

Java

in a Nutshell

Seventh Edition

Benjamin J. Evans and David Flanagan

Java in a Nutshell, Seventh Edition

by Ben Evans and David Flanagan

Copyright © 2019 Benjamin J. Evans and David Flanagan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Virginia Wilson

		Production Editor: Justin Billing

		Copyeditor: Jasmine Kwityn

		Proofreader: Rachel Monaghan

		Indexer: WordCo Indexing Services, Inc.

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Rebecca Demarest

		December 2018: Seventh Edition

Revision History for the Seventh Edition

		2018-11-30: First Release

		2019-06-21: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492037255 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java in a Nutshell, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-03725-5

[LSI]

Dedication

This book is dedicated to all who teach peace and resist violence.

Foreword

Java 8 was released in March 2014, and the 6th edition of Java in a Nutshell came out a few months later. In the intervening four and a half years, there have been a great many changes in the Java world. The biggest news has been the arrival of Java’s platform modules (Project Jigsaw), and the change to a new six-month release cycle. These two developments are key to allowing the Java platform and ecosystem to continue to evolve and succeed for another 20 years.

The long-delayed Java 9 release (which introduced modules) has been followed by Java 10 and 11 in quick succession, with Java 8 and 11 being the current long-term supported releases. These changes in release cadence have brought the open source OpenJDK to the forefront of the Java world, as now virtually all Java releases are based upon, and licensed under, the open codebase.

With the continued development of the platform, it has adapted well to new frontiers (such as cloud and microservices) due to new features that have arrived in Java 9 to Java 11. The Java world seems well placed to continue to thrive in the coming years, whether developers are working with the trusty workhorse of Java 8 or joining the microservices world with Java 11.

In either case, this is a great time to be joining (or returning to) application development in Java. Looking forward, the future holds some major changes (such as value types) that will alter the character of Java development in fundamental ways. The next year or two will start to see these changes arrive and become part of the Java developer’s everyday experience.

Once again, in working on this new edition of David’s classic text, if I have preserved the feel of Java in a Nutshell, while updating it to bring it to the attention of a new generation of developers, then I shall be well satisfied.

Ben Evans, Monterey, 2018

Preface

This book is a desktop Java reference, designed to sit faithfully by your keyboard while you program.
Part I is a fast-paced, “no-fluff” introduction to the Java programming language and the core runtime aspects of the Java platform.
Part II is a reference section that blends elucidation of core concepts with examples of important core APIs.
The book covers Java 11, but we recognize that some shops may not have
adopted it yet—so where possible we call out if a feature was introduced
in Java 8, 9, or 10.
We use Java 11 syntax throughout, including var and lambda expressions.

Changes in the Seventh Edition

The sixth edition of this book covers Java 8, whereas this edition
covers Java 11.
However, the release process of Java changed significantly with the advent of Java 9, so this book is released only a year after Java 9 arrived.
Java 11 is also the first long-term support (LTS) release of Java since Java 8, so it seems likely that many Java shops will jump straight to Java 11 from Java 8.

With the seventh edition we have tried to update the concept of what it means to be a “Nutshell” guide.
The modern Java developer needs to know more than just syntax and APIs.
As the Java environment has matured, such topics as concurrency, object-oriented design, memory, and the Java type system have all grown in
importance—even among mainstream developers.

In this edition, we have taken the approach that only the most recent versions of Java are likely to be of interest to the majority of Java developers, so we usually only call out when new features arrived if it was with Java 8 or later.

The module system (that arrived with Java 9) is still likely to be new for at least some developers, and it represents a major change.

Contents of This Book

The first six chapters document the Java language and the
Java platform—they should all be considered essential reading. The book
is biased toward the Oracle/OpenJDK (Open Java Development Kit)
implementation of Java, but not greatly so. Developers working with other
Java environments will still find plenty to occupy them.
Part I includes:

	Chapter 1, Introduction to the Java Environment

	
This chapter is an overview of the Java language and the Java
platform. It explains the important features and benefits of Java,
including the lifecycle of a Java program. We also touch on Java
security and answer some criticisms of Java.

	Chapter 2, Java Syntax from the Ground Up

	
This chapter explains the details of the Java programming language,
including the Java 8 language changes. It is a long and detailed
chapter that does not assume substantial programming experience.
Experienced Java programmers can use it as a language reference.
Programmers with substantial experience with languages such as C and
C++ should be able to pick up Java syntax quickly by reading this
chapter; beginning programmers with only a modest amount of experience
should be able to learn Java programming by studying this chapter
carefully, although it is best read in conjunction with an introductory text
(such as O’Reilly’s Head First
Java by Bert Bates and Kathy Sierra).

	Chapter 3, Object-Oriented Programming in Java

	
This chapter describes how the basic Java syntax documented in
Chapter 2 is used to write simple
object-oriented programs using classes and objects in Java. The
chapter assumes no prior experience with object-oriented programming. It can be
used as a tutorial by new programmers or as a reference by experienced
Java programmers.

	Chapter 4, The Java Type System

	
This chapter builds on the basic description of object-oriented
programming in Java, and introduces the other aspects of Java’s type
system, such as generic types, enumerated types, and annotations. With
this more complete picture, we can discuss the biggest change in Java
8—the arrival of lambda expressions.

	Chapter 5, Introduction to Object-Oriented Design in Java

	
This chapter is an overview of some basic techniques used in the
design of sound object-oriented programs, and briefly touches on the
topic of design patterns and their use in software engineering.

	Chapter 6, Java’s Approach to Memory and Concurrency

	
This chapter explains how the Java Virtual Machine manages memory on
behalf of the programmer, and how memory and visibility are intimately
entwined with Java’s support for concurrent programming and threads.

These first six chapters teach you the Java language and get you up and
running with the most important concepts of the Java platform. Part II is all about how to get real programming work
done in the Java environment. It contains plenty of examples and is
designed to complement the cookbook approach found in some other texts.
This part includes:

	Chapter 7, Programming and Documentation Conventions

	
This chapter documents important and widely adopted Java programming
conventions. It also explains how you can make your Java code
self-documenting by including specially formatted documentation
comments.

	Chapter 8, Working with Java Collections

	
This chapter introduces Java’s standard collections libraries. These
contain data structures that are vital to the functioning of virtually
every Java program—such as List, Map, and Set. The new Stream
abstraction and the relationship between lambda expressions and the
collections are explained in detail.

	Chapter 9, Handling Common Data Formats

	
This chapter discusses how to use Java to work effectively with very
common data formats, such as text, numbers, and temporal (date and
time) information.

	Chapter 10, File Handling and I/O

	
This chapter covers several different approaches to file access—from
the more classic approach found in older versions of Java, through to
more modern and even asynchronous styles. The chapter concludes with a
short introduction to networking with the core Java platform APIs.

	Chapter 11, Classloading, Reflection, and Method Handles

	
This chapter introduces the subtle art of metaprogramming in
Java—first introducing the concept of metadata about Java types, then
turning to the subject of classloading and how Java’s security model
is linked to the dynamic loading of types. The chapter concludes with
some applications of classloading and the relatively new feature of
method handles.

	Chapter 12, Java Platform Modules

	
This chapter describes Java Platform Modules (JPMS), the major feature that
was introduced as part of Java 9, and provides an introduction to the wide-ranging changes that it brings.

	Chapter 13, Platform Tools

	
Oracle’s JDK (as well as OpenJDK) includes a number of useful Java
development tools, most notably the Java interpreter and the Java
compiler. This chapter documents those tools, as well as the jshell interactive environment and new tools for working with modular Java.

	Appendix A, Additional Tools

	
This appendix covers Nashorn, an implementation of JavaScript
running atop the Java Virtual Machine. Nashorn ships with Java 8, and
provides an alternative to other JavaScript implementations.

Related Books

O’Reilly publishes an entire series of books on Java programming,
including several companion books to this one. The companion books are:

	Learning Java by Patrick Niemeyer and Daniel Leuck

	
This book is a comprehensive tutorial introduction to Java, and
includes topics such as XML and client-side Java programming.

	Java 8 Lambdas by Richard Warburton

	
This book documents the new Java 8 feature of lambda expressions in
detail, and introduces concepts of functional programming that may be
unfamiliar to Java developers coming from earlier versions.

	Head First Java by Bert Bates and Kathy Sierra

	
This book uses a unique approach to teaching Java. Developers who
think visually often find it a great accompaniment to a traditional
Java book.

You can find a complete list of Java books from O’Reilly at
http://java.oreilly.com/.

Examples Online

The examples in this book are available online and can be downloaded
from the book’s website. You may also want to visit this site for any important notes or errata
that have been published there.

Conventions Used in This Book

We use the following formatting conventions in this book:

	Italic

	
Used for emphasis and to signify the first use of a term. Italic is
also used for commands, email addresses, websites, FTP sites, and file
and directory names.

	Constant width

	
Used for all Java code as well as for anything that you would type
literally when programming, including keywords, data types, constants,
method names, variables, class names, and interface names.

	Constant width italic

	
Used for the names of function arguments and generally as a
placeholder to indicate an item that should be replaced with an actual
value in your program. Also used to refer to a conceptual section
or line of code as in statement.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Request for Comments

You can send comments, fixes, and suggestions directly to the authors by
using the email address javanut7@gmail.com.

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at
http://bit.ly/java_nutshell_7e.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

O’Reilly Safari

Note

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

Acknowledgments

Virgina Wilson was the editor of the seventh edition. Her guidance and many useful contributions were a great help in finishing the book.

Special thanks are due to Jim Gough and Martijn Verburg.

Our technical reviewers for this edition were Ian Darwin and Hugo Possani—many thanks to both of them.

Part I. Introducing Java

Part I is an introduction to the Java language and the Java platform.
These chapters provide enough information for you to get started using
Java right away:

 	Chapter 1, Introduction to the Java Environment

 	Chapter 2, Java Syntax from the Ground Up

 	Chapter 3, Object-Oriented Programming in Java

 	Chapter 4, The Java Type System

 	Chapter 5, Introduction to Object-Oriented Design in Java

 	Chapter 6, Java’s Approach to Memory and Concurrency

Chapter 1. Introduction to the Java Environment

Welcome to Java 11.

That version number probably surprises you as much as it does us.
It seems like only yesterday that Java 5 was the new thing, and yet here we are, 14 years and 6 major versions later.

You may be coming to the Java ecosystem from another language, or maybe this is your first programming language.
Whatever road you may have traveled to get here, welcome—we’re glad you’ve arrived.

Java is a powerful, general-purpose programming environment. It is one
of the most widely used programming languages in the world, and has been
exceptionally successful in business and enterprise computing.

In this chapter, we’ll set the scene by describing the Java language
(which programmers write their applications in), the Java Virtual
Machine (which executes those applications), and the Java ecosystem
(which provides a lot of the value of the programming environment to
development teams).

We’ll briefly cover the history of the Java language and virtual
machine, before moving on to discuss the lifecycle of a Java program and
clear up some common questions about the differences between Java and
other environments.

At the end of the chapter, we’ll introduce Java security, and discuss
some of the aspects of Java that relate to secure coding.

The Language, the JVM, and the Ecosystem

The Java programming environment has been around since the late 1990s.
It comprises the Java language, and the supporting runtime, otherwise
known as the Java Virtual Machine (JVM).

At the time that Java was initially developed, this split was considered
novel, but recent trends in software development have made it more
commonplace. Notably, Microsoft’s .NET environment, announced a few
years after Java, adopted a very similar approach to platform
architecture.

One important difference between Microsoft’s .NET platform and Java is that Java was always conceived as a relatively open ecosystem of multiple vendors, albeit led by a steward who owns the technology.
Throughout Java’s history, these vendors have both cooperated and competed on aspects of Java technology.

One of the main reasons for the success of Java is that this ecosystem
is a standardized environment. This means there are specifications for
the technologies that comprise the environment. These standards give the
developer and consumer confidence that the technology will be compatible
with other components, even if they come from a different technology
vendor.

The current steward of Java is Oracle Corporation (who acquired Sun
Microsystems, the originator of Java). Other corporations, such as Red
Hat, IBM, Amazon, AliBaba, SAP, Azul Systems, and Fujitsu are also heavily
involved in producing implementations of standardized Java technologies.

Tip

As of Java 11, the primary reference implementation of Java is the open source OpenJDK, which many of these companies collaborate on and base their shipping products upon.

Java actually comprises several different but related environments and specifications, such as Java Mobile Edition (Java ME),1 Java Standard Edition
(Java SE), and Java Enterprise Edition (Java EE).2 In this book, we’ll only cover Java SE, version 11, with some historical notes related to when certain features were introduced into the platform.

We will have more to say about standardization later, so let’s move on
to discuss the Java language and JVM as separate but related concepts.

What Is the Java Language?

Java programs are written as source code in the Java language. This is
a human-readable programming language, which is strictly class based and object oriented.
The language syntax is deliberately modeled on that of C and C++ and it was explicitly intended to be familiar to programmers coming from those languages.

Note

Although the source code is similar to C++, in practice Java includes features and a managed runtime that has more in common with more dynamic languages such as Smalltalk.

Java is considered to be relatively easy to read and write (if occasionally a bit verbose).
It has a rigid grammar and simple program structure, and is intended to be easy to learn and to teach.
It builds on industry experience with languages like C++ and tries to remove complex features as well as preserving “what works” from previous programming languages.

Overall, Java is intended to provide a stable, solid base for companies
to develop business-critical applications.
As a programming language, it has a relatively conservative design and a
slow rate of change. These properties are a conscious attempt to serve
the goal of protecting the investment that organizations have made in Java
technology.

The language has undergone gradual revision (but no complete rewrites)
since its inception in 1996. This does mean that some of Java’s original
design choices, which were expedient in the late 1990s, are still
affecting the language today—see Chapters 2
and 3 for more details.

Java 8 added the most radical changes seen in the language for almost a decade (some would say since the birth of Java).
Features like lambda expressions and the overhaul of the core Collections code were enormously popular and changed forever the way that Java developers write code.
Since then, the platform has produced a release (Java 9) that adds a major (and long-delayed) feature: the platform modules system (JPMS).

With that release, the project has transitioned to a new, much faster release model where new Java versions are released every six months—bringing us up to Java 11.
The Java language is governed by the Java Language Specification
(JLS), which defines how a conforming implementation must behave.

What Is the JVM?

The JVM is a program that provides the runtime environment necessary
for Java programs to execute. Java programs cannot run unless there is a
JVM available for the appropriate hardware and OS platform we wish to
execute on.

Fortunately, the JVM has been ported to run on a large number of
environments—anything from a set-top box or Blu-ray player to a huge
mainframe will probably have a JVM available for it.

Java programs are typically started from a command line like this:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the
Java runtime environment, and then executes our program in the context
of the freshly started (and empty) virtual machine.

It is important to understand that when the JVM takes in a Java program
for execution, the program is not provided as Java language source code.
Instead, the Java language source must have been converted (or compiled)
into a form known as Java bytecode. Java bytecode must be supplied to
the JVM in a format called class files (which always have a .class
extension).

The JVM provides an execution environment for the program.
It starts an interpreter for the bytecode form of the program that steps
through one bytecode instruction at a time. However, production JVMs also provide a runtime compiler that will accelerate the important parts of the program by replacing them with equivalent compiled machine code.

You should also be aware that both the JVM and the user program are capable of spawning additional threads of execution, so that a user program may have many different functions running simultaneously.

The design of the JVM built on many years of experience with earlier
programming environments, notably C and C++, so we can think of it as
having several different goals—which are all intended to make life
easier for the programmer:

	
Comprise a container for application code to run inside

	
Provide a secure and reliable execution environment as compared to C/C++

	
Take memory management out of the hands of developers

	
Provide a cross-platform execution environment

These objectives are often mentioned together in discussions of the
platform.

We’ve already mentioned the first of these goals, when we discussed the
JVM and its bytecode interpreter—it functions as the container for
application code.

We’ll discuss the second and third goals in Chapter 6, when we talk about how the Java environment deals with memory
management.

The fourth goal, sometimes called “write once, run anywhere” (WORA), is
the property that Java class files can be moved from one execution
platform to another, and they will run unaltered provided a JVM is
available.

This means that a Java program can be developed (and converted to class
files) on a machine running macOS, and then the class files
can be moved to Linux or Microsoft Windows (or other platforms) and the
Java program will run without any further work needed.

Note

The Java environment has been very widely ported, including to platforms
that are very different from mainstream platforms like Linux, macOS, and
Windows. In this book, we use the phrase “most implementations” to
indicate those platforms that the majority of developers are likely to
encounter; macOS, Windows, Linux, BSD Unix, and the like are
all considered “mainstream platforms” and count within “most
implementations.”

In addition to these four primary goals, there is another aspect of the
JVM’s design that is not always recognized or discussed—it makes use of
runtime information to self-manage.

Software research in the 1970s and 1980s revealed that the runtime
behavior of programs has a large amount of interesting and useful
patterns that cannot be deduced at compile time. The JVM was the first
truly mainstream platform to make use of this research.

It collects runtime information to make better decisions about how to
execute code. That means that the JVM can monitor and optimize a program
running on it in a manner not possible for platforms without this
capability.

A key example is the runtime fact that not all parts of a Java program
are equally likely to be called during the lifetime of the program—some
portions will be called far, far more often than others. The Java
platform takes advantage of this fact with a technology called
just-in-time (JIT) compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part of
Java 1.3, and is still in use today), the JVM first identifies which
parts of the program are called most often—the “hot methods.” Then, the
JVM compiles these hot methods directly into machine code, bypassing the
JVM interpreter.

The JVM uses the available runtime information to deliver higher
performance than was possible from purely interpreted execution. In
fact, the optimizations that the JVM uses now in many cases produce
performance that surpasses compiled C and C++ code.

The standard that describes how a properly functioning JVM must behave
is called the JVM Specification.

What Is the Java Ecosystem?

The Java language is easy to learn and contains relatively few
abstractions, compared to other programming languages. The JVM provides
a solid, portable, high-performance base for Java (or other languages)
to execute on. Taken together, these two connected technologies provide
a foundation that businesses can feel confident about when choosing
where to base their development efforts.

The benefits of Java do not end there, however. Since Java’s inception,
an extremely large ecosystem of third-party libraries and components
has grown up. This means that a development team can benefit hugely from
the existence of connectors and drivers for practically every technology
imaginable—both proprietary and open source.

In the modern technology ecosystem it is now rare indeed to find a technology component that does not offer a Java connector.
From traditional relational databases, to NoSQL, to every type of enterprise monitoring system, to messaging systems, to Internet of Things (IoT)—everything integrates with Java.

It is this fact that has been a major driver of adoption of Java
technologies by enterprises and larger companies. Development teams have
been able to unlock their potential by making use of preexisting
libraries and components. This has promoted developer choice and
encouraged open, best-of-breed architectures with Java technology cores.

Note

Google’s Android environment is sometimes thought of as being “based on Java.” However, the picture is actually more complicated. Android code is written in Java but originally used a different implementation of Java’s class libraries along with a cross compiler to convert to a different file format for a non-Java virtual machine.

The combination of a rich ecosystem and a first-rate virtual machine with an open standard for program binaries makes the Java platform a very attractive execution target.
In fact, there are a large number of non-Java languages that target the JVM and also interoperate with Java (which allows them to piggy-back off the platform’s success).
These languages include Kotlin, Scala, Groovy, and many others. While all of them are small compared to Java, they have distinct niches within the Java world, and provide a source of innovation and healthy competition to Java.

A Brief History of Java and the JVM

	Java 1.0 (1996)

	
This was the first public version of Java. It contained just 212
classes organized in eight packages. The Java platform has always had
an emphasis on backward compatibility, and code written with Java
1.0 will still run today on Java 11 without modification or
recompilation.

	Java 1.1 (1997)

	
This release of Java more than doubled the size of the Java platform.
This release introduced “inner classes” and the first version of the
Reflection API.

	Java 1.2 (1998)

	
This was a very significant release of Java; it tripled the size of
the Java platform. This release marked the first appearance of the
Java Collections API (with sets, maps, and lists). The many new
features in the 1.2 release led Sun to rebrand the platform as “the
Java 2 Platform.” The term “Java 2” was simply a trademark, however,
and not an actual version number for the release.

	Java 1.3 (2000)

	
This was primarily a maintenance release, focused on bug fixes,
stability, and performance improvements. This release also brought in
the HotSpot Java Virtual Machine, which is still in use today
(although heavily modified and improved since then).

	Java 1.4 (2002)

	
This was another fairly big release, adding important new
functionality such as a higher-performance, low-level I/O API; regular
expressions for text handling; XML and XSLT libraries; SSL support; a
logging API; and cryptography support.

	Java 5 (2004)

	
This large release of Java introduced a number of changes to the core
language itself including generic types, enumerated types (enums),
annotations, varargs methods, autoboxing, and a new for loop. These
changes were considered significant enough to change the major version
number, and to start numbering as major releases. This release
included 3,562 classes and interfaces in 166 packages. Notable
additions included utilities for concurrent programming, a remote
management framework, and classes for the remote management and
instrumentation of the Java VM itself.

	Java 6 (2006)

	
This release was also largely a maintenance and performance release.
It introduced the Compiler API, expanded the usage and scope of
annotations, and provided bindings to allow scripting languages to
interoperate with Java. There were also a large number of internal
bug fixes and improvements to the JVM and the Swing GUI technology.

	Java 7 (2011)

	
The first release of Java under Oracle’s stewardship included a number
of major upgrades to the language and platform. The introduction of
try-with-resources and the NIO.2 API enabled developers to write
much safer and less error-prone code for handling resources and I/O.
The Method Handles API provided a simpler and safer alternative to
reflection; in addition, it opened the door for invokedynamic (the first new
bytecode since version 1.0 of Java).

	Java 8 (2014) (LTS)

	
This was a huge release—potentially the most significant changes to the language since Java 5 (or possibly ever).
The introduction of lambda expressions provided the ability to
significantly enhance the productivity of developers, the Collections
were updated to make use of lambdas, and the machinery required
to achieve this marked a fundamental change in Java’s approach to
object orientation. Other major updates include a new date and time API, and major updates to the concurrency libraries.

	Java 9 (2017)

	
Significantly delayed, this release introduced the new platform modularity
feature, which allows Java applications to be packaged into deployment units
and modularize the platform runtime. Other changes include a new default
garbage collection algorithm, a new API for handling processes, and some
changes to the way that frameworks can access the internals.

	Java 10 (March 2018)

	
This marks the first release under the new release cycle. This release contained a relatively small amount of new features (due to its six-month development lifetime). New syntax for type inference was introduced, along with some internal changes (including GC tweaks and an experimental new compiler).

	Java 11 (September 2018) (LTS)

	
The current version, also developed over a short six-month window, this release is the first modular Java to be considered as a long-term support (LTS) release.
It adds relatively few new features that are directly visible to the developer—primarily Flight Recorder and the new HTTP/2 API.
There are some additional internal changes, but this release is primarily for stabilization.

As it stands, the only current production versions are Java 8 and 11—the LTS releases.
Due to the highly significant changes that are introduced by modules, Java 8 has been grandfathered in as an LTS release to provide extra time for teams and applications to migrate to a supported modular Java.

The Lifecycle of a Java Program

To better understand how Java code is compiled and executed, and the
difference between Java and other types of programming environments,
consider the pipeline in Figure 1-1.

[image: JN7 0101]
Figure 1-1. How Java code is compiled and loaded

This starts wth Java source, and passes it through the javac program
to produce class files—which contain the source code compiled to Java
bytecode. The class file is the smallest unit of functionality the
platform will deal with, and the only way to get new code into a running
program.

New class files are onboarded via the classloading mechanism (see
Chapter 10 for a lot more detail on how
classloading works). This makes the new type available to the
interpreter for execution.

Frequently Asked Questions

In this section, we’ll discuss some of the most frequently asked
questions about Java and the lifecycle of programs written in the Java
environment.

What is bytecode?

When developers are first introduced to the JVM, they sometimes think
of it as “a computer inside a computer.” It’s then easy to imagine
bytecode as “machine code for the CPU of the internal computer” or
“machine code for a made-up processor.”

In fact, bytecode is not actually very similar to machine code that would run on a real hardware processor.
Instead, computer scientists would call bytecode a type of intermediate representation—a halfway house between source code and machine code.

The whole aim of bytecode is to be a format that can be executed
efficiently by the JVM’s interpreter.

Is javac a compiler?

Compilers usually produce machine code, but javac produces bytecode,
which is not that similar to machine code. However, class files are a
bit like object files (like Windows .dll files, or Unix .so
files)—and they are certainly not human readable.

In theoretical computer science terms, javac is most similar to the
front half of a compiler—it creates the intermediate representation
that can then be used later to produce (emit) machine code.

