our overriding philosophy is: it’s nice to be important, but it’s
 more important to be nice.

Chapter 12. Objects

First of all, you need to understand packages and modules; see Chapter 10 and Chapter 11. You also need to know
 about references and data structures; see Chapter 8 and
 Chapter 9. It’s also helpful to understand a little about
 object-oriented programming (OOP), so in the next section we’ll give you a
 little course on OOL (object-oriented lingo).
Perl’s object-oriented model is probably a lot different than any you
 have used from other languages. As you go through this chapter, it’s best to
 forget anything you know from those languages.

Brief Refresher on Object-Oriented Lingo

An object is a data
 structure with a collection of behaviors. We generally speak of the
 behaviors as acted out by the object directly, sometimes to the point of
 anthropomorphizing the object. For example, we might say that a rectangle
 “knows” how to display itself on the screen, or that it “knows” how to
 compute its own area.
Every object gets its behaviors by virtue of being an instance of
 a class. The class
 defines methods: behaviors that apply to the class and its instances. When
 the distinction matters, we refer to methods that apply only to a
 particular object as instance
 methods, and those that apply to the entire class as class
 methods. But this is only a convention—to Perl, a method is
 just a method, distinguished only by the type of its first
 argument.
You can think of an instance method as some action performed by a
 particular object, such as printing itself out, copying itself, or
 altering one or more of its properties (“set this sword’s name to
 Andúril”). Class methods might perform operations on many objects
 collectively (“display all swords”) or provide other operations that
 aren’t dependent on any particular object (“from now on, whenever a new sword is forged, register its
 owner in this database”). Methods that generate instances (objects) of a
 class are called constructor
 methods (“create a sword with a gem-studded hilt and a secret
 inscription”). These are usually class methods (“make me a new sword”) but
 can also be instance methods (“make a copy just like this sword
 here”).
A class may inherit
 methods from parent
 classes, also known as base classes
 or superclasses. If it does,
 it’s known as a derived
 class or a subclass.
 (Confusing the issue further, some literature uses “base class” to mean a
 “most super” superclass. That’s not what we mean by it.) Inheritance makes
 a new class that behaves just like an existing one but also allows for
 altered or added behaviors not found in its parents. When you invoke a
 method whose definition is not found in the class, Perl automatically
 consults the parent classes for a definition. For example, a sword class
 might inherit its attack method from a
 generic blade class. Parents can themselves have parents, and Perl will
 search those classes as well when it needs to. The blade class might in
 turn inherit its attack method from an
 even more generic weapon class.
When the attack method is invoked
 on an object, the resulting behavior may depend on whether that object is
 a sword or an arrow. Perhaps there wouldn’t be any difference at all,
 which would be the case if both swords and arrows inherited their
 attacking behavior from the generic weapon class. But if there were a
 difference in behaviors, the method dispatch mechanism would always select
 the attack method suitable for the
 object in question. The useful property of always selecting the most
 appropriate behavior for a particular type of object is known as polymorphism.
 It’s an important form of not caring.
You have to care about the innards of your objects when you’re
 implementing a class, but when you use a class, you
 should be thinking of its objects as black boxes. You can’t see what’s
 inside, you shouldn’t need to know how it works, and you interact with the
 box only on its terms—via the methods provided by the class. Even if you
 know what those methods do to the object, you should resist the urge to
 fiddle around with it yourself. It’s like the remote control for your
 television set: even if you know what’s going on inside it, you shouldn’t
 monkey with its innards without good reason.
Perl lets you peer inside the object from outside the class when you
 need to. But doing so breaks its encapsulation, the principle that all
 access to an object should be through methods alone. Encapsulation
 decouples the published interface (how an object should be used) from the
 implementation (how it actually works). Perl does not have an explicit
 interface facility apart from this unwritten contract between designer and
 user. Both parties are expected to exercise common sense and common
 decency: the user by relying only upon the documented interface, the
 designer by not breaking that interface.
Perl doesn’t force a particular style of programming on you, and it
 doesn’t have the obsession with privacy that some other object-oriented
 languages do. Perl does have an obsession with freedom, however, and one
 of the freedoms you have as a Perl programmer is the right to select as
 much or as little privacy as you like. In fact, Perl can have stronger
 privacy in its classes and objects than C++. That is, Perl does not
 restrict you from anything, and, in particular, it doesn’t restrict you
 from restricting yourself—if you’re into that kind of thing. The sections
 Private Methods and “Closures as Objects” later in this
 chapter demonstrate how you can increase your dosage of discipline.
Admittedly, there’s a lot more to objects than this, as well as a
 lot of ways to find out more about object-oriented design. But that’s not
 our purpose here. So, on we go.

Perl’s Object System

Perl doesn’t provide any special syntax for defining objects,
 classes, or methods. Instead, it reuses existing constructs to implement
 these three concepts.[142] Here are some simple definitions that you may find
 reassuring:
	An object is simply a reference…er, a referent.
	Since references let individual scalars represent larger
 collections of data, it shouldn’t be a surprise that references are
 used for all objects. Technically, an object isn’t the reference
 proper—it’s really the referent that the reference points at. This
 distinction is frequently blurred by Perl programmers, however, and
 since we feel it’s a lovely metonymy, we will perpetuate the usage
 here when it suits us.[143]

	A class is simply a package.
	A package serves as a class by using the package’s subroutines
 to execute the class’s methods, and by using the package’s variables
 to hold the class’s global data. Often, a module is used to hold one
 or more classes.

	A method is simply a subroutine.
	You just declare subroutines in the package you’re using as the
 class; these will then be used as the class’s methods. Method
 invocation, a new way to call subroutines, passes an extra argument:
 the object or package used for invoking the method.

[142] Now there’s an example of software reuse
 for you!

[143] We prefer linguistic vigor over mathematical rigor. Either
 you will agree or you won’t.

Method Invocation

If you were to boil down all of object-oriented programming into one
 quintessential notion, it would be abstraction. It’s the single
 underlying theme you’ll find running through all those 10-dollar words
 that OO enthusiasts like to bandy about, like polymorphism and inheritance
 and encapsulation. We believe in those fancy words, but we’ll address them
 from the practical viewpoint of what it means to invoke methods. Methods
 lie at the heart of the object system because they provide the abstraction
 layer needed to implement all these fancy terms. Instead of directly
 accessing a piece of data sitting in an object, you invoke an instance
 method. Instead of directly calling a subroutine in some package, you
 invoke a class method. By interposing this level of indirection between
 class use and class implementation, the program designer remains free to
 tinker with the internal workings of the class, with little risk of
 breaking programs that use it.
Perl supports two different syntactic forms for invoking methods.
 One uses a familiar style you’ve already seen elsewhere in Perl, and the
 second is a form you may recognize from other programming languages. No
 matter which form of method invocation is used, the subroutine
 constituting the method is always passed an extra initial argument. If a
 class is used to invoke the method, that argument will be the name of the
 class. If an object is used to invoke the method, that argument will be
 the reference to the object. Whichever it is, we’ll call it the
 method’s invocant. For a
 class method, the invocant is the name of a package. For an instance
 method, the invocant is a reference that specifies an object.
In other words, the invocant is whatever the method was invoked
 with. Some OO literature calls this the method’s
 agent or its actor.
 Grammatically, the invocant is neither the subject of the action nor the
 receiver of that action. It’s more like an indirect object, the
 beneficiary on whose behalf the action is performed—just like the word
 “me” in the command, “Forge me a sword!” Semantically, you can think of
 the invocant as either an invoker or an invokee, whichever fits better
 into your mental apparatus. We’re not going to tell you how to think.
 (Well, not about that.)
Most methods are invoked explicitly, but methods may also be invoked
 implicitly when triggered by object destructors, overloaded operators, or
 tied variables. Properly speaking, these are not regular subroutine calls,
 but rather method invocations automatically triggered by Perl on behalf of
 an object. Destructors are described later in this chapter, overloading is
 described in Chapter 13, and ties are described in Chapter 14.
One difference between methods and regular subroutines is when their
 packages are resolved—that is, how early (or late) Perl decides which code
 should be executed for the method or subroutine. A subroutine’s package is
 resolved during compilation, before your program begins to run.[144] In contrast, a method’s package isn’t resolved until it is
 actually invoked. (Prototypes are checked at compile time, which is why
 regular subroutines can use them but methods can’t.)
The reason a method’s package can’t be resolved earlier is
 relatively straightforward: the package is determined by the class of the
 invocant, and the invocant isn’t known until the method is actually
 invoked. At the heart of OO is this simple chain of logic: once the
 invocant is known, the invocant’s class is known, and once the class is
 known, the class’s inheritance is known, and once the class’s inheritance
 is known, the actual subroutine to call is known.
The logic of abstraction comes at a price. Because of the late
 resolution of methods, an object-oriented solution in Perl is likely to
 run slower than the corresponding non-OO solution. For some of the fancier
 techniques described later, it could be a lot slower.
 However, many common problems are solved not by working faster, but by
 working smarter. That’s where OO shines.

[144] More precisely, the subroutine call is resolved down to a
 particular typeglob, a reference to which is stuffed into the
 compiled opcode tree. The meaning of that typeglob is negotiable even
 at runtime—this is how AUTOLOAD can
 autoload a subroutine for you. Normally, however, the meaning of the
 typeglob is also resolved at compile time by the definition of an
 appropriately named subroutine.

Method Invocation Using the Arrow Operator

We mentioned that there are two styles of method invocation. The first style for invoking
 a method looks like this:
INVOCANT–>METHOD(LIST)
INVOCANT–>METHOD
For obvious reasons, this style is usually called the arrow form of invocation. (Do not
 confuse –> with =>, the
 “double-barrelled” arrow used as a fancy comma.) Parentheses are
 required if there are any arguments. When executed, the invocation first
 locates the subroutine determined jointly by the class of the
 INVOCANT and the
 METHOD name, and then calls that subroutine,
 passing INVOCANT as its first
 argument.
When INVOCANT is a reference, we say
 that METHOD is invoked as an instance method;
 when INVOCANT is a package name, we say that
 METHOD is invoked as a class method. There
 really is no difference between the two, other than that the package
 name is more obviously associated with the class itself than with the
 objects of the class. You’ll have to take our word for it that the
 objects also know their class. We’ll tell you in a bit how to associate
 an object with a class name, but you can use objects without knowing
 that.
For example, to construct an object using the class method
 summon and then invoke the instance
 method speak on the resulting object,
 you might say this:
$mage = Wizard–>summon("Gandalf"); # class method
$mage–>speak("friend"); # instance method
The summon and speak methods are defined by the Wizard class—or one of the classes from which
 it inherits. But you shouldn’t worry about that. Do not meddle in the
 affairs of Wizards.
Since the arrow operator is left associative (see Chapter 3), you can even combine the two statements into
 one:
Wizard–>summon("Gandalf")–>speak("friend");
Sometimes you want to invoke a method without knowing its name
 ahead of time. You can use the arrow form of method invocation and
 replace the method name with a simple scalar variable:
$method = "summon";
$mage = Wizard–>$method("Gandalf"); # Invoke Wizard–>summon

$travel = $companion eq "Shadowfax" ? "ride" : "walk";
$mage–>$travel("seven leagues"); # Invoke $mage–>ride or $mage–>walk
Although you’re using the name of the method to invoke it
 indirectly, this usage is not forbidden by use
 strict 'refs', since all method calls are
 in fact looked up symbolically at the time they’re resolved.
In our example, we stored the name of a subroutine in $travel, but you could also store a subroutine
 reference. This bypasses the method lookup algorithm, but sometimes
 that’s exactly what you want to do. See both the section Private Methods and the discussion of the can method in the section UNIVERSAL: The Ultimate Ancestor Class. To create a reference to a particular method
 being called on a particular instance, see the section Closures in Chapter 8.

Method Invocation Using Indirect Objects

The second style of method invocation looks like this:
METHOD INVOCANT (LIST)
METHOD INVOCANT LIST
METHOD INVOCANT
The parentheses around LIST are
 optional; if omitted, the method acts as a list operator. So you can
 have statements like the following, all of which use this style of
 method call. Notice the lack of a comma after the class name or
 instance:
no feature "switch"; # for given forgiveness (see below)
$mage = summon Wizard "Gandalf";
$nemesis = summon Balrog home => "Moria", weapon => "whip";
move $nemesis "bridge";
speak $mage "You cannot pass";
break $staff; # safer to use: break $staff ();
The list operator syntax should be familiar to you; it’s the same
 style used for passing filehandles to print or printf:
print STDERR "help!!!\n";
It’s also similar to English sentences like “Give Gollum the
 Preciousss”, so we call it the indirect object form. The invocant
 is expected in the indirect
 object slot. When you read about passing a built-in function
 like system or exec something in its “indirect object slot”,
 this means that you’re supplying this extra, comma-less argument in the
 same place you would when you invoke a method using the indirect object
 syntax.
The indirect object form even permits you to specify the
 INVOCANT as a
 BLOCK that evaluates to an object (reference)
 or class (package). This lets you combine those two invocations into one
 statement this way:
speak { summon Wizard "Gandalf" } "friend";

Syntactic Snafus with Indirect Objects

One syntax will often be more readable than the other. The indirect object syntax
 is less cluttered but suffers from several forms of syntactic ambiguity.
 The first is that the LIST part of an
 indirect object invocation is parsed the same as any other list
 operator. Thus, the parentheses of:
enchant $sword ($pips + 2) * $cost;
are assumed to surround all the arguments, regardless of what
 comes afterward. It would therefore be equivalent to this:
($sword–>enchant($pips + 2)) * $cost;
That’s unlikely to do what you want: enchant is only being called with $pips + 2, and the method’s return value is
 then multiplied by $cost. As with
 other list operators, you must also be careful of the precedence of
 && and || versus and and or—if you disdain parentheses.
For example, this:
name $sword $oldname || "Glamdring"; # can’t use "or" here!
becomes the intended:
$sword–>name($oldname || "Glamdring");
but this:
speak $mage "friend" && enter(); # should’ve been "and" here!
becomes the dubious:
$mage–>speak("friend" && enter());
which could be fixed by rewriting into one of these equivalent
 forms:
enter() if $mage–>speak("friend");
$mage–>speak("friend") && enter();
speak $mage "friend" and enter();
The second syntactic infelicity of the indirect object form is
 that its INVOCANT is limited to a name, an
 unsubscripted scalar variable, or a block.[145] As soon as the parser sees one of these, it has its
 INVOCANT, so it starts looking for its
 LIST. So these invocations:
move $party–>{LEADER}; # probably wrong!
move $riders[$i]; # probably wrong!
actually parse as these:
$party–>move–>{LEADER};
$riders–>move([$i]);
rather than what you probably wanted:
$party–>{LEADER}–>move;
$riders[$i]–>move;
The parser only looks a little ways ahead to find the invocant for
 an indirect object, not even as far as it would look for a unary
 operator. This oddity does not arise with the first notation, so you
 might wish to stick with the arrow as your weapon of choice.
Even English has a similar issue here. Think about the command,
 “Throw your cat out the window a toy mouse to play with.” If you parse
 that sentence too quickly, you’ll end up throwing the cat, not the mouse
 (unless you notice that the cat is already out the window). Like Perl,
 English has two different syntaxes for expressing the agent: “Throw your
 cat the mouse” and “Throw the mouse to your cat.” Sometimes the longer
 form is clearer and more natural, and sometimes the shorter one is. At
 least in Perl you’re required to use braces around any complicated
 indirect object.

[145] Attentive readers will recall that this is precisely the same
 list of syntactic items that are allowed after a funny character to
 indicate a variable dereference—for example, @ary, @$aryref, or @{$aryref}.

Package-Quoted Classes

The final syntactic ambiguity with the indirect object style of method
 invocation is that it may not be parsed as a method call at all, because
 the current package may have a subroutine of the same name as the
 method. When using a class method with a literal package name as the
 invocant, there is a way to resolve this ambiguity while still keeping
 the indirect object syntax: package-quote the classname by appending a
 double colon to it.
$obj = method CLASS::; # forced to be "CLASS"–>method
This is important because the commonly seen notation:
$obj = new CLASS; # might not parse as method
will not always behave properly if the current package has a
 subroutine named new or
 CLASS. Even if you studiously use the arrow
 form instead of the indirect object form to invoke methods, this can, on
 rare occasion, still be a problem. At the cost of extra punctuation
 noise, the CLASS:: notation guarantees how Perl will parse
 your method invocation. The first two examples below do not always parse
 the same way, but the second two do:
$obj = new ElvenRing; # could be new("ElvenRing")
 # or even new(ElvenRing())
$obj = ElvenRing–>new; # could be ElvenRing()–>new()

$obj = new ElvenRing::; # always "ElvenRing"–>new()
$obj = ElvenRing::–>new; # always "ElvenRing"–>new()
This package-quoting notation can be made prettier with some
 creative alignment:
$obj = new ElvenRing::
 name => "Narya",
 owner => "Gandalf",
 domain => "fire",
 stone => "ruby";
Still, you may say, “Oh, ugh!” at that double colon, so we’ll tell
 you that you can almost always get away with a bare class name, provided
 two things are true. First, there is no subroutine of the same name as
 the class. (If you follow the convention that subroutine names like
 new start lowercase and class names
 like ElvenRing start uppercase, this
 is never a problem.) Second, the class has been loaded with one
 of:
use ElvenRing;
require ElvenRing;
Either of these declarations ensures that Perl knows ElvenRing is a module name, which forces any
 bare name like new before the class
 name ElvenRing to be interpreted as a
 method call, even if you happen to have declared a new subroutine of your own in the current
 package. People don’t generally get into trouble with indirect objects
 unless they start cramming multiple classes into the same file, in which
 case Perl might not know that a particular package name was supposed to
 be a class name. People who name subroutines with names that look like
 ModuleNames also come to grief
 eventually.
This is (almost) what happened to us where we said:
no feature "switch";
Assuming you’d used the recommended use
 v5.14 or so, anything v5.10 or over pulls in break as a keyword to help with the given construct. We turned off the “switch” feature because otherwise the compiler
 thinks that break might be a keyword.
 Adding the parentheses at the end doesn’t even help here, even though
 that’s what you normally do—or should do—to make
 method calls safe using this syntax. The compiler doesn’t actually know
 what to make of it, but it isn’t letting it slide.

Object Construction

All objects are references, but not all references are objects. A reference won’t work
 as an object unless its referent is specially marked to tell Perl to what
 package it belongs. The act of marking a referent with a package name—and,
 therefore, its class, since a class is just a package—is known
 as blessing. You can think of the
 blessing as turning a reference into an object, although it’s more
 accurate to say that it turns the reference into an object
 reference.
The bless function takes either one or two arguments. The first argument is a
 reference and the second is the package to bless the referent into. If the
 second argument is omitted, the current package is used.
$obj = { }; # Get reference to anonymous hash.
bless($obj); # Bless hash into current package.
bless($obj, "Critter"); # Bless hash into class Critter.
Here we’ve used a reference to an anonymous hash, which is what
 people usually use as the data structure for their objects. Hashes are
 extremely flexible, after all. But allow us to emphasize that you can
 bless a reference to anything you can make a reference to in Perl,
 including scalars, arrays, subroutines, and typeglobs. You can even bless
 a reference to a package’s symbol table hash if you can think of a good
 reason to. (Or even if you can’t.) Object orientation in Perl is
 completely orthogonal to data structure.
Once the referent has been blessed, calling the built-in ref function on its reference returns the name of the blessed class
 instead of the built-in type, such as HASH. If you want the built-in type, use the
 reftype function from the attributes module. See
 the section attributes in Chapter 29.
And that’s how to make an object. Just take a reference to
 something, give it a class by blessing it into a package, and you’re done.
 That’s all there is to it if you’re designing a minimal class. If you’re
 using a class, there’s even less to it, because the author of a class will
 have hidden the bless inside a method
 called a constructor,
 which creates and returns instances of the class. Because bless returns its first argument, a typical
 constructor can be as simple as this:
package Critter;
sub spawn { bless {} }
Or, spelled out slightly more explicitly:
package Critter;
sub spawn {
 my $self = {}; # Reference to an empty anonymous hash
 bless $self, "Critter"; # Make that hash a Critter object
 return $self; # Return the freshly generated Critter
}
With that definition in hand, here’s how one might create a Critter object:
$pet = Critter–>spawn;

Inheritable Constructors

Like all methods, a constructor is just a subroutine, but we don’t call it as
 a subroutine. We always invoke it as a method—a class method, in this
 particular case, because the invocant is a package name. Method
 invocations differ from regular subroutine calls in two ways. First,
 they get the extra argument we discussed earlier. Second, they obey
 inheritance, allowing one class to use another’s methods.
We’ll describe the underlying mechanics of inheritance more
 rigorously in the next section, but, for now, some simple examples of
 its effects should help you design your constructors. For instance,
 suppose we have a Spider class that
 inherits methods from the Critter
 class. In particular, suppose the Spider class doesn’t have its own spawn method. The correspondences shown in
 Table 12-1 apply:
Table 12-1. Mapping methods to subroutines
	Method Call	Resulting Subroutine
 Call
	Critter–>spawn()	Critter::spawn("Critter")
	Spider–>spawn()	Critter::spawn("Spider")

The subroutine called is the same in both cases, but the argument
 differs. Note that our spawn
 constructor above completely ignored its argument, which means our
 Spider object was incorrectly blessed
 into class Critter. A better
 constructor would provide the package name (passed in as the first
 argument) to bless:
sub spawn {
 my $class = shift; # Store the package name
 my $self = { };
 bless($self, $class); # Bless the reference into that package
 return $self;
}
Now you could use the same subroutine for both these cases:
$vermin = Critter–>spawn;
$shelob = Spider–>spawn;
And each object would be of the proper class. This even works
 indirectly, as in:
$type = "Spider";
$shelob = $type–>spawn; # same as "Spider"–>spawn
That’s still a class method, not an instance method, because its
 invocant holds a string and not a reference.
If $type were an object instead
 of a class name, the previous constructor definition wouldn’t have
 worked because bless needs a class
 name. But, for many classes, it makes sense to use an existing object as
 the template from which to create another. In these cases, you can
 design your constructors so that they work with either objects or class
 names:
sub spawn {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant; # Object or class name
 my $self = { };
 bless($self, $class);
 return $self;
}

Initializers

Most objects maintain internal information that is indirectly manipulated by the
 object’s methods. All our constructors so far have created empty hashes,
 but there’s no reason to leave them empty. For instance, we could have
 the constructor accept extra arguments to store into the hash as
 key/value pairs. The OO literature often refers to such data as properties, attributes, accessors,
 accessor method, member
 data, instance
 data, or instance
 variables. The section “Instance Variables”, later in this chapter,
 discusses attributes in more detail.
Imagine a Horse class with
 instance attributes like “name” and “color”:
$steed = Horse–>new(name => "Shadowfax", color => "white");
If the object is implemented as a hash reference, the key/value
 pairs can be interpolated directly into the hash once the invocant is
 removed from the argument list:
sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = { @_ }; # Remaining args become attributes
 bless($self, $class); # Bestow objecthood
 return $self;
}
This time we used a method named new for the class’s constructor, which just
 might lull C++ programmers into thinking they know what’s going on. But
 Perl doesn’t consider “new” to be
 anything special; you may name your constructors whatever you like. Any
 method that happens to create and return an object is a de facto
 constructor. In general, we recommend that you name your constructors
 whatever makes sense in the context of the problem you’re solving. For
 example, constructors in the Tk module are named after the widgets they create. In the
 DBI module, a constructor named connect returns a database handle object, and
 another constructor named prepare is
 invoked as an instance method and returns a statement handle object. But
 if there is no suitable context-specific constructor name, new is perhaps not a terrible choice. Then
 again, maybe it’s not such a bad thing to pick a random name to force
 people to read the interface contract (meaning the class documentation)
 before they use its constructors.
Elaborating further, you can set up your constructor with default
 key/value pairs, which the user could later override by supplying them
 as arguments:
sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = {
 color => "bay",
 legs => 4,
 owner => undef,
 @_, # Override previous attributes
 };
 return bless $self, $class;
}

$ed = Horse–>new; # A 4–legged bay horse
$stallion = Horse–>new(color => "black"); # A 4–legged black horse
This Horse constructor ignores
 its invocant’s existing attributes when used as an instance method. You
 could create a second constructor designed to be called as an instance
 method, and, if designed properly, you could use the values from the
 invoking object as defaults for the new one:
$steed = Horse–>new(color => "dun");
$foal = $steed–>clone(owner => "EquuGen Guild, Ltd.");

sub clone {
 my $model = shift;
 my $self = $model–>new(%$model, @_);
 return $self; # Previously blessed by –>new
}
(You could also have rolled this functionality directly into
 new, but then the name wouldn’t quite
 fit the function.)
Notice how even in the clone
 constructor we don’t hardcode the name of the Horse class. We have the original object
 invoke its own new method, whatever
 that may be. If we had written that as Horse–>new instead of $model–>new, then the class wouldn’t have
 facilitated inheritance by a Zebra or
 Unicorn class. You wouldn’t want to
 clone Pegasus and suddenly find yourself with a horse of a different
 color.
Sometimes, however, you have the opposite problem: rather than
 trying to share one constructor among several classes, you’re trying to
 have several constructors share one class’s object. This happens
 whenever a constructor wants to call a base class’s constructor to do
 part of the construction work. Perl doesn’t do hierarchical construction
 for you. That is, Perl does not automatically call the constructors (or
 the destructors) for any base classes of the class requested, so your
 constructor will have to do that itself and then add any additional
 attributes the derived class needs. So the situation is not unlike the
 clone routine, except that instead of
 copying an existing object into the new object, you want to call your
 base class’s constructor and then transmogrify the new base object into
 your new derived object.

Class Inheritance

As with the rest of Perl’s object system, inheritance of one class by another requires
 no special syntax to be added to the language. When you invoke a method
 for which Perl finds no subroutine in the invocant’s package, that
 package’s @ISA array[146] is examined. This is how Perl implements inheritance: each
 element of a given package’s @ISA array
 holds the name of another package, which is searched when methods are
 missing. For example, the following makes the Horse class a subclass of the Critter class. (We declare @ISA with our
 because it has to be a package variable, not a lexical declared with
 my.)
package Horse;
our @ISA = "Critter";
You might see this with the parent pragma, which handles @ISA for you and loads the parent class at the
 same time:
package Horse;
use parent qw(Critter);
The parent pragma replaces the
 older base pragma, which did the same thing but threw in some fields magic if it thought the superclasses used them. If you
 don’t know what that is, don’t worry about it (just use parent):
package Horse;
use base qw(Critter);
You should now be able to use a Horse class or object everywhere that a Critter was previously used. If your new class
 passes this empty subclass
 test, you know that Critter
 is a proper base class, fit for inheritance.
Suppose you have a Horse object
 in $steed and invoke a move method on it:
$steed–>move(10);
Because $steed is a Horse, Perl’s first choice for that method is
 the Horse::move subroutine. If there
 isn’t one, instead of raising a runtime exception, Perl consults the first
 element of @Horse::ISA, which directs
 it to look in the Critter package for
 Critter::move. If this subroutine isn’t
 found either, and Critter has
 its own @Critter::ISA array, then that too will be
 consulted for the name of an ancestral package that might supply a
 move method, and so on, back up the
 inheritance hierarchy until we come to a package without an @ISA.
The situation we just described is single inheritance, where each
 class has only one parent. Such inheritance is like a linked list of
 related packages. Perl also supports multiple inheritance; just add
 more packages to the class’s @ISA. This
 kind of inheritance works more like a tree data structure, because every
 package can have more than one immediate parent. Some people find this to
 be sexier.
When you invoke a method methname on an
 invocant of type classname, Perl tries six
 different ways to find a subroutine to use:
	First, Perl looks in the invocant’s own package for a subroutine
 named classname::methname. If
 that fails, inheritance kicks in, and we go to step 2.

	Next, Perl checks for methods inherited from base classes by
 looking in all parent packages listed in
 @classname::ISA for a
 parent::methname
 subroutine. The search is left to right, recursive, and depth-first.
 The recursion assures that grandparent classes, great-grandparent
 classes, great-great-grandparent classes, and so on, are all
 searched.

	If that fails, Perl looks for a subroutine named UNIVERSAL::methname.

	At this point, Perl gives up on
 methname and starts looking for an AUTOLOAD. First, it looks for a subroutine
 named classname::AUTOLOAD.

	Failing that, Perl searches all
 parent packages listed in @classname::ISA for any
 parent::AUTOLOAD subroutine. The search is again
 left to right, recursive, and depth-first.

	Finally, Perl looks for a subroutine named UNIVERSAL::AUTOLOAD.

Perl stops after the first successful attempt and invokes that
 subroutine. If no subroutine is found, an exception is raised, one that
 you’ll see frequently:
Can't locate object method "methname" via package "classname"
If you’ve built a debugging version of Perl using the –DDEBUGGING option to
 your C compiler, by using Perl’s –Do
 switch, you can watch it go through each of these steps when it resolves
 method invocation.
We will discuss the inheritance mechanism in more detail as we go
 along.

[146] Pronounced “is a”, as in “A horse is a critter.”

Inheritance Through @ISA

If @ISA contains more than one
 package name, the packages are all searched in left-to-right order by
 default. The search is depth-first, so if you have a Mule class set up for inheritance this
 way:
package Mule;
our @ISA = ("Horse", "Donkey");
Perl looks for any methods missing from Mule first in Horse (and any of its ancestors, like Critter) before going on to search through
 Donkey and its ancestors.
If a missing method is found in a base class, Perl internally
 caches that location in the current class for efficiency, so the next
 time it has to find the method, it doesn’t have to look as far. Changing
 @ISA or defining new methods
 invalidates the cache and causes Perl to perform the lookup
 again.
When Perl searches for a method, it makes sure that you haven’t
 created a circular inheritance hierarchy. This could happen if two
 classes inherit from one another, even indirectly through other classes.
 Trying to be your own great-grandfather is too paradoxical even for
 Perl, so the attempt raises an exception. However, Perl does not
 consider it an error to inherit from more than one class sharing a
 common ancestry, which is rather like cousins marrying. Your inheritance
 hierarchy just stops looking like a tree and starts to look like a
 directed acyclic graph. This doesn’t bother Perl—so long as the graph
 really is acyclic.
When you set @ISA, the
 assignment normally happens at runtime, so unless you take precautions,
 code in BEGIN, CHECK, UNITCHECK, or INIT blocks won’t be able to use the
 inheritance hierarchy. One precaution (or convenience) is the parent pragma, which lets you require classes and add them to @ISA at compile time. Here’s how you might use
 it:
package Mule;
use parent ("Horse", "Donkey"); # declare superclasses
This is a shorthand for:
package Mule;
BEGIN {
 our @ISA = ("Horse", "Donkey");
 require Horse;
 require Donkey;
}
Sometimes folks are surprised that including a class in @ISA doesn’t require the appropriate module for you. That’s
 because Perl’s class system is largely orthogonal to its module system.
 One file can hold many classes (since they’re just packages), and one
 package may be mentioned in many files. But in the most common
 situation, where one package and one class and one module and one file
 all end up being pretty interchangeable if you squint enough, the
 parent pragma offers a declarative
 syntax that establishes inheritance and loads in module files. It’s one
 of those convenient diagonals we keep mentioning.
See the descriptions of use
 parent in Chapter 29 for further details.
 Also see the older base pragma, which
 performs extra fields magic (which
 has fallen out of favor with Perl programmers).

Alternate Method Searching

With multiple inheritance, the default traversal of @ISA to find the right method might not work
 for you, because a method in a far away superclass might hide a better
 method in a closer superclass. Consider the inheritance shown in Figure 12-1, where Mule inherits from two classes, Donkey and Horse, which both inherit from Equine. The Equine has a color method, which Donkey inherits. Horse provides its own color, though. Using the default traversal,
 you don’t know which color you’ll get
 unless you know the order of the parent classes:
use parent qw(Horse Donkey); # finds Horse::Color first
use parent qw(Donkey Horse); # finds Equine::Color first
[image: Multiple inheritance graph]

Figure 12-1. Multiple inheritance graph

As of v5.10, the traversal is configurable. In fancy terms, this
 is the method
 resolution order, which you select with the mro pragma (see Chapter 29):
package Mule;
use mro 'c3';
use parent qw(Donkey Horse);
The C3 algorithm traverses @ISA
 so it finds inherited methods that are closer in the inheritance graph.
 Said another way, that means that no superclass will be searched before
 one of its subclasses. Perl will not look in Equine before it looks in Horse.
If your Perl does not support the mro pragma, you might be able to use the
 MRO::Compat CPAN module.

Accessing Overridden Methods

When a class defines a method, that subroutine overrides methods of the
 same name in any base classes. You have the Mule object (which is derived from class
 Horse and class Donkey), and you decide to invoke your
 object’s breed method. Although the
 parent classes have their own breed
 methods, the designer of the Mule
 class overrode those by supplying the Mule class with its own breed method. That means the following cross
 is unlikely to be productive:
$stallion = Horse–>new(gender => "male");
$molly = Mule–>new(gender => "female");
$colt = $molly–>breed($stallion);
Now, suppose that through the miracle of genetic engineering, you
 find some way around a mule’s notorious sterility problem, so you want
 to skip over the nonviable Mule::breed method. You
 could call your method as an ordinary subroutine,
 being sure to pass the invocant explicitly:
$colt = Horse::breed($molly, $stallion);
However, this sidesteps inheritance, which is nearly always the
 wrong thing to do. It’s perfectly imaginable that no Horse::breed subroutine exists because both
 Horses and Donkeys derive that behavior from a common
 parent class called Equine. If, on
 the other hand, you want to specify that Perl should
 start searching for a method in a particular class,
 just use ordinary method invocation but qualify the method name with the
 class:
$colt = $molly–>Horse::breed($stallion);
Occasionally, you’ll want a method in a derived class to act as a
 wrapper around some method in a base class. The method in the derived
 class can itself invoke the method in the base class, adding its own
 actions before or after that invocation. You could
 use the notation just demonstrated to specify at which class to start
 the search. But in most cases of overridden methods, you don’t want to
 have to know or specify which parent class’s overridden method to
 execute.
That’s where the SUPER pseudoclass
 comes in handy. It lets you invoke an overridden base class method
 without having to specify which class defined that method.[147] The following subroutine looks in the current package’s
 @ISA without making you specify
 particular classes:
package Mule;
our @ISA = qw(Horse Donkey);
sub kick {
 my $self = shift;
 print "The mule kicks!\n";
 $self–>SUPER::kick(@_);
}
The SUPER pseudopackage is
 meaningful only when used inside a method. Although
 the implementer of a class can employ SUPER in her own code, someone who merely uses
 a class’s objects cannot.
If you are using C3 method resolution order, then instead of
 SUPER::METHNAME you
 use next::method, which is loaded by
 the use mro "c3" pragma. Unlike with
 SUPER, with next::method, you don’t specify the method
 name because it figures it out for you:
use v5.14;
package Mule;
use mro 'c3';
use parent qw(Horse Donkey);
sub kick {
 my $self = shift;
 say "The mule kicks!";
 $self–>next::method(@_);
}
Every bit of code in Perl knows what its current package is, as
 determined by the last package
 statement. A SUPER method looks only
 in the @ISA of the current package
 from when the call to SUPER was
 compiled. It doesn’t care about the class of the invocant, nor about the
 package of the subroutine that was called. This can cause problems if
 you try to define methods in another class by merely playing tricks with
 the method name:
package Bird;
use Dragonfly;
sub Dragonfly::divebomb { shift–>SUPER::divebomb(@_) }
Unfortunately, this invokes Bird’s superclass, not Dragonfly’s. To do what you’re trying to do,
 you need to explicitly switch into the appropriate package for the
 compilation of SUPER as well:
package Bird;
use Dragonfly;
{
 package Dragonfly;
 sub divebomb { shift–>SUPER::divebomb(@_) }
}
The next::method has a similar
 problem because it uses the package of its caller to figure out what class to look at. If
 you define a method in Donkey from
 another package, next::method will
 break:
package main;
*Donkey::sound = sub { (shift)–>next::method(@_) };
The anonymous subroutine shows up in the stack with as _ _ANON_ _, so next::method doesn’t know which package it is
 in. You can use the Sub::Name CPAN
 module to make it work out, though:
use Sub::Name qw(subname);
*Donkey::sound =
 subname 'Donkey::sound' => sub { (shift)–>next::method(@_) };
As these examples illustrate, you don’t need to edit a module file
 just to add methods to an existing class. Since a class is just a
 package, and a method just a subroutine, all you have to do is define a
 function in that package as we’ve done here, and the class suddenly has
 a new method. No inheritance required. Only the package matters, and
 since packages are global, any package can be accessed from anywhere in
 the program. (Did we mention we’re going to install a jacuzzi in your
 living room next week?)

[147] This is not to be confused with the mechanism mentioned in
 Chapter 11 for overriding Perl’s built-in
 functions, which aren’t object methods and so aren’t overridden
 by inheritance. You call overridden built-ins via the CORE pseudopackage, not the SUPER pseudopackage.

UNIVERSAL: The Ultimate Ancestor Class

If no method definition with the right name is found after searching
 the invocant’s class and all its ancestor classes recursively, one more
 check for a method of that name is made in the special predefined class
 called UNIVERSAL. This package never appears in an @ISA, but it is always consulted when an
 @ISA check fails. You can think of
 UNIVERSAL as the ultimate ancestor
 from which all classes implicitly derive, making it work like class
 Object does in Java or class object in Python’s new-style classes.
The following predefined methods are available in class UNIVERSAL, and thus in all classes. These all
 work regardless of whether they are invoked as class methods or object
 methods.
	INVOCANT–>isa(CLASS)
	The isa method returns true if
 INVOCANT’s class is
 CLASS or any class inheriting from
 CLASS. Instead of a package name,
 CLASS may also be one of the built-in
 types, such as “HASH” or
 “ARRAY”. (Checking for an exact
 type does not bode well for encapsulation or polymorphism, though.
 You should be relying on method dispatch to give you the right
 method.)
use IO::Handle;
if (IO::Handle–>isa("Exporter")) {
 print "IO::Handle is an Exporter.\n";
}

$fh = IO::Handle–>new();
if ($fh–>isa("IO::Handle")) {
 print "\$fh is some sort of IOish object.\n";
}
if ($fh–>isa("GLOB")) {
 print "\$fh is really a GLOB reference.\n";
}

	INVOCANT–>DOES(ROLE)
	Perl v5.10 added the idea of roles,
 a way that a class can include external methods without
 necessarily inheriting them, as isa requires. A role specifies a set of
 behavior but doesn’t care how a class does it. It might inherit
 the methods, mock them, delegate them, or something else.
By default, DOES is
 identical to isa, and you can
 use DOES instead of isa in all cases. If your class does
 something fancy to include methods without inheritance, though,
 you’d want to define DOES to
 return the right answer.
Roles are a Perl 6 thing, and the truth is that Perl 5
 doesn’t do anything at all with them. The UNIVERSAL DOES method exists so cooperating
 classes could, were they so included, build something where
 DOES matters. Perl itself
 doesn’t pay any attention to it at all.

	INVOCANT–>can(METHOD)
	The can method returns a reference to the subroutine that would be
 called if METHOD were applied to
 INVOCANT. If no such subroutine is
 found, can returns undef.
if ($invocant–>can("copy")) {
 print "Our invocant can copy.\n";
}
This could be used to conditionally invoke a method only if
 one exists:
$obj–>snarl if $obj–>can("snarl");
Under multiple inheritance, this allows a method to invoke
 all overridden base class methods, not just the leftmost
 one:
sub snarl {
 my $self = shift;
 print "Snarling: @_\n";
 my %seen;
 for my $parent (@ISA) {
 if (my $code = $parent–>can("snarl")) {
 $self–>$code(@_) unless $seen{$code}++;
 }
 }
}
We use the %seen hash to
 keep track of which subroutines we’ve already called, so we can
 avoid calling the same subroutine more than once. This could
 happen if several parent classes shared a common ancestor.
Methods that would trigger an AUTOLOAD (described in the next section)
 will not be accurately reported unless the package has declared
 (but not defined) the subroutines it wishes to have
 autoloaded.
If you are using the mro pragma, you probably want the next::can method instead of this
 one.

	INVOCANT–>VERSION(NEED)
	The VERSION method returns the version number of
 INVOCANT’s class, as stored in the
 package’s $VERSION variable. If
 the NEED argument is provided, it
 verifies that the current version isn’t less than
 NEED and raises an exception if it is.
 This is the method that use
 invokes to determine whether a module is sufficiently
 recent.
use Thread 1.0; # calls Thread–>VERSION(1.0)
print "Running version ", Thread–>VERSION, " of Thread.\n";
You may supply your own VERSION method to override the method in
 UNIVERSAL. However, this will
 cause any classes derived from your class to use the overridden
 method, too. If you don’t want that to happen, you should design
 your method to delegate other classes’ version requests back up to
 UNIVERSAL.

The methods in UNIVERSAL are
 built-in Perl subroutines, which you may call if you fully qualify them
 and pass two arguments, as in UNIVERSAL::isa($formobj, "HASH"). However,
 this bypasses some sanity checking since $formobj could be any value, not just a
 reference. You might trap that in eval:
eval { UNIVERSAL::isa($formobj, "HASH") }
This is not recommended, though, because can usually has the answer you’re really
 looking for:
eval { UNIVERSAL::can($formobj, $method) }
But, if you’re worried about $formobj being an object and want to wrap it
 in an eval, you might as well use it
 as an object anyway since the answer is the same (you can’t call that
 method on $formobj):
eval { $formobj–>can($method) }
You’re free to add your own methods to class UNIVERSAL. (You should be careful, of course;
 you could really mess someone up who is expecting
 not to find the method name you’re defining,
 perhaps so that he can autoload it from somewhere else.) Here we create
 a copy method that objects of all
 classes can use if they’ve not defined their own. We fail spectacularly
 if invoked on a class instead of an object:
use Data::Dumper;
use Carp;
sub UNIVERSAL::copy {
 my $self = shift;
 if (ref $self) {
 return eval Dumper($self); # no CODE refs
 } else {
 confess "UNIVERSAL::copy can't copy class $self";
 }
}
This Data::Dumper strategy doesn’t work if the object contains any
 references to subroutines, because they cannot be properly reproduced.
 Even if the source were available, the lexical bindings would be
 lost.

Method Autoloading

Normally, when you call an undefined subroutine in a package that defines
 an AUTOLOAD subroutine, the AUTOLOAD subroutine is called in lieu of
 raising an exception (see the section Autoloading in
 Chapter 10). With methods, this works a little
 differently. If the regular method search (through the class, its
 ancestors, and finally UNIVERSAL)
 fails to find a match, the same sequence is run again, this time looking
 for an AUTOLOAD subroutine.
 If found, this subroutine is called as a method, with the package’s
 $AUTOLOAD variable set to the fully
 qualified name of the subroutine on whose behalf AUTOLOAD was called.
You need to be a bit cautious when autoloading methods. First, the
 AUTOLOAD subroutine should return
 immediately if it’s being called on behalf of a method named DESTROY, unless your goal was to simulate
 DESTROY, which has a special meaning
 to Perl (see the section Instance Destructors later in this
 chapter).
sub AUTOLOAD {
 return if our $AUTOLOAD =~ /::DESTROY$/;
 ...
}
Second, if the class is providing an AUTOLOAD safety net, you won’t be able to use
 UNIVERSAL::can on a method name to
 check whether it’s safe to invoke. You have to check for AUTOLOAD separately:
if ($obj–>can("methname") || $obj–>can("AUTOLOAD")) {
 $obj–>methname();
}
Finally, under multiple inheritance, if a class inherits from two
 or more classes—each of which has an AUTOLOAD—only the leftmost will ever be
 triggered, since Perl stops as soon as it finds the first AUTOLOAD.
The last two quirks are easily circumvented by declaring the
 subroutines in the package whose AUTOLOAD is supposed to manage those methods.
 You can do this either with individual declarations:
package Goblin;
sub kick;
sub bite;
sub scratch;
or with the subs pragma, which is more convenient if you have many methods
 to declare:
package Goblin;
use subs qw(kick bite scratch);
Even though you’ve only declared these subroutines and not defined
 them, this is enough for the system to think they’re real. They show up
 in a UNIVERSAL::can check, and, more importantly, they show up in step 2 of the
 search for a method, which will never progress to step 3, let alone step
 4.
“But, but,” you exclaim, “they invoke AUTOLOAD, don’t they?” Well, yes, they do
 eventually, but the mechanism is different. Having found the method stub
 via step 2, Perl tries to call it. When it is discovered that the method
 isn’t all it was cracked up to be, the AUTOLOAD method search kicks in again. But,
 this time, it starts its search in the class containing the stub, which
 restricts the method search to that class and its ancestors (and
 UNIVERSAL). That’s how Perl finds the
 correct AUTOLOAD to run and knows to
 ignore AUTOLOADs from the wrong part
 of the original inheritance tree.

Private Methods

There is one way to invoke a method so that Perl ignores inheritance
 altogether. If instead of a literal method name you specify a simple
 scalar variable containing a reference to a subroutine, then the
 subroutine is called immediately. In the description of UNIVERSAL–>can in
 the previous section, the last example invokes all overridden methods
 using the subroutine’s reference, not its name.
An intriguing aspect of this behavior is that it can be used to
 implement private method calls. If you put your class in a module, you
 can make use of the file’s lexical scope for privacy. First, store an
 anonymous subroutine in a file-scoped lexical:
declare private method
my $secret_door = sub {
 my $self = shift;
 ...
};
Later on in the file you can use that variable as though it held a
 method name. The closure will be called directly, without regard to
 inheritance. As with any other method, the invocant is passed as an
 extra argument.
sub knock {
 my $self = shift;
 if ($self–>{knocked}++ > 5) {
 $self–>$secret_door();
 }
}
This enables the file’s own subroutines (the class’s methods) to
 invoke a method that code outside that lexical scope cannot access.

Instance Destructors

As with any other referent in Perl, when the last reference to an object
 goes away, its memory is implicitly recycled. With an object, you have the
 opportunity to capture control just as this is about to happen by defining
 a DESTROY subroutine in the class’s
 package. This method is triggered automatically at the appropriate moment,
 with the about-to-be-recycled object as its only argument.
Destructors are rarely needed in Perl because memory management is
 handled automatically for you. Some objects, though, may have state
 outside the memory system that you’d like to attend to, such as
 filehandles or database connections.
package MailNotify;
sub DESTROY {
 my $self = shift;
 my $fh = $self–>{mailhandle};
 my $id = $self–>{name};
 print $fh "\n$id is signing off at " . localtime() . "\n";
 close $fh; # close pipe to mailer
}
Just as Perl uses only a single method to construct an object, even
 when the constructor’s class inherits from one or more other classes, Perl
 also uses only one DESTROY method per
 object destroyed regardless of inheritance. In other words, Perl does not
 do hierarchical destruction for you. If your class overrides a
 superclass’s destructor, then your DESTROY method may need to invoke the DESTROY method for any applicable base
 classes:
sub DESTROY {
 my $self = shift;
 # check for an overridden destructor...
 $self–>SUPER::DESTROY if $self–>can("SUPER::DESTROY");
 # now do your own thing before or after
}
This only applies to inherited classes; an object that is simply
 contained within the current object—as, for example,
 one value in a larger hash—will be freed and destroyed automatically. This
 is one reason why containership via mere aggregation (sometimes called a
 “has-a” relationship) is often cleaner and clearer than inheritance (an
 “is-a” relationship). In other words, often you really need to store only
 one object inside another directly, instead of through inheritance, which
 can add unnecessary complexity. Sometimes when users reach for multiple
 inheritance, single inheritance will suffice.
Explicitly calling DESTROY is
 possible but seldom needed. It might even be harmful since running the
 destructor more than once on the same object could prove
 unpleasant.

Garbage Collection with destroy
 Methods

As described in the section Garbage Collection, Circular References, and Weak
 References in Chapter 8, a variable that refers to itself (or multiple
 variables that refer to one another indirectly) will not be freed until
 the program (or embedded interpreter) is about to exit. If you want to
 reclaim the memory any earlier, you usually have to explicitly break the
 reference or weaken it using the Scalar::Util module.
With objects, an alternative solution is to create a container
 class that holds a pointer to the self-referential data structure.
 Define a DESTROY method for the
 containing object’s class that manually breaks the circularities in the
 self-referential structure. You can find an example of this in Recipe
 13.13, “Coping
 with Circular Data Structures Using Weak References” of
 Perl
 Cookbook.
When an interpreter shuts down, all its objects are destroyed,
 which is important for multithreaded or embedded Perl applications.
 Objects are always destroyed in a separate pass before ordinary
 references. This is to prevent DESTROY methods from using references that
 have themselves been destroyed. (And also because plain references are
 only garbage collected in embedded interpreters, since exiting a process
 is a very fast way of reclaiming references. But
 exiting won’t run the object destructors, so Perl does that first.)

Managing Instance Data

Most classes create objects that are essentially just data structures
 with several internal data fields (instance variables), plus methods to
 manipulate them.
Perl classes inherit methods, not data, but as long as all access to
 the object is through method calls anyway, this works out fine. If you
 want data inheritance, you have to effect it through method inheritance.
 By and large, this is not a necessity in Perl, because most classes store
 the attributes of their object in an anonymous hash. The object’s instance
 data is contained within this hash, which serves as its own little
 namespace to be carved up by whatever classes do something with the
 object. For example, if you want an object called $city to have a data field named elevation, you can simply access $city–>{elevation}. No declarations are
 necessary. But method wrappers have their uses.
Suppose you want to implement a Person object. You decide to have a data field
 called “name”, which by a strange coincidence you’ll store under the key
 name in the anonymous hash that will
 serve as the object. But you don’t want users touching the data directly.
 To reap the rewards of encapsulation, users need methods to access that
 instance variable without lifting the veil of abstraction.
For example, you might make a pair of accessor methods:
sub get_name {
 my $self = shift;
 return $self–>{name};
}

sub set_name {
 my $self = shift;
 $self–>{name} = shift;
}
which leads to code like this:
$him = Person–>new();
$him–>set_name("Frodo");
$him–>set_name(ucfirst($him–>get_name));
You could even combine both methods into one:
sub name {
 my $self = shift;
 if (@_) { $self–>{name} = shift }
 return $self–>{name};
}
which would then lead to code like this:
$him = Person–>new();
$him–>name("Frodo");
$him–>name(ucfirst($him–>name));
The advantage of writing a separate function for each instance
 variable (which for our Person class
 might be name, age, height, and so on) is that it is direct, obvious, and
 flexible. The drawback is that every time you want a new class, you end up
 defining one or two nearly identical methods per instance variable. This
 isn’t too bad for the first few, and you’re certainly welcome to do it
 that way if you’d like. But when convenience is preferred over
 flexibility, you might prefer one of the techniques described in the
 following sections.
Note that we will be varying the implementation, not the interface.
 If users of your class respect the encapsulation, you’ll be able to
 transparently swap one implementation for another without the users
 noticing. (Family members in your inheritance tree using your class for a
 subclass or superclass might not be so forgiving, since they know you far
 better than strangers do.) If your users have been peeking and poking into
 the private affairs of your class, the inevitable disaster is their own
 fault and none of your concern. All you can do is live up to your end of
 the contract by maintaining the interface. Trying to stop everyone else in
 the world from ever doing something slightly wicked will take up all your
 time and energy—and, in the end, fail anyway.
Dealing with family members is more challenging. If a subclass
 overrides a superclass’s attribute accessor, should it access the same
 field in the hash or not? An argument can be made either way, depending on
 the nature of the attribute. For the sake of safety in the general case,
 each accessor can prefix the name of the hash field with its own
 classname, so that subclass and superclass can both have their own
 version. Several of the examples below, including the standard Struct::Class module, use this subclass-safe strategy. You’ll see
 accessors resembling this:
sub name {
 my $self = shift;
 my $field = _ _PACKAGE_ _ . "::name";
 if (@_) { $self–>{$field} = shift }
 return $self–>{$field};
}
In each of the following examples, we create a simple Person class with fields name, race,
 and aliases, each with an identical
 interface but a completely different implementation. We’re not going to
 tell you which one we like the best, because we like them all the best,
 depending on the occasion. And tastes differ. Some folks prefer stewed
 conies; others prefer fissssh.

Generating Accessors with Autoloading

As we mentioned earlier, when you invoke a nonexistent method, Perl has two
 different ways to look for an AUTOLOAD method, depending on whether you
 declared a stub method. You can use this property to provide access to
 the object’s instance data without writing a separate function for each
 instance. Inside the AUTOLOAD routine, the
 name of the method actually invoked can be retrieved from the $AUTOLOAD variable. Consider the following code:
use Person;
$him = Person–>new;
$him–>name("Aragorn");
$him–>race("Man");
$him–>aliases(["Strider", "Estel", "Elessar"]);
printf "%s is of the race of %s.\n", $him–>name, $him–>race;
print "His aliases are: ", join(", ", @{$him–>aliases}), ".\n";
As before, this version of the Person class implements a data structure with
 three fields: name, race, and aliases:
package Person;
use Carp;

my %Fields = (
 "Person::name" => "unnamed",
 "Person::race" => "unknown",
 "Person::aliases" => [],
);

The next declaration guarantees we get our own autoloader.
use subs qw(name race aliases);

sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = { %Fields, @_ }; # clone like Class::Struct
 bless $self, $class;
 return $self;
}

sub AUTOLOAD {
 my $self = shift;
 # only handle instance methods, not class methods
 croak "$self not an object" unless ref($self);
 my $name = our $AUTOLOAD;
 return if $name =~ /::DESTROY$/;
 unless (exists $self–>{$name}) {
 croak "Can't access '$name' field in $self";
 }
 if (@_) { return $self–>{$name} = shift }
 else { return $self–>{$name} }
}
As you see, there are no methods named name, race,
 or aliases anywhere to be found. The
 AUTOLOAD routine takes care of all
 that. When someone uses $him–>name("Aragorn"), the AUTOLOAD subroutine is called with $AUTOLOAD set to “Person::name”. Conveniently, by leaving it
 fully qualified, it’s in exactly the right form for accessing fields of
 the object hash. That way, if you use this class as part of a larger
 class hierarchy, you don’t conflict with uses of the same name in other
 classes.

Generating Accessors with Closures

Most accessor methods do essentially the same thing: they simply fetch
 or store a value from that instance variable. In Perl, the most natural
 way to create a family of near-duplicate functions is looping around a
 closure. But closures are anonymous functions lacking names, and methods
 need to be named subroutines in the class’s package symbol table so that
 they can be called by name. This is no problem—just assign the closure
 reference to a typeglob of the appropriate name.
package Person;

sub new {
 my $invocant = shift;
 my $self = bless({}, ref $invocant || $invocant);
 $self–>init();
 return $self;
}

sub init {
 my $self = shift;
 $self–>name("unnamed");
 $self–>race("unknown");
 $self–>aliases([]);
}

for my $field (qw(name race aliases)) {
 my $slot = _ _PACKAGE_ _ . "::$field";
 no strict "refs"; # So symbolic ref to typeglob works.
 *$slot = sub {
 my $self = shift;
 $self–>{$field} = shift if @_;
 return $self–>{$field};
 };
}
Closures are the cleanest hand-rolled way to create a multitude of
 accessor methods for your instance data. It’s efficient for both the
 computer and you. Not only do all the accessors share the same bit of
 code (they only need their own lexical pads), but later if you decide to
 add another attribute, the changes required are minimal: just add one
 more word to the for loop’s list, and
 perhaps something to the init
 method.

Using Closures for Private Objects

So far, these techniques for managing instance data have offered no
 mechanism for “protection” from external access. Anyone outside the
 class can open up the object’s black box and poke about inside—if they
 don’t mind voiding the warranty. Enforced privacy tends to get in the
 way of people trying to get their jobs done. Perl’s philosophy is that
 it’s better to encapsulate one’s data with a sign that says:
IN CASE OF FIRE
 BREAK GLASS
You should respect such encapsulation when possible, but still
 have easy access to the contents in an emergency situation, like for
 debugging.
But if you do want to enforce privacy, Perl isn’t about to get in
 your way. Perl offers low-level building blocks that you can use to
 surround your class and its objects with an impenetrable privacy
 shield—one stronger, in fact, than that found in many popular
 object-oriented languages. Lexical scopes and the lexical variables
 inside them are the key components here, and closures play a pivotal
 role.
In the earlier section Private Methods, we saw how
 a class can use closures to implement methods that are invisible outside
 the module file. Later, we’ll look at accessor methods that regulate
 class data that are so private not even the rest of the class has
 unrestricted access. Those are still fairly traditional uses of
 closures. The truly interesting approach is to use a closure as the very
 object itself. The object’s instance variables are locked up inside a
 scope to which the object alone—that is, the closure—has free access.
 This is a very strong form of encapsulation; not only is it proof
 against external tampering, even other methods in the same class must use the
 proper access methods to get at the object’s instance data.
Here’s an example of how this might work. We’ll use closures both
 for the objects themselves and for the generated accessors:
package Person;
sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $data = {
 NAME => "unnamed",
 RACE => "unknown",
 ALIASES => [],
 };
 my $self = sub {
 my $field = shift;
 #############################
 ### ACCESS CHECKS GO HERE ###
 #############################
 if (@_) { $data–>{$field} = shift }
 return $data–>{$field};
 };
 bless($self, $class);
 return $self;
}
generate method names
for my $field (qw(name race aliases)) {
 no strict "refs"; # for access to the symbol table
 *$field = sub {
 my $self = shift;
 return $self–>(uc $field, @_);
 };
}
The object created and returned by the new method is no longer a hash, as it was in
 other constructors we’ve looked at. It’s a closure with unique access to
 the attribute data stored in the hash referred to by $data. Once the constructor call is finished,
 the only access to $data (and hence
 to the attributes) is via the closure.
In a call like $him–>name("Bombadil"), the invoking object
 stored in $self is the closure that
 was blessed and returned by the constructor. There’s not a lot one can
 do with a closure beyond calling it, so we do just that with $self–>(uc $field, @_). Don’t be fooled by
 the arrow; this is just a regular indirect function call, not a method
 invocation. The initial argument is the string “name”, and any remaining arguments are
 whatever else was passed in.[148] Once we’re executing inside the closure, the hash
 reference inside $data is again
 accessible. The closure is then free to permit or deny access to
 whatever it pleases.
No one outside the closure object has unmediated access to this
 very private instance data, not even other methods in the class. They
 could try to call the closure the way the methods generated by the
 for loop do, perhaps setting an
 instance variable the class never heard of. But this approach is easily
 blocked by inserting various bits of code in the constructor where you
 see the comment about access checks. First, we need a common
 preamble:
use Carp;
local $Carp::CarpLevel = 1; # Keeps croak messages short
my ($cpack, $cfile) = caller();
Now for each of the checks. The first one makes sure the specified
 attribute name exists:
croak "No valid field '$field' in object"
 unless exists $data–>{$field};
This one allows access only by callers from the same file:
carp "Unmediated access denied to foreign file"
 unless $cfile eq _ _FILE_ _;
This one allows access only by callers from the same
 package:
carp "Unmediated access denied to foreign package ${cpack}::"
 unless $cpack eq _ _PACKAGE_ _;
And this one allows access only by callers whose classes inherit
 ours:
carp "Unmediated access denied to unfriendly class ${cpack}::"
 unless $cpack–>isa(_ _PACKAGE_ _);
All these checks block unmediated access only. Users of the class
 who politely use the class’s designated methods are under no such
 restriction. Perl gives you the tools to be just as persnickety as you
 want to be. Fortunately, not many people want to be.
But some people ought to be. Persnickety is good when you’re
 writing flight-control software. If you either want or ought to be one
 of those people, and you prefer using working code over reinventing
 everything on your own, check out Damian Conway’s Tie::SecureHash module on CPAN. It implements restricted hashes with
 support for public, protected, and private persnicketations. It also
 copes with the inheritance issues that we’ve ignored in the previous
 example. Damian has also written an even more ambitious module, Class::Contract, that imposes a formal software engineering regimen over
 Perl’s flexible object system. This module’s feature list reads like a
 checklist from a computer science professor’s software engineering
 textbook,[149] including enforced encapsulation, static inheritance, and
 design-by-contract condition checking for object-oriented Perl, along
 with a declarative syntax for attribute, method, constructor, and
 destructor definitions at both the object and class level, and
 preconditions, postconditions, and class invariants. Whew!

[148] Sure, the double-function call is slow, but if you wanted
 fast, would you really be using objects in the first place?

[149] Can you guess what Damian’s job is? By the way, we highly
 recommend his book, Object Oriented Perl
 (Manning).

New Tricks

As of v5.6, you can also declare a method to indicate that it returns an lvalue. This is done with the lvalue subroutine attribute
 (not to be confused with object attributes). This experimental feature
 allows you to treat the method as something that would appear on the
 lefthand side of an equals sign:
package Critter;

sub new {
 my $class = shift;
 my $self = { pups => 0, @_ }; # Override default.
 bless $self, $class;
}

sub pups : lvalue { # We'll assign to pups() later.
 my $self = shift;
 $self–>{pups};
}

package main;
$varmint = Critter–>new(pups => 4);
$varmint–>pups *= 2; # Assign to $varmint–>pups!
$varmint–>pups =~ s/(.)/$1$1/; # Modify $varmint–>pups in place!
print $varmint–>pups; # Now we have 88 pups.
This lets you pretend $varmint–>pups is a variable while still
 obeying encapsulation. See the section The lvalue Attribute
 in Chapter 7.
If you’re running a threaded version of Perl and want to ensure
 that only one thread can call a particular method on an object, you can
 use the locked and method attributes to do that:
sub pups : locked method {
 ...
}
When any thread invokes the pups method on an object, Perl locks the
 object before execution, preventing other threads from doing the same.
 See the section The method Attribute in Chapter 7.

Managing Class Data

We’ve looked at several approaches to accessing per-object data values.
 Sometimes, though, you want some common state shared by all objects of a
 class. Instead of being an attribute of just one instance of the class,
 these variables are global to the entire class, no matter which class
 instance (object) you use to access them through. (C++ programmers would
 think of these as static member data.) Here are some situations where
 class variables might come in handy:
	To keep a count of all objects ever created, or how many are
 still kicking around.

	To keep a list of all objects over which you can iterate.

	To store the name or file descriptor of a log file used by a
 class-wide debugging method.

	To keep collective data, like the total amount of cash dispensed
 by all ATMs in a network in a given day.

	To track the last object created by a class, or the most
 accessed object.

	To keep a cache of in-memory objects that have already been
 reconstituted from persistent memory.

	To provide an inverted lookup table so you can find an object
 based on the value of one of its attributes.

The question comes down to deciding where to store the state for
 those shared attributes. Perl has no particular syntactic mechanism to
 declare class attributes any more than it has for instance attributes.
 Perl provides the developer with a broad set of powerful but flexible
 features that can be uniquely crafted to the particular demands of the
 situation. You can then select the mechanism that makes the most sense for
 the given situation instead of having to live with someone else’s design
 decisions. Alternatively, you can live with the design decisions someone
 else has packaged up and put onto CPAN. Again, tmtowtdi.
Like anything else pertaining to a class, class data shouldn’t be
 accessed directly, especially from outside the implementation of the class
 itself. It doesn’t say much for encapsulation to set up carefully
 controlled accessor methods for instance variables but then invite the
 public in to diddle your class variables directly, such as by setting $SomeClass::Debug = 1. To establish a clear
 firewall between interface and
 implementation, you can create accessor methods to manipulate class data
 similar to those you use for instance data.
Imagine we want to keep track of the total world population of
 Critter objects. We’ll store that
 number in a package variable, but provide a method called population so that users of the class don’t have
 to know about the implementation.
Critter–>population() # Access via class name
$gollum–>population() # Access via instance
Since a class in Perl is just a package, the most natural place to
 store class data is in a package variable. Here’s a simple implementation
 of such a class. The population method
 ignores its invocant and just returns the current value of the package
 variable, $Population. (Some
 programmers like to capitalize their globals.)
package Critter;
our $Population = 0;
sub population { return $Population }
sub DESTROY { $Population–– }
sub spawn {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 $Population++;
 return bless { name => shift || "anon" }, $class;
}
sub name {
 my $self = shift;
 $self–>{name} = shift if @_;
 return $self–>{name};
}
If you want to make class data methods that work like accessors for
 instance data, do this:
our $Debugging = 0; # class datum
sub debug {
 shift; # intentionally ignore invocant
 $Debugging = shift if @_;
 return $Debugging;
}
Now you can set the overall debug level through the class or through
 any of its instances.
Because it’s a package variable, $Debugging is globally
 accessible. But if you change the our
 variable to my, then only code later in
 that same file can see it. You can go still further—you can restrict
 unfettered access to class attributes even from the rest of the class
 itself. Wrap the variable declaration in a block scope:
{
 my $Debugging = 0; # lexically scoped class datum
 sub debug {
 shift; # intentionally ignore invocant
 $Debugging = shift if @_;
 return $Debugging;
 }
}
Now, no one is allowed to read or write the class attributes without
 using the accessor method, since only that subroutine is in the same scope
 as the variable and has access to it.
If a derived class inherits these class accessors, then these still
 access the original data, no matter whether the variables were declared
 with our or my. The data isn’t package relative. You might
 look at it as methods executing in the class in which they were originally
 defined, not in the class that invoked them.
For some kinds of class data, this approach works fine; for others,
 it doesn’t. Suppose we create a Warg
 subclass of Critter. If we want to keep
 our populations separate, Warg can’t
 inherit Critter’s population method
 because that method as written always returns the value of $Critter::Population.
You’ll have to decide on a case-by-case basis whether it makes any
 sense for class attributes to be package relative. If you want
 package-relative attributes, use the invocant’s class to locate the
 package holding the class data:
sub debug {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $varname = $class . "::Debugging";
 no strict "refs"; # to access package data symbolically
 $$varname = shift if @_;
 return $$varname;
}
We temporarily rescind strict references because otherwise we
 couldn’t use the fully qualified symbolic name for the package global.
 This is perfectly reasonable: since all package variables by definition
 live in a package, there’s nothing wrong with accessing them via that
 package’s symbol table.
Another approach is to make everything an object needs—even its
 global class data—available via that object (or passed in as parameters).
 To do this, you’ll often have to make a dedicated constructor for each
 class, or at least have a dedicated initialization routine to be called by
 the constructor. In the constructor or initializer, you store references
 to any class data directly in the object itself, so nothing ever has to go
 looking for it. The accessor methods use the object to find a reference to
 the data.
Rather than put the complexity of locating the class data in each
 method, just let the object tell the method where the data is located.
 This approach only works well when the class data accessor methods are
 invoked as instance methods, because the class data could be in
 unreachable lexicals you couldn’t get at using a package name.
No matter how you roll it, package-relative class data is always a
 bit awkward. It’s really a lot cleaner if, when you inherit a class data
 accessor method, you effectively inherit the state data that it’s
 accessing as well. See the perltoot
 manpage for numerous, more elaborate approaches to creative management of
 class data. You may have to hunt around for it, though.

The Moose in the Room

We’ve told you about Perl’s built-in object system, but there’s another object
 system that Perl programmers like. The Moose CPAN module uses metaobject programming to
 do a lot of fancy things for you. There’s a lot more to Moose than we can tell you about in this book (and it really
 deserves its own book anyway), but here’s a taste:
use v5.14;

package Stables 1.01 {
 use Moose;

 has "animals" => (
 traits => ["Array"],
 is => "rw",
 isa => "ArrayRef[Animal]",
 default => sub { [] },
 handles => {
 add_animal => "push",
 add_animals => "push",
 },
);

 sub roll_call {
 my($self) = @_;

 for my $animal ($self–>animals) {
 say "Some ", $animal–>type,
 " named ", $animal–>name,
 " is in the stable";
 }
 }

}

package Animal 1.01 {
 use Moose;

 has "name" => (
 is => "rw",
 isa => "Str",
 required => 1,
);

 has "type" => (
 is => "rw",
 isa => "Str",
 default => "animal",
);

}

my $stables = Stables–>new;

$stables–>add_animal(
 Animal–>new(name => "Mr. Ed", type => "horse")
);

$stables–>add_animals(
 Animal–>new(name => "Donkey", type => "donkey"),
 Animal–>new(name => "Lampwick", type => "donkey"),
 Animal–>new(name => "Trigger", type => "horse"),
);

$stables–>roll_call;
Moose does many things to
 simplify your life as a class designer. In the Stables package, Moose provides features that
 would otherwise be boring work if you had to implement them yourself.
 Calling has defines accessors with
 particular properties.
	default constructor with default arguments
	There’s no explicit constructor in Stables or Animal. Moose takes care of all that for you. If
 you need something special, you can still provide your own. In
 Animal, the name attribute is required, but the
 type attribute has a default
 value.

	parameter checking
	In the has animals line in
 Stables, the type of value is
 declared as an ArrayRef that
 contains Animal objects. The
 default specifies what to do if
 the constructor has no arguments (since required is 0). Moose will check that anything you give to
 add_animals is an Animal object.

	traits
	The traits key gives
 behavior to the accessor. Since the value is an array reference,
 you’ll probably want to do array-like operations on it. The handles hash reference map the names that
 you want to use to the method names the trait provides. The add_animal and add_animals methods dispatch to the
 Array trait’s push.

This is just a simple example. Moose can do much more powerful and helpful
 things. To learn more about Moose,
 start at its website.
Other modules provide Moose-like
 interfaces. The Mouse
 framework is a stripped down version of Moose that aims to mitigate the performance
 issues by not including features you probably don’t want. Moo is also a stripped down Moose without XS prerequisites for easier
 deployment. The Mo framework is even smaller than that.

Summary

That’s about all there is to it, except for everything else. Now you
 just need to go off and buy a book about object-oriented design
 methodology and bang your forehead with it for the next six months or
 so.

Chapter 13. Overloading

Objects are cool, but sometimes they’re just a little
 too cool. Sometimes you would rather they behaved a
 little less like objects and a little more like regular data types. But
 there’s a problem: objects are referents represented by references, and
 references aren’t terribly useful except as references. You can’t add
 references, or print them, or (usefully) apply many of Perl’s built-in
 operators. The only thing you can do is dereference them. So you find
 yourself writing many explicit method invocations, like this:
print $object–>as_string;
$new_object = $subject–>add($object);
Such explicit dereferencing is in general a good thing; you should
 never confuse your references with your referents, except when you want
 to confuse them. Now would be one of those times. If you design your
 class with overloading, you can pretend the
 references aren’t there and simply say:
print $object;
$new_object = $subject + $object;
When you overload one of Perl’s built-in operators, you define how
 it behaves when it’s applied to objects of a particular class. A number
 of standard Perl modules use overloading, such as Math::BigInt, which lets you create Math::BigInt objects that behave just like regular integers but have
 no size limits. You can add them with +, divide them with /, compare them with <=>, and print them with print.
Note that overloading is not the same as autoloading, which is
 loading a missing function or method on demand. Neither is it the same
 as overriding, which is one function or method masking another.
 Overloading hides nothing; it adds meaning to an operation that would
 have been nonsense on a mere reference.

The overload Pragma

The overload pragma implements operator overloading. You provide it with a key/value
 list of operators and their associated behaviors:
package MyClass;

use overload "+" => \&myadd, # coderef
 "<" => "less_than", # named method
 "abs" => sub { return @_ }; # anonymous subroutine
Now when you try to add two MyClass objects, the myadd subroutine will be called to create
 the result.
When you try to compare two MyClass objects with the < operator, Perl notices that the
 behavior is specified as a string and interprets the string as a
 method name and not simply as a subroutine name. In the example above,
 the less_than method might be
 supplied by the MyClass package
 itself or inherited from a base class of MyClass, but the myadd subroutine must be supplied by the
 current package. The anonymous subroutine for abs
 supplies itself even more directly. However these routines are
 supplied, we’ll call them handlers.
For unary operators (those taking only one operand, like
 abs), the handler specified for the
 class is invoked whenever the operator is applied to an object of that
 class.
For binary operators like + or <, the handler is invoked whenever the
 first operand is an object of the class or when
 the second operand is an object of the class and the first operand has
 no overloading behavior. That’s so you can say either:
$object + 6
or:
6 + $object
without having to worry about the order of operands. (In the
 second case, the operands will be swapped when
 passed to the handler.) If our expression was:
$animal + $vegetable
and $animal and $vegetable were objects of different
 classes, both of which used overloading, then the overloading behavior
 of $animal would be triggered.
 (We’ll hope the animal likes vegetables.)
There is only one trinary (ternary) operator in Perl, ?:, and you can’t overload it.
 Fortunately.

Overload Handlers

When an overloaded operator is, er, operated, the corresponding handler is
 invoked with three arguments. The first two arguments are the two
 operands. If the operator only uses one operand, the second argument
 is undef.
The third argument indicates whether the first two arguments
 were swapped. Even under the rules of normal arithmetic some
 operations, like addition or multiplication, don’t usually care about
 the order of their arguments, but others, like subtraction and
 division, do.[150] Consider the difference between:
$object – 6
and:
6 – $object
If the first two arguments to a handler have been swapped, the
 third argument will be true. Otherwise, the third argument will be
 false, in which case there is a finer distinction as well: if the
 handler has been triggered by another handler involving assignment (as
 in += using + to figure out how to add), then the third
 argument is not merely false, but undef. This distinction enables some
 optimizations.
As an example, here is a class that lets you manipulate a
 bounded range of numbers. It overloads both + and –
 so that the result of adding or subtracting objects constrains the
 values within the range 0 and 255:
package ClipByte;

 use overload "+" => \&clip_add,
 "–" => \&clip_sub;

 sub new {
 my $class = shift;
 my $value = shift;
 return bless \$value => $class;
 }

 sub clip_add {
 my ($x, $y) = @_;
 my ($value) = ref($x) ? $$x : $x;
 $value += ref($y) ? $$y : $y;
 $value = 255 if $value > 255;
 $value = 0 if $value < 0;
 return bless \$value => ref($x);
 }

 sub clip_sub {
 my ($x, $y, $swap) = @_;
 my ($value) = (ref $x) ? $$x : $x;
 $value –= (ref $y) ? $$y : $y;
 if ($swap) { $value = –$value }
 $value = 255 if $value > 255;
 $value = 0 if $value < 0;
 return bless \$value => ref($x);
 }

 package main;

 $byte1 = ClipByte–>new(200);
 $byte2 = ClipByte–>new(100);

 $byte3 = $byte1 + $byte2; # 255
 $byte4 = $byte1 – $byte2; # 100
 $byte5 = 150 – $byte2; # 50
You’ll note that every function here is by necessity a
 constructor, so each one takes care to bless its new object
 back into the current class, whatever that is; we assume our class
 might be inherited. We also assume that if $y is a reference, it’s a reference to an
 object of our own type. Instead of testing ref($y), we could have called $y−>isa("ClipByte") if we wanted to be
 more thorough (and run slower).

[150] Your overloaded objects are not required to respect the
 rules of normal arithmetic, of course, but it’s usually best not
 to surprise people. Oddly, many languages make the mistake of
 overloading + with string
 concatenation, which is not commutative and only vaguely additive.
 For a different approach, see Perl.

Overloadable Operators

You can only overload certain operators, which are shown in Table 13-1. The operators are also listed in the
 %overload::ops hash made available
 when you use overload,
 though the categorization is a little different there.
Table 13-1. Overloadable operators
	Category	Operators
	Conversion	
 ""
 0+ bool qr

	Arithmetic	
 + –
 * / % ** x . neg

	Logical	
 !

	Bitwise	
 & | ~ ^ ! <<
 >>

	Assignment	
 +=
 –= *= /= %= **= x= .= <<= >>= ++
 ––

	Comparison	
 ==
 < <= > >= != <=> lt le gt ge eq ne
 cmp

	Mathematical	
 atan2 cos sin exp abs log sqrt
 int

	Iterative	
 <>

	Filetest	
 –X

	Dereference	
 ${}
 @{} %{} &{} *{}

	Matching	
 ~~

	Pseudo	
 nomethod fallback =

Note that neg, bool, nomethod, and fallback are not actual Perl operators. The
 five dereferencers, qr, "", and 0+ probably don’t seem
 like operators either. Nevertheless, they are all valid keys for the
 parameter list you provide to use
 overload. This is not really a problem. We’ll let you in on
 a little secret: it’s a bit of a fib to say that the overload pragma overloads operators. It
 overloads the underlying operations, whether invoked explicitly via
 their “official” operators or implicitly via some related operator.
 (The pseudo-operators we mentioned can only be invoked implicitly.) In
 other words, overloading happens not at the syntactic level, but at
 the semantic level. The point is not to look good. The point is to do
 the right thing. Feel free to generalize.
Note also that = does
 not overload Perl’s assignment operator as you
 might expect. That would not do the right thing. More on that
 later.
We’ll start by discussing the conversion operators, not because
 they’re the most obvious (they aren’t), but because they’re the most
 useful. Many classes overload nothing but stringification, specified
 by the "" key. (Yes, that really is
 two double quotes in a row.)
	Conversion operators: "",
 0+, bool,
 qr
	The first three keys let you provide behaviors for Perl’s
 automatic conversions to strings, numbers, and Boolean values,
 respectively.
The fourth key is used whenever the object is interpolated
 into or used as a regex, including when it appears as the right
 operand of an =~ or !~
 operator. The qr subroutine must return a
 compiled regex, or a ref to a compiled regex such as the real
 qr returns, and any further overloading on
 the return value will be ignored.
We say that stringification occurs
 when any nonstring variable is used as a string. It’s what
 happens when you convert a variable into a string via printing,
 interpolation, concatenation, or even by using it as a hash key.
 Stringification is also why you see something like SCALAR(0xba5fe0) when you try to
 print an object.
We say that numification (pronounced like
 mummification) occurs when a nonnumeric
 variable is converted into a number in any numeric context, such
 as any mathematical expression, array index, or even as an
 operand of the .. range
 operator.
Finally, while nobody here quite has the nerve to call it
 boolification, you can define how an object
 should be interpreted in a Boolean context (such as if,
 unless, while, for, and, or, &&, ||, ?:, or the block of a grep expression) by creating a
 bool handler.
Any of the three conversion operators can be autogenerated if you have
 any one of them (we’ll explain autogeneration later). Your
 handlers can return any value you like. Note that if the
 operation that triggered the conversion is also overloaded,
 that overloading will occur immediately
 afterward.
Here’s a demonstration of "" that invokes an object’s as_string handler upon
 stringification. Don’t forget to quote the quotes:
package Person;

use overload q("") => \&as_string;

sub new {
 my $class = shift;
 return bless { @_ } => $class;
}

sub as_string {
 my $self = shift;
 my ($key, $value, $result);
 while (($key, $value) = each %$self) {
 $result .= "$key => $value\n";
 }
 return $result;
}

$obj = Person–>new(height => 72, weight => 165, eyes => "brown");

print $obj;
Instead of something like Person=HASH(0xba1350), this prints (in
 hash order):
weight => 165
height => 72
eyes => brown
(We sincerely hope this person was not measured in kg and
 cm.)

	Arithmetic operators: +,
 –, *, /,
 %, **, x, .,
 neg
	These should all be familiar except for neg, which is a special overloading
 key for the unary minus: the – in –123. The distinction between the
 neg and – keys allows you to specify different
 behaviors for unary minus and binary minus, more commonly known
 as subtraction.
If you overload – but
 not neg, and then try to use
 a unary minus, Perl will emulate a neg handler for you. This is known as
 autogeneration, where certain operators can be reasonably deduced
 from other operators (on the assumption that the overloaded
 operators will have the same relationships as the regular
 operators). Since unary minus can be expressed as a function of
 binary minus (that is, –123
 is equivalent to 0 – 123),
 Perl doesn’t force you to overload neg when – will do. (Of course, if you’ve
 arbitrarily defined binary minus to divide the second argument
 by the first, unary minus will be a fine way to throw a
 divide-by-0 exception.)
Concatenation via the .
 operator can be autogenerated via the stringification handler
 (see "" under “Conversion
 operators” above).

	Logical operator: !
	If a handler for ! is
 not specified, it can be autogenerated using the
 bool, "", or 0+ handler. If you overload the
 ! operator, the not operator will also trigger
 whatever behavior you requested. (Remember our little
 secret?)
You may be surprised at the absence of the other logical
 operators, but most logical operators can’t be overloaded
 because they short circuit. They’re really control-flow
 operators that need to be able to delay evaluation of some of
 their arguments. That’s also the reason the ?: operator isn’t overloaded.

	Bitwise operators: &,
 |, ~, ^,
 <<, >>
	The ~ operator is a
 unary operator; all the others are binary. Here’s
 how we could overload >> to do something like chop:
package ShiftString;

 use overload
 ">>" => \&right_shift,
 q("") => sub { ${ $_[0] } };

 sub new {
 my $class = shift;
 my $value = shift;
 return bless \$value => $class;
 }

 sub right_shift {
 my ($x, $y) = @_;
 my $value = $$x;
 substr($value, –$y) = "";
 return bless \$value => ref($x);
 }

 $camel = ShiftString–>new("Camel");
 $ram = $camel >> 2;
 print $ram; # Cam

	Assignment operators: +=,
 –=, *=, /=, %=, **=, x=, .=, <<=, >>=, ++, ––
	These assignment operators might change the value of
 their arguments or leave them as is. The result is assigned to
 the lefthand operand only if the new value differs from the old
 one. This allows the same handler to be used to overload both += and +. Although this is permitted, it is
 seldom recommended, since
 by the semantics described later under When an Overload Handler Is Missing (nomethod and
 fallback), Perl will invoke the handler for
 + anyway, assuming += hasn’t been overloaded
 directly.
Concatenation (.=) can
 be autogenerated using stringification followed by ordinary
 string concatenation. The ++
 and –– operators can be
 autogenerated from + and
 – (or += and –=).
Handlers implementing ++ and –– are expected to
 mutate (alter) their arguments. If you
 wanted autodecrement to work on letters as well as numbers, you
 could do that with a handler as follows:
package MagicDec;

 use overload
 q(––) => \&decrement,
 q("") => sub { ${ $_[0] } };

 sub new {
 my $class = shift;
 my $value = shift;
 bless \$value => $class;
 }

 sub decrement {
 my @string = reverse split(//, ${ $_[0] });
 my $i;
 for ($i = 0; $i < @string; $i++) {
 last unless $string[$i] =~ /a/i;
 $string[$i] = chr(ord($string[$i]) + 25);
 }
 $string[$i] = chr(ord($string[$i]) – 1);
 my $result = join("" => reverse @string);
 $_[0] = bless \$result => ref($_[0]);
 }

 package main;

 for $normal (qw/perl NZ Pa/) {
 $magic = MagicDec–>new($normal);
 $magic––;
 print "$normal goes to $magic\n";
 }
That prints out:
perl goes to perk
NZ goes to NY
Pa goes to Oz
exactly reversing Perl’s magical string autoincrement
 operator.
The ++$a operation can
 be autogenerated using $a +=
 1 or $a = $a + 1,
 and $a–– using $a –= 1 or $a
 = $a – 1. However, this does not trigger the copying
 behavior that a real ++
 operator would. See the section The Copy Constructor (=)
 later in this chapter.

	Comparison operators: ==,
 <, <=, >, >=, !=, <=>, lt, le, gt, ge, eq, ne, cmp
	If <=> is
 overloaded, it can be used to autogenerate
 behaviors for <, <=, >, >=, ==, and !=. Similarly, if cmp is overloaded, it can be used to
 autogenerate behaviors for lt, le, gt, ge, eq, and ne.
Note that overloading cmp won’t let you sort objects as
 easily as you’d like, because what will be compared are the
 stringified versions of the objects instead of the objects
 themselves. If that was your goal, you’d want to overload
 "" as well.

	Mathematical functions: atan2,
 cos, sin,
 exp, abs,
 log, sqrt,
 int
	If abs is unavailable,
 it can be autogenerated from < or <=> combined with either unary
 minus or subtraction.
An overloaded – can be
 used to autogenerate missing handlers for unary minus or for the
 abs function, which may also
 be overloaded . (Yes, we know that abs looks like a function, whereas
 unary minus looks like an operator, but they aren’t all that
 different as far as Perl’s concerned.)
Traditionally, the Perl function int
 rounds toward 0 (see the int entry in Chapter 27), and so for objects acting like
 floating-point types, one should probably do the same thing to
 avoid surprising people.

	Iterative operator: <>
	The <> handler
 can be triggered by using either readline (when it reads from a
 filehandle, as in while
 (<FH>)) or glob (when it is used for
 fileglobbing, as in @files =
 <*.*>).
package LuckyDraw;

use overload
 "<>" => sub {
 my $self = shift;
 return splice @$self, rand @$self, 1;
 };

sub new {
 my $class = shift;
 return bless [@_] => $class;
}

package main;

$lotto = new LuckyDraw 1 .. 51;

for (qw(1st 2nd 3rd 4th 5th 6th)) {
 $lucky_number = <$lotto>;
 print "The $_ lucky number is: $lucky_number.\n";
}

$lucky_number = <$lotto>;
print "\nAnd the bonus number is: $lucky_number.\n";
In California, this prints:
The 1st lucky number is: 18
The 2nd lucky number is: 11
The 3rd lucky number is: 40
The 4th lucky number is: 7
The 5th lucky number is: 51
The 6th lucky number is: 33

And the bonus number is: 5

	File test operators
	The key –X is used to specify a
 subroutine to handle all the filetest operators, like
 –f, –x, and so on. See
 Table 3-4 in the section Named Unary and File Test Operators in Chapter 3.
It is not possible to overload any filetest operator
 individually. To distinguish them, the letter following the – is
 passed as the second argument (that is, in the slot that for
 binary operators is used to pass the second operand).
Calling an overloaded filetest operator does not affect
 the stat value associated with the special filehandle
 _. It still refers to the result of the last
 stat, lstat, or
 unoverloaded filetest.
This overload was introduced in v5.12.

	Dereference operators: ${}, @{}, %{}, &{}, *{}
	Attempts to dereference scalar, array, hash, subroutine, and
 glob references can be intercepted by overloading these five
 symbols.
The online Perl documentation for overload demonstrates how you can use
 this operator to simulate your own pseudohashes. Here’s a
 simpler example that implements an object as an anonymous array
 but permits hash referencing. Don’t try to treat it as a real
 hash; you won’t be able to delete key/value pairs from the
 object. If you want to combine array and hash notations, use a
 real pseudohash (as it were).
package PsychoHash;

use overload "%{}" => \&as_hash;

sub as_hash {
 my ($x) = shift;
 return { @$x };
}

sub new {
 my $class = shift;
 return bless [@_] => $class;
}

$critter = new PsychoHash(height => 72, weight => 365, type => "camel");

print $critter–>{weight}; # prints 365
Also see Chapter 14 for a mechanism to
 let you redefine basic operations on hashes, arrays, and
 scalars.
When overloading an operator, try not to create objects
 with references to themselves. For instance:
use overload "+" => sub { bless [\$_[0], \$_[1]] };
This is asking for trouble because if you say $animal += $vegetable, the result will
 make $animal a reference to
 a blessed array reference whose first element is $animal. This is a
 circular reference, which means that even if you destroy $animal, its memory won’t be
 freed until your process (or interpreter) terminates. See Garbage Collection, Circular References, and Weak
 References in Chapter 8.

	Smartmatching
	The key ~~ allows you to override the
 smartmatching logic used by the ~~ operator
 and the given construct. See the section Smartmatch Operator in Chapter 3 and
 The given Statement in Chapter 4.
Unusually, the overloaded implementation of the smartmatch
 operator does not get full control of the smartmatch behavior.
 In particular, in the following code:
package Foo;
use overload "~~" => "match";

my $obj = Foo->new();
$obj ~~ [1,2,3];
the smartmatch does not invoke the method call like
 this:
$obj–>match([1,2,3],0); # WRONG INVOCATION
but rather, the smartmatch distributive rule takes
 precedence, so $obj is smartmatched against
 each array element in turn until a match is found, and so you
 may therefore see between one and three of these calls
 instead:
$obj–>match(1,0);
$obj–>match(2,0);
$obj–>match(3,0);
Consult Table 3-7 in Chapter 3 for details of when overloading is invoked
 on the smartmatch operator.

The Copy Constructor (=)

Although it looks like a regular operator, =
 has a special and slightly subintuitive meaning as an overload key. It
 does not overload the Perl assignment operator.
 It can’t, because that operator has to be reserved for assigning
 references, or everything breaks.
The handler for = is used in
 situations where a mutator (such as ++, ––,
 or any of the assignment operators) is applied to a reference that
 shares its object with another reference. The = handler lets you intercept the mutator and
 copy the object yourself so that the copy alone is mutated. Otherwise,
 you’d clobber the original.
$copy = $original; # copies only the reference
++$copy; # changes underlying shared object
Now bear with us. Suppose that $original is a reference to an object. To
 make ++$copy modify only $copy and not $original, a copy of $copy is first made, and $copy is assigned a reference to this new
 object. This operation is not performed until ++$copy is executed, so $copy coincides with $original before the increment—but not
 afterward. In other words, it’s the ++ that recognizes the need for the copy and
 calls out to your copy constructor.
The need for copying is recognized only by mutators such as
 ++ or +=, or by nomethod, which is described later. If the
 operation is autogenerated via +,
 as in:
$copy = $original;
$copy = $copy + 1;
then no copying occurs because + doesn’t know it’s being used as a
 mutator.
If the copy constructor is required during the execution of some
 mutator, but a handler for = was
 not specified, it can be autogenerated as a string copy provided the
 object is a plain scalar and not something fancier.
For example, the code actually executed for the sequence:
$copy = $original;
...
++$copy;
might end up as something like this:
$copy = $original;
...
$copy = $copy–>clone(undef, "");
$copy–>incr(undef, "");
This assumes $original points
 to an overloaded object, ++ was
 overloaded with \&incr, and
 = was overloaded with \&clone.
Similar behavior is triggered by $copy
 = $original++, which is interpreted as $copy = $original; ++$original.

When an Overload Handler Is Missing (nomethod and
 fallback)

If you apply an unoverloaded operator to an object, Perl first tries to
 autogenerate a behavior from other overloaded operators using the
 rules described earlier. If that fails, Perl looks for an overloading
 behavior for nomethod and uses that
 if available. That handler is to operators what an AUTOLOAD subroutine is to subroutines: it’s
 what you do when you can’t think of what else to do.
If used, the nomethod key
 should be followed by a reference to a handler that
 accepts four arguments (not three as all the other handlers expect).
 The first three arguments are no different than in any other handler;
 the fourth is a string corresponding to the operator whose handler is
 missing. This serves the same purpose as the $AUTOLOAD variable does in AUTOLOAD subroutines.
If Perl has to look for a nomethod handler but can’t find one, an
 exception is raised.
If you want to prevent autogeneration from occurring, or you
 want a failed autogeneration attempt to result in no overloading at
 all, you can define the special fallback overloading
 key. It has three useful states:
	
 undef

	If fallback is not set,
 or is explicitly set to undef, the sequence of overloading
 events is unaffected: handlers are sought, autogeneration is
 attempted, and finally the nomethod handler is invoked. If that
 fails, an exception is raised.

	
 false

	If fallback is set to a
 defined but false value (like 0), autogeneration is never attempted.
 Perl will call the nomethod
 handler if one exists, but raise an exception otherwise.

	
 true

	This is nearly the same behavior as for undef, but no exception is raised if
 an appropriate handler cannot be synthesized via autogeneration.
 Instead, Perl reverts to following the unoverloaded behavior for
 that operator, as though there were no use overload pragma in the class at
 all.

Overloading Constants

You can change how constants are interpreted by Perl with overload::constant, which is most usefully
 placed in a package’s import
 method. (If you do this, you should properly invoke overload::remove_constant in the package’s
 unimport method so that the package
 can clean up after itself when you ask it to.)
Both overload::constant
 and overload::remove_constant expect a list of
 key/value pairs. The keys should be any of integer, float, binary, q, and qr, and each value should be the name of a
 subroutine, an anonymous subroutine, or a code reference that will
 handle the constants.
sub import { overload::constant (integer => \&integer_handler,
 float => \&float_handler,
 binary => \&base_handler,
 q => \&string_handler,
 qr => \®ex_handler) }
Any handlers you provide for integer and float will be invoked whenever the Perl
 tokener encounters a constant number. This is independent of the
 constant pragma; simple statements such as:
$year = cube(12) + 1; # integer
$pi = 3.14159265358979; # float
will trigger whatever handler you requested.
The binary key lets you intercept binary, octal, and hexadecimal
 constants. q handles single-quoted
 strings (including strings introduced with q) and constant substrings within qq- and qx-quoted strings and here documents.
 Finally, qr handles constant pieces
 within regular expressions, as described at the end of Chapter 5.
The handler will be passed three arguments. The first argument
 is the original constant, in whatever form it was provided to Perl.
 The second argument is how Perl actually interpreted the constant; for
 instance, 123_456 will appear as
 123456.
The third argument is defined only for strings handled by the
 q and qr handlers, and will be one of qq, q,
 s, or tr, depending on how the string is to be
 used. qq means that the string is
 from an interpolated context, such as double quotes, backticks, an
 m// match, or the pattern of an
 s/// substitution. q means that the string is from an
 uninterpolated context, s means
 that the constant is a replacement string in an s/// substitution, and tr means that it’s a component of a tr/// or y/// expression.
The handler should return a scalar, which will be used in place
 of the constant. Often, that scalar will be a reference to an
 overloaded object, but there’s nothing preventing you from doing
 something more dastardly:
package DigitDoubler; # A module to be placed in DigitDoubler.pm
use overload;

sub import { overload::constant (integer => \&handler,
 float => \&handler) }

sub handler {
 my ($orig, $interp, $context) = @_;
 return $interp * 2; # double all constants
}

1;
Note that handler is shared
 by both keys, which works okay in this case. Now when you say:
use DigitDoubler;

$trouble = 123; # trouble is now 246
$jeopardy = 3.21; # jeopardy is now 6.42
you redefine the world.
If you intercept string constants, it is recommended that you
 provide a concatenation operator (“.”) as well, since an interpolated
 expression like "ab$cd!!" is merely
 a shortcut for the longer 'ab' . $cd .
 '!!'. Similarly, negative numbers are considered negations
 of positive constants, so you should provide a handler for neg when you intercept integers or floats.
 (We didn’t need to do that earlier because we’re returning actual
 numbers, not overloaded object references.)
Note that overload::constant
 does not propagate into runtime compilation inside eval, which can be either a bug or a
 feature, depending on how you look at it.

Public Overload Functions

As of the v5.6 release of Perl, the overload pragma provides the following
 functions for public consumption.
	
 overload::StrVal(OBJ)

	This function returns the string value that
 OBJ would have in absence of
 stringification overloading ("").

	
 overload::Overloaded(OBJ)

	This function returns a true value if
 OBJ is subject to any operator
 overloading at all, and false otherwise.

	
 overload::Method(OBJ,
 OPERATOR)

	This function returns a reference to whatever code implements
 the overloading for OPERATOR when it
 operates on OBJ, or undef if no such overloading
 exists.

Inheritance and Overloading

Inheritance interacts with overloading in two ways. The first occurs when a
 handler is named as a string rather than provided as a code reference
 or anonymous subroutine. When named as a string, the handler is
 interpreted as a method, and can therefore be inherited from
 superclasses.
The second interaction between inheritance and overloading is
 that any class derived from a overloaded class is itself subject to
 that overloading. In other words, overloading is itself inherited. The
 set of handlers in a class is the union of handlers of all that
 class’s ancestors, recursively. If a handler can be found in several
 different ancestors, the handler actually used is governed by the
 usual rules for method inheritance. For example, if class Alpha inherits from classes Beta and Gamma, in that order, and class Beta overloads + with \&Beta::plus_sub, but class Gamma overloads + with the string "plus_meth", then Beta::plus_sub will be called when you try
 to apply + to an Alpha object.
Since the value of the fallback key is not
 a handler, its inheritance is not governed by the rules given above.
 In the current implementation, the fallback value from the first overloaded
 ancestor is used, but this is accidental and subject to change without
 notice (well, without much notice).

Runtime Overloading

Since use statements
 are executed at compile time, the only way to change
 overloading during runtime is:
eval " use overload '+' => \&my_add ";
You can also say:
eval " no overload '+', '––', '<=' ";
although the use of these constructs during runtime is
 questionable.

Overloading Diagnostics

If your Perl was compiled with –DDEBUGGING, you can view diagnostic messages for overloading when
 you run a program with the –Do
 switch or its equivalent. You can also deduce which operations are
 overloaded using the m command of
 Perl’s built-in debugger.
If you’re feeling overloaded now, maybe the next chapter will
 tie things back together for you.

Chapter 14. Tied Variables

Some human endeavors require a disguise. Sometimes the intent is
 to deceive, but more often the intent is to communicate something true
 at a deeper level. For instance, many job interviewers expect you to
 dress up in a tie to indicate that you’re seriously interested in
 fitting in, even though both of you know you’ll never wear a tie on the
 job. It’s odd when you think about it: tying a piece of cloth around
 your neck can magically get you a job. In Perl culture, the tie operator plays a
 similar role: it lets you create a seemingly normal variable that,
 behind the disguise, is actually a full-fledged Perl object that is
 expected to have an interesting personality of its own. It’s just an odd
 bit of magic, like pulling Bugs Bunny out of a hat.
Put another way, the funny characters $, @,
 %, or * in front of a variable name tell Perl and
 its programmers a great deal—they each imply a particular set of
 archetypal behaviors. You can warp those behaviors in various useful
 ways with tie, by associating the
 variable with a class that implements a new set of behaviors. For
 instance, you can create a regular Perl hash, and then tie it to a class that makes the hash into a
 database, so that when you read values from the hash, Perl magically
 fetches data from an external database file, and when you set values in
 the hash, Perl magically stores data in the external database file. In
 this case, “magically” means “transparently doing something very
 complicated”. You know the old saying: any technology sufficiently
 advanced is indistinguishable from a Perl script. (Seriously, people who
 play with the guts of Perl use magic as a
 technical term referring to any extra semantics attached to variables
 such as %ENV or %SIG. Tied variables are just an extension of
 that.)
Perl already has built-in dbmopen and dbmclose functions that magically tie hash
 variables to databases, but those functions date back to the days when
 Perl had no tie. Now, tie provides a more general mechanism. In
 fact, Perl itself implements dbmopen
 and dbmclose in terms of tie.
You can tie a scalar, array,
 hash, or filehandle (via its typeglob) to any class that provides
 appropriately named methods to intercept and emulate normal accesses to
 those variables. The first of those methods is invoked at the point of
 the tie itself: tying a variable
 always invokes a constructor, which, if successful, returns an object
 that Perl squirrels away where you don’t see it, down inside the
 “normal” variable. You can always retrieve that object later using the
 tied function on the normal
 variable:
tie VARIABLE, CLASSNAME, LIST; # binds VARIABLE to CLASSNAME
$object = tied VARIABLE;
Those two lines are equivalent to:
$object = tie VARIABLE, CLASSNAME, LIST;
Once it’s tied, you treat the normal variable normally, but each
 access automatically invokes methods on the underlying object; all the
 complexity of the class is hidden behind those method invocations. If
 later you want to break the association between the variable and the
 class, you can untie the variable:
untie VARIABLE;
You can almost think of tie as
 a funny kind of bless, except that it blesses a bare variable instead of an
 object reference. It also can take extra parameters, just as a
 constructor can—which is not terribly surprising, since it actually does
 invoke a constructor internally, whose name depends on which type
 of variable you’re tying: either TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE.[151] These constructors are invoked as class methods with the
 specified CLASSNAME as their invocant, plus
 any additional arguments you supplied in
 LIST. (The
 VARIABLE is not passed to the
 constructor.)
These four constructors each return an object in the customary
 fashion. They don’t really care whether they were invoked from tie, nor do any of the other methods in the
 class, since you can always invoke them directly if you’d like. In one
 sense, all the magic is in the tie,
 not in the class implementing the tie. It’s just an ordinary class with funny
 method names, as far as the class is concerned. (Indeed, some tied
 modules provide extra methods that aren’t visible through the tied
 variable; these methods must be called explicitly as you would any other
 object method. Such extra methods might provide services like file
 locking, transaction protection, or anything else an instance method
 might do.)
So these constructors bless and
 return an object reference just as any other constructor would. That
 reference need not refer to the same type of variable as the one being
 tied; it just has to be blessed, so that the tied variable can find its
 way back to your class for succor. For instance, our long TIEARRAY example will use a hash-based object,
 so it can conveniently hold additional information about the array it’s
 emulating.
The tie function will not
 use or require a module for you—you must do that
 yourself explicitly, if necessary, before calling the tie. (On the other hand, the dbmopen function will, for backward
 compatibility, attempt to use one or
 another DBM implementation. But you can preempt its selection with an
 explicit use, provided the module you
 use is one of the modules in dbmopen’s list of modules to try. See the
 online docs for the AnyDBM_File module for a fuller explanation.)
The methods called by a tied variable have predetermined names like FETCH and STORE, since they’re invoked implicitly (that
 is, triggered by particular events) from within the innards of Perl.
 These names are in ALLCAPS, a
 convention we often follow for such implicitly called
 routines. (Other special names that follow this convention include
 BEGIN, CHECK, UNITCHECK, INIT, END,
 DESTROY, and AUTOLOAD, not to mention UNIVERSAL–>VERSION. In fact, nearly all of
 Perl’s predefined packages, variables, and filehandles are in uppercase:
 STDIN, SUPER, CORE, CORE::GLOBAL, DATA, @EXPORT, @INC, @ISA,
 @ARGV, and %ENV. Of course, built-in functions,
 operators, and pragmas go to the opposite extreme and have no capitals at
 all.)
The first thing we’ll cover is extremely simple: how to tie a
 scalar variable.

[151] Since the constructors have separate names, you could even
 provide a single class that implements all of them. That would allow
 you to tie scalars, arrays, hashes, and filehandles all to the same
 class, although this is not generally done, since it would make the
 other magical methods tricky to write.

Tying Scalars

To implement a tied scalar, a class must define the following methods:
 TIESCALAR, FETCH, and STORE (and
 possibly UNTIE and DESTROY). When you tie a scalar
 variable, Perl calls TIESCALAR. When you read the tied variable, it calls FETCH, and when you assign a value to the
 variable, it calls STORE.
 If you’ve kept the object returned by the initial
 tie (or if you retrieve it later
 using tied), you can access the
 underlying object yourself—this does not trigger its FETCH or STORE methods. As an object it’s not magical
 at all, but rather quite objective.
Perl calls UNTIE, if you’ve
 defined it, when it unties the variable. This gives you a chance to do
 any bookkeeping or clean-up before the association disappears and the
 variable is no longer special.
If a DESTROY method exists,
 Perl invokes it when the last reference to the tied object disappears,
 just as for any other object. That happens when your program ends or
 when you call untie, which
 eliminates the reference used by the tie. However, untie doesn’t eliminate any outstanding
 references you might have stored elsewhere; DESTROY is deferred until those references
 are gone, too.
The Tie::Scalar and Tie::StdScalar packages, both found in the standard Tie::Scalar module, provide some simple base
 class definitions if you don’t want to define all of these methods
 yourself. Tie::Scalar provides
 elemental methods that do very little, and Tie::StdScalar provides methods that make a
 tied scalar behave like a regular Perl scalar. (Which seems singularly
 useless, but sometimes you just want a bit of a wrapper around the
 ordinary scalar semantics, for example, to count the number of times a
 particular variable is set.)
Before we show you our elaborate example and complete
 description of all the mechanics, here’s a taste just to whet your
 appetite—and to show you how easy it really is. Here’s a complete
 program:
#!/usr/bin/perl
package Centsible;
sub TIESCALAR { bless \my $self, shift }
sub STORE { ${ $_[0] } = $_[1] } # do the default thing
sub FETCH { sprintf "%.02f", ${ my $self = shift } } # round value

package main;
tie $bucks, "Centsible";
$bucks = 45.00;
$bucks *= 1.0715; # tax
$bucks *= 1.0715; # and double tax!
print "That will be $bucks, please.\n";
When run, that program produces:
That will be 51.67, please.
To see the difference it makes, comment out the call to tie; then you’ll get:
That will be 51.66505125, please.
Admittedly, that’s more work than you’d normally go through to
 round numbers.

Scalar-Tying Methods

Now that you’ve seen a sample of what’s to come, let’s develop a more
 elaborate scalar-tying class. Instead of using any canned package
 for the base class (especially since scalars are so simple), we’ll
 look at each of the four methods in turn, building an example class
 named ScalarFile. Scalars tied to
 this class contain regular strings, and each such variable is
 implicitly associated with a file where that string is stored. (You
 might name your variables to remind you to which file you’re
 referring.) Variables are tied to the class this way:
use ScalarFile; # load ScalarFile.pm
tie $camel, "ScalarFile", "/tmp/camel.lot";
Once the variable has been tied, its previous contents are
 clobbered, and the internal connection between the variable and its
 object overrides the variable’s normal semantics. When you ask for
 the value of $camel, it now reads
 the contents of /tmp/camel.lot,
 and when you assign a value to $camel, it writes the new contents out to
 /tmp/camel.lot, obliterating
 any previous occupants.
The tie is on the variable, not the value, so the tied nature
 of a variable does not propagate across assignment. For example,
 let’s say you copy a variable that’s been tied:
$dromedary = $camel;
Instead of reading the value in the ordinary fashion from the
 $camel scalar variable, Perl
 invokes the FETCH method on the
 associated underlying object. It’s as though you’d written
 this:
$dromedary = (tied $camel)–>FETCH():
Or if you remember the object returned by tie, you could use that reference
 directly, as in the following sample code:
$clot = tie $camel, "ScalarFile", "/tmp/camel.lot";
$dromedary = $camel; # through the implicit interface
$dromedary = $clot–>FETCH(); # same thing, but explicitly
If the class provides methods besides TIESCALAR, FETCH, STORE, and DESTROY, you could use $clot to invoke them manually. However,
 one normally minds one’s own business and leaves the underlying
 object alone, which is why you often see the return value from
 tie ignored. You can still get at
 the object via tied if you need
 it later (for example, if the class happens to document any extra
 methods you need). Ignoring the returned object also eliminates
 certain kinds of errors, which we’ll cover later.
Here’s the preamble of our class, which we will put into
 ScalarFile.pm:
package ScalarFile;
use Carp; # Propagate error messages nicely.
use strict; # Enforce some discipline on ourselves.
use warnings; # Turn on lexically scoped warnings.
use warnings::register; # Allow user to say "use warnings 'ScalarFile'".
my $count = 0; # Internal count of tied ScalarFiles.
The standard Carp module exports the carp, croak, and confess subroutines, which we’ll use in
 the code later in this section. As usual, see the docs for more
 about Carp.
The following methods are defined by the class.
	
 CLASSNAME–>TIESCALAR(LIST)

	The TIESCALAR method
 of the class is triggered whenever you tie a scalar variable. The optional
 LIST contains any parameters needed
 to initialize the object properly. (In our example, there is
 only one parameter: the name of the file.) The method should
 return an object, but this doesn’t have to be a reference to a
 scalar. In our example, though, it is:
sub TIESCALAR { # in ScalarFile.pm
 my $class = shift;
 my $filename = shift;
 $count++; # A file–scoped lexical, private to class
 return bless \$filename, $class;
}
Since there’s no scalar equivalent to the anonymous
 array and hash composers, [] and {}, we merely bless a lexical
 variable’s referent, which effectively becomes anonymous as
 soon as the name goes out of scope. This works fine (you could
 do the same thing with arrays and hashes) as long as the
 variable really is lexical. If you try this trick on a global,
 you might think you’re getting away with it, until you try to
 create another camel.lot.
 Don’t be tempted to write something like this:
sub TIESCALAR { bless \$_[1], $_[0] } # WRONG,
 # could refer to global.
A more robustly written constructor might check that the
 filename is accessible. We check first to see whether the file
 is readable, since we don’t want to clobber the existing
 value. (In other words, we shouldn’t assume the user is going
 to write first. He might be treasuring his old Camel Lot file
 from a previous run of the program.) If we can’t open or
 create the filename specified, we’ll indicate the error gently
 by returning undef and
 optionally printing a warning via carp. (We could just croak instead—it’s a matter of taste
 whether you prefer fish or frogs.) We’ll use the warnings pragma to determine whether the user is
 interested in our warning:
sub TIESCALAR { # in ScalarFile.pm
 my $class = shift;
 my $filename = shift;
 my $fh;
 if (–r –w $filename) {
 close $fh;
 $count++;
 return bless \$filename, $class;
 }
 carp "Can't tie $filename: $!" if warnings::enabled();
 return;
}
Given such a constructor, we can now associate the
 scalar $string with the
 file camel.lot:
tie ($string, "ScalarFile", "camel.lot") || die;
(We’re still assuming some things we shouldn’t. In a
 production version of this, we’d probably open the filehandle
 once and remember the filehandle as well as the filename for
 the duration of the tie, keeping the handle exclusively locked
 with flock the whole time.
 Otherwise, we’re open to race conditions—see Handling Timing Glitches in Chapter 20.)

	
 SELF–>FETCH

	This method is invoked whenever you access the tied variable
 (that is, read its value). It takes no arguments beyond the
 object tied to the variable. In our example, that object
 contains the filename.
sub FETCH {
 my $self = shift;
 confess "I am not a class method" unless ref $self;
 return unless open my $fh, $$self;
 read($fh, my $value, –s $fh); # NB: don't use –s on pipes!
 return $value;
 }
This time we’ve decided to blow up (raise an exception)
 if FETCH gets something
 other than a reference. (Either it was invoked as a class
 method, or someone miscalled it as a subroutine.) There’s no
 other way for us to return an error, so it’s probably the
 right thing to do. In fact, Perl would have raised an
 exception in any event as soon as we tried to dereference
 $self; we’re just being
 polite and using confess to
 spew a complete stack backtrace onto the user’s screen. (If
 that can be considered polite.)
We can now see the contents of camel.lot when we say this:
tie($string, "ScalarFile", "camel.lot");
print $string;

	
 SELF–>STORE(VALUE)

	This method is run when the tied variable is set (assigned). The
 first argument, SELF, is as always
 the object associated with the variable;
 VALUE is whatever was assigned to
 the variable. (We use the term “assigned” loosely—any
 operation that modifies the variable can call STORE.)
sub STORE {
 my($self,$value) = @_;
 ref($self) || confess "not a class method";
 open(my $fh, ">", $$self) || croak "can't clobber $$self: $!";
 syswrite($fh, $value) == length $value
 || croak "can't write to $$self: $!";
 close($fh) || croak "can't close $$self: $!";
 return $value;
}
After “assigning” it, we return the new value—because
 that’s what assignment does. If the assignment wasn’t
 successful, we croak out
 the error. Possible causes might be that we didn’t have
 permission to write to the associated file, or the disk filled
 up, or gremlins infested the disk controller. Sometimes you
 control the magic, and sometimes the magic controls
 you.
We can now write to camel.lot when we say this:
tie($string, "ScalarFile", "camel.lot");
$string = "Here is the first line of camel.lot\n";
$string .= "And here is another line, automatically appended.\n";

	
 SELF–>UNTIE

	This method is triggered by untie, and
 only by untie. In this
 example, there’s not much use for it, so it just notes that it
 was called:
sub UNTIE {
 my $self = shift;
 confess "Untying!";
}
See the caution in A Subtle Untying Trap later
 in this chapter.

	
 SELF–>DESTROY

	This method is triggered when the object associated with the
 tied variable is about to be garbage collected, in case it
 needs to do something special to clean up after itself. As
 with other classes, such a method is seldom necessary, since
 Perl deallocates the moribund object’s memory for you
 automatically. Here we’ll define a DESTROY method that decrements our
 count of tied files:
sub DESTROY {
 my $self = shift;
 confess "This is not a class method!" unless ref $self;
 $count––;
}
We might then also supply an extra class method to
 retrieve the current count. Actually, it doesn’t care whether
 it’s called as a class method or an object method, but you
 don’t have an object anymore after the DESTROY, now do you?
sub count {
 ### my $invocant = shift;
 $count;
}
You can call this as a class method at any time, like
 this:
if (ScalarFile–>count) {
 warn "Still some tied ScalarFiles sitting around somewhere...\n";
}

That’s about all there is to it. Actually, it’s more than all
 there is to it, since we’ve done a few nice things here for the sake
 of completeness, robustness, and general aesthetics (or lack
 thereof). Simpler TIESCALAR
 classes are certainly possible.

Magical Counter Variables

Here’s a simple Tie::Counter class, inspired by the CPAN module of the same name.
 Variables tied to this class increment themselves by 1 every time
 they’re used. For example:
tie my $counter, "Tie::Counter", 100;
@array = qw /Red Green Blue/;
for my $color (@array) { # Prints:
 print " $counter $color\n"; # 101 Red
} # 102 Green
 # 103 Blue
The constructor takes as an optional extra argument the first
 value of the counter, which defaults to 0. Assigning to the counter
 will set a new value. Here’s the class:
package Tie::Counter;
sub FETCH { ++ ${ $_[0] } }
sub STORE { ${ $_[0] } = $_[1] }
sub TIESCALAR {
 my ($class, $value) = @_;
 $value = 0 unless defined $value;
 bless \$value => $class;
}
1; # if in module
See how small that is? It doesn’t take much code to put
 together a class like this.

Cycling Through Values

Through the magic of tie,
 an array can act as a scalar. The tie interface can convert the scalar
 interface to the array interface. The Tie::Cycle CPAN module uses a scalar to cycle through the values
 in an array. The object keeps track of a cursor and advances it on
 each access. When it gets to the end, it goes back to the
 start:
package Tie::Cycle;

sub TIESCALAR {
 my $class = shift;
 my $list_ref = shift;
 return unless ref $list_ref eq ref [];
 my @shallow_copy = map { $_ } @$list_ref;
 my $self = [0, scalar @shallow_copy, \@shallow_copy];
 bless $self, $class;
}

sub FETCH {
 my $self = shift;
 my $index = $$self[0]++;
 $$self[0] %= $self–>[1];
 return $self–>[2]–>[$index];
}

sub STORE {
 my $self = shift;
 my $list_ref = shift;
 return unless ref $list_ref eq ref [];
 $self = [0, scalar @$list_ref, $list_ref];
}
This is handy for giving different CSS classes to alternate
 rows in an HTML table without complicating the code:
tie my $row_class, "Tie::Cycle", [qw(odd even)];

for my $item (@items) {
 print qq(<tr class="$row_class">...</tr>);
}
This makes it easy to add even more CSS classes without
 changing the code:
tie my $row_class, "Tie::Cycle", [qw(red green blue)];

Magically Banishing $_

This curiously exotic underscore tie
 class[152] is used to outlaw unlocalized uses of $_. Instead of pulling in the module with
 use, which invokes the class’s
 import method, this module should be loaded with no to call the
 seldom-used unimport method (see Chapter 11). The user
 says:
no underscore;
And then all uses of $_ as
 an unlocalized global raise an exception.
Here’s a little test suite for the module:
#!/usr/bin/perl
no underscore;
@tests = (
 "Assignment" => sub { $_ = "Bad" },
 "Reading" => sub { print },
 "Matching" => sub { $x = /badness/ },
 "Chop" => sub { chop },
 "Filetest" => sub { –x },
 "Nesting" => sub { for (1..3) { print } },
);

while (($name, $code) = splice(@tests, 0, 2)) {
 print "Testing $name: ";
 eval { &$code };
 print $@ ? "detected" : " missed!";
 print "\n";
}
which prints out the following:
Testing Assignment: detected
Testing Reading: detected
Testing Matching: detected
Testing Chop: detected
Testing Filetest: detected
Testing Nesting: 123 missed!
The last one was “missed” because it was properly localized by
 the for loop and thus safe to
 access.
Here’s the curiously exotic underscore module itself. (Did we mention
 that it’s curiously exotic?) It works because tied magic is
 effectively hidden by a local.
 The module does the tie in its
 own initialization code so that a require also works:
package underscore;
use warnings;
use strict;
use Carp ();
our $VERSION = sprintf "%d.%02d", q$Revision: 0.1 $ =~ /(\d+)/g;

sub TIESCALAR{
 my ($pkg, $code, $msg) = @_;
 bless [$code, $msg], $pkg;
}

sub unimport {
 my $pkg = shift;
 my $action = shift;
 no strict "refs";
 my $code = ref $action
 ? $action
 : ($action
 ? \&{ "Carp::" . $action }
 : \&Carp::croak
);
 my $msg = shift || '$_ is forbidden';
 untie $_ if tied $_;
 tie $_, _ _PACKAGE_ _, $code, $msg;
}

sub import{ untie $_ }

sub FETCH{ $_[0]–>[0]($_[0]–>[1]) }
sub STORE{ $_[0]–>[0]($_[0]–>[1]) }

1; # End of underscore
It’s hard to usefully mix calls to use and no for this class in your program because
 they all happen at compile time, not runtime. You could call
 Underscore−>import and
 Underscore−>unimport directly,
 just as use and no do. Normally, though, to renege and let
 yourself freely use $_ again,
 you’d just use local on it, which
 is the whole point.

[152] Curiously, the underscore came from an example in an earlier edition of
 this book, which then made it into Perl
 Cookbook, which motivated Dan Kogai to
 create a CPAN module for it.

Tying Arrays

A class implementing a tied array must define at least the methods TIEARRAY, FETCH, and STORE. There are many optional methods: the ubiquitous UNTIE and DESTROY methods, of course, but also
 the STORESIZE and
 FETCHSIZE methods used to provide
 $#array and scalar(@array) access. In addition, CLEAR is triggered when Perl needs to empty
 the array, and EXTEND when Perl
 would have preextended allocation in a real array.
You may also define the POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS methods if you want the corresponding Perl functions to work on
 the tied array. The Tie::Array class can serve as a base class to implement the first
 five of those functions in terms of FETCH and STORE. (Tie::Array’s default implementation of
 DELETE and EXISTS simply calls croak.) As long as you define FETCH and STORE, it doesn’t matter what kind of data
 structure your object contains.
On the other hand, the Tie::StdArray class (defined in the standard Tie::Array module) provides a base class
 with default methods that assume the object contains a regular array.
 Here’s a simple array-tying class that makes use of this. Because it
 uses Tie::StdArray as its base
 class, it only needs to define the methods that should be treated in a
 nonstandard way:
#!/usr/bin/perl
package ClockArray;
use Tie::Array;
our @ISA = "Tie::StdArray";
sub FETCH {
 my($self,$place) = @_;
 $self–>[$place % 12];
}
sub STORE {
 my($self,$place,$value) = @_;
 $self–>[$place % 12] = $value;
}

package main;
tie my @array, "ClockArray";
@array = ("a" ... "z");
print "@array\n";
When run, the program prints out “y z o
 p q r s t u v w x”. This class provides an array with only a
 dozen slots, like hours of a clock, numbered 0 through 11. If you ask
 for the 15th array index, you really get
 the 3rd one. Think of it as a travel aid
 for people who haven’t learned how to read 24-hour clocks.

Array-Tying Methods

That’s the simple way. Now for some nitty-gritty details. To demonstrate,
 we’ll implement an array whose bounds are fixed at its creation. If
 you try to access anything beyond those bounds, an exception is
 raised. For example:
use BoundedArray;
tie @array, "BoundedArray", 2;

$array[0] = "fine";
$array[1] = "good";
$array[2] = "great";
$array[3] = "whoa"; # Prohibited; displays an error message.
The preamble code for the class is as follows:
package BoundedArray;
use Carp;
use strict;
To avoid having to define SPLICE later, we’ll inherit from the
 Tie::Array class:
use Tie::Array;
our @ISA = ("Tie::Array");
	
 CLASSNAME–>TIEARRAY(LIST)

	As the constructor for the class, TIEARRAY should return a blessed reference through which
 the tied array will be emulated.
In this next example, just to show you that you don’t
 really have to return an array reference,
 we’ll choose a hash reference to represent our object. A hash
 works out well as a generic record type: the value in the
 hash’s “BOUND” key will
 store the maximum bound allowed, and its “DATA” value will hold the actual
 data. If someone outside the class tries to dereference the
 object returned (doubtless thinking it an array reference), an
 exception is raised.
sub TIEARRAY {
 my $class = shift;
 my $bound = shift;
 confess "usage: tie(\@ary, 'BoundedArray', max_subscript)"
 if @_ || $bound =~ /\D/;
 return bless { BOUND => $bound, DATA => [] }, $class;
}
We can now say:
tie(@array, "BoundedArray", 3); # maximum allowable index is 3
to ensure that the array will never have more than four
 elements. Whenever an individual element of the array is
 accessed or stored, FETCH
 and STORE will be called
 just as they were for scalars, but with an extra index
 argument.

	
 SELF–>FETCH(INDEX)

	This method is run whenever an individual element in the
 tied array is accessed. It receives one argument after the
 object: the index of the value we’re trying to fetch.
sub FETCH {
 my ($self, $index) = @_;
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 return $self–>{DATA}[$index];
}

	
 SELF–>STORE(INDEX,
 VALUE)

	This method is invoked whenever an element in the tied array is
 set. It takes two arguments after the object: the index at
 which we’re trying to store something and the value we’re
 trying to put there. For example:
sub STORE {
 my($self, $index, $value) = @_;
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 return $self–>{DATA}[$index] = $value;
}

	
 SELF–>UNTIE

	This method is triggered by untie. We don’t need it for this
 example. See the caution in A Subtle Untying Trap
 later in this chapter.

	
 SELF–>DESTROY

	Perl calls this method when the tied variable needs to be
 destroyed and its memory reclaimed. This is almost never
 needed in a language with garbage collection, so for this
 example we’ll just leave it out.

	
 SELF–>FETCHSIZE

	The FETCHSIZE method
 should return the total number of items in the
 tied array associated with SELF.
 It’s equivalent to scalar(@array), which is usually
 equal to $#array +
 1.
sub FETCHSIZE {
 my $self = shift;
 return scalar @{$self–>{DATA}};
}

	
 SELF–>STORESIZE(COUNT)

	This method sets the total number of items in the tied array
 associated with SELF to be
 COUNT. If the array shrinks, you
 should remove entries beyond COUNT.
 If the array grows, you should make sure the new positions are
 undefined. For our BoundedArray class, we also ensure
 that the array doesn’t grow beyond the limit initially
 set.
sub STORESIZE {
 my ($self, $count) = @_;
 if ($count > $self–>{BOUND}) {
 confess "Array OOB: $count > $self–>{BOUND}";
 }
 $#{$self–>{DATA}} = $count;
}

	
 SELF–>EXTEND(COUNT)

	Perl uses the EXTEND
 method to indicate that the array is likely to expand
 to hold COUNT entries. That way you
 can allocate memory in one big chunk instead of in many
 successive calls later on. Since our BoundedArrays have fixed upper
 bounds, we won’t define this method.

	
 SELF–>EXISTS(INDEX)

	This method verifies that the element at
 INDEX exists in the tied array. For
 our BoundedArray, we just
 employ Perl’s built-in exists after
 verifying that it’s not an attempt to look past the fixed
 upper bound.
sub EXISTS {
 my ($self, $index) = @_;
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 exists $self–>{DATA}[$index];
}

	
 SELF–>DELETE(INDEX)

	The DELETE method
 removes the element at
 INDEX from the tied array
 SELF. For our BoundedArray class, the method looks
 nearly identical to EXISTS,
 but this is not the norm.
sub DELETE {
 my ($self, $index) = @_;
 print STDERR "deleting!\n";
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 delete $self–>{DATA}[$index];
}

	
 SELF–>CLEAR

	This method is called whenever the array has to be emptied.
 That happens when the array is set to a list of new values (or
 an empty list), but not when it’s provided to the undef function. Since a cleared
 BoundedArray always
 satisfies the upper bound, we don’t need to check anything
 here:
sub CLEAR {
 my $self = shift;
 $self–>{DATA} = [];
}
If you set the array to a list, CLEAR will trigger but won’t see the
 list values. So if you violate the upper bound like so:
tie(@array, "BoundedArray", 2);
@array = (1, 2, 3, 4);
the CLEAR method will
 still return successfully. The exception will only be raised
 on the subsequent STORE.
 The assignment triggers one CLEAR and four STOREs.

	
 SELF–>PUSH(LIST)

	This method appends the elements of LIST
 to the array. Here’s how it might look for our BoundedArray class:
sub PUSH {
 my $self = shift;
 if (@_ + $#{$self–>{DATA}} > $self–>{BOUND}) {
 confess "Attempt to push too many elements";
 }
 push @{$self–>{DATA}}, @_;
}

	
 SELF–>UNSHIFT(LIST)

	This method prepends the elements of
 LIST to the array. For our BoundedArray class, the subroutine
 would be similar to PUSH.

	
 SELF–>POP

	The POP method
 removes the last element of the array and
 returns it. For BoundedArray, it’s a
 one-liner:
sub POP { my $self = shift; pop @{$self–>{DATA}} }

	
 SELF–>SHIFT

	The SHIFT method
 removes the first element of the array and
 returns it. For BoundedArray, it’s similar to
 POP.

	
 SELF–>SPLICE(OFFSET,
 LENGTH,
 LIST)

	This method lets you splice the
 SELF array. To mimic Perl’s
 built-in splice,
 OFFSET should be optional and
 default to zero, with negative values counting back from the
 end of the array. LENGTH should
 also be optional, defaulting to the rest of the array.
 LIST can be empty. If it’s properly
 mimicking the built-in, the method will return a list of the
 original LENGTH elements at
 OFFSET (that is, the list of
 elements to be replaced by LIST).
Since splicing is a somewhat complicated operation, we
 won’t define it at all; we’ll just use the SPLICE subroutine from the Tie::Array module that we got for free when we inherited
 from Tie::Array. This way
 we define SPLICE in terms
 of other BoundedArray
 methods so the bounds checking will still occur.

That completes our BoundedArray class. It warps the semantics
 of arrays just a little. But we can do better—and in much less space.

Notational Convenience

One of the nice things about variables is that they interpolate.
 One of the not-so-nice things about functions is that they don’t.
 You can use a tied array to make a function that can be
 interpolated. Suppose you want to interpolate random integers in a
 string. You can just say:
#!/usr/bin/perl
package RandInterp;
sub TIEARRAY { bless \my $self };
sub FETCH { int rand $_[1] };

package main;
tie @rand, "RandInterp";
for (1,10,100,1000) {
 print "A random integer less than $_ would be $rand[$_]\n";
}
$rand[32] = 5; # Will this reformat our system disk?
When run, this prints:
A random integer less than 1 would be 0
A random integer less than 10 would be 3
A random integer less than 100 would be 46
A random integer less than 1000 would be 755
Can't locate object method "STORE" via package "RandInterp" at foo line 10.
As you can see, it’s no big deal that we didn’t even implement
 STORE. It just blows up like
 normal.

Tying Hashes

A class implementing a tied hash should define eight methods.
 TIEHASH constructs new
 objects. FETCH and STORE access the key/value pairs. EXISTS reports
 whether a key is present in the hash, and DELETE removes a key along with its
 associated value.[153] CLEAR empties
 the hash by deleting all key/value pairs. FIRSTKEY and NEXTKEY iterate over the key/value pairs
 when you call keys, values, or each. And, as usual, if you want to perform
 particular actions when the object is deallocated, you may define
 a DESTROY method. (If
 this seems like a lot of methods, you didn’t read the last section on
 arrays attentively. In any event, feel free to inherit the default
 methods from the standard Tie::Hash module, redefining only the interesting ones. Again,
 Tie::StdHash assumes the implementation is also a hash.)
For example, suppose you want to create a hash where every time
 you assign a value to a key, instead of overwriting the previous
 contents, the new value is appended to an array of values. That way
 when you say:
$h{$k} = "one";
$h{$k} = "two";
It really does:
push @{ $h{$k} }, "one";
push @{ $h{$k} }, "two";
That’s not a very complicated idea, so you should be able to use
 a pretty simple module. Using Tie::StdHash as a base class, it is. Here’s
 a Tie::AppendHash that does just
 that:
package Tie::AppendHash;
use Tie::Hash;
our @ISA = ("Tie::StdHash");
sub STORE {
 my ($self, $key, $value) = @_;
 push @{$self–>{key}}, $value;
}
1;

[153] Remember that Perl distinguishes between a key not existing
 in the hash and a key existing in the hash but having a
 corresponding value of undef.
 The two possibilities can be tested with exists and
 defined, respectively.

Hash-Tying Methods

Here’s an example of an interesting tied-hash class: it gives you a hash
 representing a particular user’s dot files (that is, files whose
 names begin with a period, which is a naming convention for
 initialization files under Unix). You index into the hash with the
 name of the file (minus the period) and get back that dot file’s
 contents. For example:
use DotFiles;
tie %dot, "DotFiles";
if ($dot{profile} =~ /MANPATH/ ||
 $dot{login} =~ /MANPATH/ ||
 $dot{cshrc} =~ /MANPATH/) {
 print "you seem to set your MANPATH\n";
}
Here’s another way to use our tied class:
Third argument is the name of a user whose dot files we will tie to.
tie %him, "DotFiles", "daemon";
foreach $f (keys %him) {
 printf "daemon dot file %s is size %d\n", $f, length $him{$f};
}
In our DotFiles example we
 implement the object as a regular hash containing several important
 fields, of which only the {CONTENTS} field will contain what the
 user thinks of as the hash. Table 14-1
 gives the object’s actual fields.
Table 14-1. Object fields in DotFiles
	Field	Contents
	
 USER
 	Whose dot files this object
 represents
	
 HOME
 	Where those dot files
 live
	
 CLOBBER
 	Whether we are allowed to
 change or remove those dot files
	
 CONTENTS
 	The hash of dot file names
 and content mappings

Here’s the start of DotFiles.pm:
package DotFiles;
use Carp;
sub whowasi { (caller(1))[3] . "()" }
my $DEBUG = 0;
sub debug { $DEBUG = @_ ? shift : 1 }
For our example we want to be able to turn on debugging output
 to help in tracing during development, so we set up $DEBUG. We also keep one convenience
 function around internally to help print out warnings: whowasi returns
 the name of the function that called the current function (whowasi’s “grandparent” function).
Here are the methods for the DotFiles tied hash:
	
 CLASSNAME–>TIEHASH(LIST)

	Here’s the DotFiles
 constructor:
sub TIEHASH {
 my $self = shift;
 my $user = shift || $>;
 my $dotdir = shift || "";

 croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;

 $user = getpwuid($user) if $user =~ /^\d+$/;
 my $dir = (getpwnam($user))[7]
 || croak "@{ [&whowasi] }: no user $user";
 $dir .= "/$dotdir" if $dotdir;

 my $node = {
 USER => $user,
 HOME => $dir,
 CONTENTS => {},
 CLOBBER => 0,
 };

 opendir(DIR, $dir)
 || croak "@{[&whowasi]}: can't opendir $dir: $!";
 for my $dot (grep /^\./ && –f "$dir/$_", readdir(DIR)) {
 $dot =~ s/^\.//;
 $node–>{CONTENTS}{$dot} = undef;
 }
 closedir DIR;

 return bless $node, $self;
 }
It’s probably worth mentioning that if you’re going to
 apply file tests to the values returned by the above readdir, you’d better prepend the
 directory in question (as we do). Otherwise, since no chdir was done, you’d likely be
 testing the wrong file.

	
 SELF–>FETCH(KEY)

	This method implements reading an element from the tied
 hash. It takes one argument after the object: the key whose
 value we’re trying to fetch. The key is a string, and you can
 do anything you like with it (consistent with its being a string).
Here’s the fetch for our DotFiles example:
sub FETCH {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $dir = $self–>{HOME};
 my $file = "$dir/.$dot";

 unless (exists $self–>{CONTENTS}–>{$dot} || –f $file) {
 carp "@{[&whowasi]}: no $dot file" if $DEBUG;
 return undef;
 }

 # Implement a cache.
 if (defined $self–>{CONTENTS}–>{$dot}) {
 return $self–>{CONTENTS}–>{$dot};
 } else {
 return $self–>{CONTENTS}–>{$dot} = `cat $dir/.$dot`;
 }
}
We cheated a little by running the Unix
 cat(1) command, but it would be more
 portable (and more efficient) to open the file ourselves. On
 the other hand, since dot files are a Unixy concept, we’re not
 that concerned. Or shouldn’t be. Or something…

	
 SELF–>STORE(KEY,
 VALUE)

	This method does the dirty work whenever an element in the
 tied hash is set (written). It takes two arguments after the
 object: the key under which we’re storing the new value and
 the value itself.
For our DotFiles
 example, we won’t let users overwrite a file without first
 invoking the clobber method
 on the original object returned by tie:
sub STORE {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $value = shift;
 my $file = $self–>{HOME} . "/.$dot";

 croak "@{[&whowasi]}: $file not clobberable"
 unless $self–>{CLOBBER};

 open(F, "> $file") || croak "can't open $file: $!";
 print F $value;
 close(F) || croak "can't close $file: $!";
}
If someone wants to clobber something, she can
 say:
$ob = tie %daemon_dots, "daemon";
$ob–>clobber(1);
$daemon_dots{signature} = "A true daemon\n";
But they could alternatively set {CLOBBER} with tied:
tie %daemon_dots, "DotFiles", "daemon";
tied(%daemon_dots)–>clobber(1);
or as one statement:
(tie %daemon_dots, "DotFiles", "daemon")–>clobber(1);
The clobber method is
 simply:
sub clobber {
 my $self = shift;
 $self–>{CLOBBER} = @_ ? shift : 1;
}

	
 SELF–>DELETE(KEY)

	This method handles requests to remove an element from the
 hash. If your emulated hash uses a real hash somewhere, you
 can just call the real delete. Again, we’ll be careful to
 check whether the user really wants to clobber files:
sub DELETE {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $file = $self–>{HOME} . "/.$dot";
 croak "@{[&whowasi]}: won't remove file $file"
 unless $self–>{CLOBBER};
 delete $self–>{CONTENTS}–>{$dot};
 unlink($file)|| carp "@{[&whowasi]}: can't unlink $file: $!";
}

	
 SELF–>CLEAR

	This method is run when the whole hash needs to be cleared,
 usually by assigning the empty list to it. In our example,
 that would remove all the user’s dot files! It’s such a
 dangerous thing that we’ll require CLOBBER to be set higher than
 1 before this can
 happen:
sub CLEAR {
 carp &whowasi if $DEBUG;
 my $self = shift;
 croak "@{[&whowasi]}: won't remove all dotfiles for $self–>{USER}"
 unless $self–>{CLOBBER} > 1;
 for my $dot (keys %{$self–>{CONTENTS}}) {
 $self–>DELETE($dot);
 }
}

	
 SELF–>EXISTS(KEY)

	This method runs when the user invokes the exists
 function on a particular hash. In our example, we’ll look at
 the {CONTENTS} hash element
 to find the answer:
sub EXISTS {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 return exists $self–>{CONTENTS}–>{$dot};
}

	
 SELF–>FIRSTKEY

	This method is called when the user begins to iterate
 through the hash, such as with a keys, values, or each call. By calling keys in scalar context, we reset its
 internal state to ensure that the next each used in the return statement will get the first
 key.
sub FIRSTKEY {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $temp = keys %{$self–>{CONTENTS}};
 return scalar each %{$self–>{CONTENTS}};
}

	
 SELF–>NEXTKEY(PREVKEY)

	This method is the iterator for a keys, values, or each function.
 PREVKEY is the last key accessed,
 which Perl knows to supply. This is useful if the NEXTKEY method needs to know its
 previous state to calculate the next state.
For our example, we are using a real hash to represent
 the tied hash’s data, except that this hash is stored in the
 hash’s CONTENTS field
 instead of in the hash itself. So we can just rely on Perl’s
 each iterator:
sub NEXTKEY {
 carp &whowasi if $DEBUG;
 my $self = shift;
 return scalar each %{ $self–>{CONTENTS} }
}

	
 SELF–>UNTIE

	This method is triggered by untie. We don’t need it for this
 example. See the caution in A Subtle Untying Trap
 later in this chapter.

	
 SELF–>DESTROY

	This method is triggered when a tied hash’s object is about
 to be deallocated. You don’t really need it except for
 debugging and extra cleanup. Here’s a very simple
 version:
sub DESTROY {
 carp &whowasi if $DEBUG;
}

Now that we’ve given you all those methods, your homework is
 to go back and find the places we interpolated @{[&whowasi]} and replace them with a
 simple tied scalar named $whowasi
 that does the same thing.

Tying Filehandles

A class implementing a tied filehandle should define the following methods:
 TIEHANDLE and at least one of PRINT, PRINTF, WRITE, READLINE, GETC, and READ. The class can also provide a DESTROY method, as
 well as BINMODE, OPEN, CLOSE, EOF, FILENO, SEEK, TELL, READ, and WRITE methods to enable the corresponding
 Perl built-ins for the tied filehandle. (Well, that isn’t quite true:
 WRITE corresponds to syswrite and has nothing to do with Perl’s
 built-in write function for printing with format declarations.)
Tied filehandles are especially useful when Perl is embedded in
 another program (such as Apache or vi) and output to STDOUT or STDERR needs to be redirected in some
 special way.
But filehandles don’t actually have to be tied to a file at all.
 You can use output statements to build up an in-memory data structure
 and input statements to read them back in. Here’s an easy way to
 reverse a sequence of print and
 printf statements without reversing
 the individual lines:
package ReversePrint 0.01 {
 use strict;
 sub TIEHANDLE {
 my $class = shift;
 bless [], $class;
 }
 sub PRINT {
 my $self = shift;
 push @$self, join("" => @_);
 }
 sub PRINTF {
 my $self = shift;
 my $fmt = shift;
 push @$self, sprintf($fmt, @_);
 }
 sub READLINE {
 my $self = shift;
 pop @$self;
 }
}

my $m = "––MORE––\n";
tie *REV, "ReversePrint";

Do some prints and printfs.
print REV "The fox is now dead.$m";

printf REV <<"END", int rand 10000000;
The quick brown fox jumps
over the lazy dog %d times!
END

print REV <<"END";
The quick brown fox jumps
over the lazy dog.
END

Now read back from the same handle.
print while <REV>;
This prints:
The quick brown fox jumps
over the lazy dog.
The quick brown fox jumps
over the lazy dog 3179357 times!
The fox is now dead.––MORE––

Filehandle-Tying Methods

For our extended example, we’ll create a filehandle that uppercases strings that
 are printed to it. Just for kicks, we’ll begin the file with
 <SHOUT> when it’s opened
 and end with </SHOUT> when
 it’s closed. That way we can rant in well-formed XML.
Here’s the top of our Shout.pm file that will implement the
 class:
package Shout;
use Carp; # So we can croak our errors
We’ll now list the method definitions in Shout.pm.
	
 CLASSNAME–>TIEHANDLE(LIST)

	This is the constructor for the class, which as usual should
 return a blessed reference.
sub TIEHANDLE {
 my $class = shift;
 my $form = shift;
 open(my $self, $form, @_) || croak "can't open $form@_: $!";
 if ($form =~ />/) {
 print $self "<SHOUT>\n";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 return bless $self, $class; # $self is a glob ref
}
Here we open a new filehandle according to the mode and
 filename passed to the tie
 operator, write <SHOUT> to the file, and
 return a blessed reference to it. There’s a lot of stuff going
 on in that open statement,
 but we’ll just point out that, in addition to the usual “open
 or die” idiom, the my $self
 furnishes an undefined scalar to open, which knows to autovivify it
 into a typeglob. The fact that it’s a typeglob is also
 significant, because not only does the typeglob contain the
 real I/O object of the file, it also contains various other
 handy data structures that come along for free, like a scalar
 ($$$self), an array
 (@$$self), and a hash
 (%$$self). (We won’t
 mention the subroutine, &$$self.)
The $form is the
 filename-or-mode argument. If it’s a filename, @_ is empty, so it behaves as a
 two-argument open. Otherwise, $form is the mode for the rest of
 the arguments.
After the open, we test to see whether we should write
 the beginning tag. If so, we do. And right away we use one of
 those glob data structures we mentioned. That $$self–>{WRITING} is an example
 of using the glob to store interesting information. In this
 case, we remember whether we did the beginning tag so we know
 whether to do the corresponding end tag. We’re using the
 %$$self hash, so we can
 give the field a decent name. We could have used the scalar as
 $$$self, but that wouldn’t
 be self-documenting. (Or it would only be
 self-documenting, depending on how you look at it.)

	
 SELF–>PRINT(LIST)

	This method implements a print to the tied handle. The
 LIST is whatever was passed to
 print. Our method below
 uppercases each element of
 LIST:
sub PRINT {
 my $self = shift;
 print $self map {uc} @_;
 }

	
 SELF–>READLINE

	This method supplies the data when the filehandle is read
 from the angle operator (<FH>) or readline. The method should return
 undef when there is no more
 data.
sub READLINE {
 my $self = shift;
 return <$self>;
}
Here we simply return
 <$self> so that the method will behave
 appropriately depending on whether it was called in scalar or
 list context.

	
 SELF–>GETC

	This method runs whenever getc is used
 on the tied filehandle.
sub GETC {
 my $self = shift;
 return getc($self);
}
Like several of the methods in our Shout class, the GETC method simply calls its
 corresponding Perl built-in and returns the result.

	
 SELF–>OPEN(LIST)

	Our TIEHANDLE method
 itself opens a file, but a program using the Shout class that calls open afterward triggers this method.
sub OPEN {
 my $self = shift;
 my $form = shift;
 my $name = "$form@_";
 $self–>CLOSE;
 open($self, $form, @_) || croak "can't reopen $name: $!";
 if ($form =~ />/) {
 (print $self "<SHOUT>\n") || croak "can't start print: $!";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 else {
 $$self–>{WRITING} = 0; # Remember not to do end tag
 }
 return 1;
}
We invoke our own CLOSE method to explicitly close the
 file in case the user didn’t bother to. Then we open a new
 file with whatever filename was specified in the open and shout at it.

	
 SELF–>CLOSE

	This method deals with the request to close the handle. Here we seek to the
 end of the file and, if that was successful, print </SHOUT> before using Perl’s
 built-in close.
sub CLOSE {
 my $self = shift;
 if ($$self–>{WRITING}) {
 $self–>SEEK(0, 2) || return;
 $self–>PRINT("</SHOUT>\n") || return;
 }
 return close $self;
}

	
 SELF–>SEEK(LIST)

	When you seek on a
 tied filehandle, the SEEK method gets called.
sub SEEK {
 my $self = shift;
 my ($offset, $whence) = @_;
 return seek($self, $offset, $whence);
}

	
 SELF–>TELL

	This method is invoked when tell
 is used on the tied handle.
sub TELL {
 my $self = shift;
 return tell $self;
}

	
 SELF–>PRINTF(LIST)

	This method is run whenever printf is used on the tied handle. The
 LIST will contain the format and
 the items to be printed.
sub PRINTF {
 my $self = shift;
 my $template = shift;
 return $self–>PRINT(sprintf $template, @_);
}
Here we use sprintf
 to generate the formatted string and pass it to PRINT for uppercasing. There’s
 nothing that requires you to use the built-in sprintf function, though. You could
 interpret the percent escapes to suit your own purpose.

	
 SELF–>READ(LIST)

	This method responds when the handle is read using read or sysread. Note that we modify the first argument of
 LIST “in-place”, mimicking read’s ability to fill in the scalar passed in as its
 second argument.
sub READ {
 my ($self, undef, $length, $offset) = @_;
 my $bufref = \$_[1];
 return read($self, $$bufref, $length, $offset);
}

	
 SELF–>WRITE(LIST)

	This method gets invoked when the handle is written to with
 syswrite. Here we uppercase the string to be
 written.
sub WRITE {
 my $self = shift;
 my $string = uc(shift);
 my $length = shift || length $string;
 my $offset = shift || 0;
 return syswrite $self, $string, $length, $offset;
}

	
 SELF–>EOF

	This method returns a Boolean value when a filehandle tied
 to the Shout class is
 tested for its end-of-file status using eof.
sub EOF {
 my $self = shift;
 return eof $self;
}

	
 SELF–>BINMODE(IOLAYER)

	This method specifies the I/O layer to be used on the
 filehandle. If none is specified, it puts the tied filehandle
 into binary mode (the :raw
 layer) for filesystems that distinguish between text and
 binary files.
sub BINMODE {
 my $self = shift;
 my $disc = shift || ":raw";
 return binmode $self, $disc;
}
That’s how you’d write it, but it’s actually useless in
 our case because the open already
 wrote on the handle. So in our case we should probably make it
 say:
sub BINMODE { croak("Too late to use binmode") }

	
 SELF–>FILENO

	This method should return the file descriptor (fileno) associated with the tied filehandle by the
 operating system.
sub FILENO {
 my $self = shift;
 return fileno $self;
}

	
 SELF–>UNTIE

	This method is triggered by untie. We
 don’t need it for this example. See the caution in A Subtle Untying Trap later in this chapter.

	
 SELF–>DESTROY

	As with the other types of ties, this method is
 triggered when the tied object is about to be destroyed. This
 is useful for letting the object clean up after itself. Here
 we make sure that the file is closed, in case the program
 forgot to call close. We
 could just say close $self,
 but it’s better to invoke the CLOSE method of the class. That way
 if the designer of the class decides to change how files are
 closed, this DESTROY method
 won’t have to be modified.
sub DESTROY {
 my $self = shift;
 $self–>CLOSE; # Close the file using Shout's CLOSE method.
}

Here’s a demonstration of our Shout class:
#!/usr/bin/perl
use Shout;
tie(*FOO, Shout::, ">filename");
print FOO "hello\n"; # Prints HELLO.
seek FOO, 0, 0; # Rewind to beginning.
@lines = <FOO>; # Calls the READLINE method.
close FOO; # Close file explicitly.
open(FOO, "+<", "filename"); # Reopen FOO, calling OPEN.
seek(FOO, 8, 0); # Skip the "<SHOUT>\n".
sysread(FOO, $inbuf, 5); # Read 5 bytes from FOO into $inbuf.
print "found $inbuf\n"; # Should print "hello".
seek(FOO, –5, 1); # Back up over the "hello".
syswrite(FOO, "ciao!\n", 6); # Write 6 bytes into FOO.
untie(*FOO); # Calls the CLOSE method implicitly.
After running this, the file contains:
<SHOUT>
CIAO!
</SHOUT>
Here are some more strange and wonderful things to do with
 that internal glob. We use the same hash as before but with new keys
 PATHNAME and DEBUG. First, we install a stringify
 overloading so that printing one of our objects reveals the pathname
 (see Chapter 13):
This is just so totally cool!
use overload q("") => sub { $_[0]–>pathname };

This is the stub to put in each function you want to trace.
sub trace {
 my $self = shift;
 local $Carp::CarpLevel = 1;
 Carp::cluck("\ntrace magical method") if $self–>debug;
}

Overload handler to print out our path.
sub pathname {
 my $self = shift;
 confess "i am not a class method" unless ref $self;
 $$self–>{PATHNAME} = shift if @_;
 return $$self–>{PATHNAME};
}
Dual moded.
sub debug {
 my $self = shift;
 my $var = ref $self ? \$$self–>{DEBUG} : \our $Debug;
 $$var = shift if @_;
 return ref $self ? $$self–>{DEBUG} || $Debug : $Debug;
}
And then we call trace on
 entry to all our ordinary methods like this:
sub GETC { $_[0]–>trace; # NEW
 my($self) = @_;
 getc($self);
}
And also set the pathname in TIEHANDLE and OPEN:
sub TIEHANDLE {
 my $class = shift;
 my $form = shift;
 my $name = "$form@_"; # NEW
 open(my $self, $form, @_) || croak "can't open $name: $!";
 if ($form =~ />/) {
 print $self "<SHOUT>\n";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 bless $self, $class; # $fh is a glob ref
 $self–>pathname($name); # NEW
 return $self;
}

sub OPEN { $_[0]–>trace; # NEW
 my $self = shift;
 my $form = shift;
 my $name = "$form@_";
 $self–>CLOSE;
 open($self, $form, @_) || croak "can't reopen $name: $!";
 $self–>pathname($name); # NEW
 if ($form =~ />/) {
 (print $self "<SHOUT>\n") || croak "can't start print: $!";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 else {
 $$self–>{WRITING} = 0; # Remember not to do end tag
 }
 return 1;
}
Somewhere, we also have to call $self–>debug(1) to turn debugging on.
 When we do that, all our Carp::cluck calls will produce meaningful
 messages. Here’s one that we get while doing the reopen above. It
 shows us three deep in method calls, as we’re closing down the old
 file in preparation for opening the new one:
trace magical method at foo line 87
 Shout::SEEK('>filename', '>filename', 0, 2) called at foo line 81
 Shout::CLOSE('>filename') called at foo line 65
 Shout::OPEN('>filename', '+<', 'filename') called at foo line 141

Creative Filehandles

You can tie the same filehandle to both the input and the output of a
 two-ended pipe. Suppose you wanted to run the
 bc(1) (arbitrary precision calculator) program
 this way:
use Tie::Open2;

tie *CALC, "Tie::Open2", "bc –l";
$sum = 2;
for (1 .. 7) {
 print CALC "$sum * $sum\n";
 $sum = <CALC>;
 print "$_: $sum";
 chomp $sum;
}
close CALC;
One would expect it to print this:
1: 4
2: 16
3: 256
4: 65536
5: 4294967296
6: 18446744073709551616
7: 340282366920938463463374607431768211456
One’s expectations would be correct if one had the
 bc(1) program on one’s computer, and one also
 had Tie::Open2 defined as follows. This time we’ll use a blessed
 array for our internal object. It contains our two actual
 filehandles for reading and writing. (The dirty work of opening a
 double-ended pipe is done by IPC::Open2; we’re just doing the fun
 part.)
package Tie::Open2;
use strict;
use Carp;
use Tie::Handle; # do not inherit from this!
use IPC::Open2;

sub TIEHANDLE {
 my ($class, @cmd) = @_;
 no warnings "once";
 my @fhpair = \do { local(*RDR, *WTR) };
 bless $_, "Tie::StdHandle" for @fhpair;
 bless(\@fhpair => $class)–>OPEN(@cmd) || die;
 return \@fhpair;
}

sub OPEN {
 my ($self, @cmd) = @_;
 $self–>CLOSE if grep {defined} @{ $self–>FILENO };
 open2(@$self, @cmd);
}

sub FILENO {
 my $self = shift;
 [map { fileno $self–>[$_] } 0,1];
}

for my $outmeth (qw(PRINT PRINTF WRITE)) {
 no strict "refs";
 *$outmeth = sub {
 my $self = shift;
 $self–>[1]–>$outmeth(@_);
 };
}
for my $inmeth (qw(READ READLINE GETC)) {
 no strict "refs";
 *$inmeth = sub {
 my $self = shift;
 $self–>[0]–>$inmeth(@_);
 };
}
for my $doppelmeth (qw(BINMODE CLOSE EOF)) {
 no strict "refs";
 *$doppelmeth = sub {
 my $self = shift;
 $self–>[0]–>$doppelmeth(@_) && $self–>[1]–>$doppelmeth(@_);
 };
}
for my $deadmeth (qw(SEEK TELL)) {
 no strict "refs";
 *$deadmeth = sub {
 croak("can't $deadmeth a pipe");
 };
}
1;
The final four loops are just incredibly snazzy, in our
 opinion. For an explanation of what’s going on, look back at the
 section “Closures as Function Templates” in Chapter 8.
Here’s an even wackier set of classes. The package names
 should give you a clue as to what they do.
use strict;
package Tie::DevNull;

 sub TIEHANDLE {
 my $class = shift;
 my $fh = local *FH;
 bless \$fh, $class;
 }
 for (qw(READ READLINE GETC PRINT PRINTF WRITE)) {
 no strict "refs";
 *$_ = sub { return };
 }

package Tie::DevRandom;

 sub READLINE { rand() . "\n" }
 sub TIEHANDLE {
 my $class = shift;
 my $fh = local *FH;
 bless \$fh, $class;
 }

 sub FETCH { rand() }
 sub TIESCALAR {
 my $class = shift;
 bless \my $self, $class;
 }

package Tie::Tee;

 sub TIEHANDLE {
 my $class = shift;
 my @handles;
 for my $path (@_) {
 open(my $fh, ">$path") || die "can't write $path";
 push @handles, $fh;
 }
 bless \@handles, $class;
 }

 sub PRINT {
 my $self = shift;
 my $ok = 0;
 for my $fh (@$self) {
 $ok += print $fh @_;
 }
 return $ok == @$self;
 }
The Tie::Tee class emulates the standard Unix
 tee(1) program, which sends one stream of
 output to multiple different destinations. The Tie::DevNull class emulates the null device, /dev/null on Unix systems. And the
 Tie::DevRandom class produces random numbers either as a handle or
 as a scalar, depending on whether you call TIEHANDLE or TIESCALAR! Here’s how you call
 them:
package main;

tie *SCATTER, "Tie::Tee", qw(tmp1 – tmp2 >tmp3 tmp4);
tie *RANDOM, "Tie::DevRandom";
tie *NULL, "Tie::DevNull";
tie my $randy, "Tie::DevRandom";

for my $i (1..10) {
 my $line = <RANDOM>;
 chomp $line;
 for my $fh (*NULL, *SCATTER) {
 print $fh "$i: $line $randy\n";
 }
}
This produces something like the following on your
 screen:
1: 0.124115571686165 0.20872819474074
2: 0.156618299751194 0.678171662366353
3: 0.799749050426126 0.300184963960792
4: 0.599474551447884 0.213935286029916
5: 0.700232143543861 0.800773751296671
6: 0.201203608274334 0.0654303290639575
7: 0.605381294683365 0.718162304090487
8: 0.452976481105495 0.574026269121667
9: 0.736819876983848 0.391737610662044
10: 0.518606540417331 0.381805078272308
But that’s not all! It wrote to your screen because of the
 – in the *SCATTER tie above. But that line also told it to
 create files tmp1, tmp2, and tmp4, as well as to append to file
 tmp3. (We also wrote to the
 *NULL filehandle in the loop,
 though of course that didn’t show up anywhere interesting—unless
 you’re interested in black holes.)

A Subtle Untying Trap

If you intend to make use of the object returned from tie or tied, and the class defines a destructor, there is a subtle
 trap you must guard against. Consider this (admittedly contrived)
 example of a class that uses a file to log all values assigned to a
 scalar:
package Remember;

sub TIESCALAR {
 my $class = shift;
 my $filename = shift;
 open(my $handle, ">", $filename)
 || die "Cannot open $filename: $!\n";
 print $handle "The Start\n";
 bless {FH => $handle, VALUE => 0}, $class;
}

sub FETCH {
 my $self = shift;
 return $self–>{VALUE};
}

sub STORE {
 my $self = shift;
 my $value = shift;
 my $handle = $self–>{FH};
 print $handle "$value\n";
 $self–>{VALUE} = $value;
}

sub DESTROY {
 my $self = shift;
 my $handle = $self–>{FH};
 print $handle "The End\n";
 close $handle;
}

1;
Here is an example that makes use of our Remember class:
use strict;
use Remember;

my $fred;
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
$fred = 5;
untie $fred;
system "cat camel.log";
This is the output when it is executed:
The Start
1
4
5
The End
So far, so good. Let’s add an extra method to the Remember class that allows comments in the
 file—say, something like this:
sub comment {
 my $self = shift;
 my $message = shift;
 print { $self–>{FH} } $handle $message, "\n";
}
And here is the previous example, modified to use the comment method:
use strict;
use Remember;

my ($fred, $x);
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
comment $x "changing...";
$fred = 5;
untie $fred;
system "cat camel.log";
Now the file will be empty, which probably wasn’t what you
 intended. Here’s why. Tying a variable associates it with the object
 returned by the constructor. This object normally has only one
 reference: the one hidden behind the tied variable itself. Calling
 “untie” breaks the association and
 eliminates that reference. Since there are no remaining references to
 the object, the DESTROY method is
 triggered.
However, in the example above we stored a second reference to
 the object tied to $x. That means
 that after the untie there will
 still be a valid reference to the object. DESTROY won’t get triggered, and the file
 won’t get flushed and closed. That’s why there was no output: the
 filehandle’s buffer was still in memory. It won’t hit the disk until
 the program exits.
To detect this, you could use the –w command-line flag, or include the
 use warnings "untie" pragma in the
 current lexical scope. Either technique would identify a call to
 untie while there were still
 references to the tied object remaining. If so, Perl prints this
 warning:
untie attempted while 1 inner references still exist
To get the program to work properly and silence the warning,
 eliminate any extra references to the tied object
 before calling untie. You can do that explicitly:
undef $x;
untie $fred;
Often, though, you can solve the problem simply by making sure
 your variables go out of scope at the appropriate time.

Tie Modules on CPAN

Before you get all inspired to write your own tie module, you
 should check to see whether someone’s already done it. There are lots
 of tie modules on CPAN, with more every day. (Well, every month,
 anyway.) Table 14-2 lists some of
 them.
Table 14-2. Tie modules on CPAN
	Module	Description
	IO::WrapTie 	Wraps tied objects in an
 IO::Handle interface.
	MLDBM 	Transparently stores complex
 data values, not just flat strings, in a DBM file.
	Tie::Cache::LRU 	Implements a least-recently
 used cache.
	Tie::Const 	Provides constant scalars and
 hashes.
	Tie::Counter 	Enchants a scalar variable to
 increment upon each access.
	Tie::CPHash 	Implements a case-preserving
 but case-insensitive hash.
	Tie::Cycle 	Cycles through a list of
 values via a scalar.
	Tie::DBI 	Ties hashes to DBI relational
 databases.
	Tie::Dict 	Ties a hash to an RPC dict
 server.
	Tie::DictFile 	Ties a hash to a local
 dictionary file.
	Tie::DNS 	Ties interface to
 Net::DNS.
	Tie::EncryptedHash 	Hashes (and objects based on
 hashes) with encrypting fields.
	Tie::FileLRUCache 	Implements a lightweight,
 filesystem-based, persistent LRU cache.
	Tie::FlipFlop 	Implements a tie that
 alternates between two values.
	Tie::HashDefaults 	Lets a hash have default
 values.
	Tie::HashHistory 	Tracks history of all changes
 to a hash.
	Tie::iCal 	Ties iCal files to Perl
 hashes.
	Tie::IxHash 	Provides ordered associative
 arrays for Perl.
	Tie::LDAP 	Implements an interface to an
 LDAP database.
	Tie::Persistent 	Provides persistent data
 structures via tie.
	Tie::Pick 	Randomly picks (and removes)
 an element from a set.
	Tie::RDBM 	Ties hashes to relational
 databases.
	Tie::STDERR 	Sends output of your STDERR to another process such as a
 mailer.
	Tie::Syslog 	Ties a filehandle to
 automatically syslog its output.
	Tie::TextDir 	Ties a directory of
 files.
	Tie::Toggle 	False and true, alternately,
 ad infinitum.
	Tie::TZ 	Ties $TZ, setting %ENV and calling tzset(3).
	Tie::VecArray 	Provides an array interface
 to a bit vector.
	Tie::Watch 	Places watch points on Perl
 variables.
	Win32::TieRegistry 	Provides powerful and easy
 ways to manipulate a Microsoft Windows registry.

Part III. Perl as Technology

Chapter 15. Interprocess Communication

Computer processes have almost as many ways of communicating as people
 do. The difficulties of interprocess communication should not be
 underestimated. It doesn’t do you any good to listen for verbal cues when
 your friend is only using body language. Likewise, two processes can
 communicate only when they agree on the means of communication, and on the
 conventions built on top of that. As with any kind of communication, the
 conventions to be agreed upon range from lexical to pragmatic: everything
 from which lingo you’ll use up to whose turn it is to talk. These
 conventions are necessary because it’s very difficult to communicate bare
 semantics in the absence of context.
In our lingo, interprocess communication is usually pronounced IPC.
 The IPC facilities of Perl range from the very simple to the very complex.
 Which facility you should use depends on the complexity of the information
 to be communicated. The simplest kind of information is almost no
 information at all: just the awareness that a particular event has happened
 at a particular point in time. In Perl, these events are communicated via a
 signal mechanism modelled on the Unix signal system.
At the other extreme, the socket facilities of Perl allow you to
 communicate with any other process on the Internet using any mutually
 supported protocol you like. Naturally, this freedom comes at a price: you
 have to go through a number of steps to set up the connections and make sure
 you’re talking the same language as the process on the other end. This may
 in turn require you to adhere to any number of other strange customs,
 depending on local conventions. To be protocoligorically correct, you might
 even be required to speak a language like XML, Java, or Perl.
 Horrors.
Sandwiched in between are some facilities intended primarily for
 communicating with processes on the same machine. These include good
 old-fashioned files, pipes, FIFOs, and the various System V IPC syscalls.
 Support for these facilities varies across platforms; modern Unix systems
 (including Apple’s Mac OS X) should support all of them, and, except for
 signals and SysV IPC, most of the rest are supported on any recent Microsoft
 operating systems, including pipes, forking, file locking, and
 sockets.[154]
More information about porting in general can be found in the standard
 Perl documentation set (in whatever format your system displays it) under
 perlport.
 Microsoft-specific information can be found under perlwin32
 and perlfork,
 which are installed even on non-Microsoft systems. For textbooks, we
 suggest the following:
	Perl
 Cookbook, Second Edition, by Tom Christiansen and
 Nathan Torkington (O’Reilly), Chapters 16 through 18.

	Advanced
 Programming in the UNIX Environment, by W. Richard
 Stevens (Addison-Wesley).

	TCP/IP Illustrated, by W. Richard Stevens,
 Volumes I–III (Addison-Wesley).

[154] Well, except for AF_UNIX
 sockets.

Signals

Perl uses a simple signal-handling model: the %SIG hash contains
 references (either symbolic or hard) to user-defined signal handlers.
 Certain events cause the operating system to deliver a signal to the
 affected process. The handler corresponding to that event is called with
 one argument containing the name of the signal that triggered it. To send
 a signal to another process, use the kill function. Think of it as sending a one-bit
 piece of information to the other process.[155] If that process has installed a signal handler for that
 signal, it can execute code when it receives the signal. But there’s no
 way for the sending process to get any sort of return value, other than
 knowing that the signal was legally sent. The sender receives no feedback
 saying what, if anything, the receiving process did with the
 signal.
We’ve classified this facility as a form of IPC, but, in fact,
 signals can come from various sources, not just other processes. A signal
 might also come from your own process, or it might be generated when the
 user at the keyboard types a particular sequence like Control-C or
 Control-Z, or it might be manufactured by the kernel when a special event
 transpires, such as when a child process exits, or when your process runs
 out of stack space or hits a file size or memory limit. But your own
 process can’t easily distinguish among these cases. A signal is like a
 package that arrives mysteriously on your doorstep with no return address.
 You’d best open it carefully.
Since entries in the %SIG array
 can be hard references, it’s common practice to use anonymous functions
 for simple signal handlers:
$SIG{INT} = sub { die "\nOutta here!\n" };
$SIG{ALRM} = sub { die "Your alarm clock went off" };
Or, you could create a named function and assign its name or
 reference to the appropriate slot in the hash. For example, to intercept
 interrupt and quit signals (often bound to Control-C and Control-\ on your
 keyboard), set up a handler like this:
sub catch_zap {
 my $signame = shift();
 our $shucks++;
 die "Somebody sent me a SIG$signame!";
}
$shucks = 0;
$SIG{INT} = "catch_zap"; # always means &main::catch_zap
$SIG{INT} = \&catch_zap; # best strategy
$SIG{QUIT} = \&catch_zap; # catch another, too
Notice how all we do in the signal handler is set a global variable
 and then raise an exception with die. This was important
 back before Perl had safe signals because on most systems the C library is
 not reentrant, and signals were delivered asynchronously. This could cause
 core dumps in even the best behaving of Perl code. Under safe signals, the
 problem goes away.
An even easier way to trap signals is to use the sigtrap pragma to install simple, default signal handlers:
use sigtrap qw(die INT QUIT);
use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);
The pragma is useful when you don’t want to bother writing your own
 handler, but you still want to catch dangerous signals and perform an
 orderly shutdown. By default, some of these signals are so fatal to your
 process that your program will just stop in its tracks when it receives
 one. Unfortunately, that means that any END functions for at-exit handling and DESTROY methods for object finalization are not
 called. But they are called on ordinary Perl
 exceptions (such as when you call die),
 so you can use this pragma to painlessly convert the signals into
 exceptions. Even though you aren’t dealing with the signals yourself, your
 program still behaves correctly. See the description of use sigtrap in Chapter 29 for
 many more features of this pragma.
You may also set the %SIG handler
 to either of the strings “IGNORE” or
 “DEFAULT”, in which case Perl will try
 to discard the signal or allow the default action for that signal to occur
 (though some signals can be neither trapped nor ignored, such as the
 KILL and STOP signals; see
 signal(3), if you have it, for a list of signals
 available on your system and their default behaviors).
The operating system thinks of signals as numbers rather than names,
 but Perl, like most people, prefers symbolic names to magic numbers. To
 find the names of the signals, list out the keys of the %SIG hash, or use the kill −l command if you have one on your system.
 You can also use Perl’s standard Config module to determine your operating system’s mapping between
 signal names and signal numbers. See Config(3) for an
 example of this.
Because %SIG is a global hash,
 assignments to it affect your entire program. It’s often more considerate
 to the rest of your program to confine your signal catching to a
 restricted scope. Do this with a local
 signal handler assignment, which goes out of effect once the enclosing
 block is exited. (But remember that local values are visible in functions called
 from within that block.)
{
 local $SIG{INT} = "IGNORE";
 ... # Do whatever you want here, ignoring all SIGINTs.
 fn(); # SIGINTs ignored inside fn() too!
 ... # And here.
} # Block exit restores previous $SIG{INT} value.

fn(); # SIGINTs not ignored inside fn() (presumably).

[155] Actually, it’s more like five or six bits, depending on how many
 signals your OS defines, and on whether the other process makes use of
 the fact that you didn’t send a different
 signal.

Signalling Process Groups

Processes (under Unix, at least) are organized into process groups, generally corresponding to
 an entire job. For example, when you fire off a single shell command
 that consists of a series of filter commands that pipe data from one to
 the other, those processes (and their child processes) all belong to the
 same process group. That process group has a number corresponding to the
 process number of the process group leader. If you send a signal to a
 positive process number, it just sends the signal to the process. But if
 you send a signal to a negative number, it sends that signal to every
 process whose process group number is the corresponding positive
 number—that is, the process number of the process group leader.
 (Conveniently for the process group leader, the process group ID is just
 $$.)
Suppose your program wants to send a hang-up signal to all child
 processes it started directly, plus any grandchildren started by those
 children, plus any great-grandchildren started by those
 grandchildren, and so on. To do this, your program first calls setpgrp(0,0) to become
 the leader of a new process group, and any processes it creates will be
 part of the new group. It doesn’t matter whether these processes were
 started manually via fork,
 automatically via piped opens, or as
 backgrounded jobs with system("cmd
 &"). Even if those processes had children of their own,
 sending a hang-up signal to your entire process group will find them all
 (except for processes that have set their own process group or changed
 their saved or effective UID so that it no longer matches your real or
 effective UID, to give themselves diplomatic immunity to your
 signals).
{
 local $SIG{HUP} = "IGNORE"; # exempt myself
 kill(HUP, –$$); # signal my own process group
}
Another interesting signal is signal number 0. This doesn’t actually affect the target
 process, but instead checks that it’s alive and hasn’t changed its UIDs.
 That is, it checks whether it’s legal to send a signal, without actually
 sending one.
unless (kill 0 => $kid_pid) {
 warn "something wicked happened to $kid_pid";
}
Signal number 0 is the only
 signal that works the same under Microsoft ports of Perl as it does in
 Unix. On Microsoft systems, kill does
 not actually deliver a signal. Instead, it forces the target process to
 exit with the status indicated by the signal number. This may be fixed
 someday. The magic 0 signal, however,
 still behaves in the standard, nondestructive fashion.

Reaping Zombies

When a process exits, its parent is sent a CHLD signal by the kernel, and the process
 becomes a zombie[156] until the parent calls wait or waitpid. If you start another process in Perl
 using anything except fork,
 Perl takes care of reaping your zombied children; but if you
 use a raw fork, you’re expected to
 clean up after yourself. On many but not all kernels, a simple hack for
 autoreaping zombies is to set $SIG{CHLD} to "IGNORE". A more flexible (but tedious)
 approach is to reap them yourself. Because more than one child may have
 died before you get around to dealing with them, you must gather your
 zombies in a loop until there aren’t any more:
use POSIX ":sys_wait_h";
sub REAPER { 1 until waitpid(–1, WNOHANG) == –1 }
To run this code as needed, you can either set a CHLD signal handler for it:
$SIG{CHLD} = \&REAPER;
or, if you’re running in a loop, just arrange to call the reaper
 every so often.

[156] Yes, that really is the technical term.

Timing Out Slow Operations

A common use for signals is to impose time limits on long-running
 operations. If you’re on a Unix system (or any other POSIX-conforming
 system that supports the ALRM
 signal), you can ask the kernel to send your process an ALRM at some point in the future:
use Fcntl ":flock";
eval {
 local $SIG{ALRM} = sub { die "alarm clock restart" };
 alarm 10; # schedule alarm in 10 seconds
 eval {
 flock(FH, LOCK_EX) # a blocking, exclusive lock
 || die "can't flock: $!";
 };
 alarm 0; # cancel the alarm
};
alarm 0; # race condition protection
die if $@ && $@ !~ /alarm clock restart/; # reraise
If the alarm hits while you’re waiting for the lock, and you
 simply catch the signal and return, you’ll go right back into
 the flock because Perl
 automatically restarts syscalls where it can. The only way out is to
 raise an exception through die and
 then let eval catch it. (This works
 because the exception winds up calling the C library’s longjmp(3) function, which is what
 really gets you out of the restarting syscall.)
The nested exception trap is included because calling flock would raise an exception if flock is not implemented on your platform, and
 you need to make sure to clear the alarm anyway. The second alarm 0 is provided in
 case the signal comes in after running the flock but before getting to the first alarm 0. Without the second alarm, you would risk a tiny race
 condition—but size doesn’t matter in race conditions; they either exist
 or they don’t. And we prefer that they don’t.

Blocking Signals

Now and then, you’d like to delay receipt of a signal during some critical
 section of code. You don’t want to blindly ignore the signal, but what
 you’re doing is too important to interrupt. Perl’s %SIG hash doesn’t implement signal blocking,
 but the POSIX module does, through its interface to the
 sigprocmask(2) syscall:
use POSIX qw(:signal_h);
$sigset = POSIX::SigSet–>new;
$blockset = POSIX::SigSet–>new(SIGINT, SIGQUIT, SIGCHLD);
sigprocmask(SIG_BLOCK, $blockset, $sigset)
 || die "Could not block INT,QUIT,CHLD signals: $!\n";
Once the three signals are all blocked, you can do whatever you
 want without fear of being bothered. When you’re done with your critical
 section, unblock the signals by restoring the old signal mask:
sigprocmask(SIG_SETMASK, $sigset)
 || die "Could not restore INT,QUIT,CHLD signals: $!\n";
If any of the three signals came in while blocked, they are
 delivered immediately. If two or more different signals are pending, the
 order of delivery is not defined. Additionally, no distinction is made
 between having received a particular signal once while blocked and
 having received it many times.[157] For example, if nine child processes exited while you were
 blocking CHLD signals, your handler
 (if you had one) would still be called only once after you unblocked.
 That’s why, when you reap zombies, you should always loop until they’re
 all gone.

[157] Traditionally, that is. Countable signals may be implemented
 on some real-time systems according to the latest specs, but we
 haven’t seen these yet.

Signal Safety

Before v5.8, Perl attempted to treat signals like an interrupt and handle
 them immediately, no matter what state the interpreter was in. This was
 inherently unreliable because of reentrancy issues. Perl’s own memory
 could become corrupted and your process could crash, or worse.
Today, when a signal arrives for your process, Perl just marks a
 bit that says it’s pending. Then at the next safe point in the
 interpreter loop, all pending signals are processed. This is all safe
 and orderly and reliable, but it is not necessarily timely. Some of
 Perl’s opcodes can take a long time to execute, such as calling sort on an extremely large list.
To get Perl to return to handling (or mishandling) signals the
 old, unreliable way, set your PERL_SIGNALS
 environment variable to “unsafe”. You
 had best read the section on “Deferred Signals” in the perlipc
 manpage first, though.

Files

Perhaps you’ve never thought about files as an IPC mechanism before,
 but they shoulder the lion’s share of interprocess communication—far more
 than all other means combined. When one process deposits its precious data
 in a file and another process later retrieves that data, those processes
 have communicated. Files offer something unique among all forms of IPC
 covered here: like a papyrus scroll unearthed after millennia buried in
 the desert, a file can be unearthed and read long after its writer’s
 personal end.[158] Factoring in persistence with comparative ease of use, it’s
 no wonder that files remain popular.
Using files to transmit information from the dead past to some
 unknown future poses few surprises. You write the file to some permanent
 medium like a disk, and that’s about it. (You might tell a web server
 where to find it, if it contains HTML.) The interesting challenge is when
 all parties are still alive and trying to communicate with one another.
 Without some agreement about whose turn it is to have their say, reliable
 communication is impossible; agreement may be achieved through file
 locking, which is covered in the next section. In the section after that,
 we discuss the special relationship that exists between a parent process
 and its children, which allows related parties to exchange information
 through inherited access to the same files.
Files certainly have their limitations when it comes to things like
 remote access, synchronization, reliability, and session management. Other
 sections of this chapter cover various IPC mechanisms invented to address
 such limitations.

[158] Presuming that a process can have a personal end.

File Locking

In a multitasking environment, you need to be careful not to collide with other processes
 that are trying to use the same file you’re using. As long as all
 processes are just reading, there’s no problem; however, as soon as even
 one process needs to write to the file, complete chaos ensues unless
 some sort of locking mechanism acts as traffic cop.
Never use the mere existence of a filename (that is, –e $file) as a locking indication, because a
 race condition exists between the test for existence of that filename
 and whatever you plan to do with it (like create it, open it, or unlink
 it). See the section Handling Race Conditions in Chapter 20 for more about this.
Perl’s portable locking interface is the flock(HANDLE,FLAGS)
 function, described in Chapter 27. Perl maximizes
 portability by using only the simplest and most widespread locking
 features found on the broadest range of platforms. These semantics are
 simple enough that they can be emulated on most systems, including those
 that don’t support the traditional syscall of that name, such as System
 V or Windows NT. (If you’re running a Microsoft system earlier than NT,
 though, you’re probably out of luck, as you would be if you’re running a
 system from Apple before Mac OS X.)
Locks come in two varieties: shared (the LOCK_SH flag) and
 exclusive (the LOCK_EX flag).
 Despite the suggestive sound of “exclusive”, processes aren’t required
 to obey locks on files. That is, flock only implements advisory locking, which means that
 locking a file does not stop another process from reading or even
 writing to the file. Requesting an exclusive lock is just a way for a
 process to let the operating system suspend it until all current
 lockers, whether shared or exclusive, are finished with it. Similarly,
 when a process asks for a shared lock, it is just suspending itself
 until there is no exclusive locker. Only when all parties use the
 file-locking mechanism can a contended file be accessed safely.
Therefore, flock is a blocking
 operation by default. That is, if you can’t get the lock you want
 immediately, the operating system suspends your process until you can.
 Here’s how to get a blocking, shared lock, typically used for reading a
 file:
use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") || die "can't open filename: $!";
flock(FH, LOCK_SH) || die "can't lock filename: $!";
now read from FH
You can try to acquire a lock in a nonblocking fashion by
 including the LOCK_NB flag in the
 flock request. If you can’t be given
 the lock right away, the function fails and immediately returns false.
 Here’s an example:
flock(FH, LOCK_SH | LOCK_NB)
 || die "can't lock filename: $!";
You may wish to do something besides raising an exception as we
 did here, but you certainly don’t dare do any I/O on the file. If you
 are refused a lock, you shouldn’t access the file until you can get the
 lock. Who knows what scrambled state you might find the file in? The
 main purpose of the nonblocking mode is to let you go off and do
 something else while you wait. But it can also be useful for producing
 friendlier interactions by warning users that it might take a while to
 get the lock (so they don’t feel abandoned):
use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") || die "can't open filename: $!";
unless (flock(FH, LOCK_SH | LOCK_NB)) {
 local $| = 1;
 print "Waiting for lock on filename...";
 flock(FH, LOCK_SH) || die "can't lock filename: $!";
 print "got it.\n"
}
now read from FH
Some people will be tempted to put that nonblocking lock into a
 loop. The main problem with nonblocking mode is that, by the time you
 get back to checking again, someone else may have grabbed the lock
 because you abandoned your place in line. Sometimes you just have to get
 in line and wait. If you’re lucky there will be some magazines to
 read.
Locks are on filehandles, not on filenames.[159] When you close the file, the lock dissolves automatically,
 whether you close the file explicitly by calling close or implicitly by reopening the handle or
 by exiting your process.
To get an exclusive lock, typically used for writing, you have to
 be more careful. You cannot use a regular open for this; if you use an open mode of
 <, it will fail on files that
 don’t exist yet, and if you use >,
 it will clobber any files that do. Instead, use sysopen on the file so
 it can be locked before getting overwritten. Once you’ve safely opened
 the file for writing but haven’t yet touched it, successfully acquire
 the exclusive lock and only then truncate the file.
 Now you may overwrite it with the new data.
use Fcntl qw(:DEFAULT :flock);
 sysopen(FH, "filename", O_WRONLY | O_CREAT)
 || die "can't open filename: $!";
 flock(FH, LOCK_EX)
 || die "can't lock filename: $!";
 truncate(FH, 0)
 || die "can't truncate filename: $!";
 # now write to FH
If you want to modify the contents of a file in place, use
 sysopen again. This time you ask for
 both read and write access, creating the file if needed. Once the file
 is opened, but before you’ve done any reading or writing, get the
 exclusive lock and keep it around your entire transaction. It’s often
 best to release the lock by closing the file because that guarantees all
 buffers are written before the lock is released.
An update involves reading in old values and writing out new ones.
 You must do both operations under a single exclusive lock, lest another
 process read the (imminently incorrect) value after (or even before) you
 do, but before you write. (We’ll revisit this situation when we cover
 shared memory later in this chapter.)
use Fcntl qw(:DEFAULT :flock);

sysopen(FH, "counterfile", O_RDWR | O_CREAT)
 || die "can't open counterfile: $!";
flock(FH, LOCK_EX)
 || die "can't write–lock counterfile: $!";
$counter = <FH> || 0; # first time would be undef
seek(FH, 0, 0)
 || die "can't rewind counterfile : $!";
print FH $counter+1, "\n"
 || die "can't write counterfile: $!";

next line technically superfluous in this program, but
a good idea in the general case
truncate(FH, tell(FH))
 || die "can't truncate counterfile: $!";
close(FH)
 || die "can't close counterfile: $!";
You can’t lock a file you haven’t opened yet, and you can’t have a
 single lock that applies to more than one file. What you can do, though,
 is use a completely separate file to act as a sort of semaphore,
 like a traffic light, to provide controlled access to
 something else through regular shared and exclusive locks on the
 semaphore file. This approach has several advantages. You can have one
 lockfile that controls access to multiple files, avoiding the kind of
 deadlock that occurs when one process tries to lock those files in one
 order while another process is trying to lock them in a different order.
 You can use a semaphore file to lock an entire directory of files. You
 can even control access to something that’s not even in the filesystem,
 like a shared memory object or the socket upon which several preforked
 servers would like to call accept.
If you have a DBM file that doesn’t provide its own explicit
 locking mechanism, an auxiliary lockfile is the best way to control
 concurrent access by multiple agents. Otherwise, your DBM library’s
 internal caching can get out of sync with the file on disk. Before
 calling dbmopen or tie, open and lock the semaphore file. If you
 open the database with O_RDONLY,
 you’ll want to use LOCK_SH for the
 lock. Otherwise, use LOCK_EX for
 exclusive access to updating the database. (Again, this only works if
 all participants agree to pay attention to the semaphore.)
use Fcntl qw(:DEFAULT :flock);
use DB_File; # demo purposes only; any db is fine

$DBNAME = "/path/to/database";
$LCK = $DBNAME . ".lockfile";

use O_RDWR if you expect to put data in the lockfile
sysopen(DBLOCK, $LCK, O_RDONLY | O_CREAT)
 || die "can't open $LCK: $!";

must get lock before opening database
flock(DBLOCK, LOCK_SH)
 || die "can't LOCK_SH $LCK: $!";

tie(%hash, "DB_File", $DBNAME, O_RDWR | O_CREAT)
 || die "can't tie $DBNAME: $!";
Now you can safely do whatever you’d like with the tied %hash. When you’re done with your database,
 make sure you explicitly release those resources, and in the opposite
 order that you acquired them:
untie %hash; # must close database before lockfile
close DBLOCK; # safe to let go of lock now
If you have the GNU DBM library installed, you can use the
 standard GDBM_File module’s implicit locking. Unless the initial tie contains the GDBM_NOLOCK flag, the library makes sure that
 only one writer may open a GDBM file at a time, and that readers and
 writers do not have the database open at the same time.

[159] Actually, locks aren’t on filehandles—they’re on the file
 descriptors associated with the filehandles since the operating
 system doesn’t know about filehandles. That means that all our
 die messages about failing to get
 a lock on filenames are technically inaccurate. But error messages
 of the form “I can’t get a lock on the file represented by the file
 descriptor associated with the filehandle originally opened to the
 path filename, although by now
 filename may represent a
 different file entirely than our handle does” would just confuse the
 user (not to mention the reader).

Passing Filehandles

Whenever you create a child process using fork, that new process inherits all its
 parent’s open filehandles. Using filehandles for interprocess
 communication is easiest to illustrate by using plain files first.
 Understanding how this works is essential for mastering the fancier
 mechanisms of pipes and sockets described later in this chapter.
The simplest example opens a file and starts up a child process.
 The child then uses the filehandle already opened for it:
open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
 if ($pid = fork) { waitpid($pid,0) }
 else {
 defined($pid) || die "fork: $!";
 while (<INPUT>) { print "$.: $_" }
 exit; # don't let child fall back into main code
 }
 # INPUT handle now at EOF in parent
Once access to a file has been granted by open, it stays granted until the filehandle is
 closed; changes to the file’s permissions or to the owner’s access
 privileges have no effect on accessibility. Even if the process later
 alters its user or group IDs, or the file has its ownership changed to a
 different user or group, that doesn’t affect filehandles that are
 already open. Programs running under increased permissions (like set-id
 programs or systems daemons) often open a file under their increased
 rights and then hand off the filehandle to a child process that could
 not have opened the file on its own.
Although this feature is of great convenience when used
 intentionally, it can also create security issues if filehandles
 accidentally leak from one program to the next. To avoid granting
 implicit access to all possible filehandles, Perl automatically closes
 any filehandles it has opened (including pipes and sockets) whenever you
 explicitly exec a new program or
 implicitly execute one through a call to a piped open, system, or qx// (backticks). The system
 filehandles STDIN, STDOUT, and STDERR are exempt from this because their main
 purpose is to provide communications linkage between programs. So one
 way of passing a filehandle to a new program is to copy the filehandle
 to one of the standard filehandles:
open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
 if ($pid = fork) { wait }
 else {
 defined($pid) || die "fork: $!";
 open(STDIN, "<&INPUT") || die "dup: $!";
 exec("cat", "–n") || die "exec cat: $!";
 }
If you really want the new program to gain access to a filehandle
 other than these three, you can, but you have to do one of two things.
 When Perl opens a new file (or pipe or socket), it checks the current
 setting of the $^F ($SYSTEM_FD_MAX) variable. If the numeric file
 descriptor used by that new filehandle is greater than $^F, the descriptor is marked as one to close.
 Otherwise, Perl leaves it alone, and new programs you exec will inherit access.
It’s not always easy to predict what file descriptor your newly
 opened filehandle will have, but you can temporarily set your maximum
 system file descriptor to some outrageously high number for the duration
 of the open:
open file and mark INPUT to be left open across execs
{
 local $^F = 10_000;
 open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
} # old value of $^F restored on scope exit
Now all you have to do is get the new program to pay attention to
 the descriptor number of the filehandle you just opened. The cleanest
 solution (on systems that support this) is to pass a special filename
 that equates to a file descriptor. If your system has a directory called
 /dev/fd or /proc/$$/fd containing files numbered from 0
 through the maximum number of supported descriptors, you can probably
 use this strategy. (Many Linux operating systems have both, but only the
 /proc version tends to be correctly
 populated. BSD and Solaris prefer /dev/fd. You’ll have to poke around at your
 system to see which looks better for you.) First, open and mark your
 filehandle as one to be left open across execs, as shown in the previous code, then
 fork it like this:
if ($pid = fork) { wait }
else {
 defined($pid) || die "fork: $!";
 $fdfile = "/dev/fd/" . fileno(INPUT);
 exec("cat", "–n", $fdfile) || die "exec cat: $!";
}
Using the fcntl syscall,
 you may diddle the filehandle’s close-on-exec flag
 manually. This is convenient for those times when you didn’t realize
 back when you created the filehandle that you would want to share it
 with your children.
use Fcntl qw/F_SETFD/;

fcntl(INPUT, F_SETFD, 0)
 || die "Can't clear close–on–exec flag on INPUT: $!\n";
You can also force a filehandle to close:
fcntl(INPUT, F_SETFD, 1)
 || die "Can't set close–on–exec flag on INPUT: $!\n";
You can also query the current status:
use Fcntl qw/F_SETFD F_GETFD/;

printf("INPUT will be %s across execs\n",
 fcntl(INPUT, F_GETFD, 1) ? "closed" : "left open");
If your system doesn’t support file descriptors named in the
 filesystem, and you want to pass a filehandle other than STDIN, STDOUT, or STDERR, you can still do so, but you’ll have
 to make special arrangements with that program. Common strategies for
 this are to pass the descriptor number through an environment variable
 or a command-line option.
If the executed program is in Perl, you can use open to convert a file descriptor into a filehandle. Instead of
 specifying a filename, use “&=”
 followed by the descriptor number.
if (($ENV{input_fdno} // "") =~ /^\d$/) {
 open(INPUT, "<&=$ENV{input_fdno}")
 || die "can't fdopen $ENV{input_fdno} for input: $!";
}
It gets even easier than that if you’re going to be running a Perl
 subroutine or program that expects a filename argument. You can use the
 descriptor-opening feature of Perl’s regular open function (but not sysopen or three-argument open) to make this happen automatically.
 Imagine you have a simple Perl program like this:
#!/usr/bin/perl –p
nl – number input lines
printf "%6d ", $.;
Presuming you’ve arranged for the INPUT handle to stay open across execs, you can call that program this
 way:
$fdspec = "<&=" . fileno(INPUT);
system("nl", $fdspec);
or to catch the output:
@lines = `nl '$fdspec'`; # single quotes protect spec from shell
Whether or not you exec another
 program, if you use file descriptors inherited across fork, there’s one small gotcha. Unlike variables copied across a
 fork, which actually get duplicate
 but independent copies, file descriptors really are
 the same in both processes. If one process reads data from the handle,
 the seek pointer (file position) advances in the other process, too, and
 that data is no longer available to either process. If they take turns
 reading, they’ll leapfrog over each other in the file. This makes
 intuitive sense for handles attached to serial devices, pipes, or
 sockets, since those tend to be read-only devices with ephemeral data.
 But this behavior may surprise you with disk files. If this is a
 problem, reopen any files that need separate tracking after the
 fork.
The fork operator is a concept
 derived from Unix, which means it might not be implemented correctly on
 all non-Unix/non-POSIX platforms. Notably, fork works on Microsoft systems only if you’re
 running Perl v5.6 (or better) on Windows 98 (or later). Although
 fork is implemented via multiple
 concurrent execution streams within the same program on these systems,
 these aren’t the sort of threads where all data is shared by default;
 here, only file descriptors are.

Pipes

A pipe is a unidirectional I/O
 channel that can transfer a stream of bytes from one process to
 another. Pipes come in both named and nameless varieties. You may be more
 familiar with nameless pipes, so we’ll talk about those first.

Anonymous Pipes

Perl’s open function opens a pipe instead of a file when you append or prepend
 a pipe symbol to the second argument to open. This turns the rest of the arguments
 into a command, which will be interpreted as a process (or set of
 processes) that you want to pipe a stream of data either into or out of.
 Here’s how to start up a child process that you intend to write
 to:
open SPOOLER, "| cat –v | lpr –h 2>/dev/null"
 || die "can't fork: $!";
 local $SIG{PIPE} = sub { die "spooler pipe broke" };
 print SPOOLER "stuff\n";
 close SPOOLER || die "bad spool: $! $?";
This example actually starts up two processes, the first of which
 (running cat) we print to directly.
 The second process (running lpr) then
 receives the output of the first process. In shell programming, this is
 often called a pipeline. A
 pipeline can have as many processes in a row as you like, as long as the
 ones in the middle know how to behave like filters;
 that is, they read standard input and write standard output.
Perl uses your default system shell (/bin/sh on Unix) whenever a pipe command
 contains special characters that the shell cares about. If you’re only
 starting one command, and you don’t need—or don’t want—to use the shell,
 you can use the multiargument form of a piped open instead:
open SPOOLER, "|–", "lpr", "–h" # requires 5.6.1
 || die "can't run lpr: $!";
If you reopen your program’s standard output as a pipe to another
 program, anything you subsequently print to STDOUT will be standard input for the new
 program. So to page your program’s output,[160] you’d use:
if (–t STDOUT) { # only if stdout is a terminal
 my $pager = $ENV{PAGER} || "more";
 open(STDOUT, "| $pager") || die "can't fork a pager: $!";
}
END {
 close(STDOUT) || die "can't close STDOUT: $!"
}
When you’re writing to a filehandle connected to a pipe, always
 explicitly close that handle when
 you’re done with it. That way your main program doesn’t exit before its
 offspring.
Here’s how to start up a child process that you intend to read
 from:
open STATUS, "netstat –an 2>/dev/null |"
 || die "can't fork: $!";
while (<STATUS>) {
 next if /^(tcp|udp)/;
 print;
}
close STATUS || die "bad netstat: $! $?";
You can open a multistage pipeline for input just as you can for
 output. And, as before, you can avoid the shell by using an alternate
 form of open:
open STATUS, "–|", "netstat", "–an" # requires 5.6.1
 || die "can't run netstat: $!";
But then you don’t get I/O redirection, wildcard expansion, or
 multistage pipes, since Perl relies on your shell to do those.
You might have noticed that you can use backticks to accomplish
 the same effect as opening a pipe for reading:
print grep { !/^(tcp|udp)/ } `netstat –an 2>&1`;
die "bad netstat" if $?;
While backticks are extremely handy, they have to read the whole
 thing into memory at once, so it’s often more efficient to open your own
 piped filehandle and process the file one line or record at a time. This
 gives you finer control over the whole operation, letting you kill off
 the child process early if you like. You can also be more efficient by
 processing the input as it’s coming in, since computers can interleave
 various operations when two or more processes are running at the same
 time. (Even on a single-CPU machine, input and output operations can
 happen while the CPU is doing something else.)
Because you’re running two or more processes concurrently,
 disaster can strike the child process any time between the open and the close. This means that the parent must check
 the return values of both open and
 close. Checking the open isn’t good enough, since that will only
 tell you whether the fork was successful, and possibly whether the
 subsequent command was successfully launched. (It can tell you this only
 in recent versions of Perl, and only if the command is executed directly
 by the forked child, not via the shell.) Any disaster that happens after
 that is reported from the child to the parent as a nonzero exit status.
 When the close function sees that, it
 knows to return a false value, indicating that the actual status value
 should be read from the $? ($CHILD_ERROR) variable. So checking the return
 value of close is just as important
 as checking open. If you’re writing
 to a pipe, you should also be prepared to handle the PIPE signal, which is sent to you if the
 process on the other end dies before you’re done sending to it.

[160] That is, let them view it one screenful at a time, not set off
 random bird calls.

Talking to Yourself

Another approach to IPC is to make your program talk to itself, in a manner
 of speaking. Actually, your process talks over pipes to a forked copy of
 itself. It works much like the piped open we talked about in the last
 section, except that the child process continues executing your script
 instead of some other command.
To represent this to the open
 function, you use a pseudocommand consisting of a minus. So the second
 argument to open looks like either
 “–|” or “|–”, depending on whether you want to pipe
 from yourself or to yourself. As with an ordinary fork command, the open function returns the child’s process ID
 in the parent process but 0 in the
 child process. Another asymmetry is that the filehandle named by the
 open is used only in the parent
 process. The child’s end of the pipe is hooked to either STDIN or STDOUT as appropriate. That is, if you open a
 pipe to minus with |–, you can write to the filehandle you
 opened, and your kid will find this in STDIN:
if (open(TO, "|–")) {
 print TO $fromparent;
}
else {
 $tochild = <STDIN>;
 exit;
}
If you open a pipe from minus with –|, you can read from the filehandle you
 opened, which will return whatever your kid writes to STDOUT:
if (open(FROM, "–|")) {
 $toparent = <FROM>;
}
else {
 print STDOUT $fromchild;
 exit;
}
One common application of this construct is to bypass the shell
 when you want to open a pipe from a command. You might want to do this
 because you don’t want the shell to interpret any possible
 metacharacters in the filenames you’re trying to pass to the command. If
 you’re running v5.6.1 or later, you can use the multiargument form of
 open to get the same result.
Another use of a forking open is to safely open a file or command
 even while you’re running under an assumed UID or GID. The child you
 fork drops any special access rights,
 then safely opens the file or command and acts as an intermediary,
 passing data between its more powerful parent and the file or command it
 opened. Examples can be found in the section Accessing Commands and Files Under Reduced Privileges in Chapter 20.
One creative use of a forking open is to filter your own output.
 Some algorithms are much easier to implement in two separate passes than
 they are in just one pass. Here’s a simple example in which we emulate
 the Unix tee(1) program by sending our normal
 output down a pipe. The agent on the other end of the pipe (one of our
 own subroutines) distributes our output to all the files
 specified:
tee("/tmp/foo", "/tmp/bar", "/tmp/glarch");

while (<>) {
 print "$ARGV at line $. => $_";
}
close(STDOUT) || die "can't close STDOUT: $!";

sub tee {
 my @output = @_;
 my @handles = ();
 for my $path (@output) {
 my $fh; # open will fill this in
 unless (open ($fh, ">", $path)) {
 warn "cannot write to $path: $!";
 next;
 }
 push @handles, $fh;
 }

 # reopen STDOUT in parent and return
 return if my $pid = open(STDOUT, "|–");
 die "cannot fork: $!" unless defined $pid;

 # process STDIN in child
 while (<STDIN>) {
 for my $fh (@handles) {
 print $fh $_ || die "tee output failed: $!";
 }
 }
 for my $fh (@handles) {
 close($fh) || die "tee closing failed: $!";
 }
 exit; # don't let the child return to main!
}
This technique can be applied repeatedly to push as many filters
 on your output stream as you wish. Just keep calling functions that
 fork-open STDOUT, and have the child
 read from its parent (which it sees as STDIN) and pass the massaged output along to
 the next function in the stream.
Another interesting application of talking to yourself with
 fork-open is to capture the output from an ill-mannered function that
 always splats its results to STDOUT.
 Imagine if Perl only had printf and
 no sprintf. What you’d need would be
 something that worked like backticks, but with Perl functions instead of
 external commands:
badfunc("arg"); # drat, escaped!
$string = forksub(\&badfunc, "arg"); # caught it as string
@lines = forksub(\&badfunc, "arg"); # as separate lines

sub forksub {
 my $kidpid = open my $self, "–|";
 defined $kidpid || die "cannot fork: $!";
 shift–>(@_), exit unless $kidpid;
 local $/ unless wantarray;
 return <$self>; # closes on scope exit
}
We’re not claiming this is efficient; a tied filehandle would
 probably be a good bit faster. But it’s a lot easier to code up if
 you’re in more of a hurry than your computer is.

Bidirectional Communication

Although using open to connect
 to another command over a pipe works reasonably well for
 unidirectional communication, what about bidirectional communication?
 The obvious approach doesn’t actually work:
open(PROG_TO_READ_AND_WRITE, "| some program |") # WRONG!
and if you forget to enable warnings, then you’ll miss out
 entirely on the diagnostic message:
Can't do bidirectional pipe at myprog line 3.
The open function doesn’t allow
 this because it’s rather prone to deadlock unless you’re quite careful.
 But if you’re determined, you can use the standard IPC::Open2 library module to attach two pipes to a subprocess’s
 STDIN and STDOUT. There’s also an IPC::Open3 module for tridirectional I/O (allowing you to also catch
 your child’s STDERR), but this
 requires either an awkward select
 loop or the somewhat more convenient IO::Select module. But then you’ll have to avoid Perl’s buffered
 input operations like <>
 (readline).
Here’s an example using open2:
use IPC::Open2;
local (*Reader, *Writer);
$pid = open2(*Reader, *Writer, "bc –l");
$sum = 2;
for (1 .. 5) {
 print Writer "$sum * $sum\n";
 chomp($sum = <Reader>);
}
close Writer;
close Reader;
waitpid($pid, 0);
print "sum is $sum\n";
You can also autovivify lexical filehandles:
my ($fhread, $fhwrite);
$pid = open2($fhread, $fhwrite, "cat –u –n");
The problem with this in general is that standard I/O buffering is
 really going to ruin your day. Even though your output filehandle is
 autoflushed (the library does this for you) so that the process on the
 other end will get your data in a timely manner, you can’t usually do
 anything to force it to return the favor. In this particular case, we
 were lucky: bc expects to operate
 over a pipe and knows to flush each output line. But few commands are so
 designed, so this seldom works out unless you yourself wrote the program
 on the other end of the double-ended pipe. Even simple, apparently
 interactive programs like ftp fail
 here because they won’t do line buffering on a pipe. They’ll only do it
 on a tty device.
The IO::Pty and Expect modules from CPAN can help with this because they provide
 a real tty (actually, a real pseudo-tty, but it acts like a real one). This gets you line buffering
 in the other process without modifying its program.
If you split your program into several processes and want these to
 all have a conversation that goes both ways, you can’t use Perl’s
 high-level pipe interfaces, because these are all unidirectional. You’ll
 need to use two low-level pipe function calls,
 each handling one direction of the conversation:
pipe(FROM_PARENT, TO_CHILD) || die "pipe: $!";
pipe(FROM_CHILD, TO_PARENT) || die "pipe: $!";
select(((select(TO_CHILD), $| = 1))[0]); # autoflush
select(((select(TO_PARENT), $| = 1))[0]); # autoflush

if ($pid = fork) {
 close FROM_PARENT; close TO_PARENT;
 print TO_CHILD "Parent Pid $$ is sending this\n";
 chomp($line = <FROM_CHILD>);
 print "Parent Pid $$ just read this: '$line'\n";
 close FROM_CHILD; close TO_CHILD;
 waitpid($pid,0);
} else {
 die "cannot fork: $!" unless defined $pid;
 close FROM_CHILD; close TO_CHILD;
 chomp($line = <FROM_PARENT>);
 print "Child Pid $$ just read this: '$line'\n";
 print TO_PARENT "Child Pid $$ is sending this\n";
 close FROM_PARENT; close TO_PARENT;
 exit;
}
On many Unix systems, you don’t actually have to make two separate
 pipe calls to achieve full duplex
 communication between parent and child. The socketpair syscall provides bidirectional connections between related
 processes on the same machine. So instead of two pipes, you only need one socketpair.
use Socket;
socketpair(Child, Parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
 || die "socketpair: $!";

or letting perl pick filehandles for you
my ($kidfh, $dadfh);
socketpair($kidfh, $dadfh, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
 || die "socketpair: $!";
After the fork, the parent
 closes the Parent handle, then reads
 and writes via the Child handle.
 Meanwhile, the child closes the Child
 handle, then reads and writes via the Parent handle.
If you’re looking into bidirectional communications because the
 process you’d like to talk to implements a standard Internet service,
 you should usually just skip the middleman and use a CPAN module
 designed for that exact purpose. (See the section Sockets later in this chapter for a list of some of
 these.)

Named Pipes

A named pipe (often called a FIFO) is a mechanism for setting up a conversation between
 unrelated processes on the same machine. The names in a “named” pipe
 exist in the filesystem, which is just a funny way to say that you can
 put a special file in the filesystem namespace that has another process
 behind it instead of a disk.[161] A FIFO is convenient when you want to connect a process to
 an unrelated one. When you open a FIFO, your process will block until
 there’s a process on the other end. So if a reader opens the FIFO first,
 it blocks until the writer shows up—and vice versa.
To create a named pipe, use the POSIX mkfifo
 function—if you’re on a POSIX system, that is. On Microsoft systems,
 you’ll instead want to look into the Win32::Pipe module, which, despite its possible appearance to the
 contrary, creates named pipes. (Win32 users create anonymous pipes using
 pipe just like the rest of
 us.)
For example, let’s say you’d like to have your .signature file produce a different answer
 each time it’s read. Just make it a named pipe with a Perl program on
 the other end that spits out random quips. Now every time any program
 (like a mailer, newsreader, finger program, and so on) tries to read
 from that file, that program will connect to your program and read in a
 dynamic signature.
In the following example, we use the rarely seen –p file test operator
 to determine whether anyone (or anything) has accidentally removed our
 FIFO.[162] If they have, there’s no reason to try to open it, so we
 treat this as a request to exit. If we’d used a simple open function with a mode of “> $fpath”, there would have been a tiny
 race condition that would have risked accidentally creating the
 signature as a plain file if it disappeared between the –p test and the open. We couldn’t use a
 “+< $fpath” mode, either, because
 opening a FIFO for read‒write is a nonblocking open (this is only true
 of FIFOs). By using sysopen and
 omitting the O_CREAT flag, we avoid
 this problem by never creating a file by accident.
use Fcntl; # for sysopen
 chdir; # go home
 $fpath = ".signature";
 $ENV{PATH} .= ":/usr/games";

 unless (–p $fpath) { # not a pipe
 if (–e _) { # but a something else
 die "$0: won't overwrite .signature\n";
 } else {
 require POSIX;
 POSIX::mkfifo($fpath, 0666) || die "can't mknod $fpath: $!";
 warn "$0: created $fpath as a named pipe\n";
 }
 }

 while (1) {
 # exit if signature file manually removed
 die "Pipe file disappeared" unless –p $fpath;
 # next line blocks until there's a reader
 sysopen(FIFO, $fpath, O_WRONLY)
 || die "can't write $fpath: $!";
 print FIFO "John Smith (smith\@host.org)\n", `fortune –s`;
 close FIFO;
 select(undef, undef, undef, 0.2); # sleep 1/5th of a second
 }
The short sleep after the close is needed to give the reader a
 chance to read what was written. If we just immediately loop back up
 around and open the FIFO again before our reader has finished reading
 the data we just sent, then no end-of-file is seen because there’s once
 again a writer. We’ll both go round and round until, during one
 iteration, the writer falls a little behind and the reader finally sees
 that elusive end-of-file. (And we were worried about race conditions?)

[161] You can do the same thing with Unix-domain sockets, but you
 can’t use open on those.

[162] Another use is to see whether a filehandle is connected to a
 pipe, named or anonymous, as in –p
 STDIN.

System V IPC

Everyone hates System V IPC. It’s slower than paper tape, carves out
 insidious little namespaces completely unrelated to the filesystem, uses
 human-hostile numbers to name its objects, and is constantly losing track
 of its own mind. Every so often, your sysadmin has to go on a
 search-and-destroy mission to hunt down these lost SysV IPC objects with
 ipcs(1) and kill them with
 ipcrm(1), hopefully before the system runs out of
 memory.
Despite all this pain, ancient SysV IPC still has a few valid uses.
 The three kinds of IPC objects are shared memory, semaphores, and
 messages. For message passing, sockets are the preferred mechanisms these
 days, and they’re a lot more portable, too. For simple uses of semaphores,
 the filesystem tends to get used. As for shared memory—well, now there’s a
 problem for you. If you have it, the more modern
 mmap(2) syscall fits the bill, but the quality of the
 implementation varies from system to system. It also requires a bit of
 care to avoid letting Perl reallocate your strings from where
 mmap(2) put them.
The File::Map CPAN module makes this a lot easier. It still requires some
 care in handling, but if you mess things up it just warns you instead of
 dumping core with a segmentation violation.
Here’s a little program that demonstrates controlled access to a
 shared memory buffer by a brood of sibling processes. SysV IPC objects can
 also be shared among unrelated processes on the same
 computer, but then you have to figure out how they’re going to find each
 other. To mediate safe access, we’ll create a semaphore per
 piece.[163]
Every time you want to get or put a new value into the shared
 memory, you have to go through the semaphore first. This can get pretty
 tedious, so we’ll wrap access in an object class. IPC::Shareable goes one step further, wrapping its object class in a
 tie interface.
This program runs until you interrupt it with a Control-C or
 equivalent:
#!/usr/bin/perl –w
use v5.6.0; # or better
use strict;
use sigtrap qw(die INT TERM HUP QUIT);
my $PROGENY = shift(@ARGV) || 3;
eval { main() }; # see DESTROY below for why
die if $@ && $@ !~ /^Caught a SIG/;
print "\nDone.\n";
exit;

sub main {
 my $mem = ShMem–>alloc("Original Creation at " . localtime);
 my(@kids, $child);
 $SIG{CHLD} = "IGNORE";
 for (my $unborn = $PROGENY; $unborn > 0; $unborn––) {
 if ($child = fork) {
 print "$$ begat $child\n";
 next;
 }
 die "cannot fork: $!" unless defined $child;
 eval {
 while (1) {
 $mem–>lock();
 $mem–>poke("$$ " . localtime)
 unless $mem–>peek =~ /^$$\b/o;
 $mem–>unlock();
 }
 };
 die if $@ && $@ !~ /^Caught a SIG/;
 exit; # child death

 }
 while (1) {
 print "Buffer is ", $mem–>get, "\n";
 sleep 1;
 }
}
And here’s the ShMem package,
 which that program uses. You can just tack it on to the end
 of the program, or put it in its own file (with a “1;” at the end) and require it from the main program. (The two IPC
 modules it uses in turn are found in the standard Perl
 distribution.)
package ShMem;
 use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRWXU);
 use IPC::Semaphore;
 sub MAXBUF() { 2000 }

 sub alloc { # constructor method
 my $class = shift();
 my $value = @_ ? shift() : "";

 my $key = shmget(IPC_PRIVATE, MAXBUF, S_IRWXU) || die "shmget: $!";
 my $sem = IPC::Semaphore–>new(IPC_PRIVATE, 1, S_IRWXU | IPC_CREAT)
 or die "IPC::Semaphore–>new: $!";
 $sem–>setval(0,1) or die "sem setval: $!";

 my $self = bless {
 OWNER => $$,
 SHMKEY => $key,
 SEMA => $sem,
 } => $class;

 $self–>put($value);
 return $self;
 }
Now for the fetch and store methods. The get and put
 methods lock the buffer, but peek and
 poke don’t, so the latter two should be
 used only while the object is manually locked—which you have to do when
 you want to retrieve an old value and store back a modified version, all
 under the same lock. The demo program does this in its  while (1) loop. The entire transaction must
 occur under the same lock, or the testing and setting wouldn’t be atomic
 and might bomb.
sub get {
 my $self = shift();
 $self–>lock;
 my $value = $self–>peek(@_);
 $self–>unlock;
 return $value;
 }
 sub peek {
 my $self = shift();
 shmread($self–>{SHMKEY}, my $buff=q(), 0, MAXBUF) || die "shmread: $!";
 substr($buff, index($buff, "\0")) = q();
 return $buff;
 }
 sub put {
 my $self = shift();
 $self–>lock;
 $self–>poke(@_);
 $self–>unlock;
 }
 sub poke {
 my($self,$msg) = @_;
 shmwrite($self–>{SHMKEY}, $msg, 0, MAXBUF) || die "shmwrite: $!";
 }
 sub lock {
 my $self = shift();
 $self–>{SEMA}–>op(0,–1,0) || die "semop: $!";
 }
 sub unlock {
 my $self = shift();
 $self–>{SEMA}–>op(0,1,0) || die "semop: $!";
 }
Finally, the class needs a destructor so that when the object goes
 away, we can manually deallocate the shared memory and the semaphore
 stored inside the object. Otherwise, they’ll outlive their creator, and
 you’ll have to resort to ipcs(1) and
 ipcrm(1), or a sysadmin, to get rid of
 them. That’s why we went through the elaborate wrappers in the main
 program to convert signals into exceptions: so that all destructors get
 run, SysV IPC objects get deallocated, and sysadmins get off our
 case.
sub DESTROY {
 my $self = shift();
 return unless $self–>{OWNER} == $$; # avoid dup dealloc
 shmctl($self–>{SHMKEY}, IPC_RMID, 0) || warn "shmctl RMID: $!";
 $self–>{SEMA}–>remove() || warn "sema–>remove: $!";
}

[163] It would be more realistic to create a pair of semaphores for
 each bit of shared memory, one for reading and the other for writing;
 in fact, that’s what the IPC::Shareable module on CPAN does. But we’re trying to keep things
 simple here. It’s worth admitting, though, that with a couple of
 semaphores, you could then make use of pretty much the only redeeming
 feature of SysV IPC: performing atomic operations on entire sets of
 semaphores as one unit, which is occasionally useful.

Sockets

The IPC mechanisms discussed earlier all have one severe restriction: they’re
 designed for communication between processes running on the same computer.
 (Even though files can sometimes be shared across machines through
 mechanisms like NFS, locking fails miserably on many NFS implementations,
 which takes away most of the fun of concurrent access.) For
 general-purpose networking, sockets are the way to go. Although sockets
 were invented under BSD, they quickly spread to other forms of Unix, and
 nowadays you can find a socket interface on nearly every viable operating
 system out there. If you don’t have sockets on your machine, you’re going
 to have tremendous difficulty using the Internet.
With sockets, you can do both virtual circuits (as TCP streams) and
 datagrams (as UDP packets). You may be able to do even
 more, depending on your system. But the most common sort of socket
 programming uses TCP over Internet-domain sockets, so that’s the kind we
 cover here. Such sockets provide reliable connections that work a little
 bit like bidirectional pipes that aren’t restricted to the local machine.
 The two killer apps of the Internet, email and web browsing, both rely
 almost exclusively on TCP sockets.
You also use UDP heavily without knowing it. Every time your machine tries to
 find a site on the Internet, it sends UDP packets to your DNS server
 asking it for the actual IP address. You might use UDP yourself when you
 want to send and receive datagrams. Datagrams are cheaper than TCP
 connections precisely because they aren’t connection-oriented; that is,
 they’re less like making a telephone call and more like dropping a letter
 in the mailbox. But UDP also lacks the reliability that TCP provides, making it more suitable for situations where
 you don’t care whether a packet or two gets folded, spindled, or
 mutilated. Or for when you know that a higher-level protocol will enforce
 some degree of redundancy or fail-softness (which is what DNS
 does).
Other choices are available but far less common. You can use
 Unix-domain sockets, but they only work for local communication. Various
 systems support various other non-IP‐based protocols. Doubtless these are
 somewhat interesting to someone somewhere, but we’ll restrain ourselves
 from talking about them somehow.
The Perl functions that deal with sockets have the same names as the
 corresponding syscalls in C, but their arguments tend to differ for two
 reasons: first, Perl filehandles work differently from C file descriptors;
 and second, Perl already knows the length of its strings, so you don’t
 need to pass that information. See Chapter 27 for details
 on each socket-related syscall.
One problem with ancient socket code in Perl was that people would
 use hardcoded values for constants passed into socket functions, which
 destroys portability. Like most syscalls, the socket-related ones quietly
 but politely return undef when they
 fail, instead of raising an exception. It is therefore essential to check
 these functions’ return values, since if you pass them garbage, they
 aren’t going to be very noisy about it. If you ever see code that does
 anything like explicitly setting $AF_INET =
 2, you know you’re in for big trouble. An immeasurably superior
 approach is to use the Socket module or the even friendlier IO::Socket module, both of which are standard. These modules provide
 various constants and helper functions you’ll need for setting up clients
 and servers. For optimal success, your socket programs should always start
 out like this (and don’t forget to add the –T taint-checking switch to the shebang line for
 servers):
#!/usr/bin/perl
use v5.14;
use warnings;
use autodie;

or IO::Socket::IP from CPAN for IPv6
use IO::Socket;
As noted elsewhere, Perl is at the mercy of your C libraries for
 much of its system behavior, and not all systems support all sorts of
 sockets. It’s probably safest to stick with normal TCP and UDP socket
 operations. For example, if you want your code to stand a chance of being
 portable to systems you haven’t thought of, don’t expect there to be
 support for a reliable sequenced-packet protocol. Nor should you expect to
 pass open file descriptors between unrelated processes over a local
 Unix-domain socket. (Yes, you can really do that on many Unix machines—see
 your local recvmsg(2) manpage.)
If you just want to use a standard Internet service like mail, news,
 domain name service, FTP, Telnet, the Web, and so on, then instead of
 starting from scratch, try using existing CPAN modules for these.
 Prepackaged modules designed for these include Net::SMTP (or Mail::Mailer), Net::NNTP, Net::DNS, Net::FTP, Net::Telnet, and the various HTTP-related modules. The libnet and libwww module suites both comprise many
 individual networking modules.
In the sections that follow, we present several sample clients and
 servers without a great deal of explanation of each function used, as that
 would mostly duplicate the descriptions we’ve already provided in Chapter 27.

Networking Clients

Use Internet-domain sockets when you want reliable client-server communication
 between potentially different machines.
To create a TCP client that connects to a server somewhere, it’s
 usually easiest to use the standard IO::Socket::INET module:
#!/usr/bin/env perl
use v5.14;
use warnings;
use autodie;
use IO::Socket::INET;

my $remote_host = "localhost"; # replace with real remote host
my $remote_port = "daytime"; # replace with service name or portnumber

my $socket = IO::Socket::INET–>new(
 PeerAddr => $remote_host,
 PeerPort => $remote_port,
 Type => SOCK_STREAM,
);

send something over the socket; netstuff likes CRLFs
daytime doesn't take input, but use on other servers
print $socket "Why don't you call me anymore?\r\n";

read the remote answer,
my $answer = <$socket> =~ s/\R\z//r;

say "Got answer: $answer";

and terminate the connection when we're done.
close($socket);
A shorthand form of the call is good enough when you just have a
 host and port combination to connect to, and are willing to use defaults
 for all other fields:
$socket = IO::Socket::INET–>new("www.yahoo.com:80")
 or die "Couldn't connect to port 80 of yahoo: $!";
For IPv6, it’s easiest if you get the IO::Socket::IP module from CPAN. If you have a release of Perl later
 than v5.14, it may even be on our system already. Once you’ve done that,
 all you do is change the name of the class in the code above from
 IO::Socket::INET to IO::Socket::IP, and
 it will work for IPv6, too. That class is an extra sockdomain method that you can test to see
 which flavor of IP you got:
#!/usr/bin/env perl
use v5.14;
use warnings;
use autodie;
use IO::Socket::IP;

my $remote_host = "localhost";
my $remote_port = "daytime";

my $socket = IO::Socket::IP–>new(
 PeerAddr => $remote_host,
 PeerPort => $remote_port,
 Type => SOCK_STREAM,
);

my $familyname = ($socket–>sockdomain == AF_INET6) ? "IPv6" :
 ($socket–>sockdomain == AF_INET) ? "IPv4" :
 "unknown";

say "Connected to $remote_host:$remote_port via ", $familyname;

send something over the socket: networks like CRLFs
print $socket "Why don't you call me anymore?\r\n";

read the remote answer,
my $answer = <$socket> =~ s/\R\z//r;

say "Got answer: $answer";

and terminate the connection when we're done.
close($socket);
To connect using the basic Socket module:
use v5.14;
use warnings;
use autodie;
use Socket;

my $remote_host = "localhost";
my $remote_port = 13; # daytime service port

socket(my $socket, PF_INET, SOCK_STREAM, getprotobyname("tcp"));
my $internet_addr = inet_aton($remote_host);
my $paddr = sockaddr_in($remote_port, $internet_addr);

connect($socket, $paddr);
$socket–>autoflush(1);

print $socket "Why don't you call me anymore?\r\n";
my $answer = <$socket> =~ s/\R\z//r;

say "Answer was: ", $answer;
You may use IPv6 with the standard Socket module in v5.14, but the function calls
 and API are a tiny bit different from what is shown above, which is IPv4
 only. See the Socket manpage for details.
If you want to close only your side of the connection so that the
 remote end gets an end-of-file, but you can still read data coming from
 the server, use the shutdown syscall for a
 half-close:
no more writing to server
shutdown($socket, 1); # Socket::SHUT_WR constant in v5.6

Networking Servers

Here’s a corresponding server to go along with it. It’s pretty easy with the
 standard IO::Socket::INET class:
use IO::Socket::INET;

$server = IO::Socket::INET–>new(LocalPort => $server_port,
 Type => SOCK_STREAM,
 Reuse => 1,
 Listen => 10) # or SOMAXCONN
 || die "Couldn't be a tcp server on port $server_port: $!\n";

while ($client = $server–>accept()) {
 # $client is the new connection
}

close($server);
You can also write that using the lower-level Socket module:
#!/usr/bin/env perl

use v5.14;
use warnings;
use autodie;
use Socket;

my $server_port = 12345; # pick a number

make the socket
socket(my $server, PF_INET, SOCK_STREAM, getprotobyname("tcp"));

so we can restart our server quickly
setsockopt($server, SOL_SOCKET, SO_REUSEADDR, 1);

build up my socket address
my $own_addr = sockaddr_in($server_port, INADDR_ANY);
bind($server, $own_addr);

establish a queue for incoming connections
listen($server, SOMAXCONN);

accept and process connections
while (accept(my $client, $server)) {
 # do something with new client connection in $client
} continue {
 close $client;
}

close($server);
The client doesn’t need to bind
 to any address, but the server does. We’ve specified its address as
 INADDR_ANY, which means that clients
 can connect from any available network interface. If you want to sit on
 a particular interface (like the external side of a gateway or firewall
 machine), use that interface’s real address instead. (Clients can also
 do this, but they rarely need to.)
If you want to know which machine connected to you, call getpeername on the
 client connection. This returns an IP address, which you’ll have to
 translate into a name on your own (if you can):
use Socket;
$other_end = getpeername($client)
 || die "Couldn't identify other end: $!\n";
($port, $iaddr) = unpack_sockaddr_in($other_end);
$actual_ip = inet_ntoa($iaddr);
$claimed_hostname = gethostbyaddr($iaddr, AF_INET);
This is trivially spoofable because the owner of that IP address
 can set up her reverse tables to say anything she wants. For a small
 measure of additional confidence, translate back the other way
 again:
@name_lookup = gethostbyname($claimed_hostname)
 || die "Could not reverse $claimed_hostname: $!\n";
@resolved_ips = map { inet_ntoa($_) } @name_lookup[4 .. $#name_lookup];
$might_spoof = !grep { $actual_ip eq $_ } @resolved_ips;
Once a client connects to your server, your server can do I/O both
 to and from that client handle. But while the server is so engaged, it
 can’t service any further incoming requests from other clients. To avoid
 getting locked down to just one client at a time, many servers
 immediately fork a clone of
 themselves to handle each incoming connection. (Others fork in advance, or multiplex I/O between
 several clients using the select
 syscall.)
REQUEST:
 while (accept(my $client => $server)) {
 if ($kidpid = fork) {
 close $client; # parent closes unused handle
 next REQUEST;
 }
 defined($kidpid) || die "cannot fork: $!";

 close $server; # child closes unused handle

 $client–>autoflush(1);

 # per–connection child code does I/O with Client handle
 $input = <$client>;
 print $client "output\n"; # or STDOUT, same thing

 open(STDIN, "<&", $client) || die "can't dup client: $!";
 open(STDOUT, ">&", $client) || die "can't dup client: $!";
 open(STDERR, ">&", $client) || die "can't dup client: $!";

 # run the calculator, just as an example
 system("bc –l"); # or whatever you'd like, so long as
 # it doesn't have shell escapes!
 print "done\n"; # still to client

 close $client;
 exit; # don't let the child back to accept!
 }
This server clones off a child with fork for each incoming request. That way it
 can handle many requests at once, as long as you can create more
 processes. (You might want to limit this.) Even if you don’t fork, the listen will allow up to SOMAXCONN (usually five or more) pending
 connections. Each connection uses up some resources, although not as
 much as a process. Forking servers have to be careful about cleaning up
 after their expired children (called “zombies” in Unix-speak) because
 otherwise they’d quickly fill up your process table. The REAPER code discussed in the earlier section
 Signals will take care of that for you, or you may
 be able to assign $SIG{CHLD} =
 "IGNORE".
Before running another command, we connect the standard input and
 output (and error) up to the client connection. This way any command
 that reads from STDIN and writes to
 STDOUT can also talk to the remote
 machine. Without the reassignment, the command couldn’t find the client
 handle—which by default gets closed across the exec boundary, anyway.
When you write a networking server, we strongly suggest that you
 use the –T switch to enable taint
 checking even if you aren’t running setuid or setgid. This is always a
 good idea for servers and any other program that runs on behalf of
 someone else (like all CGI scripts), because it lessens the chances that
 people from the outside will be able to compromise your system. See the
 section Handling Insecure Data in Chapter 20 for
 much more about all this.
One additional consideration when writing Internet programs: many
 protocols specify that the line terminator should be CRLF, which can be specified various ways:
 "\r\n",[164] "\015\012", or "\xd\xa", or even chr(13).chr(10). Many Internet programs will
 in fact accept a bare "\012" as a
 line terminator, but that’s because Internet programs usually try to be
 liberal in what they accept and strict in what they emit. (Now if only
 we could get people to do the same…)

[164] Except on prehistoric, pre-Unix Macs that nobody we know of
 still uses.

Message Passing

As we mentioned earlier, UDP communication involves much lower overhead but
 provides no reliability, since there are no promises that messages will
 arrive in a proper order—or even that they will arrive at all. UDP is
 often said to stand for Unreliable Datagram Protocol.
Still, UDP offers some advantages over TCP, including the ability to broadcast or multicast to a
 whole bunch of destination hosts at once (usually on your local subnet).
 If you find yourself getting overly concerned about reliability and
 starting to build checks into your message system, then you probably
 should just use TCP to start with. True, it costs more to set up and
 tear down a TCP connection, but if you can amortize that over many
 messages (or one long message), it doesn’t much matter.
Anyway, here’s an example of a UDP program. It contacts the UDP
 time port of the machines given on the command line, or everybody it can
 find using the universal broadcast address if no arguments were
 supplied.[165] Not all machines have a time server enabled, especially
 across firewall boundaries, but those that do will send you back a
 4-byte integer packed in network byte order that represents what time
 that machine thinks it is. The time returned, however, is in the number
 of seconds since 1900. You have to subtract the number of seconds
 between 1900 and 1970 to feed that time to the localtime or
 gmtime conversion functions.
#!/usr/bin/perl
clockdrift – compare other systems' clocks with this one
without arguments, broadcast to anyone listening.
wait one–half second for an answer.

use v5.14;
use warnings;
use strict;
use Socket;

unshift(@ARGV, inet_ntoa(INADDR_BROADCAST))
 unless @ARGV;

socket(my $msgsock, PF_INET, SOCK_DGRAM, getprotobyname("udp"))
 || die "socket: $!";

Some borked machines need this. Shouldn't hurt anyone else.
setsockopt($msgsock, SOL_SOCKET, SO_BROADCAST, 1)
 || die "setsockopt: $!";

my $portno = getservbyname("time", "udp")
 || die "no udp time port";

for my $target (@ARGV) {
 print "Sending to $target:$portno\n";
 my $destpaddr = sockaddr_in($portno, inet_aton($target));
 send($msgsock, "x", 0, $destpaddr)
 || die "send: $!";
}

daytime service returns 32–bit time in seconds since 1900
my $FROM_1900_TO_EPOCH = 2_208_988_800;
my $time_fmt = "N"; # and it does so in this binary format
my $time_len = length(pack($time_fmt, 1)); # any number's fine

my $inmask = q(); # string to store the fileno bits for select
vec($inmask, fileno($msgsock), 1) = 1;

wait only half a second for input to show up
while (select(my $outmask = $inmask, undef, undef, 0.5)) {
 defined(my $srcpaddr = recv($msgsock, my $bintime, $time_len, 0))
 || die "recv: $!";
 my($port, $ipaddr) = sockaddr_in($srcpaddr);
 my $sendhost = sprintf "%s [%s]",
 gethostbyaddr($ipaddr, AF_INET) || "UNKNOWN",
 inet_ntoa($ipaddr);
 my $delta = unpack($time_fmt, $bintime) –
 $FROM_1900_TO_EPOCH – time();
 print "Clock on $sendhost is $delta seconds ahead of this one.\n";
}

[165] If that doesn’t work, run ifconfig
 −a to find the proper local broadcast address.

Chapter 16. Compiling

If you came here looking for a Perl compiler, you may be surprised to discover
 that you already have one—your perl
 program (typically /usr/bin/perl)
 already contains a Perl compiler. That might not be what you were thinking,
 and if it wasn’t, you may be pleased to know that we do also
 provide code
 generators (which some well-meaning folks call “compilers”), and
 we’ll discuss those toward the end of this chapter. But first we want to
 talk about what we think of as The Compiler. Inevitably there’s going to be
 a certain amount of low-level detail in this chapter that some people will
 be interested in and some people will not. If you find that you’re not,
 think of it as an opportunity to practice your speed-reading skills.
Imagine that you’re a conductor who’s ordered the score for a large
 orchestral work. When the box of music arrives, you find several dozen
 booklets, one for each member of the orchestra with just his part in it.
 But, curiously, your master copy with all the parts is missing. Even more
 curiously, the parts you do have are written out using
 plain English instead of musical notation. Before you can put together a
 program for performance, or even give the music to your orchestra to play,
 you’ll first have to translate the prose descriptions into the normal system
 of notes and bars. Then you’ll need to compile the individual parts into one
 giant score so that you can get an idea of the overall program.
Similarly, when you hand the source code of your Perl script over to
 perl to execute, it is no more useful to
 the computer than the English description of the symphony was to the
 musicians. Before your program can run, Perl needs to compile[166] these English-looking directions into a special symbolic
 representation. Your program still isn’t running, though, because the
 compiler only compiles. Like the conductor’s score, even after your program
 has been converted to an instruction format suitable for interpretation, it
 still needs an active agent to interpret those instructions.

[166] Or translate, or transform, or transfigure, or transmute, or
 transmogrify.

The Life Cycle of a Perl Program

You can break up the life cycle of a Perl program into four distinct phases, each
 with separate stages of its own. The first and the last are the most
 interesting and the middle two are optional. The stages are depicted in
 Figure 16-1.
[image: The life cycle of a Perl program]

Figure 16-1. The life cycle of a Perl program

	1. The Compilation Phase
	During phase 1, the compile
 phase, the Perl compiler converts your program into a data
 structure called a parse
 tree. Along with the standard parsing techniques, Perl
 employs a much more powerful one: it uses BEGIN blocks to guide further compilation.
 BEGIN blocks are handed off to
 the interpreter to be run as soon as they are parsed, which
 effectively runs them in FIFO order
 (first in, first out). This includes any use and no declarations; these are really
 just BEGIN blocks in
 disguise. UNITCHECK
 blocks are executed as soon as their compilation unit is
 finished being compiled; these are used for per-unit initialization.
 Any CHECK, INIT, and END blocks are scheduled by the compiler for delayed
 execution.
Lexical declarations are noted, but assignments to them are
 not executed. All eval
 BLOCKs, s///e constructs, and noninterpolated
 regular expressions are compiled here, and constant expressions are
 preevaluated. The compiler is now done, unless it gets called back
 into service later. At the end of this phase, the interpreter is
 again called up to execute any scheduled CHECK blocks in LIFO order (last in, first
 out). The presence or absence of a CHECK block determines whether we next go
 to phase 2 or skip over to phase 4.

	2. The Code Generation Phase
 (optional)
	CHECK blocks are installed by code generators, so this optional phase
 occurs when you explicitly use one of the code generators (described
 later in Code Generators). These convert the compiled
 (but not yet run) program into either C source code or serialized
 Perl bytecodes—a
 sequence of values expressing internal Perl instructions. If you
 choose to generate C source code, it can eventually produce a file
 called an executable image in native
 machine language.[167] At this point, your program goes into suspended
 animation. If you made an executable image, you can go directly to
 phase 4; otherwise, you need to reconstitute the freeze-dried
 bytecodes in phase 3.

	3. The Parse Tree Reconstruction Phase
 (optional)
	To reanimate the program, its parse tree must be
 reconstructed. This phase exists only if code generation occurred
 and you chose to generate bytecode. Perl must first reconstitute its
 parse trees from that bytecode sequence before the program can run.
 Perl does not run directly from the bytecodes; that would be
 slow.

	4. The Execution Phase
	Finally, what you’ve all been waiting for: running your program.
 Hence, this is also called the run
 phase. The interpreter takes the parse tree (which it
 got either directly from the compiler or indirectly from code
 generation and subsequent parse tree reconstruction) and executes
 it. (Or, if you generated an executable image file, it can be run as
 a standalone program since it contains an embedded Perl
 interpreter.)
At the start of this phase, before your main program gets to
 run, all scheduled INIT blocks are
 executed in FIFO order. Then your main program is run. The
 interpreter can call back into the compiler as needed upon
 encountering an eval
 STRING, a do FILE or
 require statement, an s///ee construct, or a pattern match with
 an interpolated variable that is found to contain a legal code
 assertion.
When your main program finishes, any delayed END blocks are
 finally executed, this time in LIFO order. The very first one seen will execute
 last, and then you’re done. END
 blocks are skipped only if you exec or your process is blown away by an
 uncaught catastrophic error. Ordinary exceptions are not considered
 catastrophic.

Now we’ll discuss these phases in greater detail, and in a different
 order.

[167] Your original script is an executable
 file, too, but it’s not machine language, so we
 don’t call it an image. An image file is called that because
 it’s a verbatim copy of the machine codes your CPU knows how to
 execute directly.

Compiling Your Code

Perl is always in one of two modes of operation: either it is compiling your
 program, or it is executing it—never both at the same time. Throughout
 this book, we refer to certain events as happening at compile time, or we
 say that “the Perl compiler does this and that”. At
 other points, we mention that something else occurs at runtime, or that
 “the Perl interpreter does this and that”. Although
 you can get by with thinking of both the compiler and interpreter as
 simply “Perl”, understanding which of these two roles Perl is playing at
 any given point is essential to understanding why many things happen as
 they do. The perl executable implements
 both roles: first the compiler, then the interpreter. (Other roles are
 possible, too; perl is also an
 optimizer and a code generator. Occasionally, it’s even a trickster—but
 all in good fun.)
It’s also important to understand the distinction between compile phase and compile time, and between run phase and runtime. A typical Perl program gets one
 compile phase and then one run phase. A “phase” is a large-scale concept.
 But compile time and runtime are small-scale concepts. A given compile
 phase does mostly compile-time stuff, but it also does some runtime stuff
 via BEGIN blocks. A given
 run phase does mostly runtime stuff, but it can do compile-time stuff
 through operators like eval
 STRING.
In the typical course of events, the Perl compiler reads through
 your entire program source before execution starts. This is when Perl
 parses the declarations, statements, and expressions to make sure they’re
 syntactically legal.[168] If it finds a syntax error, the compiler attempts to recover
 from the error so it can report any other errors later in the source.
 Sometimes this works, and sometimes it doesn’t; syntax errors have a noisy
 tendency to trigger a cascade of false alarms. Perl bails out in
 frustration after about 10 errors.
In addition to the interpreter that processes the BEGIN blocks, the compiler processes your
 program with the connivance of three notional agents. The lexer scans for each
 minimal unit of meaning in your program. These are sometimes called
 lexemes, but you’ll more often hear them referred to as tokens in texts about programming languages.
 The lexer is sometimes called a tokener or a scanner, and what it does is
 sometimes called lexing or tokenizing. The parser then tries to make sense out of
 groups of these tokens by assembling them into larger constructs, such as
 expressions and statements, based on the grammar of the Perl language.
 The optimizer rearranges and reduces these
 larger groupings into more efficient sequences. It picks its optimizations
 carefully, not wasting time on marginal optimizations, because the Perl
 compiler has to be blazing fast when used as a load-and-go
 compiler.
This doesn’t happen in independent stages but all at once with a lot
 of cross talk between the agents. The lexer occasionally needs hints from
 the parser to know which of several possible token types it’s looking at.
 (Oddly, lexical scope is one of the things the lexical analyzer
 doesn’t understand, because that’s the other meaning
 of “lexical”.) The optimizer also needs to keep track of what the parser
 is doing, because some optimizations can’t happen until the parse has
 reached a certain point, like finishing an expression, statement, block,
 or subroutine.
You may think it odd that the Perl compiler does all these things at
 once instead of one after another. However, it’s really just the same
 messy process you go through to understand natural language on the fly,
 while you’re listening to it or reading it. You don’t wait until the end
 of a chapter to figure out what the first sentence meant. Consider the correspondences listed in Table 16-1.
Table 16-1. Corresponding terms in computer languages and natural
 languages
	Computer Language	Natural Language
	Character	Letter
	Token	Morpheme
	Term	Word
	Expression	Phrase
	Statement	Sentence
	Block	Paragraph
	File	Chapter
	Program	Story

Assuming the parse goes well, the compiler deems your input a valid
 story, er, program. If you use the –c
 switch when running your program, it prints out a “syntax OK” message and
 exits. Otherwise, the compiler passes the fruits of its efforts on to
 other agents. These “fruits” come in the form of a parse tree.
 Each fruit on the tree—or node, as it’s called—represents
 one of Perl’s internal opcodes, and the branches on
 the tree represent that tree’s historical growth pattern. Eventually, the
 nodes will be strung together linearly, one after another, to indicate the
 execution order in which the runtime system will visit those nodes.
Each opcode is the smallest unit of executable instruction that Perl
 can think about. You might see an expression like $a = –($b + $c) as one statement, but Perl
 thinks of it as six separate opcodes. Laid out in a simplified format, the
 parse tree for that expression would look like Figure 16-2. The numbers represent the visitation order
 that the Perl runtime system will eventually follow.
[image: Opcode visitation order of $a = −($b + $c)]

Figure 16-2. Opcode visitation order of $a = −($b + $c)

Perl isn’t a one-pass compiler as some might imagine. (One-pass
 compilers are great at making things easy for the computer and hard for
 the programmer.) It’s really a multipass, optimizing compiler consisting
 of at least three different logical passes that are interleaved in
 practice. Passes 1 and 2 run alternately as the compiler repeatedly
 scurries up and down the parse tree during its construction; pass 3
 happens whenever a subroutine or file is completely parsed.
 Here are those passes:
	Pass 1: Bottom-up Parsing
	During this pass, the parse tree is built up by the
 yacc(1) parser using the tokens it’s fed from
 the underlying lexer (which could be considered another logical pass
 in its own right). Bottom-up just means that the parser knows about
 the leaves of the tree before it knows about its branches and root.
 It really does figure things out from bottom to top in Figure 16-2, since we drew the root at the top,
 in the idiosyncratic fashion of computer scientists (and
 linguists).
As each opcode node is constructed, per-opcode sanity checks
 verify correct semantics, such as the correct number and types of
 arguments used to call built-in functions. As each subsection of the
 tree takes shape, the optimizer considers what transformations it
 can apply to the entire subtree now beneath it. For instance, once
 it knows that a list of values is being fed to a function that takes
 a specific number of arguments, it can throw away the opcode that
 records the number of arguments for functions that take a varying
 number of arguments. A more important optimization, known as
 constant folding, is described later in this
 section.
This pass also constructs the node visitation order used later
 for execution, which is a really neat trick because the first place
 to visit is almost never the top node. The compiler makes a
 temporary loop of opcodes, with the top node pointing to the first
 opcode to visit. When the top-level opcode is incorporated into
 something bigger, that loop of opcodes is broken, only to make a
 bigger loop with the new top node. Eventually the loop is broken for
 good when the start opcode gets poked into some other structure such
 as a subroutine descriptor. The subroutine caller can still find
 that first opcode despite its being way down at the bottom of the
 tree, as it is in Figure 16-2. There’s no
 need for the interpreter to recurse back down the parse tree to
 figure out where to start.

	Pass 2: Top-down Optimizer
	A person reading a snippet of Perl code (or of English code, for that
 matter) cannot determine the context without examining the
 surrounding lexical elements. Sometimes you can’t decide what’s
 really going on until you have more information. Don’t feel bad,
 though, because you’re not alone: neither can the compiler. In this
 pass, the compiler descends back down the subtree it’s just built to
 apply local optimizations, the most notable of which is
 context propagation. The compiler marks
 subjacent nodes with the appropriate contexts (void, scalar, list,
 reference, or lvalue) imposed by the current node. Unwanted opcodes
 are nulled out but not deleted, because it’s now too late to
 reconstruct the execution order. We’ll rely on the third pass to
 remove them from the provisional execution order determined by the
 first pass.

	Pass 3: Peephole Optimizer
	Certain units of code have their own storage space in which
 they keep lexically scoped variables. (Such a space is called a
 scratchpad in Perl lingo.) These units include
 eval
 STRINGs, subroutines, and entire files.
 More importantly from the standpoint of the optimizer, they each
 have their own entry point, which means that while we know the
 execution order from here on, we can’t know what happened before
 because the construct could have been called from anywhere. So when
 one of these units is done being parsed, Perl runs a peephole
 optimizer on that code. Unlike the previous two passes, which walked
 the branch structure of the parse tree, this pass traverses the code
 in linear execution order, since this is basically the last
 opportunity to do so before we cut the opcode list off from the
 parser. Most optimizations were already performed in the first two
 passes, but some can’t be.
Assorted late-term optimizations happen here, including
 stitching together the final execution order by skipping over nulled
 out opcodes, and recognizing when various opcode juxtapositions can
 be reduced to something simpler. The recognition of chained string
 concatenations is one important optimization, since you’d really
 like to avoid copying a string back and forth each time you add a
 little bit to the end. This pass doesn’t just optimize; it also does
 a great deal of “real” work: trapping barewords, generating warnings
 on questionable constructs, checking for code unlikely to be
 reached, resolving pseudohash keys, and looking for subroutines
 called before their prototypes had been compiled.

	Pass 4: Code Generation
	This pass is optional; it isn’t used in the normal scheme of
 things. But if any of the three code generators—B::Bytecode, B::C, and B::CC—are invoked, the parse tree is accessed one final
 time. The code generators emit either serialized Perl bytecodes used
 to reconstruct the parse tree later or literal C code representing
 the state of the compile-time parse tree.
Generation of C code comes in two different flavors. B::C simply reconstructs the parse tree
 and runs it using the usual runops loop that Perl itself uses during
 execution. B::CC produces a
 linearized and optimized C equivalent of the runtime code path
 (which resembles a giant jump table) and executes that
 instead.

During compilation, Perl optimizes your code in many, many ways. It
 rearranges code to make it more efficient at execution time. It deletes
 code that can never be reached during execution, like an if (0) block, or the elsifs and the else in an if
 (1) block. If you use lexically typed variables declared with
 my ClassName $var or our ClassName $var, and the ClassName package was set up with the fields pragma, accesses to constant fields from the underlying
 pseudohash are typo-checked at compile time and converted into array
 accesses instead. If you supply the sort operator with a simple enough comparison
 routine, such as {$a <=> $b} or
 {$b cmp $a}, this is replaced by a call
 to compiled C code.
Perl’s most dramatic optimization is probably the way it resolves
 constant expressions as soon as possible. For example, consider the parse
 tree shown in Figure 16-2. If nodes 1 and 2 had
 both been literals or constant functions, nodes 1 through 4 would have
 been replaced by the result of that computation, which would look
 something like Figure 16-3.
[image: Constant folding]

Figure 16-3. Constant folding

This is called constant folding. Constant folding isn’t limited to simple cases such as
 turning 2**10 into 1024 at compile time. It also resolves function
 calls—both built-ins and user-declared subroutines that meet the criteria
 from the section “Inlining Constant Functions” in Chapter 7. Reminiscent of FORTRAN compilers’ notorious
 knowledge of their own intrinsic functions, Perl also knows which of its
 own built-ins to call during compilation. That’s why if you try to take
 the log of 0.0 or the sqrt of a negative constant, you’ll incur a
 compilation error, not a runtime error, and the interpreter is never run
 at all.[169] Even arbitrarily complicated expressions are resolved early,
 sometimes triggering the deletion of complete blocks such as the one
 here:
if (2 * sin(1)/cos(1) < 3 && somefn()) { whatever() }
No code is generated for what can never be evaluated. Because the
 first part is always false, neither somefn nor whatever can ever be called. (So don’t expect to
 goto labels inside that block, because
 it won’t even exist at runtime.) If somefn were an inlinable constant function, then
 even switching the evaluation order like this:
if (somefn() && 2 * sin(1)/cos(1) < 3) { whatever() }
wouldn’t change the outcome, since the entire expression still
 resolves at compile time. If whatever
 were inlinable, it wouldn’t be called at runtime, nor even during
 compilation; its value would just be inserted as though it were a literal
 constant. You would then incur a warning about a “Useless use of a
 constant in void context”. This might surprise you if you didn’t realize
 it was a constant. However, if whatever
 were the last statement evaluated in a function called in a nonvoid
 context (as determined by the optimizer), you wouldn’t see the
 warning.
You can see the final result of the constructed parse tree after all
 optimization stages with perl –Dx. (The
 –D switch requires a special
 debugging-enabled build of Perl). Also see the B::Deparse module in the section Code Development Tools.
All in all, the Perl compiler works hard (but not
 too hard) to optimize code so that, come runtime,
 overall execution is sped up. It’s about time to get your program running,
 so let’s do that now.

[168] No, there’s no formal syntax diagram like a BNF, but you’re
 welcome to peruse the perly.y
 file in the Perl source tree, which contains the yacc(1) grammar Perl uses. We
 recommend that you stay out of the lexer, which has been known to
 induce eating disorders in lab rats.

[169] Actually, we’re oversimplifying here. The interpreter does get
 run, because that’s how the constant folder is implemented. But it is
 run immediately at compile time, similar to how BEGIN blocks are executed.

Executing Your Code

To the first approximation, SPARC programs only run on SPARC machines,
 Intel programs only run on Intel machines, and Perl programs only run on
 Perl machines. A Perl machine possesses those attributes that a Perl
 program would find ideal in a computer: memory that is automatically
 allocated and deallocated; fundamental data types that are dynamic
 strings, arrays, and hashes, and have no size limits; and systems that all
 behave pretty much the same way. The job of the Perl interpreter is to
 make whatever computer it happens to be running on appear to be one of
 these idealistic Perl machines.
This fictitious machine presents the illusion of a computer
 specially designed to do nothing but run Perl programs. Each opcode
 produced by the compiler is a fundamental command in this emulated
 instruction set. Instead of a hardware program counter, the interpreter
 just keeps track of the current opcode to execute. Instead of a hardware
 stack pointer, the interpreter has its own virtual stack. This stack is
 very important because the Perl virtual machine (which we refuse to call a
 PVM) is a stack-based machine. Perl opcodes are internally called
 PP codes (short for “push-pop codes”) because they
 manipulate the interpreter’s virtual stack to find all operands, process
 temporary values, and store all results.
If you’ve ever programmed in Forth or PostScript, or used an HP
 scientific calculator with RPN (“Reverse Polish Notation”) entry, you know how a stack
 machine works. Even if you haven’t, the concept is simple: to add 3 and 4,
 you do things in the order 3 4 +
 instead of the more conventional 3 + 4.
 What this means in terms of the stack is that you push 3 and then 4
 onto the stack, and + then pops both
 arguments off the stack, adds them, and pushes 7 back onto the stack, where it will sit until
 you do something else with it.
Compared with the Perl compiler, the Perl interpreter is a straightforward, almost boring
 program. All it does is step through the compiled opcodes, one at a time,
 and dispatch them to the Perl runtime environment—that is, the Perl
 virtual machine. It’s just a wad of C code, right?
Actually, it’s not boring at all. A Perl virtual machine keeps track
 of a great deal of dynamic context on your behalf so that you don’t have
 to. Perl maintains quite a few stacks, which you don’t have to understand, but which we’ll
 list here anyway just to impress you:
	operand stack
	That’s the stack we already talked about.

	save stack
	Where localized values are saved pending restoration. Many internal
 routines also localize values without your knowing it.

	scope stack
	The lightweight dynamic context that controls when the save stack
 should be “popped”.

	context stack
	The heavyweight dynamic context; who called whom to get where you are
 now. The caller function
 traverses this stack. Loop-control functions scan this stack to find
 out which loop to control. When you peel back the context stack, the
 scope stack gets peeled back appropriately, which restores all your
 local variables from the save stack, even if you left the earlier
 context by nefarious methods such as raising an exception and
 longjmp(3)ing out.

	jumpenv stack
	The stack of longjmp(3) contexts that
 allows us to raise exceptions or exit expeditiously.

	return stack
	Where we came from when we entered this subroutine.

	mark stack
	Where the current variadic argument list on the operand
 stack starts.

	recursive lexical pad stacks
	Where the lexical variables and other “scratch register”
 storage is kept when subroutines are called recursively.

And, of course, there’s the C stack on which all the C variables are stored. Perl
 actually tries to avoid relying on C’s stack for the storage of saved
 values, since longjmp(3) bypasses the proper
 restoration of such values.
All this is to say that the usual view of an interpreter, a program
 that interprets another program, is really woefully inadequate to describe
 what’s going on here. Yes, there’s some C code implementing some opcodes,
 but when we say “interpreter”, we mean something more than that, in the
 same way that when we say “musician”, we mean something more than a set of
 DNA instructions for turning notes into sounds. Musicians are real, live
 organisms and have “state”. So do interpreters.
Specifically, all this dynamic and lexical context, along with the
 global symbol tables, plus the parse trees, plus a thread of execution, is
 what we call an interpreter. As a context for execution, an interpreter
 really starts its existence even before the compiler starts, and it can
 run in rudimentary form even as the compiler is building up the
 interpreter’s context. In fact, that’s precisely what’s happening when the
 compiler calls into the interpreter to execute BEGIN blocks and such. And the interpreter can
 turn around and use the compiler to build itself up further. Every time
 you define another subroutine or load another module, the particular
 virtual Perl machine that we call an interpreter is redefining itself. You
 can’t really say that either the compiler or the interpreter is in
 control, because they’re cooperating to control the bootstrap process we
 commonly call “running a Perl script”. It’s like bootstrapping a child’s
 brain. Is it the DNA doing it or is it the neurons? A little of both, we
 think, with some input from external programmers.
It’s possible to run multiple interpreters in the same process; they
 may or may not share parse trees, depending on whether they were started
 by cloning an existing interpreter or by building a new interpreter from
 scratch. It’s also possible to run multiple threads in a single
 interpreter, in which case they share not only parse trees but also global
 symbols.
But most Perl programs use only a single Perl interpreter to execute
 their compiled code. And while you can run multiple, independent Perl
 interpreters within one process, the current API for this is only
 accessible from C. Each individual Perl interpreter serves the role of a
 completely separate process, but doesn’t cost as much to create as a whole
 new process does. That’s how Apache’s mod_perl extension gets such great performance: when you launch a CGI script
 under mod_perl, that script has already
 been compiled into Perl opcodes, eliminating the need for
 recompilation—but, more importantly, eliminating the need to start a new
 process, which is the real bottleneck. Apache initializes a new Perl
 interpreter in an existing process and hands that interpreter the
 previously compiled code to execute. Of course, there’s much more to it
 than that—there always is.
Many other applications such as nvi, vim, and
 innd can embed Perl interpreters; we
 can’t hope to list them all here. There are a number of commercial
 products that don’t even advertise that they have embedded Perl engines.
 They just use it internally because it gets their job done in style.

Compiler Backends

So if Apache can compile a Perl program now and execute it later, why can’t
 you? Apache and other programs that contain embedded Perl interpreters
 have it easy—they never store the parse tree to an external file. If
 you’re content with that approach, and don’t mind using the C API to get
 at it, you can do the same thing.
If you don’t want to go that route, or have other needs, then there
 are a few options available. Instead of feeding the opcode output from the
 Perl compiler immediately into a Perl interpreter, you can invoke any of
 several alternative backends instead. These backends can serialize and
 store the compiled opcodes to an external file or even convert them into a
 couple different flavors of C code.
Please be aware that the code generators are all extremely
 experimental utilities that shouldn’t be expected to work in a production
 environment. In fact, they shouldn’t even be expected to work in a
 nonproduction environment except maybe once in a blue moon. Now that we’ve
 set your expectations low enough that any success at all will necessarily
 surpass them, it’s safe to tell you how the backends work.
Some of the backend modules are code generators, like B::Bytecode, B::C, and B::CC. Others are really code-analysis and debugging tools, like
 B::Deparse, B::Lint, and B::Xref. Beyond those backends, the standard release includes
 several other low-level modules of potential interest to would-be authors
 of Perl code-development tools. Other backend modules can be found on
 CPAN, including (as of this writing) B::Fathom, B::Graph, and B::Size.
When you’re using the Perl compiler for anything other than feeding
 the interpreter, the O module (that is,
 using the O.pm file) stands between
 the compiler and assorted backend modules. You don’t call the backends
 directly; instead, you call the middle end, which in turn calls the
 designated backend. So if you had a module called B::Backend, you would invoke it on a given script this way:
% perl –MO=Backend SCRIPTNAME
Some backends take options, specified as:
% perl –MO=Backend,OPTS SCRIPTNAME
Some backends already have their own frontends to invoke their
 middle ends for you so you don’t have to remember their M.O. In
 particular, perlcc(1) invokes that code generator,
 which can be cumbersome to fire up.

Code Generators

The three current backends that convert Perl opcodes into some other format
 are all emphatically experimental. (Yes, we said this before, but we don’t
 want you to forget.) Even when they happen to produce output that runs
 correctly, the resulting programs may take more disk space, more memory,
 and more CPU time than they would ordinarily. This is an area of ongoing
 research and development. Things will get better.

The Bytecode Generator

The B::Bytecode module writes the parse tree’s opcodes out in a
 platform-independent encoding. You can take a Perl script compiled down
 to bytecodes and copy that to any other machine with Perl installed on
 it.
The currently experimental perlcc(1) command
 from the CPAN B::C distribution knows
 how to convert Perl source code into a byte-compiled Perl program. All
 you have to do is:
% perlcc –B –o pbyscript srcscript
And now you should be able to directly “execute” the resulting
 pbyscript. The start of that file looks somewhat
 like this:
#!/usr/bin/perl
use ByteLoader 0.03;
^C^@^E^A^C^@^@^@^A^F^@^C^@^@^@^B^F^@^C^@^@^@^C^F^@^C^@^@^@
B^@^@^@^H9^A8M–^?M–^?M–^?M–^?7M–^?M–^?M–^?M–^?6^@^@^@^A6^@
^G^D^D^@^@^@^KR^@^@^@^HS^@^@^@^HV^@M–2<W^FU^@^@^@^@X^Y@Z^@
...
There you find a small script header followed by purely binary
 data. This may seem like deep magic, but its dweomer, er, dwimmer is at
 most a minor one. The ByteLoader module uses a technique called a source filter to alter the source
 code before Perl gets a chance to see it. A source filter is a kind of
 preprocessor that applies to everything below it in the current file.
 Instead of being limited to simplistic transformations the way macro
 processors like cpp(1) and
 m4(1) are, here there are no constraints. Source
 filters have been used to augment Perl’s syntax, to compress or encrypt
 source code, even to write Perl programs in Latin. E perlibus unicode;
 cogito, ergo substr; carp dbm, et al. Er, caveat scriptor.
The ByteLoader module is a
 source filter that knows how to disassemble the serialized opcodes
 produced by B::Bytecode to
 reconstruct the original parse tree. The reconstituted Perl code is
 spliced into the current parse tree without using the compiler. When the
 interpreter hits those opcodes, it just executes them as though they’d
 been there waiting for it all along.

The C Code Generators

The remaining code generators, B::C and B::CC, both produce C code instead of serialized Perl opcodes.
 The code they generate is far from readable, and if you try to read it
 you’ll just go blind. It’s not something you can use to plug little
 translated Perl-to-C bits into a larger C program.
The B::C module just writes out
 the C data structures needed to recreate the entire Perl runtime
 environment. You get a dedicated interpreter with all the compiler-built
 data structures preinitialized. In some senses, the code generated is
 like what B::Bytecode produces. Both are a straight translation of the opcode
 trees that the compiler built, but where B::Bytecode lays them out in symbolic form to
 be recreated later and plugged into a running Perl interpreter, B::C lays those opcodes down in C. When you
 compile this C code with your C compiler and link in the Perl library,
 the resulting program won’t need a Perl interpreter installed on the
 target system. (It might need some shared libraries, though, if you
 didn’t link everything statically.) However, this program isn’t really
 any different than the regular Perl interpreter that runs your script.
 It’s just precompiled into a standalone executable image.
The B::CC module, however,
 tries to do more than that. The beginning of the C source file it
 generates looks pretty much like what B::C produced[170] but, eventually, any similarity ends. In the B::C code, you have a big opcode table in C
 that’s manipulated just as the interpreter would do on its own, whereas
 the C code generated by B::CC is laid
 out in the order corresponding to the runtime flow of your program. It
 even has a C function corresponding to each function in your program.
 Some amount of optimization based on variable types is done; a few
 benchmarks can run twice as fast as in the standard interpreter. This is
 the most ambitious of the current code generators, the one that holds
 the greatest promise for the future. By no coincidence, it is also the
 least stable of the three.
Computer science students looking for graduate thesis projects
 need look no further. There are plenty of diamonds in the rough waiting
 to be polished off here.

[170] But, then, so does everything once you’ve gone blind. Didn’t
 we warn you not to peek?

Code Development Tools

The O module has many interesting Modi Operandi beyond feeding the exasperatingly
 experimental code generators. By providing relatively painless access to
 the Perl compiler’s output, this module makes it easy to build other tools
 that need to know everything about a Perl program.
The B::Lint module is named after lint(1), the C
 program verifier. It inspects programs for questionable constructs that
 often trip up beginners but don’t normally trigger warnings. Call the
 module directly:
% perl –MO=Lint,all myprog
Only a few checks are currently defined, such as using an array in
 an implicit scalar context, relying on default variables, and accessing
 another package’s (nominally private) identifiers that start with _. See B::Lint(3) for
 details. You’ll probably find that most Perlers who lint their programs
 use Perl::Critic instead. It’s a static analysis tool built on top of
 PPI, and it does a pretty good job.
The B::Xref module generates cross-reference listings of the
 declaration and use of all variables (both global and lexically scoped),
 subroutines, and formats in a program, broken down by file and subroutine.
 Call the module this way:
% perl –MO=Xref myprog > myprog.pxref
For instance, here’s a partial report:
Subroutine parse_argv
 Package (lexical)
 $on i113, 114
 $opt i113, 114
 %getopt_cfg i107, 113
 @cfg_args i112, 114, 116, 116
 Package Getopt::Long
 $ignorecase 101
 &GetOptions &124
 Package main
 $Options 123, 124, 141, 150, 165, 169
 %$Options 141, 150, 165, 169
 &check_read &167
 @ARGV 121, 157, 157, 162, 166, 166
This shows that the parse_argv
 subroutine had four lexical variables of its own; it also accessed global
 identifiers from both the main package
 and from Getopt::Long. The numbers are the lines where that item was used: a
 leading i indicates that the item was
 first introduced at the following line number, and a leading & means a subroutine was called there.
 Dereferences are listed separately, which is why both $Options and %$Options are shown.
The B::Deparse is a pretty printer that can demystify Perl code and help
 you understand what transformations the optimizer has taken with your
 code. For example, this shows what defaults Perl uses for various
 constructs:
% perl –MO=Deparse –ne 'for (1 .. 10) { print if –t }'
LINE: while (defined($_ = <ARGV>)) {
 foreach $_ (1 .. 10) {
 print $_ if –t STDIN;
 }
}
The –p switch adds parentheses so
 you can see Perl’s idea of precedence:
% perl –MO=Deparse,–p –e 'print $a ** 3 + sqrt(2) / 10 ** –2 ** $c'
print((($a ** 3) + (1.4142135623731 / (10 ** (–(2 ** $c))))));
You can use –q to see what
 primitives interpolated strings are compiled into:
% perl –MO=Deparse,–q –e '"A $name and some @ARGV\n"'
'A ' . $name . ' and some ' . join($", @ARGV) . "\n";
And this shows how Perl really compiles a three-part for loop into a while loop:
% perl –MO=Deparse –e 'for ($i=0;$i<10;$i++) { $x++ }'
$i = 0;
while ($i < 10) {
 ++$x;
}
continue {
 ++$i
}
You could even call B::Deparse on
 a Perl bytecode file produced by perlcc
 –b, and have it decompile that binary file for you. Serialized
 Perl opcodes may be a tad tough to read, but strong encryption they
 are not.

Avant-Garde Compiler, Retro Interpreter

There’s a right time to think about everything; sometimes that time is beforehand,
 and sometimes it’s after. Sometimes it’s somewhere in the middle. Perl
 doesn’t presume to know when it’s the right time to think, so it gives the
 programmer a number of options for telling it when to think. Other times
 it knows that some sort of thinking is necessary but doesn’t have any idea
 what it ought to think, so it needs ways of asking your program. Your
 program answers these kinds of questions by defining subroutines with
 names appropriate to what Perl is trying to find out.
Not only can the compiler call into the interpreter when it wants to
 be forward thinking, but the interpreter can also call back to the
 compiler when it wants to revise history. Your program can use several
 operators to call back into the compiler. Like the compiler, the
 interpreter can also call into named subroutines when it wants to find
 things out. Because of all this give and take between the compiler, the
 interpreter, and your program, you need to be aware of what things happen
 when. First we’ll talk about when these named subroutines are
 triggered.
In Chapter 10 we saw how a package’s AUTOLOAD subroutine is triggered when an
 undefined function in that package is called. In Chapter 12 we met the DESTROY method, which is invoked when an
 object’s memory is about to be automatically reclaimed by Perl. And in
 Chapter 14 we encountered the many functions implicitly
 called when a tied variable is accessed.
These subroutines all follow the convention that if a subroutine is
 triggered automatically by either the compiler or the interpreter, we
 write its name in uppercase. Associated with the different stages of your
 program’s lifetime are four other such subroutines named BEGIN, UNITCHECK, CHECK, INIT,
 and END. The sub keyword is optional before their
 declarations. Perhaps they are better called “blocks”, because they’re in
 some ways more like named blocks than real subroutines.
For instance, unlike regular subroutines, there’s no harm in
 declaring these blocks multiple times, since Perl keeps track of when to
 call them, so you never have to call them by name. (They are also unlike
 regular subroutines in that shift and
 pop act as though you were in the main
 program, and so they act on @ARGV by
 default, not @_.)
These five block types run in this order:
	BEGIN
	Runs ASAP (as soon as parsed) whenever encountered during
 compilation, before compiling the rest of the file.

	UNITCHECK
	Runs just after the unit that defined them has been compiled. The main
 program file and each module it loads are compilation units, as are
 string evals, code compiled using
 the (?{ }) and (??{ }) constructs in a regex, calls to
 do
 FILE and require FILE,
 and code after the –e switch on
 the command line. This rather than INIT is what you want to use to run
 initialization code.

	CHECK
	Runs when compilation is complete but before the program starts.
 (CHECK can mean “checkpoint” or
 “double-check” or even just “stop”.)

	INIT
	Runs at the beginning of execution right before the main flow of
 your program starts.

	END
	Runs at the end of execution right after the program
 finishes.

If you declare more than one of these by the same name, even in
 separate modules, the BEGINs all run
 before any CHECKs, which all run before
 any INITs, which all run before any
 ENDs—which all run dead last, after
 your main program has finished. Multiple BEGINs and INITs run in declaration order (FIFO), and the
 CHECKs and ENDs run in inverse declaration order
 (LIFO).
This is probably easiest to see in a demo:
use v5.10;
say "start main running here";
die "main now dying here\n";
die "XXX: not reached\n";
UNITCHECK { say "1st UNITCHECK: done compiling" }
END { say "1st END: done running" }
CHECK { say "1st CHECK: done compiling" }
INIT { say "1st INIT: started running" }
END { say "2nd END: done running" }
BEGIN { say "1st BEGIN: still compiling" }
INIT { say "2nd INIT: started running" }
BEGIN { say "2nd BEGIN: still compiling" }
CHECK { say "2nd CHECK: done compiling" }
END { say "3rd END: done running" }
When run, that demo program produces this output:
1st BEGIN: still compiling
2nd BEGIN: still compiling
1st UNITCHECK: done compiling
2nd CHECK: done compiling
1st CHECK: done compiling
1st INIT: started running
2nd INIT: started running
start main running here
main now dying here
3rd END: done running
2nd END: done running
1st END: done running
Because a BEGIN block executes
 immediately, it can pull in subroutine declarations, definitions, and
 importations before the rest of the file is even compiled. These can alter
 how the compiler parses the rest of the current file, particularly if you
 import subroutine definitions. At the very least, declaring a subroutine
 lets it be used as a list operator, making parentheses optional. If the
 imported subroutine is declared with a prototype, calls to it can be
 parsed like built-ins and can even override built-ins of the same name in
 order to give them different semantics. The use declaration is just a BEGIN block with an attitude.
END blocks, by contrast, are
 executed as late as possible: when your program exits
 the Perl interpreter, even if as a result of an untrapped die or other fatal exception. There are two
 situations in which an END block (or a
 DESTROY method) is skipped. It isn’t
 run if, instead of exiting, the current process just morphs itself from
 one program to another via exec. A
 process blown out of the water by an uncaught signal also skips its
 END routines. (See the sigtrap pragma described in Chapter 29 for an easy
 way to convert catchable signals into exceptions. For general information
 on signal handling, see Signals in Chapter 15.) To avoid all END processing, you can call POSIX::_exit, say kill
 –9, $$, or just exec any
 innocuous program, such as /bin/true
 on Unix systems.
Inside an END block, $? contains the status the program is going to
 exit with. You can modify $? from within the END block to change the exit value of the
 program. Beware of changing $?
 accidentally by running another program with system or backticks.
If you have several END blocks
 within a file, they execute in reverse order of their
 definition. That is, the last END block
 defined is the first one executed when your program finishes. This
 reversal enables related BEGIN and
 END blocks to nest the way you’d
 expect, if you pair them up. For example, if the main program and a module
 it loads both have their own paired BEGIN and END
 subroutines, like so:
BEGIN { print "main begun" }
END { print "main ended" }
use Module;
and in that module, these declarations:
BEGIN { print "module begun" }
END { print "module ended" }
then the main program knows that its BEGIN will always happen first, and its END will always happen last. (Yes, BEGIN is really a compile-time block, but
 similar arguments apply to paired INIT
 and END blocks at runtime.) This
 principle is recursively true for any file that includes another when both
 have declarations like these. This nesting property makes these blocks
 work well as package constructors and destructors. Each module can have
 its own set-up and tear-down functions that Perl will call automatically.
 This way the programmer doesn’t have to remember that if a particular
 library is used, what special initialization or clean-up code ought to be
 invoked, and when. The module’s declarations assure these events.
If you think of an eval
 STRING as a call back from
 the interpreter to the compiler, then you might think of a BEGIN as a call forward
 from the compiler into the interpreter. Both temporarily put the current
 activity on hold and switch modes of operation. When we say that a
 BEGIN block is executed as early as
 possible, we mean it’s executed just as soon as it is completely defined,
 even before the rest of the containing file is parsed. BEGIN blocks are therefore executed during
 compile time, never during runtime. Once a BEGIN block has run, it is immediately undefined
 and any code it used is returned to Perl’s memory pool. You couldn’t call
 a BEGIN block as a subroutine even if
 you tried, because by the time it’s there, it’s already gone.
Similar to BEGIN blocks, INIT blocks are run just before the Perl runtime
 begins execution in “first in, first out” (FIFO) order. For example, the
 code generators documented in perlcc make use of
 INIT blocks to initialize and resolve
 pointers to XSUBs. INIT blocks are
 really just like BEGIN blocks, except
 they let the programmer distinguish construction that must happen at
 compile phase from construction that must happen at run phase. When you’re
 running a script directly, that’s not terribly important because the
 compiler gets invoked every time anyway; but when compilation is separate
 from execution, the distinction can be crucial. The compiler may be
 invoked only once, and the resulting executable may be invoked many
 times.
Similar to END blocks, CHECK blocks are run just after the Perl compile
 phase ends but before run phase begins, in LIFO order. CHECK blocks are useful for “winding down” the
 compiler just as END blocks are useful
 for winding down your program. In particular, the backends all use
 CHECK blocks as the hook from which to
 invoke their respective code generators. All they need to do is put a
 CHECK block into their own module, and
 it will run at the right time, so you don’t have to install a CHECK into your program. For this reason, you’ll
 rarely write a CHECK block yourself,
 unless you’re writing such a module.
Putting it all together, Table 16-2 lists
 various constructs with details on when they compile and when they run the
 code represented by “...”.
Table 16-2. What happens when
	Block or Expression	Compiles During Phase	Traps Compile Errors	Runs During Phase	Traps Run Errors	Call Trigger Policy
	use
 ...	C	No	C	No	Now
	no
 ...	C	No	C	No	Now
	BEGIN
 {...}	C	No	C	No	Now
	UNITCHECK {...}	C	No	C	No	Late
	CHECK
 {...}	C	No	C	No	Later
	INIT
 {...}	C	No	R	No	Early
	END
 {...}	C	No	R	No	Latest
	eval
 {...}	C	No	R	Yes	Inline
	eval
 "..."	R	Yes	R	Yes	Inline
	foo(...)	C	No	R	No	Inline
	sub foo
 {...}	C	No	R	No	Call anytime
	eval
 "sub {...}"	R	Yes	R	No	Call later
	s/pat/.../e	C	No	R	No	Inline
	s/pat/"..."/ee	R	Yes	R	Yes	Inline

Now that you know the score, we hope you’ll be able to compose and
 perform your Perl pieces with greater confidence.

Chapter 17. The Command-Line Interface

This chapter is about aiming Perl in the right direction before you
 fire it off. There are various ways to aim Perl, but the two primary ways
 are through switches on the command line and through environment variables.
 Switches are the more immediate and precise way to aim a particular command.
 Environment variables are more often used to set general policy.

Command Processing

It is fortunate that Perl grew up in the Unix world, because that means its invocation
 syntax works pretty well under the command interpreters of other operating
 systems, too. Most command interpreters know how to deal with a list of
 words as arguments and don’t care if an argument starts with a minus sign.
 There are, of course, some sticky spots where you’ll get fouled up if you
 move from one system to another. You can’t use single quotes under MS-DOS
 as you do under Unix, for instance. And on systems like VMS, some wrapper
 code has to jump through hoops to emulate Unix I/O redirection. Wildcard
 interpretation is a wildcard. Once you get past those issues, however,
 Perl treats its switches and arguments much the same on any operating
 system.
Even when you don’t have a command interpreter per se, it’s easy to
 execute a Perl program from another program written in any language. Not
 only can the calling program pass arguments in the ordinary way, it can
 also pass information via environment variables and, if your operating
 system supports them, inherited file descriptors (see “Passing
 Filehandles” in Chapter 15). Even exotic argument-passing
 mechanisms can easily be encapsulated in a module, then brought into your
 Perl program via a simple use
 directive.
Perl parses command-line switches in the standard fashion.[171] That is, it expects any switches (words beginning with a
 minus) to come first on the command line. After that usually comes the
 name of the script, followed by any additional arguments to be passed into
 the script. Some of these additional arguments may themselves look like
 switches, but if so, they must be processed by the script, because Perl
 quits parsing switches once it sees a nonswitch, or the special “––” switch that says, “I am the last
 switch.”
Perl gives you some flexibility in where you place the source code
 for your program. For small, quick-and-dirty jobs, you can program Perl
 entirely from the command line. For larger, more permanent jobs, you can
 supply a Perl script as a separate file. Perl looks for a script to
 compile and run in any one of these three ways:
	Specified line by line via –e
 or –E switches on the command line. For example:
% perl –e "print 'Hello, World.'"
Hello, World.

% perl –E "say 'Howdy y\\'all!'"
Howdy y'all!

	Contained in the file specified by the first filename on the
 command line. Systems supporting the #! notation on the first line of an
 executable script invoke interpreters this way on your behalf.

	Passed in implicitly via standard input. This method works only
 when there are no filename arguments; to pass arguments to a
 standard-input script you must use method 2, explicitly specifying a
 “–” for the script name. For
 example:
% echo "print qq(Hello, @ARGV.)" | perl – World
Hello, World.

With methods 2 and 3, Perl starts parsing the input file from the
 beginning—unless you’ve specified a –x
 switch, in which case it scans for the first line starting with #! and containing the word “perl”, and starts there instead. This is useful
 for running a script embedded in a larger message. If so, you might
 indicate the end of the script using the _ _END_ _ token.
Whether or not you use –x, the
 #! line is always examined for switches
 when the line is parsed. That way, if you’re on a platform that permits
 only one argument with the #! line, or
 worse, doesn’t even recognize the #!
 line as special, you can still get consistent switch behavior no matter
 how Perl was invoked, even if –x was used to
 find the beginning of the script.
Warning: because older versions of Unix silently chop off kernel
 interpretation of the #! line after 32
 characters, some switches may get to your program intact, and others not;
 you could even get a “–” without its
 letter, if you’re not careful. You probably want to make sure that all
 your switches fall either before or after that 32-character boundary. Most
 switches don’t care whether they’re processed redundantly, but getting a
 “–” instead of a complete switch would
 cause Perl to try to read its source code from the standard input instead
 of from your script. And a partial –I
 switch could also cause odd results. However, some switches do care if
 they are processed twice, like combinations of –l and –0.
 Either put all switches after the 32-character boundary (if
 applicable), or replace the use of −0DIGITS with
 BEGIN{ $/ =
 "\0DIGITS"; }. Of course, if you’re
 not on a Unix system, you’re guaranteed not to have this particular
 problem.
Parsing of #! switches starts
 from where “perl” is first mentioned in
 the line. The sequences “–*” and
 “– ” are specifically ignored for the
 benefit of emacs users so that, if
 you’re so inclined, you can say:
#!/bin/sh –– # –*– perl –*– –p
 eval 'exec perl –S $0 ${1+"$@"}'
 if 0;
and Perl will see only the –p
 switch. The fancy “–*– perl –*–”
 gizmo tells emacs to start up in Perl
 mode; you don’t need it if you don’t use emacs. The –S
 mess is explained later under the description of that
 switch.
A similar trick involves the env(1) program, if
 you have it:
#!/usr/bin/env perl
The previous examples use a relative path to the Perl interpreter,
 getting whatever version is first in the user’s path. If you want a
 specific version of Perl, say, perl5.14.0, place it directly in the #! line’s path, whether with the env program, with the –S mess, or with a regular #! processing.
If the #! line does
 not contain the word “perl”, the program named after the #! is executed instead of the Perl interpreter.
 For example, suppose you have an ordinary Bourne shell script out there
 that says:
#!/bin/sh
echo "I am a shell script"
If you feed that file to Perl, then Perl will run /bin/sh for you. This is slightly bizarre, but
 it helps people on machines that don’t recognize #!, because—by setting their SHELL environment
 variable—they can tell a program (such as a mailer) that their shell is
 /usr/bin/perl. Perl will then
 dispatch the program to the correct interpreter for them, even though
 their kernel is too stupid to do so.
But back to Perl scripts that are really Perl scripts. After
 locating your script, Perl compiles the entire program into an internal
 form (see Chapter 16). If any compilation errors arise,
 execution does not even begin. (This is unlike the typical shell script or
 command file, which might run part-way through before finding a syntax
 error.) If the script is syntactically correct, it is executed. If the
 script runs off the end without hitting an exit or die
 operator, an implicit exit(0) is
 supplied by Perl to indicate successful completion to your caller. (This
 is unlike the typical C program, where you’re likely to get a random exit
 status if your program just terminates in the normal way.)

[171] Presuming you agree that Unix is both standard and
 fashionable.

#! and Quoting on Non-Unix Systems

Unix’s #! technique can be simulated on other systems:
	MS-DOS
	Create a batch file to run your program, and codify it in
 ALTERNATIVE_SHEBANG. See the
 dosish.h file in the top
 level of the Perl source distribution for more information about
 this.

	OS/2
	Put this line:
extproc perl –S –your_switches
as the first line in *.cmd file (–S works around a bug in cmd.exe’s “extproc” handling).

	VMS
	Put these lines:
% perl –mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$exit++ + ++$status != 0 and $exit = $status = undef;
at the top of your program, where
 –mysw are any command-line switches you
 want to pass to Perl. You can now invoke the program directly by
 typing perl program, as a DCL
 procedure by saying @program,
 or implicitly via DCL$PATH by
 using just the name of the program. This incantation is a bit much
 to remember, but Perl will display it for you if you type in
 perl "–V:startperl". If you
 can’t remember that—well, that’s why you bought this book.

	Windows
	When using the ActiveState distribution of Perl under some
 variant of Microsoft’s Windows suite of operating systems (that
 is, Win95, Win98, Win00,[172] WinNT, but not Win3.1), the installation procedure
 for Perl modifies the Windows Registry to associate the .pl extension with the Perl
 interpreter.
If you install another port of Perl, including the one in
 the Win32 directory of the Perl distribution, then you’ll have to
 modify the Windows Registry yourself.
Note that using a .pl
 extension means you can no longer tell the difference between an
 executable Perl program and a “perl library” file. You could use
 .plx for a Perl program
 instead to avoid this. This is less of an issue these days, as
 Perl modules live in .pm
 files, and people don’t write as many .pl files.

Command interpreters on non-Unix systems often have
 extraordinarily different ideas about quoting than Unix shells have.
 You’ll need to learn the special characters in your command interpreter
 (*, \, and "
 are common) and how to protect whitespace and these special characters
 to run one-liners via the –e switch.
 You might also have to change a single % to a %%,
 or otherwise escape it, if that’s a special character for your
 shell.
On some systems you may have to change single quotes to double
 quotes. But don’t do that on Unix or Plan9 systems, or on anything
 running a Unix-style shell, such as systems from the MKS Toolkit or from
 the Cygwin package produced by the Cygnus folks, now at Redhat.
 Microsoft’s new Unix emulator called Interix is also starting to look,
 ahem, interixing.
For example, on Unix (including Linux and Mac OS X), use:
% perl –e 'print "Hello world\n"'
On VMS, use:
$ perl –e "print ""Hello world\n"""
or again with qq//:
$ perl –e "print qq(Hello world\n)"
And on MS-DOS et al., use:
A: perl –e "print \"Hello world\n\""
or use qq// to pick your own
 quotes:
A: perl –e "print qq(Hello world\n)"
The problem is that neither of those is reliable: it depends on
 the command interpreter you’re using there. There is no general solution
 to all of this. It’s just a mess. If you aren’t on a Unix system but
 want to do command-line things, your best bet is to acquire a better
 command interpreter than the one your vendor supplied you, which
 shouldn’t be too hard.
Or, just write it all in Perl and forget the one-liners.

[172] Er, pardon the technical difficulties…

Location of Perl

Although this may seem obvious, Perl is useful only when users can find it easily. When
 possible, it’s good for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the
 actual binary. If that can’t be done, system administrators are strongly
 encouraged to put Perl and its accompanying utilities into a directory
 typically found along a user’s standard PATH, or in some other obvious and convenient
 place.
In this book, we use the standard #!/usr/bin/perl notation on the first line of
 the program to mean whatever particular mechanism works on your system.
 If you care about running a specific version of Perl, use a specific
 path:
#!/usr/local/bin/perl5.14.0
If you just want to be running at least some
 version number but don’t mind higher ones, place a statement like this
 near the top of your program:
use v5.14;
(Note: Ancient versions of Perl used numbers like “5.005” or “5.004_05”. Nowadays we would think of those as
 v5.5.0 and v5.4.5, but versions of Perl older than v5.6.0 won’t
 understand that notation. The use
 5.NNN form is safest to ensure
 backward compatibility stretching back into the previous millennium.)

Switches

A single-character command-line switch without its own
 argument may always be combined (bundled) with a switch following
 it.
#!/usr/bin/perl –spi.bak # same as –s –p –i.bak
Switches are also known as options or flags. Whatever you call
 them, here are the ones Perl recognizes:
	––
	Terminates switch processing, even if the next argument starts with a
 minus. It has no other effect.

	–0DIGITS
	Specifies the input record separator ($/) as an octal number or hexadecimal
 number representing that single character’s codepoint. If no
 digits are specified, the
 null character (that’s U+0000, Perl’s "\0") is the separator. Other switches
 may precede or follow the digits. For example, if you have a
 version of find(1) that can print filenames
 terminated by the null character, you can say this to delete a
 bunch of them:
% find . –name '*.bak' –print0 | perl –n0e unlink
The special value 00
 makes Perl read files in paragraph mode, equivalent to setting the
 $/ variable to "". Any value 0400 or above makes Perl slurp in whole files at
 once, but, by convention, the value 0777 is normally used for this. This is
 equivalent to undefining the $/
 variable. We use 0777 since
 there is no ASCII character with that value. (Unfortunately, there
 is a Unicode character with that value,
 latin small letter o with stroke and
 acute, but something tells us you won’t be delimiting
 your records with that. But if you really want to, just specify
 its codepoint in hex: –0x1FF.)
You can also specify the separator character using
 hexadecimal notation: −0xHHH…,
 where the “H” are valid hexadecimal digits. Unlike the octal form,
 this one may be used to specify any Unicode character, even those
 beyond 0xFF. (This means that you cannot use the –x switch with a directory name that
 consists of hexadecimal digits alone.)

	–a
	Turns on autosplit mode, but only when used with –n or –p. An implicit split command to the @F array is done as the first thing
 inside the implicit while loop
 produced by the –n and –p switches. So:
% perl –ane 'print pop(@F), "\n";'
is equivalent to:
LINE: while (<>) {
 @F = split(' ');
 print pop(@F), "\n";
}
A different field separator may be specified by passing a
 regular expression for split to
 the –F switch. For example,
 these two calls are equivalent:
% awk –F: '$7 && $7 !~ /^\/bin/' /etc/passwd
% perl –F: –lane 'print if $F[6] && $F[6] !~ m(^/bin)' /etc/passwd

	–c
	Causes Perl to check the syntax of the script and then exit
 without executing what it’s just compiled. Technically, it does a
 bit more than that: it will execute any BEGIN, UNITCHECK, and CHECK blocks, as well as any use or no directives, since these are all
 considered to occur before the execution of your program. It no
 longer executes any INIT or
 END blocks, however. The older
 but rarely useful behavior may still be obtained by
 putting:
BEGIN { $^C = 0; exit; }
at the end of your main script. That’s because the $^C variable reflects the value of the
 –c switch.

	–C
 [number/list]
	The –C flag controls certain of Perl’s Unicode features. The
 –C can be followed either by a
 number or a list of option letters. The letters, their numeric
 values, and effects are shown in Table 17-1; listing the letters is equal to
 summing the numbers.
Table 17-1. Values for the -C switch
	Letter	Hex Number	Meaning
	I	0x1	STDIN is assumed to be in
 UTF-8.
	O	0x2	STDOUT will be in UTF-8.
	E	0x4	STDERR will be in UTF-8.
	S	0x7	I + O + E
	i	0x8	UTF-8 is the default
 PerlIO layer for input
 streams.
	o	0x10	UTF-8 is the default
 PerlIO layer for output
 streams.
	D	0x18	i + o
	A	0x20	The @ARGV elements are expected to
 be strings encoded in UTF-8.
	L	0x40	Normally the “IOEioA” are unconditional; the
 L makes them
 conditional on the locale environment variables (the
 LC_ALL, LC_TYPE, and LANG, in order of decreasing
 precedence)—if the variables indicate UTF-8, then the
 selected “IOEioA” are
 in effect.
	a	0x100	Set ${^UTF8CACHE} to –1 to run the UTF-8 caching code
 in debugging mode. Probably meaningless unless you’re
 trying to debug or rewrite Perl’s internals.

For example, –COE and its
 numeric equivalent, –C6, enable
 utf8ness on both STDOUT and
 STDERR. Repeating letters is
 just redundant, not cumulative nor toggling.
The io options mean that
 any subsequent open (or similar
 I/O operations) in the current file scope will have the :utf8 PerlIO layer implicitly applied to them; in other words,
 UTF-8 is expected from any input stream, and UTF-8 is produced to
 any output stream. This is just the default; with explicit layers
 in open and with binmode one can manipulate streams as
 usual.
–C on its own (not
 followed by any number or option list), or the empty string
 "" for the PERL_UNICODE environment variable, has
 the same effect as –CSDL. In other words, the
 standard I/O handles and the default open layer are utf8ified
 but only if the locale-related environment
 variables indicate a UTF-8 locale. This behavior follows the
 implicit UTF-8 behavior of v5.8.0 and should
 not be used today.
You can use –C0 (or
 "0" for the PERL_UNICODE environment variable) to explicitly disable the
 above Unicode features.
The magic variable ${^UNICODE} reflects the numeric value
 of this setting. This variable is set during Perl startup and is
 thereafter read-only. If you want runtime effects, either use the
 open pragma or one of the three-argument form of open or the two-argument form of
 binmode.
(In releases earlier than v5.8.1, the –C switch was a Win32-only switch that
 enabled the use of Unicode-aware “wide system call” Win32 APIs.
 This feature was practically unused, so the command-line switch
 was therefore “recycled”.)
Note: since the v5.10.1 release, if the –C option is used on the #! line, it must be specified on the
 command line as well. This is because the standard streams are
 already set up at this point in the execution of the Perl
 interpreter. You can also use binmode to set the encoding of an I/O
 stream.

	–d
	

	–dt
	Runs the program under the Perl debugger. See Chapter 18. If t is
 specified, it indicates to the debugger that threads will be used
 in the code being debugged.

	–d:
 MODULE[=ARG1,ARG2]
	

	–dt:
 MODULE[=ARG1,ARG2]
	Runs the program under the control of a debugging,
 profiling, or tracing module installed as Devel::MODULE.
 For example, –d:DProf executes
 the program using the
 Devel::DProf profiler. As with the –M flag, options may be passed to the
 Devel::MODULE
 package where they will be received and interpreted by the
 Devel::MODULE::import
 routine. Again, like –M, use
 –d:–MODULE
 to call Devel::MODULE::unimport
 instead of import. The comma-separated list of options must
 follow a = character. If
 t is specified, it indicates to
 the debugger that threads will be used in the code being
 debugged.

	–D
 LETTERS
	

	–D
 NUMBERS
	Sets debugging flags. (This only works if debugging is compiled
 into your version of Perl as described below.) You may specify
 either a NUMBER that is the sum of the
 bits you want or a list of LETTERS. To
 see how it executes your script, for instance, use –D14 or –Dslt. Another useful value is –D1024 or –Dx, which lists your compiled
 syntax tree. And –D512 or
 –Dr displays compiled regular
 expressions. The numeric value is available internally as the
 special variable $^D. Table 17-2 lists the assigned bit values. The
 numbers below are given in hex to make them easy to read, but you
 must supply them in decimal if you’re using the –NUMBER
 format. We strongly recommend that the letters be used
 instead.
Table 17-2. -D options
	Bit	Letter	Meaning
	0x0400000	A	consistency checks on
 internal structures (“All
 clear?”)
	0x2000000	B	dump
 suBroutine definitions, including
 special Blocks like BEGIN
	0x0200000	C	Copy-on-write
	0x0000020	c	string–numeric
 conversions
	0x0008000	D	cleaning up once
 program’s all Done
	0x0000100	f	format
 processing
	0x0002000	H	Hash
 dump: usurps values
	0x0080000	J	show s,t,P–debug on
 (i.e., don’t
 Jump over) opcodes in package
 DB::
	0x0000004	l	loop
 and context stack processing
	0x1000000	M	trace
 smart-Match resolution
	0x0000080	m	memory and SV
 allocation
	0x0000010	o	method and
 overloading resolution
	0x0000040	P	print
 Profiling info, source file input
 state
	0x0000001	p	tokenizing and
 parsing (with v, displays parse stack)
	0x0800000	q	quiet; currently
 suppresses only the “EXECUTING” message
	0x0040000	R	include
 Reference counts of dumped variables
 (e.g., when using –Ds)
	0x0000200	r	regex parsing and
 execution
	0x0000002	s	stack snapshots (with
 v, displays all
 stacks)
	0x0020000	T	Tokenizing
	0x0000008	t	trace execution
	0x0001000	U	Unofficial,
 User hacking (reserved for private,
 unreleased use)
	0x0000800	u	tainting checks on
 unsafe external data
	0x0100000	v	verbose: use in
 conjunction with other flags
	0x0004000	X	scratchpad allocation
 (“Xratchpad”)
	0x0000400	x	syntax-tree dump

These flags all require a Perl executable specially built
 for debugging. However, because this is not the default, you won’t
 be able to use the –D switch at
 all unless you or your sysadmin built this special debugging
 version of Perl. See the INSTALL file in the Perl source
 directory for details, but the short story is that you need to
 pass –DDEBUGGING to
 your C compiler when compiling Perl itself. This flag is
 automatically set if you include the –g option when Configure asks you about optimizer and
 debugger flags.
If you’re just trying to get a printout of each line of Perl
 code as it executes (the way that sh
 –x provides for shell scripts), you can’t use Perl’s
 –D switch. Instead, do
 this:
Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl –dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl –dS program)
See Chapter 18 for details and
 variations.

	–e
 PERLCODE
	May be used to enter one or more lines of script. When the –e option is given, Perl will not look
 for the program’s filename in the argument list. The
 PERLCODE argument is treated as if it
 ended with a newline, so multiple –e commands may be given to build up a
 multiline program. (Make sure to use semicolons where you would in
 a normal program stored in a file.) Just because –e supplies a newline on each argument
 doesn’t imply that you must use multiple –e switches; if your shell supports
 multiline quoting like sh,
 ksh, or bash, you may pass a multiline script as
 one –e argument:
$ perl –e 'print "Howdy, ";print "@ARGV!\n";' world
Howdy, world!
With csh it’s probably
 better to use multiple –e
 switches:
% perl –e 'print "Howdy, ";' \
 –e 'print "@ARGV!\n";' world
Howdy, world!
Both implicit and explicit newlines count in the line
 numbering, so the second print is on line 2 of the –e script in either case.

	–E
 PERLCODE
	Behaves just like –e,
 except it implicitly enables all optional features (in the
 main compilation unit). As for the v5.14 release, those features
 are say, state, switch, and unicode_strings. See the feature pragma in Chapter 29.

	–f
	Disables executing $Config{sitelib}/sitecustomize.pl at
 startup.
Perl can be built so that it by default will try to execute
 $Config{sitelib}/sitecustomize.pl at
 startup (in a BEGIN block).
 This is a hook that lets the sysadmin customize how Perl behaves.
 For instance, it can be used to add entries to the @INC array to make Perl find modules in
 nonstandard locations.
Perl actually inserts the following code:
BEGIN {
 do {
 local $!;
 –f "$Config{sitelib}/sitecustomize.pl";
 } && do "$Config{sitelib}/sitecustomize.pl";
}
Since it is an actual do
 (not a require), sitecustomize.pl doesn’t need to return
 a true value. The code is run in package main, in its own lexical scope. However,
 if the script dies, $@ will not
 be set.
The value of $Config{sitelib} is also determined in C
 code and not read from Config.pm, which is not loaded.
The code is executed very early. For
 example, any changes made to @INC will show up in the output of
 perl -V. Of course, likewise END blocks will be executed very
 late.
To determine at runtime if this capability has been compiled
 in your Perl, you can check the value of $Config{usesitecustomize}:
% perl –V:usesitecustomize
usesitecustomize='undef';

	–F
 PATTERN
	Specifies the pattern to split
 on when autosplitting via the –a switch (has no effect otherwise). The
 pattern may be surrounded by slashes (//), double quotes (""), or single quotes (''). Otherwise, it will be put in single
 quotes automatically. Remember that to pass quotes through a
 shell, you’ll have to quote your quotes, and how you can do that
 depends on the shell.

	–h
	Prints a summary of Perl’s command-line options.

	–i
	

	–i
 EXTENSION
	Specifies that files processed by the <> construct are to be edited in
 place. It does this by renaming the input file, opening the output
 file by the original name, and selecting that output file as the
 default for calls to print,
 printf, and write.[173] The EXTENSION is used to
 modify the name of the old file to make a backup copy. If no
 EXTENSION is supplied, no backup is
 made and the current file is overwritten. If the
 EXTENSION doesn’t contain a *, then that string is appended to the
 end of the current filename. If the
 EXTENSION does contain one or more
 * characters, then each
 * is replaced by the filename
 currently being processed. In Perl terms, you could think of this
 as:
($backup = $extension) =~ s/*/$file_name/g;
This lets you use a prefix for the backup file instead of—or
 even in addition to—a suffix:
% perl –pi'orig_*' –e 's/foo/bar/' xyx # backup to 'orig_xyx'
You can even put backup copies of the original files into
 another directory (provided that the directory already
 exists):
% perl –pi'old/*.orig' –e 's/foo/bar/' xyx # backup to 'old/xyx.orig'
These pairs of one-liners are equivalent:
% perl –pi –e 's/foo/bar/' xyx # overwrite current file
% perl –pi'*' –e 's/foo/bar/' xyx # overwrite current file

% perl –pi'.orig' –e 's/foo/bar/' xyx # backup to 'xyx.orig'
% perl –pi'*.orig' –e 's/foo/bar/' xyx # backup to 'xyx.orig'
From the shell, saying:
% perl –p –i.orig –e "s/foo/bar/;"
is the same as using the program:
#!/usr/bin/perl –pi.orig
s/foo/bar/;
which is convenient shorthand for the remarkably
 longer:
#!/usr/bin/perl
$extension = '.orig';
LINE: while (<>) {
 if ($ARGV ne $oldargv) {
 if ($extension !~ /*/) {
 $backup = $ARGV . $extension;
 }
 else {
 ($backup = $extension) =~ s/*/$ARGV/g;
 }
 unless (rename($ARGV, $backup)) {
 warn "cannot rename $ARGV to $backup: $!\n";
 close ARGV;
 next;
 }
 open(ARGVOUT, ">$ARGV");
 select(ARGVOUT);
 $oldargv = $ARGV;
 }
 s/foo/bar/;
}
continue {
 print; # this prints to original filename
}
select(STDOUT);
This long code is virtually identical to the simple
 one-liner with the –i switch,
 except the –i form doesn’t need
 to compare $ARGV to $oldargv to know when the filename has
 changed. It does, however, use ARGVOUT for the selected filehandle and
 restore the old STDOUT as the
 default output filehandle after the loop. Like the code above,
 Perl creates the backup file irrespective of whether any output
 has truly changed. See the description of the eof function for examples of how to use
 eof without parentheses to
 locate the end of each input file, in case you want to append to
 each file or to reset line numbering.
If, for a given file, Perl is unable to create the backup
 file as specified in the EXTENSION, it
 will issue a warning to that effect and continue processing any
 other remaining files listed.
You cannot use –i to
 create directories or to strip extensions from files. Nor can you
 use it with a ~ to indicate a
 home directory—which is just as well, since some folks like to use
 that character for their backup files:
% perl –pi~ –e 's/foo/bar/' file1 file2 file3...
Finally, the –i switch
 does not stop Perl from running if no filenames are given on the
 command line. When this happens, no backup is made since the
 original file cannot be determined, and processing proceeds from
 STDIN to STDOUT as might be expected.

	–I
 DIRECTORY
	Directories specified by –I
 are prepended to @INC, which
 holds the search path for modules. Like use lib, the –I switch implicitly adds
 platform-specific directories. See use
 lib in Chapter 29, for details.

	–l
	

	–l
 OCTNUM
	Enables automatic line-end processing. It has two effects: first, it
 automatically chomps the line
 terminator when used with –n or
 –p; second, it sets $\ to the value of
 OCTNUM so that any print statements
 will have a line terminator of ASCII value
 OCTNUM added back on. If
 OCTNUM is omitted, –l sets $\ to the current value of $/, typically newline. So to trim lines
 to 80 columns, say this:
% perl –lpe 'substr($_, 80) = ""'
Note that the assignment $\ =
 $/ is done when the switch is processed, so the input
 record separator can be different from the output record separator
 if the –l switch is followed by
 a –0 switch:
% gnufind / –print0 | perl –ln0e 'print "found $_" if –p'
This sets $\ to newline
 and later sets $/ to the null
 character. (Note that 0 would
 have been interpreted as part of the –l switch had it followed the –l directly. That’s why we bundled the
 –n switch between them.)

	–m and –M
	These switches load a MODULE as if you’d
 executed a use, unless you
 specify –MODULE
 instead of MODULE, in which case they
 invoke no. For example, –Mstrict is like use strict, while –M–strict is like no strict.
	–m
 MODULE
	Executes use
 MODULE () before executing your
 script.

	–M
 MODULE
	Executes use
 MODULE before executing
 your script. The command is formed by mere interpolation of
 the rest of the argument after the –M, so you can use quotes to add
 extra code after the module name—for example, –M'MODULE qw(foo bar)'. If the
 first character after the –M or –m is a dash (–), then the use is replaced with no. To use this to assert a
 minimal version number of the running Perl, use –Mv5.14, for example, to make sure
 you’re running at least v5.14 or better.

	–M
 MODULE=ARG1,ARG2…
	A little built-in syntactic sugar means you can also
 say –Mmodule=foo,bar as a
 shortcut for –M'module qw(foo
 bar)'. This avoids the need to use quotes when
 importing symbols. The actual code generated by –Mmodule=foo,bar is:
use module split(/,/, q{foo,bar})
Note that the =
 form removes the distinction between –m and –M, but it’s better to use the
 uppercase form to avoid confusion.

You may only use the –M
 and –m switches from a real
 command-line invocation of Perl, not as options picked up on the
 #! line. (Hey, if you’re gonna
 put it in the file, why not just write the equivalent use or no instead?)

	–P
	Removed in v5.12 due to portability concerns. Use the Text::CPP module from CPAN instead.

	–n
	Causes Perl to assume the following loop around your script, which
 makes it iterate over filename arguments much as sed –n or awk do:
LINE:
while (<>) {
 ... # your script goes here
}
You may use LINE as a
 loop label from within your script, even though you can’t see the
 actual label in your file.
Note that the lines are not printed by default. See –p to have lines printed. Here is an
 efficient way to delete all files older than a week:
find . –mtime +7 –print | perl –nle unlink
This is faster than using the –exec switch of the find program because you don’t have to
 start a process on every filename found. It does suffer from the
 bug of mishandling newlines in pathnames, which you can fix if you
 follow the example under –0. By
 an amazing coincidence, BEGIN
 and END blocks may be used to
 capture control before or after the implicit loop, just as in
 awk.

	–p
	Causes Perl to assume the following loop around your script, which
 makes it iterate over filename arguments much as sed does:
LINE:
while (<>) {
 ... # your script goes here
}
continue {
 (print) || die "–p destination: $!\n";
}
You may use LINE as a
 loop label from within your script, even though you can’t see the
 actual label in your file.
If a file named by an argument cannot be opened for some
 reason, Perl warns you about it and moves on to the next file.
 Note that the lines are printed automatically. An error occurring
 during printing is treated as fatal. By yet another amazing
 coincidence, BEGIN and END blocks may be used to capture
 control before or after the implicit loop, just as in awk.

	–s
	Enables rudimentary switch parsing for switches on the
 command line after the script name but before any filename
 arguments or a “––”
 switch-processing terminator. Any switch found is removed from
 @ARGV, and a variable by the
 same name as the switch is set in Perl. Switch bundling is not
 allowed, because multicharacter switches are permitted.
The following script prints “true” only when the script is invoked
 with a –foo switch.
#!/usr/bin/perl –s
if ($foo) { print "true\n" }
If the switch is of the form –xxx=yyy, the $xxx variable is set to whatever follows
 the equals sign in that argument (“yyy” in this case). The following script
 prints “true” if and only if
 the script is invoked with a –foo=bar switch.
#!/usr/bin/perl –s
if ($foo eq 'bar') { print "true\n" }
Do note that a switch like ––help creates the variable ${–help}, which is not compliant with
 strict refs. Also, using this
 option on a script with warnings enabled may generate spurious
 “used only once” warnings.

	–S
	Makes Perl use the PATH environment
 variable to search for the script (unless the name of the script
 contains directory separators).
Typically, this switch is used to help emulate #! startup on platforms that don’t
 support #!. On many platforms
 that have a shell compatible with Bourne or C shell, you can use
 this:
#!/usr/bin/perl
eval "exec /usr/bin/perl –S $0 $*"
 if $running_under_some_shell;
The system ignores the first line and feeds the script to
 /bin/sh, which proceeds to
 try to execute the Perl script as a shell script. The shell
 executes the second line as a normal shell command and thus starts
 up the Perl interpreter. On some systems $0 doesn’t always contain the full
 pathname, so –S tells Perl to
 search for the script if necessary. After Perl locates the script,
 it parses the lines and ignores them because the variable $running_under_some_shell is never true.
 A better construct than $*
 would be ${1+"$@"}, which
 handles embedded spaces and such in the filenames but doesn’t work
 if the script is being interpreted by csh. To start up sh instead of csh, some systems have to replace the
 #! line with a line containing
 just a colon, which Perl will ignore politely. Other systems can’t
 control that and need a totally devious construct that will work
 under any of csh, sh, or perl, such as the following:
eval '(exit $?0)' && eval 'exec /usr/bin/perl –S $0 ${1+"$@"}'
 & eval 'exec /usr/bin/perl –S $0 $argv:q'
 if 0;
Yes, it’s ugly, but so are the systems that work[174] this way.
On some platforms, the –S
 switch also makes Perl append suffixes to the filename while
 searching for it. For example, on Win32 platforms, the .bat and .cmd suffixes are appended if a lookup
 for the original name fails and the name does not already end in
 one of those suffixes. If your Perl was built with debugging
 enabled, you can use Perl’s –Dp
 switch to watch how the search progresses.
If the filename supplied contains directory separators (even
 as just a relative pathname, not an absolute one), and if the file
 is not found, those platforms that implicitly append file
 extensions (not Unix) will do so and look for the file with those
 extensions added, one by one.
On DOS-like platforms, if the script does not contain
 directory separators, it will first be searched for in the current
 directory before being searched for in the PATH. On Unix platforms, the script will
 be searched for strictly on the PATH, due to security concerns about
 accidentally executing something in the current working directory
 without explicitly requesting this.

	–t
	Like –T, but taint checks will issue warnings rather than fatal
 errors. These warnings can be controlled normally with no warnings qw(taint).
Note: this is not a substitute for –T! This is meant to be used
 only as a temporary development aid while
 securing legacy code: for real production code and for new secure
 code written from scratch, always use the real –T.

	–T
	Forces “taint” checks to be turned on so you can test them.
 Ordinarily these checks are done only when running setuid or
 setgid. It’s a good idea to turn them on explicitly for programs
 run on another’s behalf, such as CGI programs. See Chapter 20.
For security reasons, Perl must see this option quite early;
 usually this means it must appear early on the command line or in
 the #! line. If it’s not early
 enough, Perl complains.

	–u
	Causes Perl to dump core after compiling your script. In theory,
 you can then take this core dump and turn it into an executable
 file by using the undump
 program (not supplied). This speeds startup at the expense of some
 disk space (which you can minimize by stripping the executable).
 If you want to execute a portion of your script before dumping,
 use Perl’s dump operator
 instead. Note: availability of undump is platform specific; it may not
 be available for a specific port of Perl. It has been superseded
 by the new Perl-to-C code generator, which is much more portable
 (but still experimental).

	–U
	Allows Perl to do unsafe operations. Currently the only
 “unsafe” operations are unlinking directories while running as
 superuser, and running setuid programs with fatal taint checks
 turned into warnings. Note that warnings must be enabled to
 actually produce the taint-check warnings.

	–v
	Prints the version and patch level of your Perl executable,
 along with a bit of extra information.

	–V
	Prints a summary of the major Perl configuration values and
 the current value of @INC.

	–V:
 NAME
	Prints to STDOUT the
 value of the named configuration variable. The
 NAME may contain regex characters, like
 “.” to match any character, or
 “.*” to match any optional
 sequence of characters.
% perl –V:man.dir
man1dir='/usr/local/man/man1'
man3dir='/usr/local/man/man3'

% perl –V:'.*threads'
d_oldpthreads='undef'
use5005threads='define'
useithreads='undef'
usethreads='define'
If you ask for a configuration variable that doesn’t exist,
 its value will be reported as “UNKNOWN”. Configuration information is
 available from within a program using the Config module, although patterns are not
 supported for the hash subscripts:
% perl –MConfig –le 'print $Config{man1dir}'
/usr/local/man/man1
See the Config module for more details.

	–w
	Prints warnings about variables that are mentioned only
 once and scalar values that are used before being set. Also warns
 about redefined subroutines, and references to undefined
 filehandles or filehandles opened read-only that you are
 attempting to write on. Also warns you if you use values as
 numbers that don’t look like numbers, if you use an array as
 though it were a scalar, if your subroutines recurse more than 100
 deep, and innumerable other things. See every entry labelled “(W)”
 in perldiag.
This switch just sets the global $^W variable. It has no effect on
 lexical warnings—see the –W and
 –X switches for that. You can
 enable or disable specific warnings via the warnings (or no warnings)
 pragma, described in Chapter 29.

	–W
	Enables all warnings unconditionally and permanently throughout
 the program, even if warnings were disabled locally using no warnings or $^W = 0. This includes all files loaded
 via use, require, or do. Think of it as the Perl equivalent
 of the lint(1) command.

	–x
	

	–x
 DIRECTORY
	Tells Perl to extract a script that is embedded in a message.
 Leading garbage will be discarded until the first line that starts
 with #! and contains the string
 “perl”. Any meaningful switches
 on that line after the word “perl” will be applied. If a directory
 name is specified, Perl will switch to that directory before
 running the script. The –x
 switch controls the disposal of leading garbage only, not trailing
 garbage. The script must be terminated with _ _END_ _ or _ _DATA_ _ if there is trailing garbage
 to be ignored. (The script can process any or all of the trailing
 garbage via the DATA filehandle
 if desired. In theory, it could even seek to the beginning of the file and
 process the leading garbage.)

	–X
	Disables all warnings unconditionally and permanently, the exact
 opposite of what the –W flag
 does.

[173] Technically, this isn’t really “in place”. It’s the same
 filename but a different physical file.

[174] We use the term advisedly.

Environment Variables

In addition to the various switches that explicitly modify Perl’s behavior, you
 can set various environment variables to influence various underlying
 behaviors. How you set up these environment variables is system dependent,
 but one trick you should know if you use sh, ksh, or
 bash is that you can temporarily set an
 environment variable for a single command, as if it were a funny kind of
 switch. It has to be set in front of the command:
$ PATH='/bin:/usr/bin' perl myproggie
You can do something similar with a subshell in csh and tcsh:
% (setenv PATH "/bin:/usr/bin"; perl myproggie)
Otherwise, you’d typically set environment variables in some file
 with a name resembling .cshrc or
 .profile in your home directory.
 Under csh and tcsh you’d say:
% setenv PATH '/bin:/usr/bin'
And under sh, ksh, and bash
 you’d say:
$ PATH='/bin:/usr/bin'; export PATH
Other systems will have other ways of setting these on a
 semipermanent basis. Here are the environment variables Perl pays
 attention to:
	HOME
	Used if chdir is called
 without an argument.

	LC_ALL, LC_CTYPE, LC_COLLATE, LC_NUMERIC, PERL_BADLANG
	Environment variables that control how Perl handles data specific
 to particular natural languages. See the online docs for
 perllocale.

	LOGDIR
	Used if chdir has no
 argument but HOME
 is not set.

	PATH
	Used in executing subprocesses and for finding the program if
 the –S switch is used.

	PERL5DB
	The command used to load the debugger code. The default is:
BEGIN { require "perl5db.pl" }
See Chapter 18 for more uses of this
 variable.

	PERL5DB_THREADED
	If set to a true value, indicates to the debugger that the code
 being debugged uses threads.

	PERL_ALLOW_NON_IFS_LSP
 (specific to the Win32 port)
	Set to 1 to allow the use of non-IFS compatible LSPs. Perl
 normally searches for an IFS-compatible LSP because this is required
 for its emulation of Windows sockets as real filehandles. However,
 this may cause problems if you have a firewall such as
 McAfee Guardian, which requires all
 applications to use its LSP and which is not IFS-compatible, because
 clearly Perl will normally avoid using such an LSP.
Setting this environment variable to 1 means that Perl will
 simply use the first suitable LSP enumerated in the catalog, which
 keeps McAfee Guardian happy (and in that
 particular case Perl still works, too, because McAfee
 Guardian’s LSP actually plays some other games that allow
 applications requiring IFS compatibility to work).

	PERL_DEBUG_MSTATS
	Relevant only if Perl is compiled with the malloc included with
 the Perl distribution (that is, if perl
 –V:d_mymalloc is define). If set, this dumps out memory
 statistics after execution. If set to an integer greater than one,
 also dumps out memory statistics after compilation.

	PERL_DESTRUCT_LEVEL
	Relevant only if your Perl executable was built with –DDEBUGGING, this variable controls the
 behavior of global destruction of objects and other references. See
 “perl_destruct_level” in
 perlhacktips
 for more information.

	PERL_DL_NONLAZY
	Set to one to have Perl resolve all
 undefined symbols when it loads a dynamic library. The default
 behavior is to resolve symbols when they are used. Setting this
 variable is useful during testing of extensions as it ensures that
 you get an error on misspelled function names, even if the test
 suite doesn’t call it.

	PERL_ENCODING
	Don’t use this. It relies on the encoding pragma, which doesn’t work.

	PERL_HASH_SEED
	(Since v5.8.1.) Used to randomize Perl’s internal hash
 function. To emulate the pre-5.8.1 behavior, set to an integer (zero
 means the same order as v5.8.0). “Pre-5.8.1” means, among
 other things, that hash keys will always have the same ordering
 between different runs of Perl.
Most hashes return elements in the same order as v5.8.0 by
 default. On a hash-by-hash basis, if pathological data is detected
 during a hash key insertion, then that hash will switch to an
 alternative random hash seed.
The default behavior is to randomize, unless the PERL_HASH_SEED is set. If Perl has been
 compiled with –DUSE_HASH_SEED_EXPLICIT, the default
 behavior is not to randomize—unless the
 PERL_HASH_SEED is set.
If PERL_HASH_SEED is unset
 or set to a nonnumeric string, Perl uses the pseudorandom seed
 supplied by the operating system and libraries.
Please note that the hash seed is sensitive
 information. Hashes are randomized to protect against
 local and remote attacks against Perl code. By manually setting a
 seed, this protection may be partially or completely lost.
See “Algorithmic Complexity Attacks” in perlsec
 and “ENVIRONMENT” in perlrun
 for more information.

	PERL_HASH_SEED_DEBUG
	(Since v5.8.1.) Set to one to display (to STDERR) the value of the hash seed at the
 beginning of execution. This, combined with PERL_HASH_SEED [see “perl_hash_seed” in
 perlrun]
 is intended to aid in debugging nondeterministic behavior caused by
 hash randomization.
Note that the hash seed is sensitive
 information: by knowing it you can craft a
 denial-of-service attack against Perl code, even remotely; see
 “Algorithmic Complexity Attacks” in perlsec
 for more information. Do not disclose the hash
 seed to people who don’t need to know it. See also
 hash_seed() of Hash::Util.

	PERL_MEM_LOG
	If your Perl was configured with –Accflags=–DPERL_MEM_LOG, setting the
 environment variable PERL_MEM_LOG
 enables logging debug messages. The value has the form number[m][s][t],
 where number is the file descriptor
 number you want to write to (2 is default), and the combination of
 letters specifies that you want information about (m)emory and/or
 (s)v, optionally with (t)imestamps. For example PERL_MEM_LOG=1mst will log all information
 to stdout. You can also write to other opened file descriptors, in a
 variety of ways:
bash$ 3>foo3 PERL_MEM_LOG=3m perl ...

	PERL_ROOT (specific to the
 VMS port)
	A translation concealed rooted logical name that contains Perl and
 the logical device for the
 @INC path on VMS only. Other
 logical names that affect
 Perl on VMS include PERLSHR, PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIAL, but these are
 optional and discussed further in perlvms
 and in README.vms in
 the Perl source distribution.

	PERL_SIGNALS
	In v5.8.1 and later. If set to unsafe, the pre-Perl-5.8.0 behavior
 (immediate but unsafe signals) is restored. If set to safe, the safe (or deferred) signals are
 used. See “Deferred Signals (Safe Signals)” in perlipc.

	PERL5SHELL (Microsoft ports
 only)
	May be set to an alternative shell that Perl must use
 internally for executing commands via backticks or system. Default is cmd.exe /x/c on WinNT and command.com /c on Win95. The value is
 considered to be space-separated. Precede any character that needs
 to be protected (like a space or backslash) with a backslash.
Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high degree of variability
 among users, leading to portability concerns. Besides, Perl can use
 a shell that may not be fit for interactive use, and setting
 COMSPEC to such a shell may
 interfere with the proper functioning of other programs (which
 usually look in COMSPEC to find a
 shell fit for interactive use).

	PERL5LIB
	A colon-separated[175] list of directories in which to look for Perl library
 files before looking in the standard library and the current
 directory. Any architecture-specific directories under the specified
 locations are automatically included if they exist. If PERL5LIB is not defined, PERLLIB is consulted for backward
 compatibility with older releases.
When running taint checks (either because the program was
 running setuid or setgid, or the –T switch was used), neither of these
 library variables is used. Such programs must employ an explicit
 lib pragma for that purpose.

	PERL5OPT
	Default command-line switches. Switches in this variable are
 taken as if they were on every Perl command line. Only the –[DIMUdmw] switches are allowed. When
 running taint checks (because the program was running setuid or
 setgid, or the –T switch was
 used), this variable is ignored. If PERL5OPT begins with –T, tainting will be enabled, causing any
 subsequent options to be ignored.

	PERLIO
	A space- (or colon-) separated list of PerlIO layers. If Perl is built to use
 PerlIO system for IO (the
 default), these layers affect Perl’s IO.
It is conventional to start layer names with a colon (for
 example, :perlio) to emphasize
 their similarity to variable “attributes”. But the code that parses
 layer specification strings (which is also used to decode the PERLIO
 environment variable) treats the colon as a separator.
An unset or empty PERLIO is equivalent to the default set of
 layers for your
 platform—for example, :unix:perlio on Unix-like systems, and
 :unix:crlf on Windows and other DOS-like
 systems.
The list becomes the default for all
 Perl’s IO. Consequently, only built-in layers can appear in this list, because
 external layers such as :encoding(LAYER) need IO
 in order to load them. See the open pragma in Chapter 29
 for how to add external encodings as defaults.
It makes sense to include some layers in the PerlIO environment variable; these are
 briefly summarized below.
	:bytes
	A pseudolayer that turns off the :utf8 flag for the layer below. It
 is unlikely to be useful on its own in the global PERLIO environment variable. You
 perhaps were thinking of :crlf:bytes or :perlio:bytes.

	:crlf
	A layer that does CRLF to "\n" translation, distinguishing
 “text” and “binary” files in the manner of MS-DOS and similar
 operating systems. (It currently does not
 mimic MS-DOS as far as treating of Control-Z as being an
 end-of-file marker.)

	:mmap
	A layer that implements “reading” of files by using
 mmap to make a (whole) file
 appear in the process’s address space, and then using that as
 PerlIO’s “buffer”.

	:perlio
	This is a reimplementation of “stdio-like” buffering
 written as a PerlIO “layer”. As such, it
 will call whatever layer is below it for its operations
 (typically :unix).

	:pop
	An experimental pseudolayer that removes the
 topmost layer. Use with the same care as is reserved for
 nitroglycerin.

	:raw
	A pseudolayer that manipulates other layers. Applying the
 :raw layer is equivalent to
 calling binmode($fh). It
 makes the stream pass each byte as is, without any decoding.
 In particular, CRLF translation and intuiting :utf8 from locale environment
 variables are both disabled.
Unlike in the earlier versions of Perl, :raw is not
 just the inverse of :crlf.
 Other layers that would affect the binary nature of the
 stream are also removed or disabled.

	:stdio
	This layer provides PerlIO interface by wrapping the
 system’s ANSI C “stdio” library calls. The layer provides both
 buffering and IO. Note that :stdio layer does
 not do CRLF translation, even if that is
 the platform’s normal behavior. You will need a :crlf layer above it to do
 that.

	:unix
	Low-level layer that calls read, write, lseek, etc.

	:utf8
	A pseudolayer that enables a flag on the layer below to tell
 Perl that output should be in UTF-8, and that input should be
 regarded as already in valid UTF-8 form. It does not check for
 validity and, as such, should be handled with caution for
 input. If you use this layer on input, always enable
 (preferably fatal) UTF-8 warnings. Otherwise, you should use
 :encoding(UTF‑8) when
 reading UTF-8 encoded data.

	:win32
	On Win32 platforms this
 experimental layer uses native “handle”
 IO rather than a Unix-like numeric file descriptor layer.
 Known to be buggy in the v5.14 release.

The default set of layers should give acceptable results on
 all platforms
For Unix platforms, that will be the equivalent of “unix
 perlio” or “stdio”. Configure is set up to prefer the “stdio”
 implementation if the system library provides fast access to the
 buffer; otherwise, it uses the “unix perlio” implementation.
On Win32, the default in the v5.14 release is “unix crlf”.
 Win32’s “stdio” has several bugs—or, more charitably,
 misfeatures—for Perl IO that are somewhat dependent on which version
 and vendor supplied the C compiler. Using our own crlf layer as the buffer avoids those
 issues and makes things more uniform. The crlf layer provides CRLF "\n" conversion as well as
 buffering.
Perl v5.14 uses unix as the
 bottom layer on Win32 and so still uses the C compiler’s numeric
 file descriptor routines. There is an experimental native win32 layer, which is expected to be
 enhanced in the future and should eventually become the default
 under Win32.
The PERLIO environment
 variable is completely ignored when Perl is run in taint mode.

	PERLIO_DEBUG
	If set to the name of a file or device, certain operations of
 PerlIO’s subsystem will be logged
 to that file, opened in append mode. Typical uses are this in
 Unix:
% env PERLIO_DEBUG=/dev/tty perl script ...
Whereas in Win32, the approximate equivalent is:
> set PERLIO_DEBUG=CON
> perl script ...
This functionality is disabled for setuid scripts and for
 scripts run with –T.

	PERLLIB
	A colon-separated list of directories in which to look
 for Perl library files before looking in the standard library and
 the current directory. If PERL5LIB is defined, PERLLIB is not used.

	PERL_UNICODE
	Equivalent to the –C
 command-line switch. Note that this is not a Boolean variable.
 Setting this to "1" is not the
 right way to “enable Unicode” (whatever that would mean). However,
 you can use "0" to “disable
 Unicode” (or, alternatively, unset PERL_UNICODE in your shell before starting
 Perl).
Setting this variable to "AS" is generally useful in most
 situations involving text not binary: it implicitly decodes @ARGV from UTF-8, and it binmodes all three of the STDIN, STDOUT, and STDERR handles to the built-in :utf8 layer. Use when these are intended
 to be UTF-8 text, not just binary streams of bytes. Setting this
 variable to "ASD" may be even
 more useful for some cases, but because it also changes the default
 encoding of all filehandles from binary to :utf8, it breaks many old programs that
 assume binary (or on Windows, text) streams and so don’t bother to
 call binmode themselves. Unix
 programs are notorious for this. Therefore, it is best to use the
 "D" setting only for temporary
 runs.
Because the built-in :utf8
 layer does not by default raise exceptions or even warn of malformed
 UTF-8 in input streams, for correct behavior it is imperative that
 you also enable “utf8” warnings
 if you use the :utf8 layer on
 input streams. From the command line, use –Mwarnings=utf8 for warnings, or –Mwarnings=FATAL,utf8 for exceptions.
 Those correspond to use warnings
 "utf8" and use warnings FATAL
 => "utf8" from within the program. See the section
 Getting at Unicode Data in Chapter 6.

	SYS$LOGIN (specific to the
 VMS port)
	Used if chdir has
 no argument, and HOME and LOGDIR are not set.

Apart from these, Perl itself uses no other environment variables,
 except to make them available to the program being executed and to any
 child processes that program launches. Some modules, standard or
 otherwise, may care about other environment variables. For example, the
 re pragma uses PERL_RE_TC
 and PERL_RE_COLORS, the Cwd module uses PWD, and the
 CGI module uses the many environment
 variables set by your HTTP daemon (that is, your web server) to pass
 information to the CGI script.
Programs running setuid would do well to execute the following lines
 before doing anything else, just to keep people honest:
$ENV{PATH} = '/bin:/usr/bin'; # or whatever you need
$ENV{SHELL} = '/bin/sh' if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};
See Chapter 20 for details.

[175] On Unix and its derivatives. On Microsoft systems, it’s
 semicolon-separated.

Chapter 18. The Perl Debugger

First of all, have you tried the warnings pragma?
If you invoke Perl with the –d
 switch, your program will be run inside the Perl debugger. This works
 like an interactive Perl environment, prompting for debugger commands that
 let you examine source code, set breakpoints, dump out your function-call
 stack, change the values of variables, and so on. Any command not recognized
 by the debugger is executed directly (using eval) as Perl code in the package of the code
 currently being debugged. (The debugger uses the DB package for its own
 state information, to avoid trampling yours.) This is so wonderfully
 convenient that people often fire up the debugger just to test out Perl
 constructs interactively. In that case, it doesn’t matter what program you
 tell Perl to debug, so we’ll choose one without much meaning:
% perl –de 42
In Perl, the debugger is not a program completely separate from the one
 being debugged the way it usually is in a typical programming environment.
 Instead, the –d flag tells the compiler
 to insert source information into the parse trees it’s about to hand off to
 the interpreter. That means your code must first compile correctly for the
 debugger to work on it. If that is successful, the interpreter preloads a
 special Perl library file containing the debugger itself.
% perl –d /path/to/program
The program will halt immediately before the first runtime executable
 statement (but see the next section, Using the Debugger,
 regarding compile-time statements) and ask you to enter a debugger command.
 Whenever the debugger halts and shows you a line of code, it displays the
 line that it’s about to execute, not the one just
 executed.
As the debugger encounters a line, it first checks for a breakpoint,
 prints it (if the debugger is in trace mode), performs any actions (created
 with the a command described later in
 Debugger Commands), and finally prompts the user if a breakpoint
 is present or if the debugger is in single-step mode. If not, it evaluates
 the line normally and continues to the next line.

Using the Debugger

The debugger prompt is something like:
DB<8>
or even:
DB<<17>>
where the number shows how many commands you’ve executed. A csh-like history mechanism allows you to access
 previous commands by number. For example, !17 would repeat command number 17. The number
 of angle brackets indicates the depth of the debugger. For example, you
 get more than one set of brackets if you’re already at a breakpoint and
 then print out the result of a function call that itself also has a
 breakpoint.
If you want to enter a multiline command, such as a subroutine
 definition with several statements, you may escape the newline that would
 normally end the debugger command with a backslash. Here’s an
 example:
DB<1> for (1..3) { \
 cont: print "ok\n"; \
 cont: }
 ok
 ok
 ok
Let’s say you want to fire up the debugger on a little program of
 yours (let’s call it camel_flea) and
 stop it as soon as it gets down to a function named infested. Here’s how you’d do that:
% perl –d camel_flea
 Loading DB routines from perl5db.pl version 1.07
 Editor support available.

 Enter h or `h h' for help, or `man perldebug' for more help.

 main::(camel_flea:2): pests('bactrian', 4);
DB<1>
The debugger halts your program right before the first runtime
 executable statement (but see below about compile-time statements) and
 asks you to enter a command. Again, whenever the debugger stops to show
 you a line of code, it displays the line it’s about
 to execute, not the one it just executed. The line displayed may not look
 exactly like it did in your source file, particularly if you’ve run it
 through any kind of preprocessor.
Now, you’d like to stop as soon as your program gets to the infested function, so you establish a breakpoint
 there, like so:
DB<1> b infested
DB<2> c
The debugger now continues until it hits that function, at which
 point it says this:
main::infested(camel_flea:8): my $bugs = int rand(3);
To look at a “window” of source code around the breakpoint, use
 the w command:
DB<2> w
5 }
6
7 sub infested {
8==>b my $bugs = int rand(3);
9: our $Master;
10: contaminate($Master);
11: warn "needs wash"
12 if $Master && $Master–>isa("Human");
13
14: print "got $bugs\n";

DB<2>
As you see by the ==> marker,
 your current line is line 8, and by the b there, you know it has a breakpoint on it. If
 you had set an action, there also would have been an a there. The line numbers with colons are
 breakable; the rest are not.
To see who called whom, ask for a stack backtrace using
 the T command:
DB<2> T
$ = main::infested called from file `Ambulation.pm' line 4
@ = Ambulation::legs(1, 2, 3, 4) called from file `camel_flea' line 5
. = main::pests('bactrian', 4) called from file `camel_flea' line 2
The initial character ($,
 @, or .) tells whether the function was called in a
 scalar, list, or void context, respectively. There are three lines because
 you were three functions deep when you ran the stack backtrace. Here’s
 what each line means:
	The first line says you were in the function main::infested when you ran the stack trace.
 It tells you the function was called in scalar context from line 4 of
 the file Ambulation.pm. It also
 shows that it was called without any arguments whatsoever, meaning it
 was called as &infested instead
 of the normal way, as infested().

	The second line shows that the function Ambulation::legs was called in list context
 from line number 5 of the camel_flea file, with those four
 arguments.

	The third line shows that main::pests was called in void context from
 line 2 of camel_flea.

If you have compile-phase executable statements, such as code from
 BEGIN and CHECK blocks or use statements, these will
 not ordinarily be stopped by the debugger, although
 requires and INIT blocks will, since they happen after the
 transition to run phase (see Chapter 16). Compile-phase
 statements can be traced with the AutoTrace option set in PERLDB_OPTS.
You can exert a little control over the Perl debugger from within
 your Perl program itself. You might do this, for example, to set an
 automatic breakpoint at a certain subroutine whenever a particular program
 is run under the debugger. From your own Perl code, however, you can
 transfer control back to the debugger using the following statement, which
 is harmless if the debugger is not running:
$DB::single = 1;
If you set $DB::single to 2, it’s equivalent to the n command, whereas a
 value of 1 emulates the s command. The $DB::trace variable should be set to 1 to
 simulate the t command.
Another way to debug a module is to set a breakpoint on
 loading:
DB<7> b load c:/perl/lib/Carp.pm
Will stop on load of `c:/perl/lib/Carp.pm'.
and then restart the debugger using the R command. For finer
 control, you can use the b compile
 subname to stop as soon as possible after a particular
 subroutine is compiled.

Debugger Commands

When you type commands into the debugger, you don’t need to terminate them
 with a semicolon. Use a backslash to continue lines (but only in the
 debugger).
Since the debugger uses eval to execute
 commands, my and local settings will disappear once the command
 returns. If a debugger command coincides with some function in your own
 program, simply precede the function call with anything that doesn’t look
 like a debugger command, such as a leading ; or a +.
If the output of a debugger built-in command scrolls past your
 screen, just precede the command with a leading pipe symbol so it’s run
 through your pager:
DB<1> |h
The debugger has plenty of commands, and we divide them (somewhat
 arbitrarily) into stepping and running, breakpoints, tracing, display,
 locating code, automatic command execution, and, of course,
 miscellaneous.
Perhaps the most important command is h, which provides help. If you type h h at the debugger prompt, you’ll get a compact
 help listing designed to fit on one screen. If you type h COMMAND, you’ll get
 help on that debugger command.

Stepping and Running

The debugger operates by stepping through your program line
 by line. The following commands let you control what you skip over and
 where you stop.
	s
 [EXPR]
	The s debugger command single-steps through the program. That is,
 the debugger will execute the next line of your program until
 another statement is reached, descending into subroutine calls as
 necessary. If the next line to execute involves a function call,
 then the debugger stops at the first line inside that function. If
 an EXPR is supplied that includes
 function calls, these will be single-stepped, too.

	n
 [EXPR]
	The n command executes subroutine calls, without stepping through
 them, until the beginning of the next statement at this same level
 (or higher). If an EXPR is supplied
 that includes function calls, those functions will be executed
 with stops before each statement.

	<ENTER>
	If you just hit enter at the debugger prompt, the previous
 n or s command is repeated.

	.
	The . command returns the internal debugger pointer to the line
 last executed and prints out that line.

	r
	This command continues until the currently executing subroutine
 returns. It displays the return value if the PrintRet option is set, which it is by
 default.

Breakpoints

	b
	

	b
 LINE
	

	b
 CONDITION
	

	b LINE
 CONDITION
	

	b
 SUBNAME
	

	b SUBNAME
 CONDITION
	

	b postpone
 SUBNAME
	

	b postpone
 SUBNAME
 CONDITION
	

	b compile
 SUBNAME
	

	b load
 FILENAME
	The b debugger command sets a breakpoint before
 LINE, telling the debugger to stop the
 program at that point so that you can poke around. If
 LINE is omitted, it sets a breakpoint
 on the line that’s about to execute. If
 CONDITION is specified, it’s evaluated
 each time the statement is reached: a breakpoint is triggered only
 if CONDITION is true. Breakpoints may
 only be set on lines that begin an executable statement. Note that
 conditions don’t use if:
b 237 $x > 30
b 237 ++$count237 < 11
b 33 /pattern/i
The b
 SUBNAME form sets a (possibly
 conditional) breakpoint before the first line of the named
 subroutine. SUBNAME may be a variable
 containing a code reference; if so,
 CONDITION is not supported.
There are several ways to set a breakpoint on code that
 hasn’t even been compiled yet. The b
 postpone form sets a (possibly conditional) breakpoint
 at the first line of SUBNAME after it
 is compiled.
The b compile form sets a
 breakpoint on the first statement to be executed after
 SUBNAME is compiled. Note that, unlike
 the postpone form, this
 statement is outside the subroutine in question because the
 subroutine hasn’t been called yet, only compiled.
The b load form sets a
 breakpoint on the first executed line of the file. The
 FILENAME should be a full pathname as
 found in the %INC
 values.

	d
	

	d
 LINE
	This command deletes the breakpoint at
 LINE; if omitted, it deletes the
 breakpoint on the line about to execute.

	D
	This command deletes all breakpoints.

	L
	This command lists all the breakpoints and actions.

	c
	

	c
 LINE
	This command continues execution, optionally inserting a
 one-time-only breakpoint at the specified LINE.

Tracing

	T
	This command produces a stack backtrace.

	t
	

	t
 EXPR
	This command toggles trace mode, which prints out every line in your
 program as it is evaluated. See also the AutoTrace option discussed later in this
 chapter. If an EXPR is provided, the
 debugger will trace through its execution. See also the later
 section Unattended Execution.

	W
	

	W
 EXPR
	This command adds EXPR as a global
 watch expression. (A watch expression is an
 expression that will cause a breakpoint when its value changes.)
 If no EXPR is provided, all watch
 expressions are deleted.

Display

Perl’s debugger has several commands for examining data structures while your
 program is stopped at a breakpoint.
	p
	

	p
 EXPR
	This command is the same as print
 DB::OUT EXPR in the current
 package. In particular, since this is just Perl’s own print function, nested data structures
 and objects are not shown—use the x command for that. The DB::OUT handle prints to your terminal
 (or perhaps an editor window) no matter where standard output may
 have been redirected.

	x
	

	x
 EXPR
	The x command evaluates its expression in list context and
 displays the result, pretty printed. That is, nested data
 structures are printed out recursively and with unviewable
 characters suitably encoded.

	V
	

	V
 PKG
	

	V PKG
 VARS
	This command displays all (or when you specify
 VARS, some) variables in the specified
 PKG (defaulting to the main package) using a pretty printer.
 Hashes show their keys and values, control characters are rendered
 legibly, nested data structures print out in a legible fashion,
 and so on. This is similar to calling the x command on each applicable variable,
 except that x works with
 lexical variables, too. Also, here you type the identifiers
 without a type specifier such as $ or @, like this:
V Pet::Camel SPOT FIDO
In place of a variable name in
 VARS, you can use ~PATTERN or
 !PATTERN to
 print existing variables whose names either match or don’t match
 the specified pattern.

	X
	

	X
 VARS
	This command is the same as V
 CURRENTPACKAGE, where
 CURRENTPACKAGE is the package into
 which the current line was compiled.

	H
	

	H
 –NUMBER
	This command displays the last NUMBER
 commands. Only commands longer than one character are stored in
 the history. (Most of them would be s or n, otherwise.) If
 NUMBER is omitted, all commands are
 listed.

Locating Code

Inside the debugger, you can extract and display parts of your program with these
 commands.
	l
	

	l
 LINE
	

	l
 SUBNAME
	

	l
 MIN+INCR
	

	l
 MIN–MAX
	The l command lists the next few lines of your program, or the
 specified LINE if provided, or the
 first few lines of the SUBNAME
 subroutine or code reference.
The l
 MIN+INCR form lists
 INCR+1 lines, starting at
 MIN. The l MIN–MAX
 form lists lines MIN through
 MAX.

	–
	This command lists the previous few lines of your
 program.

	w
 [LINE]
	Lists a window (a few lines) around the given source
 LINE, or the current line if no
 LINE is supplied.

	f
 FILENAME
	This command lets you view a different program or
 eval statement. If the
 FILENAME is not a full pathname as
 found in the values of %INC, it
 is interpreted as a regular expression to find the filename you
 mean.

	/PATTERN/
	This command searches forward in the program for
 PATTERN; the final / is optional. The entire
 PATTERN is optional, too; if omitted,
 it repeats the previous search.

	?PATTERN?
	This command searches backward for
 PATTERN; the final ? is optional. It repeats the previous
 search if PATTERN is omitted.

	S
	

	S
 PATTERN
	

	S
 !PATTERN
	The S command lists those subroutine names matching (or,
 with !, those not matching)
 PATTERN. If no
 PATTERN is provided, all subroutines
 are listed.

Actions and Command Execution

From inside the debugger, you can specify actions to be taken at
 particular times. You can also launch external programs.
	a
	

	a
 COMMAND
	

	a
 LINE
	

	a LINE
 COMMAND
	This command sets an action to take before
 LINE executes, or the current line if
 LINE is omitted. For example, this
 prints out $foo every time line
 53 is reached:
a 53 print "DB FOUND $foo\n"
If no COMMAND is
 specified, the action on the specified
 LINE is deleted. With neither
 LINE nor
 COMMAND, the action on the current line
 is deleted.

	A
	The A debugger command deletes all actions.

	<
	

	< ?
	

	<
 EXPR
	

	<<
 EXPR
	The <
 EXPR form specifies a Perl expression
 to be evaluated before every debugger prompt. You can add another
 expression with the <<
 EXPR form, list them with < ?, and delete them all with a plain
 <.

	>
	

	> ?
	

	>
 EXPR
	

	>>
 EXPR
	The > commands behave
 just like their < cousins
 but are executed after the debugger prompt instead of
 before.

	{
	

	{ ?
	

	{
 COMMAND
	

	{{
 COMMAND
	The { debugger commands behave just like < but specify a debugger command to
 be executed before the debugger prompt instead of a Perl
 expression. A warning is issued if you appear to have accidentally
 entered a block of code instead. If that’s what you really mean to
 do, write it with ;{ ... } or
 even do { ... }.

	!
	

	!
 NUMBER
	

	!
 –NUMBER
	

	!PATTERN
	A lone ! repeats the
 previous command. The NUMBER specifies
 which command from the history to execute; for instance, ! 3 executes the third command typed
 into the debugger. If a minus sign precedes the
 NUMBER, the commands are counted
 backward: ! –3 executes the
 third-to-last command. If a PATTERN (no
 slashes) is provided instead of a
 NUMBER, the last command that began
 with PATTERN is executed. See also the
 recallCommand debugger
 option.

	!!
 CMD
	This debugger command runs the external command
 CMD in a subprocess, which will read
 from DB::IN and write to
 DB::OUT. See also the shellBang debugger option. This command
 uses whatever shell is named in $ENV{SHELL}, which can sometimes
 interfere with proper interpretation of status, signal, and core
 dump information. If you want a consistent exit value from the
 command, set $ENV{SHELL} to
 /bin/sh.

	|
	

	!
 NUMBER
	

	!
 –NUMBER
	

	!PATTERN
	The |DBCMD
 command runs the debugger command
 DBCMD, piping DB::OUT to $ENV{PAGER}. This is often used with
 commands that would otherwise produce long output, such as:
DB<1> |V main
Note that this is for debugger commands, not commands you’d
 type from your shell. If you wanted to pipe the external command
 who through your pager, you could do
 something like this:
DB<1> !!who | more
The ||PERLCMD
 command is like |DBCMD, but
 DB::OUT is temporarily selected as well, so any commands that
 call print, printf, or write without a filehandle will also be
 sent down the pipe. For example, if you had a function that
 generated loads of output by calling print, you’d use this command instead of
 the previous one to page through that output:
DB<1> sub saywho { print "Users: ", `who` }
DB<2> ||saywho()

Miscellaneous Commands

	q and ^D
	These commands quit the debugger. This is the recommended way to
 exit, although typing exit
 twice sometimes works. Set the inhibit_exit option to 0 if you want to be able to step off the
 end of the program and remain in the debugger anyway. You may also
 need to set $DB::finished to
 0 if you want to step through
 global destruction.

	R
	Restart the debugger by execing a new session. The debugger
 tries to maintain your history across sessions, but some internal
 settings and command-line options may be lost. The following
 settings are currently preserved: history, breakpoints, actions,
 debugger options, and the Perl command-line options –w, –I, and –e.

	=
	

	=
 ALIAS
	

	= ALIAS
 VALUE
	This command prints out the current value of
 ALIAS if no
 VALUE is given. With a
 VALUE, it defines a new debugger
 command with the name ALIAS. If both
 ALIAS and
 VALUE are omitted, all current aliases
 are listed. For example:
= quit q
An ALIAS should be a simple
 identifier and should translate to a simple identifier as well.
 You can do more sophisticated aliasing by adding your own entries
 to %DB::aliases directly. See
 the following section, Debugger Customization.

	man
	

	man
 MANPAGE
	This command calls your system’s default documentation viewer on
 the given page or on the viewer itself if
 MANPAGE is omitted. If that viewer is
 man, the current %Config information is used to invoke
 it. The “perl” prefix will be
 automatically supplied for you when necessary; this lets you type
 man debug and man op from the debugger.
On systems that do not normally have the man utility, the debugger invokes
 perldoc; if you want to change
 that behavior, set $DB::doccmd
 to whatever viewer you like. This may be set in an
 rc file or through direct
 assignment.

	O
	

	O OPTION
 ...
	

	O OPTION?
 ...
	

	O
 OPTION=VALUE
 ...
	The O command lets you manipulate debugger options, which are
 listed in Debugger Options later in this chapter.
 The O
 OPTION form sets each of the listed
 debugger options to 1. If a
 question mark follows an OPTION, its
 current value is displayed.
The O
 OPTION=VALUE
 form sets the values; if VALUE has
 internal whitespace, it should be quoted. For example, you could
 set O pager="less –MQeicsNfr"
 to use less with those specific
 flags. You may use either single or double quotes, but if you do,
 you must escape embedded instances of the same sort of quote that
 you began with. You must also escape any backslash that
 immediately precedes the quote but is not meant to escape the
 quote itself. In other words, just follow single-quoting rules
 irrespective of the quote actually used. The debugger responds by
 showing you the value of the option just set, always using
 single-quoted notation for its output:
DB<1> O OPTION='this isn\'t bad'
 OPTION = 'this isn\'t bad'

DB<2> O OPTION="She said, \"Isn't it?\""
 OPTION = 'She said, "Isn\'t it?"'
For historical reasons, the =VALUE is
 optional but defaults to 1 only
 where safe to do so—that is, mostly for Boolean options. It is
 better to assign a specific VALUE using
 =. The
 OPTION can be abbreviated, but unless
 you’re trying to be intentionally cryptic, it probably should not
 be. Several options can be set together. See the upcoming section
 Debugger Options later in the chapter for a list of
 these.

Debugger Customization

The debugger probably contains enough configuration hooks that
 you’ll never have to modify it yourself. You may change debugger behavior
 from within the debugger using its O
 command, from the command line via the PERLDB_OPTS environment variable, and by running
 any preset commands stored in rc
 files.

Editor Support for Debugging

The debugger’s command-line history mechanism doesn’t provide
 command-line editing like many shells do: you can’t retrieve previous
 lines with ^p, or move to the
 beginning of the line with ^a,
 although you can execute previous lines with the exclamation point
 syntax familiar to shell users. However, if you install the Term::ReadKey and Term::ReadLine modules from CPAN, you will have full editing
 capabilities similar to what GNU readline(3)
 provides.
If you have emacs installed
 on your system, it can interact with the Perl debugger to
 provide an integrated software development environment reminiscent of
 its interactions with C debuggers. Perl comes with a start file for
 making emacs act like a
 syntax-directed editor that understands (some of) Perl’s syntax. Look in
 the emacs directory of the Perl
 source distribution. Users of vi should also look
 into vim (and gvim, the mousey and windy version) for
 coloring of Perl keywords.
A similar setup by one of us (Tom) for interacting with any
 vendor-shipped vi and the X11 window
 system is also available. This works similarly to the integrated
 multiwindow support that emacs
 provides, where the debugger drives the editor. However, at the time of
 this writing, its eventual location in the Perl distribution is
 uncertain. But we thought you should know of the possibility.

Customizing with Init Files

You can do some customization by setting up either a .perldb or perldb.ini file (depending on your operating
 system), which contains initialization code. This init file holds Perl
 code, not debugger commands, and it is processed before the PERLDB_OPTS environment variable is looked at. For instance, you could
 make aliases by adding entries to the %DB::alias hash this way:
$alias{len} = 's/^len(.*)/p length($1)/';
$alias{stop} = 's/^stop (at|in)/b/';
$alias{ps} = 's/^ps\b/p scalar /';
$alias{quit} = 's/^quit(\s*)/exit/';
$alias{help} = 's/^help\s*$/|h/';
You can change options from within your init file using function
 calls into the debugger’s internal API:
parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");
If your init file defines the subroutine afterinit, that function is called after
 debugger initialization ends. The init file may be located in the
 current directory or in the home directory. Because this file contains
 arbitrary Perl commands, for security reasons, it must be owned by the
 superuser or the current user, and writable by no one but its
 owner.
If you want to modify the debugger, copy perl5db.pl from the Perl library to another
 name and hack it to your heart’s content. You’ll then want to set your
 PERL5DB environment variable to say something like this:
BEGIN { require "myperl5db.pl" }
As a last resort, you could also use PERL5DB to customize the debugger by directly
 setting internal variables or calling internal debugger functions. Be
 aware, though, that any variables and functions not documented either
 here or in the online perldebug,
 perldebguts,
 or DB manpages are considered to be for internal use only and
 are subject to change without notice.

Debugger Options

The debugger has numerous options that you can set with the O command, either interactively, from the
 environment, or from an init file.
	recallCommand,
 ShellBang
	The characters used to recall a command or spawn a shell. By
 default, both are set to !.

	pager
	Program to use for output of pager-piped commands (those
 beginning with a | character).
 By default, $ENV{PAGER} will be
 used. Because the debugger uses your current terminal
 characteristics for bold and underlining, if the chosen pager does
 not pass escape sequences through unchanged, the output of some
 debugger commands will not be readable when sent through the
 pager.

	tkRunning
	Runs under the Tk module while prompting (with ReadLine).

	signalLevel, warnLevel,
 dieLevel
	Set the level of verbosity. By default, the debugger leaves
 your exceptions and warnings alone because altering them can break
 correctly running programs.
To disable this default safe mode, set these values to
 something higher than 0. At a level of 1, you get backtraces upon
 receiving any kind of warning (this is often annoying) or
 exception (this is often valuable). Unfortunately, the debugger
 cannot distinguish fatal exceptions from nonfatal ones. If
 dieLevel is 1, then your
 nonfatal exceptions are also traced and unceremoniously altered if
 they came from evaled strings
 or from any kind of eval within
 modules you’re attempting to load. If dieLevel is 2, the debugger doesn’t care
 where they came from: it usurps your exception handler and prints
 out a trace, and then modifies all exceptions with its own
 embellishments. This may perhaps be useful for some tracing
 purposes, but it tends to hopelessly confuse any program that
 takes its exception handling seriously.
The debugger will attempt to print a message when any
 uncaught INT, BUS, or SEGV signal arrives. If you’re in a slow
 syscall (like a wait or an
 accept, or a read from your keyboard or a socket) and
 haven’t set up your own $SIG{INT} handler, then you won’t be
 able to Control-C your way back to the debugger, because the
 debugger’s own $SIG{INT}
 handler doesn’t understand that it needs to raise an exception to
 longjmp(3) out of slow syscalls.

	AutoTrace
	Sets the trace mode (similar to t command, but can be put into PERLDB_OPTS).

	LineInfo
	Assigns the file or pipe to print line number info to. If it is
 a pipe (say, |visual_perl_db),
 then a short message is used. This is the mechanism used to
 interact with a slave editor or visual debugger, such as the
 special vi or emacs hooks, or the ddd graphical
 debugger.

	inhibit_exit
	If 0, allows stepping off the end of the program.

	PrintRet
	Prints return value after r
 command if set (default).

	ornaments
	Affects screen appearance of the command line (see the
 online docs for Term::ReadLine). There is currently no way to disable ornaments,
 which can render some output illegible on some displays or with
 some pagers. This is considered a bug.

	frame
	Affects printing of messages on entry and exit from
 subroutines. If frame & 2
 is false, messages are printed on entry only. (Printing on exit
 might be useful if interspersed with other messages.)
If frame & 4,
 arguments to functions are printed, plus context and caller info.
 If frame & 8, overloaded
 stringify and tied FETCH are enabled on the printed
 arguments. If frame & 16,
 the return value from the subroutine is printed.
The length at which the argument list is truncated is
 governed by the next option.

	maxTraceLen
	Length to truncate the argument list when the frame option’s bit 4 is set.

The following options affect what happens with the V, X, and
 x commands:
	arrayDepth,
 hashDepth
	Print only the first n elements. If
 n is omitted, all of the elements will be
 printed.

	compactDump,
 veryCompact
	Change the style of array and hash output. If compactDump is enabled, short arrays may
 be printed on one line.

	globPrint
	Prints contents of typeglobs.

	DumpDBFiles
	Displays arrays holding debugged files.

	DumpPackages
	Displays symbol tables of packages.

	DumpReused
	Displays contents of “reused” addresses.

	quote, HighBit,
 undefPrint
	Change the style of string display. The default value for
 quote is auto; you can enable double-quotish or
 single-quotish format by setting it to " or ', respectively. By default, characters
 with their high bit set are printed verbatim.

	UsageOnly
	Instead of showing the contents of a package’s variables,
 with this option enabled, you get a rudimentary per-package memory
 usage dump based on the total size of the strings found in package
 variables. Because the package symbol table is used, lexical
 variables are ignored.

Unattended Execution

During startup, options are initialized from $ENV{PERLDB_OPTS}. You may place the
 initialization options TTY, noTTY, ReadLine, and NonStop there.
If your init file contains:
parse_options("NonStop=1 LineInfo=tperl.out AutoTrace");
then your program will run without human intervention, putting trace
 information into the file tperl.out.
 (If you interrupt it, you’d better reset LineInfo to /dev/tty if you expect to see anything.)
The following options can be specified only at startup. To set them
 in your init file, call parse_options("OPT=VAL").
	TTY
	The terminal to use for debugging I/O.

	noTTY
	If set, the debugger goes into NonStop mode and will not connect to a
 terminal. If interrupted (or if control goes to the debugger via
 explicit setting of $DB::signal
 or $DB::single from the Perl
 program), it connects to a terminal specified in the TTY option at startup, or to a terminal
 found at runtime using the Term::Rendezvous module of your choice.
This module should implement a method named new that returns an object with two
 methods: IN and OUT. These should return filehandles for
 the debugger to use as input and output. The new method should inspect an argument
 containing the value of $ENV{PERLDB_NOTTY} at startup, or
 "$ENV{HOME}/.perldbtty$$"
 otherwise. This file is not inspected for proper ownership or
 wide-open write access, so security hazards are theoretically
 possible.

	ReadLine
	If false, ReadLine support
 in the debugger is disabled in order to debug applications
 that themselves use a ReadLine module.

	NonStop
	If set, the debugger goes into noninteractive mode until interrupted, or
 your program sets $DB::signal or
 $DB::single.

Options can sometimes be uniquely abbreviated by the first letter,
 but we recommend that you always spell them out in full, for legibility
 and future compatibility.
Here’s an example of using the PERLDB_OPTS environment variable to set options automatically.[176] It runs your program noninteractively, printing information
 on each entry into a subroutine and for each line executed. Output from
 the debugger’s trace are placed into the tperl.out file. This lets your program still
 use its regular standard input and output, without the trace information
 getting in the way.
$ PERLDB_OPTS="NonStop frame=1 AutoTrace LineInfo=tperl.out" perl –d myprog
If you interrupt the program, you’ll need to quickly reset to
 O LineInfo=/dev/tty, or whatever makes
 sense on your platform. Otherwise, you won’t see the debugger’s prompting.

[176] We’re using sh shell syntax
 to show environment variable settings. Users of other shells should
 adjust accordingly.

Debugger Support

Perl provides special debugging hooks at both compile time and runtime for
 creating debugging environments such as the standard debugger. These hooks
 are not to be confused with the perl –D
 options, which are usable only if your Perl was built with –DDEBUGGING support.
For example, whenever you call Perl’s built-in caller function from the package DB, the arguments that the corresponding stack
 frame was called with are copied to the @DB::args array. When you invoke Perl with the
 –d switch, the following additional
 features are enabled:
	Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require 'perl5db.pl'} if not present)
 before the first line of your program.

	The array @{"_<$filename"}
 holds the lines of $filename for
 all files compiled by Perl, as well as for evaled strings that contain subroutines or
 are currently being executed. The $filename for evaled strings looks like (eval 34). Code assertions in regular
 expressions look like (re_eval
 19).

	The hash %{"_<$filename"}
 contains breakpoints and actions keyed by line number. You can set
 individual entries as opposed to the whole hash. Perl only cares about
 Boolean truth here, although the values used by perl5db.pl have the form "$break_condition\0$action". Values in this
 hash are magical in numeric context: they are zeros if the line is not
 breakable.
The same holds for evaluated strings that contain subroutines or
 are currently being executed. The $filename for evaled strings looks like (eval 34) or (re_eval 19).

	The scalar ${"_<$filename"} contains "_<$filename". This is also the case for
 evaluated strings that contain subroutines or are currently being
 executed. The $filename for
 evaled strings looks like (eval 34) or (re_eval 19).

	After each required file is compiled, but before it is
 executed, DB::postponed(*{"_<$filename"}) is called if the
 subroutine DB::postponed
 exists. Here, the $filename is the expanded name of the
 required file, as found in the
 values of %INC.

	After each subroutine
 subname is compiled, the existence of
 $DB::postponed{subname} is checked. If this key exists, DB::postponed(subname) is called if the DB::postponed subroutine also exists.

	A hash %DB::sub is
 maintained, whose keys are subroutine names and whose values have the
 form filename:startline–endline.
 filename has the form (eval 34) for subroutines defined inside
 evals, or (re_eval 19) for those within regular
 expression code assertions.

	When the execution of your program reaches a point that might
 hold a breakpoint, the DB::DB
 subroutine is called if any of the variables $DB::trace, $DB::single, or $DB::signal is true. These variables are not
 localizable. This feature is
 disabled when executing inside DB::DB, including functions called from it,
 unless $^D & (1<<30)
 holds true.

	When execution of the program reaches a subroutine call, a call
 to &DB::sub(args) is made instead, with $DB::sub holding the name of the called
 subroutine. This doesn’t happen if the subroutine was compiled in the
 DB package.

Note that if &DB::sub needs
 external data for it to work, no subroutine call is possible until this is
 done. For the standard debugger, the $DB::deep variable (how many levels of recursion deep into the
 debugger you can go before a mandatory break) gives an example of such a
 dependency.

Writing Your Own Debugger

The minimal working debugger consists of one line:
sub DB::DB {}
which, since it does nothing whatsoever, can easily be defined via
 the PERL5DB environment
 variable:
$ PERL5DB="sub DB::DB {}" perl –d your–program
Another tiny, slightly more useful debugger could be created like
 this:
sub DB::DB {print ++$i; scalar <STDIN>}
This little debugger would print the sequential number of each
 encountered statement and would wait for you to hit a newline before
 continuing.
The following debugger, small though it may appear, is really
 quite functional:
{
 package DB;
 sub DB {}
 sub sub {print ++$i, " $sub\n"; &$sub}
}
It prints the sequential number of the subroutine call and the
 name of the called subroutine. Note that &DB::sub must be compiled from the package
 DB, as we’ve done here.
If you base your new debugger on the current debugger, there are
 some hooks that can help you customize it. At startup, the debugger
 reads your init file from the current directory or your home directory.
 After the file is read, the debugger reads the PERLDB_OPTS environment variable and parses
 this as the remainder of an O ...
 line such as you might enter at the debugger prompt.
The debugger also maintains magical internal variables, such
 as @DB::dbline and
 %DB::dbline, which are aliases for
 @{"::_<current_file"}
 %{"::_<current_file"}. Here,
 current_file is the currently selected file,
 either explicitly chosen with the debugger’s f command or implicitly by flow of
 execution.
Some functions can help with customization. DB::parse_options(STRING) parses a line like the O option. DB::dump_trace(SKIP[, COUNT]) skips the specified number of frames and returns a list
 containing information about the calling frames (all of them, if
 COUNT is missing). Each entry is a reference
 to a hash with keys “context” (either
 ., $, or @),
 “sub” (subroutine name or info about
 eval), “args” (undef or a reference to an array), “file”, and “line”. DB::print_trace(FH, SKIP[, COUNT[, SHORT]]) prints formatted info about caller frames
 to the supplied filehandle. The
 last two functions may be convenient as arguments to the debugger’s
 < and << commands.
You don’t need to learn all that—most of us haven’t. In fact, when
 we need to debug a program, we usually just insert a few print statements here and there and rerun the
 program.
On our better days, we’ll even remember to turn on warnings first.
 That often spotlights the problem right away, thus saving a great deal
 of wear and tear on our hair (what’s left of it). But when that doesn’t
 work, it’s nice to know that, waiting for you patiently behind that
 –d switch, there is a lovely debugger
 that can do darn near anything except find your bug
 for you.
But if you’re going to remember one thing about customizing the
 debugger, perhaps it is this: don’t limit your notion of bugs to things
 that make Perl unhappy. It’s also a bug if your program makes
 you unhappy. Earlier, we showed you a couple of
 really simple custom debuggers. In the next section, we’ll show you an
 example of a different sort of custom debugger, one that may (or may
 not) help you debug the bug known as “Is this thing ever gonna
 finish?”