However, because creation of class files is a separate build-time step
that resembles compilation in C/C++, many developers consider running
javac to be compilation. In this book, we will use the terms “source
code compiler” or "javac compiler” to mean the production of class files
by javac.

We will reserve “compilation” as a standalone term to mean JIT
compilation—as it’s JIT compilation that actually produces machine code.

Why is it called “bytecode”?

The instruction code (opcode) is just a single byte (some operations
also have parameters that follow them in the bytestream), so there are
only 256 possible instructions. In practice, some are unused—about 200
are in use, but some of them aren’t emitted by recent versions of javac.

Is bytecode optimized?

In the early days of the platform, javac produced heavily optimized
bytecode. This turned out to be a mistake. With the advent of JIT
compilation, the important methods are going to be compiled to very fast
machine code. It’s therefore very important to make the job of the JIT
compiler easier—as there are much bigger gains available from JIT
compilation than there are from optimizing bytecode, which will still
have to be interpreted.

Is bytecode really machine independent? What about things like endianness?

The format of bytecode is always the same, regardless of what type of
machine it was created on. This includes the byte ordering (sometimes
called “endianness”) of the machine. For readers who are interested in
the details, bytecode is always big-endian.

Is Java an interpreted language?

The JVM is basically an interpreter (with JIT compilation to give it
a big performance boost). However, most interpreted languages (such as
PHP, Perl, Ruby, and Python) directly interpret programs from source
form (usually by constructing an abstract syntax tree from the input
source file). The JVM interpreter, on the other hand, requires class
files—which, of course, require a separate source code compilation step
with javac.

Can other languages run on the JVM?

Yes. The JVM can run any valid class file, so this means that non-Java
languages can run on the JVM in one of two ways. First, they could
have a source code compiler (similar to javac) that produces class
files, which would run on the JVM just like Java code (this is the
approach taken by languages like Scala).

Alternatively, a non-Java language could implement an interpreter and runtime in Java, and then interpret the source form of their language directly.
This second option is the approach taken by languages like JRuby (but JRuby has a very sophisticated runtime that is capable of secondary JIT compilation in some circumstances).

Java Security

Java has been designed from the ground up with security in mind; this
gives it a great advantage over many other existing systems and
platforms. The Java security architecture was designed by security
experts and has been studied and probed by many other security experts
since the inception of the platform. The consensus is that the
architecture itself is strong and robust, without any security holes in
the design (at least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is
heavily restricted in what it can express—there is no way, for example,
to directly address memory. This cuts out entire classes of security
problems that have plagued languages like C and C++. Furthermore, the VM
goes through a process known as bytecode verification whenever it
loads an untrusted class, which removes a further large class of
problems (see Chapter 10 for more about
bytecode verification).

Despite all this, however, no system can guarantee 100% security, and
Java is no exception.

While the design is still theoretically robust, the implementation of
the security architecture is another matter, and there is a long history
of security flaws being found and patched in particular implementations
of Java.

In particular, the release of Java 8 was delayed, at least partly, due
to the discovery of a number of security problems that required
considerable effort to fix.

In all likelihood, security flaws will continue to be discovered (and
patched) in Java VM implementations.
For practical server-side coding, Java remains perhaps the most secure general-purpose platform currently available, especially when kept patched up to date.

Comparing Java to Other Languages

In this section, we’ll briefly highlight some differences between the
Java platform and other programming environments you may be familiar
with.

Java Compared to C

	
Java is object oriented; C is procedural.

	
Java is portable as class files; C needs to be recompiled.

	
Java provides extensive instrumentation as part of the runtime.

	
Java has no pointers and no equivalent of pointer arithmetic.

	
Java provides automatic memory management via garbage collection.

	
Java has no ability to lay out memory at a low level (no structs).

	
Java has no preprocessor.

Java Compared to C++

	
Java has a simplified object model compared to C++.

	
Java’s dispatch is virtual by default.

	
Java is always pass-by-value (but one of the possibilities for Java’s
values is object references).

	
Java does not support full multiple inheritance.

	
Java’s generics are less powerful (but also less dangerous) than C++
templates.

	
Java has no operator overloading.

Java Compared to Python

	
Java is statically typed; Python is dynamically typed.

	
Java is multithreaded; Python only allows one thread to execute Python at once.

	
Java has a JIT; the main implementation of Python does not.

	
Java’s bytecode has extensive static checks; Python’s bytecode does not.

Java Compared to JavaScript

	
Java is statically typed; JavaScript is dynamically typed.

	
Java uses class-based objects; JavaScript is prototype based.

	
Java provides good object encapsulation; JavaScript does not.

	
Java has namespaces; JavaScript does not.

	
Java is multithreaded; JavaScript is not.

Answering Some Criticisms of Java

Java has had a long history in the public eye and, as a result, has
attracted its fair share of criticism over the years. Some of this
negative press can be attributed to some technical shortcomings combined
with rather overzealous marketing in the first versions of Java.

Some criticisms have, however, entered technical folklore despite no
longer being very accurate. In this section, we’ll look at some common
grumbles and the extent to which they’re true for modern versions of the
platform.

Overly Verbose

The Java core language has sometimes been criticized as overly
verbose. Even simple Java statements such as Object o = new Object();
seem to be repetitious—the type Object appears on both the left and
right side of the assignment. Critics point out that this is essentially
redundant, that other languages do not need this duplication of type
information, and that many languages support features (e.g., type inference) that
remove it.

The counterpoint to this argument is that Java was designed from the
start to be easy to read (code is read more often than written) and that
many programmers, especially novices, find the extra type information
helpful when reading code.

Java is widely used in enterprise environments, which often have
separate dev and ops teams. The extra verbosity can often be a blessing
when you are responding to an outage call, or when you need to maintain and patch
code that was written by developers who have long since moved on.

In recent versions of Java, the language designers have attempted to respond to some of these points, by finding places where the syntax can become less verbose and by making better use of type information.
For example:

// Files helper methods
byte[] contents =
 Files.readAllBytes(Paths.get("/home/ben/myFile.bin"));

// Diamond syntax for repeated type information
List<String> l = new ArrayList<>();

// Local variables can be type inferred
var threadPool = Executors.newScheduledThreadPool(2);
// Lambda expressions simplify Runnables
threadPool.submit(() -> { System.out.println("On Threadpool"); });

However, Java’s overall philosophy is to make changes to the language
only very slowly and carefully, so the pace of these changes may not
satisfy detractors completely.

Slow to Change

The original Java language is now well over 20 years old, and has not
undergone a complete revision in that time. Many other languages
(e.g., Microsoft’s C#) have released backward-incompatible versions in
the same period, and some developers criticize Java for not doing
likewise.

Furthermore, in recent years, the Java language has come under fire for
being slow to adopt language features that are now commonplace in other
languages.

The conservative approach to language design that Sun (and now Oracle)
has taken is an attempt to avoid imposing the costs and
externalities of misfeatures on a very large user base. Many Java shops
have made major investments in the technology, and the language
designers have taken seriously the responsibility of not disrupting the
existing user and install base.

Each new language feature needs to be very carefully thought about—not
only in isolation, but in terms of how it will interact with all the
existing features of the language. New features can sometimes have
impacts beyond their immediate scope—and Java is widely used in very
large codebases, where there are more potential places for an unexpected
interaction to manifest.

It is almost impossible to remove a feature that turns out to be
incorrect after it has shipped. Java has a couple of misfeatures (such as
the finalization mechanism) that it has never been possible to remove safely without impacting the install base. The language designers
have taken the view that extreme caution is required when evolving the
language.

Having said that, the new language features that have arrived in recent versions are a significant step toward addressing the most common complaints about missing features, and should cover many of the idioms that developers
have been asking for.

Performance Problems

The Java platform is still sometimes criticized as being slow—but of
all the criticisms that are leveled at the platform, this is probably
the one that is least justified. It is a genuine myth about the platform.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT
compiler. Since then, there has been over 15 years of continual
innovation and improvement in the virtual machine and its performance.
The Java platform is now blazingly fast, regularly winning performance
benchmarks on popular frameworks, and even beating native-compiled C and
C++.

Criticism in this area appears to be largely caused by a folk memory
that Java was slow at some point in the past. Some of the larger
and more sprawling architectures that Java has been used within may also
have contributed to this impression.

The truth is that any large architecture will require benchmarking,
analysis, and performance tuning to get the best out of it—and Java is
no exception.

The core of the platform—language and JVM—was and remains one of the
fastest general-use environments available to the developer.

Insecure

During 2013 there were a number of security vulnerabilities in the
Java platform, which caused the release date of Java 8 to be pushed
back. Even before this, some people had criticized Java’s record of
security vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components of
the Java system, and wouldn’t affect websites or other server-side code
written in Java.

All programming platforms have security issues at times, and many other
languages have a comparable history of security vulnerabilities that
have been significantly less well publicized.

Too Corporate

Java is a platform that is extensively used by corporate and
enterprise developers. The perception that it is too corporate is
therefore an unsurprising one—Java has often been perceived as lacking
the “free-wheeling” style of languages that are deemed to be more
community oriented.

In truth, Java has always been, and remains, a very widely used language
for community and free or open source software development. It is one of
the most popular languages for projects hosted on GitHub and other
project hosting sites.

Finally, the most widely used implementation of the language itself is
based on OpenJDK—which is itself an open source project with a vibrant
and growing community.

1 Java ME is an older standard for smartphones and feature phones. Android and iOS are much more common on phones today, but Java ME is still a large market for embedded devices.
2 Java EE has now been transferred to the Eclipse Foundation, where it continues its life as the Jakarta EE project.

Chapter 2. Java Syntax from the Ground Up

This chapter is fairly dense but should provide a comprehensive introduction to Java syntax.
It is written primarily for readers who are new to the language but have
some previous programming experience. Determined novices with no prior
programming experience may also find it useful. If you already know
Java, you should find it a useful language reference. The chapter
includes some comparisons of Java to C and C++ for the benefit of
programmers coming from those languages.

This chapter documents the syntax of Java programs by starting at the
very lowest level of Java syntax and building from there, moving on to
increasingly higher orders of structure. It covers:

	
The characters used to write Java programs and the encoding of those characters.

	
Literal values, identifiers, and other tokens that comprise a Java program.

	
The data types that Java can manipulate.

	
The operators used in Java to group individual tokens into larger expressions.

	
Statements, which group expressions and other statements to form logical chunks of Java code.

	
Methods, which are named collections of Java statements that can be invoked by other Java code.

	
Classes, which are collections of methods and fields. Classes are the central program element in Java and form the basis for object-oriented programming. Chapter 3 is devoted entirely to a discussion of classes and objects.

	
Packages, which are collections of related classes.

	
Java programs, which consist of one or more interacting classes that may be drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no
exception. In general, it is not possible to document all elements of a
language without referring to other elements that have not yet been
discussed. For example, it is not really possible to explain in a
meaningful way the operators and statements supported by Java without
referring to objects. But it is also not possible to document objects
thoroughly without referring to the operators and statements of the
language. The process of learning Java, or any language, is therefore an
iterative one.

Java Programs from the Top Down

Before we begin our bottom-up exploration of Java syntax, let’s take a
moment for a top-down overview of a Java program. Java programs consist
of one or more files, or compilation units, of Java source code. Near
the end of the chapter, we describe the structure of a Java file and
explain how to compile and run a Java program. Each compilation unit
begins with an optional package declaration followed by zero or more
import declarations. These declarations specify the namespace within
which the compilation unit will define names, and the namespaces from
which the compilation unit imports names. We’ll see package and
import again later in this chapter in
“Packages and the Java Namespace”.

The optional package and import declarations are followed by zero or
more reference type definitions. We will meet the full variety of
possible reference types in Chapters 3 and
4, but for now, we should note that these are most often either class or interface definitions.

Within the definition of a reference type, we will encounter members
such as fields, methods, and constructors. Methods are the most
important kind of member. Methods are blocks of Java code composed of
statements.

With these basic terms defined, let’s start by approaching a Java
program from the bottom up by examining the basic units of syntax—often
referred to as lexical tokens.

Lexical Structure

This section explains the lexical structure of a Java program. It
starts with a discussion of the Unicode character set in which Java
programs are written. It then covers the tokens that comprise a Java
program, explaining comments, identifiers, reserved words, literals, and
so on.

The Unicode Character Set

Java programs are written using Unicode. You can use Unicode
characters anywhere in a Java program, including comments and
identifiers such as variable names. Unlike the 7-bit ASCII character
set, which is useful only for English, and the 8-bit ISO Latin-1
character set, which is useful only for major Western European
languages, the Unicode character set can represent virtually every
written language in common use on the planet.

Tip

If you do not use a Unicode-enabled text editor, or if you do not want
to force other programmers who view or edit your code to use a
Unicode-enabled editor, you can embed Unicode characters into your Java
programs using the special Unicode escape sequence \uxxxx—that is, a backslash and a lowercase u, followed by four hexadecimal
characters. For example, \u0020 is the space character, and \u03c0
is the character π.

Java has invested a large amount of time and engineering effort in
ensuring that its Unicode support is first class. If your business
application needs to deal with global users, especially in non-Western
markets, then the Java platform is a great choice.
Java also has support for multiple encodings and character sets, in case applications need to interact with non-Java applications that do not speak Unicode.

Case Sensitivity and Whitespace

Java is a case-sensitive language. Its keywords are written in
lowercase and must always be used that way. That is, While and WHILE
are not the same as the while keyword. Similarly, if you declare a
variable named i in your program, you may not refer to it as I.

Tip

In general, relying on case sensitivity to distinguish identifiers is a
terrible idea. Do not use it in your own code, and in particular never
give an identifier the same name as a keyword but differently cased.

Java ignores spaces, tabs, newlines, and other whitespace, except when
it appears within quoted characters and string literals. Programmers
typically use whitespace to format and indent their code for easy
readability, and you will see common indentation conventions in this book’s code
examples.

Comments

Comments are natural-language text intended for human readers of a
program. They are ignored by the Java compiler. Java supports three
types of comments. The first type is a single-line comment, which
begins with the characters // and continues until the end of the
current line. For example:

int i = 0; // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the
characters /* and continues, over any number of lines, until the
characters */. Any text between the /* and the */ is ignored by
javac. Although this style of comment is typically used for multiline
comments, it can also be used for single-line comments. This type of
comment cannot be nested (i.e., one /* */ comment cannot appear within
another). When writing multiline comments, programmers often use extra
* characters to make the comments stand out. Here is a typical
multiline comment:

/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

The third type of comment is a special case of the second. If a comment
begins with /**, it is regarded as a special doc comment. Like
regular multiline comments, doc comments end with */ and cannot be
nested. When you write a Java class you expect other programmers to use,
provide doc comments to embed documentation about the class and each of its
methods directly into the source code. A program named javadoc
extracts these comments and processes them to create online
documentation for your class. A doc comment can contain HTML tags and
can use additional syntax understood by javadoc. For example:

/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 * <tt>false</tt> on failure.
 * @author David Flanagan
 */

See Chapter 7 for more information on the doc comment syntax and Chapter 13 for more information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not
appear within a token. In particular, comments may not appear within
double-quoted string literals. A comment within a string literal simply
becomes a literal part of that string.

Reserved Words

The following words are reserved in Java (they are part of the syntax
of the language and may not be used to name variables, classes, and so
forth):

abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true
byte double goto new strictfp try
case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this

Of these, true, false, and null are technically literals.
The sequence var is not a keyword, but instead indicates that the type of a local variable should be type-inferred.
The character sequence consisting of a single underscore, _, is also disallowed as an identifier.
There are also 10 restricted keywords which are only considered keywords within the context of declaring a Java platform module.

We’ll meet each of these reserved words again later in this book. Some
of them are the names of primitive types and others are the names of
Java statements, both of which are discussed later in this chapter.
Still others are used to define classes and their members (see
Chapter 3).

Note that const and goto are reserved but aren’t actually used in
the language, and that interface has an additional variant
form—@interface, which is used when defining types known as
annotations. Some of the reserved words (notably final and default)
have a variety of meanings depending on context.

Identifiers

An identifier is simply a name given to some part of a Java program,
such as a class, a method within a class, or a variable declared within
a method. Identifiers may be of any length and may contain letters and
digits drawn from the entire Unicode character set. An identifier may
not begin with a digit.

In general, identifiers may not contain punctuation characters.
Exceptions include the dollar sign ($) as well as other Unicode currency symbols such as £ and ¥.

The ASCII underscore (_) also deserves special mention.
Originally, the underscore could be freely used as an identifier, or part of one.
However, in recent versions of Java, including Java 11, the underscore may not be used as an identifier.

The underscore character can still appear in a Java identifier, but it is no longer legal as a complete identifier by itself.
This is to support an expected forthcoming language feature whereby the underscore will acquire a special new syntactic meaning.

Tip

Currency symbols are intended for use in automatically generated source
code, such as code produced by javac. By avoiding the use of currency
symbols in your own identifiers, you don’t have to worry about
collisions with automatically generated identifiers.

The usual Java convention is to name variables using camel case.
This means that the first letter of a variable should be lowerase, but that the first letter of any other words in the identifier should be uppercase.

Formally, the characters allowed at the beginning of and within an
identifier are defined by the methods isJavaIdentifierStart() and
isJavaIdentifierPart() of the class java.lang.Character.

The following are examples of legal identifiers:

i x1 theCurrentTime current 獺

Note in particular the example of a UTF-8 identifier, 獺. This is the
Kanji character for “otter” and is perfectly legal as a Java identifier.
The usage of non-ASCII identifiers is unusual in programs predominantly
written by Westerners, but is sometimes seen.

Literals

Literals are sequences of source characters that directly represent constant values that appear as-is in Java source code.
They include integer and floating-point numbers, single characters within
single quotes, strings of characters within double quotes, and the
reserved words true, false, and null. For example, the following are all literals:

1 1.0 '1' 1L "one" true false null

The syntax for expressing numeric, character, and string literals is
detailed in “Primitive Data Types”.

Punctuation

Java also uses a number of punctuation characters as tokens. The Java
Language Specification divides these characters (somewhat arbitrarily) into two categories, separators and operators. The 12
separators are:

() { } []

... @ ::

; , .

The operators are:

+ — * / % & | ^ << >> >>>
+= -= *= /= %= &= |= ^= <<= >>= >>>=
= == != < <= > >=
! ~ && || ++ -- ? : ->

We’ll see separators throughout the book, and will cover each operator
individually in “Expressions and Operators”.

Primitive Data Types

Java supports eight basic data types known as primitive types as
described in Table 2-1. The primitive
types include a Boolean type, a character type, four integer types, and
two floating-point types. The four integer types and the two
floating-point types differ in the number of bits that represent them
and therefore in the range of numbers they can represent.

Table 2-1. Java primitive data types

	Type
	Contains
	Default
	Size
	Range

	boolean

	true or false

	false

	1 bit

	NA

	char

	Unicode character

	\u0000

	16 bits

	\u0000 to \uFFFF

	byte

	Signed integer

	0

	8 bits

	–128 to 127

	short

	Signed integer

	0

	16 bits

	–32768 to 32767

	int

	Signed integer

	0

	32 bits

	–2147483648 to 2147483647

	long

	Signed integer

	0

	64 bits

	–9223372036854775808 to
9223372036854775807

	float

	IEEE 754 floating point

	0.0

	32 bits

	1.4E–45 to
3.4028235E+38

	double

	IEEE 754 floating point

	0.0

	64 bits

	4.9E–324 to
1.7976931348623157E+308

The next section summarizes these primitive data types. In addition to
these primitive types, Java supports nonprimitive data types known as
reference types, which are introduced in “Reference Types”.

The boolean Type

The boolean type represents truth values. This type has only two
possible values, representing the two Boolean states: on or off, yes or
no, true or false. Java reserves the words true and false to
represent these two Boolean values.

Programmers coming to Java from other languages (especially JavaScript and C) should note that Java is much stricter about its Boolean values than
other languages; in particular, a boolean is neither an integral nor an
object type, and incompatible values cannot be used in place of a
boolean. In other words, you cannot take shortcuts such as the
following in Java:

Object o = new Object();
int i = 1;

if (o) {
 while(i) {
 //...
 }
}

Instead, Java forces you to write cleaner code by explicitly stating the
comparisons you want:

if (o != null) {
 while(i != 0) {
 // ...
 }
}

The char Type

The char type represents Unicode characters. Java has a slightly
unique approach to representing characters—javac accepts identifiers
and literals as UTF-8 (a variable-width encoding) in input.
However, internally, Java represents chars in a fixed-width encoding—either a 16-bit encoding (before Java 9) or as ISO-8859-1 (an 8-bit encoding, used for Western European languages, also called Latin-1) if possible (Java 9 and later).

This distinction between external and internal representation does not normally need to concern the developer. In most cases, all that is required is to remember the rule that to include a character literal in a Java program, simply place it between single quotes (apostrophes):

char c = 'A';

You can, of course, use any Unicode character as a character literal,
and you can use the \u Unicode escape sequence. In addition, Java
supports a number of other escape sequences that make it easy both to
represent commonly used nonprinting ASCII characters, such as newline,
and to escape certain punctuation characters that have special meaning
in Java. For example:

char tab = '\t', nul = '\000', aleph = '\u05D0', slash = '\\';

Table 2-2 lists the escape characters that can be used in char literals. These characters can also be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

	Escape sequence
	Character value

	\b

	Backspace

	\t

	Horizontal tab

	\n

	Newline

	\f

	Form feed

	\r

	Carriage return

	\"

	Double quote

	\'

	Single quote

	\\

	Backslash

	\xxx

	The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number between 000 and 377. The forms x and \xx are also legal, as in \0, but are not recommended because they can cause difficulties in string constants where the escape sequence is followed by a regular digit. This form is generally discouraged in favor of the \uXXXX form.

	\uxxxx

	The Unicode character with encoding xxxx, where
xxxx is four hexadecimal digits. Unicode escapes can appear anywhere
in a Java program, not only in character and string literals.

char values can be converted to and from the various integral types,
and the char data type is a 16-bit integral type. Unlike byte,
short, int, and long, however, char is an unsigned type. The
Character class defines a number of useful static methods for
working with characters, including isDigit(), isJavaLetter(),
isLowerCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in
mind. The Unicode standard is evolving, however, and each new version of
Java adopts a new version of Unicode. Java 7 uses Unicode 6.0 and Java 8
uses Unicode 6.2.

Recent releases of Unicode include characters whose encodings, or
codepoints, do not fit in 16 bits. These supplementary characters,
which are mostly infrequently used Han (Chinese) ideographs, occupy 21
bits and cannot be represented in a single char value. Instead, you
must use an int value to hold the codepoint of a supplementary
character, or you must encode it into a so-called “surrogate pair” of
two char values.

Unless you commonly write programs that use Asian languages, you are
unlikely to encounter any supplementary characters. If you do anticipate
having to process characters that do not fit into a char, methods have
been added to the Character, String, and related classes for working
with text using int codepoints.

String literals

In addition to the char type, Java also has a data type for working
with strings of text (usually simply called strings). The String
type is a class, however, and is not one of the primitive types of the
language. Because strings are so commonly used, though, Java does have a
syntax for including string values literally in a program. A String
literal consists of arbitrary text within double quotes (as opposed to
the single quotes for char literals). For example:

"Hello World"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear
as char literals (see Table 2-2). Use
the \" sequence to include a double quote within a String literal.
Because String is a reference type, string literals are described in
more detail later in this chapter in “Object Literals”.
Chapter 9 contains more details on some of the
ways you can work with String objects in Java.

Integer Types

The integer types in Java are byte, short, int, and long. As
shown in Table 2-1, these four types
differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed
numbers; there is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would
expect: as a sequence of decimal digits, optionally preceded by a minus
sign.1 Here are some legal
integer literals:

0
1
123
-42000

Integer literals are 32-bit values (and so are taken to be the Java type int) unless they end with the character L or l, in which case they are 64-bit values (and are understood to be the Java type long):

1234 // An int value
1234L // A long value
0xffL // Another long value

Integer literals can also be expressed in hexadecimal, binary, or octal
notation. A literal that begins with 0x or 0X is taken as a
hexadecimal number, using the letters A to F (or a to f) as the
additional digits required for base-16 numbers.

Integer binary literals start with 0b and may, of course, only feature
the digits 1 or 0. As binary literals can be very long, underscores are
often used as part of a binary literal. The underscore character is
ignored whenever it is encountered in any numerical literal—it’s allowed
purely to help with readability of literals.

Java also supports octal (base-8) integer literals. These literals begin
with a leading 0 and cannot include the digits 8 or 9. They are not
often used and should be avoided unless needed. Legal hexadecimal,
binary, and octal literals include:

0xff // Decimal 255, expressed in hexadecimal
0377 // The same number, expressed in octal (base 8)
0b0010_1111 // Decimal 47, expressed in binary
0xCAFEBABE // A magic number used to identify Java class files

Integer arithmetic in Java never produces an overflow or an underflow
when you exceed the range of a given integer type. Instead, numbers just
wrap around. For example, let’s look at an overflow:

byte b1 = 127, b2 = 1; // Largest byte is 127
byte sum = (byte)(b1 + b2); // Sum wraps to -128, the smallest byte

and the corresponding underflow behavior:

byte b3 = -128, b4 = 5; // Smallest byte is -128
byte sum2 = (byte)(b3 - b4); // Sum wraps to a large byte value, 123

Neither the Java compiler nor the Java interpreter warns you in any way
when this occurs. When doing integer arithmetic, you simply must ensure
that the type you are using has a sufficient range for the purposes you
intend. Integer division by zero and modulo by zero are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short,
Integer, and Long. Each of these classes defines MIN_VALUE and
MAX_VALUE constants that describe the range of the type. The classes
also define useful static methods, such as Byte.parseByte() and
Integer.parseInt(), for converting strings to integer values.

Floating-Point Types

Real numbers in Java are represented by the float and double data
types. As shown in Table 2-1, float is
a 32-bit, single-precision floating-point value, and double is a
64-bit, double-precision floating-point value. Both types adhere to
the IEEE 754-1985 standard, which specifies both the format of the
numbers and the behavior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an
optional string of digits, followed by a decimal point and another
string of digits. Here are some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific,
notation, in which a number is followed by the letter e or E (for
exponent) and another number. This second number represents the power of
10 by which the first number is multiplied. For example:

1.2345E02 // 1.2345 * 10^2 or 123.45
1e-6 // 1 * 10^-6 or 0.000001
6.02e23 // Avogadro's Number: 6.02 * 10^23

Floating-point literals are double values by default. To include a
float value literally in a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal, binary, or
octal notation.

Floating-Point Representations

Most real numbers, by their very nature, cannot be represented exactly
in any finite number of bits. Thus, it is important to remember that
float and double values are only approximations of the numbers they
are meant to represent. A float is a 32-bit approximation, which
results in at least six significant decimal digits, and a double is a
64-bit approximation, which results in at least 15 significant digits.
In Chapter 9, we will cover floating-point
representations in more detail.

In addition to representing ordinary numbers, the float and double
types can also represent four special values: positive and negative
infinity, zero, and NaN. The infinity values result when a
floating-point computation produces a value that overflows the
representable range of a float or double.

When a floating-point computation underflows the representable range of a float or a double, a zero value results.

Note

We can imagine repeatedly dividing the double value 1.0 by 2.0 (e.g., in a while loop). In mathematics, no matter how often we perform the division, the result will never become equal to zero. However, in a floating-point representation, after enough divisions, the result will eventually be so small as to be indistinguishable from zero.

The Java floating-point types make a distinction between positive
zero and negative zero, depending on the direction from which the
underflow occurred. In practice, positive and negative zero behave
pretty much the same. Finally, the last special floating-point value is
NaN, which stands for “Not-a-Number.” The NaN value results when an
illegal floating-point operation, such as 0.0/0.0, is performed. Here
are examples of statements that result in these special values:

double inf = 1.0/0.0; // Infinity
double neginf = -1.0/0.0; // Negative infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not a Number

The float and double primitive types have corresponding classes,
named Float and Double. Each of these classes defines the
following useful constants: MIN_VALUE, MAX_VALUE,
NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN.

Note

Java floating-point types can handle overflow to infinity and underflow to zero and have a special NaN value. This means floating-point arithmetic never throws exceptions, even when performing illegal operations, like dividing zero by zero or taking the square root of a negative number.

The infinite floating-point values behave as you would expect. Adding
or subtracting any finite value to or from infinity, for example, yields
infinity. Negative zero behaves almost identically to positive zero,
and, in fact, the == equality operator reports that negative zero is
equal to positive zero. One way to distinguish negative zero from
positive, or regular, zero is to divide by it: 1.0/0.0 yields positive
infinity, but 1.0 divided by negative zero yields negative infinity.
Finally, because NaN is Not a Number, the == operator says that it is
not equal to any other number, including itself!

double NaN = 0.0/0.0; // Not a Number
NaN == NaN; // false
Double.isNaN(NaN); // true

To check whether a float or double value is NaN, you must use the Float.isNaN() and Double.isNaN() methods.

Primitive Type Conversions

Java allows conversions between integer values and floating-point
values. In addition, because every character corresponds to a number in
the Unicode encoding, char values can be converted to and from the
integer and floating-point types. In fact, boolean is the only
primitive type that cannot be converted to or from another primitive
type in Java.

There are two basic types of conversions. A widening conversion
occurs when a value of one type is converted to a wider type—one that
has a larger range of legal values. For example, Java performs widening
conversions automatically when you assign an int literal to a
double variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing
conversion occurs when a value is converted to a type that is not wider
than it is. Narrowing conversions are not always safe: it is reasonable
to convert the integer value 13 to a byte, for example, but it is not
reasonable to convert 13,000 to a byte, because byte can hold only
numbers between –128 and 127. Because you can lose data in a narrowing
conversion, the Java compiler complains when you attempt any narrowing
conversion, even if the value being converted would in fact fit in the
narrower range of the specified type:

int i = 13;
// byte b = i; // Incompatible types: possible lossy conversion
 // from int to byte

The one exception to this rule is that you can assign an integer literal
(an int value) to a byte or short variable if the literal falls
within the range of the variable.

byte b = 13;

If you need to perform a narrowing conversion and are confident you can
do so without losing data or precision, you can force Java to perform
the conversion using a language construct known as a cast. Perform a
cast by placing the name of the desired type in parentheses before the
value to be converted. For example:

int i = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point
values to integers. When you do this, the fractional part of the
floating-point value is simply truncated (i.e., the floating-point value
is rounded toward zero, not toward the nearest integer). The static
methods Math.round(), Math.floor(), and Math.ceil() perform other
types of rounding.

The char type acts like an integer type in most ways, so a char
value can be used anywhere an int or long value is required. Recall, however, that the char type is unsigned, so it behaves
differently than the short type, even though both are 16 bits wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff'; // The same bits, as a Unicode character
int i1 = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can
be converted to which other types and how the conversion is performed.
The letter N in the table means that the conversion cannot be performed.
The letter Y means that the conversion is a widening conversion and is
therefore performed automatically and implicitly by Java. The letter C
means that the conversion is a narrowing conversion and requires an
explicit cast.

Finally, the notation Y* means that the conversion is an automatic
widening conversion, but that some of the least significant digits of
the value may be lost in the conversion. This can happen when you are converting
an int or long to a floating-point type—see the table for details.
The floating-point types have a larger range than the integer types, so
any int or long can be represented by a float or double.
However, the floating-point types are approximations of numbers and
cannot always hold as many significant digits as the integer types (see
Chapter 9 for some more detail about floating-point numbers).

	Table 2-3. Java primitive type conversions
	
		
				
				Convert to:
				
				
				
				
				
				
				
		

		
				Convert from:
				boolean
				byte
				short
				char
				int
				long
				float
				double
		

	
	
		
				
			boolean

			
				
			-

			
				
			N

			
				
			N

			
				
			N

			
				
			N

			
				
			N

			
				
			N

			
				
			N

			
		

		
				
			byte

			
				
			N

			
				
			-

			
				
			Y

			
				
			C

			
				
			Y

			
				
			Y

			
				
			Y

			
				
			Y

			
		

		
				
			short

			
				
			N

			
				
			C

			
				
			-

			
				
			C

			
				
			Y

			
				
			Y

			
				
			Y

			
				
			Y

			
		

		
				
			char

			
				
			N

			
				
			C

			
				
			C

			
				
			-

			
				
			Y

			
				
			Y

			
				
			Y

			
				
			Y

			
		

		
				
			int

			
				
			N

			
				
			C

			
				
			C

			
				
			C

			
				
			-

			
				
			Y

			
				
			Y*

			
				
			Y

			
		

		
				
			long

			
				
			N

			
				
			C

			
				
			C

			
				
			C

			
				
			C

			
				
			-

			
				
			Y*

			
				
			Y*

			
		

		
				
			float

			
				
			N

			
				
			C

			
				
			C

			
				
			C

			
				
			C

			
				
			C

			
				
			-

			
				
			Y

			
		

		
				double
				N
				C
				C
				C
				C
				C
				C
				-
		

	

Expressions and Operators

So far in this chapter, we’ve learned about the primitive types that
Java programs can manipulate and seen how to include primitive values as
literals in a Java program. We’ve also used variables as symbolic
names that represent, or hold, values. These literals and variables are
the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java
program. The Java interpreter evaluates an expression to compute its
value. The very simplest expressions are called primary expressions
and consist of literals and variables. So, for example, the following
are all expressions:

1.7 // A floating-point literal
true // A Boolean literal
sum // A variable

When the Java interpreter evaluates a literal expression, the resulting
value is the literal itself. When the interpreter evaluates a variable
expression, the resulting value is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions
are made by using operators to combine primary expressions. For
example, the following expression uses the assignment operator to
combine two primary expressions—a variable and a floating-point
literal—into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also
be used with expressions at any level of complexity. The following are
all legal expressions:

sum = 1 + 2 + 3 * 1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

Operator Summary

The kinds of expressions you can write in a programming language depend
entirely on the set of operators available to you. Java has a wealth of
operators, but to work effectively with them, you must understand two important
concepts: precedence and associativity.
These concepts—and the operators themselves—are explained in more detail
in the following sections.

Precedence

The P column of Table 2-4 specifies the precedence of each operator. Precedence specifies the order in which
operations are performed. Operations that have higher precedence are
performed before those with lower precedence. For example, consider this
expression:

a + b * c

The multiplication operator has higher precedence than the addition
operator, so a is added to the product of b and c, just as we
expect from elementary mathematics. Operator precedence can be thought
of as a measure of how tightly operators bind to their operands. The
higher the number, the more tightly they bind.

Default operator precedence can be overridden through the use of
parentheses that explicitly specify the order of operations. The
previous expression can be rewritten to specify that the addition should
be performed before the multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility
with C; the designers of C chose this precedence so that most
expressions can be written naturally without parentheses. There are only
a few common Java idioms for which parentheses are required. Examples
include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

Associativity

Associativity is a property of operators that defines how to evaluate
expressions that would otherwise be ambiguous. This is particularly
important when an expression involves several operators that have the
same precedence.

Most operators are left-to-right associative, which means that the
operations are performed from left to right. The assignment and unary
operators, however, have right-to-left associativity. The A column of
Table 2-4 specifies the associativity of
each operator or group of operators. The value L means left to right,
and R means right to left.

The additive operators are all left-to-right associative, so the
expression a+b-c is evaluated from left to right: (a+b)-c. Unary
operators and assignment operators are evaluated from right to left.
Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:

a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a
default order of evaluation for an expression. This default order can be
overridden through the use of parentheses. However, the default operator
associativity in Java has been chosen to yield a natural expression
syntax, and you should rarely need to alter it.

Operator summary table

Table 2-4 summarizes the operators available in Java. The P and A columns of the table specify the precedence and associativity of each group of related operators, respectively. You should use this table as a quick reference for operators (especially their precedence) when required.

Table 2-4. Java operators

	P
	A
	Operator
	Operand type(s)
	Operation performed

	16

	L

	.

	object, member

	Object member access

	
	
	[]

	array, int

	Array element access

	
	
	(args)

	method, arglist

	Method invocation

	
	
	++, --

	variable

	Post-increment, post-decrement

	15

	R

	++, --

	variable

	Pre-increment, pre-decrement

	
	
	+, -

	number

	Unary plus, unary minus

	
	
	~

	integer

	Bitwise complement

	
	
	!

	boolean

	Boolean NOT

	14

	R

	new

	class, arglist

	Object creation

	
	
	(type)

	type, any

	Cast (type conversion)

	13

	L

	*, /, %

	number, number

	Multiplication, division, remainder

	12

	L

	+, -

	number, number

	Addition, subtraction

	
	
	+

	string, any

	String concatenation

	11

	L

	<<

	integer, integer

	Left shift

	
	
	>>

	integer, integer

	Right shift with sign extension

	
	
	>>>

	integer, integer

	Right shift with zero extension

	10

	L

	<, <=

	number, number

	Less than, less than or equal

	
	
	>, >=

	number, number

	Greater than, greater than or equal

	
	
	instanceof

	reference, type

	Type comparison

	9

	L

	==

	primitive, primitive

	Equal (have identical values)

	
	
	!=

	primitive, primitive

	Not equal (have different values)

	
	
	==

	reference, reference

	Equal (refer to same object)

	
	
	!=

	reference, reference

	Not equal (refer to different objects)

	8

	L

	&

	integer, integer

	Bitwise AND

	
	
	&

	boolean, boolean

	Boolean AND

	7

	L

	^

	integer, integer

	Bitwise XOR

	
	
	^

	boolean, boolean

	Boolean XOR

	6

	L

	ǀ

	integer, integer

	Bitwise OR

	
	
	ǀ

	boolean, boolean

	Boolean OR

	5

	L

	&&

	boolean, boolean

	Conditional AND

	4

	L

	ǀǀ

	boolean, boolean

	Conditional OR

	3

	R

	? :

	boolean, any

	Conditional (ternary) operator

	2

	R

	=

	variable, any

	Assignment

	
	
	*=, /=, %=,

	variable, any

	Assignment with operation

	
	
	+=, -=, <<=,

	
	

	
	
	>>=, >>>=,

	
	

	
	
	&=, ^=, ǀ=

	
	

	1

	R

	→

	arglist, method body

	lambda expression

Operand number and type

The fourth column of Table 2-4 specifies
the number and type of the operands expected by each operator. Some
operators operate on only one operand; these are called unary operators.
For example, the unary minus operator changes the sign of a single
number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two
operand values. The – operator actually comes in both forms:

a – b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional
operator. It is like an if statement inside an expression. Its three
operands are separated by a question mark and a colon; the second and
third operands must be convertible to the same type:

x > y ? x : y // Ternary expression; evaluates to larger of x and y

In addition to expecting a certain number of operands, each operator
also expects particular types of operands. The fourth column of the
table lists the operand types. Some of the codes used in that column
require further explanation:

	Number

	
An integer, floating-point value, or character (i.e., any primitive
type except boolean). Auto-unboxing (see
“Boxing and Unboxing Conversions”) means that
the wrapper classes (such as Character, Integer, and Double) for
these types can be used in this context as well.

	Integer

	
A byte, short, int, long, or char value (long values are
not allowed for the array access operator []). With auto-unboxing,
Byte, Short, Integer, Long, and Character values are also
allowed.

	Reference

	
An object or array.

	Variable

	
A variable or anything else, such as an array element, to which a
value can be assigned.

Return type

Just as every operator expects its operands to be of specific types,
each operator produces a value of a specific type. The arithmetic,
increment and decrement, bitwise, and shift operators return a double
if at least one of the operands is a double. They return a float
if at least one of the operands is a float. They return a long if
at least one of the operands is a long. Otherwise, they return an
int, even if both operands are byte, short, or char types that
are narrower than int.

The comparison, equality, and Boolean operators always return boolean
values. Each assignment operator returns whatever value it assigned,
which is of a type compatible with the variable on the left side of the
expression. The conditional operator returns the value of its second or
third argument (which must both be of the same type).

Side effects

Every operator computes a value based on one or more operand values.
Some operators, however, have side effects in addition to their basic
evaluation. If an expression contains side effects, evaluating it
changes the state of a Java program in such a way that evaluating the
expression again may yield a different result.

For example, the ++ increment operator has the side effect of
incrementing a variable. The expression ++a increments the variable
a and returns the newly incremented value. If this expression is
evaluated again, the value will be different. The various assignment
operators also have side effects. For example, the expression a*=2 can
also be written as a=a*2. The value of the expression is the value of
a multiplied by 2, but the expression has the side effect of storing
that value back into a.

The method invocation operator () has side effects if the invoked
method has side effects. Some methods, such as Math.sqrt(), simply
compute and return a value without side effects of any kind. Typically,
however, methods do have side effects. Finally, the new operator has
the profound side effect of creating a new object.

Order of evaluation

When the Java interpreter evaluates an expression, it performs the
various operations in an order specified by the parentheses in the
expression, the precedence of the operators, and the associativity of
the operators. Before any operation is performed, however, the
interpreter first evaluates the operands of the operator. (The
exceptions are the &&, ||, and ?: operators, which do not
always evaluate all their operands.) The interpreter always evaluates
operands in order from left to right. This matters if any of the
operands are expressions that contain side effects. Consider this code,
for example:

int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the
operands of the + operator are evaluated first. As the operand of \
are both ++a, these are evaluated to 3 and 4, and so the expression
evaluates to 3 + 4 * 5, or 23.

Arithmetic Operators

The arithmetic operators can be used with integers, floating-point
numbers, and even characters (i.e., they can be used with any primitive
type other than boolean). If either of the operands is a
floating-point number, floating-point arithmetic is used; otherwise,
integer arithmetic is used. This matters because integer arithmetic and
floating-point arithmetic differ in the way division is performed and in
the way underflows and overflows are handled, for example. The
arithmetic operators are:

	Addition (+)

	
The + operator adds two numbers. As we’ll see shortly, the + operator can also be used to concatenate strings. If either operand of + is a string, the other one is converted to a string as well. Be sure to use parentheses when you want to combine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!

	Subtraction (-)

	
When the - operator is used as a binary operator, it subtracts its second operand from its first. For example, 7-3 evaluates to 4. The - operator can also perform unary negation.

	Multiplication (*)

	
The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

	Division (/)

	
The / operator divides its first operand by its second. If both operands are integers, the result is an integer, and any remainder is lost. If either operand is a floating-point value, however, the result is a floating-point value. When you divide two integers, division by zero throws an ArithmeticException. For floating-point calculations, however, division by zero simply yields an infinite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

	Modulo (%)

	
The % operator computes the first operand modulo the second operand (i.e., it returns the remainder when the first operand is divided by the second operand an integral number of times). For example, 7%3 is 1. The sign of the result is the same as the sign of the first operand. While the modulo operator is typically used with integer operands, it also works for floating-point values. For example, 4.3%2.1 evaluates to 0.1. When you are operating with integers, trying to compute a value modulo zero causes an ArithmeticException. When you are working with floating-point values, anything modulo 0.0 evaluates to NaN, as does infinity modulo anything.

	Unary minus (-)

	
When the - operator is used as a unary operator—that is, before a single operand—it performs unary negation. In other words, it converts a positive value to an equivalently negative value, and vice versa.

String Concatenation Operator

In addition to adding numbers, the + operator (and the related +=
operator) also concatenates, or joins, strings. If either of the
operands to + is a string, the operator converts the other operand to
a string. For example:

// Prints "Quotient: 2.3333333"
System.out.println("Quotient: " + 7/3.0f);

As a result, you must be careful to put any addition expressions in
parentheses when combining them with string concatenation. If you do
not, the addition operator is interpreted as a concatenation operator.

Java has built-in string conversions for all primitive types. An object is converted to a string by invoking its toString() method. Some classes define custom toString() methods so that objects of that class can easily be converted to strings in this way.
An array is converted to a string by invoking the built-in toString() method, which, unfortunately, does not return a useful string representation of the array contents.

Increment and Decrement Operators

The ++ operator increments its single operand, which must be a
variable, an element of an array, or a field of an object, by 1. The
behavior of this operator depends on its position relative to the
operand. When used before the operand, where it is known as the
pre-increment operator, it increments the operand and evaluates to
the incremented value of that operand. When used after the operand,
where it is known as the post-increment operator, it increments its
operand, but evaluates to the value of that operand before it was
incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;

Similarly, the -- operator decrements its single numeric operand,
which must be a variable, an element of an array, or a field of an
object, by one. Like the ++ operator, the behavior of -- depends on
its position relative to the operand. When used before the operand, it
decrements the operand and returns the decremented value. When used
after the operand, it decrements the operand, but returns the
undecremented value.

The expressions x++ and x-- are equivalent to x=x+1 and x=x-1,
respectively, except that when you are using the increment and decrement
operators, x is only evaluated once. If x is itself an expression
with side effects, this makes a big difference. For example, these two
expressions are not equivalent:

a[i++]++; // Increments an element of an array

// Adds 1 to an array element and stores new value in another element
a[i++] = a[i++] + 1;

These operators, in both prefix and postfix forms, are most commonly
used to increment or decrement the counter that controls a loop.

Comparison Operators

The comparison operators consist of the equality operators that test
values for equality or inequality and the relational operators used
with ordered types (numbers and characters) to test for greater than and
less than relationships. Both types of operators yield a boolean
result, so they are typically used with if statements and while and
for loops to make branching and looping decisions. For example:

if (o != null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator

Java provides the following equality operators:

	Equals (==)

	
The == operator evaluates to true if its two operands are equal and false otherwise. With primitive operands, it tests whether the operand values themselves are identical. For operands of reference types, however, it tests whether the operands refer to the same object or array. In other words, it does not test the equality of two distinct objects or arrays. In particular, note that you cannot test two distinct strings for equality with this operator.

If == is used to compare two numeric or character operands that are
not of the same type, the narrower operand is converted to the type of
the wider operand before the comparison is done. For example, when you are
comparing a short to a float, the short is first converted to a
float before the comparison is performed. For floating-point
numbers, the special negative zero value tests equal to the regular,
positive zero value. Also, the special NaN (Not a Number) value is
not equal to any other number, including itself. To test whether a
floating-point value is NaN, use the Float.isNan() or
Double.isNan() method.

	Not equals (!=)

	
The != operator is exactly the opposite of the == operator. It evaluates to true if its two primitive operands have different values or if its two reference operands refer to different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with boolean values, objects, or arrays because those types are not ordered.

Java provides the following relational operators:

	Less than (<)

	
Evaluates to true if the first operand is less than the second.

	Less than or equal (<=)

	
Evaluates to true if the first operand is less than or equal to the second.

	Greater than (>)

	
Evaluates to true if the first operand is greater than the second.

	Greater than or equal (>=)

	
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators

As we’ve just seen, the comparison operators compare their operands
and yield a boolean result, which is often used in branching and
looping statements. In order to make branching and looping decisions
based on conditions more interesting than a single comparison, you can
use the Boolean (or logical) operators to combine multiple comparison
expressions into a single, more complex expression. The Boolean
operators require their operands to be boolean values and they
evaluate to boolean values. The operators are:

	Conditional AND (&&)

	
 This operator performs a Boolean AND operation on its operands. It evaluates to true if and only if both its operands are true. If either or both operands are false, it evaluates to false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary !
operator) have a lower precedence than the comparison operators. Thus,
it is perfectly legal to write a line of code like the one just shown.
However, some programmers prefer to use parentheses to make the order
of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally
evaluates its second operand. If the first operand evaluates to
false, the value of the expression is false, regardless of the
value of the second operand. Therefore, to increase efficiency, the
Java interpreter takes a shortcut and skips the second operand. The
second operand is not guaranteed to be evaluated, so you must use
caution when using this operator with expressions that have side
effects. On the other hand, the conditional nature of this operator
allows us to write Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1)
 ...

The second and third comparisons in this expression would cause errors
if the first or second comparisons evaluated to false. Fortunately,
we don’t have to worry about this because of the conditional behavior
of the && operator.

	Conditional OR (||)

	
This operator performs a Boolean OR operation on its two boolean operands. It evaluates to true if either or both of its operands are true. If both operands are false, it evaluates to false. Like the && operator, || does not always evaluate its second operand. If the first operand evaluates to true, the value of the expression is true, regardless of the value of the second operand. Thus, the operator simply skips the second operand in that case.

	Boolean NOT (!)

	
This unary operator changes the boolean value of its operand. If applied to a true value, it evaluates to false, and if applied to a false value, it evaluates to true. It is useful in expressions like these:

if (!found) ... // found is a boolean declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean

Because ! is a unary operator, it has a high precedence and often
must be used with parentheses:

if (!(x > y && y > z))

	Boolean AND (&)

	
When used with boolean operands, the & operator behaves like the && operator, except that it always evaluates both operands, regardless of the value of the first operand. This operator is almost always used as a bitwise operator with integer operands, however, and many Java programmers would not even recognize its use with boolean operands as legal Java code.

	Boolean OR (|)

	
This operator performs a Boolean OR operation on its two boolean operands. It is like the || operator, except that it always evaluates both operands, even if the first one is true. The | operator is almost always used as a bitwise operator on integer operands; its use with boolean operands is very rare.