Profiling Perl

As we write this, Perl comes with a profiler called Devel::DProf. However, by the time you read this, it might be gone. Perl
 v5.16, which is scheduled for release around the same time this book hits
 the shelves, removes this old profiler. Most people using a profiler have
 moved on to another profiler, Devel::NYTProf. We’ll tell you about Devel::DProf since it’s still in Perl, but we’ll
 also tell you about the new one, which doesn’t come with Perl.
These profilers are not lightweight, and they aren’t your only
 options for a profiler. CPAN also holds Devel::SmallProf, which reports the time spent in each line of your program.
 That can help you figure out if you’re using some particular Perl
 construct that is being surprisingly expensive. Most of the built-in
 functions are pretty efficient, but it’s easy to accidentally write a
 regular expression whose overhead increases exponentially with the size of
 the input. See also the section Efficiency in Chapter 21 for other helpful hints.

Devel::DProf

Do you want to make your program faster? Well, of course you do.
 But first you should stop and ask yourself, “Do I really need to spend
 time making this program faster?”
 Recreational optimization can be fun,[177] but normally there are better uses for your time.
 Sometimes you just need to plan ahead and start the program when you’re
 going on a coffee break (or use it as an excuse for one). But if your
 program absolutely must run faster, you should begin by profiling it. A
 profiler can tell you which parts of your program take the most time to
 execute, so you won’t waste time optimizing a subroutine that has an
 insignificant effect on the overall execution time.
Perl comes with a profiler, the Devel::DProf module. You can use it to profile
 the Perl program in mycode.pl by
 typing:
% perl –d:DProf mycode.pl
Even though we’ve called it a profiler—since that’s what it
 does—the mechanism DProf employs is
 the very same one we discussed earlier in this chapter. DProf is just a debugger that records the time
 Perl entered and left each subroutine.
When your profiled script terminates, DProf will dump the timing information to a
 file called tmon.out. The dprofpp program that came with Perl knows how
 to analyze tmon.out and produce a
 report. You may also use dprofpp as a
 frontend for the whole process with the –p switch (described later).
Given this program:
outer();

sub outer {
 for (my $i=0; $i < 100; $i++) { inner() }
}

sub inner {
 my $total = 0;
 for (my $i=0; $i < 1000; $i++) { $total += $i }
}

inner();
the output of dprofpp
 is:
Total Elapsed Time = 0.537654 Seconds
 User+System Time = 0.317552 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 85.0 0.270 0.269 101 0.0027 0.0027 main::inner
 2.83 0.009 0.279 1 0.0094 0.2788 main::outer
Note that the percentage numbers don’t add up to 100. In fact, in
 this case, they’re pretty far off, which should tip you off that you
 need to run the program longer. As a general rule, the
 more profiling data you can collect, the better your statistical sample.
 If we increase the outer loop to run 1,000 times instead of 100 times,
 we’ll get more accurate results:
Total Elapsed Time = 2.875946 Seconds
 User+System Time = 2.855946 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 99.3 2.838 2.834 1001 0.0028 0.0028 main::inner
 0.14 0.004 2.828 1 0.0040 2.8280 main::outer
The first line reports how long the program took to run, from
 start to finish. The second line displays the total of two different
 numbers: the time spent executing your code (“user”) and the time spent
 in the operating system executing system calls made by your code
 (“system”). (We’ll have to forgive a bit of false precision in these
 numbers—the computer’s clock almost certainly does not tick every
 millionth of a second. It might tick every hundredth of a second if
 you’re lucky.)
The “user+system” times can be changed with command-line options
 to dprofpp. –r displays elapsed time, –s displays system time only, and –u displays user time only.
The rest of the report is a breakdown of the time spent in each
 subroutine. The “Exclusive Times” line indicates that when subroutine
 outer called subroutine inner, the time spent in inner didn’t count toward outer’s time. To change this, causing inner’s time to be counted toward outer’s, give the –I option to dprofpp.
For each subroutine, the following is reported: %Time, the percentage of time spent in this
 subroutine call; ExclSec, the time in
 seconds spent in this subroutine not including those subroutines called
 from it; CumulS, the time in seconds
 spent in this subroutine and those called from it; #Calls, the number of calls to the subroutine;
 sec/call, the average time in seconds
 of each call to the subroutine not including those called from it;
 Csec/c, the average time in seconds
 of each call to the subroutine and those called from it.
Of those, the most useful figure is %Time, which will tell you where your time
 goes. In our case, the inner
 subroutine takes the most time, so we should try to optimize that
 subroutine or find an algorithm that will call it less. :–) Options to dprofpp provide access to other information or
 vary the way the times are calculated. You can also make dprofpp run the script for you in the first
 place, so you don’t have to remember the –d:DProf switch:
	–p
 SCRIPT
	Tells dprofpp that it
 should profile the given SCRIPT and
 then interpret its profile data. See also –Q.

	–Q
	Used with –p to tell
 dprofpp to quit after profiling
 the script, without interpreting the data.

	–a
	Sorts output alphabetically by subroutine name rather than
 by decreasing percentage of time.

	–R
	Counts anonymous subroutines defined in the same package
 separately. The default behavior is to count all anonymous
 subroutines as one, named main::_ _ANON_ _.

	–I
	Displays all subroutine times inclusive of child subroutine
 times.

	–l
	Sorts by number of calls to the subroutines. This may help
 identify candidates for inlining.

	–O
 COUNT
	Shows only the top COUNT
 subroutines. The default is 15.

	–q
	Does not display column headers.

	–T
	Displays the subroutine call tree to standard output.
 Subroutine statistics are not displayed.

	–t
	Displays the subroutine call tree to standard output.
 Subroutine statistics are not displayed. A function called
 multiple (consecutive) times at the same calling level is
 displayed once, with a repeat count.

	–S
	Produces output structured by the way your subroutines call
 one another:
main::inner x 1 0.008s
main::outer x 1 0.467s = (0.000 + 0.468)s
 main::inner x 100 0.468s
Read this as follows: the top level of your program called
 inner once, and it ran for
 0.008s elapsed time; the top level called outer once, and it ran for 0.467s
 inclusively (0s in outer
 itself; 0.468s in the subroutines called from outer), calling inner 100 times (which ran for 0.468s).
 Whew, got that?
Branches at the same level (for example, inner called once and outer called once) are sorted by
 inclusive time.

	–U
	Does not sort. Displays in the order found in the raw
 profile.

	–v
	Sorts by average time spent in subroutines during each call.
 This may help identify candidates for hand optimization by
 inlining subroutine bodies.

	–g
 subroutine
	Ignores subroutines except
 subroutine and whatever is called from
 it.

Other options are described in dprofpp(1),
 its standard manpage.

[177] Or so says Nathan Torkington, who contributed this section of
 the book.

Devel::NYTProf

The Devel::NYTProf module started at the New York Times
 by Adam Kaplan, although it’s currently maintained outside the
 Times now. It’s fast (written in C), it’s powerful,
 and it makes nice reports. It’s the fastest statement and subroutine
 profiler available, and we don’t have enough room to tell you all of the
 wonderful things about it. Download it from CPAN, and then use it just
 like the other debuggers:
% perl –d:NYTProf your_program
Once finished, you can inspect the results as HTML files. The
 first HTML file (Figure 18-1) is the
 summary:
% nytprofhtml ––open
[image: The starting page for the HTML view of NYTProf]

Figure 18-1. The starting page for the HTML view of NYTProf

You can set various options in the NYTPROF environment variable. For instance, you can tell the
 profiler when to start: right away, at the INIT phase, or at the beginning of the
 END:
% env NYTPROF=start=init perl –d:NYTProf your_program
See the module documentation for more details. Now go take that
 coffee break. You’ll need it for the next chapter.

Chapter 19. CPAN

CPAN started as a repository of Perl software and has turned into a
 loose collection of services built around that repository. When people say
 “CPAN”, they might be talking about any one of these things since people
 conflate anything that connects to this central repository.

History

Toward the end of 1993, Tim Bunce, Jarkko Hietaniemi, and Andreas König set up the perl-packrats mailing list to discuss the idea of an archive for all the Perl 4 stuff
 floating around the Internet. Perl 5 development had started that year,
 and one of its main features would be an extensible module system that
 would allow people to extend the language without changing perl. Jared Rhine suggested the idea of a central repository, but nothing much
 happened. His idea had come from CTAN, the Comprehensive TeX Archive Network.
A couple of years later, Jarkko resurrected the idea and set up an
 FTP archive at ftp://ftp.cpan.org. Soon after,
 Andreas König set up PAUSE, the
 Perl Authors Upload Server, to provide a way for people to contribute to this
 repository. The parts that most people think of as “CPAN”, the modules,
 are really just two directories that CPAN mirrors from PAUSE. There’s a
 lot more to CPAN though.
Other services mirrored the master CPAN site to provide quick and easy access across the globe.
 There are now about 300 public mirrors across six continents. Anyone can
 mirror all of CPAN to create a new public mirror, or even create a private
 mirror for their own use.[178]
As CPAN became popular, other projects developed around it. Graham
 Barr added a search interface at http://search.cpan.org. Barbie built up the idea of CPAN
 Testers to test every distribution on CPAN. David Cantrell developed CPANdeps to combine the test results of a distribution with all of
 its dependencies. Moritz Onken created a second-generation search and aggregation site
 with MetaCPAN as
 part of a Google Summer of Code project. There are many other services
 built around the actual CPAN, which is just that central
 repository.

[178] See “How to mirror CPAN” at http://www.cpan.org/misc/how-to-mirror.html.

A Tour of the Repository

Most files on CPAN come from PAUSE, which provides the authors and modules directories. There’s more to CPAN than
 just the modules. Here’s a short tour of the more interesting parts.
	authors
	This directory, mirrored from PAUSE, contains numerous subdirectories,
 arranged by the author ID of the contributor under the id subdirectory. The
 first level of directories is the first letter in the author ID, the
 second level is the first two letters, and the final level is the
 full author ID. For instance, for the author NANIS (Sinan Ünür), the
 path under authors is id/N/NA/NANIS. Under that directory is
 everything Sinan has uploaded—but not removed; see BackPAN.
Some authors have a directory with their full name, such as
 Hugo_van_der_Sanden. The
 authors directory had a flatter
 structure when there weren’t that many authors. As CPAN became more
 popular—there are now over 9,000 registered authors—PAUSE
 partitioned the author names into the three-level structure.

	doc
	This directory is used to hold the Perl documentation, as
 well as various commentary on it, but it is no longer maintained.
 There’s still some interesting material in there, but it’s no longer
 the main source of Perl information. For online documentation, use
 http://perldoc.perl.org for the core Perl
 information or one of the Perl module sites for module
 documentation.

	modules
	Curiously, this directory is not where you find the module, but
 all of the special index files that the CPAN clients use to turn a
 package name, such as Mojolicious, into its path under authors—in this case, authors/id/S/SR/SRI/Mojolicious-1.99.tar.gz
 (or wherever the latest Mojolicious distribution is).
There are also subdirectories, like by-module, that organize the
 distributions by name instead of author. These are symlinks into the
 authors directory where the
 actual files are.
There is also a by-category directory, which is not of
 much use these days. Before CPAN had so many thousands of
 distributions, the CPAN librarians wanted to categorize every module
 so you could navigate through categories[179] to find the module that you’d want. Searching directly
 turned out to be much more popular than roaming the virtual stacks
 of CPAN, so the “Module List” fell into disrepair and went out of
 date quickly. Part of this relied on authors registering and
 categorizing their contributions to PAUSE, but not so many people do
 that anymore.

	ports
	This directory contains the source code and sometimes also
 precompiled executable images of Perl ports to operating systems
 that are not directly supported in the standard distribution, or for
 which compilers are mercilessly hard to come by. These ports are the
 individual efforts of their respective authors, and they may not all
 function precisely as described in this book. These days, few
 systems should require special ports. The index document of this
 directory is interesting to look through anyway, because it includes
 information detailing when each system vendor began shipping Perl as
 part of their standard installation.

	scripts
	This directory contains a small collection of diverse Perl
 programs, largely a hold-over from the time when people distributed
 standalone programs. Authors included their programs in the
 scripts section by including
 special pod headings in their program documentation. Alas, almost no
 one does this anymore. Now people upload programs as part of a
 normal Perl module distribution, commonly in the App:: namespace.
 CPAN is not particularly script-friendly; it’s more
 module-friendly.

	src
	This is where you will find the source code for the standard
 Perl distribution. Actually, for two standard Perl distributions—one
 is marked maint and the other
 devel. There are two tracks of Perl
 development. One, maint, is the one you should
 use for real work. The devel branch is
 experimental, where the Perl developers try out new features, new
 code, and other things that might be too broken for stable
 use.
To know which is which, look at the version number, such as
 5.14.2. The first number is the major version, meaning Perl v5. The
 second number is the minor version.[180] If that minor number is even, it’s a maintenance
 version. So distributions with 5.10.1, 5.12.4, and 5.14.2 are stable
 releases because 10, 12, and 14 are even numbers. If the minor
 number is odd, like 5.15.3, it’s an experimental version because 15
 is odd.
There are two links in this directory that will always produce
 the latest versions despite the actual versions. The latest.tar.gz
 and maint.tar.gz
 point to the most recent release in the most recent maintenance
 branch.[181] The CPAN maintainers discourage the use of these terms
 because some people don’t understand what they point to.

[179] Does anyone remember Yahoo! before search was the big
 thing?

[180] This is not minor in scope. This is
 the number for the big releases. One way to think about this is
 to consider “Perl 5” is the language, and the next number is the
 major release.

[181] The Perl developers officially support the last two
 maintenance versions. If the current release is Perl v5.16, that
 means v5.14 is officially supported but v5.12 has no official
 support. See perlpolicy
 for the details.

Creating a MiniCPAN

You can mirror CPAN yourself, but as we write this, you’d have to sync 24,000
 distributions taking up 13 GB of disk space. Since PAUSE only indexes
 the latest distributions, you probably won’t need most of those
 distributions. For most uses, you’ll probably only ever install the
 latest versions. Because of this, in 2002, Randal Schwartz created minicpan and
 wrote about it in Linux Magazine.[182]. He reduced his local CPAN footprint by 80%, and brian d foy coined the term Schwartz Factor to measure that reduction.
The CPAN::Mini distribution has the tools you need. This module is not
 part of the Standard Library, so you have to install it yourself (see
 later in this chapter).
First, set up your configuration, noting from where you want to
 fetch new data and where you want to store it:
local: /Users/Amelia/MINICPAN
remote: http://cpan.example.com/
Running minicpan creates the
 slim repository:
% minicpan
Using config from /Users/Amelia/.minicpanrc
Updating /Users/Amelia/MINICPAN
Mirroring from http://cpan.example.com/
===
authors/01mailrc.txt.gz ... updated
modules/02packages.details.txt.gz ... updated
modules/03modlist.data.gz ... updated
authors/id/A/AA/AAR/Math–Clipper–1.01.tar.gz ... updated
authors/id/A/AA/AAR/CHECKSUMS ... updated
Point your CPAN clients at this repository, and you can now
 install modules even if you are on a train, plane, or automobile, in the
 middle of the Black Rock Desert, or even in a power outage. Well, until
 your battery runs out.
You can minutely control what you sync, although you need to write
 your own minicpan program to use
 these controls. The module_filters
 and path_filters let you use regular
 expressions or subroutine references to note which modules or authors to
 skip. A matched pattern or a subroutine that returns true makes CPAN::Mini skip that distribution:
use CPAN::Mini;

CPAN::Mini–>update_mirror(
 remote => "http://cpan.mirrors.comintern.su",
 local => "/usr/share/mirrors/cpan",
 force => 0,
 module_filters => [qr/Acme/i],
 path_filters => [
 qr/RJBS/,
 sub { $_[0] =~ /SUNGO/ }
],
);

[182] See http://www.stonehenge.com/merlyn/LinuxMag/col42.html.

The CPAN Ecosystem

CPAN really is a network of services, with several steps between the person who uploads
 the distribution to the person who installs it. This chapter doesn’t go
 through everything out there; it merely highlights the main parts.
[image: A map of the CPAN ecosystem]

Figure 19-1. A map of the CPAN ecosystem

PAUSE

PAUSE is the gateway to
 CPAN for contributors. Before you can upload anything, you
 need an account. It’s free and easy. One of the PAUSE administrators
 will check your application, mostly as just a check against bots, and
 then set up the account.
Once you have the account, you can upload your work to PAUSE. You
 can upload almost anything that you like. PAUSE doesn’t care about what
 you are doing or how well you do it.
When you upload a distribution, the PAUSE indexer looks through
 your archive for any Perl namespaces that you might have used. There are
 no restrictions on which namespaces you can use, but PAUSE keeps a list
 of people it thinks are authorized to modify a namespace.
	The first author to use a namespace gets first-come permissions and becomes the primary
 maintainer.

	The primary
 maintainer can assign co-maintainer permissions to
 another author (or many authors).

	The primary maintainer can give up that status to another
 author.

If you upload a distribution that uses a namespace for which you
 don’t have one of these permissions, the PAUSE indexer refuses to index
 the module and sends you an error. It still accepts your upload,
 however, and it will still show up on CPAN. People will be able to
 download it. However, since the indexer did not index it, your
 distribution will not show up in the database PAUSE creates. If your
 module doesn’t show up in the database, the CPAN clients won’t know
 about it and won’t be able to install it. PAUSE just skips your
 distribution, and so does the world.

Searching CPAN

There are two major search sites for CPAN, and both provide similar functionality. These two
 sites aggregate distribution-specific links to other CPAN
 projects:
	CPAN Search (http://search.cpan.org)

	MetaCPAN (https://www.metacpan.org)

Testing

Perl has a great testing culture. As soon as someone uploads a new distribution to PAUSE, a
 loose confederation of machines of different shapes and sizes known
 as CPAN Testers (http://testers.cpan.org) downloads, builds, and runs
 their test suites. This group aims to test as many modules as possible
 on as many possible platforms and versions of Perl as it can
 find.
This way, the solitary Perl author can develop on a single
 architecture and, by the mere act of uploading, get results for other
 architectures and across several versions of Perl. And it’s free!
 Authors can get detailed instructions on making their distribution
 “Testers-friendly” by reading the CPAN Testers wiki (http://wiki.cpantesters.org).
This works out for the users of CPAN modules, too. People can
 inspect the test reports to see how a particular module fares. David
 Cantrell’s CPANdeps (http://deps.cpantesters.org)
 presents the test reports in a matrix of platforms and Perl versions,
 and also provides a summary of the test reports for all module
 dependencies as a “probability of success” for installation.

Bug Tracking

Since Perl and CPAN aren’t a single, centralized project, there’s no one
 place to report or read about bugs. Although many people report bugs
 directly in private email, that doesn’t create a public record that
 everyone can work from, comment on, and potentially fix. Open source can
 only work if it’s open access, and dropping messages into a single
 person’s email isn’t open to the whole world to review and
 inspect.
rt.cpan.org

CPAN, the repository of contributions from thousands of authors
 all working on their own projects, has a bug tracker, too. Each
 distribution gets its own queue in the Request Tracker instance at
 https://rt.cpan.org. This is the default way to
 report a problem with a module.

Other bug tracking

Some module authors prefer to use something other than https://rt.cpan.org. Find out what they want by looking
 in the distribution’s documentation. Module authors sometimes include
 instructions in their module’s documentation, but sometimes they
 don’t. Since files such as README
 and META.yml are left behind at
 installation time, looking at those files at one of the CPAN Search
 sites might help.

perlbug

If you need to report a bug in a module that comes with perl itself, you can use the perlbug tool. This collects information
 about your platform and interpreter so the people who diagnose the
 bugs have the information they’ll need to do so. It’s really an
 interface that sends a specially formatted email message to
 perlbug@perl.org, an address you can also mail directly
 if you’d like. These reports automatically go to Perl 5 Porters. Some
 modules are dual-lived,
 living both in the Standard
 Library and on CPAN, so it might be a bit tricky to figure
 out the right place. Don’t let that stop you from reporting the
 problem, though. We’ll sort it out.

rt.perl.org

perlbug sends its report to
 the Request Tracker instance at https://rt.perl.org, the same place you’d go to read
 about existing bugs, including those in modules in the Standard
 Library. You should also check this site if you don’t find anything in https://rt.cpan.org.

Installing CPAN Modules

There are two major build systems people use in their CPAN distributions. One is built around
 the common make tool, while the other
 is pure Perl.

By Hand

People don’t often install CPAN distributions by hand since they
 would have to handle all of the dependencies themselves, which is too
 much work. You can do it, though, and it’s useful to know how.
When you look inside the distribution, you’ll probably find a
 Makefile.PL or a Build.PL. You use them in the same way, as
 shown in Table 19-1.
Table 19-1. Build commands for the two major build tools
	Makefile.PL
	Build.PL

	% perl Makefile.PL
% make
% make test
% make install
	% perl Build.PL
% ./Build
% ./Build test
% ./Build install

With the defaults, both build systems try to install the
 distribution in the library paths you (or someone) set up when they
 built and installed the perl binary
 you used to run the build file. You can see those directories at the end
 of the output of perl –V.
You may not have permission to write into those directories, but
 you can install modules in any directory you please by telling build
 file where to install them. Build files change their behavior based on
 command-line options or environment variables.
% perl Makefile.PL INSTALL_BASE=/some/other/directory

% perl Build.PL ––install_base /some/other/directory
You don’t have to specify the options every time if you set them
 in the right environment variables. Each build system has an environment
 variable to hold default command-line options. Here’s how you’d do it in
 a /bin/sh environment:
% export PERL_MM_OPT='INSTALL_BASE=/some/other/directory'
% export PERL_MB_OPT='––install_base /some/other/directory'
And here’s how to do it using a shell that expects csh syntax:
% setenv PERL_MM_OPT 'INSTALL_BASE=/some/other/directory'
% setenv PERL_MB_OPT '––install_base /some/other/directory'
No matter which method you use to tell the build file where you
 want everything installed, it attaches lib/perl5[183] to the end of whatever path you gave. You need to remember
 this for the next part.
If you install your modules in a different directory, you must
 remember to tell your programs where to find them, either by using the
 –I switch:
% perl –I/some/other/directory/lib/perl5 program.pl
or by using the PERL5LIB
 environment variable:
% export PERL5LIB=/some/other/directory/lib/perl5
% perl program.pl
You can also use the lib pragma in your program:
use lib qw(/some/other/directory/lib/perl5);
If you don’t remember these paths, you can use the local::lib module from CPAN (it doesn’t ship with the standard Perl
 distribution). Loaded by itself, it tells you which values to use. By
 default, it uses subdirectories under your home directory:
% perl –Mlocal::lib
export PERL_LOCAL_LIB_ROOT="/home/amelia";
export PERL_MB_OPT="––install_base /home/amelia/perl5";
export PERL_MM_OPT="INSTALL_BASE=/home/amelia/perl5";
export PERL5LIB="/home/amelia/perl5/lib/perl5/darwin–2level:/home/amelia/perl5/
lib/perl5";
export PATH="/Users/amelia/perl5/bin:$PATH";
Or you can specify another directory:
% perl –Mlocal::lib=/some/other/directory
export PERL_LOCAL_LIB_ROOT="/some/other/directory";
export PERL_MB_OPT="––install_base /some/other/directory";
export PERL_MM_OPT="INSTALL_BASE=/some/other/directory";
export PERL5LIB="/some/other/directory/lib/perl5/darwin–2level:/some/other/
directory/lib/perl5";
export PATH="/some/other/directory/bin:$PATH";
You must still set up this environment yourself, although simply
 using local::lib in your program will
 set it up for you:
use local::lib;

use local::lib qw(/some/other/directory);

[183] This is really the default. You can change this with Configure’s –Dinstallstyle when you compile perl.

CPAN Clients

Most people install their modules with a client.[184] There are three popular CPAN clients, each designed to
 appeal to different audiences with different needs. You don’t have to
 use the same one all the time or make a lifelong choice.
cpan

The cpan command, which comes with the Standard Library and the CPAN.pm module,
 provides a quick way to install modules. Just specify the modules you
 want on the command line:
% cpan IO::Interactive AnyEvent
To install the modules in a different directory, you can
 configure that. With no arguments, cpan drops you into the CPAN.pm shell:
% cpan
cpan> o conf makepl_arg INSTALL_BASE=/some/other/directory
cpan> o conf mbuild_arg "––install_base /some/other/directory"
cpan> o conf commit
You can also start the CPAN.pm shell:
% perl –MCPAN –e shell
cpan> install POE
or use it with local::lib:
% perl –MCPAN –Mlocal::lib –e shell
cpan> install Set::CrossProduct

cpanp

Perl also comes with another CPAN interface, CPANPLUS. This project wanted to take the lessons from the
 development of CPAN.pm and start
 over:
% cpanp –i IO::Interactive AnyEvent
You can also start the CPANPLUS shell:
% perl –MCPANPLUS –e shell
CPAN Terminal> install POE
CPANPLUS uses a menu-driven
 configuration system, so once you enter its shell, just follow its
 prompts.

cpanminus

A third popular client that you might like if you like its defaults is
 cpanminus, or just cpanm. This is a minimal client that strives
 to do the right thing for most people. It also uses local::lib by default. Most people like this
 client, and it’s a good one to use until you need something
 fancier.
Since cpanm wants to be easy
 to use, it doesn’t require you to install other modules to use it.[185] You just download it and start using it. The cpanm
 docs demonstrate this using curl,[186] then pipe that directory to perl to turn it into cpanm. This is the preferred way because
 cpanm can pick up the configuration
 from the perl binary you actually
 use:
% curl –L http://cpanmin.us | perl – App::cpanminus
Or you can download it, save it as cpanm, and run it. On Unix, that’s
 (essentially) the same as saving the result and making it executable,
 although in this case it uses /usr/bin/env to
 find the first perl in your
 path:
% cd ~/bin
% curl –LO http://xrl.us/cpanm
% chmod +x cpanm
Once you have cpanm, tell it
 to install modules, like this:
% cpanm HTML::Barcode

[184] Or they use a package manager that their operating system
 provides.

[185] Some people think the Standard Library is really just a
 starter kit so you can run cpan
 or cpanp. We’ll see how it
 turns out in future versions, and this is one of the topics that
 will liven up any dull meeting of Perl mongers. Mention it and
 step back to watch the carnage.

[186] curl is a command-line tool for transferring data (http://curl.haxx.se).

Creating CPAN Distributions

This is a short introduction for creating CPAN distributions. Entire books
 can be written on this.[187] Intermediate
 Perl, one of the O’Reilly tutorial books for Perl,
 covers this topic in much more detail.

[187] And an entire book has been written on creating CPAN modules:
 Sam Tregar’s Writing Perl Modules for
 CPAN, published by Apress.

Starting Your Distribution

Since the start of CPAN long ago, best practices and standard
 conventions in using CPAN have settled, so now pretty much everyone
 agrees on what a good distribution needs to have. You don’t have to
 start from scratch if you use tools to create the distribution skeleton
 for you.
h2xs

The canonical distribution creation tool isn’t really a
 distribution-creation tool. By its name, it’s designed to convert C
 header files into XS files, the glue language that connects Perl to C. It’s grown since
 then, even to the point that most people use it without its main
 feature:
% h2xs –XAn Some::Module
Defaulting to backward compatibility with perl 5.14.2

Writing Some–Module/lib/Some/Module.pm
Writing Some–Module/Makefile.PL
Writing Some–Module/README
Writing Some–Module/t/Some–Module.t
Writing Some–Module/Changes
Writing Some–Module/MANIFEST

Distribution::Cooker

Distribution::Cooker module is the least sophisticated of the
 distribution-creation tools, designed for the people who don’t need
 much.[188] It cooks a directory of templates, meaning you can
 design your distribution any way you like and then replicate it. Once
 you get things the way you like, you don’t need to modify the other
 tools’ output each time. Indeed, the best way to use this tool is to
 start with another tool, modify the output until you like what you
 have, then design a corresponding template.

Module::Starter

Module::Starter is the best tool for people who don’t know what they
 want yet. You start with a configuration file in ${HOME}/.module-starter/config so you don’t
 have to type as much:
author: Amelia Camel
email: amelia@example.com
builder: Module::Build
verbose: 1
Then, when you run module–starter, you get a basic distribution
 structure:
% module–starter ––module=Some::Module2
Created Some–Module
Created Some–Module/lib/Some
Created Some–Module/lib/Some/Module2.pm
Created Some–Module/t
Created Some–Module/t/pod–coverage.t
Created Some–Module/t/pod.t
Created Some–Module/t/manifest.t
Created Some–Module/t/boilerplate.t
Created Some–Module/t/00–load.t
Created Some–Module/ignore.txt
Created Some–Module/Build.PL
Created Some–Module/Changes
Created Some–Module/README
Created Some–Module/MANIFEST
Created starter directories and files
Notice the test file Some-Module/t/boilerplate.t. That’s there
 to check that you changed some of the defaults, such as the
 description of the module.

Dist::Zilla

Dist::Zilla is a sophisticated tool that does much more than merely
 create the initial distribution. It manages the entire life cycle of
 your module from the moment of conception through release, testing,
 bug fixing, and rereleasing. It’s much more complicated than we have
 time to explain, but many people like it.

[188] Distribution::Cooker only
 makes it into this book because one of this book’s authors wrote
 it and uses it.

Testing Your Modules

Perl’s testing culture is one of its most compelling features. We’ve
 already told you about CPAN Testers, the people who test all CPAN distributions
 on a variety of platforms. As an author, it’s up to you to create your
 own tests. We’re not going to tell you everything involved with that,
 because it’s already extensively covered in other titles such as
 Intermediate
 Perl and Perl Testing: A Developer’s
 Notebook.
Internal testing

If you are using either of the two standard distribution build
 tools, you already have a test harness in place. You run the
 test target:
% make test

% ./Build test
Those both do the same thing: they look for either a test.pl file or a t/ directory. Using a test.pl file is the old way, in which just
 one file holds all tests. Using a t/ subdirectory is a better approach
 because it can hold multiple test files, each one ending with
 .t, and the test harness runs all
 of the subtests.
Each test file is just a Perl program, most likely using
 Test::More to do the work. Here’s an example test file that loads
 your Math::MySum module and tests its my_sum method:
use strict;
use warnings;
use Test::More;

BEGIN { use_ok("Math::MySum") }
can_ok("Math::MySum", "my_sum");

my($i, $j) = (1, 3);
my $string = "Amelia";

is($i + $j, Math::MySum–>my_sum($i, $j),
 "Sum of $i and $j is 4");

like($string, qr/mel/, "String has mel in it");

done_testing;
These programs output TAP (Test Anywhere Protocol), a simple format that Larry invented and others
 extended.[189] The TAP output for this program looks like:
ok 1 – use Math::MySum;
ok 2 – Math::MySum–>can('my_sum')
ok 3 – Sum of 1 and 3 is 4
ok 4 – String has mel in it
1..4
You can also run tests individually using the blib module to automatically add the build libraries
 to @INC:
% perl –Mblib t/failingtest.t
You can also use the prove
 tool:
% prove –vb t/failingtest.t
The trick with any test suite is testing all code. Since you’re
 the author of both the module and its tests, you could easily pass
 your tests by not covering the hard parts. To check that, the Devel::Cover module provides a cover program you can use to measure your
 test coverage:
% cover –test
The cover command runs the
 test suite for you, collects statistics, and produces a report:
Reading database from ./cover_db

–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––
File stmt bran cond sub time total
–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––
blib/lib/Some/Module.pm 82.9 50.0 27.3 92.3 83.0 72.7
–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––

Writing HTML output to ./cover_db/coverage.html ...
done.
It measures four sorts of coverage:
	statement
	Runs every statement.

	branch
	Tests each branch such as in an if with several elsif blocks, each of which counts as
 a separate branch.

	condition
	Tests each combination of conditions whenever there are
 multiple possible conditions. For instance, here’s such a
 condition in an if:
if ($m && $n) { ... }
That if has three
 testable combinations: both $m and $n can each be true; $m can be false, in which case it
 doesn’t matter what $n is;
 $m can be true, and $n can be either true or false. You
 should test each of those.

	subroutine
	Runs every subroutine, which is also part of testing every
 statement.

External testing

If you upload your distribution to PAUSE, the CPAN Testers will automatically download it, test it,
 and send you the results. This is handy for testing on platforms and
 Perl versions you don’t have. You don’t have to do anything special
 for this.
That only works for public distributions, though. If you don’t
 plan to release your work to CPAN, you can still do some external
 testing by setting up your own CPAN Testers system and your own farm
 of test machines. You use the same tools as the regular CPAN Testers,
 but you draw your distributions from your private sources.
You can also integrate Perl testing into many continuous
 integration-testing frameworks, such as smolder (especially
 made for Perl but not limited to it), Hudson, Jenkins, or TeamCity.
 Any tool that understands TAP, and there are now several, can analyze
 your test output.

[189] Many other languages have embraced TAP, too. The TAP
 producer doesn’t have to be in the same
 language as the TAP consumer.

Part IV. Perl as Culture

Chapter 20. Security

Whether you’re dealing with a user sitting at the keyboard typing
 commands or someone sending information across the network, you need to
 be careful about the data coming into your programs. The other person
 may, either maliciously or accidentally, send you data that will do more
 harm than good. Perl provides a special security-checking mechanism
 called taint mode,
 whose purpose is to isolate tainted data so that you won’t use it to do
 something you didn’t intend to do. For instance, if you mistakenly trust
 a tainted filename, you might end up appending an entry to your password
 file when you thought you were appending to a log file. The mechanism of
 tainting is covered in the next section, Handling Insecure Data.
In multitasking environments, offstage actions by unseen actors
 can affect the security of your own program. If you presume exclusive
 ownership of external objects (especially files) as though yours were
 the only process on the system, you expose yourself to errors
 substantially subtler than those that come from directly handling data
 or code of dubious provenance. Perl helps you out a little here by
 detecting some situations that are beyond your control; but for those
 that you can control, the key is understanding which approaches are
 proof against unseen meddlers. The
 upcoming section Handling Timing Glitches discusses these
 matters.
If the data you get from a stranger happens to be a bit of source
 code to execute, you need to be even more careful than you would with
 her data. Perl provides checks to intercept stealthy code masquerading
 as data so you don’t execute it unintentionally. If you do want to
 execute foreign code, though, the Safe module lets you quarantine suspect code where it can’t do any harm and
 might possibly do some good. These are the topics of the section Handling Insecure Code later in this chapter.

Handling Insecure Data

Perl makes it easy to program securely, even when your program is
 being used by someone less trustworthy than the program itself. That
 is, some programs need to grant limited privileges to their users
 without giving away other privileges. Setuid and setgid programs
 fall into this category on Unix, as do programs running
 in various privileged modes on other operating systems that support
 such notions. Even on systems that don’t, the same principle applies
 to network servers and to any programs run by those servers (such as
 CGI scripts, mailing list processors, and daemons listed in /etc/inetd.conf). All such programs require
 a higher level of scrutiny than normal.
Even programs run from the command line are sometimes good
 candidates for taint mode, especially if they’re meant to be run by a
 privileged user. Programs that act upon untrusted data, like those
 that generate statistics from log files or use LWP::* or Net::* to fetch remote data, should probably
 run with tainting explicitly turned on; programs that are not prudent
 risk being turned into “Trojan horses”. Since programs don’t get any
 kind of thrill out of risk taking, there’s no particular reason for
 them not to be careful.
Compared with Unix command-line shells, which are really just
 frameworks for calling other programs, Perl is easy to program
 securely because it’s straightforward and self-contained. Unlike most
 shell programming languages, which are based on multiple, mysterious
 substitution passes on each line of the script, Perl uses a more
 conventional evaluation scheme with fewer hidden snags. Additionally,
 because the language has more built-in functionality, it can rely less
 upon external (and possibly untrustworthy) programs to accomplish its
 purposes.
Under Unix, Perl’s hometown, the preferred way to compromise
 system security was to cajole a privileged program into doing
 something it wasn’t supposed to do. To stave off such attacks, Perl
 developed a unique approach for coping with hostile environments. Perl
 automatically enables taint mode whenever it detects its program
 running with differing real and effective user or group IDs.[190] Even if the file containing your Perl script doesn’t
 have the setuid or setgid bits turned on, that script can still find
 itself executing in taint mode. This happens if your script was
 invoked by another program that was itself
 running under differing IDs. Perl programs that weren’t designed to
 operate under taint mode tend to expire prematurely when caught
 violating safe tainting policy. This is just as well, since these are
 the sorts of shenanigans that were historically perpetrated on shell
 scripts to compromise system security. Perl isn’t that
 gullible.
You can also enable taint mode explicitly with the –T command-line switch. You should do this
 for daemons, servers, and any programs that run on behalf of someone
 else, such as CGI scripts. Programs that can be run remotely and
 anonymously by anyone on the Net are executing in the most hostile of
 environments. You should not be afraid to say “No!” occasionally.
 Contrary to popular belief, you can exercise a great deal of prudence
 without dehydrating into a wrinkled prude.
On the more security-conscious sites, running all CGI scripts
 under the –T flag isn’t just a good
 idea: it’s the law. We’re not claiming that running in taint mode is
 sufficient to make your script secure. It’s not, and it would take a
 whole book just to mention everything that would. But if you aren’t
 executing your CGI scripts under taint mode, you’ve needlessly
 abandoned the strongest protection Perl can give you.
While in taint mode, Perl takes special precautions
 called taint
 checks to prevent traps both obvious and subtle. Some of
 these checks are reasonably simple, such as verifying that dangerous
 environment variables aren’t set and that directories in your path
 aren’t writable by others; careful programmers have always used checks
 like these. Other checks, however, are best supported by the language
 itself, and it is these checks especially that contribute to making a
 privileged Perl program more secure than the corresponding C program,
 or a Perl CGI script more secure than one written in any language
 without taint checks. (Which, as far as we know, is any language other
 than Perl.)
The principle is simple: you may not use data derived from
 outside your program to affect something else outside your program—at
 least, not by accident. Anything that comes from outside your program
 is marked as tainted, including all command-line arguments,
 environment variables, and file input. Tainted data may not be used
 directly or indirectly in any operation that invokes a subshell, nor
 in any operation that modifies files, directories, or processes. Any
 variable set within an expression that has previously referenced a
 tainted value becomes tainted itself, even if it is logically
 impossible for the tainted value to influence the variable. However,
 using a tainted variable to choose an untainted value does not taint
 the result. For instance, $value is
 not tainted here:
my $value = $tainted ? 'Amelia' : 'Camelia'; # $value is not tainted.
or even here:
my $value = do {
 if($tainted) { 'Amelia' }
 else { 'Camelia' }
};
Because taintedness is associated with each scalar, some
 individual values in an array or hash might be tainted and others
 might not. (Only the values in a hash can be tainted, though, not the
 keys. More on that in a moment.)
The following code illustrates how tainting would work if you
 executed all these statements in order. Statements marked “Insecure”
 will trigger an exception, whereas those that are “OK” will
 not.
$arg = shift(@ARGV); # $arg is now tainted (due to @ARGV).
$hid = "$arg, 'bar'"; # $hid also tainted (due to $arg).
$line = <>; # Tainted (reading from external file).
$path = $ENV{PATH}; # Tainted due to %ENV, but see below.
$mine = "abc"; # Not tainted.

system "echo $mine"; # Insecure until PATH set.
system "echo $arg"; # Insecure: uses sh with tainted $arg.
system "echo", $arg; # OK once PATH set (doesn't use sh).
system "echo $hid"; # Insecure two ways: taint, PATH.

$oldpath = $ENV{PATH}; # $oldpath is tainted (due to %ENV).
$ENV{PATH} = "/bin:/usr/bin"; # (Makes it OK to execute other programs.)
$newpath = $ENV{PATH}; # $newpath is NOT tainted.

delete @ENV{qw{IFS
 CDPATH
 ENV
 BASH_ENV}}; # Makes %ENV safer.

system "echo $mine"; # OK, is secure once path is reset.
system "echo $hid"; # Insecure via tainted $hid.

open(OOF, "< $arg"); # OK (read–only opens not checked).
open(OOF, "> $arg"); # Insecure (trying to write to tainted arg).

open(OOF, "echo $arg|") # Insecure due to tainted $arg, but...
 || die "can't pipe from echo: $!";

open(OOF,"–|") # Considered OK: see below for taint
 || exec "echo", $arg # exemption on exec'ing a list.
 || die "can't exec echo: $!";

open(OOF,"–|", "echo", $arg) # Same as previous, likewise OKish.
 || die "can't pipe from echo: $!";

$shout = `echo $arg`; # Insecure via tainted $arg.
$shout = `echo abc`; # $shout is tainted due to backticks.
$shout2 = `echo $shout`; # Insecure via tainted $shout.

unlink $mine, $arg; # Insecure via tainted $arg.
umask $arg; # Insecure via tainted $arg.

exec "echo $arg"; # Insecure via tainted $arg passed to shell.
exec "echo", $arg; # Considered OK! (But see below.)
exec "sh", "–c", $arg; # Considered OK, but isn"t really!
If you try to do something insecure, you get an exception
 (which, unless trapped, becomes a fatal error) such as “Insecure dependency” or “Insecure $ENV{PATH}”. See the section Cleaning Up Your Environment later in this chapter.
If you pass a LIST to a system, exec, or pipe open, the arguments are not inspected for
 taintedness, because with a LIST of
 arguments, Perl doesn’t need to invoke the potentially dangerous shell
 to run the command. You can still easily write an insecure system, exec, or pipe open using the
 LIST form, as demonstrated in the final
 example above. These forms are exempt from checking because you are
 presumed to know what you’re doing when you use them.
Sometimes, though, you can’t tell how many arguments you’re
 passing. If you supply these functions with an array[191] that contains just one element, then it’s just as though
 you passed one string in the first place, so the shell might be used.
 The solution is to pass an explicit path in the indirect-object
 slot:
system @args; # Won't call the shell unless @args == 1.
system { $args[0] } @args; # Bypasses shell even with one–argument list.

[190] The setuid bit in Unix permissions is mode 04000, and the
 setgid bit is 02000; either or both may be set to grant the user
 of the program some of the privileges of the owner (or owners) of
 the program. (These are collectively known as set-id programs.)
 Other operating systems may confer special privileges on programs
 in other ways, but the principle is the same.

[191] Or a function that produces a list.

Detecting and Laundering Tainted Data

To test whether a scalar variable contains tainted data, you can use the
 following is_tainted
 function. It makes use of the fact that eval
 STRING raises an exception if you try to
 compile tainted data. It doesn’t matter that the $nada variable used in the expression to
 compile will always be empty; it will still be tainted if $arg is tainted. The outer eval BLOCK
 isn’t doing any compilation. It’s just there to catch the exception
 raised if the inner eval is given
 tainted data. Since the $@ variable is
 guaranteed to be nonempty after each eval if an exception was raised and empty
 otherwise, we return the result of testing whether its length was
 zero:
sub is_tainted {
 my $arg = shift;
 my $nada = substr($arg, 0, 0); # zero–length
 local $@; # preserve caller's version
 eval { eval "# $nada" };
 return length($@) != 0;
}
The Scalar::Util module, which comes with Perl, already does this for
 you with tainted:
use Scalar::Util qw(tainted);

print "Tainted!" if tainted($ARGV[0]);
The Taint::Util CPAN module goes one better. It has a tainted function that does the same thing,
 but it also has a taint function
 that will make any data tainted:
use Taint::Util qw(tainted taint);

my $scalar = 'This is untainted'; # untainted
taint($scalar); # now tainted
This is handy for test scripts when you want to test with
 tainted data:
use Test::More;
use Taint::Util qw(tainted taint);

my $tainted = 'This is untainted'; # untainted
taint($tainted); # now tainted

ok(tainted($tainted), 'Data are tainted');
is(refuse_to_work($tainted), undef, 'Returns undef with tainted data');

done_testing();
But testing for taintedness only gets you so far. Usually you
 know perfectly well which variables contain tainted data, you just
 have to clear the data’s taintedness. The only official way to
 bypass the tainting mechanism is by referencing submatches returned
 by an earlier regular expression match.[192] When you write a pattern that contains capturing
 parentheses, you can access the captured substrings through match
 variables like $1, $2, and $+, or by evaluating the pattern in list
 context. Either way, the presumption is that you knew what you were
 doing when you wrote the pattern to weed out anything dangerous. So
 you need to give it some real thought—never blindly untaint, or else
 you defeat the entire mechanism.
It’s better to verify that the variable contains only good
 characters than to check whether it contains any bad characters.
 That’s because it’s far too easy to miss bad characters that you
 never thought of. For example, here’s a test to make sure $string contains nothing but “word”
 characters (alphabetics, numerics, and underscores), hyphens, at
 signs, and dots:
if ($string =~ /^([–\@\w.]+)$/) {
 $string = $1; # $string now untainted.
}
else {
 die "Bad data in $string"; # Log this somewhere.
}
This renders $string fairly
 secure to use later in an external command, since /\w+/ doesn’t normally match
 shell metacharacters, nor are those other characters going to mean
 anything special to the shell.[193] Had we used /(.+)/s
 instead, it would have been unsafe because that pattern lets
 everything through. But Perl doesn’t check for that. When
 untainting, be exceedingly careful with your patterns. Laundering
 data by using regular expressions is the only
 approved internal mechanism for untainting dirty data. And sometimes
 it’s the wrong approach entirely. If you’re in taint mode because
 you’re running set-id and not because you intentionally turned on
 –T, you can reduce your risk by
 forking a child of lesser privilege; see the section “Cleaning Up
 Your Environment” later in this chapter.
The use re 'taint' pragma
 disables the implicit untainting of any pattern matches through the
 end of the current lexical scope. You might use this pragma if you
 just want to extract a few substrings from some potentially tainted
 data, but since you aren’t being mindful of security, you’d prefer
 to leave the substrings tainted to guard against unfortunate
 accidents later.
Imagine you’re matching something like this, where $fullpath is tainted:
($dir, $file) = $fullpath =~ m!(.*/)(.*)!s;
By default, $dir and
 $file would now be untainted. But
 you probably didn’t want to do that so cavalierly, because you never
 really thought about the security issues. For example, you might not
 be terribly happy if $file
 contained the string “; rm –rf *
 ;”, just to name one rather egregious example. The
 following code leaves the two result variables tainted if $fullpath was tainted:
{
 use re "taint";
 ($dir, $file) = $fullpath =~ m!(.*/)(.*)!s;
}
A good strategy is to leave submatches tainted by default over
 the whole source file and only selectively permit untainting in
 nested scopes as needed:
use re "taint";
remainder of file now leaves $1 etc tainted
{
 no re "taint";
 # this block now untaints re matches
 if ($num =~ /^(\d+)$/) {
 $num = $1;
 }
}
Input from a filehandle or a directory handle is automatically
 tainted, except when it comes from the special filehandle, DATA. If you want to, you can mark other
 handles as trusted sources via the IO::Handle module’s untaint
 function:
use IO::Handle;

IO::Handle::untaint(*SOME_FH); # Either procedurally
SOME_FH–>untaint(); # or using the OO style.
Turning off tainting on an entire filehandle is a risky move.
 How do you really know it’s safe? If you’re
 going to do this, you should at least verify that nobody but the
 owner can write to the file.[194] If you’re on a Unix filesystem (and one that prudently
 restricts chown(2) to the superuser), the
 following code works:
use File::stat;
use Symbol "qualify_to_ref";
sub handle_looks_safe(*) {
 my $fh = qualify_to_ref(shift, caller);
 my $info = stat($fh);
 return unless $info;

 # owner neither superuser nor "me", whose
 # real uid is in the $< variable
 if ($info–>uid != 0 && $info–>uid != $<) {
 return 0;
 }

 # check whether group or other can write file.
 # use 066 to detect for readability also
 if ($info–>mode & 022) {
 return 0;
 }
 return 1;
}

use IO::Handle;
SOME_FH–>untaint() if handle_looks_safe(*SOME_FH);
We called stat on the
 filehandle, not the filename, to avoid a dangerous race condition.
 See the section Handling Race Conditions later in this
 chapter.
Note that this routine is only a good start. A slightly more
 paranoid version would check all parent directories as well, even
 though you can’t reliably stat a
 directory handle. But if any parent directory is world-writable, you
 know you’re in trouble whether or not there are race
 conditions.
Perl has its own notion of which operations are dangerous, but
 it’s still possible to get into trouble with other operations that
 don’t care whether they use tainted values. It’s not always enough
 to be careful of input. Perl output functions don’t test whether
 their arguments are tainted, but in some environments, this matters.
 If you aren’t careful of what you output, you might just end up
 spitting out strings that have unexpected meanings to whoever is
 processing the output. If you’re running on a terminal, special
 escape and control codes could cause the viewer’s terminal to act
 strangely. If you’re in a web environment and you blindly spit back
 data that was given to you, you could unknowingly produce HTML tags
 that would drastically alter the page’s appearance. Worse still,
 some markup tags can even execute code back on the browser.
Imagine the common case of a guest book where visitors enter
 their own messages to be displayed when others come calling. A
 malicious guest could supply unsightly HTML tags or put in <SCRIPT>...</SCRIPT> sequences
 that execute code (like JavaScript) back in the browsers of
 subsequent guests.
Just as you should carefully check for only good characters
 when inspecting tainted data that accesses resources on your own
 system, you should apply the same care in a web environment when
 presenting data supplied by a user. For example, to strip the data
 of any character not in the specified list of good characters, try
 something like this:
$new_guestbook_entry =~ tr[_a–zA–Z0–9 ,./!?()@+*–][]dc;
You certainly wouldn’t use that to clean up a filename, since
 you probably don’t want filenames with spaces or slashes, just for
 starters. But it’s enough to keep your guest book free of sneaky
 HTML tags and entities. Each data-laundering case is a little bit
 different, so always spend time deciding what is and isn’t
 permitted. The tainting mechanism is intended to catch stupid
 mistakes, not to remove the need for thought.

[192] An unofficial way is by storing the tainted string as the
 key to a hash and fetching back that key. Because keys aren’t
 really full SVs (internal name scalar values), they don’t carry
 the taint property. This behavior may be changed someday, so
 don’t rely on it. Be careful when handling keys, lest you
 unintentionally untaint your data and do something unsafe with
 them.

[193] Unless you were using an intentionally broken locale. Perl
 assumes that your system’s locale definitions are potentially
 compromised. Hence, when running under the locale pragma, patterns with a symbolic character class
 in them, such as \w or
 [[:alpha:]], produce tainted
 results.

[194] Although you can untaint a directory handle, too, this
 function only works on a filehandle. That’s because given a
 directory handle, there’s no portable way to extract its file
 descriptor to stat.

Cleaning Up Your Environment

When you execute another program from within your Perl script, no matter how,
 Perl checks to make sure your PATH environment
 variable is secure. Since it came from your environment, your
 PATH starts out tainted; so, if
 you try to run another program, Perl raises an “Insecure $ENV{PATH}” exception. When you
 set it to a known, untainted value, Perl makes sure that each
 directory in that path is nonwritable by anyone other than the
 directory’s owner and group; otherwise, it raises an “Insecure directory” exception.
You may be surprised to find that Perl cares about your
 PATH even when you specify the
 full pathname of the command you want to execute. It’s true that
 with an absolute filename, the PATH isn’t used to find the executable to
 run. But there’s no reason to trust the program you’re running not
 to turn right around and execute some other
 program and get into trouble because of the insecure PATH. So Perl forces you to set a secure
 PATH before you call any program,
 no matter how you say to call it.
The PATH isn’t the only
 environment variable that can bring grief. Because some shells use
 the variables IFS,
 CDPATH, ENV, and BASH_ENV, Perl makes sure that those are
 all either empty or untainted before it will run another command.
 Either set these variables to something known to be safe or delete
 them from the environment altogether:
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer
Features convenient in a normal environment can become
 security concerns in a hostile one. Even if you remember to disallow
 filenames containing newlines, it’s important to understand
 that open accesses more
 than just named files. Given appropriate ornamentation on the
 filename argument, one- or two-argument calls to open can also run arbitrary external
 commands via pipes, fork extra copies of the current process,
 duplicate file descriptors, and interpret the special filename
 “–” as an alias for standard
 input or output. It can also ignore leading and trailing whitespace
 that might disguise such fancy arguments from your check patterns.
 While it’s true that Perl’s taint checking will catch tainted
 arguments used for pipe opens
 (unless you use a separated argument list) and any file opens that
 aren’t read-only, the exception this raises is still likely to make
 your program misbehave.
If you intend to use any externally derived data as part of a
 filename to open, at least include an explicit mode separated by a
 space. It’s probably safest, though, to use either the
 low-level sysopen or the
 three-argument form of open:
Magic open—could be anything
open(FH, $file) || die "can't magic open $file: $!";

Guaranteed to be a read–only file open and not a pipe
or fork, but still groks file descriptors and "–",
and ignores whitespace at either end of name.
open(FH, "< $file") || die "can't open $file: $!";

WYSIWYG open: disables all convenience features.
open(FH, "<", $file) || die "can't open $file: $!";

Same properties as WYSIWYG 3–arg version.
require Fcntl;
sysopen(FH, $file, O_RDONLY) || die "can't sysopen $file: $!";
Even these steps aren’t quite good enough. Perl doesn’t
 prevent you from opening tainted filenames for reading, so you need
 to be careful of what you show people. A program that opens an
 arbitrary, user-supplied filename for reading—and then reveals that
 file’s contents—is still a security problem. What if it’s a private
 letter? What if it’s your system password file? What if it’s salary
 information or your stock portfolio?
Look closely at filenames provided by a potentially hostile
 user[195] before opening them. For example, you might want to
 verify that there are no sneaky directory components in the path.
 Names like “../../../../../../../etc/passwd”
 are notorious tricks of this sort. You can protect yourself by
 making sure there are no slashes in the pathname (assuming that’s
 your system’s directory separator). Another common trick is to put
 newlines or semicolons into filenames that will later be interpreted
 by some poor, witless command-line interpreter that can be fooled
 into starting a new command in the middle of the filename. This is
 why taint mode discourages uninspected external commands.

[195] And on the Net, the only users you can trust not to be
 potentially hostile are the ones who are being
 actively hostile instead.

Accessing Commands and Files Under Reduced Privileges

The following discussion pertains to some nifty security facilities
 of Unix-like systems. Users of other systems may safely (or rather,
 unsafely) skip this section.
If you’re running set-id, whenever possible, try to arrange
 that you do dangerous operations with the privileges of the user,
 not the privileges of the program. That is, whenever you’re going to
 call open, sysopen, system, backticks, and any other file or process operations, you can protect
 yourself by setting your effective UID or GID back to the real UID
 or GID. In Perl, you can do this for setuid scripts by saying $> = $< (or $EUID = $UID if you use English) and for setgid scripts by saying $) =
 $(($EGID = $GID). If
 both IDs are set, you should reset both. However, sometimes this
 isn’t feasible because you might still need those increased
 privileges later in your program.
For those cases, Perl provides a reasonably safe way to open a
 file or pipe from within a set-id program. First, fork a child using
 the special open syntax that
 connects the parent and child by a pipe. In the child, reset the
 user and group IDs back to their original or known safe values. You
 also get to modify any of the child’s per-process attributes without
 affecting the parent, letting you change the working directory, set
 the file creation mask, or fiddle with environment variables. No
 longer executing under extra privileges, the child process at last
 calls open and passes whatever
 data it manages to access on behalf of the mundane but demented user
 back up to its powerful but justly paranoid parent.
Even though system and
 exec don’t use the shell when you supply them with more
 than one argument, the backtick operator admits no such alternative
 calling convention. Using the forking technique, we easily emulate
 backticks without fear of shell escapes, and with reduced (and
 therefore safer) privileges:
use English; # to use $UID, etc
die "Can't fork open: $!" unless defined($pid = open(FROMKID, "–|"));
if ($pid) { # parent
 while (<FROMKID>) {
 # do something
 }
 close FROMKID;
}
else {
 $EUID = $UID; # setuid(getuid())
 $EGID = $GID; # setgid(getgid()), and initgroups(2) on getgroups(2)
 chdir("/") || die "can't chdir to /: $!";
 umask(077);
 $ENV{PATH} = "/bin:/usr/bin";
 exec "myprog", "arg1", "arg2";
 die "can't exec myprog: $!";
}
This is by far the best way to call other programs from a
 set-id script. You make sure never to use the shell to execute
 anything, and you drop your privileges before you yourself exec the program. (But because the list
 forms of system, exec, and pipe open are specifically exempted from taint
 checks on their arguments, you must still be careful of what you
 pass in.)
If you don’t need to drop privileges and just want to
 implement backticks or a pipe open without risking the shell
 intercepting your arguments, you could use this:
open(FROMKID, "–|") || exec("myprog", "arg1", "arg2")
 || die "can't run myprog: $!";
and then just read from FROMKID in the parent. As of the v5.6.1
 release of Perl, you can write that as:
open(FROMKID, "–|", "myprog", "arg1", "arg2");
The forking technique is useful for more than just running
 commands from a set-id program. It’s also good for opening files
 under the ID of whoever ran the program. Suppose you had a setuid
 program that needed to open a file for writing. You don’t want to
 run the open under your extra
 privileges, but you can’t permanently drop them, either. So arrange
 for a forked copy that’s dropped its privileges to do the open for you. When you want to write to
 the file, write to the child, and it will then write to the file for
 you.
use English;

defined ($pid = open(SAFE_WRITER, "|–"))
 || die "Can't fork: $!";

if ($pid) {
 # you're the parent. write data to SAFE_WRITER child
 print SAFE_WRITER "@output_data\n";
 close SAFE_WRITER
 || die $! ? "Syserr closing SAFE_WRITER writer: $!"
 : "Wait status $? from SAFE_WRITER writer";
}
else {
 # you're the child, so drop extra privileges
 ($EUID, $EGID) = ($UID, $GID);

 # open the file under original user's rights
 open(FH, "> /some/file/path")
 || die "can't open /some/file/path for writing: $!";

 # copy from parent (now stdin) into the file
 while (<STDIN>) {
 print FH $_;
 }
 close(FH) || die "close failed: $!";
 exit; # Don't forget to make the SAFE_WRITER disappear.
}
Upon failing to open the file, the child prints an error
 message and exits. When the parent writes to the now-defunct child’s
 filehandle, it triggers a broken pipe signal
 (SIGPIPE), which is fatal unless
 trapped or ignored. See the section on “Signals” in Chapter 15.

Defeating Taint Checking

Taint mode is a development tool to help you find where you need to
 cleanse data. It’s not a guarantee that nothing bad will happen with
 your program, so bad things can still happen. It’s very easy to get
 around it, in fact.
The –T command-line switch
 forces taint checking, and you can put that on your
 shebang line:
#!/usr/bin/perl –T

system 'echo', $ARGV[0];
If run from the command line with perl and no –T, it fails:
% perl echo.pl
"–T" is on the #! line, it must also be used on the command line
The crafty user can turn on taint mode but turn the normally
 fatal messages into warnings. The –t switch turns on taint mode but only warns about violations.
 The system still accepts tainted data:
% perl –t echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia
Running as setuid, where taint mode is automatically on, is
 similarly defeated with –u:
% perl –t echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia
Similarly, the –U switch
 allows perl to run “unsafe”
 operations, but you still need to specify –T:
% perl –TU echo.pl Amelia
Amelia
If you want the warnings back, use –w:
% perl –TU –w echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia
Programmers can defeat taint mode by not cleansing data
 properly, some of which we already showed. For instance, there’s the
 shortcut of simply matching everything:
my $untainted = $tainted =~ m/(.*)/;
You might recognize that in code reviews, so a crafty shirker
 might pass the data through a hash. Since taint applies to scalar
 variables, hash keys aren’t tainted. Using a
 scalar variable as a hash key dumps all the magic it carries:
my (untainted) = keys %{ { $untainted => 1 } };
There’s even more to think about. For more tricksiness, see
 the chapter “Secure Programming Techniques” in Mastering
 Perl.

Handling Timing Glitches

Sometimes your program’s behavior is exquisitely sensitive to the
 timing of external events beyond your control. This is always a
 concern when other programs, particularly inimical ones, might be
 vying with your program for the same resources (such as files or
 devices). In a multitasking environment, you cannot predict the order
 in which processes waiting to run will be granted access to the
 processor. Instruction streams among all eligible processes are
 interleaved, so first one process gets some CPU, and then another
 process, and so on. Whose turn it is to run, and how long they’re
 allowed to run, appears to be random. With just one program that’s not
 a problem. However, it can be a problem when several programs share
 common resources.
Thread programmers are especially sensitive to these issues.
 They quickly learn not to say:
$var++ if $var == 0;
when they should say:
{
 lock($var);
 $var++ if $var == 0;
}
The former produces unpredictable results when multiple
 execution threads attempt to run this code at the same time. If you
 think of files as shared objects, and processes as threads contending
 for access to those shared objects, you can see how the same issues
 arise. A process, after all, is really just a thread with an attitude.
 Or vice versa.
Timing unpredictabilities affect both privileged and
 nonprivileged situations. We’ll first describe how to cope with a
 long-standing bug in old Unix kernels that affects any set-id program.
 Then we’ll move on to discuss race conditions in general, how they can
 turn into security holes, and steps you can take to avoid falling into
 these holes.

Unix Kernel Security Bugs

Beyond the obvious problems that stem from giving special privileges to
 interpreters as flexible and inscrutable as shells, older versions
 of Unix have a kernel bug that makes any set-id script insecure
 before it ever gets to the interpreter. The problem is not the
 script itself, but a race condition in what the kernel does when it
 finds a set-id executable script. (The bug doesn’t exist on machines
 that don’t recognize #!
 in the kernel.) When a kernel opens such a file to see
 which interpreter to run, there’s a delay before the (now set-id)
 interpreter starts up and reopens the file. That delay gives
 malicious entities a chance to change the file, especially if your
 system supports symbolic links.
Fortunately, sometimes this kernel “feature” can be disabled.
 Unfortunately, there are a couple of different ways to disable it.
 The system can outlaw scripts with the set-id bits set, which
 doesn’t help much. Alternatively, it can ignore the set-id bits on
 scripts. In the latter case, Perl can emulate the setuid and setgid
 mechanism when it notices the (otherwise useless) set-id bits on
 Perl scripts. It does this via a special executable called suidperl, which is automatically
 invoked for you if it’s needed.[196] However, if the kernel set-id script feature
 isn’t disabled, Perl will complain loudly that
 your setuid script is insecure. You’ll either need to disable the
 kernel set-id script “feature” or put a C wrapper around the script.
 A C wrapper is just a compiled program that does nothing except call
 your Perl program. Compiled programs are not subject to the kernel
 bug that plagues set-id scripts.
Here’s a simple wrapper, written in C:
#define REAL_FILE "/path/to/script"
main(ac, av)
 char **av;
{
 execv(REAL_FILE, av);
}
Compile this wrapper into an executable image and then make
 it rather than your script set-id. Be sure to
 use an absolute filename, since C isn’t smart enough to do taint
 checking on your PATH.
Another possible approach is to use the experimental C code
 generator for the Perl compiler. A compiled image of your script
 will not have the race condition (see Chapter 16).
Vendors in recent years have finally started to provide
 systems free of the set-id bug. On such systems, when the kernel
 gives the name of the set-id script to the interpreter, it no longer
 uses a filename subject to meddling, but instead passes a special
 file representing the file descriptor, like /dev/fd/3. This special file is already
 opened on the script so that there can be no race condition for evil
 scripts to exploit.[197] Most modern versions of Unix use this approach to
 avoid the race condition inherent in opening the same filename
 twice.

[196] Needed and permitted—if Perl detects
 that the filesystem on which the script resides was mounted with
 the nosuid option, that
 option will still be honored. You can’t use Perl to sneak around
 your sysadmin’s security policy this way.

[197] On these systems, Perl should be compiled with –DSETUID_SCRIPTS_ARE_SECURE_NOW. The
 Configure program that builds
 Perl tries to figure this out for itself, so you should never
 have to specify this explicitly.

Handling Race Conditions

Which runs us right into the topic of race
 conditions. What are they really? Race conditions turn
 up frequently in security discussions. (Although less often than
 they turn up in insecure programs. Unfortunately.) That’s because
 they’re a fertile source of subtle programming errors, and such
 errors can often be turned into security exploits
 (the polite term for screwing up someone’s security). A race
 condition exists when the result of several interrelated events
 depends on the ordering of those events, but that order cannot be
 guaranteed due to nondeterministic timing effects. Each event races
 to be the first one done, and the final state of the system is
 anybody’s guess.
Imagine you have one process overwriting an existing file and
 another process reading that same file. You can’t predict whether
 you read in old data, new data, or a haphazard mixture of the two.
 You can’t even know whether you’ve read all the data. The reader
 could have won the race to the end of the file and quit. Meanwhile,
 if the writer kept going after the reader hit end-of-file, the file
 would grow past where the reader stopped reading, and the reader
 would never know it.
Here the solution is simple: just have both parties flock the file.
 The reader typically requests a shared lock, and the writer
 typically requests an exclusive one. So long as all parties request
 and respect these advisory locks, reads and writes cannot be
 interleaved, and there’s no chance of mutilated data. See the
 section on File Locking in Chapter 15.
You risk a far less obvious form of race condition every time
 you let operations on a filename govern subsequent operations on
 that file. When used on filenames rather than filehandles, the file test
 operators represent something of a garden path leading straight into
 a race condition. Consider this code:
if (–e $file) {
 open(FH, "<", $file)
 || die "can't open $file for reading: $!";
}
else {
 open(FH, ">", $file)
 || die "can't open $file for writing: $!";
}
The code looks just about as straightforward as it gets, but
 it’s still subject to races. There’s no guarantee that the answer
 returned by the –e test will
 still be valid by the time either open is called. In the if block, another process could have
 removed the file before it could be opened, and you wouldn’t find
 the file you thought was going to be there. In the else block, another process could have
 created the file before the second open could get its turn to create the
 file, so the file that you thought would not be there, would be. The
 simple open function creates new files but overwrites existing
 ones. You may think you want to overwrite any existing file, but
 consider that the existing file might be a newly created alias or
 symbolic link to a file elsewhere on the system that you very much
 don’t want to overwrite. You may think you know what a filename
 means at any particular instant, but you can never really be sure as
 long as any other processes with access to the file’s directory are
 running on the same system.
To fix this problem of overwriting, you’ll need to
 use sysopen, which
 provides individual controls over whether to create a new file or
 clobber an existing one. And we’ll ditch that –e file existence test since it serves no
 useful purpose here and only increases our exposure to race
 conditions.
use Fcntl qw/O_WRONLY O_CREAT O_EXCL/;
open(FH, "<", $file)
 || sysopen(FH, $file, O_WRONLY | O_CREAT | O_EXCL)
 || die "can't create new file $file: $!";
Now even if the file somehow springs into existence between
 when open fails and when sysopen tries to open a new file for
 writing, no harm is done, because with the flags provided, sysopen will refuse to open a file that
 already exists.
If someone is trying to trick your program into misbehaving,
 there’s a good chance he’ll go about it by having files appear and
 disappear when you’re not expecting. One way to reduce the risk of
 deception is by promising to never operate on a filename more than
 once. As soon as you have the file opened, forget about the filename
 (except maybe for error messages), and operate only on the handle
 representing the file. This is much safer because, even though
 someone could play with your filenames, he can’t play with your
 filehandles. (Or if he can, it’s because you let him—see Passing Filehandles in Chapter 15.)
Earlier in this chapter, we showed a handle_looks_safe
 function that called Perl’s stat function on a
 filehandle (not a filename) to check its ownership and permissions.
 Using the filehandle is critical to correctness—if we had used the
 name of the file, there would have been no guarantee that the file
 whose attributes we were inspecting was the same one we just opened
 (or were about to open). Some pesky evildoer could have deleted our
 file and quickly replaced it with a file of nefarious design,
 sometime between the stat and the
 open. It wouldn’t matter which
 was called first; there’d still be the opportunity for foul play
 between the two. You may think that the risk is very small because
 the window is very short, but there are many cracking scripts out in
 the world that will be perfectly happy to run your program thousands
 of times to catch it the one time it wasn’t careful enough. A smart
 cracking script can even lower the priority of your program so it
 gets interrupted more often than usual, just to speed things up a
 little. People work hard on these things—that’s why they’re called
 exploits.
By calling stat on a
 filehandle that’s already open, we only access the filename once and
 so avoid the race condition. A good strategy for avoiding races
 between two events is to somehow combine both into one, making the
 operation atomic.[198] Since we access the file by name only once, there
 can’t be any race condition between multiple accesses, so it doesn’t
 matter whether the name changes. Even if our cracker deletes the
 file we opened (yes, that can happen) and puts a different one there
 to trick us with, we still have a handle to the real, original
 file.

[198] Yes, you may still perform atomic operations in a
 nuclear-free zone. When Democritus gave the word “atom” to the
 indivisible bits of matter, he meant literally
 something that could not be cut: ἀ- (not) +
 -τομος (cuttable). An
 atomic operation is an action that can’t be
 interrupted (just try interrupting an atomic bomb
 sometime).

Temporary Files

Apart from allowing buffer overruns (which Perl scripts are virtually
 immune to) and trusting untrustworthy input data (which taint mode
 guards against), creating temporary files improperly is one of the
 most frequently exploited security holes. Fortunately, temp file
 attacks usually require crackers to have a valid user account on the
 system they’re trying to crack, which drastically reduces the number
 of potential bad guys.
Careless or casual programs use temporary files in all kinds
 of unsafe ways, like placing them in world-writable directories,
 using predictable filenames, and not making sure the file doesn’t
 already exist. Whenever you find a program with code like
 this:
open(TMP, "> /tmp/foo.$$")
 || die "can't open /tmp/foo.$$: $!";
you’ve just found all three of those errors at once. That
 program is an accident waiting to happen.
The way the exploit plays out is that the cracker first plants
 a file with the same name as the one you’ll use. Appending the PID
 isn’t enough for uniqueness; surprising though it may sound,
 guessing PIDs really isn’t difficult.[199] Now along comes the program with the careless open call, and instead of creating a new
 temporary file for its own purposes, it overwrites the cracker’s
 file instead.
So what harm can that do? A lot. The cracker’s file isn’t really a plain file, you see.
 It’s a symbolic link (or sometimes a hard link), probably
 pointing to some critical file that crackers couldn’t normally write
 to on their own, such as /etc/passwd. The program thought it
 opened a brand new file in /tmp, but it clobbered an existing file
 somewhere else instead.
Perl provides two functions that address this issue, if
 properly used. The first is POSIX::tmpnam,
 which just returns a filename that you’re expected to open for
 yourself:
Keep trying names until we get one that's brand new.
use POSIX;
do {
 $name = tmpnam();
} until sysopen(TMP, $name, O_RDWR | O_CREAT | O_EXCL, 0600);
Now do I/O using TMP handle.
The second is IO::File::new_tmpfile, which gives you back an already opened handle:
Or else let the module do that for us.
use IO::File;
my $fh = IO::File::new_tmpfile(); # this is POSIX's tmpfile(3)
Now do I/O using $fh handle.
Neither approach is perfect, but, of the two, the first is the
 better approach. The major problem with the second one is that Perl
 is subject to the foibles of whatever implementation of
 tmpfile(3) happens to be in your system’s C
 library, and you have no guarantee that this function doesn’t do
 something just as dangerous as the open we’re trying to fix. (And some, sadly
 enough, do.) A minor problem is that it doesn’t give you the name of
 the file at all. Although it’s better if you can handle a temp file
 without a name—because that way you’ll never provoke a race
 condition by trying to open it again—often you can’t.
The major problem with the first approach is that you have no
 control over the location of the pathname as you do with the C
 library’s mkstemp(3) function. For one thing,
 you never want to put the file on an NFS-mounted filesystem. The
 O_EXCL flag is not guaranteed to work correctly under NFS, so
 multiple processes that request an exclusive create at nearly the
 same time might all succeed. For another, because the path returned
 is probably in a directory others can write to, someone could plant
 a symbolic link pointing to a nonexistent file, forcing you to
 create your file in a location she prefers.[200] If you have any say in it, don’t put temp files in a
 directory that anyone else can write to. If you must, make sure to
 use the O_EXCL flag to sysopen, and try to use directories with
 the owner-delete-only flag (the sticky bit) set on them.
As of v5.6.1, there is a third way. The standard File::Temp module takes into account all the difficulties we’ve
 mentioned. You might use the default options, like this:
use File::Temp "tempfile";
$handle = tempfile();
Or you might specify some of the options, like this:
use File::Temp "tempfile";
($handle, $filename) = tempfile("plughXXXXXX",
 DIR => "/var/spool/adventure",
 SUFFIX = ".dat");
The File::Temp module also
 provides security-conscious emulations of the other functions we’ve
 mentioned (though the native interface is better because it gives
 you an opened filehandle, not just a filename, which is subject to
 race conditions). See the documentation for a longer description of
 the options and semantics of this module.
Once you have your filehandle, you can do whatever you want
 with it. It’s open for both reading and writing, so you can write to
 the handle, seek back to the
 beginning, and then, if you want, overwrite what you’d just put
 there or read it back again. The thing you really,
 really want to avoid doing is ever opening that
 filename again, because you can’t know for sure that it’s really the
 same file you opened the first time around.[201]
When you launch another program from within your script, Perl
 normally closes all filehandles for you to avoid another
 vulnerability. If you use fcntl
 to clear your close-on-exec flag (as demonstrated at the end of the
 entry on open in Chapter 27), other programs you call will inherit this
 new, open file descriptor. On systems that support the
 /dev/fd/ directory, you could provide another
 program with a filename that really means the file descriptor by
 constructing it this way:
$virtname = "/dev/fd/" . fileno(TMP);
If you only needed to call a Perl subroutine or program that’s
 expecting a filename as an argument, and you knew that subroutine or
 program used regular open for it,
 you could pass the handle using Perl’s notation for indicating a
 filehandle:
$virtname = "=&" . fileno(TMP);
When that file “name” is passed with a regular Perl open of one or two arguments (not three,
 which would dispel this useful magic), you gain access to the
 duplicated descriptor. In some ways, this is more portable than
 passing a file from /dev/fd/, because it works
 everywhere that Perl works; not all systems have a /dev/fd/ directory. On the other hand,
 the special Perl open syntax for
 accessing file descriptors by number works only with Perl programs,
 not with programs written in other languages.

[199] Unless you’re on a system like OpenBSD, which randomizes
 new PID assignments.

[200] A solution to this, which only works under some operating
 systems, is to call sysopen
 and or in the O_NOFOLLOW flag. This makes the function fail if the final
 component of the path is a symbolic link.

[201] Except afterwards by doing a stat on both filehandles and comparing
 the first two return values of each (the device/inode pair). But
 it’s too late by then, because the damage is already done. All
 you can do is detect the damage and abort (and maybe sneakily
 send email to the system administrator).

Handling Insecure Code

Taint checking is just the sort of security blanket you need if you want
 to catch bogus data you ought to have caught yourself, but didn’t
 think to catch before passing off to the system. It’s a bit like the
 optional warnings Perl can give you—they may not indicate a real
 problem, but on average the pain of dealing with the false positives
 is less than the pain of not dealing with the false negatives. With
 tainting, the latter pain is even more insistent, because using bogus
 data doesn’t just give the wrong answers; it can blow your system
 right out of the water, along with your last two years of work. (And
 maybe your next two, if you didn’t make good backups.) Taint mode is
 useful when you trust yourself to write honest code but don’t
 necessarily trust whoever is feeding you data not to try to trick you
 into doing something regrettable.
Data is one thing. It’s quite another matter when you don’t even
 trust the code you’re running. What if you fetch an applet off the Net
 and it contains a virus, a time bomb, or a Trojan horse? Taint
 checking is useless here because the data you’re feeding the program
 may be fine—it’s the code that’s untrustworthy. You’re placing
 yourself in the position of someone who receives a mysterious device
 from a stranger, with a note that says, “Just hold this to your head
 and pull the trigger.” Maybe you think it will dry your hair, but you
 might not think so for very long.
In this realm, prudence is synonymous with paranoia. What you
 want is a system that lets you impose a quarantine on suspicious code. The code can continue to
 exist, and even perform certain functions, but you don’t let it wander
 around doing just anything it feels like. In Perl, you can impose a
 kind of quarantine using the Safe module.

Changing Root

Perl’s chroot works
 just like the chroot(2) system
 call. It changes the root directory, so your program can’t access
 any files outside of the section of the filesystem that you intend
 to use. However, only the root user gets to do this, so already
 that’s a security issue:
chroot('/usr/local/apache/data');
chdir('/'); # now in /usr/local/apache/data
This doesn’t actually prevent access outside of the new root.
 A directory handle opened prior to the chroot can crawl back up to the real root,
 even though you can’t use a filename:
use v5.14;
use warnings;

say "Here I am";

opendir my $rootdh, '/';

chroot('/Users/Amelia');
opendir my $dh, '/'; # /Users/Amelia
say for readdir($dh);

chdir($rootdh); # oops, back to the real '/'
opendir my $dh, '.';
say for readdir($dh);
This relies on you, or someone else, allowing this situation
 to happen. If someone can edit the program to insert this
 naughtiness, no level of Perl security is going to help. Use any
 trick you can find to avoid a root user Perl program.

Safe Compartments

The Safe module lets you set up a sandbox, a special compartment in which all system operations
 are trapped, and namespace access is carefully controlled. The
 low-level, technical details of this module are in a state of flux,
 so here we’ll take a more philosophical approach.
Restricting namespace access

At the most basic level, a Safe object is like a safe, except the idea is to keep the bad
 people in, not out. In the Unix world, there is a syscall known as
 chroot(2) that can permanently consign a
 process to running only in a subdirectory of the directory
 structure—in its own private little hell, if you will. Once the
 process is put there, there is no way for it to reach files
 outside, because there’s no way for it to
 name files outside.[202]
A Safe object is a little
 like chroot(2), except that instead of being
 restricted to a subset of the filesystem’s directory structure,
 it’s restricted to a subset of Perl’s package structure, which is
 hierarchical just as the filesystem is.
Another way to look at it is that the Safe object is like one of those
 observation rooms with one-way mirrors where the police put
 suspicious characters. People on the outside can look into the
 room, but those inside can’t see out.
When you create a Safe
 object, you may give it a package name if you want. If you don’t,
 a new one will be chosen for you:
use Safe;
my $sandbox = Safe–>new("Dungeon");
$Dungeon::foo = 1; # Direct access is discouraged, though.
If you fully qualify variables and functions using the
 package name supplied to the new method, you can access them in that
 package from the outside, at least in the current
 implementation.
Slightly more upward compatible might be to set things up
 first before creating the Safe,
 as shown below. This is likely to continue working and is a handy
 way to set up a Safe that has
 to start off with a lot of “state”. (Admittedly, $Dungeon::foo isn’t a lot of
 state.)
 use Safe;
 $Dungeon::master = 'Gary Gygax'; # Still direct access, still discouraged.
 my $sandbox = Safe–>new("Dungeon");
But Safe also provides a
 way to access the compartment’s globals, even if you don’t know
 the name of the compartment’s package. So for maximal upward
 compatibility (though less than maximal speed), we suggest you use
 the reval method:
use Safe;
my $sandbox = Safe–>new();
$sandbox–>reval(q($master = 'Gary Gygax'));
(In fact, that’s the same method you’ll use to run
 suspicious code.) When you pass code into the compartment to
 compile and run, that code thinks that it’s really living in the
 main package. What the outside
 world calls $Dungeon::master,
 the code inside thinks of it as $main::master, $::master, or just $master (if you aren’t running under
 use strict). It won’t work to
 say $Dungeon::master inside the
 compartment because that would really access $Dungeon::Dungeon::master. By giving the
 Safe object its own notion of
 main, variables and subroutines
 in the rest of your program are protected.
To compile and run code inside the compartment, use
 the reval
 (“restricted eval”) method,
 passing the code string as its argument. Just as with any other
 eval
 STRING construct, compilation errors
 and runtime exceptions in reval
 don’t kill your program. They just abort the reval and leave the exception in
 $@, so make sure to check it
 after every reval call.
Using the initializations given earlier, this code will
 print out that “master is now Dave
 Arneson”, but only after you allow print (see the next section):
$sandbox–>permit(qw(print));
$sandbox–>reval(
 q($master = 'Dave Arneson'; print "master is now $main::master\n";)
);
if ($@) {
 die "Couldn't compile code in box: $@";
}
If you just want to compile code and not run it, wrap your
 string in a subroutine declaration:
$sandbox–>reval(q{
 our $master;
 sub say_master {
 print "master is now $main::master\n";
 }
}, 1);
die if $@; # check compilation
This time we passed reval
 a second argument, which, since it’s true, tells reval to compile the code under
 the strict pragma.
 From within the code string you can’t disable strictness, either,
 because importing and unimporting are just two of the things you
 can’t normally do in a Safe
 compartment. There are a lot of things you can’t normally do in a
 Safe compartment—see the next
 section.
Once you’ve created the say_master function in the compartment,
 these are pretty much the same:
$sandbox–>reval("say_master()"); # Best way.
die if $@;

$sandbox–>varglob("say_master")–>(); # Call through anonymous glob.

Dungeon::say_master(); # Direct call, strongly discouraged.

Restricting operator access

The other important thing about a Safe object is that Perl limits the
 available operations within the sandbox. (You might let your kid
 take a bucket and shovel into the sandbox, but you’d probably draw
 the line at a bazooka.) It’s not enough to protect just the rest
 of your program; you need to protect the rest of your computer,
 too.
When you compile Perl code in a Safe object, either with reval or rdo (the restricted version of the
 do
 FILE operator), the compiler consults a
 special, per-compartment access-control list to decide whether
 each individual operation is deemed safe to compile. This way you
 don’t have to stress out (much) worrying about unforeseen shell
 escapes, opening files when you didn’t mean to, strange code
 assertions in regular expressions, or most of the external access
 problems folks normally fret about (or ought to).
If you want to change what’s denied or allowed, you can do
 that by telling the compartment what to restrict or permit:
use v5.10;

$time = $sandbox–>reval(q(time)); # works fine

$sandbox–>deny(qw(time));
$time = $sandbox–>reval(q(time)); # fails
You can restrict entire sets of op codes, as specified in
 the Opcode module (see Table 20-1),
 although this requires some knowledge of perl’s internals:
$sandbox–>deny(qw(:base_math));
my $time = $sandbox–>reval('log(10)'); # fails
The trick, however, is protecting Opcode so that its export tags actually
 are what you expect. If you don’t trust the tags, you can specify
 individual opcodes, which are also in the Opcode module’s documentation. Never
 trust anybody.
Table 20-1. Selected opcode tags from Opcode
	Opcode	Includes
	
 :base_io
 	Filehandle-based input
 and output
	
 :dangerous
 	A dumping ground tag for
 various dangerous things
	
 :filesys
 	Input and output
	
 :load
 	Load external files or
 get caller information
	
 :sys_db
 	Access to system
 databases, such as /etc/passwd
	
 :subprocess
 	Creation of child
 processes

The Safe module doesn’t
 offer complete protection against denial-of-service attacks,
 especially when used in its more permissive modes.
 Denial-of-service attacks consume all available system resources
 of some type, denying other processes access to essential system
 facilities. Examples of such attacks include filling up the kernel
 process table, dominating the CPU by running forever in a tight
 loop, exhausting available memory, and filling up a filesystem.
 These problems are very difficult to solve, especially portably.
 See the end of the section Code Masquerading As Data, later
 in this chapter, for more discussion of denial-of-service
 attacks.

Safe examples

Imagine you’ve got a CGI program that manages a form into
 which the user may enter an arbitrary Perl expression and get back
 the evaluated result.[203] Like all external input, the string comes in tainted, so Perl won’t
 let you eval it yet—you’ll
 first have to untaint it with a pattern match. The problem is that
 you’ll never be able to devise a pattern that can detect all
 possible threats. And you don’t dare just untaint whatever you get
 and send it through the built-in eval. (If you do that,
 we will be tempted to break into your system
 and delete the script.)
That’s where reval
 comes in. Here’s a CGI script that processes a form
 with a single form field, evaluates (in scalar context) whatever
 string it finds there, and prints out the formatted result:
#!/usr/bin/perl –lTw
use strict;
use CGI::Carp "fatalsToBrowser";
use CGI qw/:standard escapeHTML/;
use Safe;

print header(–type => "text/html;charset=UTF–8"),
 start_html("Perl Expression Results");
my $expr = param("EXPR") =~ /^([^;]+)/
 ? $1 # return the now–taintless portion
 : croak("no valid EXPR field in form");
my $answer = Safe–>new–>reval($expr);
die if $@;

print p("Result of", tt(escapeHTML($expr)),
 "is", tt(escapeHTML($answer)));
Imagine some evil user feeding you “print `cat /etc/passwd`” (or worse) as
 the input string. Thanks to the restricted environment that
 disallows backticks, Perl catches the problem during compilation
 and returns immediately. The string in $@ is “quoted
 execution (``, qx) trapped by operation mask”, plus the
 customary trailing information identifying where the problem
 happened.
Because we didn’t say otherwise, the compartments we’ve been
 creating all used the default set of allowable operations. How you
 go about declaring specific operations permitted or forbidden
 isn’t important here. What is important is that this is completely
 under the control of your program. And since you can create
 multiple Safe objects in your
 program, you can confer various degrees of trust upon various
 chunks of code, depending on where you got them from.
If you’d like to play around with Safe, here’s a little interactive Perl
 calculator. It’s a calculator in that you can feed it numeric
 expressions and see their results immediately. But it’s not
 limited to numbers alone. It’s more like the looping example under
 eval in Chapter 27, where you can take whatever they give you,
 evaluate it, and give them back the result. The difference is that
 the Safe version doesn’t
 execute just anything you feel like. You can run this calculator
 interactively at your terminal, typing in little bits of Perl code
 and checking the answers, to get a feel for what sorts of
 protection Safe
 provides.
#!/usr/bin/perl –w
safecalc – demo program for playing with Safe
use strict;
use Safe;
my $sandbox = Safe–>new();
while (1) {
 print "Input: ";
 my $expr = <STDIN>;
 exit unless defined $expr;
 chomp($expr);
 print "$expr produces ";
 local $SIG{_ _WARN_ _} = sub { die @_ };
 my $result = $sandbox–>reval($expr, 1);
 if ($@ =~ s/at \(eval \d+\).*//) {
 printf "[%s]: %s", $@ =~
 /trapped by operation mask/
 ? "Security Violation" : "Exception", $@;
 }
 else {
 print "[Normal Result] $result\n";
 }
}
When you give it the normal algebraic expressions, it
 computes and returns the result. If you try to do something such
 as run backticks or load a module, it doesn’t let you:
Input: 2+2
2+2 produces [Normal Result] 4
Input: `ls –l`
`ls –l` produces [Security Violation]: 'quoted execution (``, qx)'
trapped by operation mask
Input: use LWP::Simple; getprint('http://www.perl.org')
use LWP::Simple; getprint('http://www.perl.org') produces [Security Violation]:
'require' trapped by operation mask
Input: 1/137
1/137 produces [Normal Result] 0.0072992700729927

[202] Some sites do this for executing all CGI scripts using
 loopback, read-only mounts. It’s something of a pain to set
 up, but if someone ever escapes, they’ll find there’s nowhere
 to go.

[203] Please don’t laugh. We really have seen web pages that
 do this. Without a Safe!

Code Masquerading As Data

Safe compartments
 are available for when the really scary stuff is going
 down, but that doesn’t mean you should let down your guard totally
 when you’re doing the everyday stuff around home. You need to
 cultivate an awareness of your surroundings and look at things from
 the point of view of someone wanting to break in. You need to take
 proactive steps like keeping things well lit and trimming the bushes
 where various lurking problems can hide.
Perl tries to help you in this area, too. Perl’s conventional
 parsing and execution scheme avoids the pitfalls to which shell
 programming languages often fall prey. There are many extremely
 powerful features in the language, but by design they’re
 syntactically and semantically bounded in ways that keep things
 under the programmer’s control. With few exceptions, Perl evaluates
 each token only once. Something that looks like it’s being used as a
 simple data variable won’t suddenly go rooting around in your
 filesystem.
Unfortunately, that sort of thing can happen if you call out
 to the shell to run other programs for you, because then you’re
 running under the shell’s rules instead of Perl’s. The shell is easy
 to avoid, though—just use the list-argument forms of the system, exec, or piped open functions. Although backticks don’t
 have a list-argument form that is proof against the shell, you can
 always emulate them as described in the section Accessing Commands and Files Under Reduced Privileges, earlier in this chapter. (While there’s
 no syntactic way to make backticks take an argument list, a
 multiargument form of the underlying readpipe operator
 is in development; but as of this writing, it isn’t quite ready for
 prime time.)
When you use a variable in an expression (including when you
 interpolate it into a double-quoted string), there’s No Chance that
 the variable will contain Perl code that does something you aren’t
 intending.[204] Unlike the shell, Perl never needs defensive quotes
 around variables, no matter what might be in them.
$new = $old; # No quoting needed.
print "$new items\n"; # $new can't hurt you.

$phrase = "$new items\n"; # Nor here, neither.
print $phrase; # Still perfectly ok.
Perl takes a “what you see is what you get” approach. If you
 don’t see an extra level of interpolation, then it doesn’t happen.
 It is possible to interpolate arbitrary Perl
 expressions into strings, but only if you specifically ask Perl to
 do that. (Even so, the contents are still subject to taint checking
 if you’re in taint mode.)
$phrase = "You lost @{[1 + int rand(6)]} hit points\n";
Interpolation is not recursive, however. You can’t just hide
 an arbitrary expression in a string:
$count = "1 + int rand(6)"; # Some random code.
$saying = "$count hit points"; # Merely a literal.
$saying = "@{[$count]} hit points"; # Also a literal.
Both assignments to $saying
 would produce “1 + int rand(6) hit
 points”, without evaluating the interpolated contents of
 $count as code. To get Perl to do
 that, you have to call eval
 STRING explicitly:
$code = "1 + int rand(6)";
$die_roll = eval $code;
die if $@;
If $code were tainted, that
 eval
 STRING would raise its own exception. Of
 course, you almost never want to evaluate random user code—but if
 you did, you should look into using the Safe module. You may have heard of
 it.
There is one place where Perl can sometimes treat data as
 code; namely, when the pattern in a qr//, m//, or s/// operator contains either of the new
 regular expression assertions: (?{ CODE
 }) or (??{ CODE
 }). These pose no security issues
 when used as literals in pattern matches:
$cnt = $n = 0;
while ($data =~ /(\d+ (?{ $n++ }) | \w+)/gx) {
 $cnt++;
}
print "Got $cnt words, $n of which were digits.\n";
But existing code that interpolates variables into matches was
 written with the assumption that the data is data, not code. The new
 constructs might have introduced a security hole into previously
 secure programs. Therefore, Perl refuses to evaluate a pattern if an
 interpolated string contains a code assertion, and it raises an
 exception instead. If you really need that functionality, you can
 always enable it with the lexically scoped use re 'eval' pragma. (You still can’t use tainted data for an
 interpolated code assertion, though.)
A completely different sort of security concern that can come
 up with regular expressions is denial-of-service problems. These can
 make your program quit too early, run too long, or exhaust all
 available memory—and sometimes even dump core, depending on the
 phase of the moon.
When you process user-supplied patterns, you don’t have to
 worry about interpreting random Perl code. However, the regular
 expression engine has its own little compiler and interpreter, and
 the user-supplied pattern is capable of giving the regular
 expression compiler heartburn. If an interpolated pattern is not a
 valid pattern, a runtime exception is raised, which is fatal unless
 trapped. If you do try to trap it, make sure to use only eval BLOCK, not
 eval
 STRING, because the extra evaluation
 level of the latter would in fact allow the execution of random Perl
 code. Instead, do something like this:
if (not eval { "" =~ /$match/; 1 }) {
 # (Now do whatever you want for a bad pattern.)
}
else {
 # We know pattern is at least safe to compile.
 if ($data =~ /$match/) { ... }
}
A more troubling denial-of-service problem is that given the
 right data and the right search pattern, your program can appear to
 hang forever. That’s because some pattern matches require
 exponential time to compute, and this can easily exceed the MTBF
 rating on our solar system. If you’re especially lucky, these
 computationally intensive patterns will also require exponential
 storage. If so, your program will exhaust all available virtual
 memory, bog down the rest of the system, annoy your users, and
 either die with an orderly
 “Out of memory!” error or leave
 behind a really big core dump file (though perhaps not as large as
 the solar system).
Like most denial-of-service attacks, this one is not easy to
 solve. If your platform supports the alarm function, you could time out the
 pattern match. Unfortunately, Perl cannot (currently) guarantee that
 the mere act of handling a signal won’t ever trigger a core dump.
 (This is scheduled to be fixed in a future release.) You can always
 try it, though, and even if the signal isn’t handled gracefully, at
 least the program won’t run forever.
If your system supports per-process resource limits, you could
 set these in your shell before calling the Perl program, or use the
 BSD::Resource module from CPAN to do so directly from Perl. The
 Apache web server allows you to set time, memory, and file size
 limits on CGI scripts it launches.
Finally, we hope we’ve left you with some unresolved feelings
 of insecurity. Remember, just because you’re paranoid doesn’t mean
 they’re not out to get you. So you might as well enjoy it.

[204] Although if you’re generating a web page, it’s possible to
 emit HTML tags, including JavaScript code, that might do
 something that the remote browser isn’t expecting.

Chapter 21. Common Practices

Almost any Perl programmer will be glad to give you reams of advice on
 how to program. We’re no different (in case you hadn’t noticed). In this
 chapter, rather than trying to tell you about specific features of Perl,
 we’ll go at it from the other direction and use a more scattergun approach
 to describe idiomatic Perl. Our hope is that, by putting together various
 bits of things that seemingly aren’t related, you can soak up some of the
 feeling of what it’s like to actually “think Perl”. After all, when you’re
 programming, you don’t write a bunch of expressions, then a bunch of
 subroutines, then a bunch of objects. You have to go at everything all at
 once, more or less. So this chapter is a bit like that.
There is, however, a rudimentary organization to the chapter in that
 we’ll start with the negative advice and work our way toward the positive
 advice. We don’t know if that will make you feel any better, but it makes us
 feel better. Besides, for most of your programming career, you’ll spend your
 time learning what not to do before you figure out what to do, so get used
 to it early.

Common Goofs for Novices

The biggest goof of all is forgetting to use
 warnings, which identifies many errors. The second biggest goof is
 forgetting to use strict when it’s appropriate. These two pragmas can save you hours
 of head-banging when your program starts getting bigger. (And it will.)
 Yet another faux pas is to forget to consult the online perlfaq.
 Suppose you want to find out if Perl has a round function. You might try searching the FAQ
 first by searching with perldoc:
% perldoc –q round
Apart from those “metagoofs”, there are
 several kinds of programming traps. Some traps almost everyone falls into,
 and other traps you’ll fall into only if you come from a particular
 culture that does things differently. We’ve separated these out in the
 following sections.

Universal Blunders

	Putting a comma after the filehandle in a print statement.
 Although it looks extremely regular and pretty to say:
print STDOUT, "goodbye", $adj, "world!\n"; # WRONG
this is nonetheless incorrect because of that first comma.
 What you want instead is the indirect object syntax:
print STDOUT "goodbye", $adj, "world!\n"; # ok
The syntax works this way so that you can say:
print $filehandle "goodbye", $adj, "world!\n";
where $filehandle is a
 scalar holding the name of a filehandle at runtime. This is distinct
 from:
print $notafilehandle, "goodbye", $adj, "world!\n";
where $notafilehandle is
 simply a string that is part of the list of things to be printed. In
 that case, you might see something like GLOB(0xDEADBEEF) on the terminal, because
 the output went to standard output and the filehandle reference
 stringified itself.
See indirect
 object in the Glossary.

	Using == instead of
 eq and != instead of ne. The == and != operators are
 numeric tests. The other two are
 string tests. The strings "123" and "123.00" are equal as numbers but not
 equal as strings. Also, most nonnumeric strings are numerically
 equal to zero, and some of them, such as "123xyz", probably aren’t what you want in
 a numeric context. Unless you are dealing with numbers, you almost
 always want the string-comparison operators instead. The warnings pragma will tell you when these operators use
 nonnumeric data.

	Forgetting the trailing semicolon. Every statement in Perl is
 terminated by a semicolon or the end of a block. Newlines aren’t
 statement terminators as they are in awk, Python, or FORTRAN. Remember that
 Perl is like C.
A statement containing a here document is particularly prone
 to losing its semicolon. It ought to look like this:
print <<"FINIS";
A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.
 ––Ralph Waldo Emerson
FINIS

	Forgetting that a BLOCK requires
 braces. Naked statements are not
 BLOCKs. If you are creating a control
 structure such as a while or an
 if that requires one or more
 BLOCKs, you must use
 braces around each BLOCK. Remember that
 Perl is not like C.

	Not saving $1, $2, and so on across regular expressions.
 Remember that every successful m/atch/ or s/ubsti/tution/ will set (or clear, or
 mangle) your $1, $2…variables. One way to save them right
 away is to evaluate the match within list context, as in:
my ($one, $two) = /(\w+) (\w+)/;

	Not realizing that a local
 also changes the variable’s value as seen by other
 subroutines called within the scope of the local. It’s easy to
 forget that local is a runtime
 statement that does dynamic scoping, because there’s no equivalent
 in languages like C. See the section “Scoped Declarations” in Chapter 4. Usually you want a my anyway.

	Losing track of brace pairings. A good text editor will help
 you find the pairs. Get one (or two). And it helps to have a
 consistent style so you know where to expect a brace, even if people
 debate those positions just for the blood sport. Tools such as
 Perl::Tidy can beautify code for you.

	Using loop control statements in do {}
 while. Although the braces in this control structure look
 suspiciously like part of a loop BLOCK,
 they aren’t.

	Using $foo[1] when you mean
 $foo[0]. Perl arrays begin at zero by default. In the olden days, Perl
 tried to be flexible by allowing you to set the starting index
 through the $[special variable,
 but v5.12 deprecated that.

	Saying @foo[0] when you
 mean $foo[0]. The @foo[0] reference is an array slice, meaning an array
 consisting of the single element $foo[0]. Sometimes this doesn’t make any
 difference, as in:
print "the answer is @foo[0]\n";
but it makes a big difference for things like:
@foo[0] = <STDIN>;
which will slurp up all the rest of STDIN, assign the
 first line to $foo[0], and discard everything else. This
 is probably not what you intended. Get into the habit of thinking
 that $ means a single value,
 while @ means a list of values,
 and you’ll do okay.

	Forgetting the parentheses of a list operator like my, which makes one variable lexical and
 the other global:
my $x, $y = (4, 8); # WRONG
my ($x, $y) = (4, 8); # ok

	Forgetting to select the right filehandle before setting the format variables $^, $~,
 or the buffering variable $|.
 These variables depend on the currently selected filehandle, as
 determined by select(FILEHANDLE). The initial filehandle so selected is
 STDOUT. You should really be
 using the filehandle methods from the IO::Handle module instead. See Chapter 25.

	Forgetting to set the encoding on every text stream you read
 or write. There is no such thing as a generic “textfile”. The
 –C command-line option, the
 PERL_UNICODE environment variable, and the open pragma can set this implicitly for convenience, and
 the binmode and open functions can set it explicitly for precision. If you
 do not somehow specify the encoding either implicitly or explicitly,
 you do not have text data. You cannot guess an encoding; you have to
 specify it.

Frequently Ignored Advice

Practicing Perl Programmers should take note of the following:
	Remember that many operations behave differently in list
 context than they do in a scalar one, or that a list and an array
 are not the same thing. For instance:
($x) = (4, 5, 6); # List context; $x is set to 4
 $x = (4, 5, 6); # Scalar context; $x is set to 6

 @a = (4, 5, 6);
 $x = @a; # Scalar context; $x is set to 3 (the array length)

	Avoid barewords if you can, especially all lowercase ones. You can’t tell
 just by looking at it whether a word is a function or a bareword
 string. By using quotes on strings and parentheses around function
 call arguments, you won’t ever get them confused. In fact, the
 pragma use strict at the beginning of your program makes barewords a
 compile-time error—probably a good thing.

	You can’t tell just by looking which built-in functions
 are unary operators (like chop and chdir), which are list operators (like print and unlink), and which are argumentless (like
 time). You’ll want to learn them
 by reading Chapter 27. As always, use parentheses if you aren’t sure—or even if you aren’t
 sure you’re sure. Note also that user-defined subroutines are by
 default list operators, but they can be declared as unary operators
 with a prototype of ($) or
 argumentless with a prototype of ().

	People have a hard time remembering that some functions
 default to $_, @ARGV, or whatever, while others do not.
 Take the time to learn which are which or avoid default
 arguments.

	<FH> is not the name
 of a filehandle; it is an angle operator that does a line-input operation on the
 handle. This confusion usually manifests itself when people try to
 print to the angle
 operator:
print <FH> "hi"; # WRONG, omit angles

	Remember also that data read by the angle operator is assigned to
 $_ only when the file read is the
 sole condition in a while
 loop:
while (<FH>) { } # Data assigned to $_
<FH>; # Data read and discarded!

	Don’t use = when you need
 =~; the two constructs are quite
 different:
$x = /foo/; # Searches $_ for "foo", puts result in $x
$x =~ /foo/; # Searches $x for "foo", discards result

	Use /r on your substitutions to return the result.
@new = map { s/old/new/r } @old;

	Use my for local variables
 whenever you can get away with it. Using local merely gives a temporary value to a
 global variable, which leaves you open to unforeseen side effects of
 dynamic scoping.

	Don’t use local on a
 module’s exported variables. If you localize an exported variable,
 its exported value will not change. The local name becomes an alias
 to a new value, but the external name is still an alias for the
 original.

C Traps

Cerebral C programmers should take note of the following:
	Curlies are required for if
 and while blocks.

	You must use elsif rather
 than “else if” or “elif”. Syntax like this:
if (expression) {
 block;
}
else if (another_expression) { # WRONG
 another_block;
}
is illegal. The else part
 is always a block, and a naked if
 is not a block. You mustn’t expect Perl to be exactly the same as C.
 What you want instead is:
if (expression) {
 block;
}
elsif (another_expression) {
 another_block;
}
Note also that “elif” is “file” spelled backward. Only
 Algol-ers would want a keyword that was the same as another word
 spelled backward.

	The break and continue keywords from C become in Perl last and next, respectively. Unlike in C, these do
 not work within a do
 {} while construct.

	For a long time Perl had no equivalent to C’s switch statement. Perl v5.10 introduced a
 “switch on steroids” with the fancy name given–when (since it’s a fancier
 construct). See Chapter 4. It’s easy to build your
 own, too; see and in Chapter 4.

	Variables begin with $,
 @, or % in Perl.

	Comments begin with #, not
 /*. Use pod for multiline
 comments.

	You can’t take the address of anything, although a similar
 operator in Perl is the backslash, which creates a reference. You
 get something that looks like an address when you stringify a
 reference, but you can’t really use it for anything.

	ARGV must be capitalized.
 $ARGV[0] is C’s argv[1], and C’s argv[0] ends up in $0. See Chapter 25.

	Syscalls such as link,
 unlink, and rename return true for success, not
 0.

	The signal handlers in %SIG
 deal with signal names, not numbers.

Shell Traps

Sharp shell programmers should take note of the following:
	Variables are prefixed with $,
 @, or % on the left side of the assignment as
 well as the right. A shellish assignment like:
camel="dromedary"; # WRONG
won’t be parsed the way you expect. You need:
$camel="dromedary"; # ok

	The loop variable of a foreach also
 requires a $. Although csh likes:
foreach hump (one two)
 stuff_it $hump
end
In Perl, this is written as:
foreach $hump ("one", "two") {
 stuff_it($hump);
}

	The backtick operator does variable interpolation without regard to the
 presence of single quotes in the command.

	The backtick operator does no translation of the return value.
 In Perl, you have to trim the newline explicitly, like this:
chomp($thishost = `hostname`);

	Shells (especially csh) do
 several levels of substitution on each command line. Perl does
 interpolation only within certain constructs such as double quotes,
 backticks, angle brackets, and search patterns.

	Shells tend to interpret scripts a little bit at a time. Perl
 compiles the entire program before executing it (except for BEGIN blocks, which execute before the
 compilation is done).

	Program arguments are available via @ARGV, not $1, $2,
 and so on.

	The environment is not automatically made available as
 individual scalar variables. Use the standard Env module if you want that to happen.

Python Traps

Perl and Python are both dynamic languages that share some common ancestors
 and appeared within five years of each other (1987 and 1991). Perl 4
 even stole Python’s object system for Perl 5. Although the two languages
 are more alike than their superficial syntax would suggest, they also
 see many of the same things from different perspectives.
	Python and Perl sometimes use different words for the same
 concepts, and sometimes they use the same words for different
 concepts; see Table 21-1.
Table 21-1. A mapping of Python to Perl jargon
	Python	Perl
	Tuple	List
	List	Array
	Dictionary	Hash

	Variables begin with $,
 @, or % in Perl. Using sigils like $str lets Perl keep its nouns and its
 verbs separate, so you never have to worry about accidentally
 overwriting some important built-in the way you do in Python if you
 use str for your purposes. You
 can override built-ins in Perl, but never
 accidentally the way you can in Python.

	Don’t forget to use
 warnings so Perl notices things that in Python give you
 exceptions. Otherwise in Perl you only learn about these things if
 you test for them, so if you forget, you never know. See also
 warnings and autodie in Chapter 27.

	Many built-in functions take default arguments or have default
 behavior for their most common cases. See Chapter 27.

	Python’s methods take explicit parameter lists. In Perl, you
 unpack the arguments to your function, which gives you great
 flexibility in the number and order of the arguments your function
 takes. We consider this a feature, but if you find yourself writing
 lots of boilerplate to unpack your function arguments, you might
 consider the Method::Signatures
 module from CPAN.

	Perl knows about patterns and compiles them for you at compile
 time along with the rest of your program.

	Perl’s \N{NAME}
 construct allows shortcuts, aliases, and custom names (which can
 even be different in different lexical scopes); Python’s \N{NAME}
 doesn’t.

	Perl characters are abstract code points, not low-level code
 units as in Python.

	Perl pattern matching uses Unicode rules for case-insensitivity, but Python uses
 only ASCII casefolding rules, so (for example) all three Greek
 sigmas match case-insensitively in Perl.

	Perl’s casemapping functions like uc
 and lc follow Unicode rules, so
 they work on all cased codepoints, not just on letters.

	Perl understands (potentially nested) lexical scope, and so it
 is completely comfortable with full lexical closures. Python doesn’t
 and isn’t.

	Perl uses full Unicode casing, so the casemap of a string can
 be longer than the original. Python uses only simple Unicode casing
 (when it bothers to use it at all), which doesn’t give as good
 results on strings.

	Any subroutine that returns a blessed reference is a Perl
 constructor. There’s no special name for a constructor
 method.

	Perl methods are just methods, and they always receive their
 invocant as a bonus, initial argument. Perl as a language makes no
 distinction between object methods, class methods, or static methods
 in the Python sense of these things.

	Perl’s object-orientation is optional, not mandatory. Perl
 doesn’t enforce pervasive object-orientation on its built-in types
 unless you ask it to―not everything has methods. You might like
 autobox, though.

	In Perl, you call a function with arguments:
my $string = join("|", qw(Python Perl Ruby));
In Python, there’s likely a main argument with a method to do
 it:
new = "|".join(["Python", "Perl", "Ruby"])

	Perl pattern matches float unless you anchor your pattern
 explicitly, like Python’s re.search() method but unlike its re.match(), which can only match at the
 beginning of a line.

	Perl’s strings aren’t arrays of characters, so you can’t use
 array operators on them. On strings you use string operators,
 natch.

	Except for a backslash itself or a backslashed delimiter, Perl never expands backslash
 escapes in single-quoted strings, but Python does. Perl’s
 singled-quoted strings like '\t'
 are more like Python’s raw strings like r'\t'.

	Perl uses backticks to quote literals to execute arbitrary
 system commands and return their output, as in $file = `cat foo.c`.

	You don’t have to preallocate memory in Perl the way you do in
 Python, because arrays and other data structures grow on demand,
 sometimes via autovivification. In Python,
 you have to explicitly grow your lists and explicitly allocate new
 lists and dictionaries to grow them.

	Python throws exceptions for normal operations like open failures, while Perl uses special
 return values, usually undef.
 That means if you forget to check for that error return, you will
 miss it. You can use autodie to make failed system calls raise exceptions.

	Perl does not by default throw exceptions on failed or partial
 numeric conversions from strings, nor on treating undef as a defined value. You can make it
 do so with:
use warnings FATAL => q(numeric uninitialized);

	Perl lists never nest, even if you add extra parens. Use
 square brackets to make nested arrays (of array references)
 instead.

	Perl’s range operator is inclusive on both sides, so 0..9 includes 0 and 9.

	Perl’s interactive shell is its debugger (Chapter 17), but Devel::REPL is good, too. Calling Perl without arguments does not
 drop you into an interactive read-eval-print loop as it does in
 Python. Use perl –de0 for
 that.

Ruby Traps

Matz, the creator of Ruby, stole heavily from Perl (and we think he chose a
 pretty good starting point). Actually, he put a Perl and a Smalltalk in
 a room and let them breed.
	There’s no irb. See the
 Python section.

	Perl just has numbers. It doesn’t care whether they have
 fractional portions or not.

	You don’t need to surround variables with {} (#{}
 in Ruby) to interpolate them, unless you need to disambiguate the
 identifier from the string around it:
"My favorite language is $lang"

	Perl interpolated strings don’t have to be double-quoted: they
 can use qq with arbitrary
 delimiters. Similarly, generic uninterpolated strings don’t have to
 use single quotes: they can use a q with arbitrary delimiters.
q/That's all, folks/
q(No interpolation for $100)
qq(Interpolation for $animal)

	You need to separate all Perl statements with a ;, even if they are on different lines.
 The final statement in a block doesn’t need a final ;.

	The case of variable names in Perl don’t mean anything to
 perl.

	The sigils don’t denote variable scope, nor even type. A
 $ in Perl is a single item, like
 $scalar, $array[0], or $hash{$key}.

	Perl compares strings with lt, le,
 eq, ne, ge,
 and gt.

	No magic blocks, but see PerlX::MethodCallWithBlock.

	Perl’s subroutine definitions are compile-phase. So:
use v5.10;
sub foo { say "Camelia" }
foo();
sub foo { say "Amelia" };
foo();
This prints Amelia twice,
 because the last definition is in place before the run-phase
 statements execute. This also means that the call to a subroutine
 can appear earlier in the file than the subroutine’s
 definition.

	Perl doesn’t have class variables, but people try to fake them
 with lexical variables.

	The range operator in Perl returns a list, but see PerlX::Range.

	The /s pattern modifier
 makes Perl’s . match a newline,
 whereas Ruby uses the /m for the
 same thing. The /m in Perl makes
 the ^ and $ anchors match at the beginning and end
 of logical lines.

	Perl flattens lists.

	Perl’s => can stand in
 almost anywhere you can use a comma, so you’ll often see Perlers use
 the arrow to indicate direction:
rename $old => $new;

	In Perl, 0, "0", "", (),
 and undef are false in Boolean
 contexts. Basic Perl doesn’t require a special Boolean value. You
 might want the boolean module.

	Perl often fakes the job of nil with an undef.

	Perl allows you to be a bit sloppier because some of the
 characters aren’t that special. A ? after a variable doesn’t do anything to
 the variable, for instance:
my $flag = $foo? 0 :1;

Java Traps

	There is no main in Perl or,
 rather, no:
public static void main(String[] argv) throws IOException

	Perl allocates memory for you as you need it by growing its arrays and
 hashes on demand. Autovivification means that if you assign to it, there’ll be room for
 it.

	Perl doesn’t make you declare your variables in advance unless you use strict.

	In Perl, there is a difference between a thing and a
 reference to a thing, so you (usually) have to
 explicitly dereference the latter.

	Not all functions need to be methods in Perl.

	String and numeric literals aren’t usually objects in Perl—but they can be.

	Java programmers looking to define a data structure using a class may be surprised that
 Perl builds these up out of simple data declarations mixing
 anonymous hashes and arrays. See Chapter 9.

	Instance data on a Perl object is (usually) just a value in the hash used
 for the object, where the name of that hash field corresponds to the
 name of instance data in Java.

	Privacy is optional in Perl.

	The function that a method invocation ends up calling is not
 determined until runtime, and any object or class with a method by
 that name is just fine by Perl. Only the interface matters.

	Perl supports operator overloading.

	Perl does not support function overloading by signature. See
 the Class::Multimethod module on CPAN.

	Perl allows multiple inheritance, although this more
 corresponds to multiple interfaces in Java, since Perl classes
 inherit only methods, not data.

	A Java char is not an
 abstract Unicode codepoint; it is a UTF-16 code unit, which means it
 takes two of Java chars, as well
 as special coding, to work outside the Basic Multilingual Plane in
 Java. In contrast, a Perl character is an
 abstract codepoint whose underlying implementation is intentionally
 hidden from the programmer. Perl code automatically works on the
 full range of Unicode—and beyond.

	Unlike in Java, Perl’s string literals can have literal
 newlines in them. It’s still usually better to use a “here”
 document, though.

	Functions typically indicate failure by returning undef, not by raising an exception. Use
 the autodie pragma if you like the other way.

	Perl does not use named parameters; arguments to a program
 show up in each function’s @_
 array. They’re typically given names right away, though. You might
 check out the Methods::Signatures
 module from CPAN if you’d like a more formal way to declare named
 parameters.

	The things Perl refers to as function prototypes work nothing at all like Java’s.

	Perl supports pass by named parameter, allowing optional
 arguments to be omitted and the argument order to be freely
 rearranged.

	Perl’s garbage-collection system is based on reference counting, so it is
 possible to write a destructor to automatically clean up resources
 like open file descriptors, database connections, file locks,
 etc.

	Perl regexes don’t need extra backslashes.

	Perl has regex literals, which the compiler compiles, syntax
 checks at compile time, and stores for efficiency.

	Pattern matches in Perl do not silently impose anchors on your
 patterns the way Java’s match
 method does. Perl’s matching works more like Java’s find method.

	A Perl pattern can have more than one capture group by the same
 name.

	Perl patterns can recurse.

	Java patterns need a special option to make them use Unicode
 casefolding for case-insensitive matches, but Perl patterns use
 Unicode casefolding by default. When doing so, Perl uses full
 casefolding, but Java uses only simple casefolding.

	In Java patterns, classic character classes like \w and \s are by default ASCII-only, and it takes
 a special option to upgrade them to understand Unicode. Perl
 patterns are Unicode-aware by default, so it instead takes a special
 option to downgrade classic character classes (or POSIX classes)
 back to working only on legacy ASCII.

	Java’s JNI corresponds to Perl’s XS, at least in spirit. Perl
 modules often have compiled C/C++ components, but Java’s rarely
 do.

	Not everything needs to be rewritten in Perl; Perl makes it
 easy to call your system’s native programs using backticks, system,
 and pipe opens.

Efficiency

While most of the work of programming may simply be getting your
 program working properly, you may find yourself wanting more bang for the
 buck out of your Perl program. Perl’s rich set of operators, data types,
 and control constructs are not necessarily intuitive when it comes to
 speed and space optimization. Many trade-offs were made during Perl’s
 design, and such decisions are buried in the guts of the code. In general,
 the shorter and simpler your code is, the faster it runs, but there are
 exceptions. This section attempts to help you make it work just a wee bit
 better.
If you want it to work a lot faster, you can play with the Perl
 compiler backend described in Chapter 16, or rewrite your
 inner loop as a C extension (which we don’t cover in this book). However,
 before you do any work, you should profile your program (see Chapter 17) to see whether there’s something simple you can
 adjust first.
Note that optimizing for time may sometimes cost you in space or
 programmer efficiency (indicated by conflicting hints below). Them’s the
 breaks. If programming was easy, they wouldn’t need something as
 complicated as a human being to do it, now would they?

Time Efficiency

	Use hashes instead of linear searches. For example, instead of
 searching through @keywords to
 see whether $_ is a keyword,
 construct a hash with:
my %keywords;
for (@keywords) {
 $keywords{$_}++;
}
Then you can quickly tell if $_ contains a keyword by testing $keyword{$_} for a nonzero value.

	Avoid subscripting when a foreach or list operator will do. Not only
 is subscripting an extra operation, but if your subscript variable
 happens to be in floating point because you did arithmetic, an extra
 conversion from floating point back to integer is necessary. There’s
 often a better way to do it. Consider using foreach, shift, and splice operations. Consider saying
 use integer.

	Avoid goto. It scans
 outward from your current location for the indicated
 label.

	Avoid printf when print will
 do.

	Avoid $& and its two
 buddies, $` and $'. Any occurrence in your program causes
 all matches to save the searched string for possible future
 reference. However, once you’ve blown it, it doesn’t hurt to have
 more of them. Perl v5.10 introduced the per-match variables with the
 /p (see Chapter 5), so you don’t have to either suffer or give
 up features.

	Avoid using eval on a string. An eval of a string (although not of a
 BLOCK) forces recompilation every time
 through. The Perl parser is pretty fast for a parser, but that’s not
 saying much. Nowadays there’s almost always a better way to do what
 you want anyway. In particular, any code that uses eval merely to construct variable names is
 obsolete since you can now do the same using symbolic references
 directly:
no strict "refs";
$name = "variable";
$$name = 7; # Sets $variable to 7
Not that we recommend that, but if you can’t find any other
 way to do it, trying this is slightly less bad than the string
 eval.

	Short-circuit alternation is often faster than the
 corresponding regex. So:
print if /one–hump/ || /two/;
is likely to be faster than:
print if /one–hump|two/;
at least for certain values of one–hump and two. This is because the optimizer likes
 to hoist certain simple matching operations up into higher parts of
 the syntax tree and do very fast matching with a Boyer–Moore
 algorithm. A complicated pattern tends to defeat this.

	Reject common cases early with next
 if. As with simple regular expressions, the optimizer
 likes this. And it just makes sense to avoid unnecessary work. You
 can typically discard comment lines and blank lines even before you
 do a split or chop:
while (<>) {
 next if /^#/;
 next if /^$/;
 chop;
 @piggies = split(/,/);
 ...
 }

	Avoid regular expressions with many quantifiers or with big
 {MIN,MAX} numbers on parenthesized expressions.
 Such patterns can result in exponentially slow backtracking behavior
 unless the quantified subpatterns match on their first “pass”. You
 can also use the (?>...)
 construct to force a subpattern to either match completely or fail
 without backtracking.

	Try to maximize the length of any nonoptional literal strings
 in regular expressions. This is counterintuitive, but longer
 patterns often match faster than shorter patterns. That’s because
 the optimizer looks for constant strings and hands them off to a
 Boyer–Moore search, which benefits from longer strings. Compile your
 pattern with Perl’s –Dr debugging
 switch to see what Dr. Perl thinks the longest literal string
 is.

	Avoid expensive subroutine calls in tight loops. There is overhead
 associated with calling subroutines, especially when you pass
 lengthy parameter lists or return lengthy values. In order of
 increasing desperation, try passing values by reference, passing
 values as dynamically scoped globals, inlining the subroutine, or
 rewriting the whole loop in C. (Better than all of those solutions
 is if you can define the subroutine out of existence by using a
 smarter algorithm.)

	Avoid calling the same subroutine over and over if you know
 that you’ll get the same answer each time. Modules such as Memoize can help with that, or you can construct your own
 cache once you have the answer (and you know it won’t
 change).

	Avoid getc for anything but single-character terminal I/O. In fact,
 don’t use it for that either. Use sysread.

	Avoid frequent substrs on
 long strings, especially if the string contains UTF-8. It’s okay to
 use substr at the front of a
 string. For some tasks you can keep the substr at the
 front by “chewing up” the string as you go with a four-argument
 substr, replacing the part you
 grabbed with "":
while ($buffer) {
 process(substr($buffer, 0, 10, ""));
}

	If you can, use pack and
 unpack instead of multiple
 substr invocations.

	Use substr as an lvalue
 rather than concatenating substrings. For example, to replace the
 fourth through seventh characters of $foo with the contents of the variable
 $bar, don’t do this:
$foo = substr($foo,0,3) . $bar . substr($foo,7);
Instead, simply identify the part of the string to be replaced
 and assign into it, as in:
substr($foo, 3, 4) = $bar;
But be aware that if $foo
 is a huge string and $bar isn’t
 exactly the length of the “hole”, this can do a lot of copying, too.
 Perl tries to minimize that by copying from either the front or the
 back, but there’s only so much it can do if the substr is in the middle.

	Use s/// rather than concatenating substrings. This is especially true
 if you can replace one constant with another of the same size. This
 results in an in-place substitution.

	Use statement modifiers and equivalent and and or operators instead of full-blown
 conditionals. Statement modifiers (like $ring = 0 unless $engaged) and logical
 operators avoid the overhead of entering and leaving a block. They
 can often be more readable, too.

	Use $foo = $a || $b || $c.
 This is much faster (and shorter to say) than:
if ($a) {
 $foo = $a;
}
elsif ($b) {
 $foo = $b;
}
elsif ($c) {
 $foo = $c;
}
Similarly, set default values with:
$pi ||= 3;

	Group together any tests that want the same initial string.
 When testing a string for various prefixes in anything resembling a
 switch structure, put together all the /^a/ patterns, all the /^b/ patterns, and so on.

	Don’t test things you know won’t match. Use last or elsif to avoid falling through to the next
 case in your switch statement.

	Use special operators like study, logical string operations, and
 pack "u" and unpack "%" formats.

	Beware of the tail wagging the dog. Misstatements resembling
 (<STDIN>)[0] can cause Perl
 much unnecessary work. In accordance with Unix philosophy, Perl
 gives you enough rope to hang yourself.

	Factor operations out of loops. The Perl optimizer does not
 attempt to remove invariant code from loops. It expects you to
 exercise some sense.

	Strings can be faster than arrays.

	Arrays can be faster than strings. It all depends on whether
 you’re going to reuse the strings or arrays and which operations
 you’re going to perform. Heavy modification of each element implies
 that arrays will be better, and occasional modification of some
 elements implies that strings will be better. But you just have to
 try it and see.

	my variables are faster
 than local variables.

	Sorting on a manufactured key array may be faster than using a
 fancy sort subroutine. A given array value will usually be compared
 multiple times, so if the sort subroutine has to do much
 recalculation, it’s better to factor out that calculation to a
 separate pass before the actual sort.

	If you’re deleting characters, tr/abc//d is faster than s/[abc]//g.

	print with a comma
 separator may be faster than concatenating strings. For
 example:
print $fullname{$name} . " has a new home directory " .
 $home{$name} . "\n";
has to glue together the two hashes and the two fixed strings
 before passing them to the low-level print routines, whereas:
print $fullname{$name}, " has a new home directory ",
 $home{$name}, "\n";
doesn’t. On the other hand, depending on the values and the
 architecture, the concatenation may be faster. Try it.

	Prefer join("", ...) to a
 series of concatenated strings. Multiple concatenations may cause
 strings to be copied back and forth multiple times. The join operator avoids this.

	split on a fixed string is generally faster than split on a pattern. That is, use split(/ /, ...) rather than split(/ +/, ...) if you know there will
 only be one space. However, the patterns /\s+/, /^/, //, and /
 / are specially optimized, as is the special split on whitespace.

	Preextending an array or string can save some time. As strings and
 arrays grow, Perl extends them by allocating a new copy with some
 room for growth and copying in the old value. Pre-extending a string
 with the x operator or an array
 by setting $#array can prevent
 this occasional overhead and reduce memory fragmentation.

	Don’t undef long strings and arrays if they’ll be reused for the same
 purpose. This helps prevent reallocation when the string or array
 must be reextended.

	Prefer "\0" x 8192 over
 unpack("x8192",()).

	system("mkdir ...") may be
 faster on multiple directories if the mkdir
 syscall isn’t available.

	Avoid using eof if return
 values will already indicate it.

	Cache entries from files (like passwd and group files) that are apt to be reused.
 It’s particularly important to cache entries from the network. For
 example, to cache the return value from gethostbyaddr when you are converting
 numeric addresses (like 204.148.40.9) to names (like “www.oreilly.com”), you can use something
 like:
sub numtoname {
 local ($_) = @_;
 unless (defined $numtoname{$_}) {
 my(@a) = gethostbyaddr(pack("C4", split(/\./)),2);
 $numtoname{$_} = @a > 0 ? $a[0] : $_;
 }
 return $numtoname{$_};
}

	Avoid unnecessary syscalls. Operating system calls tend to be rather
 expensive. So, for example, don’t call the time operator when a cached value of
 $now would do. Use the special
 _ filehandle to avoid unnecessary
 stat(2) calls. On some systems, even a minimal
 syscall may execute a thousand instructions.

	Avoid unnecessary system
 calls. The system function has to fork a subprocess in order to execute
 the program you specify—or worse, execute a shell to execute the
 program. This can easily execute a million instructions.

	Worry about starting subprocesses, but only if they’re
 frequent. Starting a single pwd,
 hostname, or find process
 isn’t going to hurt you much—after all, a shell starts subprocesses
 all day long. We do occasionally encourage the toolbox approach,
 believe it or not.

	Keep track of your working directory yourself rather than
 calling pwd repeatedly. (A standard module is
 provided for this; see Cwd in Chapter 28.)

	Avoid shell metacharacters in commands—pass lists to system and exec where appropriate.

	Set the sticky bit on the Perl interpreter on machines without
 demand paging:
% chmod +t /usr/bin/perl

	Replace system calls with
 nonblocking pipe opens. Read the
 input as it comes in instead of waiting for the entire program to
 complete.

	Use asynchronous event processing (AnyEvent, Coro, POE, Gearman, and so on) to do more than one thing at once. With
 modern machines, you probably have more than one CPU, and those CPUs
 are probably multicore. Some of these events might just sit there
 waiting for a network response, blocking your program from doing
 other things. Some of these can take the place of blocking system
 calls.

Space Efficiency

	Give variables the shortest scope possible so they don’t take up
 space when they aren’t needed.

	Use vec for compact
 integer array storage if the integers are of fixed
 width. (Integers of variable width can be stored in a UTF-8
 string.)

	Prefer numeric values over equivalent string values; they
 require less memory.

	Use substr to store
 constant-length strings in a longer string.

	Use the Tie::SubstrHash module for very compact storage of a hash array if
 the key and value lengths are fixed.

	Use _ _END_ _ and the
 DATA filehandle to avoid storing program data as both a string and an
 array.

	Prefer each to keys where order doesn’t matter.

	Delete or undef globals that are no longer in use.

	Use some kind of DBM to store hashes on disk instead of inside
 the program.

	Use temp files to store arrays.

	Use pipes to offload processing to other tools. They clean up
 their memory use when they exit.

	Avoid list operations and entire file slurps.

	Avoid using tr///. Each
 tr/// expression must store a sizable translation table.

	Don’t unroll your loops or inline your subroutines.

	Use File::Map to read files if you don’t need to modify the data
 (and sometimes even if you do).

	Avoid recursion. Perl doesn’t have tail-call optimization since it’s a
 dynamic language. You should be able to convert those to an
 iterative approach, which is how languages with tail-call optimize
 recursion.

Programmer Efficiency

The half-perfect program that you can run today is better than the fully perfect
 and pure program that you can run next month. Deal with some temporary
 ugliness.[205] Some of these are the antithesis of our advice so
 far.
	Look on CPAN before you write your own code.

	Look on CPAN again. You probably missed the module you need.
 Ask around.

	Use defaults.

	Use funky shortcut command-line switches like –a, –n,
 –p, –s, and –i.

	Use for to mean foreach.

	Run system commands with backticks.

	Use <*> and
 such.

	Use patterns created at runtime.

	Use *, +, and {} liberally in your patterns.

	Process whole arrays and slurp entire files.

	Use getc.

	Use $`, $&, and $'.

	Don’t check error values on open, since <HANDLE> and print HANDLE
 will simply behave as no-ops when given an invalid handle.

	Don’t close your
 files—they’ll be closed on the next open.

	Don’t pass subroutine arguments. Use globals.

	Don’t name your subroutine parameters. You can access them
 directly as $_[EXPR].

	Use whatever you think of first.

	Get someone else to do the work for you by programming half an
 implementation and putting it on Github.

[205] This is also called “technical debt”, but it’s not always a
 bad thing.

Maintainer Efficiency

Code that you (or your friends) are going to use and work on for a long time into the future
 deserves more attention. Substitute some short-term gains for much
 better long-term benefits.
	Don’t use defaults.

	Use foreach to mean
 foreach.

	Use meaningful loop labels with next and last.

	Use meaningful variable names.

	Use meaningful subroutine names.

	Put the important thing first on the line using and, or, and statement modifiers (like exit if $done).

	Close your files as soon as you’re done with them.

	Use packages, modules, and classes to hide your implementation
 details.

	Make a sensible API.

	Pass arguments as subroutine parameters.

	Name your subroutine parameters using my.

	Parenthesize for clarity.

	Put in lots of (useful) comments.

	Include embedded pod documentation.

	use warnings.

	use strict.

	Write tests and get good test coverage (see Chapter 19).

Porter Efficiency

	Wave a handsome tip under his nose.

	Avoid functions that aren’t implemented everywhere. You can
 use eval tests to see what’s
 available.

	Use the Config module or the $^O
 variable to find out what kind of machine you’re running on.

	Put in use v5.xx statements
 in to denote the Perl you need.

	Don’t use new features just to play with shiny things.

	Don’t expect native float and double to pack and unpack on foreign machines.

	Use network byte order (the “n” and “N” formats for pack) when sending binary data over the
 network.

	Don’t send binary data over the network. Send ASCII. Better,
 send UTF-8. Better yet, send money.

	Use standard or common formats, such as JSON or YAML, for
 language- or service-agnostic data exchange.

	Check $] or $^V to see whether the current version
 supports all the features you use.

	Don’t use $] or $^V. Use require or use with a version number.

	Put in the eval exec hack,
 even if you don’t use it, so your program will run on those few
 systems that have Unix-like shells but don’t recognize the #! notation.

	Put the #!/usr/bin/perl
 line in even if you don’t use it.

	Test for variants of Unix commands. Some find programs can’t handle the –xdev switch, for example.

	Avoid variant Unix commands if you can do it internally. Unix
 commands don’t work too well on MS-DOS or VMS.

	Put all your scripts and manpages into a single network
 filesystem that’s mounted on all your machines.

	Publish your module on CPAN. You’ll get lots of feedback if
 it’s not portable.

	Make it easy for people to contribute to your work by using
 public source control, such as Github.

User Efficiency

Making other people’s lives easier is a lot more work than making stuff easy for
 you.
	Instead of making users enter data line by line, pop users
 into their favorite editor.

	Better yet, use a GUI like the Perl /Tk or Wx modules, where users can control the order of
 events.

	Put up something for users to read while you continue doing
 work.

	Use autoloading so that the program
 appears to run faster.

	Give the option of helpful messages at every prompt.

	Give a helpful usage message if users don’t give correct
 input.

	Include extended examples in the documentation, and complete
 example programs in the distribution.

	Display the default action at every prompt, and maybe a few
 alternatives.

	Choose defaults for beginners. Allow experts to change the
 defaults.

	Use single-character input where it makes sense.

	Pattern the interaction after other things the user is
 familiar with.

	Make error messages clear about what needs fixing. Include all
 pertinent information such as filename and error code, like
 this:
open(FILE, $file) || die "$0: Can’t open $file for reading: $!\n";

	Use fork && exit to
 detach from the terminal when the rest of the script is just batch
 processing.

	Allow arguments to come from either the command line or
 standard input.

	Use configuration files with a simple text format. There are
 many modules for this already on CPAN.

	Don’t put arbitrary limitations into your program.

	Prefer variable-length fields over fixed-length fields.

	Use text-oriented network protocols.

	Tell everyone else to use text-oriented network
 protocols!

	Tell everyone else to tell everyone else to use text-oriented
 network protocols!!!

	Be vicariously lazy.

	Be nice.

Programming with Style

You’ll certainly have your own preferences in regard to formatting,
 but there are some general guidelines that will make your programs easier
 to read, understand, and maintain. Larry made some general recommendations
 in perlstyle,
 but they are just recommendations. You might also like Perl
 Best Practices or Modern
 Perl.
The most important thing is to run your programs under strict and warnings pragmas, unless you have a good reason not to. If you need
 to turn them off, use no in the
 smallest scope possible. The sigtrap and even the diagnostics pragmas may also be beneficial.
Regarding aesthetics of code layout, about the only thing Larry
 cares strongly about is that the closing brace of a multiline
 BLOCK should be “outdented” to line up with the
 keyword that started the construct. Beyond that, he has other preferences
 that aren’t so strong. Examples in this book (should) all follow these
 coding conventions:
	Use four-column indents.

	Put an opening brace on the same line as its preceding keyword,
 if possible; otherwise, line them up vertically:
while ($condition) { # for short ones, align with keywords
 # do something
}

if the condition wraps, line up the braces with each other
while ($this_condition and $that_condition
 and $this_other_long_condition)
{
 # do something
}

	Put space before the opening brace of a multiline
 BLOCK.

	A short BLOCK may be put on one line,
 including braces.

	Omit the semicolon in a short, one-line
 BLOCK.

	Surround most operators with space.

	Surround a “complex” subscript (inside brackets) with
 space.

	Put blank lines between chunks of code that do different
 things.

	Put a newline between a closing brace and else.

	Do not put space between a function name and its opening
 parenthesis.

	Do not put space before a semicolon.

	Put space after each comma.

	Break long lines after an operator (but before and and or, even when spelled && and ||).

	Line up corresponding items vertically.

	Omit redundant punctuation so long as clarity doesn’t
 suffer.

Larry has his reasons for each of these things, but he doesn’t claim
 that everyone else’s mind works the same as his does (or doesn’t).
Here are some other, more substantive style issues to think
 about:
	Just because you can do something a
 particular way doesn’t mean you should do it that
 way. Perl is designed to give you several ways to do anything, so
 consider picking the most readable one. For instance:
open(FOO,$foo) || die "Can’t open $foo: $!";
is better than:
die "Can’t open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in
 a modifier. On the other hand:
print "Starting analysis\n" if $verbose;
is better than:
$verbose and print "Starting analysis\n";
since the main point isn’t whether the user typed –v or not.

	Similarly, just because an operator lets you assume default
 arguments doesn’t mean that you have to make use of the defaults. The
 defaults are there for lazy programmers writing one-shot programs. If
 you want your program to be readable, consider supplying the
 argument.

	Along the same lines, just because you can
 omit parentheses in many places doesn’t mean that you ought to:
return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));
When in doubt, parenthesize. At the very least, it will let some
 poor schmuck bounce on the % key in
 vi.
Even if you aren’t in doubt, consider the
 mental welfare of the person who has to maintain the code after you
 and who will probably put parentheses in the wrong place.

	Don’t go through silly contortions to exit a loop at the top or
 the bottom. Perl provides the last
 operator so you can exit in the middle. You can optionally “outdent”
 it to make it more visible:
LINE:
 for (;;) {
 statements;
 last LINE if $foo;
 next LINE if /^#/;
 statements;
 }

	Don’t be afraid to use loop labels—they’re there to enhance
 readability as well as to allow multilevel loop breaks. See the
 example just given.

	Avoid using grep, map, or backticks in void context; that is,
 when you just throw away their return values. Those functions all have
 return values, so use them. Otherwise, use a foreach loop or the system function.

	For portability, when using features that may not be implemented
 on every machine, test the construct in an eval to see whether it fails. If you know
 the version or patch level of a particular feature, you can test
 $] ($PERL_VERSION in the English module) to see
 whether the feature is there. The Config module will also let you interrogate values determined
 by the Configure program when Perl
 was installed.

	Choose mnemonic identifiers. If you can’t remember what mnemonic
 means, you’ve got a problem.

	Although short identifiers like $gotit are probably okay, use underscores to
 separate words. It is generally much easier to read $var_names_like_this than $VarNamesLikeThis, especially for nonnative
 speakers of English. Besides, the same rule works for $VAR_NAMES_LIKE_THIS.
Package names are sometimes an exception to this rule. Perl
 informally reserves lowercase module names for pragmatic modules like
 integer and strict. Other modules should begin with a capital letter and
 use mixed case, but they should probably omit underscores due to
 name-length limitations on certain primitive filesystems.

	You may find it helpful to use letter case to indicate the scope
 or nature of a variable. For example:
$ALL_CAPS_HERE # constants only (beware clashes with Perl vars!)
$Some_Caps_Here # package–wide global/static
$no_caps_here # function scope my() or local() variables
For various vague reasons, function and method names seem to
 work best as all lowercase. For example, $obj–>as_string().
You can use a leading underscore to indicate that a variable or
 function should not be used outside the package that defined it. (Perl
 does not enforce this; it’s just a form of documentation.)

	If you have a really hairy regular expression, use the /x modifier and put in some whitespace to
 make it look a little less like line noise.

	Don’t use slash as a delimiter when your regular expression
 already has too many slashes or backslashes.

	Don’t use quotes as delimiters when your string contains the
 same kind of quote. Use the q//,
 qq//, or qx// pseudofunctions instead.

	Use the and and or operators to avoid having to parenthesize
 list operators so much and to reduce the incidence of punctuational
 operators like && and
 ||. Call your subroutines as if
 they were functions or list operators to avoid excessive ampersands
 and parentheses.

	Use here documents instead of repeated print statements.

	Line up corresponding things vertically, especially if they’re
 too long to fit on one line anyway:
$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir($tmpdir, 0700) || die "can’t mkdir $tmpdir: $!";
chdir($tmpdir) || die "can’t chdir $tmpdir: $!";
mkdir("tmp", 0777) || die "can’t mkdir $tmpdir/tmp: $!";

	That which we tell you three times is true:
Always check the return codes of system calls.
Always check the return codes of system
 calls.
ALWAYS CHECK THE RETURN CODES OF SYSTEM
 CALLS!
Error messages should go to STDERR and should say which program caused
 the problem and what the failed call and its arguments were. Most
 importantly, for failed syscalls, messages should contain the standard
 system error message for what went wrong. Here’s a simple but
 sufficient example:
opendir(D, $dir) || die "Can’t opendir $dir: $!";
Remember to check the return code, always.

	Line up your transliterations when it makes sense:
tr [abc]
 [xyz];

	Think about reusability. Why waste brainpower on a one-shot
 script when you might want to do something like it again? Consider
 generalizing your code. Consider writing a module or object class.
 Consider making your code run cleanly with use strict and –w in effect. Consider giving away your
 code. Consider changing your whole world view. Consider … oh,
 nevermind.

	Use Perl::Tidy to beautify code, and use Perl::Critic to catch possible programming problems.

	Be consistent.

	Be nice.

Fluent Perl

We’ve touched on a few idioms in the preceding sections (not to
 mention the preceding chapters), but there are many other idioms you’ll
 commonly see when you read programs by accomplished Perl programmers. When
 we speak of idiomatic Perl in this context, we don’t just mean a set of
 arbitrary Perl expressions with fossilized meanings. Rather, we mean Perl
 code that shows an understanding of the flow of the language, what you can
 get away with when, and what that buys you. And when to buy it.
We can’t hope to list all the idioms you might see—that would take a
 book as big as this one. Maybe two. (See Perl
 Cookbook, for instance.) But here are some of the
 important idioms, where “important” might be defined as “that which
 induces hissy fits in people who think they already know just how computer
 languages ought to work”.
	Use => in place of a
 comma anywhere you think it improves readability:
return bless $mess => $class;
This reads, “Bless this mess into the specified class.” Just be
 careful not to use it after a word that you don’t want
 autoquoted:
sub foo () { "FOO" }
sub bar () { "BAR" }
print foo => bar; # prints fooBAR, not FOOBAR;
Another good place to use => is near a literal comma that might get
 confused visually:
join(", " => @array);
Perl provides you with more than one way to do things so that
 you can exercise your ability to be creative. Exercise it!

	Use the singular pronoun to increase readability:
for (@lines) {
 $_ .= "\n";
}
The $_ variable is Perl’s
 version of a pronoun, and it essentially means “it”. So the code above
 means “for each line, append a newline to it.”
 Nowadays you might even spell that:
$_ .= "\n" for @lines;
The $_ pronoun is so important to Perl that its use is mandatory in
 grep and map. Here is one way to set up a cache of
 common results of an expensive function:
%cache = map { $_ => expensive($_) } @common_args;
$xval = $cache{$x} || expensive($x);

	Omit the pronoun to increase readability even further.[206]

	Use loop controls with statement modifiers.
while (<>) {
 next if /^=for\s+(index|later)/;
 $chars += length;
 $words += split;
 $lines += y/\n//;
 }
This is a fragment of code we used to do page counts for this
 book. When you’re going to be doing a lot of work with the same
 variable, it’s often more readable to leave out the pronouns entirely,
 contrary to common belief.
The fragment also demonstrates the idiomatic use of next with a statement modifier to short
 circuit a loop.
The $_ variable is always the
 loop-control variable in grep and
 map, but the program’s reference to
 it is often implicit:
@haslen = grep { length } @random;
Here we take a list of random scalars and only pick the ones
 that have a length greater than 0.

	Use for to set the antecedent for a pronoun:
for ($episode) {
 s/fred/barney/g;
 s/wilma/betty/g;
 s/pebbles/bambam/g;
}
So what if there’s only one element in the loop? It’s a
 convenient way to set up “it”―that is, $_. Linguistically, this is known as
 topicalization. It’s not cheating, it’s communicating.

	Implicitly reference the plural pronoun, @_.

	Use control flow operators to set defaults:
sub bark {
 my Dog $spot = shift;
 my $quality = shift || "yapping";
 my $quantity = shift || "nonstop";
 ...
}
Here we’re implicitly using the other Perl pronoun, @_, which means
 “them”. The arguments to a function always come in as “them”. The
 shift operator knows to operate on
 @_ if you omit it, just as the ride
 operator at Disneyland might call out “Next!” without specifying which
 queue is supposed to shift. (There’s no point in specifying because
 there’s only one queue that matters.)
The || can be used to set
 defaults despite its origins as a Boolean operator, since Perl returns
 the first true value. Perl programmers often manifest a cavalier
 attitude toward the truth; the line above would break if, for
 instance, you tried to specify a quantity of 0. But as long as you
 never want to set either $quality
 or $quantity to a false value, the
 idiom works great. There’s no point in getting all superstitious and
 throwing in calls to defined and
 exists all over the place. You just
 have to understand what it’s doing. As long as it won’t accidentally
 be false, you’re fine.
If you think it will accidentally be false, you can use the
 defined-or operator, //, instead:
use v5.10;

sub bark {
 my Dog $spot = shift;
 my $quality = shift // "yapping";
 my $quantity = shift // "nonstop";
 ...
}

	Use assignment forms of operators, including control-flow
 operators:
$xval = $cache{$x} ||= expensive($x);
Here we don’t initialize our cache at all. We just rely on the
 ||= operator to call expensive($x) and assign it to $cache{$x} only if $cache{$x} is false. The result of that is whatever the new
 value of $cache{$x} is. Again, we
 take the cavalier approach toward truth in that if we cache a false
 value, expensive($x) will get called
 again. Maybe the programmer knows that’s okay, because expensive($x) isn’t expensive when it
 returns false. Or maybe the programmer knows that expensive($x) never returns a false value at
 all. Or maybe the programmer is just being sloppy. Sloppiness can be
 construed as a form of creativity.

	Use loop controls as operators, not just as statements.
 And…

	Use commas like small semicolons:
while (<>) {
 $comments++, next if /^#/;
 $blank++, next if /^\s*$/;
 last if /^_ _END_ _/;
 $code++;
}
print "comment = $comments\nblank = $blank\ncode = $code\n";
This shows an understanding that statement modifiers modify
 statements, while next is a mere
 operator. It also shows the comma being idiomatically used to separate
 expressions much like you’d ordinarily use a semicolon. (The
 difference being that the comma keeps the two expressions as part of
 the same statement, under the control of the single statement
 modifier.)

	Use flow control to your advantage:
while (<>) {
 /^#/ and $comments++, next;
 /^\s*$/ and $blank++, next;
 /^_ _END_ _/ and last;
 $code++;
}
print "comment = $comments\nblank = $blank\ncode = $code\n";
Here’s the exact same loop again, only this time with the
 patterns out in front. The perspicacious Perl programmer understands
 that it compiles down to exactly the same internal codes as the
 previous example. The if modifier
 is just a backward and (or &&) conjunction, and the unless modifier is just a backward or (or ||) conjunction.

	Use the implicit loops provided by the –n and –p
 switches.

	Don’t put a semicolon at the end of a one-line block:
#!/usr/bin/perl –n
$comments++, next LINE if /#/;
$blank++, next LINE if /^\s*$/;
last LINE if /^_ _END_ _/;
$code++;

END { print "comment = $comments\nblank = $blank\ncode = $code\n" }
This is essentially the same program as before. We put an
 explicit LINE label on the
 loop-control operators because we felt like it, but we didn’t really
 need to since the implicit LINE
 loop supplied by –n is the
 innermost enclosing loop. We used an END to get the final print statement outside
 the implicit main loop, just as in awk.

	Use here docs when the printing gets ferocious.

	Use a meaningful delimiter on the here doc:
END { print <<"COUNTS" }
comment = $comments
blank = $blank
code = $code
COUNTS
Rather than using multiple prints, the fluent Perl programmer
 uses a multiline string with interpolation. And despite our calling it
 a Common Goof earlier, we’ve brazenly left off the trailing semicolon
 because it’s not necessary at the end of the END block. (If we ever turn it into a
 multiline block, we’ll put the semicolon back in.)

	Do substitutions and translations en passant on a scalar:
($new = $old) =~ s/bad/good/g;
or use the /r
 modifier to return the result instead:
$new = $old =~ s/bad/good/gr;
Since lvalues are lvaluable, so to speak, you’ll often see
 people changing a value “in passing” while it’s being assigned. This
 could actually save a string copy internally (if we ever get around to
 implementing the optimization):
chomp($answer = <STDIN>);
Any function that modifies an argument in place can do the en
 passant trick. But wait, there’s more!

	Don’t limit yourself to changing scalars en passant:
for (@new = @old) { s/bad/good/g }
Here we copy @old into
 @new, changing everything in
 passing (not all at once, of course—the block is executed repeatedly,
 one “it” at a time).

	Pass named parameters using the fancy => comma operator.

	Rely on assignment to a hash to do even/odd argument
 processing:
sub bark {
 my DOG $spot = shift;
 my %parm = @_;
 my $quality = $parm{QUALITY} || "yapping";
 my $quantity = $parm{QUANTITY} || "nonstop";
 ...
}

$fido–>bark(QUANTITY => "once",
 QUALITY => "woof");
Named parameters are often an affordable luxury. And with Perl,
 you get them for free―if you don’t count the cost of the hash
 assignment.

	Repeat Boolean expressions until false.

	Use minimal matching when appropriate.

	Use the /e modifier to
 evaluate a replacement expression:
#!/usr/bin/perl –p
1 while s/^(.*?)(\t+)/$1 . " " x (length($2) * 4 – length($1) % 4)/e;
This program fixes any file you receive from someone who
 mistakenly thinks he can redefine hardware tabs to occupy four spaces
 instead of eight. It makes use of several important idioms. First, the
 1 while idiom is handy when all the
 work you want to do in the loop is actually done by the conditional.
 (Perl is smart enough not to warn you that you’re using 1 in void context.) We have to repeat this
 substitution because each time we substitute some number of spaces in
 for tabs, we have to recalculate the column position of the next tab
 from the beginning.
The (.*?) matches the
 smallest string it can up until the first tab, using the minimal
 matching modifier (the question mark). In this case, we could have
 used an ordinary greedy * like
 this: ([^\t]*). But that only works
 because a tab is a single character, so we can use a negated character
 class to avoid running past the first tab. In general, the minimal
 matcher is much more elegant, and it doesn’t break if the next thing
 that must match happens to be longer than one character.
The /e modifier does a
 substitution using an expression rather than a mere string. This lets
 us do the calculations we need right when we need them.

	Use creative formatting and comments on complex
 substitutions:
#!/usr/bin/perl –p
1 while s{
 ^ # anchor to beginning
 (# start first subgroup
 .*? # match minimal number of characters
) # end first subgroup
 (# start second subgroup
 \t+ # match one or more tabs
) # end second subgroup
}
{
 my $spacelen = length($2) * 4; # account for full tabs
 $spacelen –= length($1) % 4; # account for the uneven tab
 $1 . " " x $spacelen; # make correct number of spaces
}ex;
This is probably overkill, but some people find it more
 impressive than the previous one-liner. Go figure.

	Go ahead and use $` if you
 feel like it:
1 while s/(\t+)/" " x (length($1) * 4 – length($`) % 4)/e;
Here’s the shorter version, which uses $`, which is known to impact performance.
 Except that we’re only using the length of it, so it doesn’t really
 count as bad.

	Use the offsets directly from the @− (@LAST_MATCH_START) and @+ (@LAST_MATCH_END) arrays:
1 while s/\t+/" " x (($+[0] – $−[0]) * 4 – $−[0] % 4)/e;
This one’s even shorter. (If you don’t see any arrays there, try
 looking for array elements instead.) See @− and @+
 in Chapter 25.

	Use eval with a constant
 return value:
sub is_valid_pattern {
 my $pat = shift;
 return eval { "" =~ /$pat/; 1 } || 0;
}
You don’t have to use the eval
 {} operator to return a real value. Here we always return
 1 if it gets to the end. However,
 if the pattern contained in $pat
 blows up, the eval catches it and
 returns undef to the Boolean
 conditional of the || operator,
 which turns it into a defined 0
 (just to be polite, since undef is
 also false but might lead someone to believe that the is_valid_pattern subroutine is misbehaving,
 and we wouldn’t want that, now would we?).

	Use modules to do all the dirty work.

	Use object factories.

	Use callbacks.

	Use stacks to keep track of context.

	Use negative subscripts to access the end of an array or
 string:
use XML::Parser;

$p = XML::Parser–>new(Style => "subs");
setHandlers $p Char => sub { $out[–1] .= $_[1] };

push @out, "";

sub literal {
 $out[–1] .= "C<";
 push @out, "";
}

sub literal_ {
 my $text = pop @out;
 $out[–1] .= $text . ">";
}
...
This is a snippet from the 250-line program we used to translate
 the XML version of the old Camel book back into pod format, so we
 could edit it for this edition with a Real Text Editor before we
 translated it back to DocBook.
The first thing you’ll notice is that we rely on the XML::Parser module (from CPAN) to parse our XML correctly, so we
 don’t have to figure out how. That cuts a few thousand lines out of
 our program right there (presuming we’re reimplementing in Perl
 everything XML::Parser does for
 us,[207] including translation from almost any character set into
 UTF-8).
XML::Parser uses a high-level
 idiom called an object factory. In this case,
 it’s a parser factory. When we create an XML::Parser object, we tell it which style
 of parser interface we want, and it creates one for us. This is an
 excellent way to build a testbed application when you’re not sure
 which kind of interface will turn out to be the best in the long run.
 The subs style is just one of
 XML::Parser’s interfaces. In fact,
 it’s one of the oldest interfaces, and it’s probably not even the most
 popular one these days.
The setHandlers line shows a
 method call on the parser, not in arrow notation, but in “indirect
 object” notation, which lets you omit the parens on the arguments,
 among other things. The line also uses the named parameter idiom we
 saw earlier.
The line also shows another powerful concept, the notion of a
 callback. Instead of us calling the parser to get the next item, we
 tell it to call us. For named XML tags like <literal>, this interface style will
 automatically call a subroutine of that name (or the name with an
 underline on the end for the corresponding end tag). But the data
 between tags doesn’t have a name, so we set up a Char callback with the setHandlers method.
Next we initialize the @out
 array, which is a stack of outputs. We put a null string into it to
 represent that we haven’t collected any text at the current tag
 embedding level (0 initially).
Now is when that callback comes back in. Whenever we see text,
 it automatically gets appended to the final element of the array via
 the $out[–1] idiom in the callback.
 At the outer tag level, $out[–1] is
 the same as $out[0], so $out[0] ends up with our whole output.
 (Eventually. But first we have to deal with tags.)
Suppose we see a <literal> tag. The literal subroutine gets called, appends some
 text to the current output and then pushes a new context onto the
 @out stack. Now any text up until
 the closing tag gets appended to that new end of the stack. When we
 hit the closing tag, we pop the $text we’ve collected back off the @out stack, and append the rest of the
 transmogrified data to the new (that is, the old) end of stack, the
 result of which is to translate the XML string, <literal>text</literal>, into the corresponding pod
 string, C<text>.
The subroutines for the other tags are just the same, only
 different.

	Use my without assignment to
 create an empty array or hash.

	Split the default string on whitespace.

	Assign to lists of variables to collect however many you
 want.

	Use autovivification of undefined references to create
 them.

	Autoincrement undefined array and hash elements to create
 them.

	Use autoincrement of a %seen
 hash to determine uniqueness.

	Assign to a handy my
 temporary in the conditional.

	Use the autoquoting behavior of braces.

	Use an alternate quoting mechanism to interpolate double
 quotes.

	Use the ?: operator to switch
 between two arguments to a printf.

	Line up printf args with
 their % field:
my %seen;
while (<>) {
 my ($a, $b, $c, $d) = split;
 print unless $seen{$a}{$b}{$c}{$d}++;
}
if (my $tmp = $seen{fee}{fie}{foe}{foo}) {
 printf qq(Saw "fee fie foe foo" [sic] %d time%s.\n"),
 $tmp, $tmp == 1 ? "" : "s";
}
These nine lines are just chock full of idioms. The first line
 makes an empty hash because we don’t assign anything to it. We iterate
 over input lines setting “it”―that is, $_―implicitly, then using an argumentless
 split, which splits “it” on
 whitespace. Then we pick off the four first words with a list
 assignment, throwing any subsequent words away. Then we remember the
 first four words in a four-dimensional hash, which automatically
 creates (if necessary) the first three reference elements and final
 count element for the autoincrement to increment. (Under warnings, the autoincrement will never warn that you’re using
 undefined values, because autoincrement is an accepted way to define
 undefined values.) We then print out the line if we’ve never seen a
 line starting with these four words before. This is because the
 autoincrement is a postincrement, which, in addition to incrementing
 the hash value, will return the old true value if there was
 one.
After the loop, we test %seen
 again to see whether a particular combination of four words was seen.
 We make use of the fact that we can put a literal identifier into
 braces and it will be autoquoted. Otherwise, we’d have to say $seen{"fee"}{"fie"}{"foe"}{"foo"}, which is
 a drag―even when you’re not running from a giant.
We assign the result of $seen{fee}{fie}{foe}{foo} to a temporary
 variable even before testing it in the Boolean context provided by the
 if. Because assignment returns its
 left value, we can still test the value to see whether it was true.
 The my tells your eye that it’s a
 new variable, and we’re not testing for equality but doing an
 assignment. It would also work fine without the my, and an expert Perl programmer would
 still immediately notice that we used one = instead of two ==. (A semiskilled Perl programmer might be
 fooled, however. Pascal programmers of any skill level will foam at
 the mouth.)
Moving on to the printf
 statement, you can see the qq()
 form of double quotes we used so that we could interpolate ordinary
 double quotes as well as a newline. We could’ve directly interpolated
 $tmp there as well, since it’s
 effectively a double-quoted string, but we chose to do further
 interpolation via printf. Our
 temporary $tmp variable is now
 quite handy, particularly since we don’t just want to interpolate it,
 but also to test it in the conditional of a ?: operator to see whether we should
 pluralize the word “time”. Finally, note that we lined up the two
 fields with their corresponding %
 markers in the printf format. If an
 argument is too long to fit, you can always go to the next line for
 the next argument, though we didn’t have to in this case.

Whew! Had enough? There are many more idioms we could discuss, but
 this book is already sufficiently heavy. However, we’d like to talk about
 one more idiomatic use of Perl: the writing of program generators.

[206] In this section, multiple bullet items in a row all refer to
 the subsequent example, since some of our examples illustrate more
 than one idiom.

[207] Actually, XML::Parser is
 just a fancy wrapper around James Clark’s expat XML
 parser.

Program Generation

Almost from the time people first figured out that they could write
 programs, they started writing programs that write other programs. We
 often call these program
 generators. (If you’re a history buff, you might know that RPG
 stood for Report Program Generator long before it stood for Role-Playing
 Game.) Nowadays they’d probably be called “program factories”, but the
 generator people got there first, so they got to name it.
Now anyone who has written a program generator knows that it can
 make your eyes go crossed even when you’re wide awake. The problem is
 simply that much of your program’s data looks like real code, but it isn’t
 (at least not yet). The same text file contains both stuff that does
 something and similar-looking stuff that doesn’t. Perl has various
 features that make it easy to mix Perl together with other languages,
 textually speaking.
(Of course, these features also make it easier to write Perl in
 Perl, but that’s rather to be expected by now, we should think.)

Generating Other Languages in Perl

Perl is (among other things) a text-processing language, and most
 computer languages are textual. Beyond that, Perl’s lack of arbitrary
 limits, together with the various quoting and interpolation mechanisms,
 make it easy to visually isolate the code of the other language you’re
 spitting out. For example, here is a small chunk of s2p, the sed-to-perl
 translator:
print &q(<<"EOT");
: #!$bin/perl
: eval 'exec $bin/perl –S \$0 \${1+"\$@"}'
: if \$running_under_some_shell;
:
EOT
Here the enclosed text happens to be legal in two languages, Perl
 and sh. We’ve used an idiom right off
 the bat that will preserve your sanity in the writing of a program
 generator: the trick of putting a “noise” character and a tab on the
 front of every quoted line, which visually isolates the enclosed code,
 so you can tell at a glance that it’s not the code that is actually
 being executed. One variable, $bin,
 is interpolated in the multiline quote in two places, and then the
 string is passed through a function to strip the colon and tab.
Of course, you aren’t required to use multiline quotes. One often
 sees CGI scripts containing millions of print statements, one per line. It seems a bit
 like driving to church in a Formula 1 car, but hey, if it gets you
 there… (We will admit that a column of print statements has its own form of visual
 distinctiveness.)
When you are embedding a large, multiline quote containing some
 other language (such as HTML), it’s often helpful to pretend you’re
 programming inside-out, enclosing Perl into the other language instead,
 much as you might do with overtly everted languages such as PHP:
print <<"XML";
 <stuff>
 <nonsense>
 blah blah blah @{[scalar EXPR]} blah blah blah
 blah blah blah @{[LIST]} blah blah blah
 </nonsense>
 </stuff>
XML
You can use either of those two tricks to interpolate the values
 of arbitrarily complicated expressions into the long string.
Some program generators don’t look much like program generators,
 depending on how much of their work they hide from you. In Chapter 19 we saw how a small Makefile.PL program could be used to write a
 Makefile. The Makefile can easily be 100 times bigger than
 the Makefile.PL that produced it.
 Think how much wear and tear that saves your fingers. Or don’t think
 about it—that’s the point, after all.

Generating Perl in Other Languages

It’s easy to generate other languages in Perl, but the converse is
 also true. Perl can easily be generated in other languages because it’s
 both concise and malleable. You can pick your quotes not to interfere
 with the other language’s quoting mechanisms. You don’t have to worry
 about indentation, or where you put your line breaks, or whether to
 backslash your backslashes Yet Again. You aren’t forced to define a
 package as a single string in advance, since you can slide into your
 package’s namespace repeatedly, whenever you want to evaluate more code
 in that package.
Another thing that makes it easy to write Perl in other languages
 (including Perl) is the #line
 directive. Perl knows how to process these as special directives that
 reconfigure its idea of the current filename and line number. This can
 be useful in error or warning messages, especially for strings processed
 with eval (which, when you think
 about it, is just Perl writing Perl). The syntax for this mechanism is
 the one used by the C preprocessor: when Perl encounters a # symbol and the word line, followed by a number and a filename, it
 sets _ _LINE_ _ to the number and _ _FILE_ _ to the filename.[208]
Here are some examples that you can test by typing into perl directly. We’ve used a Control-D to
 indicate end-of-file, which is typical on Unix. DOS/Windows and VMS
 users can type Control-Z. If your shell uses something else, you’ll have
 to use that to tell perl you’re done.
 Alternatively, you can always type in _ _END_ _ to tell the compiler there’s nothing left to parse.
Here, Perl’s built-in warn
 function prints out the new filename and line number:
% perl
line 2000 "Odyssey"
the "#" on the previous line must be the first char on line
warn "pod bay doors"; # or die
^D
pod bay doors at Odyssey line 2001.
And here, the exception raised by die within the eval found its way into the $@ ($EVAL_ERROR) variable, along with the
 temporary new filename and line:
line 1996 "Odyssey"
eval qq{
#line 2025 "Hal"
 die "pod bay doors";
};
print "Problem with $@";
warn "I'm afraid I can’t do that";
^D
Problem with pod bay doors at Hal line 2025.
I'm afraid I can’t do that at Odyssey line 2001.
This shows how a #line
 directive affects only the current compilation unit (file or eval STRING), and
 that when that unit is done being compiled, the previous settings are
 automatically restored. This way you can set up your own messages inside
 an eval
 STRING or do FILE without
 affecting the rest of your program.
One of the very first Perl preprocessors was the sed-to-perl
 translator, s2p. In fact, Larry
 delayed the initial release of Perl in order to complete s2p and awk-to-perl
 (a2p), because he thought they’d
 improve the acceptance of Perl. Hmm, maybe they did.
See the online docs for more on these, as well as the find2perl translator.

[208] Technically, it matches the pattern /^#\s*line\s+(\d+)\s*(?:\s"([^"]+)")?\s*$/,
 with $1 providing the line number
 for the next line and $2
 providing the optional filename specified within quotes. (A null
 filename leaves _ _FILE_ _
 unchanged.)

Source Filters

If you can write a program to translate random stuff into Perl, then why not
 have a way of invoking that translator from within Perl?
The notion of a source filter started with the idea that a script
 or module should be able to decrypt itself on the fly, like this:
#!/usr/bin/perl
use MyDecryptFilter;
@*x$]`0uN&k^Zx02jZ^X{.?s!(f;9Q/^A^@~~8H]|,%@^P:q–=
...
But the idea grew from there, and now a source filter can be
 defined to do any transformation on the input text you like. Put that
 together with the notion of the –x
 switch mentioned in Chapter 17, and you have a general
 mechanism for pulling any chunk of program out of a message and
 executing it, regardless of whether it’s written in Perl.
Using the Filter module from CPAN, one can now even do things like
 programming Perl in awk:
#!/usr/bin/perl
use Filter::exec "a2p"; # the awk–to–perl translator
1,30 { print $1 }
Now that’s definitely what you might call idiomatic. But we won’t
 pretend for a moment that it’s common practice.

Chapter 22. Portable Perl

A world with only one operating system makes portability easy and life boring.
 We prefer a larger genetic pool of operating systems, as long as the
 ecosystem doesn’t divide too cleanly into predators and prey. Perl runs
 on dozens of operating systems, and because Perl programs aren’t
 platform dependent, the same program can run on all of those systems
 without modification.
Well, almost. Perl tries to give the programmer as many features
 as possible, but if you make use of features particular to a certain
 operating system, you’ll necessarily reduce the portability of your
 program to other systems. In this section we’ll provide some guidelines
 for writing portable Perl code. Once you make a decision about how
 portable you want to be, you’ll know where the lines are drawn, and you
 can stay within them.
Looking at it another way, writing portable code is usually about
 willfully limiting your available choices. Naturally, it takes
 discipline and sacrifice to do that, two traits that Perl programmers
 might be unaccustomed to.
The perlport
 manpage lists the platforms that Perl no longer supports, such as Mac OS
 9 (Classic) and Windows 95, 98, ME, and NT4. Not only are they
 unsupported, but the code that formerly supported them has disappeared
 from the codebase. So, depending on your Perl, you may not have to
 support those anymore. Supported systems with deviations or special cases get their own manpage, as listed in Table 22-1.
Table 22-1. System-specific manpages
	Manpage	 	 	
	
 perlaix

 	
 perlfreebsd

 	
 perlnetware

 	
 perlsymbian

	
 perlamiga

 	
 perlhaiku

 	
 perlopenbsd

 	
 perltru64

	
 perlbeos

 	
 perlhpux

 	
 perlos2

 	
 perluts

	
 perlbs2000

 	
 perlhurd

 	
 perlos390

 	
 perlvmesa

	
 perlce

 	
 perlirix

 	
 perlos400

 	
 perlvms

	
 perlcygwin

 	
 perllinux

 	
 perlplan9

 	
 perlvos

	
 perldgux

 	
 perlmacos

 	
 perlqnx

 	
 perlwin32

	
 perldos

 	
 perlmacosx

 	
 perlriscos

 	
	
 perlepoc

 	
 perlmpeix

 	
 perlsolaris

 	

Not all Perl programs have to be portable. There is no reason not to
 use Perl to glue Unix tools together, prototype a Macintosh application,
 or manage the Windows registry. If it makes sense to sacrifice
 portability, go ahead.[209] In general, note that the notions of a user ID, a “home”
 directory, and even the state of being logged in will exist only on
 multiuser platforms.[210]
The special $^O variable
 tells you what operating system your Perl was built on.
 This is provided to speed up code that would otherwise have to load
 Config to get the same information via $Config{osname}. Even if you’ve pulled in
 Config for other reasons, it still
 saves you the price of a tied-hash lookup. You can also use the Devel::AssertOS or Devel::CheckOS CPAN modules for fancier control.
To get more detailed information about the platform, you can look
 at the rest of the information in the %Config hash, which is made available by the
 standard Config module. For example,
 to check whether the platform has the lstat call, you can check $Config{d_lstat}. See Config’s online documentation for a full
 description of available variables, and see the perlport
 manpage for a listing of the behavior of Perl built-in functions on
 different platforms. Here are the Perl functions whose behavior varies the most across platforms
 (see perlport
 for more details):
–X
 (file tests), accept, alarm, bind, binmode, chmod, chown, chroot, connect, crypt, dbmclose, dbmopen, dump, endgrent, endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, fileno, flock, fork, getgrent, getgrgid, getgrnam, gethostbyaddr, gethostbyname, gethostent, getlogin, getnetbyaddr, getnetbyname, getnetent, getpeername, getpgrp, getppid, getpriority, getprotobyname, getprotobynumber, getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent, getservbyname, getsockname, getsockopt, glob, ioctl, kill, link,
 listen, lstat, msgctl, msgget, msgrcv, msgsnd, open, pipe,
 qx, readlink, readpipe, recv, select, semctl, semget, semop, send, sethostent, setgrent, setnetent, setpgrp, setpriority, setprotoent, setpwent, setservent, setsockopt, shmctl, shmget, shmread, shmwrite, shutdown, socket, socketpair, stat, symlink, syscall, sysopen, system, times, truncate, umask, utime, wait, waitpid

[209] Not every conversation has to be cross-culturally correct.
 Perl tries to give you at least one way to do the Right Thing, but
 it doesn’t try to force it on you rigidly. In this respect, Perl
 more closely resembles your mother tongue than a nanny’s
 tongue.

[210] Although a “user” is a bit of an odd concept now, because even
 a system designed for one person might have many “users”.

Newlines

On most operating systems, lines in files are terminated by one
 or two characters that signal the end of the line. The characters vary
 from system to system. Unix traditionally uses \012 (that is, the octal 12 character in
 ASCII), one type of DOSish I/O uses \015\012, and the pre-Unix Macs used to use
 \015. Perl uses \n to represent a “logical” newline,
 regardless of platform. In DOSish Perls, \n usually means \012, but when accessing a file in “text
 mode”, it is translated to (or from) \015\012, depending on whether you’re
 reading or writing. Unix does the same thing on terminals in canonical
 mode. \015\012 is commonly referred
 to as CRLF.
Because DOS distinguishes between text files and binary files,
 DOSish Perls have limitations when using seek and tell on a file in “text mode”. For best
 results, only seek to locations
 obtained from tell. If you use
 Perl’s built-in binmode function on
 the filehandle, however, you can usually seek and tell with impunity.
A common misconception in socket programming is that \n will be \012 everywhere. In many common Internet
 protocols, \012 and \015 are specified, and the values of Perl’s
 \n and \r are not reliable since they vary from
 system to system:
print SOCKET "Hi there, client!\015\012"; # right
print SOCKET "Hi there, client!\r\n"; # wrong
However, using \015\012 (or
 \cM\cJ, or \x0D\x0A) can be tedious and unsightly, as
 well as confusing to those maintaining the code. The Socket module supplies some Right Things for those who want
 them:
use Socket qw(:DEFAULT :crlf);
print SOCKET "Hi there, client!$CRLF" # right
When reading from a socket, remember that the default input
 record separator $/ is \n, which means you have to do some extra
 work if you’re not sure what you’ll be seeing across the socket.
 Robust socket code should recognize either \012 or \015\012 as end of line:
use Socket qw(:DEFAULT :crlf);
local ($/) = LF; # not needed if $/ is already \012

while (<SOCKET>) {
 s/$CR?$LF/\n/; # replace LF or CRLF with logical newline
}
Similarly, code that returns text data—such as a subroutine that
 fetches a web page—should often translate newlines. A single line of
 code will often suffice:
$data =~ s/\015?\012/\n/g;
return $data;

Endianness and Number Width

Computers store integers and floating-point numbers in different orders
 (big-endian
 or little-endian) and
 different widths (32-bit and 64-bit being the most common today).
 Normally, you won’t have to think about this. But if your program
 sends binary data across a network connection, or onto disk to be read
 by a different computer, you may need to take precautions.
Conflicting orders can make an utter mess out of numbers. If a
 little-endian host (such as an Intel CPU) stores 0x12345678
 (305,419,896 in decimal), a big-endian host (such as a Motorola CPU)
 will read it as 0x78563412 (2,018,915,346 in decimal). To avoid this
 problem in network (socket) connections, use the pack and unpack formats n and N,
 which write unsigned short and long numbers in big-endian order (also
 called “network” order), regardless of the platform.
You can explore the endianness of your platform by unpacking a
 data structure packed in native format, such as:
say unpack("h*", pack("s2", 1, 2));
'10002000' on e.g. Intel x86 or Alpha 21064 in little–endian mode
'00100020' on e.g. Motorola 68040
To determine your endianness, you could use either of these
 statements:
$is_big_endian = unpack("h*", pack("s", 1)) =~ /01/;
$is_little_endian = unpack("h*", pack("s", 1)) =~ /^1/;
Even if two systems have the same endianness, there can still be
 problems when transferring data between 32-bit and 64-bit platforms.
 There is no good solution other than to avoid transferring or storing
 raw binary numbers. Either transfer and store numbers as text instead
 of binary, or use modules like Data::Dumper or Storable to do this for you. You really want to be using
 text-oriented protocols in any event—they’re more robust, more
 maintainable, and more extensible than binary protocols.
Of course, with the advent of XML and Unicode, our definition of
 text is getting more flexible. For instance, between two systems
 running Perl v5.6 or newer, you can transport a sequence of integers
 encoded as characters in utf8
 (Perl’s version of UTF-8). If both ends are running on an architecture
 with 64-bit integers, you can exchange 64-bit integers. Otherwise,
 you’re limited to 32-bit integers. Use pack with a U* template to send, and unpack with a U* template to receive (see Chapter 26).

Files and Filesystems

File path components are separated with /
 on Unix, with \ on Windows, and
 with : on the old pre-Unix Macs.
 Some systems support neither hard links (link) nor symbolic links (symlink, readlink, lstat). Some systems pay attention to
 capitalization of filenames, some don’t, and some pay attention when
 creating files but not when reading them. Different systems use
 different character repertoires.
Here are some tips for writing portable file-manipulating Perl
 programs:
	The File::Basename module, another platform-tolerant module bundled
 with Perl, splits a pathname into its components: the base
 filename, the full path to the directory, and the file
 suffix:
use File::Basename;

my $name = basename($ARGV[0]);
my $dir = dirname($ARGV[0]);

my($base, $dir, $suffix) = fileparse($ARGV[0], qr/\.[^.]+\z/);

	The standard File::Spec modules provide functions to move around a file
 system and put path components together properly. Don’t hardcode
 paths, but construct them:
use File::Spec::Functions;
chdir(updir()); # go up one directory
$file = catfile(curdir(), "temp", "file.txt");
That last line reads in ./temp/file.txt on Unix and Windows or
 [.temp]file.txt on VMS, and
 stores the file’s contents in $file.

	The File::HomeDir module from CPAN locates special user directories
 by detecting your operating system and constructing the right
 paths for you.

	Use the Path::Class CPAN module for an object-oriented interface to
 File::Spec that easily allows
 reading a path from one sort of system and translating it to an
 equivalent path for another system.

	Use the File::Temp module, which comes with Perl, to create a
 temporary file or a file with a name so far unused.

	Don’t use two files of the same name with different case,
 like test.pl and Test.pl, since some platforms ignore
 capitalization. Some ignore it, but preserve it anyway.

	Constrain filenames to the 8.3 convention (eight-letter
 names and three-letter extensions) where possible. You can often
 get away with longer filenames as long as you make sure the
 filenames will remain unique when shoved through an 8.3-sized hole
 in the wall. (Hey, it’s gotta be easier than shoving a camel
 through the eye of a needle.)

	Minimize nonalphanumeric characters in filenames. Using
 underscores is often okay, but it wastes a character that could be
 better used for uniqueness on 8.3 systems. (Remember, that’s why
 we don’t usually put underscores into module names.)

	Normalize your filenames or avoid using non-ASCII
 characters. Support for Unicode filenames varies among systems,
 and no common API works across all systems. Some characters may
 work on some systems but fail completely on others.

	Likewise, when using the AutoSplit module, try to constrain your subroutine names to
 eight characters or less, and don’t give two subroutines the same
 name with different case. If you need longer subroutine names,
 make the first eight characters of each unique.

	Always use <
 explicitly to open a file for reading; otherwise, on systems that
 allow punctuation in filenames, a file prefixed with a > character could result in a file
 being wiped out, and a file prefixed with a | character could result in a pipe
 open. That’s because the
 two-argument form of open is
 magical and will interpret characters like >, <, and |, which may be the wrong thing to do.
 (Except when it’s right.)
open(FILE, $existing_file) || die $!; # wrongish
open(FILE, "<$existing_file") || die $!; # righter
open(FILE, "<", $existing_file) || die $!; # righterer

	Choose your input and output encoding, and document what it
 is. Better yet, give people a way to choose the encodings they
 want. If you don’t know what you want, use UTF-8. Avoid UTF-16,
 which may have endian issues.

	Don’t assume text files will end with a newline. They
 should, but sometimes people forget, especially when their text
 editor helps them forget.

System Interaction

Platforms that rely on a graphical user interface sometimes lack command lines,
 so programs requiring a command-line interface might not work
 everywhere. You can’t do much about this except upgrade.
Some other tips:
	Some platforms can’t delete or rename files that are in use,
 so remember to close files when
 you are done with them. Don’t unlink or rename an open file. Don’t tie or open a file already tied or opened;
 untie or close it first.

	Don’t open the same file more than once at a time for
 writing, since some operating systems put mandatory locks on such
 files.

	Don’t depend on a specific environment variable existing in
 %ENV, and don’t assume that
 anything in %ENV will be
 case-sensitive or case-preserving. Don’t assume Unix inheritance
 semantics for environment variables; on some systems, they may be
 visible to all other processes.

	Don’t use signals or %SIG.

	Avoid filename globbing. Use opendir, readdir, and closedir instead. (As of v5.6, basic
 filename globbing is much more portable than it was, but some
 systems may still chafe under the Unixisms of the default
 interface if you try to get fancy.)

	Don’t assume specific values of the error numbers or strings
 stored in $!.