	Boolean XOR (^)

	
When used with boolean operands, this operator computes the exclusive OR (XOR) of its operands. It evaluates to true if exactly one of the two operands is true. In other words, it evaluates to false if both operands are false or if both operands are true. Unlike the && and || operators, this one must always evaluate both operands. The ^ operator is much more commonly used as a bitwise operator on integer operands. With boolean operands, this operator is equivalent to the != operator.

Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that
manipulate the individual bits that make up an integer value. The
bitwise operators are not commonly used in modern Java except for
low-level work (e.g., network programming). They are used for testing
and setting individual flag bits in a value. In order to understand
their behavior, you must understand binary (base-2) numbers and the
two’s complement format used to represent negative integers.

You cannot use these operators with floating-point, boolean, array, or
object operands. When used with boolean operands, the &, |, and
^ operators perform a different operation, as described in the
previous section.

If either of the arguments to a bitwise operator is a long, the result
is a long. Otherwise, the result is an int. If the left operand of a
shift operator is a long, the result is a long; otherwise, the
result is an int. The operators are:

	Bitwise complement (~)

	
The unary ~ operator is known as the bitwise complement, or bitwise NOT, operator. It inverts each bit of its single operand, converting 1s to 0s and 0s to 1s. For example:

byte b = ~12; // ~00001100 = => 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags

	Bitwise AND (&)

	
This operator combines its two integer operands by performing a Boolean AND operation on their individual bits. The result has a bit set only if the corresponding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 = => 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used
Boolean AND operator described earlier.

	Bitwise OR (|)

	
This operator combines its two integer operands by performing a Boolean OR operation on their individual bits. The result has a bit set if the corresponding bit is set in either or both of the operands. It has a zero bit only where both corresponding operand bits are zero. For example:

10 | 7 // 00001010 | 00000111 = => 00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used
Boolean OR operator described earlier.

	Bitwise XOR (^)

	
This operator combines its two integer operands by performing a Boolean XOR (exclusive OR) operation on their individual bits. The result has a bit set if the corresponding bits in the two operands are different. If the corresponding operand bits are both 1s or both 0s, the result bit is a 0. For example:

10 ^ 7 // 00001010 ^ 00000111 = => 00001101 or 13

When used with boolean operands, ^ is the seldom used Boolean
XOR operator.

	Left shift (<<)

	
The << operator shifts the bits of the left operand left by the number of places specified by the right operand. High-order bits of the left operand are lost, and zero bits are shifted in from the right. Shifting an integer left by n places is equivalent to multiplying that number by 2n. For example:

10 << 1 // 0b00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 0b00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4
 // 0xFFFF_FFFC == 0b1111_1111_1111_1111_1111_1111_1111_1100

If the left operand is a long, the right operand should be between 0
and 63. Otherwise, the left operand is taken to be an int, and the
right operand should be between 0 and 31.

	Signed right shift (>>)

	
The >> operator shifts the bits of the left operand to the right by the number of places specified by the right operand. The low-order bits of the left operand are shifted away and are lost. The high-order bits shifted in are the same as the original high-order bit of the left operand. In other words, if the left operand is positive, 0s are shifted into the high-order bits. If the left operand is negative, 1s are shifted in instead. This technique is known as sign extension; it is used to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >>
operator is the same as integer division by 2n.

	Unsigned right shift (>>>)

	
This operator is like the >> operator, except that it always shifts zeros into the high-order bits of the result, regardless of the sign of the lefthand operand. This technique is called zero extension; it is appropriate when the left operand is being treated as an unsigned value (despite the fact that Java integer types are all signed). These are examples:

0xff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
-50 >>> 2 // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Assignment Operators

The assignment operators store, or assign, a value into a piece of the computer’s memory—often referred to as a storage location.
The left operand must evaluate to an appropriate local variable, array element, or object field.

Note

The lefthand side of an assignment expression is sometimes called an lvalue. In Java it must refer to some assignable storage (i.e., memory that can be written to).

The righthand side (the rvalue) can be any value of a type compatible with the variable.
An assignment expression evaluates to the value that is assigned to the variable.
More importantly, however, the expression has the side effect of actually performing the assignment—storing the rvalue in the lvalue.

Tip

Unlike all other binary operators, the assignment operators are right-associative, which means that the assignments in a=b=c are performed right to left, as follows:
a=(b=c).

The basic assignment operator is =. Do not confuse it with the
equality operator, ==. In order to keep these two operators distinct,
we recommend that you read = as “is assigned the value.”

In addition to this simple assignment operator, Java also defines 11
other operators that combine assignment with the 5 arithmetic operators
and the 6 bitwise and shift operators. For example, the += operator reads the value of the left variable, adds the value of the right
operand to it, stores the sum back into the left variable as a side
effect, and returns the sum as the value of the expression. Thus, the
expression x+=2 is almost the same as x=x+2. The difference between
these two expressions is that when you use the += operator, the left
operand is evaluated only once. This makes a difference when that
operand has a side effect. Consider the following two expressions, which
are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:

lvalue op= rvalue

This is equivalent (unless there are side effects in lvalue) to:

lvalue = lvalue op rvalue

The available operators are:

+= -= *= /= %= // Arithmetic operators plus assignment

&= |= ^= // Bitwise operators plus assignment

<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and -=, although &=
and |= can also be useful when you are working with boolean flags. For
example:

i += 2; // Increment a loop counter by 2
c -= 5; // Decrement a counter by 5
flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary
(three-operand) operator inherited from C. It allows you to embed a
conditional within an expression. You can think of it as the operator
version of the if/else statement. The first and second operands of
the conditional operator are separated by a question mark (?), while
the second and third operands are separated by a colon (:). The first
operand must evaluate to a boolean value. The second and third
operands can be of any type, but they must be convertible to the same
type.

The conditional operator starts by evaluating its first operand. If it
is true, the operator evaluates its second operand and uses that as
the value of the expression. On the other hand, if the first operand is
false, the conditional operator evaluates and returns its third
operand. The conditional operator never evaluates both its second and
third operand, so be careful when using expressions with side effects
with this operator. Examples of this operator are:

int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other
operators except the assignment operators, so parentheses are not
usually necessary around the operands of this operator. Many programmers
find conditional expressions easier to read if the first operand is
placed within parentheses, however. This is especially true because the
conditional if statement always has its conditional expression written
within parentheses.

The instanceof Operator

The instanceof operator is intimately bound up with objects and the
operation of the Java type system. If this is your first look at Java,
it may be preferable to skim this definition and return to this section
after you have a decent grasp of Java’s objects.

instanceof requires an object or array value as its left operand and
the name of a reference type as its right operand. It evaluates to
true if the object or array is an instance of the specified type; it
returns false otherwise. If the left operand is null, instanceof
always evaluates to false. If an instanceof expression evaluates to
true, it means that you can safely cast and assign the left operand to
a variable of the type of the right operand.

The instanceof operator can be used only with reference types and
objects, not primitive types and values. Examples of instanceof are:

// True: all strings are instances of String
"string" instanceof String
// True: strings are also instances of Object
"" instanceof Object
// False: null is never an instance of anything
null instanceof String

Object o = new int[] {1,2,3};
o instanceof int[] // True: the array value is an int array
o instanceof byte[] // False: the array value is not a byte array
o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
 Point p = (Point) object;
}

In general, the use of instanceof is discouraged among Java programmers.
It is often a sign of questionable program design.
Under normal circumstances, the usage of instanceof can be avoided; it is only needed on rare occasions (but note that there are some cases where it is needed).

Special Operators

Java has six language constructs that are sometimes considered
operators and sometimes considered simply part of the basic language
syntax. These “operators” were included in
Table 2-4 in order to show their
precedence relative to the other true operators. The use of these
language constructs is detailed elsewhere in this book, but is described
briefly here so that you can recognize them in code examples:

	Member access (.)

	
An object is a collection of data and methods that operate on that data; the data fields and methods of an object are called its members. The dot (.) operator accesses these members. If o is an expression that evaluates to an object reference (or a class name), and f is the name of a field of the class, o.f evaluates to the value contained in that field. If m is the name of a method, o.m refers to that method and allows it to be invoked using the () operator shown later.

	Array element access ([])

	
An array is a numbered list of values. Each element of an array can be referred to by its number, or index. The [] operator allows you to refer to the individual elements of an array. If a is an array, and i is an expression that evaluates to an int, a[i] refers to one of the elements of a. Unlike other operators that work with integer values, this operator restricts array index values to be of type int or narrower.

	Method invocation (())

	
A method is a named collection of Java code that can be run, or invoked, by following the name of the method with zero or more comma-separated expressions contained within parentheses. The values of these expressions are the arguments to the method. The method processes the arguments and optionally returns a value that becomes the value of the method invocation expression. If o.m is a method that expects no arguments, the method can be invoked with o.m(). If the method expects three arguments, for example, it can be invoked with an expression such as o.m(x,y,z). o is referred to as the receiver of the method—if o is an object, then it is said to be the receiver object. Before the Java interpreter invokes a method, it evaluates each of the arguments to be passed to the method. These expressions are guaranteed to be evaluated in order from left to right (which matters if any of the arguments have side effects).

	Lambda expression (->)

	
A lambda expression is an anonymous collection of executable Java code, essentially a method body. It consists of a method argument list (zero or more comma-separated expressions contained within parentheses) followed by the lambda arrow operator followed by a block of Java code. If the block of code comprises just a single statement, then the usual curly braces to denote block boundaries can be omitted. If the lambda takes only a single argument, the parentheses around the argument can be omitted.

	Object creation (new)

	
In Java, objects are created with the new operator, which is followed by the type of the object to be created and a parenthesized list of arguments to be passed to the object constructor. A constructor is a special block of code that initializes a newly created object, so the object creation syntax is similar to the Java method invocation syntax. For example:

new ArrayList<String>();
new Point(1,2)

	Array creation (new)

	
Arrays are a special case of objects and they too are created with the new operator, with a slightly different syntax. The keyword is followed by the type of the array to be created and the size of the array encased in square brackets—for example, as new int[5]. In some circumstances arrays can also be created using the array literal syntax.

	Type conversion or casting (())

	
As we’ve already seen, parentheses can also be used as an operator to perform narrowing type conversions, or casts. The first operand of this operator is the type to be converted to; it is placed between the parentheses. The second operand is the value to be converted; it follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer
(String)h.get(k) // A generic object cast to a string

Statements

A statement is a basic unit of execution in the Java language—it
expresses a single piece of intent by the programmer. Unlike
expressions, Java statements do not have a value. Statements also
typically contain expressions and operators (especially assignment
operators) and are frequently executed for the side effects that they
cause.

Many of the statements defined by Java are flow-control statements,
such as conditionals and loops, that can alter the default, linear order
of execution in well-defined ways. Table 2-5 summarizes the statements defined by Java.

Table 2-5. Java statements

	Statement
	Purpose
	Syntax

	expression

	side effects

	variable = expr ; expr ++;
method (); new Type ();

	compound

	group statements

	{ statements }

	empty

	do nothing

	;

	labeled

	name a statement

	label : statement

	variable

	declare a variable

	[final] type name [=
value] [, name [= value]] …;

	if

	conditional

	if (expr) statement [else
statement]

	switch

	conditional

	switch (expr) { [case expr :
statements] … [default: statements] }

	while

	loop

	while (expr) statement

	do

	loop

	do statement while (expr);

	for

	simplified loop

	for (init ; test ; increment
) statement

	foreach

	collection iteration

	for (variable : iterable
) statement

	break

	exit block

	break [label] ;

	continue

	restart loop

	continue [label] ;

	return

	end method

	return [expr] ;

	synchronized

	critical section

	synchronized (expr) {
statements }

	throw

	throw exception

	throw expr ;

	try

	handle exception

	try { statements } [catch (
type name) { statements }] … [finally {
statements }]

	assert

	verify invariant

	assert invariant [error];

Expression Statements

As we saw earlier in the chapter, certain types of Java expressions
have side effects. In other words, they do not simply evaluate to some
value; they also change the program state in some way. You can use any expression
with side effects as a statement simply by following it with
a semicolon. The legal types of expression statements are assignments,
increments and decrements, method calls, and object creation. For
example:

a = 1; // Assignment
x *= 2; // Assignment with operation
i++; // Post-increment
--c; // Pre-decrement
System.out.println("statement"); // Method invocation

Compound Statements

A compound statement is any number and kind of statements grouped
together within curly braces. You can use a compound statement anywhere
a statement is required by Java syntax:

for(int i = 0; i < 10; i++) {
 a[i]++; // Body of this loop is a compound statement.
 b[i]--; // It consists of two expression statements
} // within curly braces.

The Empty Statement

An empty statement in Java is written as a single semicolon. The
empty statement doesn’t do anything, but the syntax is occasionally
useful. For example, you can use it to indicate an empty loop body in a
for loop:

for(int i = 0; i < 10; a[i++]++) // Increment array elements
 /* empty */; // Loop body is empty statement

Labeled Statements

A labeled statement is simply a statement that you have given a name
by prepending an identifier and a colon to it. Labels are used by the
break and continue statements. For example:

rowLoop: for(int r = 0; r < rows.length; r++) { // Labeled loop
 colLoop: for(int c = 0; c < columns.length; c++) { // Another one
 break rowLoop; // Use a label
 }
}

Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic
name for a location to store a value that is defined within a method or
compound statement. All variables must be declared before they can be
used; this is done with a variable declaration statement. Because Java
is a statically typed language, a variable declaration specifies the
type of the variable, and only values of that type can be stored in the
variable.

In its simplest form, a variable declaration specifies a variable’s type
and name:

int counter;
String s;

A variable declaration can also include an initializer: an expression
that specifies an initial value for the variable. For example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are discussed later

The Java compiler does not allow you to use a local variable that has
not been initialized, so it is usually convenient to combine variable
declaration and initialization into a single statement. The initializer
expression need not be a literal value or a constant expression that can
be evaluated by the compiler; it can be an arbitrarily complex
expression whose value is computed when the program is run.

If a variable has an initializer then the programmer can use a special syntax to ask the compiler to automatically work out the type, if it is possible to do so:

var i = 0; // type of i inferred as int
var s = readLine(); // type of s inferred as String

This can be a useful syntax, but when learning the Java language it is probably better to avoid it at first while you become familiar with the Java type system.

A single variable declaration statement can declare and initialize more
than one variable, but all variables must be of the same explicitly declared type.
Variable names and optional initializers are separated from each other with commas:

int i, j, k;
float x = 1.0f, y = 1.0f;
String question = "Really Quit?", response;

Variable declaration statements can begin with the final keyword.
This modifier specifies that once an initial value is defined for the
variable, that value is never allowed to change:

final String greeting = getLocalLanguageGreeting();

We will have more to say about the final keyword later on, especially
when talking about the immutable style of programming.

Java variable declaration statements can
appear anywhere in Java code; they are not restricted to the beginning
of a method or block of code. Local variable declarations can also be
integrated with the initialize portion of a for loop, as we’ll
discuss shortly.

Local variables can be used only within the method or block of code in
which they are defined. This is called their scope or lexical
scope:

void method() { // A method definition
 int i = 0; // Declare variable i
 while (i < 10) { // i is in scope here
 int j = 0; // Declare j; the scope of j begins here
 i++; // i is in scope here; increment it
 } // j is no longer in scope;
 System.out.println(i); // i is still in scope here
} // The scope of i ends here

The if/else Statement

The if statement is a fundamental control statement that allows Java
to make decisions or, more precisely, to execute statements
conditionally. The if statement has an associated expression and
statement. If the expression evaluates to true, the interpreter
executes the statement. If the expression evaluates to false, the
interpreter skips the statement.

Note

Java allows the expression to be of the wrapper type Boolean instead
of the primitive type boolean. In this case, the wrapper object is
automatically unboxed.

Here is an example if statement:

if (username == null) // If username is null,
 username = "John Doe"; // use a default value

Although they look extraneous, the parentheses around the expression are
a required part of the syntax for the if statement. As we already
saw, a block of statements enclosed in curly braces is itself a
statement, so we can write if statements that look like this as well:

if ((address == null) || (address.equals(""))) {
 address = "[undefined]";
 System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is
followed by a second statement. In this form of the statement, the
expression is evaluated, and, if it is true, the first statement is
executed. Otherwise, the second statement is executed. For example:

if (username != null)
 System.out.println("Hello " + username);
else {
 username = askQuestion("What is your name?");
 System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to
ensure that the else clause goes with the appropriate if statement.
Consider the following lines:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
else
 System.out.println("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement
allowed by the syntax of the outer if statement. Unfortunately, it is
not clear (except from the hint given by the indentation) which if the
else goes with. And in this example, the indentation hint is wrong.
The rule is that an else clause like this is associated with the
nearest if statement. Properly indented, this code looks like this:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
 else
 System.out.println("i doesn't equal j"); // WRONG!!

This is legal code, but it is clearly not what the programmer had in
mind. When working with nested if statements, you should use curly
braces to make your code easier to read. Here is a better way to write
the code:

if (i == j) {
 if (j == k)
 System.out.println("i equals k");
}
else {
 System.out.println("i doesn't equal j");
}

The else if clause

The if/else statement is useful for testing a condition and choosing
between two statements or blocks of code to execute. But what about when
you need to choose between several blocks of code? This is typically
done with an else if clause, which is not really new syntax, but a
common idiomatic usage of the standard if/else statement. It looks
like this:

if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if
statements, where each if is part of the else clause of the previous
statement. Using the else if idiom is preferable to, and more
legible than, writing these statements out in their fully nested form:

if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

The switch Statement

An if statement causes a branch in the flow of a program’s execution.
You can use multiple if statements, as shown in the previous section,
to perform a multiway branch. This is not always the best solution,
however, especially when all of the branches depend on the value of a
single variable.

In this case, the repeated if statements may seriously hamper readability, especially if the code has been refactored over time or features multiple levels of nested if.

A better solution is to use a switch statement, which is inherited
from the C programming language. Note, however, that the syntax of this statement is not nearly as elegant as other parts of Java,
and the failure to revisit the design of the feature is widely regarded as a mistake.

Note

A switch statement starts with an expression whose type is an int,
short, char, byte (or their wrapper type), String, or an enum
(see Chapter 4 for more on enumerated types).

This expression is followed by a block of code in curly braces that
contains various entry points that correspond to possible values for the
expression. For example, the following switch statement is equivalent
to the repeated if and else/if statements shown in the previous
section:

switch(n) {
 case 1: // Start here if n == 1
 // Execute code block #1
 break; // Stop here
 case 2: // Start here if n == 2
 // Execute code block #2
 break; // Stop here
 case 3: // Start here if n == 3
 // Execute code block #3
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4
 break; // Stop here
}

As you can see from the example, the various entry points into a
switch statement are labeled either with the keyword case,
followed by an integer value and a colon, or with the special default
keyword, followed by a colon. When a switch statement executes, the
interpreter computes the value of the expression in parentheses and then
looks for a case label that matches that value. If it finds one, the
interpreter starts executing the block of code at the first statement
following the case label. If it does not find a case label with a
matching value, the interpreter starts execution at the first statement
following a special-case default: label. Or, if there is no
default: label, the interpreter skips the body of the switch
statement altogether.

Note the use of the break keyword at the end of each case in the
previous code. The break statement is described later in this chapter,
but, in this example, it causes the interpreter to exit the body of the
switch statement. The case clauses in a switch statement specify
only the starting point of the desired code. The individual cases are
not independent blocks of code, and they do not have any implicit ending
point.

Warning

You must explicitly specify the end of each case with a break or related statement. In the absence of break statements, a switch statement begins executing code at the first statement after the matching case label and continues executing statements until it reaches the end of the block. The control flow will fall through into the next case label and continue executing, rather than exit the block.

On rare occasions, it is useful to write
code like this that falls through from one case label to the next, but
99% of the time you should be careful to end every case and default
section with a statement that causes the switch statement to stop
executing. Normally you use a break statement, but return and
throw also work.

As a consequence of this default fall-through, a switch statement can have more than one case clause labeling the same statement. Consider the switch statement in the following method:

boolean parseYesOrNoResponse(char response) {
 switch(response) {
 case 'y':
 case 'Y': return true;
 case 'n':
 case 'N': return false;
 default:
 throw new IllegalArgumentException("Response must be Y or N");
 }
}

The switch statement and its case labels have some important
restrictions. First, the expression associated with a switch
statement must have an appropriate type—either byte, char, short,
int (or their wrappers), or an enum type or a String. The
floating-point and boolean types are not supported, and neither is
long, even though long is an integer type. Second, the value
associated with each case label must be a constant value or a constant
expression the compiler can evaluate. A case label cannot contain a
runtime expression involving variables or method calls, for example.
Third, the case label values must be within the range of the data type
used for the switch expression. And finally, it is not legal to have
two or more case labels with the same value or more than one default
label.

The while Statement

The while statement is a basic statement that allows Java to perform
repetitive actions—or, to put it another way, it is one of Java’s
primary looping constructs. It has the following syntax:

while (expression)
 statement

The while statement works by first evaluating the expression,
which must result in a boolean or Boolean value. If the value is
false, the interpreter skips the statement associated with the
loop and moves to the next statement in the program. If it is true,
however, the statement that forms the body of the loop is executed,
and the expression is reevaluated. Again, if the value of
expression is false, the interpreter moves on to the next
statement in the program; otherwise, it executes the statement
again. This cycle continues while the expression remains true
(i.e., until it evaluates to false), at which point the while
statement ends, and the interpreter moves on to the next statement. You
can create an infinite loop with the syntax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
 System.out.println(count);
 count++;
}

As you can see, the variable count starts off at 0 in this example and
is incremented each time the body of the loop runs. Once the loop has
executed 10 times, the expression becomes false (i.e., count is no
longer less than 10), the while statement finishes, and the Java
interpreter can move to the next statement in the program. Most loops
have a counter variable like count. The variable names i, j, and
k are commonly used as loop counters, although you should use more
descriptive names if it makes your code easier to understand.

The do Statement

A do loop is much like a while loop, except that the loop
expression is tested at the bottom of the loop rather than at the top.
This means that the body of the loop is always executed at least once.
The syntax is:

do
 statement
while (expression);

Notice a couple of differences between the do loop and the more
ordinary while loop. First, the do loop requires both the do
keyword to mark the beginning of the loop and the while keyword to
mark the end and introduce the loop condition. Also, unlike the while
loop, the do loop is terminated with a semicolon. This is because the
do loop ends with the loop condition rather than simply ending with a
curly brace that marks the end of the loop body. The following do loop
prints the same output as the while loop just discussed:

int count = 0;
do {
 System.out.println(count);
 count++;
} while(count < 10);

The do loop is much less commonly used than its while cousin
because, in practice, it is unusual to encounter a situation where you
are sure you always want a loop to execute at least once.

The for Statement

The for statement provides a looping construct that is often more
convenient than the while and do loops. The for statement takes
advantage of a common looping pattern. Most loops have a counter, or
state variable of some kind, that is initialized before the loop starts,
tested to determine whether to execute the loop body, and then
incremented or updated somehow at the end of the loop body before the
test expression is evaluated again. The initialize, test, and update
steps are the three crucial manipulations of a loop variable, and the
for statement makes these three steps an explicit part of the loop
syntax:

for(initialize; test; update) {
 statement
}

This for loop is basically equivalent to the following while loop:

initialize;
while (test) {
 statement;
 update;
}

Placing the initialize, test, and update expressions at the top of a for loop makes it especially easy to understand what
the loop is doing, and it prevents mistakes such as forgetting to
initialize or update the loop variable. The interpreter discards the
values of the initialize and update expressions, so to be
useful, these expressions must have side effects. initialize is
typically an assignment expression, while update is usually an
increment, decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous
while and do loops have done:

int count;
for(count = 0 ; count < 10 ; count++)
 System.out.println(count);

Notice how this syntax places all the important information about the
loop variable on a single line, making it very clear how the loop
executes. Placing the update expression in the for statement itself
also simplifies the body of the loop to a single statement; we don’t
even need to use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more
convenient to use. Because many loops use their loop variables only
within the loop, the for loop allows the initialize expression to
be a full variable declaration, so that the variable is scoped to the
body of the loop and is not visible outside of it. For example:

for(int count = 0 ; count < 10 ; count++)
 System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing
loops that use only a single variable. Both the initialize and
update expressions of a for loop can use a comma to separate
multiple initializations and update expressions. For example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;

Even though all the examples so far have counted numbers, for loops
are not restricted to loops that count numbers. For example, you might
use a for loop to iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
 process(n);

The initialize, test, and update expressions of a for loop
are all optional; only the semicolons that separate the expressions are
required. If the test expression is omitted, it is assumed to be
true. Thus, you can write an infinite loop as for(;;).

The foreach Statement

Java’s for loop works well for primitive types, but it is needlessly
clunky for handling collections of objects. Instead, an alternative
syntax known as a foreach loop is used for handling collections of
objects that need to be looped over.