Interprocess Communication (IPC)

To maximize portability, don’t try to launch new processes. That means you should avoid
 system, exec, fork, pipe, ``,
 qx//, or open with a |.
The main problem is not the operators themselves; commands that
 launch external processes are generally supported on most platforms
 (though some do not support any type of forking). Problems are more
 likely to arise when you invoke external programs that have names,
 locations, output, or argument semantics that vary across
 platforms.
One especially popular bit of Perl code is opening a pipe to
 sendmail so that your programs can
 send mail:
open(MAIL, "|/usr/lib/sendmail –t") || die "cannot fork sendmail: $!";
This won’t work on platforms without sendmail. For a portable solution, use one
 of the CPAN modules to send your mail, such as Mail::Mailer and Mail::Send in the MailTools distribution, or Mail::Sendmail.
The Unix System V IPC functions (msg*(), sem*(), shm*()) are not always
 available, even on some Unix platforms.
The IPC::Run, IPC::System::Simple, and Capture::Tiny CPAN
 modules can help manage some cross-platform issues with external
 commands.

External Subroutines (XS)

XS code can usually be made to work with any platform, but libraries
 and header files might not be readily available, or the XS code itself
 might be platform specific. If the libraries and headers are portable,
 then it’s a reasonable guess that the XS code can be made portable as
 well.
A different type of portability issue arises when writing XS
 code: the availability of a C compiler on the end user’s platform. C
 brings with it its own portability issues, and writing XS code will
 expose you to some of those. Writing in pure Perl is an easier way to
 achieve portability, because Perl’s configuration process goes through
 extreme agonies to hide C’s portability blemishes from you.[211]

[211] Some people on the margins of society run Perl’s Configure script as a cheap form of
 entertainment. People have even been known to stage “Configure
 races” between competing systems and wager large sums on them.
 This practice is now outlawed in most of the civilized
 world.

Standard Modules

In general, the standard modules (modules bundled with Perl) work on all
 platforms. Notable exceptions are the CPAN.pm module (which currently makes connections to external
 programs that may not be available), platform-specific modules (such
 as ExtUtils::MM_VMS), and DBM modules.
There is no single DBM module available on all platforms.
 SDBM_File and the others are generally available on all Unix and
 DOSish ports.
The good news is that at least one DBM module should be
 available, and AnyDBM_File will use whichever module it can find. With such
 uncertainty, you should use only the features common to all DBM
 implementations. For instance, keep your records to no more than 1K
 bytes. See the AnyDBM_File module
 documentation for more details.
A bit fancier than DBMs is SQLite, which comes with the DBD::SQLite driver for DBI. It’s a minimal and embeddable relational database
 that’s in the public domain (so you can distribute it with your code).
 It runs on the common operating systems.

Dates and Times

Where possible, use the ISO-8601 standard
 (“YYYY-MM-DD”)
 to represent dates. Strings like “1987–12–18” can be easily converted into a
 system-specific value with a module like Date::Parse. A list of time and date values (such as that returned
 by the built-in localtime function)
 can be converted to a system-specific representation using Time::Local.
The built-in time function
 will always return the number of seconds since the
 beginning of the “epoch”, but operating systems differ in their
 opinions of when that was. On many systems, the epoch began on January
 1, 1970, at 00:00:00 UTC, but on VMS it began on November 17, 1858, at
 00:00:00. So for portable times you may want to calculate an offset
 for the epoch:
require Time::Local;
$offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);
The value for $offset in Unix
 and Windows will always be 0, but
 on other systems it may be some large number. $offset can then be added to a Unix time
 value to get what should be the same value on any system.
A system’s representation of the time of day and the calendar
 date can be controlled in widely different ways. Don’t assume the time
 zone is stored in $ENV{TZ}. Even if
 it is, don’t assume that you can control the time zone through that
 variable.
If you need exceedingly precise date and time control, get the
 DateTime module from CPAN.

Internationalization

Don’t assume anything about the encoding or the environment. You and
 everyone you know might use the same setup, but once you distribute
 your work you’re likely to find a world of differences.
Use Unicode inside your program. Do any translation to and from
 other character sets at your interfaces to the outside world. See
 Chapter 6.
Outside the world of Unicode, you should assume little about
 character sets and nothing about the ord values of characters. Do not assume that
 the alphabetic characters have sequential ord values. The lowercase letters may come
 before or after the uppercase letters; the lowercase and uppercase may
 be interlaced so that both a and
 A come before b; the accented and other international
 characters may be interlaced so that ä comes before b.
Even within Unicode, most of those warnings hold. There are many
 sequences of alphabetic characters in the same sequence whose
 codepoint order has nothing to do with their alphabetic order.
If your program is to operate on a POSIX system (a rather large
 assumption), consult the perllocale
 manpage for more information about POSIX locales. Locales affect
 character sets and encodings, and date and time formatting, among
 other things. Proper use of locales will make your program a little
 bit more portable, or at least more convenient and native-friendly for
 non-English users. But be aware that locales and Unicode don’t mix
 well yet.

Style

When it is necessary to have platform-specific code, consider
 keeping it in one place to ease porting to other platforms. Use the
 Config module and the special variable $^O to differentiate between
 platforms.
Be careful in the tests you supply with your module or programs.
 A module’s code may be fully portable, but its tests may well not be.
 This often happens when tests spawn other processes or call external
 programs to aid in the testing, or when (as noted above) the tests
 assume certain things about the filesystem and paths. Be careful not
 to depend on a specific output style for errors, even when checking
 $! for “standard” errors after a
 syscall. Use the Errno module instead.
Remember that good style transcends both time and culture, so
 for maximum portability you must seek to understand the universal
 amidst the exigencies of your existence. The coolest people are not
 prisoners of the latest cool fad; they don’t have to be, because they
 are not worried about being “in” with respect to their own culture,
 programmatically or otherwise. Fashion is a variable, but style is a
 constant. 

Chapter 23. Plain Old Documentation

One of the principles underlying Perl’s design is that simple things
 should be simple, and hard things should be possible. Documentation should
 be simple.
Perl supports a simple text markup format called pod that can stand on its own or be freely
 intermixed with your source code to create embedded documentation. Pod can
 be converted to many other formats for printing or viewing, or you can just
 read it directly, because it’s plain.
Pod is not as expressive as languages like XML,
 [image:], troff(1), or even
 HTML. This is intentional: we sacrificed that expressiveness for simplicity
 and convenience. Some text markup languages make authors write more markup
 than text, which makes writing harder than it has to be and reading next to
 impossible. A good format, like a good movie score, stays in the background
 without causing distraction.
Getting programmers to write documentation is almost as hard as
 getting them to wear ties. Pod was designed to be so easy to write that even
 a programmer could do it—and would. We don’t claim that pod is sufficient
 for writing a book, although it was sufficient for writing this one.

Pod in a Nutshell

Most document formats require the entire document to be in that format.
 Pod is more forgiving: you can embed pod in any sort of file, relying
 on pod translators to extract the pod.
 Some files consist entirely of 100% pure pod. But other files, notably
 Perl programs and modules, may contain dollops of pod sprinkled about
 wherever the author feels like it. Perl simply skips over the pod text
 when parsing the file for execution.
The Perl lexer knows to begin skipping when, at a spot where it
 would ordinarily find a statement, it instead encounters a line beginning
 with an equals sign and an identifier, like this:
=head1 Here There Be Pods!
That text, along with all remaining text up through and including a
 line beginning with =cut, will be
 ignored. This allows you to intermix your source code and your
 documentation freely, as in:
=item snazzle

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut

sub snazzle {
 my $arg = shift;

}

=item razzle

The razzle() function enables autodidactic epistemology generation.

=cut

sub razzle {
 print "Epistemology generation unimplemented on this platform.\n";
}
For more examples, look at any standard or CPAN Perl module. They’re
 all supposed to come with pod, and nearly all do, except for the ones that
 don’t.
Since pod is recognized by the Perl lexer and thrown out, you may
 also use an appropriate pod directive to quickly comment out an
 arbitrarily large section of code. Use a =for pod block to comment out one paragraph, or
 a =begin/=end pair for a larger section. We’ll cover the
 syntax of those pod directives later. Remember, though, that in both cases
 you’re still in pod mode afterwards, so you need to =cut back to the compiler:
print "got 1\n";

=for commentary
This paragraph alone is ignored by anyone except the
mythical "commentary" translator. When it's over, you're
still in pod mode, not program mode.
print "got 2\n";

=cut

ok, real program again
print "got 3\n";

=begin comment

print "got 4\n";

all of this stuff
here will be ignored
by everyone

print "got 5\n";

=end comment

=cut

print "got 6\n";
This will print out that it got 1, 3, and
 6. Remember that these pod directives
 can’t go just anywhere. You have to put them only where the parser is
 expecting to see a new statement, not just in the middle of an expression
 or at other arbitrary locations.
From the viewpoint of Perl, all pod markup is thrown out. But from
 the viewpoint of pod translators, it’s the code that is thrown out. Pod
 translators view the remaining text as a sequence of paragraphs separated
 by blank lines.
There are three kinds of paragraphs: verbatim paragraphs, command
 paragraphs, and prose paragraphs.

Verbatim Paragraphs

Verbatim paragraphs are used for literal text that you want to appear as is,
 such as snippets of code. A verbatim paragraph must be indented; that
 is, it must begin with a space or tab character. The translator should
 reproduce it exactly, typically in a monospace font, with tabs assumed
 to be on eight-column boundaries. There are no special formatting
 escapes, so you can’t play font games to italicize or embolden. A
 < character means a literal
 <, and nothing else.

Command Paragraphs

All pod directives start with = followed
 by an identifier. This may be followed by any amount of
 arbitrary text that the directive can use however it pleases. The only
 syntactic requirement is that the text must all be one paragraph.
 Currently recognized directives (sometimes called pod
 commands) are:
	=encoding
	By default, the Pod translators assume that your Pod source is
 either ASCII or Latin-1. You can change this by specifying the
 encoding with this command, probably to UTF-8:
=encoding uft8

	=head1
	

	=head2
	The =head1, =head2,… directives produce headings at the level specified. The rest of
 the text in the paragraph is treated as the heading description.
 These are similar to the .SH
 and .SS section and subsection
 headers in man(7), or to <H1>…</H1> and <H2>…</H2> tags in HTML. In fact,
 that’s exactly what those translators convert these directives
 into for those formats.

	=cut
	The =cut directive
 indicates the end of a stretch of pod. (There might
 be more pod later in the document, but if so it will be introduced
 with another pod directive.)

	=pod
	The =pod directive
 does nothing beyond telling the compiler to lay off
 parsing code through the next =cut. It’s useful for adding another
 paragraph to the document if you’re mixing up code and pod a
 lot.

	=over
 NUMBER
	

	=item
 SYMBOL
	

	=back
	The =over directive
 starts a section specifically for the generation of
 a list using the =item
 directive. At the end of your list, use =back to end it. The
 NUMBER, if provided, hints to the
 formatter how many spaces to indent. Some formatters aren’t rich
 enough to respect the hint, while others are
 too rich to respect it, insofar as it’s
 difficult when working with proportional fonts to make anything
 line up merely by counting spaces. (However, four spaces is
 generally construed as enough room for bullets or numbers.)
The actual type of the list is indicated by the
 SYMBOL on the individual items. Here is
 a bulleted list:
=over 4

=item *

Mithril armor

=item *

Elven cloak

=back
And a numbered list:
=over 4

=item 1.

First, speak "friend".

=item 2.

Second, enter Moria.

=back
And a named list:
=over 4

=item armor()

Description of the armor() function

=item chant()

Description of the chant() function

=back
You may nest lists of the same or different types, but some
 basic rules apply: don’t use =item outside an =over/=back block; use at least one =item inside an =over/=back block; and, perhaps most
 importantly, keep the type of the items consistent within a given
 list. Use =item * for each item
 to produce a bulleted list; =item
 1., =item 2., and so
 on to produce a numbered list; or use =item foo, =item bar, and so on to produce a named
 list. If you start with bullets or numbers, stick with them, since
 formatters are allowed to use the first =item type to decide how to format the
 list.
As with everything in pod, the result is only as good as the
 translator. Some translators pay attention to the particular
 numbers (or letters, or Roman numerals) following the =item, and others don’t. The current
 pod2html translator, for
 instance, is quite cavalier: it strips out the sequence indicators
 entirely without looking at them to infer what sequence you’re
 using, then wraps the entire list inside and tags so that the browser can
 display it as an ordered list in HTML. This is not to be construed
 a feature; it may be fixed eventually.

	=for
 TRANSLATOR
	

	=begin
 TRANSLATOR
	

	=end
 TRANSLATOR
	=for, =begin, and =end let you include special sections to be passed through
 unaltered, but only to particular formatters. Formatters that
 recognize their own names, or aliases for their names, in
 TRANSLATOR pay attention to that
 directive; any others completely ignore them. The directive
 =for specifies that just the
 rest of this paragraph is destined for a
 particular translator:
=for html
<p> This is a<flash>raw</flash> <small>HTML</small> paragraph </p>
The paired =begin and
 =end directives work similarly
 to =for, but instead of
 accepting only a single paragraph, they treat all text between
 matched =begin and =end as destined for a particular
 translator. Some examples:
=begin html

Figure 1.

=end html

=begin text

 –––––––––––––––
 | foo |
 | bar |
 –––––––––––––––

^^^^ Figure 1. ^^^^

=end text
Values of TRANSLATOR commonly
 accepted by formatters include roff, man, troff, nroff, tbl, eqn, latex, tex, html, and text. Some formatters will accept some
 of these as synonyms. No translator accepts comment—that’s just the customary word
 for something to be ignored by everybody. Any unrecognized word
 would serve the same purpose. While writing this book, we often
 left notes for ourselves under the directive =for later.[212]
Note that =begin and
 =end do nest, but only in the
 sense that the outermost matched set causes everything in the
 middle to be treated as nonpod, even if it happens to contain
 other =word directives. That is, as
 soon as any translator sees =begin
 foo, it will either ignore or process
 everything down to the corresponding =end
 foo.

[212] We actually created our own pod translator to convert
 our pod source to DocBook using a custom subclass of Pod::PseudoPod.

Flowed Text

The third type of paragraph is simply “flowed” text. That is, if a paragraph
 doesn’t start with either whitespace or an equals sign, it’s taken as a
 plain paragraph: regular text that’s typed in with as few frills as
 possible. Newlines are treated as equivalent to spaces. It’s largely up
 to the translator to make it look nice, because programmers have more
 important things to do. It is assumed that translators will apply
 certain common heuristics—see the section Pod Translators and Modules
 later in this chapter.
You can do some things explicitly, however. Inside either ordinary
 paragraphs or heading/item directives (but not in verbatim paragraphs)
 you may use special sequences to adjust the formatting. These sequences
 always start with a single capital letter followed by a left-angle
 bracket, and extend through the matching (not necessarily the next)
 right-angle bracket. Sequences may contain other sequences.
Here are the sequences defined by pod:
	I<text>
	Italicized text, used for emphasis, book titles, names of ships, and
 manpage references such as
 “perlpod(1)”.

	B<text>
	Emboldened text, used almost exclusively for command-line switches
 and sometimes for names of programs.

	C<text>
	Literal code, probably in a fixed-width font like Courier. Not
 needed on simple items that the translator should be able to infer
 as code, but you should put it anyway.

	S<text>
	Text with nonbreaking spaces. Often surrounds other
 sequences.

	L<name>
	A cross reference (link) to a name:
	L<name>
	Manual page

	L<name/ident>
	Item in manual page

	L<name/"sec">
	Section in other manual page

	L</"sec">
	Ditto

These next five are the same as those above, but the output
 will be only text, with the link
 information hidden as in HTML:
	L<text|name>
	

	L<text|name/ident>
	

	L<text|name/"sec">
	

	L<text|"sec">
	

	L<text|/"sec">
	

The text cannot contain the
 characters “/” and “|”, and it should contain matched
 “<” or “>”.

	F<pathname>
	Used for filenames. This is traditionally the same as
 I.

	X<entry>
	An index entry of some sort. As always, it’s up to the
 translator what to do. The pod specification doesn’t dictate
 that.

	E<escape>
	A named character, similar to HTML escapes:
	E<lt>
	A literal <
 (optional except in other interior sequences and when
 preceded by a capital letter)

	E<gt>
	A literal >
 (optional except in other interior sequences)

	E<sol>
	A literal / (needed
 in L<> only)

	E<verbar>
	A literal | (needed
 in L<> only)

	E<NNN>
	

	E<0xXXXXXX>
	Character number (i.e.,
 codepoint) NNN or 0xXXXXXX
 in Unicode

	E<entity>
	Some nonnumeric HTML entity, such as E<Agrave>

	Z<>
	A zero-width character. This is nice for putting in front of
 sequences that might confuse something. For example, if you had a
 line in regular prose that had to start with an equals, you could
 write that as:
Z<>=can you see
or for something with a “From” in it, so the mailer doesn’t
 add a greater than:
Z<>From here on out...

Most of the time, you will need but a single set of angle brackets
 to delimit a pod sequence. Sometimes, however, you will want to put a
 < or > inside a sequence. (This is particularly
 common when using a C<>
 sequence to provide a monospace font for a snippet of code.) As with all
 things in Perl, there is more than one way to do it. One way is to
 simply represent the closing bracket with an E<ENTITY>
 sequence:
C<$a E<lt>=E<gt> $b>
This produces “$a <=>
 $b”.
A more readable, and perhaps more “plain”, way is to use an
 alternate set of delimiters that doesn’t require the angle brackets to
 be escaped. Doubled angle brackets (C<<
 stuff >>) may be used,
 provided there is whitespace immediately following the opening delimiter
 and immediately preceding the closing one. For example, the following
 will work:
C<< $a <=> $b >>
You may use as many repeated angle brackets as you like as long as
 you have the same number of them on both sides. Also, you must make sure
 that whitespace immediately follows the last < of the left side and immediately precedes
 the first > of the right side. So
 the following will also work:
C<<< $a <=> $b >>>
C<<<< $a <=> $b >>>>
All these end up spitting out $a
 <=> $b in a monospace font.
The extra whitespace inside on either end goes away, so you should
 leave whitespace on the outside if you want it. Also, the two inside
 chunks of extra whitespace don’t overlap, so if the first thing being
 quoted is >>, it isn’t taken as
 the closing delimiter:
The C<< >> >> right shift operator.
This produces: “The >>
 right shift operator.”
Note that pod sequences do nest. That means
 you can write “The I<Santa
 MarE<iacute>a> left port already” to produce “The
 Santa María left port already”, or “B<touch> S<B<–t> I<time>>
 I<file>” to produce “touch -t
 time
 file”, and expect this to work properly.

Pod Translators and Modules

Perl is bundled with several pod translators that convert pod documents (or the embedded
 pod in other types of documents) into various formats. All should be 8-bit
 clean.
	pod2text
	Converts pod into text. Normally, this text will be 7-bit ASCII, but it
 will be 8-bit if it had 8-bit input, or specifically ISO-8859-1 (or
 Unicode) if you use sequences like LE<uacute>thien for
 Lúthien or EE<auml>rendil for
 Eärendil.
If you have a file with pod in it, the easiest (although
 perhaps not the prettiest) way to view just the formatted pod would
 be:
% pod2text File.pm | more
Then again, pod is supposed to be human readable without
 formatting.

	pod2man
	Converts pod into Unix manpage format suitable for viewing
 through nroff(1) or creating typeset copies via
 troff(1). For example:
% pod2man File.pm | nroff –man | more
or:
% pod2man File.pm | troff -man -Tps -t > tmppage.ps
% ghostview tmppage.ps
and to print:
% lpr –Ppostscript tmppage.ps

	pod2html
	Converts pod into HTML for use with your favorite viewer (maybe
 that’s lynx):
% pod2html --infile=File.pm --outfile-tmppage.html
% lynx tmppage.html

	pod2latex
	Converts pod into the [image:] format, which you can then typeset with that
 tool.

Additional translators for other formats are available on
 CPAN.
You should write your pod as close to plain text as you possibly
 can, with as few explicit markups as you can get away with. It is up to
 the individual translator to decide how things in your text should be
 represented. That means letting the translator figure out how to create
 paired quotes, how to fill and adjust text, how to find a smaller font for
 words in all capitals, etc. Since these were written to process Perl
 documentation, most translators[213] should also recognize unadorned items like these and render
 them appropriately:
	FILEHANDLE

	$scalar

	@array

	function()

	manpage(3r)

	somebody@someplace.com

	http://foo.com/

Perl also comes with several standard modules for parsing and
 converting pod, including Pod::Checker (and the associated podchecker utility) for
 checking the syntax of pod documents, Pod::Find for finding pod documents in directory trees, and Pod::Simple for creating your own pod utilities. Inside a CPAN
 distribution, you can use the Test::Pod module to check the format of your documentation and the
 Test::Pod::Coverage module to check that all of the interface is
 documented.
Note that pod translators should only look at paragraphs beginning
 with a pod directive (this makes parsing easier), whereas the compiler
 actually knows to look for pod escapes, even in the middle of a paragraph.
 This means that the following secret stuff will be ignored by both the
 compiler and the translators.
$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";
You probably shouldn’t rely upon the warn being podded out forever. Not all pod
 translators are well behaved in this regard, and the compiler may someday
 become pickier.

[213] If you’re designing a general-purpose pod translator, not one
 for Perl code, your criteria may vary.

Writing Your Own Pod Tools

Pod was designed first and foremost to be easy to write. As an added
 benefit, pod’s simplicity also lends itself to writing simple tools for
 processing pod. If you’re looking for pod directives, just set your input
 record separator to paragraph mode (perhaps with the –00 switch), and only pay attention to
 paragraphs that look poddish.
For example, here’s a simple olpod program to produce a pod outline:
#!/usr/bin/perl –l00n
olpod – outline pod
next unless /^=head/;
s/^=head(\d)\s+/ " " x ($1 * 4 – 4)/e;
print $_, "\n";
If you run that on the current chapter of this book, you’ll get
 something like this:
Plain Old Documentation
 Pod in a Nutshell
 Verbatim Paragraphs
 Command Paragraphs
 Flowed Text
 Pod Translators and Modules
 Writing Your Own Pod Tools
 Pod Pitfalls
 Documenting Your Perl Programs
That pod outliner didn’t really pay attention to whether it was in a
 valid pod block or not. Since pod and nonpod can intermingle in the same
 file, running general-purpose tools to search or analyze the whole file
 doesn’t always make sense. But that’s no problem given how easy it is to
 write tools for pod. Here’s a tool that is aware of
 the difference between pod and nonpod, and produces only the pod:
#!/usr/bin/perl –00
catpod – cat out just the pods
while (<>) {
 if (! $inpod) { $inpod = /^=/ }
 if ($inpod) { $inpod = !/^=cut/; print }
} continue {
 if (eof) { close ARGV; $inpod = "" }
}
You could use that program on another Perl program or module, then
 pipe the output along to another tool. For example, if you have the
 wc(1) program[214] to count lines, words, and characters, you could feed it
 catpod output to consider only pod in
 its counting:
% catpod MyModule.pm | wc
There are plenty of places where pod allows you to write primitive
 tools trivially using plain, straightforward Perl. Now that you have
 catpod to use as a component, here’s another tool to show just the
 indented code:
#!/usr/bin/perl –n00
podlit – print the indented literal blocks from pod input
print if /^\s/;
What would you do with that? Well, you might want to do perl –wc checks on the code in the document, for
 one thing. Or maybe you want a flavor of
 grep(1)[215] that only looks at the code examples:
% catpod MyModule.pm | podlit | grep funcname
This tool-and-filter philosophy of interchangeable (and separately
 testable) parts is a sublimely simple and powerful approach to designing
 reusable software components. It’s a form of laziness to just put together
 a minimal solution that gets the job done today—for certain kinds of jobs,
 at least.
For other tasks, though, this can even be counterproductive.
 Sometimes it’s more work to write a tool from scratch, sometimes less. For
 those we showed you earlier, Perl’s native text-processing prowess makes
 it expedient to use brute force. But not everything works that way. As you
 play with pod, you might notice that although its directives are simple to
 parse, its sequences can get a little dicey. Although some, um, subcorrect
 translators don’t accommodate this, sequences can nest within other
 sequences and can have variable-length delimiters.
Instead of coding up all that parsing code on your own, laziness
 looks for another solution. The standard Pod::Simple module fits that bill. It’s especially useful for
 complicated tasks, like those that require real parsing of the internal
 bits of the paragraphs, conversion into alternative output formats, and so
 on. It’s easier to use the module for complicated cases because the amount
 of code you end up writing is smaller. It’s also better because the tricky
 parsing is already worked out for you. It’s really the same principle as
 using catpod in a pipeline.
The Pod::Simple module takes an
 interesting approach to its job. It’s an object-oriented module of a
 different flavor than most you’ve seen in this book. Its primary goal
 isn’t so much to provide objects for direct manipulation as it is to
 provide a base class upon which other classes can be built.
You create your own class and inherit from Pod::Simple (or one of its interfaces), which
 provides all the methods to parse the pod. Your subclass overrides the
 appropriate methods to turn the things the parser finds into the output
 you want. You only have to override the parts that you want to change. You
 probably want to start with a translator that is close to what you want.
 Here’s a short subclass of Pod::Simple::Text that finds instances of the Perl documentation in L<> and makes endnotes for each link. You
 have to know about the innards of the base class, a violation of
 encapsulation, which we are merely demonstrating instead of
 endorsing:
use v5.14;

package Local::MyText 0.01 {
 use parent "Pod::Simple::Text";
 use Data::Dumper;
 my @links;

 sub links {
 $_[0]–>{""._ _PACKAGE_ _}{links} //= [];
 }

 sub start_L {
 my($self, $link) = @_;
 push $self–>links, $link–>{to}[2];
 }

 sub end_L {
 my($self) = @_;
 my $count = @{$self–>links};
 $self–>{Thispara} .= "[" . $count . "]";
 }

 sub end_Document {
 my($self) = shift;
 while (my($index, $text) = each $self–>links) {
 $self–>{Thispara} .=
 "$index http://perldoc.perl.org/$text.html\n";
 }
 $self–>emit_par;
 }
}

1;
You could write your own version of pod2text that loads a
 file and invokes your subclass, but perldoc will load an alternate formatting class
 with the –M switch:
% perldoc –MLocal::MyText some_pod.pod
For this pod:
=pod

If you want to read about the Perl pod specification, see
the LZ<><perlpod> or LZ<><perlpodspec> documentation.

=cut
you get this output:
If you want to read about the Perl pod specification, see the
perlpod[1] or perlpodspec[2] documentation.

0 http://perldoc.perl.org/perlpod.html
1 http://perldoc.perl.org/perlpodspec.html
That example merely changes how the formatter interprets the pod
 specification. Here’s another example that overrides the handling of the
 verbatim paragraphs to reformat them with Perl::Tidy:
use v5.14;

package Local::MyTidy 0.01 {
 use parent "Pod::Simple::Text";
 use Perl::Tidy;

 sub end_Verbatim {
 my($self) = @_;
 Perl::Tidy::perltidy(
 source => \ $self–>{Thispara},
 destination => \ my $out,
 argv => [qw/–gnu/],
);
 $self–>{Thispara} = $out =~ s/^/ /gmr;
 say { $self–>{output_fh} } "", $self–>{Thispara};
 return;
 }

}

1;
This formatter turns poorly formatted code like this:
=encoding utf8

=pod

This is a regular paragraph.

#!/usr/bin/perl
use v5.14;
for (@ARGV){
 state $count = 0;
 say $count++, " ", $_;
}

This is another regular paragraph.

=cut
into something like this:[216]
This is a regular paragraph

#!/usr/bin/perl
use v5.14;
for (@ARGV) {
 state $count = 0;
 say $count++, " ", $_;
}

This is another regular paragraph
You may want to define new pod things. For instance, if you want to
 define a new command, it’s easy to do that even if it takes a little
 fiddling. You have to tell the
 parser that your new command is valid. In this example, a new
 V<> command translates its text
 into a list of codepoints. Instead of seeing é, you
 might see (U+00E9). It does this by
 setting a flag when it enters the V<> so it knows to do something different
 in handle_text:
use v5.14;
package Local::MyCodePoint 0.01 {
 use parent "Pod::Simple::Text";
 use Data::Dumper;

 sub new {
 my $self = shift;
 my $new = $self–>SUPER::new;
 $new–>accept_codes("V");
 return $new;
 }
 sub handle_text {
 my($self, $text) = @_;
 $self–>{Thispara} .=
 $self–>{""._ _PACKAGE_ _}{in_V}
 ? $self–>make_codepoints($text)
 : $text;
 }
 sub make_codepoints {
 $_[1] =~ s/(.)/ sprintf "(U+%04X)", ord($1) /ger;
 }
 sub start_V {
 my($self, $text) = @_;
 $self–>{""._ _PACKAGE_ _}{in_V} = 1;
 }
 sub end_V {
 my($self, $text) = @_;
 $self–>{""._ _PACKAGE_ _}{in_V} = 0;
 }
}

1;
With this new command, this pod:
=encoding utf8

=pod

V<À> la recherche du temps perdu

=cut
turns into this text:
(U+00C0) la recherche du temps perdu

[214] And if you don’t, get the Perl Power Tools
 version from CPAN.

[215] And if you don’t have grep, see previous
 footnote.

[216] The Perl::Tidy module accepts
 many different options, so you can adjust the knobs and dials to
 choose any style decisions you like.

Pod Pitfalls

Pod is fairly straightforward, but it’s still possible to flub a few
 things that can confuse some translators:
	It’s really easy to leave out the trailing angle bracket.

	It’s really easy to leave out the trailing =back directive.

	It’s easy to accidentally put a blank line into the middle of a
 long =for
 comment directive. Consider using
 =begin/=end instead.

	If you mistype one of the tags on a =begin/=end pair, it’ll eat the rest of your file
 (podwise). Consider using =for
 instead.

	Pod translators require paragraphs to be separated by completely
 empty lines―that is, by two or more consecutive newline (\n) characters. If you have a line with
 spaces or tabs on it, it will not be treated as a blank line. This can
 cause two or more paragraphs to be treated as one.

	The meaning of a “link” is not defined by pod, and it’s up to
 each translator to decide what to do with it. (If you’re starting to
 get the idea that most decisions have been deferred to the
 translators, not pod, you’re right.) Translators will often add
 wording around a L<> link, so
 that “L<foo(1)>” becomes “the
 foo(1) manpage”, for example. So you shouldn’t
 write things like “the L<foo>
 manpage” if you want the translated document to read
 sensibly; that would end up saying “the the
 foo(1) manpage manpage”.
If you need total control of the text used for a link, use the
 form L<show this text|foo>
 instead.

The standard podchecker program
 checks pod syntax for errors and warnings. For example, it checks for
 unknown pod sequences and for seemingly blank lines containing whitespace.
 It is still advisable to pass your document through two or more different
 pod translators and proofread the results. Some of the problems you find
 may be idiosyncrasies of the particular translators, which you may or may
 not wish to work around. Here’s a bit of pod with some problems:
=encoding utf8

=pod

This is a D<para>.

=item * This is an item

=cut
Using podchecker catches two
 errors and gives you a warning about the whitespace you can’t see in the
 blank line:
% podchecker broken.pod
*** ERROR: Unknown interior–sequence 'D' at line 5 in file broken.pod
*** ERROR: =item without previous =over at line 7 in file broken.pod
*** WARNING: line containing nothing but whitespace in paragraph at line 8
in file broken.pod
broken.pod has 2 pod syntax errors.
And, as always, Everything is Subject To Change at the Whim of the
 Random Hacker.

Documenting Your Perl Programs

We hope you document your code whether or not you’re a Random Hacker. If
 you do, you may wish to include the following sections in your pod:
	=head1 NAME
	The name of your program or module.

	=head1 SYNOPSIS
	A summary of the module’s use.

	=head1 DESCRIPTION
	The bulk of your documentation. (Bulk is good in this
 context.)

	=head1 AUTHOR
	Who you are. (Or an alias, if you are ashamed of your
 program.)

	=head1 BUGS
	What you did wrong (and why it wasn’t really your
 fault).

	=head1 SEE ALSO
	Where people can find related information (so they can work
 around your bugs).

	=head1 COPYRIGHT
	The copyright statement. If you wish to assert an explicit
 copyright, you should say something like:
Copyright 2013, Randy Waterhouse. All Rights Reserved.
Many modules also add:
This program is free software. You may copy or
redistribute it under the same terms as Perl itself.

One caveat: if you’re going to put your pod at the end of the file,
 and you’re using an _ _END_ _ or _ _DATA_ _ token, make sure to put an empty line before the first pod
 directive:
_ _END_ _

=head1 NAME

Modern – I am the very model of a modern major module
Without the empty line before the =head1, the pod translators will ignore the
 start of your (extensive, accurate, cultured) documentation.

Chapter 24. Perl Culture

This book is a part of Perl culture, so we can’t hope to put everything we know about
 Perl culture in here. We can only whet your appetite with a little
 history, a little art—some would say “very little art”―and some
 highlights from the Perl community. For a much larger dose of Perl
 culture, see http://www.perl.org. Or just get
 acquainted with some other Perl programmers. We can’t tell you what sort
 of people they’ll be—about the only personality trait Perl programmers
 have in common is that they’re all pathologically helpful.

History Made Practical

In order to understand why Perl is defined the way it is (or isn’t),
 one must first understand why Perl even exists. So let’s drag out the
 old dusty history book…
Way back in 1986, Larry was a systems programmer on a project
 developing multilevel-secure wide area networks. He was in charge of
 an installation consisting of three VAXen and three Suns on the West
 Coast, connected over an encrypted, 1200-baud serial line to a similar
 configuration on the East Coast. Since Larry’s primary job was support
 (he wasn’t a programmer on the project, just the system guru), he was
 able to exploit his three virtues (Laziness,
 Impatience, and Hubris) to develop and enhance all sorts
 of useful tools—such as rn,
 patch, and warp.[217] One day, after Larry had just finished ripping rn to shreds, leaving it in pieces on the
 floor of his directory, the great Manager came to him and said,
 “Larry, we need a configuration management and control system for all
 six VAXen and all six Suns. We need it in a month. Go to it!”
So, Larry―never being one to shirk work―asked himself what was
 the best way to have a bicoastal CM system, without writing it from
 scratch, that would allow viewing of problem reports on both coasts,
 with approvals and control. The answer came to him in one word:
 B-news.[218] Larry went off and installed news on these machines and
 added two control commands: an “append” command to append to an
 existing article, and a “synchronize” command to keep the article
 numbers the same on both coasts. CM would be done using RCS (Revision
 Control System), and approvals and submissions would be done using
 news and rn. Fine so far.
Then the great Manager asked him to produce reports. News was
 maintained in separate files on a master machine, with lots of
 cross-references between files. Larry’s first thought was, “Let’s use
 awk.” Unfortunately, the awk of that day couldn’t handle opening and
 closing of multiple files based on information in the files. Larry
 didn’t want to have to code a special-purpose tool. As a result, a new
 language was born.
This new tool wasn’t originally called Perl. Larry bandied about
 a number of names with his officemates and cohorts (Dan Faigin, who wrote this history, and Mark
 Biggar, his brother-in-law, who also helped greatly with the
 initial design). Larry actually considered and rejected every three-
 or four-letter word in the dictionary. One of the earliest names was
 “Gloria”, after his sweetheart (and wife). He soon decided that this
 would cause too much domestic confusion.
The name then became “Pearl”, which mutated into our present-day
 “Perl”, partly because Larry saw a reference to another language
 called PEARL, but mostly because he’s too lazy to type five letters
 all the time. And, of course, so that Perl could be used as a
 four-letter word. (You’ll note, however, the vestiges of the former
 spelling in the acronym’s gloss: “Practical Extraction
 And Report Language”.[219])
This early Perl lacked many of the features of today’s Perl.
 Pattern matching and filehandles were there, scalars were there, and
 formats were there, but there were very few functions, no associative
 arrays, and only a crippled implementation of regular expressions,
 borrowed from rn. The manpage was
 only 15 pages long. But Perl was faster than sed and awk, and it began to be used on other
 applications on the project.
But Larry was needed elsewhere. Another great Manager came over
 one day and said, “Larry, support R&D.” And Larry said, okay. He
 took Perl with him and discovered that it was turning into a good tool
 for system administration. He borrowed Henry Spencer’s beautiful regular expression package and
 butchered it into something Henry would prefer not to think about
 during dinner. Then Larry added most of the goodies he wanted, as well
 as a few goodies other people wanted. He released it on the
 network.[220] The rest, as they say, is history.[221] Which goes something like this: Perl 1.0 was released on
 December 18, 1987; some people still take Perl’s Birthday seriously.
 Perl 2.0 follows in June 1988, and Randal Schwartz created the legendary “Just Another Perl Hacker” (JAPH) signature. In 1989, Tom
 Christiansen presented the first public Perl tutorial at the
 Baltimore Usenix. With Perl 3.0 in October 1989, the language was
 released and distributed for the first time under the terms of the GNU
 Public License.
In March 1990, Larry wrote the first Perl Poem (see the
 following section). Then he and Randal wrote the first edition of this
 book, The Pink Camel; it was published in early 1991.[222] Perl 4.0 was released simultaneously; it included an
 Artistic License as well as the GPL. After Perl 4, Larry conceived a
 new and improved Perl; in 1994, the Perl 5 Porters, or just p5p, was
 established to port perl to almost
 every system it could get its hands on. This group, fluid in
 membership, is still responsible for Perl’s development and
 support.
The unveiling of the much anticipated Perl 5 occurred in October
 1994. A complete rewrite of Perl, it included objects and modules. The
 advent of Perl 5 even merited coverage by The
 Economist.[223] In 1995, CPAN was officially introduced to the Perl
 community. Jon Orwant began publishing The Perl Journal
 in 1996. After a long gestation, the second edition of this book, The
 Blue Camel, appeared that fall. In 1997, a group of notable Perl
 hackers founded The Perl Institute to organize advocacy and support
 for Perl.
The first O’Reilly Perl Conference (TPC) was held in San Jose,
 California, in the summer of 1997. During this conference, a group of
 New Yorkers formed the first Perl users group, which they called
 /New York Perl
 M((o|u)ngers|aniacs)*/, although that was a bit unwieldy, so
 it turned into NY.pm, setting the pattern for most future Perl user
 group names. That turned into Perl mongers the
 next year when that same group helped people start their own user
 groups. Perl mongers took over for The Perl Institute.
In 1999, Kevin Lenzo organized Yet Another Perl Conference
 (YAPC) at Carnegie Mellon in Pittsburgh. The tech conferences
 were mostly held on the West Coast of the United States, close to
 Silicon Valley. That wasn’t convenient for the East Coasters. This is
 the same year that Chris Nandor wrote a Perl script to submit 25,000 All-Star votes for
 Boston Red Sox shortstop Nomar Garciaparra,[224] earning him mentions in many All-Star stories for
 several years after that, and what some people believe motivated a
 single episode subplot in the TV show Sports
 Night.[225]
The next year, the London Perl mongers organized YAPC::EU
 (although that wasn’t the first European Perl event; the first German
 Perl Workshop predated even The Perl Conference). Those conferences
 were so successful that they turned into the Yet Another Foundation
 (also known as The Perl Foundation) in the U.S. and the YAPC Europe
 Foundation in Europe. Soon there were YAPCs in Asia and South America,
 too, although the different conferences really only share the name.
 Now it’s tough to find a week where there isn’t a Perl event
 somewhere, which makes for a very close-knit community of people who
 mostly work apart from one another but get together often.
The Perl Conference expanded into other subjects. It turned into
 The Open Source Conference, or just OSCON, where Larry
 regularly gives his “State of the Onion” address and Damian Conway
 wows audiences with “The Conway Channel”. At the 2000 edition of
 OSCON, Larry announced Perl 6―decidedly not the subject of this
 book―as an ambitious project to start from scratch. For this book,
 we’ll just say that Perl 6 is a lot of fun, it revitalized Perl 5
 development, and it only shares a name with the Perl we’re writing
 about here. It’s really a completely different language, stealing from
 Perl just like Perl stole from other languages.
For more Perl history, at least up to 2002, check out the Perl Timeline on CPAST, the Comprehensive Perl
 Arcana Society Tapestry (http://history.perl.org).

[217] It was at about this time that Larry latched onto the
 phrase feeping
 creaturism in a desperate attempt to justify on the
 basis of biological necessity his overwhelming urge to add “just
 one more feature”. After all, if Life Is Simply Too Complicated,
 why not programs, too? Especially programs like rn that really ought to be treated as
 advanced Artificial Intelligence projects so that they can read
 your news for you. Of course, some people say that the patch program is already
 too smart.

[218] That is, the second implementation of Usenet transport
 software.

[219] This is sometimes called a backronym since the name came
 first and the expansion later.

[220] More astonishingly, he kept on releasing it as he went to
 work at Jet Propulsion Lab, then at NetLabs and Seagate, and then
 at O’Reilly & Associates (a small company that publishes
 pamphlets about computers and stuff, now called O’Reilly
 Media).

[221] And this, so to speak, is a footnote to history. When Perl
 was started, rn had just been
 ripped to pieces in anticipation of a major rewrite. Since he
 started work on Perl, Larry hasn’t touched rn. It is still in pieces. Occasionally,
 Larry threatens to rewrite rn
 in Perl (but never seriously).

[222] Its title was Programming perl, with
 an all-lowercase “perl”.

[223] “Unlike lots of other freely available software, Perl is
 useful, and it works.”—“Electric metre”, The
 Economist, July 1, 1995.

[224] “Cyber-stuffing remains threat to All-Star voting,” ESPN.com.

[225] In the “Louise Revisited” episode, which aired on October
 26, 1999, Jeremy used a Perl script to stuff the ballot box for
 Casey, one of the anchors.

Perl Poetry

Perl assumes that any bareword it runs into will eventually be the name of a defined
 subroutine, even if you haven’t defined it yet. This is sometimes
 called “Perl poetry mode”. This allows people to write poetry in Perl,
 such as this monstrosity:
BEFOREHAND: close door, each window & exit; wait until time.
 open spellbook, study, read (scan, select, tell us);
write it, print the hex while each watches,
 reverse its length, write again;
 kill spiders, pop them, chop, split, kill them.
 unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn the "goats" & kill the "sheep");
 kill them, dump qualms, shift moralities,
 values aside, each one;
 die sheep! die to reverse the system
 you accept (reject, respect);
next step,
 kill the next sacrifice, each sacrifice,
 wait, redo ritual until "all the spirits are pleased";
 do it ("as they say").
do it(*everyone***must***participate***in***forbidden**s*e*x*).
return last victim; package body;
 exit crypt (time, times & "half a time") & close it,
 select (quickly) & warn your next victim;
AFTERWORDS: tell nobody.
 wait, wait until time;
 wait until next year, next decade;
 sleep, sleep, die yourself,
 die at last
Larry wrote this poem and sent it to
 news.groups to support his request for the
 creation of a comp.lang.perl.poems group. Most
 people probably noticed that it was April 1, but that didn’t deter
 people from writing more Perl poetry.
Sharon Hopkins wrote quite a few Perl poems, as well as a paper on
 Perl poetry that she presented at the Usenix Winter 1992 Technical
 Conference, entitled “Camels and Needles: Computer Poetry Meets the
 Perl Programming Language”. Besides being the most prolific Perl poet,
 Sharon is also the most widely published, having had the following
 poem published in both The
 Economist and The
 Guardian:
#!/usr/bin/perl

APPEAL:

listen (please, please);

open yourself, wide;
 join (you, me),
connect (us,together),

tell me.

do something if distressed;

 @dawn, dance;
 @evening, sing;
 read (books,$poems,stories) until peaceful;
 study if able;

 write me if–you–please;

sort your feelings, reset goals, seek (friends, family, anyone);

 do*not*die (like this)
 if sin abounds;

keys (hidden), open (locks, doors), tell secrets;
do not, I–beg–you, close them, yet.

 accept (yourself, changes),
 bind (grief, despair);

require truth, goodness if–you–will, each moment;

select (always), length(of–days)

listen (a perl poem)
Sharon Hopkins
rev. June 19, 1995

Virtues of the Perl Programmer

	Laziness
	Laziness
 sounds like the vice of the same name, but there’s a
 difference. The vice is about the avoidance of immediate work.
 The virtue is about the avoidance of future work. Programmers
 with the power of Perl at their fingertips create the tools that
 make the same tasks easier the more they are done. Perl is a
 great language of automating tasks, and the more it automates
 today, the less work programmers do manually later.

	Impatience
	Impatience is
 that nasty feeling you get when the computer is
 doing what it wants instead of what you want. Or, more
 correctly, when the programmer on the other side of the software
 chose the wrong default settings, made a poor GUI, or doesn’t
 give you access to this data. You’ve experienced it enough to
 not inflict the same pain on other programmers, turning your
 frustration with your wasted time into a benefit for other
 people.

	Hubris
	Hubris is the
 sense that, with the right tools, you can do just
 about anything. It’s all a Simple Matter of Programming, right?
 It’s also the thing that’s likely to make you fly too close to
 the Sun.

Events

Almost every week of the year has some Perl event. Here are some of the main
 ones. Most are listed in The Perl Review
 Community Calendar (http://theperlreview.com/community_calendar).
	The Perl Conference, OSCON
	O’Reilly & Associates’ The Perl Conference in 1997 wasn’t the first Perl
 event, but it might have been the most important, historically.
 At this event, a small group of New Yorkers formed the first
 Perl users group, NY.pm.
 This led to the creation of several other Perl mongers groups
 that year; within a couple of years, there were hundreds of
 groups. The Perl Conference expanded to become The Open Source
 Conference, or just OSCON.

	YAPC
	YAPC, or Yet Another Perl Conference, comes in many forms and
 is on at least four continents. Every year, one of these low
 cost, grass roots, mostly noncommercial conferences is held in
 Asia, Europe, North America, and South America. Although they
 share the same name, each is organized by a different
 group.

	Perl Workshops
	Whereas YAPC runs over several days, a Perl workshop is
 usually a one- or two-day event dedicated to a particular
 subject, such as the Perl QA Workshop, which focuses on issues
 of CPAN infrastructure and Perl testing. Not many people know
 that the German Perl Workshop was the first organized Perl
 event, even before there were Perl mongers or The Perl
 Conference.

	Hackathons
	The least structured of all Perl events are hackathons,
 where Perl people assemble to do work in the same place.
 Sometimes the hackathon focuses on a particular topic, and
 sometimes it’s just a bunch of people working on their own
 projects in the same room.

Getting Help

Perl people are some of the most helpful people around, and even the
 people who don’t like Perl tend to realize that. We think Perl’s roots
 in so many different kinds of languages attract the sort of people who
 like different kinds of languages rather than just the one they know.
 Perhaps they find a little good in everything.
If you need to find help, there are many people waiting to help
 you in almost any Internet-type discussion thingy that exists. Here
 are several notable ones:
	
 http://perldoc.perl.org

	All of the Perl documentation is online, so you never have
 to live without it―despite what your platform and packaging
 system think. Yes, some vendors give you perl with no manuals.

	
 Learn Perl

	This website is your starting point for many of the
 beginner resources available, including many that we list
 here.

	Perl beginners mailing list
	Casey West started this mailing list as a safe place for
 absolute beginners to ask the most basic questions in a safe
 environment. Other fora may be much more, well, unregulated, and
 a bit more discouraging for the new Perl programmer.

	
 Perlmonks

	Perlmonks is a web bulletin board dedicated to Perl. It’s not
 specifically a help desk, but if you’ve done your homework and
 ask a good question, you’re likely to get top-notch help very
 quickly. You might want to read “brian’s Guide to
 Solving Any Perl Problem” first.[226]

	
 Stackoverflow

	Stackoverflow is a question-and-answer site for general programming.
 Even though it is not dedicated to Perl, there are several Perl
 experts who frequent the site and answer questions.

	Your local Perl mongers group
	There are hundreds of Perl mongers groups across the
 world. Although each has its particular flavor, it’s a good way
 for you to find and interact with Perl users near you (or not so
 near you). Many of these groups put on workshops and other
 events. Find the mongers nearest you at http://www.pm.org, and if you don’t find one,
 start one!

	Usenet newsgroups
	The Perl newsgroups are a great, if sometimes cluttered,
 source of information about Perl. Your first stop might be
 news:comp.lang.perl.moderated, a
 moderated, low-traffic newsgroup that includes announcements and
 technical discussion. Because of the moderation, the newsgroup
 is quite readable.
The high-traffic news:comp.lang.perl.misc group discusses
 everything from technical issues to Perl philosophy to Perl
 games and Perl poetry. Like Perl itself, news:comp.lang.perl.misc is meant to be useful,
 and no question is too silly to ask.[227]
If you’re using a web browser to access Usenet instead of
 a regular newsreader, prepend news: to the
 newsgroup name to get at one of these named newsgroups. (This
 only works if you have a news server.) Alternately, if you use a
 Usenet searching service like Google Groups, specify
 perl as the newsgroups to
 search for.

	Mailing lists
	Many topics, both general and specific, have dedicated
 mailing lists. Many of those are listed on http://lists.perl.org. You can find others
 directly from project websites. You can also use sites such as
 http://markmail.org to search the archives
 across many Perl lists.

	IRC
	Internet Relay Chat (IRC) is another favorite medium for Perl programmers,
 and, if you like that sort of thing, you’ll find plenty of
 people to talk to. These chat rooms don’t see themselves
 primarily as a help desk, so dropping by just to ask a question
 without introducing yourself is a bit like crashing a party.
 However, some, like #perl–help and #win32, are specifically help
 channels. Find many IRC channels at http://www.irc.perl.org/.

[226] This guide also appears in Mastering
 Perl.

[227] Of course, some questions are too silly to answer.
 (Especially those already answered in the online manpages
 and FAQs. Why ask for help on a newsgroup when you could
 find the same answer yourself in less time than it takes to
 type in the question?)

Part V. Reference Material

Chapter 25. Special Names

This chapter is about variables that have special meanings to Perl.
 Most of the punctuational names have reasonable mnemonics or analogs in one
 of the shells (or both). But if you want to use long variable names as
 synonyms, just say:
use English "–no_match_vars";
at the top of your program. This aliases all the short names to long names in the current
 package. Some of these variables even have medium names, generally borrowed
 from awk. Most people eventually settle
 on using the short names, at least for the more commonly used variables.
 Throughout this book, we consistently refer to the short names, but we also
 often mention the long names (in parentheses) so that you can look them up
 easily in this chapter.
The semantics of these variables can be quite magical. (To create your
 own magic, see Chapter 14.) A few of these variables are
 read-only. If you try to assign values to them, an exception will be
 raised.
In what follows, we’ll first provide a concise listing of the
 variables and functions for which Perl assigns a special meaning, grouped by
 type, so you can look up variables when you’re not sure of the proper name.
 Then we’ll explain all of the variables alphabetically under their proper
 name (or their least improper name).

Special Names Grouped by Type

We used the word “type” loosely—the sections here actually group
 variables more by their scope―that is, from where they’re visible.

Regular Expression Special Variables

The following special variables related to pattern matching are visible throughout the dynamic scope in which the
 pattern match occurred. In other words, they behave as though they were
 declared with local, so you needn’t
 declare them that way yourself. See Chapter 5.
$digits

$& ($MATCH)
$' ($POSTMATCH)
$` ($PREMATCH)

${^MATCH}
${^POSTMATCH}
${^PREMATCH}

$+ ($LAST_PAREN_MATCH)
%+ (%LAST_PAREN_MATCH)
@+ (@LAST_MATCH_END)

@–
%–

$^R ($LAST_REGEXP_CODE_RESULT)
$^N ($LAST_SUBMATCH_RESULT)

Per-Filehandle Variables

These special variables never need to be mentioned in a local, because they always refer to some value
 pertaining to the currently selected output filehandle—each filehandle
 keeps its own set of values. When you select another filehandle, the old filehandle
 remembers the values it had for these variables, and the variables now
 reflect the values of the new filehandle. See also the IO::Handle module.
$| ($AUTOFLUSH, $OUTPUT_AUTOFLUSH)
$− ($FORMAT_LINES_LEFT)
$= ($FORMAT_LINES_PER_PAGE)
$~ ($FORMAT_NAME)
$% ($FORMAT_PAGE_NUMBER)
$^ ($FORMAT_TOP_NAME)

Per-Package Special Variables

These special variables exist separately in each package. There
 should be no need to localize them, since sort automatically does so on $a and $b,
 and the rest are probably best left alone (though you will need to
 declare them with our if you use strict).
$a
$AUTOLOAD
$b
@EXPORT
@EXPORT_OK
%EXPORT_TAGS
%FIELDS
@ISA
%OVERLOAD
$VERSION

Program-Wide Special Variables

These variables are truly global in the fullest sense—they mean the same
 thing in every package, because they’re all forced into package main when unqualified (except for @F, which is special in main, but not forced). If you want a temporary
 copy of one of these, you must localize it in the current dynamic
 scope.
%ENV
%! (%ERRNO, %OS_ERROR)
%INC
%SIG
%^H

@_
@ARGV
@INC

$_
$0 ($PROGRAM_NAME)
$ARGV

$! ($ERRNO, $OS_ERROR)
$" ($LIST_SEPARATOR)
$$ ($PID, $PROCESS_ID)
$(($GID, $REAL_GROUP_ID)
$) ($EGID, $EFFECTIVE_GROUP_ID)
$, ($OFS, $OUTPUT_FIELD_SEPARATOR)
$. ($NR, $INPUT_LINE_NUMBER)
$/ ($RS, $INPUT_RECORD_SEPARATOR)
$: ($FORMAT_LINE_BREAK_CHARACTERS)
$; ($SUBSEP, $SUBSCRIPT_SEPARATOR)
$< ($UID, $REAL_USER_ID)
$> ($EUID, $EFFECTIVE_USER_ID)
$? ($CHILD_ERROR)
$@ ($EVAL_ERROR)
$[
$\ ($ORS, $OUTPUT_RECORD_SEPARATOR)
$]
$^A ($ACCUMULATOR)
$^C ($COMPILING)
$^D ($DEBUGGING)
${^ENCODING}
$^E ($EXTENDED_OS_ERROR)
${^GLOBAL_PHASE}
$^F ($SYSTEM_FD_MAX)
$^H
$^I ($INPLACE_EDIT)
$^L ($FORMAT_FORMFEED)
$^M
$^O ($OSNAME)
${^OPEN}
$^P ($PERLDB)
$^R ($LAST_REGEXP_CODE_RESULT)
${^RE_DEBUG_FLAGS}
${^RE_TRIE_MAXBUF}
$^S ($EXCEPTIONS_BEING_CAUGHT)
$^T ($BASETIME)
${^TAINT}
${^UNICODE}
${^UTF8CACHE}
${^UTF8LOCALE}
$^V ($PERL_VERSION)
$^W ($WARNING)
${^WARNING_BITS}
${^WIDE_SYSTEM_CALLS}
${^WIN32_SLOPPY_STAT}
$^X ($EXECUTABLE_NAME)

Per-Package Special Filehandles

Except for DATA, which is always per-package, the following filehandles are
 always assumed to be in main when not
 fully qualified with another package name:
_ # (underline)
ARGV
ARGVOUT
DATA
STDIN
STDOUT
STDERR

Per-Package Special Functions

The following subroutine names have a special meaning to Perl. They’re
 always called implicitly because of some event, such as accessing a tied
 variable or trying to call an undefined function. We don’t describe them
 in this chapter since they all receive heavy-duty coverage elsewhere in
 the book.
Undefined function call interceptor (see Chapter 10):
AUTOLOAD
Moribund objects’ finalization (see Chapter 12):
DESTROY
Exception objects (see die in
 Chapter 27):
PROPAGATE
Auto-init and auto-cleanup functions (see Chapter 16):
BEGIN, CHECK, UNITCHECK, INIT, END
Threading support:
CLONE, CLONE_SKIP
Tie methods (see Chapter 14):
BINMODE, CLEAR, CLOSE, DELETE, DESTROY, EOF, EXISTS, EXTEND,
FETCH, FETCHSIZE, FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP,
PRINT, PRINTF, PUSH, READ, READLINE, SCALAR, SEEK, SHIFT,
SPLICE, STORE, STORESIZE, TELL, TIEARRAY, TIEHANDLE, TIEHASH,
TIESCALAR, UNSHIFT, and WRITE.

Special Variables in Alphabetical Order

We’ve alphabetized these entries according to the long variable
 name. If you don’t know the long name of a variable, you can find it in
 the previous section. (Variables without alphabetical names are sorted to
 the front.)
So that we don’t have to keep repeating ourselves, each variable
 description starts with one or more of these annotations.
Table 25-1. Annotations for special variables
	Annotation	Meaning
	XXX	Deprecated, do not
 use in anything new.
	NOT	Not Officially There (internal
 use only).
	RMV	Removed from Perl.
	ALL	Truly global, shared by all
 packages.
	PKG	Package global; each package can
 have its own.
	FHA	Filehandle attribute; one per I/O
 object.
	DYN	Dynamically scoped automatically
 (implies ALL).
	LEX	Lexically scoped at compile
 time.
	RO	Read only; raises an exception if
 you modify.

When more than one variable name or symbol is listed, only the short
 one is available by default. Using the English module makes the longer synonyms available to the current
 package, and only to the current package, even if the variable is marked
 [ALL].
Entries of the form method HANDLE EXPR
 show object-oriented interfaces to the per-filehandle variables provided
 by the IO::Handle module. As of v5.14, this module is loaded on demand. (You
 may also use the HANDLE–>method(EXPR) notation if you prefer.) These let you avoid
 having to call select to change the
 default output handle before examining or changing that variable. Each
 such method returns the old value of the attribute; a new value is set if
 the EXPR argument is supplied. If not supplied,
 most of the methods do nothing to the current value, except for autoflush, which assumes an argument of 1, just to be different.
	$_
	[ALL] The default input and pattern-search space. These pairs
 are equivalent:
while (<>) {...} # equivalent only in unadorned while test
while (defined($_ = <>)) {...}

chomp
chomp($_)

/^Subject:/
$_ =~ /^Subject:/

tr/a–z/A–Z/
$_ =~ tr/a–z/A–Z/
Here are the places where Perl will assume $_ if you don’t specify something to
 operate on:
	List functions like print and unlink, and unary functions like
 ord, pos, and int, as well as all the file tests,
 except for –t, which defaults
 to STDIN. All functions that
 default to $_ are so marked
 in Chapter 27.

	The pattern-matching operations m// and s///, and the transliteration
 operations y/// and tr///, when used without an =~ operator.

	The iterator variable in a foreach loop (even when spelled
 for or when used as a
 statement modifier) if no other variable is supplied.

	The implicit iterator variable in the grep and map functions. (There is no way to
 specify a different variable for these.)

	The default place to put an input record when a <FH>, readline, or glob operation’s result is tested by
 itself as the sole criterion of a while test. This assignment does not
 occur outside of a while test
 or if any additional elements are included in the while expression.

Because $_ is a global
 variable, this may sometimes lead to unwanted side effects. As of
 v5.10, you may use a private (lexical) version of $_ by declaring it with my. Moreover, declaring our $_ restores the global $_ in the current scope.
(Mnemonic: underline is the underlying operand in certain
 operations.)

	@_
	[ALL] Within a subroutine, this array holds the argument list passed
 to that subroutine. See Chapter 7.

	_ (underline)
	[ALL] This is the special filehandle used to cache the information from
 the last successful stat,
 lstat, or file test operator
 (like –w $file or –d $file).

	$digits
	[DYN,RO] The numbered variables $1, $2,
 and so on (up just as high as you want)[228] contain the text matched by the corresponding set of
 parentheses in the last matched pattern within the currently active
 dynamic scope. (Mnemonic: like \digits.)

	$]
	[ALL] Returns the version + patchlevel/1000. It can be used at the
 beginning of a script to determine whether the Perl interpreter
 executing the script is in the right range of versions. (Mnemonic:
 is this version of Perl in the right bracket?) Example:
warn "No checksumming!\n" if $] < 3.019;
die "Must have prototyping available\n" if $] < 5.003;
See also the documentation of use
 VERSION and require VERSION
 for a convenient way to fail if the Perl interpreter is too old. See
 $^V for a more flexible
 representation of the Perl version.

	$[
	[XXX,LEX] The index of the first element in an array and of the
 first character in a substring. Default is 0, but we used to set it
 to 1 to make Perl behave more like awk (or FORTRAN) when subscripting and
 when evaluating the index and
 substr functions. Because it was
 found to be so dangerous, assignment to $[is now treated as a lexically scoped
 compiler directive, and it cannot influence the behavior of any
 other file. (Mnemonic: [begins
 subscripts.)

	$#
	[RMV,ALL] Removed in the v5.10 release. Don’t use this; use
 printf instead. $# once contained the output format for
 printed numbers, in a half-hearted attempt to emulate awk’s OFMT variable. (Mnemonic: # is the number sign, but if you’re sharp,
 you’ll just forget it so you don’t make a hash of your program and
 get pounded for it.)
This is not the sigil you use in front of an array name to get
 the last index, like $#ARRAY. That’s
 still how you get the last index of an array in Perl. The two have
 nothing to do with each other.

	$*
	[RMV,ALL] This defunct variable could once upon a time be set to true
 to get Perl to assume /m on every
 pattern match that doesn’t have an explicit /s. It was removed in
 the v5.10 release. (Mnemonic: *
 matches multiple things.)

	%−
	[DYN,RO] Like %+
 (%LAST_PAREN_MATCH), this variable allows access to the named capture
 groups in the last successful pattern match in the currently active
 dynamic scope. Its keys are the names of the capture groups, and its
 values are array references. Each contains the values matched by all
 groups of that same name, should there be several of them, in the
 order in which those names appeared in the pattern.
Do not mix calls to each on
 this hash while also doing pattern matching in the loop itself, or
 things will change out from under you.
If you don’t like writing $−{NAME}[0] and
 such, use the standard Tie::Hash::NamedCapture module to give %−
 an aliased name of your own choosing.

	$a
	[PKG] This variable is used by the sort function to hold the first of each
 pair of values to be compared ($b
 is the second of each pair). The package for $a is the same one that the sort operator was compiled in, which is
 not necessarily the same as the one its comparison function was
 compiled into. This variable is implicitly localized within the
 sort comparison block. Because it
 is a global, it is exempt from use
 strict complaints. Because it is an alias for the actual
 array value, you might think you can modify it, but you shouldn’t.
 See the sort function.

	$ACCUMULATOR
	

	$^A
	[ALL] The current value of the write accumulator for format lines. A format contains formline commands that put their result
 into $^A. After calling its
 format, write prints out the
 contents of $^A and empties it.
 So you never actually see the contents of $^A unless you call formline yourself and then look at it. See
 the formline function.

	ARGV
	[ALL] The special filehandle that iterates over command-line
 filenames in @ARGV. Usually
 written as the null filehandle in the angle operator: <>.

	$ARGV
	[ALL] Contains the name of the current file when reading
 from the ARGV handle using the
 <> or readline operators.

	@ARGV
	[ALL] The array containing the command-line arguments intended
 for the script. Note that $#ARGV
 is generally the number of arguments minus one, since $ARGV[0] is the first argument, not the
 command name; use scalar @ARGV
 for the number of program arguments. See $0 for the program name.

	ARGVOUT
	[ALL] The special filehandle used while processing the ARGV handle under the –i switch or the $^I variable. See the –i switch in Chapter 17.

	$AUTOLOAD
	[PKG] During the execution of an AUTOLOAD method, this per-package variable
 contains the fully qualified name of the function on whose behalf
 the AUTOLOAD method is running.
 See Chapter 25.

	$b
	[PKG] The variable, companion to $a, used in sort comparisons. See $a and the sort function for details.

	$BASETIME
	

	$^T
	[ALL] The time at which the script began running, in
 seconds, since the epoch (the beginning of 1970 for Unix systems).
 The values returned by the –M,
 –A, and –C file tests are relative to this
 moment.

	$CHILD_ERROR
	

	$?
	[ALL] The status returned by the last pipe close, backtick
 (``) command, or wait, waitpid, or system functions. Note that this is not
 just the simple exit code, but the entire 16-bit status word
 returned by the underlying wait(2) or
 waitpid(2) syscall (or equivalent). Thus, the
 exit value of the subprocess is in the high byte―that is, $? >> 8. In the low byte, $? & 127 says which signal (if any)
 the process died from, while $? &
 128 reports whether its demise produced a core dump.
 (Mnemonic: similar to $? in the
 sh and its offspring.)
Inside an END block,
 $? contains the value that is
 going to be given to exit. You
 can modify $? in an END to change the exit status of the
 script. For example:
END {
 $? = 1 if $? == 255; # die would make it 255
}
Under VMS, the pragma use vmsish
 "status" makes $?
 reflect the true VMS exit status instead of the default emulation of
 POSIX status.
If the h_errno variable is
 supported in C, its numeric value is returned via $? if any of the gethost*() functions fail.

	$COMPILING
	

	$^C
	[ALL] The current value of the internal flag associated with the
 –c switch, mainly of use with
 –MO=… to let code alter its
 behavior. For example, you might want to AUTOLOAD at compile time instead of using
 the normal, deferred loading so that code can be generated right
 away. Setting $^C = 1 is similar
 to calling B::minus_c. See Chapter 16.

	DATA
	[PKG] This special filehandle refers to anything following either
 the _ _END_ _ token or the
 _ _DATA_ _ token in the current
 file. The _ _END_ _ token always
 opens the main::DATA filehandle,
 and so it is used in the main program. The _ _DATA_ _ token opens the DATA handle in whichever package is in
 effect at the time, so different modules can each have their own
 DATA filehandle, since they
 (presumably) have different package names.

	$DEBUGGING
	

	$^D
	[ALL] The current value of the internal debugging flags, set
 from the –D switch on the command
 line; see the section Switches in Chapter 17 for the values. Like its command-line
 equivalent, you can use numeric or symbolic values―for example,
 $^D = 10 or $^D = "st".
(Mnemonic: value of the –D
 switch.)

	${^ENCODING}
	[XXX,ALL] The object reference to the
 Encode object that is used to convert the source code to
 Unicode. Thanks to this variable, your Perl script does not have to
 be written in UTF-8. Default is undef. The
 direct manipulation of this variable is highly discouraged.
This variable was added in v5.8.2.

	$EFFECTIVE_GROUP_ID
	

	$)
	[ALL] The effective GID (group ID) of this process. If you are
 on a machine that supports membership in multiple groups
 simultaneously, $) gives a
 space-separated list of groups you are in. The first number is the
 one returned by getegid(2), and the subsequent
 ones by getgroups(2), one of which may be the
 same as the first number.
Similarly, a value assigned to $) must also be a space-separated list of
 numbers. The first number is used to set the effective GID, and the
 rest (if any) are passed to the setgroups(2)
 syscall. To get the effect of an empty list for setgroups, just repeat the new effective
 GID; for example, to force an effective GID of 5 and an effectively
 empty setgroups list, say:
$) = "5 5";
(Mnemonic: parentheses are used to group
 things. The effective GID is the group that’s
 right for you, if you’re running setgid.) Note:
 $<, $>, $(, and $) can only be set on machines that
 support the corresponding system set-id routine. $(and $) can be swapped only on machines
 supporting setregid(2).

	$EFFECTIVE_USER_ID
	

	$>
	[ALL] The effective UID of this process as returned by the
 geteuid(2) syscall. Example:
$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid
You can change both the effective uid and the real uid at the
 same time using POSIX::setuid.
 Changes to $> require a check
 to $! to detect any possible
 errors after an attempted change.
(Mnemonic: it’s the UID you went to, if
 you’re running setuid.) Note: $< and $> can only be swapped on machines
 supporting setreuid(2). And sometimes not even
 then.

	%ENV
	[ALL] The hash containing your current environment variables.
 Setting a value in %ENV changes
 the environment for both your process and child processes launched
 after the assignment. (It cannot change a parent process’s
 environment on any system resembling Unix.)
$ENV{PATH} = "/bin:/usr/bin";
$ENV{PAGER} = "less";
$ENV{LESS} = "MQeicsnf"; # our favorite switches to less(1)
system "man perl"; # picks up new settings
To remove something from your environment, make sure to use
 the delete function instead of
 undef on the hash value.
Note that processes running as crontab(5)
 entries inherit a particularly impoverished set of environment
 variables. (If your program runs fine from the command line but not
 under cron, this is probably
 why.) Also note that you should set $ENV{PATH}, $ENV{SHELL}, $ENV{BASH_ENV}, and $ENV{IFS} if you are running as a setuid
 script. See Chapter 20.

	$EVAL_ERROR
	

	$@
	[ALL] The currently raised exception or the Perl syntax error
 message from the last eval
 operation. (Mnemonic: where was the syntax error “at”?) Unlike
 $! ($OS_ERROR), which is set on failure but
 not cleared on success, $@ is
 guaranteed to be set (to a true value) if the last eval had a compilation error or runtime
 exception, and guaranteed to be cleared (to a false value) if no
 such problem occurred.
Warning messages are not collected in this variable. You can,
 however, set up a routine to process warnings by setting $SIG{_ _WARN_ _}, as described later in
 this section.
Note that the value of $@
 may be an exception object rather than a string. If so, you can
 still probably treat it as a string if the exception object has
 stringification overloading defined for its class. If you propagate
 an exception by saying:
die if $@;
then an exception object will call $@–>PROPAGATE to see what to do. (A
 string exception merely adds a “propagated at” line to the
 string.)

	$EXCEPTIONS_BEING_CAUGHT
	

	$^S
	[ALL] This variable reflects the current state of the
 interpreter, returning true if inside an eval and false otherwise. It’s undefined
 if parsing of the current compilation unit hasn’t finished yet,
 which may be the case in $SIG{_ _DIE_ _} and $SIG{_ _WARN_ _} handlers. (Mnemonic:
 state of eval.)

	$EXECUTABLE_NAME
	

	$^X
	[ALL] The name that the perl
 binary itself was executed as, from C’s argv[0].

	@EXPORT
	[PKG] This array variable is consulted by the Exporter module’s import
 method to find the list of other package variables and subroutines
 to be exported by default when
 the module is used, or when the
 :DEFAULT import tag is used. It
 is not exempt from use strict
 complaints, so it must be declared with our or fully qualified by package name if
 you’ve enabled that pragma. However, all variables whose names begin
 with the string “EXPORT” are
 exempt from warnings about being used only once. See Chapter 11.

	@EXPORT_OK
	[PKG] This array variable is consulted by the Exporter module’s import
 method to determine whether a requested import is legal. It is not
 exempt from use strict. See Chapter 11.

	%EXPORT_TAGS
	[PKG] This hash variable is consulted by the Exporter module’s import
 method when an import symbol with a leading colon is requested, as
 in use POSIX ":sys_wait_h". The
 keys are the colon tags, but without the leading colon. The values
 should be references to arrays containing symbols to import when the
 colon tag is requested, all of which must also appear in either
 @EXPORT or @EXPORT_OK. It is not exempt from use strict. See Chapter 11.

	$EXTENDED_OS_ERROR
	

	$^E
	[ALL] Error information specific to the current operating system.
 Under Unix, $^E is identical to
 $! ($OS_ERROR), but it differs under OS/2,
 VMS, and Microsoft systems and on MacPerl. See your port’s
 information for specifics. Caveats mentioned in the description of
 $! generally apply to $^E as well. (Mnemonic: extra error
 explanation.)

	@F
	[PKG] The array into which the input line’s fields are split when the
 –a command-line switch is given.
 If the –a option is not used,
 this array has no special meaning. (This array is actually only
 @main::F, and not in all packages
 at once.)

	%FIELDS
	[XXX,PKG] This hash is for internal use by the fields pragma to determine the current legal fields in an
 object hash.

	format_formfeed HANDLE
 EXPR
	

	$FORMAT_FORMFEED
	

	$^L
	[ALL] What a write function
 implicitly outputs to perform a form feed before it
 emits a top of form header. Default is "\f".

	format_lines_left HANDLE
 EXPR
	[FHA] The number of lines left on the page of the currently selected
 output handle, for use with the format declaration and the write function. (Mnemonic: lines_on_page – lines_printed.)

	format_lines_per_page
 HANDLE EXPR
	

	$FORMAT_LINES_PER_PAGE
	

	$=
	[FHA] The current page length (printable lines) of the currently
 selected output handle, for use with format and write. Default is 60. (Mnemonic: = has horizontal lines.)

	format_line_break_characters
 HANDLE EXPR
	

	$FORMAT_LINE_BREAK_CHARACTERS
	

	$:
	[ALL] The current set of characters after which a string may be broken to
 fill continuation fields (starting with ^) in a format. Default is " \n–" to break on whitespace or hyphens.
 (Mnemonic: a colon is a technical word meaning part of a line in
 poetry. Now you just have to remember the mnemonic…)

	format_name HANDLE
 EXPR
	

	$FORMAT_NAME
	

	$~
	[FHA] The name of the current report format for the currently
 selected output handle. Default is the filehandle’s name. (Mnemonic:
 takes a turn after $^.)

	format_page_number HANDLE
 EXPR
	

	$FORMAT_PAGE_NUMBER
	

	$%
	[FHA] The current page number of the currently selected output handle,
 for use with format and write. (Mnemonic: % is the page number register in
 troff(1). What, you don’t know what
 troff is?)

	format_top_name HANDLE
 EXPR
	

	$FORMAT_TOP_NAME
	

	$^
	[FHA] The name of the current top-of-page format for the currently
 selected output handle. Default is the name of the filehandle with
 _TOP appended. (Mnemonic: points
 to top of page.)

	$^H
	[NOT,LEX] This variable contains lexically scoped status bits (a.k.a.
 hints) for the Perl parser. This variable is strictly for internal
 use only. Its availability, behavior, and contents are subject to
 change without notice. If you touch it, you will undoubtedly die a
 horrible death of some loathsome tropical disease unknown to
 science. (Mnemonic: we won’t give you a hint.)

	%^H
	[NOT,LEX] The %^H hash
 provides the same lexical scoping semantics as
 $^H, making it useful for
 implementation of lexically scoped pragmas. Read the dire warnings
 listed under $^H, and then add to
 them the fact that this variable is still experimental.

	%INC
	[ALL] The hash containing entries for the filename of each Perl file
 loaded via do
 FILE, require, or use. The key is the filename you
 specified, and the value is the location of the file actually found.
 The require operator uses this
 array to determine whether a given file has already been loaded. For
 example:
% perl –MLWP::Simple –le 'print $INC{"LWP/Simple.pm"}'
/opt/perl/5.6.0/lib/site_perl/LWP/Simple.pm

	@INC
	[ALL] The array containing the list of directories where Perl modules
 may be found by do
 FILE, require, or use. It initially consists of the
 arguments to any –I command-line
 switches and directories in the PERL5LIB environment variable, followed by
 the default Perl libraries, such as:
/usr/local/lib/perl5/site_perl/5.14.2/darwin–2level
/usr/local/lib/perl5/site_perl/5.14.2
/usr/local/lib/perl5/5.14.2/darwin–2level
/usr/local/lib/perl5/5.14.2
/usr/local/lib/perl5/site_perl
.
followed by “.” to
 represent the current directory. If you need to modify this list
 from within your program, try the lib pragma, which not only modifies the variable at
 compile time, but also adds in any related architecture-dependent
 directories (such as those that contain the shared libraries used by
 XS modules):
use lib "/mypath/libdir/";
use SomeMod;

	$INPLACE_EDIT
	

	$^I
	[ALL] The current value of the inplace-edit extension. Use
 undef to disable inplace editing.
 You can use this from within your program to get the same behavior
 as the –i switch provides. For
 example, to do the equivalent of this command:
% perl –i.orig –pe 's/foo/bar/g' *.c
you can use the following equivalent code in your
 program:
local $^I = ".orig";
local @ARGV = glob("*.c");
while (<>) {
 s/foo/bar/g;
 print;
}
(Mnemonic: value of the –i
 switch.)

	$INPUT_LINE_NUMBER
	

	$.
	[ALL] The current record number (usually line number) for the
 last filehandle you read from (or called seek or tell on). The value may be different from
 the actual physical line number in the file, depending on what
 notion of “line” is in effect—see $/ ($INPUT_RECORD_SEPARATOR) on how to affect
 that. An explicit close on a filehandle resets the line number.
 Because <> never does an
 explicit close, line numbers increase across ARGV files (but see examples under
 eof). Localizing $. also localizes Perl’s notion of “the
 last read filehandle”. (Mnemonic: many programs use “.” to mean the current line
 number.)

	$INPUT_RECORD_SEPARATOR
	

	$/
	[ALL] The input record separator, newline by default, which is
 consulted by the readline
 function, the <FH>
 operator, and the chomp function.
 It works like awk’s RS variable and, if set to the null
 string, treats one or more empty lines as a record terminator. (But
 an empty line must contain no hidden spaces or tabs.) You may set it
 to a multicharacter string to match a multicharacter terminator, but
 you may not set it to a pattern—awk has to be better at something.
Note that setting $/ to
 "\n\n" means something slightly
 different than setting it to "",
 if the file contains consecutive empty lines. Setting it to "" will treat two or
 more consecutive empty lines as a single empty
 line. Setting it to "\n\n" means
 Perl will blindly assume that a third newline belongs to the next
 paragraph.
Entirely undefining $/
 makes the next line input operation slurp in the remainder of the
 file as one scalar value:
undef $/; # enable whole–file mode
$_ = <FH>; # whole file now here
s/\n[\t]+/ /g; # fold indented lines
If you’re using the while
 (<>) construct to access the ARGV handle while $/ is undefined, each read gets the next
 file:
undef $/;
while (<>) { # $_ has the whole next file in it
 ...
}
Although we used undef
 above, it’s safer to undefine $/
 using local:
{
 local $/;
 $_ = <FH>;
}
Setting $/ to a reference
 to either an integer, a scalar containing an integer, or a scalar
 that’s convertible to an integer will make readline and <FH> operations read in fixed-length
 records (with the maximum record size being the referenced integer)
 instead of variable-length records terminated by a particular
 string. So this:
$/ = \32768; # or \"32768" or \$scalar_var_containing_32768
open(FILE, $myfile);
$record = <FILE>;
will read a record of no more than 32,768 bytes from the
 FILE handle. If you’re not
 reading from a record-oriented file (or your operating system
 doesn’t have record-oriented files), then you’ll likely get a full
 chunk of data with every read. If a record is larger than the record
 size you’ve set, you’ll get the record back in pieces. Record mode
 mixes well with line mode only on systems where standard I/O
 supplies a read(3) function; VMS is a notable
 exception.
Calling chomp when $/ is set to enable record mode—or when it
 is undefined—has no effect. See also the –0 (the digit) and the –l (the letter) command-line switches in
 Chapter 17. (Mnemonic: / is used to separate lines when quoting
 poetry.)

	@ISA
	[PKG] This array contains names of other packages to look through
 when a method call cannot be found in the current package. That is,
 it contains the base classes of the package. The base pragma sets this implicitly. It is not exempt from
 strict. See Chapter 12.

	@LAST_MATCH_END
	

	@+
	[DYN,RO] This array holds the offsets of the ends of the last
 successful submatches in the currently active dynamic scope.
 $+[0] is the offset of the end of
 the entire match. This is the same value the pos function returns when called on the
 variable that it was matched against. (When we say “offset of the
 end”, we really mean the offset to the first character
 following the end of whatever matched, so that
 we can subtract beginning offsets from end offsets and arrive at the
 length.) The nth
 element of this array holds the offset of the
 nth submatch, so
 $+[1] is the offset where
 $1 ends, $+[2] the offset where $2 ends, and so on. You can use $#+ to determine how many subgroups were
 in the last successful match. See also @− (@LAST_MATCH_START).
After a successful match against some variable $var:
	$` is the same as
 substr($var, 0, $–[0])

	$& is the same as
 substr($var, $–[0], $+[0] –
 $–[0])

	$' is the same as
 substr($var, $+[0])

	$1 is the same as
 substr($var, $–[1], $+[1] –
 $–[1])

	$2 is the same as
 substr($var, $–[2], $+[2] –
 $–[2])

	$3 is the same as
 substr($var, $–[3], $+[3] –
 $–[3]), and so on

	@LAST_MATCH_START
	

	@−
	[DYN,RO] This array holds the offsets of the beginnings of the last
 successful submatches in the currently active dynamic scope.
 $−[0] is the offset of the
 beginning of the entire match. The
 nth element of this
 array holds the offset of the
 nth submatch, so
 $−[1] is the offset where
 $1 begins, $−[2] the offset where $2 begins, and so on. You can use $#− to determine how many subgroups were
 in the last successful match. See also @+ (@LAST_MATCH_END).

	$LAST_PAREN_MATCH
	

	$+
	[DYN,RO] This returns the last parenthesized submatch from the last
 successful pattern in the currently active dynamic scope. This is
 useful when you don’t know (or care) which of a set of alternative
 patterns matched. (Mnemonic: be positive and forward looking.)
 Example:
$rev = $+ if /Version: (.*)|Revision: (.*)/;

	%LAST_PAREN_MATCH
	

	%+
	[DYN,RO] Like %–, this
 variable allows access to the named capture groups in
 the last successful pattern match in the currently active dynamic
 scope. Its keys are the names of the capture groups, and its values
 are the string matched by that name or, in the event that you have
 more than one group by one name, the last such match. Use %– to find all of them.
Do not mix calls to each on
 this hash while also doing pattern matching in the loop itself, or
 things will change out from under you.
If you don’t like writing $+{NAME} and
 such, use the standard Tie::Hash::NamedCapture module to give %+
 an aliased name of your own choosing.

	$LAST_REGEXP_CODE_RESULT
	

	$^R
	[DYN] This contains the result of the last snippet of code
 executed inside a successful pattern with the (?{
 CODE
 }) construct. $^R gives
 you a way to execute code and remember the result for use later in
 the pattern, or even afterward.
As the Perl regular expression engine moves through the
 pattern, it may encounter multiple (?{
 CODE
 }) expressions. As it does, it remembers each value of
 $^R so that if it later has to
 backtrack past an expression, it restores the previous value of
 $^R. In other words, $^R has a dynamic scope within the
 pattern, much like $1 and
 friends.
So $^R is not simply the
 result of the last snippet of code executed inside a pattern. It’s
 the result of the last snippet of code leading to a
 successful match. A corollary is that if the match was
 not successful, $^R will be
 restored to whatever value it had before the match occurred.
If the (?{
 CODE
 }) pattern is functioning directly as the conditional of a
 (?(COND)IFTRUE|IFFALSE) subpattern, $^R is not set.

	$LAST_SUBMATCH_RESULT
	

	$^N
	[DYN, RO] The text matched by the used group most-recently closed
 (i.e., the group with the rightmost closing
 parenthesis) of the last successful search pattern.
This is mainly used from inside (?{...}) blocks to examine text just
 matched. For example, to effectively capture text to a variable (in
 addition to $1, $2, etc.), replace (...) with:
(?:(PATTERN)(?{ $var = $^N }))
Setting and then using $var
 in this way relieves you from having to worry about exactly which
 set of parentheses they are.
This variable was added in v5.8.
Mnemonic: the (possibly) Nested parenthesis that most recently
 closed.

	$LIST_SEPARATOR
	

	$"
	[ALL] When an array or slice is interpolated into a double-quoted
 string (or the like), this variable specifies the string to put
 between individual elements. Default is a space. (Mnemonic: obvious,
 one hopes.)

	$^M
	[ALL] By default, running out of memory is not trappable. However, if
 your perl was compiled to take
 advantage of $^M, you may use it
 as an emergency memory pool. If your Perl is compiled with −DPERL_EMERGENCY_SBRK and uses Perl’s
 malloc, then:
$^M = "a" x (1 << 16);
would allocate a 64K buffer for emergency use. See the
 INSTALL file in the Perl source
 distribution directory for information on how to enable this option.
 As a disincentive to casual use of this advanced feature, there is
 no use English long name for this
 variable (and we won’t tell you what the mnemonic is).

	$MATCH
	

	$&
	[DYN,RO] The string matched by the last successful pattern match in
 the currently active dynamic scope. (Mnemonic: like & in some editors.)
The use of this variable anywhere in a program imposes a
 considerable performance penalty on all regular expression matches.
 To avoid this penalty, you can extract the same substring by using
 @−. Starting with v5.10, you can
 use the /p match flag and the
 ${^MATCH} variable to do the same
 thing for particular match operations.

	${^MATCH}
	[DYN,RO] This variable is just like $& ($MATCH) except that it does not incur the
 performance penalty associated with that variable, and it is only
 guaranteed to contain a defined value when the pattern was compiled
 or executed with the /p
 modifier.
This variable was added in v5.10.

	$OSNAME
	

	$^O
	[ALL] This variable contains the name of the platform (usually
 the operating system) for which the current perl binary was compiled. It’s a cheap
 alternative to pulling it out of the Config module.

	$OS_ERROR
	

	$ERRNO
	

	$!
	[ALL] If used in a numeric context, yields the current value of the
 last syscall error, with all the usual caveats. (This means that you
 shouldn’t depend on the value of $! to be anything in particular, unless
 you’ve gotten a specific error return indicating a system error.) If
 used in a string context, $!
 yields the corresponding system error string. You can assign an
 error number to $! if, for
 instance, you want $! to return
 the string for that particular error, or you want to set the exit
 value for die. See also the
 Errno. (Mnemonic: what just went
 bang?)

	%OS_ERROR
	

	%ERRNO
	

	%!
	[ALL] Each element of %! has a
 true value only if $! is set to
 that value. For example, $!{ENOENT} is true if and only if the
 current value of $! is ENOENT; that is, if the most recent error
 was “No such file or directory” (or its moral equivalent: not all
 operating systems, and certainly not all languages, give that exact
 error). To check for whether a particular key is meaningful on your
 system, use exists
 $!{SOMEKEY}; for a list of
 legal keys, use keys %!. See the
 documentation for the Errno
 module for more information, and see also $! above.
This variable was added in v5.005.

	autoflush HANDLE
 EXPR
	

	$AUTOFLUSH
	

	$|
	[FHA] If set to true, forces a buffer flush after every print, printf, and write on the currently selected output
 handle. (We call this command
 buffering. Contrary to popular belief, setting this
 variable does not turn off buffering.) The default is false,
 which on many systems means that STDOUT will be line buffered if output is
 to the terminal, and block buffered otherwise, even on pipes and
 sockets. Setting this variable is useful when you are outputting to
 a pipe, such as when you are running a Perl script under
 rsh(1) and want to see the output as it’s
 happening. If you have pending, unflushed data in the currently
 selected filehandle’s output buffer when this variable is set to
 true, that buffer will be immediately flushed as a side effect of
 assignment. See the one-argument form of select for examples of controlling
 buffering on filehandles other than STDOUT. (Mnemonic: when you want your
 pipes to be piping hot.)
This variable has no effect on input buffering; for that, see
 getc in Chapter 27 or the example in the POSIX module.

	$OUTPUT_FIELD_SEPARATOR
	

	$,
	[ALL] The output field separator for print. Ordinarily, print simply prints out the list elements
 you specify without anything between them. Set this variable as you
 would set awk’s OFS variable to specify what is printed
 between fields. (Mnemonic: what is printed when there is a “,” in your print statement.)

	$OUTPUT_RECORD_SEPARATOR
	

	$\
	[ALL] The output record separator (terminator, actually) for print. Ordinarily, print simply prints out the
 comma-separated fields you specify, with no trailing newline or
 record separator assumed. Set this variable as you would set
 awk’s ORS variable to specify what is printed at
 the end of the print. (Mnemonic:
 you set $\ instead of adding
 "\n" at the end of the print.
 Also, it’s just like /, but it’s
 what you get “back” from Perl.) See also the –l (for “line”) command-line switch in
 Chapter 17.

	%OVERLOAD
	[NOT,PKG] This hash’s entries are set internally by the use
 overload pragma to implement operator overloading for objects of the
 current package’s class. See Chapter 13.

	$PERLDB
	

	$^P
	[NOT,ALL] The internal variable for enabling the Perl debugger
 (perl –d).

	$PERL_VERSION
	

	$^V
	[ALL] The revision, version, and subversion of the Perl
 interpreter. This variable first appeared in v5.6.0; earlier
 versions of perl will see an undefined value. Before v5.10.0,
 $^V was represented as a
 v-string.
$^V can be used to
 determine whether the Perl interpreter executing a script is in the
 right range of versions. For example:
warn "Hashes not randomized!\n" unless $^V && $^V gt v5.8;
To convert $^V into its
 string representation, use sprintf’s "%vd" conversion:
printf "version is v%vd\n", $^V; # Perl's version
Newer versions of Perl will do this automatically:
$ perl –E 'say $^V'
v5.14.0

$ perl –E 'say $^V > 5.10.1'
1
See the documentation of use VERSION and
 require
 VERSION for a convenient way to fail if
 the running Perl interpreter is older than you were hoping. See also
 $] for the original
 representation of the Perl version.
Mnemonic: use ^V for Version Control.

	$POSTMATCH
	

	$'
	[DYN,RO] The string following whatever was matched by the last
 successful pattern in the currently active dynamic scope. (Mnemonic:
 ' often follows a quoted string.)
 Example:
$_ = "abcdefghi";
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi
Thanks to dynamic scope, Perl can’t know which patterns will
 need their results saved away into these variables, so mentioning
 $` or $' anywhere in a program incurs a
 performance penalty on all pattern matches throughout the program.
 This isn’t much of an issue in small programs, but you probably
 should avoid this pair when you’re writing reusable module code. The
 example above can be equivalently recoded like this, but without the
 global performance hit:
$_ = "abcdefghi";
/(.*?)(def)(.*)/s; # /s in case $1 contains newlines
print "$1:$2:$3\n"; # prints abc:def:ghi

	${^POSTMATCH}
	[DYN,RO] This variable is just like $' ($POSTMATCH) except that it does not incur
 the performance penalty associated with that variable, and it is
 only guaranteed to contain a defined value when the pattern was
 compiled or executed with the /p
 modifier.
This variable was added in v5.10.

	$PREMATCH
	

	$`
	[DYN,RO] The string preceding whatever was matched by the last
 successful pattern in the currently active dynamic scope. (Mnemonic:
 ` often precedes a quoted
 string.) See the performance note under $', previously.

	${^PREMATCH}
	[DYN,RO] This is just like $` ($PREMATCH) except that it does not incur the performance penalty
 associated with that variable, and it is only guaranteed to contain
 a defined value when the pattern was compiled or executed with the
 /p modifier.
This variable was added in v5.10.

	$PROCESS_ID
	

	$$
	[ALL] The process number (PID) of the Perl running this script.
 This variable is automatically updated upon a fork. In fact, you can even set $$ yourself; this will not, however,
 change your PID. That would be a neat trick. (Mnemonic: same as in
 the various shells.)
You need to be careful not to use $$ anywhere it might be misinterpreted as
 a dereference: $$alphanum. In
 this situation, write ${$}alphanum to distinguish it from
 ${$alphanum}.

	$PROGRAM_NAME
	

	$0
	[ALL] Contains the name of the file containing the Perl script being
 executed. Assignment to $0 is
 magical: it attempts to modify the argument area that the
 ps(1) program normally reports on. This is more
 useful as a way of indicating the current program state than it is
 for hiding the program you’re running. But it doesn’t work on all
 systems. (Mnemonic: same as sh,
 ksh, bash, etc.)
In multithreaded scripts, Perl coordinates the threads so that
 any thread may modify its copy of the $0, and the change becomes visible to
 ps (assuming the operating system
 plays along). Note that the view other threads have of $0 will not change, since they have their
 own copies of it.
If the program has been given to Perl via the switches
 –e or –E, $0
 will contain the string "–e".

	$REAL_GROUP_ID
	

	$(
	[ALL] The real group ID (GID) of this process. If you are on a
 platform that supports simultaneous membership in multiple groups,
 $(gives a space-separated list
 of groups you are in. The first number is the one returned by
 getgid(2), and the subsequent ones by
 getgroups(2), one of which may be the same as
 the first number.
However, a value assigned to $(must be a single number used to set the
 real GID. So the value given by $(should not be
 assigned back to $(without being
 forced to be numeric, such as by adding zero. This is because you
 can have only one real group. See $) ($EFFECTIVE_GROUP_ID) instead, which allows
 you to set multiple effective groups.
(Mnemonic: parentheses are used to group
 things. The real GID is the group you left, if
 you’re running setgid.)

	$REAL_USER_ID
	

	$<
	[ALL] The real user ID (UID) of this process as returned by the
 getuid(2) syscall. Whether and how you can
 modify this is subject to the vagaries of your system’s
 implementation—see examples under $> ($EFFECTIVE_USER_ID). Because changes to
 $< require a system call,
 check $! after a change attempt
 to detect possible errors. (Mnemonic: it’s the UID you came
 from, if you’re running setuid.)

	%SIG
	[ALL] The hash used to set signal handlers for various signals. (See the section
 Signals in Chapter 15.) For
 example:
sub handler {
 my $sig = shift; # 1st argument is signal name
 syswrite STDERR, "Caught a SIG$sig––shutting down\n";
 # Avoid standard I/O in async handlers
 # to suppress core dumpage. (Even that
 # string concat is risky.)
 close LOG; # This calls standard I/O, so
 # may dump core anyway!
 exit 1; # But since we're exiting, no
 # harm in trying
}

$SIG{INT} = \&handler;
$SIG{QUIT} = \&handler;
...
$SIG{INT} = "DEFAULT"; # restore default action
$SIG{QUIT} = "IGNORE"; # ignore SIGQUIT
The %SIG hash contains
 undefined values corresponding to those signals for which no handler
 has been set. A handler may be specified as a subroutine reference
 or as a string. A string value that is not one of the two special
 actions “DEFAULT” or “IGNORE” is the name of a function that, if
 unqualified by package, is interpreted to be the main package. Here are some other
 examples:
$SIG{PIPE} = "Plumber"; # okay, assumes main::Plumber
$SIG{PIPE} = \&Plumber; # fine, use Plumber from current package
Certain internal hooks can also be set using the %SIG hash. The routine indicated by
 $SIG{_ _WARN_ _} is called when a
 warning message is about to be printed. The warning message is
 passed as the first argument. The presence of a _ _WARN_ _ hook causes the ordinary
 printing of warnings to STDERR to
 be suppressed. You can use this to save warnings in a variable or to
 turn warnings into fatal errors, like this:
local $SIG{_ _WARN_ _} = sub { die $_[0] };
eval $proggie;
This is similar to saying:
use warnings qw/FATAL all/;
eval $proggie;
except that the first has dynamic scope, whereas the second
 has lexical scope.
The routine indicated by $SIG{_ _DIE_ _} provides a way to turn a
 frog exception into a prince exception with a magical kiss, which
 often doesn’t work. The best use is for a moribund program that’s
 about to die of an untrapped exception to do some last-moment
 processing on its way out. You can’t save yourself this way, but you
 can give one last hurrah.
The exception message is passed as the first argument. When a
 _ _DIE_ _ hook routine returns,
 exception processing continues as it would have in the absence of
 the hook, unless the hook routine itself exits via a goto, a loop exit, or a die. The _ _DIE_ _ handler is explicitly disabled
 during the call so that you yourself can then call the real die from a _ _DIE_ _ handler. (If it weren’t
 disabled, the handler would call itself recursively forever.) The
 handler for $SIG{_ _WARN_ _}
 works similarly.
Only the main program should set $SIG{_ _DIE_ _}, not modules. That’s
 because, currently, even exceptions that are being trapped still
 trigger a $SIG{_ _DIE_ _}
 handler. This is strongly discouraged because of its potential for
 breaking innocent modules who aren’t expecting their predicted
 exceptions to be mysteriously altered. Use this feature only as a
 last resort, and, if you must, always put a local on the front to limit the period of
 danger.
If you’re used to programming languages that react to uncaught
 exceptions by providing a messy stack dump all over the screen, you
 can get Perl to do much the same thing by putting this in your main
 program:
use Carp;
$SIG{_ _DIE_ _} = sub { confess "$0: UNCAUGHT EXCEPTION: @_" unless $^S };
Do not attempt to build an exception-handling mechanism on
 this feature. Use eval {} to trap
 exceptions instead. For example, instead of using a _ _DIE_ _ hook, it’s cleaner to arrange
 for your entire main program to be in a subroutine and wrap that
 with a standard exception catcher―a regular eval
 BLOCK:
use Carp;
eval {
 function_that_does_everything();
 1;
} || confess "$0: Caught unexpected exception: $@";

	STDERR
	[ALL] The special filehandle for standard error in any package.

	STDIN
	[ALL] The special filehandle for standard input in any package.

	STDOUT
	[ALL] The special filehandle for standard output in any package.

	$SUBSCRIPT_SEPARATOR
	

	$;
	[ALL] The subscript separator for multidimensional hash emulation. If you
 refer to a hash element as:
$foo{$a,$b,$c}
it really means:
$foo{join($;, $a, $b, $c)}
But don’t put:
@foo{$a,$b,$c} # a slice––note the @
which means:
($foo{$a},$foo{$b},$foo{$c})
The default is "\034", the
 same as SUBSEP in awk. Note that if your keys contain binary
 data, there might not be any safe value for $;. (Mnemonic: comma—the syntactic
 subscript separator—is a semi-semicolon. Yeah, we know it’s pretty
 lame, but $, is already taken for
 something more important.)
Although we haven’t deprecated this feature, you should
 instead consider using “real” multidimensional hashes now, such as
 $foo{$a}{$b}{$c} instead of
 $foo{$a,$b,$c}. The fake ones may
 be easier to sort, however, and they are much more amenable to use
 as simple DBM files.

	$SYSTEM_FD_MAX
	

	$^F
	[ALL] The maximum “system” file descriptor, ordinarily 2. System
 file descriptors are passed to new programs during an exec, while higher file descriptors are
 not. Also, during an open, system
 file descriptors are preserved even if the open fails. (Ordinary file descriptors are
 closed before the open is
 attempted and stay closed if the open fails.) Note that the close-on-exec
 status of a file descriptor will be decided according to the value
 of $^F at the time of the
 open, not the time of the
 exec. Avoid this by temporarily
 jacking $^F through the roof
 first:
{
 local $^F = 10_000;
 pipe(HITHER,THITHER) || die "can't pipe: $!";
}

	${^TAINT}
	[ALL,RO] This read-only variable reflects whether taint mode is on, off, or
 just giving warnings:
	0	Taint mode is off (the default).
	1	Taint mode is on, usually because the program was run
 with the -T
 command-line switch.
	-1	Taint warnings only, enabled by the -t or -TU command-line
 switches.

This variable was added in v5.8.

	${^UNICODE}
	[XXX,ALL] This variable reflects certain internal Unicode settings of
 Perl. This variable is set to a numeric value during Perl startup by
 the –C command-line switch or the
 PERL_UNICODE environment
 variable; thereafter, it is read-only.
This variable was added in v5.8.2.

	${^UTF8CACHE}
	[NOT, ALL] Internal variable that controls the state of the internal UTF-8
 offset caching code:
	1	For on (the default)
	0	For off
	-1	To debug the caching code by checking all its results
 against linear scans and panicking on any discrepancy. Set
 by the -Ca command-line switch.

This variable was added in v5.8.9.

	${^UTF8LOCALE}
	[NOT,ALL] This variable indicates whether a UTF-8 locale was detected
 by Perl at startup. This information is used by Perl when in its
 “adjust utf8ness to locale” mode, set by the –CL command-line switch.
This variable was added in v5.8.8.

	$VERSION
	[PKG] This variable is accessed whenever a minimum acceptable
 version of a module is specified, as in use
 SomeMod 2.5. If $SomeMod::VERSION is less than that, an
 exception is raised. Technically, it’s the UNIVERSAL–>VERSION method that looks at
 this variable, so you could define your own VERSION function in the current package if
 you want something other than the default behavior. See Chapter 12.

	$WARNING
	

	$^W
	[ALL] The current Boolean value of the global warning switch (not to be
 confused with the global warming switch, about which we hear many
 global warnings). See also the warnings pragma in Chapter 29, and the –W
 and –X command-line switches for
 lexically scoped warnings, which are unaffected by this variable.
 (Mnemonic: the value is related to the –w switch.)

	${^WARNING_BITS}
	[NOT,ALL] The current set of warning checks enabled by the use warnings pragma. See use warnings in Chapter 29
 for more details.

	${^WIDE_SYSTEM_CALLS}
	[ALL] Global flag that enables all syscalls made by Perl to use
 wide-character APIs native to the system, if available. This can
 also be enabled from the command line using the –C command-line switch. The initial value
 is typically 0 for compatibility
 with Perl versions earlier than v5.6, but Perl may automatically set
 it to 1 if the system provides a
 user-settable default (such as via $ENV{LC_CTYPE}). The bytes pragma always overrides the effect of this flag in
 the current lexical scope.

	${^WIN32_SLOPPY_STAT}
	[ALL] If this variable is set to a true value, then stat on Windows will not try to open the
 file. This means that the link count cannot be determined and file
 attributes may be out of date if additional hardlinks to the file
 exist. On the other hand, not opening the file is considerably
 faster, especially for files on network drives.
This variable could be set in the sitecustomize.pl file to configure the
 local Perl installation to use “sloppy” stat by default. See the documentation for
 –f in “Command Switches”
 in perlrun for more
 information about site customization.
This variable was added in v5.10.

[228] Although many regular expression engines only support up
 to nine backreferences, Perl has no such limit. So if you go
 around writing $768, Perl
 won’t mind, although maintainers of your code might.

Chapter 26. Formats

Perl is known for its ability to tear apart text in many different
 ways―that’s the Extraction part that made it popular. Perl also makes it
 easy to create formatted strings for its Report job. This chapter covers the
 printf and sprintf functions, the pack and unpack
 functions, and formats, historically intended for printing nicely formatted
 reports on your line-printer, but still useful from time to time in this
 millennium.

String Formats

Perl can create a string formatted by the usual printf conventions of the C library function
 sprintf. The sprintf version returns a string, and the printf version
 outputs either to the default or supplied filehandle:
sprintf FORMAT, LIST
printf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST
The sprintf argument handling is
 a bit special. Its first argument is always taken as a scalar, even if
 it’s an array. This is probably not what you want since it uses @array in scalar context and only prints the
 number of elements in the array:
my @array = ('%d %d %d', 1, 2, 3);
sprintf @array;
The arguments for printf are
 different since it handles an optional
 FILEHANDLE argument.
The FORMAT string contains text with
 embedded field specifiers into which the elements of
 LIST are substituted, one per field. This
 feature is one of the things that Perl stole from C, so look at the
 sprintf(3) or printf(3) on your
 system for an explanation of the general principles.
Perl does its own sprintf
 formatting—it emulates the C function sprintf, but it
 doesn’t use it.[229] As a result, any nonstandard extensions in your local
 sprintf(3) function are not available from
 Perl.
Perl’s sprintf permits the universally known conversions shown in Table 26-1.
Table 26-1. Formats for sprintf
	Field	Meaning
	%%	A literal percent sign
	%b	An unsigned integer, in
 binary
	%B	Like %b, but using an uppercase “B” with the
 # flag
	%c	A character with the given
 ordinal value
	%d	A signed integer, in
 decimal
	%e	A floating-point number, in
 scientific notation, with a lowercase “e”
	%E	Like %e, but using an uppercase “E”
	%f	A floating-point number, in fixed
 decimal notation
	%g	A floating-point number, in
 %e or %f notation
	%G	Like %g, but with an uppercase “E” (if
 applicable)
	%h	A C short or unsigned short,
 depending on the compiler that built perl
	%n	Stores the number of C chars output so far into the next
 argument
	%o	An unsigned integer, in
 octal
	%p	A pointer (outputs the Perl
 value’s address in hexadecimal)
	%s	A string of unspecified
 width
	%u	An unsigned integer, in
 decimal
	%x	An unsigned integer, in
 hexadecimal, using lowercase letters
	%X	An unsigned integer, in
 hexadecimal, using uppercase letters

You might instead want Table 26-2 to see
 those conversions by the type of value they expect.
Table 26-2. Formats by value type
	Type	Format
	Integers	%b %B
 %d %h %o
 %p %u
	Floating point	%e %E
 %f %g %G
	Strings	%c %s

For some numeric conversions, you can specify how the sprintf should interpret the number instead of
 relying on the sizes that your compiler supplies. See Table 26-3.
Table 26-3. sprintf numeric conversions
	Field	Meaning
	hh	C char or unsigned char (v5.14 and later)
	h	C short or unsigned short (v5.14 and later)
	j	C type intmax_t (v5.14 or later, with a C99
 compiler)
	l	C long or unsigned long
	q, L, ll	C long
 long, unsigned long
 long, or quad
 (compiler must support quads)
	t	C ptrdiff_t (v5.14 or later)
	v	Interpret string as a vector of
 integers, output as numbers separated either by dots or by an
 arbitrary string received from the argument list when the flag is
 preceded by *
	z	C size_t (v5.14 or later)

For backward (and we do mean “backward”) compatibility, Perl permits these unnecessary but widely
 supported conversions in Table 26-4. We segregate
 these from Table 26-1 in the hopes that you won’t
 use them.
Table 26-4. Backward compatible synonyms for numeric conversions
	Field	Meaning
	%i	A synonym for %d
	%D	A synonym for %ld
	%U	A synonym for %lu
	%O	A synonym for %lo
	%F	A synonym for %f

Between the % and the format
 letter, you may specify several additional attributes controlling the
 interpretation of the format, as listed in Table 26-5.
Table 26-5. Format modifiers for sprintf
	Flag	Meaning
	space	Prefix positive number with a
 space
	+	Prefix positive number with a
 plus sign
	–	Left-justify within the
 field
	0	Use zeros, not spaces, to
 right-justify
	#	Prefix nonzero octal with
 “0”, nonzero hex with “0x”, and nonzero binary with “0b”
	*	Use the value of the next
 argument as the field width
	number$	Use the value of the argument at
 position number
	*number$	Use the value of the argument at
 position number as the field
 width
	number	Minimum field width (there is no
 maximum width equivalent)
	.
 number	“Precision”: digits after decimal
 point for floating-point numbers, maximum length for string,
 minimum length for integer

Here are some examples. Putting a space in front of the specifier
 puts exactly one space in front of the number, no matter its size:
printf "<% d>", 1; # "< 1>"
Using a + appends a positive sign
 to the number, even if it is 0:[230]
printf "<%+d>", 1; # "<+1>"
printf "<%+d>", 2; # "<+2>"
Using a space and a + together,
 in any order, always puts a + in front
 of the positive number:
printf "<%+ d>", 3; # "<+3>"
printf "<% +d>", 5; # "<+5>"
Specifying a precision for an integer will zero pad it. The + doesn’t count against the precision:
printf "<%.5d>", 8; # "<00008>"
printf "<%+.5d>", 13; # "<+00013>"
If the width is larger, though, it only zero pads to the width of
 the precision. You can left or right justify the values:
printf "<%–10.6d>", 21; # "<000021 >"
printf "<%10.6d>", 34; # "< 000034>"
printf "<%010.6d>", 55; # "< 000055>"
printf "<%+10.6d>", 89; # "< +000089>"
Those work for any of the integer formats.
Strings by default align to the right, although a minus aligns the
 string to the left:
printf "<%6s>", 144; # "< 144>"
printf "<%–6s>", 233; # "<233 >"
A leading 0 pads the blank
 positions with zeros, but only to the left, even if the value isn’t a
 number:
printf "<%06s>", 377; # "<000377>"
printf "<%–06s>", 610; # "<610 >" – no zeroes
printf "<%06s>", "Perl"; # "<00Perl>"
The width is handy to align strings in a fixed column format.
 However, printf uses the width only for
 the minimum. It does not truncate strings:
printf "<%5s>", "Amelia"; # "<Amelia>", with all six characters
If you want to truncate the string should it overflow, you can use
 .number
 after the field width:
printf "<%5.5s>", "Camelia"; # "<Camel>", with only five characters
The width of the field and the number of characters you take don’t
 have to match up. If you take more characters than the width, the string
 still overflows:
printf "<%3.5s>\n", "Camelia"; # "<Camel>"
Normally, printf fills in the
 specifiers with the next unused argument, but you can tell it explicitly
 which argument to use with number$. When you use
 number$, you
 must be careful to use uninterpolated strings or escape the dollar sign,
 or else Perl will think you want a variable interpolated there.
printf '%2$d %1$d', 12, 34; # "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # "3 1 1"
This also allows you to reuse arguments:
printf '%2$d %1$d %2$d', 12, 34; # "34 12 34"
Sometimes you don’t know the width ahead of time, so you can specify
 it as an argument and take the value from the next argument with *. This takes an argument for the width before
 it takes an argument for the string:
printf "<%*s>", 6, "Perl"; # "< Perl>"
If the argument’s value is negative, it’s left-justified:
printf "<%*s>", –6, "Perl"; # "<Perl >"
If you don’t want to use the next argument, you can use number$ to specify
 the width argument by its position:
printf '<%*2$s>', "a", 6; # "< a>"
If you want to take the field width and the maximum number of
 characters in the string from the argument list, you can use * in both places:
printf "<%*.*s>\n", 10, 5, "Camelia"; # "< Camel>"
but you can only use an argument for the width:
printf '<%*2$.*s>', "Camelia", 10, 5; # "< Camelia>"
printf '<%*.*2$s>', "Camelia", 10, 5; # "<%*.*2$s>"
A # adds extra characters to the
 front of a number to denote its base, but only when the value is not 0 (in
 which case it doesn’t matter):
printf "<%#o>", 37; # "<045>"

printf "<%#x>", 42; # "<0x2a>"
printf "<%#X>", 42; # "<0X2A>"

printf "<%#b>", 137; # "<0b10001001>"
printf "<%#B>", 137; # "<0B10001001>"
When the # flag and a precision are given in the %o conversion, the precision won’t count the
 leading “0”:
printf "<%#.5o>", 0377; # "<00377>"
printf "<%#.5o>", 010755; # "<010755>"
printf "<%#.0o>", 0; # "<0>"
For floating-point values (%e,
 %f, and %g), you can specify the number of places after
 the decimal point with .number. If you are using a width, this goes after the
 width. Notice that this specifier rounds the number:
printf "<%f>", 3.14159265; # "<3.141593>"
printf "<%.1f>", 3.14159265; # "<3.1>"
printf "<%.0f>", 3.14159265; # "<3>"

printf "<%e>", 6.62606857e–34; # "<6.626069e–34>"
printf "<%.1e>", 1.05457148e–34; # "<1.1e–34>"
If use locale (see Chapter 29) is in effect and you called POSIX::setlocale, the format uses the decimal
 separator for that locale:
use POSIX;
use locale;

POSIX::setlocale(LC_NUMERIC, "fr_FR");
printf "<%f>", 3.1415926; # "<3,141593>"
The %g specifier uses your system
 preferences, so you might get slightly different results:
printf "<%g>", 1 << 31; # "<2.14748e+09>"
printf "<%.5g>", 1 << 31; # "<2.1475e+09>"
printf "<%.10g>", 1 << 31; # "<2147483648>"
The number of digits used for exponents less than 100 depends on
 your system; some may zero pad them:
printf "<%g>", 1 << 31; # "<2.14748e+009>" maybe
The v modifier is different than
 the other ones. It breaks apart its string argument, considering each
 character to be an integer that it formats as you tell it. It joins the
 integers with a dot. Used with a hex format specifier, this is convenient
 for printing out sequences of codepoints in a “Unicode-like”
 notation:
printf "<%vd>", "\x5\xE\x2"; # "5.14.2"

use utf8;
printf "<%vd>", "À%{"; # "<65.758.37.123>"
printf "<%vX>", "À%{"; # "<41.300.25.7B>"
printf "U+v%04x", "À%{"; # "U+0041.0300.0025.007B"
(Notice how the “À” grapheme above requires two separate
 codepoints.)
If you don’t want to use a dot to join the numbers, you can specify
 your separator as an argument:
printf "<%*vX>", ":", "À%{"; # "<41:300:325:7B>"
printf "<%*2$vX>", "À%{", ":"; # "<41:300:25:7B>"
Graphemes, in particular multicodepoint grapheme clusters, are an issue here. As we’ll see with the
 other two types of formats described in this chapter, Perl gives the wrong
 answer when calculating widths for Unicode data that contains nonprinting
 characters, combining marks, and wide characters. The same is also true of
 field widths in format strings for printf and sprintf. There is an example in the section
 Graphemes and Normalization in Chapter 6 showing how
 to use the columns method from the
 Unicode::GCString module to trick printf
 into doing the right thing with all these, despite itself. The basic
 strategy is to prepad to the correct width beforehand using the smarter
 columns method instead of expecting
 simpleminded printf to suss out
 something so sophisticated.

[229] Except for floating-point numbers, and even then only the
 standard modifiers are allowed.

[230] This is different from the concept of
 0+ and 0-, the
 limit of 0 approached from different sides.

Binary Formats

If you’re familiar with more traditional languages, you may have come
 across the concept of records or struct types. In contrast to sprintf, which is primarily oriented toward
 human-readable output, the pack and
 unpack functions are useful for low-level, repetitive conversion
 and formatting of basic datatypes into (and back out of) string
 representations of these struct or record types. The two functions share a
 template language, with minor differences, described in the next
 section.

pack

pack TEMPLATE, LIST
This function takes a LIST of
 ordinary Perl values, converts them into a string of bytes according to
 the TEMPLATE, and returns this string. The
 argument list will be padded or truncated as necessary. That is, if you
 provide fewer arguments than the TEMPLATE
 requires, pack assumes additional
 null arguments. If you provide more arguments than the
 TEMPLATE requires, the extra arguments are
 ignored. Unrecognized format elements in
 TEMPLATE will raise an exception.
The template describes the structure of the string as a sequence
 of fields. Each field is represented by a single character that
 describes the type of the value and its encoding. For instance, a format
 character of N specifies an unsigned
 four-byte integer in big-endian byte order.
Fields are packed in the order given in the template. For example,
 to pack an unsigned one-byte integer and a single-precision
 floating-point value into a string, you’d say:
$string = pack("Cf", 244, 3.14);
The first byte of the returned string has the value 244. The
 remaining bytes are the encoding of 3.14 as a single-precision float.
 The particular encoding of the floating-point number depends on your
 computer’s hardware.
Some important things to consider when packing are:
	The type of data (such as integer or float or string)

	The range of values (such as whether your integers will fit
 into one, two, four, or maybe even eight bytes; or whether you’re
 packing 8-bit or Unicode characters)

	Whether your integers are signed or unsigned

	The encoding to use (such as native, little-endian, or
 big-endian packing of bits and bytes)

Table 26-6 lists the format characters
 and their meanings. (Other characters can occur in formats as well;
 these are described later.)
Table 26-6. Template characters for pack/unpack
	Character	Meaning
	a	A null-padded string of
 bytes
	A	A space-padded string of
 bytes
	b	A bit string, in ascending bit
 order inside each byte (like vec)
	B	A bit string, in descending bit
 order inside each byte
	c	A signed char (8-bit integer)
 value
	C	An unsigned char (8-bit
 integer) value; see U for
 Unicode
	d	A double-precision
 floating-point number in native format
	D	A float or long-double
 floating-point number in native format; long doubles are
 available only if your system supports them and you compiled
 perl for them
	f	A single-precision
 floating-point number in native format
	F	A Perl internal floating-point
 number (NV) in native format
	h	A hexadecimal string, low
 nybble first
	H	A hexadecimal string, high
 nybble first
	i	A signed integer value, native
 format; this is at least 32 bits, but depends on the C compiler
 you used
	I	An unsigned integer value,
 native format; this is at least 32 bits, but depends on the C
 compiler you used
	j	A Perl-internal signed integer
 (IV)
	J	A Perl-internal unsigned
 integer (UV)
	l	A signed long value, always 32
 bits
	L	An unsigned long value, always
 32 bits
	n	A 16-bit short in “network”
 (big-endian) order
	N	A 32-bit long in “network”
 (big-endian) order
	p	A pointer to a structure
 (null-terminated string)
	P	A pointer to a fixed-length
 string
	q	A signed quad (64-bit integer)
 value
	Q	An unsigned quad (64-bit
 integer) value (only if your system supports 64-bits and you
 compiled your perl for
 them)
	s	A signed short value, always 16
 bits
	S	An unsigned short value, always
 16 bits
	u	A uuencoded string
	U	A Unicode character number;
 this converts to a character in character mode and a UTF-8
 encoded character in byte mode
	v	A 16-bit short in “VAX”
 (little-endian) order
	V	A 32-bit long in “VAX”
 (little-endian) order
	w	A BER compressed
 integer
	W	An unsigned char value
	x	A null byte (skip forward a
 byte)
	X	Back up a byte
	Z	A null-terminated (and
 null-padded) string of bytes
	@	Null-fill to absolute
 position
	.	Null-fill or truncate to
 absolute position
	(Start a group
)	End a group

Table 26-7. Template modifiers for pack/unpack
	Modifier	Applied to	Effect
	!	iIlLsS	Forces native sizes
	!	xX	Makes x and X act as alignment characters
	!	nNvV	Treats as signed instead of
 unsigned integers
	!	@.	Specifies the position as the
 byte offset in the internal representation of the packed
 string―danger!
	>	dDfFiIjJlLpPqQsS	Forces big-endian byte order;
 can apply to groups and subgroups
	<	dDfFiIjJlLpPqQsS	Forces little-endian byte
 order; can apply to groups and subgroups

You may freely place whitespace and comments in your
 TEMPLATEs. Comments start with the customary
 # symbol and extend up through the
 first newline (if any) in the
 TEMPLATE.
Repetition

Each letter in the template may be followed by a number
 indicating the count, interpreted as a repeat
 count or length of some sort, depending on the format. We’ll start
 with those that repeat, the ones that pack as characters or numbers:
 c, C, d,
 D, f, F,
 i, I, j,
 J, l, L,
 n, N, p,
 q, Q, s,
 S, U, v,
 V, w, and W.
A number after these fields represents repetition, so that field
 will be repeated in the string, taking as many arguments as is
 specified:
$out = pack 'C4', 192, 168, 1, 1; # \xC0\xA8\01\01
The repeat can optionally go in brackets:
$out = pack 'C[4]', 192, 168, 1, 1; # \xC0\xA8\01\01
Another letter in the brackets uses the length of that format
 for the count:
$out = pack 'C[N]', 192, 168, 1, 1; # \xC0\xA8\01\01
$out = pack 'C[s]', 192, 168, 1, 1; # \xC0\xA8
If there aren’t enough arguments, pack fills in the remaining arguments with
 nulls:
$out = pack 'C4', 192, 168; # \xC0\xA8\00\00
Using a * takes up the
 remaining arguments:
$out = pack 'C*', 192, 168, 1, 1; # \xC0\xA8\01\01
The other letters do other things with a repeat. A number after
 a, A, or Z
 specifies the length of the field to be padded:
$out = pack 'A10', 192, 168, 1, 1; # \xC0\xA8\01\01
If the number is less than the string width, a and A
 truncate:
$out = pack 'A4', 'Amelia'; # "Amel"
$out = pack 'a4', 'Amelia'; # "Amel"
With the *, a and A
 produce a field as long as its argument:
$out = pack 'A*', 'Amelia'; # "Amelia"
$out = pack 'a*', 'Amelia'; # "Amelia"
The Z, however, reserves the
 final position for the terminating null byte:
$out = pack 'Z4', 'Amelia'; # "Ame\000"
as long as the number is not 0, in which case there is no null
 byte:
$out = pack 'Z0', 'Amelia'; # ""
A Z* takes the entire string,
 no matter how long, and still ends it with a null:
$out = pack 'Z*', 'Amelia'; # "Amelia\000"
For b and B, the count is the number of bits you want
 in the output. Each b and B uses only one bit, the least significant
 one, from each character in the input, and each sets only one bit,
 whatever its length:
$out = pack 'B8', '10011101'; # 0b10011101
$out = pack 'b8', '10011101'; # 0b10111001
The h and H do something similar using the count as
 the number of nybbles to produce. These are special, though, since
 they interpret characters that look like a hexadecimal digit as that
 number:
$out = pack 'h1', 'a'; # 0x0a
$out = pack 'H1', 'a'; # 0xa0
$out = pack 'H8', 'deadbeef'; # 0xdeadbeef
Otherwise, it uses the low nybble:
$out = pack 'h2', '1'; # 0x01
$out = pack 'h2', 'one'; # 0x08
$out = pack 'H2', 'one'; # 0x80
A * with h or H
 pads the string with nulls to get an even number of nybbles:
$out = pack 'H*', 'deadbee'; # 0xdeadbee0
For P, the count specifies
 the size of the struct to pack.
With u, the count is the line
 length for the uuencoded string. A count less than 3 (or is *) is treated as 45. This format:
$out = pack "u30", $some_string;
takes one line:
93VYE(')I;F​<@=&\@<G5L92!T:&5M(&%L;```
But with the same string and a shorter line length:
$out = pack "u15", $some_string;
wraps the string:
/3VYE(')I;F​<@=&\@<G5L
*92!T:&5M(&%L;```
An x consumes no arguments,
 but inserts as many nulls as specified. A * is the same as 0:
$out = pack "H2 x h2", "dead", "beef"; # 0xde00eb
$out = pack "H2 x3 h2", "dead", "beef"; # 0xde000000eb
$out = pack "H2 x* h2", "dead", "beef"; # 0xdeeb
The X consumes no arguments.
 It backs up the number of bytes specified, as long as it does not go
 past the beginning of the string packed so far. A * is the same as 0:
$out = pack "H2 X h2", "dead", "beef"; # 0xeb
$out = pack "H2 X3 h2", "dead", "beef"; # 0xde000000eb
$out = pack "H2 X* h2", "dead", "beef"; # 0xdeeb
An @ truncates or fills to
 the position relative to the innermost group (or the entire string if
 there is no group). If the packed string so far is longer than the
 count, its length is reduced to count. If the packed string so far is
 shorter than count, it’s padded with nulls. In each case, the rest of
 the template picks up from the new position:
$out = pack 'A*', 'Amelia'; # Amelia
$out = pack 'A*@3', 'Amelia'; # Ame
$out = pack 'A*@3A*', 'Amelia', 'Camel'; # AmeCamel

$out = pack 'c@5', 137; # 0x8900000000
A * is the same as 0, so it truncates everything done so
 far:
$out = pack 'A*@*A*', 'Amelia', 'Camel'; # Camel
Within a group, the truncation or padding only applies to that
 part of the group:
$out = pack 'A(A@4A)A', 'A', 'B', 'C', 'D'; # "AB\000\000\000CD
$out = pack 'A(A@*A)A', 'A', 'B', 'C', 'D'; # "ACD
The . also truncates or pads,
 but it takes the position from the list. The repeat count specifies
 the start of the effect: 0 to start from the current position, a
 number to specify the group to start from, or a * to specify the beginning of the
 string:
truncate from the beginning of the string
$out = pack 'A(A.*A)A', 'A', 'B', 1, 'C', 'D'; # 'ACD'

pad from the beginning of the string
$out = pack 'A(A.*A)A', 'A', 'B', 5, 'C', 'D'; # "AB\000\000\000CD"

truncate from the beginning of the string
$out = pack 'A(A.1A)A', 'A', 'B', 1, 'C', 'D'; # "ABCD"

pad from the beginning of the string
$out = pack 'A(A.1A)A', 'A', 'B', 3, 'C', 'D'; # "AB\000\000\000\000CD"

pad from the current position
$out = pack 'A(A.0A)A', 'A', 'B', 0, 'C', 'D'; # "ABCD"
$out = pack 'A(A.0A)A', 'A', 'B', 2, 'C', 'D'; # "AB\000\000CD"

Other modifiers

The / character allows
 packing and unpacking of strings where the packed structure contains a
 byte count followed by the string itself. You write
 length–item/string–item. The
 length–item can be any pack template letter, and it describes how
 the length value is packed. The ones likely to be of most use are
 integer-packing ones like n (for
 Java strings), w (for ASN.1 or
 SNMP), and N (for Sun XDR). The
 string–item must, at present, be A*, a*,
 or Z*. For unpack, the length of the string is obtained
 from the length–item, but if you put in the
 *, it will be ignored:
unpack "C/a", "\04Gurusamy"; # gives "Guru"
unpack "a3/A* A*", "007 Bond J "; # gives (" Bond","J")
pack "n/a* w/a*","hello,","world"; # gives "\000\006hello,\005world"
The length–item is not returned
 explicitly from unpack. Adding a
 count to the
 length–item letter is unlikely to do
 anything useful unless that letter is A, a, or
 Z. Packing with a
 length–item of a or Z
 may introduce null (\0) characters,
 which Perl does not regard as legal in numeric strings.
The integer formats s,
 S, l, and L
 may be immediately followed by a !
 to signify native shorts or longs instead of exactly 16 or 32 bits,
 respectively. Today, this is an issue mainly in 64-bit platforms,
 where the native shorts and longs as seen by the local C compiler can
 be different than these values. (i!
 and I! also work but only because
 of completeness; they are identical to i and I.)
The actual sizes (in bytes) of native shorts, ints, longs, and
 long longs on the platform where Perl was built are also available via
 the Config module:
use Config;
say $Config{shortsize};
say $Config{intsize};
say $Config{longsize};
say $Config{longlongsize};
Just because Configure knows
 the size of a long long doesn’t necessarily imply that you have
 q or Q formats available to you. (Some systems
 do, but you may or may not be running one. Yet.)
Integer formats of greater than one byte in length (s, S,
 i, I, l, and
 L) are inherently nonportable
 between processors, because they obey the native byte order and
 endianness. If you want portable packed integers, use the formats
 n, N, v, and
 V; their byte endianness and size
 are known.
Floating-point numbers are only in the native machine format.
 Because of the variety of floating formats and the lack of a standard
 “network” representation, no facility for interchange has been made.
 This means that packed floating-point data written on one machine may
 not be readable on another. This is a problem even when both machines
 use IEEE floating-point arithmetic, because the endianness of the
 memory representation is not part of the IEEE spec.
Perl internally uses doubles for all floating-point
 calculations, so converting from double into float, then back again to
 double, will lose precision. This means that unpack("f", pack("f", $foo)) will not
 generally equal $foo.
You are responsible for any alignment or padding considerations
 expected by other programs, particularly those programs that were
 created by a C compiler with its own idiosyncratic notions of how to
 lay out a C struct on the
 particular architecture in question. You’ll have to add enough
 xs while packing to make up for
 this. For example, a C declaration of:
struct foo {
 unsigned char c;
 float f;
};
might be written out in a “C x
 f” format, a “C x3 f”
 format, or even an “f C”
 format—just to name a few. The pack
 and unpack functions handle their
 input and output as flat sequences of bytes, because there is no way
 for them to know where the bytes are going to or coming from.
The ! applied to the @ or .
 makes those positions use the byte offset in the packed strings. This
 can be very efficient, but you have to think much harder about the
 string and know the sizes for the other formats.
The < and > indicate the endianness for the
 specifiers d, D, f,
 F, i, I,
 j, J, l,
 L, p, P,
 q, Q, s, and
 S. These are the specifiers that
 pack integers, save for those that already specify endianness. The
 < forces little-endian
 semantics, and the > forces
 big-endian semantics:
$out = pack 'L>', 0xDEADBEEF; # "\xDE\xAD\xBE\xEF"
$out = pack 'L​<', 0xDEADBEEF; # "\xEF\xBE\xAD\xDE"

More examples

Let’s look at some more examples. This first pair packs numeric
 values into bytes:
$out = pack "CCCC", 65, 66, 67, 68; # $out eq "ABCD"
$out = pack "C4", 65, 66, 67, 68; # same thing
This one does the same thing with Unicode circled
 letters:
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
This does a similar thing, with a couple of nulls thrown
 in:
$out = pack "CCxxCC", 65, 66, 67, 68; # $out eq "AB\0\0CD"
Packing your shorts doesn’t imply that you’re portable:
$out = pack "s2", 1, 2; # "\1\0\2\0" on little–endian
 # "\0\1\0\2" on big–endian
On binary and hex packs, the count refers
 to the number of bits or nybbles, not the number of bytes
 produced:
$out = pack "B32", "01010000011001010111001001101100";
$out = pack "H8", "5065726c"; # both produce "Perl"
The length on an a field
 applies only to one string:
$out = pack "a4", "abcd", "x", "y", "z"; # "abcd"
To get around that limitation, use multiple specifiers:
$out = pack "aaaa", "abcd", "x", "y", "z"; # "axyz"
$out = pack "a" x 4, "abcd", "x", "y", "z"; # "axyz"
The a format does null
 filling:
$out = pack "a14", "abcdefg"; # "abcdefg\0\0\0\0\0\0\0"
This template packs a C struct
 tm record (at least on some systems):
$out = pack "i9pl", gmtime(), $tz, $toff;
Generally, the same template may also be used in the unpack function, although some formats act
 differently, notably a, A, and Z.
If you want to join fixed-width text fields together, use
 pack with a
 TEMPLATE of several A or a
 formats:
$string = pack("A10" x 10, @data);
Don’t say that “A” too seriously: it works on Perl’s internal
 Unicode just fine. But it’s pad by codepoint, not by logical print
 column. If you need to work on your résumé, you would get this:
pack("(A10)2", "re\x{301}sume\x{301}", "work")'
"résumé work "
But if you need to start working again, you would get
 this:
say pack("(A10)2", "resume", "work")'
resume work
See the discussion on Graphemes and Normalization in Chapter 6 for how to use the columns method from Unicode::GCStringto pad correctly in the face of control characters,
 combining marks, and wide (two-column) characters like those found in
 many East Asian scripts.
If you want to join variable-width text fields with a separator,
 use the join function
 instead:
$string = join(" and ", @data);
$string = join("", @data); # null separator
Although all of our examples used literal strings as templates,
 there is no reason you couldn’t pull in your templates from a disk
 file. You could build an entire relational database system around this
 function. (What that would prove about you we won’t get into.)

unpack

unpack TEMPLATE, EXPR
This function does the reverse of pack: it expands a string
 (EXPR) representing a data structure into a
 list of values according to the TEMPLATE and
 returns those values. In scalar context, it can be used to unpack a
 single value. The TEMPLATE here has much the
 same format as it has in the pack
 function—it specifies the order and type of the values to be unpacked.
 See pack for a detailed description
 of TEMPLATE. An invalid element in the
 TEMPLATE, or an attempt to move outside the
 string with the x, X, or @
 formats, raises an exception.
The string is broken into chunks described by the
 TEMPLATE. Each chunk is separately converted
 to a value. Typically, the bytes of the string either are the result of
 a pack or represent a C structure of
 some kind.
If the repeat count of a field is larger than the remainder of the
 input string allows, the repeat count is silently decreased. (Normally,
 you’d use a repeat count of * here,
 anyway.) If the input string is longer than what
 TEMPLATE describes, the rest of the string is
 ignored.
The unpack function is also
 useful for plain text data, not just binary data. Imagine that you had a
 data file that contained records that looked like this:
2009 The Graveyard Book Neil Gaiman
2008 The Yiddish Policemen’s Union Michael Chabon
2007 Rainbows End Vernor Vinge
2006 Spin Robert Charles Wilson
2005 Jonathan Strange & Mr Norrell Susanna Clarke
2004 Paladin of Souls Lois McMaster Bujold
2003 Hominids Robert J. Sawyer
2002 American Gods Neil Gaiman
2001 Harry Potter and the Goblet of Fire J. K. Rowling
Such a file might have been produced either by printf, described earlier in this chapter, or
 by formats, described in the next section. Or it could have been
 produced externally. In any case, you can’t use split to parse out the fields because they
 have no distinct separator. Instead, fields are determined by their byte
 offset into the record. So even though this is a regular text record,
 because it’s in a fixed format, you want to use unpack to pull it apart:
use v5.14;
while (<>) {
 my($year, $title, $author) = unpack("A4 x A39 A*", $_);
 say "$author won ${year}'s Hugo for $title.";
}
(The reason we wrote ${year}'s
 there is because Perl would have treated $year's as meaning $year::s. If you were using UTF-8 in your
 source code via use utf8, you could
 have used $year’s safely enough, though.)
In addition to fields allowed in pack, you may prefix a field with %number to produce
 a simple number-bit additive checksum of the
 items instead of the items themselves. Default is a 16-bit checksum. The
 checksum is calculated by summing numeric values of expanded values (for
 string fields, the sum of ord($char)
 is taken; for bit fields, it’s the sum of zeros and ones). For example,
 the following computes the same number as the SysV
 sum(1) program:
undef $/;
$checksum = unpack ("%32C*", <>) % 65535;
The following efficiently counts the number of set bits in a
 bitstring:
$setbits = unpack "%32b*", $selectmask;
Here’s a simple Base64 decoder:
while (<>) {
 tr#A–Za–z0–9+/##cd; # remove non–base64 chars
 tr#A–Za–z0–9+/# –_#; # convert to uuencoded format
 $len = pack("c", 32 + 0.75*length); # compute length byte
 print unpack("u", $len . $_); # uudecode and print
}
The p and P formats should be used with care. Since Perl
 has no way of checking whether the value passed to unpack corresponds to a valid memory location,
 passing a pointer value that’s not known to be valid is likely to have
 disastrous consequences.
If there are more pack codes or if the repeat count of a field or
 a group is larger than what the remainder of the input string allows,
 the result is not well defined: the repeat count may be decreased; or
 unpack may produce empty strings or
 zeros, or it may raise an exception. If the input string is longer than
 one described by the TEMPLATE, the remainder
 of that input string is ignored.

Picture Formats

Perl has a mechanism to help you generate simple reports of the kind
 you often see coming out of your mainframe’s line printer. (What, you
 don’t have one of those?) To facilitate this, Perl helps you code up your
 output page close to how it will look when it’s printed. It can keep track
 of things like how many lines are on a page, the current page number, when
 to print page headers, and so on. Keywords are borrowed from FORTRAN:
 format to declare and write to execute; see the relevant entries in
 Chapter 27. Fortunately, the layout is much more legible,
 more like the PRINT USING statement of
 BASIC. Think of it as a poor man’s nroff(1). (If you
 know nroff, that may not sound like a
 recommendation.)
Formats, like packages and subroutines, are declared rather than
 executed, so they may occur at any point in your program. (Usually it’s
 best to keep them all together.) They have their own namespace apart from
 all the other types in Perl. This means that if you have a function named
 “Foo”, it is not the same thing as a
 format named “Foo”. However, the
 default name for the format associated with a given filehandle is the same
 as the name of that filehandle. Thus, the default format for STDOUT is named “STDOUT”, and the default format for filehandle
 TEMP is named “TEMP”. They just look the same. They
 aren’t.
Output record formats are declared as follows:
format NAME =
FORMLIST
.
If NAME is omitted, format STDOUT is defined.
 FORMLIST consists of a sequence of lines, each
 of which may be of one of three types:
	A comment, indicated by putting a # in the first column.

	A “picture” line giving the format for one output line.

	An argument line supplying values to plug into the previous
 picture line.

Picture lines are printed exactly as they look, except for certain
 fields that substitute values into the line.[231] Each substitution field in a picture line starts with either
 @ (at) or ^ (caret). These lines do not undergo any kind
 of variable interpolation. The @ field
 (not to be confused with the array marker @) is the normal kind of field; the other kind,
 the ^ field, is used to do rudimentary
 multiline text-block filling. The length of the field is supplied by
 padding out the field with multiple <, >,
 or | characters to specify,
 respectively, left justification, right justification, or centering. If
 the variable exceeds the width specified, it is truncated.
Be warned that all this talk of widths and justification breaks down
 miserably once you bring “interesting” Unicode characters into the picture
 for interesting values of “interesting”. It doesn’t even work with
 nonprinting ASCII. Picture formats assume every codepoint takes up exactly
 one column. In Unicode, this is not true, as many codepoints occupy zero
 print columns, and some occupy two of them. See the discussion on ˆGraphemes and Normalization in Chapter 6 for how to use the
 columns method from Unicode::GCString to get the true print columns of a Unicode string.
As an alternate form of right justification, you may also use
 # characters (after an initial @ or ^) to
 specify a numeric field. You can insert a . in place of one of the # characters to line up the decimal points. If
 any value supplied for these fields contains a newline, only the text up
 to the newline is printed. Finally, the special field @* can be used for printing multiline,
 nontruncated values; it should generally appear on a picture line by
 itself.
The values are specified on the following line in the same order as
 the picture fields. The expressions providing the values should be
 separated by commas. The expressions are all evaluated in list context
 before the line is processed, so a single list expression could produce
 multiple list elements. The expressions may be spread out to more than one
 line if enclosed in braces. (If so, the opening brace must be the first
 token on the first line.) This lets you line up the values under their
 respective format fields for easier reading.
If an expression evaluates to a number with a decimal part, and if
 the corresponding picture specifies that the decimal part should appear in
 the output (that is, any picture except multiple # characters without an embedded .), the character used for the decimal point is
 always determined by the current LC_NUMERIC locale. This means that if, for
 example, the runtime environment happens to specify a German locale, a
 comma will be used instead of a period. See the perllocale
 manpage for more information.
Inside an expression, the whitespace characters \n, \t, and
 \f are all considered equivalent to a
 single space. Thus, you could think of this filter as being applied to
 each value in the format:
$value =~ tr/\n\t\f/ /;
The remaining whitespace character, \r, forces the printing of a newline if the
 picture line allows it.
Picture fields that begin with ^
 rather than @ are treated specially.
 With a # field, the field is blanked
 out if the value is undefined. For other field types, the caret enables a
 kind of fill mode. Instead of an arbitrary expression, the value supplied
 must be a scalar variable name that contains a text string. Perl puts as
 much text as it can into the field, and then chops off the front of the
 string so that the next time the variable is referenced, more of the text
 can be printed. (Yes, this means that the variable itself is altered
 during execution of the write call and
 is not preserved. Use a scratch variable if you want to preserve the
 original value.) Normally, you would use a sequence of fields lined up
 vertically to print out a block of text. You might wish to end the final
 field with the text “...”, which will
 appear in the output if the text was too long to appear in its entirety.
 You can change which characters are legal to “break” on (or after) by
 changing the variable $: (that’s $FORMAT_LINE_BREAK_CHARACTERS if you’re using
 the English module) to a list of the desired characters.
Understand that this simplistic type of linebreaking has nothing to
 do with the sophisticated linebreaking required by UAX #14: Unicode Line
 Breaking Algorithm. With Unicode text, the Line_Break=VALUE
 (abbreviation LB) property of each
 codepoint must be used, in conjunction with fancy tables, to figure out
 where breaks are permitted. To give you an idea of how complicated this
 is, here are the possible property values for
 VALUE in \p{LB=VALUE}:
Ambiguous Contingent_Break Ideographic Postfix_Numeric
Alphabetic Close_Punctuation Inseparable Prefix_Numeric
Break_Both Close_Parenthesis Infix_Numeric Quotation
Break_After Combining_Mark Line_Feed Space
Break_Before Complex_Context Next_Line Unknown
Mandatory_Break Exclamation Nonstarter Word_Joiner
Break_Symbols Glue Numeric ZWSpace
Carriage_Return Hyphen Open_Punctuation
Scripts normally written without whitespace or dashes are especially
 challenging to linebreak, so this is really the only way to do it. The
 Unicode::LineBreak module from CPAN, which includes the popular Unicode::GCString module in its distribution, fully implements UAX #14,
 including handling East Asian scripts. You’ll want to use this module for
 anything fancier than simplistic ASCII.
Using ^ fields can produce
 variable-length records. If the text to be formatted is short, just repeat
 the format line with the ^ field in it
 a few times. If you just do this for short data, you’d end up getting a
 few blank lines. To suppress lines that would end up blank, put a ~ (tilde) character anywhere in the line. (The
 tilde itself will be translated to a space upon output.) If you put a
 second tilde next to the first, the line will be repeated until all the
 text in the fields on that line are exhausted. (This works because the
 ^ fields chew up the strings they
 print. But if you use a field of the @
 variety in conjunction with two tildes, the expression you supply had
 better not give the same value every time forever! Use a shift or some other operator with a side effect
 that exhausts the set of values.)
Top-of-form processing is by default handled by a format with the
 same name as the current filehandle with _TOP concatenated to it. It’s triggered at the
 top of each page. See the write entry
 in Chapter 27.
Here are some examples:
a report on the /etc/passwd file
format STDOUT_TOP =
 Passwd File
Name Login Office Uid Gid Home
––
.
format STDOUT =
@<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
$name, $login, $office,$uid,$gid, $home
.

a report from a bug report form
format STDOUT_TOP =
 Bug Reports
@<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
$system, $%, $date
––
.
format STDOUT =
Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $subject
Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $index, $description
Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $priority, $date, $description
From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $from, $description
Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $programmer, $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<...
 $description
.
Lexical variables are not visible within a format unless the format
 is declared within the scope of the lexical variable.
It is possible to intermix prints
 with writes on the same output channel,
 but you’ll have to handle the $–
 special variable ($FORMAT_LINES_LEFT
 if you’re using the English module) yourself.

[231] Even those fields maintain the integrity of the columns you put
 them in, however. There is nothing in a picture line that can cause
 fields to grow or shrink or shift back and forth. The columns you see
 are sacred in a WYSIWYG sense—assuming you’re using a fixed-width
 font. Even control characters are assumed to have a width of
 one.

Format Variables

The current format name is stored in the variable $~ ($FORMAT_NAME), and the current top-of-form
 format name is in $^ ($FORMAT_TOP_NAME). The current output page
 number is stored in $% ($FORMAT_PAGE_NUMBER), and the number of lines
 on the page is in $= ($FORMAT_LINES_PER_PAGE). Whether to flush the
 output buffer on this handle automatically is stored in $| ($OUTPUT_AUTOFLUSH). The string to be output before each top of page (except
 the first) is stored in $^L ($FORMAT_FORMFEED). These variables are set on
 a per-filehandle basis, so you’ll need to select the filehandle associated with a format
 in order to affect its format variables:
select((select(OUTF),
 $~ = "My_Other_Format",
 $^ = "My_Top_Format"
)[0]);
Pretty ugly, eh? It’s a common idiom, though, so don’t be too
 surprised when you see it. You can at least use a temporary variable to
 hold the previous filehandle:
$ofh = select(OUTF);
$~ = "My_Other_Format";
$^ = "My_Top_Format";
select($ofh);
This is a much better approach in general because not only does
 legibility improve, but you now have an intermediary statement in the
 code to stop on when you’re single-stepping in the debugger. If you use
 the English module, you can even read the variable names:
use English;
$ofh = select(OUTF);
$FORMAT_NAME = "My_Other_Format";
$FORMAT_TOP_NAME = "My_Top_Format";
select($ofh);
But you still have those funny calls to select. If you want to avoid them, use the
 IO::Handle module bundled with Perl. Now you can access these
 special variables using lowercase method names instead:
use IO::Handle;
OUTF–>format_name("My_Other_Format");
OUTF–>format_top_name("My_Top_Format");
Much better!
Since the values line following your picture line may contain
 arbitrary expressions (for @ fields,
 not ^ fields), you can farm out more
 sophisticated processing to other functions, like sprintf or one of your own. For example, to
 insert commas into a number:
format Ident =
 @<<<<<<<<<<<<<<<
 commify($n)
.
To get a real @, ~, or ^
 into the field, do this:
format Ident =
I have an @ here.
 "@"
.
To center a whole line of text, do something like this:
format Ident =
@||
 "Some text line"
.
The > field-length indicator
 ensures that the text will be right-justified within the field, but the
 field as a whole occurs exactly where you show it occurring. There is no
 built-in way to say “float this field to the righthand side of the page,
 however wide it is.” You have to specify where it goes relative to the
 left margin. The truly desperate can generate their own format on the
 fly, based on the current number of columns (not supplied), and then
 eval it:
$format = "format STDOUT = \n"
 . "^" . "<" x $cols . "\n"
 . '$entry' . "\n"
 . "\t^" . "<" x ($cols–8) . "~~\n"
 . '$entry' . "\n"
 . ".\n";
print $format if $Debugging;
eval $format;
die $@ if $@;
The most important line there is probably the print. What the print would print out looks something like
 this:
format STDOUT =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$entry
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$entry
.
Here’s a little program that behaves like the
 fmt(1) Unix utility:
format =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~
$_

.

$/ = "";
while (<>) {
 s/\s*\n\s*/ /g;
 write;
}

Footers

While $^ ($FORMAT_TOP_NAME) contains the name of the current header format, there is
 no corresponding mechanism to do the same thing automatically for a
 footer. Not knowing how big a format is going to be until you evaluate
 it is one of the major problems. It’s on the to-do list.[232]
Here’s one strategy: if you have a fixed-size footer, you can get
 footers by checking $– ($FORMAT_LINES_LEFT) before each write, and then print the footer yourself if
 necessary.
Here’s another strategy: open a pipe to yourself using open(MESELF, "|–") (see the open entry in Chapter 27),
 and always write to MESELF instead of STDOUT. Have your child process postprocess
 its STDIN to rearrange headers and
 footers however you like. Not very convenient, but it’s doable.

[232] That doesn’t guarantee we’ll ever do it, of course. Formats
 are somewhat passé in this age of WWW, Unicode, XML, XSLT, and
 whatever the next few things after that are.

Accessing Formatting Internals

For low-level access to the internal formatting mechanism, you may use
 the built-in formline operator and
 access $^A (the $ACCUMULATOR variable) directly. (Formats
 essentially compile into a sequence of calls to formline.) For example:
$str = formline <<'END', 1,2,3;
@<<< @||| @>>>
END

say "Wow, I just stored '$^A' in the accumulator!";
Or to create an swrite
 subroutine that is to write as
 sprintf is to printf, do this:
use Carp;
sub swrite {
 croak "usage: swrite PICTURE ARGS" unless @_;
 my $format = shift;
 $^A = "";
 formline($format, @_);
 return $^A;
}

$string = swrite(<<'END', 1, 2, 3);
Check me out
@<<< @||| @>>>
END
print $string;
If you were using the IO::Handle module, you could use formline as follows to wrap a block of text at
 column 72:
use IO::Handle;
STDOUT–>formline("^" . ("<" x 72) . "~~\n", $long_text);
Now brace yourself for a big chapter…

Chapter 27. Functions

This chapter describes the built-in Perl functions in alphabetical
 order[233] for convenient reference. Each function description begins with a
 brief summary of the syntax for that function. Parameter names like
 THIS represent placeholders for actual
 expressions, and the text following the syntax summary will describe the
 semantics of supplying (or omitting) the actual arguments.
You can think of functions as terms in an expression, along with
 literals and variables. Or you can think of them as prefix operators that
 process the arguments after them. We call them operators half the time
 anyway.
Some of these operators, er, functions take a
 LIST as an argument. Elements of the
 LIST should be separated by commas (or by
 =>, which is just a funny kind of
 comma). The elements of the LIST are evaluated in
 list context, so each element will return either a scalar or a list value,
 depending on its sensitivity to list context. Each returned value, whether
 scalar or list, will be interpolated as part of the overall sequence of
 scalar values. That is, all the lists get flattened into one list. From the
 point of view of the function receiving the arguments, the overall argument
 LIST is always a single-dimensional list value.
 (To interpolate an array as a single element, you must explicitly create and
 interpolate a reference to the array instead.)
Predefined Perl functions may be used either with or without
 parentheses around their arguments; the syntax summaries in this chapter
 omit the parentheses. If you do use parentheses, the simple but occasionally
 surprising rule is this: if it looks like a function, then it
 is a function, so precedence doesn’t matter. Otherwise,
 it’s a list operator or unary operator, and precedence does matter. Be
 careful, because even if you put
 whitespace between the keyword and its left parenthesis, that doesn’t keep
 it from being a function:
print 1+2*4; # Prints 9
print(1+2) * 4; # Prints 3!
print (1+2)*4; # Also prints 3!
print +(1+2)*4; # Prints 12
print ((1+2)*4); # Prints 12
If you run Perl with the –w switch,
 it will warn you about this. For example, the second and third lines above
 produce messages like this:
print (...) interpreted as function at – line 2.
Useless use of integer multiplication in void context at – line 2.
Given the simple definition of some functions, you have considerable
 latitude in how you pass arguments. For instance, the most common way to use
 chmod is to pass the file permissions
 (the mode) as the first:
chmod 0644, @array;
but the definition of chmod just
 says:
chmod LIST
so you could just as well say:
unshift @array, 0644;
chmod @array;
If the first argument of the list is not a valid mode, chmod will fail, but that’s a runtime semantic
 problem unrelated to the syntax of the call. If the semantics require any
 special arguments to be passed first, the text will describe these
 restrictions.
In contrast to the simple LIST functions,
 other functions impose additional syntactic constraints. For instance,
 push has a syntax summary that looks like
 this:
push ARRAY, LIST
This means that push requires a
 proper array as its first argument, but doesn’t care about its remaining
 arguments. That’s what the LIST at the end means.
 (LISTs always come at the end, since they gobble
 up all remaining values.) Whenever a syntax summary contains any arguments
 before the LIST, those arguments are
 syntactically distinguished by the compiler, not just semantically
 distinguished by the interpreter when it runs later. Such arguments are
 never evaluated in list context. They may be evaluated in scalar context, or
 they may be special referential arguments such as the array in push. (The description will tell you which is
 which.)
For operations based directly on the C library’s functions, we do not
 try to duplicate your system’s documentation. When a function description says to see
 function(2), that means you should look up the
 corresponding C version of that function to learn more about its semantics.
 The number in parentheses indicates the section of the system programmer’s
 manual in which you will find the manpage, if you have the manpages
 installed. (And in which you won’t, if you don’t.)
These manpages may document system-dependent behavior like shadow
 password files, access control lists, and so forth. Many Perl functions that
 derive from C library functions in Unix are emulated even on non-Unix
 platforms. For example, although your operating system might not support the
 flock(2) or fork(2) syscalls, Perl
 will do its best to emulate them anyway by using whatever native facilities
 your platform provides.
Occasionally, you’ll find that the documented C function has more
 arguments than the corresponding Perl function. Generally, the missing
 arguments are things that Perl knows already, such as the length of the
 previous argument, so you needn’t supply them in Perl. Any remaining
 disparities are caused by the different ways Perl and C specify filehandles
 and success/failure values.
In general, functions in Perl that serve as wrappers for syscalls of
 the same name (like chown(2),
 fork(2), closedir(2), etc.) all
 return true when they succeed, and undef
 otherwise, as mentioned in the descriptions that follow. This is different
 from the C library’s interfaces to these operations, which all return
 –1 on failure. Exceptions to this rule
 are wait, waitpid, and syscall. Syscalls also set the special $! ($OS_ERROR)
 variable on failure. Other functions do not, except accidentally.
For functions that can be used in either scalar or list context,
 failure is generally indicated in scalar context by returning a false value
 (usually undef) and in list context by
 returning the null list. Successful execution is generally indicated by
 returning a value that will evaluate to true (in context).
Remember the following rule: there is no rule
 that relates the behavior of a function in list context to its behavior in
 scalar context, or vice versa. It might do two totally different
 things.
Each function knows the context in which it was called. The same
 function that returns a list when called in list context will, when called
 in scalar context, return whichever kind of value would be most appropriate.
 Some functions return the length of the list that would have been returned
 in list context. Some operators return the first value in the list. Some
 functions return the last value in the list. Some functions return the
 “other” value, when something can be looked up either by number or by name. Some functions
 return a count of successful operations. In general, Perl functions do
 exactly what you want—unless you want consistency.
One final note: we’ve tried to be very consistent in our use of the
 terms “byte” and “character”. Historically, these terms have been confused
 with each other (and with themselves). But when we say “byte”, we mean a
 character whose ordinal value fits into 8 bits. When we say “character”, we
 usually mean an abstract Unicode codepoint. This is the kind of thing C
 programmers used to stick in their char
 variables until they outgrew them. Today, int is the new char. A codepoint is a programmer-visible
 character, a nonnegative integer that corresponds to a single
 Unicode entity, sometimes informally called a character.
Currently, few of Perl’s functions outside its regex library have much
 to do with graphemes, but they’re the next layer of abstraction up from
 codepoints. These are user-visible characters, which
 may in turn comprise several programmer-visible ones. A CR+LF is one
 examples of a grapheme that occupies two codepoints. Another good one is ȭ,
 which may occupy anywhere from 1–3 codepoints, depending on normalization:
 “\x{22D}” in NFC, “\x{6F}\x{303}\x{304}” in NFD, or “\x{F5}\x{304}”, which is neither. In this chapter,
 if you catch us talking about characters, we really mean codepoints, and if
 we talk about bytes, we just mean undecoded ordinals
 smaller than 256.

[233] Sometimes tightly related functions are grouped together in the
 system manpages, so we respect that grouping here. To find the
 description of endpwent, for
 instance, you’ll have to look under getpwent.

Perl Functions by Category

Here are Perl’s functions and function-like keywords, arranged by category.
 Some functions appear under more than one heading.
	Scalar manipulation
	chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack, q//, qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

	Regular expressions and pattern matching
	m//, pos, qr//, quotemeta, s///, split, study

	Numeric functions
	abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

	Array processing
	pop, push, shift, splice, unshift
As of v5.12, you may also use each, keys, and values on arrays, if you really feel you
 must.

	List processing
	grep, join, map, qw//, reverse, sort, unpack

	Hash processing
	delete, each, exists, keys, values

	Input and output
	binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf, read, readdir, readpipe, rewinddir, say, seek, seekdir, select (ready file descriptors), syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn, write

	Fixed-length data and records
	pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

	Filehandles, files, and directories
	–X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open, opendir, readlink, rename, rmdir, select (ready file descriptors), select (output filehandle), stat, symlink, sysopen, umask, unlink, utime

	Flow of program control
	caller, continue, die, do, dump, eval, exit, _ _FILE_ _, goto, last, _ _LINE_ _, next, _ _PACKAGE_ _, redo, return, sub, wantarray

	Scoping
	caller, import, local, my, no,
 our, package, state, use
state is available only if
 the “state” feature is enabled or
 if it is prefixed with CORE::.
 See feature. Alternately, include a use
 v5.10 or later to the current scope.

	The switch feature
	break, continue, default, given, when
Except for continue as an
 expression not a block, these are available only if you enable the
 “switch” feature. Alternately,
 include a use v5.10 or later to
 the current scope. See The given Statement in Chapter 4.

	Miscellaneous
	defined, dump, eval, formline, lock, prototype, reset, scalar, undef, wantarray

	Processes and process groups
	alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, setpgrp, setpriority, sleep, system, times, wait, waitpid

	Library modules
	do, import, no, package, require, use

	Classes and objects
	bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

	Low-level socket access
	accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, shutdown, socket, socketpair

	System V interprocess communication
	msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

	Fetching user and group information
	endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

	Fetching network information
	endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber,
 getprotoent, getservbyname, getservbyport, getservent, sethostent, setnetent, setprotoent, setservent

	Time
	gmtime, localtime, time, times

	Functions related to Unicode
	binmode, chomp, chop, chr, dbmopen, fc, getc, index, lc, lcfirst, length, m//, my, open, ord, our, pack, package, pos, print, printf, quotemeta, read, readline,
 reverse, rindex, s///, seek, sort, split, sprintf, state, substr, sysopen,
 sysread, sysseek, syswrite, tell, tr///, truncate, uc, ucfirst, unpack, write, y///

Perl Functions in Alphabetical Order

Many of the following function names are annotated with, um,
 annotations. Here are their meanings:
	
 [image:] Uses $_ ($ARG)
 as a default variable.

	
 [image:] Sets $!
 ($OS_ERROR) on syscall
 errors.

	 [image:] Raises exceptions; uses eval to trap $@ ($EVAL_ERROR).

	
 [image:] Sets $?
 ($CHILD_ERROR) when child process
 exits.

	 [image:] Taints returned data.

	 [image:] Taints returned data under some system, locale,
 or handle settings.

	 [image:] Raises an exception if given an argument of
 inappropriate type.

	 [image:] Raises an exception if modifying a read-only
 target.

	 [image:] Raises an exception if fed tainted data.

	 [image:] Raises an exception if unimplemented on current
 platform.

	
 [image:] Raises an exception if passed a string
 containing characters with ordinals higher than 255.

Functions that return tainted data when fed tainted data are not
 marked, since that’s most of them. In particular, if you use any function
 on %ENV or @ARGV, you’ll get tainted data.
Functions marked with
 [image:] raise an exception when they require,
 but do not receive, an argument of a particular type (such as filehandles
 for I/O operations, references for blessing, etc.).
Functions marked with [image:] sometimes need to alter their arguments. If they
 can’t modify the argument because it’s marked read-only, they’ll raise an
 exception. Examples of read-only variables are the special variables
 containing data captured during a pattern match and variables that are
 really aliases to constants.
Functions marked with [image:] may not be implemented on all platforms. Although
 many of these are named after functions in the Unix C library, don’t
 assume that just because you aren’t running Unix, you can’t call any of
 them. Many are emulated, even those you might never expect to see—such as
 fork on Win32 systems. For more
 information about the portability and behavior of system-specific
 functions, see the perlport
 manpage, plus any platform-specific documentation that came with your Perl
 port.
Functions marked with [image:] raise an exception when they are passed an
 undecoded string with any characters that are too big to fit into a byte
 value.
Functions that raise other miscellaneous exceptions are marked with
 [image:] , including math functions that throw range errors,
 such as sqrt(–1).

abs [image:]

abs VALUE
abs
This function returns the absolute value of its
 argument.
$diff = abs($first – $second);
Here and in the examples following, good style (and the strict pragma) would dictate that you add a my modifier to declare a new lexically scoped
 variable, like this:
my $diff = abs($first – $second);
However, we’ve omitted my from
 most of our examples for clarity. Just assume that any such variable was
 declared earlier.

accept [image:] [image:] [image:]

accept SOCKET, PROTOSOCKET
This function is used by server processes that wish to listen
 for socket connections from clients.
 PROTOSOCKET must be a filehandle already
 opened via the socket operator and
 bound to one of the server’s network addresses or to INADDR_ANY. Execution is suspended until a
 connection is made, at which point the SOCKET
 filehandle is opened and attached to the newly made connection. The
 original PROTOSOCKET remains unchanged; its
 sole purpose is to be cloned into a real socket. The function returns
 the connected address if the call succeeds, false otherwise. For
 example:
unless ($peer = accept(SOCKET, PROTOSOCK)) {
 die "Can't accept a connection: $!";
}
On systems that support it, the close-on-exec flag will be set for
 the newly opened file descriptor, as determined by the value of $^F ($SYSTEM_FD_MAX).
See accept(2). See also the example in the
 section Sockets in Chapter 15.

alarm [image:] [image:]

alarm EXPR
alarm
This function tells the operating system to send a SIGALRM signal to the current process after
 EXPR wallclock seconds have elapsed.
Only one timer may be active at once. Each call disables the
 previous timer, and an EXPR of 0 cancels the
 previous timer without starting a new one. The return value is the
 amount of time remaining on the previous timer.
print "Answer me within one minute, or die: ";
alarm(60); # kill program in one minute
$answer = <STDIN>;
$timeleft = alarm(0); # clear alarm
say "You had $timeleft seconds remaining";
It is usually a mistake to intermix alarm and sleep calls, because many systems use the
 alarm(2) syscall mechanism to implement
 sleep(3). Historically, the elapsed time may be up
 to one second less than you specified because of how seconds are
 counted. Additionally, a busy system may not get around to running your
 process immediately. See Chapter 15 for information on
 signal handling, such as how to use alarms to time out slow
 operations.
For alarms of finer granularity than one second, the Time::HiRes module provides functions for this purpose. For a hackier
 approach, use the four-argument version of select (leaving the first three arguments
 undefined), or Perl’s syscall
 function to access setitimer(2) (if your system
 supports it).

atan2

atan2 Y, X
This function returns the principal value of the arc tangent of
 Y/X in the range
 -π to +π. A quick way to get an
 approximate value of π is to say:
$pi = atan2(1,1) * 4;
For the tangent operation, you may use the tan function from the Math::Trig or the POSIX modules, or just use the familiar relation:
sub tan { sin($_[0]) / cos($_[0]) }
If either or both arguments are 0, the return value is
 implementation defined; see your atan2(3) manpage
 for more information.

bind [image:] [image:] [image:] [image:]

bind SOCKET, NAME
This function assigns a name to an unnamed but already-opened
 socket specified by the SOCKET filehandle so
 that other processes can find it. The function returns true if it
 succeeded, false otherwise. NAME should be a
 packed address of the proper type for the socket.
use Socket;
$port_number = 80; # pretend we want to be a web server
$sockaddr = sockaddr_in($port_number, INADDR_ANY);
bind(SOCK, $sockaddr) || die "Can't bind $port_number: $!";
See bind(2). See also the examples in the
 section “Sockets” in Chapter 15. Normally, you should
 be using the higher-level interface to sockets provided by the standard
 IO::Socket module.

binmode [image:]

binmode FILEHANDLE, IOLAYER
binmode FILEHANDLE
This function arranges for the
 FILEHANDLE to have the semantics specified by
 the IOLAYER argument. If
 IOLAYER is omitted, binary (or “raw”)
 semantics are applied to the filehandle. If
 FILEHANDLE is an expression, the value is
 taken as the name of the filehandle or a reference to a filehandle, as
 appropriate. The function returns true if it succeeded, false
 otherwise.
The binmode function should be
 called after the open but before any
 I/O is done on the filehandle. The only way to reset the mode on a
 filehandle is to reopen the file, since the various layers may have
 treasured up various bits and pieces of data in various buffers. This
 restriction may be relaxed in the future.
In olden days, binmode was used
 primarily on operating systems whose runtime libraries distinguished
 text from binary files. On those systems, the purpose of binmode was to turn off the default text
 semantics. However, with the advent of Unicode and its many different
 storage encodings, programs on all systems must take some cognizance of
 the distinction.
These days there is only one kind of binary file (as far as Perl
 is concerned), but there are many kinds of text files, which Perl would
 also like to treat in a single way. So Perl has a single internal format
 for Unicode text, UTF-8.
Since there are many kinds of text files, text files often need to
 be translated on input into UTF-8, and then back into some legacy
 character set or some other representation of Unicode on output.
You can use I/O layers to tell Perl how exactly (or inexactly) to
 do these translations. For example, a layer of “:text” tells Perl to do generic text
 processing without telling Perl which kind of text processing to
 do.
But I/O layers like “:utf8” and
 “:encoding(Latin1)” tell Perl which
 text format to read and write.
On the other hand, the “:raw”
 I/O layer tells Perl to keep its cotton-pickin’ hands off the
 data.
For more on how I/O layers work, see the open function. The rest of this discussion
 describes what binmode does without
 the IOLAYER argument; that is, the historical
 meaning of binmode, which is
 equivalent to:
binmode FILEHANDLE, ":raw";
Unless instructed otherwise, Perl assumes your freshly opened file
 should be read or written in text mode. Text mode means that \n (newline) will be your internal line
 terminator. All systems use \n as the
 internal line terminator, but what that really represents varies from
 system to system, device to device, and even file to file, depending on
 how you access the file. In such legacy systems (including MS-DOS and VMS), what your program sees as
 a \n may not be what’s physically
 stored on disk. The operating system might, for example, store text
 files with \cM\cJ sequences that are
 translated on input to appear as \n
 to your program, then on output translate \n from your program back to \cM\cJ. The binmode function disables this automatic
 translation on such systems.
In the absence of an IOLAYER argument,
 binmode has no effect under Unix
 (including Mac OS X), both of which use \n to end each line and represent that as a
 single character. (It may, however, be a different character: Unix uses
 \cJ and pre-Unix Macs used \cM. Doesn’t matter.)
The following example shows how a Perl script might read a GIF
 image from a file and print it to the standard output. On systems that
 would otherwise alter the literal data into something other than its
 exact physical representation, you must prepare both handles. While you
 could use a “:raw” layer directly in
 the GIF open, you can’t do that so easily with preopened filehandles
 like STDOUT:
binmode(STDOUT, ":raw")
 || die "couldn't binmode STDOUT to raw: $!";
open(GIF, "< :raw", "vim–power.gif")
 || die "Can't open vim–power.gif: $!";
while (read(GIF, $buf, 1024)) { # now bytes, not chars
 print STDOUT $buf;
}
Note that if you use the built-in UTF-8 layer, like this:
binmode(HANDLE, ":utf8");
then if it is an input handle, you must be prepared to deal with
 encoding errors yourself, because as of v5.14, the default is too
 lenient with malformed UTF-8. The quickest and also perhaps the best way
 to handle encoding errors is not to allow them at all.
use warnings FATAL => "utf8";
Even if you implement the Encode module using something like:
binmode(HANDLE, ":encoding(utf8)")
you should still fatalize UTF-8 warnings as shown above, because
 otherwise you will not take an exception when there is an error. (Always
 assuming you prefer exceptions to mangled text. Neither is designed to
 make you happy.)

bless [image:]

bless REF, CLASSNAME
bless REF
This function tells the referent pointed to by reference
 REF that it is now an object in the
 CLASSNAME package—or the current package if
 no CLASSNAME is specified. If
 REF is not a valid reference, an exception is
 raised. For convenience, bless
 returns the reference, since it’s often the last function in a
 constructor subroutine. For example:
$pet = Beast–>new(TYPE => "cougar", NAME => "Clyde");

then in Beast.pm:
sub new {
 my $class = shift;
 my %attrs = @_;
 my $self = { %attrs };
 return bless($self, $class);
}
You should generally bless objects
 into CLASSNAMEs that are mixed case.
 Namespaces with all lowercase
 names are reserved for internal use as Perl pragmata (compiler directives). Built-in types (such as
 “SCALAR”, “ARRAY”, “HASH”, “UNIVERSAL”, etc.) all have uppercase names, so you may wish to
 avoid such package names as well.
Make sure that CLASSNAME is not false;
 blessing into false packages is not supported and may result in
 unpredictable behavior.
It is not a bug that there is no corresponding curse operator. (But there is a sin operator.) See also Chapter 12 for more about the blessing (and blessings) of
 objects.

break

break
Exit from a given block
 earlier than normal (before the end of a when clause). This keyword is enabled by the
 switch feature; see the feature pragma in Chapter 29
 for more information.

caller

caller EXPR
caller
This function returns information about the stack of current
 subroutine calls and such. Without an argument, it returns the package
 name, filename, and line number from which the currently executing
 subroutine was called:
($package, $filename, $line) = caller;
Here’s an example of an exceedingly picky function, making use of
 the special tokens _ _PACKAGE_ _ and
 _ _FILE_ _ described in Chapter 2:
sub careful {
 my ($package, $filename) = caller;
 unless ($package eq _ _PACKAGE_ _ && $filename eq _ _FILE_ _) {
 die "You weren't supposed to call me, $package!";
 }
 say "called me safely";
}

sub safecall {
 careful();
}
When called with an argument, caller evaluates
 EXPR as the number of stack frames to go back
 before the current one. For example, an argument of 0 means the current
 stack frame, 1 means the caller, 2 means the caller’s caller, and so on.
 The function also reports additional information, as shown here:
my $i = 0;
while (my ($package, $filename, $line, $subroutine,
 $hasargs, $wantarray, $evaltext, $is_require,
 $hints, $bitmask, $hinthash) = caller($i++))
{
 ...
}
If the frame is a subroutine call, $hasargs is true if it has its own @_ array (not one borrowed from its caller).
 Otherwise, $subroutine may be
 “(eval)” if the frame is not a
 subroutine call but an eval. If so,
 additional elements $evaltext and
 $is_require are set: $is_require is true if the frame is created by
 a require or use statement, and $evaltext contains the text of the eval EXPR
 statement. In particular, for a eval
 BLOCK statement, $filename is “(eval)”, but $evaltext is undefined. (Note also that each
 use statement creates a require frame inside an eval EXPR frame.)
 The $hints, $bitmask, and $histhash are internal values; please ignore
 them unless you’re a member of the thaumatocracy.[234]
In a fit of even deeper magic, caller also sets the array @DB::args to the arguments passed in the given
 stack frame—but only when called from within the DB package. See Chapter 18.
Be aware that the optimizer might have optimized call frames away
 before caller had a chance to get the
 information. That means that caller(N) might not
 return information about the call frame you expect for N > 1. In
 particular, @DB::args might have
 information from the previous time caller was called.
Also understand that setting @DB::args is best effort,
 intended for debugging or generating backtraces, and should not be
 relied on. In particular, @_ contains
 aliases to the caller’s current @_
 array. Perl does not take a snapshot of @_ at subroutine entry, so @DB::args will reflect any modifications the
 subroutine made to @_ subsequent to
 its call. In addition, @DB::args,
 like @_, does not hold explicit
 references to its elements, so in certain cases its elements may have
 become freed and reallocated for other variables or temporary values.
 Finally, a side effect of the current implementation is that the effects
 of only shift @_ can be undone (but
 not pop or splice), and if a reference to @_ has been taken, you’re probably just hosed.
 So @DB::args is actually a hybrid of
 the current and initial states of @_.
 Buyer beware.

[234] $hinthash is a reference to
 a hash containing the value of %^H when the caller was compiled, or
 undef if %^H was empty. Do not modify the values of
 this hash, as they are the actual values stored in the
 optree.

chdir [image:] [image:]

chdir EXPR
chdir
This function changes the current process’s working directory
 to EXPR, if possible. If
 EXPR is omitted, $ENV{HOME} is used if set, and $ENV{LOGDIR} otherwise; these are usually the
 process’s home directory. The function returns true on success, false
 otherwise.
chdir("$prefix/lib") || die "Can't cd to $prefix/lib: $!";
See also the Cwd module, which lets you keep track of your current
 directory automatically.
On systems that support fchdir(2), you may
 pass a filehandle or directory handle as
 EXPR. On systems that don’t support
 fchdir(2), passing handles raises a runtime
 exception.

chmod [image:] [image:]

chmod LIST
This function changes the permissions of a list of files. The
 first element of the list must be the numerical mode, as in the
 chmod(2) syscall. The function returns the number
 of files successfully changed. For example:
$cnt = chmod 0755, "file1", "file2";
will set $cnt to 0, 1, or
 2, depending on how many files were
 changed. Success is measured by lack of error, not by an actual change,
 because a file may have had the same mode before the operation. An error
 probably means you lacked sufficient privileges to change its mode
 because you were neither the file’s owner nor the superuser. Check
 $! to find the actual reason for
 failure.
Here’s a more typical usage:
chmod(0755, @executables) == @executables
 || die "couldn't chmod some of @executables: $!";
If you need to know which files didn’t allow the change, use
 something like this:
@cannot = grep {not chmod(0755, $_) } "file1", "file2", "file3";
die "$0: could not chmod @cannot" if @cannot;
This idiom uses the grep
 function to select only those elements of the list for which the
 chmod function failed.
On systems that support fchmod(2), you may
 also pass filehandles in the argument list. On systems without
 fchmod(2) support, passing filehandles raises a
 runtime exception. To be recognized, filehandles must be passed as
 typeglobs or references to typeglobs: strings are considered
 filenames.
When using nonliteral mode data, you may need to convert an octal
 string to a number using the oct
 function. That’s because Perl doesn’t automatically assume a string
 contains an octal number just because it happens to have a leading
 “0”.
$DEF_MODE = 0644; # Can't use quotes here!
PROMPT: {
 print "New mode? ";
 $strmode = <STDIN>;
 exit unless defined $strmode; # test for eof
 if ($strmode =~ /^\s*$/) { # test for blank line
 $mode = $DEF_MODE;
 }
 elsif ($strmode !~ /^\d+$/) {
 say "Want numeric mode, not $strmode";
 redo PROMPT;
 }
 else {
 $mode = oct($strmode); # converts "755" to 0755
 }
 chmod $mode, @files;
}
This function works with numeric modes much like the Unix
 chmod(2) syscall. If you want a symbolic interface
 like the one the chmod(1) command provides, see the
 File::chmod module on CPAN.
You can also import the symbolic S_I* constants from the Fcntl module:
use Fcntl ":mode";
chmod S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, @executables;
Some people consider that more readable than 0755. Go figure.

chomp [image:] [image:]

chomp VARIABLE
chomp LIST
chomp
This function (normally) deletes a trailing newline from the
 end of a string contained in a variable. This is a slightly safer
 version of chop (described next) in
 that it has no effect on a string that doesn’t end in a newline. More
 specifically, it deletes the terminating string corresponding to the
 current value of $/, and not just any
 last character.
Unlike chop, chomp returns the number of characters
 deleted. If $/ is "" (in paragraph mode), chomp removes all trailing newlines from the
 selected string (or strings, if chomping a
 LIST). When in slurp mode ($/ = undef) or fixed-length record mode
 ($/ is a reference to an integer),
 chomp does nothing. You cannot
 chomp a literal, only a variable.
 Chomping a hash chomps only the
 values, not the keys.
For example:
while (<PASSWD>) {
 chomp; # avoid \n on last field
 @array = split /:/;
 ...
}
I/O layers are allowed to override the value of the $/ variable and mark how strings should be
 chomped. This has the advantage that
 an I/O layer can recognize more than one variety of line terminator
 (like the Unicode paragraph and line separators), but still safely
 chomp whatever terminates the current
 line.
The chomp function is not
 currently smart enough to handle Unicode linebreak sequences, whose
 regex metacharacter is \R. To do so
 on your own:
s/\R/\n/g; # convert all Unicode linebreaks to \n
Or, sometimes, perhaps like this:
my @paras = split /\R+/, our $file_contents;
However, if you want to preserve the linebreak sequence, you’d
 best do this:
our $line =~ s/(\R?)\z//;
my $terminator = $1;

chop [image:] [image:]

chop VARIABLE
chop LIST
chop
This function chops off the last character of a string variable
 and returns the character chopped. The chop function is used primarily to remove the
 newline from the end of an input record, and it is more efficient than
 using a substitution. If that’s all you’re doing, then it would be safer
 to use chomp, since chop always shortens the string no matter
 what’s there, and chomp is more
 selective.
You cannot chop a literal, only
 a variable. If you chop a
 LIST of variables, each string in the list is
 chopped:
@lines = `cat myfile`;
chop @lines;
You can chop anything that is
 an lvalue, including an assignment:
chop($cwd = `pwd`);
chop($answer = <STDIN>);
This is different from:
$answer = chop($tmp = <STDIN>); # WRONG
which puts a newline into $answer because chop returns the character chopped, not the
 remaining string (which is in $tmp).
 One way to get the result intended here is with substr:
$answer = substr <STDIN>, 0, –1;
But this is more commonly written as:
chop($answer = <STDIN>);
In the most general case, chop
 can be expressed using substr:
$last_char = chop($var);
$last_char = substr($var, –1, 1, ""); # same thing
Once you understand this equivalence, you can use it to do bigger
 chops. To chop more than one character, use substr as an lvalue, assigning a null string.
 The following removes the last five characters of $caravan:
substr($caravan, –5) = "";
The negative subscript causes substr to count from the end of the string
 instead of the beginning. To save the removed characters, you could use
 the four-argument form of substr,
 creating something of a quintuple chop:
$tail = substr($caravan, –5, 5, "");
This is all dangerous business dealing with codepoints instead of
 graphemes. Perl doesn’t really have a grapheme mode, so you have to deal
 with them yourself. Consider a word like
 naïveté, which is really nai\x{308}vete\x{301} in NFD. If
 you use chop, you won’t get
 naïvet; you’ll get naïvete.
 You have need to use s/\X\z// to chop a grapheme instead of a codepoint. The CPAN
 Unicode::GCString module is a tremendous help
 with all this.

chown [image:] [image:] [image:]

chown LIST
This function changes the owner and group of a list of files.
 The first two elements of the list must be the
 numeric UID and GID, in that order. A value of
 –1 in either position is interpreted
 by most systems to leave that value unchanged. The function returns the
 number of files successfully changed. For example:
chown($uidnum, $gidnum, "file1", "file2") == 2
 || die "can't chown file1 || file2: $!";
will set $cnt to 0, 1, or
 2, depending on how many files got
 changed (in the sense that the operation succeeded, not in the sense
 that the owner was different afterward). Here’s a more typical
 usage:
chown($uidnum, $gidnum, @filenames) == @filenames
 || die "can't chown @filenames: $!";
Here’s a subroutine that accepts a username, looks up the user and
 group IDs for you, and does the chown:
sub chown_by_name {
 my($user, @files) = @_;
 chown((getpwnam($user))[2,3], @files) == @files
 || die "can't chown @files: $!";
}

chown_by_name("fred", glob("*.c"));
However, you may not want the group changed as the previous
 function does, because the /etc/passwd file associates each user with a
 single group even though that user may be a member of many secondary
 groups according to /etc/group. An
 alternative is to pass a –1 for the
 GID, which leaves the group of the file unchanged. If you pass a
 –1 as the UID and a valid GID, you
 can set the group without altering the owner.
On systems that support fchown(2), you may
 also pass filehandles in the argument list. On systems without
 fchown(2) support, passing filehandles raises a
 runtime exception. To be recognized, filehandles must be passed as
 typeglobs or references to typeglobs: strings are considered
 filenames.
On most systems, you are not allowed to change the ownership of
 the file unless you’re the superuser, although you should be able to
 change the group to any of your secondary groups. On insecure systems,
 these restrictions may be relaxed, but this is not a portable
 assumption. On POSIX systems, you can detect which rule applies like
 this:
use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
only try if we're the superuser or on a permissive system
if ($> == 0 || !sysconf(_PC_CHOWN_RESTRICTED)) {
 chown($uidnum, –1, $filename)
 || die "can't chown $filename to $uidnum: $!";
}

chr [image:]

chr NUMBER
chr
This function returns the character represented by
 NUMBER (truncated to an integer) in the
 Unicode character set. For example, chr(65) is “A”, latin small
 letter a, and chr(0x2122) is
 “™”, trade
 mark sign. For the reverse of chr, use ord.
If NUMBER is negative, this function
 produces the Unicode replacement
 character, U+FFFD.[235]
(Note that characters with codepoints between 128 and 255 are by
 default internally not encoded as UTF-8 for backward-compatibility
 reasons. You shouldn’t ever notice this, but if you do, that’s
 why.)
If you’d rather specify your characters by name than by number
 (for example, “\N{WHITE SMILING
 FACE}” for a Unicode smiley, “☺”), see the section charnames in Chapter 29. To convert a character
 number to its official name instead of to the character itself, see that
 pragma’s charnames::viacode
 function.