The foreach loop uses the keyword for followed by an opening
parenthesis, a variable declaration (without initializer), a colon, an
expression, a closing parenthesis, and finally the statement (or block)
that forms the body of the loop:

for(declaration : expression)
 statement

Despite its name, the foreach loop does not have a keyword
foreach—instead, it is common to read the colon as “in”—as in “foreach
name in studentNames.”

For the while, do, and for loops, we’ve shown an example that
prints 10 numbers. The foreach loop can do this too, but it needs a collection to iterate over. In order to loop 10 times (to print out 10
numbers), we need an array or other collection with 10 elements. Here’s
code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
 System.out.println(n);

What foreach cannot do

The foreach is different from the while, for, or do loops, because it
hides the loop counter or Iterator from you. This is a very powerful
idea, as we’ll see when we discuss lambda expressions, but there are
some algorithms that cannot be expressed very naturally with a foreach
loop.

For example, suppose you want to print the elements of an array as a
comma-separated list. To do this, you need to print a comma after every
element of the array except the last, or equivalently, before every
element of the array except the first. With a traditional for loop,
the code might look like this:

for(int i = 0; i < words.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(words[i]);
}

This is a very straightforward task, but you simply cannot do it with
foreach without keeping track of additional state. The problem is that the foreach loop doesn’t give you a loop
counter or any other way to tell if you’re on the first iteration, the
last iteration, or somewhere in between.

Note

A similar issue exists when you’re using foreach to iterate through the
elements of a collection. Just as a foreach loop over an array has no
way to obtain the array index of the current element, a foreach loop
over a collection has no way to obtain the Iterator object that is
being used to itemize the elements of the collection.

Here are some other things you cannot do with a foreach-style loop:

	
Iterate backward through the elements of an array or List.

	
Use a single loop counter to access the same-numbered elements of two
distinct arrays.

	
Iterate through the elements of a List using calls to its get()
method rather than calls to its iterator.

The break Statement

A break statement causes the Java interpreter to skip immediately to
the end of a containing statement. We have already seen the break
statement used with the switch statement. The break statement is
most often written as simply the keyword break followed by a
semicolon:

break;

When used in this form, it causes the Java interpreter to immediately
exit the innermost containing while, do, for, or switch
statement. For example:

for(int i = 0; i < data.length; i++) {
 if (data[i] == target) { // When we find what we're looking for,
 index = i; // remember where we found it
 break; // and stop looking!
 }
} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing
labeled statement. When used in this form, break causes the Java
interpreter to immediately exit the named block, which can be any kind
of statement, not just a loop or switch. For example:

TESTFORNULL: if (data != null) {
 for(int row = 0; row < numrows; row++) {
 for(int col = 0; col < numcols; col++) {
 if (data[row][col] == null)
 break TESTFORNULL; // treat the array as undefined.
 }
 }
} // Java interpreter goes here after executing break TESTFORNULL

The continue Statement

While a break statement exits a loop, a continue statement quits
the current iteration of a loop and starts the next one. continue, in
both its unlabeled and labeled forms, can be used only within a while,
do, or for loop. When used without a label, continue causes the
innermost loop to start a new iteration. When used with a label that is
the name of a containing loop, it causes the named loop to start a new
iteration. For example:

for(int i = 0; i < data.length; i++) { // Loop through data.
 if (data[i] == -1) // If a data value is missing,
 continue; // skip to the next iteration.
 process(data[i]); // Process the data value.
}

while, do, and for loops differ slightly in the way that
continue starts a new iteration:

	
With a while loop, the Java interpreter simply returns to the top of
the loop, tests the loop condition again, and, if it evaluates to
true, executes the body of the loop again.

	
With a do loop, the interpreter jumps to the bottom of the loop,
where it tests the loop condition to decide whether to perform another
iteration of the loop.

	
With a for loop, the interpreter jumps to the top of the loop,
where it first evaluates the update expression and then evaluates
the test expression to decide whether to loop again. As you can see
from the examples, the behavior of a for loop with a continue
statement is different from the behavior of the “basically equivalent”
while loop presented earlier; update gets evaluated in the for
loop but not in the equivalent while loop.

The return Statement

A return statement tells the Java interpreter to stop executing the
current method. If the method is declared to return a value, the
return statement must be followed by an expression. The value of the
expression becomes the return value of the method. For example, the
following method computes and returns the square of a number:

double square(double x) { // A method to compute x squared
 return x * x; // Compute and return a value
}

Some methods are declared void to indicate that they do not return
any value. The Java interpreter runs methods like this by executing
their statements one by one until it reaches the end of the method.
After executing the last statement, the interpreter returns implicitly.
Sometimes, however, a void method has to return explicitly before
reaching the last statement. In this case, it can use the return
statement by itself, without any expression. For example, the following
method prints, but does not return, the square root of its argument. If
the argument is a negative number, it returns without printing anything:

// A method to print square root of x
void printSquareRoot(double x) {
 if (x < 0) return; // If x is negative, return
 System.out.println(Math.sqrt(x)); // Print the square root of x
} // Method end: return implicitly

The synchronized Statement

Java has always provided support for multithreaded programming. We
cover this in some detail later on (especially in
“Java’s Support for Concurrency”); however, be aware
that concurrency is difficult to get right, and has a number of
subtleties.

In particular, when working with multiple threads, you must often take
care to prevent multiple threads from modifying an object simultaneously
in a way that might corrupt the object’s state. Java provides the
synchronized statement to help the programmer prevent corruption. The
syntax is:

synchronized (expression) {
 statements
}

expression is an expression that must evaluate to an object (including
arrays). statements constitute the code of the section that could
cause damage and must be enclosed in curly braces.

Note

In Java, the protection of object state (i.e., data) is the primary concern of the concurrency primitives. This is unlike some other languages, where the exclusion of threads from critical sections (i.e., code) is the main focus.

Before executing the statement block, the Java interpreter first obtains
an exclusive lock on the object or array specified by expression. It
holds the lock until it is finished running the block, then releases it.
While a thread holds the lock on an object, no other thread can obtain
that lock.

As well as the block form, synchronized can also be used as a method modifier in Java.
When applied to a method, the keyword indicates that the entire method is treated as synchronized.

For a synchronized instance method, Java obtains an exclusive lock on the class instance. (Class and instance methods are discussed in Chapter 3.)
It can be thought of as a synchronized (this) { ... } block that covers the entire method.

A static synchronized method (a class method) causes Java to obtain an exclusive lock on the class (technically the class object corresponding to the type) before executing the method.

The throw Statement

An exception is a signal that indicates some sort of exceptional
condition or error has occurred. To throw an exception is to signal
an exceptional condition. To catch an exception is to handle it—to
take whatever actions are necessary to recover from it.

In Java, the throw statement is used to throw an exception:

throw expression;

The expression must evaluate to an exception object that describes
the exception or error that has occurred. We’ll talk more about types
of exceptions shortly; for now, all you need to know is that an exception:

	
Is represented by an object

	
Has a type that is a subclass of Exception

	
Has a slightly specialized role in Java’s syntax

	
Can be of two different types: checked or unchecked

Here is some example code that throws an exception:

public static double factorial(int x) {
 if (x < 0)
 throw new IllegalArgumentException("x must be >= 0");
 double fact;
 for(fact=1.0; x > 1; fact *= x, x--)
 /* empty */ ; // Note use of the empty statement
 return fact;
}

When the Java interpreter executes a throw statement, it immediately
stops normal program execution and starts looking for an exception
handler that can catch, or handle, the exception. Exception handlers
are written with the try/catch/finally statement, which is described
in the next section. The Java interpreter first looks at the enclosing
block of code to see if it has an associated exception handler. If so,
it exits that block of code and starts running the exception-handling
code associated with the block. After running the exception handler, the
interpreter continues execution at the statement immediately following
the handler code.

If the enclosing block of code does not have an appropriate exception
handler, the interpreter checks the next higher enclosing block of code
in the method. This continues until a handler is found. If the method
does not contain an exception handler that can handle the exception
thrown by the throw statement, the interpreter stops running the
current method and returns to the caller. Now the interpreter starts
looking for an exception handler in the blocks of code of the calling
method. In this way, exceptions propagate up through the lexical
structure of Java methods, up the call stack of the Java interpreter. If
the exception is never caught, it propagates all the way up to the
main() method of the program. If it is not handled in that method,
the Java interpreter prints an error message, prints a stack trace to
indicate where the exception occurred, and then exits.

The try/catch/finally Statement

Java has two slightly different exception-handling mechanisms. The
classic form is the try/catch/finally statement. The try clause of
this statement establishes a block of code for exception handling. This
try block is followed by zero or more catch clauses, each of which
is a block of statements designed to handle specific exceptions. Each
catch block can handle more than one different exception—to indicate
that a catch block should handle multiple exceptions, we use the |
symbol to separate the different exceptions a catch block should handle.
The catch clauses are followed by an optional finally block that
contains cleanup code guaranteed to be executed regardless of what happens in the try block.

try Block Syntax

Both the catch and finally clauses are optional, but every try
block must either declare some automatically managed resources (the try-with-resources construct) or be accompanied by one or the other (or both).
The try, catch, and finally blocks all begin and end with curly braces.
These are a required part of the syntax and cannot be omitted, even if
the clause contains only a single statement.

The following code illustrates the syntax and purpose of the
try/catch/finally statement:

try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly with a throw statement or indirectly by calling
 // a method that throws an exception.
}
catch (SomeException e1) {
 // This block contains statements that handle an exception object
 // of type SomeException or a subclass of that type. Statements in
 // this block can refer to that exception object by the name e1.
}
catch (AnotherException | YetAnotherException e2) {
 // This block contains statements that handle an exception of
 // type AnotherException or YetAnotherException, or a subclass of
 // either of those types. Statements in this block refer to the
 // exception object they receive by the name e2.
}
finally {
 // This block contains statements that are always executed
 // after we leave the try clause, regardless of whether we leave it:
 // 1) normally, after reaching the bottom of the block;
 // 2) because of a break, continue, or return statement;
 // 3) with an exception that is handled by a catch clause above;
 // 4) with an uncaught exception that has not been handled.
 // If the try clause calls System.exit(), however, the interpreter
 // exits before the finally clause can be run.
}

try

The try clause simply establishes a block of code that either has its
exceptions handled or needs special cleanup code to be run when it
terminates for any reason. The try clause by itself doesn’t do
anything interesting; it is the catch and finally clauses that do
the exception-handling and cleanup operations.

catch

A try block can be followed by zero or more catch clauses that
specify code to handle various types of exceptions. Each catch clause
is declared with a single argument that specifies the types of
exceptions the clause can handle (possibly using the special | syntax
to indicate that the catch block can handle more than one type of
exception) and also provides a name the clause can use to refer to the
exception object it is currently handling. Any type that a catch block
wishes to handle must be some subclass of Throwable.

When an exception is thrown, the Java interpreter looks for a catch
clause with an argument that matches the same type as the exception
object or a superclass of that type. The interpreter invokes the first
such catch clause it finds. The code within a catch block should
take whatever action is necessary to cope with the exceptional
condition. If the exception is a java.io.FileNotFoundException
exception, for example, you might handle it by asking the user to check
his spelling and try again.

It is not required to have a catch clause for every possible
exception; in some cases, the correct response is to allow the exception
to propagate up and be caught by the invoking method. In other cases,
such as a programming error signaled by NullPointerException, the
correct response is probably not to catch the exception at all, but
allow it to propagate and have the Java interpreter exit with a stack
trace and an error message.

finally

The finally clause is generally used to clean up after the code in
the try clause (e.g., close files and shut down network connections).
The finally clause is useful because it is guaranteed to be executed
if any portion of the try block is executed, regardless of how the
code in the try block completes. In fact, the only way a try clause
can exit without allowing the finally clause to be executed is by
invoking the System.exit() method, which causes the Java interpreter
to stop running.

In the normal case, control reaches the end of the try block and then
proceeds to the finally block, which performs any necessary cleanup.
If control leaves the try block because of a return, continue, or
break statement, the finally block is executed before control
transfers to its new destination.

If an exception occurs in the try block and there is an associated
catch block to handle the exception, control transfers first to the
catch block and then to the finally block. If there is no local
catch block to handle the exception, control transfers first to the
finally block, and then propagates up to the nearest containing
catch clause that can handle the exception.

If a finally block itself transfers control with a return,
continue, break, or throw statement or by calling a method that
throws an exception, the pending control transfer is abandoned, and this
new transfer is processed. For example, if a finally clause throws an
exception, that exception replaces any exception that was in the process
of being thrown. If a finally clause issues a return statement, the
method returns normally, even if an exception has been thrown and has
not yet been handled.

try and finally can be used together without exceptions or any
catch clauses. In this case, the finally block is simply cleanup
code that is guaranteed to be executed, regardless of any break,
continue, or return statements within the try clause.

The try-with-resources Statement

The standard form of a try block is very general, but there is a common set of circumstances that require developers to be very careful when writing catch and finally blocks.
These circumstances are when operating with resources that need to be cleaned up or closed when they are no longer needed.

Java provides a very useful mechanism for automatically closing resources that require cleanup.
This is known as try-with-resources, or TWR. We discuss TWR in detail in “Classic Java I/O”, but for completeness, let’s introduce the syntax now.
The following example shows how to open a file using the FileInputStream class (which results in an object that will require cleanup):

try (InputStream is = new FileInputStream("/Users/ben/details.txt")) {
 // ... process the file
}

This new form of try takes parameters that are all objects that
require cleanup.2 These objects are scoped to this try block,
and are then cleaned up automatically no matter how this block is
exited. The developer does not need to write any catch or finally
blocks—the Java compiler automatically inserts correct cleanup code.

All new code that deals with resources should be written in the TWR
style—it is considerably less error prone than manually writing catch
blocks, and does not suffer from the problems that plague techniques
such as finalization (see “Finalization” for
details).

The assert Statement

An assert statement is an attempt to provide a capability to verify
design assumptions in Java code. An assertion consists of the
assert keyword followed by a boolean expression that the programmer
believes should always evaluate to true. By default, assertions are
not enabled, and the assert statement does not actually do anything.

It is possible to enable assertions as a debugging tool, however; when
this is done, the assert statement evaluates the expression. If it is
indeed true, assert does nothing. On the other hand, if the
expression evaluates to false, the assertion fails, and the assert
statement throws a java.lang.AssertionError.

Tip

Outside of the core JDK libraries, the assert statement is extremely
rarely used. It turns out to be too inflexible for testing most
applications and is not often used by ordinary developers. Instead, developers use ordinary testing libraries, such as JUnit.

The assert statement may include an optional second expression,
separated from the first by a colon. When assertions are enabled and the
first expression evaluates to false, the value of the second
expression is taken as an error code or error message and is passed to
the AssertionError() constructor. The full syntax of the statement is:

assert assertion;

or:

assert assertion : errorcode;

To use assertions effectively, you must also be aware of a couple of
fine points. First, remember that your programs will normally run with
assertions disabled and only sometimes with assertions enabled. This
means that you should be careful not to write assertion expressions that
contain side effects.

Warning

You should never throw AssertionError from your own code, as it may
have unexpected results in future versions of the platform.

If an AssertionError is thrown, it indicates that one of the
programmer’s assumptions has not held up. This means that the code is
being used outside of the parameters for which it was designed, and it
cannot be expected to work correctly. In short, there is no plausible
way to recover from an AssertionError, and you should not attempt to
catch it (unless you catch it at the top level simply so that you can
display the error in a more user-friendly fashion).

Enabling assertions

For efficiency, it does not make sense to test assertions each time
code is executed—assert statements encode assumptions that should
always be true. Thus, by default, assertions are disabled, and assert
statements have no effect. The assertion code remains compiled in the
class files, however, so it can always be enabled for diagnostic or
debugging purposes. You can enable assertions, either across the board
or selectively, with command-line arguments to the Java interpreter.

To enable assertions in all classes except for system classes, use the
-ea argument. To enable assertions in system classes, use -esa. To
enable assertions within a specific class, use -ea followed by a colon
and the class name:

java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its
subpackages, follow the -ea argument with a colon, the package name,
and three dots:

java -ea:com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument.
For example, to enable assertions throughout a package and then disable
them in a specific class or subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins..

Finally, it is possible to control whether or not assertions are enabled
or disabled at classloading time. If you use a custom classloader (see
Chapter 11 for details on custom classloading) in
your program and want to turn on assertions, you may be interested in
these methods.

Methods

A method is a named sequence of Java statements that can be invoked
by other Java code. When a method is invoked, it is passed zero or more
values known as arguments. The method performs some computations and,
optionally, returns a value. As described earlier in
“Expressions and Operators”, a method invocation is an
expression that is evaluated by the Java interpreter. Because method
invocations can have side effects, however, they can also be used as
expression statements. This section does not discuss method invocation,
but instead describes how to define methods.

Defining Methods

You already know how to define the body of a method; it is simply an
arbitrary sequence of statements enclosed within curly braces. What is
more interesting about a method is its signature.3 The signature specifies the following:

	
The name of the method

	
The number, order, type, and name of the parameters used by the method

	
The type of the value returned by the method

	
The checked exceptions that the method can throw (the signature may
also list unchecked exceptions, but these are not required)

	
Various method modifiers that provide additional information about the
method

A method signature defines everything you need to know about a method
before calling it. It is the method specification and defines the API
for the method. In order to use the Java platform’s online API
reference, you need to know how to read a method signature. And, in
order to write Java programs, you need to know how to define your own
methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method
body (the method implementation), which is simply a sequence of Java
statements enclosed in curly braces. If the method is abstract (see
Chapter 3), the implementation is omitted, and the
method body is replaced with a single semicolon.

The signature of a method may also include type variable
declarations—such methods are known as generic methods. Generic
methods and type variables are discussed in Chapter 4.

Here are some example method definitions, which begin with the signature
and are followed by the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have an entry point with this name and signature.
public static void main(String[] args) {
 if (args.length > 0) System.out.println("Hello " + args[0]);
 else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
 return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from
each other by spaces. A method might be declared with the public and
static modifiers, for example. The allowed modifiers and their
meanings are described in the next section.

The type in a method signature specifies the return type of the
method. If the method does not return a value, type must be void.
If a method is declared with a non-void return type, it must include
a return statement that returns a value of (or is convertible to) the
declared type.

A constructor is a block of code, similar to a method, that is used to
initialize newly created objects. As we’ll see in
Chapter 3, constructors are defined in a very
similar way to methods, except that their signatures do not include this
type specification.

The name of a method follows the specification of its modifiers and
type. Method names, like variable names, are Java identifiers and,
like all Java identifiers, may contain letters in any language
represented by the Unicode character set. It is legal, and often quite
useful, to define more than one method with the same name, as long as
each version of the method has a different parameter list. Defining
multiple methods with the same name is called method overloading.

Tip

Unlike some other languages, Java does not have anonymous methods.
Instead, Java 8 introduces lambda expressions, which are similar to
anonymous methods, but which the Java runtime automatically converts to
a suitable named method—see “Lambda Expressions”
for more details.

For example, the System.out.println() method we’ve seen already is
an overloaded method. One method by this name prints a string and other
methods by the same name print the values of the various primitive
types. The Java compiler decides which method to call based on the type
of the argument passed to the method.

When you are defining a method, the name of the method is always
followed by the method’s parameter list, which must be enclosed in
parentheses. The parameter list defines zero or more arguments that are
passed to the method. The parameter specifications, if there are any,
each consist of a type and a name and are separated from each other by
commas (if there are multiple parameters). When a method is invoked, the
argument values it is passed must match the number, type, and order of
the parameters specified in this method signature line. The values
passed need not have exactly the same type as specified in the
signature, but they must be convertible to those types without casting.

Note

When a Java method expects no arguments, its parameter list is simply
(), not (void). Java does not regard void as a type—C and C++
programmers in particular should pay heed.

Java allows the programmer to define and invoke methods that accept a
variable number of arguments, using a syntax known colloquially as
varargs. Varargs are covered in detail later in this chapter.

The final part of a method signature is the throws clause, which is
used to list the checked exceptions that a method can throw. Checked
exceptions are a category of exception classes that must be listed in
the throws clauses of methods that can throw them.

If a method uses the throw statement to throw a checked exception, the method must declare that it can throw that exception.
The method must also declare that it can throw in the case that it calls some other method that throws a checked exception, and the calling method does not explicitly catch that exception.

If a method can throw one or more checked exceptions, it specifies this by placing the throws keyword after the argument list and following it by the name of the exception class or classes it can throw.
If a method does not throw any exceptions, it does not use the
throws keyword. If a method throws more than one type of exception,
separate the names of the exception classes from each other with commas.
More on this in a bit.

Method Modifiers

The modifiers of a method consist of zero or more modifier keywords
such as public, static, or abstract. Here is a list of allowed
modifiers and their meanings:

	abstract

	
An abstract method is a specification without an implementation. The curly braces and Java statements that would normally comprise the body of the method are replaced with a single semicolon. A class that includes an abstract method must itself be declared abstract. Such a class is incomplete and cannot be instantiated (see Chapter 3).

	final

	
A final method may not be overridden or hidden by a subclass, which makes it amenable to compiler optimizations that are not possible for regular methods. All private methods are implicitly final, as are all methods of any class that is declared final.

	native

	
The native modifier specifies that the method implementation is written in some “native” language such as C and is provided externally to the Java program. Like abstract methods, native methods have no body: the curly braces are replaced with a semicolon.

Implementing native Methods

When Java was first released, native methods were sometimes used for
efficiency reasons. That is almost never necessary today. Instead,
native methods are used to interface Java code to existing libraries
written in C or C++. native methods are implicitly
platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the
implementation of the Java virtual machine. native methods are not
covered in this book.

	public, protected, private

	
These access modifiers specify whether and where a method can be used outside of the class that defines it. These very important modifiers are explained in Chapter 3.

	static

	
A method declared static is a class method associated with the class itself rather than with an instance of the class (we cover this in more detail in Chapter 3).

	strictfp

	
The fp in this awkwardly named, rarely used modifier stands for “floating point.” Java normally takes advantage of any extended precision available to the runtime platform’s floating-point hardware. The use of this keyword forces Java to strictly obey the standard while running the strictfp method and only perform floating-point arithmetic using 32- or 64-bit floating-point formats, even if this makes the results less accurate.

	synchronized

	
The synchronized modifier makes a method threadsafe. Before a thread can invoke a synchronized method, it must obtain a lock on the method’s class (for static methods) or on the relevant instance of the class (for non-static methods). This prevents two threads from executing the method at the same time.

The synchronized modifier is an implementation detail (because methods
can make themselves threadsafe in other ways) and is not formally part
of the method specification or API. Good documentation specifies
explicitly whether a method is threadsafe; you should not rely on the
presence or absence of the synchronized keyword when working with
multithreaded programs.

Tip

Annotations are an interesting special case (see
Chapter 4 for more on annotations)—they can be
thought of as a halfway house between a method modifier and additional
supplementary type information.

Checked and Unchecked Exceptions

The Java exception-handling scheme distinguishes between two types of
exceptions, known as checked and unchecked exceptions.

The distinction between checked and unchecked exceptions has to do with
the circumstances under which the exceptions could be thrown. Checked
exceptions arise in specific, well-defined circumstances, and very often
are conditions from which the application may be able to partially or
fully recover.

For example, consider some code that might find its configuration file
in one of several possible directories. If we attempt to open the file
from a directory it isn’t present in, then a FileNotFoundException
will be thrown. In our example, we want to catch this exception and move
on to try the next possible location for the file. In other words,
although the file not being present is an exceptional condition, it is
one from which we can recover, and it is an understood and anticipated
failure.

On the other hand, in the Java environment there are a set of failures
that cannot easily be predicted or anticipated, due to such things as
runtime conditions or abuse of library code. There is no good way to
predict an OutOfMemoryError, for example, and any method that uses
objects or arrays can throw a NullPointerException if it is passed an
invalid null argument.

These are the unchecked exceptions—and practically any method can throw
an unchecked exception at essentially any time. They are the Java
environment’s version of Murphy’s law: “Anything that can go wrong, will
go wrong.” Recovery from an unchecked exception is usually very
difficult, if not impossible—simply due to their sheer unpredictability.

To figure out whether an exception is checked or unchecked, remember
that exceptions are Throwable objects and that these fall into
two main categories, specified by the Error and Exception
subclasses. Any exception object that is an Error is unchecked. There
is also a subclass of Exception called RuntimeException—and any
subclass of RuntimeException is also an unchecked exception. All other
exceptions are checked exceptions.

Working with checked exceptions

Java has different rules for working with checked and unchecked
exceptions. If you write a method that throws a checked exception, you
must use a throws clause to declare the exception in the method
signature. The Java compiler checks to make sure you have declared them
in method signatures and produces a compilation error if you have not
(that’s why they’re called “checked exceptions”).

Even if you never throw a checked exception yourself, sometimes you must
use a throws clause to declare a checked exception. If your method
calls a method that can throw a checked exception, you must either
include exception-handling code to handle that exception or use throws
to declare that your method can also throw that exception.

For example, the following method tries to estimate the size of a web
page—it uses the standard java.net libraries, and the class URL
(we’ll meet these in Chapter 10) to contact the
web page. It uses methods and constructors that can throw various types of java.io.IOException objects, so it declares this fact with a
throws clause:

public static estimateHomepageSize(String host) throws IOException {
 URL url = new URL("htp://"+ host +"/");
 try (InputStream in = url.openStream()) {
 return in.available();
 }
}

In fact, the preceding code has a bug: we’ve misspelled the protocol
specifier—there’s no such protocol as htp://. So, the
estimateHomepageSize() method will always fail with a
MalformedURLException.

How do you know if the method you are calling can throw a checked
exception? You can look at its method signature to find out. Or, failing
that, the Java compiler will tell you (by reporting a compilation error)
if you’ve called a method whose exceptions you must handle or declare.

Variable-Length Argument Lists

Methods may be declared to accept, and may be invoked with, variable
numbers of arguments. Such methods are commonly known as varargs
methods. The “print formatted” method System.out.printf() as well
as the related format() methods of String use varargs, as do a
number of important methods from the Reflection API of
java.lang.reflect.

To declare a variable-length argument list, follow the type of the
last argument to the method with an ellipsis (...), indicating that
this last argument can be repeated zero or more times. For example:

public static int max(int first, int... rest) {
 /* body omitted for now */
}

Varargs methods are handled purely by the compiler. They operate by
converting the variable number of arguments into an array. To the Java
runtime, the max() method is indistinguishable from this one:

public static int max(int first, int[] rest) {
 /* body omitted for now */
}

To convert a varargs signature to the “real” signature, simply replace
... with []. Remember that only one ellipsis can appear in a
parameter list, and it may only appear on the last parameter in the
list.

Let’s flesh out the max() example a little:

public static int max(int first, int... rest) {
 int max = first;
 for(int i : rest) { // legal because rest is actually an array
 if (i > max) max = i;
 }
 return max;
}

This max() method is declared with two arguments. The first is just a
regular int value. The second, however, may be repeated zero or more
times. All of the following are legal invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

Because varargs methods are compiled into methods that expect an array
of arguments, invocations of those methods are compiled to include code
that creates and initializes such an array. So the call max(1,2,3) is
compiled to this:

max(1, new int[] { 2, 3 })

In fact, if you already have method arguments stored in an array, it is
perfectly legal for you to pass them to the method that way, instead of
writing them out individually. You can treat any ... argument as if it
were declared as an array. The converse is not true, however: you can
only use varargs method invocation syntax when the method is actually
declared as a varargs method using an ellipsis.

Introduction to Classes and Objects

Now that we have introduced operators, expressions, statements, and
methods, we can finally talk about classes. A class is a named collection of fields that hold data values and methods that operate on
those values. Classes are just one of five reference types supported by
Java, but they are the most important type. Classes are thoroughly
documented in a chapter of their own (Chapter 3).
We introduce them here, however, because they are the next higher level
of syntax after methods, and because the rest of this chapter requires a
basic familiarity with the concept of a class and the basic syntax for
defining a class, instantiating it, and using the resulting object.

The most important thing about classes is that they define new data
types. For example, you might define a class named Point to represent
a data point in the two-dimensional Cartesian coordinate system. This
class would define fields (each of type double) to hold the x and
y coordinates of a point and methods to manipulate and operate on the
point. The Point class is a new data type.

When discussing data types, it is important to distinguish between the
data type itself and the values the data type represents. char is a
data type: it represents Unicode characters. But a char value
represents a single specific character. A class is a data type; a class
value is called an object. We use the name class because each class
defines a type (or kind, or species, or class) of objects. The Point
class is a data type that represents x,y points, while a Point
object represents a single specific x,y point. As you might imagine,
classes and their objects are closely linked. In the sections that
follow, we will discuss both.

Defining a Class

Here is a possible definition of the Point class we have been
discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
 // The coordinates of the point
 public double x, y;
 public Point(double x, double y) { // A constructor that
 this.x = x; this.y = y; // initializes the fields
 }

 public double distanceFromOrigin() { // A method that operates
 return Math.sqrt(x*x + y*y); // on the x and y fields
 }
}

This class definition is stored in a file named Point.java and
compiled to a file named Point.class, where it is available for use by
Java programs and other classes. This class definition is provided here
for completeness and to provide context, but don’t expect to understand
all the details just yet; most of Chapter 3 is
devoted to the topic of defining classes.

Keep in mind that you don’t have to define every class you want to use
in a Java program. The Java platform includes thousands of predefined
classes that are guaranteed to be available on every computer that runs
Java.

Creating an Object

Now that we have defined the Point class as a new data type, we can
use the following line to declare a variable that holds a Point
object:

Point p;

Declaring a variable to hold a Point object does not create the object
itself, however. To actually create an object, you must use the new
operator. This keyword is followed by the object’s class (i.e., its
type) and an optional argument list in parentheses. These arguments are
passed to the constructor for the class, which initializes internal
fields in the new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object
Point p = new Point(2.0, -3.5);

// Create some other objects as well
// An object that represents the current time
LocalDateTime d = new LocalDateTime();
// A HashSet object to hold a set of strings
Set<String> words = new HashSet<>();

The new keyword is by far the most common way to create objects in
Java. A few other ways are also worth mentioning. First, classes that
meet certain criteria are so important that Java defines special literal
syntax for creating objects of those types (as we discuss later in this
section). Second, Java supports a dynamic loading mechanism that allows
programs to load classes and create instances of those classes
dynamically. See Chapter 11 for more details.
Finally, objects can also be created by deserializing them. An object
that has had its state saved, or serialized, usually to a file, can be
re-created using the java.io.ObjectInputStream class.

Using an Object

Now that we’ve seen how to define classes and instantiate them by
creating objects, we need to look at the Java syntax that allows us to
use those objects. Recall that a class defines a collection of fields
and methods. Each object has its own copies of those fields and has
access to those methods. We use the dot character (.) to access the
named fields and methods of an object. For example:

Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.x * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is very common when programming in object-oriented
languages, and Java is no exception, frequently. Note, in particular, the expressions p.distance FromOrigin(). This tells the Java
compiler to look up a method named distance FromOrigin() (which is
defined by the class Point) and use that method to perform a
computation on the fields of the object p. We’ll cover the details of
this operation in Chapter 3.

Object Literals

In our discussion of primitive types, we saw that each primitive type
has a literal syntax for including values of the type literally into the
text of a program. Java also defines a literal syntax for a few special
reference types, as described next.

String literals

The String class represents text as a string of characters. Because
programs usually communicate with their users through the written word,
the ability to manipulate strings of text is quite important in any
programming language. In Java, strings are objects; the data type used
to represent text is the String class. Modern Java programs usually
use more string data than anything else.

Accordingly, because strings are such a fundamental data type, Java
allows you to include text literally in programs by placing it between
double-quote (") characters. For example:

String name = "David";
System.out.println("Hello, " + name);

Don’t confuse the double-quote characters that surround string literals
with the single-quote (or apostrophe) characters that surround char
literals. String literals can contain any of the escape sequences
char literals can (see Table 2-2).
Escape sequences are particularly useful for embedding double-quote
characters within double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals cannot contain comments and may consist of only a single
line. Java does not support any kind of continuation-character syntax
that allows two separate lines to be treated as a single line. If you
need to represent a long string of text that does not fit on a single
line, break it into independent string literals and use the +
operator to concatenate the literals. For example:

// This is illegal; string literals cannot be broken across lines.
String x = "This is a test of the
 emergency broadcast system";

String s = "This is a test of the " + // Do this instead
 "emergency broadcast system";

The literals are concatenated when your program is compiled,
not when it is run, so you do not need to worry about any kind of
performance penalty.

Type literals

The second type that supports its own special object literal syntax is
the class named Class. Instances of the Class class represent a
Java data type, and contain metadata about the type that is referred to.
To include a Class object literally in a Java program, follow the name
of any data type with .class. For example:

Class<?> typeInt = int.class;
Class<?> typeIntArray = int[].class;
Class<?> typePoint = Point.class;

The null reference

The null keyword is a special literal value that is a reference to
nothing, or an absence of a reference. The null value is unique
because it is a member of every reference type. You can assign null
to variables of any reference type. For example:

String s = null;
Point p = null;

Lambda Expressions

In Java 8, a major new feature was introduced—lambda expressions. These are a very common programming language construct, and in
particular are extremely widely used in the family of languages known as functional programming languages (e.g., Lisp, Haskell, and OCaml).
The power and flexibility of lambdas goes far beyond just functional
languages, and they can be found in almost all modern programming
languages.

Definition of a Lambda Expression

A lambda expression is essentially a function that does not have a
name, and can be treated as a value in the language. As Java does not
allow code to run around on its own outside of classes, in Java, this
means that a lambda is an anonymous method that is defined on some class
(that is possibly unknown to the developer).

The syntax for a lambda expression looks like this:

(paramlist) -> { statements }

One simple, very traditional example:

Runnable r = () -> System.out.println("Hello World");

When a lambda expression is used as a value, it is automatically
converted to a new object of the correct type for the variable that it
is being placed into. This auto-conversion and type inference is essential to Java’s approach to lambda expressions. Unfortunately, it
relies on a proper understanding of Java’s type system as a whole.
“Nested Types” provides a more detailed
explanation of lambda expressions—so for now, it suffices to simply
recognize the syntax for lambdas.

A slightly more complex example:

ActionListener listener = (e) -> {
 System.out.println("Event fired at: "+ e.getWhen());
 System.out.println("Event command: "+ e.getActionCommand());
};

Arrays

An array is a special kind of object that holds zero or more
primitive values or references. These values are held in the elements
of the array, which are unnamed variables referred to by their position
or index. The type of an array is characterized by its element
type, and all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range
from zero to the number of elements minus one. The array element with
index 1, for example, is the second element in the array. The number
of elements in an array is its length. The length of an array is
specified when the array is created, and it never changes.

The element type of an array may be any valid Java type, including array
types. This means that Java supports arrays of arrays, which provide a
kind of multidimensional array capability. Java does not support the
matrix-style multidimensional arrays found in some languages.

Array Types

Array types are reference types, just as classes are. Instances of
arrays are objects, just as the instances of a class are.4 Unlike classes, array types do not
have to be defined. Simply place square brackets after the element
type. For example, the following code declares three variables of array
type:

byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array of byte values
byte[][] arrayOfArrayOfBytes; // byte[][] is an array of byte[]
String[] points; // String[] is an array of strings

The length of an array is not part of the array type. It is not
possible, for example, to declare a method that expects an array of
exactly four int values. If a method parameter is of type
int[], a caller can pass an array with any number (including zero) of
elements.

Array types are not classes, but array instances are objects. This
means that arrays inherit the methods of java.lang.Object. Arrays
implement the Cloneable interface and override the clone() method
to guarantee that an array can always be cloned and that clone() never
throws a CloneNotSupportedException. Arrays also implement
Serializable so that any array can be serialized if its element type
can be serialized. Finally, all arrays have a public final int field
named length that specifies the number of elements in the array.

Array type widening conversions

Because arrays extend Object and implement the Cloneable and
Serializable interfaces, any array type can be widened to any of these
three types. But certain array types can also be widened to other array
types. If the element type of an array is a reference type T, and T
is assignable to a type S, the array type T[] is assignable to the
array type S[]. Note that there are no widening conversions of this
sort for arrays of a given primitive type. As examples, the following
lines of code show legal array widening conversions:

String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfInt; // Created elsewhere
// String is assignable to Object,
// so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;
// String implements Comparable, so a String[] can
// be considered a Comparable[]
Comparable[] ca = arrayOfStrings;
// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;
// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];

This ability to widen an array type to another array type means that the
compile-time type of an array is not always the same as its runtime
type.

Tip

This widening is known as array covariance, and as we shall see in
“Bounded Type Parameters”, it is regarded by modern
standards as a historical artifact and a misfeature, because of the
mismatch between compile and runtime typing that it exposes.

The compiler must usually insert runtime checks before any operation
that stores a reference value into an array element to ensure that the
runtime type of the value matches the runtime type of the array element.
An ArrayStoreException is thrown if the runtime check fails.

C compatibility syntax

As we’ve seen, you write an array type simply by placing brackets after
the element type. For compatibility with C and C++, however, Java
supports an alternative syntax in variable declarations: brackets may
be placed after the name of the variable instead of, or in addition to,
the element type. This applies to local variables, fields, and method
parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1; // Preferred Java syntax
public String aas2[][]; // C syntax
public String[] aas3[]; // Confusing hybrid syntax

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }

Tip

This compatibility syntax is extremely uncommon, and you should not use
it.

Creating and Initializing Arrays

To create an array value in Java, you use the new keyword, just as
you do to create an object. Array types don’t have constructors, but you
are required to specify a length whenever you create an array. Specify
the desired size of your array as a nonnegative integer between square
brackets:

// Create a new array to hold 1024 bytes
byte[] buffer = new byte[1024];
// Create an array of 50 references to strings
String[] lines = new String[50];

When you create an array with this syntax, each of the array elements is
automatically initialized to the same default value that is used for the
fields of a class: false for boolean elements, \u0000 for char
elements, 0 for integer elements, 0.0 for floating-point elements, and
null for elements of reference type.

Array creation expressions can also be used to create and initialize a
multidimensional array of arrays. This syntax is somewhat more
complicated and is explained later in this section.

Array initializers

To create an array and initialize its elements in a single expression, omit the array length and follow the square brackets with a
comma-separated list of expressions within curly braces. The type of
each expression must be assignable to the element type of the array, of
course. The length of the array that is created is equal to the number
of expressions. It is legal, but not necessary, to include a trailing
comma following the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used
without ever being assigned to a variable. In a sense, these array
creation expressions are anonymous array literals. Here are examples:

// Call a method, passing an anonymous array literal that
// contains two strings
String response = askQuestion("Do you want to quit?",
 new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
 new Point(3,4),
 new Point(3,2) });

When an array initializer is part of a variable declaration, you may
omit the new keyword and element type and list the desired array
elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

Array literals are created and initialized when the program is run, not
when the program is compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

The fact that Java does all array initialization at runtime has an
important corollary. It means that the expressions in an array
initializer may be computed at runtime and need not be compile-time
constants. For example:

Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

Using Arrays

Once an array has been created, you are ready to start using it. The
following sections explain basic access to the elements of an array and
cover common idioms of array usage, such as iterating through the
elements of an array and copying an array or part of an array.

Accessing array elements

The elements of an array are variables. When an array element appears
in an expression, it evaluates to the value held in the element. And
when an array element appears on the lefthand side of an assignment
operator, a new value is stored into that element. Unlike a normal
variable, however, an array element has no name, only a number. Array
elements are accessed using a square bracket notation. If a is an
expression that evaluates to an array reference, you index that array
and refer to a specific element with a[i], where i is an integer
literal or an expression that evaluates to an int. For example:

// Create an array of two strings
String[] responses = new String[2];
responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
 responses[1] + "): ");

// Both the array reference and the array index may be more complex
double datum = data.getMatrix()[data.row() * data.numColumns() +
 data.column()];

The array index expression must be of type int, or a type that can be
widened to an int: byte, short, or even char. It is obviously
not legal to index an array with a boolean, float, or double
value. Remember that the length field of an array is an int and that
arrays may not have more than Integer.MAX_VALUE elements. Indexing an
array with an expression of type long generates a compile-time error,
even if the value of that expression at runtime would be within the
range of an int.

Array bounds

Remember that the first element of an array a is a[0] , the second element is a[1], and the last is a[a.length-1].

A common bug involving arrays is use of an index that is too small (a
negative index) or too large (greater than or equal to the array
length). In languages like C or C++, accessing elements before the
beginning or after the end of an array yields unpredictable behavior
that can vary from invocation to invocation and platform to platform.
Such bugs may not always be caught, and if a failure occurs, it may be
at some later time. While it is just as easy to write faulty array
indexing code in Java, Java guarantees predictable results by checking
every array access at runtime. If an array index is too small or too
large, Java immediately throws an ArrayIndexOutOfBoundsException.

Iterating arrays

It is common to write loops that iterate through each of the elements
of an array in order to perform some operation on it. This is typically
done with a for loop. The following code, for example, computes the
sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)
 sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you’ll see it
frequently. Java also has the foreach syntax that we’ve already met. The summing code could be rewritten succinctly as follows:

for(int p : primes) sumOfPrimes += p;

Copying arrays

All array types implement the Cloneable interface, and any array can
be copied by invoking its clone() method. Note that a cast is
required to convert the return value to the appropriate array type, but the clone() method of arrays is guaranteed not to throw
CloneNotSupportedException:

int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();

The clone() method makes a shallow copy. If the element type of the
array is a reference type, only the references are copied, not the
referenced objects themselves. Because the copy is shallow, any array
can be cloned, even if the element type is not itself Cloneable.

Sometimes you simply want to copy elements from one existing array to
another existing array. The System.arraycopy() method is designed to
do this efficiently, and you can assume that Java VM implementations
perform this method using high-speed block copy operations on the
underlying hardware.

arraycopy() is a straightforward function that is difficult to use
only because it has five arguments to remember. First, pass the source
array from which elements are to be copied. Second, pass the index of
the start element in that array. Pass the destination array and the
destination index as the third and fourth arguments. Finally, as the
fifth argument, specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the
same array. For example, if you’ve “deleted” the element at index 0
from array a and want to shift the elements between indexes 1 and
n down one so that they occupy indexes 0 through n-1, you could do
this:

System.arraycopy(a, 1, a, 0, n);

Array utilities

The java.util.Arrays class contains a number of static utility
methods for working with arrays. Most of these methods are heavily
overloaded, with versions for arrays of each primitive type and another
version for arrays of objects. The sort() and binarySearch() methods
are particularly useful for sorting and searching arrays. The equals()
method allows you to compare the content of two arrays. The
Arrays.toString() method is useful when you want to convert array
content to a string, such as for debugging or logging output.

The Arrays class also includes deepEquals(), deepHashCode(), and
deepToString() methods that work correctly for multidimensional
arrays.

Multidimensional Arrays

As we’ve seen, an array type is written as the element type followed
by a pair of square brackets. An array of char is char[], and an
array of arrays of char is char[][]. When the elements of an array
are themselves arrays, we say that the array is multidimensional. In
order to work with multidimensional arrays, you need to understand a few
additional details.

Imagine that you want to use a multidimensional array to represent a
multiplication table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this
is a two-dimensional array. To access a single int element of this
two-dimensional array, you must specify two index values, one for each
dimension. Assuming that this array was actually initialized as a
multiplication table, the int value stored at any given element would
be the product of the two indexes. That is, products[2][4] would be 8,
and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and
specify the size of both dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block
of 100 int values. Java does not work this way. This line of code does
three things:

	
Declares a variable named products to hold an array of arrays of
int.

	
Creates a 10-element array to hold 10 arrays of int.

	
Creates 10 more arrays, each of which is a 10-element array of int.
It assigns each of these 10 new arrays to the elements of the initial
array. The default value of every int element of each of these 10 new
arrays is 0.

To put this another way, the previous single line of code is equivalent
to the following code:

int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++) // Loop 10 times...
 products[i] = new int[10]; // ...and create 10 arrays

The new keyword performs this additional initialization automatically
for you. It works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to
specify a size for all dimensions of the array, only the leftmost
dimension or dimensions. For example, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of
the array can hold a float[][]. The second line creates a
two-dimensional array, where each element of the array is a float[].
If you specify a size for only some of the dimensions of an array,
however, those dimensions must be the leftmost ones. The following lines
are not legal:

float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be
initialized using an array initializer. Simply use nested sets of curly
braces to nest arrays within arrays. For example, we can declare,
create, and initialize a 5 × 5 multiplication table like this:

int[][] products = { {0, 0, 0, 0, 0},
 {0, 1, 2, 3, 4},
 {0, 2, 4, 6, 8},
 {0, 3, 6, 9, 12},
 {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a
variable, you can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
 { "Yes", "No" },
 { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, it is
usually good practice to only use rectangular arrays: one in which
all the array values for a given dimension have the same size.

Reference Types

Now that we’ve covered arrays and introduced classes and objects, we
can turn to a more general description of reference types. Classes and
arrays are two of Java’s five kinds of reference types. Classes were
introduced earlier and are covered in complete detail, along with
interfaces, in Chapter 3. Enumerated types and
annotation types are reference types introduced in
Chapter 4.

This section does not cover specific syntax for any particular reference
type, but instead explains the general behavior of reference types and
illustrates how they differ from Java’s primitive types. In this
section, the term object refers to a value or instance of any
reference type, including arrays.

Reference Versus Primitive Types

Reference types and objects differ substantially from primitive types
and their primitive values:

	
Eight primitive types are defined by the Java language, and the
programmer cannot define new primitive types. Reference types are
user-defined, so there is an unlimited number of them. For example, a
program might define a class named Point and use objects of this newly
defined type to store and manipulate x,y points in a Cartesian
coordinate system.

	
Primitive types represent single values. Reference types are aggregate
types that hold zero or more primitive values or objects. Our
hypothetical Point class, for example, might hold two double values
to represent the x and y coordinates of the points. The char[] and
Point[] array types are aggregate types because they hold a sequence
of primitive char values or Point objects.

	
Primitive types require between one and eight bytes of memory. When a
primitive value is stored in a variable or passed to a method, the
computer makes a copy of the bytes that hold the value. Objects, on the
other hand, may require substantially more memory. Memory to store an
object is dynamically allocated on the heap when the object is created
and this memory is automatically “garbage collected” when the object is
no longer needed.

Tip

When an object is assigned to a variable or passed to a method, the
memory that represents the object is not copied. Instead, only a
reference to that memory is stored in the variable or passed to the
method.

References are completely opaque in Java and the representation of a
reference is an implementation detail of the Java runtime. If you are a
C programmer, however, you can safely imagine a reference as a pointer
or a memory address. Remember, though, that Java programs cannot
manipulate references in any way.

Unlike pointers in C and C++, references cannot be converted to or from
integers, and they cannot be incremented or decremented. C and C++
programmers should also note that Java does not support the &
address-of operator or the * and -> dereference operators.

Manipulating Objects and Reference Copies

The following code manipulates a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value
held in the variable x. Inside the Java VM, there are two independent
copies of the 32-bit integer 42.

Now think about what happens if we run the same basic code but use a
reference type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference
held in the variable p. There is still only one copy of the Point
object in the VM, but there are now two copies of the reference to that
object. This has some important implications. Suppose the two previous
lines of code are followed by this code:

System.out.println(p.x); // Print out the x coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Because the variables p and q hold references to the same object,
either variable can be used to make changes to the object, and those
changes are visible through the other variable as well. As arrays are a
kind of object, the same thing happens with arrays, as illustrated
by the following code:

// greet holds an array reference
char[] greet = { 'h','e','l','l','o' };
char[] cuss = greet; // cuss holds the same reference
cuss[4] = '!'; // Use reference to change an element
System.out.println(greet); // Prints "hell!"

A similar difference in behavior between primitive types and reference
types occurs when arguments are passed to methods. Consider the
following method:

void changePrimitive(int x) {
 while(x > 0) {
 System.out.println(x--);
 }
}

When this method is invoked, the method is given a copy of the argument
used to invoke the method in the parameter x. The code in the method
uses x as a loop counter and decrements it to zero. Because x is a
primitive type, the method has its own private copy of this value, so
this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that
the parameter is a reference type:

void changeReference(Point p) {
 while(p.x > 0) {
 System.out.println(p.x--);
 }
}

When this method is invoked, it is passed a private copy of a reference
to a Point object and can use this reference to change the Point
object. For example, consider the following:

Point q = new Point(3.0, 4.5); // A point with an x coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The x coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of
the reference held in variable q. Now both the variable q and the
method parameter p hold references to the same object. The method can
use its reference to change the contents of the object. Note, however,
that it cannot change the contents of the variable q. In other words,
the method can change the Point object beyond recognition, but it
cannot change the fact that the variable q refers to that object.