[235] Except under the bytes
 pragma, where the low eight bits of the value are used.

chroot [image:] [image:] [image:] [image:]

chroot FILENAME
chroot
If successful, FILENAME becomes
 the new root directory for the current process—the starting point for
 pathnames beginning with “/”. This
 directory is inherited across exec
 calls and by all subprocesses forked
 after the chroot call. There is no
 way to undo a chroot. For security
 reasons, only the superuser can use this function. Here’s some code that
 approximates what many FTP servers do:
chroot((getpwnam("ftp"))[7])
 || die "can't do anonymous ftp: $!";
This function is unlikely to work on non-Unix systems. See
 chroot(2).

close [image:] [image:] [image:]

close FILEHANDLE
close
This function closes the file, socket, or pipe associated with
 FILEHANDLE after flushing any IO buffers. It
 closes the currently selected filehandle if the argument is omitted. It
 returns true if the close is successful, false otherwise. You don’t have
 to close FILEHANDLE if you are immediately
 going to do another open on it, since
 the next open will close it for you,
 but then you would miss any error that occurred. (See open.) However, an explicit close on an input file resets the line counter
 ($.); the implicit close done by
 open does not.
FILEHANDLE may be an expression whose
 value can be used as an indirect filehandle (either the real filehandle
 name or a reference to anything that can be interpreted as a filehandle
 object).
If the filehandle came from a piped open, close returns false if any underlying syscall
 fails or if the program at the other end of the pipe exited with nonzero
 status. In the latter case, the close
 forces $! ($OS_ERROR) to zero. So if a close on a pipe returns a nonzero status,
 check $! to determine whether the
 problem was with the pipe itself (nonzero value) or with the program at
 the other end (zero value). In either event, $? ($CHILD_ERROR) and ${^CHILD_ERROR_NATIVE}
 contain the wait status value (see its interpretation under system) of the command associated with the
 other end of the pipe. For example:
open(OUTPUT, "| sort –rn | lpr –p") # pipe to sort and lpr
 || die "Can't start sortlpr pipe: $!";
print OUTPUT @lines; # print stuff to output
close(OUTPUT) # wait for sort to finish
 || warn $! ? "Syserr closing sortlpr pipe: $!"
 : "Wait status $? from sortlpr pipe";
A filehandle produced by dup(2)ing a pipe is
 treated as an ordinary filehandle, so close will not wait for the child on that
 filehandle. You have to wait for the child by closing the original
 filehandle. For example:
open(NETSTAT, "netstat –rn |")
 || die "can't run netstat: $!";
open(STDIN, "<&NETSTAT")
 || die "can't dup to stdin: $!";
If you close STDIN above, there
 is no wait; if you close NETSTAT,
 there is.
If you somehow manage to reap an exited pipe child on your own,
 the close will fail. This could happen if you had a $SIG{CHLD} handler of your own that got
 triggered when the pipe child exited, or if you intentionally called
 waitpid on the process ID returned
 from the open call.

closedir [image:] [image:] [image:]

closedir DIRHANDLE
This function closes a directory opened by opendir and returns the success of that
 operation. See the examples under readdir. DIRHANDLE
 may be an expression whose value can be used as an indirect dirhandle,
 usually the real dirhandle name or an autovivified handle object.

connect [image:] [image:] [image:] [image:]

connect SOCKET, NAME
This function initiates a connection with another process that
 is waiting at an accept. The function
 returns true if it succeeded, false otherwise.
 NAME should be a packed network address of
 the proper type for the socket. For example, assuming SOCK is a previously created socket:
use Socket;

my ($remote, $port) = ("www.perl.com", 80);
my $destaddr = sockaddr_in($port, inet_aton($remote));
connect(SOCK, $destaddr)
 || die "Can't connect to $remote at port $port: $!";
To disconnect a socket, use either close or shutdown. See also the examples in the section
 Sockets in Chapter 15. See
 connect(2). For most socket operations, the
 higher-level interface provided by the standard IO::Socket module is preferred.

continue

This is usually a flow-control statement rather than a function.
 If there is a continue attached to a
 BLOCK (typically in a
 while or foreach), it is always executed just before
 the conditional is about to be evaluated again, just like the third part
 of a for(;;) loop. Thus it can be
 used to increment a loop variable, even when the loop has been continued
 via the next statement (which is
 similar to the C continue
 statement).
last, next, or redo may appear within a continue block; last and redo behave as if they had been executed
 within the main block. So will next,
 but since it will execute a continue
 block, it may be more entertaining.
while (EXPR) {
 ### redo always comes here
 do_something;
} continue {
 ### next always comes here
 do_something_else;
 # then back the top to re–check EXPR
}
last always comes here
Omitting the continue section
 is equivalent to using an empty one, logically enough, so next goes directly back to check the condition
 at the top of the loop. See the section Loop Control
 in Chapter 4.
However, if the “switch” feature is enabled, continue is also an operator that exits the
 current when or default block and, by default, falls through
 to the next one. See the section The given Statement in Chapter 4.

cos [image:]

cos EXPR
cos
This function returns the cosine of
 EXPR (expressed in radians). For example, the
 following script will print a cosine table of angles measured in
 degrees:
Here's the lazy way of getting degrees–to–radians

$pi = atan2(1,1) * 4;
$pi_over_180 = $pi/180;

Print table
for ($deg = 0; $deg <= 90; $deg++) {
 printf "%3d %7.5f\n", $deg, cos($deg * $pi_over_180);
}
For the inverse cosine operation, use the acos function from the Math::Trig or POSIX modules, or else use this relation:
sub acos { atan2(sqrt(1 – $_[0] * $_[0]), $_[0]) }

crypt [image:]

crypt PLAINTEXT, SALT
This function computes a one-way hash of a string exactly in
 the manner of crypt(3). This is somewhat useful for
 checking the password file for lousy passwords,[236] although what you really want to do is prevent people from
 adding the bad passwords in the first place.
crypt is intended to be a
 one-way function, much like breaking eggs to make an omelette. There is
 no (known) way to decrypt an encrypted password apart from exhaustive,
 brute-force guessing.
When verifying an existing encrypted string, you should use the
 encrypted text as the SALT (like crypt($plain, $crypted) eq $crypted). This
 lets your code work with the standard crypt (and with more exotic implementations,
 too).
When choosing a new SALT, you minimally
 need to create a random two-character string whose characters come from
 the set [./0–9A–Za–z] (like join "", (".", "/", 0..9, "A".."Z", "a".."z")[rand 64,
 rand 64]). Older implementations of crypt needed only the first two characters of
 the SALT, but code that gives only the first
 two characters is now considered nonportable. See your local
 crypt(3) manpage for details.
Here’s an example that makes sure that whoever runs this program
 knows his own password:
$pwd = (getpwuid ($<))[1]; # Assumes we're on Unix

system "stty –echo"; # or look into Term::ReadKey on CPAN
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
 die "Sorry...\n";
} else {
 say "ok";
}
Of course, typing in your own password to whoever asks for it is
 unwise.
Shadow password files are slightly more secure than traditional
 password files, and you might have to be a superuser to access them.
 Because few programs should run under such powerful privileges, you
 might have the program maintain its own independent authentication
 system by storing the crypt strings
 in a different file than /etc/passwd or /etc/shadow.
The crypt function is
 unsuitable for encrypting large quantities of data, not least of all
 because you can’t get the information back. Look at the Crypt::*, Digest::*, and PGP::* directories on your favorite CPAN mirror for a slew of
 potentially useful modules.
If using crypt on a Unicode
 string, which may have characters with codepoints above 255, Perl tries
 copying the string to an 8-bit byte string before calling crypt on the copy. If that works, good. If
 not, crypt raises an
 exception.

[236] Only people with honorable intentions are allowed to do
 this.

dbmclose [image:] [image:]

dbmclose HASH
This function breaks the binding between a DBM (database
 management) file and a hash.
dbmclose is really just a call
 to untie with the proper arguments,
 provided for backward compatibility with ancient versions of
 Perl.

dbmopen [image:] [image:]

dbmopen HASH, DBNAME, MODE
This binds a DBM file to a hash (that is, an associative
 array). (A DBM consists of a set of C library routines that allow random
 access to records via a hashing algorithm.)
 HASH is the name of the hash (including the
 %). DBNAME
 is the name of the database (without any .dir or .pag extension). If the database does not
 exist and a valid MODE is specified, the
 database is created with the protection specified by
 MODE, as modified by the umask. To prevent
 creation of the database if it doesn’t exist, you may specify a
 MODE of undef, and the function will return false if
 it can’t find an existing database. Values assigned to the hash before
 the dbmopen are not
 accessible.
The dbmopen function is really
 just a call to tie with the proper
 arguments, provided for backward compatibility with ancient versions of
 Perl. The return value from dbmopen
 is the same as it would be if you had called tie yourself: the tied object on success, or
 false on failure. You can control which DBM library you use by using the
 tie interface directly or by loading
 the appropriate module before you call dbmopen. Here’s an example that works on some
 systems for versions of DB_File similar to the version in your Netscape browser:
use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.dat", undef)
 || die "Can't open netscape history file: $!";

while (($url, $when) = each %NS_Hist) {
 next unless defined($when);
 chop ($url, $when); # kill trailing null bytes
 printf "Visited %s at %s.\n", $url,
 scalar(localtime(unpack("V",$when)));
}
If you don’t have write access to the DBM file, you can only read
 the hash variables, not set them. If you
 want to test whether you can write, either use a file test like
 -w
 $file, or try setting a dummy hash entry inside an eval {}, which will trap the exception.
Functions such as keys and
 values may return huge list values
 when used on large DBM files. You may prefer to use the each function to iterate over large DBM files
 so that you don’t load the whole thing in memory at once.
Hashes bound to DBM files have the same limitations as the type of
 DBM package you’re using, including restrictions on how much data you
 can put into a bucket. If you stick to short keys and values, it’s
 rarely a problem. See also the DB_File.
Another thing you should bear in mind is that many existing DBM
 databases contain null-terminated keys and values because they were set
 up with C programs in mind. The Netscape history file and the old
 sendmail aliases file are examples.
 Just use "$key\0" when pulling out a
 value, and remove the null from the value.
$alias = $aliases{"postmaster\0"};
$alias =~ s/\0\z//; # kill the null
Starting with v5.8.4, the standard DBM_Filter module can handle the business of having null-terminated
 strings for you automatically.
use DB_File;
$db = dbmopen(%aliases, "/etc/mail/aliases", undef)
 || die "can't dbmopen /etc/mail/aliases: $!";
$db–>Filter_Push("null");
$alias = $aliases{"postmaster"};
print "postmaster is aliased to $alias\n";
The same strategy is useful for pushing a utf8 filter on the handle. See Chapter 6 for an example of how to use Unicode as keys and
 values of DBM files.
There is currently no built-in way to lock a generic DBM file.
 Some would consider this a bug. The GDBM_File module does try to provide locking at the granularity of
 the entire file. When in doubt, your best bet is to use a separate lock
 file.

defined [image:]

defined EXPR
defined
This function returns a Boolean value saying whether
 EXPR is a defined value. Most data you deal
 with is defined, but a scalar that contains no valid string, numeric, or
 reference value is said to contain the undefined value, or undef for short. Initializing a scalar
 variable to a particular value defines it, and it stays defined until
 you assign an undefined value to it or explicitly call the undef function on that variable.
Many operations return undef
 under exceptional conditions, such as at end-of-file, when using an
 uninitialized variable’s value, an operating system error, etc. Since
 undef is just one kind of false
 value, a simple Boolean test does not distinguish between undef, numeric zero, the null string, and the
 one-character string, “0”—all of
 which are equally false. The defined
 function lets you distinguish between an undefined null string and a
 defined null string when using operators that might return a real null
 string.
Here is a fragment that tests a scalar value from a hash:
print if defined $switch{D};
When used on a hash element like this, defined tells only whether the value is
 defined, not whether the key has an entry in the hash. It’s possible to
 have a key whose value is undefined; the key itself, however, still
 exists. Use exists to determine
 whether the hash key exists.
In the next example, we exploit the convention that some
 operations return the undefined value when you run out of data (this
 presumes there are no elements that contain undef):
print "$val\n" while defined($val = pop(@ary));
In this one, we do the same thing with the getpwent function for retrieving information
 about the system’s users.
setpwent();
while (defined($name = getpwent())) {
 say "<<$name>>";
}
endpwent();
The same thing goes for error returns from syscalls that could
 validly return a false value:
die "Can't readlink $sym: $!"
 unless defined($value = readlink $sym);
You may also use defined to see
 whether a subroutine has been defined yet. This makes it possible to
 avoid blowing up on nonexistent subroutines (or subroutines that have
 been declared but never given a definition):
indir("funcname", @arglist);
sub indir {
 my $subname = shift;
 no strict "refs"; # so we can use subname indirectly
 if (defined &$subname) {
 &$subname(@_); # or $subname–>(@_);
 }
 else {
 warn "Ignoring call to invalid function $subname";
 }
}
However, even an undefined subroutine might still be callable, in
 that its package may have an AUTOLOAD
 function that handles calls to undefined functions in that
 package.
Use of defined on aggregates
 (hashes and arrays) is deprecated. It used to report whether memory for
 that aggregate had ever been allocated. Instead, use a simple Boolean
 test to see whether the array or hash has any elements:
if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }
When used on a hash element, it tells you whether the value is
 defined, not whether the key exists in the hash. Use exists for the latter purpose.
See also undef and exists.

delete

delete EXPR
This function deletes an element (or a slice of elements) from
 the specified hash or array. (See unlink if you want to delete a file.) Deleted
 elements are normally returned in the order specified, although this
 behavior is not guaranteed for tied variables such as DBM files. After
 the delete operation, the exists
 function returns false on any deleted key or index. (In contrast, after
 the undef function, the exists function continues to return true,
 because the undef function only
 undefines the value of the element, but doesn’t delete the element
 itself.)
Deleting from the %ENV hash
 modifies the environment. Deleting from a hash tied to a (writable) DBM
 file deletes the entry from that DBM file.
Deleting from an array causes the element at the specified
 position to revert to a completely uninitialized state, but it doesn’t
 close up the gap, since that would change the positions of all
 subsequent entries. Use a splice for
 that. However, if you delete the final element in an array, the array
 size does shrink by one or more, depending on the position of the next
 largest existing element, if any.
Calling delete on array values
 is deprecated and likely to be removed in some future version of
 Perl.
EXPR can be arbitrarily complicated if
 the final operation is a hash or array lookup:
set up array of array of hash
$dungeon[$x][$y] = \%properties;

delete one property from hash
delete $dungeon[$x][$y]{"OCCUPIED"};

delete three properties all at once from hash
delete @{ $dungeon[$x][$y] }{ "OCCUPIED", "DAMP", "LIGHTED" };

delete reference to %properties from array
delete $dungeon[$x][$y];
The following naïve example inefficiently deletes all values from
 a %hash:
for my $key (keys %hash) {
 delete $hash{$key};
}
As does this:
delete @hash{keys %hash};
Both are slower than assigning the empty list or undefining
 it:
%hash = (); # completely empty %hash
undef %hash; # forget %hash ever existed
Likewise for arrays:
for my $index (0 .. $#array) {
 delete $array[$index];
}
and:
delete @array[0 .. $#array];
are less efficient than either of:
@array = (); # completely empty @array
undef @array; # forget @array ever existed
The delete local
 EXPR construct can also be used to
 localize the deletion of array or hash elements to the current block.
 Until the block exits, elements locally deleted temporarily no longer
 exist.

die [image:]

die LIST
die
Outside an eval, this function
 prints the concatenated value of LIST to
 STDERR and exits with the current
 value of $! (the C library’s errno variable). If $! is 0, it exits with the value of ($? >> 8), the status of the last reaped
 child from a system, wait, close
 on a pipe, or `command`. If ($? >> 8) is 0, it exits with
 255.
Within an eval, the function
 sets the $@ variable to the error
 message that would have otherwise been produced, then aborts the
 eval, which returns undef. The die function can thus be used to raise named
 exceptions that can be caught at a higher level in the program. See
 eval later in this chapter.
If LIST is a single object reference,
 that object is assumed to be an exception object and is returned
 unmodified as the exception in $@
 (described below).
If LIST is empty and $@ already contains a string value (typically
 from a previous eval) that value is
 reused after appending “\t...propagated”. This is useful for
 propagating (reraising) exceptions:
eval { ... };
die unless $@ =~ /Expected exception/;
If LIST is
 empty and $@ already contains an
 exception object, that object’s $@–>PROPAGATE
 method is invoked with additional file and line number parameters
 to determine how the exception
 should propagate, with its return value replacing the value in $@.
 That is, it’s as if $@ = eval {
 $@–>PROPAGATE(_ _FILE_ _, _ _LINE_ _) } were
 called.
If LIST is empty and $@ is empty, then the string “Died” is used. If an uncaught exception
 results in an interpreter exit, the exit code is determined from the
 values of $! and $? with this pseudocode:
exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # child exit status
exit 255; # last resort
The intent is to squeeze as much possible information about the
 likely cause into the limited space of the system exit code. However,
 because $! can be set by any syscall,
 the value of the exit code used by die can be unpredictable, so it should not be
 relied on other than being nonzero.
If the final value of LIST does not end
 in a newline (and you’re not passing an exception object), the current
 script filename, line number, and input line number (if any) are
 appended to the message, as well as a newline. Hint: sometimes appending
 “, stopped” to your message will
 cause it to make better sense when the string "at scriptname line 123" is appended. Suppose
 you are running script canasta;
 consider the difference between the following two ways of dying:
die "/usr/games is no good";
die "/usr/games is no good, stopped";
which produce, respectively:
/usr/games is no good at canasta line 123.
/usr/games is no good, stopped at canasta line 123.
If you want your own error messages reporting the filename and
 line number, use the _ _FILE_ _ and
 _ _LINE_ _ special tokens (which
 don’t interpolate within strings):
die sprintf qq("%s" line "%s", phooey on you!\n),
 _ _FILE_ _, _ _LINE_ _;
This produces output like:
"canasta", line 38, phooey on you!
One other style issue—consider the following equivalent
 examples:
die "Can"t cd to spool: $!" unless chdir "/usr/spool/news";

chdir("/usr/spool/news") || die "Can't cd to spool: $!"
Because the important part is the chdir, the second form is generally
 preferred.
You can also call die with a
 reference argument, and if this is trapped within an eval, $@
 contains that reference. This permits more elaborate exception handling
 using objects that maintain arbitrary state about the exception. Such a
 scheme is sometimes preferable to matching particular string values of
 $@ with regular expressions. Because
 $@ is a global variable and eval may be used within object
 implementations, be careful that analyzing the error object doesn’t
 replace the reference in the global variable. It’s easiest to make a
 local copy of the reference before any manipulations. Here’s an
 example:
use Scalar::Util "blessed";

eval { WHATEVER; die Some::Module::Exception–>new(FOO => "bar") };
if (my $eval_err = $@) {
 if (blessed($eval_err) && $eval_err–>isa("Some::Module::Exception")) {
 # handle Some::Module::Exception
 }
 else {
 # handle all other exceptions
 }
}
Because Perl stringifies uncaught exception messages before
 display, you’ll probably want to overload stringification operations on
 exception objects. See Chapter 13 for details about
 that.
You can arrange for a function to be
 run just before die by setting
 $SIG{_ _DIE_ _} to the function to run. The associated handler is
 called with the error text, and it can change the error message
 (if it wants to) by calling die
 again. Only the most accomplished and desperate wizards ever attempt
 such feats of magic, and fewer still survive.
See also eval, exit, warn,
 %SIG, the warnings pragma, and the Carp module.

do (block)

do BLOCK
The do
 BLOCK form executes the sequence of statements in the
 BLOCK and returns the value of the last
 expression evaluated in the block. When modified by a while or until statement modifier, Perl executes the
 BLOCK once before testing the loop condition.
 (On other statements, the loop modifiers test the conditional first.)
 The do
 BLOCK itself does not
 count as a loop, so the loop control statements next, last,
 or redo cannot be used to leave or
 restart the block. See the section Bare Blocks as Loops in
 Chapter 4 for workarounds.

do (file) [image:] [image:] [image:]

do FILE
The do
 FILE form uses the value of FILE as
 a filename and executes the contents of the file as a Perl script. Its
 primary use is (or rather was) to include subroutines from a Perl
 subroutine library, so that:
do "stat.pl";
is rather like:
scalar eval `cat stat.pl`; # `type stat.pl` on Windows
except that do is more
 efficient, more concise, keeps track of the current filename for error
 messages, searches the directories listed in the @INC array, and updates %INC if the file is found. (See Chapter 25.) It also differs in that code evaluated with
 do FILE
 cannot see lexicals in the enclosing scope, whereas code in eval FILE does.
 It’s the same, however, in that it reparses the file every time you call
 it—so you might not want to do this inside a loop unless the filename
 itself changes at each loop iteration.
If do can’t read the file, it
 returns undef and sets $! to the error. If do can read the file but can’t compile it, it
 returns undef and sets an error
 message in $@. If the file is
 successfully compiled, do returns the
 value of the last expression evaluated.
Inclusion of library modules (which have a mandatory .pm suffix) is better done with the use and require operators, which also do error
 checking and raise an exception if there’s a problem. They also offer
 other benefits: they avoid duplicate loading, help with object-oriented
 programming, and provide hints to the compiler on function
 prototypes.
But do
 FILE is still useful for such things as
 reading program configuration files. Manual error checking can be done
 this way:
read in config files: system first, then user
for $file ("/usr/share/proggie/defaults.rc",
 "$ENV{HOME}/.someprogrc")
{
 unless ($return = do $file) {
 warn "couldn't parse $file: $@" if $@;
 warn "couldn't do $file: $!" unless defined $return;
 warn "couldn't run $file" unless $return;
 }
}
A long-running daemon could periodically examine the timestamp on
 its configuration file, and if the file has changed since it was last
 read in, the daemon could use do to
 reload that file. This is more tidily accomplished with do than with require or use.

do (subroutine) [image:]

do SUBROUTINE(LIST)
The do
 SUBROUTINE(LIST) is a deprecated form of a subroutine call.
 An exception is raised if the SUBROUTINE is
 undefined. See Chapter 7.

dump

dump LABEL
dump
This function causes an immediate core dump. Primarily this is
 so that you can use the undump
 program (not supplied) to turn your core dump into an executable binary
 after having initialized all your variables at the beginning of the
 program. When the new binary is executed it will begin by executing a
 goto LABEL
 (with all the restrictions that goto
 suffers). Think of it as a goto with an intervening core dump and
 reincarnation. If LABEL is omitted, the
 program is restarted from the top. Warning: any files opened at the time
 of the dump will not be open any more when the
 program is reincarnated, with possible resulting confusion on the part
 of Perl. See also the –u command-line
 option in Chapter 17.
This function is now largely obsolete, partly because it’s
 difficult to convert a core file into an executable in the general case,
 and partly because various compiler backends for generating portable
 bytecode and compilable C code have superseded it. However, the people
 managing the Perl compiler project (meaning perlcc and friends), hosted on CPAN, report
 that dump and undump support may soon be resurrected.
If you’re looking to use dump
 to speed up your program, check out the discussion of efficiency matters
 in Chapter 21, as well the Perl native-code generator
 in Chapter 16. You might also consider autoloading or
 selfloading, which at least make your program
 appear to run faster.

each [image:]

each HASH
each ARRAY
each EXPR
This function steps through a hash one key/value pair at a
 time. When called in list context, each returns a two-element list consisting of
 the key and value for the next element of a hash so that you can iterate
 over it. When called in scalar context, each returns just the key for the next element
 in the hash. When the hash is entirely read, the empty list is returned,
 which when assigned produces a false value in scalar context, such as a
 loop test. The next call to each
 after that will start iterating again. The typical use is as follows,
 using predefined %ENV hash:
while (($key,$value) = each %ENV) {
 say "$key=$value";
}
Internally, a hash maintains its own entries in an apparently
 random order. The each function
 iterates through this sequence because every hash remembers which entry
 was last returned. The actual ordering of this sequence is subject to
 change in future versions of Perl, but is guaranteed to be in the same
 order as the keys (or values) function would produce on the same
 (unmodified) hash. For security reasons, this ordering can vary between
 different runs of the same program.
Perl maintains a single iterator for each hash, shared by all
 each, keys, and values function calls in the program; it can
 be reset by reading all the elements from the hash, or by evaluating
 keys %hash or values %hash. If you add or delete elements of
 a hash while iterating over it, the result is not well defined: entries
 may be skipped or duplicated.
Starting with v5.12, each can
 also take an array argument. The keys of the array are its indices.
 Unlike with a hash, pairs are returned in ascending order by key (array
 index).
Starting with v5.14, each can
 take a reference to an unblessed hash or array, which will be
 dereferenced automatically. This aspect of each is considered experimental. The exact
 behavior may change in a future version of Perl.
while (($key,$value) = each $hashref) { ... }
See also keys, values, and sort.

eof [image:]

eof FILEHANDLE
eof()
eof
This function returns true if the next read on
 FILEHANDLE would return end-of-file or if
 FILEHANDLE is not open.
 FILEHANDLE may be an expression whose value
 gives the real filehandle or a reference to a filehandle object of some
 sort. An eof without an argument
 returns the end-of-file status for the last file read. An eof() with empty parentheses () tests the ARGV filehandle (most commonly seen as the
 null filehandle in <>).
 Therefore, inside a while (<>)
 loop, an eof() with parentheses will
 detect the end of only the last of a group of files. Use eof (without parentheses) to test
 each file in a while
 (<>) loop. For example, the following code inserts
 dashes just before the last line of the last
 file:
while (<>) {
 if (eof()) {
 say "–" x 30;
 }
 print;
}
On the other hand, this script resets line numbering on
 each input file:
reset line numbering on each input file
while (<>) {
 next if /^\s*#/; # skip comments
 print "$.\t$_";
} continue {
 close ARGV if eof; # Not eof()!
}
Like “$” in a sed program, eof tends to show up in line number ranges.
 Here’s a script that prints lines from /pattern/ to the end of each input
 file:
while (<>) {
 print if /pattern/ .. eof;
}
Here, the flip-flop operator (..) evaluates the pattern match for each line.
 Until the pattern matches, the operator returns false. When it finally
 matches, the operator starts returning true, causing the lines to be
 printed. When the eof operator
 finally returns true (at the end of the file being examined), the
 flip-flop operator resets and starts returning false again for the next
 file in @ARGV.
Warning: the eof function reads
 a byte and then pushes it back on the input stream with
 ungetc(3), so it is not useful in an interactive
 context. Experienced Perl programmers rarely use eof, since the various input operators already
 behave politely in while-loop
 conditionals. See the example in the description of foreach in Chapter 4.

eval [image:] [image:]

eval BLOCK
eval EXPR
eval
The eval keyword serves two distinct but related purposes in Perl. These
 purposes are represented by two forms of syntax, eval BLOCK and
 eval EXPR.
 The first form traps runtime exceptions (errors) that would otherwise prove fatal,
 similar to the “try block” construct in C++ or Java. The second form
 compiles and executes little bits of code on the fly at runtime, and
 also (conveniently) traps any exceptions just like the first form. But
 the second form runs much slower than the first form, since it must
 parse the string every time. On the other hand, it is also more general.
 Whichever form you use, eval is the
 preferred way to do all exception handling in Perl.
For either form of eval, the
 value returned from an eval is the
 value of the last expression evaluated, just as with subroutines.
 Similarly, you may use the return
 operator to return a value from the middle of the eval. The expression providing the return
 value is evaluated in void, scalar, or list context, depending on the
 context of the eval itself. See
 wantarray for more on how the
 evaluation context can be determined.
If there is a trappable error (including any produced by the
 die operator), eval returns undef and puts the error message (or object)
 in $@. If there is no error, $@ is guaranteed to be set to the null string,
 so you can test it reliably afterward for errors. A simple Boolean test
 suffices:
eval { ... }; # trap runtime errors
if ($@) { ... } # handle error
The eval
 BLOCK form is syntax checked and compiled at
 compile time, so it is just as efficient at runtime as any other block.
 (People familiar with the slow eval
 EXPR form are occasionally confused on this
 issue.) Because the BLOCK is compiled when
 the surrounding code is, this form of eval cannot trap syntax errors.
The eval
 EXPR form can trap syntax errors because it
 parses the code at runtime. (If the parse is unsuccessful, it places the
 parse error in $@, as usual.)
 Otherwise, it executes the value of EXPR as
 though it were a little Perl program. The code is executed in the
 context of the current Perl program, which means that it can see any
 enclosing lexicals from a surrounding scope, and that any nonlocal
 variable settings remain in effect after the eval is complete, as do any subroutine or
 format definitions. The code of the eval is treated as a block, so any locally
 scoped variables declared within the eval last only until the eval is done. (See my and local.) As with any code in a block, a final
 semicolon is not required.
Here is a simple Perl shell. It prompts the user to enter a string
 of arbitrary Perl code, compiles and executes that string, and prints
 whatever error occurred:
print "\nEnter some Perl code: ";

while (<STDIN>) {
 eval;
 print $@;
 print "\nEnter some more Perl code: ";
}
Here is a rename program to do
 a mass renaming of files using a Perl expression:
#!/usr/bin/perl
rename – change filenames
$op = shift;
for (@ARGV) {
 $was = $_;
 eval $op;
 die if $@;
 # next line calls the built–in function, not
 # the script by the same name
 rename($was,$_) unless $was eq $_;
}
You’d use that program like this:
% rename 's/\.orig$//' *.orig
% rename 'y/A–Z/a–z/ unless /^Make/' *
% rename '$_ .= ".bad"' *.f
Since eval traps errors that
 would otherwise prove fatal, it is useful for determining whether
 particular features (such as fork or
 symlink) are implemented.
Because eval
 BLOCK is syntax checked at compile time, any
 syntax error is reported earlier. Therefore, if your code is invariant
 and both eval
 EXPR and eval BLOCK will
 suit your purposes equally well, the BLOCK
 form is preferred. For example:
make divide–by–zero nonfatal
eval { $answer = $a / $b }; warn $@ if $@;

same thing, but less efficient if run multiple times
eval '$answer = $a / $b'; warn $@ if $@;

a compile–time syntax error (not trapped)
eval { $answer = }; # WRONG

a runtime syntax error
eval '$answer ='; # sets $@
Here, the code in the BLOCK has to be
 valid Perl code to make it past the compile phase. The code in the
 EXPR doesn’t get examined until runtime, so
 it doesn’t cause an error until runtime.
The block of eval
 BLOCK does not
 count as a loop, so the loop control statements next, last,
 or redo cannot be used to leave or
 restart the block.
An eval
 STRING executed within the DB package doesn’t see the usual surrounding
 lexical scope, but rather the scope of the first non-DB piece of code
 that called it. You don’t normally need to worry about this unless you
 are writing a Perl debugger.

exec [image:] [image:]

exec PATHNAME LIST
exec LIST
The exec function terminates the current program and executes an external
 command and never returns!!! Use system instead of exec to return to your program after the
 commands complete. The exec function
 fails and returns false only if the command does not exist
 and if it is executed directly instead of via your
 system’s command shell, discussed below.
If there is only one scalar argument, the argument is checked for
 shell metacharacters. If metacharacters are found, the entire argument
 is passed to the system’s standard command interpreter (/bin/sh under Unix). If there are no
 metacharacters, the argument is split into words and executed directly,
 since in the interests of efficiency this bypasses the overhead of shell
 processing. It also gives you more control of error recovery should the
 program not exist.
If there is more than one argument in
 LIST, or if LIST
 is an array with more than one value, the system shell will never be
 used. This also bypasses any shell processing of the command. The
 presence or absence of metacharacters in the arguments doesn’t affect
 this list-triggered behavior, which makes it the preferred form in
 security-conscious programs that do not wish to expose themselves to
 injection attacks via shell escapes.
This example causes the currently running Perl program to replace
 itself with the echo program, which
 then prints out the current argument list:
exec "echo", "Your arguments are: ", @ARGV;
This example shows that you can exec a pipeline, not just a single
 program.
exec "sort $outfile | uniq"
 || die "Can't do sort/uniq: $!";
Ordinarily, exec never
 returns—if it does return, it always returns false, and you should check
 $! to find out what went wrong. In
 very old releases of Perl (before v5.6), exec (and system) did not flush your output buffer, so
 you needed to enable command buffering by setting $| on one or more filehandles to avoid lost
 output with exec or misordered output
 with system.
When you ask the operating system to execute a new program within
 an existing process (as Perl’s exec
 function does), you tell the system the location of the program to
 execute, but you also tell the new program (through its first argument)
 the name under which the program was invoked. Customarily, the name you
 tell it is just a copy of the location of the program, but it doesn’t
 necessarily have to be, since there are two separate arguments at the
 level of the C language. When it is not a copy, you have the odd result
 that the new program thinks it’s running under a name that may be
 totally different from the actual pathname where the program resides.
 Often this doesn’t matter to the program in question, but some programs
 do care and adopt a different persona depending on what they think their
 name is. For example, the vi editor
 looks to see whether it was called as “vi” or as “view”. If invoked as “view”, it automatically enables read-only
 mode, just as though it were called with the –R command-line option.
This is where exec’s optional
 PATHNAME parameter comes into play.
 Syntactically, it goes in the indirect-object slot like the filehandle
 for print or printf. It therefore doesn’t take a comma
 afterwards, because it’s not exactly part of the argument list. (In a
 sense, Perl takes the opposite approach from the operating system in
 that it assumes the first argument is the important one, and lets you
 modify the pathname if it differs.) For example:
$editor = "/usr/bin/vi";
exec $editor "view", @files # trigger read–only mode
 || die "Couldn't execute $editor: $!";
As with any other indirect object, you can also replace the simple
 scalar holding the program name with a block containing arbitrary code,
 which simplifies the previous example to:
exec { "/usr/bin/vi" } "view", @files # trigger read–only mode
 || die "Couldn't execute /usr/bin/vi: $!";
As we mentioned earlier, exec
 treats a discrete list of arguments as a directive to bypass shell
 processing. However, there is one place where you might still get
 tripped up. The exec call (and
 system, too) cannot distinguish
 between a single scalar argument and an array containing only one
 element.
@args = ("echo surprise"); # just one element in list
exec @args # still subject to shell escapes
 || die "exec: $!"; # because @args == 1
To avoid this, use the PATHNAME syntax,
 explicitly duplicating the first argument as the pathname, which forces
 the rest of the arguments to be interpreted as a list, even if there is
 only one of them:
exec { $args[0] } @args # safe even with one–argument list
 || die "can't exec @args: $!";
The first version, the one without the curlies, runs the echo program, passing “surprise” as an argument. The second version
 doesn’t; it tries to run a program literally called echo surprise, doesn’t find it (we hope), and
 sets $! to a nonzero value indicating
 failure.
Because the exec function is
 most often used shortly after a fork,
 it is assumed that anything that normally happens when a Perl process
 terminates should be skipped. On an exec, Perl does not call your END blocks, nor will it call any DESTROY methods associated with any objects.
 Otherwise, your child process would end up doing the cleanup you
 expected the parent process to do. (We wish that were the case in real
 life.)
Because it’s such a common mistake to use exec instead of system, Perl warns you if there is a following
 statement that isn’t die, warn, or exit, provided you have warnings enabled. (You
 do have warnings enabled, right?) If you really
 want to follow an exec with some
 other statement, you can use either of these styles to avoid the
 warning:
exec ("foo") || print STDERR "couldn't exec foo: $!";
{ exec ("foo") }; print STDERR "couldn't exec foo: $!";
As the second line above shows, a call to exec that is the last statement in a block is
 exempt from this warning.
Perl attempts to flush all files opened for output before the
 exec, but this may not be supported on some platforms. To be safe, you
 may need to set $| ($AUTOFLUSH in English) or call the autoflush method of IO::Handle on any open handles to avoid lost output.
Note that on an exec, END blocks are not called and DESTROY methods are not invoked on your
 objects.
See also system.

exists

exists EXPR
Given an expression that specifies an element of a hash, this
 function returns true if the specified element in the hash has ever been
 initialized, even if the corresponding value is undefined.
print "True\n" if $hash{$key};
print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
Historically, exists may also
 be called on array elements, but its behavior is less obvious and is
 strongly tied to the use of delete on
 arrays. However, calling exists on
 array values is deprecated and likely to be removed in a future version
 of Perl.
print "True\n" if $array[$index];
print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
An element can be true only if it’s defined, and it can be defined
 only if it exists, but the reverse doesn’t necessarily hold.
EXPR can be arbitrarily complicated,
 provided the final operation is a hash key or array index lookup:
if (exists $hash{A}{B}{$key}) { ... }
Although the last element does not spring into existence just
 because its existence was tested, intervening ones do. Thus, $$hash{"A"} and $hash{"A"}–>{"B"} both spring into
 existence. This is not a function of exists, per se; it
 happens anywhere the arrow operator is used (explicitly or
 implicitly):
undef $ref;
if (exists $ref–>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)
Even though the “Some key”
 element didn’t spring into existence, the previously undefined $ref variable did suddenly come to hold an
 anonymous hash. This is a surprising instance of autovivification in what does not
 at first—or even second—glance appear to be an lvalue context. This
 behavior is likely to be fixed in a future release. As a workaround, you
 can nest your calls:
if ($ref &&
 exists $ref–>[$x] &&
 exists $ref–>[$x][$y] &&
 exists $ref–>[$x][$y]{$key} &&
 exists $ref–>[$x][$y]{$key}[2]) { ... }
If EXPR is the name of a subroutine,
 the exists function returns true if
 that subroutine has been declared, even if it has not yet been defined.
 The following prints “Exists”
 only:
sub flub;
print "Exists\n" if exists &flub;
print "Defined\n" if defined &flub;
Using exists on a subroutine
 name can be useful for an AUTOLOAD
 subroutine that needs to know whether a particular package wants a
 particular subroutine to be defined. The package can indicate this by
 declaring a stub sub like flub, as shown above.
Accidentally using the return value of a subroutine
 call, rather than a subroutine
 name, as an argument to exists is an error.
exists ⊂ # OK
exists &sub(); # Error: the parens would call the function

exit

exit EXPR
exit
This function evaluates EXPR as an
 integer and exits immediately with that value as the final error status
 of the program. If EXPR is omitted, the
 function exits with 0 status (meaning
 “no error”). Here’s a fragment that lets a user exit the program by
 typing x or X:
$ans = <STDIN>;
exit if $ans =~ /^[Xx]/;
You shouldn’t use exit to abort
 a subroutine if there’s any chance that someone might want to trap
 whatever error happened. Use die
 instead, which can be trapped by an eval. Or use one of die’s wrappers from the Carp module, like croak or
 confess.
We said that the exit function
 exits immediately, but that was a bald-faced lie. It exits as soon as
 possible, but first it calls any defined END routines for at-exit handling. These
 routines cannot abort the exit, although they can change the eventual
 exit value by setting the $?
 variable. Likewise, any class that defines a DESTROY method will invoke that method on
 behalf of all its objects before the real program exits. If you really
 need to bypass exit processing, you can call the POSIX module’s _exit
 function to avoid all END and
 destructor processing. And if POSIX
 isn’t available, you can exec
 "/bin/false" or some such.

exp [image:]

exp EXPR
exp
This function returns e, the natural
 logarithm base, to the power of EXPR. To get
 the value of e, use exp(1). For general exponentiation of
 different bases, use the ** operator
 we stole from FORTRAN:
use Math::Complex;
print –exp(1) ** (i * pi); # prints 1(ish)

_ _FILE_ _

A special token that returns the name of the file in which it
 occurs. See Generating Perl in Other Languages in Chapter 21.

fc [image:] [image:]

fc EXPR
fc
New to v5.16 where it is enabled by use feature "fc", this function returns the
 full Unicode casefold of EXPR. This is the
 internal function implementing the \F
 escape in casefolded strings. Just as titlecase is based on uppercase
 but different, foldcase is based on lowercase but different. In ASCII
 there is a one-to-one mapping between only two cases, but in Unicode
 there is a one-to-many mapping and between three cases. Because that’s
 too many combinations to check manually each time, a fourth casemap
 called foldcase was invented as a common intermediary for the other
 three. It is not a case itself, but it is a
 casemap.
To compare whether two strings are the same without regard to
 case, do this:
fc($a) eq fc($b)
Prior to v5.16, the only reliable way to compare strings
 case-insensitively was with the /i
 pattern modifier, because Perl has always used casefolding semantics for
 case-insensitive pattern matches. Knowing this, you can emulate equality
 comparisons like this:
sub fc_eq($$) {
 my($a, $b) = @_;
 return $a =~ /\A\Q$b\E\z/i;
}
For earlier releases than v5.16, the fc function can be found in the Unicode::CaseFold module on CPAN. For comparisons that are both accent- and
 case-insensitive, use the eq or
 cmp methods with a Unicode::Collate collator object that was passed level=>1 in its constructor, or with a
 Unicode::Collate::Locale object similarly constructed for locale-specific equality
 and ordering. See “A Case of Mistaken Identity” and “Comparing and
 Sorting Unicode Text” in Chapter 6.

fcntl [image:] [image:] [image:] [image:] [image:]

fcntl FILEHANDLE, FUNCTION, SCALAR
This function calls your operating system’s file control
 functions, as documented in the fcntl(2) manpage.
 Before you call fcntl, you’ll
 probably first have to say:
use Fcntl;
to load the correct constant definitions.
SCALAR will be read or written (or
 both) depending on the FUNCTION. A pointer to
 the string value of SCALAR will be passed as
 the third argument of the actual fcntl call. (If
 SCALAR has no string value but does have a
 numeric value, that value will be passed directly rather than passing a
 pointer to the string value.) See the Fcntl module for a description of the more common permissible
 values for FUNCTION.
The fcntl function will raise
 an exception if used on a system that doesn’t implement
 fcntl(2). On systems that do implement it, you can
 do such things as modify the close-on-exec flags (if you don’t want to
 play with the $^F ($SYSTEM_FD_MAX) variable), modify the
 nonblocking I/O flags, emulate the lockf(3)
 function, and arrange to receive the SIGIO signal when I/O is pending.
Here’s an example of setting a filehandle named REMOTE to be nonblocking at the system level.
 This makes any input operation return immediately if nothing is
 available when reading from a pipe, socket, or serial line that would
 otherwise block. It also works to cause output operations that normally
 would block to return a failure status instead. (For those, you’ll
 likely have to negotiate $| as
 well.)
use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
 || die "Can't get flags for the socket: $!";

$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
 || die "Can't set flags for the socket: $!";
The return value of fcntl (and
 ioctl) is shown in Table 27-1.
Table 27-1. Return values for fcntl
	Syscall Returns	Perl Returns
	–1	undef
	0	String “0 but true”
	Anything else	That number

Thus, Perl returns true on success and false on failure, yet you
 can still easily determine the actual value returned by the operating
 system:
$retval = fcntl(...) || –1;
printf "fcntl actually returned %d\n", $retval;
Here, even the string “0 but
 true” prints as 0, thanks to the %d format. This string is true in Boolean
 context and 0 in numeric context.
 This lets you use a simple || die
 test on the return value instead of the skewed version, // die. (It is also happily exempt from the
 normal warnings on improper numeric conversions.)

fileno [image:]

fileno FILEHANDLE
This function returns the file descriptor underlying a
 filehandle. If the filehandle is not open, fileno returns undef. If there is no real file descriptor at
 the OS level, as can happen with filehandles connected to memory objects
 via open with a reference for the
 third argument, −1 is
 returned.
A file descriptor
 is a small, nonnegative integer like 0 or 1, in contrast to
 filehandles like STDIN and STDOUT, which are symbols. Unfortunately, the
 operating system doesn’t know about your cool symbols. It only thinks of
 open files using these small file numbers, and although Perl will
 usually do the translations for you automatically, occasionally you have
 to know the actual file descriptor.
So, for example, the fileno
 function is useful for constructing bitmaps for select and for passing to certain obscure
 system calls if syscall(2) is implemented. It’s
 also useful for double checking that the open function gave you the file descriptor you
 wanted and for determining whether two filehandles use the same system
 file descriptor.
if (fileno(THIS) == fileno(THAT)) {
 say "THIS and THAT are dups";
}
If FILEHANDLE is an expression, the
 value is taken as an indirect filehandle, generally its name or a
 reference to something resembling a filehandle object.
Don’t count on the association of a Perl filehandle and a numeric
 file descriptor throughout the life of the program. If a file has been
 closed and reopened, the file descriptor may change. Perl takes a bit of
 trouble to try to ensure that certain file descriptors won’t be lost if
 an open on them fails, but it only
 does this for file descriptors that don’t exceed the current value of
 the special $^F ($SYSTEM_FD_MAX) variable (by default, 2). Although filehandles STDIN, STDOUT, and STDERR start out with file descriptors of 0,
 1, and 2 (the Unix standard convention), even they can change if you
 start closing and opening them with wild abandon. You can’t get into
 trouble with 0, 1, and 2 so long as you always reopen immediately after
 closing. The basic rule on Unix systems is to pick the lowest available
 descriptor, and that’ll be the one you just closed.

flock [image:] [image:] [image:]

flock FILEHANDLE, OPERATION
The flock function is Perl’s portable file-locking interface. It locks only
 entire files, not individual records. The function manages locks on the
 file associated with FILEHANDLE, returning
 true for success and false otherwise. To avoid the possibility of lost data, Perl flushes
 your FILEHANDLE before locking or unlocking
 it. Perl might implement its flock
 using flock(2), fcntl(2),
 lockf(3), or some other platform-specific lock
 mechanism; if none of these is available, calling flock raises an exception. See the section
 File Locking in Chapter 15.
OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly or‘d with LOCK_NB. These constants are traditionally
 valued 1, 2, 8, and
 4, but you can use the symbolic names
 if you import them from the Fcntl module, either individually or as a group using the
 :flock tag.
LOCK_SH requests a shared lock,
 so it’s typically used for reading. LOCK_EX requests an exclusive lock, so it’s
 typically used for writing. LOCK_UN
 releases a previously requested lock; closing the file also releases any
 locks. If the LOCK_NB bit is used
 with LOCK_SH or LOCK_EX, flock returns immediately rather than waiting
 for an unavailable lock. Check the return status to see whether you got
 the lock you asked for. If you don’t use LOCK_NB, you might wait indefinitely for the
 lock to be granted.
Another nonobvious but traditional aspect of flock is that its locks are merely
 advisory. Discretionary locks are more flexible but offer
 fewer guarantees than mandatory ones. This means that files locked with
 flock may be modified by programs
 that do not also use flock. Cars that
 stop for red lights get on well with one another, but not with cars that
 don’t stop for red lights. Drive defensively.
Some implementations of flock
 cannot lock things over the network. While you could in theory use the
 more system-specific fcntl for that,
 the jury (having sequestered itself on the case for the last couple of
 decades or so) is still out on whether this is (or even can be)
 reliable.
Here’s a mailbox appender for Unix systems that use
 flock(2) to lock mailboxes:
use Fcntl qw/:flock/; # import LOCK_* constants
sub mylock {
 flock(MBOX, LOCK_EX)
 || die "can't lock mailbox: $!";
 # in case someone appended while we were waiting
 # and our stdio buffer is out of sync
 seek(MBOX, 0, 2)
 || die "can't seek to the end of mailbox: $!";
}

open(MBOX, ">> /usr/spool/mail/$ENV{USER}")
 || die "can't open mailbox: $!";

mylock();
say MBOX $msg, "\n";
close MBOX
 || die "can't close mailbox: $!";
On systems that support a real flock(2)
 syscall, locks are inherited across fork calls. Other implementations are not so
 lucky and are likely to lose the locks across forks. See also the
 section File Locking in Chapter 15
 for other flock examples.

fork [image:] [image:]

fork
This function creates two processes out of one by invoking the
 fork(2) syscall. If it succeeds, the function
 returns the new child process’s ID to the parent process and 0 to the
 child process. If the system doesn’t have sufficient resources to
 allocate a new process, the call fails and returns undef. File descriptors (and sometimes locks
 on those descriptors) are shared, while everything else is copied—or at
 least made to look that way.
In ancient versions, unflushed buffers remain unflushed in both
 processes, which means you might need to set $| on one or more filehandles earlier in the
 program to avoid duplicate output.
A nearly bulletproof way to launch a child process while checking
 for “cannot fork” errors would be:
use Errno qw(EAGAIN);
FORK: {
 if ($pid = fork) {
 # parent here
 # child process pid is available in $pid
 }
 elsif (defined $pid) { # $pid is zero here if defined
 # child here
 # parent process pid is available with getppid
 }
 elsif ($! == EAGAIN) {
 # EAGAIN is the supposedly recoverable fork error
 sleep 5;
 redo FORK;
 }
 else {
 # weird fork error
 die "Can't fork: $!";
 }
}
These precautions are not necessary on operations that do an
 implicit fork(2)—such as system, backticks, or opening a process as a
 filehandle—because Perl automatically retries a fork on a temporary
 failure when it’s doing the fork for
 you. Be careful to end the child code with an exit; otherwise, your child will inadvertently
 leave the conditional block and start executing code intended only for
 the parent process.
If you fork without ever
 waiting on your children, you will accumulate zombies (exited processes
 whose parents haven’t waited on them yet). On some systems, you can
 avoid this by setting $SIG{CHLD} to
 “IGNORE”; on most, you must wait for your moribund children. See “wait” in
 this chapter for examples of doing this, or see the section Signals in Chapter 15 for more on
 SIGCHLD.
If a forked child inherits system file descriptors like STDIN and STDOUT that are connected to a remote pipe or
 socket, you may have to reopen these in the child to /dev/null. That’s because even when the
 parent process exits, the child will live on with its copies of those
 filehandles. The remote server (such as, say, a CGI script or a
 background job launched from a remote shell) will appear to hang because
 it’s still waiting for all copies to be closed. Reopening the system
 filehandles to something else fixes this.
On most systems supporting fork(2), great
 care has gone into making it extremely efficient (for example, using
 copy-on-write technology on data pages), making it the dominant paradigm
 for multitasking over the last few decades. The fork function is unlikely to be implemented
 efficiently (or perhaps at all) on systems that don’t resemble Unix. For
 example, Perl emulates a proper fork
 even on Microsoft systems, but no assurances are made on performance.
 You might have more luck there with the Win32::Process module.
Perl attempts to flush all files opened for output before forking
 the child process, but this may not be supported on some platforms. To
 be safe, you may need to set $|
 ($AUTOFLUSH in English) or call the
 autoflush method from IO::Handle on any open handles to avoid duplicate output.

format

format NAME =
 picture line
 value list
 ...
 .
This function declares a named sequence of picture lines (with
 associated values) for use by the write function. If
 NAME is omitted, the name defaults to
 STDOUT, which happens to be the
 default format name for the STDOUT
 filehandle. Since, like a sub
 declaration, this is a package-global declaration that happens at
 compile time, any variables used in the value list need to be visible at
 the point of the format’s declaration. That is, lexically scoped
 variables must be declared earlier in the file, while dynamically scoped
 variables merely need to be set at the time write is called. Here’s an example (which
 assumes we’ve already calculated $cost and $quantity):
my $str = "widget"; # Lexically scoped variable

format Nice_Output =
Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, '$' . int($num)
.

local $~ = "Nice_Output"; # Select our format
local $num = $cost * $quantity; # Dynamically scoped variable

write;
Like filehandles, format names are identifiers that exist in a
 symbol table (package) and may be fully qualified by package name.
 Within the typeglobs of a symbol table’s entries, formats reside in
 their own namespace, which is distinct from filehandles, directory
 handles, scalars, arrays, hashes, and subroutines. Like those other six
 types, however, a format named Whatever would also be affected by a local on the *Whatever typeglob. In other words, a format
 is just another gadget contained in a typeglob, independent of the other
 gadgets.
The section Picture Formats in Chapter 26 contains numerous details and examples of their
 use. Chapter 25 describes the internal format-specific
 variables, and the English and IO::Handle modules provide easier access to them.

formline

formline PICTURE, LIST
This is an internal function used by formats, although you may also call it
 yourself. It always returns true. It formats a list of values according
 to the contents of PICTURE, placing the
 output into the format output accumulator, $^A (or $ACCUMULATOR if you use the English module). Eventually, when a write is done, the contents of $^A are written to some filehandle, but you
 could also read $^A yourself and then
 set $^A back to "". A format typically does one formline per line of form, but the formline function itself doesn’t care how many
 newlines are embedded in the PICTURE. This
 means that the ~ and ~~ tokens will treat the entire
 PICTURE as a single line. You may therefore
 need to use multiple formlines to
 implement a single record format, just as the format compiler does
 internally.
Be careful if you put double quotes around the picture, since an
 @ character may be taken to mean the
 beginning of an array name. See the section Picture Formats in Chapter 26 for example
 uses.

getc [image:] [image:]

getc FILEHANDLE
getc
This function returns the next character from the input file
 attached to FILEHANDLE. It returns undef at end-of-file or if an I/O error was
 encountered. If FILEHANDLE is omitted, the
 function reads from STDIN.
This function is somewhat slow, but it’s occasionally useful for
 single-character input from the keyboard—provided you manage to get your
 keyboard input unbuffered. This function requests unbuffered input from
 the standard I/O library. Unfortunately, the standard I/O library is not
 so standard as to provide a portable way to tell the underlying
 operating system to supply unbuffered keyboard input to the standard I/O
 system. To do that, you have to be slightly more clever, and in an
 operating-system-dependent fashion. Under Unix you might say
 this:
if ($BSD_STYLE) {
 system "stty cbreak </dev/tty >/dev/tty 2>&1";
} else {
 system "stty", "–icanon", "eol", "\001";
}

$key = getc;

if ($BSD_STYLE) {
 system "stty –cbreak </dev/tty >/dev/tty 2>&1";
} else {
 system "stty", "icanon", "eol", "^@"; # ASCII NUL
}
print "\n";
This code puts the next character typed on the terminal in the
 string $key. If your
 stty program has options like cbreak, you’ll need to use the code where
 $BSD_STYLE is true. Otherwise, you’ll
 need to use the code where it is false. Determining the options for
 stty(1) is left as an exercise to the
 reader.
The POSIX module provides a more portable version of this using the
 POSIX::getattr function on systems
 purporting POSIX compliance. See also the Term::ReadKey module from your nearest CPAN site for a more portable
 and flexible approach. For the ungetc
 function, use the method in the IO::Handle
 class.

getgrent [image:]

getgrent
setgrent
endgrent
These routines iterate through your /etc/group file (or maybe someone else’s
 /etc/group file, if it’s coming
 from a server somewhere). The return value from getgrent in list context is:
0 1 2 3
($name, $passwd, $gid, $members) = getgrent();
where $members contains a
 space-separated list of the login names of the members of the group. To
 set up a hash for translating group names to GIDs, say this:
while (($name, $passwd, $gid) = getgrent()) {
 $gid{$name} = $gid;
}
In scalar context, getgrent
 returns only the group name. The standard User::grent module supports a by-name interface to this function. See
 getgrent(3).

getgrgid [image:]

getgrgid GID
This function looks up a group file entry by group number. The
 return value in list context is:
0 1 2 3
($name, $passwd, $gid, $members)
 = getgrgid(0);
where $members contains a
 space-separated list of the login names of the members of the group. If
 you want to do this repeatedly, consider caching the data in a hash
 using getgrent.
In scalar context, getgrgid
 returns only the group name. The User::grent module supports a by-name interface to this function. See
 getgrgid(3).

getgrnam [image:] [image:]

getgrnam NAME
This function looks up a group file entry by group name. The
 return value in list context is:
0 1 2 3
($name, $passwd, $gid, $members) =
 getgrnam("wheel");
where $members contains a
 space-separated list of login names that are members of the group. If
 you want to do this repeatedly, consider caching the data in a hash
 using getgrent.
In scalar context, getgrnam
 returns only the numeric group ID. The User::grent module supports a by-name interface to this function. See
 getgrnam(3).

gethostbyaddr [image:] [image:]

gethostbyaddr ADDR, ADDRTYPE
This function translates addresses into names (and alternate
 addresses). ADDR should be a packed binary
 network address, and ADDRTYPE should in
 practice usually be AF_INET (from the
 Socket module). The return value in list context is:
0 1 2 3 4 ...
($name, $aliases, $addrtype, $length, @addrs) =
 gethostbyaddr($packed_binary_address, $addrtype);
where @addrs is a list of
 packed binary addresses. In the Internet domain, each address is
 (historically) four bytes long and can be unpacked by saying something
 like:
($a, $b, $c, $d) = unpack("C4", $addrs[0]);
Alternatively, you can convert directly to dot-vector notation
 with the v modifier to sprintf:
$dots = sprintf "%vd", $addrs[0];
The inet_ntoa function from the
 Socket module is useful for producing a printable version. This
 approach will become important if and when we all ever manage to switch
 over to IPv6.
use Socket;
$printable_address = inet_ntoa($addrs[0]);
In scalar context, gethostbyaddr returns only the
 hostname.
To produce an ADDR from a dot vector,
 say this:
use Socket;
$ipaddr = inet_aton("127.0.0.1"); # localhost
$claimed_hostname = gethostbyaddr($ipaddr, AF_INET);
See the section Sockets in Chapter 15 for more examples. The Net::hostent module supports a by-name interface to this function. See
 gethostbyaddr(3).
The Socket module has a gethostinfo function that works for addresses
 in all common forms, including IPv6.
The getaddrinfo function is
 used to get a list of IP addresses and port numbers for a given host
 (and possibly service), and it provides more flexibility than the
 gethostbyname(3) and
 getservbyname(3) functions.
use Socket qw(:all);
@addr_structs = getaddrinfo("127.0.0.1"); # IPv4 loopback
@addr_structs = getaddrinfo("207.171.7.72");

@addr_structs = getaddrinfo("::1"); # IPv6 loopback
@addr_structs = getaddrinfo("e80::223:12ff:fe58:714c");

gethostbyname [image:] [image:]

gethostbyname NAME
This function translates a network hostname to its
 corresponding addresses (and other names). The return value in list
 context is:
0 1 2 3 4 ...
($name, $aliases, $addrtype, $length, @addrs) =
 gethostbyname($remote_hostname);
where @addrs is a list of raw
 addresses. In the Internet domain, each address is (historically) four
 bytes long and can be unpacked by saying something like:
($a, $b, $c, $d) = unpack("C4", $addrs[0]);
You can convert directly to dot-vector notation with the v modifier to sprintf:
$dots = sprintf "%vd", $addrs[0];
In scalar context, gethostbyname returns only the host
 address:
use Socket;
$ipaddr = gethostbyname($remote_host);
printf "%s has address %s\n",
 $remote_host, inet_ntoa($ipaddr);
See Sockets in Chapter 15
 for another approach. The Net::hostent module supports a by-name interface to this function. See
 also gethostbyname(3).

gethostent [image:]

gethostent
sethostent STAYOPEN
endhostent
These functions iterate through your /etc/hosts file and return each entry one at
 a time. The return value from gethostent is:
($name, $aliases, $addrtype, $length, @addrs)
where @addrs is a list of raw
 addresses. In the Internet domain, each address is four bytes long and
 can be unpacked by saying something like:
($a, $b, $c, $d) = unpack("C4", $addrs[0]);
Scripts that use gethostent
 should not be considered portable. If a machine uses a name server, it
 would have to interrogate most of the Internet to try to satisfy a
 request for all the addresses of every machine on the planet. So
 gethostent is unimplemented on such
 machines. See gethostent(3) for other
 details.
The Net::hostent module supports a by-name interface to this
 function.

getlogin [image:]

getlogin
This function returns the current login name if found. On Unix
 systems, this is read from the utmp(5) file. If it
 returns false, use getpwuid instead.
 For example:
$login = getlogin() || (getpwuid($<))[0] || "Intruder!!";

getnetbyaddr [image:]

getnetbyaddr ADDR, ADDRTYPE
This function translates a network address to the corresponding
 network name or names. The return value in list context is:
use Socket;
($name, $aliases, $addrtype, $net) = getnetbyaddr(127, AF_INET);
In scalar context, getnetbyaddr
 returns only the network name. The Net::netent module supports a by-name interface to this function. See
 getnetbyaddr(3).

getnetbyname [image:] [image:]

getnetbyname NAME
This function translates a network name to its corresponding
 network address. The return value in list context is:
($name, $aliases, $addrtype, $net) = getnetbyname("loopback");
In scalar context, getnetbyname
 returns only the network address. The Net::netent module supports a by-name interface to this function. See
 getnetbyname(3).

getnetent [image:]

getnetent
setnetent STAYOPEN
endnetent
These functions iterate through your /etc/networks file. The return value in list
 context is:
($name, $aliases, $addrtype, $net) = getnetent();
In scalar context, getnetent
 returns only the network name. The Net::netent module supports a by-name interface to this function. See
 getnetent(3).
The concept of network names seems rather quaint these days; most
 IP addresses are on unnamed (and unnameable) subnets.

getpeername [image:] [image:] [image:]

getpeername SOCKET
This function returns the packed socket address of the other
 end of the SOCKET connection. For
 example:
use Socket;
$hersockaddr = getpeername SOCK;
($port, $heraddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($heraddr, AF_INET);
$herstraddr = inet_ntoa($heraddr);

getpgrp [image:] [image:]

getpgrp PID
This function returns the current process group for the
 specified PID (use a
 PID of 0
 for the current process). Invoking getpgrp will raise an exception if used on a
 machine that doesn’t implement getpgrp(2). If
 PID is omitted, the function returns the
 process group of the current process (the same as using a
 PID of 0).
 On systems implementing this operator with the POSIX
 getpgrp(2) syscall, PID
 must be omitted or, if supplied, it must be 0.

getppid [image:]

getppid
This function returns the process ID of the parent process. On
 the typical Unix system, if your parent process ID changes to 1, it
 means your parent process has died and you’ve been adopted by the
 init(8) program.

getpriority [image:] [image:]

getpriority WHICH, WHO
This function returns the current priority for a process, a
 process group, or a user. See getpriority(2).
 Invoking getpriority will raise an
 exception if used on a machine that doesn’t implement
 getpriority(2).
The BSD::Resource module from CPAN provides a more convenient interface,
 including the PRIO_PROCESS, PRIO_PGRP, and PRIO_USER symbolic constants to supply for the
 WHICH argument. Although these are
 traditionally set to 0, 1, and 2,
 respectively, you really never know what may happen within the dark
 confines of C’s #include
 files.
A value of 0 for
 WHO means the current process, process group,
 or user. So to get the priority of the current process, use:
$curprio = getpriority(0, 0);

getprotobyname [image:] [image:]

getprotobyname NAME
This function translates a protocol name to its corresponding
 number. The return value in list context is:
($name, $aliases, $protocol_number) = getprotobyname("tcp");
When called in scalar context, getprotobyname returns only the protocol
 number. The Net::proto module supports a by-name interface to this function. See
 getprotobyname(3).

getprotobynumber [image:]

getprotobynumber NUMBER
This function translates a protocol number to its corresponding
 name. The return value in list context is:
0 1 2
($name, $aliases, $protocol_number) = getprotobynumber(6);
When called in scalar context, getprotobynumber returns only the protocol
 name. The Net::proto module supports a by-name interface to this function. See
 getprotobynumber(3).

getprotoent [image:]

getprotoent
setprotoent STAYOPEN
endprotoent
These functions iterate through the /etc/protocols file. In list context, the
 return value from getprotoent
 is:
0 1 2
($name, $aliases, $protocol_number) = getprotoent();
When called in scalar context, getprotoent returns only the protocol name.
 The Net::proto module supports a by-name interface to this function. See
 getprotent(3).

getpwent [image:] [image:]

getpwent
setpwent
endpwent
These functions conceptually iterate through your /etc/passwd file, though this may involve the
 /etc/shadow file if you’re the
 superuser and are using shadow passwords; it may get a lot fancier than
 that if you’re using some database- or network-based login system. The
 return value in list context is:
0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwent();
Some machines may use the quota and comment fields for purposes
 other than their named purposes, but the remaining fields will always be
 the same. To set up a hash for translating login names to UIDs, say
 this:
while (($name, $passwd, $uid) = getpwent()) {
 $uid{$name} = $uid;
}
In scalar context, getpwent
 returns only the username. The User::pwent module supports a by-name interface to this function. See
 getpwent(3).

getpwnam [image:] [image:] [image:]

getpwnam NAME
This function translates a username to the corresponding
 /etc/passwd file entry. The return
 value in list context is:
0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwnam("daemon");
On systems that support shadow passwords, you will have to be the
 superuser to retrieve the actual password. Your C library should notice
 that you’re suitably empowered and open the /etc/shadow file (or wherever it keeps the
 shadow file). At least, that’s how it’s supposed to work.
For repeated lookups, consider caching the data in a hash using
 getpwent.
In scalar context, getpwnam
 returns only the numeric user ID. The User::pwent module supports a by-name interface to this function. See
 getpwnam(3) and
 passwd(5).

getpwuid [image:] [image:]

getpwuid UID
This function translates a numeric user ID to the corresponding
 /etc/passwd file entry. The return
 value in list context is:
0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwuid(2);
For repeated lookups, consider caching the data in a hash using
 getpwent.
In scalar context, getpwuid
 returns the username. The User::pwent module supports a by-name interface to this function. See
 getpwnam(3) and
 passwd(5).

getservbyname [image:] [image:]

getservbyname NAME, PROTO
This function translates a service (port) name to its
 corresponding port number. PROTO is a
 protocol name such as “tcp”. The
 return value in list context is:
0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservbyname("www", "tcp");
In scalar context, getservbyname returns only the service port
 number. The Net::servent module supports a by-name interface to this function. See
 getservbyname(3).

getservbyport [image:]

getservbyport PORT, PROTO
This function translates a service (port) number to its
 corresponding names. PROTO is a protocol name
 such as “tcp”. The return value in
 list context is:
0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservbyport(80, "tcp");
In scalar context, getservbyport returns only the service name.
 The Net::servent module supports a by-name interface to this function. See
 getservbyport(3).

getservent [image:]

getservent
setservent STAYOPEN
endservent
This function iterates through the /etc/services file or its equivalent. The
 return value in list context is:
0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservent();
In scalar context, getservent returns only the service port name.
 The Net::servent module supports a by-name interface to this function. See
 getservent(3).

getsockname [image:] [image:] [image:]

getsockname SOCKET
This function returns the packed socket address of this end of
 the SOCKET connection. (And why wouldn’t you
 know your own address already? Maybe because you bound an address
 containing wildcards to the server socket before doing an accept, and now you need to know what
 interface someone used to connect to you. Or you were passed a socket by
 your parent process—inetd, for example.)
use Socket;
assume that SOCK is a connected socket
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
$myname = gethostbyaddr($myaddr, AF_INET);
printf "I am %s [%vd]\n", $myname, $myaddr;

getsockopt [image:] [image:] [image:]

getsockopt SOCKET, LEVEL, OPTNAME
This function queries the option named
 OPTNAME associated with
 SOCKET at a given
 LEVEL. Options may exist at multiple protocol
 levels depending on socket type, but at least the uppermost socket level
 SOL_SOCKET (defined in the Socket module) will exist. To query options at another level the
 protocol number of the appropriate protocol controlling the option
 should be supplied. For example, to indicate that an option is to be
 interpreted by the TCP protocol, LEVEL should
 be set to the protocol number for TCP, which you can get using getprotobyname.
The function returns a packed string representing the requested
 socket option, or undef if there is
 an error with the reason for that error in $!. Just what is in the packed string depends
 on the LEVEL and
 OPTNAME; see
 getsockopt(2) for details. But often the option is
 an integer, in which case the result is a packed integer, which you can
 unpack with the “i” (or I)
 format.
For example, to test whether Nagle’s algorithm is enabled on a
 socket:
use Socket qw(:all);

assume that $socket hold the handle of a connected socket
$tcp = IPPROTO_TCP;
$packed = getsockopt($socket, $tcp, TCP_NODELAY)
 || die "getsockopt: $!";
$nodelay = unpack("I", $packed);
printf "Nagle's algorithm is o%s.\n", $nodelay ? "ff" : "n";
See setsockopt for more
 information.

glob [image:] [image:] [image:] [image:]

glob EXPR
glob
This function returns the value of
 EXPR with filename expansions the way a shell
 would expand them. This is the internal function implementing the
 <*> operator.
For historical reasons, the algorithm matches the
 csh(1)’s style of expansion, not the Bourne
 shell’s. Files whose first character is a dot (“.”) are ignored unless this character is
 explicitly matched first. An asterisk (“*”) matches any sequence of any character
 (including none). A question mark (“?”) matches any one character. A square
 bracket sequence (“[…]”) specifies a simple character class, like
 “[chy0–9]”. Character classes may be
 negated with a circumflex, as in “*.[^oa]”, which matches any file with an
 extension consisting of a period followed by one character that is
 neither an “a” nor an “o”. A tilde (“~”) expands to a home directory, as in
 “~/.*rc” for all the current user’s
 “rc” files, or “~jane/Mail/*” for all
 of Jane’s mail files. Braces may be used for alternation, as in
 “~/.{mail,ex,csh,twm,}rc” to get
 those particular rc files.
The glob function grandfathers
 the use of whitespace to separate multiple patterns such as <*.c *.h>. If you want to glob filenames
 that might contain whitespace, you’ll have to use extra quotes around
 the spacy filename to protect it. For example, to glob filenames that
 have an “e” followed by a space
 followed by an “f”, use either
 of:
@spacies = <"*e f*">;
@spacies = glob '"*e f*"';
@spacies = glob q("*e f*");
If you had to get a variable through, you could do this:
@spacies = glob "'*${var}e f*'";
@spacies = glob qq("*${var}e f*");
Alternately, you can use the File::Glob module directly; for details, see its manpage. Calling
 glob or the <*> operator automatically uses that module, so if the module
 mysteriously vaporizes from your library, an exception is raised.
When you call open, Perl does
 not expand wildcards, even tildes. You need to glob the result first:
open(MAILRC, "~/.mailrc") # WRONG: tilde is a shell thing
 || die "can't open ~/.mailrc: $!";

open(MAILRC, <~/.mailrc>) # expand tilde first
 || die "can't open ~/.mailrc: $!";

open(MAILRC, (glob("~/.mailrc"))[0]) # same, but more
 || die "can't open ~/.mailrc: $!"; # careful of list return
If nonempty braces are the only wildcard characters used in the
 glob, no filenames are matched, but
 potentially many strings are returned. For example, this produces nine
 strings, one for each pairing of fruits and colors:
@many = glob "{apple,tomato,cherry}={green,yellow,red}";
The glob function is not
 related to the Perl notion of typeglobs, other than that they both use a
 * to represent multiple items.
See also the section Filename Globbing Operator in Chapter 2.

gmtime

gmtime EXPR
gmtime
This function converts a time as returned by the time function to a nine-element list with the
 time correct for what was historically called Greenwich Mean Time (GMT),
 but which is now known as Coordinated Universal Time (UTC). It’s typically used as
 follows:
0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime;
If as here the EXPR is omitted, it does
 gmtime(time()). The Perl library
 module Time::Local contains a subroutine, timegm, that can convert the list back into a
 time value.
All list elements are numeric and come straight out of a struct tm (that’s a C programming
 structure—don’t sweat it). In particular, this means that $mon has the range 0..11, with January as month
 0, and $wday has
 the range 0..6, with Sunday as day
 0. You can remember which ones are
 zero-based because those are the ones you’re always using as subscripts
 into zero-based arrays containing month and day names.
For example, to get the current month in London, you might
 say:
$london_month = (qw(Jan Feb Mar Apr May Jun
 Jul Aug Sep Oct Nov Dec))[(gmtime)[4]];
$year is the number of years
 since 1900; that is, in year 2023, $year is 123, not simply 23. To get the four-digit year, just say
 $year + 1900. To get the two-digit
 year (for example “01” in 2001), use sprintf("%02d", $year % 100).
In scalar context, gmtime
 returns a ctime(3)-like string based on the GMT
 time value. The Time::gmtime module supports a by-name interface to this function. See
 also POSIX::strftime for a more
 fine-grained approach to formatting times.
This scalar value is not locale dependent but
 is instead a Perl built-in. Also see the Time::Local module and the
 strftime(3) and mktime(3)
 functions available via the POSIX module. To get somewhat similar but locale-dependent date
 strings, set up your locale environment variables appropriately (please
 see the perllocale
 manpage), and try:
use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
The %a and %b escapes, which represent the short forms of
 the day of the week and the month of the year, may not necessarily be
 three characters wide in all locales.

goto [image:]

goto LABEL
goto EXPR
goto &NAME
goto
 LABEL finds the statement labelled with
 LABEL and resumes execution there. If the
 LABEL cannot be found, an exception is
 raised. It cannot be used to go into any construct that requires
 initialization, such as a subroutine or a foreach loop. It also can’t be used to go into
 a construct that is optimized away. It can be used to go almost anywhere
 else within the dynamic scope,[237] including out of subroutines; however, for that purpose,
 it’s usually better to use some other construct such as last or die. The author of Perl has never felt the
 need to use this form of goto (in
 Perl, that is—C is another matter).
Going to even greater heights of orthogonality (and depths of
 idiocy), Perl allows goto
 EXPR, which expects
 EXPR to evaluate to a label name, whose
 location is guaranteed to be unresolvable until
 runtime since the label is unknown when the statement is compiled. This
 allows for computed gotos per
 FORTRAN, but isn’t recommended if you’re optimizing for
 maintainability:
goto +("FOO", "BAR", "GLARCH")[$i];
The unrelated goto &NAME is highly
 magical, substituting a call to the named subroutine for the currently
 running subroutine. This construct may be used without shame by AUTOLOAD subroutines that wish to load another
 subroutine and then pretend that this new subroutine—and not the
 original one—had been called in the first place (except that any
 modifications to @_ in the original
 subroutine are propagated to the replacement subroutine). After the
 goto, not even caller will be able to tell that the original
 AUTOLOAD routine was called
 first.

[237] This means that if it doesn’t find the label in the current
 routine, it looks back through the routines that called the current
 routine for the label, thus making it nearly impossible to maintain
 your program.

grep

grep EXPR, LIST
grep BLOCK LIST
This function evaluates EXPR or
 BLOCK in Boolean context for each element of
 LIST, temporarily setting $_ to each element in turn, much like the
 foreach construct. In list context,
 it returns a list of those elements for which the expression is true.
 (The operator is named after a beloved Unix program that extracts lines
 out of a file that match a particular pattern. In Perl, the expression
 is often a pattern, but it doesn’t have to be.) In scalar context,
 grep returns the number of times the
 expression was true.
If @all_lines contains lines of
 code, this example weeds out comment lines:
@code_lines = grep !/^\s*#/, @all_lines;
Because $_ is an implicit alias
 to each list value, altering $_
 modifies the elements of the original list. While this is useful and
 supported, it can occasionally cause bizarre results if you aren’t
 expecting it. For example:
@list = qw(barney fred dino wilma);
@greplist = grep { s/^[bfd]// } @list;
@greplist is now “arney”, “red”, “ino”, but @list is now “arney”, “red”, “ino”, “wilma”! Ergo, Caveat Programmor.
See also map. The following two
 statements are functionally equivalent:
@out = grep { EXPR } @in;
@out = map { EXPR ? $_ : () } @in
For a version of grep that
 short circuits, see the first
 function from the standard List::Util module. Instead of returning a list of all elements for
 which the EXPR was true, it returns only the
 first such, or undef if none were. As
 always, $_ is set to each
 element:
use List::Util qw(first);

$first_over_100 = first { $_ > 100 } @list;
$first_with_foo = first { /foo/ } @list;
And here’s a function that takes a single character and reports
 which release of the Unicode Standard it premièred in:
use v5.14;
use List::Util qw(first);
sub getage(_) {
 my $one_char = shift;
 die unless length($one_char) == 1;
 state $ages = [reverse qw(1.1 2.0 2.1 3.0 3.1 3.2
 4.0 4.1 5.0 5.1 5.2 6.0
)];
 return first { $one_char =~ /\p{Age=$_}/ } @$ages;
}

hex [image:]

hex EXPR
hex
This function interprets EXPR as a
 hexadecimal string and returns the equivalent decimal value. A leading
 “0x” is ignored, if present. To
 interpret strings that might start with any of 0, 0b, or
 0x, see oct. The following code sets $number to 4,294,906,560:
$number = hex("ffff12c0");
To do the inverse function, use sprintf:
sprintf "%lx", $number; # (That's an ell, not a one.)
Hex strings may represent integers only. Strings that would cause
 integer overflow trigger a warning. Unlike oct, leading whitespace is not
 stripped.

import

import CLASSNAME LIST
import CLASSNAME
There is no built-in import
 function. It is merely an ordinary class method defined (or inherited)
 by modules that wish to export names to another module through the
 use operator. See use for details.

index

index STR, SUBSTR, OFFSET
index STR, SUBSTR
This function searches for one literal string within another.
 It returns the position of the first occurrence of
 SUBSTR in STR. The
 OFFSET, if specified, says how many
 characters from the start to skip before beginning to look. Positions
 are based at 0. If the substring is not found, the function returns one
 less than the base, ordinarily –1. To
 work your way through a string, you might say:
$pos = –1;
while (($pos = index($string, $lookfor, $pos)) > –1) {
 say "Found at $pos"; $pos++;
}
Offsets are always by programmer-visible characters
 (i.e., codepoints), not by user-visible characters
 (graphemes). The offset is in bytes only if you have already decoded
 from abstract characters into some serialization scheme, like UTF-8 or
 UTF-16. See Chapter 6.
To work with strings as sequences of graphemes instead of
 codepoints, see the index, rindex, and pos methods for the CPAN Unicode::GCString module.

int [image:]

int EXPR
int
This function returns the integer portion of
 EXPR. If you’re a C programmer, you’re apt to
 forget to use int with division,
 which is a floating-point operation in Perl:
$average_age = 939/16; # yields 58.6875 (58 in C)
$average_age = int 939/16; # yields 58
You should not use this function for generic rounding, because it
 truncates toward 0 and because machine representations of floating-point
 numbers can produce counterintuitive results. For example, int(–6.725/0.025) produces –268 rather than the correct –269; that’s because the value is really more
 like –268.99999999999994315658.
 Usually, the sprintf, printf, or the POSIX::floor and POSIX::ceil functions will serve you better
 than will int.
$n = sprintf("%.0f", $f); # round (not trunc) to nearest integer
To compensate for the inherent bias that always rounding a 5 up
 would cause, IEEE specifies that rounding be toward the nearest even
 number on a 5. Therefore, this:
for (–3 ... 3) { printf "%.0f\n", $_ + 0.5 }
Prints the sequence ‒2, ‒2, ‒0, 0, 2, 2, and 4.

ioctl [image:] [image:] [image:] [image:] [image:]

ioctl FILEHANDLE, FUNCTION, SCALAR
This function implements the ioctl(2)
 syscall, which controls I/O. To get the correct function definitions,
 first you’ll probably have to say:
require "sys/ioctl.ph"; # perhaps /usr/local/lib/perl/sys/ioctl.ph
If sys/ioctl.ph doesn’t exist
 or doesn’t have the correct definitions, you’ll have to roll your own
 based on your C header files such as sys/ioctl.h. (The Perl distribution includes
 a script called h2ph to help you do
 this, but running it is nontrivial.) SCALAR
 will be read or written (or both) depending on the
 FUNCTION—a pointer to the string value of
 SCALAR will be passed as the third argument
 of the actual ioctl(2) call. If
 SCALAR has no string value but does have a
 numeric value, that value will be passed directly rather than a pointer
 to the string value. The pack and
 unpack functions are useful for
 manipulating the values of structures used by ioctl. If the ioctl needs to write data into your
 SCALAR, it is up to you to ensure that the
 string is long enough to hold what needs to be written, often by
 initializing it to a dummy value of the correct size using pack. The following example determines how
 many bytes (not characters) are available for reading using the FIONREAD ioctl:
require "sys/ioctl.ph";

pre–allocate the right size buffer:
$size = pack("L", 0);
ioctl(FH, FIONREAD(), $size)
 || die "Couldn't call ioctl: $!";
$size = unpack("L", $size);
Here is how to detect the current window size[238] in rows and columns:
require "sys/ioctl.ph";

four unsigned shorts of the native size
$template = "S!4";
pre–allocate the right size buffer:
my $ws = pack($template, ());
ioctl(STDOUT, TIOCGWINSZ(), $ws)
 || die "Couldn't call ioctl: $!";
($rows, $cols, $xpix, $ypix) = unpack($template, $ws);
If h2ph wasn’t installed or
 doesn’t work for you, you can grep
 the include files by hand or write a small C program to print out the
 value. You may also have to look at C code to determine the structure
 template layout and size needed for your system.
The return value of ioctl (and
 fcntl) is as shown in Table 27-2.
Table 27-2. Return values for ioctl
	Syscall Returns	Perl Returns
	–1	undef
	0	String “0 but true”
	Anything else	That number

Thus, Perl returns true on success and false on failure, yet you
 can still easily determine the actual value returned by the operating
 system:
$retval = ioctl(...) || –1;
printf "ioctl actually returned %d\n", $retval;
The special string “0 but true”
 is exempt from warnings from the –w
 command-line flag or the warnings
 pragma about improper numeric conversions.
Calls to ioctl should not be
 considered portable. If, say, you’re merely turning off echo once for
 the whole script, it’s more portable to say:
system "stty –echo"; # Works on most Unix boxen
Just because you can do something in Perl
 doesn’t mean you ought to. For still better
 portability, you might look at the Term::ReadKey module from CPAN. Almost anything you might want to use
 ioctl for, there probably exists a
 CPAN module that already does that, and more portably, too, because they
 usually rope your system’s C compiler into doing the heavy lifting for
 you.

[238] Or, rather, how to get the window size associated with the
 STDOUT filehandle.

join

join EXPR, LIST
This function joins the separate strings of
 LIST into a single string with fields
 separated by the value of EXPR, and returns
 the string. For example:
$rec = join ":", $login,$passwd,$uid,$gid,$gcos,$home,$shell;
To do the opposite, see split.
 To join things together into fixed-position fields, see pack. The most efficient way to concatenate
 many strings together is to join them
 with a null string:
$string = join "", @array;
Unlike split, join doesn’t take a pattern as its first
 argument and will produce a warning if you try.

keys [image:]

keys HASH
keys ARRAY
keys EXPR
This function returns a list consisting of all keys in the
 indicated HASH. The keys are returned in an
 apparently random order, but it is the same order produced by either the
 values or each function (assuming the hash has not been
 modified between calls). As a side effect, it resets
 HASH’s iterator. Here is a (rather
 cork-brained) way to print your environment:
@keys = keys %ENV; # keys are in the same order as
@values = values %ENV; # values, as this demonstrates
while (@keys) {
 say pop(@keys), "=", pop(@values);
}
You’re more likely to want to see the environment sorted by
 keys:
for my $key (sort keys %ENV) {
 say $key, "=", $ENV{$key};
}
You can sort the values of a hash directly, but that’s somewhat
 useless in the absence of any way to map values back to keys. To sort a
 hash by value, you generally need to sort the keys by providing a comparison function that
 accesses the values based on the keys. Here’s a descending numeric sort
 of a hash by its values:
for my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
 printf "%4d %s\n", $hash{$key}, $key;
}
Using keys on a hash bound to a
 largish DBM file will produce a largish list, causing you to have a
 largish process. You might prefer to use the each function here, which will iterate over
 the hash entries one by one without slurping them all into a single
 gargantuan list.
In scalar context, keys returns
 the number of elements of the hash (and resets the each iterator). However, to get this
 information for tied hashes, including DBM files, Perl must walk the
 entire hash, so it’s not efficient then. Calling keys in void context helps with that.
Used as an lvalue, keys
 increases the number of hash buckets allocated for the given hash. (This
 is similar to preextending an array by assigning a larger number to
 $#array.) Preextending your hash can
 gain a measure of efficiency, if you happen to know the hash is going to
 get big, and how big it’s going to get. If you say:
keys %hash = 1000;
then %hash will have at least
 1,000 buckets allocated for it (you get 1,024 buckets, in fact, since it
 rounds up to the next power of two). You can’t shrink the number of
 buckets allocated for the hash using keys in this way (but you needn’t worry about
 doing this by accident, as trying has no effect). The buckets will be
 retained even if you do %hash = ().
 Use undef %hash if you want to free
 the storage while %hash is still in
 scope.
See also each, values, and sort.

kill [image:] [image:] [image:] [image:]

kill SIGNAL, LIST
This function sends a signal to a list of processes. For
 SIGNAL, you may use either an integer or a
 quoted signal name (without a “SIG”
 on the front). Trying to use an unrecognized
 SIGNAL name raises an exception. The function
 returns the number of processes successfully signalled. If
 SIGNAL is negative, the function kills
 process groups instead of processes. (On Unix systems derived from SysV,
 a negative process number will also kill process groups, but that’s not
 portable.) A PID of zero sends the signal to all processes of the same
 group ID as the sender. For example:
$cnt = kill 1, $child1, $child2;
kill 9, @goners;
kill "STOP", getppid # Can *so* suspend my login shell...
 unless getppid == 1; # (But don't taunt init(8).)
A SIGNAL of 0 tests whether a process is still alive and
 that you still have permission to signal it. No signal is sent. This way
 you can check whether the process is still alive and hasn’t changed its
 UID.
use Errno qw(ESRCH EPERM);
if (kill 0 => $minion) {
 say "$minion is alive!";
} elsif ($! == EPERM) { # changed UID
 say "$minion has escaped my control!";
} elsif ($! == ESRCH) {
 say "$minion is deceased."; # or zombied
} else {
 warn "Odd; I couldn't check on the status of $minion: $!\n";
}
See the section Signals in Chapter 15.

last [image:]

last LABEL
last
The last operator immediately exits the loop in question, just like the
 break statement in C or Java (as used
 in loops). If LABEL is omitted, the operator
 refers to the innermost enclosing loop. The continue block, if any, is not
 executed.
LINE: while (<MAILMSG>) {
 last LINE if /^$/; # exit when done with header
 # rest of loop here
}
last cannot be used to exit a
 block that returns a value, such as eval
 {}, sub {}, or do {}, and it should not be used to exit a
 grep or map operation. With warnings enabled, Perl
 warns if you last out of a loop
 that’s not in your current lexical scope, such as a loop in a calling
 subroutine.
A block by itself is semantically identical to a loop that
 executes once. Thus, last can be used
 to effect an early exit out of such a block. See also Chapter 4 for illustrations of how last, next,
 redo, and continue work.

lc [image:] [image:]

lc EXPR
lc
This function returns a lowercased version of
 EXPR. This is the internal function
 implementing the \L escape in
 double-quoted strings.
Do not use lc for
 case-insensitive comparisons the way you may have once done in ASCII,
 because it gives the wrong answer for Unicode. Instead, use the fc (foldcase) function, either from the CPAN
 Unicode::CaseFold module, or via use feature
 "fc" in v5.16 or later. See the section “A Case of Mistaken
 Identity” in Chapter 6 for more information.
Codepoints in the 128–256 range are ignored by lc if the string does not have Unicode
 semantics (and locale mode is not in effect), which can be difficult to
 guess. The unicode_strings feature
 guarantees Unicode semantics even on those codepoints. See Chapter 6.
Your current LC_CTYPE locale is
 respected if use locale is in effect,
 though how locales interact with Unicode is still a topic of ongoing
 research, as they say. See the perllocale,
 perlunicode,
 and perlfunc
 manpages for the most recent results.

lcfirst [image:] [image:]

lcfirst EXPR
lcfirst
This function returns a version of
 EXPR with the first character lowercased.
 This is the internal function implementing the \l escape in double-quoted strings. See the
 previous entry regarding Unicode casemapping.

length [image:]

length EXPR
length
This function returns the length in codepoints
 (programmer‐visible characters) of the scalar value
 EXPR. If EXPR is
 omitted, it returns the length of $_.
 (But be careful that the next thing doesn’t look like the start of an
 EXPR, or Perl’s lexer will get confused. For
 example, length < 10 won’t
 compile. When in doubt, use parentheses.)
Do not try to use length to
 find the size of an array or hash. Use scalar
 @array for the size of an array, and scalar keys %hash for the number of key/value
 pairs in a hash. (The scalar is
 typically omitted when redundant.)
To find the number of graphemes (user‐visible characters) in a
 string, either count them:
my $count = 0;
$count++ while our $string =~ /\X/g;
or use the CPAN Unicode::GCString module, which lets you work with a string as a sequence
 of graphemes instead of as a sequence of codepoints. That module also
 tells you how long a string is in print columns. That way you can still
 use printf justification and, if
 you’re creative, maybe even format
 and write, even though some
 codepoints occupy 0 columns, others 1 column, and still others 2 columns
 when printed.

_ _LINE_ _

A special token that compiles to the current line number. See Generating Perl in Other Languages in Chapter 21.

link [image:] [image:] [image:]

link OLDFILE, NEWFILE
This function creates a new filename linked to the old
 filename. The function returns true for success, false otherwise. See
 also symlink later in this chapter.
 This function is unlikely to be implemented on non-Unix‐style
 filesystems.

listen [image:] [image:] [image:]

listen SOCKET, QUEUESIZE
This function tells the system that you’re going to be
 accepting connections on this SOCKET and that
 the system can queue the number of waiting connections specified by
 QUEUESIZE. Imagine having call-waiting on
 your phone, with up to 17 callers queued. (Gives me the willies!) The
 function returns true if it succeeds, false otherwise.
use Socket;
listen(PROTOSOCK, SOMAXCONN)
 || die "cannot set listen queue on PROTOSOCK: $!";
See accept. See also the
 section Sockets in Chapter 15.
 See listen(2).

local

local EXPR
This operator does not create a local variable; use my for that. Instead, it localizes existing
 variables; that is, it causes one or more global variables to have
 locally scoped values within the innermost enclosing block, eval, or file. If more than one variable is
 listed, the list must be placed in parentheses because the operator
 binds more tightly than commas. All listed variables must be legal
 lvalues—that is, something you could assign to; this can include
 individual elements of arrays or hashes.
This operator works by saving the current values of the specified
 variables on a hidden stack and restoring them on exiting the block,
 subroutine, eval, or file. After the
 local is executed, but before the
 scope is exited, any subroutines and executed formats will see the
 local, inner value, instead of the previous, outer value, because the
 variable is still a global variable, despite having a localized value.
 The technical term for this is dynamic scoping. See
 the section Scoped Declarations in Chapter 4.
The EXPR may be assigned to if desired,
 which lets you initialize your variables as you localize them. If no
 initializer is given, all scalars are initialized to undef, and all arrays and hashes to (). As with ordinary assignment, if you use
 parentheses around the variables on the left (or if the variable is an
 array or hash), the expression on
 the right is evaluated in list context. Otherwise, the expression on the
 right is evaluated in scalar context.
In any event, the expression on the right is evaluated before the
 localization, but the initialization happens after localization, so you
 can initialize a localized variable with its nonlocalized value. For
 instance, this code demonstrates how to make a temporary change to a
 global array:
if ($sw eq "–v") {
 # init local array with global array
 local @ARGV = @ARGV;
 unshift(@ARGV, "echo");
 system @ARGV;
}
@ARGV restored
You can also temporarily modify global hashes:
temporarily add a couple of entries to the %digits hash
if ($base12) {
 # (NOTE: We're not claiming this is efficient!)
 local(%digits) = (%digits, T => 10, E => 11);
 parse_num();
}
You can use local to give
 temporary values to individual elements of arrays and hashes, even
 lexically scoped ones:
if ($protected) {
 local $SIG{INT} = "IGNORE";
 precious(); # no interrupts during this function
} # previous handler (if any) restored
You can also use local on
 typeglobs to create local filehandles without loading any bulky object
 modules:
local *MOTD; # protect any global MOTD handle
my $fh = do { local *FH }; # create new indirect filehandle
Although you may see localized typeglobs used in old code that
 needed to generate new filehandles, these days a plain my $fh is good enough. That’s because if you
 give an undefined variable as the filehandle argument to a function that
 initializes a filehandle (such as the first argument to open or socket), Perl autovivifies a brand new
 filehandle for you.
In general, you usually want to use my instead of local, because local isn’t really what most people think of
 as “local”, or even “lo-cal”. See my.
The delete local EXPR construct
 can also be used to localize the deletion of array or hash elements to
 the current block.

localtime

localtime EXPR
localtime
This function converts the value returned by time to a nine-element list with the time
 corrected for the local time zone. It’s typically used as
 follows:
0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime;
If, as here, EXPR is omitted, it does
 localtime(time()).
All list elements are numeric and come straight out of a struct tm. (That’s a bit of C programming
 lingo—don’t worry about it.) In particular, this means that $mon has the range 0..11 with January as month 0, and $wday has the range 0..6 with Sunday as day 0. You can remember which ones are zero-based
 because those are the ones you’re always using as subscripts into
 zero-based arrays containing month and day names.
For example, to get the name of the current day of the
 week:
$thisday = (qw(Sun Mon Tue Wed Thu Fri Sat))[(localtime)[6]];
$year is the number of years
 since 1900; that is, in year 2023, $year is 123, not simply 23. To get the four-digit year, just say
 $year + 1900. To get the two-digit
 year (for example, “01” in 2001), use sprintf("%02d", $year % 100).
The Perl library module Time::Local contains a subroutine, timelocal, that can convert in the opposite
 direction.
In scalar context, localtime
 returns a ctime(3)-like string. For example, the
 date(1) command can be (almost)[239] emulated with:
perl –le 'print scalar localtime()'
See also the standard POSIX module’s strftime
 function for a more fine-grained approach to formatting times. The
 Time::localtime module supports a by-name interface to this
 function.

[239] date(1) prints the timezone, whereas
 scalar localtime does not.

lock

lock THING
The lock function places a lock on a variable, subroutine, or object
 referenced by THING until the lock goes out
 of scope. For backward compatibility, this function is a built-in only
 if your version of Perl was compiled with threading enabled, and if
 you’ve said use Threads. Otherwise,
 Perl will assume this is a user-defined function.

log [image:] [image:]

log EXPR
log
This function returns the natural logarithm (that is, base
 e) of EXPR. If
 EXPR is negative, it raises an exception. To
 get the log of another base, use basic algebra: the
 base-N log of a number is equal to the natural log
 of that number divided by the natural log of N. For
 example:
sub log10 {
 my $n = shift;
 return log($n)/log(10);
}
For the inverse of log, see
 exp.

lstat [image:] [image:] [image:]

lstat EXPR
lstat
This function does the same thing as Perl’s stat function (including setting the special
 _ filehandle), but if the last
 component of the filename is a symbolic link, it stats the symbolic link itself instead of the
 file to which the symbolic link points. If symbolic links are
 unimplemented on your system, a normal stat is done instead.

m// [image:] [image:]

/PATTERN/
m/PATTERN/
This is the match operator, which interprets
 PATTERN as a regular expression. The operator
 is parsed as a double-quoted string rather than as a function. See Chapter 5.

map

map BLOCK LIST
map EXPR, LIST
This function evaluates the BLOCK or
 EXPR for each element of
 LIST (locally setting $_ to each element) and returns the list
 comprising the results of each such evaluation. It evaluates
 BLOCK or EXPR in
 list context, so each element of LIST may map
 to zero, one, or more elements in the returned value. These are all
 flattened into one list. For instance:
@words = map { split " " } @lines;
splits a list of lines into a list of words. But often there is a
 one-to-one mapping between input values and output values:
@chars = map chr, @nums;
translates a list of numbers to the corresponding characters. And
 here’s an example of a one-to-two mapping:
%hash = map { genkey($_) => $_ } @array;
which is just a funny functional way to write this:
%hash = ();
for my $_ (@array) {
 $hash{genkey($_)} = $_;
}
Because $_ is an alias
 (implicit reference) into the list’s values, this variable can be used
 to modify the elements of the array. This is useful and supported,
 although it can cause bizarre results if the
 LIST is not a named array. Using a regular
 foreach loop for this purpose may be
 clearer. See also grep; map differs from grep in that map returns a list consisting of the results
 of each successive evaluation of EXPR,
 whereas grep returns a list
 consisting of each value of LIST for which
 EXPR evaluates to true.

mkdir [image:] [image:]

mkdir FILENAME, MASK
mkdir FILENAME
This function creates the directory specified by
 FILENAME, giving it permissions specified by
 the numeric MASK as modified by the current
 umask. If the operation succeeds, it
 returns true; otherwise, it returns false.
If MASK is omitted, a mask of 0777 is assumed, which is almost always what
 you want anyway. In general, creating directories with permissive
 MASKs (like 0777) and letting the user modify that with
 her umask is better than supplying a
 restrictive MASK and giving the user no way
 to be more permissive. The exception to this rule is when the file or
 directory should be kept private (mail files, for instance). See
 umask.
If the mkdir(2) syscall is not built into
 your C library, Perl emulates it by calling the
 mkdir(1) program for each directory. If you are
 creating a long list of directories on such a system, it’ll be more
 efficient to call the mkdir program
 yourself with the list of directories than to start zillions of
 subprocesses.

msgctl [image:] [image:]

msgctl ID, CMD, ARG
This function calls the System V IPC
 msgctl(2) syscall; see
 msgctl(2) for more details. You may have to
 use IPC::SysV first to get the correct constant definitions. If
 CMD is IPC_STAT, then ARG
 must be a variable that will hold the returned msqid_ds C structure. Return values are like
 ioctl and fcntl: undef for error, “0
 but true” for zero, or the actual return value
 otherwise.
This function is available only on machines supporting System V
 IPC, which turns out to be far fewer than those supporting
 sockets.

msgget [image:] [image:]

msgget KEY, FLAGS
This function calls the System V IPC
 msgget(2) syscall. See
 msgget(2) for details. The function returns the
 message queue ID, or undef if there
 is an error. Before calling, you should use
 IPC::SysV.
This function is available only on machines supporting System V
 IPC.

msgrcv [image:] [image:]

msgrcv ID, VAR, SIZE, TYPE, FLAGS
This function calls the msgrcv(2) syscall
 to receive a message from message queue ID
 into variable VAR with a maximum message size
 of SIZE. See msgrcv(2)
 for details. When a message is received, the message type will be the
 first thing in VAR, and the maximum length of
 VAR is SIZE plus
 the size of the message type. Decode this with unpack("l! a*"). The function returns true if
 successful, or false if there is an error. Before calling, you should
 use IPC::SysV.
This function is available only on machines supporting System V
 IPC.

msgsnd [image:] [image:]

msgsnd ID, MSG, FLAGS
This function calls the msgsnd(2) syscall
 to send the message MSG to the message queue
 ID. See msgsnd(2) for
 details. MSG must begin with the long integer
 message type. You can create a message like this:
$msg = pack "l! a*", $type, $text_of_message;
The function returns true if successful, or false if there is an
 error. Before calling, use
 IPC::SysV.
This function is available only on machines supporting System V
 IPC.

my

my TYPE EXPR : ATTRIBUTES
my EXPR : ATTRIBUTES
my TYPE EXPR
my EXPR
This operator declares one or more private variables to exist
 only within the innermost enclosing block, subroutine, eval, or file. If more than one variable is
 listed, the list must be placed in parentheses because the operator
 binds more tightly than commas. Only simple scalars or complete arrays
 and hashes may be declared this way.
The variable name cannot be package qualified, because package
 variables are all globally accessible through their corresponding symbol
 table, and lexical variables are unrelated to any symbol table. Unlike
 local, then, this operator has
 nothing to do with global variables, other than hiding any other
 variable of the same name from view within its scope (that is, where the
 private variable exists). A global variable can always be accessed
 through its package-qualified form, however, or through a symbolic
 reference.
A private variable’s scope does not start until the statement
 after its declaration. The variable’s scope extends
 into any enclosed blocks thereafter, up to the end of the scope of the
 variable itself.
However, this means that any subroutines you call from within the
 scope of a private variable cannot see the private variable unless the
 block that defines the subroutine itself is also textually enclosed
 within the scope of that variable. That sounds complicated, but it’s not
 once you get the hang of it. The technical term for this is lexical scoping, so we often call
 these lexical
 variables. In C culture, they’re sometimes called “auto”
 variables, since they’re automatically allocated and deallocated at
 scope entry and exit.
The EXPR may be assigned to if desired,
 which lets you initialize your lexical variables. (If no initializer is
 given, all scalars are initialized to the undefined value and all arrays
 and hashes to the empty list.) As with ordinary assignment, if you use
 parentheses around the variables on the left (or if the variable is an
 array or hash), the expression on the right is evaluated in list
 context. Otherwise, the expression on the right is evaluated in scalar
 context. For example, you can name your formal subroutine parameters
 with a list assignment, like this:
my ($friends, $romans, $countrymen) = @_;
But be careful not to omit the parentheses indicating list
 assignment, like this:
my $country = @_; # right or wrong?
This assigns the length of the array (that is, the number of the
 subroutine’s arguments) to the variable, since the array is being
 evaluated in scalar context. You can profitably use scalar assignment
 for a formal parameter, though, as long as you use the shift operator. In fact, since object methods
 are passed the object as the first argument, many method subroutines
 start off by “stealing” the first argument:
sub simple_as {
 my $self = shift; # scalar assignment
 my ($a,$b,$c) = @_; # list assignment
 ...
}
If you try to declare a lexically scoped subroutine with my sub, Perl will die with the message that
 this feature has not been implemented yet. (Unless, of course, this
 feature has been implemented yet.[240])
The TYPE and
 ATTRIBUTES are optional. Here’s what a
 declaration that uses them might look like:
my Dog $spot :ears(short) :tail(long);
The TYPE, if specified, indicates what
 kind of scalar or scalars are declared in
 EXPR, either directly as one or more scalar
 variables, or indirectly through an array or hash. If
 TYPE is the name of the class, the scalars
 will be assumed to contain references to objects of that type, or to
 objects compatible with that type. In particular, derived classes are
 considered compatible. That is, assuming Collie is derived from Dog, you might declare:
my Dog $lassie = new Collie;
Your declaration claims that you will use the $lassie object consistently with its being a
 Dog object. The fact that it’s
 actually a Collie object shouldn’t
 matter as long as you only try to do Dog things. Through the magic of virtual
 methods, the implementation of those Dog methods might well be in the Collie class, but the declaration above is
 only talking about the interface, not the implementation. In
 theory.
In fact, Perl doesn’t actually make much use of the type
 information yet, but it’s available for future improvements. (It was
 historically used by pseudohashes, but those are dead now.) The
 TYPE declaration should be considered a
 generic type interface that might someday be instantiated in various
 ways depending on the class. In fact, the
 TYPE might not even be an official class
 name. We’re reserving the lowercase type names for Perl, because one way
 we’d like to extend the type interface is to allow optional low-level
 type declarations such as int,
 num, and str.[241] These declarations will not be for the purpose of strong
 typing; rather, they’ll be hints to the compiler telling it to optimize
 the storage of the variable with the assumption that the variable will
 be used mostly as declared. The semantics of scalars will stay pretty
 much the same—you’ll still be able to add two str scalars, or print an int scalar, just as though they were the
 ordinary polymorphic scalars you’re familiar with. But, with an int declaration, Perl might decide to store
 only the integer value and forget about caching the resulting string as
 it currently does. Loops with int
 loop variables might run faster, particularly in code compiled down to
 C. In particular, arrays of numbers could be stored much more compactly.
 As a limiting case, the built-in vec
 function might even become obsolete when we can write declarations such
 as:
my bit @bitstring;
The ATTRIBUTES declaration is used more
 often than types are; see the attributes pragma in Chapter 29 for more on that.
 One attribute we’ll likely implement someday is constant:
my num $PI : constant = atan2(1,1) * 4;
But there are many other possibilities, such as establishing
 default values for arrays and hashes, or letting variables be shared
 among cooperating interpreters. Like the type interface, the attribute
 interface should be considered a generic interface, a kind of workbench
 for inventing new syntax and semantics. We do not know how Perl will
 evolve in the next 10 years. We only know that we can make it easier on
 ourselves by planning for that in advance.
See also local, our, and state, and the section “Scoped Declarations” in Chapter 4.

[240] There’s some hope of this, as Perl 6 has demonstrated that
 subroutines can be lexically scoped by default and still be easy to
 use.

[241] In fact, such native types are currently being prototyped in
 Perl 6 with just this syntax, so the Perl 5 folks might well borrow
 back all the good bits once the Perl 6 folks have discovered all the
 bad bits. :–)

new

new CLASSNAME LIST
new CLASSNAME
There is no built-in new function.
 It is merely an ordinary constructor method (that is, a user-defined
 subroutine) that is defined or inherited by the
 CLASSNAME class (that is, package) to let you
 construct objects of type CLASSNAME. Many
 constructors are named “new”, but only by convention, just to trick C++
 programmers into thinking they know what’s going on. Always read the
 documentation of the class in question so you know how to call its
 constructors; for example, the constructor that creates a list box in
 the Tk widget set is just called Listbox. See Chapter 12.

next [image:]

next LABEL
next
The next operator is like the continue
 statement in C: it starts the next iteration of the loop designated by
 LABEL:
LINE: while (<STDIN>) {
 next LINE if /^#/; # discard comments
 ...
}
If there were a continue block
 in this example, it would be executed immediately following the
 invocation of next. When
 LABEL is omitted, the operator refers to the
 innermost enclosing loop.
A block by itself is semantically identical to a loop that
 executes once. Thus, next will exit
 such a block early (via the continue
 block, if there is one).
next cannot be used to exit a
 block that returns a value, such as eval
 {}, sub {}, or do {}, and it should not be used to exit a
 grep or map operation. With warnings enabled, Perl
 warns you if you next out of a loop
 not in your current lexical scope, such as a loop in a calling
 subroutine. See the section Loop Statements in Chapter 4.

no [image:]

no MODULE VERSION LIST
no MODULE VERSION
no MODULE LIST
no MODULE
no VERSION
See the use operator,
 which is the opposite of no, kind of. Most standard modules do not
 unimport anything, making no a no-op,
 as it were. The pragmatic modules tend to be more obliging here. If
 MODULE cannot be found, an exception is
 raised.

oct [image:]

oct EXPR
oct
This function interprets EXPR as an
 octal string and returns the equivalent decimal value. If
 EXPR happens to start with “0x”, it is interpreted as a hexadecimal string
 instead. If EXPR starts off with “0b”, it is interpreted as a string of binary
 digits. The following will properly convert to whole numbers input
 strings in decimal, binary, octal, and hex bases using standard Perl
 notation:
$val = oct $val if $val =~ /^0/;
For the inverse function, use sprintf with an appropriate format:
$dec_perms = (stat("filename"))[2] & 07777;
$oct_perm_str = sprintf "%o", $dec_perms;
The oct function is commonly
 used when a data string such as “644”
 needs to be converted into a file mode, for example. Although Perl
 automatically converts strings into numbers as needed, this automatic
 conversion assumes base 10.
Leading whitespace is ignored without warning, as are any trailing
 nondigits, such as a decimal point (oct only handles nonnegative integers, not
 negative integers or floating point).

open [image:] [image:] [image:] [image:]

open FILEHANDLE, MODE, EXPR, LIST
open FILEHANDLE, MODE, EXPR
open FILEHANDLE, MODE, REFERENCE
open FILEHANDLE, EXPR
The open function associates an internal
 FILEHANDLE with an external file
 specification given by EXPR or
 LIST. It may be called with two or three
 arguments (or more if the third argument is a command). When three or
 more arguments are present, the second argument specifies the access
 MODE in which the file should be opened, and
 the remaining argument supplies the actual filename or the command to
 execute, depending on the mode. In the case of a command, additional
 arguments may be supplied if you wish to invoke the command directly
 without involving a shell, much like system or exec. Or the command may be supplied as a
 single argument (the third one), in which case the decision to invoke
 the shell depends on whether the command contains shell metacharacters.
 (Don’t use more than three arguments if the arguments are ordinary
 filenames; it won’t work.) If the MODE is not
 recognized, open raises an
 exception.
As a special case, the three-argument form with a read/write mode
 and the third argument being undef:
open(my $tmp, "+>", undef) or die ...
opens a filehandle to an anonymous temporary file. Using “+<” also works for symmetry, but you really
 should consider writing something to the temporary file first. You will
 need to seek to do the
 reading.
You may use the three-argument form of open to specify I/O layers (sometimes called
 “disciplines”) to apply to the handle that affect how the input and
 output are processed (see the PerlIO module for more details). For example:
open(my $fh, "< :encoding(UTF–8)", "filename")
 || die "can't open UTF–8 encoded filename: $!";
opens a UTF-8-encoded file (that is, a file containing Unicode
 characters). As of v5.14, the default behavior on UTF-8 input streams
 does not throw an exception on an encoding error.
 If you use any sort of UTF-8 layer, consider adding:
use warnings FATAL => "utf8";
so that you can catch the exception. See Chapter 6.
Note that if layers are specified in the three-argument form, then
 default layers stored in ${^OPEN} are
 ignored. (See Chapter 25; default layers are set by the
 open pragma or the switch –CioD.)
If your Perl was built using PerlIO,[242] you can open filehandles directly to Perl scalars by
 passing a reference to that scalar as the
 EXPR argument in the three-argument
 form:
open($fh, ">", \$variable) || ...
To reopen STDOUT or STDERR as an in-memory file, close it
 first:
close(STDOUT) || die "can't close STDOUT: $!";
open(STDOUT, ">", \$variable) || die "can't memopen STDOUT: $!";
If only two arguments are present, the mode and filename/command
 are assumed to be combined in the second argument. (And if you don’t
 specify a mode in the second argument, just a filename, then the file is
 opened read-only to be on the safe side.)
open(LOG, "> logfile") or die "Can't create logfile: $!"; # ok
open(LOG, ">", "logfile") or die "Can't create logfile: $!"; # better
The open function returns true
 when it succeeds and undef otherwise.
 If the open starts up a pipe to a
 child process, the return value will be the process ID of that new
 process. As with any syscall, always check the return value of open to make sure it worked.[243] But this isn’t C or Java, so don’t use an if statement when the || operator will do. You can also use or, and if you do, you may omit parentheses on
 the open. If you choose to omit
 parentheses on a function call to turn it into a list operator, be
 careful to use “or die” after the
 list rather than “|| die”. That’s
 because the precedence of || is
 higher than list operators like open,
 with the unexpected result that the || will bind to your last argument, not the
 whole open:
open LOG, ">", "logfile" || die "Can't create logfile: $!"; # WRONG
open LOG, ">", "logfile" or die "Can't create logfile: $!"; # ok
That looks rather intense, so you may wish to use parentheses to
 tell your eye where the list operator ends:
open(LOG, ">", "logfile") or die "Can't create logfile: $!"; # good
open(LOG, ">", "logfile") || die "Can't create logfile: $!"; # good
Or just put the or on another
 line:
open LOG, ">", "logfile"
 or die "Can't create logfile: $!";
As that example shows, the FILEHANDLE
 argument is often just a simple identifier (normally uppercase), but it
 may also be an expression whose value provides a reference to the actual
 filehandle. (The reference may be either a symbolic reference to the
 filehandle name or a hard reference to any object that can be
 interpreted as a filehandle.) This is called an indirect filehandle, and any
 function that takes a FILEHANDLE as its first
 argument can handle indirect filehandles as well as direct ones. But
 open is special: if you supply it
 with an undefined variable for the indirect filehandle, Perl will
 automatically define that variable for you—that is, autovivifying it to
 contain a proper filehandle reference. One advantage of this is that the
 filehandle will be closed automatically when there are no further
 references to it, typically when the variable goes out of scope:
{
 my $fh; # (uninitialized)
 open $fh, ">", "logfile" # $fh is autovivified
 or die "Can't create logfile: $!";
 ... # do stuff with $fh
} # $fh closed here
The my $fh declaration can be readably incorporated
 into the open:
open(my $fh, ">", "logfile") || die ...
The > symbol you’ve been
 seeing in front of the filename is an example of a mode, whether part of
 the filename argument or as a preceding argument. Historically, the
 two-argument form of open came first.
 The recent addition of the three-argument form lets you separate the
 mode from the filename, which has the advantage of avoiding any possible
 confusion between the two. In the following example, we know that the
 user is not trying to open a filename that happens to start with
 “>”. We can be sure that he’s
 specifying a MODE of “>”, which opens the file named in
 EXPR for writing, creating the file if it
 doesn’t exist and truncating the file down to nothing if it does already
 exist:
open(LOG, ">", "logfile") || die "Can't create logfile: $!";
In the shorter forms, the filename and mode are in the same
 string. The string is parsed much as the typical shell processes file
 and pipe redirections. First, any leading and trailing whitespace is
 removed from the string. Then the string is examined, on either end if
 need be, for characters specifying how the file is to be opened.
 Whitespace is allowed between the mode and the filename.
The modes that indicate how to open a file are shell-like
 redirection symbols. A list of these symbols is provided in Table 27-3. To access a file with combinations of
 open modes not covered by this table, see the low-level sysopen function.
Table 27-3. Modes for open
	 	Read Mode	Write Access	Append Access	Create Nonexisting	Clobber Existing
	<
 PATH	Y	N	N	N	N
	>
 PATH	N	Y	N	Y	Y
	>>
 PATH	N	Y	Y	Y	N
	+<
 PATH	Y	Y	N	N	N
	+>
 PATH	Y	Y	N	Y	Y
	+>>
 PATH	Y	Y	Y	Y	N
	|
 COMMAND	N	Y	n/a	n/a	n/a
	COMMAND |	Y	N	n/a	n/a	n/a

If the mode is “<” or
 nothing, an existing file is opened for input. If the mode is “>”, the file is opened for output, which
 truncates existing files and creates nonexistent ones. If the mode is
 “>>”, the file is created if
 needed and opened for appending, and all output is automatically placed
 at the end of the file. If a new file must be created because you used a
 mode of “>” or “>>”, access permissions on the new file
 will depend on the process’s current umask under the rules described for that
 function.
Here are common examples:
open(INFO, "datafile") || die("can't open datafile: $!");
open(INFO, "< datafile") || die("can't open datafile: $!");
open(RESULTS, "> runstats") || die("can't open runstats: $!");
open(LOG, ">> logfile ") || die("can't open logfile: $!");
If you prefer the low-punctuation version, you can write:
open(INFO, "datafile") or die "can't open datafile: $!";
open(INFO, "< datafile") or die "can't open datafile: $!";
open(RESULTS, "> runstats") or die "can't open runstats: $!";
open(LOG, ">> logfile ") or die "can't open logfile: $!";
When opened for reading, the special filename “–” refers to STDIN. When opened for writing, the same
 special filename refers to STDOUT.
 Normally, these are specified as “<–” and “>–”, respectively.
open(INPUT, "–") || die; # re–open standard input for reading
open(INPUT, "<–") || die; # same thing, but explicit
open(OUTPUT, ">–") || die; # re–open standard output for writing
This way the user can supply a program with a filename that will
 use the standard input or the standard output, but the author of the
 program doesn’t have to write special code to know about this.
You may also place a “+” in
 front of any of these three modes to request simultaneous read and
 write. However, whether the file is clobbered or created and whether it
 must already exist is still governed by your choice of less-than or
 greater-than signs. This means that “+<” is almost always preferred for
 read/write updates, as the dubious “+>” mode would first clobber the file
 before you could ever read anything from it. (Only use that mode if you
 want to reread only what you only just wrote.)
open(DBASE, "+< database")
 || die "can't open existing database in update mode: $!";
You can treat a file opened for update as a random-access database
 and use seek to move to a particular
 byte number, but the variable-length records of regular text files
 usually make it impractical to use read-write mode to update such files.
 See the –i command-line option in
 Chapter 17 for a different approach to updating.
If the leading character in EXPR is a
 pipe symbol, open fires up a new
 process and connects a write-only filehandle to the command. This way
 you can write into that handle, and what you write will show up on that
 command’s standard input. For example:
open(PRINTER, "| lpr –Plp1") || die "can't fork: $!";
say PRINTER "stuff";
close(PRINTER) || die "lpr/close failed: $?/$!";
If the trailing character in EXPR is a
 pipe symbol, open again launches a
 new process, but this time with a read-only filehandle connected to it.
 This lets whatever the command writes to its standard output show up on
 your handle for reading. For example:
open(NET, "netstat –i –n |") || die "can't fork: $!";
while (<NET>) { ... }
close(NET) || die "can't close netstat: $!/$?";
Explicitly closing any piped filehandle causes the parent process
 to wait for the child to finish and returns the status code in $? ($CHILD_ERROR). It’s also possible for close to set $! ($OS_ERROR). See the examples under close and system for how to interpret these error
 codes.
Any pipe command containing shell metacharacters (such as
 wildcards or I/O redirections) is passed to your system’s canonical
 shell (/bin/sh on Unix), so those shell-specific
 constructs can be processed first. If no metacharacters are found, Perl
 launches the new process itself without calling the shell.
You may also use the three-argument form to start up pipes. Using
 that style, the equivalent of the previous pipe opens would be:
open(PRINTER, "|–", "lpr –Plp1") || die "can't fork: $!";
open(NET, "–|", "netstat –i –n") || die "can't fork: $!";
Here, the minus in the second argument represents the command in
 the third argument. These commands don’t happen to invoke the shell, but
 if you want to guarantee no shell processing occurs, new versions of
 Perl let you say:
open(PRINTER, "|–", "lpr", "–Plp1") || die "can't fork: $!";
open(NET, "–|", "netstat", "–i", "–n") || die "can't fork: $!";
If you use the two-argument form to open a pipe to or from the
 special command “–”,[244] an implicit fork is
 done first. (On systems that can’t fork, this raises an exception. Microsoft
 systems did not support fork during
 most of the 20th century, but they have
 since.) Here, the minus represents your new child process, which is a
 copy of the parent. The return value from this forking open depends on who is looking at it; it is
 the process ID of the child when examined from the parent process,
 0 when examined from the child
 process, and the undefined value undef if the fork fails—in which case, there is no child.
 For example:
my $pid = open(FROM_CHILD, "–|") // die "can't fork: $!";

if ($pid) {
 @parent_lines = <FROM_CHILD>; # parent code
}
else {
 print STDOUT @child_lines; # child code
 exit;
}
The filehandle behaves normally for the parent, but for the child
 process, the parent’s input (or output) is piped from (or to) the
 child’s STDOUT (or STDIN). The child process does not see the
 parent’s filehandle opened. (This is conveniently indicated by the
 0 PID.)
Typically, you’d use this construct instead of the normal piped
 open when you want to exercise more
 control over just how the pipe command gets executed (such as when you
 are running setuid) and don’t want to have to scan shell commands for
 metacharacters. The following piped opens are roughly equivalent:
open(FH, "| tr 'a–z' 'A–Z'"); # pipe to shell
 # command
open(FH, "|–", "tr", "a–z", "A–Z"); # pipe to bare
 # command
open(FH, "|–") || exec("tr", "a–z", "A–Z") || die; # pipe to child
open(FOO, "|–", "tr", "a–z", "A–Z") || die; # pipe to child
as are these:
open(FH, "cat –n 'file' |"); # pipe from shell
 # command
open(FH, "–|", "cat", "–n", "file"); # pipe from bare
 # command
open(FH, "–|") || exec("cat", "–n", "file") || die; # pipe from child
open(FOO, "–|", "cat", "–n", $file) || die; # pipe from child
The last two examples in each block shows the pipe as “list form”,
 which is not yet supported on all platforms. A good rule of thumb is
 that if your platform has true fork
 (in other words, if your platform is Unix) you can use the list
 form.
See “Anonymous Pipes” in Chapter 15 for more
 examples of this. For more elaborate uses of fork open, see the sections
 Talking to Yourself in Chapter 15 and Cleaning Up Your Environment in Chapter 20.
Perl tries to flush all files opened for output before any
 operation that may do a fork, but this may not be supported on some
 platforms. To be safe, you may need to set $| ($OUTPUT_AUTOFLUSH in English) or call the autoflush
 method of IO::Handle on any open handles.
On systems that support a close-on-exec flag on files, the flag
 will be set for the newly opened file descriptor as determined by the
 value of $^F ($SYSTEM_FD_MAX).
Closing any piped filehandle causes the parent process to wait for
 the child to finish and then returns the status value in $? and ${^CHILD_ERROR_NATIVE}.
The filename passed to the two-argument form of open has any leading and trailing whitespace
 deleted and the normal redirection characters honored. This property,
 known as “magic open”, can often be used to good effect. A user could
 specify a filename of “rsh cat file
 |”, or you could change certain filenames as needed:
$filename =~ s/(.*\.gz)\s*$/gzip –dc < $1|/;
open(FH, $filename) || die "Can't open $filename: $!";
When starting a command with open, you must choose either input or output:
 “cmd|” for reading or “|cmd” for writing. You may not use open to start a command that pipes both in and
 out, as the (currently) illegal notation, “|cmd|”, might appear to indicate. However, the
 standard IPC::Open2 and IPC::Open3 library routines give you a close equivalent. For details
 on double-ended pipes, see the section Bidirectional Communication
 in Chapter 15.
You may also, in the Bourne shell tradition, specify an
 EXPR beginning with >&, in which case the rest of the
 string is interpreted as the name of a filehandle (or file descriptor,
 if numeric) to be duplicated using the dup2(2)
 syscall.[245] You may use & after
 >, >>, <, +>, +>>, and +<. (The specified mode should match the
 mode of the original filehandle.)
One reason you might want to do this would be if you already had a
 filehandle open and wanted to make another handle that’s really a
 duplicate of the first one.
open(SAVEOUT, ">&SAVEERR") || die "couldn't dup SAVEERR: $!";
open(MHCONTEXT, "<&4") || die "couldn't dup fd4: $!";
That means that if a function is expecting a filename, but you
 don’t want to give it a filename because you already have the file open,
 you can just pass the filehandle with a leading ampersand. It’s best to
 use a fully qualified handle though, just in case the function happens
 to be in a different package:
somefunction("&main::LOGFILE");
Another reason to “dup” filehandles is to temporarily redirect an
 existing filehandle without losing track of the original destination.
 Here is a script that saves, redirects, and restores STDOUT and STDERR:
#!/usr/bin/perl
use v5.14;
open SAVEOUT, ">&STDOUT";
open SAVEERR, ">&STDERR";

open(STDOUT, "> foo.out") || die "Can't redirect stdout";
open(STDERR, ">&STDOUT") || die "Can't dup stdout";

select STDERR; $| = 1; # enable autoflush
select STDOUT; $| = 1; # enable autoflush

say STDOUT "stdout 1"; # these I/O streams propagate to
say STDERR "stderr 1"; # subprocesses too

system("some command"); # uses new stdout/stderr

close STDOUT;
close STDERR;

open STDOUT, ">&SAVEOUT";
open STDERR, ">&SAVEERR";

say STDOUT "stdout 2";
say STDERR "stderr 2";
If the filehandle or descriptor number is preceded by a &= combination instead of a simple
 &, then instead of creating a
 completely new file descriptor, Perl makes the
 FILEHANDLE an alias for the existing
 descriptor using the fdopen(3) C library call. This
 is slightly more parsimonious of systems resources, although that’s less
 of a concern these days.
$fd = $ENV{"MHCONTEXTFD"};
open(MHCONTEXT, "<&=$fdnum")
 || die "couldn't fdopen descriptor $fdnum: $!";
Filehandles STDIN, STDOUT, and STDERR always remain open across an exec. Other filehandles, by default, do not.
 On systems supporting the fcntl
 function, you may modify the close-on-exec flag for a filehandle.
use Fcntl qw(F_GETFD F_SETFD);
$flags = fcntl(FH, F_SETFD, 0)
 || die "Can't clear close–on–exec flag on FH: $!";
See also the special $^F
 ($SYSTEM_FD_MAX) variable in Chapter 25.
With the two-argument form of open, you have to be careful when you use a
 string variable as a filename, since the variable may contain
 arbitrarily weird characters (particularly when the filename has been
 supplied by arbitrarily weird characters on the Internet). If you’re not
 careful, parts of the filename might get interpreted as a
 MODE string, ignorable whitespace, a dup
 specification, or a minus. Here’s one historically interesting way to
 insulate yourself:
$path =~ s#^(\s)#./$1#;
open(FH, "< $path\0") || die "can't open $path: $!";
But that’s still broken in several ways. Instead, just use the
 three-argument form of open to open
 any arbitrary filename cleanly and without any (extra) security
 risks:
open(FH, "<", $path) || die "can't open $path: $!";
On the other hand, if what you’re looking for is a true, C-style
 open(2) syscall with all its attendant belfries and
 whistle-stops, then check out sysopen:
use Fcntl;
sysopen(FH, $path, O_RDONLY) || die "can't open $path: $!";
If you’re running on a system that distinguishes between text and
 binary files, you may need to put your filehandle into binary mode—or
 forgo doing so, as the case may be—to avoid mutilating your files. On
 such systems, if you use text mode on a binary file, or binary mode on a
 text file, you probably won’t like the results.
Systems that need the binmode
 function are distinguished from those that don’t by the format used for
 text files. Those that don’t need it terminate each line with a single
 character that corresponds to what C thinks is a newline, \n. Unix, including modern versions of Mac OS,
 falls into this category. VMS, MVS, MS-whatever, and S&M operating
 systems of other varieties treat I/O on text files and binary files
 differently, so they need binmode.
Or its equivalent. You can specify binary mode in the open function without a separate call to
 binmode. As part of the
 MODE argument (but only in the three-argument
 form), you may specify various input and output layers. To do the
 equivalent of a binmode, use the
 three-argument form of open and stuff
 a layer of :raw in after the other
 MODE characters:
open(FH, "< :raw", $path) || die "can't open $path: $!";
See the Encode module in Chapter 6 for details about
 what other sorts of things you can put there, including handling of
 Windows text files.

[242] The default build configuration since the v5.8 release in
 2002.

[243] Unless you used the autodie
 pragma, which takes care of checking for you.

[244] Or you can think of it as leaving the command off of the
 three-argument forms above.

[245] This doesn’t (currently) work with anonymous handles created
 by filehandle autovivification, but you can always use fileno to fetch the file descriptor and
 dup that.

opendir [image:] [image:] [image:] [image:]

opendir DIRHANDLE, EXPR
This function opens a directory named
 EXPR for processing by readdir, telldir, seekdir, rewinddir, and closedir. The function returns true if
 successful. Directory handles have their own namespace separate from
 filehandles.
See the example at readdir.

ord [image:]

ord EXPR
ord
This function returns the numeric value (codepoint) of the
 first character of EXPR. The return value is
 always unsigned. If you want a signed value, use unpack("c", EXPR).
 If you want the characters in the string converted to a list of numbers,
 use unpack("U*",
 EXPR) instead. To find the
 codepoint for a character given its name as a string, use the charnames::vianame function from the charnames pragma.

our

our TYPE EXPR : ATTRIBUTES
our EXPR : ATTRIBUTES
our TYPE EXPR
our EXPR
An our declares one or more variables to be valid globals within the
 enclosing block, file, or eval. That
 is, our has the same rules as a
 my declaration for determination of
 visibility, but does not create a new private variable; it merely allows
 unfettered access to the existing package global. If more than one value
 is listed, the list must be placed in parentheses.
The primary use of an our
 declaration is to hide the variable from the effects of a use strict "vars" declaration; since the
 variable is masquerading as a my
 variable, you are permitted to use the declared global variable without
 qualifying it with its package. However, just like the my variable, this only works within the
 lexical scope of the our declaration.
 In this respect, it differs from use
 vars, which affects the entire package and is not lexically
 scoped.
our is also like my in that you are allowed to declare
 variables with a TYPE and with
 ATTRIBUTES. Here is the syntax:
our Dog $spot :ears(short) :tail(long);
As of this writing, it’s not entirely clear what that will mean.
 Attributes could affect either the global or the local interpretation of
 $spot. On the one hand, it would be
 most like my variables for attributes
 to warp the current local view of $spot without interfering with other views of
 the global in other places. On the other hand, if one module declares
 $spot to be a Dog, and another declares $spot to be a Cat, you could end up with meowing dogs or
 barking cats. This is a subject of ongoing research, which is a fancy
 way to say we don’t know what we’re talking about yet.
Another way in which our is
 like my is in its visibility. An
 our declaration declares a global
 variable that will be visible across its entire lexical scope, even
 across package boundaries. The package in which the variable is located
 is determined at the point of the declaration, not at the point of use.
 This means the following behavior holds and is deemed to be a
 feature:
package Foo;
our $bar; # $bar is $Foo::bar for rest of lexical scope
$bar = 582;

package Bar;
print $bar; # prints 582, just as if "our" had been "my"
However, the distinction between my creating a new, private variable and
 our exposing an existing, global
 variable is important, especially in assignments. If you combine a
 runtime assignment with an our
 declaration, the value of the global variable does not disappear once
 the our goes out of scope. For that,
 you need local:
($x, $y) = ("one", "two");
say "before block, x is $x, y is $y";
{
 our $x = 10;
 local our $y = 20;
 say "in block, x is $x, y is $y";
}
say "past block, x is $x, y is $y";
That prints out:
before block, x is one, y is two
in block, x is 10, y is 20
past block, x is 10, y is two
Multiple our declarations in
 the same lexical scope are allowed if they are in different packages. If
 they happen to be in the same package, Perl will emit warnings if you
 ask it to.
use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning
See also local, our, and state, as well as the section Scoped Declarations in Chapter 4.

pack [image:]

pack TEMPLATE, LIST
This function takes a LIST of
 ordinary Perl values, converts them into a string of bytes according to
 the TEMPLATE, and returns this string.
 Templates for pack and unpack are described in Chapter 26.

package

package NAMESPACE VERSION BLOCK
package NAMESPACE VERSION
package NAMESPACE BLOCK
package NAMESPACE
This is not really a function but a declaration that says that the
 BLOCK, or the rest of the innermost enclosing
 scope, belongs to the indicated symbol table or namespace. (The scope of
 a package declaration is thus the
 same as the scope of a my, state, or our declaration.) Within its scope, the
 declaration causes the compiler to resolve all unqualified global
 identifiers by looking them up in the declared package’s symbol
 table.
A package declaration affects
 only global variables—including those on which you’ve used local—not lexical variables created with
 my, state, or our. It only affects unqualified global
 variables; global variables that are qualified with a package name of
 their own ignore the current declared package. Global variables declared
 with our are unqualified and
 therefore respect the current package, but only at the point of
 declaration, after which they behave like my variables. That is, for the rest of their
 lexical scope, our variables are
 “nailed” to the package in use at the point of declaration, even if a
 subsequent package declaration intervenes.
Typically, you would put a package declaration as the first thing in a
 file that is to be included by the require or use operator, but you can put one anywhere a
 statement would be legal. When creating a traditional or object-oriented
 module file, it is customary to name the package the same name as the
 file to avoid confusion. (It’s also customary to name such packages
 beginning with a capital letter, because lowercase modules are by
 convention interpreted as pragmatic modules.)
You can switch into a given package in more than one place; it
 merely influences which symbol table is used by the compiler for the
 rest of that block. (If the compiler sees another package declaration at the same level, the new
 declaration overrides the previous one.) Your main program is assumed to
 start with an invisible package main
 declaration.
If VERSION is provided, package sets the $VERSION variable in the given namespace to a
 version object with the VERSION
 provided. VERSION must be a “strict” style
 version number as defined by the version pragma: a positive decimal number
 (integer or decimal-fraction) without exponentiation, or else a
 dotted-decimal v-string with a leading v character and at least three components.
 (This may be relaxed to two in the future as people become used to
 version objects.) You should set $VERSION only once per package.
You can refer to variables, subroutines, handles, and formats in
 other packages by qualifying the identifier with the package name and a
 double colon: $Package::Variable. If
 the package name is null, the main package is assumed. That is, $::sail is equivalent to $main::sail, as well as to $main'sail, which is still occasionally seen
 in older code.
Here’s an example:
package main; $sail = "hale and hearty";
package Mizzen; $sail = "tattered";
package Whatever;
say "My main sail is $main::sail.";
say "My mizzen sail is $Mizzen::sail.";
This prints:
My main sail is hale and hearty.
My mizzen sail is tattered.
The symbol table for a package is stored in a hash with a name
 ending in a double colon. The main package’s symbol table is named
 %main::, for example. So the existing
 package symbol *main::sail can also
 be accessed as $main::{"sail"}.
See Chapter 10 for more information about
 packages. See my earlier in this
 chapter for other scoping issues.

_ _PACKAGE_ _

A special token that returns the name of the package in which it
 occurs. See Chapter 10.

pipe [image:] [image:] [image:]

pipe READHANDLE, WRITEHANDLE
Like the corresponding syscall, this function opens a pair of
 connected pipes—see pipe(2). This call is usually
 used right before a fork, after which
 the pipe’s reader should close WRITEHANDLE,
 and the writer close READHANDLE. (Otherwise,
 the pipe won’t indicate EOF to the reader when the writer closes it.) If
 you set up a loop of piped processes, deadlock can occur unless you are
 remarkably careful. In addition, note that Perl’s pipes use standard I/O
 buffering, so you may need to set $|
 ($OUTPUT_AUTOFLUSH) on your
 WRITEHANDLE to flush after each output
 operation, depending on the application—see select (output filehandle).
(As with open, if either
 filehandle is undefined, it will be autovivified.)
Here’s a small example:
pipe(README, WRITEME);
unless ($pid = fork) { # child
 defined($pid) || die "can't fork: $!";
 close(README);
 for $i (1..5) { print WRITEME "line $i\n" }
 exit;
}
$SIG{CHLD} = sub { waitpid($pid, 0) };
close(WRITEME);
@strings = <README>;
close(README);
print "Got:\n", @strings;
Notice how the writer closes the read end and the reader closes
 the write end. You can’t use one pipe for two-way communication. Either
 use two different pipes or the socketpair syscall for that. See the section
 Pipes in Chapter 15.

pop [image:]

pop ARRAY
pop
This function treats an array like a stack—it pops (removes)
 and returns the last value of the array, shortening the array by one
 element. If ARRAY is omitted, the function
 pops @_ within the lexical scope of
 subroutines and formats; it pops @ARGV at file scopes (typically the main
 program) or within the lexical scopes established by the eval STRING,
 BEGIN {}, CHECK {}, UNITCHECKINIT {}, and END {} constructs. It has the same effect
 as:
$tmp = $ARRAY[$#ARRAY––];
or:
$tmp = splice @ARRAY, –1;
If there are no elements in the array, pop returns undef. (But don’t depend on that to tell you
 when the array is empty if your array contains undef values!) See also push and shift. If you want to pop more than one
 element, use splice.
The pop requires its first
 argument to be an array, not a list. If you just want the last element
 of a list, use this:
(LIST)[–1]
Starting with v5.14, pop can
 take a reference to an unblessed array, which will be dereferenced
 automatically. This aspect of pop is
 considered experimental. The exact behavior may change in a future
 version of Perl.

pos [image:]

pos SCALAR
pos
This function returns the location in
 SCALAR where the last m//g search over
 SCALAR left off.
It returns the offset of the character (codepoint)
 after the last one matched. (That is, it’s
 equivalent to length($`) +
 length($&).) This is the offset where the next m//g search on that string will start.
 Remember that the offset of the beginning of the string is 0. Note that 0 is a valid match offset.
 undef indicates that the search
 position is reset (usually due to match failure, but it can also be
 because no match has been run on the scalar yet).
For example:
$graffito = "fee fie foe foo";
while ($graffito =~ m/e/g) {
 say pos $graffito;
}
prints 2, 3, 7, and
 11, the offsets of each of the
 codepoints following an “e”. The
 pos function may be assigned a value
 to tell the next m//g where to
 start:
$graffito = "fee fie foe foo";
pos $graffito = 4; # Skip the fee, start at fie
while ($graffito =~ m/e/g) {
 say pos $graffito;
}
This prints only 7 and 11. The regular expression assertion \G matches only at the location currently
 specified by pos for the string being
 searched. See the section Positions in Chapter 5.
Note that we said codepoints, not characters. We didn’t want to
 confuse you. Codepoints are programmer-visible characters, some of which
 may even be invisible to users. A user-visible character, usually called
 graphemes or grapheme clusters, may well comprise multiple codepoints.
 For example, a “\r\n” is one user
 character but two programmer characters. See the CPAN Unicode::GCString module if you would like a flavor of pos that works with graphemes instead of
 codepoints.

print [image:] [image:] [image:]

print FILEHANDLE LIST
print FILEHANDLE
print LIST
print
This function prints a string or a comma-separated list of
 strings. If set, the contents of the $\ ($OUTPUT_RECORD_SEPARATOR) variable will be implicitly printed at the end of the list. The
 function returns true if successful, false otherwise. The current value
 of $, (if any) is printed between
 each LIST item. The current value of $\ (if any) is printed after the entire
 LIST has been printed.
To use FILEHANDLE alone to print the
 content of $_ to it, you must use a
 real filehandle like FH, not an
 indirect one like $fh.
 FILEHANDLE may be a scalar variable name
 (unsubscripted), in which case the variable contains either the name of
 the actual filehandle or a reference to a filehandle object of some
 sort. As with any other indirect object,
 FILEHANDLE may also be a block that returns
 such a value:
print { $OK ? "STDOUT" : "STDERR" } "stuff\n";
print { $iohandle[$i] } "stuff\n";
If FILEHANDLE is a variable and the
 next token is a term, it may be misinterpreted as an operator unless you
 interpose a + or put parentheses
 around the arguments. For example:
print $a – 2; # prints $a – 2 to default filehandle (usually STDOUT)
print $a (– 2); # prints –2 to filehandle specified in $a
print $a –2; # also prints –2 (weird parsing rules :–)
If FILEHANDLE is omitted, the function
 prints to the currently selected output filehandle, initially STDOUT. To set the default output filehandle
 to something other than STDOUT, use
 the select
 FILEHANDLE operation.[246] If LIST is also omitted, the
 function prints $_. Because print takes a LIST,
 anything in the LIST is evaluated in list
 context. Thus, when you say:
print OUT <STDIN>;
it is not going to print the next line from standard input, but
 all remaining lines from standard input up to end-of-file, since that’s
 what <STDIN> returns in list
 context. If you want the other thing, say:
print OUT scalar <STDIN>;
Also, remembering the if-it-looks-like-a-function-it-is-a-function
 rule, be careful not to follow the print keyword with a left parenthesis unless
 you want the corresponding right parenthesis to terminate the arguments
 to the print. Instead, interpose a
 + or put parens around all the
 arguments:
print (1+2)*3, "\n"; # WRONG
print +(1+2)*3, "\n"; # ok
print ((1+2)*3, "\n"); # ok
If you specify a FILEHANDLE, you may
 omit the LIST only if the
 FILEHANDLE is a regular bareword filehandle,
 not a block or indirect filehandle.
$_ = "stuff\n";
*NEWOUT = *STDOUT;
print NEWOUT; # ok: prints "stuff\n"

$fh = *NEWOUT;
print $fh; # WRONG: prints STDOUT "*main::STDOUT"
Printing Unicode data to a filehandle that doesn’t have an I/O
 layer specifying how to encode it will trigger a mandatory warning,
 “Wide character in print”. To fix this, specify an encoding via binmode or as the second argument in a
 three‐or‐more-argument open.
binmode(STDOUT, ":utf8") || die "Can't binmode: $!";

open(HANDLE, "> :encoding(UTF–16)", $file)
 || die "Can't open $file: $!";
Printing to a closed pipe or socket will generate a SIGPIPE signal. See the section Signals in Chapter 15.

[246] Thus, STDOUT isn’t really
 the default filehandle for print.
 It’s merely the default default
 filehandle.

printf [image:] [image:] [image:]

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST
printf FILEHANDLE
printf LIST
printf
This function prints a formatted string to
 FILEHANDLE or, if omitted, the currently
 selected output filehandle, initially STDOUT. The first item in the
 LIST must be a string that says how to format
 the rest of the items. This is similar to the C library’s
 printf(3) and fprintf(3)
 functions. The function is equivalent to:
print FILEHANDLE sprintf FORMAT, LIST
except that $\ ($OUTPUT_RECORD_SEPARATOR) is not
 appended.
See Chapter 26 for how formats are interpreted.
 We’d duplicate all that here, but this book is already an ecological
 disaster.
An exception is raised only if an invalid reference type is used
 as the FILEHANDLE argument.
If you omit both the FORMAT and the
 LIST, $_
 is used—but, in that case, you should have been using print. Don’t fall into the trap of using a
 printf when a simple print would do. The print function is more efficient and less
 error prone.

prototype [image:]

prototype FUNCTION
This function returns the prototype of a function as a string
 (or undef if the function has no
 prototype). FUNCTION is a reference to, or
 the name of, the function whose prototype you want to retrieve.
If FUNCTION is a string starting with
 CORE::, the rest is taken as a name
 for a Perl built-in, and an exception is raised if there is no such
 built-in. If the built-in is not overridable (such
 as qw//) or its arguments cannot be
 expressed by a prototype (such as system), the function returns undef because the built-in does not really
 behave like a Perl function. Otherwise, the string describing the
 equivalent prototype is returned.

push [image:]

push ARRAY, LIST
This function treats ARRAY as a
 stack and pushes the values of LIST onto the
 end of ARRAY. The length of
 ARRAY increases by the length of
 LIST. The function returns this new length.
 The push function has the same effect
 as:
for my $value (listfunc()) {
 $array[++$#array] = $value;
}
or:
splice @array, @array, 0, listfunc();
but it is more efficient (for both you and your computer). You can
 use push in combination with shift to make a fairly time-efficient shift
 register or queue:
for (;;) {
 push @array, shift @array;
 ...
}
See also pop and unshift.
Starting with v5.14, push can
 take a reference to an unblessed array, which will be dereferenced
 automatically. This aspect of push is
 considered experimental. The exact behavior may change in a future
 version of Perl.

q/STRING/

q/STRING/
qq/STRING/
qr/STRING/
qw/STRING/
qx/STRING/
Generalized quotes. See the section Pick Your Own Quotes in
 Chapter 2. For status annotations on qx//, see readpipe. For status annotations on qr//, see m//. See also Staying in Control in
 Chapter 5.

quotemeta [image:]

quotemeta EXPR
quotemeta
This function returns the value of
 EXPR with all nonalphanumeric characters
 backslashed. (That is, all characters not matching /[A–Za–z_0–9]/ will be preceded by a backslash
 in the returned string, regardless of locale settings.) This is the
 internal function implementing the \Q
 escape in interpolative contexts (including double-quoted strings,
 backticks, and patterns).

rand

rand EXPR
rand
This function returns a pseudorandom floating-point number
 greater than or equal to 0 and less than the value of
 EXPR. (EXPR should
 be positive.) If EXPR is omitted, the
 function returns a floating-point number between 0 and 1 (including 0,
 but excluding 1). rand automatically
 calls srand unless srand has already been called. See also
 srand.
To get an integral value, such as for a die roll, combine this
 with int, as in:
$roll = int(rand 6) + 1; # $roll now a number between 1 and 6
Because Perl uses your own C library’s pseudorandom number
 function, like random(3) or
 drand48(3), the quality of the distribution is not
 guaranteed. If you need stronger randomness, such as for cryptographic
 purposes, you might consult instead the documentation on
 random(4) if your system has a /dev/random or /dev/urandom device; the CPAN modules
 Math::Random::Secure, Math::Random::MT::Perl, and Math::TrulyRandom; or a good textbook on computational generation of
 pseudorandom numbers, such as the second volume of Knuth.[247]

[247] Knuth, D.E. The Art of Computer Programming,
 Seminumerical Algorithms, vol. 2,
 3rd ed. (Reading, Mass.: Addison–Wesley,
 1997).

read [image:] [image:] [image:] [image:]

read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH
This function tries to read LENGTH
 characters (meaning codepoints, not graphemes) of
 data into variable SCALAR from the specified
 FILEHANDLE. The function returns the number
 of characters read or 0 at end-of-file. It returns undef on error.
 SCALAR will grow or shrink to the length
 actually read. The OFFSET, if specified,
 determines where in the variable to start putting characters so that you
 can read into the middle of a string.
To copy data from filehandle FROM into filehandle TO, you could say:
while (read(FROM, $buf, 16384)) {
 print TO $buf;
}
Note the characters: depending on the status
 of the filehandle, either (8-bit) bytes or characters are read. A byte
 is just Perl’s way of talking about undecoded codepoints with small
 values. By default, all filehandles operate on bytes. But, for example,
 if the filehandle has been opened with the :utf8 I/O layer, the I/O will operate on
 UTF-8-encoded Unicode characters, not bytes. Similarly for the
 two-argument form of binmode, the
 middle argument to open, or via the
 open pragma: in those cases, pretty much any characters can be
 read.
The opposite of a read is
 simply a print, which already knows
 the length of the string you want to write and can write a string of any
 length. Don’t make the mistake of using write, which is solely used with formats.
Perl’s read function is
 implemented using standard I/O’s fread(3) function,
 so the actual read(2) syscall may read more than
 LENGTH bytes to fill the input buffer, and
 fread(3) may do more than one
 read(2) syscall to fill the buffer. To gain greater
 control, specify the real syscall using sysread. Calls to read and sysread should not be intermixed unless you
 are into heavy wizardry (or pain).

readdir [image:] [image:] [image:] [image:]

readdir DIRHANDLE
This function reads directory entries (which are simple
 filenames) from a directory handle opened by opendir. In scalar context, this function
 returns the next directory entry, if any; otherwise, it returns undef. In list context, it returns all the
 rest of the entries in the directory, which will be a null list if there
 are no entries. For example:
opendir(THISDIR, ".") || die "serious dainbramage: $!";
@allfiles = readdir THISDIR;
closedir THISDIR;
say "@allfiles";
That prints all files in the current directory on one line. If you
 want to avoid the “.” and “..” entries, incant one of these (whichever
 you think is least unreadable):
@allfiles = grep { $_ ne "." && $_ ne ".." } readdir THISDIR;
@allfiles = grep { ! /^[.][.]?\z/ } readdir THISDIR;
@allfiles = grep { ! /^\.{1,2}\z/ } readdir THISDIR;
@allfiles = grep !/^\.\.?\z/, readdir THISDIR;
And to avoid all .* files (like
 the ls program):
@allfiles = grep !/^\./, readdir THISDIR;
To get just text files, say this:
@textfiles = grep –T, readdir THISDIR;
But watch out on that last one because the result of readdir needs to have the directory part glued
 back on if it’s not the current directory—like this:
opendir(THATDIR, $path) || die "can't opendir $path: $!";
@dotfiles = grep { /^\./ && –f } map { "$path/$_" } readdir(THATDIR);
closedir THATDIR;
As of v5.12 you can use a bare readdir in a while loop, which will set $_ on every iteration. You may also use an
 undefined scalar variable, which will be autovivified with an anonymous
 directory handle.
my $dh; # make sure it’s new
opendir($dh, $somedir) || die "can't opendir $somedir: $!";
while (readdir($dh)) {
 print "$somedir/$_\n";
}
closedir $dh;

readline [image:] [image:] [image:] [image:]

readline FILEHANDLE
readline
This is the internal function implementing the <FILEHANDLE> operator, but you can use it directly. The function reads
 the next record from FILEHANDLE, which may be
 a filehandle name or an indirect filehandle expression that returns
 either the name of the actual filehandle or a reference to anything
 resembling a filehandle object, such as a typeglob. In scalar context,
 each call reads and returns the next record until end-of-file is
 reached, whereupon the next call returns undef. In list context, readline reads records until end-of-file is
 reached and then returns a list of records. By “record”, we normally
 mean a line of text, but changing the value of $/ ($INPUT_RECORD_SEPARATOR) from its default
 value causes this operator to “chunk” the text differently. Undefining
 $/ makes the chunk size entire files
 (slurp mode).
When slurping files in scalar context, if you happen to slurp an
 empty file, readline returns "" the first time, and undef each subsequent time. When slurping from
 the magical ARGV filehandle, each
 file returns one chunk (again, null files return as ""), followed by a single undef when the files are exhausted. If
 FILEHANDLE is omitted, the ARGV filehandle is assumed.
The <FILEHANDLE> operator
 is discussed in more detail in the section Input Operators in Chapter 2.
$line = <STDIN>;
$line = readline(STDIN); # same thing
$line = readline(*STDIN); # same thing
$line = readline(*STDIN); # same thing

open(my $fh, "<&=STDIN") || die;
bless($fh => "AnyOldClass");
$line = readline($fh); # same thing

readlink [image:] [image:] [image:] [image:]

readlink EXPR
readlink
This function returns the filename pointed to by a symbolic
 link. EXPR should evaluate to a filename, the
 last component of which is a symbolic link. If it is not a symbolic
 link, or if symbolic links are not implemented on the filesystem, or if
 some system error occurs, undef is
 returned, and you should check the error code in $!.
Be aware that the returned symlink may be relative to the location
 you specified. For instance, you may say:
$link_contents = readlink("/usr/local/src/express/yourself.h");
and readlink might
 return:
../express.1.23/includes/yourself.h
which is not directly usable as a filename unless your current
 directory happens to be /usr/local/src/express.

readpipe [image:] [image:] [image:] [image:] [image:]

readpipe scalar EXPR
readpipe LIST # (proposed)
This is the internal function implementing the qx// quote construct (also known as the
 backticks operator). It is occasionally handy when you need to specify
 your EXPR in a way that wouldn’t be handy
 using the quoted form. Be aware that we may change this interface in the
 future to support a LIST argument to make it
 more like the exec function, so don’t
 assume that it will continue to provide scalar context for
 EXPR. Supply the scalar yourself, or try the
 LIST form. Who knows, it might work by the
 time you read this.

recv [image:] [image:] [image:] [image:] [image:]

recv SOCKET, SCALAR, LEN, FLAGS
This function receives a message on a socket. It attempts to
 receive LENGTH characters (codepoints) of
 data into variable SCALAR from the specified
 SOCKET filehandle. The function returns the
 address of the sender or undef if
 there’s an error. SCALAR will grow or shrink
 to the length actually read. The function takes the same flags as
 recv(2), and it is actually implemented using the
 recvfrom(2). See the section Sockets in Chapter 15.
Note the characters: depending on the status
 of the socket, either undecoded (8-bit) bytes or fully decoded
 characters are received. By default, all sockets operate on bytes. But,
 for example, if the socket has been changed using binmode to operate with the :encoding(utf8) I/O layer, the I/O will
 operate on UTF-8-encoded Unicode characters, not bytes.

redo [image:]

redo LABEL
redo
The redo operator restarts a loop block without reevaluating the
 conditional. The continue block, if
 any, is not executed. If the LABEL is
 omitted, the operator refers to the innermost enclosing loop. This
 operator is normally used by programs that wish to deceive themselves
 about what was just input:
A loop that joins lines continued with a backslash
while (<STDIN>) {
 if (s/\\\n$// && defined($nextline = <STDIN>)) {
 $_ .= $nextline;
 redo;
 }
 print; # or whatever...
}
redo cannot be used to exit a
 block that returns a value such as eval
 {}, sub {}, or do {}, and it should not be used to exit a
 grep or map operation. With warnings enabled, Perl
 will warn you if you redo a loop not
 in your current lexical scope.
A block by itself is semantically identical to a loop that
 executes once. Thus, redo inside such
 a block will effectively turn it into a looping construct. See the
 section Loop Control in Chapter 4.

ref [image:]

ref EXPR
ref
The ref operator returns a true value if EXPR is
 a reference, and false otherwise. The value returned depends on the type
 of thing the reference refers to. Built-in types include:
SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp
The return value LVALUE
 indicates a reference to an lvalue that is not a variable. You get this
 from taking the reference of function calls like pos or substr. VSTRING is returned if the reference points to
 a version string.
The result Regexp indicates
 that the argument is a regular expression resulting from qr//.
If the referenced object has been blessed into a package, then
 that package name is returned instead. You can think of ref as a “typeof” operator.
if (ref($r) eq "HASH") {
 say "r is a reference to a hash.";
}
elsif (ref($r) eq "Hump") { # Naughty—see below
 say "r is a reference to a Hump object.";
}
elsif (not ref $r) {
 say "r is not a reference at all.";
}
It’s considered bad OO style to test your object’s class for
 equality to any particular class name, since a derived class will have a
 different name but should be allowed access to the base class’s methods,
 according to the Liskov Substitution Principle. It’s better to use the
 UNIVERSAL method isa, as follows:
if ($r–>isa("Hump")) {
 say "r is a reference to a Hump object, || subclass.";
}
It’s usually best not to test at all, since the OO mechanism won’t
 send the object to your method unless it thinks it’s appropriate in the
 first place. See Chapter 8 and Chapter 12 for more details. See also the reftype function under the section attributes in Chapter 29.

rename [image:] [image:]

rename OLDNAME, NEWNAME
This function changes the name of a file. It returns true for
 success, and false otherwise. It will not (usually) work across
 filesystem boundaries, although on a Unix system the mv command can sometimes be used to compensate
 for this. If a file named NEWNAME already
 exists, it will be destroyed. Non-Unix systems might have additional
 restrictions.
See the standard File::Copy module for cross-filesystem renames using a
 platform-independent move
 function.

require [image:] [image:] [image:] [image:]

require VERSION
require EXPR
require
This function asserts a dependency of some kind on its
 argument.
If the argument is a string, require loads and executes the Perl code found
 in the separate file whose name is given by the string. This is similar
 to using a do on a file, except that
 require checks to see whether the
 library file has been loaded already and raises an exception if any
 difficulties are encountered. (It can thus be used to express file
 dependencies without worrying about duplicate compilation.) Like its
 cousins do and use, require knows how to search the include path
 stored in the @INC array and to
 update %INC on success. See Chapter 25.
The file must return true as the last value to indicate successful
 execution of any initialization code, so it’s customary to end such a
 file with 1 unless you’re sure it’ll
 return true otherwise. (This requirement may be relaxed in the
 future.)
If require’s argument is a
 version number of the form v5.6.2, require demands that the currently executing
 version of Perl be at least that version. (Perl also accepts a
 floating-point number such as 5.005_03 for compatibility with older
 versions of Perl, but that form is now discouraged because folks from
 other cultures don’t understand it.) Thus, a script that requires v5.14
 can put as its first line:
require 5.014_001; # preferred for (ancient) backward compatibility
require 5.14.1; # ditto
require v5.14.1; # runtime version check
and earlier versions of Perl will abort. Like all requires, however, this is done at runtime.
 You might prefer to say use 5.14.0
 for a compile-time check. See also $PERL_VERSION in Chapter 25.
If require’s argument is a bare
 package name (see package), require assumes an automatic .pm suffix, making it easy to load standard
 modules. This behavior is like use,
 except that it happens at runtime rather than compile time, and the
 import method is not called. For
 example, to pull in Socket.pm
 without introducing any symbols into the current package, say
 this:
require Socket; # instead of "use Socket;"
However, you can get the same effect with the following, which has
 the advantage of giving a compile-time warning if Socket.pm can’t be located:
use Socket ();
Using require on a bare name
 also replaces any :: in the package
 name with your system’s directory separator, traditionally /. In other words, if you try this:
require Foo::Bar; # a splendid bare name
The require function looks for the Foo/Bar.pm file in the directories specified
 in the @INC array. But if you try
 this:
$class = "Foo::Bar";
require $class; # $class is not a bare name
or this:
require "Foo::Bar"; # quoted literal not a bare name
the require function will look for the Foo::Bar file in the @INC array and will complain about not finding
 Foo::Bar there. If so, you can do
 this:
eval "require $class";
Now that you understand how require looks for files with a bareword
 argument, there is a little extra functionality going on behind the
 scenes. Before require looks for a
 “.pm” extension, it will first look
 for a similar filename with a “.pmc” extension. If this file is found, it
 will be loaded in place of any file ending in a “.pm” extension.
The @INC array contains a list
 of scalars that determine how a module is loaded. The require function walks through this list until
 it finds a scalar entry that leads to loadable source code, then loads
 that code.
Each element of @INC must be
 either a string (which is treated as the name of a directory in which to
 look for the required file) or some form of “code-like entity” (which is
 used to generate the contents of the required file).
A “code-like entity” can be a subroutine reference, an array
 containing a subroutine reference (plus some optional arguments for the
 subroutine), or an object with an INC
 method. Whichever form of the “code-like entity” is encountered, the
 code is invoked and passed two arguments: the entity itself and the file
 that is being looked for. That is:
Sub ref: $sub_ref–>($sub_ref, $required_file)
Array ref: $arr_ref–>[0]–>($arr_ref, $required_file)
Object: $object–>INC($required_file)
No matter which form is being invoked, the subroutine or method is
 always expected to return a list of up to three values, which are
 interpreted as shown in Table 27-4.
Table 27-4. Expected return values for coderefs in @INC
	Arguments	Action
	(HANDLE)	Read source in from this
 handle
	(HANDLE,
 CODEREF)	Read source in from handle and
 filter through subroutine
	(HANDLE,
 CODEREF,
 REF)	As above, but pass
 REF to subroutine as well
	(undef,
 CODEREF)	Call subroutine repeatedly to
 return source lines
	(undef, CODEREF,
 REF)	As above, but pass
 REF to subroutine as well
	Anything else	Fail and try the next entry in
 @INC

These hooks are also permitted to set the %INC entry corresponding to the files they
 have loaded. See the %INC variable in
 Chapter 25.
See also do
 FILE, the use command, the lib pragma, and the standard FindBin module.

reset

reset EXPR
reset
This function is generally used (or abused) at the top of a
 loop or in a continue block at the
 end of a loop to clear global variables or reset m?? searches so that they work again. The
 expression is interpreted as a list of single characters (hyphens are
 allowed for ranges). All scalar variables, arrays, and hashes beginning
 with one of those letters are reset to their pristine state. If the
 expression is omitted, one-match searches (m?PATTERN?) are reset to match again. The function
 resets variables or searches for only the current package. It always
 returns true.
To reset all “X” variables, say
 this:
reset "X";
To reset all lowercase variables, say this:
reset "a–z";
Lastly, to just reset ??
 searches, say:
reset;
Resetting “A–Z” in package
 main is not recommended since you’ll
 wipe out your global ARGV, INC, ENV,
 and SIG arrays and hashes.
Lexical variables (created by my) are not affected. Use of reset is vaguely deprecated because it easily
 clears out entire namespaces, and because the ?? operator is itself vaguely deprecated;
 please use m?? instead.
See also the delete_package
 function from the standard Symbol module, and the whole issue of Safe compartments
 documented in the section Safe Compartments in Chapter 20.

return [image:]

return EXPR
return
This operator causes the current subroutine, eval, or do
 FILE to return immediately with the specified
 value or values. Attempting to use return outside these three places raises an
 exception. Note also that an eval
 cannot do a return on behalf of the
 subroutine that called the eval.
EXPR will be evaluated in list, scalar,
 or void context, depending on how the return value will be used, which
 may vary from one execution to the next. That is, the supplied
 expression will be evaluated with the same context as the subroutine was
 called in. If the subroutine was called in scalar context,
 EXPR is also evaluated in scalar context and
 so returns a single scalar value. If the subroutine was invoked in list
 context, then EXPR is also evaluated in list
 context and so returns a list of values. A return with no argument returns the scalar
 value undef in scalar context, an
 empty list () in list context, and
 (naturally) nothing at all in void context. The context of the
 subroutine call can be determined from within the subroutine by using
 the (misnamed) wantarray
 function.

reverse

reverse LIST
In list context, this function returns a list value consisting of
 the elements of LIST in the opposite order.
 The function can be used to create descending sequences:
for (reverse 1 .. 10) { ... }
Because of the way hashes flatten into lists when passed as a
 LIST, reverse can also be used to invert a hash,
 presuming the values are unique:
%barfoo = reverse %foobar;
In scalar context, the function concatenates all the elements of
 LIST and then returns the reverse of that
 resulting string, character by character. By character we mean
 codepoint, not grapheme. That means you will inappropriately reverse the
 pieces of “\r\n” into “\n\r”, causing combining characters to
 accidentally apply to the wrong base character. To do a reverse on
 graphemes instead of by codepoint, do this:
$codeuni = join "" => reverse $unicode =~ /\X/g;
A small hint: reversing a list sorted earlier by a user-defined
 function can often be achieved more easily by sorting the list in the
 opposite direction in the first place.

rewinddir [image:] [image:] [image:]

rewinddir DIRHANDLE
This function sets the current position to the beginning of the
 directory for the readdir routine on
 DIRHANDLE. The function may not be available
 on all machines that support readdir—rewinddir dies if unimplemented. It returns
 true on success, and false otherwise.

rindex

rindex STR, SUBSTR, POSITION
rindex STR, SUBSTR
This function works just like index except that it returns the position of
 the last occurrence of
 SUBSTR in STR (a
 reverse index). The function returns
 –1 if
 SUBSTR is not found.
 POSITION, if specified, is the rightmost
 position that may be returned. To work your way through a string
 backward, say:
$pos = length $string;
while (($pos = rindex $string, $lookfor, $pos) >= 0) {
 say "Found at $pos";
 $pos––;
}
Note that like index, this works by character (codepoint)
 position, not by grapheme
 position. To work with strings as sequences of graphemes instead of
 codepoints, see the
 index, rindex, and pos methods for the CPAN Unicode :: GCString module.

rmdir [image:] [image:] [image:]

rmdir FILENAME
rmdir
This function deletes the directory specified by
 FILENAME if that directory is empty. If the
 function succeeds, it returns true; otherwise, it returns false. See
 also the File::Path module if you want to remove the contents of the
 directory first and don’t care to shell out to call rm –r for some reason (such as not having a
 shell or an rm command).

s/// [image:] [image:] [image:]

s///
The substitution operator. See the section “Pattern-Matching
 Operators” in Chapter 5.

say [image:] [image:] [image:]

say FILEHANDLE LIST
say FILEHANDLE
say LIST
say
Just like print, but implicitly appends a newline. say
 LIST is simply an abbreviation for
 { local $\ = "\n"; print LIST }. To
 use FILEHANDLE without a
 LIST to print the contents of $_ to it, you must use a real filehandle like
 FH, not an indirect one like $fh.
This keyword is available only when the “say” feature is enabled; see the section feature in Chapter 29.

scalar

scalar EXPR
This pseudofunction may be used within a
 LIST to force EXPR
 to be evaluated in scalar context when evaluation in list context would
 produce a different result. For example:
my($nextvar) = scalar <STDIN>;
prevents <STDIN> from
 reading all the lines from standard input before doing the assignment,
 since assignment to a list (even a my
 list) provides list context. Without the scalar in this example, the first line from
 <STDIN> would still be assigned
 to $nextvar, but subsequent lines
 would be read and thrown away, since the list we’re assigning to is only
 able to receive a single scalar value.
Of course, a simpler, less-cluttered way would be to just leave
 the parentheses off, thereby changing the list context to a scalar
 one:
my $nextvar = <STDIN>;
Since a say function is a
 LIST operator, you have to say:
say "Length is ", scalar(@ARRAY);
if you want the length of @ARRAY to be printed out.
There’s no “list” function
 corresponding to scalar since, in
 practice, one never needs to force evaluation in list context. That’s
 because any operation that wants LIST already
 provides list context to its list arguments for free.
Because scalar is a unary
 operator, if you accidentally use a parenthesized list for the
 EXPR, this behaves as a scalar comma
 expression, evaluating all but the last element in void context and
 returning the final element evaluated in scalar context. This is seldom
 what you want. The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the (im)moral equivalent of these two:
&foo;
print(uc($bar),$baz);
See Chapter 2 for more details on the comma
 operator. See “Prototypes” in Chapter 7 for more on
 unary operators.

seek [image:] [image:]

seek FILEHANDLE, OFFSET, WHENCE
This function positions the file pointer for
 FILEHANDLE, just like the
 fseek(3) call of standard I/O. The first position
 in a file is at offset 0, not offset 1. Also, offsets refer to byte
 positions, not character positions or line numbers. In general, since
 line lengths vary, it’s not possible to access a particular line number
 without examining the whole file up to that point, unless all your lines
 are known to be of a particular length, or you’ve built an index that
 translates line numbers into byte offsets. (The same restrictions apply
 to character positions in files with variable-length character encodings
 like UTF-8 and UTF-16: the operating system doesn’t know what characters
 are, only bytes.)
FILEHANDLE can be an expression whose
 value gives either the name of the actual filehandle, a typeglob, or a
 reference to anything resembling a filehandle object. The function
 returns true on success, and false otherwise. For handiness, the
 function can calculate offsets from various file positions for you. The
 value of WHENCE specifies which file position
 your OFFSET uses for its starting point:
 0, the beginning of the file;
 1, the current position in the file;
 or 2, the end of the file. The
 OFFSET can be negative for a
 WHENCE of 1 or 2. If
 you’d like to use symbolic values for WHENCE,
 you may use SEEK_SET, SEEK_CUR, and SEEK_END from either the IO::Seekable or the POSIX module, or the Fcntl module.
If you want to position the file for sysread or syswrite, don’t use seek; standard I/O buffering makes its effect
 on the file’s system position unpredictable and nonportable. Use
 sysseek instead.
Because of the rules and rigors of ANSI C, on some systems you
 have to do a seek whenever you switch between reading and writing. Among
 other things, this may have the effect of calling the standard I/O
 library’s clearerr(3) function. A
 WHENCE of 1 (SEEK_CUR) with an OFFSET 0 is useful for not moving the file
 position:
seek(TEST, 0, 1);
One interesting use for this function is to allow you to follow
 growing files, like this:
for (;;) {
 while (<LOG>) {
 grok($_); # Process current line
 }
 sleep 15;
 seek LOG, 0, 1; # Reset end–of–file error
}
The final seek clears the
 end-of-file error without moving the pointer. Depending on how standard
 your C library’s standard I/O implementation happens to be, you may need
 something more like this:
for (;;) {
 for ($curpos = tell FILE; <FILE>; $curpos = tell FILE) {
 grok($_); # Process current line
 }
 sleep $for_a_while;
 seek FILE, $curpos, 0; # Reset end–of–file error
}
Similar strategies can be used to remember the seek addresses of each line in an
 array.
Warning: POSITION is in bytes not
 characters, no matter whether there should happen to be any encoding
 layer on the filehandle. However, all functions in Perl that read from
 files do go through any encoding layer, and you can
 therefore read a partial “character” and wind up with an invalid Perl
 string. Avoid mixing calls to sysseek
 or seek with I/O functions on
 filehandle with a multibyte encoding layer.

seekdir [image:] [image:] [image:]

seekdir DIRHANDLE, POS
This function sets the current position for the next call to
 readdir on
 DIRHANDLE. POS
 must be a value returned by telldir.
 This function has the same caveats about possible directory compaction
 as the corresponding system library routine. The function may not be
 implemented everywhere that readdir
 is. It’s certainly not implemented anywhere readdir isn’t.

select (output filehandle) [image:]

select FILEHANDLE
select
For historical reasons, there are two select operators that are totally unrelated to
 each other. (See the next section for the other one.) This version of
 the select operator returns the
 currently selected output filehandle and, if
 FILEHANDLE is supplied, sets the current
 default filehandle for output. This has two effects: first, a write or a print without a filehandle will default to
 this FILEHANDLE; second, special variables
 related to output will refer to this output filehandle. For example, if
 you have to set the same top-of-form format for more than one output
 filehandle, you might do the following:
select REPORT1;
$^ = "MyTop";
select REPORT2;
$^ = "MyTop";
But note that this leaves REPORT2 as the currently selected filehandle.
 This could be construed as antisocial, since it could really foul up
 some other routine’s print or
 write statements. Properly written
 library routines leave the currently selected filehandle the same on exit as it was on
 entry. To support this, FILEHANDLE may be an
 expression whose value gives the name of the actual filehandle.
 Thus, you can save and restore the currently selected filehandle like
 this:
my $oldfh = select STDERR;
$| = 1;
select $oldfh;
or idiomatically but somewhat obscurely like this:
select((select(STDERR), $| = 1)[0])
This example works by building a list consisting of the returned
 value from select(STDERR) (which
 selects STDERR as a side effect) and
 $| = 1 (which is always 1), but sets
 autoflushing on the now-selected STDERR as a side effect. The first element of
 that list (the previously selected filehandle) is now used as an
 argument to the outer select.
 Bizarre, right? That’s what you get for knowing just enough Lisp to be
 dangerous.
You can also use the standard SelectSaver module to automatically restore the previous select on scope exit.
However, now that we’ve explained all that, we should point out
 that you rarely need to use this form of select nowadays, because most special
 variables you would want to set have object-oriented wrapper methods to
 do it for you. So instead of setting $| directly, you might say:
use IO::Handle; # Unfortunately, this is *not* a small module
STDOUT–>autoflush(1);
And the earlier format example might be coded as:
use IO::Handle;
REPORT1–>format_top_name("MyTop");
REPORT2–>format_top_name("MyTop");

select (ready file descriptors) [image:] [image:]

select RBITS, WBITS, EBITS, TIMEOUT
The four-argument select
 operator is totally unrelated to the previously described select operator. This operator is used to
 discover which (if any) of your file descriptors are ready to do input
 or output, or to report an exceptional condition. (This helps you avoid
 having to do polling.) It calls the select(2)
 syscall with the bit masks you’ve specified, which you can construct
 using fileno and vec, like this:
$rin = $win = $ein = "";
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;
If you want to select on many
 filehandles, you might wish to write a subroutine:
sub fhbits {
 my @fhlist = @_;
 my $bits;
 for my $fh (@fhlist) {
 vec($bits, fileno($fh), 1) = 1;
 }
 return $bits;
}
$rin = fhbits(*STDIN, *TTY, *MYSOCK);
Notice we passed in the filehandles using their typeglobs, because
 passing them in as strings is a bad idea. If you are using autovivified
 filehandles, you don’t have to do this.
If you wish to use the same bit masks repeatedly (and it’s more
 efficient if you do), the usual idiom is:
($nfound, $timeleft) =
 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
Or to block until any file descriptor becomes ready:
$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
As you can see, calling select
 in scalar context just returns $nfound, the number of ready descriptors
 found.
The $wout=$win trick works
 because the value of an assignment is its left side, so $wout gets clobbered first by the assignment
 and then by the select, while
 $win remains unchanged.
Any of the arguments can also be undef, in which case they’re ignored. The
 TIMEOUT, if not
 undef, is in seconds, which may be
 fractional. (A timeout of 0 effects a
 poll.) Not many implementations are capable of returning $timeleft. If not, they always return $timeleft equal to the supplied $timeout.
The standard IO::Select module provides a user-friendlier interface to select, mostly because it does all the
 bit-mask work for you.
One use for select is to sleep
 with a finer resolution than sleep
 allows. To do this, specify undef for
 all the bitmasks. So to sleep for (at least) 4.75 seconds, use:
select undef, undef, undef, 4.75;
(On some non-Unix systems the triple undef may not work, and you may need to fake
 up at least one bitmask for a valid descriptor that won’t ever be
 ready.)
These days, importing a special version of sleep from the standard Time::HiRes module is probably the more portable way to do
 this:
use Time::HiRes qw(sleep);
sleep 4.75; # not the normal sleep
One should probably not (attempt to) mix buffered I/O (like
 read or <‫HANDLE>) with select, except as permitted by POSIX, and even
 then only on truly POSIX systems. Use sysread
 instead.

semctl [image:] [image:]

semctl ID, SEMNUM, CMD, ARG
This function calls the System V IPC function
 semctl(2). You’ll probably have to say use IPC::SysV first to get the correct
 constant definitions. If CMD is IPC_STAT or GETALL, then ARG
 must be a variable that will hold the returned semid_ds structure or semaphore value array.
 As with ioctl and fcntl, return values are undef for error, “0
 but true” for zero, and the actual return value
 otherwise.
See also the IPC::Semaphore module. This function is available only on machines
 supporting System V IPC.

semget [image:] [image:]

semget KEY, NSEMS, FLAGS
This function calls the System V IPC syscall
 semget(2). Before calling, you should use IPC::SysV to get the correct constant definitions. The function
 returns the semaphore ID, or undef if
 there is an error.
See also the IPC::Semaphore module. This function is available only on machines
 supporting System V IPC.’

semop [image:] [image:]

semop KEY, OPSTRING
This function calls the System V IPC syscall
 semop(2) to do semaphore operations such as
 signalling and waiting. Before calling, you should use IPC::SysV to get the correct constant definitions.
OPSTRING must be a packed array of
 semop structures. You can make each
 semop structure by saying pack("s*", $semnum, $semop, $semflag). The
 number of semaphore operations is implied by the length of
 OPSTRING. The function returns true if
 successful, or false if there is an error.
The following code waits on semaphore $semnum of semaphore id $semid:
$semop = pack "s*", $semnum, –1, 0;
semop($semid, $semop) || die "Semaphore trouble: $!";
To signal the semaphore, simply replace –1 with 1.
See the section System V IPC in Chapter 15. See also the
 IPC::Semaphore module. This function is available only on machines
 supporting System V IPC.

send [image:] [image:] [image:]

send SOCKET, MSG, FLAGS, TO
send SOCKET, MSG, FLAGS
This function sends a message on a socket. It takes the same
 flags as the syscall of the same name—see send(2).
 On unconnected sockets, you must specify a destination to send
 TO, which then makes Perl’s send work like sendto(2).
 The C syscall sendmsg(2) is currently unimplemented
 in standard Perl. The send function
 returns the number of characters sent, or undef if there is an error.
Note the characters: depending on the status
 of the socket, either (8-bit) bytes or characters are sent. By default,
 all sockets operate on bytes. But if, for example, the socket has been
 changed using binmode to operate with
 the :encoding(utf8) I/O layer, then
 its I/O will operate on UTF-8-encoded Unicode characters, not
 bytes.
(Some non-Unix systems improperly treat sockets as different from
 ordinary file descriptors, with the result that you must always use
 send and recv on sockets rather than the handier
 standard I/O operators.)
One error that at least one of us makes frequently is to confuse
 Perl’s send with C’s send and write:
send SOCK, $buffer, length $buffer; # WRONG
This will mysteriously fail depending on the relationship of the
 string length to
 the
 FLAGS bits expected by the
 system. See Message Passing in Chapter 15 for examples.

setpgrp [image:] [image:] [image:]

setpgrp PID, PGRP
This function sets the current process group
 (PGRP) for the specified
 PID (use a PID of
 0 for the current process). Invoking setpgrp will raise an exception if used on a
 machine that doesn’t implement setpgrp(2). Beware:
 some systems will ignore the arguments you provide and always do
 setpgrp(0, $$). Fortunately, those
 are the arguments one usually wants to provide. If the arguments are
 omitted, they default to 0,0. The BSD
 4.2 version of setpgrp did not accept
 any arguments, but in BSD 4.4, it is a synonym for the setpgid function. For better portability (by
 some definition), use the setpgid
 function in the POSIX module directly. If what you’re really trying to do is
 daemonize your script, consider the POSIX::setsid function as well. Note that the
 POSIX version of setpgrp does not
 accept arguments, so only setpgrp(0,0) is truly portable.

setpriority [image:] [image:] [image:]

setpriority WHICH, WHO, PRIORITY
This function sets the current
 PRIORITY for a process, a process group, or a
 user, as specified by the WHICH and
 WHO. See setpriority(2).
 Invoking setpriority will raise an
 exception if used on a machine that doesn’t implement
 setpriority(2). To “nice” your process down by four
 units (the same as executing your program with
 nice(1)), try:
setpriority 0, 0, getpriority(0, 0) + 4;
The interpretation of a given priority may vary from one operating
 system to the next. Some priorities may be unavailable to nonprivileged
 users.
See also the BSD::Resource module from CPAN.

setsockopt [image:] [image:] [image:]

setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL
This function sets the socket option requested. The function
 returns undef on error. The Socket module provides the needed constants for
 LEVEL and OPNAME,
 although those for LEVEL can all be obtained
 from getprotobyname.
 LEVEL specifies which protocol layer you’re
 aiming the call at, or SOL_SOCKET for
 the socket itself at the top of all the layers.
 OPTVAL might either be a packed string or an
 integer. An integer OPTVAL is shorthand for
 pack("i", OPTVAL).
 OPTVAL may be specified as undef if you don’t want to pass an
 argument.
One common option to set on a socket is SO_REUSEADDR, which gets around the problem of
 not being able to bind to a particular address while the previous TCP
 connection on that port is still making up its mind to shut down. That
 would look like this:
use Socket;
socket(SOCK, ...) || die "Can't make socket: $!";
setsockopt(SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
 || warn "Can't do setsockopt: $!\n";
Another common option is to disable Nagle’s algorithm on a
 socket:
use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);
See setsockopt(2) for other possible
 values.

shift [image:]

shift ARRAY
shift
This function shifts the first value of the array off and
 returns it, shortening the array by one and moving everything down. (Or
 up, or left, depending on how you visualize the array list. We like
 left.) If there are no elements in the array, the function returns
 undef.
If ARRAY is omitted, the function
 shifts @_ within the lexical scope of
 subroutines and formats; it shifts @ARGV at file scopes (typically the main
 program) or within the lexical scopes established by the eval STRING,
 BEGIN {}, CHECK {}, UNITCHECK
 {}, INIT {}, and END {} constructs.
Subroutines often start by copying their arguments into lexical
 variables, and shift can be used for
 this:
sub marine {
 my $fathoms = shift; # depth
 my $fishies = shift; # number of fish
 my $o2 = shift; # oxygen concentration
 # ...
}
shift is also used to process
 arguments at the front of your program:
while (defined($_ = shift)) {
 /^[^–]/ && do { unshift @ARGV, $_; last };
 /^–w/ && do { $WARN = 1; next };
 /^–r/ && do { $RECURSE = 1; next };
 die "Unknown argument $_";
}
You should consider the standard Getopt::Std and Getopt::Long modules for processing program arguments.
Starting with v5.14, shift can
 take a reference to an unblessed array, which will be dereferenced
 automatically. This aspect of shift
 is considered experimental. The exact behavior may change in a future
 version of Perl.
See also unshift, push, pop,
 and splice. The shift and unshift functions do the same thing to the
 left end of an array that pop and
 push do to the right end.

shmctl [image:] [image:]

shmctl ID, CMD, ARG
This function calls the System V IPC syscall,
 shmctl(2). Before calling, you should use IPC::SysV to get the correct constant definitions.
If CMD is IPC_STAT, then ARG
 must be a variable that will hold the returned shmid_ds structure. Like ioctl and fcntl, the function returns undef for error, “0
 but true” for zero, and the actual return value
 otherwise.
This function is available only on machines supporting System V
 IPC.

shmget [image:] [image:]

shmget KEY, SIZE, FLAGS
This function calls the System V IPC syscall,
 shmget(2). The function returns the shared memory
 segment ID, or undef if there is an
 error. Before calling, use
 SysV::IPC.
This function is available only on machines supporting System V
 IPC.

shmread [image:] [image:]

shmread ID, VAR, POS, SIZE
This function reads from the shared memory segment
 ID starting at position
 POS for size SIZE
 (by attaching to it, copying out, and detaching from it).
 VAR must be a variable that will hold the
 data read. The function returns true if successful, or false if there is
 an error.
This function is available only on machines supporting System V
 IPC.

shmwrite [image:] [image:]

shmwrite ID, STRING, POS, SIZE
This function writes to the shared memory segment
 ID starting at position
 POS for size SIZE
 (by attaching to it, copying in, and detaching from it). If
 STRING is too long, only
 SIZE bytes are used; if
 STRING is too short, nulls are written to
 fill out SIZE bytes. The function returns
 true if successful, or false if there is an error.
This function is available only on machines supporting System V
 IPC. (You’re probably tired of reading that—we’re getting tired of
 saying it.)

shutdown [image:] [image:] [image:]

shutdown SOCKET, HOW
This function shuts down a socket connection in the manner
 indicated by HOW. If
 HOW is 0, further receives are disallowed. If
 HOW is 1, further sends are disallowed. If
 HOW is 2, everything is disallowed.
shutdown(SOCK, 0); # no more reading
shutdown(SOCK, 1); # no more writing
shutdown(SOCK, 2); # no more I/O at all
This is useful with sockets when you want to tell the other side
 you’re done writing but not done reading, or vice versa. It’s also a
 more insistent form of close because it disables any copies of those
 file descriptors held in forked processes.
Imagine a server that wants to read its client’s request until
 end-of-file, then send an answer. If the client calls close, that socket is now invalid for I/O, so
 no answer would ever come back. Instead, the client should use shutdown to half-close the connection:
say SERVER "my request"; # send some data
shutdown(SERVER, 1); # send eof; no more writing
$answer = <SERVER>; # but you can still read
(If you came here trying to figure out how to shut down your
 system, you’ll have to execute an external program to do that. See
 system.)

sin [image:]

sin EXPR
sin
Sorry, there’s nothing wicked about this operator. It merely
 returns the sine of EXPR (expressed in
 radians).
For the inverse sine operation, you may use Math::Trig or the POSIX module’s asin
 function, or use this relation:
sub asin { atan2($_[0], sqrt(1 – $_[0] * $_[0])) }

sleep

sleep EXPR
sleep
This function causes the script to sleep for
 EXPR (integer) seconds, or forever if no
 EXPR, and returns the number of seconds
 slept. It may be interrupted by sending the process a SIGALRM. On some older systems, it may sleep
 up to a full second less than what you requested, depending on how it
 counts seconds. Most modern systems always sleep the full amount. They
 may appear to sleep longer than that, however, because your process
 might not be scheduled right away in a busy multitasking system. For
 delays of finer granularity than one second, the standard Time::HiRes module provides a usleep function. If available, the select (ready file descriptors) call can also
 give you better resolution. You may be able to use syscall to call the
 getitimer(2) and setitimer(2)
 routines that some Unix systems support. You probably cannot mix
 alarm and sleep calls because sleep is often implemented using alarm.
See also the POSIX module’s pause
 function.

socket [image:] [image:] [image:] [image:]

socket SOCKET, DOMAIN, TYPE, PROTOCOL
This function opens a socket of the specified kind and attaches
 it to filehandle SOCKET.
 DOMAIN, TYPE, and
 PROTOCOL are specified the same as for
 socket(2). If undefined,
 SOCKET will be autovivified. Before using
 this function, your program should contain the line:
use Socket;
This gives you the proper constants. The function returns true if
 successful. See the examples in the section Sockets in Chapter 15.
On systems that support a close-on-exec flag on files, the flag
 will be set for the newly opened file descriptor, as determined by the
 value of $^F. See the $^F ($SYSTEM_FD_MAX) variable in Chapter 25.

socketpair [image:] [image:] [image:] [image:]

socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL
This function creates an unnamed pair of sockets in the
 specified domain of the specified type.
 DOMAIN, TYPE, and
 PROTOCOL are specified the same as for
 socketpair(2). You will need to use Socket to get the required constants. If
 either socket argument is undefined, it will be autovivified. The
 function returns true if successful, and false otherwise. On a system
 where socketpair(2) is unimplemented, calling this
 function raises an exception.
This function is typically used just before a fork. One of the resulting processes should
 close SOCKET1, and the other should close
 SOCKET2. You can use these sockets
 bidirectionally, unlike the filehandles created by the pipe function. Some systems define pipe using socketpair, in which a call to pipe(Rdr, Wtr) is essentially:
use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer
Perl v5.8 and later will emulate socketpair using IP sockets to
 localhost if your system implements sockets but not socketpair. On systems that support a
 close-on-exec flag on files, the flag will be set for the newly opened
 file descriptors, as determined by the value of $^F. See the $^F ($SYSTEM_FD_MAX) variable in Chapter 25. See also the example at the end of the section
 Bidirectional Communication in Chapter 15.

sort [image:]

sort USERSUB LIST
sort BLOCK LIST
sort LIST
This function sorts the LIST and
 returns the sorted list value. Undefined values sort before defined null
 strings, which sort before everything else. By default, it sorts in
 simple numeric codepoint order (or whatever the cmp operator returns in case of overloading). For a true lexicographic
 sort, you must use the Unicode::Collate module; see Comparing and Sorting Unicode Text in
 Chapter 6. The short story is that the easiest way to
 get a good alphabetic sort is like this:
use Unicode::Collate;
@alphabetized_list = Unicode::Collate–>new–>sort(@list);
When the locale pragma is in effect, sort LIST sorts
 LIST according to the current collation
 locale. Even if such a locale exists, Perl does not support multibyte
 locales, so this is unlikely to do what you
 want. See instead the Unicode::Collate::Locale module if you want reliable locale
 sorting.
USERSUB, if given, is the name of a
 subroutine that returns an integer less than, equal to, or greater than
 0, depending on how the elements of the list are to be ordered. (The
 handy <=> and cmp operators can be used to do three-way
 numeric and string comparisons.) If a USERSUB
 is given but that function is undefined, sort raises an exception.
In the interests of efficiency, the normal calling code for
 subroutines is bypassed, with the following effects: the subroutine may
 not be a recursive subroutine (nor may you exit the block or routine
 with a loop-control operator), and the two elements to be compared are
 not passed into the subroutine via @_, but rather by temporarily setting the
 global variables $a and $b in the package in which the sort was compiled (see the examples that
 follow). The variables $a and
 $b are aliases to the real values, so
 don’t modify them in the subroutine.
The comparison subroutine is required to behave. If it returns
 inconsistent results (sometimes saying $x[1] is less than $x[2] and sometimes saying the opposite, for
 example), the results are not well defined. (That’s another reason you
 shouldn’t modify $a and $b.)
USERSUB may be a scalar variable name
 (unsubscripted), in which case the value provides either a symbolic or a
 hard reference to the actual subroutine to use. (A symbolic name rather
 than a hard reference is allowed even when the use strict 'refs' pragma is in effect.) In
 place of a USERSUB, you can provide a
 BLOCK as an anonymous, inline sort
 subroutine.
To do an ordinary numeric sort, say this:
sub numerically { $a <=> $b }
@sortedbynumber = sort numerically 53,29,11,32,7;
To sort in descending order, you could simply apply reverse after the sort, or you could reverse the order of
 $a and $b in the sort routine:
@descending = reverse sort numerically 53,29,11,32,7;

sub reverse_numerically { $b <=> $a }
@descending = sort reverse_numerically 53,29,11,32,7;
To sort ASCII strings by codepoint order except without regard to
 case, run $a and $b through lc before comparing:
@unsorted = qw/sparrow Ostrich LARK catbird blueJAY/;
@sorted = sort { lc($a) cmp lc($b) } @unsorted;
Unlike with ASCII, under Unicode neither lc nor uc
 works for case canonicalization, because the mapping between cases is
 more complex than those two functions can express. There are now three
 cases, not two, and there is no longer a one-to-one mapping between
 cases; i.e., some uppercase characters have
 multiple lowercase variants and vice versa. To address all this, Perl is
 expected to someday support an fc
 function, named so because it produces a string’s “casefold”, which is
 what the /i pattern modifier uses.
 Look for fc to appear around v5.16 or
 so, perhaps as use feature "fc". If
 an fc function
 is available, you can use that instead of lc in your sort comparisons that use cmp, provided your text isn’t too fancy and
 you don’t mind sorting (mostly) by numeric codepoint. If you don’t have
 an fc, or to sort text alphabetically
 instead of by codepoint, see the section Comparing and Sorting Unicode Text
 in Chapter 6.
Sorting hashes by value is a common use of the sort function. For example, if a %sales_amount hash records department sales,
 doing a hash lookup in the sort routine lets hash keys be sorted
 according to their corresponding values:
sort from highest to lowest department sales
sub bysales { $sales_amount{$b} <=> $sales_amount{$a} }

for $dept (sort bysales keys %sale_amount) {
 say "$dept => $sales_amount{$dept}";
}
You can apply additional levels of sorting by cascading multiple
 comparisons using the || or or operators. This works nicely because the
 comparison operators conveniently return 0 for equivalence, causing them to fall
 through to the next comparison. Here, the hash keys are sorted first by
 their associated sales amounts and then by the keys themselves (in case
 two or more departments have the same sales amount):
sub by_sales_then_dept {
 $sales_amount{$b} <=> $sales_amount{$a}
 ||
 $a cmp $b
}

for $dept (sort by_sales_then_dept keys %sale_amount) {
 say "$dept => $sales_amount{$dept}";
}
Assume that @recs is an array
 of hash references, where each hash contains fields such as FIRSTNAME, LASTNAME, AGE, HEIGHT, and SALARY. The following routine sorts to the
 front of the list those records for people who are first richer, then
 taller, then younger, then less alphabetically challenged:
sub prospects {
 $b–>{SALARY} <=> $a–>{SALARY}
 ||
 $b–>{HEIGHT} <=> $a–>{HEIGHT}
 ||
 $a–>{AGE} <=> $b–>{AGE}
 ||
 $a–>{LASTNAME} cmp $b–>{LASTNAME}
 ||
 $a–>{FIRSTNAME} cmp $b–>{FIRSTNAME}
}

@sorted = sort prospects @recs;
Any useful information that can be derived from $a and $b
 can serve as the basis of a comparison in a sort routine. For example,
 if lines of text are to be sorted according to specific fields, split could be used within the sort routine to
 derive the fields.
@sorted_lines = sort {
 @a_fields = split /:/, $a; # colon–separated fields
 @b_fields = split /:/, $b;

 $a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
 ||
 $a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
 ||
 $b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
 ||
 ... # etc.

} @lines;
However, because sort calls the
 sort routine many times using different pairings of values for $a and $b,
 the previous example will resplit each line more often than
 needed.
To avoid the expense of repeated derivations such as the splitting
 of lines to compare their fields, run the derivation once per value
 prior to the sort and save the derived information. Here, anonymous
 arrays are created to encapsulate each line along with the results of
 splitting the line:
@temp = map { [$_, split /:/] } @lines;
Next, the array references are sorted:
@temp = sort {
 @a_fields = @$a[1..$#$a];
 @b_fields = @$b[1..$#$b];

 $a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
 ||
 $a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
 ||
 $b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
 ||
 ... # etc.

} @temp;
Now that the array references are sorted, the original lines can
 be retrieved from the anonymous arrays:
@sorted_lines = map { $_–>[0] } @temp;
Putting it all together, this map-sort-map
 technique[248] can be executed in one statement:
@sorted_lines = map { $_–>[0] }
 sort {
 $a–>[4] <=> $b–>[4] # beware: indices really
 # appear to start at 1
 ||
 $a–>[1] cmp $b–>[1]
 ||
 $a–>[3] <=> $b–>[3]
 ||
 ...
 }
 map { [$_, split /:/] } @lines;
Do not declare $a and $b as lexical variables (with my). They are package globals (though they’re
 exempt from the usual restrictions on globals when you’re using use strict). You do need to make sure your
 sort routine is in the same package, though, or else qualify $a and $b
 with the package name of the caller.
You can write sort subroutines with the
 standard argument passing method (and, not coincidentally, use XS
 subroutines as sort subroutines), provided you declare the sort
 subroutine with a prototype of ($$).
 And if you do that, then you can in fact declare $a and $b
 as lexicals:
sub numerically ($$) {
 my ($a, $b) = @_;
 $a <=> $b;
}
And, someday, when full prototypes are implemented, you’ll just
 say:
sub numerically ($a, $b) { $a <=> $b }
and then we’ll be back where we started, more or less.
Perl v5.6 and earlier used a quicksort algorithm to implement
 sort. That algorithm was not stable and could go
 quadratic. (A stable sort preserves the input order
 of elements that compare equal. Although quicksort’s runtime is
 O(n·log n) when averaged over
 all arrays of length n, the time can be
 O(n2),
 quadratic behavior, for some inputs.) In the
 experimental v5.7 release, the quicksort implementation was replaced
 with a stable mergesort algorithm whose worst-case behavior is
 O(n·logn). But benchmarks
 indicated that for some inputs, on some platforms, the original
 quicksort was faster. Perl v5.8 has a sort pragma for limited control of the sort. Its rather blunt
 control of the underlying algorithm may not persist into future Perls,
 but the ability to characterize the input or output in implementation
 independent ways quite probably will. See the section sort in Chapter 29.

[248] Sometimes called the Schwartzian Transform.

splice [image:] [image:]

splice ARRAY, OFFSET, LENGTH, LIST
splice ARRAY, OFFSET, LENGTH
splice ARRAY, OFFSET
splice ARRAY
This function removes the elements designated by
 OFFSET and LENGTH
 from an ARRAY, and replaces them with the
 elements of LIST, if any. If
 OFFSET is negative, the function counts
 backward from the end of the array, but if that would land before the
 beginning of the array, an exception is raised. If
 LENGTH is negative, it removes the elements
 from OFFSET onward except for –LENGTH elements at
 the end of the array. If both OFFSET and
 LENGTH are in list context, splice returns the elements removed from the
 array. In scalar context, it returns the last element removed, or
 undef if there was none. If the
 number of new elements doesn’t equal the number of old elements, the
 array grows or shrinks as necessary, and elements after the splice
 change their position correspondingly. If
 LENGTH is omitted, the function removes
 everything from OFFSET onward. If
 OFFSET is omitted, the array is cleared as it
 is read. If both OFFSET and
 LENGTH are omitted, removes everything. If
 OFFSET is past the end of the
 ARRAY, Perl issues a warning, and splices at
 the end of the ARRAY.
The equivalents listed in Table 27-5
 hold.
Table 27-5. Splice equivalents for array operations
	Direct Method	Splice Equivalent
	push(@a, $x, $y)	splice(@a, @a, 0, $x, $y)
	pop(@a)	splice(@a, –1)
	shift(@a)	splice(@a, 0, 1)
	unshift(@a, $x, $y)	splice(@a, 0, 0, $x, $y)
	$a[$x]
 = $y	splice(@a, $x, 1, $y)
	(@a,
 @a = ())	splice(@a)

The splice function is also
 handy for carving up the argument list passed to a subroutine. For
 example, assuming list lengths are passed before lists:
sub list_eq { # compare two list values
 my @a = splice(@_, 0, shift);
 my @b = splice(@_, 0, shift);
 return 0 unless @a == @b; # same length?
 while (@a) {
 return 0 if pop(@a) ne pop(@b);
 }
 return 1;
}
if (list_eq($len, @foo[1..$len], scalar(@bar), @bar)) { ... }
It would be cleaner to use array references for this,
 however.
Starting with v5.14, splice can
 take a reference to an unblessed array, which will be dereferenced
 automatically. This aspect of splice
 is considered experimental. The exact behavior may change in a future
 version of Perl.

split [image:] [image:]

split /PATTERN/, EXPR, LIMIT
split /PATTERN/, EXPR
split /PATTERN/
split
This function scans a string given by
 EXPR for separators, and splits the string
 into a list of substrings, returning the resulting list value in list
 context or the count of substrings in scalar context.[249] The separators are determined by repeated pattern
 matching, using the regular expression given in
 PATTERN, so the separators may be of any size
 and need not be the same string on every match. (The separators are not
 ordinarily returned; exceptions are discussed later in this section.) If
 the PATTERN doesn’t match the string at all,
 split returns the original string as
 a single substring. If it matches once, you get two substrings, and so
 on. You may supply regular expression modifiers to the
 PATTERN, like /PATTERN/i, /PATTERN/x, etc. The //m modifier is assumed when you split on the
 pattern /^/.
If LIMIT is specified and positive, the
 function splits into no more than that many fields (though it may split
 into fewer if it runs out of separators). If
 LIMIT is negative, it is treated as if an
 arbitrarily large LIMIT has been specified.
 If LIMIT is omitted or zero, trailing null
 fields are stripped from the result (which potential users of pop would do well to remember). If
 EXPR is omitted, the function splits the
 $_ string. If
 PATTERN is also omitted or is the literal
 space, “ ”, the function splits on
 whitespace, /\s+/, after skipping any
 leading whitespace.
A PATTERN of /^/ is secretly treated as if it were /^/m, since it isn’t much use
 otherwise.
Strings of any length can be split:
@chars = split //, $word;
@fields = split /:/, $line;
@words = split " ", $paragraph;
@lines = split /^/, $buffer;
Using split to break up a
 string into a sequence of graphemes is possible, but using a straight
 pattern match for this is more straightforward:
@graphs = grep { length } split /(\X)/, $word;
@graphs = $word =~ /\X/g;
A pattern capable of matching either the null string or something
 longer than the null string (for instance, a pattern consisting of any
 single character modified by a * or
 ?) will split the value of
 EXPR into separate characters wherever it
 matches the null string between characters; nonnull matches will skip
 over the matched separator characters in the usual fashion. (In other
 words, a pattern won’t match in one spot more than once, even if it
 matched with a zero width.) For example:
print join(":" => split / */, "hi there");
produces the output “h:i:t:h:e:r:e”. The space disappears because
 it matches as part of the separator. As a trivial case, the null pattern
 // simply splits into separate
 characters, and spaces do not disappear. (For normal pattern matches, a
 // pattern would repeat the last
 successfully matched pattern, but split’s pattern is exempt from that
 wrinkle.)
The LIMIT parameter splits only part of
 a string:
my ($login, $passwd, $remainder) = split /:/, $_, 3;
We encourage you to split to lists of names like this to make your
 code self-documenting. (For purposes of error checking, note that
 $remainder would be undefined if
 there were fewer than three fields.) When assigning to a list, if
 LIMIT is omitted, Perl supplies a
 LIMIT one larger than the number of variables
 in the list, to avoid unnecessary work. For the split above,
 LIMIT would have been 4 by default, and
 $remainder would have received only
 the third field, not all the rest of the fields. In time-critical
 applications, it behooves you not to split into more fields than you
 really need. (The trouble with powerful languages is that they let you
 be powerfully stupid at times.)
We said earlier that the separators are not returned, but if the
 PATTERN contains parentheses, then the
 substring matched by each pair of parentheses is included in the
 resulting list, interspersed with the fields that are ordinarily
 returned. Here’s a simple example:
split /([–,])/, "1–10,20";
which produces the list value:
(1, "–", 10, ",", 20)
With more parentheses, a field is returned for each pair, even if
 some pairs don’t match, in which case undefined values are returned in
 those positions. So if you say:
split /(–)|(,)/, "1–10,20";
you get the value:
(1, "–", undef, 10, undef, ",", 20)
The /PATTERN/ argument may be replaced with an expression
 to specify patterns that vary at runtime.
As a special case, if the expression is a single space (“ ”), the function splits on whitespace just as
 split with no arguments does. Thus,
 split(" ") can be used to emulate
 awk’s default behavior. In contrast,
 split(/ /) will give you as many null
 initial fields as there are leading spaces. (Other than this special
 case, if you supply a string instead of a regular expression, it’ll be
 interpreted as a regular expression anyway.) You can use this property
 to remove leading and trailing whitespace from a string and to collapse
 intervening stretches of whitespace into a single space:
$string = join(" ", split(" ", $string));
The following example splits an RFC 822 message header into a hash containing $head{Date}, $head{Subject}, and so on. It uses the trick
 of assigning a list of pairs to a hash, because separators alternate
 with separated fields. It uses parentheses to return part of each
 separator as part of the returned list value. Since the split pattern is guaranteed to return things
 in pairs by virtue of containing one set of parentheses, the hash
 assignment is guaranteed to receive a list consisting of key/value
 pairs, where each key is the name of a header field. (Unfortunately,
 this technique loses information for multiple lines with the same key
 field, such as Received-By lines. Ah, well �)
$header =~ s/\n\s+/ /g; # Merge continuation lines.
%head = ("FRONTSTUFF", split /^(\S*?):\s*/m, $header);
The following example processes the entries in a Unix
 passwd(5) file. You could leave out the chomp, in which case $shell would have a newline on the end of
 it.
open(PASSWD, "/etc/passwd");
while (<PASSWD>) {
 chomp; # remove trailing newline
 ($login, $passwd, $uid, $gid, $gcos, $home, $shell) =
 split /:/;
 ...
}
Here’s how to process each word of each line of each file of input
 to create a word-frequency hash.
while (<>) {
 for my $word (split) {
 $count{$word}++;
 }
}
The inverse of split is
 join, except that join can only join with the same separator
 between all fields. To break apart a string with fixed-position fields,
 use unpack.

[249] Scalar context also causes split to write its result to @_, but this usage is deprecated.

sprintf

sprintf FORMAT, LIST
This function returns a string formatted by the usual printf conventions of the C library function
 sprintf. See sprintf(3) or
 printf(3) on your system for an explanation of the
 general principles. The FORMAT string
 contains text with embedded field specifiers into which the elements of
 LIST are substituted, one per field. For an
 explanation of the fields, see the section String Formats
 in Chapter 26.

sqrt [image:] [image:]

sqrt EXPR
sqrt
This function returns the square root of
 EXPR. For other roots such as cube roots, you
 can use the ** operator to raise
 something to a fractional power. Don’t try either of these approaches
 with negative numbers, as that poses a slightly more complex problem
 (and raises an exception). But there’s a standard module to take care of
 even that:
use Math::Complex;
print sqrt(–2); # prints 1.4142135623731i

srand

srand EXPR
srand
This function sets the random number seed for the rand operator. If
 EXPR is omitted, it uses a semirandom value
 supplied by the kernel (if it supports the /dev/urandom device) or based on the current
 time and process ID, among other things. In either case, starting with
 v5.14, it returns the seed. It’s usually not necessary to call srand at all, because if it is not called
 explicitly, it is called implicitly at the first use of the rand operator. However, this was not true in
 versions of Perl before v5.004 (1997), so if your script needs to run
 under older Perl versions, it should call srand.
Frequently called programs (like CGI scripts) that simply use
 time ^ $$ for a seed can fall prey to
 the mathematical property that a^b ==
 (a+1)^(b+1) one-third of the time. So don’t do that. Use this
 instead:
srand(time() ^ ($$ + ($$ << 15)));
You’ll need something much more random than the default seed for
 cryptographic purposes. On some systems, the /dev/random device is suitable. Otherwise,
 checksumming the compressed output of one or more rapidly changing
 operating system status programs is the usual method. For
 example:
srand (time ^ $$ ^ unpack "%32L*", `ps wwaxl | gzip`);
If you’re particularly concerned with this, see the Math::TrulyRandom module in CPAN.
Do not call srand multiple times in your program unless
 you know exactly what you’re doing and why you’re doing it. The point of
 the function is to “seed” the rand
 function so that rand can produce a
 different sequence each time you run your program. Just do it once at
 the top of your program, or you won’t get random
 numbers out of rand!

stat [image:] [image:] [image:]

stat FILEHANDLE
stat DIRHANDLE
stat EXPR
stat
In scalar context, this function returns a Boolean value that
 indicates whether the call succeeded. In list context, it returns a
 13-element list giving the statistics for a file, either the file opened
 via FILEHANDLE or DIRHANDLE, or named by
 EXPR. It’s typically used as follows:
($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat $filename;
Not all fields are supported on all filesystem types; unsupported
 fields return 0. Table 27-6 lists the meanings
 of the fields.
Table 27-6. Fields returned by stat
	Index	Field	Meaning
	0	$dev	Device number of
 filesystem
	1	$ino	Inode number
	2	$mode	File mode (type and
 permissions)
	3	$nlink	Number of (hard) links to the
 file
	4	$uid	Numeric user ID of file’s
 owner
	5	$gid	Numeric group ID of file’s
 designated group
	6	$rdev	The device identifier (special
 files only)
	7	$size	Total size of file, in
 bytes
	8	$atime	Last access time in seconds
 since the epoch
	9	$mtime	Last modify time in seconds
 since the epoch
	10	$ctime	Inode change time
 (not creation time!) in seconds since the
 epoch
	11	$blksize	Preferred blocksize for file
 system I/O
	12	$blocks	Actual number of blocks
 allocated

$dev and $ino, taken together, uniquely identify a file
 on the same system. The $blksize and
 $blocks are likely defined only on
 BSD-derived filesystems. The $blocks
 field (if defined) is reported in 512-byte blocks. The value of $blocks*512 can differ greatly from $size for files containing unallocated blocks,
 or “holes”, which aren’t counted in $blocks.
If stat is passed the special
 filehandle consisting of an underline, no actual
 stat(2) is done, but the current contents of the
 stat structure from the last stat,
 lstat, or stat-based file test operator (such as
 –r, –w, and –x)
 are returned.
Because the mode contains both the file type and its permissions,
 you should mask off the file type portion and printf or sprintf using a “%o” if you want to see the real
 permissions:
$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;
The File::stat module provides a convenient, by-name access
 mechanism:
use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",
 $filename, $sb–>size, $sb–>mode & 07777,
 scalar localtime $sb–>mtime;
You can also import symbolic definitions of the various mode bits
 from the Fcntl module.
use Fcntl ':mode';

$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);
You could write the last two using the –u and –d
 operators. See stat(2) for more details.
Hint: if you need only the size of the file, check out the
 –s file test operator, which returns
 the size in bytes directly. There are also file tests that return the
 ages of files in days.

state

state EXPR
state TYPE EXPR
state EXPR : ATTRS
state TYPE EXPR : ATTRS
The state declarator introduces a lexically scoped variable, just as my does. However, the contents of state
 variables persist across calls to the same routine; such variables can
 only be initialized once the first time the scope is entered and will
 never be reinitialized, unlike lexical variables, which are
 reinitialized each time their enclosing scope is entered.
When a closure is cloned, it is considered a new subroutine, so
 any state variables will be initialized in the new clone on first call.
 State variables are not static in the sense a C programmer would think
 of it, unless the routine itself is static.
State variables are enabled only when the use
 feature "state" pragma is in effect. See the section feature in Chapter 29. Only initialization of
 scalar state variables is fully supported at this time, though you may
 always use a scalar reference to an array or hash.

study [image:]

study SCALAR
study
This function takes extra time to study
 SCALAR in anticipation of doing many pattern
 matches on the string before it is next modified. This may or may not
 save time, depending on the nature and number of patterns you are
 searching on, and on the distribution of character frequencies in the
 string to be searched—you probably want to compare runtimes with and
 without it to see which runs faster. Those loops that scan for many
 short constant strings (including the constant parts of more complex
 patterns) will benefit most from study. If all your pattern matches are
 constant strings anchored at the front, study won’t help at all because no scanning is
 done. You may have only one study
 active at a time—if you study a different scalar, the first is
 “unstudied”.
The way study works is this: a
 linked list of every character in the string to be searched is made, so
 we know, for example, where all the “k” characters are. From each search string,
 the rarest character is selected, based on some static frequency tables
 constructed from some C programs and English text. Only those places
 that contain this rarest character are examined.
For example, here is a loop that inserts index-producing entries
 before any line containing a certain pattern:
while (<>) {
 study;
 print ".IX foo\n" if /\bfoo\b/;
 print ".IX bar\n" if /\bbar\b/;
 print ".IX blurfl\n" if /\bglarch\b/;
 ...
 print;
}
In searching for /\bfoo\b/,
 only locations in $_ that contain
 “f” will be looked at, because
 “f” is rarer than “o”. This is a big win except in pathological
 cases. The only question is whether it saves you more time than it took
 to build the linked list in the first place.
If you have to look for strings that you don’t know until runtime,
 you can build an entire loop as a string and eval that to avoid recompiling all your
 patterns all the time. Together with setting $/ to input entire files as one record, this
 can be very fast, often faster than specialized programs like
 fgrep(1). The following scans a list of files
 (@files) for a list of words
 (@words), and prints out the names of
 those files that contain a case-insensitive match:
$search = "while (<>) { study;";
for my $word (@words) {
 $search .= "++\$seen{\$ARGV} if /\\b$word\\b/i;\n";
}
$search .= "}";
@ARGV = @files;
undef $/; # slurp each entire file
eval $search; # this screams
die $@ if $@; # in case eval failed
$/ = "\n"; # restore normal input terminator
for my $file (sort keys(%seen)) {
 say $file";
}
Now that we have the qr//
 operator, complicated runtime evals
 as seen above are less necessary. This does the same thing:
@pats = ();
for my $word (@words) {
 push @pats, qr/\b${word}\b/i;
}
@ARGV = @files;
undef $/; # slurp each entire file
while (<>) {
 for $pat (@pats) {
 $seen{$ARGV}++ if /$pat/;
 }
}
$/ = "\n"; # restore normal input terminator
for my $file (sort keys(%seen)) {
 say $file";
}

sub

Named declarations:
sub NAME PROTO ATTRS
sub NAME ATTRS
sub NAME PROTO
sub NAME
Named definitions:
sub NAME PROTO ATTRS BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO BLOCK
sub NAME BLOCK
Unnamed definitions:
sub PROTO ATTRS BLOCK
sub ATTRS BLOCK
sub PROTO BLOCK
sub BLOCK
The syntax of subroutine declarations and definitions looks
 complicated, but it is actually pretty simple in practice. Everything is
 based on the syntax:
sub NAME PROTO ATTRS BLOCK
All four fields are optional; the only restrictions are that the
 fields that do occur must occur in that order, and that you must use at
 least one of NAME or
 BLOCK. For the moment, we’ll ignore the
 PROTO and ATTRS;
 they’re just modifiers on the basic syntax. The
 NAME and the BLOCK
 are the important parts to get straight:
	If you have just a NAME and no
 BLOCK, it’s a predeclaration of that name
 (but if you ever want to call the subroutine, you’ll have to supply
 a definition with both a NAME and a
 BLOCK later). Named declarations are
 useful because the parser treats a name specially if it knows it’s a
 user-defined subroutine. You can call such a subroutine either as a
 function or as an operator, just like built-in functions. These are
 sometimes called forward declarations.

	If you have both a NAME and a
 BLOCK, it’s a standard named subroutine
 definition (and a declaration, too, if you didn’t declare the name
 previously). Named definitions are useful because the
 BLOCK associates an actual meaning (the
 body of the subroutine) with the declaration. That’s all we mean
 when we say it defines the subroutine rather than just declaring it.
 The definition is like the declaration, however, in that the
 surrounding code doesn’t see it, and it returns no inline value by
 which you could reference the subroutine.

	If you have just a BLOCK without a
 NAME, it’s a nameless definition—that is,
 an anonymous subroutine. Since it doesn’t have a name, it’s not a
 declaration at all, but a real operator that returns a reference to
 the anonymous subroutine body at runtime. This is extremely useful
 for treating code as data. It lets you pass odd chunks of code
 around to be used as callbacks, and maybe even as closures if the
 sub definition operator refers to
 any lexical variables outside of itself. That means that different
 calls to the same sub operator
 will do the bookkeeping necessary to keep the correct “version” of
 each such lexical variable in sight for the life of the closure,
 even if the original scope of the lexical variable has been
 destroyed.

In any of these three cases, either one or both of the
 PROTO and ATTRS
 may occur after the NAME, before the
 BLOCK, or both. A prototype is a list of
 characters in parentheses that tell the parser how to treat arguments to
 the function. Attributes are introduced by a colon and supply additional
 information to the parser about the function. Here’s a typical
 definition that includes all four fields:
sub numstrcmp ($$) : locked {
 my ($a, $b) = @_;
 return $a <=> $b || $a cmp $b;
}
For details on attribute lists and their manipulation, see the section attributes in Chapter 29. See also Chapter 7 and The anonymous subroutine composer in Chapter 8.

substr [image:] [image:] [image:]

substr EXPR, OFFSET, LENGTH, REPLACEMENT
substr EXPR, OFFSET, LENGTH
substr EXPR, OFFSET
This function extracts a substring out of the string given by
 EXPR and returns it. The substring is
 extracted starting at OFFSET characters from
 the front of the string. If OFFSET is
 negative, the substring starts that far from the end of the string
 instead. If LENGTH is omitted, everything to
 the end of the string is returned. If LENGTH
 is negative, the length is calculated to leave that many characters off
 the end of the string. Otherwise, LENGTH
 indicates the length of the substring to extract, which is sort of what
 you’d expect.
Notice we said characters, by which we mean codepoints, not bytes
 or graphemes. For bytes, encode into UTF-8 first and try again. For
 graphemes, use the substr method from
 the CPAN Unicode::GCString module.
You may use substr as an lvalue
 (something to assign to), in which case EXPR
 must also be a legal lvalue. If you assign something shorter than the
 length of your substring, the string will shrink, and if you assign
 something longer than the length, the string will grow to accommodate
 it. To keep the string the same length, you may need to pad or chop your
 value using sprintf or the x operator. If you try to assign to an
 unallocated area past the end of the string, substr raises an exception.
To prepend the string “Larry”
 to the current value of $_,
 use:
substr($var, 0, 0) = "Larry";
To instead replace the first character of $_ with “Moe”, use:
substr($var, 0, 1) = "Moe";
And, finally, to replace the last character of $var with “Curly”, use:
substr($var, –1) = "Curly";
An alternative to using substr
 as an lvalue is to specify the REPLACEMENT
 string as the fourth argument. This lets you replace parts of the
 EXPR and return what was there before in one
 operation, just as you can with splice. The next example also replaces the
 last character of $var with “Curly” and puts that replaced character into
 $oldstr:
$oldstr = substr($var, –1, 1, "Curly");
You don’t have to use lvalue substr only with assignment. This replaces any
 spaces with dots, but only in the last 10 characters in the
 string:
substr($var, –10) =~ s/ /./g;
Note that we keep talking about characters. As elsewhere in this
 book, we mean codepoints, the programmer view of characters, and not
 graphemes, the user view of characters; graphemes can and often do span
 multiple codepoints. The CPAN Unicode::GCString module provides replacement
 functions for substr, index, pos,
 and many others, so you operate on your strings in logical glyphs
 instead of in fiddly little codepoints.
If you were going to use substr
 instead of regexes because you think that surely substr must be faster, you might be surprised.
 Often, regexes are faster than substr, even for fixed-width fields.

symlink [image:] [image:] [image:]

symlink OLDNAME, NEWNAME
This function creates a new filename symbolically linked to the
 old filename. The function returns true for success, and false
 otherwise. On systems that don’t support symbolic links, it raises an
 exception at runtime. To check for that, use eval to trap the potential error:
$can_symlink = eval { symlink("",""); 1 };
Or use the Config module. Be careful if you supply a relative symbolic
 link, since it’ll be interpreted relative to the location of the
 symbolic link itself, not to your current working directory.
See also link and readlink earlier in this chapter.

syscall [image:] [image:] [image:] [image:]

syscall LIST
This function calls the system call (meaning a syscall, not a
 shell command) specified as the first element of the list passes the
 remaining elements as arguments to the system call. (Many of these calls
 are now more readily available through modules like POSIX.) The function raises an exception if
 syscall(2) is unimplemented.
The arguments are interpreted as follows: if a given argument is
 numeric, the argument is passed as a C integer. If not, a pointer to the
 string value is passed. You are responsible for making sure the string
 is long enough to receive any result that might be written into it;
 otherwise, you’re looking at a core dump. You can’t use a string literal
 (or other read-only string) as an argument to syscall because Perl has to assume that any
 string pointer might be written through. If your integer arguments are
 not literals and have never been interpreted in a numeric context, you
 may need to add 0 to them to force them to look like numbers.
syscall returns whatever value
 was returned by the system call invoked. By C coding conventions, if
 that system call fails, syscall
 returns –1 and sets $! (errno). Some system calls legitimately
 return –1 if successful. The proper
 way to handle such calls is to assign $!=0 before the call, and check the value of
 $! if syscall returns –1.
Not all system calls can be accessed this way. For example, Perl
 supports passing up to 14 arguments to your system call, which in
 practice should usually suffice. However, there’s a problem with
 syscalls that return multiple values. Consider syscall(&SYS_pipe): it returns the file
 number of the read end of the pipe it creates. There is no way to
 retrieve the file number of the other end. You can avoid this instance
 of the problem by using pipe instead.
 To solve the generic problem, write XSUBs (external subroutine modules,
 a dialect of C) to access the system calls directly. Then put your new
 module onto CPAN and become wildly popular.
The following subroutine returns the current time as a
 floating-point number rather than as integer seconds as time returns. (It will only work on machines
 that support the gettimeofday(2) syscall.)
sub finetime() {
 package main; # for next require
 require "syscall.ph";
 # presize buffer to two 32–bit longs...
 my $tv = pack("LL", ());
 syscall(&SYS_gettimeofday, $tv, undef) >= 0
 || die "gettimeofday: $!";
 my($seconds, $microseconds) = unpack("LL", $tv);
 return $seconds + ($microseconds / 1_000_000);
}
Suppose Perl didn’t support the setgroups(2)
 syscall,[250] but your kernel did. You could still get at it this
 way:
require "syscall.ph";
syscall(&SYS_setgroups, scalar @newgids, pack("i*", @newgids))
 || die "setgroups: $!";
You may have to run h2ph as
 indicated in the Perl installation instructions for syscall.ph to exist. Some systems may require
 a pack template of “II” instead. Even more disturbing, syscall assumes the size equivalence of the C
 types int, long, and char*. Try not to think of syscall as the epitome of portability.
See the Time::HiRes module from CPAN for a more rigorous approach to
 fine-grained timing issues.

[250] Although through $(, it
 does.

sysopen [image:] [image:]

sysopen FILEHANDLE, FILENAME, MODE, MASK
sysopen FILEHANDLE, FILENAME, MODE
The sysopen function opens the file whose filename is given by
 FILENAME and associates it with
 FILEHANDLE. If
 FILEHANDLE is an expression, its value is
 used as the name of, or reference to, the filehandle. If
 FILEHANDLE is a variable whose value is
 undefined, a value will be created for you. The return value is true if
 the call succeeds, and false otherwise.
This function is a direct interface to your operating system’s
 open(2) syscall followed by an
 fdopen(3) library call. As such, you’ll need to
 pretend you’re a C programmer for a bit here. The possible values and
 flag bits of the MODE parameter are available
 through the Fcntl module. Because different systems support different
 flags, don’t count on all of them being available on your system.
 Consult your open(2) manpage or its local
 equivalent for details. Nevertheless, the flags listed in Table 27-7 should be present on any system with a
 reasonably standard C library.
Table 27-7. Flags for sysopen
	Flag	Meaning
	O_RDONLY	Read only.
	O_WRONLY	Write only.
	O_RDWR	Read and write.
	O_CREAT	Create the file if it doesn’t exist.
	O_EXCL	Fail if the file already exists.
	O_APPEND	Append to the file.
	O_TRUNC	Truncate the file.
	O_NONBLOCK	Nonblocking access.

Many other options are possible, however. Table 27-8 lists some less common flags.
Table 27-8. Less common flags for sysopen
	Flag	Meaning
	O_NDELAY	Old synonym for O_NONBLOCK.
	O_SYNC	Writes block until data is physically written to the underlying
 hardware. O_ASYNC, O_DSYNC, and O_RSYNC may also be seen.
	O_EXLOCK	flock with LOCK_EX
 (advisory only).
	O_SHLOCK	flock with LOCK_SH
 (advisory only).
	O_DIRECTORY	Fail if the file is not a directory.
	O_NOFOLLOW	Fail if the last path component is a symbolic link.
	O_BINARY	binmode the handle for Microsoft systems. An O_TEXT may also sometimes exist to get
 the opposite behavior.
	O_LARGEFILE	Some systems need this for files over 2 GB.
	O_NOCTTY	Opening a terminal file won’t make that terminal become
 the process’s controlling terminal if you don’t have one yet.
 Usually no longer needed.

The O_EXCL flag is
 not for locking: here, exclusiveness means that if
 the file already exists, sysopen
 fails.
If the file named by FILENAME does not
 exist and the MODE includes the O_CREAT flag, then sysopen creates the file with initial
 permissions determined by the MASK argument
 (or 0666 if omitted), as modified by
 your process’s current umask. This
 default is reasonable: see the umask
 entry for an explanation.
Filehandles opened with open
 and sysopen may be used
 interchangeably. You do not need to use sysread and friends just because you happened
 to open the file with sysopen, nor
 are you precluded from doing so if you opened it with open. Each can do things that the other can’t.
 Regular open can open pipes, fork
 processes, set layers, duplicate file handles, and convert a file
 descriptor number into a filehandle. It also ignores leading and
 trailing whitespace in filenames and respects “–” as a special filename. But when it comes to
 opening actual files, sysopen can do
 anything that open can.
The following examples show equivalent calls to both functions. We
 omit the or die $! checks for
 clarity, but make sure to always check return values in your programs.
 We’ll restrict ourselves to using only flags available on virtually all
 operating systems. It’s just a matter of controlling the values that you
 OR together using the bitwise |
 operator to pass in MODE argument.
	Open a file for reading:
open(FH, "<", $path);
sysopen(FH, $path, O_RDONLY);

	Open a file for writing, creating a new file if needed, or
 truncating an old file:
open(FH, ">", $path);
sysopen(FH, $path, O_WRONLY | O_TRUNC | O_CREAT);

	Open a file for appending, creating one if necessary:
open(FH, ">>", $path);
sysopen(FH, $path, O_WRONLY | O_APPEND | O_CREAT);

	Open a file for update, where the file must already
 exist:
open(FH, "+<", $path);
sysopen(FH, $path, O_RDWR);

And here are things you can do with sysopen but not with
 regular open:
	Open and create a file for writing, which must not previously
 exist:
sysopen(FH, $path, O_WRONLY | O_EXCL | O_CREAT);

	Open a file for appending, which must already exist:
sysopen(FH, $path, O_WRONLY | O_APPEND);

	Open a file for update, creating a new file if
 necessary:
sysopen(FH, $path, O_RDWR | O_CREAT);

	Open a file for update, which must not already exist:
sysopen(FH, $path, O_RDWR | O_EXCL | O_CREAT);

	Open a write-only file without blocking, but not creating it
 if it doesn’t exist:
sysopen(FH, $path, O_WRONLY | O_NONBLOCK);

The IO::File module provides a set of object-oriented synonyms (plus a
 small bit of new functionality) for opening files. You are welcome to
 call the appropriate IO::File or
 IO::Handle methods on any handle created with open, sysopen, pipe, socket, or accept, even if you didn’t use the module to
 initialize those handles. In fact, Perl will now load those modules
 implicitly as needed to make sure those methods are available to you.

sysread [image:] [image:] [image:] [image:] [image:]

sysread FILEHANDLE, SCALAR, LENGTH, OFFSET
sysread FILEHANDLE, SCALAR, LENGTH
This function tries to read LENGTH characters
 of data into variable SCALAR from the
 specified FILEHANDLE using a low-level
 syscall, read(2). The function returns the number
 of characters read, or 0 at EOF.[251] The sysread function
 returns undef on error.
 SCALAR will grow or shrink to the length
 actually read. The OFFSET, if specified, says
 where in the string to start putting the characters so that you can read
 into the middle of a string that’s being used as a buffer. For an
 example of using OFFSET, see syswrite. An exception is raised if
 LENGTH is negative or if
 OFFSET points outside the string.
If the filehandle has no encoding layer, then the characters read
 in are no larger than 255, so they are effectively bytes.
Be prepared to handle the problems (like interrupted syscalls)
 that standard I/O normally handles
 for you. Because it bypasses standard I/O, do not mix sysread
 with other kinds of reads, print,
 printf, write, seek, tell,
 or eof on the same filehandle unless
 you are into heavy wizardry (and/or pain). Also, when reading characters
 from a file containing UTF-8, UTF-16, or any other multibyte encoding,
 the buffer boundary may fall in the middle of a character. It is
 therefore best to set the encoding and read characters instead of
 bytes.
Note that if the filehandle has been marked as :utf8, Unicode characters are read instead of
 bytes (LENGTH,
 OFFSET, and the return value of sysread are in Unicode characters). The
 :encoding(...) layer implicitly
 introduces the :utf8 layer.

[251] There is no syseof
 function, which is okay, since eof doesn’t work well on device files
 (like terminals) anyway. Use sysread and check for a return value of 0
 to decide whether you’re done.

sysseek [image:] [image:]

sysseek FILEHANDLE, POSITION, WHENCE
This function sets FILEHANDLE’s
 system position using the syscall lseek(2). It
 bypasses standard I/O, so mixing this with reads (other than sysread), print, write, seek, tell,
 or eof may (and probably shall) cause
 confusion. FILEHANDLE may be an expression
 whose value gives the name of the filehandle. The values for
 WHENCE are 0 to set the new position to
 POSITION bytes into the file, 1 to set it to the current position plus
 POSITION, and 2 to set it to EOF plus
 POSITION bytes (typically negative). For
 WHENCE, you may use the constants SEEK_SET, SEEK_CUR, and SEEK_END from the standard IO::Seekable and POSIX modules, or from the Fcntl module, which is more portable and convenient.
This function returns the new position in bytes, or undef on failure. A position of zero is
 returned as the special string “0 but
 true”, which can be used numerically without producing
 warnings or having to mess around with //
 die instead of the more customary ||
 die.
Warning: POSITION is in bytes
 not characters, no matter whether there should happen to be any encoding
 layer on the filehandle. However, all functions in Perl that read from
 files do go through any encoding layer, and you can
 therefore read a partial “character” and wind up with an invalid Perl
 string. Avoid mixing calls to sysseek
 or seek with I/O functions on
 filehandle with a multibyte encoding layer.

system [image:] [image:] [image:]

system PATHNAME LIST
system LIST
This function executes any program on the system for you and
 returns that program’s exit status—not its output. To capture the output
 from a command, use backticks or qx//
 instead. The system function works
 exactly like exec, except that
 system does a fork first and then, after the exec, waits for the executed program to
 complete. That is, it runs the program for you and returns when it’s
 done, whereas exec
 replaces your running program with the new one, so
 it never returns if the replacement succeeds.
Argument processing varies depending on the number of arguments,
 as described under exec, including
 determining whether the shell will be called and whether you’ve lied to
 the program about its name by specifying a separate
 PATHNAME.
Because system and backticks
 block SIGINT and SIGQUIT, sending one of those signals (such as
 from a Control-C) to the program being run doesn’t interrupt your main
 program. But the other program you’re running does
 get the signal. Check the return value from system to see whether the program you were
 running exited properly.
@args = ("command", "arg1", "arg2");
system(@args) == 0
 || die "system @args failed: $?"
The return value is the exit status of the program as returned
 through the wait(2) syscall. Under traditional
 semantics, to get the real exit value, divide by 256 or shift right by 8
 bits. That’s because the lower byte has something else in it. (Two
 somethings, really.) The lowest seven bits indicate the signal number
 that killed the process (if any), and the eighth bit indicates whether
 the process dumped core. You can check all failure possibilities,
 including signals and core dumps, by inspecting $? ($CHILD_ERROR):
$exit_value = $? >> 8;
$signal_num = $? & 127; # or 0x7f, or 0177, or 0b0111_1111
$dumped_core = $? & 128; # or 0x80, or 0200, or 0b1000_0000
If the program has to be run via the system shell[252] because you had only one argument and that argument had
 shell metacharacters in it, normal return codes are subject to that
 shell’s additional quirks and capabilities. In other words, under those
 circumstances, you may be unable to recover the detailed information
 described earlier.

[252] That’s /bin/sh by
 definition, or whatever makes sense on your platform, but not
 whatever shell the user just happens to be using at the time.

syswrite [image:] [image:] [image:] [image:]

syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET
syswrite FILEHANDLE, SCALAR, LENGTH
syswrite FILEHANDLE, SCALAR
This function tries to write LENGTH
 bytes of data from variable SCALAR to the
 specified FILEHANDLE using the
 write(2) syscall. The function returns the number
 of bytes written, or undef on error.
 The OFFSET, if specified, says from where in
 the string to start writing. (You might do this if you were using the
 string as a buffer, for instance, or if you needed to recover from a
 partial write.) A negative OFFSET specifies
 that writing should start that many bytes backward from the end of the
 string. If SCALAR is empty, the only
 OFFSET permitted is 0. An exception is raised
 if LENGTH is negative or if
 OFFSET points outside the string.
To copy data from filehandle FROM into filehandle TO, you can use something like:
use Errno qw/EINTR/;
$blksize = (stat FROM)[11] || 16384; # preferred block size?
while ($len = sysread FROM, $buf, $blksize) {
 if (!defined $len) {
 next if $! == EINTR;
 die "System read error: $!";
 }
 $offset = 0;
 while ($len) { # Handle partial writes
 $written = syswrite TO, $buf, $len, $offset;
 die "System write error: $!" unless defined $written;
 $offset += $written;
 $len –= $written;
 }
}
You must be prepared to handle the problems that standard I/O
 normally handles for you, such as partial writes. Because syswrite bypasses the C standard I/O library,
 do not mix calls to it with reads (other than sysread), writes (like print, printf, or write), or other stdio functions like seek, tell,
 or eof unless you are into heavy
 wizardry.[253]
If the filehandle is marked :utf8, Unicode characters encoded in UTF-8 are
 written instead of bytes, and the LENGTH,
 OFFSET, and return value of syswrite are in (UTF-8-encoded Unicode)
 characters. The :encoding(...) layer
 implicitly introduces the :utf8
 layer.

[253] Or pain.

tell [image:]

tell FILEHANDLE
tell
This function returns the current file position (in bytes,
 zero-based) for FILEHANDLE. Typically, this
 value will be fed to the seek
 function at some future time to get back to the current position.
 FILEHANDLE may be an expression giving the
 name of the actual filehandle or a reference to a filehandle object. If
 FILEHANDLE is omitted, the function returns
 the position of the file last read. File positions are meaningful only
 on regular files. Devices, pipes, and sockets have no file
 position.
Note the in bytes: even if the filehandle has
 been set to operate on characters (for example, by using the :encoding(utf8) open layer), tell still always returns byte offsets, not
 character offsets (because that would render seek and tell rather slow).
There is no systell function.
 Use sysseek(FH, 0, 1) for that. Seek
 seek for an example telling how to
 use tell.
Do not use tell (or other
 buffered I/O operations) on a filehandle that has been manipulated by
 sysread, syswrite, or sysseek. Those functions ignore the buffering,
 while tell does not.

telldir [image:] [image:]

telldir DIRHANDLE
This function returns the current position of the readdir routines on
 DIRHANDLE. This value may be given to
 seekdir to access a particular
 location in a directory. The function has the same caveats about
 possible directory compaction as the corresponding system library
 routine. This function might not be implemented everywhere that readdir is. Even if it is, no calculation may
 be done with the return value. It’s just an opaque value, meaningful
 only to seekdir.

tie [image:]

tie VARIABLE, CLASSNAME, LIST
This function binds a variable to a package class that will
 provide the implementation for the variable.
 VARIABLE is the variable (scalar, array, or
 hash) or typeglob (representing a filehandle) to be tied.
 CLASSNAME is the name of a class implementing
 objects of an appropriate type.
Any additional arguments are passed to the appropriate constructor
 method of the class, meaning one of TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE. (If the appropriate method is not
 found, an exception is raised.) Typically, these are arguments such as
 might be passed to the dbm_open(3) function of C,
 but their meaning is package dependent. The object returned by the
 constructor is in turn returned by the tie function, which can be useful if you want
 to access other methods in CLASSNAME. (The
 object can also be accessed through the tied function.) So a class for tying a hash to
 an I SAM implementation might provide an extra method to traverse a set
 of keys sequentially (the “S” of I SAM), since your typical DBM
 implementation can’t do that.
Functions such as keys and
 values may return huge list values
 when used on large objects like DBM files. You may prefer to use the
 each function to iterate over such.
 For example:
use NDBM_File;
tie(%ALIASES, "NDBM_File", "/etc/aliases", 1, 0)
 || die "Can't open aliases: $!";
while (($key,$val) = each %ALIASES) {
 say "$key = $val";
}
untie %ALIASES;
A class implementing a hash should provide the following
 methods:
TIEHASH CLASS, LIST
FETCH SELF, KEY
STORE SELF, KEY, VALUE
DELETE SELF, KEY
CLEAR SELF
EXISTS SELF, KEY
FIRSTKEY SELF
NEXTKEY SELF, LASTKEY
SCALAR SELF
DESTROY SELF
UNTIE SELF
A class implementing an array should provide the following
 methods:
TIEARRAY CLASS, LIST
FETCH SELF, KEY
STORE SELF, KEY, VALUE
FETCHSIZE SELF
STORESIZE SELF, COUNT
CLEAR SELF
PUSH SELF, LIST
POP SELF
SHIFT SELF
UNSHIFT SELF, LIST
SPLICE SELF, OFFSET, LENGTH, LIST
EXTEND SELF, COUNT
DESTROY SELF
UNTIE SELF
A class implementing a scalar should provide the following
 methods:
TIESCALAR CLASS, LIST
FETCH SELF,
STORE SELF, VALUE
DESTROY SELF
UNTIE SELF
A class implementing a filehandle should provide the following
 methods:
TIEHANDLE CLASS, LIST
READ SELF, SCALAR, LENGTH, OFFSET
READLINE SELF
GETC SELF
WRITE SELF, SCALAR, LENGTH, OFFSET
PRINT SELF, LIST
PRINTF SELF, FORMAT, LIST
BINMODE SELF
EOF SELF
FILENO SELF
SEEK SELF, POSITION, WHENCE
TELL SELF
OPEN SELF, MODE, LIST
CLOSE SELF
DESTROY SELF
UNTIE SELF
Not all methods indicated above need to be implemented: the
 Tie::Hash, Tie::Array, Tie::Scalar, and Tie::Handle modules provide base classes that have reasonable
 defaults. See Chapter 14 for a detailed discussion of
 these methods. Unlike dbmopen, the
 tie function will not use or require a module for you—you need to do that
 explicitly yourself. See the DB_File and Config modules for interesting tie
 implementations.

tied

tied VARIABLE
This function returns a reference to the object underlying the
 scalar, array, hash, or typeglob contained in
 VARIABLE (the same value that was originally
 returned by the tie call that bound
 the variable to a package). It returns the undefined value if
 VARIABLE isn’t tied to a package. So, for
 example, you can use:
ref tied %hash
to find out to which package your hash is tied. (Presuming you’ve
 forgotten.)

time

time
This function returns the number of nonleap seconds since “the
 epoch”, traditionally 00:00:00 on January 1, 1970, UTC.[254] The returned value is suitable for feeding to gmtime and localtime, for comparison with file
 modification and access times returned by stat, and for feeding to utime.
$start = time();
system("some slow command");
$end = time();
if ($end – $start > 1) {
 say "Program started: ", scalar localtime($start);
 say "Program ended: ", scalar localtime($end);
}
For measuring time in finer granularity than integer seconds, use
 the Time::HiRes module, included with Perl since the v5.8 release and
 available from CPAN earlier than that.

[254] Not to be confused with the “epic”, which is about the making
 of Unix. (Other operating systems may have a different epoch, not to
 mention a different epic.)

times [image:]

times
In list context, this function returns a four-element list giving the user and
 system CPU times, in seconds (probably fractional), for this process and
 terminated children of this process.
($user, $system, $cuser, $csystem) = times();
printf "This pid and its kids have consumed %.3f seconds\n",
 $user + $system + $cuser + $csystem;
In scalar context, returns just the user time. For example, to
 time the execution speed of a section of Perl code:
$start = times();
...
$end = times();
printf "that took %.2f CPU seconds of user time\n",
 $end – $start;

tr/// [image:]

tr///
y///
This is the transliteration (sometimes erroneously called translation)
 operator, which is like the y///
 operator in the Unix sed program,
 only better, in everybody’s humble opinion. See Chapter 5.
To use with a read-only value without raising an exception, use
 the /r modifier, first available in
 v5.14.
say "bookkeeper" =~ tr/boep/peob/r; # prints "peekkoobor"

truncate [image:] [image:] [image:] [image:]

truncate FILEHANDLE, LENGTH
truncate EXPR, LENGTH
This function truncates the file opened on
 FILEHANDLE, or named by
 EXPR, to the specified length in bytes,
 not characters. The function raises an exception if
 ftruncate(2) or an equivalent isn’t implemented on
 your system. (You can always truncate a file by copying the front of it,
 if you have the disk space.) The function returns true on success, and
 undef otherwise.
The behavior is undefined if LENGTH is
 greater than the current file length. However, on traditional Unix
 filesystems, it sets the length of the file past the old end, and the
 kernel returns an intervening, never-written-to data as all zero
 bytes.
The position in the file of FILEHANDLE
 is left unchanged. You may wish to call seek before writing to the file after calling
 truncate on it.

uc [image:] [image:]

uc EXPR
uc
This function returns an uppercased version of
 EXPR. This is the internal function
 implementing the \U escape in
 interpolated strings. For titlecase, use ucfirst instead.
Do not use uc for
 case-insensitive comparisons the way you may have once done in ASCII,
 because it gives the wrong answer for Unicode. Instead, use the fc (foldcase) function, either from the CPAN
 Unicode::CaseFold module or via use feature "fc" in v5.16 or later.
 See the section A Case of Mistaken Identity in Chapter 6 for more information.
Codepoints in the 128–256 range are ignored by uc if the string does not have Unicode
 semantics (and locale mode is not in effect), which can be difficult to
 guess. The unicode_strings feature
 guarantees Unicode semantics even on those codepoints. See Chapter 6.

ucfirst [image:] [image:]

ucfirst EXPR
ucfirst
This function returns a version of
 EXPR with the first character
 titlecased and other characters left alone.
 Titlecase is “Unicodese” for
 an initial capital that has (or expects to have) lowercase characters
 following it, not uppercase ones. Examples are the first letter of a
 sentence, of a person’s name, of a newspaper headline, or of most words
 in a title. Characters with no titlecase mapping return the uppercase
 mapping instead. This is the internal function implementing the \u escape in double-quoted strings.
For example, if someone used U+FB02 latin
 small ligature fl at the start of “ﬂower” (that is, "\x{FB02}ower"), and you want to use it as the
 first word of a sentence, its titlecase mapping is “Flower”, not “FLower”. Its uppercase is still “FLOWER”, though.
To capitalize a string by mapping its first character to titlecase
 and the rest to lowercase, use:
ucfirst(substr($word, 0, 1)) . lc(substr($word, 1))
Do not (unless you’re into cultural imperialism) use:
ucfirst lc $word
or "\u\L$word", because that
 can produce a different and incorrect answer with certain characters.
 The titlecase of something that’s been lowercased doesn’t always produce
 the same thing titlecasing the original produces.
Because titlecasing only makes sense at the start of a string
 that’s followed by lowercase characters, we can’t think of any reason
 you might want to titlecase every character in a
 string. But here’s how to do that anyway, just in case:
$string =~ s/ ((?= \p{CWT}) \X) /\u$1/gx;
The full name of the shortcut CWT property we used there is Changes_When_Titlecased=True, but that’s much
 too long to type, and the official abbreviation works perfectly
 well.
See uc regarding the unicode_strings feature.

umask [image:] [image:]

umask EXPR
umask
This function sets the umask for the process and returns the
 old one using the umask(2) syscall. Your umask
 tells the operating system which permission bits to
 disallow when creating a new file, including files
 that happen to be directories. If EXPR is
 omitted, the function merely returns the current umask. For example, to
 ensure that the “user” bits are allowed and the “other” bits disallowed,
 try something like:
umask((umask() & 077) | 7); # don't change the group bits
Remember that a umask is a number, usually given in octal; it is
 not a string of octal digits. See also oct, if all you have is a string. Remember
 also that the umask’s bits are complemented compared to ordinary
 permissions.
The Unix permission rwxr–x–––
 is represented as three sets of three bits, or three octal digits:
 0750 (the leading 0 indicates octal
 and doesn’t count as one of the three digits). Since the umask’s bits
 are flipped, it represents disabled permissions bits. The permission (or
 “mode”) values you supply to mkdir or
 sysopen are modified by your umask,
 so even if you tell sysopen to create
 a file with permissions 0777, if your
 umask is 0022, the file is created
 with permissions 0755. If your
 umask were 0027 (group can’t write; others can’t read,
 write, or execute), then passing sysopen a MASK of
 0666 would create a file with mode
 0640 (since 0666 & ~0027 is 0640).
Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen) and one of 0777 both for directories (in mkdir) and for executable files. This gives
 users the freedom of choice: if they want protected files, they choose
 process umasks of 022, 027, or even the particularly antisocial mask
 of 077. Programs should rarely if
 ever make policy decisions better left to the user. The exception to
 this rule is programs that write files that should be kept private: mail
 files, web browser cookies, .rhosts
 files, and so on.
If umask(2) is not implemented on your system
 and you are trying to restrict your own access
 (that is, if (EXPR
 & 0700) > 0), you’ll trigger a runtime exception. If
 umask(2) is not implemented and you are not trying
 to restrict your own access, the function simply returns undef.

undef [image:]

undef EXPR
undef
undef is the name by which we refer to the abstraction known as “the
 undefined value”. Conveniently, it also happens to be the name of a
 function that always returns the undefined value. We happily confuse the
 two.[255]
Coincidentally, the undef
 function can also explicitly undefine an entity if you supply its name
 as an argument. The EXPR argument, if
 specified, must be an lvalue. Hence, you may only use this on a scalar
 value, an entire array or hash, a subroutine name (using the & prefix), or a typeglob. Any storage
 associated with the object will be recovered for reuse (though not
 returned to the system, for most operating systems). The undef function will probably not do what you
 expect on most special variables. Using it on a read-only variable like
 $1 raises an exception.
The undef function is a unary
 operator, not a list operator, so you can only undefine one thing at a
 time. Here are some uses of undef as
 a unary operator:
undef $foo;
undef $bar{"blurfl"}; # Different from delete $bar{"blurfl"};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
Without an argument, undef is
 just used for its value:
select(undef, undef, undef, $naptime);

return (wantarray ? () : undef) if $they_blew_it;
return if $they_blew_it; # same thing
You may use undef as a
 placeholder on the left side of a list assignment, in which case the
 corresponding value from the right side is simply discarded. Apart from
 that, you may not use undef as an
 lvalue.
($a, $b, undef, $c) = &foo; # Ignore third value returned
Also, do not try to compare anything to undef—it doesn’t do what you think. All it
 does is compare against 0 or the null
 string. Use the defined function or
 the // operator to test whether a
 value is defined.

[255] On the other hand, Perl 6 happily chooses to unconfuse undef
 and confuse other things instead.

unlink [image:] [image:] [image:]

unlink LIST
unlink
This function deletes a list of files.[256] The function returns the number of filenames successfully
 deleted. Here are some examples:
$count = unlink("a", "b", "c");
unlink @goners;
unlink glob("*.orig");
The unlink function will not
 delete directories unless you are the superuser and the supply –U command-line option to Perl. Even if these
 conditions are met, be warned that unlinking a directory can inflict
 Serious Damage on your filesystem. Use rmdir instead.
Here’s a simple rm command with
 very simple error checking:
#!/usr/bin/perl
@cannot = grep {not unlink} @ARGV;
die "$0: could not unlink all of @cannot" if @cannot;

[256] Actually, under a POSIX filesystem, it removes the directory
 entries (filenames) that refer to the real files. Since a file may
 be referenced (linked) from more than one directory, the file isn’t
 removed until the last reference to it is removed.

unpack [image:]

unpack TEMPLATE, EXPR
This function does the reverse of pack: it expands a string
 (EXPR) representing a data structure into a
 list of values according to the TEMPLATE and
 returns those values. Templates for pack and unpack are described in Chapter 26.

unshift [image:]

unshift ARRAY, LIST
This function does the opposite of shift. (Or the opposite of push, depending on how you look at it.) It
 prepends LIST to the front of the array and
 returns the new number of elements in the array:
unshift(@ARGV, "–e", $cmd) unless $ARGV[0] =~ /^–/;
Note the LIST is prepended whole, not
 one element at a time, so the prepended elements stay in the same order.
 Use reverse to do the reverse.
Starting with v5.14, unshift
 can take a reference to an unblessed array, which will be dereferenced
 automatically. This aspect of unshift
 is considered experimental. The exact behavior may change in a future
 version of Perl.

untie

untie VARIABLE
Breaks the binding between the variable or typeglob contained in
 VARIABLE and the package that it’s tied to.
 See tie, and all of Chapter 14, but especially the section A Subtle Untying Trap.

use [image:] [image:]

use MODULE VERSION LIST
use MODULE VERSION ()
use MODULE VERSION
use MODULE LIST
use MODULE ()
use MODULE
use VERSION
The use declaration loads in a module, if it hasn’t been loaded before, and
 imports subroutines and variables into the current package from the
 named module. (Technically speaking, it imports some semantics into the
 current package from the named module, generally by aliasing certain
 subroutine or variable names into your package.) Most use declarations look like this:
use MODULE LIST;
That is exactly equivalent to saying:
BEGIN { require MODULE; import MODULE LIST }
The BEGIN forces the require and import to happen at compile time. The require makes sure the module is loaded into
 memory if it hasn’t been yet. The import is not a built-in—it’s just an ordinary
 class method call into the package named by
 MODULE to tell that module to pull the list
 of features back into the current package. The module can implement its
 import method any way it likes, though most modules just choose to
 derive their import method via inheritance from the Exporter class that
 is defined in the Exporter module. See Chapter 11 and the Exporter module for more information. If no
 import method can be found, then the
 call is skipped without murmur.
If you don’t want your namespace altered, supply an empty list
 explicitly:
use MODULE ();
That is exactly equivalent to the following:
BEGIN { require MODULE }
If the first argument to use is
 a version number like v5.12.3, the currently executing version of Perl
 must be at least as modern as the version specified. If the current
 version of Perl is less than VERSION, an
 error message is printed and Perl exits immediately. This is useful for
 checking the current Perl version before loading library modules that
 depend on newer versions, since occasionally we have to “break” the
 misfeatures of older versions of Perl. (We try not to break things any
 more than we have to. In fact, we often try to break things less than we
 have to.)
Speaking of not breaking things, Perl still accepts antemillennial
 version numbers of the form:
use 5.005_03;
However, to align better with industry standards, all versions of
 Perl released this millennium accept (and we prefer to see) the
 three-tuple form:
use 5.12.0; # That's version 5, subversion 12, patchlevel 0.
use v5.12.0; # same
use v5.12; # same, but be sure to put the v!
use 5.012; # same, for compatibility with very old perls
use 5.12; # WRONG!
If the VERSION argument is present
 after MODULE, then the use will call the VERSION method in class
 MODULE with the given
 VERSION as an argument. Note that there is no
 comma after VERSION! The default VERSION method, which is inherited from the
 UNIVERSAL class, croaks if the given
 version is larger than the value of the variable $Module::VERSION.
Also, starting in production-release v5.10, use VERSION will also load the feature pragma and enable all features available in the requested
 version. See the section feature in Chapter 29. Similarly, if the specified Perl version is
 production-release v5.12 or higher, strictures are enabled lexically as
 with use strict (except that the
 strict.pm file is not actually
 loaded).
Because use provides a
 wide-open interface, pragmas (compiler directives) are also implemented
 via modules. Examples of currently implemented pragmas include:
use autouse "Carp" => qw(carp croak);
use bignum;
use constant PI => 4 * atan2(1,1);
use diagnostics;
use integer;
use lib "/opt/projects/spectre/lib";
use locale;
use sigtrap qw(die INT QUIT);
use sort qw(stable _quicksort _mergesort);
use strict qw(subs vars refs);
use threads;
use warnings qw(numeric uninitialized);
use warnings qw(FATAL all);
Many of these pragmatic modules import semantics into the current
 lexical scope. (This is unlike ordinary modules, which only import
 symbols into the current package, which has little relation to the
 current lexical scope other than that the lexical scope is being
 compiled with that package in mind. That is to say… oh, never mind, see
 Chapter 11.)
Because use takes effect at
 compile time, it doesn’t respect the ordinary flow control of the code
 being compiled. In particular, putting a use inside the false branch of a conditional
 doesn’t prevent it from being processed. If a module or pragma needs to
 be loaded only conditionally, this can be done using the if pragma:
use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);
There’s a corresponding declaration, no, which “unimports” any meanings originally
 imported by use that have since
 become, er, unimportant:
no integer;
no strict qw(refs);
no warnings qw(deprecated);
Care should be taken when using the no
 VERSION form of no. It is
 only meant to be used to assert that the running
 Perl is of an earlier version than its argument,
 not to undo the feature-enabling side effects of
 use VERSION.
See Chapter 29 for a list of standard pragmas.

utime [image:] [image:] [image:]

utime LIST
This function changes the access and modification times on each
 file of a list of files. The first two elements of the list must be the
 numerical access and modification times, in that
 order. The function returns the number of files successfully changed.
 The inode change time of each file is set to the current time. Here’s an
 example of a touch command that sets
 the modification date of the file (assuming you’re the owner) to about a
 month in the future:
#!/usr/bin/perl
montouch – post–date files now + 1 month
$day = 24 * 60 * 60; # 24 hours of seconds
$later = time() + 30 * $day; # 30 days is about a month
utime $later, $later, @ARGV;
and here’s a more sophisticated touch-like command with a smattering of error
 checking:
#!/usr/bin/perl
montouch – post–date files now + 1 month
$later = time() + 30 * 24 * 60 * 60;
@cannot = grep {not utime $later, $later, $_} @ARGV;
die "$0: Could not touch @cannot." if @cannot;
To read the times from existing files, use stat and then pass the appropriate fields
 through localtime or gmtime for printing.
Under NFS this will use the time of the NFS server, not the time
 of the local machine. If there is a time synchronization problem, the
 NFS server and local machine will have different times. The Unix
 touch(1) command will in fact normally use this
 form instead of the one shown in the first example.
Passing only one of the first two elements as undef is equivalent to passing a 0, so it will
 not have the effect described when both are undef. This also triggers an uninitialized
 warning.
On systems that support futimes(2), you may
 pass filehandles among the files. On systems that don’t support the
 futimes(2) syscall, passing filehandles raises an
 exception. To be recognized, filehandles must be passed as globs or glob
 references; barewords are considered filenames.
utime($then, $then, *SOME_HANDLE);

values [image:]

values HASH
values ARRAY
This function returns a list consisting of all the values in
 the indicated HASH. The values are returned
 in an apparently random order, but it is the same order as either the
 keys or each function would produce on the same hash.
 Oddly, to sort a hash by its values, you usually need to use the
 keys function, so see the example
 under keys for that.
You can modify the values of a hash using this function because
 the returned list contains aliases of the values, not just copies. (In
 earlier versions, you needed to use a hash slice for that.)
for (@hash{keys %hash}) { s/foo/bar/g } # old way
for (values %hash) { s/foo/bar/g } # now changes values
Using values on a hash that is
 bound to a humongous DBM file is bound to produce a humongous list,
 causing you to have a humongous process. You might prefer to use the
 each function, which will iterate
 over the hash entries one by one without slurping them all into a single
 gargantuan, er, humongous list.

vec [image:]

vec EXPR, OFFSET, BITS
The vec function provides compact storage of lists of unsigned integers.
 These integers are packed as tightly as possible within an ordinary Perl
 string. The string in EXPR is treated as a
 bit string made up of some arbitrary number of elements, depending on
 the length of the string.
OFFSET specifies the index of the
 particular element you’re interested in. The syntaxes for reading and
 writing the element are the same, since vec stores or returns the value of the element
 depending on whether you use it in an lvalue or an rvalue
 context.
BITS specifies how wide each element is
 in bits, which must be a power of two: 1, 2,
 4, 8, 16, or
 32 (and also 64 on some platforms). (An exception is raised
 if any other value is used.) Each element can therefore contain an
 integer in the range 0..(2BITS)–1.
 For the smaller sizes, as many elements as possible are packed into each
 byte. When BITS is 1, there are eight elements per byte. When
 BITS is 2,
 there are four elements per byte. When BITS
 is 4, there are two elements
 (traditionally called nybbles) per byte. And so on. Integers larger than
 a byte are stored in big-endian order.
A list of unsigned integers can be stored in a single scalar
 variable by assigning them individually to the vec function. (If
 EXPR is not a valid lvalue, an exception is
 raised.) In the following example, the elements are each 4 bits
 wide:
$bitstring = "";
$offset = 0;

for my $num (0, 5, 5, 6, 2, 7, 12, 6) {
 vec($bitstring, $offset++, 4) = $num;
}
If an element off the end of the string is written to, Perl will
 first extend the string with sufficiently many zero bytes.
The vectors stored in the scalar variable can be subsequently
 retrieved by specifying the correct
 OFFSET.
$num_elements = length($bitstring)*2; # 2 elements per byte

for my $offset (0 .. $num_elements–1) {
 say vec($bitstring, $offset, 4);
}
If the selected element is off the end of the string, a value of
 0 is returned.
Strings created with vec can
 also be manipulated with the logical operators |, &,
 ^, and ~. These operators will assume that a bit
 string operation is desired when both operands are strings. See the
 examples of this in the section Bitwise Operators in Chapter 3.
If BITS ==
 1, a bitstring can be created to store a series of bits all in
 one scalar. The ordering is such that vec($bitstring,0,1) is guaranteed to go into
 the lowest bit of the first byte of the string.
@bits = (0,0,1,0, 1,0,1,0, 1,1,0,0, 0,0,1,0);

$bitstring = "";
$offset = 0;

for my $bit (@bits) {
 vec($bitstring, $offset++, 1) = $bit;
}

say $bitstring"; # "TC", ie. '0x54', '0x43'
A bit string can be translated to or from a string of 1s and 0s
 by supplying a “b*” template to
 pack or unpack. Alternatively, pack can be used with a “b*” template to create the bit string from a
 string of 1s and 0s. The ordering is compatible with that
 expected by vec.
$bitstring = pack "b*", join(q(), @bits);
say $bitstring"; # "TC", same as before
unpack can be used to extract
 the list of 0s and 1s from the bit string.
@bits = split(//, unpack("b*", $bitstring));
say "@bits"; # 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0
If you know the exact length in bits, it can be used in place of
 the “*”.
See select for additional
 examples of using bitmaps generated with vec. See pack and unpack for higher-level manipulation of binary
 data.

wait [image:] [image:] [image:]

wait
This function waits for a child process to terminate and
 returns the PID of the deceased process, or –1 if there are no child processes (or, on
 some systems, if child processes are being automatically reaped). The
 status is returned in $?, as
 described under system. If you get
 zombie child processes, you should be calling this function, or waitpid.
If you expected a child and didn’t find it with wait, you probably had a call to system, a close on a pipe, or backticks
 between the fork and the wait. These constructs also do a
 wait(2) and may have harvested your child process.
 Use waitpid to avoid this
 problem.

waitpid [image:] [image:] [image:]

waitpid PID, FLAGS
This function waits for a particular child process to terminate
 and returns the PID when the process is dead, –1 if there are no child processes, or
 0 if the
 FLAGS specify nonblocking and the process
 isn’t quite dead yet. The status of any dead process is returned in
 $?, as described under system. To get valid flag values, you’ll need
 to import the “:sys_wait_h” import
 tag group from the POSIX module. Here’s an example that does a nonblocking wait
 for all pending zombie processes.
use POSIX ":sys_wait_h";
do {
 $kid = waitpid(–1,&WNOHANG);
} until $kid == –1;
On systems that implement neither the
 waitpid(2) nor wait4(2)
 syscall, FLAGS may be specified only as
 0. In other words, you can wait for a
 specific PID there, but you can’t do so in
 nonblocking mode.
On some systems, a return value of –1 could mean that child processes are being
 automatically reaped because you set $SIG{CHLD}
 = "IGNORE".

wantarray

wantarray
This function returns true if the context of the currently
 executing subroutine is looking for a list value, and false otherwise.
 The function returns a defined false value ("") if the calling context is looking for a
 scalar, and the undefined false value (undef) if the calling context isn’t looking
 for anything; that is, if it’s in void context.
Here are examples of typical usage:
return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : \@a;
See also caller. This function
 should really have been named “wantlist”, but we named it back when list
 contexts were still called array contexts.

warn [image:]

warn LIST
warn
This function produces an error message, printing
 LIST to STDERR just like die, but it doesn’t try to exit or throw an
 exception. For example:
warn "Debug enabled" if $debug;
If LIST is empty and $@ already contains a value (typically from a
 previous eval), the string “\t...caught” is appended following $@ on STDERR. (This is similar to the way die propagates errors, except that warn doesn’t propagate [reraise] the
 exception.) If the message string supplied is empty, the message
 “Warning: Something's wrong” is
 used.
As with die, if the strings
 supplied don’t end in a newline, file and line number information is
 automatically appended. The warn
 function is unrelated to Perl’s –w
 command-line option, but can be used in conjunction with it, such as
 when you wish to emulate built-ins:
warn "Something wicked\n" if $^W;
No message is printed if there is a $SIG{_ _WARN_ _} handler installed. It is the
 handler’s responsibility to deal with the message as it sees fit. One
 thing you might want to do is promote a mere warning into an
 exception:
local $SIG{_ _WARN_ _} = sub {
 my $msg = shift;
 die $msg if $msg =~ /isn't numeric/;
};
Most handlers must therefore make arrangements to display the
 warnings that they are not prepared to deal with, by calling warn again in the handler. This is perfectly
 safe; it won’t produce an endless loop because _ _WARN_ _ hooks are not called from inside
 _ _WARN_ _ hooks. This behavior
 differs slightly from that of $SIG{_ _DIE_ _} handlers (which don’t suppress
 the error text but can instead call die again to change it).
Using a _ _WARN_ _ handler
 provides a powerful way to silence all warnings, even the so-called
 mandatory ones. Sometimes you need to wrap this in a BEGIN{} block so that it can happen at compile
 time:
wipe out *all* compile–time warnings
BEGIN { $SIG{_ _WARN_ _} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,
 # but hey, you asked for it!

no compile–time or runtime warnings before here
$DOWARN = 1; # *not* a built–in variable

runtime warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up
See the warnings pragma for lexically scoped control of warnings. See the
 Carp module’s carp and
 cluck functions for other ways to
 produce warning messages.

write [image:] [image:] [image:]

write FILEHANDLE
write
This function writes a formatted record (possibly multiline) to
 the specified filehandle, using the format associated with that
 filehandle—see the section Format Variables in Chapter 26. By default, the format associated with a
 filehandle is the one having the same name as the filehandle. However,
 the format for a filehandle may be changed by altering the $~ variable after you select that handle:
$old_fh = select(HANDLE);
$~ = "NEWNAME";
select($old_fh);
or by saying:
use IO::Handle;
HANDLE–>format_name("NEWNAME");
Since formats are put into a package namespace, you may have to
 fully qualify the format name if the format was declared in a different
 package:
$~ = "OtherPack::NEWNAME";
Top-of-form processing is handled automatically. If there is
 insufficient room on the current page for the formatted record, the page
 is advanced by writing a form feed, a special top-of-page format is used
 for the new page header, and then the record is written. The number of
 lines remaining on the current page is in the variable $–, which can be set to 0 to force a new page
 on the next write. (You may need to
 select the filehandle first.) By
 default, the name of the top-of-page format is the name of the
 filehandle with “_TOP” appended, but
 the format for a filehandle may be changed, altering the $^ variable after selecting that handle or by saying:
use IO::Handle;
HANDLE–>format_top_name("NEWNAME_TOP");
If FILEHANDLE is unspecified, output
 goes to the current default output filehandle, which starts out as
 STDOUT but may be changed by the
 single-argument form of the select
 operator. If the FILEHANDLE is an expression,
 then the expression is evaluated to determine the actual
 FILEHANDLE at runtime.
If a specified format or the
 current top-of-page format does not
 exist, an exception is raised.
The write function is
 not the opposite of read. Unfortunately. Use print for simple string output. If you looked
 up this entry because you wanted to bypass standard I/O, see syswrite.

y//

y///
The transliteration (historically, but imprecisely, also
 called translation) operator, also known as tr///. See
 Chapter 5.

Chapter 28. The Standard Perl Library

The standard Perl distribution contains much more than just the
 perl executable that runs your scripts.
 It also includes hundreds of modules filled with reusable code, which we
 call Standard Perl
 Library. Because the standard modules are available everywhere,
 if you use one of them in your program, you can run your program anywhere
 Perl is installed, without any extra installation steps.
But we should tell you that not everywhere you find perl has the Standard Perl Library. Since Perl
 comes with some many different platforms, you might run into some vendors
 who change the Perl. Some vendors augment Perl by adding extra modules or
 tools. Some might update some modules to work better with their platforms
 (and we hope they pass their patches upstream). Others, however, remove
 parts. If you find part of the Standard Library missing, complain to your
 vendor or install your own Perl.
In previous editions of this book, we listed every module in the
 Standard Library and told you a little about each one. We took that out of
 this edition, and instead we’ll show you how to do this for yourself. Chapter 29 still goes through all of the pragmas.

Library Science

Let’s review a bit of the terminology we’ve been splattering about.
 We, and the rest of the community, tend to use it loosely because the
 concepts overlap or coexist, but sometimes precision matters.
	namespace
	A namespace is a place to keep names so they won’t be confused with
 names in other namespaces. This leaves you with the simpler problem
 of not confusing the namespaces themselves. There are two ways to
 avoid confusing namespaces with one another: give them unique names,
 or give them unique locations. Perl lets you do both: named
 namespaces are called packages, and unnamed namespaces are
 called lexical
 scopes. Since lexical scopes can be no larger than a
 file, and since the standard modules are file-sized (at minimum), it
 follows that all module interfaces must make use of named namespaces
 (packages) if they’re to be used by anyone outside the file.

	package
	A package is Perl’s
 standard mechanism for declaring a named namespace.
 It’s a simple mechanism for grouping together related functions and
 variables. Just as two directories can both contain a (different)
 file named Amelia, two
 different parts of a Perl program can each have its own $Amelia variable or &Amelia function. Even though these
 variables or functions seem to have the same name as one another,
 those names reside in distinct namespaces managed by the package declaration. Package names are
 used to identify both modules and classes, as described in Chapter 11 and Chapter 12.

	library
	The term library is
 unfortunately rather overloaded in Perl culture. These
 days we normally use the term to mean the entire set of Perl modules
 installed on your system.
Historically, a Perl library was also a single file containing
 a collection of subroutines sharing some common purpose. Such a file
 often has the file extension .pl,[257] short for “perl library”. We still use that extension
 for random bits of Perl code that you pull in with do FILE or with
 require. Although it’s not a
 full-fledged module, a library file typically declares itself to be
 in a distinct package so related variables and subroutines can be
 kept together and don’t accidentally interfere with other variables
 in your program. There is no mandatory extension; others besides
 .pl sometimes occur, as
 explained later in this chapter. These simple, unstructured library
 files have been largely superseded by the concept of the
 module.

	module
	A Perl module is a
 library file that conforms to certain specific
 conventions that allow one or more files implementing that module to
 be brought in with a single use
 declaration at compile time. Module filenames must always end in
 .pm because the use declaration assumes it. The use declaration will also translate the
 package separator :: to whatever your directory separator is, so the
 directory structure in your Perl library can match your package
 structure. Chapter 11 describes how to create your
 own Perl modules.

	class
	A class is just a module that implements methods for objects
 associated with the module’s package name. If you’re interested in
 object-oriented modules, see Chapter 12.

	pragma
	A pragma is just a
 special module that twiddles Perl’s internal knobs,
 often to change how the compiler interprets something or to add
 special behavior. See Chapter 29 for the pragmas in
 the Standard Library.

	extension
	An extension is a
 Perl module that, in addition to loading a .pm file, also loads a shared library
 implementing the module’s semantics in C or C++.

	program
	A Perl program is
 code designed to be run as an independent entity. It’s
 also known as a script when
 you don’t want anyone to expect much from it, an application when it’s big and
 complicated, an executable when its caller doesn’t care what language it was
 written in, or an enterprise solution
 when it costs a fortune. Perl programs might exist as
 source code, bytecode, or native machine code. If it’s something you
 might run from the command line, we’ll call it a program.

	distribution
	A distribution
 is an archive of scripts, libraries, or modules along with a test suite,
 documentation, and installation scripts. When people talk about
 “getting a module from CPAN”, they really mean a distribution. See
 Chapter 19.

[257] Yes, people tend to use this extension for programs, too.
 We guess that’s okay if you’re into that sort of thing, or your
 operating system forces it on you to make fancy icons.

A Tour of the Perl Library

You’ll save an enormous amount of time if you make the effort to
 familiarize yourself with the Standard Library, because there’s no reason
 to reinvent those particular wheels. You should be aware, however, that
 this collection contains a wide range of material. Although some libraries
 may be extremely helpful, others might be completely irrelevant to your
 needs. For example, if you’re only writing in 100% pure Perl, those
 modules that support the dynamic loading of C and C++ extensions aren’t
 going to help you much.
Perl expects to find library modules somewhere in its library “include” path, @INC. This array specifies the ordered list of
 directories Perl searches when you load in some library code using the
 keywords do, require, or use. You can easily list out those directories
 by calling Perl with the –V switch for Very
 Verbose Version information, or with this simple code:
% perl –le "print for @INC"
/usr/local/lib/perl5/site_perl/5.14.2/darwin–2level
/usr/local/lib/perl5/site_perl/5.14.2
/usr/local/lib/perl5/5.14.2/darwin–2level
/usr/local/lib/perl5/5.14.2
.
That’s only one sample of possible output. Every installation of
 Perl uses its own paths. The important thing is that, although contents
 will vary depending upon your vendor’s and your site’s installation
 policy, you can rely upon all standard libraries being installed with
 Perl. That one is from a Perl installed manually. Another Perl on the same
 system can give a different answer.
% /usr/bin/perl –le "print for @INC"
/Library/Perl/5.12/darwin–thread–multi–2level
/Library/Perl/5.12
/Network/Library/Perl/5.12/darwin–thread–multi–2level
/Network/Library/Perl/5.12
/Library/Perl/Updates/5.12.3
/System/Library/Perl/5.12/darwin–thread–multi–2level
/System/Library/Perl/5.12
/System/Library/Perl/Extras/5.12/darwin–thread–multi–2level
/System/Library/Perl/Extras/5.12
.
This output, from Mac OS X.7, is much different and illustrates some
 different locations for modules. There’s the Standard Library under /System, but then updates go into a directory
 closer to the front of @INC. When you
 update Mac OS X, instead of overwriting the Standard Library, it puts its
 updates into a different vendor-specific directory. The modules you
 install go into the /Library, so the
 operating system updates never overwrite your changes. Unless you say
 otherwise when you install modules (see Chapter 19),
 that’s where they go.
If you look through the directories for this Perl, you might find
 the same modules but different versions, but also additional modules. Some
 vendors apply their own patches to the Standard Library. Maybe they update
 the version and maybe they don’t. If you don’t think that your Perl is
 acting like everyone else’s, you might check whether you actually have the
 same thing everyone else has.
The perldoc command’s –l reports the location of a module:
% perldoc –l MODULE
/usr/local/lib/perl5/site_perl/5.14.2/MODULE
Inside a program, the %INC variable keeps
 track of what it has already loaded and where it found it. The keys are
 the namespace translated to a file path, such as Unicode/UCD.pm, and the value is the path to
 the module. See Chapter 25 for more details.
This brings up one of the problems of module loading. Perl uses the first matching file it finds
 in @INC. It does not find the latest or
 best version if it exists later, and there isn’t a good way to make
 perl keep looking, aside from
 reimplementing the whole process in a code reference that you put at the front of @INC,[258] or creating a new library path that links to the “best”
 versions of the modules in all of the other directories. Those are clunky
 and take a lot of care and feeding. For instance, if someone sets PERL5LIB, should you choose the versions that
 you find there instead of looking in later directories?

[258] The inc::latest module
 provides a code reference that does this.

Roll Call

In previous editions we included a list of all modules in the
 Standard Library, but this book is already too long to devote tens of
 pages to that, especially considering that you can just look in
 perlmodlib
 to see the list for your version of Perl. If you don’t like that, you
 can make this list yourself by looking for all .pm files, then extracting the nonblank line
 after =head1 NAME:
use v5.10;

use File::Find;

my %names;
my $wanted = sub {
 return unless /\.pm\z/;
 open(my $fh, "<", $File::Find::name)
 || die "can't open $File::Find::name: $!";
 OUTER: while(<$fh>) {
 next unless /\A =head1 \s+ NAME/x;
 while(<$fh>) {
 next if /\A \s* \z/x;
 / (?<name>\S+) \s* –+ \s* (?<desc>.*) /x;
 $names{ $+{name} } = $+{desc};
 last OUTER;
 }
 }
 };

find($wanted, @INC);

for my $name (sort keys %names) {
 printf "%–25s – %s\n", $name, $names{$name};
}
With v5.14, that finds about 500 namespaces:
AnyDBM_File – provide framework for multiple DBMs
App::Cpan – easily interact with CPAN from
 – the command line
App::Prove – Implements the C<prove> command.
... many others ...
warnings – Perl pragma to control optional warnings
warnings::register – warnings import function
writemain – write the C code for perlmain.c
There’s another way to get this. The Module::CoreList module, part of the Standard Perl Library, knows what
 came with which Perl. Its corelist
 module is the interface. To find the versions it knows about, use
 the –v switch:
% corelist –v
5
5.000
5.001
5.002
...
v5.14.0
v5.14.1
With a version, –v reports all
 the modules and versions that came with that version of Perl:
% corelist –v 5.14.1

The following modules were in perl 5.14.1 CORE
AnyDBM_File 1.00
App::Cpan 1.5701
App::Prove 3.23
...many more...
version 0.88
vmsish 1.02
warnings 1.12
warnings::register 1.02
It can also report a module’s history with the –a switch:
% corelist –a Archive::Extract
Archive::Extract was first released with perl v5.9.5
 v5.9.5 0.22_01
 v5.10.0 0.24
 v5.10.1 0.34
 ...
 v5.14.0 0.48
 v5.14.1 0.48
If you want to know the earliest Perl version that contains that
 module, don’t use any switch:
% corelist Module::CoreList
Module::CoreList was first released with perl v5.8.9
The –d switch reports the
 earliest version of Perl to include the module. For example, Module::CoreList didn’t join the Standard Perl
 Library until v5.9.2:
% corelist –d Module::CoreList
Module::CoreList was first released with perl v5.9.2
The –d stands for “date”, so
 don’t be confused. Perl v5.9.2 was released temporally before v5.8.9,
 which is why the results seem odd.

The Future of the Standard Perl Library

Two schools of thought are battling for the future of the Standard Perl
 Library. One school would like to have as much as possible in the
 Standard Perl Library, so they can create applications using the modules
 they like and be able to distribute them easily without requiring people
 to install additional modules. The other school wants a minimal
 distribution with just the right number of modules to allow the later
 installation from CPAN of additional modules.
Each school has merit. A bigger Library benefits users. They don’t
 have to bother their system administrators and lawyers to allow them to
 install additional modules once they have Perl. A smaller library makes
 it easier for the Perl 5 Porters, who have less of a distraction
 handling modules and can spend more time working on other tasks.
Some modules are dual-lived, meaning they have two tracks of development. One is in the
 Perl repository itself and the other is on CPAN. This allows the modules
 to patch problems more quickly than the Perl release cycle. When it’s
 time for a new release of Perl, the maintainers merge the changes from
 the CPAN version into the Perl sources. Sometimes the version in the
 Perl repository gets fixed first. In that case, the CPAN developers
 merge the changes at their leisure.
For many years, this process was cumbersome because the layout of
 the CPAN version and the Standard Library version was very different,
 making the merge a tedious, hard-to-automate process. Besides patching
 the modules, the maintainers had to merge the tests into the rest of the
 Perl test suite, place ancillary files in the right places, and so on.
 It wasn’t a task that anyone looked forward to. The trend now is to put
 the CPAN distribution completely in its own directory in the perl repository to make it easy to drop in the
 changes to a module—and that may be completely done by the time you read
 this book. Maintaining dual-lived modules has improved greatly over the
 past few years. This makes it easy for vendors to include additional
 modules in their customized distribution of Perl.

Wandering the Stacks

If you look through the directories in @INC
 and their subdirectories, you’ll find several different kinds of files
 installed. Most have names ending in .pm, but some end in .pl, .ph, .al, or .so. The ones that most interest you are the
 first set, because a suffix of .pm
 indicates that the file is a proper Perl module. More on those in a
 minute.
The few files you see there ending in .pl are
 those old Perl libraries we mentioned earlier. They are included for
 compatibility with ancient releases of Perl from the ’80s and early
 ’90s. Because of this, Perl code that worked back in, say, 1990 should
 continue to behave properly without any fuss, even if you have a modern
 version of Perl installed. When writing new code that makes use of the
 standard Perl library, you should always elect to use the .pm version over
 any .pl, where possible. That’s
 because modules don’t pollute your namespace the way many of the old
 .pl files do. As Perl has evolved,
 though, the Perl 5 Porters have been removing some of those files,
 either delegating those tasks to modules or making you go to CPAN to get
 them.
One note on the use of the .pl extension: it means Perl library, not
 Perl program. Although .pl is
 sometimes used to identify Perl programs on web servers that need to
 distinguish executable programs from static content in the same
 directory or by some systems to associate a file with a program to open
 it, we suggest that you use a suffix of .plx instead to
 indicate an executable Perl program. (Similar advice holds for operating
 systems that choose interpreters based on filename extensions.) Or don’t
 use an extension at all since perl
 doesn’t care what you call it. It will happily run hello.rb as long as the text in it is a Perl
 program.[259]
Files with extensions of .al are small pieces
 of larger modules that will be automatically loaded when you use their
 parent .pm file. If you build your
 module layout using the standard h2xs
 tool (see Chapter 19) that comes with Perl (and if you
 haven’t used Perl’s –A flag), the
 make install procedure will use the
 AutoLoader module (hence the a
 and the l) to create these little
 .al files for you.
The .ph files were made by the standard h2ph program, a somewhat aging but still
 occasionally necessary tool that does its best to translate C
 preprocessor directives into Perl. The resulting .ph files contain constants sometimes needed
 by low-level functions like ioctl,
 fcntl, or syscall. (Nowadays most of these values are
 more conveniently and portably available in standard modules such as the
 POSIX, Errno, Fcntl, or Socket modules.) See perlinstall
 for how to install these optional but sometimes important
 components.
One last file extension you might encounter while poking around is
 .so (or whatever your system uses
 for shared libraries). These .so files are
 platform-dependent portions of extension modules. Originally written in
 C or C++, these modules have been compiled into dynamically relocatable
 object code. The end user doesn’t need to be aware of their existence,
 however, because the module interface hides them. When the user code
 says require Module or use Module, Perl loads Module.pm and executes it, which lets the
 module pull in any other necessary pieces, such as Module.so or any autoloaded .al components. In fact, the module could
 load anything it jolly well pleases, including 582 other modules, and
 all of those modules could load another 582 modules each. It could
 download all of CPAN if it felt like it, and maybe the last two years of
 freshmeat.net archives.
A module is not just a static chunk of code in Perl. It’s an
 active agent that figures out how to implement an interface on your
 behalf. It may follow all the standard conventions, or it may not. It’s
 allowed to do anything to warp the meaning of the rest of your program,
 up to and including translating the rest of your program into SPITBOL.
 This sort of chicanery is considered perfectly fair as long as it’s well
 documented. When you use such a Perl module, you’re agreeing to
 its contract, not a standard contract written by
 Perl.
So you’d best read the fine print.

[259] One of the goals of the Parrot interpreter is to be able to
 load and run a hello.rb—even if
 it contains Ruby code.

Chapter 29. Pragmatic Modules

A pragma is a special kind of module that affects the compilation phase of
 your program. Some pragmatic modules (or pragmata, for short [or pragmas, for shorter]) may also affect the
 execution phase of your program. Think of these as hints to the compiler.
 Because they need to be seen at compile time, they’ll work only when invoked
 by a use or a no, because by the time a require or a do
 runs, compilation is long since over.
By convention, pragma names are written all in lowercase, because
 lowercase module names are reserved for the Perl distribution itself. When
 writing your own modules, use at least one upper‐ or titlecase character in
 the module name to avoid conflict with pragma names.
Unlike regular modules, most pragmas limit their effects to the rest
 of the innermost enclosing block from which they were invoked. In other
 words, they’re lexically scoped, just like my variables. Ordinarily, the lexical scope of an
 outer block covers any inner block embedded within it, but an inner block
 may countermand a lexically scoped pragma from an outer block by using the
 no statement:
use strict;
use integer;
{
 no strict "refs"; # allow symbolic references
 no integer; # resume floating–point arithmetic
 #
}
More so than the other modules Perl ships with, the pragmas form an
 integral and essential part of the Perl compilation environment. It’s hard
 to use the compiler well if you don’t know how to pass hints to it, so we’ll
 put some extra effort into describing pragmas.
Another thing to be aware of is that we often use pragmas to prototype
 features that later get implemented as “real” syntax. So in some programs
 you’ll see deprecated pragmas like use
 attrs, whose functionality is now supported directly by subroutine
 declaration syntax, or use vars, which we
 replaced with our declarations. We’re not
 in a terrible hurry to break the old ways of doing things, but we do think
 the new ways are nicer to look at.
Finally, at the end of this chapter, we’ll show how to create your own
 pragmas that act just like those that come with Perl.

attributes

sub afunc : method;
my $closure = sub : method { ... };

use attributes;
@attrlist = attributes::get(\&afunc);
The attributes pragma has two purposes. The first is to provide an internal
 mechanism for declaring attribute
 lists, which are optional properties associated with
 subroutine declarations and (someday soon) variable declarations. (Since
 it’s an internal mechanism, you don’t generally use this pragma directly.)
 The second purpose is to provide a way to retrieve those attribute lists
 at runtime using the attributes::get
 function call. In this capacity, attributes is just a standard module, not a
 pragma.
Only a few built-in attributes are currently handled by Perl.
 Package-specific attributes are allowed by an experimental extension
 mechanism described in the section “Package-specific Attribute Handling”
 of the attributes(3) manpage.
Attribute setting occurs at compile time; attempting to set an
 unrecognized attribute is a compilation error. (The error is trappable by
 eval, but it still stops the
 compilation within that eval
 block.)
Only three built-in attributes for subroutines are currently
 implemented: locked, method, and lvalue. See Chapter 7 for
 further discussion of these. There are currently no built-in attributes
 for variables as there are for subroutines, but we can think of several we
 might like, such as constant.
The attributes pragma provides
 two subroutines for general use. They may be imported if you ask for
 them.
	get
	This function returns a (possibly empty) list of attributes given a
 single input parameter that’s a reference to a subroutine or
 variable. The function raises an exception by invoking Carp::croak if passed invalid
 arguments.

	reftype
	This function acts somewhat like the built-in ref function, but it always returns the
 underlying, built-in Perl data type of the referenced value,
 ignoring any package into which it might have been blessed.

Precise details of attribute handling remain in flux, so you’d best
 check out the online documentation included with your Perl release to see
 what state it’s all in.

autodie

use autodie;
This pragma turns failures of Perl function calls into fatal
 errors, but only in its lexical scope. It replaces the standard Perl
 functions that return false on failure with versions that throw exceptions
 on failure. The exception message in $@
 lets you know which sort you encountered:
eval {
 use autodie;
 open my $fh, "<:encoding(UTF–8)", $filename;
 my @lines = <$fh>;
 close $fh;
}

for ($@) {
 when (undef) { }
 when ("open") { say "Open failed"; }
 when (":io") { say "Some other IO error"; }
 when (":all") { say "Some other autodie error" }
 default { say "Non–autodie error" }
 }
The pragma can replace related sets of functions, too, such as just
 the ones that deal with input and output:
use autodie qw(:io);
If you don’t want this feature for an inner scope, turn it
 off:
no autodie;

autouse

use autouse "Carp" => qw(carp croak);
carp "this carp was predeclared and autoused";
This pragma provides a mechanism for runtime demand loading of a
 particular module only when a function from that module really gets
 called. It does this by providing a stub function that replaces itself
 with the real call once triggered. This is similar in spirit to the way
 the standard AutoLoader and SelfLoader modules behave. In short, it’s a performance hack to help
 make your Perl program start up faster (on average) by avoiding
 compilation of modules that might never ever be called during a given
 execution run.
How autouse behaves depends on
 whether the module is already loaded. For example, if the module Module is already loaded, then the
 declaration:
use autouse "Module" => qw(func1 func2($;$) Module::func3);
is equivalent to the simple import of two functions:
use Module qw(func1 func2);
This assumes that Module defines
 func2 with prototype ($;$), and that func1 and func3 have no prototypes. (More generally, this
 also assumes that Module uses Exporter’s standard import
 method; otherwise, a fatal error is raised.) In any event, it completely
 ignores Module::func3 since that is
 presumably already declared.
If, on the other hand, Module has
 not yet been loaded when the autouse
 pragma is parsed, the pragma declares functions func1 and func2 to be in the current package. It also
 declares a function Module::func3
 (which could be construed as mildly antisocial, were it not for the fact
 that the nonexistence of the Module
 module has even more antisocial consequences). When these functions are
 called, they make sure the Module in
 question is loaded and then replace themselves with calls to the real
 functions just loaded.
Because the autouse pragma moves
 portions of your program’s execution from compile time to runtime, this
 can have unpleasant ramifications. For example, if the module you autouse has some initialization that is expected
 to be done early, this may not happen early enough. Autousing can also
 hide bugs in your code when important checks are moved from compile time
 to runtime.
In particular, if the prototype you’ve specified on autouse line is wrong, you will not find out
 about it until the corresponding function is executed (which may be months
 or years later for a rarely called function). To partially alleviate this
 problem, you could write your code like this during code
 development:
use Chase;
use autouse Chase => qw[hue($) cry(&$)];
cry "this cry was predeclared and autoused";
The first line ensures that errors in your argument specification
 will be found early. When your program graduates from development into
 production mode, you can comment out the regular loading of the Chase module and leave
 just the autousing call in place. That way you get safety during
 development and performance during production.

base

use base qw(Mother Father);
This pragma lets a programmer conveniently declare a derived class based
 on the listed parent classes. This pragma has mostly fallen out of favor,
 and most people prefer to use the parent pragma.
The declaration above is roughly equivalent to:
BEGIN {
 require Mother;
 require Father;
 push @ISA, qw(Mother Father);
}
The base pragma takes care of any
 require needed. When the strict "vars" pragma is in scope, use base lets you (in effect) assign to @ISA without first having to declare our @ISA. (Since the base pragma happens at compile time, it’s best
 to avoid diddling @ISA on your own at
 runtime.)
But beyond this, base has another
 property. If any named base class use fields facility under fields (mentioned later in this chapter), then the pragma
 initializes the package’s special field attributes from the base class.
 (Multiple inheritance of field classes is not
 supported. The base pragma raises an
 exception if more than one named base class has fields.)
Any base class not yet loaded will be loaded automatically via
 require. However, whether to require a base class package is determined not
 by the customary inspection of %INC,
 but by the absence of a global $VERSION
 in the base package. This hack keeps Perl from repeatedly trying (and
 failing) to load a base class that isn’t in its own requirable file
 (because, for example, it’s loaded as part of some other module’s file).
 If $VERSION is not detected after
 successfully loading a file, base will
 define $VERSION in the base package,
 setting it to the string "–1, defined by
 base.pm". This string might change in later versions of the
 pragma.

bigint

use bigint;
This pragma bypasses the architecture-dependent treatment of
 integer operations to work with very large numbers, as well as handling
 the special value NaN (for not a
 number):
use bigint;
say 2 ** 512;
This pragma works by overloading the numeric operators to use
 Math::BigInt to compute values. As such, it can be considerably slower
 than built-in operations. Still, slow right answers are always better than
 fast wrong ones.
You can load different implementing libraries, which may vary in
 performance. By default, bigint uses a
 pure Perl implementation, but you can load a faster library if you have
 it:
use bigint lib => 'GMP';
You can set the accuracy, which determines the number of significant
 digits in the answer:
use bigint a => 2;
Or, you can set the precision, which specifies the magnitude of the
 answer. A precision less than 0 is ignored:
use bigint p => –2; # to the hundredths place (ignored)
use bigint p => 1; # rounded to 10

bignum

use bignum;
This pragma bypasses the architecture-dependent treatment of
 numeric operations to work with very large numbers (or numbers with more
 decimal places), as well as handling the special value NaN (for not a number):
use bignum;
say sqrt(2);
This pragma works by overloading the numeric operators to use Math::BigInt and Math::BigFloat to compute values. See bigint.

bigrat

use bigrat;
This pragma bypasses the architecture-dependent treatment of
 numeric operations to work with rational numbers (that is, fractions) and
 keep them as rational numbers so you lose no precision (at least until you
 are ready for that):
use bigrat;
say 1/2 + 1/3; # 5/6
This pragma works by overloading the numeric operators to use
 Math::BigInt and Math::BigRat to compute values. See bigint.

blib

From the command line:
% perl –Mblib program [args...]
% perl –Mblib=DIR program [args...]
From your Perl program:
use blib;
use blib DIR;
This pragma is primarily intended as a way to test arbitrary Perl
 programs against an uninstalled version of a package using Perl’s –M command-line switch. It assumes your
 directory structure was produced by the standard ExtUtils::MakeMaker or Module::Build modules.
The pragma looks for a blib
 directory structure starting in the directory named
 DIR (or current directory if none was
 specified), and if it doesn’t find a blib directory there, works its way back up
 through your .. directories, scanning
 up to five levels of parent directory.

bytes

use bytes;
no bytes;
The bytes pragma disables character semantics for the rest of the
 lexical scope in which it appears. The no
 bytes pragma can be used to reverse the effect of use bytes within the current lexical
 scope.
Perl normally assumes character semantics in the presence of
 character data (that is, data from a source marked as being of a
 particular character encoding).
To understand the implications and differences between character
 semantics and byte semantics, see Chapter 6. A visit to
 Tokyo might also help.
You probably don’t want to use this pragma, and it’s likely to
 disappear in later versions of Perl. In v5.14, the bytes pragma’s documentation strongly
 discourages its use. If you have a string, treat it as a character string
 without worrying about its underlying encoding.

charnames

use charnames HOW;
print "\N{CHARNAME} is a funny character";

use charnames (); # no compile–time \N{}, just run–time functions
All forms other than use charnames
 () enable interpolation of named characters into strings and
 regexes using the \N{CHARNAME} notation:
use charnames ":full";
print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

use charnames ":short";
print "\N{greek:Sigma} is an uppercase sigma.\n";

use charnames qw(cyrillic greek);
print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

use charnames ":full", ":alias" => {
 "WRY CAT" => "CAT FACE WITH WRY SMILE",
 "AMELIA" => "DROMEDARY CAMEL",
 "s with comma" => 0x0219,
};

":loose" supported on v5.16 and later only
use charnames ":loose";
If :full is present, then
 \N{CHARNAME}
 is expanded by looking first in the list of standard Unicode character
 names. If :short is present, and
 CHARNAME has the form
 SCRIPT:CNAME, then
 CNAME is looked up as a letter in script
 SCRIPT. If :loose is present (and you are running v5.16 or
 better), it works just like :full
 except names are looked up without regard to case, whitespace, or
 underscores, just as in Unicode property names in regexes.
Used with one or more Unicode script name arguments,[260] CHARNAME is looked up as a letter
 in the given scripts, first looking in the first listed script, then the
 next one if any, and so on. For lookup of
 CHARNAME inside a given script
 SCRIPTNAME, it looks for the names:
SCRIPTNAME CAPITAL LETTER CHARNAME
SCRIPTNAME SMALL LETTER CHARNAME
SCRIPTNAME LETTER CHARNAME
If CHARNAME is entirely lowercase, the
 CAPITAL variant is ignored. Otherwise,
 the SMALL variant is ignored.
use charnames "Greek";
print "\N{Sigma} \N{sigma} \N{final sigma}\n"; # Σ σ ς

use charnames "Latin";
print "\N{DZ} \N{D with small letter z} \N{dz}\n"; # Ǳ ǲ ǳ
\N{NAME} operates
 only at compile time as a special form of string constant used inside
 double-quotish strings. NAME must be a literal;
 you cannot use variables inside the \N{NAME}. For similar
 runtime functionality, use charnames::string_vianame, described
 below.
The notation \N{U+HEXDIGITS},
 where the HEXDIGITS is a hexadecimal number,
 also inserts a Unicode character into a string, but alone of all \N{...} uses, this one doesn’t require the
 charnames pragma. The character
 inserted is the one whose codepoint (ordinal value) is equal to the hex
 number. For example, \N{U+263A} is the Unicode (white
 background, black foreground) smiley face. That notation doesn’t require
 this pragma, whereas the equivalent using character names, \N{WHITE SMILING FACE}, does.
Any string that includes a \N{CHARNAME} or
 \N{U+HEXDIGITS}
 automatically has Unicode semantics, even if you haven’t used the Unicode
 strings feature.
For the C0 and C1 control characters (U+0000..U+001F,
 U+0080..U+009F) there are no official Unicode names, but you can instead
 use the ISO 6429 names: line feed,
 escape, and so forth, and their
 abbreviations, LF, ESC, etc. See the charnames
 manpage for other commonly used aliases.
If the input name is unknown, \N{NAME} raises a
 warning and substitutes the Unicode replacement
 character (U+FFFD).
For \N{NAME}, it is a
 fatal error if the bytes is in effect and the input name is that of a character that
 won’t fit into a byte (that is, whose ordinal is above 255).

[260] You can find the current list of scripts recognized by Unicode
 in the perluniprops
 manpage.

Custom Character Names

You can create custom character names to allow for more convenient
 typing or to give names to codepoints Unicode hasn’t assigned a name to.
 Aliases are added either using anonymous hashes:
use charnames ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 "APPLE LOGO" => 0xF8FF, # private–use codepoint
};
my $str = "\N{APPLE LOGO}";
or using a file containing a list of key/value pairs:
use charnames ":alias" => "pro"; # look in unicore/pro_alias.pl
The specified file should be under a unicore/ subdirectory somewhere in the
 @INC path, and it should be named
 using a trailing _alias.pl at the
 end. So, for example, the file looked for above will be unicore/pro_alias.pl. This file should return
 a list in plain Perl:
(
 A_grave => "LATIN CAPITAL LETTER A WITH GRAVE",
 A_circ => "LATIN CAPITAL LETTER A WITH CIRCUMFLEX",
 A_diaer => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_dier => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_uml => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_tilde => "LATIN CAPITAL LETTER A WITH TILDE",
 A_macron => "LATIN CAPITAL LETTER A WITH MACRON",
);
Both these methods insert :full
 automatically as the first argument if no other argument is given; you
 can also give the :full
 explicitly:
use charnames ":full", ":alias" => "pro";
Even private-use characters can gain names. For example,
 after:
use charnames ":full", ":alias" => {
 "TENGWAR LETTER TINCO" => 0xE000,
 "TENGWAR LETTER PARMA" => 0xE001,
 "TENGWAR LETTER CALMA" => 0xE002,
 "TENGWAR LETTER QUESSE" => 0xE003,
 "TENGWAR LETTER ANDO" => 0xE004,
 ...
}
then string and regex constants in that lexical scope can refer to
 those named characters:
if (/\N{TENGWAR LETTER TINCO}/) { ... }

Runtime Lookups

This pragma also provides three functions for converting between
 character names and numbers at runtime, rather than at compile time the
 way \N{CHARNAME}
 interpolation works. These are:
	charnames::vianame
	Takes an official name, official alias, or custom alias and
 returns a single integer codepoint. For example, it converts the
 string "LATIN SMALL LETTER A"
 into 0x61.

	charnames::string_vianame
	Takes a string that can be an official name, an official alias, or
 a named sequence and gives back a string. For example, this
 converts "LATIN SMALL LETTER A"
 into "a". Because of named
 sequences, the string returned may (rarely) be longer than length
 1.

	charnames::viacode
	Takes an integer and returns the official alias if there is one, and
 the official name if there is not. For example, this converts 0x61
 into the string "LATIN SMALL LETTER
 A". Will return custom names only if no official name
 exists, such as for private-use area codepoints.

These functions are not exported, so you must fully qualify them
 to use them. They also provide runtime access to any custom aliases you
 may have created. This shows how each works:
use v5.14;
use warnings;
use warnings FATAL => "utf8";
use open qw(:std :utf8);

use charnames ":full", ":alias" => {
 ecute => "LATIN SMALL LETTER E WITH ACUTE",
 "APPLE LOGO" => 0xF8FF, # private use character
};

printf "U+%04X is named '%s'.\n", 0xE9 => charnames::viacode(0xE9);
printf "%s is code U+%04X.\n", ecute => charnames::vianame("ecute");
printf "%s is string '%s'.\n", ecute => charnames::string_vianame("ecute");

printf "U+%04X is named '%s'.\n", 0xF8FF => charnames::viacode(0xF8FF);
printf "%s is code U+%04X.\n", "APPLE LOGO" => charnames::vianame("APPLE LOGO");
printf "%s is string '%s'.\n", "APPLE LOGO" => charnames::string_vianame("APPLE LOGO");
Here’s the output it produces:
U+00E9 is named 'LATIN SMALL LETTER E WITH ACUTE'.
ecute is code U+00E9.
ecute is string 'é'.

U+F8FF is named 'APPLE LOGO'.
APPLE LOGO is code U+F8FF.
APPLE LOGO is string '[image:]'.
You can even write your own module that works like the charnames pragma but defines character names
 differently. However, the interface to that is still experimental, so
 see the manpage for the latest.

constant

use constant BUFFER_SIZE => 4096;
use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;
use constant PI => 4 * atan2 1, 1;
use constant DEBUGGING => 0;
use constant ORACLE => 'oracle@cs.indiana.edu';
use constant USERNAME => scalar getpwuid($<);
use constant USERINFO => getpwuid($<);

use constant {
 BUFFER_SIZE => 4096,
 ONE_YEAR => 365.2425 * 24 * 60 * 60,
 PI => 4 * atan2(1, 1),
 DEBUGGING => 0,
 ORACLE => 'oracle@cs.indiana.edu',
 USERNAME => scalar getpwuid($<),
 USERINFO => getpwuid($<),
};

sub deg2rad { PI * $_[0] / 180 }

print "This line does nothing" unless DEBUGGING;

references can be declared constant
use constant CHASH => { foo => 42 };
use constant CARRAY => [1,2,3,4];
use constant CCODE => sub { "bite $_[0]\n" };

print CHASH–>{foo};
print CARRAY–>[$i];
print CCODE–>("me");
print CHASH–>[10]; # compile–time error
This pragma declares the named symbol to be an immutable
 constant[261] with the given scalar or list value. Values are evaluated in
 list context. You may override this with scalar as we did above. Giving it a hash
 reference declares many constants at once with only one use statement.
Since these constants don’t have a $ on the front, you can’t interpolate them
 directly into double-quotish strings, although you may do so
 indirectly:
print "The value of PI is @{[PI]}.\n";
Because list constants are returned as lists, not as arrays, you
 must subscript a list-valued constant using extra parentheses as you would
 any other list expression:
$homedir = USERINFO[7]; # WRONG
$homedir = (USERINFO)[7]; # ok
Although using all capital letters (plus underscores between words)
 for constants is generally recommended to help them stand out and to avoid
 potential collisions with other keywords and subroutine names, this is
 merely a convention. Constant names must begin with an alphabetic
 character or an underscore, but (if alphabetic) it need not be an upper-
 or titlecase one.
Constants are not private to the lexical scope in which they occur.
 Instead, they are simply argumentless subroutines in the symbol table of
 the package issuing the declaration. You may refer to a constant
 CONST from package Other as Other::CONST. Read
 more about compile-time inlining of such subroutines in the section Inlining Constant Functions in Chapter 7.
As with all use directives,
 use constant happens at compile time.
 It’s therefore misleading at best to place a constant declaration inside a
 conditional statement, such as if ($foo) { use
 constant ... }. Since this happens at compile time, Perl can
 replace constant expressions with their value as it runs into them.
Omitting the value for a symbol gives it the value of undef in scalar context or the empty list,
 (), in list context. But it is probably
 best to declare these explicitly:
use constant CAMELIDS => ();
use constant CAMEL_HOME => undef;

[261] Implemented as a subroutine taking no arguments and returning
 the same constant each time.

Restrictions on constant

List constants are not currently inlined the way scalar constants
 are. And it is not possible to have a subroutine or keyword with the
 same name as a constant. This is probably a Good Thing.
You cannot declare more than one named constant at a time as a
 list:
use constant FOO => 4, BAR => 5; # WRONG
That defines a constant named FOO whose return list is (4, "BAR", 5). You need this instead:
use constant FOO => 4
use constant BAR => 5;
or even:
use constant {
 FOO => 4,
 BAR => 5,
};
You can get yourself into trouble if you use a constant in a
 context that automatically quotes bare names. (This is true for any
 subroutine call, not just constants.) For example, you can’t say
 $hash{CONSTANT} because CONSTANT
 will be interpreted as a string. Use $hash{CONSTANT()} or $hash{+CONSTANT} to prevent the quoting mechanism from
 kicking in. Similarly, since the => operator quotes its left operand if that
 operand is a bare name, you must say CONSTANT() => "value" instead of
 CONSTANT=>
 "value" .

deprecate

use deprecate;
Core modules that have been marked for removal from the Standard
 Library use this pragma to issue a warning that you should use the CPAN
 version instead. If your module is not in the Standard Library, this
 pragma does nothing.

diagnostics

use diagnostics; # compile–time enable
use diagnostics –verbose;

enable diagnostics; # runtime enable
disable diagnostics; # runtime disable
This pragma expands the normal terse diagnostics and suppresses
 duplicate warnings. It augments the short versions with the more
 explicative and endearing descriptions found in perldiag.
 Like other pragmas, it also affects the compilation phase of your program,
 not just the run phase.
When you use diagnostics at the
 start of your program, this automatically enables Perl’s –w command-line switch by setting $^W to 1. The remainder of your whole
 compilation will then be subject to enhanced diagnostics. These still go
 out on STDERR.
Because of the interaction between runtime and compile-time issues,
 and because it’s probably not a good idea anyway, you may not use no diagnostics to turn them off at compile time.
 However, you may control their behavior at runtime using the disable and enable methods. (Make sure you do the use first or else you won’t be able to get at
 the methods.)
The –verbose flag first prints
 out the perldiag
 manpage’s introduction before any other diagnostics are issued. The
 $diagnostics::PRETTY variable can be
 set (before the use) to generate nicer
 escape sequences for pagers like less(1) or
 more(1):
BEGIN { $diagnostics::PRETTY = 1 }
use diagnostics;
Warnings dispatched from Perl and detected by this pragma are each
 displayed only once. This is useful when you’re caught in a loop that’s
 generating the same warning (like uninitialized value) over and over
 again. Manually generated warnings, such as those stemming from calls to
 warn or carp, are unaffected by this duplicate detection
 mechanism.
Here are some examples of using the diagnostics pragma. The following file is
 certain to trigger a few errors at both runtime and compile time:
use diagnostics;
print NOWHERE "nothing\n";
print STDERR "\n\tThis message should be unadorned.\n";
warn "\tThis is a user warning";
print "\nDIAGNOSTIC TESTER: Please enter a<CR> here: ";
my $a, $b = scalar <STDIN>;
print "\n";
print $x/$y;
Here’s the output:
Parentheses missing around "my" list at diag.pl line 6 (#1)
 (W parenthesis) You said something like

 my $foo, $bar = @_;

 when you meant

 my ($foo, $bar) = @_;

 Remember that "my", "our", "local" and "state" bind
 tighter than comma.

Name "main::y" used only once: possible typo at diag.pl line 8 (#2)
 (W once) Typographical errors often show up as unique variable names.
 If you had a good reason for having a unique name, then just mention
 it again somehow to suppress the message. The our declaration is
 provided for this purpose.

 NOTE: This warning detects symbols that have been used only once so
 $c, @c, %c, *c, &c, sub c{}, c(), and c (the filehandle or format)
 are considered the same; if a program uses $c only once but also uses
 any of the others it will not trigger this warning.

Name "main::b" used only once: possible typo at diag.pl line 6 (#2)
Name "main::NOWHERE" used only once: possible typo at diag.pl line 2 (#2)
Name "main::x" used only once: possible typo at diag.pl line 8 (#2)

print() on unopened filehandle NOWHERE at diag.pl line 2 (#3)
 (W unopened) An I/O operation was attempted on a filehandle that was
 never initialized. You need to do an open(), a sysopen(), or a socket()
 call, or call a constructor from the FileHandle package.

 This message should be unadorned.
 This is a user warning at diag.pl line 4.

DIAGNOSTIC TESTER: Please enter a<CR> here:

Use of uninitialized value $y in division (/) at diag.pl line 8, <STDIN>
 line 1 (#4) (W uninitialized) An undefined value was used as if it
 were already defined. It was interpreted as a "" or a 0, but maybe
 it was a mistake. To suppress this warning assign a defined value to
 your variables.

 To help you figure out what was undefined, perl will try to tell you
 the name of the variable (if any) that was undefined. In some cases
 it cannot do this, so it also tells you what operation you used the
 undefined value in. Note, however, that perl optimizes your program
 and the operation displayed in the warning may not necessarily appear
 literally in your program. For example, "that $foo" is usually
 optimized into "that ". $foo, and the warning will refer to the
 concatenation (.) operator, even though there is no . in your program.

Use of uninitialized value $x in division (/) at diag.pl line 8,
 <STDIN> line 1 (#4)

Illegal division by zero at diag.pl line 8, <STDIN> line 1 (#5)
 (F) You tried to divide a number by 0. Either something was wrong in
 your logic, or you need to put a conditional in to guard against
 meaningless input.

Uncaught exception from user code:
 Illegal division by zero at diag.pl line 8, <STDIN> line 1.
 at diag.pl line 8
Diagnostic messages
 come from the perldiag
 manpage. If an extant $SIG{_ _WARN_ _} handler is discovered, this will
 still be honored, but only after the diagnostics::splainthis function (the pragma’s $SIG{_ _WARN_ _} interceptor) has had its way
 with your warnings. Perl does not currently support stacked handlers, so
 this is the best we can do for now. There is a $diagnostics::DEBUG variable you may set if
 you’re desperately curious about what sorts of things are being intercepted:
BEGIN { $diagnostics::DEBUG = 1 }
use diagnostics;

encoding

use encoding ENCODING;
use encoding "euc–jp";
This pragma was supposed to let you write Perl source in any
 ENCODING that you like and have Perl convert
 your character strings correctly as well as to convert standard output and
 error to the specified encoding. However, it has never worked correctly
 and probably never can. Instead, convert your source code from whatever
 legacy encoding you were using into UTF-8, and put a use utf8 declaration at the top of the file. Set
 your standard I/O streams using the open pragma or with binmode.

feature

use feature ":5.10"; # this is a "feature bundle"
use feature qw(say state switch unicode_strings);

{
 no feature qw(say);
 ...;
}
Perl future-proofs itself by introducing new keywords and
 features through the feature pragma.
 This pragma enables or disables features in the lexical scope. Specify the
 ones you want to turn on or off either by a version tag or the feature
 name.
	say
	Enables the say keyword, which is like print but with a free newline.

	state
	Enables state, which
 allows persistent subroutine variables.

	switch
	Enables Perl’s super-charged switch structure, called given–when.

	unicode_strings
	This feature isn’t a keyword. Instead, it causes all string operations within the lexical
 scope to use Unicode semantics. This also applies to regexes
 compiled within the scope, even if they should eventually be
 executed outside of it. See “The Unicode Bug” in perlunicode.
 This feature is the only one not in the :v5.10 bundle, although it is in the
 :v5.12 and later bundles.

fields

This pragma was deprecated in v5.10, so we’re not going to
 encourage you to use it by telling you much about it. It was designed as a
 way to declare class fields that would be type checked at compile time. To
 do this, it relied on the (since-removed) pseudohash feature. If you’re
 stuck with fields in your legacy code,
 you can still read about it in its own documentation, which is still in
 v5.14 (at least).

filetest

$can_perhaps_read = –r "file"; # use the mode bits
{
 use filetest "access"; # intuit harder
 $can_really_read = –r "file";
}
$can_perhaps_read = –r "file"; # use the mode bits again
This lexically scoped pragma tells the compiler to change the
 behavior of the unary file test operators –r, –w,
 –x, –R, –W, and
 –X, documented in Chapter 3. The default behavior for these file tests is to use
 the mode bits returned by the stat
 family of calls. However, this may not always be the right thing to do,
 such as when a filesystem understands ACLs (access control lists). In
 environments such as AFS where this matters, the filetest pragma may help the permission
 operators to return results more consistent with other tools.
There may be a slight performance decrease in the affected file test
 operators under filetest, since on some
 systems the extended functionality needs to be emulated.
Warning: any notion of using file tests for security purposes is a
 lost cause from the start. There is a window open for race conditions,
 because there’s no way to guarantee that the permissions will not change
 between the test and the real operation. If you are the least bit serious
 about security, you won’t use file test operators to decide whether
 something will work. Instead, just go ahead and try
 the real operation, then test for whether that operation succeeded. (You
 should be doing that anyway.) See the section Handling Timing Glitches in Chapter 20.

if

use if CONDITION, MODULE => IMPORTS;

use if $^O =~ /MSWin/, "Win32::File";

use if $^V >= 5.010, parent => qw(Mojolicious::UserAgent);
use if $^V < 5.010, base => qw(LWP::UserAgent);
The if pragma controls the loading of a module based on some
 condition. This pragma doesn’t handle loading modules with a minimum
 version. Specify an import list after the module name.

inc::latest

use inc::latest "Module::Build";
Some module authors started distributing their dependencies
 inside their distributions in an inc directory. They wanted to use a particular
 version of Module::Build, for instance, so they’d install that module in inc in their distribution and prefer it to any
 installed version. Before the Perl tool chain understood configure_requires, this was a hack to start the
 build process with modules within the distribution.
The inc::latest module tells perl
 to load a version in inc, but only if
 its version is greater than the one installed in the rest of @INC.

integer

use integer;
$x = 10/3;
$x is now 3, not 3.33333333333333333
This lexically scoped pragma tells the compiler to use integer
 operations from here through the end of the enclosing block. On many
 machines, this doesn’t matter a great deal for most computations, but on
 those few remaining architectures without floating-point hardware, it can
 amount to a dramatic performance difference.
Note that this pragma affects certain numeric operations, not the
 numbers themselves. For example, if you run this code:
use integer;
$x = 1.8;
$y = $x + 1;
$z = –1.8;
you’ll be left with $x == 1.8,
 $y == 2, and $z == –1. The $z case happens because unary – counts as an operation, so the value 1.8 is truncated to 1 before its sign bit is flipped. Likewise,
 functions that expect floating-point numbers, such as sqrt or the trig functions, still receive and
 return floats even under use integer.
 So sqrt(1.44) is 1.2, but 0 +
 sqrt(1.44) is now just 1.
Native integer arithmetic as provided by your C compiler is used.
 This means that Perl’s own semantics for arithmetic operations might not
 be preserved. One common source of trouble is the modulus of negative
 numbers. Perl may do it one way, but your hardware may do it
 another:
% perl –le "print (4 % –3)"
–2

% perl –Minteger –le "print (4 % –3)"
1
Additionally, integer arithmetic causes the bit operators to treat
 their operands as signed values instead of unsigned values:
% perl –le "print ~0"
18446744073709551615

% perl –Minteger –le "print ~0"
–1

less

use less;

use less "CPU";
use less "memory";
use less "time";
use less "disk";
use less "fat"; # great with "use locale";
Implemented in v5.10 and later, this pragma is intended to someday give
 hints to the compiler, code-generator, or interpreter to enable certain
 trade-offs by using the new hints hash reference that caller now returns.
This module has always been part of the Perl distribution (as a
 joke), but it didn’t do anything until v5.10. Even then, hints are
 available only in their lexical scope, so although the pragma
 documentation makes it sound as though another module can easily find out
 what you want less of, this is still only a demonstration of the new
 caller feature.
It is not an error to ask to use less of something that Perl doesn’t
 know how to make less of right now.

lib

use lib "$ENV{HOME}/libperl"; # add ~/libperl
no lib "."; # remove cwd
This pragma simplifies the manipulation of @INC at compile time. It is typically used to
 add extra directories to Perl’s search path so that later do, require,
 and use statements will find library
 files that aren’t located in Perl’s default search path. It’s especially
 important with use, since that happens
 at compile time, too, and setting @INC
 normally (that is, at runtime) would be too late.
Parameters to use lib are
 prepended to the beginning of Perl’s search path. Saying use lib LIST is
 almost the same as saying BEGIN { unshift(@INC,
 LIST) }, but
 use lib LIST
 includes support for platform-specific directories. For each given
 directory $dir in its argument list,
 the lib pragma also checks to see
 whether a directory named $dir/$archname/auto exists. If so, the
 $dir/$archname directory is assumed
 to be a corresponding platform-specific directory, so it is added to
 @INC (in front of $dir).
To avoid redundant additions that slow access time and waste a small
 amount of memory, trailing duplicate entries in @INC are removed when entries are added.
Normally, you should only add directories to
 @INC. If you do need to delete
 directories from @INC, take care to
 delete only those that you yourself added, or those you’re somehow certain
 aren’t needed by other modules in your program. Other modules may have
 added directories to your @INC that
 they need for correct operation.
The no lib pragma deletes all
 instances of each named directory from @INC. It also deletes any corresponding
 platform-specific directory as described earlier.
When the lib pragma is loaded, it
 saves the current value of @INC to the
 array @lib::ORIG_INC. So to restore the
 original, just copy that array to the real @INC.
Even though @INC typically
 includes dot (.), the current
 directory, this really isn’t as useful as you’d think. For one thing, the
 dot entry comes at the end, not the start, so that modules installed in
 the current directory don’t suddenly override system versions. You could
 say use lib "." if that’s what you
 really want. More annoyingly, it’s the current directory of the Perl
 process, not the directory that the script was installed into, which makes
 it completely unreliable. If you create a program plus some modules for
 that program to use, it will work while you’re developing, but it won’t
 work when you aren’t running in the directory the files live in.
One solution for this is to use the standard FindBin module:
use FindBin; # where was script installed?
use lib $FindBin::Bin; # use that dir for libs, too
The FindBin module tries to guess
 the full path to the directory in which the running process’s program was
 installed. Don’t use this for security purposes, because malicious
 programs can usually deceive it if they try hard enough. But unless you’re
 intentionally trying to break the module, it should work as intended. The
 module provides a $FindBin::Bin
 variable (which you may import) that contains the module’s guess of where
 the program was installed. You can then use the lib pragma to add that directory to your
 @INC, thus producing an
 executable-relative path.
Some programs expect to be installed in a bin directory and then find their library
 modules in “cousin” files installed in a lib directory at the same level as bin. For example, programs might go in
 /usr/local/apache/bin or /opt/perl/bin, and libraries go in /usr/local/apache/lib and /opt/perl/lib. This code takes care of that
 neatly:
use FindBin qw($Bin);
use lib "$Bin/../lib";
If you find yourself specifying the same use lib in several unrelated programs, you might
 consider setting the PERL5LIB
 environment variable instead. See the description of the PERL5LIB environment variable in Chapter 17.
syntax for sh, bash, ksh, or zsh
$ PERL5LIB=$HOME/perllib; export PERL5LIB

syntax for csh or tcsh
% setenv PERL5LIB ~/perllib
If you want to use optional directories on just this program without
 changing its source, look into the –I
 command-line switch:
% perl –I ~/perllib program–path args
See Chapter 17 for more about using the –I switch on the command line.

locale

@x = sort @y; # ASCII sorting order
{
 use locale;
 @x = sort @y; # Locale–defined sorting order
}
@x = sort @y; # ASCII sorting order again
This lexically scoped pragma tells the compiler to enable (or
 disable, under no locale) POSIX locales
 for built-in operations. Enabling locales tells Perl’s string comparison
 and case-related functionality to be respectful of your POSIX language environment. If this pragma is in
 effect and your C library knows about POSIX locales, Perl looks to your
 LC_CTYPE setting for regular
 expressions and to your LC_COLLATE
 setting for string comparisons like those in sort.
Since locales are more a form of nationalization than of
 internationalization, the use of locales may interact oddly with Unicode.
 It’s more portable and more reliable to use Perl’s native Unicode
 facilities for matters of casing and comparison, which are standard across
 all installations, instead of relying on possibly dodgy vendor locales.
 See the sections “Comparing and Sorting Unicode Text” and “Locale Sorting”
 in Chapter 6.

mro

use mro; # enables next::method and friends globally

use mro "dfs"; # enable DFS MRO for this class (Perl default)
use mro "c3"; # enable C3 MRO for this class
By default, Perl searches for methods with a depth-first search
 through the classes (package names) in @INC. The mro
 pragma changes that method resolution order. Specifying dfs uses the default depth-first search, while
 specifying c3 uses the C3 algorithm to
 resolve certain ambiguities in multiple inheritance. Without an import
 list, keeps the default method resolution order by enabling features that
 interact with C3 method resolution (see Chapter 12).

open

use open IN => ":crlf", OUT => ":raw";
use open OUT => ":utf8";
use open IO => ":encoding(iso–8859–7)";

use open IO => ":locale";

use open ":encoding(utf8)";
use open ":locale";
use open ":encoding(iso–8859–7)";

use open ":std";
The open pragma declares one or more default layers (formerly called
 disciplines) for I/O operations, but only if your
 Perl binary was built with PerlIO. Any open and readpipe (that is, qx// or backticks) operators found within the
 lexical scope of this pragma that do not specify their own layers will use
 the declared defaults. Neither open
 with an explicit set of layers, nor sysopen under any circumstances, is influenced
 by this pragma.
There are several layers to choose from:
	:bytes
	This layer treats the data as characters with codepoints in
 the range 0 to 255. This is the inverse of the :utf8 layer. This is not the same thing as
 :raw, though, since this still
 may do CRLF processing under Windows systems.

	:crlf
	This layer corresponds to the text mode, in which line
 endings are translated to or from the native line endings. This is a
 no-op on a platform where binmode
 is a no-op. This layer is available without PerlIO.

	:encoding(ENCODING)
	This layer specifies any encoding supported by the Encode module, directly or indirectly.

	:locale
	This layer decodes or encodes its data according to the
 locale settings.

	:raw
	This pseudolayer turns off any layer below it that would
 interpret the data as other than binary data. This is a no-op on a
 platform where binmode is a
 no-op. This layer is available without PerlIO.

	:std
	The :std layer isn’t really a layer. Importing it applies the other
 specified layers to the standard filehandles. With OUT, it sets layers on the standard output
 and error. With IN, it sets
 layers on standard input.

	:utf8
	This layer decodes or encodes its data as UTF-8, treating the
 data as character strings. The inverse of this layer is :bytes.

If you use the built-in utf8
 layer on input streams, it is very important that you be prepared to
 handle encoding errors. This is the best way:
use warnings FATAL => "utf8"; # in case there are input encoding errors
That way you take an exception if there is a problem. Recovering
 from encoding errors is possible, but challenging.

ops

perl –M–ops=system ... # disable the "system" opcode
The ops pragma disables certain opcodes, with irreversible global effect.
 The Perl interpreter always compiles Perl source into an internal
 representation of opcodes before it runs it. By default, there are no
 restrictions on which opcodes Perl will run. Disabling opcodes restricts
 what Perl will compile; any code that would use a disable opcode causes a
 compilation error. Don’t think that this provides robust security, though.
 The Opcode module has more details about opcodes. Also see the
 Safe module (Chapter 20), which might be a
 better choice for you.

overload

In the Number module:
package Number;
use overload "+" => \&myadd,
 "–" => \&mysub,
 "*=" => "multiply_by";
In your program:
use Number;
$a = Number–>new(57);
$b = $a + 5;
The built-in operators work well on strings and numbers, but make
 little sense when applied to object references (since, unlike C or C++,
 Perl doesn’t allow pointer arithmetic). The overload pragma lets you redefine the meanings
 of these built-in operations when applied to objects of your own design.
 In the previous example, the call to the pragma redefines three operations
 on Number objects:
 addition will call the Number::myadd
 function, subtraction will call the Number::mysub function, and the
 multiplicative assignment operator will call the multiply_by method in class Number (or one of its base classes). We say of
 these operators that they are now overloaded because they have additional
 meanings overlaid on them (and not because they have too many
 meanings—though that may also be the case).
For much more on overloading, see Chapter 13.

overloading

no overloading;
This is one of the few pragmas mostly used to turn something off
 instead of turning something on. On its own, it turns off all overloaded
 operations, returning them to their normal behavior for the rest of the
 lexical scope.
To disable particular overloaded operations, specify the same keys
 that overload uses:
no overloading qw(""); # no stringification overloading
To reenable overloading, do it in reverse:
use overloading; # all back on

use overloading @ops; # reenable only some of them

parent

use parent qw(Mother Father);
The parent pragma supersedes the base pragma. It loads modules and sets up inheritance
 relationships without the %FIELDS hash
 magic, and it provides a way to set up inheritance without loading
 files.
The following example is equivalent to loading both parent modules
 and adding them to @INC without
 declaring @INC explicitly:
BEGIN {
 require Mother;
 require Father;
 push @ISA, qw(Mother Father);
}
This assumes each parent module lives
 in its own file. If the parent classes do not live in separate files, perhaps because you’ve defined
 them in the same file or already loaded them from a file as part of another class, you
 can use the –norequire option
 to merely set up the inheritance relationship:
use parent qw(–norequire Mother Father);
This is equivalent to adding those classes to @ISA:
BEGIN {
 push @ISA, qw(Mother Father);
}

re

This pragma controls the use of regular expressions. It has five possible invocations:
 taint; eval and /flags mode, which are lexically scoped; and
 debug and debugcolor, which aren’t.
use re "taint";
Contents of $match are tainted if $dirty was also tainted
($match) = ($dirty =~ /^(.*)$/s);

Allow code interpolation:
use re "eval";
$pat = '(?{ $var = 1 })'; # embedded code execution
/alpha${pat}omega/; # won't fail unless under –T
 # and $pat is tainted

use re "/a"; # by default, every pattern
 # has the /a flag
use re "/msx"; # by default, every pattern
 # has the /msx flags

use re "debug"; # like "perl –Dr"
/^(.*)$/s; # output debugging info during
 # compile time and runtime

use re "debugcolor"; # same as "debug",
 # but with colored output

use re qw(Debug LIST); # fine control of debugging output
When use re "taint" is in effect
 and a tainted string is the target of a regex, the numbered regex
 variables and values returned by the m// operator in list context are all tainted.
 This is useful when regex operations on tainted data aren’t meant to
 extract safe substrings, but are meant to do other transformations
 instead. See the discussion on tainting in Chapter 20.
When use re "eval" is in effect,
 a regex is allowed to contain assertions that execute Perl code, which are
 of the form (?{ ... }), even when the
 regex contains interpolated variables. Execution of code segments
 resulting from variable interpolation into a regex is normally disallowed
 for security reasons: you don’t want programs that read patterns from
 config files, command-line arguments, or CGI form fields to suddenly start
 executing arbitrary code if they weren’t designed to expect this
 possibility. This pragma allows only untainted strings to be interpolated;
 tainted data will still raise an exception (if you’re running with taint
 checks enabled). See also Chapter 5 and Chapter 20.
For purposes of this pragma, interpolation of precompiled regular
 expressions (produced by the qr//
 operator) is not considered variable interpolation. Nevertheless, when you
 build the qr// pattern, it needs to
 have use re "eval" in effect if any of
 its interpolated strings contain code assertions. For example:
$code = '(?{ $n++ })'; # code assertion
$str = '\b\w+\b' . $code; # build string to interpolate

$line =~ /$str/; # this needs use re 'eval'

$pat = qr/$str/; # this also needs use re 'eval'
$line =~ /$pat/; # but this doesn't need use re 'eval'
The flags mode, use re "/flags",
 enables default pattern modifiers for the match, substitution, and regular
 expression quoting operators in its lexical scope. For instance, if you
 want all patterns in your file to use ASCII semantics for its character
 classes (\d, \w, and \s):
while (<>) {
 use re "/a";
 if (/\d/) { # only 0 .. 9
 print "Found an ASCII digit: $_";
 }
}
Turning on one of the pattern modifiers that affects classic and
 POSIX character classes (/adlu) overrides any settings from the locale pragma or the unicode_strings
 feature.
To turn on multiline string mode so that ^ and $ match
 near newlines, not just at the ends of the string (/m), .
 matches newline (/s), and extended
 patterns (/x), use:
use re "/msx";
Under use re "debug", Perl emits
 debugging messages when compiling and when executing regular expressions.
 The output is the same as that obtained by running a “debugging Perl” (one
 compiled with –DDEBUGGING passed to the
 C compiler) and then executing your Perl program under Perl’s –Dr command-line switch. Depending on how
 complicated your pattern is, the resulting output can be overwhelming.
 Calling use re "debugcolor" enables
 more colorful output that can be useful, provided your terminal
 understands color sequences. Set your PERL_RE_TC environment variable to a
 comma-separated list of relevant termcap(5)
 properties for highlighting. For more details, see Chapter 18.
To get more control of the debugging output, use the Debug (capital D) and a list of things to debug.
 All is equivalent to use re "debug":
{
 use re qw(Debug All); # just like "use re 'debug'"

 ...;
}
To get finer-grained control of the debugging, try other options.
 For example, the COMPILE option outputs
 only debugging statements related to pattern compilation:
{
 use re qw(Debug COMPILE); # just like 'use re "debug"'

 ...;
}
Many other options are listed in the re documentation.

sigtrap

use sigtrap;
use sigtrap qw(stack–trace old–interface–signals); # same thing

use sigtrap qw(BUS SEGV PIPE ABRT);
use sigtrap qw(die INT QUIT);
use sigtrap qw(die normal–signals);
use sigtrap qw(die untrapped normal–signals);
use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);

use sigtrap "handler" => \&my_handler, "normal–signals";
use sigtrap qw(handler my_handler normal–signals stack–trace error–signals);
The sigtrap pragma installs some simple signal handlers on your behalf
 so that you don’t have to worry about them. This is useful in situations
 where an untrapped signal would cause your program to misbehave, like when
 you have END {} blocks, object
 destructors, or other at-exit processing that needs to be run no matter
 how your program happens to terminate.
When your program dies of an uncaught signal, the program exits
 immediately without cleanup. If instead you catch and convert such signals
 into fatal exceptions, good things happen: all scopes are exited, their
 resources are relinquished, and any END blocks are processed.
The sigtrap pragma provides two
 simple signal handlers for your use. One gives a Perl stack trace, and the
 other throws an exception via die.
 Alternately, you can supply your own handler for the pragma to install.
 You may specify predefined sets of signals to trap; you can also supply
 your own explicit list of signals. The pragma can optionally install
 handlers for only those signals that have not been otherwise
 handled.
Arguments passed to use sigtrap
 are processed in order. When a user-supplied signal name or the name of
 one of sigtrap’s predefined signal
 lists is encountered, a handler is immediately installed. When an option
 is encountered, this affects only those handlers installed later in
 processing the argument list.

Signal Handlers

These options affect which handler will be used for signals
 installed later:
	stack–trace
	This pragma-supplied handler outputs a Perl stack trace to
 STDERR and then tries to dump
 core. This is the default signal handler.

	die
	This pragma-supplied handler calls die via Carp::croak with
 a message indicating the signal caught.

	handler
 YOURHANDLER
	YOURHANDLER will
 be used as the handler for signals installed later.
 YOURHANDLER can be any value valid for assignment into
 %SIG. Remember that the
 proper functioning of many C library calls (particularly
 standard I/O calls) cannot be guaranteed within a signal handler.
 Worse, it’s hard to guess which bits of C library code are called
 from which bits of Perl code. (On the other hand, many signals
 that sigtrap traps are pretty
 vile—they’re gonna take you down anyway, so there’s not much harm
 in trying to do something, now is
 there?)

Predefined Signal Lists

The sigtrap pragma has a few built-in lists of signals to trap:
	normal–signals
	These are the signals a program might normally expect to
 encounter, which, by default, cause it to terminate. They are the
 HUP, INT, PIPE, and TERM signals.

	error–signals
	These are the signals that usually reflect a serious problem
 with the Perl interpreter or with your program. They are the
 ABRT, BUS, EMT, FPE, ILL, QUIT, SEGV, SYS, and TRAP signals.

	old–interface–signals
	These are the signals that were trapped by default under an
 older version of sigtrap’s
 interface. They are ABRT,
 BUS, EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS, TERM, and TRAP. If no signals or signals lists are
 passed to use sigtrap, this
 list is used.

If your platform does not implement a particular signal named in
 the predefined lists, that signal name will be silently ignored. (The
 signal itself can’t be ignored because it doesn’t exist.)

Other Arguments to sigtrap

	untrapped
	This token suppresses the installation of handlers for
 subsequently listed signals if they’ve already been trapped or
 ignored.

	any
	This token installs handlers for all subsequently listed
 signals. This is the default behavior.

	signal
	Any argument that looks like a signal name (that is, one
 matching the pattern /^[A–Z][A–Z0–9]*$/) requests sigtrap to handle that signal.

	number
	A numeric argument that requires the version number of the
 sigtrap pragma to be at least
 number. This works just like most regular
 modules that have a $VERSION
 package variable:
% perl –Msigtrap –le 'print $sigtrap::VERSION'
1.02

Examples of sigtrap

Provide a stack trace for the old interface signals:
use sigtrap;
Same thing, but more explicitly:
use sigtrap qw(stack–trace old–interface–signals);
Provide a stack trace only on the four listed signals:
use sigtrap qw(BUS SEGV PIPE ABRT);
Die on an INT or a QUIT signal:
use sigtrap qw(die INT QUIT);
Die on any of HUP, INT, PIPE,
 or TERM:
use sigtrap qw(die normal–signals);
Die on HUP, INT, PIPE,
 or TERM—except don’t change the
 behavior for signals that have already been trapped or ignored elsewhere
 in the program:
use sigtrap qw(die untrapped normal–signals);
Die on receipt of any currently untrapped normal–signals; additionally, provide a stack
 backtrace on receipt of any of the error–signals:
use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);
Install the routine my_handler
 as the handler for the normal–signals:
use sigtrap "handler" => \&my_handler, "normal–signals";
Install my_handler as the
 handler for the normal–signals;
 provide a Perl stack backtrace on receipt of any of the error–signals:
use sigtrap qw(handler my_handler normal–signals
 stack–trace error–signals);

sort

Before v5.8, quicksort was the default algorithm for Perl’s
 built-in sort function. The
 quicksort algorithm has at its worst quadratic behavior, and it doesn’t
 necessarily preserve the order of elements that sort the same (so it’s
 unstable). Perl v5.8 changed the default to a merge
 sort, which at its worst has O(n·log
 n) behavior and preserves the order of equal elements
 (so it’s stable).
The sort pragma lets you choose
 which algorithm to use. And in case the default might someday change from
 a mergesort, you can choose a stable
 sort without picking the particular algorithm:
use sort "stable"; # guarantee stability
use sort "_quicksort"; # use a quicksort algorithm
use sort "_mergesort"; # use a mergesort algorithm
use sort "defaults"; # revert to default behavior
no sort "stable"; # stability not important

use sort "_qsort"; # alias for quicksort

my $current;
BEGIN {
 $current = sort::current(); # identify prevailing algorithm
}

strict

use strict; # Install all three strictures.

use strict "vars"; # Variables must be predeclared
use strict "refs"; # Can't use symbolic references
use strict "subs"; # Bareword strings must be quoted

use strict; # Install all...
no strict "vars"; # ...then renege on one

use v5.12; # by default with v5.12.0 or later
This lexically scoped pragma changes some basic rules about what
 Perl considers to be legal code. Sometimes these restrictions seem too
 strict for casual programming, such as when you’re just trying to whip up
 a five-line filter program. The larger your program, the stricter you need
 to be about it. If you declare a minimum version of perl with use, and that minimum version is v5.12 or later,
 you get strictures implicitly.
Currently, there are three possible things to be strict about:
 subs, vars, and refs. If no import list is supplied, all three
 restrictions are assumed.

strict “refs”

This generates a runtime error if you try to dereference a
 string instead of a reference, whether intentionally or
 otherwise.
See Chapter 8 for more about these.
use strict "refs";

$ref = \$foo; # Store "real" (hard) reference
print $$ref; # Dereferencing is ok

$ref = "foo"; # Store name of global (package) variable
print $$ref; # WRONG, runtime error under strict refs
Symbolic references are suspect for various reasons. It’s
 surprisingly easy for even well-meaning programmers to invoke them
 accidentally; strict "refs" guards
 against that. Unlike real references, symbolic references can refer only
 to package variables. They aren’t reference counted. And there’s often a
 better way to do what you’re doing: instead of referencing a symbol in a
 global symbol table, use a hash as its own mini symbol table. It’s more
 efficient, more readable, and less error prone.
Nevertheless, some sorts of valid manipulation really do require
 direct access to the package’s global symbol table of variables and
 function names. For example, you might want to examine the @EXPORT list or the @ISA superclass of a given package whose name
 you don’t know in advance. Or you might want to install a whole slew of
 function calls that are all aliases to the same closure. This is just
 what symbolic references are best at, but to use them while use strict is in effect, you must first undo
 the refs stricture:
make a bunch of attribute accessors
for my $methname (qw/name rank serno/) {
 no strict "refs";
 *$methname = sub { $_[0]–>{ _ _PACKAGE_ _ . $methname } };
}

strict “vars”

Under this stricture, a compile-time error is triggered if you
 try to access a variable that hasn’t met at least one of the following
 criteria:
	Predefined by Perl itself, such as @ARGV, %ENV, and global punctuation variables
 like $. or $_.

	Declared with our (for a
 global) or my or state (for a lexical).

	Imported from another package. (The vars pragma fakes up an import, but use our instead.)

	Fully qualified using its package name and the double-colon
 package separator.

The local operator by itself
 isn’t good enough to keep use strict
 "vars" happy because, despite its name, that operator doesn’t
 change whether the named variable is globally visible. Instead, it gives
 the variable (or individual element of an array or hash) a new,
 temporary value for the duration of the block at runtime. You still need
 to use our to declare a global
 variable, or my or state to declare a lexical variable. You can,
 however, localize an our:
local our $law = "martial";
Globals predefined by Perl are exempt from these requirements.
 This applies to program-wide globals (those forced into package main like @ARGV or $_) and to per-package variables like $a and $b,
 which are normally used by the sort
 function. Per-package variables used by modules like Exporter must still be declared using our:
our @EXPORT_OK = qw(name rank serno);

strict “subs”

This stricture makes Perl treat all barewords as syntax errors.
 A bareword (“bearword” in
 ursine dialects) is any bare name or identifier that has no other
 interpretation forced by context. (Context is often forced by a nearby
 keyword or token, or by predeclaration of the word in question.)
 Historically, barewords were interpreted as unquoted strings. This
 stricture outlaws that interpretation. If you mean to use it as a
 string, quote it. If you mean to use it as a function call, predeclare
 it or use parentheses.
As a particular case of forced context, remember that a bareword
 that appears by itself in curly braces or on the lefthand side of the
 => operator counts as being
 quoted, and so is not subject to this restriction.
use strict "subs";

$x = whatever; # WRONG: bareword error!
$x = whatever(); # This always works, though.

sub whatever; # Predeclare function.
$x = whatever; # Now it's ok.

These uses are permitted, because the => quotes:
%hash = (red => 1, blue => 2, green => 3);

$rednum = $hash{red}; # Ok, braces quote here

But not this one:
@coolnums = @hash{blue, green}; # WRONG: bareword error
@coolnums = @hash{"blue", "green"}; # Ok, words now quoted
@coolnums = @hash{qw/blue green/}; # Likewise

subs

use subs qw/winken blinken nod/;
@x = winken 3..10;
@x = nod blinken @x;
This pragma predeclares as standard subroutines the names in the
 argument list. The advantage is that you may now use those functions
 without parentheses as list operators, just as if you’d declared them
 yourself. This is not necessarily as useful as full declarations, because
 it doesn’t allow prototypes or attributes, such as:
sub winken(@);
sub blinken(\@) : locked;
sub nod($) : lvalue;
Because it is based on the standard import mechanism, the use subs pragma is not lexically scoped but
 package scoped. That is, the declarations are operative for the entire
 file in which they appear, but only in the current package. You may not
 rescind such declarations with no
 subs.

threads

Perl has used a couple of different threading models in its time.
 There were the old v5.005 threads through the Threads module, but those were removed in v5.10. The second way,
 introduced in v5.8, are “interpreter threads” (or “ithreads”) that give
 each new thread its own Perl interpreter. If you know about threads from
 some other language, forget all that for Perl’s threads because they are
 the same in name only.
To use threads, you need a
 perl compiled with threads support. You
 can check the output of perl –V and
 look for something like USE_ITHREADS in
 the compile-time options. You can also check the Config module, which lets you inspect the compile-time options
 inside your program:
use Config;
$Config{useithreads}
or die("Recompile Perl with threads to run this program.");
Many perls distributed with operating systems have a thread-enabled
 Perl already since it’s easier to turn it on for everyone than have it off
 for everyone, making a few people complain (which means you might squeeze
 extra performance out of your Perl binary by recompiling it without thread
 support).
Here’s a short example that starts some threads, detaches them, and
 starts a final thread and joins it. The program doesn’t wait for the
 detached threads to finish, but it will wait for the joined thread to
 complete. You can create threads with a code reference or a subroutine
 name, or using the async function
 from threads:
#!/usr/bin/perl
use v5.10;

use Config;
$Config{useithreads} || die "You need thread support to run this";

use threads;

threads–>create(sub {
 my $id = threads–>tid;
 foreach (0 .. 10) {
 sleep rand 5;
 say "Meow from cat $id ($_)";
 }
})–>detach;

for (0 .. 4) {
 my $t = async {
 my $id = threads–>tid;
 foreach (0 .. 10) {
 sleep rand 5;
 say "Bow wow from dog $id ($_)";
 }
 };
 $t–>detach;
 return $t;
};

threads–>create("bird")–>join;
sub bird {
 my $id = threads–>tid;
 for (0 .. 10) {
 sleep rand 5;
 say "Chirp from bird $id ($_)";
 }
}
You can read more about threads in perlthrtut,
 the Perl thread tutorial. Perl has a way to share variables among threads
 with thread::shared and a way to set up a shared queue with the Threads::Queue module.

utf8

use utf8;
The utf8 pragma declares that the Perl source for the rest of the lexical
 scope is encoded as UTF-8. This lets you use Unicode string literals and
 identifiers.
use utf8;
my $résumé_name = "Björk Guðmundsdóttir";
{
 no utf8;
 my $mojibake = '[image:]'; # probably erroneous
}
There are other features that the utf8 provides, but they are deprecated in favor
 of the Encode module.
Note that as of v5.14, the compiler does not normalize identifiers,
 so you can’t tell the difference between different ways to form the same
 glyphs (using composed or decomposed characters). See Chapter 6 for details on normalization. We recommend that you
 normalize all of your Perl identifiers into NFC (or NFKC) to avoid
 situations where you have two different variables that look the
 same.

vars

use vars qw($frobbed @munge %seen);
This pragma, once used to declare a global variable, is now
 unofficially deprecated in favor of the our modifier. The previous declaration is better
 accomplished using:
our($frobbed, @munge, %seen);
or even:
our $frobbed = "F";
our @munge = "A" .. $frobbed;
our %seen = ();
No matter which of these you use, remember that they’re talking
 about package globals, not file-scoped lexicals.

version

use version 0.77;

my $version = version–>parse($version_string);
my $qversion = qv($other_version_string);

if ($version > $qversion) {
 say "Version is greater!";
}
The version module isn’t really a pragma, but it looks like one since
 its name is all lowercase. Before v5.10, version provided a way to quote version with
 qv() and compare version numbers. It
 sounds simple, but when you get down to the hairy task it actually is, you
 might doubt your commitment to programming. For instance, how do you order
 the versions 1.02, 1.2, and v1.2.0? Now Perl can do that internally.
 It’s still a mess, though.[262]

[262] You might like David Golden’s “Version
 numbers should be boring”.

vmsish

use vmsish; # all features

use vmsish "exit";
use vmsish "hushed";
use vmsish "status";
use vmsish "time";

no vmsish "hushed";
vmsish::hushed($hush);

use vmsish; # all features
no vmsish "time"; # but turn off 'time'
The vmsish pragma controls
 various features of Perl on VMS so your program acts less like a Unix
 program and more like a VMS program. These features are lexically scoped,
 so you can enable and disable them as you need them.

exit

Under exit, using exit 1 and exit
 0 both map to SS$_NORMAL,
 indicating a successful exit. Under Unix emulation, exit 1 indicates an error.

hushed

Under hushed, a Perl program run from DCL does not print messages to SYS$OUTPUT or SYS$ERROR on an unsuccessful exit. This does
 not suppress any messages from the Perl program itself. This affects
 only the exit and die statements in its lexical scope, and only
 those that Perl compiles after it encounters this pragma.

status

Under status, the system return value
 and the value of $? use the VMS exit
 status rather than emulate the POSIX exit status.

time

With this feature, all times are relative to the local time zone instead of
 the default Universal Time.

warnings

use warnings; # same as importing "all"
no warnings; # same as unimporting "all"

use warnings::register;
if (warnings::enabled()) {
 warnings::warn("some warning");
}

if (warnings::enabled("void")) {
 warnings::warn("void", "some warning");
}

warnings::warnif("Warnings are on");
warnings::warnif("number", "Something is wrong with a number");
This lexically scoped pragma permits flexible control over Perl’s
 built-in warnings, both those emitted by the compiler as well as those
 from the runtime system.
Once upon a time, the only control you had in Perl over the
 treatment of warnings in your program was through either the –w command-line option or the $^W variable. Although useful, these tend to be
 all-or-nothing affairs. The –w option
 ends up enabling warnings in pieces of module code that you may not have
 written, which is occasionally problematic for you and embarrassing for
 the original author. Using $^W to
 either disable or enable blocks of code can be less than optimal because
 it works only during execution time, not during compile time.[263] Another issue is that this program-wide global variable is
 scoped dynamically, not lexically. That means that if you enable it in a
 block and then from there call other code, you again risk enabling
 warnings in code not developed with such exacting standards in
 mind.
The warnings pragma circumvents
 these limitations by being a lexically scoped, compile-time mechanism that
 permits finer control over where warnings can or can’t be triggered. A
 hierarchy of warning categories (see Figure 29-1)
 has been defined to allow groups of warnings to be enabled or disabled in
 isolation from one another. (The exact categorization is experimental and
 subject to change.) These categories can be combined by passing multiple
 arguments to use or no:
use warnings qw(void redefine);
no warnings qw(io syntax untie);
[image: Perl’s warning categories]

Figure 29-1. Perl’s warning categories

If multiple instances of the warnings pragma are active for a given scope,
 their effects are cumulative:
use warnings "void"; # Only "void" warnings enabled.
...
use warnings "io"; # Both "void" and "io" warnings now enabled
...
no warnings "void"; # Only "io" warnings now enabled
To make fatal errors of all warnings enabled by a particular
 warnings pragma, use the word FATAL at the front of the import list. This is
 useful when you would prefer a certain condition that normally causes only
 a warning to abort your program. Suppose, for example, that you considered
 it so improper to use an invalid string as a number (which normally
 produces a value of 0) that you want this brazen act to kill your program.
 While you’re at it, you decide that using uninitialized values in places
 where real string or numeric values are expected should also be cause for
 immediate suicide:
{
 use warnings FATAL => qw(numeric uninitialized);
 $x = $y + $z;
}
Now if either $y or $z is uninitialized (that is, holds the special
 scalar value, undef), or if either
 contains a string that doesn’t cleanly convert into a numeric value, your
 program will become suicidal; that is, instead of going merrily on its
 way, or at most issuing a small complaint if you had warnings enabled,
 your program will now raise an exception. (Think of this as Perl running
 in Python mode.) If you aren’t trapping exceptions, that makes it a fatal
 error. The exception text is the same as would normally appear in the
 warning message.
Fatalizing all warnings at the top of your program with:
use warnings FATAL => "all";
doesn’t work very well, because it doesn’t distinguish between
 compile-time warnings and runtime warnings. The first message from the
 compiler is often not the one you need to see, but with compile-time
 fatalized warnings, it’s the one you’ll want to see. A better approach is
 to delay making them fatal until runtime.
use Carp qw(carp croak confess cluck);
use warnings; # compile–time warnings

at runtime, before you do anything else
$SIG{_ _WARN_ _} = sub { confess "FATALIZED WARNING: @_" };
An alternate application of this idea is to use cluck instead of confess. That way you still get a stack dump,
 but your program continues. This can be helpful in figuring the code path
 that leads to a warning. See the explanation of the %SIG hash in 28 for other related examples.
The warnings pragma ignores the
 –w command-line switch and the value of
 the $^W variable; the pragma’s settings
 take precedence. However, the –W
 command-line flag overrides the pragma, enabling full warnings in all code
 within your program, even code loaded with do, require,
 or use. In other words, with –W, Perl pretends that every block in your
 program has a use warnings "all"
 pragma. Think of it as a lint(1) for Perl programs.
 (But see also the online documentation for the B::Lint module.) The –X
 command-line flag works the other way around. It pretends that every block
 has no warnings "all" in effect.
Several functions are provided to help module authors make their
 module’s functions behave like built-in functions with respect to the
 lexical scoping of the caller (that is, so that users of the module can
 lexically enable or disable warnings the module might issue):
	warnings::register
	Registers the current module name as a new category of warnings, so
 users of your module can turn off its warnings.

	warnings::enabled(CATEGORY)
	Returns true if the warnings category
 CATEGORY is enabled in the lexical scope
 of the calling module. Otherwise, it returns false. If
 CATEGORY is not supplied, the current
 package name is used.

	warnings::warn(CATEGORY,
 MESSAGE)
	If the calling module has not set
 CATEGORY to FATAL, prints
 MESSAGE to STDERR. If the calling module has set
 CATEGORY to FATAL, prints
 MESSAGE to STDERR, then dies. If
 CATEGORY is not supplied, the current
 package name is used.

	warnings::warnif(CATEGORY,
 MESSAGE)
	Like warnings::warn,
 but only if CATEGORY is
 enabled.

[263] In the absence of BEGIN
 blocks, of course.

User-Defined Pragmas

Perl v5.10 added a way to easily create your own lexically scoped
 pragmata. The %^H hash contains
 information other code can inspect to get hints about what you’d like to
 do, and caller has a reference to the
 version of that hash in effect for the level you request:
my $hints = (caller(1))[10];
This is a simple hash with simple values. Without getting into the
 gory details, this hash may be shared between threads so the internals
 store it in a compact form that precludes any values other than integers,
 strings, and undef. That’s okay, because you really only need it to denote
 whether your pragma’s feature is on or off. This hash is also lexically
 scoped, so each lexical scope gets its own version.
To create your own pragma, define the three subroutines import, unimport, and in_effect. The first two are invoked implicitly
 by use and no. Typically, use turns on a feature by calling import, while no turns off that feature by calling unimport. Aside from any special processing
 you’d like, your import and unimport set a flag in %H. Outside your pragma, other code can call
 in_effect to find out whether your
 pragma is enabled, which you’ll handle by looking in %H for the value you set.
There are no rules on what you can put in %H, but remember that other pragmas also use
 this hash for their own work, so choose a key other code is unlikely to
 use, such as your package name.
Here’s a short pragma that replaces the built-in sqrt function with one that can handle negative
 numbers (crudely). A use complex calls
 an import method, which sets the
 complex key in %^H to 1 and creates a subroutine called
 sqrt that uses the same definition as
 complex::complex_sqrt. The complex_sqrt uses in_effect to see whether it should use a
 negative number. If so, it takes the square root of the absolute value
 and, if the square is less than 0, appends “i” to the result:
use utf8;
use v5.10;

package complex;
use strict;
use warnings;
use Carp;

sub complex_sqrt {
 my $number = shift;
 if (complex::in_effect()) {
 my $root = CORE::sqrt(abs($number));
 $root .= "i" if $number < 0;
 return $root;
 }
 else {
 croak("Can't take sqrt of $number") if $number < 0;
 CORE::sqrt($number)
 }
}

sub import {
 $^H{complex} = 1;
 my($package) = (caller(1))[0];
 no strict "refs";
 *{ "${package}::sqrt" } = \&complex::complex_sqrt;
}

sub unimport {
 $^H{complex} = 0;
}

sub in_effect {
 my $hints = (caller(1))[10];
 return $hints–>{complex};
}

1;
Now parts of your program can create imaginary numbers:
use utf8;
use v5.10;
use complex;

say "1. √–25 is " => sqrt(–25);
say "2. √36 is " => sqrt(36);

eval {
 no complex;

 say "3. √–25 is " => sqrt(–25);
 say "4. √36 is " => sqrt(36);
} or say "Error: $@";
A no complex unsets $^H{complex}, disallowing negative arguments to
 complex for the rest of the scope. The
 %^H hash is lexically scoped, so its
 previous value is restored on scope exit. Inside the eval, the no
 complex turns off the special handling, so sqrt(–25) causes an error:
1. √–25 is 5i
2. √36 is 6
Error: Can't take sqrt of –25 at sqrt.pl line 10
Although this is a toy example, using and returning Math::Complex would do a better job, even if you use it directly instead
 of hiding it behind a pragma.

Glossary

When we italicize a word or phrase in here, it usually means you can
 find it defined elsewhere in the glossary. Think of them as
 hyperlinks.
	accessor methods
	A method used to indirectly inspect or update
 an object’s state (its
 instance
 variables).

	actual arguments
	The scalar values that you supply to a
 function or subroutine when you call it. For
 instance, when you call power("puff"), the string "puff" is the actual argument. See also
 argument and formal arguments.

	address operator
	Some languages work directly with the memory addresses of
 values, but this can be like playing with fire. Perl provides a set of
 asbestos gloves for handling all memory management. The closest to an
 address operator in Perl is the backslash operator, but it gives you a
 hard reference, which
 is much safer than a memory address.

	algorithm
	A well-defined sequence of steps, explained clearly enough
 that even a computer could do them.

	alias
	A nickname for something, which behaves in all ways as
 though you’d used the original name instead of the nickname. Temporary
 aliases are implicitly created in the loop variable for foreach loops, in the $_ variable for map or grep operators, in $a and $b
 during sort’s comparison function,
 and in each element of @_ for the
 actual arguments of
 a subroutine call. Permanent aliases are explicitly created in
 packages by importing symbols or by assignment to
 typeglobs. Lexically scoped
 aliases for package variables are explicitly created by the our declaration.

	alphabetic
	The sort of characters we put into words. In Unicode, this
 is all letters including all ideographs and certain diacritics, letter
 numbers like Roman numerals, and various combining marks.

	alternatives
	A list of possible choices from which you may select only
 one, as in, “Would you like door A, B, or C?” Alternatives in regular
 expressions are separated with a single vertical bar: |. Alternatives in normal Perl expressions
 are separated with a double vertical bar: ||. Logical alternatives in Boolean expressions are separated with
 either || or or.

	anonymous
	Used to describe a referent that is not directly
 accessible through a named variable. Such a referent must be
 indirectly accessible through at least one hard reference. When the last
 hard reference goes away, the anonymous referent is destroyed without
 pity.

	application
	A bigger, fancier sort of program with a fancier name so people
 don’t realize they are using a program.

	architecture
	The kind of computer you’re working on, where one “kind” of computer
 means all those computers sharing a compatible machine language. Since
 Perl programs are (typically) simple text files, not executable
 images, a Perl program is much less sensitive to the architecture it’s
 running on than programs in other languages, such as C, that are
 compiled into machine code.
 See also platform and
 operating
 system.

	argument
	A piece of data supplied to a program, subroutine, function, or method to tell it what it’s supposed to
 do. Also called a “parameter”.

	ARGV
	The name of the array containing the argument vector from the command line. If you use
 the empty <> operator,
 ARGV is the name of both the
 filehandle used to
 traverse the arguments and the scalar containing the name of the current
 input file.

	arithmetical operator
	A symbol such as + or /
 that tells Perl to do the arithmetic you were supposed to learn in
 grade school.

	array
	An ordered sequence of values, stored such that you can easily
 access any of the values using an integer subscript that specifies the value’s
 offset in the sequence.

	array context
	An archaic expression for what is more correctly referred to as
 list context.

	Artistic License
	The open source license that Larry Wall created for Perl, maximizing Perl’s
 usefulness, availability, and modifiability. The current version is
 2.0 (http://www.opensource.org/licenses/artistic-license.php).