Comparing Objects

We’ve seen that primitive types and reference types differ
significantly in the way they are assigned to variables, passed to
methods, and copied. The types also differ in the way they are compared
for equality. When used with primitive values, the equality operator
(==) simply tests whether two values are identical (i.e., whether
they have exactly the same bits). With reference types, however, ==
compares references, not actual objects. In other words, == tests
whether two references refer to the same object; it does not test
whether two objects have the same content. Here’s an example:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 };
// A copy with identical content.
byte[] b = (byte[]) a.clone();
if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, keep in mind there are two kinds of equality:
equality of reference and equality of object. It is important to
distinguish between these two kinds of equality. One way to do this is
to use the word “identical” when talking about equality of references
and the word “equal” when talking about two distinct objects that have
the same content. To test two nonidentical objects for equality, pass
one of them to the equals() method of the other:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) { // And the equals() method
 System.out.println("equal"); // tells us so.
}

All objects inherit an equals() method (from Object), but the
default implementation simply uses == to test for identity of
references, not equality of content. A class that wants to allow objects
to be compared for equality can define its own version of the equals()
method. Our Point class does not do this, but the String class does,
as indicated in the code example. You can call the equals() method on
an array, but it is the same as using the == operator, because arrays
always inherit the default equals() method that compares references
rather than array content. You can compare arrays for equality with the java.util.Arrays.equals() convenience method.

Boxing and Unboxing Conversions

Primitive types and reference types behave quite differently. It is
sometimes useful to treat primitive values as objects, and for this
reason, the Java platform includes wrapper classes for each of the primitive types. Boolean, Byte, Short, Character, Integer,
Long, Float, and Double are immutable, final classes whose
instances each hold a single primitive value. These wrapper classes are
usually used when you want to store primitive values in collections
such as java.util.List:

// Create a List-of-Integer collection
List<Integer> numbers = new ArrayList<>();
// Store a wrapped primitive
numbers.add(new Integer(-1));
// Extract the primitive value
int i = numbers.get(0).intValue();

Java allows types of conversions known as boxing and unboxing conversions. Boxing conversions convert a primitive value to its
corresponding wrapper object and unboxing conversions do the opposite. You may explicitly specify a boxing or unboxing conversion with a cast,
but this is unnecessary, as these conversions are automatically
performed when you assign a value to a variable or pass a value to a
method. Furthermore, unboxing conversions are also automatic if you use
a wrapper object when a Java operator or statement expects a primitive
value. Because Java performs boxing and unboxing automatically, this
language feature is often known as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer i = 0; // int literal 0 boxed to an Integer object
Number n = 0.0f; // float literal boxed to Float and widened to Number
Integer i = 1; // this is a boxing conversion
int j = i; // i is unboxed here
i++; // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i; // unboxing here throws a NullPointerException

Autoboxing makes dealing with collections much easier as well. Let’s
look at an example that uses Java’s generics (a language feature we’ll
meet properly in “Java Generics”) that allows
us to restrict what types can be put into lists and other collections:

List<Integer> numbers = new ArrayList<>(); // Create a List of Integer
numbers.add(-1); // Box int to Integer
int i = numbers.get(0); // Unbox Integer to int

Packages and the Java Namespace

A package is a named collection of classes, interfaces, and other
reference types. Packages serve to group related classes and define a
namespace for the classes they contain.

The core classes of the Java platform are in packages whose names
begin with java. For example, the most fundamental classes of the
language are in the package java.lang. Various utility classes are in
java.util. Classes for input and output are in java.io, and classes
for networking are in java.net. Some of these packages contain
subpackages, such as java.lang.reflect and java.util.regex.
Extensions to the Java platform that have been standardized by Oracle
(or originally Sun) typically have package names that begin with
javax. Some of these extensions, such as javax.swing and its myriad
subpackages, were later adopted into the core platform itself. Finally,
the Java platform also includes several “endorsed standards,” which have
packages named after the standards body that created them, such as
org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its
definition, and a fully qualified name, which includes the name of the
package of which it is a part. The String class, for example, is part
of the java.lang package, so its fully qualified name is
java.lang.String.

This section explains how to place your own classes and interfaces into
a package and how to choose a package name that won’t conflict with
anyone else’s package name. Next, it explains how to selectively import
type names or static members into the namespace so that you don’t have
to type the package name of every class or interface you use.

Package Declaration

To specify the package a class is to be part of, you use a package
declaration. The package keyword, if it appears, must be the first
token of Java code (i.e., the first thing other than comments and space)
in the Java file. The keyword should be followed by the name of the
desired package and a semicolon. Consider a Java file that begins with
this directive:

package org.apache.commons.net;

All classes defined by this file are part of the package
org.apache.commons.net.

If no package directive appears in a Java file, all classes defined in
that file are part of an unnamed default package. In this case, the
qualified and unqualified names of a class are the same.

Tip

The possibility of naming conflicts means that you should not use the
default package. As your project grows more complicated, conflicts
become almost inevitable—much better to create packages right from the
start.

Globally Unique Package Names

One of the important functions of packages is to partition the Java
namespace and prevent name collisions between classes. It is only
their package names that keep the java.util.List and java.awt.List
classes distinct, for example. In order for this to work, however,
package names must themselves be distinct. As the developer of Java,
Oracle controls all package names that begin with java, javax, and
sun.

One common scheme is to use your domain name, with its elements
reversed, as the prefix for all your package names. For example, the
Apache Project produces a networking library as part of the Apache
Commons project. The Commons project can be found at
http://commons.apache.org/ and
accordingly, the package name used for the networking library is
org.apache.commons.net.

Note that these package-naming rules apply primarily to API developers.
If other programmers will be using classes that you develop along with
unknown other classes, it is important that your package name be
globally unique. On the other hand, if you are developing a Java
application and will not be releasing any of the classes for reuse by
others, you know the complete set of classes that your application will
be deployed with and do not have to worry about unforeseen naming
conflicts. In this case, you can choose a package naming scheme for your
own convenience rather than for global uniqueness. One common approach
is to use the application name as the main package name (it may have
subpackages beneath it).

Importing Types

When referring to a class or interface in your Java code, you must,
by default, use the fully qualified name of the type, including the
package name. If you’re writing code to manipulate a file and need to
use the File class of the java.io package, you must type
java.io.File. This rule has three exceptions:

	
Types from the package java.lang are so important and so commonly
used that they can always be referred to by their simple names.

	
The code in a type p.T may refer to other types defined in the
package p by their simple names.

	
Types that have been imported into the namespace with an import
declaration may be referred to by their simple names.

The first two exceptions are known as “automatic imports.” The types
from java.lang and the current package are “imported” into the
namespace so that they can be used without their package name. Typing
the package name of commonly used types that are not in java.lang or
the current package quickly becomes tedious, and so it is also possible
to explicitly import types from other packages into the namespace. This
is done with the import declaration.

import declarations must appear at the start of a Java file,
immediately after the package declaration, if there is one, and before
any type definitions. You may use any number of import declarations in
a file. An import declaration applies to all type definitions in the
file (but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the
namespace, follow the import keyword with the name of the type and a
semicolon:

import java.io.File; // Now we can type File instead of java.io.File

This is known as the “single type import" declaration.

The other form of import declaration is the “on-demand type import.” In this form,
you specify the name of a package followed by the characters .* to indicate that any type from that package may be used without its package
name. Thus, if you want to use several other classes from the java.io
package in addition to the File class, you can simply import the
entire package:

import java.io.*; // Use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I
import the java.util package, I must still refer to the
java.util.zip.ZipInputStream class by its fully qualified name.

Using an on-demand type import declaration is not the same as explicitly
writing out a single type import declaration for every type in the
package. It is more like an explicit single type import for every type
in the package that you actually use in your code. This is the reason
it’s called “on demand”; types are imported as you use them.

Naming conflicts and shadowing

import declarations are invaluable to Java programming. They do
expose us to the possibility of naming conflicts, however. Consider the
packages java.util and java.awt. Both contain types named List.

java.util.List is an important and commonly used interface. The
java.awt package contains a number of important types that are
commonly used in client-side applications, but java.awt.List has been
superseded and is not one of these important types. It is illegal to
import both java.util.List and java.awt.List in the same Java file.
The following single type import declarations produce a compilation
error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List.
This type can be imported “on demand” from either package, and any
attempt to use List as an unqualified type name produces a compilation
error. The workaround, in this case, is to explicitly specify the
package name you want.

Because java.util.List is much more commonly used than
java.awt.List, it is useful to combine the two on-demand type import
declarations with a single type import declaration that serves to
disambiguate what we mean when we say List:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List

With these import declarations in place, we can use List to mean the
java.util.List interface. If we actually need to use the
java.awt.List class, we can still do so as long as we include its
package name. There are no other naming conflicts between java.util
and java.awt, and their types will be imported “on demand” when we use
them without a package name.

Importing Static Members

As well as types, you can import the static members of types using
the keywords import static. (Static members are explained in
Chapter 3. If you are not already familiar with
them, you may want to come back to this section later.) Like type import
declarations, these static import declarations come in two forms:
single static member import and on-demand static member import. Suppose,
for example, that you are writing a text-based program that sends a lot
of output to System.out. In this case, you might use this single
static member import to save yourself typing:

import static java.lang.System.out;

You can then use out.println() instead of
System.out.println(). Or suppose you are writing a program that uses
many of the trigonometric and other functions of the Math class. In a
program that is clearly focused on numerical methods like this, having
to repeatedly type the class name “Math” does not add clarity to your
code; it just gets in the way. In this case, an on-demand static member
import may be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions
like sqrt(abs(sin(x))) without having to prefix the name of each
static method with the class name Math.

Another important use of import static declarations is to import the
names of constants into your code. This works particularly well with
enumerated types (see Chapter 4). Suppose, for
example, that you want to use the values of this enumerated type in code
you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix
the constants with the type name: Seasons.SPRING. For more concise
code, you could import the enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better technique than implementing an interface that defines the constants.

Static member imports and overloaded methods

A static import declaration imports a name, not any one specific
member with that name. Because Java allows method overloading and
allows a type to have fields and methods with the same name, a single
static member import declaration may actually import more than one
member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one
of the 19 sort() methods defined by java.util.Arrays. If you use the
imported name sort to invoke a method, the compiler will look at the
types of the method arguments to determine which method you mean.

It is even legal to import static methods with the same name from two or
more different types as long as the methods all have different
signatures. Here is one natural example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it
does not because the sort() methods defined by the Collections class
have different signatures than all of the sort() methods defined by
the Arrays class. When you use the name “sort” in your code, the
compiler looks at the types of the arguments to determine which of the
21 possible imported methods you mean.

Java Source File Structure

This chapter has taken us from the smallest to the largest elements of
Java syntax, from individual characters and tokens to operators,
expressions, statements, and methods, and on up to classes and packages.
From a practical standpoint, the unit of Java program structure you will
be dealing with most often is the Java file. A Java file is the smallest
unit of Java code that can be compiled by the Java compiler. A Java file
consists of:

	
An optional package directive

	
Zero or more import or import static directives

	
One or more type definitions

These elements can be interspersed with comments, of course, but they
must appear in this order. This is all there is to a Java file. All Java
statements (except the package and import directives, which are not
true statements) must appear within methods, and all methods must appear
within a type definition.

Java files have a couple of other important restrictions. First, each
file can contain at most one top-level class that is declared public.
A public class is one that is designed for use by other classes in
other packages. A class can contain any number of nested or inner
classes that are public. We’ll see more about the public modifier
and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java
file contains a public class, the name of the file must be the same as
the name of the class, with the extension .java appended. Therefore,
if Point is defined as a public class, its source code must appear
in a file named Point.java. Regardless of whether your classes are
public or not, it is good programming practice to define only one per
file and to give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled
into a separate class file that contains Java byte codes to be
executed by the Java Virtual Machine. A class file has the same name
as the class it defines, with the extension .class appended. Thus, if
the file Point.java defines a class named Point, a Java compiler
compiles it to a file named Point.class. On most systems, class files
are stored in directories that correspond to their package names. For example, the
class com.davidflanagan.examples.Point is defined by the class
file com/davidflanagan/examples/Point.class.

The Java runtime knows where the class files for the standard system
classes are located and can load them as needed. When the interpreter
runs a program that wants to use a class named
com.davidflanagan.examples.Point, it knows that the code for that
class is located in a directory named com/davidflanagan/examples/ and,
by default, it “looks” in the current directory for a subdirectory of
that name. In order to tell the interpreter to look in locations other
than the current directory, you must use the -classpath option when
invoking the interpreter or set the CLASSPATH environment variable.
For details, see the documentation for the Java executable, java, in
Chapter 13.

Defining and Running Java Programs

A Java program consists of a set of interacting class definitions. But
not every Java class or Java file defines a program. To create a
program, you must define a class that has a special method with the
following signature:

public static void main(String[] args)

This main() method is the main entry point for your program. It is
where the Java interpreter starts running. This method is passed an
array of strings and returns no value. When main() returns, the Java
interpreter exits (unless main() has created separate threads, in
which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java executable, java,
specifying the fully qualified name of the class that contains the
main() method. Note that you specify the name of the class, not the
name of the class file that contains the class. Any additional arguments
you specify on the command line are passed to the main() method as its
String[] parameter. You may also need to specify the -classpath
option (or -cp) to tell the interpreter where to look for the classes
needed by the program. Consider the following command:

java -classpath /opt/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter.
-classpath /opt/Jude tells the interpreter where to look for
.class files. com.davidflanagan.jude.Jude is the name of the program
to run (i.e., the name of the class that defines the main() method).
Finally, datafile.jude is a string that is passed to that main()
method as the single element of an array of String objects.

There is an easier way to run programs. If a program and all its
auxiliary classes (except those that are part of the Java platform) have
been properly bundled in a Java archive (JAR) file, you can run the
program simply by specifying the name of the JAR file. In the next
example, we show how to start up the Censum garbage collection log
analyzer:

java -jar /usr/local/Censum/censum.jar

Some operating systems make JAR files automatically executable. On those
systems, you can simply say:

% /usr/local/Censum/censum.jar

See Chapter 13 for more details on how to execute
Java programs.

Summary

In this chapter, we’ve introduced the basic syntax of the Java language.
Due to the interlocking nature of the syntax of programming languages,
it is perfectly fine if you don’t feel at this point that you have
completely grasped all of the syntax of the language. It is by practice
that we acquire proficiency in any language, human or computer.

It is also worth observing that some parts of syntax are far more
regularly used than others. For example, the strictfp and assert
keywords are almost never used. Rather than trying to grasp every aspect
of Java’s syntax, it is far better to begin to acquire facility in the
core aspects of Java and then return to any details of syntax that may
still be troubling you. With this in mind, let’s move to the next
chapter and begin to discuss the classes and objects that are so central
to Java and the basics of Java’s approach to object-oriented programming.

1 Technically, the minus sign is an operator that operates on the literal, but is not part of the literal itself.
2 Technically, they must all implement the AutoCloseable interface.
3 In the Java Language Specification, the term “signature” has a technical meaning that is slightly different than that used here. This book uses a less formal definition of method signature.
4 There is a terminology difficulty in discussions of arrays. Unlike with classes and their instances, we use the term “array” for both the array type and the array instance. In practice, it is usually clear from context whether a type or a value is being discussed.

Chapter 3. Object-Oriented Programming in Java

Now that we’ve covered fundamental Java syntax, we are ready to begin object-oriented programming in Java.
All Java programs use objects, and the type of an object is defined by its class or interface. Every Java program is defined as a class, and nontrivial programs include a number of classes and interface definitions.

This chapter explains how to define new classes and how to do object-oriented programming with them.
We also introduce the concept of an interface, but a full discussion of interfaces and Java’s type system is deferred until Chapter 4.

Note

If you have experience with OO programming, however, be careful. The
term “object-oriented” has different meanings in different languages. Don’t assume that Java works the same way as your favorite OO language.
(This is particularly true for C++ or Python programmers.)

This is a fairly lengthy chapter, so let’s begin with an overview and
some definitions.

Overview of Classes

Classes are the most fundamental structural element of all Java
programs. You cannot write Java code without defining a class. All Java
statements appear within classes, and all methods are implemented within
classes.

Basic OO Definitions

Here are a couple important definitions:

	Class

	
A class is a collection of data fields that hold values and methods that operate on those values. A class defines a new reference type, such as the Point type defined in Chapter 2.

The Point class defines a type that is the set of all possible two-dimensional points.

	Object

	
An object is an instance of a class.

A Point object is a value of that type: it represents a single two-dimensional point.

Objects are often created by instantiating a class with the new
keyword and a constructor invocation, as shown here:

Point p = new Point(1.0, 2.0);

Constructors are covered later in this chapter in
“Creating and Initializing Objects”.

A class definition consists of a signature and a body. The class
signature defines the name of the class and may also specify other
important information. The body of a class is a set of members
enclosed in curly braces. The members of a class usually include fields
and methods, and may also include constructors, initializers, and nested
types.

Members can be static or nonstatic. A static member belongs to the
class itself, while a nonstatic member is associated with the instances
of a class (see “Fields and Methods”).

Note

There are four very common kinds of members—class fields, class
methods, instance fields, and instance methods. The majority of work
done with Java involves interacting with these kinds of members.

The signature of a class may declare that the class extends another
class. The extended class is known as the superclass and the extension
is known as the subclass. A subclass inherits the members of its
superclass and may declare new members or override inherited methods
with new implementations.

The members of a class may have access modifiers public,
protected, or private.1 These modifiers specify their
visibility and accessibility to clients and to subclasses. This allows
classes to control access to members that are not part of their public
API. This ability to hide members enables an object-oriented design
technique known as data encapsulation, which we discuss in
“Data Hiding and Encapsulation”.

Other Reference Types

The signature of a class may also declare that the class implements
one or more interfaces. An interface is a reference type similar to
a class that defines method signatures but does not usually include
method bodies to implement the methods.

However, from Java 8 onward, interfaces may use the keyword default to
indicate that a method specified in the interface is optional. If a
method is optional, the interface file must include a default
implementation (hence the choice of keyword), which will be used by all
implementing classes that do not provide an implementation of the
optional method.

A class that implements an interface is required to provide bodies for
the interface’s nondefault methods. Instances of a class that implement
an interface are also instances of the interface type.

Classes and interfaces are the most important of the five fundamental
reference types defined by Java. Arrays, enumerated types (or
“enums”), and annotation types (usually just called “annotations”) are
the other three. Arrays are covered in Chapter 2.
Enums are a specialized kind of class and annotations are a specialized
kind of interface—both are discussed later in
Chapter 4, along with a full discussion of
interfaces.

Class Definition Syntax

At its simplest level, a class definition consists of the keyword
class followed by the name of the class and a set of class members
within curly braces. The class keyword may be preceded by modifier
keywords and annotations. If the class extends another class, the class
name is followed by the extends keyword and the name of the class
being extended. If the class implements one or more interfaces, then the
class name or the extends clause is followed by the implements
keyword and a comma-separated list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable {
 // class members go here
}

A generic class may also have type parameters and wildcards as part of
its definition (see Chapter 4).

Class declarations may include modifier keywords. In addition to the access control modifiers (public, protected, etc.), these include:

	abstract

	
An abstract class is one whose implementation is incomplete and cannot be instantiated. Any class with one or more abstract methods must be declared abstract. Abstract classes are discussed in “Abstract Classes and Methods”.

	final

	
The final modifier specifies that the class may not be extended. A class cannot be declared to be both abstract and final.

	strictfp

	
If a class is declared strictfp, all its methods behave as if they were declared strictfp, and so exactly follow the formal semantics of the floating-point standard. This modifier is extremely rarely used.

Fields and Methods

A class can be viewed as a collection of data (also referred to as
state) and code to operate on that state. The data is stored in
fields, and the code is organized into methods.

This section covers fields and methods, the two most important kinds of
class members. Fields and methods come in two distinct types: class
members (also known as static members) are associated with the class
itself, while instance members are associated with individual instances
of the class (i.e., with objects). This gives us four kinds of members:

	
Class fields

	
Class methods

	
Instance fields

	
Instance methods

The simple class definition for the class Circle, shown in
Example 3-1, contains all four types of
members.

Example 3-1. A simple class and its members

public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double radians) {
 return radians * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two instance methods: they operate on the instance fields of an object
 public double area() { // Compute the area of the circle
 return PI * r * r;
 }

 public double circumference() { // Compute the circumference
 // of the circle
 return 2 * PI * r;
 }
}

Warning

It is not normally good practice to have a public field r—instead, it
would be much more usual to have a private field r and a method
radius() to provide access to it. The reason for this will be
explained later, in “Data Hiding and Encapsulation”. For now,
we use a public field simply to give examples of how to work with
instance fields.

The following sections explain all four common kinds of members. First,
we cover the declaration syntax for fields. (The syntax for declaring
methods is covered later in this chapter in
“Data Hiding and Encapsulation”.)

Field Declaration Syntax

Field declaration syntax is much like the syntax for declaring local
variables (see Chapter 2) except that field
definitions may also include modifiers. The simplest field declaration
consists of the field type followed by the field name.

The type may be
preceded by zero or more modifier keywords or annotations, and the name
may be followed by an equals sign and initializer expression that
provides the initial value of the field. If two or more fields share the
same type and modifiers, the type may be followed by a comma-separated
list of field names and initializers. Here are some valid field
declarations:

int x = 1;
private String name;
public static final int DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;

Field modifier keywords comprise zero or more of the following
keywords:

	public, protected, private

	
These access modifiers specify whether and where a field can be used outside of the class that defines it.

	static

	
If present, this modifier specifies that the field is associated with the defining class itself rather than with each instance of the class.

	final

	
This modifier specifies that once the field has been initialized, its value may never be changed. Fields that are both static and final are compile-time constants that javac may inline. final fields can also be used to create classes whose instances are immutable.

	transient

	
This modifier specifies that a field is not part of the persistent state of an object and that it need not be serialized along with the rest of the object.

	volatile

	
This modifier indicates that the field has extra semantics for concurrent use by two or more threads. The volatile modifier says that the value of a field must always be read from and flushed to main memory, and that it may not be cached by a thread (in a register or CPU cache). See Chapter 6 for more details.

Class Fields

A class field is associated with the class in which it is defined
rather than with an instance of the class. The following line declares a
class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a
value of 3.14159.

The static modifier says that the field is a class field. Class
fields are sometimes called static fields because of this static
modifier. The final modifier says that the value of the field cannot be reassigned directly. Because the field PI represents a constant, we declare it final so that it cannot be changed.

It is a convention in Java (and many other languages) that constants are named with capital letters, which is why our field is named PI, not pi.
Defining constants like this is a common use for class fields, meaning that the static and final modifiers are often used together.
Not all class fields are constants, however.
In other words, a field can be declared static without being declared final.

Note

The use of public fields that are not final is almost never a
good practice—as multiple threads could update the field and cause
behavior that is extremely hard to debug.

A public static field is essentially a global variable. The names of
class fields are qualified by the unique names of the classes that
contain them, however. Thus, Java does not suffer from the name
collisions that can affect other languages when different modules of
code define global variables with the same name.

The key point to understand about a static field is that there is only a
single copy of it. This field is associated with the class itself, not
with instances of the class. If you look at the various methods of the
Circle class, you’ll see that they use this field. From inside the
Circle class, the field can be referred to simply as PI. Outside the
class, however, both class and field names are required to uniquely
specify the field. Methods that are not part of Circle access this
field as Circle.PI.

Class Methods

As with class fields, class methods are declared with the static
modifier:

public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
}

This line declares a class method named radiansToDegrees(). It has a
single parameter of type double and returns a double value.

Like class fields, class methods are associated with a class, rather
than with an object. When invoking a class method from code that exists
outside the class, you must specify both the name of the class and the
method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it
is defined, you don’t have to specify the class name. You can also
shorten the amount of typing required via the use of a static import (as
discussed in Chapter 2).

Note that the body of our Circle.radiansToDegrees() method uses the
class field PI. A class method can use any class fields and class
methods of its own class (or of any other class).

A class method cannot use any instance fields or instance methods
because class methods are not associated with an instance of the class.
In other words, although the radiansToDegrees() method is defined in
the Circle class, it cannot use the instance part of any Circle
objects.

Note

One way to think about this is that in any instance, we always have a reference—this—to the current object.
This is passed as an implicit parameter to any instance method.
However, class methods are not associated with a specific instance, so have no this reference, and no access to instance fields.

As we discussed earlier, a class field is essentially a global variable.
In a similar way, a class method is a global method, or global
function. Although radiansToDegrees() does not operate on Circle
objects, it is defined within the Circle class because it is a utility
method that is sometimes useful when you’re working with circles, and so it
makes sense to package it along with the other functionality of the
Circle class.

Instance Fields

Any field declared without the static modifier is an instance
field:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, so every
Circle object we create has its own copy of the double field r. In
our example, r represents the radius of a specific circle. Each
Circle object can have a radius independent of all other Circle
objects.

Inside a class definition, instance fields are referred to by name
alone. You can see an example of this if you look at the method body of
the circumference() instance method. In code outside the class, the
name of an instance method must be prefixed with a reference to the
object that contains it. For example, if the variable c holds a
reference to a Circle object, we use the expression c.r to refer to
the radius of that circle:

Circle c = new Circle(); // Create a Circle object; store a ref in c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields
hold the state of an object; the values of those fields make one object
distinct from another.