	ASCII
	The American Standard Code for Information Interchange (a
 7-bit character set adequate only for poorly representing English
 text). Often used loosely to describe the lowest 128 values of the
 various ISO-8859-X character sets, a bunch of mutually incompatible
 8-bit codes best described as half ASCII. See also Unicode.

	assertion
	A component of a regular expression that must
 be true for the pattern to match but does not necessarily match any
 characters itself. Often used specifically to mean a zero-width assertion.

	assignment
	An operator whose
 assigned mission in life is to change the value of a variable.

	assignment operator
	Either a regular assignment or a compound operator composed of an ordinary
 assignment and some other operator, that changes the value of a
 variable in place; that is, relative to its old value. For example,
 $a += 2 adds 2 to $a.

	associative array
	See hash. Please. The term associative array is the old Perl 4
 term for a hash. Some languages
 call it a dictionary or a map.

	associativity
	Determines whether you do the left operator first or the right operator first when you have “A
 operator B operator C”, and the two operators are
 of the same precedence. Operators like + are left associative, while operators like
 ** are right associative. See Chapter 3 for a list of operators and their
 associativity.

	asynchronous
	Said of events or activities whose relative temporal ordering is
 indeterminate because too many things are going on at once. Hence, an
 asynchronous event is one you didn’t know when to expect.

	atom
	A regular expression component potentially matching a
 substring containing one or
 more characters and treated as an indivisible syntactic unit by any
 following quantifier.
 (Contrast with an assertion
 that matches something of zero
 width and may not be quantified.)

	atomic operation
	When Democritus gave the word “atom” to the indivisible bits
 of matter, he meant literally something that could not be cut:
 ἀ (not) + -τομος
 (cuttable). An atomic operation is an action that can’t be
 interrupted, not one forbidden in a nuclear-free zone.

	attribute
	A new feature that allows the declaration of variables and subroutines with modifiers, as in
 sub foo : locked method. Also
 another name for an instance
 variable of an object.

	autogeneration
	A feature of operator overloading of
 objects, whereby the behavior
 of certain operators can be
 reasonably deduced using more fundamental operators. This assumes that
 the overloaded operators will often have the same relationships as the
 regular operators. See Chapter 13.

	autoincrement
	To add one to something automatically, hence the name of
 the ++ operator. To instead
 subtract one from something automatically is known as an
 “autodecrement”.

	autoload
	To load on demand. (Also called “lazy” loading.)
 Specifically, to call an AUTOLOAD
 subroutine on behalf of an undefined subroutine.

	autosplit
	To split a string automatically, as the –a switch does when running under –p or –n
 in order to emulate awk. (See
 also the AutoSplit module, which has nothing to do with the –a switch but a lot to do with
 autoloading.)

	autovivification
	A Graeco-Roman word meaning “to bring oneself to life”. In
 Perl, storage locations (lvalues) spontaneously generate
 themselves as needed, including the creation of any hard reference values to point to
 the next level of storage. The assignment $a[5][5][5][5][5] = "quintet" potentially
 creates five scalar storage locations, plus four references (in the
 first four scalar locations) pointing to four new anonymous arrays (to
 hold the last four scalar locations). But the point of
 autovivification is that you don’t have to worry about it.

	AV
	Short for “array value”, which refers to one of Perl’s
 internal data types that holds an array. The AV type is a subclass of SV.

	awk
	Descriptive editing term—short for “awkward”. Also coincidentally
 refers to a venerable text-processing language from which Perl derived
 some of its high-level ideas.

	backreference
	A substring captured by a subpattern within
 unadorned parentheses in a regex. Backslashed decimal numbers
 (\1, \2, etc.) later in the same pattern refer
 back to the corresponding subpattern in the current match. Outside the
 pattern, the numbered variables ($1, $2,
 etc.) continue to refer to these same values, as long as the pattern
 was the last successful match of the current dynamic scope.

	backtracking
	The practice of saying, “If I had to do it all over, I’d do
 it differently,” and then actually going back and doing it all over
 differently. Mathematically speaking, it’s returning from an
 unsuccessful recursion on a tree of possibilities. Perl backtracks
 when it attempts to match patterns with a regular expression, and its earlier
 attempts don’t pan out. See the
 section The Little Engine That /Could(n’t)?/ in Chapter 5.

	backward compatibility
	Means you can still run your old program because we didn’t
 break any of the features or bugs it was relying on.

	bareword
	A word sufficiently ambiguous to be deemed illegal under
 use strict 'subs'. In the absence
 of that stricture, a bareword is treated as if quotes were around
 it.

	base class
	A generic object
 type; that is, a class from
 which other, more specific classes are derived genetically by
 inheritance. Also called
 a “superclass” by people who respect their
 ancestors.

	big-endian
	From Swift: someone who eats eggs big end first. Also used of
 computers that store the most significant byte of a word at a lower byte address than
 the least significant byte. Often considered superior to little-endian
 machines. See also little-endian.

	binary
	Having to do with numbers represented in base 2. That means
 there’s basically two numbers: 0 and 1. Also used to describe a file
 of “nontext”, presumably because such a file makes full use of all the
 binary bits in its bytes. With the advent of Unicode, this distinction, already
 suspect, loses even more of its meaning.

	binary operator
	An operator that takes two operands.

	bind
	To assign a specific network address to a socket.

	bit
	An integer in the range from 0 to 1, inclusive. The
 smallest possible unit of information storage. An eighth of a
 byte or of a dollar. (The term
 “Pieces of Eight” comes from being able to split the old Spanish
 dollar into 8 bits, each of which still counted for money. That’s why
 a 25-cent piece today is still “two bits”.)

	bit shift
	The movement of bits left or right in a computer word, which
 has the effect of multiplying or dividing by a power of 2.

	bit string
	A sequence of bits
 that is actually being thought of as a sequence of bits, for
 once.

	bless
	In corporate life, to grant official approval to a thing,
 as in, “The VP of Engineering has blessed our WebCruncher project.”
 Similarly, in Perl, to grant official approval to a referent so that it can function as an
 object, such as a WebCruncher
 object. See the bless function in
 Chapter 27.

	block
	What a process does
 when it has to wait for something: “My process blocked waiting for the
 disk.” As an unrelated noun, it refers to a large chunk of data, of a
 size that the operating
 system likes to deal with (normally a power of 2 such as
 512 or 8192). Typically refers to a chunk of data that’s coming from
 or going to a disk file.

	BLOCK
	A syntactic construct consisting of a sequence of Perl
 statements that is
 delimited by braces. The if and
 while statements are defined in
 terms of BLOCKs, for instance. Sometimes we
 also say “block” to mean a lexical scope; that is, a sequence of
 statements that acts like a BLOCK, such as
 within an eval or a file, even
 though the statements aren’t delimited by braces.

	block buffering
	A method of making input and output efficient by passing
 one block at a time. By
 default, Perl does block buffering to disk files. See buffer and command buffering.

	Boolean
	A value that is either true or false.

	Boolean context
	A special kind of scalar context used in
 conditionals to decide whether the scalar value returned by an
 expression is true or false. Does not evaluate as either a
 string or a number. See context.

	breakpoint
	A spot in your program where you’ve told the debugger to
 stop execution so you can
 poke around and see whether anything is wrong yet.

	broadcast
	To send a datagram to multiple destinations
 simultaneously.

	BSD
	A psychoactive drug, popular in the ’80s, probably
 developed at UC Berkeley or thereabouts. Similar in many ways to the
 prescription-only medication called “System V”, but infinitely more
 useful. (Or, at least, more fun.) The full chemical name is “Berkeley
 Standard Distribution”.

	bucket
	A location in a hash
 table containing (potentially) multiple entries whose keys
 “hash” to the same hash value according to its hash function. (As
 internal policy, you don’t have to worry about it unless you’re into
 internals, or policy.)

	buffer
	A temporary holding location for data. Data that are
 Block buffering means
 that the data is passed on to its destination whenever the buffer is
 full. Line buffering
 means that it’s passed on whenever a complete line is received.
 Command buffering
 means that it’s passed every time you do a print command (or equivalent). If your
 output is unbuffered, the system processes it one byte at a time
 without the use of a holding area. This can be rather
 inefficient.

	built-in
	A function that is predefined in the language.
 Even when hidden by overriding, you can always get at a
 built-in function by qualifying its name with the CORE:: pseudopackage.

	bundle
	A group of related modules on CPAN. (Also sometimes refers to a group of
 command-line switches grouped into one switch cluster.)

	byte
	A piece of data worth eight bits in most places.

	bytecode
	A pidgin-like lingo spoken among ’droids when they don’t wish to
 reveal their orientation (see endian). Named after some similar
 languages spoken (for similar reasons) between compilers and
 interpreters in the late 20th century.
 These languages are characterized by representing everything as a
 nonarchitecture-dependent sequence of bytes.

	C
	A language beloved by many for its inside-out type definitions, inscrutable precedence rules, and heavy
 overloading of the
 function-call mechanism. (Well, actually, people first switched to C
 because they found lowercase identifiers easier to read than upper.)
 Perl is written in C, so it’s not surprising that Perl borrowed a few
 ideas from it.

	cache
	A data repository. Instead of computing expensive answers
 several times, compute it once and save the result.

	callback
	A handler that you register with some other
 part of your program in the hope that the other part of your program
 will trigger your handler
 when some event of interest transpires.

	call by reference
	An argument-passing
 mechanism in which the formal arguments refer directly
 to the actual
 arguments, and the subroutine can change the actual
 arguments by changing the formal arguments. That is, the formal
 argument is an alias for the
 actual argument. See also call by
 value.

	call by value
	An argument-passing mechanism in which the
 formal arguments
 refer to a copy of the actual
 arguments, and the subroutine cannot change the actual
 arguments by changing the formal arguments. See also call by reference.

	canonical
	Reduced to a standard form to facilitate comparison.

	capture variables
	The variables—such as $1
 and $2, and %+ and %–—that hold the text remembered in a
 pattern match. See Chapter 5.

	capturing
	The use of parentheses around a subpattern in a regular expression to store
 the matched substring as a
 backreference.
 (Captured strings are also returned as a list in list context.) See Chapter 5.

	cargo cult
	Copying and pasting code without understanding it, while
 superstitiously believing in its value. This term originated from
 preindustrial cultures dealing with the detritus of explorers and
 colonizers of technologically advanced cultures. See The
 Gods Must Be Crazy.

	case
	A property of certain characters. Originally, typesetter
 stored capital letters in the upper of two cases and small letters in
 the lower one. Unicode recognizes three cases: lowercase (character property \p{lower}), titlecase (\p{title}), and uppercase (\p{upper}). A fourth casemapping called
 foldcase is not itself a
 distinct case, but it is used internally to implement casefolding. Not all letters have
 case, and some nonletters have case.

	casefolding
	Comparing or matching a string case-insensitively. In Perl, it is
 implemented with the /i pattern
 modifier, the fc function, and the
 \F double-quote translation
 escape.

	casemapping
	The process of converting a string to one of the four
 Unicode casemaps; in Perl, it is
 implemented with the fc, lc, ucfirst, and uc functions.

	character
	The smallest individual element of a string. Computers store
 characters as integers, but Perl lets you operate on them as text. The
 integer used to represent a particular character is called that
 character’s codepoint.

	character class
	A square-bracketed list of characters used in a regular expression to
 indicate that any character of the set may occur at a given point.
 Loosely, any predefined set of characters so used.

	character property
	A predefined character class matchable by the
 \p or \P metasymbol. Unicode defines hundreds of standard
 properties for every possible codepoint, and Perl defines a few of its
 own, too.

	circumfix operator
	An operator that
 surrounds its operand, like
 the angle operator, or parentheses, or a hug.

	class
	A user-defined type,
 implemented in Perl via a package that provides (either directly
 or by inheritance) methods
 (that is, subroutines) to
 handle instances of the
 class (its objects). See also
 inheritance.

	class method
	A method whose invocant is a package name, not an object reference. A method associated
 with the class as a whole. Also see instance method.

	client
	In networking, a process that initiates contact with a
 server process in order to
 exchange data and perhaps receive a service.

	closure
	An anonymous subroutine that, when a reference
 to it is generated at runtime, keeps track of the identities of
 externally visible lexical
 variables, even after those lexical variables have
 supposedly gone out of scope.
 They’re called “closures” because this sort of behavior gives
 mathematicians a sense of closure.

	cluster
	A parenthesized subpattern used to group parts of a
 regular expression
 into a single atom.

	CODE
	The word returned by the ref function when you apply it to a
 reference to a subroutine. See also CV.

	code generator
	A system that writes code for you in a low-level language,
 such as code to implement the backend of a compiler. See program generator.

	codepoint
	The integer a computer uses to represent a given character.
 ASCII codepoints are in the range 0 to 127; Unicode codepoints are in
 the range 0 to 0x1F_FFFF; and Perl codepoints are in the range 0 to
 232−1 or 0 to
 264−1, depending on your native integer
 size. In Perl Culture, sometimes called ordinals.

	code subpattern
	A regular expression subpattern whose real
 purpose is to execute some Perl code—for example, the (?{...}) and (??{...}) subpatterns.

	collating sequence
	The order into which characters sort. This is used by
 string comparison routines to
 decide, for example, where in this glossary to put “collating
 sequence”.

	co-maintainer
	A person with permissions to index a namespace in PAUSE. Anyone can upload any namespace,
 but only primary and co-maintainers get their contributions
 indexed.

	combining character
	Any character with the General Category of Combining Mark
 (\p{GC=M}), which may be spacing or
 nonspacing. Some are even invisible. A sequence of combining
 characters following a grapheme base character together make up a
 single user-visible character called a grapheme. Most but not all diacritics
 are combining characters, and vice versa.

	command
	In shell programming, the syntactic combination of a program name
 and its arguments. More loosely, anything you type to a shell (a
 command interpreter) that starts it doing something. Even more
 loosely, a Perl statement,
 which might start with a label
 and typically ends with a semicolon.

	command buffering
	A mechanism in Perl that lets you store up the output of
 each Perl command and then
 flush it out as a single request to the operating system. It’s enabled
 by setting the $| ($AUTOFLUSH) variable to a true value. It’s
 used when you don’t want data sitting around, not going where it’s
 supposed to, which may happen because the default on a file or pipe is to use block buffering.

	command-line arguments
	The values you supply along with a program name
 when you tell a shell to
 execute a command. These
 values are passed to a Perl program through @ARGV.

	command name
	The name of the program currently executing, as typed on the
 command line. In C, the command name is passed to the program as
 the first command-line argument. In Perl, it comes in separately as
 $0.

	comment
	A remark that doesn’t affect the meaning of the program.
 In Perl, a comment is introduced by a # character and continues to the end of the
 line.

	compilation unit
	The file (or
 string, in the case of
 eval) that is currently being
 compiled.

	compile
	The process of turning source code into a machine-usable form.
 See compile
 phase.

	compile phase
	Any time before Perl starts running your main program. See
 also run phase. Compile
 phase is mostly spent in compile
 time, but may also be spent in runtime when BEGIN blocks, use declarations, or constant subexpressions
 are being evaluated. The startup and import code of any use declaration is also run during compile
 phase.

	compiler
	Strictly speaking, a program that munches up another program and
 spits out yet another file containing the program in a “more
 executable” form, typically containing native machine instructions.
 The perl program is not a compiler
 by this definition, but it does contain a kind of compiler that takes
 a program and turns it into a more executable form (syntax trees) within the perl process itself, which the interpreter then interprets. There
 are, however, extension modules to get Perl to act more like a
 “real” compiler. See Chapter 16.

	compile time
	The time when Perl is trying to make sense of your code, as
 opposed to when it thinks it knows what your code means and is merely
 trying to do what it thinks your code says to do, which is runtime.

	composer
	A “constructor” for a referent
 that isn’t really an object,
 like an anonymous array or a hash (or a sonata, for that matter). For
 example, a pair of braces acts as a composer for a hash, and a pair of
 brackets acts as a composer for an array. See the section Creating References in Chapter 8.

	concatenation
	The process of gluing one cat’s nose to another cat’s tail.
 Also a similar operation on two strings.

	conditional
	Something “iffy”. See Boolean context.

	connection
	In telephony, the temporary electrical circuit between the
 caller’s and the callee’s phone. In networking, the same kind of
 temporary circuit between a client and a server.

	construct
	As a noun, a piece of syntax made up of smaller pieces. As a
 transitive verb, to create an object using a constructor.

	constructor
	Any class
 method, instance
 method, or subroutine that composes,
 initializes, blesses, and returns an object. Sometimes we use the term loosely
 to mean a composer.

	context
	The surroundings or environment. The context given by the
 surrounding code determines what kind of data a particular expression is expected to return. The
 three primary contexts are list
 context, scalar
 context, and void
 context. Scalar context is sometimes subdivided into
 Boolean context,
 numeric context,
 string context, and
 void context. There’s
 also a “don’t care” context (which is dealt with in Chapter 2, if you care).

	continuation
	The treatment of more than one physical line as a single logical line. Makefile lines are continued by putting
 a backslash before the newline. Mail headers, as defined by
 RFC 822, are continued by putting a space or tab
 after the newline. In general, lines in Perl do
 not need any form of continuation mark, because whitespace (including newlines) is
 gleefully ignored. Usually.

	core dump
	The corpse of a process, in the form of a file left in
 the working
 directory of the process, usually as a result of certain
 kinds of fatal errors.

	CPAN
	The Comprehensive Perl Archive Network. (See the Preface and Chapter 19 for
 details.)

	C preprocessor
	The typical C compiler’s first pass, which processes lines
 beginning with # for conditional
 compilation and macro definition, and does various manipulations of
 the program text based on the current definitions. Also known as
 cpp(1).

	cracker
	Someone who breaks security on computer systems. A cracker may
 be a true hacker or only a
 script kiddie.

	currently selected output channel
	The last filehandle that was designated with
 select(FILEHANDLE); STDOUT, if no filehandle has been
 selected.

	current package
	The package in which the current statement is compiled. Scan backward in the text of
 your program through the current lexical scope or any enclosing
 lexical scopes until you find a package declaration. That’s your
 current package name.

	current working directory
	See working
 directory.

	CV
	In academia, a curriculum vitæ, a fancy kind of résumé. In Perl,
 an internal “code value” typedef holding a subroutine. The CV type is a subclass of SV.

	dangling statement
	A bare, single statement, without any braces, hanging off
 an if or while conditional. C allows them. Perl
 doesn’t.

	datagram
	A packet of data, such as a UDP
 message, that (from the viewpoint of the programs involved) can be
 sent independently over the network. (In fact, all packets are sent
 independently at the IP level, but
 stream protocols such as
 TCP hide this from your
 program.)

	data structure
	How your various pieces of data relate to each other and what
 shape they make when you put them all together, as in a rectangular
 table or a triangular tree.

	data type
	A set of possible values, together with all the operations that
 know how to deal with those values. For example, a numeric data type
 has a certain set of numbers that you can work with, as well as
 various mathematical operations that you can do on the numbers, but
 would make little sense on, say, a string such as "Kilroy". Strings have their own operations,
 such as concatenation.
 Compound types made of a number of smaller pieces generally have
 operations to compose and decompose them, and perhaps to rearrange
 them. Objects that model
 things in the real world often have operations that correspond to real
 activities. For instance, if you model an elevator, your elevator
 object might have an open_door
 method.

	DBM
	Stands for “Database Management” routines, a set of routines that
 emulate an associative
 array using disk files. The routines use a dynamic hashing
 scheme to locate any entry with only two disk accesses. DBM files
 allow a Perl program to keep a persistent hash across multiple invocations. You can
 tie your hash variables to various
 DBM implementations.

	declaration
	An assertion
 that states something exists and perhaps describes what
 it’s like, without giving any commitment as to how or where you’ll use
 it. A declaration is like the part of your recipe that says, “two cups
 flour, one large egg, four or five tadpoles…” See statement for its opposite. Note that
 some declarations also function as statements. Subroutine declarations
 also act as definitions if a body is supplied.

	declarator
	Something that tells your program what sort of variable you’d
 like. Perl doesn’t require you to declare variables, but you can use
 my, our, or state to denote that you want something
 other than the default.

	decrement
	To subtract a value from a variable, as in “decrement
 $x” (meaning to remove 1 from its
 value) or “decrement $x by
 3”.

	default
	A value chosen for you if you don’t supply a value of your
 own.

	defined
	Having a meaning. Perl thinks that some of the things people try
 to do are devoid of meaning; in particular, making use of variables
 that have never been given a value and performing certain operations on
 data that isn’t there. For example, if you try to read data past the
 end of a file, Perl will hand you back an undefined value. See also
 false and the defined entry in Chapter 27.

	delimiter
	A character
 or string that
 sets bounds to an arbitrarily sized textual object, not to be confused
 with a separator or
 terminator. “To delimit”
 really just means “to surround” or “to enclose” (like these
 parentheses are doing).

	dereference
	A fancy computer science term meaning “to follow a reference to what it points to”. The
 “de” part of it refers to the fact that you’re taking away one level
 of indirection.

	derived class
	A class that defines some of its methods in terms of a more generic class,
 called a base class. Note
 that classes aren’t classified exclusively into base classes or
 derived classes: a class can function as both a derived class and a
 base class simultaneously, which is kind of classy.

	descriptor
	See file
 descriptor.

	destroy
	To deallocate the memory of a referent (first triggering its DESTROY method, if it has one).

	destructor
	A special method
 that is called when an object is thinking about destroying itself. A Perl program’s
 DESTROY method doesn’t do the
 actual destruction; Perl just triggers the method in case the
 class wants to do any
 associated cleanup.

	device
	A whiz-bang hardware gizmo (like a disk or tape drive or a modem or
 a joystick or a mouse) attached to your computer, which the operating system tries to make
 look like a file (or a bunch of
 files). Under Unix, these fake files tend to live in the /dev directory.

	directive
	A pod directive. See Chapter 23.

	directory
	A special file that contains other files. Some operating systems call these
 “folders”, “drawers”, “catalogues”, or “catalogs”.

	directory handle
	A name that represents a particular instance of opening a
 directory to read it, until you close it. See the opendir function.

	discipline
	Some people need this and some people avoid it. For Perl,
 it’s an old way to say I/O
 layer.

	dispatch
	To send something to its correct destination. Often used
 metaphorically to indicate a transfer of programmatic control to a
 destination selected algorithmically, often by lookup in a table of
 function references or, in
 the case of object methods, by
 traversing the inheritance tree looking for the most specific
 definition for the method.

	distribution
	A standard, bundled release of a system of software. The default
 usage implies source code is included. If that is not the case, it
 will be called a “binary-only” distribution.

	dual-lived
	Some modules live both in the Standard Library and on
 CPAN. These modules might be
 developed on two tracks as people modify either version. The trend
 currently is to untangle these situations.

	dweomer
	An enchantment, illusion, phantasm, or jugglery. Said when Perl’s magical
 dwimmer effects don’t do what
 you expect, but rather seem to be the product of arcane
 dweomercraft, sorcery, or wonder working. [From
 Middle English.]

	dwimmer
	DWIM is an acronym for “Do What I Mean”, the principle that something should
 just do what you want it to do without an undue amount of fuss. A bit
 of code that does “dwimming” is a “dwimmer”. Dwimming can require a
 great deal of behind-the-scenes magic, which (if it doesn’t stay
 properly behind the scenes) is called a dweomer instead.

	dynamic scoping
	Dynamic scoping works over a dynamic scope, making variables
 visible throughout the rest of the block in which they are first used and in
 any subroutines that are
 called by the rest of the block. Dynamically scoped variables can have
 their values temporarily changed (and implicitly restored later) by a
 local operator. (Compare lexical scoping.) Used more
 loosely to mean how a subroutine that is in the middle of calling
 another subroutine “contains” that subroutine at runtime.

	eclectic
	Derived from many sources. Some would say
 too many.

	element
	A basic building block. When you’re talking about an array, it’s one of the items that make up
 the array.

	embedding
	When something is contained in something else, particularly
 when that might be considered surprising: “I’ve embedded a complete
 Perl interpreter in my editor!”

	empty subclass test
	The notion that an empty derived
 class should behave exactly like its base class.

	encapsulation
	The veil of abstraction separating the interface from the implementation (whether enforced
 or not), which mandates that all access to an object’s state be through methods alone.

	endian
	See little-endian
 and big-endian.

	en passant
	When you change a value as
 it is being copied. [From French “in passing”, as in the exotic
 pawn-capturing maneuver in chess.]

	environment
	The collective set of environment variables your
 process inherits from its
 parent. Accessed via %ENV.

	environment variable
	A mechanism by which some high-level agent such as a user can pass
 its preferences down to its future offspring (child processes, grandchild processes,
 great-grandchild processes, and so on). Each environment variable is a
 key/value pair, like one entry in a hash.

	EOF
	End of File. Sometimes used metaphorically as the terminating string
 of a here
 document.

	errno
	The error number returned by a syscall when it fails. Perl refers to
 the error by the name $! (or
 $OS_ERROR if you use the English
 module).

	error
	See exception or
 fatal error.

	escape sequence
	See metasymbol.

	exception
	A fancy term for an error. See fatal error.

	exception handling
	The way a program responds to an error. The
 exception-handling mechanism in Perl is the eval operator.

	exec
	To throw away the current process’s program and replace it with
 another, without exiting the process or relinquishing any resources
 held (apart from the old memory image).

	executable file
	A file that is specially marked to tell the operating system that it’s okay
 to run this file as a program. Usually shortened to
 “executable”.

	execute
	To run a program or
 subroutine. (Has nothing
 to do with the kill built-in,
 unless you’re trying to run a signal handler.)

	execute bit
	The special mark that tells the operating system it can run
 this program. There are actually three execute bits under Unix, and
 which bit gets used depends on whether you own the file singularly,
 collectively, or not at all.

	exit status
	See status.

	exploit
	Used as a noun in this case, this refers to a known way to
 compromise a program to get it to do something the author didn’t
 intend. Your task is to write unexploitable programs.

	export
	To make symbols from a module available for import by other modules.

	expression
	Anything you can legally say in a spot where a value is required. Typically composed of
 literals, variables, operators, functions, and subroutine calls, not necessarily in
 that order.

	extension
	A Perl module that also pulls in compiled C or C++ code. More generally,
 any experimental option that can be compiled into Perl, such as
 multithreading.

	false
	In Perl, any value that would look like "" or "0"
 if evaluated in a string context. Since undefined values evaluate to
 "", all undefined values are false,
 but not all false values are undefined.

	FAQ
	Frequently Asked Question (although not necessarily frequently answered,
 especially if the answer appears in the Perl FAQ shipped standard with
 Perl).

	fatal error
	An uncaught exception, which causes termination of the process after printing a message on your
 standard error stream.
 Errors that happen inside an eval
 are not fatal. Instead, the eval
 terminates after placing the exception message in the $@ ($EVAL_ERROR) variable. You can try to
 provoke a fatal error with the die
 operator (known as throwing or raising an exception), but this may be
 caught by a dynamically enclosing eval. If not caught, the die becomes a fatal error.

	feeping creaturism
	A spoonerism of “creeping featurism”, noting the biological urge to
 add just one more feature to a program.

	field
	A single piece of numeric or string data that is part of a longer
 string, record, or line. Variable-width fields are usually
 split up by separators (so
 use split to extract the fields),
 while fixed-width fields are usually at fixed positions (so use
 unpack). Instance variables are also
 known as “fields”.

	FIFO
	First In, First Out. See also LIFO.
 Also a nickname for a named
 pipe.

	file
	A named collection of data, usually stored on disk in a
 directory in a filesystem. Roughly like a document,
 if you’re into office metaphors. In modern filesystems, you can
 actually give a file more than one name. Some files have special
 properties, like directories and devices.

	file descriptor
	The little number the operating system uses to keep
 track of which opened file
 you’re talking about. Perl hides the file descriptor inside a
 standard I/O stream and
 then attaches the stream to a filehandle.

	fileglob
	A “wildcard” match on filenames. See the glob function.

	filehandle
	An identifier (not necessarily related to the real name of a file)
 that represents a particular instance of opening a file, until you
 close it. If you’re going to open and close several different files in
 succession, it’s fine to open each of them with the same filehandle,
 so you don’t have to write out separate code to process each
 file.

	filename
	One name for a file. This name is listed in a directory. You can use it in an
 open to tell the operating system exactly which
 file you want to open, and associate the file with a filehandle, which will carry the
 subsequent identity of that file in your program, until you close
 it.

	filesystem
	A set of directories and files residing on a partition of the disk.
 Sometimes known as a “partition”. You can change the file’s name or
 even move a file around from directory to directory within a
 filesystem without actually moving the file itself, at least under
 Unix.

	file test operator
	A built-in unary operator that you use to determine whether
 something is true about a file,
 such as –o $filename to test
 whether you’re the owner of the file.

	filter
	A program designed to take a stream of input and transform it into a
 stream of output.

	first-come
	The first PAUSE
 author to upload a namespace automatically becomes the
 primary maintainer
 for that namespace. The “first come” permissions distinguish a
 primary maintainer
 who was assigned that role from one who received it
 automatically.

	flag
	We tend to avoid this term because it means so many things.
 It may mean a command-line switch that takes no argument itself
 (such as Perl’s -n and -p flags) or, less frequently, a single-bit
 indicator (such as the O_CREAT and
 O_EXCL flags used in sysopen). Sometimes informally used to refer
 to certain regex modifiers.

	floating point
	A method of storing numbers in “scientific notation”, such
 that the precision of the number is independent of its magnitude (the
 decimal point “floats”). Perl does its numeric work with
 floating-point numbers (sometimes called “floats”) when it can’t get
 away with using integers.
 Floating-point numbers are mere approximations of real numbers.

	flush
	The act of emptying a buffer, often before it’s full.

	FMTEYEWTK
	Far More Than Everything You Ever Wanted To Know. An exhaustive treatise on one narrow topic, something
 of a super-FAQ. See Tom for far
 more.

	foldcase
	The casemap used in Unicode when comparing or matching without
 regard to case. Comparing lower-, title-, or uppercase are all
 unreliable due to Unicode’s complex, one-to-many case mappings.
 Foldcase is a lowercase
 variant (using a partially decomposed normalization form for certain
 codepoints) created specifically to resolve this.

	fork
	To create a child process
 identical to the parent process at its moment of conception, at least
 until it gets ideas of its own. A thread with protected memory.

	formal arguments
	The generic names by which a subroutine knows its arguments. In many languages, formal
 arguments are always given individual names; in Perl, the formal
 arguments are just the elements of an array. The formal arguments to a
 Perl program are $ARGV[0], $ARGV[1], and so on. Similarly, the formal
 arguments to a Perl subroutine are $_[0], $_[1], and so on. You may give the arguments
 individual names by assigning the values to a my list. See also actual arguments.

	format
	A specification of how many spaces and digits and things
 to put somewhere so that whatever you’re printing comes out nice and
 pretty.

	freely available
	Means you don’t have to pay money to get it, but the copyright
 on it may still belong to someone else (like Larry).

	freely redistributable
	Means you’re not in legal trouble if you give a bootleg copy
 of it to your friends and we find out about it. In fact, we’d rather
 you gave a copy to all your friends.

	freeware
	Historically, any software that you give away, particularly if you
 make the source code available as well. Now often called open source software.
 Recently there has been a trend to use the term in contradistinction
 to open source
 software, to refer only to free software released under
 the Free Software Foundation’s GPL (General Public License),
 but this is difficult to justify etymologically.

	function
	Mathematically, a mapping of each of a set of input values to a
 particular output value. In computers, refers to a subroutine or operator that returns a value. It may or may not have input values
 (called arguments).

	funny character
	Someone like Larry, or one of his peculiar friends. Also refers
 to the strange prefixes that Perl requires as noun markers on its
 variables.

	garbage collection
	A misnamed feature—it should be called, “expecting your mother to pick up
 after you”. Strictly speaking, Perl doesn’t do this, but it relies on
 a reference-counting mechanism to keep things tidy. However, we rarely
 speak strictly and will often refer to the reference-counting scheme
 as a form of garbage collection. (If it’s any comfort, when your
 interpreter exits, a “real” garbage collector runs to make sure
 everything is cleaned up if you’ve been messy with circular references
 and such.)

	GID
	Group ID—in Unix, the numeric group ID that the operating system uses to
 identify you and members of your group.

	glob
	Strictly, the shell’s * character,
 which will match a “glob” of characters when you’re trying to generate
 a list of filenames. Loosely, the act of using globs and similar
 symbols to do pattern matching. See also fileglob and typeglob.

	global
	Something you can see from anywhere, usually used of variables and subroutines that are visible
 everywhere in your program. In Perl, only certain special variables
 are truly global—most variables (and all subroutines) exist only in
 the current package. Global
 variables can be declared with our.
 See Global Declarations in Chapter 4.

	global destruction
	The garbage collection of globals (and the running of
 any associated object destructors) that takes place when a Perl
 interpreter is being shut
 down. Global destruction should not be confused with the Apocalypse,
 except perhaps when it should.

	glue language
	A language such as Perl that is good at hooking things together
 that weren’t intended to be hooked together.

	granularity
	The size of the pieces you’re dealing with, mentally speaking.

	grapheme
	A graphene is an allotrope of carbon arranged in a hexagonal crystal
 lattice one atom thick. A grapheme, or more fully, a
 grapheme cluster string is a single user-visible
 character, which may in
 turn be several characters (codepoints) long. For example, a
 carriage return plus a line feed is a single grapheme but two
 characters, while a “ȫ” is a single grapheme but one, two, or even
 three characters, depending on normalization.

	greedy
	A subpattern
 whose quantifier wants to match as many
 things as possible.

	grep
	Originally from the old Unix editor command for “Globally search
 for a Regular Expression and Print it”, now used in the general sense
 of any kind of search, especially text searches. Perl has a built-in
 grep function that searches a list
 for elements matching any given criterion, whereas the grep(1) program searches for lines matching
 a regular
 expression in one or more files.

	group
	A set of users of which you are a member. In some operating systems
 (like Unix), you can give certain file access permissions to other
 members of your group.

	GV
	An internal “glob value” typedef, holding a typeglob. The GV type is a subclass of SV.

	hacker
	Someone who is brilliantly persistent in solving technical
 problems, whether these involve golfing, fighting orcs, or
 programming. Hacker is a neutral term, morally speaking. Good hackers
 are not to be confused with evil crackers or clueless script kiddies. If you confuse
 them, we will presume that you are either evil or clueless.

	handler
	A subroutine
 or method that
 Perl calls when your program needs to respond to some internal event,
 such as a signal, or an
 encounter with an operator subject to operator overloading. See
 also callback.

	hard reference
	A scalar value containing the actual address of a referent, such that the referent’s
 reference count accounts
 for it. (Some hard references are held internally, such as the
 implicit reference from one of a typeglob’s variable slots to its
 corresponding referent.) A hard reference is different from a
 symbolic
 reference.

	hash
	An unordered association of key/value pairs, stored such that you can easily use a string
 key to look up its associated
 data value. This glossary is
 like a hash, where the word to be defined is the key and the
 definition is the value. A hash is also sometimes septisyllabically
 called an “associative array”, which is a pretty good reason for
 simply calling it a “hash” instead.

	hash table
	A data structure used internally by Perl for implementing
 associative arrays (hashes) efficiently. See also bucket.

	header file
	A file containing certain required definitions that you must
 include “ahead” of the rest of your program to do certain obscure
 operations. A C header file has a .h extension. Perl doesn’t really have
 header files, though historically Perl has sometimes used translated
 .h files with a .ph extension. See require in Chapter 27.
 (Header files have been superseded by the module mechanism.)

	here document
	So called because of a similar construct in shells that pretends that the lines following the command are a separate file to be fed to the command, up to some
 terminating string. In Perl, however, it’s just a fancy form of
 quoting.

	hexadecimal
	A number in base 16, “hex” for short. The digits for 10
 through 16 are customarily represented by the letters a through f. Hexadecimal constants in Perl start with
 0x. See also the hex function in Chapter 27.

	home directory
	The directory you are put into when you log in. On a Unix
 system, the name is often placed into $ENV{HOME} or $ENV{LOGDIR} by login, but you
 can also find it with (getpwuid($<))[7]. (Some platforms do
 not have a concept of a home directory.)

	host
	The computer on which a program or other data resides.

	hubris
	Excessive pride, the sort of thing for which Zeus zaps you. Also the
 quality that makes you write (and maintain) programs that other people
 won’t want to say bad things about. Hence, the third great virtue of a
 programmer. See also laziness and impatience.

	HV
	Short for a “hash value” typedef, which holds Perl’s internal representation of a
 hash. The HV type is a subclass of
 SV.

	identifier
	A legally formed name for most anything in which a computer
 program might be interested. Many languages (including Perl) allow
 identifiers to start with an alphabetic character, and then contain
 alphabetics and digits. Perl also allows connector punctuation like
 the underscore character wherever it allows alphabetics. (Perl also
 has more complicated names, like qualified names.)

	impatience
	The anger you feel when the computer is being lazy. This makes you
 write programs that don’t just react to your needs, but actually
 anticipate them. Or at least that pretend to. Hence, the second great
 virtue of a programmer. See also laziness and hubris.

	implementation
	How a piece of code actually goes about doing its job. Users
 of the code should not count on implementation details staying the
 same unless they are part of the published interface.

	import
	To gain access to symbols that are exported from another module.
 See use in Chapter 27.

	increment
	To increase the value of something by 1 (or by some other number, if so
 specified).

	indexing
	In olden days, the act of looking up a key in an actual index (such as a phone
 book). But now it’s merely the act of using any kind of key or
 position to find the corresponding value, even if no index is involved.
 Things have degenerated to the point that Perl’s index function merely locates the position
 (index) of one string in another.

	indirect filehandle
	An expression
 that evaluates to something that can be used as a
 filehandle: a string (filehandle name), a typeglob, a typeglob reference, or a low-level IO object.

	indirection
	If something in a program isn’t the value you’re looking for but indicates
 where the value is, that’s indirection. This can be done with either
 symbolic
 references or hard
 references.

	indirect object
	In English grammar, a short noun phrase between a verb and its direct object
 indicating the beneficiary or recipient of the action. In Perl,
 print STDOUT "$foo\n"; can be
 understood as “verb indirect-object object”, where STDOUT is the recipient of the print action, and "$foo" is the object being printed.
 Similarly, when invoking a method, you might place the invocant in
 the dative slot between the method and its arguments:
$gollum = new Pathetic::Creature "Sméagol";
give $gollum "Fisssssh!";
give $gollum "Precious!";

	indirect object slot
	The syntactic position falling between a method call and its arguments
 when using the indirect object invocation syntax. (The slot is
 distinguished by the absence of a comma between it and the next
 argument.) STDERR is in the
 indirect object slot here:
print STDERR "Awake! Awake! Fear, Fire,
 Foes! Awake!\n";

	infix
	An operator that
 comes in between its operands, such as multiplication in
 24 * 7.

	inheritance
	What you get from your ancestors, genetically or otherwise. If you happen to be
 a class, your ancestors are
 called base classes and
 your descendants are called derived
 classes. See single inheritance and
 multiple
 inheritance.

	instance
	Short for “an instance of a class”, meaning an object of that class.

	instance data
	See instance
 variable.

	instance method
	A method of an object, as
 opposed to a class
 method.
A method whose
 invocant is an object, not a package name. Every object of a class
 shares all the methods of that class, so an instance method applies to
 all instances of the class, rather than applying to a particular
 instance. Also see class
 method.

	instance variable
	An attribute of an
 object; data stored with the particular object rather than with
 the class as a whole.

	integer
	A number with no fractional (decimal) part. A counting number,
 like 1, 2, 3, and so on, but including 0 and the negatives.

	interface
	The services a piece of code promises to provide forever, in contrast
 to its implementation,
 which it should feel free to change whenever it likes.

	interpolation
	The insertion of a scalar or list value somewhere in the middle of
 another value, such that it appears to have been there all along. In
 Perl, variable interpolation happens in double-quoted strings and
 patterns, and list interpolation occurs when constructing the list of
 values to pass to a list operator or other such construct that takes a
 LIST.

	interpreter
	Strictly speaking, a program that reads a second program and does what the
 second program says directly without turning the program into a
 different form first, which is what compilers do. Perl is not an
 interpreter by this definition, because it contains a kind of compiler
 that takes a program and turns it into a more executable form
 (syntax trees) within the
 perl process itself, which the Perl
 runtime system then
 interprets.

	invocant
	The agent on whose behalf a method is invoked. In a class method, the invocant is a package
 name. In an instance method,
 the invocant is an object reference.

	invocation
	The act of calling up a deity, daemon, program, method, subroutine,
 or function to get it to do what you think it’s supposed to do. We
 usually “call” subroutines but “invoke” methods, since it sounds
 cooler.

	I/O
	Input from, or output to, a file
 or device.

	IO
	An internal I/O object. Can also mean indirect object.

	I/O layer
	One of the filters between the data and what you get as input or
 what you end up with as output.

	IPA
	India Pale Ale. Also the International Phonetic Alphabet, the standard alphabet
 used for phonetic notation worldwide. Draws heavily on Unicode,
 including many combining characters.

	IP
	Internet Protocol, or Intellectual Property.

	IPC
	Interprocess Communication.

	is-a
	A relationship between two objects in which one object is considered
 to be a more specific version of the other, generic object: “A camel
 is a mammal.” Since the generic object really only exists in a
 Platonic sense, we usually add a little abstraction to the notion of
 objects and think of the relationship as being between a generic
 base class and a specific
 derived class. Oddly
 enough, Platonic classes don’t always have Platonic relationships—see
 inheritance.

	iteration
	Doing something repeatedly.

	iterator
	A special programming gizmo that keeps track of where you are in
 something that you’re trying to iterate over. The foreach loop in Perl contains an iterator;
 so does a hash, allowing you to each through it.

	IV
	The integer four, not to be confused with six, Tom’s favorite
 editor. IV also means an internal Integer Value of the type a
 scalar can hold, not to be
 confused with an NV.

	JAPH
	“Just Another Perl Hacker”, a clever but cryptic bit of Perl code that, when executed,
 evaluates to that string. Often used to illustrate a particular Perl
 feature, and something of an ongoing Obfuscated Perl Contest seen in
 USENET signatures.

	key
	The string index to a hash, used to look up the value associated with that key.

	keyword
	See reserved
 words.

	label
	A name you give to a statement so that you can talk about
 that statement elsewhere in the program.

	laziness
	The quality that makes you go to great effort to reduce
 overall energy expenditure. It makes you write labor-saving programs
 that other people will find useful, and then document what you wrote
 so you don’t have to answer so many questions about it. Hence, the
 first great virtue of a programmer. Also hence, this book. See also
 impatience and hubris.

	leftmost longest
	The preference of the regular expression engine to
 match the leftmost occurrence of a pattern, then given a position at which
 a match will occur, the preference for the longest match (presuming
 the use of a greedy
 quantifier). See Chapter 5 for
 much more on this subject.

	left shift
	A bit shift that
 multiplies the number by some power of 2.

	lexeme
	Fancy term for a token.

	lexer
	Fancy term for a tokener.

	lexical analysis
	Fancy term for tokenizing.

	lexical scoping
	Looking at your Oxford English Dictionary
 through a microscope. (Also known as static scoping, because
 dictionaries don’t change very fast.) Similarly, looking at variables
 stored in a private dictionary (namespace) for each scope, which are
 visible only from their point of declaration down to the end of
 the lexical scope in which they are declared. —Syn.
 static scoping. —Ant.
 dynamic
 scoping.

	lexical variable
	A variable subject to lexical
 scoping, declared by my or state. Often just called a “lexical”. (The
 our declaration declares a
 lexically scoped name for a global variable, which is not itself a
 lexical variable.)

	library
	Generally, a collection of procedures. In ancient days, referred to a
 collection of subroutines in a .pl file. In modern times, refers more
 often to the entire collection of Perl modules on your system.

	LIFO
	Last In, First Out. See also FIFO. A
 LIFO is usually called a stack.

	line
	In Unix, a sequence of zero or more nonnewline characters
 terminated with a newline
 character. On non-Unix machines, this is emulated by the C library
 even if the underlying operating
 system has different ideas.

	linebreak
	A grapheme consisting of either a carriage return followed by a
 line feed or any character with the Unicode Vertical Space character property.

	line buffering
	Used by a standard
 I/O output stream that flushes its buffer after every newline. Many standard I/O libraries
 automatically set up line buffering on output that is going to the
 terminal.

	line number
	The number of lines read previous to this one, plus 1. Perl keeps a
 separate line number for each source or input file it opens. The
 current source file’s line number is represented by _ _LINE_ _. The current input line number
 (for the file that was most recently read via <FH>) is represented by the $. ($INPUT_LINE_NUMBER) variable. Many error
 messages report both values, if available.

	link
	Used as a noun, a name in a directory that represents a file. A given file can have multiple links
 to it. It’s like having the same phone number listed in the phone
 directory under different names. As a verb, to resolve a partially
 compiled file’s unresolved
 symbols into a (nearly) executable image. Linking can generally be
 static or dynamic, which has nothing to do with static or dynamic
 scoping.

	LIST
	A syntactic construct representing a comma-separated list of
 expressions, evaluated to produce a list value. Each expression in a
 LIST is evaluated in list context and interpolated into
 the list value.

	list
	An ordered set of scalar values.

	list context
	The situation in which an expression is expected by its
 surroundings (the code calling it) to return a list of values rather
 than a single value. Functions that want a
 LIST of arguments tell those arguments that
 they should produce a list value. See also context.

	list operator
	An operator that
 does something with a list of values, such as join or grep. Usually used for named built-in
 operators (such as print, unlink, and system) that do not require parentheses
 around their argument
 list.

	list value
	An unnamed list of temporary scalar values that may be passed
 around within a program from any list-generating function to any
 function or construct that provides a list context.

	literal
	A token in a programming language, such as a number or
 string, that gives you an
 actual value instead of merely
 representing possible values as a variable does.

	little-endian
	From Swift: someone who eats eggs little end first. Also used of
 computers that store the least significant byte of a word at a lower byte address than
 the most significant byte. Often considered superior to big-endian
 machines. See also big-endian.

	local
	Not meaning the same thing everywhere. A global variable in Perl can
 be localized inside a dynamic
 scope via the local
 operator.

	logical operator
	Symbols representing the concepts “and”, “or”, “xor”, and
 “not”.

	lookahead
	An assertion that
 peeks at the string to the right of the current match
 location.

	lookbehind
	An assertion
 that peeks at the string to the left of the current
 match location.

	loop
	A construct that performs something repeatedly, like a roller
 coaster.

	loop control statement
	Any statement within the body of a loop that can make a loop
 prematurely stop looping or skip an iteration. Generally, you shouldn’t
 try this on roller coasters.

	loop label
	A kind of key or name attached to a loop (or roller coaster) so
 that loop control statements can talk about which loop they want to
 control.

	lowercase
	In Unicode, not just characters with the General Category of
 Lowercase Letter, but any character with the Lowercase property,
 including Modifier Letters, Letter Numbers, some Other Symbols, and
 one Combining Mark.

	lvaluable
	Able to serve as an lvalue.

	lvalue
	Term used by language lawyers for a storage location you can assign a
 new value to, such as a
 variable or an element of an
 array. The “l” is short for
 “left”, as in the left side of an assignment, a typical place for
 lvalues. An lvaluable
 function or expression is one to which a value may be assigned, as in
 pos($x) = 10.

	lvalue modifier
	An adjectival pseudofunction that warps the meaning of an
 lvalue in some declarative
 fashion. Currently there are three lvalue modifiers: my, our,
 and local.

	magic
	Technically speaking, any extra semantics attached to a variable
 such as $!, $0, %ENV,
 or %SIG, or to any tied variable.
 Magical things happen when you diddle those variables.

	magical increment
	An increment
 operator that knows how to bump up ASCII alphabetics as
 well as numbers.

	magical variables
	Special variables that have side effects when you access them or assign to
 them. For example, in Perl, changing elements of the %ENV array also changes the corresponding
 environment variables that subprocesses will use. Reading the $! variable gives you the current system
 error number or message.

	Makefile
	A file that controls the compilation of a program. Perl programs
 don’t usually need a Makefile because the Perl compiler has
 plenty of self-control.

	man
	The Unix program that displays online documentation (manual
 pages) for you.

	manpage
	A “page” from the manuals, typically accessed via the
 man(1) command. A manpage contains a SYNOPSIS, a
 DESCRIPTION, a list of BUGS, and so on, and is typically longer than a
 page. There are manpages documenting commands, syscalls, library functions, devices, protocols, files, and such. In this book, we call any
 piece of standard Perl documentation (like perlop or perldelta) a
 manpage, no matter what format it’s installed in on your
 system.

	matching
	See pattern
 matching.

	member data
	See instance
 variable.

	memory
	This always means your main memory, not your disk. Clouding
 the issue is the fact that your machine may implement virtual memory; that is, it will pretend
 that it has more memory than it really does, and it’ll use disk space
 to hold inactive bits. This can make it seem like you have a little
 more memory than you really do, but it’s not a substitute for real
 memory. The best thing that can be said about virtual memory is that
 it lets your performance degrade gradually rather than suddenly when
 you run out of real memory. But your program can die when you run out
 of virtual memory, too—if you haven’t thrashed your disk to death
 first.

	metacharacter
	A character that
 is not supposed to be treated
 normally. Which characters are to be treated specially as
 metacharacters varies greatly from context to context. Your shell will have certain metacharacters,
 double-quoted Perl strings
 have other metacharacters, and regular
 expression patterns have all the double-quote
 metacharacters plus some extra ones of their own.

	metasymbol
	Something we’d call a metacharacter except that it’s a
 sequence of more than one character. Generally, the first character in
 the sequence must be a true metacharacter to get the other characters
 in the metasymbol to misbehave along with it.

	method
	A kind of action that an object can take if you tell it to. See
 Chapter 12.

	method resolution order
	The path Perl takes through @INC. By default, this is a double depth
 first search, once looking for defined methods and once for AUTOLOAD. However, Perl lets you configure
 this with mro.

	minicpan
	A CPAN mirror that includes just the latest versions for each
 distribution, probably created with CPAN::Mini. See Chapter 19.

	minimalism
	The belief that “small is beautiful”. Paradoxically, if you say
 something in a small language, it turns out big, and if you say it in
 a big language, it turns out small. Go figure.

	mode
	In the context of the stat(2) syscall,
 refers to the field holding the permission bits and the type of
 the file.

	modifier
	See statement
 modifier, regular expression
 modifier, and lvalue
 modifier, not necessarily in that order.

	module
	A file that defines a package of (almost) the same name, which
 can either export symbols or
 function as an object class.
 (A module’s main .pm file may
 also load in other files in support of the module.) See the use built-in.

	modulus
	An integer divisor when you’re interested in the remainder instead
 of the quotient.

	mojibake
	When you speak one language and the computer thinks you’re
 speaking another. You’ll see odd translations when you send UTF‑8, for
 instance, but the computer thinks you sent Latin-1, showing all sorts
 of weird characters instead. The term is written 「[image:]」in Japanese and means “character rot”, an apt
 description. Pronounced [modʑibake] in standard IPA phonetics, or approximately
 “moh-jee-bah-keh”.

	monger
	Short for one member of Perl
 mongers, a purveyor of Perl.

	mortal
	A temporary value scheduled to die when the current statement
 finishes.

	mro
	See method
 resolution order.

	multidimensional array
	An array with multiple subscripts for finding a single element.
 Perl implements these using references—see Chapter 9.

	multiple inheritance
	The features you got from your mother and father, mixed together
 unpredictably. (See also inheritance and single inheritance.) In
 computer languages (including Perl), it is the notion that a given
 class may have multiple direct ancestors or base classes.

	named pipe
	A pipe with a name embedded in the filesystem so that it can be accessed
 by two unrelated processes.

	namespace
	A domain of names. You needn’t worry about whether the names in one
 such domain have been used in another. See package.

	NaN
	Not a number. The value Perl uses for certain invalid or inexpressible
 floating-point operations.

	network address
	The most important attribute of a socket, like your telephone’s
 telephone number. Typically an IP address. See also port.

	newline
	A single character that represents the end of a line, with the
 ASCII value of 012 octal under Unix (but 015 on a Mac), and
 represented by \n in Perl strings.
 For Windows machines writing text files, and for certain physical
 devices like terminals, the single newline gets automatically
 translated by your C library into a line feed and a carriage return,
 but normally, no translation is done.

	NFS
	Network File System, which allows you to mount a remote filesystem as if it
 were local.

	normalization
	Converting a text string into an alternate but equivalent canonical (or compatible)
 representation that can then be compared for equivalence. Unicode
 recognizes four different normalization forms: NFD, NFC, NFKD, and
 NFKC.

	null character
	A character with the numeric value of zero. It’s used by C to
 terminate strings, but Perl allows strings to contain a null.

	null list
	A list value with
 zero elements, represented in Perl by ().

	null string
	A string containing no characters, not to be confused with a
 string containing a null
 character, which has a positive length and is true.

	numeric context
	The situation in which an expression is expected by its surroundings
 (the code calling it) to return a number. See also context and string context.

	numification
	(Sometimes spelled nummification and
 nummify.) Perl lingo for implicit conversion into a number; the
 related verb is numify.
 Numification is intended to rhyme with
 mummification, and numify
 with mummify. It is unrelated to English
 numen, numina,
 numinous. We originally forgot the extra
 m a long time ago, and some people got used to
 our funny spelling, and so just as with HTTP_REFERER’s own missing letter, our weird
 spelling has stuck around.

	NV
	Short for Nevada, no part of which will ever be confused with
 civilization. NV also means an internal floating-point Numeric Value
 of the type a scalar can hold,
 not to be confused with an IV.

	nybble
	Half a byte, equivalent to one hexadecimal digit, and worth four
 bits.

	object
	An instance of a class.
 Something that “knows” what user-defined type (class) it is, and what
 it can do because of what class it is. Your program can request an
 object to do things, but the object gets to decide whether it wants to
 do them or not. Some objects are more accommodating than
 others.

	octal
	A number in base 8. Only the digits 0 through 7 are allowed.
 Octal constants in Perl start with 0, as in 013. See also the oct function.

	offset
	How many things you have to skip over when moving from the
 beginning of a string or array to a specific position within it. Thus,
 the minimum offset is zero, not one, because you don’t skip anything
 to get to the first item.

	one-liner
	An entire computer program crammed into one line of text.

	open source software
	Programs for which the source code is freely available and freely
 redistributable, with no commercial strings attached. For a more
 detailed definition, see http://www.opensource.org/osd.html.

	operand
	An expression
 that yields a value that an operator operates on. See also
 precedence.

	operating system
	A special program that runs on the bare machine and hides the gory
 details of managing processes
 and devices. Usually used in a
 looser sense to indicate a particular culture of programming. The
 loose sense can be used at varying levels of specificity. At one
 extreme, you might say that all versions of Unix and Unix-lookalikes
 are the same operating system (upsetting many people, especially
 lawyers and other advocates). At the other extreme, you could say this
 particular version of this particular vendor’s operating system is
 different from any other version of this or any other vendor’s
 operating system. Perl is much more portable across operating systems
 than many other languages. See also architecture and platform.

	operator
	A gizmo that transforms some number of input values to some
 number of output values, often built into a language with a special
 syntax or symbol. A given operator may have specific expectations
 about what types of data you
 give as its arguments (operands) and what type of data you want
 back from it.

	operator overloading
	A kind of overloading that you can do on
 built-in operators to make
 them work on objects as if the
 objects were ordinary scalar values, but with the actual semantics
 supplied by the object class. This is set up with the overload
 pragma—see Chapter 13.

	options
	See either switches
 or regular expression
 modifiers.

	ordinal
	An abstract character’s integer value. Same thing as
 codepoint.

	overloading
	Giving additional meanings to a symbol or construct. Actually,
 all languages do overloading to one extent or another, since people
 are good at figuring out things from context.

	overriding
	Hiding or invalidating some other definition of the same name.
 (Not to be confused with overloading, which adds definitions
 that must be disambiguated some other way.) To confuse the issue
 further, we use the word with two overloaded definitions: to describe
 how you can define your own subroutine to hide a built-in
 function of the same name
 (see the section Overriding Built-in Functions in Chapter 11), and to describe how you can define a
 replacement method in a
 derived class to hide a
 base class’s method of the
 same name (see Chapter 12).

	owner
	The one user (apart from the superuser) who has absolute control
 over a file. A file may also
 have a group of users who may
 exercise joint ownership if the real owner permits it. See permission bits.

	package
	A namespace for
 global variables, subroutines, and the like, such that
 they can be kept separate from like-named symbols in other namespaces. In a sense,
 only the package is global, since the symbols in the package’s symbol
 table are only accessible from code compiled outside the package by naming
 the package. But in another sense, all package symbols are also
 globals—they’re just well-organized globals.

	pad
	Short for scratchpad.

	parameter
	See argument.

	parent class
	See base
 class.

	parse tree
	See syntax
 tree.

	parsing
	The subtle but sometimes brutal art of attempting to turn
 your possibly malformed program into a valid syntax tree.

	patch
	To fix by applying one, as it were. In the realm of
 hackerdom, a listing of the differences between two versions of a
 program as might be applied by the patch(1) program when you want to fix a
 bug or upgrade your old version.

	PATH
	The list of directories the system searches to
 find a program you want to execute. The list is stored as one of
 your environment
 variables, accessible in Perl as $ENV{PATH}.

	pathname
	A fully qualified filename such as /usr/bin/perl. Sometimes confused with
 PATH.

	pattern
	A template used in pattern matching.

	pattern matching
	Taking a pattern, usually a regular expression, and
 trying the pattern various ways on a string to see whether there’s any
 way to make it fit. Often used to pick interesting tidbits out of a
 file.

	PAUSE
	The Perl Authors Upload SErver (http://pause.perl.org), the gateway for modules on their way to CPAN.

	Perl mongers
	A Perl user group, taking the form of its name from the
 New York Perl mongers, the first Perl user group. Find one near you at
 http://www.pm.org.

	permission bits
	Bits that the owner of
 a file sets or unsets to allow or disallow access to other people.
 These flag bits are part of the mode word returned by the stat built-in when you ask about a file. On
 Unix systems, you can check the ls(1) manpage for
 more information.

	Pern
	What you get when you do Perl++
 twice. Doing it only once will curl your hair. You have to increment
 it eight times to shampoo your hair. Lather, rinse, iterate.

	pipe
	A direct connection that carries the output of
 one process to the input of
 another without an intermediate temporary file. Once the pipe is set
 up, the two processes in question can read and write as if they were
 talking to a normal file, with some caveats.

	pipeline
	A series of processes all in a row, linked by
 pipes, where each passes its
 output stream to the next.

	platform
	The entire hardware and software context in which a program
 runs. A program written in a platform-dependent language might break
 if you change any of the following: machine, operating system,
 libraries, compiler, or system configuration. The perl interpreter has to be compiled differently for each platform
 because it is implemented in C, but programs written in the Perl
 language are largely platform independent.

	pod
	The markup used to embed documentation into your Perl code.
 Pod stands for “Plain old documentation”. See Chapter 23.

	pod command
	A sequence, such as =head1, that denotes the start of a
 pod section.

	pointer
	A variable in a language like C that contains the exact memory
 location of some other item. Perl handles pointers internally so you
 don’t have to worry about them. Instead, you just use symbolic
 pointers in the form of keys and
 variable names, or
 hard references, which
 aren’t pointers (but act like pointers and do in fact contain
 pointers).

	polymorphism
	The notion that you can tell an object to do something generic, and the
 object will interpret the command in different ways depending on its
 type. [< Greek πολυ- + μορϕή, many forms.]

	port
	The part of the address of a TCP or UDP socket that directs
 packets to the correct process after finding the right machine,
 something like the phone extension you give when you reach the company
 operator. Also the result of converting code to run on a different
 platform than originally intended, or the verb denoting this
 conversion.

	portable
	Once upon a time, C code compilable under both BSD and SysV.
 In general, code that can be easily converted to run on another
 platform, where “easily” can
 be defined however you like, and usually is. Anything may be
 considered portable if you try hard enough, such as a mobile home or
 London Bridge.

	porter
	Someone who “carries” software from one platform to another. Porting programs
 written in platform-dependent languages such as C can be difficult
 work, but porting programs like Perl is very much worth the
 agony.

	possessive
	Said of quantifiers and groups in patterns that refuse to give
 up anything once they’ve gotten their mitts on it. Catchier and easier
 to say than the even more formal
 nonbacktrackable.

	POSIX
	The Portable Operating System Interface
 specification.

	postfix
	An operator that follows its operand, as in $x++.

	pp
	An internal shorthand for a “push-pop” code; that is, C
 code implementing Perl’s stack machine.

	pragma
	A standard module whose practical hints and suggestions
 are received (and possibly ignored) at compile time. Pragmas are named
 in all lowercase.

	precedence
	The rules of conduct that, in the absence of other guidance,
 determine what should happen first. For example, in the absence of
 parentheses, you always do multiplication before addition.

	prefix
	An operator that precedes its operand, as in ++$x.

	preprocessing
	What some helper process did to transform the incoming
 data into a form more suitable for the current process. Often done
 with an incoming pipe. See also
 C preprocessor.

	primary maintainer
	The author that PAUSE allows to assign co-maintainer permissions to a
 namespace. A primary
 maintainer can give up this distinction by assigning it to another
 PAUSE author. See Chapter 19.

	procedure
	A subroutine.

	process
	An instance of a running program. Under multitasking
 systems like Unix, two or more separate processes could be running the
 same program independently at the same time—in fact, the fork function is designed to bring about
 this happy state of affairs. Under other operating systems, processes
 are sometimes called “threads”, “tasks”, or “jobs”, often with slight
 nuances in meaning.

	program
	See script.

	program generator
	A system that algorithmically writes code for you in a high-level
 language. See also code
 generator.

	progressive matching
	Pattern
 matching that picks up where it left off before.

	property
	See either instance
 variable or character property.

	protocol
	In networking, an agreed-upon way of sending messages back
 and forth so that neither correspondent will get too confused.

	prototype
	An optional part of a subroutine declaration telling the
 Perl compiler how many and what flavor of arguments may be passed as
 actual arguments, so
 you can write subroutine calls that parse much like built-in
 functions. (Or don’t parse, as the case may be.)

	pseudofunction
	A construct that sometimes looks like a function but
 really isn’t. Usually reserved for lvalue modifiers like my, for context modifiers like scalar, and for the pick-your-own-quotes
 constructs, q//, qq//, qx//, qw//, qr//, m//, s///, y///, and tr///.

	pseudohash
	Formerly, a reference to an array whose initial element happens to hold a
 reference to a hash. You used to be able to treat a pseudohash
 reference as either an array reference or a hash reference.
 Pseduohashes are no longer supported.

	pseudoliteral
	An operator that looks something like a literal, such as the output-grabbing
 operator, `command`.

	public domain
	Something not owned by anybody. Perl is copyrighted and is thus
 not in the public domain—it’s just freely available and freely
 redistributable.

	pumpkin
	A notional “baton” handed around the Perl community
 indicating who is the lead integrator in some arena of
 development.

	pumpking
	A pumpkin holder, the person in charge of
 pumping the pump, or at least priming it. Must be willing to play the
 part of the Great Pumpkin now and then.

	PV
	A “pointer value”, which is Perl Internals Talk for a
 char*.

	qualified
	Possessing a complete name. The symbol $Ent::moot is qualified; $moot is unqualified. A fully qualified
 filename is specified from the top-level directory.

	quantifier
	A component of a regular expression specifying
 how many times the foregoing atom may occur.

	race condition
	A race condition exists when the result of several
 interrelated events depends on the ordering of those events, but that
 order cannot be guaranteed due to nondeterministic timing effects. If
 two or more programs, or parts of the same program, try to go through
 the same series of events, one might interrupt the work of the other.
 This is a good way to find an exploit.

	readable
	With respect to files, one that has the proper permission bit
 set to let you access the file. With respect to computer programs, one
 that’s written well enough that someone has a chance of figuring out
 what it’s trying to do.

	reaping
	The last rites performed by a parent process on behalf of a deceased child
 process so that it doesn’t remain a zombie. See the wait and waitpid function calls.

	record
	A set of related data values in a file or stream, often associated with a unique
 key field. In Unix, often
 commensurate with a line, or a
 blank-line–terminated set of lines (a “paragraph”). Each line of the
 /etc/passwd file is a record,
 keyed on login name, containing information about that user.

	recursion
	The art of defining something (at least partly) in terms of itself,
 which is a naughty no-no in dictionaries but often works out okay in
 computer programs if you’re careful not to recurse forever (which is
 like an infinite loop with more spectacular failure modes).

	reference
	Where you look to find a pointer to information somewhere else.
 (See indirection.)
 References come in two flavors: symbolic references and
 hard
 references.

	referent
	Whatever a reference refers to, which may or may not have a name.
 Common types of referents include scalars, arrays, hashes, and
 subroutines.

	regex
	See regular
 expression.

	regular expression
	A single entity with various interpretations, like an elephant.
 To a computer scientist, it’s a grammar for a little language in which
 some strings are legal and others aren’t. To normal people, it’s a
 pattern you can use to find what you’re looking for when it varies
 from case to case. Perl’s regular expressions are far from regular in
 the theoretical sense, but in regular use they work quite well. Here’s
 a regular expression: /Oh s.*t./.
 This will match strings like “Oh say can you
 see by the dawn's early light” and “Oh sit!”. See Chapter 5.

	regular expression modifier
	An option on a pattern or substitution, such as /i to render the pattern
 case-insensitive.

	regular file
	A file that’s not a directory, a device, a named pipe or socket, or a symbolic link. Perl uses the
 –f file test operator to identify
 regular files. Sometimes called a “plain” file.

	relational operator
	An operator that
 says whether a particular ordering relationship is
 true about a pair of operands. Perl has both numeric and
 string relational operators. See collating sequence.

	reserved words
	A word with a specific, built-in meaning to a compiler, such as if or delete. In many languages (not Perl), it’s
 illegal to use reserved words to name anything else. (Which is why
 they’re reserved, after all.) In Perl, you just can’t use them to name
 labels or filehandles. Also called
 “keywords”.

	return value
	The value produced
 by a subroutine or expression when evaluated. In Perl, a
 return value may be either a list or a scalar.

	RFC
	Request For Comment, which despite the timid connotations is the name of a
 series of important standards documents.

	right shift
	A bit shift
 that divides a number by some power of 2.

	role
	A name for a concrete set of behaviors. A role is a way to add
 behavior to a class without inheritance.

	root
	The superuser (UID == 0). Also the
 top-level directory of the filesystem.

	RTFM
	What you are told when someone thinks you should Read The
 Fine Manual.

	run phase
	Any time after Perl starts running your main program. See
 also compile phase. Run
 phase is mostly spent in runtime but may also be spent in
 compile time when
 require, do FILE, or
 eval
 STRING operators are executed, or when a
 substitution uses the /ee
 modifier.

	runtime
	The time when Perl is actually doing what your code says to do,
 as opposed to the earlier period of time when it was trying to figure
 out whether what you said made any sense whatsoever, which is
 compile time.

	runtime pattern
	A pattern that contains one or more variables to be
 interpolated before parsing the pattern as a regular expression, and that
 therefore cannot be analyzed at compile time, but must be reanalyzed
 each time the pattern match operator is evaluated. Runtime patterns
 are useful but expensive.

	RV
	A recreational vehicle, not to be confused with vehicular
 recreation. RV also means an internal Reference Value of the type a
 scalar can hold. See also
 IV and NV if you’re not confused yet.

	rvalue
	A value that you might find on the right side of an assignment. See also lvalue.

	sandbox
	A walled off area that’s not supposed to affect beyond its
 walls. You let kids play in the sandbox instead of running in the
 road. See Chapter 20.

	scalar
	A simple, singular value; a number, string, or reference.

	scalar context
	The situation in which an expression is expected by its
 surroundings (the code calling it) to return a single value rather than a list of values. See also context and list context. A scalar context
 sometimes imposes additional constraints on the return value—see
 string context and
 numeric context.
 Sometimes we talk about a Boolean
 context inside conditionals, but this imposes no
 additional constraints, since any scalar value, whether numeric or
 string, is already true or
 false.

	scalar literal
	A number or quoted string—an actual value in the text of your program, as
 opposed to a variable.

	scalar value
	A value that happens to be a scalar as opposed to a list.

	scalar variable
	A variable prefixed with $ that
 holds a single value.

	scope
	From how far away you can see a variable, looking through
 one. Perl has two visibility mechanisms. It does dynamic scoping of local variables, meaning that the rest of the
 block, and any subroutines that are called by the
 rest of the block, can see the variables that are local to the block.
 Perl does lexical
 scoping of my
 variables, meaning that the rest of the block can see the variable,
 but other subroutines called by the block cannot
 see the variable.

	scratchpad
	The area in which a particular invocation of a particular
 file or subroutine keeps some of its temporary values, including any
 lexically scoped variables.

	script
	A text file that is
 a program intended to be executed directly rather than compiled to another form of file before
 execution.
Also, in the context of Unicode, a writing system for a
 particular language or group of
 languages, such as Greek, Bengali, or Tengwar.

	script kiddie
	A cracker who is not a hacker but knows just enough to run
 canned scripts. A cargo-cult programmer.

	sed
	A venerable Stream EDitor from which Perl derives some of its ideas.

	semaphore
	A fancy kind of interlock that prevents multiple threads or processes from using up the same
 resources simultaneously.

	separator
	A character
 or string that
 keeps two surrounding strings from being confused with each other. The
 split function works on separators. Not to be confused with delimiters or terminators. The “or” in the previous
 sentence separated the two alternatives.

	serialization
	Putting a fancy data
 structure into linear order so that it can be stored as a
 string in a disk file or
 database, or sent through a pipe. Also called marshalling.

	server
	In networking, a process that
 either advertises a service
 or just hangs around at a known location and waits for clients who need service to get in touch
 with it.

	service
	Something you do for someone else to make them happy, like giving
 them the time of day (or of their life). On some machines, well-known
 services are listed by the getservent
 function.

	setgid
	Same as setuid,
 only having to do with giving away group privileges.

	setuid
	Said of a program that runs with the privileges of its owner rather than (as is usually the case)
 the privileges of whoever is running it. Also describes the bit in the
 mode word (permission
 bits) that controls the feature. This bit must be
 explicitly set by the owner to enable this feature, and the program
 must be carefully written not to give away more privileges than it
 ought to.

	shared memory
	A piece of memory
 accessible by two different processes who otherwise would not see
 each other’s memory.

	shebang
	Irish for the whole McGillicuddy. In Perl culture, a portmanteau of
 “sharp” and “bang”, meaning the #!
 sequence that tells the system where to find the interpreter.

	shell
	A command-line interpreter. The program that
 interactively gives you a prompt, accepts one or more lines of input, and executes the programs
 you mentioned, feeding each of them their proper arguments and input data. Shells can
 also execute scripts containing such commands. Under Unix, typical
 shells include the Bourne shell (/bin/sh), the C shell (/bin/csh), and the Korn shell (/bin/ksh). Perl is not
 strictly a shell because it’s not interactive (although Perl programs
 can be interactive).

	side effects
	Something extra that happens when you evaluate an expression. Nowadays it can refer to
 almost anything. For example, evaluating a simple assignment statement
 typically has the “side effect” of assigning a value to a variable.
 (And you thought assigning the value was your primary intent in the
 first place!) Likewise, assigning a value to the special variable
 $| ($AUTOFLUSH) has the side effect of forcing a
 flush after every write or print on the currently selected
 filehandle.

	sigil
	A glyph used in magic. Or, for Perl, the symbol in front of a
 variable name, such as $, @, and %.

	signal
	A bolt out of the blue; that is, an event triggered by the
 operating system,
 probably when you’re least expecting it.

	signal handler
	A subroutine that,
 instead of being content to be called in the normal
 fashion, sits around waiting for a bolt out of the blue before it will
 deign to execute. Under Perl,
 bolts out of the blue are called signals, and you send them with the
 kill built-in. See the %SIG hash in Chapter 25 and
 the section Signals in Chapter 15.

	single inheritance
	The features you got from your mother, if she told you that you don’t
 have a father. (See also inheritance and multiple inheritance.) In
 computer languages, the idea that classes reproduce asexually so that a
 given class can only have one direct ancestor or base class. Perl supplies no such
 restriction, though you may certainly program Perl that way if you
 like.

	slice
	A selection of any number of elements from a list, array, or hash.

	slurp
	To read an entire file into a
 string in one
 operation.

	socket
	An endpoint for network communication among multiple processes that works much like a
 telephone or a post office box. The most important thing about a
 socket is its network
 address (like a phone number). Different kinds of sockets
 have different kinds of addresses—some look like filenames, and some
 don’t.

	soft reference
	See symbolic
 reference.

	source filter
	A special kind of module
 that does preprocessing
 on your script just before it gets to the tokener.

	stack
	A device you can put things on the top of, and later take
 them back off in the opposite order in which you put them on. See
 LIFO.

	standard
	Included in the official Perl distribution, as in a standard
 module, a standard tool, or a standard Perl manpage.

	standard error
	The default output stream for nasty remarks that don’t
 belong in standard
 output. Represented within a Perl program by the filehandle
 STDERR. You can use this stream
 explicitly, but the die and
 warn built-ins write to your
 standard error stream automatically (unless trapped or otherwise
 intercepted).

	standard input
	The default input stream for your program, which if
 possible shouldn’t care where its data is coming from. Represented
 within a Perl program by the filehandle STDIN.

	standard I/O
	A standard C library for doing buffered input and output to the
 operating system.
 (The “standard” of standard I/O is at most marginally related to the
 “standard” of standard input and output.) In general, Perl relies on
 whatever implementation of standard I/O a given operating system
 supplies, so the buffering characteristics of a Perl program on one
 machine may not exactly match those on another machine. Normally this
 only influences efficiency, not semantics. If your standard I/O
 package is doing block buffering and you want it to flush the buffer more often, just set the
 $| variable to a true value.

	Standard Library
	Everything that comes with the official perl distribution. Some vendor versions of
 perl change their distributions,
 leaving out some parts or including extras. See also dual-lived.

	standard output
	The default output stream for your program, which if
 possible shouldn’t care where its data is going. Represented within a
 Perl program by the filehandle STDOUT.

	statement
	A command to the computer about what to do next, like a step in a
 recipe: “Add marmalade to batter and mix until mixed.” A statement is
 distinguished from a declaration, which doesn’t tell the
 computer to do anything, but just to learn something.

	statement modifier
	A conditional
 or loop that you
 put after the statement
 instead of before, if you know what we mean.

	static
	Varying slowly compared to something else. (Unfortunately,
 everything is relatively stable compared to something else, except for
 certain elementary particles, and we’re not so sure about them.) In
 computers, where things are supposed to vary rapidly, “static” has a
 derogatory connotation, indicating a slightly dysfunctional variable, subroutine, or method. In Perl culture, the word is
 politely avoided.
If you’re a C or C++ programmer, you might be looking for Perl’s
 state keyword.

	static method
	No such thing. See class
 method.

	static scoping
	No such thing. See lexical
 scoping.

	static variable
	No such thing. Just use a lexical variable in a scope
 larger than your subroutine, or declare it with
 state instead of with my.

	stat structure
	A special internal spot in which Perl keeps the information about
 the last file on which you
 requested information.

	status
	The value returned to the parent process when one of its child processes
 dies. This value is placed in the special variable $?. Its upper eight bits are the exit status of the defunct
 process, and its lower eight bits identify the signal (if any) that
 the process died from. On Unix systems, this status value is the same
 as the status word returned by wait(2). See
 system in Chapter 27.

	STDERR
	See standard
 error.

	STDIN
	See standard
 input.

	STDIO
	See standard
 I/O.

	STDOUT
	See standard
 output.

	stream
	A flow of data into or out of a process as a steady sequence of
 bytes or characters, without the appearance of being broken up into
 packets. This is a kind of interface—the underlying implementation may well break
 your data up into separate packets for delivery, but this is hidden
 from you.

	string
	A sequence of characters such as “He said !@#*&%@#*?!”. A
 string does not have to be entirely printable.

	string context
	The situation in which an expression is expected by its surroundings
 (the code calling it) to return a string. See also context and numeric context.

	stringification
	The process of producing a string representation of an abstract
 object.

	struct
	C keyword introducing a structure definition or name.

	structure
	See data
 structure.

	subclass
	See derived
 class.

	subpattern
	A component of a regular expression
 pattern.

	subroutine
	A named or otherwise accessible piece of program that can
 be invoked from elsewhere in the program in order to accomplish some
 subgoal of the program. A subroutine is often parameterized to
 accomplish different but related things depending on its input
 arguments. If the subroutine
 returns a meaningful value, it
 is also called a function.

	subscript
	A value that indicates the position of a particular array element in an array.

	substitution
	Changing parts of a string via the s/// operator. (We avoid use of this term to
 mean variable
 interpolation.)

	substring
	A portion of a string,
 starting at a certain character position (offset) and proceeding for a certain
 number of characters.

	superclass
	See base
 class.

	superuser
	The person whom the operating system will let do
 almost anything. Typically your system administrator or someone
 pretending to be your system administrator. On Unix systems, the
 root user. On Windows systems,
 usually the Administrator user.

	SV
	Short for “scalar value”. But within the Perl interpreter,
 every referent is treated as
 a member of a class derived from SV, in an object-oriented sort of
 way. Every value inside Perl is
 passed around as a C language SV*
 pointer. The SV struct knows
 its own “referent type”, and the code is smart enough (we hope) not to
 try to call a hash function on a
 subroutine.

	switch
	An option you give on a command line to influence the way
 your program works, usually introduced with a minus sign. The word is
 also used as a nickname for a switch statement.

	switch cluster
	The combination of multiple command-line switches
 (e.g., –a –b
 –c) into one switch (e.g., –abc). Any switch with an additional
 argument must be the last
 switch in a cluster.

	switch statement
	A program technique that lets you evaluate an expression and then, based on the
 value of the expression, do a multiway branch to the appropriate piece
 of code for that value. Also called a “case structure”, named after
 the similar Pascal construct. Most switch statements in Perl are
 spelled given. See The given Statement in Chapter 4.

	symbol
	Generally, any token or
 metasymbol. Often used
 more specifically to mean the sort of name you might find in a
 symbol table.

	symbolic debugger
	A program that lets you step through the execution of your program, stopping or
 printing things out here and there to see whether anything has gone
 wrong, and, if so, what. The “symbolic” part just means that you can
 talk to the debugger using the same symbols with which your program is
 written.

	symbolic link
	An alternate filename that points to the real filename, which in turn points to the
 real file. Whenever the
 operating system is
 trying to parse a pathname
 containing a symbolic link, it merely substitutes the new name and
 continues parsing.

	symbolic reference
	A variable whose value is the name of another variable or
 subroutine. By dereferencing the first variable,
 you can get at the second one. Symbolic references are illegal under
 use strict "refs".

	symbol table
	Where a compiler
 remembers symbols. A program like Perl must somehow remember all the
 names of all the variables,
 filehandles, and
 subroutines you’ve used.
 It does this by placing the names in a symbol table, which is
 implemented in Perl using a hash
 table. There is a separate symbol table for each
 package to give each package
 its own namespace.

	synchronous
	Programming in which the orderly sequence of events can be
 determined; that is, when things happen one after the other, not at
 the same time.

	syntactic sugar
	An alternative way of writing something more easily; a
 shortcut.

	syntax
	From Greek σύνταξις, “with-arrangement”. How things
 (particularly symbols) are put together with each other.

	syntax tree
	An internal representation of your program wherein lower-level
 constructs dangle off the
 higher-level constructs enclosing them.

	syscall
	A function call directly to the operating system. Many of the
 important subroutines and functions you use aren’t direct system
 calls, but are built up in one or more layers above the system call
 level. In general, Perl programmers don’t need to worry about the
 distinction. However, if you do happen to know which Perl functions
 are really syscalls, you can predict which of these will set the
 $! ($ERRNO) variable on failure. Unfortunately,
 beginning programmers often confusingly employ the term “system call”
 to mean what happens when you call the Perl system function, which actually involves
 many syscalls. To avoid any confusion, we nearly always say “syscall”
 for something you could call indirectly via Perl’s syscall function, and never for something
 you would call with Perl’s system
 function.

	taint checks
	The special bookkeeping Perl does to track the flow of
 external data through your program and disallow their use in system
 commands.

	tainted
	Said of data derived from the grubby hands of a user, and thus
 unsafe for a secure program to rely on. Perl does taint checks if you
 run a setuid (or setgid) program, or if you use the
 –T switch.

	taint mode
	Running under the –T switch,
 marking all external data as suspect and refusing to use it with
 system commands. See Chapter 20.

	TCP
	Short for Transmission Control Protocol. A protocol wrapped around
 the Internet Protocol to make an unreliable packet transmission
 mechanism appear to the application program to be a reliable
 stream of bytes.
 (Usually.)

	term
	Short for a “terminal”—that is, a leaf node of a syntax tree. A thing that functions
 grammatically as an operand
 for the operators in an expression.

	terminator
	A character
 or string that
 marks the end of another string. The $/ variable contains the string that
 terminates a readline operation,
 which chomp deletes from the end.
 Not to be confused with delimiters or separators. The period at the end of
 this sentence is a terminator.

	ternary
	An operator taking three operands. Sometimes pronounced
 trinary.

	text
	A string or file containing primarily printable characters.

	thread
	Like a forked process, but without fork’s inherent memory protection. A thread
 is lighter weight than a full process, in that a process could have
 multiple threads running around in it, all fighting over the same
 process’s memory space unless steps are taken to protect threads from
 one another.

	tie
	The bond between a magical variable and its implementation class.
 See the tie function in Chapter 27 and Chapter 14.

	titlecase
	The case used for capitals that are followed by lowercase
 characters instead of by more capitals. Sometimes called sentence case
 or headline case. English doesn’t use Unicode titlecase, but casing
 rules for English titles are more complicated than simply capitalizing
 each word’s first character.

	TMTOWTDI
	There’s More Than One Way To Do It, the Perl Motto. The notion that there can be more than one valid path
 to solving a programming problem in context. (This doesn’t mean that
 more ways are always better or that all possible paths are equally
 desirable—just that there need not be One True Way.)

	token
	A morpheme in a programming language, the smallest unit of text
 with semantic significance.

	tokener
	A module that breaks a program text into a sequence of tokens for later analysis by a
 parser.

	tokenizing
	Splitting up a program text into tokens. Also known as “lexing”, in which
 case you get “lexemes” instead of tokens.

	toolbox approach
	The notion that, with a complete set of simple tools that work well
 together, you can build almost anything you want. Which is fine if
 you’re assembling a tricycle, but if you’re building a defranishizing
 comboflux regurgalator, you really want your own machine shop in which
 to build special tools. Perl is sort of a machine shop.

	topic
	The thing you’re working on. Structures like while(<>), for, foreach, and given set the topic for you by assigning to
 $_, the default
 (topic) variable.

	transliterate
	To turn one string representation into another by mapping each
 character of the source string to its corresponding character in the
 result string. Not to be confused with translation: for example, Greek
 πολύχρωμος transliterates into
 polychromos but translates into
 many-colored. See the tr/// operator in Chapter 5.

	trigger
	An event that causes a handler to be run.

	trinary
	Not a stellar system with three stars, but an operator taking three operands. Sometimes pronounced
 ternary.

	troff
	A venerable typesetting language from which Perl derives the name of
 its $% variable and which is
 secretly used in the production of Camel books.

	true
	Any scalar value that doesn’t evaluate to 0 or "".

	truncating
	Emptying a file of existing contents, either automatically when
 opening a file for writing or explicitly via the truncate function.

	type
	See data type
 and class.

	type casting
	Converting data from one type to another. C permits this. Perl does
 not need it. Nor want it.

	typedef
	A type definition in the C and C++ languages.

	typed lexical
	A lexical
 variable that is declared with a class type: my
 Pony $bill.

	typeglob
	Use of a single identifier, prefixed with *. For example, *name stands for any or all of $name, @name, %name, &name, or just name. How you use it determines whether it
 is interpreted as all or only one of them. See Typeglobs and Filehandles in Chapter 2.

	typemap
	A description of how C types may be transformed to and from Perl types
 within an extension module
 written in XS.

	UDP
	User Datagram Protocol, the typical way to send datagrams over the Internet.

	UID
	A user ID. Often used in the context of file or process ownership.

	umask
	A mask of those permission bits that should be
 forced off when creating files or directories, in order to establish a
 policy of whom you’ll ordinarily deny access to. See the umask function.

	unary operator
	An operator with only one operand, like ! or chdir. Unary operators are usually prefix
 operators; that is, they precede their operand. The ++ and ––
 operators can be either prefix or postfix. (Their position
 does change their meanings.)

	Unicode
	A character set comprising all the major character sets of the world,
 more or less. See http://www.unicode.org.

	Unix
	A very large and constantly evolving language with several
 alternative and largely incompatible syntaxes, in which anyone can
 define anything any way they choose, and usually do. Speakers of this
 language think it’s easy to learn because it’s so easily twisted to
 one’s own ends, but dialectical differences make tribal
 intercommunication nearly impossible, and travelers are often reduced
 to a pidgin-like subset of the language. To be universally understood,
 a Unix shell programmer must spend years of study in the art. Many
 have abandoned this discipline and now communicate via an
 Esperanto-like language called Perl.
In ancient times, Unix was also used to refer to some code that
 a couple of people at Bell Labs wrote to make use of a PDP-7 computer
 that wasn’t doing much of anything else at the time.

	uppercase
	In Unicode, not just characters with the General Category of
 Uppercase Letter, but any character with the Uppercase property,
 including some Letter Numbers and Symbols. Not to be confused with
 titlecase.

	value
	An actual piece of data, in contrast to all the variables, references,
 keys, indices, operators, and whatnot that you need to access the
 value.

	variable
	A named storage location that can hold any of various kinds of
 value, as your program sees
 fit.

	variable interpolation
	The interpolation of a scalar or array
 variable into a string.

	variadic
	Said of a function
 that happily receives an indeterminate number of actual arguments.

	vector
	Mathematical jargon for a list of scalar values.

	virtual
	Providing the appearance of something without the reality, as in:
 virtual memory is not real memory. (See also memory.) The opposite of “virtual” is
 “transparent”, which means providing the reality of something without
 the appearance, as in: Perl handles the variable-length UTF‑8
 character encoding transparently.

	void context
	A form of scalar
 context in which an expression is not expected to return
 any value at all and is
 evaluated for its side
 effects alone.

	v-string
	A “version” or “vector” string
 specified with a v followed by a
 series of decimal integers in dot notation, for instance, v1.20.300.4000. Each number turns into a
 character with the
 specified ordinal value. (The v is
 optional when there are at least three integers.)

	warning
	A message printed to the STDERR
 stream to the effect that something might be wrong but isn’t worth
 blowing up over. See warn in Chapter 27 and the warnings pragma in Chapter 29.

	watch expression
	An expression which, when its value changes, causes a breakpoint in the Perl
 debugger.

	weak reference
	A reference that doesn’t get counted normally. When all
 the normal references to data disappear, the data disappears. These
 are useful for circular references that would never disappear
 otherwise.

	whitespace
	A character
 that moves your cursor but doesn’t otherwise put
 anything on your screen. Typically refers to any of: space, tab, line
 feed, carriage return, or form feed. In Unicode, matches many other
 characters that Unicode considers whitespace, including the no-break space.

	word
	In normal “computerese”, the piece of data of the size most efficiently handled by
 your computer, typically 32 bits or so, give or take a few powers of
 2. In Perl culture, it more often refers to an alphanumeric identifier (including underscores),
 or to a string of nonwhitespace characters bounded by whitespace or
 string boundaries.

	working directory
	Your current directory, from which relative
 pathnames are interpreted by the operating system. The operating
 system knows your current directory because you told it with a
 chdir, or because you started out
 in the place where your parent process was when you were born.

	wrapper
	A program or subroutine that runs some other program or subroutine
 for you, modifying some of its input or output to better suit your
 purposes.

	WYSIWYG
	What You See Is What You Get. Usually used when something
 that appears on the screen matches how it will eventually look, like
 Perl’s format declarations. Also
 used to mean the opposite of magic because everything works exactly as
 it appears, as in the three-argument form of open.

	XS
	An extraordinarily exported, expeditiously excellent,
 expressly eXternal Subroutine, executed in existing C or C++ or in an
 exciting extension language
 called (exasperatingly) XS.

	XSUB
	An external subroutine defined in XS.

	yacc
	Yet Another Compiler Compiler. A parser generator without
 which Perl probably would not have existed. See the file perly.y in the Perl source
 distribution.

	zero width
	A subpattern assertion matching the null string between characters.

	zombie
	A process that has died (exited) but whose parent has not yet
 received proper notification of its demise by virtue of having called
 wait or waitpid. If you fork, you must clean up after your child
 processes when they exit; otherwise, the process table will fill up
 and your system administrator will Not Be Happy with you.

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 A
	AnyDBM_File module, Tied Variables, Standard Modules
	AnyEvent module, Time Efficiency
	App::perlbrew module, The Standard Distribution
	attributes pragma, Subroutine Attributes, Object Construction, my, ref , attributes, attributes, attributes
		about, attributes
	get function, attributes
	my operator and, my
	reftype function, Object Construction, ref , attributes
	subroutines and, Subroutine Attributes

	autobox pragma, Python Traps
	autodie pragma, Python Traps, Python Traps, Java Traps, autodie
	AutoLoader module, The goto Operator, Autoloading, Wandering the Stacks, autouse
		defining functions, The goto Operator
	loading packages, Autoloading
	make install procedure and, Wandering the Stacks
	runtime demand loading and, autouse

	AutoSplit module, Autoloading, Files and Filesystems, Glossary
	autouse pragma, The goto Operator, autouse

 B
	B::Backend module, Compiler Backends
	B::Bytecode module, Compiling Your Code, Compiler Backends, The Bytecode Generator, The C Code Generators
		about, The Bytecode Generator, The C Code Generators
	code generation and, Compiling Your Code
	as compiler backend, Compiler Backends

	B::C module, Compiling Your Code, Compiler Backends, The C Code Generators
	B::CC module, Compiling Your Code, Compiler Backends, The C Code Generators
	B::Deparse module, Compiling Your Code, Compiler Backends, Code Development Tools
	B::Fathom module, Compiler Backends
	B::Graph module, Compiler Backends
	B::Lint module, Compiler Backends, Code Development Tools, warnings
	B::Size module, Compiler Backends
	B::Xref module, Compiler Backends, Code Development Tools
	base pragma, Class Inheritance–Inheritance Through @ISA, Special Variables in Alphabetical Order, base, parent
		about, base
	@ISA variable and, Class Inheritance–Inheritance Through @ISA, Special Variables in Alphabetical Order
	parent pragma and, parent

	bigint pragma, Scalar Values, Multiplicative Operators, Shift Operators, Bitwise Operators, bigint
		about, bigint
	bitwise operators and, Bitwise Operators
	multiplicative operators and, Multiplicative Operators
	scalar values and, Scalar Values
	shift operators and, Shift Operators

	bignum pragma, Scalar Values, Multiplicative Operators, bignum
	bigrat pragma, Scalar Values, Multiplicative Operators, bigrat
	blib pragma, Internal testing, blib
	boolean module, Ruby Traps
	BSD::Resource module, Code Masquerading As Data, getpriority , setpriority
	ByteLoader module, The Bytecode Generator
	bytes pragma, Special Variables in Alphabetical Order, bytes, charnames

 C
	Carp module, Managing unknown symbols, Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, exit, exit, warn , warn , Signal Handlers
		carp function, Scalar-Tying Methods, warn
	cluck function, warn
	confess function, Scalar-Tying Methods, exit
	croak function, Scalar-Tying Methods, exit, Signal Handlers
	managing unknown symbols, Managing unknown symbols

	charnames pragma, String Literals, Specific Characters, Unicode, Building Character, chr , ord , charnames, Custom Character Names, Runtime Lookups–Runtime Lookups, Runtime Lookups, Runtime Lookups, Runtime Lookups
		about, charnames
	backslashed character escapes and, String Literals
	custom character names, Custom Character Names
	loading codepoints, Unicode
	metasymbols and, Specific Characters
	runtime lookups, Runtime Lookups–Runtime Lookups
	string_vianame function, Runtime Lookups
	viacode function, Building Character, chr , Runtime Lookups
	vianame function, ord , Runtime Lookups

	Chase module, autouse
	Class::Contract module, Using Closures for Private Objects
	Class::Multimethod module, Java Traps
	Config module, Signals, Switches, Porter Efficiency, Programming with Style, Portable Perl, Style, Special Variables in Alphabetical Order, Other modifiers, symlink , tie , threads
		configuration variables and, Switches
	efficiency practices, Porter Efficiency
	inspecting options, threads
	integer formats and, Other modifiers
	$OSNAME variable
 and, Special Variables in Alphabetical Order
	portability and, Portable Perl, Style
	programming practices, Programming with Style
	relative symbolic links and, symlink
	%SIG variable and, Signals
	tie implementations, tie

	constant pragma, Inlining Constant Functions, Overloading Constants, constant–Restrictions on constant
	CORE pseudopackage, Overriding Built-in Functions
	Coro module, Time Efficiency
	CPAN.pm module, cpan, Standard Modules
	CPAN::DistnameInfo module, Version checking
	CPAN::Mini module, Creating a MiniCPAN–Creating a MiniCPAN, Glossary
	CPANPLUS library, cpanp
	Crypt::* modules, crypt
	Cwd module, Environment Variables, Time Efficiency, chdir

 D
	Data::Dump module, Grammars, Access and Printing
	Data::Dumper module, Access and Printing, Saving Data Structures–Saving Data Structures, UNIVERSAL: The Ultimate Ancestor Class, Endianness and Number Width
		parsable code and, Access and Printing
	portability and, Endianness and Number Width
	references to subroutines and, UNIVERSAL: The Ultimate Ancestor Class
	saving data structures, Saving Data Structures–Saving Data Structures

	Date::Parse module, Dates and Times
	DateTime module, Dates and Times
	DB module, The Perl Debugger, Customizing with Init Files
	DBD::SQLite module, Standard Modules
	DBI module, Initializers, Standard Modules
	DBM_Filter module, The Encode Module, dbmopen
	DB_File module, dbmopen , tie
	deprecate pragma, deprecate
	Devel::AssertOS module, Portable Perl
	Devel::CheckOS module, Portable Perl
	Devel::Cover module, Internal testing
	Devel::DProf module, Switches, Profiling Perl–Devel::DProf
	Devel::NYTProf module, Profiling Perl, Devel::NYTProf
	Devel::Peek module, What Is a Reference?
	Devel::REPL module, Python Traps
	Devel::SmallProf module, Profiling Perl
	diagnostics pragma, What’s New in This Edition, Programming with Style, diagnostics–diagnostics
	Digest::* modules, crypt
	Dist::Zilla module, Dist::Zilla
	Distribution::Cooker module, Distribution::Cooker
	Dumpvalue module, Access and Printing
	DynaLoader module, Autoloading

 E
	Encode module, Wildcard Metasymbols, The Encode Module–The Encode Module, binmode , open , open, utf8
		about, The Encode Module–The Encode Module
	metasymbols and, Wildcard Metasymbols
	open pragma and, open
	text files and, open
	usage example, binmode
	utf8 pragma and, utf8

	Encode::Locale module, The Encode Module
	encoding pragma, Environment Variables, encoding
	English module, Interpolating Array Values, Special Variables in Alphabetical Order, Picture Formats, Picture Formats, Format Variables, format, formline, open
		$LIST_SEPARATOR variable and, Interpolating Array Values
	$– variable and, Picture Formats
	accessing format–specific variables, format
	$ACCUMULATOR variable
 and, formline
	$AUTOFLUSH variable
 and, open
	longer synonyms and, Special Variables in Alphabetical Order
	picture formats, Picture Formats
	reading variable names, Format Variables

	Env module, Shell Traps
	Errno module, Style, Wandering the Stacks
		about, Wandering the Stacks
	portability and, Style

	Expect module, Bidirectional Communication
	Exporter module, Symbol Tables, Loading Modules, Module Privacy and the Exporter–Tag-handling utility functions, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, use , autouse, strict “vars”
		about, Symbol Tables
	@EXPORT variable
 and, Special Variables in Alphabetical Order
	@EXPORT_OK variable
 and, Special Variables in Alphabetical Order
	%EXPORT_TAGS
 variable and, Special Variables in Alphabetical Order
	import method, Loading Modules, use , autouse
	module privacy and, Module Privacy and the Exporter–Tag-handling utility functions
	per–package variables and, strict “vars”

	ExtUtils::MakeMaker module, blib
	ExtUtils::MM_VMS module, Standard Modules

 F
	Fcntl module, chmod , fcntl , flock , seek , stat , sysopen , sysseek , Wandering the Stacks
		about, Wandering the Stacks
	fcntl function and, fcntl
	symbolic names and, chmod , flock , seek , stat , sysseek
	sysopen function and, sysopen

	feature pragma, The given Statement, Pattern Modifiers, Switches, Switches, Switches, Switches, Perl Functions by Category, say , state, use , feature, feature, feature, feature, feature
		about, feature
	loading, use
	say feature, Switches, say , feature
	scoping and, Perl Functions by Category
	state feature, Switches, state, feature
	switch feature, The given Statement, Switches, feature
	unicode_strings feature, Pattern Modifiers, Switches, feature

	fields pragma, Pseudohashes, Pseudohashes, Class Inheritance–Inheritance Through @ISA, Compiling Your Code, Special Variables in Alphabetical Order, base
		about, Compiling Your Code
	base classes and, base
	%FIELDS variable
 and, Special Variables in Alphabetical Order
	@ISA variable and, Class Inheritance–Inheritance Through @ISA
	new function, Pseudohashes
	phash function, Pseudohashes

	File::Basename module, Loading Modules, Files and Filesystems
	File::chmod module, chmod
	File::Copy module, rename
	File::Glob module, Overriding Built-in Functions, glob
	File::HomeDir module, Files and Filesystems
	File::Map module, System V IPC, Space Efficiency
	File::Path module, rmdir
	File::Spec module, Files and Filesystems
	File::stat module, stat
	File::Temp module, Temporary Files, Files and Filesystems
	filetest pragma, filetest
	Filter module, Source Filters
	FindBin module, require , lib

 G
	GDBM_File module, File Locking, dbmopen
	Gearman module, Time Efficiency
	Getopt::Long module, Line Input (Angle) Operator, Loop Control, Code Development Tools, shift
	Getopt::Std module, Line Input (Angle) Operator, Loop Control, shift

 H
	Hash::Util module, Pseudohashes, Loading Modules, Environment Variables

 I
	if pragma, use , if
	inc::latest module, A Tour of the Perl Library, inc::latest
	integer pragma, Multiplicative Operators, Programming with Style, integer
	IO::File module, Temporary Files, sysopen
		about, sysopen
	new_tmpfile function, Temporary Files

	IO::Handle module, Symbol Table References, Other Tricks You Can Do with Hard References, Composition, Access, and Printing of More Elaborate
 Records, Tie Modules on CPAN, Detecting and Laundering Tainted Data, Universal Blunders, Special Variables in Alphabetical Order, Format Variables, Accessing Formatting Internals, exec , fork , format, getc , open , sysopen
		accessing formatting internals, Accessing Formatting Internals
	accessing format–specific variables, format
	accessing special variables, Format Variables
	autoflush method, exec , fork , open
	data structure records, Composition, Access, and Printing of More Elaborate
 Records
	file handling considerations, sysopen
	hard references and, Other Tricks You Can Do with Hard References
	per–filehandle variables and, Special Variables in Alphabetical Order
	programming practices, Universal Blunders
	symbol table references, Symbol Table References
	tied variables and, Tie Modules on CPAN
	ungetc function, getc
	untaint function, Detecting and Laundering Tainted Data

	IO::Pty module, Bidirectional Communication
	IO::Seekable module, seek , sysseek
	IO::Select module, Bidirectional Communication, select (ready file descriptors)
	IO::Socket module, Sockets, bind , connect
	IO::Socket::INET module, Networking Clients, Networking Clients, Networking Servers
	IO::Socket::IP module, Networking Clients
	IO::WrapTie module, Tie Modules on CPAN
	IPC::Open2 module, Bidirectional Communication, open
	IPC::Open3 module, Bidirectional Communication, open
	IPC::Run module, Interprocess Communication (IPC)
	IPC::Semaphore module, semctl , semget , semop
	IPC::Shareable module, System V IPC, System V IPC
	IPC::System::Simple module, Interprocess Communication (IPC)
	IPC::SysV module, msgctl , msgget , msgrcv , semget , semop , shmctl
		msgctl function and, msgctl
	msgget function and, msgget
	msgrcv function and, msgrcv
	semget function and, semget
	semop function and, semop
	shmctl function and, shmctl

 L
	less pragma, less
	lib pragma, Loading Modules, By Hand, Special Variables in Alphabetical Order, require , lib
		about, lib
	@INC variable
 and, Special Variables in Alphabetical Order
	loading modules, Loading Modules
	PERL5LIB environment variable and, By Hand
	require function and, require

	libnet API, Sockets
	libwww API, Sockets
	List::Util module, grep
	local::lib module, By Hand, cpan–cpanminus
	locale pragma, Pattern Modifiers, sort , locale
		about, locale
	pattern modifiers and, Pattern Modifiers
	sort pragma and, sort

 M
	Mail::Mailer module, Sockets, Interprocess Communication (IPC)
	Mail::Send module, Interprocess Communication (IPC)
	Mail::Sendmail module, Interprocess Communication (IPC)
	Math::BigFloat module, bignum
	Math::BigInt module, Overloading, bigint, bignum, bigrat
	Math::BigRat module, bigrat
	Math::Complex module, User-Defined Pragmas
	Math::MySum module, Internal testing
	Math::Random::MT::Perl module, rand
	Math::Random::Secure module, rand
	Math::Trig module, atan2, cos , sin
		acos function, cos
	asin function, sin
	tan function, atan2

	Math::TrulyRandom module, rand, srand
	Memoize module, Time Efficiency
	MLDBM module, Tie Modules on CPAN
	Mo framework, The Moose in the Room
	Module::Build module, blib, inc::latest
	Module::CoreList module, Roll Call
	Module::Starter module, Module::Starter
	mod_perl extension (Apache), Executing Your Code
	Mojolicious package, A Tour of the Repository
	Moo module, The Moose in the Room
	Moose module, Unloading Modules, The Moose in the Room–The Moose in the Room
	Mouse framework, The Moose in the Room
	mro pragma, Alternate Method Searching, UNIVERSAL: The Ultimate Ancestor Class, mro
	MRO::Compat module, Alternate Method Searching

 N
	Net::DNS module, Sockets
	Net::FTP module, Sockets
	Net::hostent module, gethostbyaddr , gethostbyname , gethostent
	Net::netent module, getnetbyaddr , getnetbyname , getnetent
	Net::NNTP module, Sockets
	Net::proto module, getprotobyname , getprotobynumber , getprotoent
	Net::servent module, getservbyname , getservbyport , getservent
	Net::SMTP module, Sockets
	Net::Telnet module, Sockets
	Numbers module, overload, overload, overload
		about, overload
	myadd function, overload
	mysub function, overload

 O
	Opcode module, Restricting operator access, ops
	open pragma, Getting at Unicode Data–The Encode Module, Filehandle-Tying Methods, Switches, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Universal Blunders, read , encoding, open, open, open, open, open, open, open, open
		:bytes layer, Environment Variables, open
	:crlf layer, Environment Variables, open
	:encoding layer, open
	:locale layer, open
	:mmap layer, Environment Variables
	:perlio layer, Environment Variables
	:pop layer, Environment Variables
	:raw layer, Filehandle-Tying Methods, Environment Variables, open
	:std layer, open
	:stdio layer, Environment Variables
	:unix layer, Environment Variables
	:utf8 layer, Environment Variables, open
	:win32 layer, Environment Variables
	about, encoding, open
	–C switch and, Switches
	programming practices, Universal Blunders
	read function and, read
	setting encoding, Getting at Unicode Data–The Encode Module

	ops pragma, ops
	overload pragma, The overload Pragma, Overloadable Operators–Overloadable Operators, Public Overload Functions, Public Overload Functions, Public Overload Functions, Special Variables in Alphabetical Order, overload
		about, The overload Pragma, overload
	Method function, Public Overload Functions
	%OVERLOAD variable
 and, Special Variables in Alphabetical Order
	overloadable operators and, Overloadable Operators–Overloadable Operators
	Overloaded function, Public Overload Functions
	StrVal function, Public Overload Functions

	overloading pragma, overloading

 P
	parent pragma, Class Inheritance–Inheritance Through @ISA, base, parent
		about, parent
	base pragma and, base
	@ISA variable and, Class Inheritance–Inheritance Through @ISA

	Path::Class module, Files and Filesystems
	PDL module, Slices
	Perl::Critic module, Molecules, Code Development Tools, Programming with Style
	Perl::Tidy module, Universal Blunders, Programming with Style, Writing Your Own Pod Tools
	PerlIO module, Switches, open
	PerlX::MethodCallWithBlock extension, Ruby Traps
	PerlX::Range extension, Ruby Traps
	PGP::* modules, crypt
	pod2html module, Pod Translators and Modules
	pod2latex module, Pod Translators and Modules
	pod2man module, Pod Translators and Modules
	pod2text module, Pod Translators and Modules, Writing Your Own Pod Tools
	Pod::Checker module, Pod Translators and Modules
	Pod::Find module, Pod Translators and Modules
	Pod::PseudoPod module, Command Paragraphs
	Pod::Simple module, Pod Translators and Modules, Writing Your Own Pod Tools
	Pod::Simple::Text module, Writing Your Own Pod Tools
	POE module, Time Efficiency
	POSIX module, Pattern Modifiers, Blocking Signals, Blocking Signals, Named Pipes, Temporary Files, Special Variables in Alphabetical Order, atan2, cos , exit, getc , gmtime, gmtime, localtime, seek , setpgrp , sin , sleep, syscall , sysseek , waitpid , Wandering the Stacks
		about, Wandering the Stacks
	acos function, cos
	asin function, sin
	blocking signals, Blocking Signals
	exit function, exit
	getattr function, getc
	import tag groups and, waitpid
	input buffering and, Special Variables in Alphabetical Order
	mkfifo function, Named Pipes
	mktime function, gmtime
	pause function, sleep
	setlocale function, Pattern Modifiers
	setsid function, setpgrp
	sigprocmask syscall and, Blocking Signals
	strftime function, gmtime, localtime
	symbolic names and, seek , sysseek
	system calls and, syscall
	tan function, atan2
	tmpnam function, Temporary Files

	PPI package, Code Development Tools
	pragma module, Overloading Constants, Overloading Constants
		constant function, Overloading Constants
	remove_constant function, Overloading Constants

 R
	re pragma, Environment Variables, Code Masquerading As Data, re
	re::engine::LPEG module, Alternate Engines
	re::engine::Lua module, Alternate Engines
	re::engine::Oniguruma module, Alternate Engines
	re::engine::PCRE module, Alternate Engines
	re::engine::Plan9 module, Alternate Engines
	re::engine::Plugin module, Alternate Engines
	re::engine::RE2 module, Alternate Engines–Alternate Engines
	Regexp module, Other Tricks You Can Do with Hard References
	Regexp::Grammars module, Grammars–Grammars

 S
	Safe module, Safe Compartments–Code Masquerading As Data, Safe examples–Safe examples, Safe examples, ops
		handling insecure code, Safe Compartments–Code Masquerading As Data
	ops pragma and, ops
	reval method, Safe examples
	usage examples, Safe examples–Safe examples

	Scalar::Util module, Prototypes, Garbage Collection, Circular References, and Weak
 References, Garbage Collection, Circular References, and Weak
 References, Garbage Collection with destroy
 Methods, Detecting and Laundering Tainted Data
		breaking references and, Garbage Collection with destroy
 Methods
	is_weak function, Garbage Collection, Circular References, and Weak
 References
	set_prototype function, Prototypes
	tainted function, Detecting and Laundering Tainted Data
	weaken function, Garbage Collection, Circular References, and Weak
 References

	SDBM_File module, Standard Modules
	SelectSaver module, select (output filehandle)
	SelfLoader module, The goto Operator, Autoloading, autouse
	Shell module, Autoloading
	ShMem package, System V IPC
	sigtrap pragma, Signals, Avant-Garde Compiler, Retro Interpreter, Programming with Style, sigtrap, Signal Handlers, Predefined Signal Lists, Predefined Signal Lists, Examples of sigtrap
		about, sigtrap
	converting singals into exceptions, Avant-Garde Compiler, Retro Interpreter
	other arguments supported, Predefined Signal Lists
	predefined signal lists, Predefined Signal Lists
	programming practices, Programming with Style
	signal handlers and, Signals, Signal Handlers
	usage examples, Examples of sigtrap

	Smart::Comments module, Molecules
	Socket module, Sockets, Networking Clients, Networking Servers, Newlines, gethostbyaddr , gethostbyaddr , gethostbyaddr , getsockopt , setsockopt , Wandering the Stacks
		about, Sockets, Wandering the Stacks
	AF_INET attribute, gethostbyaddr
	getaddrinfo function, gethostbyaddr
	inet_ntoa function, gethostbyaddr
	networking clients, Networking Clients
	networking servers, Networking Servers
	newlines and, Newlines
	SOL_SOCKET attribute, getsockopt , setsockopt

	sort pragma, sort , sort
	Storable module, Saving Data Structures, Endianness and Number Width
	strict pragma, Simplicities, Name Lookups, Scoped Declarations, Controlling the Use of Globals, Restricting namespace access, Common Goofs for Novices, Frequently Ignored Advice, Programming with Style, Programming with Style, Special Variables in Alphabetical Order, abs , strict, strict “refs”, strict “vars”, strict “subs”
		about, Simplicities, strict
	barewords and, strict “subs”
	handling insecure code, Restricting namespace access
	lexical scoping and, Scoped Declarations
	my modifier and, abs
	programming practices, Common Goofs for Novices, Frequently Ignored Advice, Programming with Style, Programming with Style
	references and, strict “refs”
	variables and, Name Lookups, Controlling the Use of Globals, Special Variables in Alphabetical Order, strict “vars”

	Struct::Class module, Managing Instance Data
	subs pragma, Method Autoloading, subs
	SUPER pseudoclass, Accessing Overridden Methods–Accessing Overridden Methods
	Symbol module, Prototypes, reset
		delete_package function, reset
	qualify_to_ref function, Prototypes

 T
	Taint::Util module, Detecting and Laundering Tainted Data, Detecting and Laundering Tainted Data
		taint function, Detecting and Laundering Tainted Data
	tainted function, Detecting and Laundering Tainted Data

	Term::ReadKey module, Editor Support for Debugging, getc , ioctl
	Term::ReadLine module, Editor Support for Debugging, Debugger Options, Debugger Options, Unattended Execution
		debugging support, Editor Support for Debugging, Debugger Options, Debugger Options
	unattended execution and, Unattended Execution

	Term::Rendezvous module, Unattended Execution
	Test::More module, Internal testing
	Test::Pod module, Pod Translators and Modules
	Test::Pod::Coverage module, Pod Translators and Modules
	Text::CPP module, Switches
	Thread module, threads
	Thread::Queue module, threads
	threads pragma, threads–threads, threads
		about, threads–threads
	async function, threads

	threads::shared pragma, threads
	Tie::Array module, Tying Arrays, Array-Tying Methods, Array-Tying Methods, tie
		about, Tying Arrays
	SPLICE subroutine, Array-Tying Methods, Array-Tying Methods
	tie function and, tie

	Tie::Cache::LRU module, Tie Modules on CPAN
	Tie::Const module, Tie Modules on CPAN
	Tie::Counter module, Magical Counter Variables, Tie Modules on CPAN
	Tie::CPHash module, Tie Modules on CPAN
	Tie::Cycle module, Cycling Through Values, Tie Modules on CPAN
	Tie::DBI module, Tie Modules on CPAN
	Tie::DevRandom module, Creative Filehandles
	Tie::Dict module, Tie Modules on CPAN
	Tie::DictFile module, Tie Modules on CPAN
	Tie::DNS module, Tie Modules on CPAN
	Tie::EncryptedHash module, Tie Modules on CPAN
	Tie::FileLRUCache module, Tie Modules on CPAN
	Tie::FlipFlop module, Tie Modules on CPAN
	Tie::Handle module, tie
	Tie::Hash module, Tying Hashes, tie
	Tie::Hash::NamedCapture module, Named capture groups, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order
	Tie::HashDefaults module, Tie Modules on CPAN
	Tie::HashHistory module, Tie Modules on CPAN
	Tie::iCal module, Tie Modules on CPAN
	Tie::IxHash module, Tie Modules on CPAN
	Tie::LDAP module, Tie Modules on CPAN
	Tie::Open2 module, Creative Filehandles–Creative Filehandles
	Tie::Persistent module, Tie Modules on CPAN
	Tie::Pick module, Tie Modules on CPAN
	Tie::RDBM module, Tie Modules on CPAN
	Tie::RefHash module, References Don’t Work As Hash Keys
	Tie::Scalar module, Tying Scalars, tie
	Tie::SecureHash module, Using Closures for Private Objects
	Tie::StdArray module, Tying Arrays
	Tie::STDERR module, Tie Modules on CPAN
	Tie::StdHash module, Tying Hashes
	Tie::StdScalar module, Tying Scalars
	Tie::SubstrHash module, Space Efficiency
	Tie::Syslog module, Tie Modules on CPAN
	Tie::TextDir module, Tie Modules on CPAN
	Tie::Toggle module, Tie Modules on CPAN
	Tie::TZ module, Tie Modules on CPAN
	Tie::VecArray module, Tie Modules on CPAN
	Tie::Watch module, Tie Modules on CPAN
	Time::gmtime module, gmtime
	Time::HiRes module, alarm , select (ready file descriptors) , sleep, syscall , time
		alarms and, alarm
	granularity of measurements, time
	sleep function, select (ready file descriptors)
	system calls and, syscall
	usleep function, sleep

	Time::Local module, Dates and Times, gmtime, localtime
		portability considerations, Dates and Times
	timegm function, gmtime
	timelocal function, localtime

	Time::localtime module, localtime
	Tk module, Initializers, Debugger Options, User Efficiency
	Try::Tiny module, Prototypes

 U
	underscore module, Magically Banishing $_
	Unicode::CaseFold module, A Case of Mistaken Identity, fc , lc , uc
		fc function and, A Case of Mistaken Identity, fc
	lc function and, lc
	uc function and, uc

	Unicode::Collate module, Relational Operators, Graphemes and Normalization, Comparing and Sorting Unicode Text, Comparing and Sorting Unicode Text, Comparing and Sorting Unicode Text, Using the uca with Perl’s
 sort, Locale Sorting, fc , fc , sort
		about, Graphemes and Normalization
	cmp method, fc
	eq method, fc
	locale sorting, Locale Sorting
	normalization and, Comparing and Sorting Unicode Text
	relational operators and, Relational Operators
	sort function and, sort
	sort method, Using the uca with Perl’s
 sort
	UCA support, Comparing and Sorting Unicode Text
	version considerations, Comparing and Sorting Unicode Text

	Unicode::Collate::Locale module, Relational Operators, Locale Sorting, fc , fc , sort
		cmpmethod, fc
	eq method, fc
	locale sorting, Locale Sorting
	relational operators and, Relational Operators
	sort function and, sort

	Unicode::GCString module, Graphemes and Normalization, Graphemes and Normalization, String Formats, More examples, Picture Formats, Picture Formats, chop , index, index, index, length , pos , rindex, rindex, rindex, substr
		about, Graphemes and Normalization
	binary formats, More examples
	chopping strings, chop
	grapheme support, Graphemes and Normalization, length , pos
	index method, index, rindex
	picture formats, Picture Formats, Picture Formats
	pos method, index, rindex
	rindex method, index, rindex
	string formats, String Formats
	substr method, substr

	Unicode::LineBreak module, Graphemes and Normalization, Picture Formats
	Unicode::Normalize module, Graphemes and Normalization, Prototypes, Prototypes
		about, Graphemes and Normalization
	NFC function, Prototypes
	NFD function, Prototypes

	Unicode::Regex::Set module, Building Character
	Unicode::Tussle module, Graphemes and Normalization, Comparing and Sorting Unicode Text
		ucsort program, Comparing and Sorting Unicode Text
	unifmt program, Graphemes and Normalization

	Unicode::UCD module, More Goodies
	UNIVERSAL class, Version checking, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, Method Autoloading, Private Methods
		can method, UNIVERSAL: The Ultimate Ancestor Class, Method Autoloading, Private Methods
	class inheritance and, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class
	DOES method, UNIVERSAL: The Ultimate Ancestor Class
	isa method, UNIVERSAL: The Ultimate Ancestor Class
	version checking and, Version checking
	VERSION method, UNIVERSAL: The Ultimate Ancestor Class

	User::grent module, getgrent , getgrgid , getgrnam
	User::pwent module, getpwent , getpwnam , getpwuid
	utf8 pragma, Conditional Operator, Show, Don’t Tell–Show, Don’t Tell, Getting at Unicode Data, utf8

 V
	vars pragma, strict “vars”, vars
	version module, Other Tricks You Can Do with Hard References, Version checking, version
	vmsish pragma, vmsish, exit, hushed, status, time
		about, vmsish
	exit feature, exit
	hushed feature, hushed
	status feature, status
	time feature, time

 W
	warnings pragma, Controlling Warnings, Scalar-Tying Methods, Switches, Common Goofs for Novices, Universal Blunders, Python Traps, Programming with Style, Fluent Perl, ioctl , warn , warnings–warnings, warnings, warnings, warnings, warnings
		about, Controlling Warnings, warn , warnings–warnings
	enabled function, warnings
	enabling warnings, Switches
	ioctl function and, ioctl
	programming practices, Common Goofs for Novices, Universal Blunders, Python Traps, Programming with Style, Fluent Perl
	register function, warnings
	tied scalars and, Scalar-Tying Methods
	warn function, warnings
	warnif function, warnings

	Win32::Pipe module, Named Pipes
	Win32::Process module, fork
	Win32::TieRegistry module, Tie Modules on CPAN
	Wx module, User Efficiency

 X
	XML::Parser module, Generation of a Hash of Complex Records, Fluent Perl

 Index

 Symbols

 	^ (bitwise XOR) operator, Bitwise Operators

 	^ regex assertion, Beginnings: The \A and ^ Assertions

 	_ (underline) filehandle, Special Variables in Alphabetical Order

 	– (subtraction) operator, Additive Operators

 	– debugger command, Locating Code

 	–– switch, Switches

 	–– (autodecrement) operator, Autoincrement and Autodecrement

 	–> (arrow) operator, The Arrow Operator, Using the Arrow Operator–Using the Arrow Operator, Method Invocation Using the Arrow Operator

 	–0 command-line switch, Command Processing, Switches

 	, (comma) operator, Comma Operators

 	; (semicolon), Simple Statements, Prototypes, Universal Blunders, Fluent Perl

 	

 	programming practices, Universal Blunders, Fluent Perl

 	in simple
 statements, Simple Statements

 	subroutines and, Prototypes

 	:: package separator, Names, Library Science

 	! (logical NOT) operator, Logical Operators, Logical and, or, not, and xor

 	!! debugger command, Actions and Command Execution

 	!= (not equal) operator, Some Numeric and String Comparison Operators, Equality Operators

 	?: (conditional) operator, Conditional Operator–Conditional Operator

 	. debugger command, Stepping and Running

 	.. (range) operator, Range Operators–Range Operators, Python Traps

 	... (range) operator, The Ellipsis Statement

 	... (ellipsis statement), The Ellipsis Statement

 	() (parentheses), Terms and List Operators (Leftward), The Regular Expression Bestiary, Frequently Ignored Advice

 	[] (square brackets), Arrays, Complexities, Bracketed Character Classes–Bracketed Character Classes, The anonymous array composer

 	

 	anonymous array composer, The anonymous array composer

 	array subscripts and, Arrays

 	bracketed character classes and, Bracketed Character Classes–Bracketed Character Classes

 	scalar lists and, Complexities

 	{ } (curly braces), Hashes, Molecules, The anonymous hash composer, Braces, Brackets, and Quoting, Universal Blunders

 	

 	anonymous hash composer, The anonymous hash composer

 	hash elements and, Hashes

 	programming practices, Universal Blunders

 	references and, Braces, Brackets, and Quoting

 	statement delimiters, Molecules

 	{ debugger command, Actions and Command Execution

 	{{ debugger command, Actions and Command Execution

 	@ (at sign) sigil, Variable Syntax, Variables

 	@_ variable, Fluent Perl, Special Variables in Alphabetical Order

 	@– (@LAST_MATCH_START)
 variable, Fluent Perl, Special Variables in Alphabetical Order

 	@+ (@LAST_MATCH_END) variable, Fluent Perl, Special Variables in Alphabetical Order

 	* (asterisk) sigil, Variable Syntax

 	* (multiplication)
 operator, Some Binary Arithmetic Operators, Multiplicative Operators

 	** (exponentiation)
 operator, Some Binary Arithmetic Operators, Exponentiation

 	/ (divide) operator, Multiplicative Operators

 	// (logical defined OR)
 operator, C-Style Logical (Short-Circuit) Operators

 	\ (backslash), String Literals, The Regular Expression Bestiary, Prototypes, Python Traps

 	

 	backslashed character escapes, String Literals

 	backslashed prototype character, Prototypes

 	programming practices, Python Traps

 	regular expressions and, The Regular Expression Bestiary

 	\0 escape sequence, String Literals, Metasymbol Tables, Specific Characters

 	& (ampersand) sigil, Variable Syntax, Verbs

 	& (bitwise AND) operator, Bitwise Operators

 	&& (logical AND)
 operator, Logical Operators, C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor

 	# character (comments), Molecules

 	#! notation, #! and Quoting on Non-Unix Systems–#! and Quoting on Non-Unix Systems, Unix Kernel Security Bugs

 	% (modulus) operator, Some Binary Arithmetic Operators, Multiplicative Operators, Glossary

 	% (percent sign) sigil, Variable Syntax, Variables

 	%– variable, Special Variables in Alphabetical Order

 	%! (%OS_ERROR, %ERRNO)
 variable, Special Variables in Alphabetical Order

 	%+ (%LAST_PAREN_MATCH)
 variable, Special Variables in Alphabetical Order

 	+ (addition) operator, Some Binary Arithmetic Operators, Additive Operators

 	++ (autoincrement) operator, Autoincrement and Autodecrement

 	< (less than)
 operator, Some Numeric and String Comparison Operators, Relational Operators

 	<< (left shift) bit operator, Shift Operators, Glossary

 	<< here–document
 syntax, “Here” Documents

 	<= (less than or equal)
 operator, Some Numeric and String Comparison Operators, Relational Operators

 	<> (iterative)
 operator, Overloadable Operators, Overloadable Operators

 	<=> comparison
 operator, Some Numeric and String Comparison Operators, Equality Operators, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text

 	= (copy constructor), The Copy Constructor (=)

 	= debugger command, Miscellaneous Commands

 	== (equal) operator, Some Numeric and String Comparison Operators, Equality Operators

 	=> operator, Hashes, Hashes, Method Invocation Using the Arrow Operator, Fluent Perl

 	

 	arrow operator and, Method Invocation Using the Arrow Operator

 	key/value pairs and, Hashes

 	programming practices, Fluent Perl

 	as separator, Hashes

 	=~ (binding) operator, Binding Operators

 	> (greater than)
 operator, Some Numeric and String Comparison Operators, Relational Operators

 	>= (greater than or equal)
 operator, Some Numeric and String Comparison Operators, Relational Operators

 	>> (right shift) bit
 operator, Shift Operators, Glossary

 	| (bitwise OR) operator, Bitwise Operators

 	| (vertical bar), The Regular Expression Bestiary

 	|| (logical OR) operator, Logical Operators, C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor

 	~ (bitwise NOT) operator, Bitwise Operators

 	~~ (smartmatch) operator, Equality Operators–Smartmatching of Objects, The given Statement, The when Statement and Modifier–The when Statement and Modifier

 	$ (dollar sign) sigil, Variable Syntax, Variables

 	$ regex metacharacter, Endings: The \z, \Z, and $ Assertions

 	$` ($PREMATCH) variable, Special Variables in Alphabetical Order

 	$^ ($FORMAT_TOP_NAME)
 variable, Special Variables in Alphabetical Order, Format Variables

 	$_ variable, Line Input (Angle) Operator, Magically Banishing $_, Fluent Perl, Special Variables in Alphabetical Order

 	

 	about, Special Variables in Alphabetical Order

 	automatic value assignment and, Line Input (Angle) Operator

 	magically banishing, Magically Banishing $_

 	programming practices, Fluent Perl

 	$– ($FORMAT_LINES_LEFT) variable, Picture Formats, Footers

 	$, ($OUTPUT_FIELD_SEPARATOR)
 variable, Special Variables in Alphabetical Order

 	$; ($SUBSCRIPT_SEPARATOR)
 variable, Hashes, Special Variables in Alphabetical Order

 	$: ($FORMAT_LINE_BREAK_CHARACTERS)
 variable, Special Variables in Alphabetical Order, Picture Formats

 	$! ($OS_ERROR, $ERRNO)
 variable, Special Variables in Alphabetical Order

 	$? ($CHILD_ERROR) variable, Command Input (Backtick) Operator, Anonymous Pipes, Special Variables in Alphabetical Order, close

 	

 	about, Command Input (Backtick) Operator, Special Variables in Alphabetical Order

 	close function and, close

 	interprocess communications and, Anonymous Pipes

 	$. ($INPUT_LINE_NUMBER)
 variable, Special Variables in Alphabetical Order

 	$' ($POSTMATCH) variable, Special Variables in Alphabetical Order

 	$” ($LIST_SEPARATOR)
 variable, Interpolating Array Values, Special Variables in Alphabetical Order

 	$(($REAL_GROUP_ID) variable, Special Variables in Alphabetical Order

 	$) ($EFFECTIVE_GROUP)
 variable, Special Variables in Alphabetical Order

 	$[variable, Special Variables in Alphabetical Order

 	$] variable, Special Variables in Alphabetical Order

 	$@ ($EVAL_ERROR) variable, Detecting and Laundering Tainted Data, Special Variables in Alphabetical Order

 	$* variable, Special Variables in Alphabetical Order

 	$/ ($INPUT_RECORD_SEPARATOR)
 variable, Special Variables in Alphabetical Order, readline

 	$\ ($OUTPUT_RECORD_SEPARATOR)
 variable, Special Variables in Alphabetical Order, print

 	$& ($MATCH) variable, Special Variables in Alphabetical Order

 	$# variable, Special Variables in Alphabetical Order

 	$% ($FORMAT_PAGE_NUMBER)
 variable, Special Variables in Alphabetical Order, Format Variables

 	$+ ($LAST_PAREN_MATCH)
 variable, Special Variables in Alphabetical Order

 	$< ($REAL_USER_ID)
 variable, Special Variables in Alphabetical Order

 	$> (EFFECTIVE_USER_ID)
 variable, Special Variables in Alphabetical Order

 	$= ($FORMAT_LINES_PER_PAGE)
 variable, Special Variables in Alphabetical Order, Format Variables

 	$| ($AUTOFLUSH) variable, Special Variables in Alphabetical Order, Format Variables

 	$~ ($FORMAT_NAME) variable, Special Variables in Alphabetical Order, Format Variables

 	$$ ($PROCESS_ID) variable, Special Variables in Alphabetical Order

 A

 	a debugger command, Actions and Command Execution

 	A debugger command, Actions and Command Execution

 	\a escape
 sequence, String Literals, Specific Characters

 	–A file test
 operator, Named Unary and File Test Operators

 	\a metasymbol, Metasymbol Tables

 	\A metasymbol, Metasymbol Tables, Beginnings: The \A and ^ Assertions

 	/a modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	–a command-line switch, Switches, Roll Call

 	$a variable, Special Variables in Alphabetical Order

 	$^A ($ACCUMULATOR)
 variable, Special Variables in Alphabetical Order

 	abs function, The overload Pragma, abs

 	abstraction, defined, Method Invocation

 	accept function, accept

 	accessor methods, Initializers, Managing Instance Data, Generating Accessors with Autoloading, Generating Accessors with Closures, Glossary

 	

 	defined, Initializers, Glossary

 	generating with autoloading, Generating Accessors with Autoloading

 	generating with closures, Generating Accessors with Closures

 	usage example, Managing Instance Data

 	$ACCUMULATOR ($^A)
 variable, Special Variables in Alphabetical Order

 	actual arguments, Glossary

 	addition (+) operator, Some Binary Arithmetic Operators, Additive Operators

 	address operator, Glossary

 	address–of operator, C Operators Missing from Perl

 	advisory locking, File Locking, Handling Race Conditions

 	.al file extension, Wandering the Stacks

 	alarm function, Timing Out Slow Operations, alarm

 	algorithms (term), Glossary

 	aliases, Name Lookups, Special Names, Glossary

 	

 	defined, Glossary

 	for variable
 names, Name Lookups, Special Names

 	ALLCAPS convention, Tied Variables

 	alnum character class, POSIX-Style Character Classes

 	alpha character class, POSIX-Style Character Classes

 	alphabetic sort, Glossary

 	alternation (|) metacharacter, The Regular Expression Bestiary

 	alternation in pattern matching, The Regular Expression Bestiary, Alternation

 	alternative characters, Glossary

 	American Standard Code for Information Interchange
 (ASCII), Glossary

 	ampersand (&) sigil, Variable Syntax, Verbs

 	anchors, Nailing Things Down

 	AND (bitwise) operator, Bitwise Operators

 	AND (logical) operator, Logical Operators, C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor

 	angle (line input) operator, Line Input (Angle) Operator–Line Input (Angle) Operator, Frequently Ignored Advice

 	annotations, Special Variables in Alphabetical Order, Perl Functions in Alphabetical Order

 	

 	for functions, Perl Functions in Alphabetical Order

 	for special variables, Special Variables in Alphabetical Order

 	anonymous pipes, Anonymous Pipes–Anonymous Pipes

 	anonymous referents, What Is a Reference?, Anonymous Data–The anonymous subroutine composer, Glossary

 	AnyDBM_File module, Tied Variables, Standard Modules

 	AnyEvent module, Time Efficiency

 	App::perlbrew module, The Standard Distribution

 	applications (term), Library Science, Glossary

 	arbitrary precision arithmetic, bignum (see big* pragmas; Math::* modules)

 	architecture, Glossary

 	arguments, Filehandles, Tricks with Parameter Lists–Tricks with Parameter Lists, Shell Traps, Glossary, Glossary, Glossary, Glossary

 	

 	actual, Glossary

 	command–line, Glossary

 	defined, Glossary

 	formal, Glossary

 	open function, Filehandles

 	programming practices, Shell Traps

 	subroutines and, Tricks with Parameter Lists–Tricks with Parameter Lists

 	ARGV filehandle, Special Variables in Alphabetical Order, Glossary

 	$ARGV variable, Line Input (Angle) Operator, Special Variables in Alphabetical Order

 	@ARGV variable, Line Input (Angle) Operator, Special Variables in Alphabetical Order

 	ARGVOUT filehandle, Special Variables in Alphabetical Order

 	arithmetic operators, Some Binary Arithmetic Operators, Unary Arithmetic Operators, Overloadable Operators, Overloadable Operators, Glossary

 	

 	about, Glossary

 	binary, Some Binary Arithmetic Operators

 	overloadable, Overloadable Operators, Overloadable Operators

 	unary, Unary Arithmetic Operators

 	array context, Glossary

 	array value (AV), Interpolating Array Values, Glossary

 	arrays, Variable Syntax, Arrays, Arrays, Arrays, Complexities, Built-in Data Types, Variables, List Values and Arrays–Array Length, Array Length, Modifying arrays en masse, The anonymous array composer, Arrays of Arrays–Common Mistakes, Slices, Hashes of Arrays–Access and Printing of a Hash of Arrays, Tying Arrays–Notational Convenience, Universal Blunders, Time Efficiency, Space Efficiency, Glossary, Glossary

 	

 	anonymous array composer, The anonymous array composer

 	defined, Arrays, Built-in Data Types, Glossary

 	determining number of elements in, Array Length

 	efficiency practices, Time Efficiency, Space Efficiency

 	hashes of, Hashes of Arrays–Access and Printing of a Hash of Arrays

 	list values and, List Values and Arrays–Array Length

 	modifying en masse, Modifying arrays en masse

 	multidimensional, Complexities, Arrays of Arrays–Common Mistakes, Slices, Glossary

 	programming practices, Universal Blunders

 	sigil for, Variable Syntax, Variables

 	subscripts for, Arrays

 	tying, Tying Arrays–Notational Convenience

 	zero–based, Arrays

 	arrays of arrays, Arrays of Arrays, Creating and Accessing a Two-Dimensional Array, Growing Your Own–Growing Your Own, Access and Printing–Access and Printing, Slices, Common Mistakes–Common Mistakes

 	

 	about, Arrays of Arrays

 	accessing and printing, Access and Printing–Access and Printing

 	building piecemeal, Growing Your Own–Growing Your Own

 	common mistakes, Common Mistakes–Common Mistakes

 	creating and accessing, Creating and Accessing a Two-Dimensional Array

 	slices of, Slices

 	arrays of hashes, Arrays of Hashes, Composition of an Array of Hashes, Generation of an Array of Hashes, Access and Printing of an Array of Hashes

 	

 	about, Arrays of Hashes

 	accessing and printing, Access and Printing of an Array of Hashes

 	composition of, Composition of an Array of Hashes

 	generating, Generation of an Array of Hashes

 	arrow (–>) operator, The Arrow Operator, Using the Arrow Operator–Using the Arrow Operator, Method Invocation Using the Arrow Operator

 	

 	about, The Arrow Operator, Using the Arrow Operator–Using the Arrow Operator

 	method invocation and, Method Invocation Using the Arrow Operator

 	Artistic License, Glossary

 	ASCII (American Standard Code for Information
 Interchange), Glossary

 	ascii character class, POSIX-Style Character Classes

 	assertions (in regexes), The Regular Expression Bestiary, Positions, Beginnings: The \A and ^ Assertions–Boundaries: The \b and \B Assertions, Lookaround Assertions–Lookaround Assertions, Lookaround Assertions, Lookaround Assertions, Defining Your Own Assertions, Glossary, Glossary, Glossary, Glossary

 	

 	defined, Glossary

 	defining, Defining Your Own Assertions

 	lookahead, Lookaround Assertions, Glossary

 	lookaround, Lookaround Assertions–Lookaround Assertions

 	lookbehind, Lookaround Assertions, Glossary

 	metasymbols and, Beginnings: The \A and ^ Assertions–Boundaries: The \b and \B Assertions

 	zero–width, The Regular Expression Bestiary, Positions, Glossary

 	assignment operators, Assignment Operators–Assignment Operators, Built-in Data Types, Assignment Operators–Assignment Operators, Overloadable Operators, Overloadable Operators, Glossary

 	

 	about, Assignment Operators–Assignment Operators, Assignment Operators–Assignment Operators, Glossary

 	overloadable, Overloadable Operators, Overloadable Operators

 	usage example, Built-in Data Types

 	assignments, Arrays, List Assignment, Glossary

 	

 	defined, Glossary

 	list, Arrays, List Assignment

 	associative arrays, Glossary (see hashes)

 	associativity, Unary and Binary Operators, Glossary

 	asterisk (*) sigil, Variable Syntax

 	asynchronous event processing, Time Efficiency, Glossary

 	at sign (@) sigil, Variable Syntax, Variables

 	atan2 function, Comma Operators, atan2

 	atomic operation, Handling Race Conditions, Glossary

 	atoms, Atoms, Handling Race Conditions, Glossary

 	attribute feature, Glossary

 	attributes pragma, Subroutine Attributes, Object Construction, my, ref , attributes, attributes, attributes

 	

 	about, attributes

 	get function, attributes

 	my operator and, my

 	reftype function, Object Construction, ref , attributes

 	subroutines and, Subroutine Attributes

 	authors directory (CPAN), A Tour of the Repository

 	autobox pragma, Python Traps

 	autodecrement (––) operator, Autoincrement and Autodecrement

 	autodie pragma, Python Traps, Python Traps, Java Traps, autodie

 	autoflush method (IO::Handle), Special Variables in Alphabetical Order

 	$AUTOFLUSH ($|)
 variable, Special Variables in Alphabetical Order, Format Variables

 	autogeneration, Overloadable Operators, Overloadable Operators, Glossary

 	

 	about, Glossary

 	arithmetic operators and, Overloadable Operators

 	conversion operators and, Overloadable Operators

 	autoincrement (++) operator, Autoincrement and Autodecrement

 	autoincrement (term), Glossary

 	AUTOLOAD subroutine, Autoloading–Autoloading, Method Autoloading, Generating Accessors with Autoloading

 	$AUTOLOAD variable, Autoloading, Generating Accessors with Autoloading, Special Variables in Alphabetical Order

 	AutoLoader module, The goto Operator, Autoloading, Wandering the Stacks, autouse

 	

 	defining functions, The goto Operator

 	loading packages, Autoloading

 	make install procedure and, Wandering the Stacks

 	runtime demand loading and, autouse

 	autoloading, Autoloading–Autoloading, Method Autoloading, Generating Accessors with Autoloading, Glossary

 	

 	defined, Glossary

 	generating accessors with, Generating Accessors with Autoloading

 	methods, Method Autoloading

 	packages, Autoloading–Autoloading

 	autosplit (term), Glossary

 	AutoSplit module, Autoloading, Files and Filesystems, Glossary

 	autouse pragma, The goto Operator, autouse

 	autovivification, Implicit Creation of References, Java Traps, Glossary

 	AV (array value), Interpolating Array Values, Glossary

 	awk (editing term), Glossary

 B

 	b debugger command, Breakpoints

 	\b escape
 sequence, String Literals

 	–b file test
 operator, Named Unary and File Test Operators

 	–B file test
 operator, Named Unary and File Test Operators

 	\b metasymbol, Metasymbol Tables, Boundaries: The \b and \B Assertions

 	\B metasymbol, Metasymbol Tables, Boundaries: The \b and \B Assertions

 	B pod sequence, Flowed Text

 	$b variable, Special Variables in Alphabetical Order

 	B::Backend module, Compiler Backends

 	B::Bytecode module, Compiling Your Code, Compiler Backends, The Bytecode Generator, The C Code Generators

 	

 	about, The Bytecode Generator, The C Code Generators

 	code generation and, Compiling Your Code

 	as compiler backend, Compiler Backends

 	B::C module, Compiling Your Code, Compiler Backends, The C Code Generators

 	B::CC module, Compiling Your Code, Compiler Backends, The C Code Generators

 	B::Deparse module, Compiling Your Code, Compiler Backends, Code Development Tools

 	B::Fathom module, Compiler Backends

 	B::Graph module, Compiler Backends

 	B::Lint module, Compiler Backends, Code Development Tools, warnings

 	B::Size module, Compiler Backends

 	B::Xref module, Compiler Backends, Code Development Tools

 	=back pod directive, Command Paragraphs

 	backquotes, Singularities

 	backreferences, Backreferences, Capturing, Recursive Patterns–Recursive Patterns, Glossary

 	

 	about, Backreferences, Glossary

 	captured strings and, Capturing

 	recursive patterns and, Recursive Patterns–Recursive Patterns

 	backronym, History Made Practical

 	backslash (\), String Literals, The Regular Expression Bestiary, Prototypes, Python Traps

 	

 	backslashed character escapes, String Literals

 	backslashed prototype character, Prototypes

 	programming practices, Python Traps

 	regular expressions and, The Regular Expression Bestiary

 	backslash interpolation, Singularities, When backslashes happen–When backslashes happen

 	backslash operator, The Backslash Operator, Other Tricks You Can Do with Hard References

 	backtick (command input) operator, Command Input (Backtick) Operator, Accessing Commands and Files Under Reduced Privileges, Shell Traps

 	backtracking, Glossary

 	backward compatibility, String Formats, Glossary

 	

 	defined, Glossary

 	numeric conversions, String Formats

 	barewords, Or Leave Out the Quotes Entirely, Frequently Ignored Advice, strict “subs”, Glossary

 	

 	about, Or Leave Out the Quotes Entirely, Glossary

 	programming practices, Frequently Ignored Advice

 	strict pragma and, strict “subs”

 	Barr, Graham, History

 	base classes, Brief Refresher on Object-Oriented Lingo, Glossary

 	base pragma, Class Inheritance–Inheritance Through @ISA, Special Variables in Alphabetical Order, base, parent

 	

 	about, base

 	@ISA variable and, Class Inheritance–Inheritance Through @ISA, Special Variables in Alphabetical Order

 	parent pragma and, parent

 	$BASETIME ($^T)
 variable, Special Variables in Alphabetical Order

 	BASH_ENV environment variable, Cleaning Up Your Environment

 	BEGIN blocks, Scoping Issues, The Life Cycle of a Perl Program, Compiling Your Code, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	

 	compile phase and, The Life Cycle of a Perl Program, Compiling Your Code

 	run order, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	scoping issues and, Scoping Issues

 	=begin pod
 directive, Command Paragraphs

 	Berkeley Standard Distribution (BSD), Glossary

 	Biggar, Mark, History Made Practical

 	bigint pragma, Scalar Values, Multiplicative Operators, Shift Operators, Bitwise Operators, bigint

 	

 	about, bigint

 	bitwise operators and, Bitwise Operators

 	multiplicative operators and, Multiplicative Operators

 	scalar values and, Scalar Values

 	shift operators and, Shift Operators

 	bignum pragma, Scalar Values, Multiplicative Operators, bignum

 	bigrat pragma, Scalar Values, Multiplicative Operators, bigrat

 	big–endian, Endianness and Number Width, Glossary

 	

 	defined, Glossary

 	portability and, Endianness and Number Width

 	binary (term), Glossary

 	binary formats, Binary Formats, pack–More examples, pack–unpack

 	

 	about, Binary Formats

 	pack function, pack–More examples

 	unpack function, pack–unpack

 	binary key, Overloading Constants

 	binary literals, Numeric Literals

 	binary operators, Some Binary Arithmetic Operators, Unary and Binary Operators, The Arrow Operator, Autoincrement and Autodecrement, Autoincrement and Autodecrement, Exponentiation, Binding Operators, Multiplicative Operators, Additive Operators, Smartmatch Operator–Smartmatching of Objects, Comma Operators, The overload Pragma, Glossary

 	

 	about, Unary and Binary Operators, Glossary

 	additive operators, Additive Operators

 	arrow operator, The Arrow Operator

 	autodecrement operator, Autoincrement and Autodecrement

 	autoincrement operator, Autoincrement and Autodecrement

 	binding operator, Binding Operators

 	comma operator, Comma Operators

 	exponentiation operator, Exponentiation

 	handlers and, The overload Pragma

 	mathematical operators, Some Binary Arithmetic Operators

 	multiplicative operators, Multiplicative Operators

 	smartmatch operator, Smartmatch Operator–Smartmatching of Objects

 	bind (term), Glossary

 	bind function, bind

 	binding (=~) operator, Binding Operators

 	binmode function, Getting at Unicode Data–The Encode Module, Universal Blunders, Newlines, binmode

 	BINMODE method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	bit string, Glossary

 	bits, Glossary, Glossary

 	

 	defined, Glossary

 	permission, Glossary

 	bitwise operators, Bitwise Operators, Overloadable Operators, Overloadable Operators

 	bit–shift operators, Shift Operators, Shift Operators, Shift Operators, Glossary, Glossary, Glossary

 	

 	defined, Shift Operators, Glossary

 	left shift, Shift Operators, Glossary

 	right shift, Shift Operators, Glossary

 	blank character class, POSIX-Style Character Classes

 	bless (term), Object Construction, Glossary

 	bless function, What Is a Reference?, Object Constructors, Object Construction, Inheritable Constructors, Overload Handlers, Tied Variables, bless , Glossary

 	

 	about, bless , Glossary

 	inheritable constructors and, Inheritable Constructors

 	object constructors and, Object Constructors, Object Construction

 	references and, What Is a Reference?

 	tie function and, Tied Variables

 	usage example, Overload Handlers

 	blib pragma, Internal testing, blib

 	block buffering, Glossary

 	BLOCK construct, Bare Blocks as Loops, Using a block As a Variable
 Name, Glossary

 	

 	about, Glossary

 	hard references and, Using a block As a Variable
 Name

 	loops and, Bare Blocks as Loops

 	blocks, Molecules, Molecules, Compound Statements, Compound Statements, Bare Blocks as Loops, Glossary

 	

 	(see also specific types of blocks)

 	compound statements and, Compound Statements

 	defined, Molecules, Compound Statements, Glossary

 	as loops, Bare Blocks as Loops

 	Boolean context, Boolean Context, List Assignment, Overloadable Operators, Glossary

 	

 	about, Boolean Context, Glossary

 	list assignments and, List Assignment

 	overloadable operators and, Overloadable Operators

 	boolean module, Ruby Traps

 	Boolean values, Singularities, Glossary

 	braces { }, Hashes (see curly braces { })

 	bracketed character classes, Bracketed Character Classes–Bracketed Character Classes

 	brackets [], Arrays (see square brackets [])

 	break keyword, The given Statement, C Traps, break

 	breakpoints, Breakpoints–Breakpoints, Breakpoints, Glossary

 	

 	commands supported, Breakpoints–Breakpoints

 	defined, Breakpoints, Glossary

 	broadcast (networking term), Glossary

 	BSD (Berkeley Standard Distribution), Glossary

 	BSD::Resource module, Code Masquerading As Data, getpriority , setpriority

 	buckets (term), Glossary

 	buffering, Glossary, Glossary, Glossary

 	

 	block, Glossary

 	command, Glossary

 	line, Glossary

 	buffers, Glossary, Glossary

 	

 	defined, Glossary

 	flushing, Glossary

 	bug tracking and reports, Bug Reports, Bug Tracking

 	

 	about, Bug Reports

 	CPAN, Bug Tracking

 	built–in data types, Built-in Data Types–Built-in Data Types

 	built–in functions, Prototypes, Prototypes of Built-in Functions, Overriding Built-in Functions–Overriding Built-in Functions, Accessing Overridden Methods, Tied Variables, Frequently Ignored Advice, Glossary

 	

 	about, Glossary

 	case considerations, Tied Variables

 	overriding, Overriding Built-in Functions–Overriding Built-in Functions, Accessing Overridden Methods

 	programming practices, Frequently Ignored Advice

 	prototypes emulating, Prototypes

 	prototypes of, Prototypes of Built-in Functions

 	Bunce, Tim, History

 	bundles (term), Glossary

 	bytecodes, The Life Cycle of a Perl Program

 	ByteLoader module, The Bytecode Generator

 	bytes (term), Glossary

 	bytes pragma, Special Variables in Alphabetical Order, bytes, charnames

 C

 	c debugger command, Breakpoints

 	–c file test
 operator, Named Unary and File Test Operators

 	–C file test
 operator, Named Unary and File Test Operators

 	C language, C Traps–C Traps, Glossary

 	

 	about, Glossary

 	programming practices, C Traps–C Traps

 	\c metasymbol, Metasymbol Tables, Specific Characters

 	\C metasymbol, Metasymbol Tables

 	C pod sequence, Flowed Text

 	C preprocessor, Glossary

 	C stack, Executing Your Code

 	–c command-line switch, Switches

 	–C command-line switch, Switches

 	$^C ($COMPILING) variable, Special Variables in Alphabetical Order

 	cache (term), Garbage Collection, Circular References, and Weak
 References, Glossary

 	call by reference, Glossary

 	call by value, Glossary

 	callbacks, Closures, Glossary

 	caller function, Executing Your Code, Debugger Support, caller

 	canonical (term), Glossary

 	canonical composition, Graphemes and Normalization

 	canonical decomposition, Graphemes and Normalization

 	Cantrell, David, History, Testing

 	capture groups, Capturing–Capturing, Named capture groups–Named capture groups

 	

 	about, Capturing–Capturing

 	named, Named capture groups–Named capture groups

 	capture variables, Glossary

 	Capture::Tiny module, Interprocess Communication (IPC)

 	capturing in pattern matching, Grouping and Capturing–Named capture groups, Glossary

 	cargo cult, Glossary

 	Carp module, Managing unknown symbols, Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, exit, exit, warn , warn , Signal Handlers

 	

 	carp function, Scalar-Tying Methods, warn

 	cluck function, warn

 	confess function, Scalar-Tying Methods, exit

 	croak function, Scalar-Tying Methods, exit, Signal Handlers

 	managing unknown symbols, Managing unknown symbols

 	case (character), Tied Variables, Glossary

 	case statement/structure, The given and when Statements, Paleolithic Perl Case Structures–Paleolithic Perl Case Structures

 	casefolding, Pattern Modifiers, Python Traps, Glossary

 	casemapping, A Case of Mistaken Identity–A Case of Mistaken Identity, Python Traps, Glossary

 	catpod tool, Writing Your Own Pod Tools

 	\cC escape
 sequence, String Literals

 	CDPATH environment variable, Cleaning Up Your Environment

 	/cg modifier, The m// Operator (Matching)

 	character classes, Regular Expressions, Bracketed Character Classes–Bracketed Character Classes, Bracketed Character Classes, Classic Perl Character Class Shortcuts–Classic Perl Character Class Shortcuts, Character Properties–Character Properties, POSIX-Style Character Classes–POSIX-Style Character Classes, Java Traps, Glossary

 	

 	about, Regular Expressions, Glossary

 	bracketed, Bracketed Character Classes–Bracketed Character Classes

 	character properties, Character Properties–Character Properties

 	classic shortcuts, Classic Perl Character Class Shortcuts–Classic Perl Character Class Shortcuts

 	metasymbols and, Bracketed Character Classes

 	POSIX–style, POSIX-Style Character Classes–POSIX-Style Character Classes

 	programming practices, Java Traps

 	character property, Character Properties–Character Properties, Glossary

 	characters, Regular Expressions, Regular Expressions, Molecules, String Literals, String Literals, The Regular Expression Bestiary, Metacharacters and Metasymbols–Wildcard Metasymbols, Specific Characters–Specific Characters, A Case of Mistaken Identity, A Case of Mistaken Identity, A Case of Mistaken Identity, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	(see also charnames pragma)

 	backslashed escapes, String Literals

 	case considerations, Glossary

 	combining, Glossary

 	control, Specific Characters–Specific Characters

 	defined, Glossary

 	funny, Glossary

 	lowercase, A Case of Mistaken Identity, Glossary

 	newline, Glossary

 	null, Glossary

 	regex metacharacters, The Regular Expression Bestiary, Metacharacters and Metasymbols–Wildcard Metasymbols, Glossary

 	separators, Glossary

 	shortcuts for alphabetic, Regular Expressions

 	terminators, Glossary

 	titlecase, A Case of Mistaken Identity, Glossary

 	uppercase, A Case of Mistaken Identity, Glossary

 	whitespace, Regular Expressions, Molecules, Glossary

 	charnames pragma, String Literals, Specific Characters, Unicode, Building Character, chr , ord , charnames, Custom Character Names, Runtime Lookups–Runtime Lookups, Runtime Lookups, Runtime Lookups, Runtime Lookups

 	

 	about, charnames

 	backslashed character escapes and, String Literals

 	custom character names, Custom Character Names

 	loading codepoints, Unicode

 	metasymbols and, Specific Characters

 	runtime lookups, Runtime Lookups–Runtime Lookups

 	string_vianame function, Runtime Lookups

 	viacode function, Building Character, chr , Runtime Lookups

 	vianame function, ord , Runtime Lookups

 	Chase module, autouse

 	chdir function, chdir

 	CHECK blocks, The Life Cycle of a Perl Program, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	$CHILD_ERROR ($?)
 variable, Command Input (Backtick) Operator, Anonymous Pipes, Special Variables in Alphabetical Order, close

 	

 	about, Command Input (Backtick) Operator, Special Variables in Alphabetical Order

 	close function and, close

 	interprocess communications and, Anonymous Pipes

 	${^CHILD_ERROR_NATIVE}
 variable, close

 	chmod function, Filename Globbing Operator, chmod

 	chomp function, chomp

 	chop function, chop

 	chown function, chown

 	chr function, chr

 	Christiansen, Tom, History Made Practical

 	chroot function, Changing Root, chroot

 	circular references, Garbage Collection, Circular References, and Weak
 References, Overloadable Operators

 	circumfix operator, Glossary

 	Clark, James, Fluent Perl

 	class inheritance, Class Inheritance, Class Inheritance–Inheritance Through @ISA, Alternate Method Searching, Accessing Overridden Methods–Accessing Overridden Methods, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class, Method Autoloading, Private Methods

 	

 	about, Class Inheritance

 	accessing overridden methods, Accessing Overridden Methods–Accessing Overridden Methods

 	alternate method searching, Alternate Method Searching

 	@ISA variable and, Class Inheritance–Inheritance Through @ISA

 	method autoloading, Method Autoloading

 	private methods and, Private Methods

 	UNIVERSAL class and, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class

 	class methods, Brief Refresher on Object-Oriented Lingo, Glossary

 	Class::Contract module, Using Closures for Private Objects

 	Class::Multimethod module, Java Traps

 	classes, Regular Expressions, Character Classes–POSIX-Style Character Classes, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Perl’s Object System, Package-Quoted Classes, Managing Class Data–Managing Class Data, Java Traps, Java Traps, Library Science, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	base, Brief Refresher on Object-Oriented Lingo, Glossary

 	character, Regular Expressions, Character Classes–POSIX-Style Character Classes, Java Traps, Glossary

 	defined, Brief Refresher on Object-Oriented Lingo, Library Science, Glossary

 	derived, Brief Refresher on Object-Oriented Lingo, Glossary

 	managing data, Managing Class Data–Managing Class Data

 	as packages, Perl’s Object System

 	package–quoting notation, Package-Quoted Classes

 	parent, Glossary

 	programming practices, Java Traps

 	subclasses, Brief Refresher on Object-Oriented Lingo, Glossary

 	superclasses, Brief Refresher on Object-Oriented Lingo, Glossary

 	CLEAR method, Array-Tying Methods, Tying Hashes, Hash-Tying Methods

 	

 	tied arrays, Array-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	clients, Networking Clients–Networking Clients, CPAN Clients–cpanminus, Glossary

 	

 	CPAN supported, CPAN Clients–cpanminus

 	defined, Glossary

 	networking, Networking Clients–Networking Clients

 	close function, Filehandle-Tying Methods, Filehandle-Tying Methods, Anonymous Pipes, close

 	

 	about, close

 	pipes and, Anonymous Pipes

 	tied filehandles and, Filehandle-Tying Methods, Filehandle-Tying Methods

 	CLOSE method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	closedir function, closedir

 	closure subroutines, Closures–Nested subroutines, Generating Accessors with Closures–Using Closures for Private Objects, Glossary

 	clusters, Glossary, Glossary

 	

 	defined, Glossary

 	switch, Glossary

 	cmp (comparison) operator, Equality Operators, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text

 	cntrl character class, POSIX-Style Character Classes

 	CODE (ref function), Glossary

 	code generation phase, The Life Cycle of a Perl Program

 	code generators, Compiling, Compiler Backends, The Bytecode Generator, The C Code Generators, The C Code Generators, Glossary

 	

 	B::Bytecode module, The Bytecode Generator

 	B::C module, The C Code Generators, The C Code Generators

 	backend modules, Compiler Backends

 	defined, Compiling, Glossary

 	code security, Security, Handling Insecure Code, Handling Insecure Code, Changing Root, Safe Compartments–Safe examples, Code Masquerading As Data–Code Masquerading As Data

 	

 	about, Handling Insecure Code

 	changing root, Changing Root

 	code masquerading as data, Code Masquerading As Data–Code Masquerading As Data

 	quarantining suspect code, Security, Handling Insecure Code

 	safe compartments, Safe Compartments–Safe examples

 	code subpatterns, Match-time code evaluation–Match-time code evaluation, Glossary

 	code value (CV), Glossary

 	codepoints, Unicode–Unicode, Show, Don’t Tell–Show, Don’t Tell, Getting at Unicode Data–The Encode Module, A Case of Mistaken Identity–A Case of Mistaken Identity, Graphemes and Normalization–Graphemes and Normalization, Functions, Glossary

 	

 	about, Unicode–Unicode, Functions, Glossary

 	casemapping, A Case of Mistaken Identity–A Case of Mistaken Identity

 	getting at data, Getting at Unicode Data–The Encode Module

 	graphemes and normalization, Graphemes and Normalization–Graphemes and Normalization

 	UTF–8 encoding, Show, Don’t Tell–Show, Don’t Tell

 	collating sequence, Glossary, Glossary

 	

 	(see also Unicode::Collate module)

 	combining characters, Glossary

 	comma (,) operator, Comma Operators

 	command buffering, Glossary

 	command input (backtick) operator, Command Input (Backtick) Operator, Accessing Commands and Files Under Reduced Privileges, Shell Traps

 	command names, Glossary

 	commands, Command Processing–Location of Perl, Switches–Switches, Debugger Commands–Miscellaneous Commands, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges, Time Efficiency, Command Paragraphs–Command Paragraphs, Glossary, Glossary

 	

 	command-line switches supported, Switches–Switches

 	debugger, Debugger Commands–Miscellaneous Commands

 	defined, Glossary

 	efficiency practices, Time Efficiency

 	pod, Command Paragraphs–Command Paragraphs, Glossary

 	processing, Command Processing–Location of Perl

 	reduced privileges and, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges

 	command–line arguments, Glossary

 	command–line interface, Command Processing–Switches, Environment Variables–Environment Variables

 	

 	command processing, Command Processing–Switches

 	environment variables, Environment Variables–Environment Variables

 	comments, Molecules, Molecules, Glossary

 	

 	# character and, Molecules

 	defined, Glossary

 	multiline form for, Molecules

 	communication, Glossary (see IPC)

 	comparison operators, Some Numeric and String Comparison Operators, Some Numeric and String Comparison Operators, Equality Operators, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text, Overloadable Operators, Overloadable Operators

 	

 	<=> operator, Some Numeric and String Comparison Operators, Equality Operators, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text

 	numeric and string, Some Numeric and String Comparison Operators

 	overloadable, Overloadable Operators, Overloadable Operators

 	compatibility composition, Graphemes and Normalization

 	compatibility decomposition, Graphemes and Normalization

 	compilation units, Name Lookups, Glossary

 	compile phase, The Life Cycle of a Perl Program, Compiling Your Code, Glossary

 	

 	compile time and, Compiling Your Code

 	defined, The Life Cycle of a Perl Program, Glossary

 	compile time, Compiling Your Code, Glossary

 	

 	compile phase and, Compiling Your Code

 	defined, Glossary

 	compilers and compiling, The Regex Compiler–The Regex Compiler, Class Inheritance, Overloading Diagnostics, Compiling, The Life Cycle of a Perl Program–The Life Cycle of a Perl Program, Compiling Your Code–Compiling Your Code, Compiling Your Code, Executing Your Code–Executing Your Code, Executing Your Code, Compiler Backends, Code Generators–The C Code Generators, Code Development Tools–Code Development Tools, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter, Switches, Glossary

 	

 	about, Compiling, Glossary

 	backend modules, Compiler Backends

 	code development tools, Code Development Tools–Code Development Tools

 	code generators, Code Generators–The C Code Generators

 	compiling code, Compiling Your Code–Compiling Your Code

 	–DDEBUGGING option, Class Inheritance, Overloading Diagnostics, Switches

 	executing code, Executing Your Code–Executing Your Code

 	interpreters and, Executing Your Code, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	logical passes for, Compiling Your Code

 	program life cycle and, The Life Cycle of a Perl Program–The Life Cycle of a Perl Program

 	regex, The Regex Compiler–The Regex Compiler

 	$COMPILING ($^C)
 variable, Special Variables in Alphabetical Order

 	composers, The anonymous array composer, The anonymous hash composer, The anonymous subroutine composer, Glossary

 	

 	about, Glossary

 	anonymous array, The anonymous array composer

 	anonymous hash, The anonymous hash composer

 	anonymous subroutine, The anonymous subroutine composer

 	compound statements, Compound Statements–Compound Statements

 	Comprehensive Perl Archive Network, Glossary (see CPAN)

 	Comprehensive TeX Archive Network (CTAN), History

 	concatenating strings, String Operators, Glossary

 	conditional (?:) operator, Conditional Operator–Conditional Operator

 	conditional (term), Glossary

 	conditional interpolation, Conditional interpolation

 	conditional loops, Conditional loops–Conditional loops

 	Config module, Signals, Switches, Porter Efficiency, Programming with Style, Portable Perl, Style, Special Variables in Alphabetical Order, Other modifiers, symlink , tie , threads

 	

 	configuration variables and, Switches

 	efficiency practices, Porter Efficiency

 	inspecting options, threads

 	integer formats and, Other modifiers

 	$OSNAME variable
 and, Special Variables in Alphabetical Order

 	portability and, Portable Perl, Style

 	programming practices, Programming with Style

 	relative symbolic links and, symlink

 	%SIG variable and, Signals

 	tie implementations, tie

 	connect function, connect

 	connections (term), Glossary

 	constant folding, Compiling Your Code

 	constant pragma, Inlining Constant Functions, Overloading Constants, constant–Restrictions on constant

 	constants, overloading, Overloading Constants–Overloading Constants

 	constructor methods, Brief Refresher on Object-Oriented Lingo

 	constructors, Object Constructors, Object Construction–Initializers, Object Construction, Inheritable Constructors, Initializers–Initializers, The Copy Constructor (=), Tied Variables, Glossary

 	

 	copy, The Copy Constructor (=)

 	defined, Object Construction, Glossary

 	inheritable, Inheritable Constructors

 	initializers and, Initializers–Initializers

 	object, Object Constructors, Object Construction–Initializers

 	tie function and, Tied Variables

 	constructs, Looping Constructs–Breaking out: next and last, Pick Your Own Quotes, Loop Statements–Loop Control, Bare Blocks as Loops, Using a block As a Variable
 Name, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	BLOCK, Bare Blocks as Loops, Using a block As a Variable
 Name, Glossary

 	defined, Glossary

 	LIST, Glossary

 	loop, Looping Constructs–Breaking out: next and last, Loop Statements–Loop Control, Glossary

 	pseudofunctions, Glossary

 	quote, Pick Your Own Quotes

 	context, Singularities, List Processing, List Processing, Context, Scalar and List Context, Scalar and List Context, Boolean Context, Void Context, Interpolative Context, List Assignment, Overloadable Operators, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	about, Context, Glossary

 	Boolean, Boolean Context, List Assignment, Overloadable Operators, Glossary

 	interpolative, Interpolative Context

 	list, List Processing, Scalar and List Context, Glossary

 	numeric, Glossary

 	scalar, List Processing, Scalar and List Context, Glossary

 	specifying, Singularities

 	string, Glossary

 	void, Void Context, Glossary

 	context stack, Executing Your Code

 	continuation lines, Glossary

 	continue statement, The given Statement, foreach Loops, continue

 	

 	about, continue

 	foreach statement and, foreach Loops

 	given statement and, The given Statement

 	control characters, Specific Characters–Specific Characters

 	control structures, Control Structures, What Is Truth?, The if and unless statements, The if and unless statements, The given and when Statements, The given and when Statements

 	

 	about, Control Structures

 	concept of truth and, What Is Truth?

 	given statement, The given and when Statements

 	if statement, The if and unless statements

 	unless statement, The if and unless statements

 	when statement, The given and when Statements

 	conversion operators, Overloadable Operators, Overloadable Operators

 	Conway, Damian, Grammars, Using Closures for Private Objects

 	Coordinated Universal Time (UTC), gmtime

 	copy constructor (=), The Copy Constructor (=)

 	core dump, Glossary

 	CORE pseudopackage, Overriding Built-in Functions

 	Coro module, Time Efficiency

 	cos function, cos

 	Cox, Russ, Alternate Engines

 	co–maintainers, PAUSE, Glossary

 	CPAN (Comprehensive Perl Archive Network), Packages, Modules, History, History, A Tour of the Repository–A Tour of the Repository, Creating a MiniCPAN, Creating a MiniCPAN, The CPAN Ecosystem–rt.perl.org, Searching CPAN, Testing, Bug Tracking, Installing CPAN Modules–cpanminus, CPAN Clients–cpanminus, Creating CPAN Distributions–External testing, Testing Your Modules–External testing, Programmer Efficiency, Glossary, Glossary

 	

 	about, Packages, Glossary

 	bug tracking, Bug Tracking

 	clients supported, CPAN Clients–cpanminus

 	creating distributions, Creating CPAN Distributions–External testing

 	ecosystem overview, The CPAN Ecosystem–rt.perl.org

 	efficiency practices, Programmer Efficiency

 	history of, History

 	installing modules, Installing CPAN Modules–cpanminus

 	minicpan and, Creating a MiniCPAN, Glossary

 	mirroring, History

 	module repository, Modules

 	respository overview, A Tour of the Repository–A Tour of the Repository

 	Schwartz Factor, Creating a MiniCPAN

 	searching, Searching CPAN

 	testing, Testing, Testing Your Modules–External testing

 	cpan command, cpan

 	CPAN Search site, Searching CPAN

 	CPAN Testers, Testing, Testing Your Modules, External testing

 	CPAN.pm module, cpan, Standard Modules

 	CPAN::DistnameInfo module, Version checking

 	CPAN::Mini module, Creating a MiniCPAN–Creating a MiniCPAN, Glossary

 	CPANdeps tool, History, Testing

 	cpanminus client, cpanminus

 	CPANPLUS library, cpanp

 	cmp (comparison) operator, Some Numeric and String Comparison Operators

 	crackers, Temporary Files, Glossary

 	creeping featurism, History Made Practical, Glossary

 	crypt function, crypt

 	Crypt::* modules, crypt

 	CTAN (Comprehensive TeX Archive Network), History

 	culture, Perl, Perl Culture (see Perl culture)

 	curly braces { }, Hashes, Molecules, The anonymous hash composer, Braces, Brackets, and Quoting, Universal Blunders

 	

 	anonymous hash composer, The anonymous hash composer

 	hash elements and, Hashes

 	programming practices, Universal Blunders

 	references and, Braces, Brackets, and Quoting

 	statement delimiters, Molecules

 	current package, Packages, Changing the Package, Glossary

 	current working directory, Glossary

 	currently selected output channel, Glossary

 	=cut pod directive, Command Paragraphs

 	CV (code value), Glossary

 	Cwd module, Environment Variables, Time Efficiency, chdir

 D

 	d debugger command, Breakpoints

 	D debugger command, Breakpoints

 	–d file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	\d metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	\D metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	/d modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	–d command-line switch, Switches, The Perl Debugger

 	–D command-line switch, Switches

 	$^D ($DEBUGGING) variable, Managing Class Data, Special Variables in Alphabetical Order

 	dangling statements, Glossary

 	DATA filehandle, Getting at Unicode Data, Space Efficiency, Special Variables in Alphabetical Order

 	data security, Handling Insecure Data–Handling Insecure Data, Detecting and Laundering Tainted Data–Detecting and Laundering Tainted Data, Cleaning Up Your Environment–Cleaning Up Your Environment, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges, Defeating Taint Checking

 	

 	about, Handling Insecure Data–Handling Insecure Data

 	cleaning up environment and, Cleaning Up Your Environment–Cleaning Up Your Environment

 	defeating taint checks, Defeating Taint Checking

 	reduced privileges and, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges

 	tainted data and, Detecting and Laundering Tainted Data–Detecting and Laundering Tainted Data

 	data structures, Complexities, Built-in Data Types, What Is a Reference?, Arrays of Arrays–Common Mistakes, Hashes of Arrays–Access and Printing of a Hash of Arrays, Arrays of Hashes–Access and Printing of an Array of Hashes, Hashes of Hashes–Access and Printing of a Hash of Hashes, Hashes of Functions, More Elaborate Records–Generation of a Hash of Complex Records, Saving Data Structures, Display, Java Traps, stat –stat , Glossary, Glossary

 	

 	arrays of arrays, Arrays of Arrays–Common Mistakes

 	arrays of hashes, Arrays of Hashes–Access and Printing of an Array of Hashes

 	defined, Built-in Data Types, Glossary

 	examining with debugger, Display

 	hashes of arrays, Hashes of Arrays–Access and Printing of a Hash of Arrays

 	hashes of functions, Hashes of Functions

 	hashes of hashes, Hashes of Hashes–Access and Printing of a Hash of Hashes

 	more elaborate records, More Elaborate Records–Generation of a Hash of Complex Records

 	nested, Complexities

 	programming practices, Java Traps

 	references pointing to, What Is a Reference?

 	saving, Saving Data Structures

 	stat structure, stat –stat , Glossary

 	_ _DATA_ _token, Other Literal Tokens, Documenting Your Perl Programs

 	data types, Built-in Data Types–Built-in Data Types, Glossary

 	

 	built–in, Built-in Data Types–Built-in Data Types

 	defined, Glossary

 	Data::Dump module, Grammars, Access and Printing

 	Data::Dumper module, Access and Printing, Saving Data Structures–Saving Data Structures, UNIVERSAL: The Ultimate Ancestor Class, Endianness and Number Width

 	

 	parsable code and, Access and Printing

 	portability and, Endianness and Number Width

 	references to subroutines and, UNIVERSAL: The Ultimate Ancestor Class

 	saving data structures, Saving Data Structures–Saving Data Structures

 	Database Management (DBM) routines, Glossary

 	datagrams, Glossary, Glossary

 	

 	defined, Glossary

 	UDP support, Glossary

 	Date::Parse module, Dates and Times

 	dates and times, portability, Dates and Times

 	DateTime module, Dates and Times

 	DB module, The Perl Debugger, Customizing with Init Files

 	%DB::alias variable, Customizing with Init Files

 	@DB::dbline variable, Writing Your Own Debugger

 	%DB::dbline
 variable, Writing Your Own Debugger

 	$DB::deep variable, Debugger Support

 	$DB::doccmd
 variable, Miscellaneous Commands

 	$DB::signal
 variable, Unattended Execution

 	$DB::single variable, Using the Debugger, Unattended Execution

 	&DB::sub
 subroutine, Debugger Support

 	$DB::trace variable, Using the Debugger

 	DBD::SQLite module, Standard Modules

 	DBI module, Initializers, Standard Modules

 	DBM (Database Management) routines, Glossary

 	dbmclose function, Tied Variables, dbmclose

 	dbmopen function, Tied Variables, dbmopen

 	DBM_Filter module, The Encode Module, dbmopen

 	DB_File module, dbmopen , tie

 	ddd graphical debugger, Debugger Options

 	debugger, The Perl Debugger–Using the Debugger, Using the Debugger, Debugger Commands–Miscellaneous Commands, Stepping and Running, Breakpoints–Breakpoints, Tracing, Display, Locating Code, Actions and Command Execution–Actions and Command Execution, Editor Support for Debugging, Customizing with Init Files, Debugger Options–Debugger Options, Unattended Execution–Unattended Execution, Debugger Support–Writing Your Own Debugger, Writing Your Own Debugger, Profiling Perl–Devel::NYTProf, Python Traps, Glossary

 	

 	about, The Perl Debugger–Using the Debugger, Glossary

 	actions and command execution, Actions and Command Execution–Actions and Command Execution

 	breakpoints, Breakpoints–Breakpoints

 	commands supported, Debugger Commands–Miscellaneous Commands

 	customizing with init files, Customizing with Init Files

 	editor support, Editor Support for Debugging

 	examining data structures, Display

 	locating code, Locating Code

 	options supported, Debugger Options–Debugger Options

 	profiling Perl, Profiling Perl–Devel::NYTProf

 	programming practices, Python Traps

 	prompt example, Using the Debugger

 	stepping and running, Stepping and Running

 	support considerations, Debugger Support–Writing Your Own Debugger

 	trace mode, Tracing

 	unattended execution, Unattended Execution–Unattended Execution

 	writing a, Writing Your Own Debugger

 	$DEBUGGING ($^D)
 variable, Managing Class Data, Special Variables in Alphabetical Order

 	declarations, Simplicities–Simplicities, Simplicities, Simplicities, Statements and Declarations, Global Declarations–Global Declarations, Scoped Declarations–Dynamically Scoped Variables: local, Packages, Changing the Package–Changing the Package, Java Traps, my–my, our, package, state, sub–sub, use –use , Library Science, Glossary

 	

 	defined, Statements and Declarations, Glossary

 	global, Global Declarations–Global Declarations

 	my, Simplicities, my–my

 	our, Simplicities, our

 	package, Simplicities–Simplicities, Packages, Changing the Package–Changing the Package, package

 	programming practices, Java Traps

 	scoped, Scoped Declarations–Dynamically Scoped Variables: local

 	state, state

 	sub, sub–sub

 	use, use –use , Library Science

 	declarators, Statements and Declarations, Glossary

 	decrementing values, Glossary

 	default values, Glossary

 	deference operators, Overloadable Operators

 	DEFINE blocks, Grammatical Patterns

 	defined (term), Global Declarations, Glossary

 	defined function, Tying Hashes, defined

 	delete function, delete

 	DELETE method, Tying Arrays, Array-Tying Methods, Tying Hashes, Hash-Tying Methods

 	

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	delimiters (term), Glossary

 	denial–of–service attacks, Restricting operator access

 	deprecate pragma, deprecate

 	dereference (term), Singularities, What Is a Reference?, Glossary

 	dereference operators, Overloadable Operators

 	dereference–address operator, C Operators Missing from Perl

 	derived classes, Brief Refresher on Object-Oriented Lingo, Glossary

 	descriptors, file, fileno , Glossary

 	destroy (term), Glossary

 	DESTROY method, Instance Destructors–Garbage Collection with destroy
 Methods, Tying Scalars, Scalar-Tying Methods, Tying Arrays, Array-Tying Methods, Tying Hashes, Hash-Tying Methods, Tying Filehandles, Filehandle-Tying Methods

 	

 	instance destructors and, Instance Destructors–Garbage Collection with destroy
 Methods

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied filehandles, Tying Filehandles, Filehandle-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	tied scalars, Tying Scalars, Scalar-Tying Methods

 	destructor method, Instance Destructors–Garbage Collection with destroy
 Methods, Glossary

 	Devel::AssertOS module, Portable Perl

 	Devel::CheckOS module, Portable Perl

 	Devel::Cover module, Internal testing

 	Devel::DProf module, Switches, Profiling Perl–Devel::DProf

 	Devel::NYTProf module, Profiling Perl, Devel::NYTProf

 	Devel::Peek module, What Is a Reference?

 	Devel::REPL module, Python Traps

 	Devel::SmallProf module, Profiling Perl

 	devices (term), Glossary

 	diagnostics pragma, What’s New in This Edition, Programming with Style, diagnostics–diagnostics

 	die function, Signals, die

 	Digest::* modules, crypt

 	digit character class, POSIX-Style Character Classes

 	$digits variable, Special Variables in Alphabetical Order

 	directives, Command Paragraphs–Command Paragraphs, Glossary

 	

 	defined, Glossary

 	pod, Command Paragraphs–Command Paragraphs

 	directories, A Tour of the Repository–A Tour of the Repository, Glossary, Glossary, Glossary

 	

 	CPAN, A Tour of the Repository–A Tour of the Repository

 	defined, Glossary

 	home, Glossary

 	working, Glossary

 	directory handle, Glossary

 	discipline (I/O layer), Glossary

 	dispatching, Glossary

 	Dist::Zilla module, Dist::Zilla

 	Distribution::Cooker module, Distribution::Cooker

 	distributions, The Standard Distribution–The Standard Distribution, Installing CPAN Modules–cpanminus, Creating CPAN Distributions–External testing, Library Science, Glossary

 	

 	build systems in, Installing CPAN Modules–cpanminus

 	CPAN, Creating CPAN Distributions–External testing

 	defined, Library Science, Glossary

 	standard, The Standard Distribution–The Standard Distribution

 	divide (/) operator, Multiplicative Operators

 	do (block) statement, The given Statement, do (block)

 	do (file) statement, do (file)

 	do (subroutine) statement, do (subroutine)

 	Do What I Mean (DWIM) principle, Glossary

 	doc directory (CPAN), A Tour of the Repository

 	documenting programs, Documenting Your Perl Programs

 	dollar sign ($) sigil, Variable Syntax, Variables

 	double–quote interpolation, Pattern-Matching Operators

 	–dt command-line switch, Switches

 	dual–lived modules, The Future of the Standard Perl Library, Glossary

 	dump function, Switches, dump

 	Dumpvalue module, Access and Printing

 	dweomer, Glossary

 	DWIM (Do What I Mean) principle, Glossary

 	dwimming, Glossary

 	DynaLoader module, Autoloading

 	dynamic scope, Scoped Declarations, Glossary

 E

 	\e escape
 sequence, String Literals, Specific Characters

 	\E escape
 sequence, String Literals

 	–e file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	\e metasymbol, Metasymbol Tables

 	\E metasymbol, Metasymbol Tables

 	/e modifier, The s/// Operator (Substitution), Substitution evaluations

 	E pod sequence, Flowed Text, Flowed Text

 	–e command-line switch, Command Processing, Switches

 	–E command-line switch, Command Processing, Switches

 	$^E ($EXTENDED_OS_ERROR)
 variable, Special Variables in Alphabetical Order

 	each function, Hash-Tying Methods, Space Efficiency, each

 	eclectic (term), Glossary

 	$EFFECTIVE_GROUP ($))
 variable, Special Variables in Alphabetical Order

 	$EFFECTIVE_USER_ID
 ($>) variable, Special Variables in Alphabetical Order

 	efficiency practices, Efficiency, Time Efficiency–Time Efficiency, Space Efficiency, Programmer Efficiency, Maintainer Efficiency, Porter Efficiency, User Efficiency

 	

 	about, Efficiency

 	maintainer efficiency, Maintainer Efficiency

 	porter efficiency, Porter Efficiency

 	programmer efficiency, Programmer Efficiency

 	space efficiency, Space Efficiency

 	time efficiency, Time Efficiency–Time Efficiency

 	user efficiency, User Efficiency

 	elements, Bits and Pieces, Bits and Pieces, Array Length, Glossary, Glossary

 	

 	(see also specific elements)

 	about, Bits and Pieces, Glossary

 	determining for arrays, Array Length

 	slices of, Glossary

 	ellipsis statement, The Ellipsis Statement

 	emacs editor, Editor Support for Debugging

 	embedding (term), Glossary

 	empty subclass test, Glossary

 	en passant (term), Glossary

 	encapsulation (term), Brief Refresher on Object-Oriented Lingo, Glossary

 	Encode module, Wildcard Metasymbols, The Encode Module–The Encode Module, Special Variables in Alphabetical Order, binmode , open , open, utf8

 	

 	about, The Encode Module–The Encode Module

 	${^ENCODING} variable
 and, Special Variables in Alphabetical Order

 	metasymbols and, Wildcard Metasymbols

 	open pragma and, open

 	text files and, open

 	usage example, binmode

 	utf8 pragma and, utf8

 	Encode::Locale module, The Encode Module

 	=encoding pod
 directive, Command Paragraphs

 	encoding pragma, Environment Variables, encoding

 	${^ENCODING}
 variable, Special Variables in Alphabetical Order

 	END blocks, The Life Cycle of a Perl Program, The Life Cycle of a Perl Program, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	

 	compile phase and, The Life Cycle of a Perl Program

 	run order, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	run phase and, The Life Cycle of a Perl Program

 	=end pod directive, Command Paragraphs

 	End of File (EOF), Glossary

 	_ _END_ _ token, Other Literal Tokens, Command Processing, Space Efficiency, Generating Perl in Other Languages, Documenting Your Perl Programs

 	

 	about, Other Literal Tokens, Command Processing

 	efficiency practices, Space Efficiency

 	pod directives and, Documenting Your Perl Programs

 	program generation and, Generating Perl in Other Languages

 	endianness, Endianness and Number Width, Glossary, Glossary

 	

 	big–endian, Glossary

 	little–endian, Glossary

 	portability and, Endianness and Number Width

 	English module, Interpolating Array Values, Special Variables in Alphabetical Order, Picture Formats, Picture Formats, Format Variables, format, formline, open

 	

 	$LIST_SEPARATOR variable and, Interpolating Array Values

 	$– variable and, Picture Formats

 	accessing format–specific variables, format

 	$ACCUMULATOR variable
 and, formline

 	$AUTOFLUSH variable
 and, open

 	longer synonyms and, Special Variables in Alphabetical Order

 	picture formats, Picture Formats

 	reading variable names, Format Variables

 	enterprise solutions, Library Science

 	ENV environment variable, Cleaning Up Your Environment

 	Env module, Shell Traps

 	%ENV variable, Special Variables in Alphabetical Order

 	environment (term), Glossary

 	environment variables, Glossary, Glossary

 	

 	(see also specific environment variables)

 	EOF (End of File), Glossary

 	eof function, Filehandle-Tying Methods, Time Efficiency, eof

 	EOF method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	eq (equal) operator, Some Numeric and String Comparison Operators, Equality Operators

 	equality operators, Equality Operators

 	errno (error number), Glossary

 	Errno module, Style, Wandering the Stacks

 	

 	about, Wandering the Stacks

 	portability and, Style

 	$ERRNO ($OS_ERROR, $!)
 variable, Special Variables in Alphabetical Order

 	%ERRNO (%OS_ERROR, %!)
 variable, Special Variables in Alphabetical Order

 	error number (errno), Glossary

 	escape sequences, String Literals–String Literals, Specific Characters, Glossary

 	eval function, Debugger Commands, Detecting and Laundering Tainted Data, Time Efficiency, Fluent Perl, eval –eval , eval

 	

 	about, eval –eval

 	debugger and, Debugger Commands

 	efficiency practices, Time Efficiency

 	exception handling and, eval

 	programming practices, Fluent Perl

 	tainted data and, Detecting and Laundering Tainted Data

 	evaluation, Substitution evaluations, Match-time code evaluation–Match-time code evaluation

 	

 	match–time code, Match-time code evaluation–Match-time code evaluation

 	substitution, Substitution evaluations

 	$EVAL_ERROR ($@)
 variable, Detecting and Laundering Tainted Data, Special Variables in Alphabetical Order

 	exception handling, Error Indications, Glossary

 	

 	defined, Glossary

 	subroutines, Error Indications

 	$EXCEPTIONS_BEING_CAUGHT
 ($^S) variable, Special Variables in Alphabetical Order

 	exec function, Accessing Commands and Files Under Reduced Privileges, exec –exec , Glossary

 	executable files, The Life Cycle of a Perl Program, Library Science, Glossary

 	executable image, The Life Cycle of a Perl Program

 	$EXECUTABLE_NAME
 ($^X) variable, Special Variables in Alphabetical Order

 	execute (term), Glossary

 	execute bit, Glossary

 	execution phase, The Life Cycle of a Perl Program

 	exists function, Array-Tying Methods, Tying Hashes, Hash-Tying Methods, exists–exists

 	

 	about, exists–exists

 	tied arrays and, Array-Tying Methods

 	tied hashes and, Tying Hashes, Hash-Tying Methods

 	EXISTS method, Tying Arrays, Array-Tying Methods, Tying Hashes, Hash-Tying Methods

 	

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	exit function, exit

 	exit status, Glossary

 	exp function, exp

 	Expect module, Bidirectional Communication

 	exploits, security, Handling Race Conditions, Glossary

 	exponentiation (**) operator, Some Binary Arithmetic Operators, Exponentiation

 	@EXPORT variable, Module Privacy and the Exporter, Special Variables in Alphabetical Order

 	Exporter module, Symbol Tables, Loading Modules, Module Privacy and the Exporter–Tag-handling utility functions, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, use , autouse, strict “vars”

 	

 	about, Symbol Tables

 	@EXPORT variable
 and, Special Variables in Alphabetical Order

 	@EXPORT_OK variable
 and, Special Variables in Alphabetical Order

 	%EXPORT_TAGS
 variable and, Special Variables in Alphabetical Order

 	import method, Loading Modules, use , autouse

 	module privacy and, Module Privacy and the Exporter–Tag-handling utility functions

 	per–package variables and, strict “vars”

 	exporting, Exporting without using Exporter’s import method, Glossary

 	

 	defined, Glossary

 	modules, Exporting without using Exporter’s import method

 	@EXPORT_OK variable, Module Privacy and the Exporter, Special Variables in Alphabetical Order

 	%EXPORT_TAGS
 variable, Module Privacy and the Exporter, Special Variables in Alphabetical Order

 	expressions, Compound Statements, Tracing, Glossary, Glossary, Glossary

 	

 	(see also regular expressions)

 	compound statements and, Compound Statements

 	defined, Glossary

 	watch, Tracing, Glossary

 	EXTEND method (tied arrays), Array-Tying Methods

 	$EXTENDED_OS_ERROR
 ($^E) variable, Special Variables in Alphabetical Order

 	extensions, Library Science, Wandering the Stacks–Wandering the Stacks, Glossary

 	

 	defined, Library Science, Glossary

 	types supported, Wandering the Stacks–Wandering the Stacks

 	eXternal Subroutine (XS), h2xs, External Subroutines (XS), Glossary

 	ExtUtils::MakeMaker module, blib

 	ExtUtils::MM_VMS module, Standard Modules

 F

 	f debugger command, Locating Code

 	\f escape
 sequence, String Literals, Specific Characters

 	\F escape
 sequence, String Literals

 	–f file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	\f metasymbol, Metasymbol Tables

 	\F metasymbol, Metasymbol Tables

 	–f command-line switch, Switches

 	–F command-line switch, Switches

 	$^F ($SYSTEM_FD_MAX) variable, Passing Filehandles, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, fileno , socket

 	

 	about, Special Variables in Alphabetical Order

 	filehandles and, Passing Filehandles

 	fileno function and, fileno

 	socket function and, socket

 	Faigin, Dan, History Made Practical

 	fallback key, When an Overload Handler Is Missing (nomethod and
 fallback), Inheritance and Overloading

 	false values, Glossary

 	FAQ (Frequently Asked Question), Glossary

 	fatal errors, Glossary

 	fc function, A Case of Mistaken Identity, fc

 	fcntl function, Passing Filehandles, fcntl

 	Fcntl module, chmod , fcntl , flock , seek , stat , sysopen , sysseek , Wandering the Stacks

 	

 	about, Wandering the Stacks

 	fcntl function and, fcntl

 	symbolic names and, chmod , flock , seek , stat , sysseek

 	sysopen function and, sysopen

 	feature pragma, The given Statement, Pattern Modifiers, Switches, Switches, Switches, Switches, Perl Functions by Category, say , state, use , feature, feature, feature, feature, feature

 	

 	about, feature

 	loading, use

 	say feature, Switches, say , feature

 	scoping and, Perl Functions by Category

 	state feature, Switches, state, feature

 	switch feature, The given Statement, Switches, feature

 	unicode_strings feature, Pattern Modifiers, Switches, feature

 	feeping creaturism, History Made Practical, Glossary

 	FETCH method, Tying Scalars, Scalar-Tying Methods, Tying Arrays, Array-Tying Methods, Tying Hashes, Hash-Tying Methods

 	

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	tied scalars, Tying Scalars, Scalar-Tying Methods

 	FETCHSIZE method (tied arrays), Tying Arrays, Array-Tying Methods

 	fields (term), Glossary

 	fields pragma, Pseudohashes, Pseudohashes, Class Inheritance–Inheritance Through @ISA, Compiling Your Code, Special Variables in Alphabetical Order, base, fields

 	

 	about, Compiling Your Code, fields

 	base classes and, base

 	%FIELDS variable
 and, Special Variables in Alphabetical Order

 	@ISA variable and, Class Inheritance–Inheritance Through @ISA

 	new function, Pseudohashes

 	phash function, Pseudohashes

 	%FIELDS variable, Special Variables in Alphabetical Order

 	FIFO (First In, First Out), Named Pipes, The Life Cycle of a Perl Program, Glossary

 	file descriptors, fileno , Glossary

 	file test operators, Some File Test Operators, Named Unary and File Test Operators–Named Unary and File Test Operators, The when Statement and Modifier, Glossary

 	

 	about, Glossary

 	smartmatching and, The when Statement and Modifier

 	table listing, Some File Test Operators, Named Unary and File Test Operators–Named Unary and File Test Operators

 	_ _FILE_ _ token, Other Literal Tokens, Generating Perl in Other Languages, _ _FILE_ _

 	File::Basename module, Loading Modules, Files and Filesystems

 	File::chmod module, chmod

 	File::Copy module, rename

 	File::Glob module, Overriding Built-in Functions, glob

 	File::HomeDir module, Files and Filesystems

 	File::Map module, System V IPC, Space Efficiency

 	File::Path module, rmdir

 	File::Spec module, Files and Filesystems

 	File::stat module, stat

 	File::Temp module, Temporary Files, Files and Filesystems

 	fileglobs, Filename Globbing Operator–Filename Globbing Operator, Glossary

 	<FILEHANDLE>
 operator, readline

 	filehandles, Filehandles–Filehandles, Typeglobs and Filehandles, Handle References, Tying Filehandles–Creative Filehandles, File Locking, Passing Filehandles–Passing Filehandles, Handling Race Conditions, Universal Blunders, Special Variables in Alphabetical Order, Glossary, Glossary

 	

 	about, Filehandles–Filehandles, Glossary

 	indirect, Glossary

 	locks and, File Locking

 	passing for IPC, Passing Filehandles–Passing Filehandles

 	programming practices, Universal Blunders

 	race conditions and, Handling Race Conditions

 	references to, Handle References

 	tying, Tying Filehandles–Creative Filehandles

 	typeglobs and, Typeglobs and Filehandles

 	underline character, Special Variables in Alphabetical Order

 	filenames, Filename Globbing Operator–Filename Globbing Operator, Handling Race Conditions, Glossary

 	

 	about, Glossary

 	glob function and, Filename Globbing Operator–Filename Globbing Operator

 	race conditions and, Handling Race Conditions

 	fileno function, Filehandle-Tying Methods, fileno

 	FILENO method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	files, Files–Passing Filehandles, File Locking–File Locking, Passing Filehandles–Passing Filehandles, The Life Cycle of a Perl Program, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges, Temporary Files–Temporary Files, Space Efficiency, Files and Filesystems–Files and Filesystems, truncate , Library Science, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	defined, Glossary

 	executable, The Life Cycle of a Perl Program, Library Science, Glossary

 	header, Glossary

 	interprocess commmunications and, Files–Passing Filehandles

 	locking, File Locking–File Locking

 	ownership of, Glossary

 	passing filehandles, Passing Filehandles–Passing Filehandles

 	portability and, Files and Filesystems–Files and Filesystems

 	reduced privileges and, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges

 	regular, Glossary

 	temporary, Temporary Files–Temporary Files, Space Efficiency

 	text, Glossary

 	truncating, truncate , Glossary

 	filesystems, Files and Filesystems–Files and Filesystems, Glossary

 	

 	defined, Glossary

 	portability and, Files and Filesystems–Files and Filesystems

 	filetest pragma, filetest

 	Filter module, Source Filters

 	filters, Anonymous Pipes, Source Filters, Glossary, Glossary

 	

 	defined, Anonymous Pipes, Glossary

 	source, Source Filters, Glossary

 	FindBin module, require , lib

 	First In, First Out (FIFO), Named Pipes, The Life Cycle of a Perl Program, Glossary

 	FIRSTKEY method (tied hashes), Tying Hashes, Hash-Tying Methods

 	first–come permissions, PAUSE, Glossary

 	flags (term), Glossary

 	floating point methods, Glossary

 	flock function, Timing Out Slow Operations, File Locking–File Locking, Handling Race Conditions, flock

 	

 	about, File Locking–File Locking, flock

 	handling race conditions, Handling Race Conditions

 	signal handling and, Timing Out Slow Operations

 	flowed text, Flowed Text–Flowed Text

 	flushing buffers, Glossary

 	FMTEYEWTK acronym, Glossary

 	foldcase (term), A Case of Mistaken Identity, Glossary

 	footers (picture formats), Footers

 	=for pod directive, Command Paragraphs

 	for statement, The three-part loop, Simple Statements, Fluent Perl

 	

 	about, The three-part loop

 	modifiers and, Simple Statements

 	programming practices, Fluent Perl

 	foreach statement, The foreach loop, Simple Statements, foreach Loops–foreach Loops, Shell Traps, Time Efficiency

 	

 	about, The foreach loop, foreach Loops–foreach Loops

 	efficiency practices, Time Efficiency

 	modifiers and, Simple Statements

 	programming practices, Shell Traps

 	fork function, Reaping Zombies, Passing Filehandles, fork –fork

 	

 	about, fork –fork

 	filehandles and, Passing Filehandles

 	signal handling and, Reaping Zombies

 	forking processes, Reaping Zombies, Glossary

 	formal arguments, Glossary

 	format function, format

 	format modifiers, String Formats–String Formats

 	formats, String Formats–String Formats, String Formats, Binary Formats–unpack, Picture Formats–Accessing Formatting Internals, Picture Formats–Accessing Formatting Internals, Glossary

 	

 	binary, Binary Formats–unpack

 	defined, Glossary

 	output record, Picture Formats–Accessing Formatting Internals

 	picture, Picture Formats–Accessing Formatting Internals

 	sprintf function, String Formats

 	string, String Formats–String Formats

 	format_formfeed method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_FORMFEED
 ($^L) variable, Special Variables in Alphabetical Order, Format Variables

 	format_lines_left method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_LINES_LEFT ($–)
 variable, Picture Formats, Footers

 	format_lines_per_page method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_LINES_PER_PAGE
 ($=) variable, Special Variables in Alphabetical Order, Format Variables

 	format_line_break_characters method
 (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_LINE_BREAK_CHARACTERS
 ($:) variable, Special Variables in Alphabetical Order, Picture Formats

 	format_name method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_NAME ($~)
 variable, Special Variables in Alphabetical Order, Format Variables

 	format_page_number method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_PAGE_NUMBER ($%)
 variable, Special Variables in Alphabetical Order, Format Variables

 	format_top_name method (IO::Handle), Special Variables in Alphabetical Order

 	$FORMAT_TOP_NAME ($^)
 variable, Special Variables in Alphabetical Order, Format Variables

 	formline function, formline

 	foy, brian d, Creating a MiniCPAN

 	Free Software Foundation, Glossary

 	freely available (term), Glossary

 	freely redistributable (term), Glossary

 	freeware (term), Glossary

 	Frequently Asked Question (FAQ), Glossary

 	Friedl, Jeffrey, Regular Expressions, The Little Engine That /Could(n’t)?/, Generated patterns

 	function generators, Closures

 	function templates, Closures as function templates

 	functions, Verbs, Verbs, Subroutines, Inlining Constant Functions, Hashes of Functions, Overriding Built-in Functions, Overloadable Operators, Overloadable Operators, Tied Variables, Java Traps, Portable Perl, Per-Package Special Functions, Functions–Functions, Perl Functions by Category–Perl Functions in Alphabetical Order, Perl Functions in Alphabetical Order–y//, Perl Functions in Alphabetical Order, Glossary, Glossary, Glossary

 	

 	(see also built–in functions)

 	about, Verbs, Subroutines, Functions–Functions, Glossary

 	in alphabetical
 order, Perl Functions in Alphabetical Order–y//

 	annotations for, Perl Functions in Alphabetical Order

 	case considerations, Tied Variables

 	by category, Perl Functions by Category–Perl Functions in Alphabetical Order

 	constant, Inlining Constant Functions

 	hashes of, Hashes of Functions

 	lvaluable, Glossary

 	mathematical, Overloadable Operators, Overloadable Operators

 	per–package special, Per-Package Special Functions

 	platform variations and, Portable Perl

 	procedures and, Verbs

 	programming practices, Java Traps

 	pseudofunctions, Glossary

 	funny characters, Glossary

 G

 	–g file test
 operator, Named Unary and File Test Operators

 	\g metasymbol, Metasymbol Tables

 	\G metasymbol, Metasymbol Tables, Where You Left Off: The \G Assertion

 	/g modifier, The m// Operator (Matching), The s/// Operator (Substitution)

 	garbage collection, Scoping Issues, Garbage Collection, Circular References, and Weak
 References, Garbage Collection with destroy
 Methods, Java Traps, Glossary

 	

 	defined, Glossary

 	DESTROY methods and, Garbage Collection with destroy
 Methods

 	lexical variables and, Scoping Issues

 	programming practices, Java Traps

 	references and, Garbage Collection, Circular References, and Weak
 References

 	GDBM_File module, File Locking, dbmopen

 	ge (greater than or equal) operator, Some Numeric and String Comparison Operators, Relational Operators

 	Gearman module, Time Efficiency

 	generated patterns, Generated patterns

 	getc function, Filehandle-Tying Methods, Time Efficiency, getc

 	GETC method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	getgrent function, getgrent

 	getgrgid function, getgrgid

 	getgrnam function, getgrnam

 	gethostbyaddr function, gethostbyaddr

 	gethostbyname function, gethostbyname

 	gethostent function, gethostent

 	getlogin function, getlogin

 	getnetbyaddr function, getnetbyaddr

 	getnetbyname function, getnetbyname

 	getnetent function, getnetent

 	Getopt::Long module, Line Input (Angle) Operator, Loop Control, Code Development Tools, shift

 	Getopt::Std module, Line Input (Angle) Operator, Loop Control, shift

 	getpeername function, Networking Servers, getpeername

 	getpgrp function, getpgrp

 	getppid function, getppid

 	getpriority function, getpriority

 	getprotobyname function, getprotobyname

 	getprotobynumber function, getprotobynumber

 	getprotoent function, getprotoent

 	getpwent function, getpwent

 	getpwnam function, getpwnam

 	getpwuid function, getpwuid

 	getservbyname function, getservbyname

 	getservbyport function, getservbyport

 	getservent function, getservent , Glossary

 	getsockname function, getsockname

 	getsockopt function, getsockopt

 	GID (Group ID), Glossary

 	given statement, The given and when Statements, The given Statement–The when Statement and Modifier

 	glob (* character), Glossary

 	glob function, Filename Globbing Operator–Filename Globbing Operator, Overriding Built-in Functions, glob

 	glob value (GV), Glossary

 	global (term), Glossary

 	global delarations, Global Declarations–Global Declarations

 	global destruction, Glossary

 	glue language, Glossary

 	gmtime function, Message Passing, gmtime

 	Golden, David, version

 	goto operator, The goto Operator, Time Efficiency, goto

 	grammatical patterns, Grammatical Patterns–Grammars

 	granularity, Glossary

 	graph character class, POSIX-Style Character Classes

 	graphemes, Graphemes and Normalization–Graphemes and Normalization, String Formats, Glossary

 	

 	defined, Glossary

 	normalization process and, Graphemes and Normalization–Graphemes and Normalization

 	string formats and, String Formats

 	greedy subpatterns, Glossary

 	grep function, grep, Glossary

 	Group ID (GID), Glossary

 	group references, Capturing

 	grouping in pattern matching, The Regular Expression Bestiary, Grouping and Capturing, Grouping Without Capturing

 	groups, Possessive Groups–Possessive Groups, Glossary

 	

 	defined, Glossary

 	possessive, Possessive Groups–Possessive Groups

 	gt (greater than) operator, Some Numeric and String Comparison Operators, Relational Operators

 	GV (glob value), Glossary

 	gvim editor, Editor Support for Debugging

 H

 	H debugger command, Display

 	\h metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	\H metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	–h command-line switch, Switches

 	$^H variable, Special Variables in Alphabetical Order

 	%^H variable, Special Variables in Alphabetical Order

 	h2xs tool, h2xs

 	hackers, Glossary

 	handle references, Handle References

 	handlers, The overload Pragma, Overload Handlers, When an Overload Handler Is Missing (nomethod and
 fallback), Glossary, Glossary

 	

 	defined, The overload Pragma, Glossary

 	overload, Overload Handlers, When an Overload Handler Is Missing (nomethod and
 fallback)

 	signal, Glossary

 	handle_looks_safe function, Handling Race Conditions

 	hard references, What Is a Reference?, Using a Variable As a Variable Name, Using a block As a Variable
 Name, Using the Arrow Operator–Using the Arrow Operator, Using Object Methods, Pseudohashes, Other Tricks You Can Do with Hard References–Other Tricks You Can Do with Hard References, Other Tricks You Can Do with Hard References, Closures–Nested subroutines, Glossary

 	

 	about, What Is a Reference?, Glossary

 	arrow operator and, Using the Arrow Operator–Using the Arrow Operator

 	backslash operator and, Other Tricks You Can Do with Hard References

 	BLOCK construct and, Using a block As a Variable
 Name

 	closures and, Closures–Nested subroutines

 	object methods and, Using Object Methods

 	pseudohashes and, Pseudohashes

 	suggested usage, Other Tricks You Can Do with Hard References–Other Tricks You Can Do with Hard References

 	variables and, Using a Variable As a Variable Name

 	hash keys, References Don’t Work As Hash Keys

 	hash tables, Hashes, Glossary

 	hash value (HV), Glossary

 	Hash::Util module, Pseudohashes, Loading Modules, Environment Variables

 	hashes, Variable Syntax, Hashes–Hashes, Built-in Data Types, Variables, Hashes–Hashes, Hashes, The anonymous hash composer, Pseudohashes, Arrays of Hashes–Access and Printing of an Array of Hashes, Hashes of Hashes–Access and Printing of a Hash of Hashes, Tying Hashes–Hash-Tying Methods, Glossary, Glossary

 	

 	about, Hashes–Hashes, Built-in Data Types, Hashes–Hashes, Glossary

 	anonymous hash composer, The anonymous hash composer

 	arrays of, Arrays of Hashes–Access and Printing of an Array of Hashes

 	multidimensional, Hashes, Hashes of Hashes–Access and Printing of a Hash of Hashes

 	pseudohashes, Pseudohashes, Glossary

 	sigil for, Variable Syntax, Variables

 	tying, Tying Hashes–Hash-Tying Methods

 	hashes of arrays, Hashes of Arrays, Composition of a Hash of Arrays, Generation of a Hash of Arrays, Access and Printing of a Hash of Arrays

 	

 	about, Hashes of Arrays

 	accessing and printing, Access and Printing of a Hash of Arrays

 	composition of, Composition of a Hash of Arrays

 	generating, Generation of a Hash of Arrays

 	hashes of functions, Hashes of Functions

 	hashes of hashes, Hashes of Hashes (see multidimensional hashes)

 	=head1 pod
 directive, Command Paragraphs, Documenting Your Perl Programs

 	=head2 pod
 directive, Command Paragraphs

 	header files, Glossary

 	here documents, “Here” Documents–“Here” Documents, Glossary

 	hex function, hex

 	hexadecimals, Glossary

 	Hietaniemi, Jarkko, History

 	home directory, Glossary

 	HOME environment variable, Environment Variables

 	Hopkins, Sharon, Perl Poetry

 	host computers, Glossary

 	hubris quality, Packages, History Made Practical, Virtues of the Perl Programmer, Glossary

 	Hume, Andrew, Generated patterns

 	HV (hash value), Glossary

 I

 	/i modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution), A Case of Mistaken Identity

 	

 	about, Pattern Modifiers

 	case–insensitive matching and, A Case of Mistaken Identity

 	m// operator and, The m// Operator (Matching)

 	s/// operator and, The s/// Operator (Substitution)

 	I pod sequence, Flowed Text

 	–I command-line switch, Command Processing, Switches

 	–i command-line switch, Switches

 	$^I ($INPLACE_EDIT)
 variable, Special Variables in Alphabetical Order

 	I/O (Input/Output), Glossary, Glossary

 	

 	defined, Glossary

 	standard, Glossary

 	I/O layer, Glossary

 	identifiers, Molecules, Names, Qualified Names, Glossary

 	

 	case considerations, Names

 	defined, Molecules, Qualified Names, Glossary

 	if pragma, use , if

 	if statement, The if and unless statements, Simple Statements, if and unless Statements

 	

 	about, The if and unless statements, if and unless Statements

 	modifiers and, Simple Statements

 	IFS environment variable, Cleaning Up Your Environment

 	impatience quality, Packages, History Made Practical, Virtues of the Perl Programmer, Glossary

 	implementation (term), Glossary

 	import (term), Glossary

 	import class method, Magically Banishing $_, import

 	%INC variable, Special Variables in Alphabetical Order

 	@INC variable, Internal testing, A Tour of the Perl Library

 	@INC variable, Special Variables in Alphabetical Order

 	inc::latest module, A Tour of the Perl Library, inc::latest

 	incrementing values, Glossary

 	index function, Graphemes and Normalization, index

 	indexing (term), Glossary

 	indirect filehandles, Glossary

 	indirect object slot, Glossary

 	indirect objects, Method Invocation Using Indirect Objects, Syntactic Snafus with Indirect Objects–Syntactic Snafus with Indirect Objects, Glossary

 	

 	defined, Glossary

 	method invocation and, Method Invocation Using Indirect Objects

 	syntactic considerations, Syntactic Snafus with Indirect Objects–Syntactic Snafus with Indirect Objects

 	indirection (term), Glossary

 	infix operators, Unary and Binary Operators, Glossary

 	inheritance, Brief Refresher on Object-Oriented Lingo, Inheritable Constructors, Class Inheritance–Private Methods, Inheritance and Overloading, Glossary, Glossary, Glossary

 	

 	class, Class Inheritance–Private Methods

 	constructors and, Inheritable Constructors

 	defined, Brief Refresher on Object-Oriented Lingo, Glossary

 	multiple, Glossary

 	overloading and, Inheritance and Overloading

 	single, Glossary

 	INIT blocks, Scoping Issues, The Life Cycle of a Perl Program, The Life Cycle of a Perl Program, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	

 	compile phase and, The Life Cycle of a Perl Program

 	FIFO order and, The Life Cycle of a Perl Program

 	run order, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	scoping issues and, Scoping Issues

 	init files, customizing debugger, Customizing with Init Files

 	initializers, Initializers–Initializers

 	$INPLACE_EDIT ($^I)
 variable, Special Variables in Alphabetical Order

 	input operators, Command Input (Backtick) Operator, Command Input (Backtick) Operator, Line Input (Angle) Operator–Line Input (Angle) Operator, Line Input (Angle) Operator–Line Input (Angle) Operator, Filename Globbing Operator–Filename Globbing Operator

 	

 	angle operator, Line Input (Angle) Operator–Line Input (Angle) Operator

 	backtick operator, Command Input (Backtick) Operator

 	command input operator, Command Input (Backtick) Operator

 	filename globbing operator, Filename Globbing Operator–Filename Globbing Operator

 	line input operator, Line Input (Angle) Operator–Line Input (Angle) Operator

 	Input/Output (I/O), Glossary, Glossary

 	

 	defined, Glossary

 	standard, Glossary

 	$INPUT_LINE_NUMBER
 ($.) variable, Special Variables in Alphabetical Order

 	$INPUT_RECORD_SEPARATOR
 ($/) variable, Special Variables in Alphabetical Order, readline

 	instance data, Glossary (see instance variables)

 	instance destructors, Instance Destructors–Garbage Collection with destroy
 Methods

 	instance methods, Brief Refresher on Object-Oriented Lingo, Glossary

 	instance variables, Initializers, Managing Instance Data–New Tricks, New Tricks, Java Traps, Glossary

 	

 	defined, Initializers, Glossary

 	managing, Managing Instance Data–New Tricks

 	programming practices, Java Traps

 	suggested uses, New Tricks

 	instances (term), Brief Refresher on Object-Oriented Lingo, Glossary

 	int function, int

 	integer pragma, Multiplicative Operators, Programming with Style, integer

 	Integer Value (IV), Glossary

 	integers (term), Glossary

 	Intellectual Property (IP), Glossary

 	interfaces (term), Glossary

 	International Phonetic Alphabet (IPA), Glossary

 	internationalization, portability and, Internationalization

 	Internet Protocol (IP), Glossary

 	Internet Relay Chat (IRC), Getting Help

 	interpolation, Singularities, Singularities, Interpolating Array Values, Pattern-Matching Operators, Variable Interpolation–The qr/PATTERN/modifiers quote regex operator, When backslashes happen–When backslashes happen, Match-time pattern interpolation, Conditional interpolation, Glossary, Glossary

 	

 	array values, Interpolating Array Values

 	backslash, Singularities, When backslashes happen–When backslashes happen

 	conditional, Conditional interpolation

 	defined, Glossary

 	double–quote, Pattern-Matching Operators

 	match–time pattern, Match-time pattern interpolation

 	variable, Singularities, Variable Interpolation–The qr/PATTERN/modifiers quote regex operator, Glossary

 	interpolative context, Interpolative Context

 	interpreters, Executing Your Code, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter, Glossary

 	

 	compilers and, Executing Your Code, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	defined, Glossary

 	Interprocess Communication, Glossary (see IPC)

 	invocants, Method Invocation, Method Invocation Using the Arrow Operator, Glossary

 	

 	arrow operator and, Method Invocation Using the Arrow Operator

 	defined, Method Invocation, Glossary

 	invocation, method, Method Invocation–Package-Quoted Classes, Glossary

 	IO::File module, Temporary Files, sysopen

 	

 	about, sysopen

 	new_tmpfile function, Temporary Files

 	IO::Handle module, Symbol Table References, Other Tricks You Can Do with Hard References, Composition, Access, and Printing of More Elaborate
 Records, Tie Modules on CPAN, Detecting and Laundering Tainted Data, Universal Blunders, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order, Format Variables, Accessing Formatting Internals, exec , fork , format, getc , open , sysopen

 	

 	accessing formatting internals, Accessing Formatting Internals

 	accessing format–specific variables, format

 	accessing special variables, Format Variables

 	autoflush method, Special Variables in Alphabetical Order, exec , fork , open

 	data structure records, Composition, Access, and Printing of More Elaborate
 Records

 	file handling considerations, sysopen

 	format_formfeed method, Special Variables in Alphabetical Order

 	format_lines_left method, Special Variables in Alphabetical Order

 	format_lines_per_page method, Special Variables in Alphabetical Order

 	format_line_break_characters method, Special Variables in Alphabetical Order

 	format_name method, Special Variables in Alphabetical Order

 	format_page_number method, Special Variables in Alphabetical Order

 	format_top_name method, Special Variables in Alphabetical Order

 	hard references and, Other Tricks You Can Do with Hard References

 	per–filehandle variables and, Special Variables in Alphabetical Order

 	programming practices, Universal Blunders

 	symbol table references, Symbol Table References

 	tied variables and, Tie Modules on CPAN

 	ungetc function, getc

 	untaint function, Detecting and Laundering Tainted Data

 	IO::Pty module, Bidirectional Communication

 	IO::Seekable module, seek , sysseek

 	IO::Select module, Bidirectional Communication, select (ready file descriptors)

 	IO::Socket module, Sockets, bind , connect

 	IO::Socket::INET module, Networking Clients, Networking Clients, Networking Servers

 	IO::Socket::IP module, Networking Clients

 	IO::WrapTie module, Tie Modules on CPAN

 	ioctl function, ioctl –ioctl

 	IP (Intellectual Property), Glossary

 	IP (Internet Protocol), Glossary

 	IPA (International Phonetic Alphabet), Glossary

 	IPC (Interprocess Communication), Interprocess Communication, Interprocess Communication, Signals–Signal Safety, Files–Passing Filehandles, Pipes–Named Pipes, System V IPC–System V IPC, Sockets–Message Passing, Interprocess Communication (IPC), Glossary

 	

 	about, Interprocess Communication, Glossary

 	additional information, Interprocess Communication

 	files and, Files–Passing Filehandles

 	pipes and, Pipes–Named Pipes

 	portability and, Interprocess Communication (IPC)

 	signal handling and, Signals–Signal Safety

 	sockets and, Sockets–Message Passing

 	System V IPC and, System V IPC–System V IPC

 	IPC::Open2 module, Bidirectional Communication, open

 	IPC::Open3 module, Bidirectional Communication, open

 	IPC::Run module, Interprocess Communication (IPC)

 	IPC::Semaphore module, semctl , semget , semop

 	IPC::Shareable module, System V IPC, System V IPC

 	IPC::System::Simple module, Interprocess Communication (IPC)

 	IPC::SysV module, msgctl , msgget , msgrcv , semget , semop , shmctl

 	

 	msgctl function and, msgctl

 	msgget function and, msgget

 	msgrcv function and, msgrcv

 	semget function and, semget

 	semop function and, semop

 	shmctl function and, shmctl

 	IRC (Internet Relay Chat), Getting Help

 	@ISA variable, Class Inheritance–Inheritance Through @ISA, Special Variables in Alphabetical Order

 	

 	about, Special Variables in Alphabetical Order

 	class inheritance and, Class Inheritance–Inheritance Through @ISA

 	ISO–8601 standard, Dates and Times

 	is_tainted function, Detecting and Laundering Tainted Data

 	is–a relationship, Glossary

 	=item pod directive, Command Paragraphs

 	iteration, Glossary

 	iterative operator (<>), Overloadable Operators, Overloadable Operators

 	iterators, Glossary

 	IV (Integer Value), Glossary

 J

 	JAPH acronym, History Made Practical, Glossary

 	Java language, Java Traps–Java Traps

 	join function, join

 	jumpenv stack, Executing Your Code

 K

 	–k file test
 operator, Named Unary and File Test Operators

 	\k metasymbol, Metasymbol Tables

 	\K metasymbol, Metasymbol Tables

 	key/value pairs, Built-in Data Types, Hashes, Arrays of Hashes, Glossary

 	

 	=> operator and, Hashes

 	about, Built-in Data Types, Glossary

 	arrays of hashes and, Arrays of Hashes

 	keys, Built-in Data Types, References Don’t Work As Hash Keys, Glossary

 	

 	defined, Built-in Data Types, Glossary

 	hash, References Don’t Work As Hash Keys

 	keys function, Hashes, Hashes, Hash-Tying Methods, Space Efficiency, keys

 	

 	about, keys

 	efficiency practices, Space Efficiency

 	tied hashes and, Hash-Tying Methods

 	usage example, Hashes, Hashes

 	keywords (term), Names, Glossary

 	kill function, kill

 	Knuth, D. E., rand

 	Kogai, Dan, Magically Banishing $_

 	König, Andreas, History

 L

 	L debugger command, Breakpoints

 	l debugger command, Locating Code

 	\l escape
 sequence, String Literals

 	\L escape
 sequence, String Literals

 	–l file test
 operator, Named Unary and File Test Operators

 	\l metasymbol, Metasymbol Tables

 	\L metasymbol, Metasymbol Tables

 	/l modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	L pod sequence, Flowed Text

 	–l command-line switch, Switches

 	$^L ($FORMAT_FORMFEED)
 variable, Special Variables in Alphabetical Order, Format Variables

 	labels, Glossary, Glossary

 	

 	defined, Glossary

 	loop, Glossary

 	Last In, First Out (LIFO), The Life Cycle of a Perl Program, Glossary

 	last operator, Breaking out: next and last, Loop Control–Loop Control, C Traps, last

 	

 	about, Breaking out: next and last, last

 	loop control and, Loop Control–Loop Control

 	programming practices, C Traps

 	@LAST_MATCH_END (@+)
 variable, Fluent Perl, Special Variables in Alphabetical Order

 	@LAST_MATCH_START (@–)
 variable, Fluent Perl, Special Variables in Alphabetical Order

 	$LAST_PAREN_MATCH
 ($+) variable, Special Variables in Alphabetical Order

 	%LAST_PAREN_MATCH
 (%+) variable, Special Variables in Alphabetical Order

 	$LAST_REGEXP_CODE_RESULT
 ($^R) variable, Special Variables in Alphabetical Order

 	$LAST_SUBMATCH_RESULT
 ($^N) variable, Special Variables in Alphabetical Order

 	laziness quality, Packages, History Made Practical, Virtues of the Perl Programmer, Glossary

 	lc function, lc

 	lcfirst function, lcfirst

 	LC_ALL environment variable, Environment Variables

 	LC_COLLATE environment variable, Environment Variables

 	LC_CTYPE environment variable, Environment Variables

 	LC_NUMERIC environment variable, Environment Variables

 	le (less than or equal) operator, Some Numeric and String Comparison Operators, Relational Operators

 	left shift (<<) bit operator, Shift Operators, Glossary

 	leftmost longest preference, Quantifiers, Glossary

 	leftmost shortest preference, Quantifiers

 	length function, Graphemes and Normalization, length

 	less pragma, less

 	lettercase characters, A Case of Mistaken Identity

 	lexeme (token), Compiling Your Code, Glossary

 	lexer (tokener), Compiling Your Code, Glossary

 	lexical analysis, Glossary

 	lexical scopes, Names, Name Lookups–Name Lookups, Scoped Declarations, Library Science, Glossary

 	

 	defined, Names, Library Science, Glossary

 	name lookups, Name Lookups–Name Lookups

 	pragmas and, Scoped Declarations

 	lexical variables, Lexically Scoped Variables: my–Dynamically Scoped Variables: local, Scoping Issues, Glossary, Glossary

 	

 	about, Lexically Scoped Variables: my–Dynamically Scoped Variables: local, Glossary

 	garbage collection and, Scoping Issues

 	typed lexicals, Glossary

 	lib pragma, Loading Modules, Environment Variables, By Hand, Special Variables in Alphabetical Order, require , lib

 	

 	about, lib

 	@INC variable
 and, Special Variables in Alphabetical Order

 	loading modules, Loading Modules

 	PERL5LIB environment variable and, Environment Variables, By Hand

 	require function and, require

 	libnet API, Sockets

 	libraries, Library Science, A Tour of the Perl Library, Glossary

 	

 	defined, Library Science, Glossary

 	include path, A Tour of the Perl Library

 	libwww API, Sockets

 	life cycle, program, The Life Cycle of a Perl Program–The Life Cycle of a Perl Program

 	LIFO (Last In, First Out), The Life Cycle of a Perl Program, Glossary

 	line (term), Glossary

 	line buffering, Glossary

 	line input (angle) operator, Line Input (Angle) Operator–Line Input (Angle) Operator, Frequently Ignored Advice

 	line number, Glossary

 	_ _LINE_ _ token, Other Literal Tokens, Generating Perl in Other Languages, _ _LINE_ _

 	linebreaks, Glossary

 	link function, link

 	links, Temporary Files, Glossary, Glossary

 	

 	defined, Glossary

 	symbolic, Temporary Files, Glossary

 	list assignments, Arrays, List Assignment

 	LIST construct, Glossary

 	list context, List Processing, Scalar and List Context, Glossary

 	list literals, List Values and Arrays–List Values and Arrays

 	list operators, Terms and List Operators (Leftward)–Terms and List Operators (Leftward), Named Unary and File Test Operators, List Operators (Rightward), Frequently Ignored Advice, Space Efficiency, Glossary

 	

 	about, Glossary

 	efficiency practices, Space Efficiency

 	left side, Terms and List Operators (Leftward)–Terms and List Operators (Leftward)

 	programming practices, Frequently Ignored Advice

 	right side, List Operators (Rightward)

 	unary operators and, Named Unary and File Test Operators

 	list values, List Values and Arrays–List Values and Arrays, List Assignment, Array Length, Glossary

 	

 	about, List Values and Arrays–List Values and Arrays, Glossary

 	array length, Array Length

 	list assignments, List Assignment

 	List::Util module, grep

 	listen function, listen

 	lists, List Processing–List Processing, Glossary, Glossary

 	

 	defined, Glossary

 	null, Glossary

 	processing, List Processing–List Processing

 	$LIST_SEPARATOR
 ($”) variable, Interpolating Array Values, Special Variables in Alphabetical Order

 	literal tokens, Other Literal Tokens

 	literals, Numeric Literals, String Literals–String Literals, Version Literals, List Values and Arrays–List Values and Arrays, Command Input (Backtick) Operator, Glossary, Glossary, Glossary

 	

 	defined, Glossary

 	list, List Values and Arrays–List Values and Arrays

 	numeric, Numeric Literals

 	pseudoliterals, Command Input (Backtick) Operator, Glossary

 	scalar, Glossary

 	string, String Literals–String Literals

 	version, Version Literals

 	little–endian, Endianness and Number Width, Glossary

 	

 	defined, Glossary

 	portability and, Endianness and Number Width

 	local operator, Dynamically Scoped Variables: local–Dynamically Scoped Variables: local, Universal Blunders, local, Glossary

 	

 	about, Dynamically Scoped Variables: local–Dynamically Scoped Variables: local, local, Glossary

 	programming practices, Universal Blunders

 	local::lib module, By Hand, cpan–cpanminus

 	locale pragma, Pattern Modifiers, Detecting and Laundering Tainted Data, sort , locale

 	

 	about, locale

 	pattern modifiers and, Pattern Modifiers

 	patterns with symbolic characters and, Detecting and Laundering Tainted Data

 	sort pragma and, sort

 	locale sorting, Locale Sorting

 	localtime function, Message Passing, localtime

 	lock function, What Is a Reference?, lock

 	locking, file, File Locking (see flock function)

 	LOCK_EX flag, File Locking

 	LOCK_SH flag, File Locking

 	log function, log

 	LOGDIR environment variable, Environment Variables

 	logical operators, Logical Operators–Some File Test Operators, C-Style Logical (Short-Circuit) Operators–C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor, Overloadable Operators, Overloadable Operators, Glossary

 	

 	about, Logical Operators–Some File Test Operators, Logical and, or, not, and xor, Glossary

 	C–style, C-Style Logical (Short-Circuit) Operators–C-Style Logical (Short-Circuit) Operators

 	overloadable, Overloadable Operators, Overloadable Operators

 	longjmp function, Timing Out Slow Operations, Executing Your Code

 	lookahead assertions, Lookaround Assertions, Glossary

 	lookaround assertions, Lookaround Assertions–Lookaround Assertions

 	lookbehind assertions, Lookaround Assertions, Glossary

 	lookups, name, Name Lookups–Name Lookups

 	loop constructs and statements, Looping Constructs, Conditional loops–Conditional loops, The three-part loop, The foreach loop, Breaking out: next and last, Breaking out: next and last, Loop Statements, while and until Statements, while and until Statements, Three-Part Loops–Three-Part Loops, foreach Loops–foreach Loops, Loop Control–Loop Control, Loop Control–Loop Control, Loop Control–Loop Control, Bare Blocks as Loops, Loopy Topicalizers, Universal Blunders, Time Efficiency, Fluent Perl, Glossary

 	

 	about, Looping Constructs, Loop Statements, Glossary

 	bare blocks as loops, Bare Blocks as Loops

 	conditional loops, Conditional loops–Conditional loops

 	efficiency practices, Time Efficiency

 	foreach loops, The foreach loop, foreach Loops–foreach Loops

 	last operator, Breaking out: next and last, Loop Control–Loop Control

 	next operator, Breaking out: next and last, Loop Control–Loop Control

 	programming practices, Universal Blunders, Fluent Perl

 	redo operator, Loop Control–Loop Control

 	three–part loops, The three-part loop, Three-Part Loops–Three-Part Loops

 	topicalizers and, Loopy Topicalizers

 	until statement, while and until Statements

 	while statement, while and until Statements

 	loop labels, Loop Control–Loop Control, Glossary

 	lower character class, POSIX-Style Character Classes

 	lowercase characters, A Case of Mistaken Identity, Glossary

 	lstat function, lstat

 	lt (less than) operator, Some Numeric and String Comparison Operators, Relational Operators

 	lvaluable function, Glossary

 	lvalue (term), Built-in Data Types, New Tricks, Glossary

 	lvalue modifier, Glossary

 M

 	–M file test
 operator, Named Unary and File Test Operators

 	/m modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	–m command-line switch, Switches

 	–M command-line switch, Switches

 	$^M variable, Special Variables in Alphabetical Order

 	m// (match) operator, Pick Your Own Quotes, Pattern-Matching Operators–Pattern-Matching Operators, The m// Operator (Matching)–The m// Operator (Matching), m//

 	

 	about, Pick Your Own Quotes, m//

 	double–quote interpolation, Pattern-Matching Operators–Pattern-Matching Operators

 	modifiers supported, The m// Operator (Matching)–The m// Operator (Matching)

 	magic (term), Tied Variables, Glossary

 	magical increment operator, Glossary

 	magical variables, Glossary

 	Mail::Mailer module, Sockets, Interprocess Communication (IPC)

 	Mail::Send module, Interprocess Communication (IPC)

 	Mail::Sendmail module, Interprocess Communication (IPC)

 	main package, The Default Package

 	maintainer efficiency, Maintainer Efficiency

 	Makefile, Glossary

 	man debugger command, Miscellaneous Commands

 	man program (Unix), Glossary

 	manpages, Online Documentation, Navigating the Standard Manpages–Navigating the Standard Manpages, Non-Perl Manpages, Portable Perl, Glossary

 	

 	defined, Online Documentation, Glossary

 	navigating, Navigating the Standard Manpages–Navigating the Standard Manpages

 	non–Perl, Non-Perl Manpages

 	system–specific, Portable Perl

 	MANPATH variable, Online Documentation

 	map function, map

 	map–sort–map technique, sort

 	mark stack, Executing Your Code

 	marshalling (term), Glossary

 	match (m//) operator, Pick Your Own Quotes, Pattern-Matching Operators–Pattern-Matching Operators, The m// Operator (Matching)–The m// Operator (Matching), m//

 	

 	about, Pick Your Own Quotes, m//

 	double–quote interpolation, Pattern-Matching Operators–Pattern-Matching Operators

 	modifiers supported, The m// Operator (Matching)–The m// Operator (Matching)

 	$MATCH ($&)
 variable, Special Variables in Alphabetical Order

 	${^MATCH} variable, Special Variables in Alphabetical Order

 	matching, Glossary (see pattern matching)

 	match–time code evaluation, Match-time code evaluation–Match-time code evaluation

 	match–time pattern interpolation, Match-time pattern interpolation

 	Math::BigFloat module, bignum

 	Math::BigInt module, Overloading, bigint, bignum, bigrat

 	Math::BigRat module, bigrat

 	Math::Complex module, User-Defined Pragmas

 	Math::MySum module, Internal testing

 	Math::Random::MT::Perl module, rand

 	Math::Random::Secure module, rand

 	Math::Trig module, atan2, cos , sin

 	

 	acos function, cos

 	asin function, sin

 	tan function, atan2

 	Math::TrulyRandom module, rand, srand

 	mathematical functions, Overloadable Operators, Overloadable Operators

 	mathematical operators, Some Binary Arithmetic Operators

 	member data, Glossary (see instance variables)

 	Memoize module, Time Efficiency

 	memory, Java Traps, Glossary, Glossary

 	

 	defined, Glossary

 	programming practices, Java Traps

 	shared, Glossary

 	message passing, Message Passing

 	metacharacters, The Regular Expression Bestiary, Metacharacters and Metasymbols, Metasymbol Tables–Metasymbol Tables, Time Efficiency, Glossary

 	

 	about, The Regular Expression Bestiary, Glossary

 	commonly used, Metacharacters and Metasymbols

 	efficiency practices, Time Efficiency

 	tables listing, Metasymbol Tables–Metasymbol Tables

 	MetaCPAN site, History, Searching CPAN

 	metasymbols, The Regular Expression Bestiary, Metacharacters and Metasymbols, Metasymbol Tables, Metasymbol Tables, Metasymbol Tables–Metasymbol Tables, Wildcard Metasymbols–Wildcard Metasymbols, Bracketed Character Classes, Positions–Where You Left Off: The \G Assertion, Glossary

 	

 	about, The Regular Expression Bestiary, Metacharacters and Metasymbols, Glossary

 	alphanumeric, Metasymbol Tables–Metasymbol Tables

 	character classes and, Bracketed Character Classes

 	extended regex sequences, Metasymbol Tables

 	positions, Positions–Where You Left Off: The \G Assertion

 	regex quantifiers, Metasymbol Tables

 	wildcard, Wildcard Metasymbols–Wildcard Metasymbols

 	method invocation, Method Invocation, Method Invocation Using the Arrow Operator, Method Invocation Using Indirect Objects–Syntactic Snafus with Indirect Objects, Package-Quoted Classes

 	

 	about, Method Invocation

 	arrow operator and, Method Invocation Using the Arrow Operator

 	indirect objects and, Method Invocation Using Indirect Objects–Syntactic Snafus with Indirect Objects

 	package–quoted classes, Package-Quoted Classes

 	method resolution order (mro), Alternate Method Searching, Glossary

 	methods, Subroutines, Using Object Methods, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Brief Refresher on Object-Oriented Lingo, Perl’s Object System, Initializers, Accessing Overridden Methods–Accessing Overridden Methods, Method Autoloading, Private Methods, Managing Instance Data–Generating Accessors with Closures, New Tricks, Tied Variables, Scalar-Tying Methods, Array-Tying Methods–Array-Tying Methods, Hash-Tying Methods, Filehandle-Tying Methods–Filehandle-Tying Methods, Java Traps, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	accessing overridden, Accessing Overridden Methods–Accessing Overridden Methods

 	accessor, Initializers, Managing Instance Data–Generating Accessors with Closures, Glossary

 	array–tying, Array-Tying Methods–Array-Tying Methods

 	autoloading, Method Autoloading

 	class, Brief Refresher on Object-Oriented Lingo, Glossary

 	constructor, Brief Refresher on Object-Oriented Lingo

 	defined, Subroutines, Brief Refresher on Object-Oriented Lingo, Glossary

 	destructor, Glossary

 	filehandle–tying, Filehandle-Tying Methods–Filehandle-Tying Methods

 	floating point, Glossary

 	hash–tying, Hash-Tying Methods

 	instance, Brief Refresher on Object-Oriented Lingo, Glossary

 	lvalues and, New Tricks

 	object, Using Object Methods

 	private, Private Methods

 	programming practices, Java Traps

 	scalar–tying, Scalar-Tying Methods

 	static, Glossary

 	as subroutines, Perl’s Object System

 	tied variables and, Tied Variables

 	minicpan, Creating a MiniCPAN, Creating a MiniCPAN, Glossary

 	

 	creating, Creating a MiniCPAN

 	defined, Glossary

 	Schwartz Factor, Creating a MiniCPAN

 	minimalism, Glossary

 	missing overload handlers, When an Overload Handler Is Missing (nomethod and
 fallback)

 	mkdir function, mkdir

 	MLDBM module, Tie Modules on CPAN

 	Mo framework, The Moose in the Room

 	mode, Glossary

 	modifiers, Simple Statements, Pattern Modifiers–Pattern Modifiers, Pattern Modifiers–Pattern Modifiers, The m// Operator (Matching)–The m// Operator (Matching), The s/// Operator (Substitution)–When a global substitution just isn’t global enough, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration), Scoped Pattern Modifiers, Time Efficiency, String Formats–String Formats, Glossary, Glossary, Glossary, Glossary

 	

 	defined, Glossary

 	format, String Formats–String Formats

 	lvalue, Glossary

 	m// operator and, The m// Operator (Matching)–The m// Operator (Matching)

 	pattern, Pattern Modifiers–Pattern Modifiers, Scoped Pattern Modifiers

 	regular expression, Pattern Modifiers–Pattern Modifiers, Glossary

 	s/// operator and, The s/// Operator (Substitution)–When a global substitution just isn’t global enough

 	statement, Simple Statements, Time Efficiency, Glossary

 	tr/// operator and, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration)

 	Module::Build module, blib, inc::latest

 	Module::CoreList module, Roll Call

 	Module::Starter module, Module::Starter

 	modules, Molecules, Modules, Modules, Loading Modules–Loading Modules, Unloading Modules, Creating Modules–Tag-handling utility functions, Naming Modules, A Sample Module, Module Privacy and the Exporter–Tag-handling utility functions, Overriding Built-in Functions–Overriding Built-in Functions, Installing CPAN Modules–cpanminus, Testing Your Modules–External testing, Standard Modules, Pod Translators and Modules–Pod Translators and Modules, Library Science, A Tour of the Perl Library, A Tour of the Perl Library, The Future of the Standard Perl Library, Glossary, Glossary, Glossary

 	

 	(see also pragmas)

 	creating, Creating Modules–Tag-handling utility functions

 	defined, Molecules, Modules, Library Science, Glossary

 	dual–lived, The Future of the Standard Perl Library, Glossary

 	installing CPAN, Installing CPAN Modules–cpanminus

 	loading, Loading Modules–Loading Modules, A Tour of the Perl Library

 	locations for, A Tour of the Perl Library

 	naming, Naming Modules

 	online documentation, Modules

 	overriding built–in functions, Overriding Built-in Functions–Overriding Built-in Functions

 	pod translators and, Pod Translators and Modules–Pod Translators and Modules

 	portability and, Standard Modules

 	privacy considerations, Module Privacy and the Exporter–Tag-handling utility functions

 	sample, A Sample Module

 	testing, Testing Your Modules–External testing

 	unloading, Unloading Modules

 	modules directory (CPAN), A Tour of the Repository

 	modulus (%) operator, Some Binary Arithmetic Operators, Multiplicative Operators, Glossary

 	mod_perl extension (Apache), Executing Your Code

 	mojibake, The Encode Module, Glossary

 	Mojolicious package, A Tour of the Repository

 	mongers, Perl, Glossary, Glossary

 	Moo module, The Moose in the Room

 	Moose module, Unloading Modules, The Moose in the Room–The Moose in the Room

 	mortal value, Glossary

 	Mouse framework, The Moose in the Room

 	mro (method resolution order), Alternate Method Searching, Glossary

 	mro pragma, Alternate Method Searching, UNIVERSAL: The Ultimate Ancestor Class, mro

 	MRO::Compat module, Alternate Method Searching

 	msgctl function, msgctl

 	msgget function, msgget

 	msgrcv function, msgrcv

 	msgsnd function, msgsnd

 	multidimensional arrays, Complexities, Slices, Glossary

 	multidimensional hashes, Hashes, Hashes of Hashes, Composition of a Hash of Hashes, Generation of a Hash of Hashes, Access and Printing of a Hash of Hashes

 	

 	about, Hashes of Hashes

 	accessing and printing, Access and Printing of a Hash of Hashes

 	composition of, Composition of a Hash of Hashes

 	emulating, Hashes

 	generating, Generation of a Hash of Hashes

 	multiple inheritance, Glossary

 	multiplication (*) operator, Some Binary Arithmetic Operators, Multiplicative Operators

 	my declaration, Simplicities, Lexically Scoped Variables: my, my–my

 N

 	n debugger command, Using the Debugger, Stepping and Running

 	\n escape
 sequence, String Literals, Specific Characters

 	\N escape
 sequence, String Literals

 	\n metasymbol, Metasymbol Tables, Metasymbol Tables

 	\N metasymbol, Metasymbol Tables, Specific Characters

 	–n command-line switch, Switches

 	$^N ($LAST_SUBMATCH_RESULT)
 variable, Special Variables in Alphabetical Order

 	named capture groups, Named capture groups–Named capture groups

 	named pipes, Named Pipes–Named Pipes, Glossary

 	names, Names–Names, Name Lookups–Name Lookups, Qualified Names, Naming Modules

 	

 	about, Names–Names

 	lookup considerations, Name Lookups–Name Lookups

 	module, Naming Modules

 	qualified, Qualified Names

 	namespaces, Names, Packages, A Tour of the Repository, Restricting namespace access, Library Science, Glossary

 	

 	about, Names, Packages, Library Science, Glossary

 	Perl distributions and, A Tour of the Repository

 	restricting access, Restricting namespace access

 	NaN (not a number), Glossary

 	Nandor, Chris, History Made Practical

 	natural languages, Natural and Artificial Languages, Variable Syntax–Simplicities, Verbs, Compiling Your Code

 	

 	about, Natural and Artificial Languages

 	compilers and, Compiling Your Code

 	variable syntax, Variable Syntax–Simplicities

 	verbs and, Verbs

 	navigating manpages, Navigating the Standard Manpages–Navigating the Standard Manpages

 	ne (not equal) operator, Some Numeric and String Comparison Operators, Equality Operators

 	nested data structures, Complexities

 	nested subroutines, Nested subroutines

 	Net::DNS module, Sockets

 	Net::FTP module, Sockets

 	Net::hostent module, gethostbyaddr , gethostbyname , gethostent

 	Net::netent module, getnetbyaddr , getnetbyname , getnetent

 	Net::NNTP module, Sockets

 	Net::proto module, getprotobyname , getprotobynumber , getprotoent

 	Net::servent module, getservbyname , getservbyport , getservent

 	Net::SMTP module, Sockets

 	Net::Telnet module, Sockets

 	network address, Glossary

 	Network File System (NFS), Sockets, Glossary

 	networking, Networking Clients–Networking Clients, Networking Servers–Networking Servers

 	

 	clients, Networking Clients–Networking Clients

 	servers, Networking Servers–Networking Servers

 	new constructor method, new

 	newline character, Newlines, Glossary

 	next operator, Breaking out: next and last, Loop Control–Loop Control, C Traps, next

 	

 	about, Breaking out: next and last, next

 	loop control and, Loop Control–Loop Control

 	programming practices, C Traps

 	NEXTKEY method (tied hashes), Tying Hashes, Hash-Tying Methods

 	NFC normalization form, Graphemes and Normalization

 	NFD normalization form, Graphemes and Normalization

 	NFKC normalization form, Graphemes and Normalization

 	NFKD normalization form, Graphemes and Normalization

 	NFS (Network File System), Sockets, Glossary

 	\NNN metasymbol, Metasymbol Tables, Specific Characters

 	no operator (the opposite of use), Unloading Modules, Magically Banishing $_, no

 	node (term), Compiling Your Code

 	nomethod key, When an Overload Handler Is Missing (nomethod and
 fallback)

 	nonbacktracking subpatterns, Possessive Groups–Possessive Groups

 	normalization, Graphemes and Normalization–Graphemes and Normalization, Glossary

 	NOT (bitwise) operator, Bitwise Operators

 	NOT (logical) operator, Logical Operators, Logical and, or, not, and xor

 	not a number (NaN), Glossary

 	null character, Glossary

 	null lists, Glossary

 	null strings, Glossary

 	number width, portability and, Endianness and Number Width

 	Numbers module, overload, overload, overload

 	

 	about, overload

 	myadd function, overload

 	mysub function, overload

 	numeric context, Glossary

 	numeric conversions, String Formats, String Formats

 	

 	backward compatibility, String Formats

 	sprintf function, String Formats

 	numeric literals, Numeric Literals

 	numeric operators, Some Numeric and String Comparison Operators, Relational Operators

 	Numeric Value (NV), Glossary

 	numification, Overloadable Operators, Glossary

 	NV (Numeric Value), Glossary

 	nybble, Glossary

 	NYTPROF environment variable, Devel::NYTProf

 O

 	O debugger command, Miscellaneous Commands

 	o debugger command, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options

 	

 	AutoTrace option, Debugger Options

 	dieLevel option, Debugger Options

 	frame option, Debugger Options

 	inhibit_exit option, Debugger Options

 	LineInfo option, Debugger Options

 	maxTraceLen option, Debugger Options

 	ornaments option, Debugger Options

 	pager option, Debugger Options

 	PrintRet option, Debugger Options

 	recallCommand option, Debugger Options

 	ShellBang option, Debugger Options

 	signalLevel option, Debugger Options

 	tkRunning option, Debugger Options

 	warnLevel option, Debugger Options

 	–o file test
 operator, Named Unary and File Test Operators

 	–O file test
 operator, Named Unary and File Test Operators

 	\o metasymbol, Metasymbol Tables, Specific Characters

 	/o modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	\o escape
 sequence, String Literals

 	$^O ($OSNAME) variable, Portable Perl, Special Variables in Alphabetical Order

 	object constructors, Object Constructors

 	object methods, Using Object Methods

 	objects, Smartmatching of Objects, Brief Refresher on Object-Oriented Lingo, Perl’s Object System, Perl’s Object System, Method Invocation–Package-Quoted Classes, Method Invocation Using Indirect Objects–Syntactic Snafus with Indirect Objects, Object Construction–Initializers, Class Inheritance–Private Methods, Instance Destructors–Garbage Collection with destroy
 Methods, Managing Instance Data–New Tricks, Using Closures for Private Objects–Using Closures for Private Objects, Managing Class Data–Managing Class Data, The Moose in the Room–The Moose in the Room, Java Traps, Glossary, Glossary

 	

 	class inheritance, Class Inheritance–Private Methods

 	constructing, Object Construction–Initializers

 	defined, Brief Refresher on Object-Oriented Lingo, Glossary

 	indirect, Method Invocation Using Indirect Objects–Syntactic Snafus with Indirect Objects, Glossary

 	instance destructors, Instance Destructors–Garbage Collection with destroy
 Methods

 	managing class data, Managing Class Data–Managing Class Data

 	managing instance data, Managing Instance Data–New Tricks

 	method invocation, Method Invocation–Package-Quoted Classes

 	Moose module and, The Moose in the Room–The Moose in the Room

 	private, Using Closures for Private Objects–Using Closures for Private Objects

 	programming practices, Java Traps

 	as references, Perl’s Object System

 	as referents, Perl’s Object System

 	smartmatching, Smartmatching of Objects

 	object–oriented programming (OOP), Brief Refresher on Object-Oriented Lingo–Brief Refresher on Object-Oriented Lingo

 	oct function, Numeric Literals, oct

 	octals, Glossary

 	offsets in strings, Glossary

 	olpod program, Writing Your Own Pod Tools

 	one–liner programs, Glossary

 	Onken, Moritz, History

 	OOP (object–oriented programming), Brief Refresher on Object-Oriented Lingo–Brief Refresher on Object-Oriented Lingo

 	Opcode module, Restricting operator access, ops

 	open function, Filehandles, Filehandle-Tying Methods, Passing Filehandles, Anonymous Pipes–Anonymous Pipes, Talking to Yourself, Cleaning Up Your Environment, Accessing Commands and Files Under Reduced Privileges, Handling Race Conditions, Universal Blunders, open –open

 	

 	about, open –open

 	calling with reduced privileges, Accessing Commands and Files Under Reduced Privileges

 	communicating over pipes, Talking to Yourself

 	external data cautions, Cleaning Up Your Environment

 	filehandles and, Passing Filehandles

 	handling race conditions, Handling Race Conditions

 	parameter considerations, Filehandles

 	pipes and, Anonymous Pipes–Anonymous Pipes

 	programming practices, Universal Blunders

 	tied filehandles and, Filehandle-Tying Methods

 	OPEN method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	open pragma, Getting at Unicode Data–The Encode Module, Filehandle-Tying Methods, Switches, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Environment Variables, Universal Blunders, read , encoding, open, open, open, open, open, open, open, open

 	

 	:bytes layer, Environment Variables, open

 	:crlf layer, Environment Variables, open

 	:encoding layer, open

 	:locale layer, open

 	:mmap layer, Environment Variables

 	:perlio layer, Environment Variables

 	:pop layer, Environment Variables

 	:raw layer, Filehandle-Tying Methods, Environment Variables, open

 	:std layer, open

 	:stdio layer, Environment Variables

 	:unix layer, Environment Variables

 	:utf8 layer, Environment Variables, open

 	:win32 layer, Environment Variables

 	about, encoding, open

 	–C switch and, Switches

 	programming practices, Universal Blunders

 	read function and, read

 	setting encoding, Getting at Unicode Data–The Encode Module

 	Open Source Conference (OSCON), History Made Practical, Events

 	open source software, Glossary

 	opendir function, opendir

 	operand stack, Executing Your Code

 	operands (term), Glossary

 	operating systems, #! and Quoting on Non-Unix Systems–#! and Quoting on Non-Unix Systems, Glossary

 	

 	defined, Glossary

 	simulating #! notation, #! and Quoting on Non-Unix Systems–#! and Quoting on Non-Unix Systems

 	operator overloading, The overload Pragma, Overloadable Operators–Overloadable Operators, Java Traps, Glossary

 	

 	about, Overloadable Operators–Overloadable Operators, Glossary

 	overload pragma and, The overload Pragma

 	programming practices, Java Traps

 	operators, Operators, Regular Expressions, Unary and Binary Operators, Unary and Binary Operators, Unary and Binary Operators, Unary and Binary Operators–Unary and Binary Operators, Named Unary and File Test Operators, C Operators Missing from Perl, Pattern-Matching Operators–The tr/// Operator (Transliteration), Tied Variables, Restricting operator access, Glossary, Glossary

 	

 	(see also specific operators)

 	about, Operators, Unary and Binary Operators, Glossary

 	ambiguous characters and, Named Unary and File Test Operators

 	case considerations, Tied Variables

 	flavors of, Unary and Binary Operators

 	missing from Perl, C Operators Missing from Perl

 	pattern–matching, Regular Expressions, Pattern-Matching Operators–The tr/// Operator (Transliteration)

 	precedence rules, Unary and Binary Operators–Unary and Binary Operators, Glossary

 	restricting access, Restricting operator access

 	ops pragma, ops

 	optimizers, Compiling Your Code, Compiling Your Code

 	options, Glossary (see regular expression modifiers; switches)

 	OR (bitwise) operator, Bitwise Operators

 	OR (logical) operator, Logical Operators, C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor

 	ord function, ord

 	ordinals (term), Glossary

 	Orwant, Jon, History Made Practical

 	OSCON (Open Source Conference), History Made Practical, Events

 	$OSNAME ($^O) variable, Portable Perl, Special Variables in Alphabetical Order

 	$OS_ERROR ($ERRNO, $!)
 variable, Special Variables in Alphabetical Order

 	%OS_ERROR (%ERRNO, %!)
 variable, Special Variables in Alphabetical Order

 	our declaration, Simplicities, Lexically Scoped Global Declarations: our–Lexically Scoped Global Declarations: our, our–our

 	output record formats, Picture Formats–Accessing Formatting Internals

 	$OUTPUT_FIELD_SEPARATOR
 ($,) variable, Special Variables in Alphabetical Order

 	$OUTPUT_RECORD_SEPARATOR
 ($\) variable, Special Variables in Alphabetical Order, print

 	=over pod directive, Command Paragraphs

 	overload handlers, Overload Handlers, When an Overload Handler Is Missing (nomethod and
 fallback)

 	overload pragma, The overload Pragma, Overloadable Operators–Overloadable Operators, Overloading Constants–Overloading Constants, Public Overload Functions, Public Overload Functions, Public Overload Functions, Special Variables in Alphabetical Order, overload

 	

 	about, The overload Pragma, overload

 	Method function, Public Overload Functions

 	%OVERLOAD variable
 and, Special Variables in Alphabetical Order

 	overloadable operators and, Overloadable Operators–Overloadable Operators

 	Overloaded function, Public Overload Functions

 	overloading constants, Overloading Constants–Overloading Constants

 	StrVal function, Public Overload Functions

 	%OVERLOAD variable, Special Variables in Alphabetical Order

 	overloading, Overloading, The overload Pragma, Overloadable Operators–Overloadable Operators, Overloadable Operators, Overloadable Operators, Overloadable Operators, Overloadable Operators, The Copy Constructor (=), Overloading Constants–Overloading Constants, Inheritance and Overloading, Runtime Overloading, Overloading Diagnostics, Java Traps, Glossary, Glossary

 	

 	-X filetest operators, Overloadable Operators

 	constants, Overloading Constants–Overloading Constants

 	copy constructor and, The Copy Constructor (=)

 	defined, Overloading, Glossary

 	diagnostic considerations, Overloading Diagnostics

 	inheritance and, Inheritance and Overloading

 	int function, Overloadable Operators

 	operator, The overload Pragma, Overloadable Operators–Overloadable Operators, Java Traps, Glossary

 	qr operator, Overloadable Operators

 	runtime, Runtime Overloading

 	~~ smartmatch operator, Overloadable Operators

 	overloading pragma, overloading

 	overriding, Overriding Built-in Functions–Overriding Built-in Functions, Accessing Overridden Methods–Accessing Overridden Methods, Accessing Overridden Methods, Glossary

 	

 	built–in functions, Overriding Built-in Functions–Overriding Built-in Functions, Accessing Overridden Methods

 	defined, Glossary

 	methods, Accessing Overridden Methods–Accessing Overridden Methods

 	ownership, file, Glossary

 	O_APPEND sysopen flag, sysopen

 	O_BINARY sysopen flag, sysopen

 	O_CREAT sysopen flag, sysopen

 	O_DIRECTORY sysopen flag, sysopen

 	O_EXCL sysopen flag, Temporary Files, sysopen

 	O_EXLOCK sysopen flag, sysopen

 	O_LARGEFILE sysopen flag, sysopen

 	O_NDELAY sysopen flag, sysopen

 	O_NOCTTY sysopen flag, sysopen

 	O_NOFOLLOW sysopen flag, Temporary Files, sysopen

 	O_NONBLOCK sysopen flag, sysopen

 	O_RDONLY sysopen flag, sysopen

 	O_RDWR sysopen flag, sysopen

 	O_SHLOCK sysopen flag, sysopen

 	O_SYNC sysopen flag, sysopen

 	O_TRUNC sysopen flag, sysopen

 	O_WRONLY sysopen flag, sysopen

 P

 	p debugger command, Display

 	–p file test
 operator, Named Unary and File Test Operators, Named Pipes

 	\p metasymbol, Metasymbol Tables

 	\P metasymbol, Metasymbol Tables

 	/p modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	–p command-line switch, Command Processing, Switches

 	–P command-line switch, Switches

 	$^P ($PERLDB) variable, Special Variables in Alphabetical Order

 	pack function, pack, pack–More examples, pack

 	

 	about, pack, pack

 	format characters, pack–More examples

 	package declaration, Simplicities–Simplicities, Packages, Changing the Package–Changing the Package, package

 	

 	about, Packages, package

 	package names and, Changing the Package–Changing the Package

 	topicalizing and, Simplicities–Simplicities

 	_ _PACKAGE_ _ token, Other Literal Tokens, Changing the Package, _ _PACKAGE_ _

 	packages, Names, Names, Packages–Packages, Packages, Symbol Tables–Symbol Tables, Qualified Names, The Default Package, Changing the Package–Changing the Package, Autoloading–Autoloading, Perl’s Object System, Instance Destructors–Garbage Collection with destroy
 Methods, Library Science, Library Science, Glossary

 	

 	:: separator, Names, Library Science

 	about, Packages–Packages

 	autoloading, Autoloading–Autoloading

 	changing, Changing the Package–Changing the Package

 	classes as, Perl’s Object System

 	default, The Default Package

 	defined, Names, Packages, Library Science, Glossary

 	DESTROY method, Instance Destructors–Garbage Collection with destroy
 Methods

 	qualified names, Qualified Names

 	symbol tables, Symbol Tables–Symbol Tables

 	package–quoting notation, Package-Quoted Classes

 	pads (scratchpads), Names, Glossary

 	parameters, Glossary (see arguments)

 	parent classes, Brief Refresher on Object-Oriented Lingo, Glossary

 	parent pragma, Class Inheritance–Inheritance Through @ISA, base, parent

 	

 	about, parent

 	base pragma and, base

 	@ISA variable and, Class Inheritance–Inheritance Through @ISA

 	parentheses (), Terms and List Operators (Leftward), The Regular Expression Bestiary, Frequently Ignored Advice

 	

 	in precedence rules, Terms and List Operators (Leftward)

 	in pattern matching, The Regular Expression Bestiary

 	programming practices, Frequently Ignored Advice

 	parse tree, The Life Cycle of a Perl Program, Compiling Your Code, Glossary

 	parse tree reconstruction phase, The Life Cycle of a Perl Program

 	parse_options function (debugger), Unattended Execution, Unattended Execution, Unattended Execution, Unattended Execution

 	

 	NonStop option, Unattended Execution

 	noTTY option, Unattended Execution

 	ReadLine option, Unattended Execution

 	TTY option, Unattended Execution

 	parsing, Compiling Your Code, Compiling Your Code, Command Processing, Glossary

 	

 	about, Compiling Your Code, Glossary

 	command–line switches, Command Processing

 	compilation and, Compiling Your Code

 	pass–by–reference mechanism, Semantics, Passing References, What Is a Reference?

 	patches, Glossary

 	PATH environment variable, Switches, Environment Variables, Cleaning Up Your Environment, Glossary

 	Path::Class module, Files and Filesystems

 	pathname, Glossary

 	/PATTERN/ debugger
 command, Locating Code

 	pattern matching, Regular Expressions–Backreferences, Quantifiers–Quantifiers, Pattern Matching, The Regular Expression Bestiary, The Regular Expression Bestiary, The Regular Expression Bestiary, Pattern-Matching Operators, Metacharacters and Metasymbols–Wildcard Metasymbols, Metacharacters and Metasymbols–Wildcard Metasymbols, Specific Characters–Specific Characters, Character Classes–POSIX-Style Character Classes, Quantifiers–Quantifiers, Positions–Where You Left Off: The \G Assertion, Progressive Matching, Grouping and Capturing, Grouping and Capturing–Named capture groups, Grouping Without Capturing, Alternation, Staying in Control–The Little Engine That /Could(n’t)?/, Lookaround Assertions–Alternate Engines, Python Traps, Regular Expression Special Variables, Glossary, Glossary, Glossary

 	

 	about, Regular Expressions–Backreferences, Pattern Matching, Glossary

 	alternation in, The Regular Expression Bestiary, Alternation

 	capturing, Grouping and Capturing–Named capture groups

 	capturing in, Glossary

 	character classes in, Character Classes–POSIX-Style Character Classes

 	fancy patterns, Lookaround Assertions–Alternate Engines

 	grouping in, The Regular Expression Bestiary, Grouping and Capturing, Grouping Without Capturing

 	metacharacters and, The Regular Expression Bestiary, Metacharacters and Metasymbols–Wildcard Metasymbols

 	metasymbols and, Metacharacters and Metasymbols–Wildcard Metasymbols

 	positions, Positions–Where You Left Off: The \G Assertion

 	precedence rules in, Pattern-Matching Operators

 	programming practices, Python Traps

 	progressive matching, Progressive Matching, Glossary

 	regular expression quantifiers, Quantifiers–Quantifiers, Quantifiers–Quantifiers

 	special variables, Regular Expression Special Variables

 	specific characters, Specific Characters–Specific Characters

 	staying in control, Staying in Control–The Little Engine That /Could(n’t)?/

 	pattern modifiers, Pattern Modifiers–Pattern Modifiers, Scoped Pattern Modifiers

 	

 	about, Pattern Modifiers–Pattern Modifiers

 	scoped, Scoped Pattern Modifiers

 	?PATTERN? debugger
 command, Locating Code

 	patterns, Lookaround Assertions–Lookaround Assertions, Possessive Groups–Possessive Groups, Programmatic Patterns–Conditional interpolation, Generated patterns, Recursive Patterns–Recursive Patterns, Grammatical Patterns–Grammars, Defining Your Own Assertions, Java Traps, Glossary, Glossary

 	

 	defined, Glossary

 	defining assertions, Defining Your Own Assertions

 	generated, Generated patterns

 	grammatical, Grammatical Patterns–Grammars

 	lookaround assertions, Lookaround Assertions–Lookaround Assertions

 	possessive groups, Possessive Groups–Possessive Groups

 	programmatic, Programmatic Patterns–Conditional interpolation

 	programming practices, Java Traps

 	recursive, Recursive Patterns–Recursive Patterns

 	runtime, Glossary

 	pattern–matching operators, Regular Expressions, Pattern-Matching Operators–Pattern-Matching Operators

 	PAUSE (Perl Authors Upload SErver), History, PAUSE, External testing, Glossary

 	PDL module, Slices

 	percent sign (%) sigil, Variable Syntax, Variables

 	Perl Authors Upload SErver (PAUSE), History, PAUSE, External testing, Glossary

 	Perl culture, Perl Culture, History Made Practical–History Made Practical, Perl Poetry–Virtues of the Perl Programmer, Virtues of the Perl Programmer, Events, Getting Help–Getting Help

 	

 	additional information, Perl Culture

 	event information, Events

 	getting help, Getting Help–Getting Help

 	historical background, History Made Practical–History Made Practical

 	Perl poetry mode, Perl Poetry–Virtues of the Perl Programmer

 	virtues of Perl programmers, Virtues of the Perl Programmer

 	Perl language, The Pursuit of Happiness–The Pursuit of Happiness, The Standard Distribution–The Standard Distribution, Online Documentation–Non-Perl Manpages, Offline Documentation–Offline Documentation, Additional Resources, Getting Started, Natural and Artificial Languages–Verbs, An Average Example–How to Do It, Location of Perl, Profiling Perl–Devel::NYTProf

 	

 	about, The Pursuit of Happiness–The Pursuit of Happiness

 	additional resources, Additional Resources

 	averaging example, An Average Example–How to Do It

 	getting started, Getting Started

 	installation location of, Location of Perl

 	natural and artificial languages and, Natural and Artificial Languages–Verbs

 	offline documentation, Offline Documentation–Offline Documentation

 	online documentation, Online Documentation–Non-Perl Manpages

 	profiling, Profiling Perl–Devel::NYTProf

 	standard distribution, The Standard Distribution–The Standard Distribution

 	Perl mongers, History Made Practical, Getting Help, Glossary, Glossary

 	Perl poetry mode, Perl Poetry–Virtues of the Perl Programmer

 	PERL5DB environment variable, Environment Variables, Customizing with Init Files

 	PERL5DB_THREADED environment variable, Environment Variables

 	PERL5LIB environment variable, Environment Variables, By Hand

 	PERL5OPT environment variable, Environment Variables

 	PERL5SHELL environment variable, Environment Variables

 	Perl::Critic module, Molecules, Code Development Tools, Programming with Style

 	Perl::Tidy module, Universal Blunders, Programming with Style, Writing Your Own Pod Tools

 	perlbug tool, Bug Reports, perlbug

 	$PERLDB ($^P)
 variable, Special Variables in Alphabetical Order

 	PERLDB_OPTS environment variable, Customizing with Init Files, Unattended Execution

 	PERLIO environment variable, Environment Variables–Environment Variables

 	PerlIO module, Switches, open

 	PERLIO_DEBUG environment variable, Environment Variables

 	PERLLIB environment variable, Environment Variables

 	Perlmonks web bulletin board, Getting Help

 	PerlX::MethodCallWithBlock extension, Ruby Traps

 	PerlX::Range extension, Ruby Traps

 	PERL_ALLOW_NON_IFS_LSP environment variable, Environment Variables

 	PERL_BADLANG environment variable, Environment Variables

 	PERL_DEBUG_MSTATS environment variable, Environment Variables

 	PERL_DESTRUCT_LEVEL environment variable, Environment Variables

 	PERL_DL_NONLAZY environment variable, Environment Variables

 	PERL_ENCODING environment variable, Environment Variables

 	PERL_HASH_SEED environment variable, Environment Variables

 	PERL_HASH_SEED_DEBUG environment variable, Environment Variables

 	PERL_MEM_LOG environment variable, Environment Variables

 	PERL_ROOT environment variable, Environment Variables

 	PERL_SIGNALS environment variable, Signal Safety, Environment Variables

 	PERL_UNICODE environment variable, Getting at Unicode Data, Switches, Environment Variables, Universal Blunders

 	

 	about, Environment Variables

 	disabling Unicode features, Switches

 	programming practices, Universal Blunders

 	setting standard streams, Getting at Unicode Data

 	$PERL_VERSION ($^V)
 variable, Special Variables in Alphabetical Order

 	perl–packrats mailing list, History

 	permission bits, Glossary

 	permissions, PAUSE, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges, Glossary

 	

 	data security and, Accessing Commands and Files Under Reduced Privileges–Accessing Commands and Files Under Reduced Privileges

 	first–come, PAUSE, Glossary

 	Pern (term), Glossary

 	per–filehandle special variables, Per-Filehandle Variables

 	per–package special filehandles, Per-Package Special Filehandles

 	per–package special functions, Per-Package Special Functions

 	per–package special variables, Per-Package Special Variables

 	PGP::* modules, crypt

 	.ph file extension, Wandering the Stacks

 	picture formats, Picture Formats–Picture Formats, Format Variables–Format Variables, Footers, Accessing Formatting Internals

 	

 	about, Picture Formats–Picture Formats

 	accessing formatting internals, Accessing Formatting Internals

 	footers, Footers

 	format variables, Format Variables–Format Variables

 	pipe (|), The Regular Expression Bestiary

 	pipe function, Bidirectional Communication, pipe

 	pipeline, Anonymous Pipes, Glossary

 	pipes, Pipes, Anonymous Pipes–Anonymous Pipes, Talking to Yourself–Talking to Yourself, Bidirectional Communication–Bidirectional Communication, Named Pipes–Named Pipes, Space Efficiency, Glossary, Glossary

 	

 	anonymous, Anonymous Pipes–Anonymous Pipes

 	bidirectional communication, Bidirectional Communication–Bidirectional Communication

 	defined, Pipes, Glossary

 	efficiency practices, Space Efficiency

 	named, Named Pipes–Named Pipes

 	names, Glossary

 	processes communicating over, Talking to Yourself–Talking to Yourself

 	.pl file extension, Library Science, Wandering the Stacks

 	plain old documentation, Glossary (see pod)

 	platforms, Portable Perl, Glossary

 	

 	defined, Glossary

 	function variation across, Portable Perl

 	.plx file extension, Wandering the Stacks

 	.pm file extension, Wandering the Stacks

 	pod (plain old documentation), Molecules, Pod in a Nutshell–Pod in a Nutshell, Pod in a Nutshell, Verbatim Paragraphs, Command Paragraphs–Command Paragraphs, Flowed Text–Flowed Text, Flowed Text–Flowed Text, Pod Translators and Modules–Pod Translators and Modules, Writing Your Own Pod Tools–Writing Your Own Pod Tools, Pod Pitfalls, Documenting Your Perl Programs, Glossary

 	

 	about, Pod in a Nutshell–Pod in a Nutshell, Glossary

 	command paragraphs, Command Paragraphs–Command Paragraphs

 	documenting programs, Documenting Your Perl Programs

 	flowed text, Flowed Text–Flowed Text

 	ignored text as, Molecules

 	pitfalls with, Pod Pitfalls

 	pod translators, Pod in a Nutshell, Pod Translators and Modules–Pod Translators and Modules

 	sequences defined by, Flowed Text–Flowed Text

 	verbatim paragraphs, Verbatim Paragraphs

 	writing tools for, Writing Your Own Pod Tools–Writing Your Own Pod Tools

 	pod commands, Command Paragraphs–Command Paragraphs, Glossary

 	=pod directive, Command Paragraphs

 	pod directives, Command Paragraphs–Command Paragraphs

 	pod translators, Pod in a Nutshell, Pod Translators and Modules–Pod Translators and Modules

 	

 	about, Pod in a Nutshell

 	modules and, Pod Translators and Modules–Pod Translators and Modules

 	pod2html module, Pod Translators and Modules

 	pod2latex module, Pod Translators and Modules

 	pod2man module, Pod Translators and Modules

 	pod2text module, Pod Translators and Modules, Writing Your Own Pod Tools

 	Pod::Checker module, Pod Translators and Modules

 	Pod::Find module, Pod Translators and Modules

 	Pod::PseudoPod module, Command Paragraphs

 	Pod::Simple module, Pod Translators and Modules, Writing Your Own Pod Tools

 	Pod::Simple::Text module, Writing Your Own Pod Tools

 	podchecker utility, Pod Translators and Modules

 	POE module, Time Efficiency

 	pointer value (PV), Glossary

 	pointers, Glossary

 	polymorphism, Brief Refresher on Object-Oriented Lingo, Glossary

 	pop function, pop

 	POP method (tied arrays), Tying Arrays, Array-Tying Methods

 	portability, Portable Perl–Portable Perl, Newlines, Endianness and Number Width, Endianness and Number Width, Files and Filesystems–Files and Filesystems, Files and Filesystems–Files and Filesystems, System Interaction, Interprocess Communication (IPC), External Subroutines (XS), Standard Modules, Dates and Times, Internationalization, Glossary

 	

 	about, Portable Perl–Portable Perl, Glossary

 	dates and times, Dates and Times

 	endianness and, Endianness and Number Width

 	files and, Files and Filesystems–Files and Filesystems

 	filesystems and, Files and Filesystems–Files and Filesystems

 	internationalization, Internationalization

 	IPC and, Interprocess Communication (IPC)

 	newlines and, Newlines

 	number width and, Endianness and Number Width

 	standard modules and, Standard Modules

 	system interaction, System Interaction

 	XS code and, External Subroutines (XS)

 	Portable Operating System Interface (POSIX), POSIX-Style Character Classes–POSIX-Style Character Classes, Glossary

 	

 	about, Glossary

 	character–class syntax notation, POSIX-Style Character Classes–POSIX-Style Character Classes

 	porter efficiency, Porter Efficiency

 	porters, Glossary

 	ports (term), Glossary

 	ports directory (CPAN), A Tour of the Repository

 	pos function, Graphemes and Normalization, pos

 	positions in strings, Positions, Beginnings: The \A and ^ Assertions, Endings: The \z, \Z, and $ Assertions, Boundaries: The \b and \B Assertions, Progressive Matching, Where You Left Off: The \G Assertion

 	

 	about, Positions

 	beginnings, Beginnings: The \A and ^ Assertions

 	boundaries, Boundaries: The \b and \B Assertions

 	endings, Endings: The \z, \Z, and $ Assertions

 	\G metasymbol and, Where You Left Off: The \G Assertion

 	progressive matching, Progressive Matching

 	POSIX (Portable Operating System Interface), POSIX-Style Character Classes–POSIX-Style Character Classes, Glossary

 	

 	about, Glossary

 	character–class syntax notation, POSIX-Style Character Classes–POSIX-Style Character Classes

 	POSIX module, Pattern Modifiers, Blocking Signals, Blocking Signals, Named Pipes, Temporary Files, Special Variables in Alphabetical Order, atan2, cos , exit, getc , gmtime, gmtime, localtime, seek , setpgrp , sin , sleep, syscall , sysseek , waitpid , Wandering the Stacks

 	

 	about, Wandering the Stacks

 	acos function, cos

 	asin function, sin

 	blocking signals, Blocking Signals

 	exit function, exit

 	getattr function, getc

 	import tag groups and, waitpid

 	input buffering and, Special Variables in Alphabetical Order

 	mkfifo function, Named Pipes

 	mktime function, gmtime

 	pause function, sleep

 	setlocale function, Pattern Modifiers

 	setsid function, setpgrp

 	sigprocmask syscall and, Blocking Signals

 	strftime function, gmtime, localtime

 	symbolic names and, seek , sysseek

 	system calls and, syscall

 	tan function, atan2

 	tmpnam function, Temporary Files

 	possessive (term), Glossary

 	possessive groups, Possessive Groups–Possessive Groups

 	postfix operator, Glossary

 	$POSTMATCH ($')
 variable, Special Variables in Alphabetical Order

 	${^POSTMATCH}
 variable, Special Variables in Alphabetical Order

 	pp (push–pop) code, Glossary

 	PPI package, Code Development Tools

 	pragma module, Overloading Constants, Overloading Constants

 	

 	constant function, Overloading Constants

 	remove_constant function, Overloading Constants

 	pragmas, Simplicities, Names, Scoped Declarations, Pragmas, Naming Modules, Tied Variables, Library Science, Pragmatic Modules, Pragmatic Modules, User-Defined Pragmas–User-Defined Pragmas, Glossary

 	

 	(see also specific pragmas)

 	about, Pragmas, Library Science, Pragmatic Modules, Glossary

 	case considerations, Naming Modules, Tied Variables

 	implicit stricture feature, Simplicities

 	lexical scopes and, Scoped Declarations

 	name considerations, Names

 	user–defined, User-Defined Pragmas–User-Defined Pragmas

 	precedence rules, Unary and Binary Operators–Unary and Binary Operators, Terms and List Operators (Leftward)–Terms and List Operators (Leftward), Named Unary and File Test Operators, Pattern-Matching Operators, Using the Arrow Operator, Glossary

 	

 	about, Unary and Binary Operators–Unary and Binary Operators, Glossary

 	in pattern matching, Pattern-Matching Operators

 	sigils and, Using the Arrow Operator

 	terms and list operators, Terms and List Operators (Leftward)–Terms and List Operators (Leftward)

 	unary operators, Named Unary and File Test Operators

 	precision, arbitrary, bignum (see big* pragmas; Math::* modules)

 	prefix operators, Unary and Binary Operators, Glossary

 	$PREMATCH ($`)
 variable, Special Variables in Alphabetical Order

 	${^PREMATCH}
 variable, Special Variables in Alphabetical Order

 	preprocessing, Glossary

 	primary maintainer, PAUSE, Glossary

 	print character class, POSIX-Style Character Classes

 	print function, Universal Blunders, Time Efficiency, print

 	

 	about, print

 	efficiency practices, Time Efficiency

 	programming practices, Universal Blunders

 	PRINT method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	printf function, Filehandle-Tying Methods, Time Efficiency, String Formats, String Formats–String Formats, printf

 	

 	about, String Formats, printf

 	efficiency practices, Time Efficiency

 	format modifiers, String Formats–String Formats

 	tied filehandles and, Filehandle-Tying Methods

 	PRINTF method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	printing, Access and Printing–Access and Printing, Access and Printing of a Hash of Arrays, Access and Printing of an Array of Hashes, Access and Printing of a Hash of Hashes, Composition, Access, and Printing of More Elaborate
 Records–Generation of a Hash of Complex Records

 	

 	arrays of arrays, Access and Printing–Access and Printing

 	arrays of hashes, Access and Printing of an Array of Hashes

 	data structure records, Composition, Access, and Printing of More Elaborate
 Records–Generation of a Hash of Complex Records

 	hashes of arrays, Access and Printing of a Hash of Arrays

 	multidimensional hashes, Access and Printing of a Hash of Hashes

 	privacy, module, Module Privacy and the Exporter–Tag-handling utility functions

 	private methods, Private Methods

 	private objects, Using Closures for Private Objects–Using Closures for Private Objects

 	procedures, Verbs, Verbs, Glossary

 	

 	defined, Verbs, Glossary

 	functions and, Verbs

 	process groups, signalling, Signalling Process Groups

 	processes, Reaping Zombies, Reaping Zombies, Talking to Yourself–Talking to Yourself, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	client, Glossary

 	communicating over pipes, Talking to Yourself–Talking to Yourself

 	defined, Glossary

 	forking, Reaping Zombies, Glossary

 	server, Glossary

 	streaming data, Glossary

 	zombie, Reaping Zombies, Glossary

 	$PROCESS_ID ($$)
 variable, Special Variables in Alphabetical Order

 	profiling Perl, Profiling Perl–Devel::NYTProf

 	program generators, Program Generation–Source Filters, Glossary

 	programmatic patterns, Programmatic Patterns–Conditional interpolation

 	programmer efficiency, Programmer Efficiency

 	programming practices, Common Goofs for Novices–Java Traps, Universal Blunders–Universal Blunders, Frequently Ignored Advice–Frequently Ignored Advice, C Traps–C Traps, Shell Traps, Python Traps–Python Traps, Ruby Traps–Ruby Traps, Java Traps–Java Traps, Efficiency–User Efficiency, Programming with Style–Programming with Style, Fluent Perl–Fluent Perl, Program Generation–Source Filters

 	

 	C traps, C Traps–C Traps

 	common goofs for novices, Common Goofs for Novices–Java Traps

 	efficiency in, Efficiency–User Efficiency

 	frequently ignored advice, Frequently Ignored Advice–Frequently Ignored Advice

 	idiomatic Perl, Fluent Perl–Fluent Perl

 	Java traps, Java Traps–Java Traps

 	program generation, Program Generation–Source Filters

 	programming with style, Programming with Style–Programming with Style

 	Python traps, Python Traps–Python Traps

 	Ruby traps, Ruby Traps–Ruby Traps

 	shell traps, Shell Traps

 	universal blunders, Universal Blunders–Universal Blunders

 	programs, Molecules, Talking to Yourself–Talking to Yourself, The Life Cycle of a Perl Program–The Life Cycle of a Perl Program, Portable Perl, Documenting Your Perl Programs, Library Science, Glossary

 	

 	communicating over pipes, Talking to Yourself–Talking to Yourself

 	defined, Molecules, Library Science, Glossary

 	documenting, Documenting Your Perl Programs

 	life cycle of, The Life Cycle of a Perl Program–The Life Cycle of a Perl Program

 	portability and, Portable Perl

 	$PROGRAM_NAME ($0)
 variable, Special Variables in Alphabetical Order

 	program–wide special variables, Program-Wide Special Variables

 	progressive matching, Progressive Matching, Glossary

 	property, Glossary (see instance variables)

 	protocols (term), Glossary

 	prototype function, prototype

 	prototypes, Prototypes–Prototypes, Prototypes, Inlining Constant Functions, Care with Prototypes, Prototypes of Built-in Functions, Java Traps, Glossary

 	

 	about, Prototypes–Prototypes, Glossary

 	of built–in
 functions, Prototypes of Built-in Functions

 	emulating built–in functions, Prototypes

 	inlining constant functions, Inlining Constant Functions

 	programming practices, Java Traps

 	usage considerations, Care with Prototypes

 	prove tool, Internal testing

 	pseudocommands, Talking to Yourself

 	pseudodeclarators, Scoped Variable Declarations

 	pseudofunctions, Glossary

 	pseudohashes, Pseudohashes, Glossary

 	pseudoliterals, Command Input (Backtick) Operator, Glossary

 	pseudooperators, Overloadable Operators

 	pseudo-ttys, Bidirectional Communication

 	public domain, Glossary

 	pumpkin (term), Glossary

 	pumpking, Glossary

 	punct character class, POSIX-Style Character Classes

 	push function, push

 	PUSH method (tied arrays), Tying Arrays, Array-Tying Methods

 	push–pop (pp) code, Glossary

 	PV (pointer value), Glossary

 	Python language, Python Traps–Python Traps

 Q

 	q debugger command, Miscellaneous Commands

 	\Q escape
 sequence, String Literals

 	\Q metasymbol, Metasymbol Tables

 	q// quote operator, Pick Your Own Quotes, q/STRING/

 	qq// quote operator, Pick Your Own Quotes

 	qr// quote operator, Pick Your Own Quotes, Pattern-Matching Operators, The qr/PATTERN/modifiers quote regex operator–The qr/PATTERN/modifiers quote regex operator

 	qualified (term), Names, Qualified Names, Glossary

 	quantifiers, Regular Expressions, Quantifiers–Quantifiers, The Regular Expression Bestiary, The Regular Expression Bestiary, Metasymbol Tables, Quantifiers–Quantifiers, Time Efficiency, Glossary

 	

 	about, Regular Expressions, The Regular Expression Bestiary, Glossary

 	efficiency practices, Time Efficiency

 	pattern matching and, Quantifiers–Quantifiers

 	table listing, Metasymbol Tables

 	usage examples, Quantifiers–Quantifiers, The Regular Expression Bestiary

 	quarantining suspect code, Security, Handling Insecure Code

 	quote constructs, Pick Your Own Quotes

 	quoted strings, Singularities, Braces, Brackets, and Quoting

 	quotemeta function, quotemeta

 	qw// quote operator, Pick Your Own Quotes

 	qx// quote operator, Pick Your Own Quotes

 R

 	R debugger command, Using the Debugger, Miscellaneous Commands

 	r debugger command, Stepping and Running

 	\r escape
 sequence, String Literals, Specific Characters

 	–r file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	–R file test
 operator, Named Unary and File Test Operators

 	\r metasymbol, Metasymbol Tables

 	\R metasymbol, Metasymbol Tables

 	/r modifier, The s/// Operator (Substitution), Frequently Ignored Advice, Fluent Perl

 	$^R ($LAST_REGEXP_CODE_RESULT)
 variable, Special Variables in Alphabetical Order

 	race conditions, Handling Race Conditions, Handling Race Conditions–Handling Race Conditions, Glossary

 	

 	defined, Handling Race Conditions, Glossary

 	handling, Handling Race Conditions–Handling Race Conditions

 	rand function, rand

 	range (..) operator, Range Operators–Range Operators, Python Traps

 	range (...) operator, The Ellipsis Statement

 	re pragma, Environment Variables, Code Masquerading As Data, re–re

 	re::engine::LPEG module, Alternate Engines

 	re::engine::Lua module, Alternate Engines

 	re::engine::Oniguruma module, Alternate Engines

 	re::engine::PCRE module, Alternate Engines

 	re::engine::Plan9 module, Alternate Engines

 	re::engine::Plugin module, Alternate Engines

 	re::engine::RE2 module, Alternate Engines–Alternate Engines

 	read function, Filehandle-Tying Methods, read

 	READ method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	readable (term), Glossary

 	readdir function, readdir

 	readline function, Range Operators, readline

 	READLINE method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	readlink function, readlink

 	readpipe function, Code Masquerading As Data, readpipe

 	$REAL_GROUP_ID ($()
 variable, Special Variables in Alphabetical Order

 	$REAL_USER_ID ($<)
 variable, Special Variables in Alphabetical Order

 	reaping zombie processes, Glossary

 	records, More Elaborate Records–Generation of a Hash of Complex Records, Glossary

 	

 	data structures and, More Elaborate Records–Generation of a Hash of Complex Records

 	defined, Glossary

 	recursion, Space Efficiency, Glossary

 	

 	defined, Glossary

 	efficiency practices, Space Efficiency

 	recursive patterns, Recursive Patterns–Recursive Patterns

 	recv function, recv

 	redo operator, Loop Control–Loop Control, redo

 	ref function, Other Tricks You Can Do with Hard References, Object Construction, ref , Glossary

 	

 	about, ref , Glossary

 	hard references and, Other Tricks You Can Do with Hard References

 	object constructors and, Object Construction

 	Reference Value (RV), Glossary

 	references, Singularities, Singularities, Backreferences, Capturing, Capturing, Recursive Patterns–Recursive Patterns, Semantics, Passing References, What Is a Reference?–What Is a Reference?, What Is a Reference?, What Is a Reference?, What Is a Reference?, What Is a Reference?, Creating References–Implicit Creation of References, The Backslash Operator, Anonymous Data, Handle References, Handle References, Symbol Table References, Implicit Creation of References, Using Hard References–Nested subroutines, Other Tricks You Can Do with Hard References, Symbolic References–Symbolic References, Braces, Brackets, and Quoting–Garbage Collection, Circular References, and Weak
 References, Braces, Brackets, and Quoting, References Don’t Work As Hash Keys, Garbage Collection, Circular References, and Weak
 References, Garbage Collection, Circular References, and Weak
 References, Garbage Collection, Circular References, and Weak
 References, Overriding Built-in Functions, Perl’s Object System, Overloadable Operators, Java Traps, strict “refs”, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	about, What Is a Reference?–What Is a Reference?, Glossary

 	anonymous referents and, Anonymous Data

 	backreferences, Backreferences, Capturing, Recursive Patterns–Recursive Patterns, Glossary

 	backslash operator and, The Backslash Operator, Other Tricks You Can Do with Hard References

 	braces and brackets, Braces, Brackets, and Quoting–Garbage Collection, Circular References, and Weak
 References

 	call by reference mechanism, Glossary

 	circular, Garbage Collection, Circular References, and Weak
 References, Overloadable Operators

 	creating, Creating References–Implicit Creation of References

 	dereference, Singularities, What Is a Reference?, Glossary

 	filehandle, Handle References

 	garbage collection and, Garbage Collection, Circular References, and Weak
 References

 	group, Capturing

 	hard, What Is a Reference?, Using Hard References–Nested subroutines, Glossary

 	hash keys and, References Don’t Work As Hash Keys

 	implicit creation of, Implicit Creation of References

 	objects as, Perl’s Object System

 	passing, Semantics, Passing References, What Is a Reference?

 	programming practices, Java Traps

 	quotation marks and, Braces, Brackets, and Quoting

 	scalars holding, Singularities

 	soft, Glossary

 	strict pragma and, strict “refs”

 	symbol tables and, Symbol Table References

 	symbolic, What Is a Reference?, Symbolic References–Symbolic References, Glossary

 	typeglobs and, Handle References, Overriding Built-in Functions

 	weak, Garbage Collection, Circular References, and Weak
 References, Glossary

 	referents, What Is a Reference?, What Is a Reference?, Anonymous Data–The anonymous subroutine composer, Perl’s Object System, Glossary, Glossary

 	

 	anonymous, What Is a Reference?, Anonymous Data–The anonymous subroutine composer, Glossary

 	defined, What Is a Reference?, Glossary

 	objects as, Perl’s Object System

 	regex compiler, The Regex Compiler–The Regex Compiler

 	regex engines, The Little Engine That /Could(n’t)?/–The Little Engine That /Could(n’t)?/, Alternate Engines–Alternate Engines

 	

 	alternate, Alternate Engines–Alternate Engines

 	rules used by, The Little Engine That /Could(n’t)?/–The Little Engine That /Could(n’t)?/

 	Regexp module, Other Tricks You Can Do with Hard References

 	Regexp::Grammars module, Grammars–Grammars

 	regular expression modifiers, Pattern Modifiers–Pattern Modifiers, Glossary

 	regular expressions, Regular Expressions, Regular Expressions, Regular Expressions, Regular Expressions–Regular Expressions, Quantifiers–Quantifiers, Minimal Matching, Nailing Things Down, Backreferences, The when Statement and Modifier, Pattern Matching, The Regular Expression Bestiary, Metasymbol Tables–Metasymbol Tables, Metasymbol Tables, Quantifiers–Quantifiers, Custom Regex Boundaries–Custom Regex Boundaries, Java Traps, Time Efficiency, Regular Expression Special Variables, re, Glossary, Glossary, Glossary, Glossary

 	

 	(see also pattern matching)

 	additional information, Regular Expressions

 	anchors and, Nailing Things Down

 	assertions in, Glossary

 	backreferences, Backreferences

 	custom boundaries, Custom Regex Boundaries–Custom Regex Boundaries

 	defined, Regular Expressions, Glossary

 	differences in Perl, Pattern Matching

 	efficiency practices, Time Efficiency

 	leftmost longest preference, Glossary

 	metacharacters and, The Regular Expression Bestiary, Metasymbol Tables–Metasymbol Tables, Glossary

 	minimal matching, Minimal Matching

 	programming practices, Java Traps

 	quantifiers, Quantifiers–Quantifiers, Metasymbol Tables, Quantifiers–Quantifiers

 	re pragma support, re

 	smartmatching and, The when Statement and Modifier

 	special variables, Regular Expression Special Variables

 	usage considerations, Regular Expressions–Regular Expressions

 	regular files, Glossary

 	relational operators, Relational Operators, Glossary

 	rename function, rename

 	Request For Comment (RFC), Glossary

 	require function, Loading Modules, require –require

 	reserved words, Names, Glossary

 	reset function, reset

 	return operator, return

 	return stack, Executing Your Code

 	return values, Glossary

 	reverse function, Range Operators, reverse

 	Reverse Polish Notation (RPN), Executing Your Code

 	rewinddir function, rewinddir

 	RFC (Request For Comment), Glossary

 	RFC 822, split , Glossary

 	Rhine, Jared, History

 	right shift (>>) bit operator, Shift Operators, Glossary

 	rindex function, Graphemes and Normalization, rindex

 	rmdir function, rmdir

 	roles (term), Glossary

 	root (term), Glossary

 	RPN (Reverse Polish Notation), Executing Your Code

 	RTFM acronym, Glossary

 	Ruby language, Ruby Traps–Ruby Traps

 	run phase, The Life Cycle of a Perl Program, Compiling Your Code, Glossary

 	

 	defined, The Life Cycle of a Perl Program, Glossary

 	runtime and, Compiling Your Code

 	runtime (term), Runtime Overloading, Compiling Your Code, Glossary

 	

 	defined, Glossary

 	overloading, Runtime Overloading

 	run phase and, Compiling Your Code

 	runtime patterns, Glossary

 	RV (Reference Value), Glossary

 	rvalue (term), Built-in Data Types, Glossary

 S

 	s debugger command, Using the Debugger, Stepping and Running

 	S debugger command, Locating Code

 	–s file test
 operator, Named Unary and File Test Operators

 	–S file test
 operator, Named Unary and File Test Operators

 	\s metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	\S metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	/s modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	S pod sequence, Flowed Text

 	–S command-line switch, Command Processing, Switches

 	–s command-line switch, Switches

 	$^S ($EXCEPTIONS_BEING_CAUGHT)
 variable, Special Variables in Alphabetical Order

 	s/// (substitution) operator, Regular Expressions, Pick Your Own Quotes, Pattern-Matching Operators–Pattern-Matching Operators, The s/// Operator (Substitution)–When a global substitution just isn’t global enough, Time Efficiency, s/// , Glossary

 	

 	about, Pick Your Own Quotes, s/// , Glossary

 	double–quote interpolation, Pattern-Matching Operators–Pattern-Matching Operators

 	efficiency practices, Time Efficiency

 	modifiers supported, The s/// Operator (Substitution)–When a global substitution just isn’t global enough

 	usage examples, Regular Expressions

 	Safe module, Security, Handling Insecure Code, Safe Compartments–Code Masquerading As Data, Restricting namespace access, Safe examples–Safe examples, Safe examples, ops

 	

 	handling insecure code, Safe Compartments–Code Masquerading As Data

 	ops pragma and, ops

 	quarantining suspect code, Security, Handling Insecure Code

 	reval method, Restricting namespace access, Safe examples

 	usage examples, Safe examples–Safe examples

 	sandbox, Safe Compartments–Safe examples, Safe Compartments, Glossary

 	

 	defined, Safe Compartments, Glossary

 	setting up, Safe Compartments–Safe examples

 	save stack, Executing Your Code

 	say keyword, say

 	scalar context, List Processing, Scalar and List Context, Comma Operators, Glossary

 	

 	about, Scalar and List Context, Glossary

 	comma operator and, Comma Operators

 	list processing, List Processing

 	scalar literals, Glossary

 	scalar pseudofunction, Scalar and List Context, scalar

 	scalar values, Scalar Values–Scalar Values, Numeric Literals, String Literals–String Literals, Pick Your Own Quotes, Or Leave Out the Quotes Entirely, Interpolating Array Values, “Here” Documents–“Here” Documents, Version Literals, Other Literal Tokens, Glossary, Glossary

 	

 	about, Scalar Values–Scalar Values, Glossary, Glossary

 	barewords, Or Leave Out the Quotes Entirely

 	here–document syntax and, “Here” Documents–“Here” Documents

 	interpolating array values, Interpolating Array Values

 	literal tokens, Other Literal Tokens

 	numeric literals, Numeric Literals

 	quote constructs, Pick Your Own Quotes

 	string literals, String Literals–String Literals

 	version literals, Version Literals

 	scalar variables, Variable Syntax, Variable Syntax, Singularities, Variables, Glossary

 	

 	creating, Singularities

 	defined, Variable Syntax, Glossary

 	sigil for, Variable Syntax, Variables

 	Scalar::Util module, Prototypes, Garbage Collection, Circular References, and Weak
 References, Garbage Collection, Circular References, and Weak
 References, Garbage Collection with destroy
 Methods, Detecting and Laundering Tainted Data

 	

 	breaking references and, Garbage Collection with destroy
 Methods

 	is_weak function, Garbage Collection, Circular References, and Weak
 References

 	set_prototype function, Prototypes

 	tainted function, Detecting and Laundering Tainted Data

 	weaken function, Garbage Collection, Circular References, and Weak
 References

 	scalars, Built-in Data Types, Tying Scalars–Magically Banishing $_, Fluent Perl, Glossary

 	

 	defined, Built-in Data Types, Glossary

 	programming practices, Fluent Perl

 	tying, Tying Scalars–Magically Banishing $_

 	Schwartz Factor, Creating a MiniCPAN

 	Schwartz, Randal, Creating a MiniCPAN, History Made Practical

 	Schwartzian Transform, sort

 	scope stack, Executing Your Code

 	scoped declarations, Scoped Declarations

 	scopes, Names, Scoped Declarations, Glossary, Glossary, Glossary, Glossary

 	

 	(see also lexical scopes)

 	defined, Names, Glossary

 	dynamic, Scoped Declarations, Glossary

 	static, Glossary

 	scratchpads, Names, Glossary

 	script gradation, How to Do It

 	script kiddie, Glossary

 	scripts (term), Library Science, Glossary

 	scripts directory (CPAN), A Tour of the Repository

 	SDBM_File module, Standard Modules

 	searching CPAN, Searching CPAN

 	security, Handling Insecure Data–Defeating Taint Checking, Handling Timing Glitches–Temporary Files, Unix Kernel Security Bugs, Handling Insecure Code–Code Masquerading As Data

 	

 	handling insecure code, Handling Insecure Code–Code Masquerading As Data

 	handling insecure data, Handling Insecure Data–Defeating Taint Checking

 	handling timing glitches, Handling Timing Glitches–Temporary Files

 	Unix kernel security bugs, Unix Kernel Security Bugs

 	sed (Stream EDitor), Glossary

 	seek function, Newlines, seek

 	SEEK method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	seekdir function, seekdir

 	select (output filehandle) operator, select (output filehandle) –select (output filehandle)

 	select (ready file descriptors) operator, select (ready file descriptors) –select (ready file descriptors)

 	SelectSaver module, select (output filehandle)

 	SelfLoader module, The goto Operator, Autoloading, autouse

 	semaphore, File Locking, Glossary

 	semctl function, semctl

 	semget function, semget

 	semicolon (;), Simple Statements, Prototypes, Universal Blunders, Fluent Perl

 	

 	programming practices, Universal Blunders, Fluent Perl

 	in simple
 statements, Simple Statements

 	subroutines and, Prototypes

 	semop function, semop

 	send function, send

 	separators, Regular Expressions, Glossary

 	sequences defined by pod, Flowed Text–Flowed Text

 	serialization, Glossary

 	servers, Networking Servers–Networking Servers, Glossary

 	

 	defined, Glossary

 	networking, Networking Servers–Networking Servers

 	services (term), Glossary

 	setgid program, Handling Insecure Data, Accessing Commands and Files Under Reduced Privileges, Glossary

 	

 	about, Glossary

 	reduced privileges and, Handling Insecure Data, Accessing Commands and Files Under Reduced Privileges

 	setpgrp function, Signalling Process Groups, setpgrp

 	setpriority function, setpriority

 	setsockopt function, setsockopt

 	setuid program, Handling Insecure Data, Accessing Commands and Files Under Reduced Privileges, Glossary

 	

 	about, Glossary

 	reduced privileges and, Handling Insecure Data, Accessing Commands and Files Under Reduced Privileges

 	shared memory, Glossary

 	shebang (term), Glossary

 	SHELL environment variable, Command Processing

 	Shell module, Autoloading

 	shell program, “Here” Documents–“Here” Documents, Shell Traps, Glossary

 	

 	defined, Glossary

 	here–document syntax, “Here” Documents–“Here” Documents

 	programming practices, Shell Traps

 	shift function, Time Efficiency, shift

 	SHIFT method (tied arrays), Tying Arrays, Array-Tying Methods

 	shift operators, Shift Operators (see bit–shift operators)

 	shmctl function, shmctl

 	ShMem package, System V IPC

 	shmget function, shmget

 	shmread function, shmread

 	shmwrite function, shmwrite

 	shutdown function, Networking Clients, shutdown

 	side effects, Glossary

 	%SIG variable, Signals, Special Variables in Alphabetical Order

 	sigils, Variable Syntax, Variable Syntax, Variables, Variables–Variables, Names, Using the Arrow Operator, Glossary

 	

 	defined, Variable Syntax, Variables, Glossary

 	operator precedence and, Using the Arrow Operator

 	variable names and, Names

 	variable types listed, Variable Syntax, Variables–Variables

 	signals and signal handling, Signals–Signals, Signals, Signals, Signalling Process Groups, Reaping Zombies, Timing Out Slow Operations, Blocking Signals, Signal Safety, Avant-Garde Compiler, Retro Interpreter, Special Variables in Alphabetical Order, Signal Handlers, Glossary

 	

 	about, Signals–Signals, Glossary

 	blocking signals, Blocking Signals

 	converting into exceptions, Avant-Garde Compiler, Retro Interpreter

 	process groups, Signalling Process Groups

 	%SIG variable and, Signals, Special Variables in Alphabetical Order

 	signal safety, Signal Safety

 	sigtrap pragma support, Signals, Signal Handlers

 	timing out slow operations, Timing Out Slow Operations

 	zombie processes and, Reaping Zombies

 	sigtrap pragma, Signals, Avant-Garde Compiler, Retro Interpreter, Programming with Style, sigtrap, Signal Handlers, Predefined Signal Lists, Predefined Signal Lists, Examples of sigtrap

 	

 	about, sigtrap

 	converting singals into exceptions, Avant-Garde Compiler, Retro Interpreter

 	other arguments supported, Predefined Signal Lists

 	predefined signal lists, Predefined Signal Lists

 	programming practices, Programming with Style

 	signal handlers and, Signals, Signal Handlers

 	usage examples, Examples of sigtrap

 	simple statements, Simple Statements

 	sin operator, sin

 	single inheritance, Glossary

 	sleep function, sleep

 	slices of arrays, Slices, Universal Blunders

 	slices of elements, Glossary

 	slurp (term), Glossary

 	Smart::Comments module, Molecules

 	smartmatch (~~) operator, Equality Operators–Smartmatching of Objects, The given Statement, The when Statement and Modifier–The when Statement and Modifier

 	

 	about, Equality Operators–Smartmatching of Objects

 	when statement and, The given Statement, The when Statement and Modifier–The when Statement and Modifier

 	smolder testing framework, External testing

 	.so file extension, Wandering the Stacks

 	socket function, socket

 	Socket module, Sockets, Networking Clients, Networking Servers, Newlines, gethostbyaddr , gethostbyaddr , gethostbyaddr , getsockopt , setsockopt , Wandering the Stacks

 	

 	about, Sockets, Wandering the Stacks

 	AF_INET attribute, gethostbyaddr

 	getaddrinfo function, gethostbyaddr

 	inet_ntoa function, gethostbyaddr

 	networking clients, Networking Clients

 	networking servers, Networking Servers

 	newlines and, Newlines

 	SOL_SOCKET attribute, getsockopt , setsockopt

 	socketpair function, Bidirectional Communication, socketpair

 	sockets, Sockets–Sockets, Networking Clients–Networking Clients, Networking Servers–Networking Servers, Message Passing, Glossary

 	

 	defined, Glossary

 	interprocess communications and, Sockets–Sockets

 	message passing, Message Passing

 	networking clients, Networking Clients–Networking Clients

 	networking servers, Networking Servers–Networking Servers

 	soft references, Glossary

 	sort function, Hashes, List Processing, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text, Using the uca with Perl’s
 sort, Hashes of Arrays, sort –sort , sort

 	

 	about, sort –sort

 	hashes of arrays and, Hashes of Arrays

 	list processing, List Processing

 	sort pragma and, sort

 	UCA and, Using the uca with Perl’s
 sort

 	Unicode text and, Comparing and Sorting Unicode Text–Comparing and Sorting Unicode Text

 	usage example, Hashes

 	sort pragma, sort , sort

 	source filters, Source Filters, Glossary

 	space character class, POSIX-Style Character Classes

 	space efficiency, Space Efficiency

 	special filehandles, per–package, Per-Package Special Filehandles

 	special functions, per–package, Per-Package Special Functions

 	special names, Special Names Grouped by Type–Per-Package Special Functions, Special Variables in Alphabetical Order–Special Variables in Alphabetical Order

 	

 	grouped by type, Special Names Grouped by Type–Per-Package Special Functions

 	special variables in alphabetical order, Special Variables in Alphabetical Order–Special Variables in Alphabetical Order

 	special variables, Regular Expression Special Variables, Per-Filehandle Variables, Per-Package Special Variables, Program-Wide Special Variables, Special Variables in Alphabetical Order–Special Variables in Alphabetical Order, Special Variables in Alphabetical Order

 	

 	in alphabetical
 order, Special Variables in Alphabetical Order–Special Variables in Alphabetical Order

 	annotations for, Special Variables in Alphabetical Order

 	per–filehandle, Per-Filehandle Variables

 	per–package, Per-Package Special Variables

 	program–wide, Program-Wide Special Variables

 	regular expression, Regular Expression Special Variables

 	Spencer, Henry, History Made Practical

 	splice function, Time Efficiency, splice

 	SPLICE method (tied arrays), Tying Arrays, Array-Tying Methods

 	split function, Regular Expressions, Time Efficiency, split –split , Glossary

 	

 	about, split –split

 	efficiency practices, Time Efficiency

 	separators and, Regular Expressions, Glossary

 	sprintf function, Filehandle-Tying Methods, String Formats, String Formats, String Formats, String Formats–String Formats, sprintf

 	

 	about, String Formats, sprintf

 	format modifiers for, String Formats–String Formats

 	formats supported, String Formats

 	numeric conversions, String Formats

 	tied filehandles and, Filehandle-Tying Methods

 	sqrt function, sqrt

 	square brackets [], Arrays, Complexities, Bracketed Character Classes–Bracketed Character Classes, The anonymous array composer

 	

 	anonymous array composer, The anonymous array composer

 	array subscripts and, Arrays

 	bracketed character classes and, Bracketed Character Classes–Bracketed Character Classes

 	scalar lists and, Complexities

 	srand function, srand

 	src directory (CPAN), A Tour of the Repository

 	Stackoverflow site, Getting Help

 	stacks, Executing Your Code, Fluent Perl, Glossary, Glossary

 	

 	defined, Glossary, Glossary

 	listing of supported, Executing Your Code

 	programming practices, Fluent Perl

 	standard (term), Glossary

 	standard I/O, Glossary

 	Standard Perl Library, cpan, The Standard Perl Library, A Tour of the Perl Library–A Tour of the Perl Library, The Future of the Standard Perl Library, Glossary

 	

 	about, The Standard Perl Library, A Tour of the Perl Library–A Tour of the Perl Library, Glossary

 	cpan command, cpan

 	future of, The Future of the Standard Perl Library

 	stat function, Handling Race Conditions

 	stat structure, stat –stat , Glossary

 	state declaration, Persistent Lexically Scoped Variables: state, state

 	state variables, Scoping Issues–Scoping Issues, state

 	statement modifiers, Simple Statements, Time Efficiency, Glossary

 	

 	about, Glossary

 	efficiency practices, Time Efficiency

 	simple statements, Simple Statements

 	statements, The given and when Statements, Looping Constructs–Breaking out: next and last, Molecules, Statements and Declarations, Statements and Declarations, Simple Statements, Compound Statements–Compound Statements, Loop Statements–Loop Control, Glossary, Glossary, Glossary, Glossary

 	

 	(see also specific statements)

 	about, Molecules, Statements and Declarations, Glossary

 	compound, Compound Statements–Compound Statements

 	dangling, Glossary

 	loop control, Looping Constructs–Breaking out: next and last, Loop Statements–Loop Control, Glossary

 	simple, Simple Statements

 	switch, The given and when Statements, Glossary

 	static (term), Glossary

 	static methods, Glossary

 	static scopes, Glossary

 	static variables, Glossary

 	status value, Glossary

 	STDERR filehandle, Filehandles, Passing Filehandles, Special Variables in Alphabetical Order, Glossary, Glossary

 	

 	about, Filehandles, Special Variables in Alphabetical Order, Glossary

 	interprocess communications and, Passing Filehandles

 	warning messages and, Glossary

 	STDIN filehandle, Filehandles, Passing Filehandles, Special Variables in Alphabetical Order, Glossary

 	

 	about, Filehandles, Special Variables in Alphabetical Order, Glossary

 	interprocess communications and, Passing Filehandles

 	STDIO filehandle, Glossary

 	STDOUT filehandle, Filehandles, Passing Filehandles, Special Variables in Alphabetical Order, Glossary

 	

 	about, Filehandles, Special Variables in Alphabetical Order, Glossary

 	interprocess communications and, Passing Filehandles

 	Storable module, Saving Data Structures, Endianness and Number Width

 	STORE method, Tying Scalars, Scalar-Tying Methods, Tying Arrays, Array-Tying Methods, Tying Hashes, Hash-Tying Methods

 	

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied hashes, Tying Hashes, Hash-Tying Methods

 	tied scalars, Tying Scalars, Scalar-Tying Methods

 	STORESIZE method (tied arrays), Tying Arrays, Array-Tying Methods

 	Stream EDitor (sed), Glossary

 	streaming data, Glossary

 	strict pragma, Simplicities, Name Lookups, Scoped Declarations, Controlling the Use of Globals, The Default Package, Restricting namespace access, Common Goofs for Novices, Frequently Ignored Advice, Programming with Style, Programming with Style, Special Variables in Alphabetical Order, abs , strict, strict “refs”, strict “vars”, strict “subs”

 	

 	about, Simplicities, strict

 	barewords and, strict “subs”

 	handling insecure code, Restricting namespace access

 	lexical scoping and, Scoped Declarations

 	my modifier and, abs

 	programming practices, Common Goofs for Novices, Frequently Ignored Advice, Programming with Style, Programming with Style

 	references and, strict “refs”

 	undeclared variables and, The Default Package

 	variables and, Name Lookups, Controlling the Use of Globals, Special Variables in Alphabetical Order, strict “vars”

 	string context, Glossary

 	string formats, String Formats–String Formats

 	string literals, String Literals–String Literals

 	string operators, String Operators, Some Numeric and String Comparison Operators, Relational Operators

 	stringification, Overloadable Operators, Glossary

 	strings, Singularities, String Operators, Regular Expressions, Molecules, The s/// Operator (Substitution)–When a global substitution just isn’t global enough, Modifying strings en passant, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration), Positions–Where You Left Off: The \G Assertion, Time Efficiency, s/// , tr/// , y//, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	concatenating, String Operators, Glossary

 	construct positions in, Positions–Where You Left Off: The \G Assertion

 	defined, Glossary

 	efficiency practices, Time Efficiency

 	modifying in passing, Modifying strings en passant

 	null, Glossary

 	offsets in, Glossary

 	quoted, Singularities

 	separators, Glossary

 	substitution in, Regular Expressions, The s/// Operator (Substitution)–When a global substitution just isn’t global enough, s/// , Glossary

 	terminators in, Glossary

 	text, Glossary

 	transliteration of, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration), tr/// , y//, Glossary

 	v–strings, Glossary

 	whitespace characters and, Molecules

 	struct keyword, Glossary

 	Struct::Class module, Managing Instance Data

 	structures, Glossary (see control structures; data structures)

 	study function, study

 	sub declaration, Prototypes, The anonymous subroutine composer, sub–sub

 	

 	about, sub–sub

 	anonymous subroutine composer, The anonymous subroutine composer

 	prototypes emulating built–ins, Prototypes

 	subclasses, Brief Refresher on Object-Oriented Lingo, Glossary

 	subpatterns, The Regular Expression Bestiary, Grouping and Capturing–Named capture groups, Possessive Groups–Possessive Groups, Match-time code evaluation–Match-time code evaluation, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	capturing, Grouping and Capturing–Named capture groups, Glossary

 	cluster, Glossary

 	code, Match-time code evaluation–Match-time code evaluation, Glossary

 	defined, Glossary

 	greedy, Glossary

 	nonbacktracking, Possessive Groups–Possessive Groups

 	zero–width assertions, The Regular Expression Bestiary, Glossary

 	subroutines, Variable Syntax, Variable Syntax, Verbs, Molecules, Names, Subroutines, Syntax–Syntax, Semantics, Tricks with Parameter Lists–Tricks with Parameter Lists, Error Indications, Scoping Issues–Scoping Issues, Passing References, Prototypes–Prototypes of Built-in Functions, The method Attribute, The lvalue Attribute–The lvalue Attribute, The Backslash Operator, The anonymous subroutine composer, Object Constructors, Closures–Nested subroutines, Nested subroutines, Perl’s Object System, Ruby Traps, Time Efficiency, Glossary, Glossary

 	

 	ampersand sigil and, Variable Syntax, Verbs

 	anonymous subroutine composer, The anonymous subroutine composer

 	backslash operator and, The Backslash Operator

 	closure, Closures–Nested subroutines, Glossary

 	defined, Molecules, Subroutines, Glossary

 	efficiency practices, Time Efficiency

 	error indications, Error Indications

 	lvalue attribute, The lvalue Attribute–The lvalue Attribute

 	method attribute, The method Attribute

 	methods as, Perl’s Object System

 	name considerations, Names

 	nested, Nested subroutines

 	parameter lists and, Tricks with Parameter Lists–Tricks with Parameter Lists

 	passing references, Passing References

 	pass–by–reference mechanism, Semantics

 	programming practices, Ruby Traps

 	prototypes, Prototypes–Prototypes of Built-in Functions

 	returning references, Object Constructors

 	scoping issues, Scoping Issues–Scoping Issues

 	sigil for, Variable Syntax

 	syntax, Syntax–Syntax

 	subs pragma, Method Autoloading, subs

 	subscripts, Arrays, Glossary

 	$SUBSCRIPT_SEPARATOR ($;)
 variable, Hashes, Special Variables in Alphabetical Order

 	substitution (s///) operator, Regular Expressions, Pick Your Own Quotes, Pattern-Matching Operators–Pattern-Matching Operators, The s/// Operator (Substitution)–When a global substitution just isn’t global enough, Time Efficiency, s/// , Glossary

 	

 	about, Pick Your Own Quotes, s/// , Glossary

 	double–quote interpolation, Pattern-Matching Operators–Pattern-Matching Operators

 	efficiency practices, Time Efficiency

 	modifiers supported, The s/// Operator (Substitution)–When a global substitution just isn’t global enough

 	usage examples, Regular Expressions

 	substitution evaluation, Substitution evaluations

 	substr function, Positions, Graphemes and Normalization, Time Efficiency, substr

 	

 	about, Positions, substr

 	efficiency practices, Time Efficiency

 	granularity of access, Graphemes and Normalization

 	substrings (term), Glossary

 	subtraction (–) operator, Additive Operators

 	suidperl program, Unix Kernel Security Bugs

 	SUPER pseudoclass, Accessing Overridden Methods–Accessing Overridden Methods

 	superclasses, Brief Refresher on Object-Oriented Lingo, Glossary

 	superusers, Glossary

 	SV, Glossary (see scalar values)

 	switch clusters, Glossary

 	switch statement, The given and when Statements, Glossary

 	switches, Command Processing, Switches–Switches, Glossary, Glossary

 	

 	(see also specific switches)

 	about, Glossary

 	command–line, Switches–Switches

 	parsing, Command Processing

 	Symbol module, Prototypes, reset

 	

 	delete_package function, reset

 	qualify_to_ref function, Prototypes

 	symbol tables, Names, Typeglobs and Filehandles, Symbol Table References, Symbol Tables–Symbol Tables, Glossary

 	

 	about, Names, Symbol Tables–Symbol Tables, Glossary

 	references and, Symbol Table References

 	typeglobs and, Typeglobs and Filehandles

 	symbolic debugger, Glossary (see debugger)

 	symbolic links, Temporary Files, Glossary

 	symbolic references, What Is a Reference?, Symbolic References–Symbolic References, Glossary

 	symbols, Glossary, Glossary

 	

 	(see also metasymbols)

 	symlink function, symlink

 	synchronous (term), Glossary

 	syntactic sugar, Hashes, Glossary

 	syntax, Variable Syntax, Singularities–Singularities, Pluralities–Hashes, Complexities–Complexities, Simplicities–Simplicities, “Here” Documents–“Here” Documents, POSIX-Style Character Classes–POSIX-Style Character Classes, Syntax–Syntax, Syntactic Snafus with Indirect Objects–Syntactic Snafus with Indirect Objects, Glossary

 	

 	about, Variable Syntax, Glossary

 	complexities in, Complexities–Complexities

 	here–document, “Here” Documents–“Here” Documents

 	indirect object considerations, Syntactic Snafus with Indirect Objects–Syntactic Snafus with Indirect Objects

 	pluralities in, Pluralities–Hashes

 	POSIX character–class notation, POSIX-Style Character Classes–POSIX-Style Character Classes

 	simplicities in, Simplicities–Simplicities

 	singularities in, Singularities–Singularities

 	subroutines, Syntax–Syntax

 	syntax tree, Glossary

 	SYS$LOGIN environment variable, Environment Variables

 	syscall function, Non-Perl Manpages, Time Efficiency, syscall , Glossary

 	

 	about, syscall , Glossary

 	efficiency practices, Time Efficiency

 	manpages for, Non-Perl Manpages

 	sysopen function, File Locking, Cleaning Up Your Environment, Accessing Commands and Files Under Reduced Privileges, Handling Race Conditions, sysopen –sysopen

 	

 	about, sysopen –sysopen

 	calling with reduced privileges, Accessing Commands and Files Under Reduced Privileges

 	external data cautions, Cleaning Up Your Environment

 	file locking and, File Locking

 	handling race conditions, Handling Race Conditions

 	sysread function, Filehandle-Tying Methods, Time Efficiency, sysread

 	sysseek function, sysseek

 	system function, Accessing Commands and Files Under Reduced Privileges, Defeating Taint Checking, Time Efficiency, system

 	

 	about, system

 	calling with reduced privileges, Accessing Commands and Files Under Reduced Privileges

 	efficiency practices, Time Efficiency

 	tainted data and, Defeating Taint Checking

 	System V IPC, System V IPC–System V IPC

 	$SYSTEM_FD_MAX ($^F)
 variable, Passing Filehandles, Special Variables in Alphabetical Order, fileno , socket

 	

 	about, Special Variables in Alphabetical Order

 	filehandles and, Passing Filehandles

 	fileno function and, fileno

 	socket function and, socket

 	syswrite function, Filehandle-Tying Methods, syswrite

 T

 	T debugger command, Using the Debugger, Tracing

 	t debugger command, Tracing

 	\t escape
 sequence, String Literals, Specific Characters

 	–T file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	–t file test
 operator, Named Unary and File Test Operators

 	\t metasymbol, Metasymbol Tables

 	$^T ($BASETIME)
 variable, Special Variables in Alphabetical Order

 	–t command-line switch, Switches, Defeating Taint Checking

 	–T command-line switch, Switches, Defeating Taint Checking

 	taint checks, Handling Insecure Data, Defeating Taint Checking, Handling Insecure Code, Glossary

 	

 	about, Handling Insecure Data, Handling Insecure Code, Glossary

 	defeating, Defeating Taint Checking

 	taint mode, Security, Glossary

 	${^TAINT} variable, Special Variables in Alphabetical Order

 	Taint::Util module, Detecting and Laundering Tainted Data, Detecting and Laundering Tainted Data

 	

 	taint function, Detecting and Laundering Tainted Data

 	tainted function, Detecting and Laundering Tainted Data

 	tainted data, Detecting and Laundering Tainted Data–Detecting and Laundering Tainted Data, Glossary

 	

 	about, Glossary

 	detecting and laundering, Detecting and Laundering Tainted Data–Detecting and Laundering Tainted Data

 	TAP (Test Anywhere Protocol) format, Internal testing

 	TCP (Transmission Control Protocol), Sockets, Message Passing, Glossary

 	tell function, Filehandle-Tying Methods, Newlines, tell

 	TELL method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	telldir function, telldir

 	temporary files, Temporary Files–Temporary Files, Space Efficiency

 	temporary values, Built-in Data Types

 	Term::ReadKey module, Editor Support for Debugging, getc , ioctl

 	Term::ReadLine module, Editor Support for Debugging, Debugger Options, Debugger Options, Unattended Execution

 	

 	debugging support, Editor Support for Debugging, Debugger Options, Debugger Options

 	unattended execution and, Unattended Execution

 	Term::Rendezvous module, Unattended Execution

 	terminators (term), Glossary

 	terms, Built-in Data Types, Terms and List Operators (Leftward)–Terms and List Operators (Leftward), Named Unary and File Test Operators, Glossary

 	

 	ambiguous characters and, Named Unary and File Test Operators

 	defined, Built-in Data Types, Glossary

 	precedence rules, Terms and List Operators (Leftward)–Terms and List Operators (Leftward)

 	ternary operators, Unary and Binary Operators, Glossary

 	Test Anywhere Protocol (TAP) format, Internal testing

 	Test::More module, Internal testing

 	Test::Pod module, Pod Translators and Modules

 	Test::Pod::Coverage module, Pod Translators and Modules

 	testing CPAN, Testing, Testing Your Modules–External testing

 	text, Flowed Text–Flowed Text, Glossary, Glossary

 	

 	(see also strings)

 	defined, Glossary

 	flowed, Flowed Text–Flowed Text

 	Text::CPP module, Switches

 	Thread module, threads

 	Thread::Queue module, threads

 	threads (term), Glossary

 	threads pragma, threads–threads, threads

 	

 	about, threads–threads

 	async function, threads

 	threads::shared pragma, threads

 	three–part loops, The three-part loop, Three-Part Loops–Three-Part Loops

 	tie function, Tying Scalars–Magically Banishing $_, Creative Filehandles–Creative Filehandles, A Subtle Untying Trap, tie –tie

 	

 	about, tie –tie

 	creative filehandles, Creative Filehandles–Creative Filehandles

 	tied variables and, A Subtle Untying Trap

 	tying scalars, Tying Scalars–Magically Banishing $_

 	Tie::Array module, Tying Arrays, Array-Tying Methods, Array-Tying Methods, tie

 	

 	about, Tying Arrays

 	SPLICE subroutine, Array-Tying Methods, Array-Tying Methods

 	tie function and, tie

 	Tie::Cache::LRU module, Tie Modules on CPAN

 	Tie::Const module, Tie Modules on CPAN

 	Tie::Counter module, Magical Counter Variables, Tie Modules on CPAN

 	Tie::CPHash module, Tie Modules on CPAN

 	Tie::Cycle module, Cycling Through Values, Tie Modules on CPAN

 	Tie::DBI module, Tie Modules on CPAN

 	Tie::DevNull module, Creative Filehandles

 	Tie::DevRandom module, Creative Filehandles

 	Tie::Dict module, Tie Modules on CPAN

 	Tie::DictFile module, Tie Modules on CPAN

 	Tie::DNS module, Tie Modules on CPAN

 	Tie::EncryptedHash module, Tie Modules on CPAN

 	Tie::FileLRUCache module, Tie Modules on CPAN

 	Tie::FlipFlop module, Tie Modules on CPAN

 	Tie::Handle module, tie

 	Tie::Hash module, Tying Hashes, tie

 	Tie::Hash::NamedCapture module, Named capture groups, Special Variables in Alphabetical Order, Special Variables in Alphabetical Order

 	Tie::HashDefaults module, Tie Modules on CPAN

 	Tie::HashHistory module, Tie Modules on CPAN

 	Tie::iCal module, Tie Modules on CPAN

 	Tie::IxHash module, Tie Modules on CPAN

 	Tie::LDAP module, Tie Modules on CPAN

 	Tie::Open2 module, Creative Filehandles–Creative Filehandles

 	Tie::Persistent module, Tie Modules on CPAN

 	Tie::Pick module, Tie Modules on CPAN

 	Tie::RDBM module, Tie Modules on CPAN

 	Tie::RefHash module, References Don’t Work As Hash Keys

 	Tie::Scalar module, Tying Scalars, tie

 	Tie::SecureHash module, Using Closures for Private Objects

 	Tie::StdArray module, Tying Arrays

 	Tie::STDERR module, Tie Modules on CPAN

 	Tie::StdHash module, Tying Hashes

 	Tie::StdScalar module, Tying Scalars

 	Tie::SubstrHash module, Space Efficiency

 	Tie::Syslog module, Tie Modules on CPAN

 	Tie::Tee module, Creative Filehandles

 	Tie::TextDir module, Tie Modules on CPAN

 	Tie::Toggle module, Tie Modules on CPAN

 	Tie::TZ module, Tie Modules on CPAN

 	Tie::VecArray module, Tie Modules on CPAN

 	Tie::Watch module, Tie Modules on CPAN

 	TIEARRAY method, Tying Arrays, Array-Tying Methods

 	tied arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Tying Arrays, Array-Tying Methods–Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Array-Tying Methods, Notational Convenience

 	

 	about, Tying Arrays

 	CLEAR method, Array-Tying Methods

 	DELETE method, Tying Arrays, Array-Tying Methods

 	DESTROY method, Tying Arrays, Array-Tying Methods

 	EXISTS method, Tying Arrays, Array-Tying Methods

 	EXTEND method, Array-Tying Methods

 	FETCH method, Tying Arrays, Array-Tying Methods

 	FETCHSIZE method, Tying Arrays, Array-Tying Methods

 	methods supported, Array-Tying Methods–Array-Tying Methods

 	notational convenience, Notational Convenience

 	POP method, Tying Arrays, Array-Tying Methods

 	PUSH method, Tying Arrays, Array-Tying Methods

 	SHIFT method, Tying Arrays, Array-Tying Methods

 	SPLICE method, Tying Arrays, Array-Tying Methods

 	STORE method, Tying Arrays, Array-Tying Methods

 	STORESIZE method, Tying Arrays, Array-Tying Methods

 	TIEARRAY method, Tying Arrays, Array-Tying Methods

 	UNSHIFT method, Tying Arrays, Array-Tying Methods

 	UNTIE method, Tying Arrays, Array-Tying Methods

 	tied filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Tying Filehandles, Filehandle-Tying Methods–Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Filehandle-Tying Methods, Creative Filehandles–Creative Filehandles

 	

 	about, Tying Filehandles

 	BINMODE method, Tying Filehandles, Filehandle-Tying Methods

 	CLOSE method, Tying Filehandles, Filehandle-Tying Methods

 	creative, Creative Filehandles–Creative Filehandles

 	DESTROY method, Tying Filehandles, Filehandle-Tying Methods

 	EOF method, Tying Filehandles, Filehandle-Tying Methods

 	FILENO method, Tying Filehandles, Filehandle-Tying Methods

 	GETC method, Tying Filehandles, Filehandle-Tying Methods

 	methods supported, Filehandle-Tying Methods–Filehandle-Tying Methods

 	OPEN method, Tying Filehandles, Filehandle-Tying Methods

 	PRINT method, Tying Filehandles, Filehandle-Tying Methods

 	PRINTF method, Tying Filehandles, Filehandle-Tying Methods

 	READ method, Tying Filehandles, Filehandle-Tying Methods

 	READLINE method, Tying Filehandles, Filehandle-Tying Methods

 	SEEK method, Tying Filehandles, Filehandle-Tying Methods

 	TELL method, Tying Filehandles, Filehandle-Tying Methods

 	TIEHANDLE method, Tying Filehandles, Filehandle-Tying Methods

 	UNTIE method, Filehandle-Tying Methods

 	WRITE method, Tying Filehandles, Filehandle-Tying Methods

 	tied function, A Subtle Untying Trap, tied

 	tied hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Tying Hashes, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods, Hash-Tying Methods

 	

 	about, Tying Hashes

 	CLEAR method, Tying Hashes, Hash-Tying Methods

 	DELETE method, Tying Hashes, Hash-Tying Methods

 	DESTROY method, Tying Hashes, Hash-Tying Methods

 	EXISTS method, Tying Hashes, Hash-Tying Methods

 	FETCH method, Tying Hashes, Hash-Tying Methods

 	FIRSTKEY method, Tying Hashes, Hash-Tying Methods

 	methods supported, Hash-Tying Methods

 	NEXTKEY method, Tying Hashes, Hash-Tying Methods

 	STORE method, Tying Hashes, Hash-Tying Methods

 	TIEHASH method, Tying Hashes, Hash-Tying Methods

 	UNTIE method, Hash-Tying Methods

 	tied scalars, Tying Scalars–Tying Scalars, Tying Scalars, Tying Scalars, Tying Scalars, Scalar-Tying Methods–Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, Scalar-Tying Methods, Magical Counter Variables, Cycling Through Values

 	

 	about, Tying Scalars–Tying Scalars

 	cycling through values, Cycling Through Values

 	DESTROY method, Tying Scalars, Scalar-Tying Methods

 	FETCH method, Scalar-Tying Methods

 	magical counter variables, Magical Counter Variables

 	methods supported, Scalar-Tying Methods–Scalar-Tying Methods

 	STORE method, Scalar-Tying Methods

 	TIESCALAR method, Tying Scalars, Scalar-Tying Methods

 	UNTIE method, Tying Scalars, Scalar-Tying Methods

 	tied variables, Tied Variables–Tied Variables, Tied Variables–Tied Variables, Tied Variables, Tying Scalars–Magically Banishing $_, Tying Arrays–Notational Convenience, Tying Hashes–Hash-Tying Methods, Tying Filehandles–Creative Filehandles, A Subtle Untying Trap–A Subtle Untying Trap, Glossary

 	

 	about, Tied Variables–Tied Variables, Tied Variables–Tied Variables, Glossary

 	arrays, Tying Arrays–Notational Convenience

 	filehandles, Tying Filehandles–Creative Filehandles

 	hashes, Tying Hashes–Hash-Tying Methods

 	methods and, Tied Variables

 	scalars, Tying Scalars–Magically Banishing $_

 	subtle untying trap, A Subtle Untying Trap–A Subtle Untying Trap

 	TIEHANDLE method, Tying Filehandles, Filehandle-Tying Methods

 	TIEHASH method, Tying Hashes, Hash-Tying Methods

 	TIESCALAR method, Tying Scalars, Scalar-Tying Methods

 	time efficiency, Time Efficiency–Time Efficiency

 	time function, Dates and Times, time

 	Time::gmtime module, gmtime

 	Time::HiRes module, alarm , select (ready file descriptors) , sleep, syscall , time

 	

 	alarms and, alarm

 	granularity of measurements, time

 	sleep function, select (ready file descriptors)

 	system calls and, syscall

 	usleep function, sleep

 	Time::Local module, Dates and Times, gmtime, localtime

 	

 	portability considerations, Dates and Times

 	timegm function, gmtime

 	timelocal function, localtime

 	Time::localtime module, localtime

 	times function, times

 	timing glitches, Timing Out Slow Operations, Handling Timing Glitches, Unix Kernel Security Bugs, Handling Race Conditions–Handling Race Conditions, Temporary Files–Temporary Files

 	

 	about, Handling Timing Glitches

 	handling race conditions, Handling Race Conditions–Handling Race Conditions

 	temporary files and, Temporary Files–Temporary Files

 	timing out slow operations, Timing Out Slow Operations

 	Unix kernel security bugs, Unix Kernel Security Bugs

 	titlecase characters, A Case of Mistaken Identity, Glossary

 	Tk module, Initializers, Debugger Options, User Efficiency

 	TMTOWTDI acronym, How to Do It, Glossary

 	tokeners, Named Unary and File Test Operators, Glossary

 	

 	ambiguous characters and, Named Unary and File Test Operators

 	defined, Glossary

 	tokenizing, Compiling Your Code, Glossary

 	tokens, Molecules, Molecules, Other Literal Tokens, Glossary

 	

 	defined, Molecules, Glossary

 	literal, Other Literal Tokens

 	whitespace characters and, Molecules

 	toolbox approach, Glossary

 	topicalizers, Simplicities–Simplicities, The given Statement, Loopy Topicalizers

 	topics (term), Glossary

 	tr/// (transliteration) operator, Pattern-Matching Operators–Pattern-Matching Operators, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration), Space Efficiency, tr/// , Glossary

 	

 	about, tr/// , Glossary

 	binding to variables, Pattern-Matching Operators–Pattern-Matching Operators

 	efficiency practices, Space Efficiency

 	modifiers supported, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration)

 	trace mode (debugger), Tracing

 	transliteration (tr///) operator, Pattern-Matching Operators–Pattern-Matching Operators, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration), Space Efficiency, tr/// , Glossary

 	

 	about, tr/// , Glossary

 	binding to variables, Pattern-Matching Operators–Pattern-Matching Operators

 	efficiency practices, Space Efficiency

 	modifiers supported, The tr/// Operator (Transliteration)–The tr/// Operator (Transliteration)

 	Transmission Control Protocol (TCP), Sockets, Message Passing, Glossary

 	Tregar, Sam, Creating CPAN Distributions

 	triggers (term), Glossary

 	trinary operators, Unary and Binary Operators, Conditional Operator, Glossary

 	troff language, Glossary

 	true values, Glossary

 	truncate function, truncate , Glossary

 	Try::Tiny module, Prototypes

 	type, Glossary (see classes; data types)

 	type casting, Glossary

 	typed lexicals, Glossary

 	typedef, Glossary

 	typeglobs, Variable Syntax, Typeglobs and Filehandles, Typeglobs and Filehandles, Handle References, Overriding Built-in Functions, Method Invocation, Glossary

 	

 	defined, Typeglobs and Filehandles, Method Invocation, Glossary

 	filehandles and, Typeglobs and Filehandles

 	references and, Handle References, Overriding Built-in Functions

 	sigil for, Variable Syntax

 	typemap, Glossary

 U

 	\u escape
 sequence, String Literals

 	\U escape
 sequence, String Literals

 	–u file test
 operator, Named Unary and File Test Operators

 	\u metasymbol, Metasymbol Tables

 	\U metasymbol, Metasymbol Tables

 	/u modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	–u command-line switch, Switches, Defeating Taint Checking

 	–U command-line switch, Switches

 	uc function, uc

 	UCA (Unicode Collation Algorithm), Comparing and Sorting Unicode Text–Using the uca with Perl’s
 sort

 	ucfirst function, A Case of Mistaken Identity, ucfirst

 	UDP (User Datagram Protocol), Sockets, Message Passing, Glossary

 	UID (user ID), Glossary

 	umask function, umask , Glossary

 	unary operators, Unary Arithmetic Operators, Unary and Binary Operators, Ideographic Unary Operators, Named Unary and File Test Operators–Named Unary and File Test Operators, Named Unary and File Test Operators, Named Unary and File Test Operators, The overload Pragma, Frequently Ignored Advice, Glossary

 	

 	about, Unary Arithmetic Operators, Unary and Binary Operators, Glossary

 	handlers and, The overload Pragma

 	ideographic, Ideographic Unary Operators

 	list operators and, Named Unary and File Test Operators

 	precedence rules, Named Unary and File Test Operators

 	programming practices, Frequently Ignored Advice

 	table listing, Named Unary and File Test Operators–Named Unary and File Test Operators

 	unattended execution (debugger), Unattended Execution–Unattended Execution

 	undef function, Overload Handlers, Tying Hashes, Ruby Traps, Time Efficiency, Space Efficiency, undef

 	

 	about, undef

 	efficiency practices, Time Efficiency, Space Efficiency

 	overload handlers and, Overload Handlers

 	programming practices, Ruby Traps

 	tying hashes, Tying Hashes

 	underline (_) filehandle, Special Variables in Alphabetical Order

 	underscore module, Magically Banishing $_–Magically Banishing $_

 	Unicode, Unicode–Unicode, Show, Don’t Tell–Show, Don’t Tell, Getting at Unicode Data–The Encode Module, A Case of Mistaken Identity–A Case of Mistaken Identity, Graphemes and Normalization–Graphemes and Normalization, Comparing and Sorting Unicode Text–Locale Sorting, Comparing and Sorting Unicode Text–Locale Sorting, More Goodies–Custom Regex Boundaries, Building Character–Building Character, References, Python Traps, Internationalization, Glossary

 	

 	about, Unicode–Unicode, Glossary

 	additional information, References

 	casemapping and, A Case of Mistaken Identity–A Case of Mistaken Identity

 	comparing text, Comparing and Sorting Unicode Text–Locale Sorting

 	defining properties, Building Character–Building Character

 	getting at data, Getting at Unicode Data–The Encode Module

 	graphemes and normalization, Graphemes and Normalization–Graphemes and Normalization

 	Perl shortcuts and, More Goodies–Custom Regex Boundaries

 	portability and, Internationalization

 	programming practices, Python Traps

 	sorting text, Comparing and Sorting Unicode Text–Locale Sorting

 	utf8 pragma and, Show, Don’t Tell–Show, Don’t Tell

 	Unicode Collation Algorithm (UCA), Comparing and Sorting Unicode Text–Using the uca with Perl’s
 sort

 	${^UNICODE}
 variable, Special Variables in Alphabetical Order

 	Unicode::CaseFold module, A Case of Mistaken Identity, fc , lc , uc

 	

 	fc function and, A Case of Mistaken Identity, fc

 	lc function and, lc

 	uc function and, uc

 	Unicode::Collate module, Relational Operators, Graphemes and Normalization, Comparing and Sorting Unicode Text, Comparing and Sorting Unicode Text, Comparing and Sorting Unicode Text, Using the uca with Perl’s
 sort, Locale Sorting, fc , fc , sort

 	

 	about, Graphemes and Normalization

 	cmp method, fc

 	eq method, fc

 	locale sorting, Locale Sorting

 	normalization and, Comparing and Sorting Unicode Text

 	relational operators and, Relational Operators

 	sort function and, sort

 	sort method, Using the uca with Perl’s
 sort

 	UCA support, Comparing and Sorting Unicode Text

 	version considerations, Comparing and Sorting Unicode Text

 	Unicode::Collate::Locale module, Relational Operators, Locale Sorting, fc , fc , sort

 	

 	cmpmethod, fc

 	eq method, fc

 	locale sorting, Locale Sorting

 	relational operators and, Relational Operators

 	sort function and, sort

 	Unicode::GCString module, Graphemes and Normalization, Graphemes and Normalization, String Formats, More examples, Picture Formats, Picture Formats, chop , index, index, index, length , pos , rindex, rindex, rindex, substr

 	

 	about, Graphemes and Normalization

 	binary formats, More examples

 	chopping strings, chop

 	grapheme support, Graphemes and Normalization, length , pos

 	index method, index, rindex

 	picture formats, Picture Formats, Picture Formats

 	pos method, index, rindex

 	rindex method, index, rindex

 	string formats, String Formats

 	substr method, substr

 	Unicode::LineBreak module, Graphemes and Normalization, Picture Formats

 	Unicode::Normalize module, Graphemes and Normalization, Prototypes, Prototypes

 	

 	about, Graphemes and Normalization

 	NFC function, Prototypes

 	NFD function, Prototypes

 	Unicode::Regex::Set module, Building Character

 	Unicode::Tussle module, Graphemes and Normalization, Comparing and Sorting Unicode Text

 	

 	ucsort program, Comparing and Sorting Unicode Text

 	unifmt program, Graphemes and Normalization

 	Unicode::UCD module, More Goodies

 	unimport method, Unloading Modules, Magically Banishing $_

 	UNITCHECK blocks, The Life Cycle of a Perl Program, Avant-Garde Compiler, Retro Interpreter–Avant-Garde Compiler, Retro Interpreter

 	UNIVERSAL class, Version checking, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, UNIVERSAL: The Ultimate Ancestor Class, Method Autoloading, Private Methods

 	

 	can method, UNIVERSAL: The Ultimate Ancestor Class, Method Autoloading, Private Methods

 	class inheritance and, UNIVERSAL: The Ultimate Ancestor Class–UNIVERSAL: The Ultimate Ancestor Class

 	DOES method, UNIVERSAL: The Ultimate Ancestor Class

 	isa method, UNIVERSAL: The Ultimate Ancestor Class

 	version checking and, Version checking

 	VERSION method, UNIVERSAL: The Ultimate Ancestor Class

 	Unix kernel security bugs, Unix Kernel Security Bugs

 	Unix language, Glossary

 	unless statement, The if and unless statements, Simple Statements, if and unless Statements

 	

 	about, The if and unless statements, if and unless Statements

 	modifiers and, Simple Statements

 	unlink function, Boolean Context, unlink

 	unpack function, pack–More examples, unpack–unpack, unpack

 	

 	about, unpack–unpack, unpack

 	format characters, pack–More examples

 	unshift function, unshift

 	UNSHIFT method (tied arrays), Tying Arrays, Array-Tying Methods

 	untie function, Tied Variables, Tying Scalars, Scalar-Tying Methods, Filehandle-Tying Methods, untie

 	

 	about, Tied Variables, untie

 	tied filehandles and, Filehandle-Tying Methods

 	tied scalars and, Tying Scalars, Scalar-Tying Methods

 	UNTIE method, Tying Scalars, Scalar-Tying Methods, Tying Arrays, Array-Tying Methods, Hash-Tying Methods, Filehandle-Tying Methods

 	

 	tied arrays, Tying Arrays, Array-Tying Methods

 	tied filehandles, Filehandle-Tying Methods

 	tied hashes, Hash-Tying Methods

 	tied scalars, Tying Scalars, Scalar-Tying Methods

 	until statement, Conditional loops, Simple Statements, while and until Statements

 	

 	about, Conditional loops, while and until Statements

 	modifiers and, Simple Statements

 	upper character class, POSIX-Style Character Classes

 	uppercase characters, A Case of Mistaken Identity, Glossary

 	use declaration, Pragmas, Runtime Overloading, Common Goofs for Novices, use –use , Library Science

 	

 	about, use –use

 	implementing library modules, Library Science

 	pragmas and, Pragmas

 	programming practices, Common Goofs for Novices

 	runtime overloading, Runtime Overloading

 	User Datagram Protocol (UDP), Sockets, Message Passing, Glossary

 	user efficiency, User Efficiency

 	user ID (UID), Glossary

 	User::grent module, getgrent , getgrgid , getgrnam

 	User::pwent module, getpwent , getpwnam , getpwuid

 	user–defined pragmas, User-Defined Pragmas–User-Defined Pragmas

 	UTC (Coordinated Universal Time), gmtime

 	utf8 pragma, Conditional Operator, Show, Don’t Tell–Show, Don’t Tell, Getting at Unicode Data, utf8

 	${^UTF8CACHE}
 variable, Special Variables in Alphabetical Order

 	${^UTF8LOCALE}
 variable, Special Variables in Alphabetical Order

 	utime function, utime

 V

 	V debugger command, Display, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options

 	

 	about, Display

 	arrayDepth option, Debugger Options

 	compactDump option, Debugger Options

 	DumpDBFiles option, Debugger Options

 	DumpPackages option, Debugger Options

 	DumpReused option, Debugger Options

 	globPrint option, Debugger Options

 	hashDepth option, Debugger Options

 	HighBit option, Debugger Options

 	quote option, Debugger Options

 	undefPrint option, Debugger Options

 	UsageOnly option, Debugger Options

 	veryCompact option, Debugger Options

 	\v metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	\V metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	–v command-line switch, Switches, Roll Call

 	–V command-line switch, Switches, A Tour of the Perl Library

 	$^V ($PERL_VERSION)
 variable, Special Variables in Alphabetical Order

 	values, Singularities, Built-in Data Types, Built-in Data Types, Built-in Data Types, Built-in Data Types, Scalar Values–Other Literal Tokens, Interpolating Array Values, List Values and Arrays–Array Length, What Is a Reference?, Cycling Through Values, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	array, Interpolating Array Values, Glossary

 	Boolean, Singularities, Glossary

 	decrementing, Glossary

 	default, Glossary

 	defined, Built-in Data Types, Glossary

 	false, Glossary

 	incrementing, Glossary

 	list, List Values and Arrays–Array Length, Glossary

 	lvalue, Built-in Data Types, Glossary

 	mortal, Glossary

 	referencing, What Is a Reference?

 	return, Glossary

 	rvalue, Built-in Data Types, Glossary

 	scalar, Scalar Values–Other Literal Tokens, Glossary, Glossary

 	status, Glossary

 	temporary, Built-in Data Types

 	tied scalars cycling through, Cycling Through Values

 	true, Glossary

 	values function, Hash-Tying Methods, values

 	variable interpolation, Singularities, Variable Interpolation–The qr/PATTERN/modifiers quote regex operator, Glossary

 	variables, Variable Syntax, Variable Syntax, Singularities, Variables–Variables, Variables, Names, Name Lookups, Scoped Variable Declarations–Dynamically Scoped Variables: local, Lexically Scoped Variables: my–Dynamically Scoped Variables: local, Controlling the Use of Globals, Scoping Issues–Scoping Issues, Scoping Issues, The Backslash Operator, Using a Variable As a Variable Name, Initializers, Managing Instance Data–New Tricks, Shell Traps, Python Traps, Java Traps, Special Names, Special Variables in Alphabetical Order, Format Variables–Format Variables, state, strict “vars”, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary, Glossary

 	

 	(see also specific variables)

 	aliases for names, Special Names

 	backslash operator and, The Backslash Operator

 	capture, Glossary

 	defined, Glossary

 	environment, Glossary, Glossary

 	hard references and, Using a Variable As a Variable Name

 	instance, Initializers, Managing Instance Data–New Tricks, Java Traps, Glossary

 	lexical, Lexically Scoped Variables: my–Dynamically Scoped Variables: local, Scoping Issues, Glossary, Glossary

 	magical, Glossary

 	picture format, Format Variables–Format Variables

 	programming practices, Shell Traps, Python Traps

 	scalar, Variable Syntax, Singularities, Variables, Glossary

 	scoped declarations, Scoped Variable Declarations–Dynamically Scoped Variables: local

 	sigils and, Variable Syntax, Variables–Variables, Names

 	state, Scoping Issues–Scoping Issues, state

 	static, Glossary

 	strict pragma and, Name Lookups, Controlling the Use of Globals, Special Variables in Alphabetical Order, strict “vars”

 	variadic (term), Semantics, Glossary

 	vars pragma, strict “vars”, vars

 	vec function, Space Efficiency, vec

 	vectors, Glossary

 	verbs in natural languages, Verbs

 	version literals, Version Literals

 	version module, Other Tricks You Can Do with Hard References, Version checking, version

 	$VERSION variable, Version checking, Special Variables in Alphabetical Order

 	vertical bar (|), The Regular Expression Bestiary

 	vi editor, Editor Support for Debugging

 	vim editor, Editor Support for Debugging

 	virtual (term), Glossary

 	vmsish pragma, vmsish, exit, hushed, status, time

 	

 	about, vmsish

 	exit feature, exit

 	hushed feature, hushed

 	status feature, status

 	time feature, time

 	void context, Void Context, Glossary

 	v–strings, Glossary

 W

 	w debugger command, Using the Debugger, Locating Code

 	W debugger command, Tracing

 	–w file test
 operator, Some File Test Operators, Named Unary and File Test Operators

 	–W file test
 operator, Named Unary and File Test Operators

 	\w metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	\W metasymbol, Metasymbol Tables, Classic Perl Character Class Shortcuts

 	–w command-line switch, Switches, Defeating Taint Checking

 	–W command-line switch, Switches

 	$W ($WARNING) variable, Special Variables in Alphabetical Order

 	wait function, Reaping Zombies, wait

 	waitpid function, Reaping Zombies

 	Wall, Larry, Glossary

 	wantarray function, Scalar and List Context, wantarray

 	warn function, warn

 	warning messages, Glossary

 	$WARNING ($W)
 variable, Special Variables in Alphabetical Order

 	warnings pragma, Controlling Warnings, Scalar-Tying Methods, Switches, Common Goofs for Novices, Universal Blunders, Python Traps, Programming with Style, Fluent Perl, ioctl , warn , warnings–warnings, warnings, warnings, warnings, warnings

 	

 	about, Controlling Warnings, warn , warnings–warnings

 	enabled function, warnings

 	enabling warnings, Switches

 	ioctl function and, ioctl

 	programming practices, Common Goofs for Novices, Universal Blunders, Python Traps, Programming with Style, Fluent Perl

 	register function, warnings

 	tied scalars and, Scalar-Tying Methods

 	warn function, warnings

 	warnif function, warnings

 	${^WARNING_BITS}
 variable, Special Variables in Alphabetical Order

 	watch expression, Tracing, Glossary

 	weak references, Garbage Collection, Circular References, and Weak
 References, Glossary

 	West, Casey, Getting Help

 	when statement, The given and when Statements, The given Statement, The when Statement and Modifier–The when Statement and Modifier

 	

 	about, The given and when Statements

 	smartmatching and, The given Statement, The when Statement and Modifier–The when Statement and Modifier

 	while statement, Conditional loops–Conditional loops, List Assignment, Line Input (Angle) Operator, Simple Statements, while and until Statements, Frequently Ignored Advice

 	

 	about, Conditional loops–Conditional loops, while and until Statements

 	line input operator and, Line Input (Angle) Operator

 	list assignments, List Assignment

 	modifiers and, Simple Statements

 	programming practices, Frequently Ignored Advice

 	whitespace characters, Regular Expressions, Molecules, Glossary

 	whowasi function, Hash-Tying Methods

 	${^WIDE_SYSTEM_CALLS}
 variable, Special Variables in Alphabetical Order

 	wildcard metasymbols, Wildcard Metasymbols–Wildcard Metasymbols

 	Win32::Pipe module, Named Pipes

 	Win32::Process module, fork

 	Win32::TieRegistry module, Tie Modules on CPAN

 	${^WIN32_SLOPPY_STAT}
 variable, Special Variables in Alphabetical Order

 	word character class, POSIX-Style Character Classes

 	words (term), Glossary

 	working directory, Glossary

 	wrappers (term), Glossary

 	write function, Tying Filehandles, write

 	WRITE method (tied filehandles), Tying Filehandles, Filehandle-Tying Methods

 	Wx module, User Efficiency

 	WYSIWYG acronym, Glossary

 X

 	x debugger command, Display, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options

 	

 	about, Display

 	arrayDepth option, Debugger Options

 	compactDump option, Debugger Options

 	DumpDBFiles option, Debugger Options

 	DumpPackages option, Debugger Options

 	DumpReused option, Debugger Options

 	globPrint option, Debugger Options

 	hashDepth option, Debugger Options

 	HighBit option, Debugger Options

 	quote option, Debugger Options

 	undefPrint option, Debugger Options

 	UsageOnly option, Debugger Options

 	veryCompact option, Debugger Options

 	X debugger command, Display, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options, Debugger Options

 	

 	about, Display

 	arrayDepth option, Debugger Options

 	compactDump option, Debugger Options

 	DumpDBFiles option, Debugger Options

 	DumpPackages option, Debugger Options

 	DumpReused option, Debugger Options

 	globPrint option, Debugger Options

 	hashDepth option, Debugger Options

 	HighBit option, Debugger Options

 	quote option, Debugger Options

 	UsageOnly option, Debugger Options

 	veryCompact option, Debugger Options

 	–x file test
 operator, Named Unary and File Test Operators

 	–X file test
 operator, Named Unary and File Test Operators

 	\x metasymbol, Metasymbol Tables, Specific Characters

 	\X metasymbol, Metasymbol Tables

 	/x modifier, Pattern Modifiers, The m// Operator (Matching), The s/// Operator (Substitution)

 	X pod sequence, Flowed Text

 	–x command-line switch, Command Processing, Switches

 	–X command-line switch, Switches

 	$^X ($EXECUTABLE_NAME)
 variable, Special Variables in Alphabetical Order

 	\x escape
 sequence, String Literals

 	xdigit character class, POSIX-Style Character Classes

 	XML::Parser module, Generation of a Hash of Complex Records, Fluent Perl

 	XOR (bitwise) operator, Bitwise Operators

 	XOR (logical) operator, Logical Operators, C-Style Logical (Short-Circuit) Operators, Logical and, or, not, and xor

 	XS (eXternal Subroutine), h2xs, External Subroutines (XS), Glossary

 	XSUB (term), Glossary

 Y

 	y/// (transliteration) operator, Pick Your Own Quotes, Pattern-Matching Operators, y//

 	yacc acronym, Compiling Your Code, Glossary

 	YAPC (Yet Another Perl Conference), History Made Practical, Events

 Z

 	–z file test
 operator, Named Unary and File Test Operators

 	\z metasymbol, Metasymbol Tables, Endings: The \z, \Z, and $ Assertions

 	\Z metasymbol, Metasymbol Tables, Endings: The \z, \Z, and $ Assertions

 	Z pod sequence, Flowed Text

 	zero–width assertions, The Regular Expression Bestiary, Positions, Glossary

 	zombie processes, Reaping Zombies, Glossary

 About the Authors
Tom Christiansen is a freelance consultant specializing in Perl training and writing. After working for several years for TSR Hobbies (of Dungeons and Dragons fame), he set off for college where he spent a year in Spain and five in America, dabbling in music, linguistics, programming, and some half-dozen differentspoken languages. Tom finally escaped UW-Madison with undergraduate degrees in Spanish and computer science and a graduate degree in computer science. He then spent five years at Convex as a jack-of-all-trades working on everything from system administration to utility and kernel development, withcustomer support and training thrown in for good measure. Tom also served two terms on the USENIX Association Board of directors. With over thirty years' experience in Unix systems programming, Tom presents seminars internationally. Living in the foothills above Boulder, Colorado, Tom takes summers off for hiking, hacking, birding, music making, and gaming.
brian d foy is a prolific Perl trainer and writer, and runs The Perl Review to help people use and understand Perl through educational, consulting, code review, and more. He's a frequent speaker at Perl conferences. He's the coauthor of Learning Perl, Intermediate Perl, and Effective Perl Programming, and the author of Mastering Perl. He was an instructor and author for Stonehenge Consulting Services from 1998 to 2009, a Perl user since he was a physics graduate student, and a die-hard Mac user since he first owned a computer. He founded the first Perl user group, the New York Perl Mongers, as well as the Perl advocacy nonprofit Perl Mongers, Inc., which helped form more than 200 Perl user groups across the globe. He maintains the perlfaq portions of the core Perl documentation, several modules on CPAN, and some standalone scripts.
Larry Wall originally created Perl while a programmer at Unisys. He now works full time guiding the future development of the language. Larry is known for his idiosyncratic and thought-provoking approach to programming, as well as for his groundbreaking contributions to the culture of free software programming.
Jon Orwant founded The Perl Journal and received the White Camel lifetime achievement award for contributions to Perl in 2004. He's Engineering Manager at Google, where he leads Patent Search, visualizations, and digital humanities teams. For most of his tenure at Google, Jon worked on Book Search, and he developed the widely used Google Books Ngram Viewer. Prior to Google, he wasCTO of O'Reilly, Director of Research at France Telecom, and a Lecturer at MIT. Orwant received his doctorate from MIT's Electronic Publishing Group in 1999.

Colophon
The animal on the cover of Programming Perl is
 a dromedary camel.
The dromedary camel (Camelus dromedarius), also
 known as the “Arabian camel,” is a one-humped, even-toed ungulate, or
 hooved animal. Dromedaries are the largest members of the camel family.
 They have been domesticated for 3,500 years, and thanks to the many
 adaptations that allow them to thrive in the desert, they’re valued as
 beasts of burden.
The world’s dromedary camel population is mostly domesticated, with
 just one known wild population, located in Australia. Domesticated
 dromedaries inhabit the Middle East and North Africa, where they live in
 herds consisting of many females among a dominant male. The dromedary’s
 hump can store up to 80 pounds of fat, which can be broken down into water
 and energy, allowing it to travel in desert conditions for 100 miles
 without water. In addition to their ability to travel long distances in
 arid conditions without sustenance, dromedaries have double rows of
 eyelashes that keep sand out of their eyes, the ability to close their
 nostrils during a sandstorm, and unlike horses, they kneel for the loading
 of cargo and passengers. Their typical lifespan is 40 to 50 years.
The cover image is from the Dover Pictorial Archive. The cover font
 is Adobe ITC Garamond. The text font is Linotype Birka, the heading font
 is Myriad Pro, and the code font is Ubuntu Mono, with the following fonts
 used as fallbacks to display unsupported glyphs:
	Adobe Song Std

	Arno Pro

	Free Mono

	Free Serif

	ST Heiti SC

	Symbola

Programming Perl

Tom Christiansen

brian d foy

Larry Wall

Jon Orwant

Editor
Andy Oram

	Revision History
	2012-02-13 First release	
	2012-06-15 Second release	
	2013-12-13 Third release	
	2015-07-10 Fourth release	

Copyright © 2012 Tom Christiansen, Larry Wall, Jon Orwant, brian d. foy, Tom Christiansen, Larry Wall, and Jon Orwant

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Programming
 Perl, the image of a dromedary camel, and related trade dress
 are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-12-17T15:14:44-08:00

OEBPS/figs/web/entity-latex.png
& TRX

OEBPS/figs/web/dollarquestion.png
$?

OEBPS/figs/web/taintgrey.png

OEBPS/figs/web/glyphs/ch06p240.png
ZER
HE

OEBPS/figs/web/glyphs/ch03p160.png

OEBPS/figs/web/xt.png
—r

OEBPS/figs/web/perl4_0801.png
$foo $foo

$bar

\$foo m $bar = "foo"

"hot ™

$bar

OEBPS/figs/web/glyphs/ch29p896.png

OEBPS/figs/web/perl4_0101.png
%longday

OEBPS/figs/web/glyphs/ch29p874.png

OEBPS/figs/web/taint.png

OEBPS/figs/web/dollarunderscore.png

OEBPS/figs/web/perl4_0802.png
$arrayref

OEBPS/figs/web/perl4_1603.png
-42

assign

Sa

OEBPS/figs/web/glyphs/ch05p233.png

OEBPS/figs/web/perl4_1601.png
Code Parse Tree
Generation Reconstruction

Compilation

OEBPS/figs/web/perl4_0501.png
__

OEBPS/figs/web/perl4_1901.png
Author

OEBPS/figs/web/perl_math_letters.png
A DBRIEFxn1£EcOTN

OEBPS/figs/web/dollarat.png

OEBPS/figs/web/perl4_2901.png
debugging

newline i

unopened internal

malloc

[/

\‘V/

) \\
7k

non_char
surrogate NN ambiguous
- bareword
non_unicode digit SN S
/ | illegalprototype
reserved
printf parenthesis

qw

semicolon precedence
prototype

OEBPS/figs/web/glyphs/ch06p239.png

OEBPS/figs/web/CAP_SHARP_S.png

OEBPS/figs/web/perl4_1801.png
“(Al1sea Jopuai o} Xe[dwiod
5[5 SDENORT-TaIU] :yewuo) ZIYUEIS ul Sa]y ydesb-(jeo Sajeiousb os(e JoId LAN
“abexed Aq padnos6 ‘5UU} SAISTOXS SURNOIGNS [0 JEWISa]} © MBIA UED NOA

00} AiqeqoId) STE5 SURNOIGNS T [1E

SBURNOIANS OEC| I 985

(spoodo) FEqUETAW0D: +%00E00Q* F [29OT Swi/9 SWeL9 L 62 86lTYY
STTF 5eawa: sorduts: 1poa S09z Swies L L 92
5po55P: : spooua. SG6'L Swo89 L | 99€65
snTout ‘g yadep xwu :sesinosi) FTG IBTOSTT GEIGARTR {ixo@iowla:ioTdurs:ipoa SPGl SWPLL T T MSEVE
B3 X PPE: 1 y00@00a: i (9901 Sygy Sw9s. | €L 62566
(spoodo) SqRETEWOD: ‘uTEw Swgge swegse L 9 95k
P Fe10: 13008000 1 TE20T Ses’t SI0'k b Sb 92l9el
(epoodo) FoRewTa¥0D: xo@oRTalieTdursiipod SGOTh SSO'L 2 € 182/2e
PEd 03 ppe: 13008000+ 1 TE20T seLL SLEL L 9k 2Ie¥SH
1 1%00800Q TROOT S8LL SLLL L 2 eelge
SoPo BUTTIEEIOY WoTy 3ATeRTY ¢ xomionTat oTdursiipoa $80@ SLKE b b 2ES6
X3 STPUEY: 130080001 1 TEO0T SeY's SLL'L bb o Le86Y
SoUTT sEIea: xomyowra: totdurs: ipoa SgGE SeSh L | 2862
FTWe 1 13(00g00q 1 F TR0 S60% SSL} L 12 068lZh
3355 :30000Q [200T SyLe syLe L 6 Y9e6ES
Sunl | ewiL
ounasans oo anniea 4| o | sueo |
seugnoiang G doy.
a1y 01 Gunf |

's[ene Bums /| pue sejy soinos
10 BURN0IGNS BELOLZE PUE SlUBWaLelS 1556826 Bunnoaxe ‘(sz'8E J0) S6'£2 10} #00G00PZPOd/S|00} JO Bljoid

1102 S2:60: 12 €2 100 uUNS uo papodey 300qo0pZPod/sioa} Jo4

H10Z £5:50:42 62190 Uns uo uny X8pu| 8[joid 8ouBWIONad

OEBPS/figs/web/glyphs/glossp924.png

OEBPS/figs/web/dollarbang.png
$!

OEBPS/figs/web/O_OGONEK_MACRON.png

OEBPS/figs/web/glyphs/ch06p249b.png
On

OEBPS/figs/web/glyphs/ch06p249.png
on

OEBPS/figs/web/perl4_1602.png
negate

assign

OEBPS/figs/web/a_sanserif.png.jpg

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/figs/web/glyphs/ch06_upsidedown.png
S3ndino = umopapirsdn

OEBPS/figs/web/xro.png

OEBPS/figs/web/a_constantwidth.png.jpg

OEBPS/figs/web/xu.png
=

OEBPS/orm_front_cover.jpg
Unmatched Power for
Text Processing and Scripting

Programming

. o Tom Christiansen, brian d_foy,
O'REILLY Larry Wall & Jon Orwant

OEBPS/figs/web/SMALL_SHARP_S.png

OEBPS/figs/web/eelurb_emerc.png
« £

éelurb emerc”

OEBPS/figs/web/perl4_1201.png
Equine

color

Horse

color

OEBPS/figs/web/xarg.png
X
ARG

OEBPS/figs/web/xwide.png
X
WIDE