Instance Methods

An instance method operates on a specific instance of a class (an
object), and any method not declared with the static keyword is
automatically an instance method.

Instance methods are the feature that makes object-oriented programming
start to get interesting. The Circle class defined in
Example 3-1 contains two instance methods,
area() and circumference(), that compute and return the area and
circumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined,
we must prefix it with a reference to the instance that is to be
operated on. For example:

// Create a Circle object; store in variable c
Circle c = new Circle();
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

Note

This is why it is called object-oriented programming; the object is the
focus here, not the function call.

From within an instance method, we naturally have access to all the
instance fields that belong to the object the method was called on.
Recall that an object is often best considered to be a bundle containing
state (represented as the fields of the object), and behavior (the
methods to act on that state).

All instance methods are implemented by using an implicit parameter not shown in the method signature.
The implicit argument is named this; it holds a reference to the object through which the method is invoked.
In our example, that object is a Circle.

Note

The bodies of the area() and circumference() methods both use the
class field PI. We saw earlier that class methods can use only class
fields and class methods, not instance fields or methods. Instance
methods are not restricted in this way: they can use any member of a
class, whether it is declared static or not.

How the this Reference Works

The implicit this parameter is not shown in method signatures
because it is usually not needed; whenever a Java method accesses the
instance fields in its class, it is implicit that it is accessing fields
in the object referred to by the this parameter. The same is true when
an instance method invokes another instance method in the same
class—it’s taken that this means “call the instance method on the
current object.”

However, you can use the this keyword explicitly when you want to make
it clear that a method is accessing its own fields and/or methods. For
example, we can rewrite the area() method to use this explicitly to
refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field
PI. In a method this simple, it is not normally necessary to be quite
so explicit. In more complicated cases, however, you may sometimes find
that it increases the clarity of your code to use an explicit this
where it is not strictly required.

In some cases, the this keyword is required, however. For example,
when a method parameter or local variable in a method has the same name
as one of the fields of the class, you must use this to refer to the
field, because the field name used alone refers to the method parameter
or local variable.

For example, we can add the following method to the Circle class:

public void setRadius(double r) {
 this.r = r; // Assign the argument (r) to the field (this.r)
 // Note that we cannot just say r = r
}

Some developers will deliberately choose the names of their method arguments in such a way that they don’t clash with field names, so the use of this can largely be avoided.
However, accessor methods (setter) generated by any of the major Java IDEs will use the this.x = x style shown here.

Finally, note that while instance methods can use the this keyword,
class methods cannot. This is because class methods are not associated
with individual objects.

Creating and Initializing Objects

Now that we’ve covered fields and methods, let’s move on to other
important members of a class. In particular, we’ll look at
constructors—these are class members whose job is to initialize the
fields of a class as new instances of the class are created.

Take another look at how we’ve been creating Circle objects:

Circle c = new Circle();

This can easily be read as creating a new instance of Circle,
by calling something that looks a bit like a method. In fact, Circle()
is an example of a constructor. This is a member of a class that has
the same name as the class, and has a body, like a method.

Here’s how a constructor works. The new operator indicates that we
need to create a new instance of the class. First of all, memory is
allocated to hold the new object instance. Then, the constructor body is
called, with any arguments that have been specified. The constructor
uses these arguments to do whatever initialization of the new object is
necessary.

Every class in Java has at least one constructor, and their purpose is to perform any necessary initialization for a new object.
If the programmer does not explicitly define a constructor for a class, the javac compiler automatically creates a constructor (called the default constructor) that takes no arguments and performs no special initialization.
The Circle class seen in Example 3-1 used this mechanism to automatically delcare a constructor.

Defining a Constructor

There is some obvious initialization we could do for our Circle
objects, so let’s define a constructor.
Example 3-2 shows a new definition for
Circle that contains a constructor that lets us specify the radius of
a new Circle object. We’ve also taken the opportunity to make the
field r protected (to prevent access to it from arbitary objects).

Example 3-2. A constructor for the Circle class

public class Circle {
 public static final double PI = 3.14159; // A constant
 // An instance field that holds the radius of the circle
 protected double r;

 // The constructor: initialize the radius field
 public Circle(double r) { this.r = r; }

 // The instance methods: compute values based on the radius
 public double circumference() { return 2 * PI * r; }
 public double area() { return PI * r*r; }
 public double radius() { return r; }
}

When we relied on the default constructor supplied by the compiler, we
had to write code like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With the new constructor, the initialization becomes part of the object
creation step:

Circle c = new Circle(0.25);

Here are some basic facts regarding naming, declaring, and writing
constructors:

	
The constructor name is always the same as the class name.

	
A constructor is declared without a return type (not even the void placeholder).

	
The body of a constructor is the code that initializes the object. You can think of this as setting up the contents of the this reference.

	
A constructor does not return this (or any other value).

Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different
ways, depending on what is most convenient in a particular circumstance.
For example, we might want to initialize the radius of a circle to a
specified value or a reasonable default value. Here’s how we can define
two constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

Because our Circle class has only a single instance field, we can’t
initialize it too many ways, of course. But in more complex classes, it
is often convenient to define a variety of constructors.

It is perfectly legal to define multiple constructors for a class, as
long as each constructor has a different parameter list. The compiler
determines which constructor you wish to use based on the number and
type of arguments you supply. This ability to define multiple
constructors is analogous to method overloading.

Invoking One Constructor from Another

A specialized use of the this keyword arises when a class has
multiple constructors; it can be used from a constructor to invoke one
of the other constructors of the same class. In other words, we can
rewrite the two previous Circle constructors as follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

This is a useful technique when a number of constructors share a
significant amount of initialization code, as it avoids repetition of
that code. In more complex cases, where the constructors do a lot more
initialization, this can be a very useful technique.

There is an important restriction on using this(): it can appear only
as the first statement in a constructor—but the call may be followed by
any additional initialization a particular constructor needs to perform.
The reason for this restriction involves the automatic invocation of
superclass constructors, which we’ll explore later in this chapter.

Field Defaults and Initializers

The fields of a class do not necessarily require initialization. If their initial values are not specified, the fields are automatically initialized to the default value false, \u0000, 0, 0.0, or null, depending on their type (see Table 2-1 for more details).
These default values are specified by the Java language specification and apply to both instance fields and class fields.

Note

The default values are essentially the “natural” interpretation of the zero bit pattern for each type.

If the default field value is not appropriate for your field, you can instead explicitly provide a different initial value.
For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations are not part of any method.
Instead, the Java compiler generates initialization code for the field automatically and puts it into all the constructors for the class.
The initialization code is inserted into a constructor in the order in which it appears in the source code, which means that a field initializer can use the initial values of any fields declared before it.

Consider the following code excerpt, which shows a constructor and two instance fields of a hypothetical class:

public class SampleClass {
 public int len = 10;
 public int[] table = new int[len];

 public SampleClass() {
 for(int i = 0; i < len; i++) table[i] = i;
 }

 // The rest of the class is omitted...
}

In this case, the code generated by javac for the constructor is actually equivalent to the following:

public SampleClass() {
 len = 10;
 table = new int[len];
 for(int i = 0; i < len; i++) table[i] = i;
}

If a constructor begins with a this() call to another constructor, the
field initialization code does not appear in the first constructor.
Instead, the initialization is handled in the constructor invoked by the
this() call.

So, if instance fields are initialized in constructor, where are class fields initialized?
These fields are associated with the class, even if no instances of the class are ever created.
Logically, this means they need to be initialized even before a constructor is called.

To support this, javac generates a class initialization method automatically for every class. Class fields are initialized in the body of this method, which is invoked exactly once before the class is first used (often when the class is first loaded by the Java VM).

As with instance field initialization, class field initialization expressions are inserted into the class initialization method in the order in which they appear in the source code.
This means that the initialization expression for a class field can use the class fields declared before it.

The class initialization method is an internal method that is hidden from Java programmers.
In the class file, it bears the name <clinit> (and you could see this method by, for example, examining the class file with javap—see Chapter 13 for more details on how to use javap to do this).

Initializer blocks

So far, we’ve seen that objects can be initialized through the initialization expressions for their fields and by arbitrary code in their constructors.
A class has a class initialization method (which is like a constructor), but we cannot explicitly define the body of this method in Java, although it is perfectly legal to do so in bytecode.

Java does allow us to express class initialization, however, with a construct known as a static initializer.
A static initializer is simply the keyword static followed by a block of code in curly braces.
A static initializer can appear in a class definition anywhere a field or method definition can appear.
For example, consider the following code that performs some nontrivial initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
 // Here are our static lookup tables and their own initializers
 private static final int NUMPTS = 500;
 private static double sines[] = new double[NUMPTS];
 private static double cosines[] = new double[NUMPTS];

 // Here's a static initializer that fills in the arrays
 static {
 double x = 0.0;
 double delta_x = (Circle.PI/2)/(NUMPTS-1);
 for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 // The rest of the class is omitted...
}

A class can have any number of static initializers. The body of each
initializer block is incorporated into the class initialization method,
along with any static field initialization expressions. A static
initializer is like a class method in that it cannot use the this
keyword or any instance fields or instance methods of the class.

Subclasses and Inheritance

The Circle defined earlier is a simple class that distinguishes
circle objects only by their radii. Suppose, instead, that we want to
represent circles that have both a size and a position. For example, a
circle of radius 1.0 centered at point 0,0 in the Cartesian plane is
different from the circle of radius 1.0 centered at point 1,2. To do
this, we need a new class, which we’ll call PlaneCircle.

We’d like to add the ability to represent the position of a circle
without losing any of the existing functionality of the Circle class.
We do this by defining PlaneCircle as a subclass of Circle so that
PlaneCircle inherits the fields and methods of its superclass,
Circle. The ability to add functionality to a class by subclassing, or
extending, is central to the object-oriented programming paradigm.

Extending a Class

In Example 3-3, we show how we can implement
PlaneCircle as a subclass of the Circle class.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 private final double cx, cy;

 // A new constructor to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 public double getCentreX() {
 return cx;
 }

 public double getCentreY() {
 return cy;
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

Note the use of the keyword extends in the first line of
Example 3-3. This keyword tells Java that
PlaneCircle extends, or subclasses, Circle, meaning that it inherits
the fields and methods of that class.

The definition of the isInside() method shows field inheritance;
this method uses the field r (defined by the Circle class) as if it
were defined right in PlaneCircle itself. PlaneCircle also inherits
the methods of Circle. Therefore, if we have a PlaneCircle object
referenced by variable pc, we can say:

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were
defined in PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is
also a perfectly legal Circle object. If pc refers to a
PlaneCircle object, we can assign it to a Circle variable and forget
all about its extra positioning capabilities:

// Unit circle at the origin
PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0);
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be
done without a cast. As we discussed in Chapter 2,
a conversion like this is always legal. The value held in the Circle
variable c is still a valid PlaneCircle object, but the compiler
cannot know this for sure, so it doesn’t allow us to do the opposite
(narrowing) conversion without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean inside = ((PlaneCircle) c).isInside(0.0, 0.0);

This distinction is covered in more detail in
“Nested Types”, where we talk about the
distinction between the compile and runtime type of an object.

Final classes

When a class is declared with the final modifier, it means that it cannot be extended or subclassed. java.lang.String is an example of a final class.
Declaring a class final prevents unwanted extensions to the class: if you invoke a method on a String object, you know that the method is the one defined by the String class itself, even if the String is passed to you from some unknown outside source.

In general, many of the classes that Java developers create should be final.
Think carefully about whether it will make sense to allow other (possibly unknown) code to extend your classes—if it doesn’t, then disallow the mechanism by declaring your classes final.

Superclasses, Object, and the Class Hierarchy

In our example, PlaneCircle is a subclass of Circle.
We can also say that Circle is the superclass of PlaneCircle.
The superclass of a class is specified in its extends clause, and a class may only have a single direct superclass:

public class PlaneCircle extends Circle { ... }

Every class the programmer defines has a superclass.
If the superclass is not specified with an extends clause, then the superclass is taken to be the class java.lang.Object.

As a result, the Object class is special for a couple of reasons:

	
It is the only class in Java that does not have a superclass.

	
All Java classes inherit (directly or indirectly) the methods of Object.

Because every class (except Object) has a superclass, classes in Java
form a class hierarchy, which can be represented as a tree with
Object at its root.

Note

Object has no superclass, but every other class has exactly one
superclass. A subclass cannot extend more than one superclass. See
Chapter 4 for more information on how to achieve a
similar result.

Figure 3-1 shows a partial class hierarchy
diagram that includes our Circle and PlaneCircle classes, as well as
some of the standard classes from the Java API.

[image: JN7 0301]
Figure 3-1. A class hierarchy diagram

Subclass Constructors

Look again at the PlaneCircle() constructor from
Example 3-3:

public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
}

Although this constructor explicitly initializes the cx and cy
fields newly defined by PlaneCircle, it relies on the superclass
Circle() constructor to initialize the inherited fields of the class.
To invoke the superclass constructor, our constructor calls super().

super is a reserved word in Java.
One of its main uses is to invoke the constructor of a superclass from within a subclass constructor.
This use is analogous to the use of this() to invoke one constructor of a class from within another constructor of the same class.
Invoking a constructor using super() is subject to the same restrictions as is using this():

	
super() can be used in this way only within a constructor.

	
The call to the superclass constructor must appear as the first
statement within the constructor, even before local variable
declarations.

The arguments passed to super() must match the parameters of the superclass constructor.
If the superclass defines more than one constructor, super() can be used to invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor

Java guarantees that the constructor of a class is called whenever an
instance of that class is created. It also guarantees that the
constructor is called whenever an instance of any subclass is created.
In order to guarantee this second point, Java must ensure that every
constructor calls its superclass constructor.

Thus, if the first statement in a constructor does not explicitly invoke
another constructor with this() or super(), the javac compiler
inserts the call super() (i.e., it calls the superclass constructor
with no arguments). If the superclass does not have a visible
constructor that takes no arguments, this implicit invocation causes a
compilation error.

Consider what happens when we create a new instance of the PlaneCircle
class:

	
First, the PlaneCircle constructor is invoked.

	
This constructor explicitly calls super(r) to invoke a Circle
constructor.

	
That Circle() constructor implicitly calls super() to invoke the
constructor of its superclass, Object (Object only has one
constructor).

	
At this point, we’ve reached the top of the hierarchy and constructors
start to run.

	
The body of the Object constructor runs first.

	
When it returns, the body of the Circle() constructor runs.

	
Finally, when the call to super(r) returns, the remaining statements
of the PlaneCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an
object is created, a sequence of constructors is invoked, from subclass
to superclass on up to Object at the root of the class hierarchy.

Because a superclass constructor is always invoked as the first
statement of its subclass constructor, the body of the Object
constructor always runs first, followed by the constructor of its
subclass and on down the class hierarchy to the class that is being
instantiated.

Whenever a constructor is invoked, it can count on the fields of its
superclass to be initialized by the time the constructor starts to run.

The default constructor

There is one missing piece in the previous description of constructor
chaining. If a constructor does not invoke a superclass constructor,
Java does so implicitly.

Note

If a class is declared without a constructor, Java implicitly adds a constructor to the class. This default constructor does nothing but invoke the superclass constructor.

For example, if we don’t declare a constructor for the PlaneCircle
class, Java implicitly inserts this constructor:

public PlaneCircle() { super(); }

In general, if a class does not define a no-argument constructor, all its subclasses must define constructors that explicitly invoke the superclass constructor with the necessary arguments.

If a class does not declare any constructors, it is given a no-argument
constructor by default. Classes declared public are given public
constructors. All other classes are given a default constructor that is
declared without any visibility modifier: such a constructor has default
visibility.

Note

If you are creating a public class that should not be publicly
instantiated, declare at least one non-public constructor
to prevent the insertion of a default public constructor.

Classes that should never be instantiated (such as java.lang.Math or java.lang.System) should define a private constructor.
Such a constructor can never be invoked from outside of the class, but it prevents the automatic insertion of the default constructor.

Hiding Superclass Fields

For the sake of example, imagine that our PlaneCircle class needs
to know the distance between the center of the circle and the origin
(0,0). We can add another instance field to hold this value:

public double r;

Adding the following line to the constructor computes the value of the
field:

this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean theorem

But wait; this new field r has the same name as the radius field r
in the Circle superclass. When this happens, we say that the field r
of PlaneCircle hides the field r of Circle. (This is a contrived
example, of course: the new field should really be called
distanceFromOrigin.)

Note

In code that you write, you should avoid declaring fields with names
that hide superclass fields. It is almost always a sign of bad code.

With this new definition of PlaneCircle, the expressions r and
this.r both refer to the field of PlaneCircle. How, then, can we
refer to the field r of Circle that holds the radius of the circle?
A special syntax for this uses the super keyword:

r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any
instance of the class) to the appropriate superclass and then access the
field:

((Circle) this).r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to
a hidden field defined in a class that is not the immediate superclass.
Suppose, for example, that classes A, B, and C all define a field
named x and that C is a subclass of B, which is a subclass of A.
Then, in the methods of class C, you can refer to these different
fields as follows:

x // Field x in class C
this.x // Field x in class C
super.x // Field x in class B
((B)this).x // Field x in class B
((A)this).x // Field x in class A
super.super.x // Illegal; does not refer to x in class A

Note

You cannot refer to a hidden field x in the superclass of a superclass
with super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to
the three fields named x like this:

c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

So far, we’ve been discussing instance fields. Class fields can also be
hidden. You can use the same super syntax to refer to the hidden value
of the field, but this is never necessary, as you can always refer to a
class field by prepending the name of the desired class. Suppose, for
example, that the implementer of PlaneCircle decides that the
Circle.PI field does not declare to enough decimal places. She can
define her own class field PI:

public static final double PI = 3.14159265358979323846;

Now code in PlaneCircle can use this more accurate value with the
expressions PI or PlaneCircle.PI. It can also refer to the old, less
accurate value with the expressions super.PI and Circle.PI. However,
the area() and circumference() methods inherited by PlaneCircle
are defined in the Circle class, so they use the value Circle.PI,
even though that value is hidden now by PlaneCircle.PI.

Overriding Superclass Methods

When a class defines an instance method using the same name, return
type, and parameters as a method in its superclass, that method
overrides the method of the superclass. When the method is invoked for
an object of the class, it is the new definition of the method that is
called, not the old definition from the superclass.

Tip

The return type of the overriding method may be a subclass of the
return type of the original method (instead of being exactly the same
type). This is known as a covariant return.

Method overriding is an important and useful technique in object-oriented programming.
PlaneCircle does not override either of the methods defined by Circle, and in fact it is difficult to think of a good example where any of the methods defined by Circle could have a well-defined override.

Warning

Don’t be tempted to consider subclassing Circle with a class like Ellipse—this would actually violate a core principle of object-oriented development (the Liskov principle, which we will meet later in this chapter).

Instead, let’s look at a different example that does work with method overriding:

public class Car {
 public static final double LITRE_PER_100KM = 8.9;

 protected double topSpeed;

 protected double fuelTankCapacity;

 private int doors;

 public Car(double topSpeed, double fuelTankCapacity, int doors) {
 this.topSpeed = topSpeed;
 this.fuelTankCapacity = fuelTankCapacity;
 this.doors = doors;
 }

 public double getTopSpeed() {
 return topSpeed;
 }

 public int getDoors() {
 return doors;
 }

 public double getFuelTankCapacity() {
 return fuelTankCapacity;
 }

 public double range() {
 return 100 * fuelTankCapacity / LITRE_PER_100KM;
 }
}

This is a bit more complex, but will illustrate the concepts behind overriding.
Along with the Car class, we also have a specialized class, SportsCar.
This has several differences: it has a fixed-size fuel tank and only comes in a two-door version.
It may also have a much higher top speed than the regular form, but if the top speed rises above 200 km/h then the fuel efficiency of the car suffers, and as a result the overall range of the car starts to decrease:

public class SportsCar extends Car {

 private double efficiency;

 public SportsCar(double topSpeed) {
 super(topSpeed, 50.0, 2);
 if (topSpeed > 200.0) {
 efficiency = 200.0 / topSpeed;
 } else {
 efficiency = 1.0;
 }
 }

 public double getEfficiency() {
 return efficiency;
 }

 @Override
 public double range() {
 return 100 * fuelTankCapacity * efficiency / LITRE_PER_100KM;
 }

}

The upcoming discussion of method overriding considers only instance
methods. Class (aka static) methods behave quite differently, and they cannot be
overridden. Just like fields, class methods can be hidden by a subclass
but not overridden. As noted earlier in this chapter, it is good
programming style to always prefix a class method invocation with the
name of the class in which it is defined. If you consider the class name
part of the class method name, the two methods have different names, so
nothing is actually hidden at all.

Note

The code example for the SportsCar includes the syntax construct @Override. This is known as an annotation and we shall meet this piece of Java syntax properly in Chapter 4.

Before we go any further with the discussion of method overriding, you
should understand the difference between method overriding and method
overloading. As we discussed in Chapter 2, method
overloading refers to the practice of defining multiple methods (in the
same class) that have the same name but different parameter lists. This
is very different from method overriding, so don’t get them confused.

Overriding is not hiding

Although Java treats the fields and methods of a class analogously in
many ways, method overriding is not like field hiding at all. You can
refer to hidden fields simply by casting an object to an instance of the
appropriate superclass, but you cannot invoke overridden instance
methods with this technique. The following code illustrates this crucial
difference:

class A { // Define a class named A
 int i = 1; // An instance field
 int f() { return i; } // An instance method
 static char g() { return 'A'; } // A class method
}

class B extends A { // Define a subclass of A
 int i = 2; // Hides field i in class A
 int f() { return -i; } // Overrides method f in class A
 static char g() { return 'B'; } // Hides class method g() in class A
}

public class OverrideTest {
 public static void main(String args[]) {
 B b = new B(); // Creates a new object of type B
 System.out.println(b.i); // Refers to B.i; prints 2
 System.out.println(b.f()); // Refers to B.f(); prints -2
 System.out.println(b.g()); // Refers to B.g(); prints B
 System.out.println(B.g()); // A better way to invoke B.g()

 A a = (A) b; // Casts b to an instance of class A
 System.out.println(a.i); // Now refers to A.i; prints 1
 System.out.println(a.f()); // Still refers to B.f(); prints -2
 System.out.println(a.g()); // Refers to A.g(); prints A
 System.out.println(A.g()); // A better way to invoke A.g()
 }
}

While this difference between method overriding and field hiding may
seem surprising at first, a little thought makes the purpose clear.

Suppose we are manipulating a bunch of Car and SportsCar objects, and store them in an array of type Car[]. We can do this because SportsCar is a subclass of Car, so all SportsCar objects are legal Car objects.

When we loop through the elements of this array, we don’t have to know or care whether the element is actually a Car or a SportsCar.
What we do care about very much, however, is that the correct value is computed when we invoke the range() method of any element of the array.
In other words, we don’t want to use the formula for the range of a car when the object is actually a sports car!

All we really want is for the objects we’re computing the ranges of to “do the right thing”—the Car objects to use their definition of how to compute their own range, and the SportsCar objects to use the definition that is correct for them.

Seen in this context, it is not surprising at all that method overriding is handled differently by Java than is field hiding.

Virtual method lookup

If we have a Car[] array that holds Car and SportsCar objects, how does javac know whether to call the range() method of the Car class or the SportsCar class for any given item in the array?
In fact, the source code compiler cannot know this at compilation time.

Instead, javac creates bytecode that uses virtual method lookup at runtime. When the interpreter runs the code, it looks up the appropriate range() method to call for each of the objects in the array.
That is, when the interpreter interprets the expression o.range(), it checks the actual runtime type of the object referred to by the variable o and then finds the range() method that is appropriate for that type.

Note

Some other languages (such as C# or C++) do not do virtual lookup by
default and instead have a virtual keyword that programmers must
explicitly use if they want to allow subclasses to be able to override a
method.

This is another way of approaching the concept of method overiding, which we discussed earlier. If the version of the range() method associated with the static type of o was used, without the runtime (aka virtual) lookup, then overriding would not work properly.

Virtual method lookup is the default for Java instance methods.
See Chapter 4 for more details about compile-time and runtime types and how they affect virtual method lookup.

Invoking an overridden method

We’ve seen the important differences between method overriding and
field hiding. Nevertheless, the Java syntax for invoking an overridden
method is quite similar to the syntax for accessing a hidden field: both
use the super keyword. The following code illustrates:

class A {
 int i = 1; // An instance field hidden by subclass B
 int f() { return i; } // An instance method overridden by subclass B
}

class B extends A {
 int i; // This field hides i in A
 int f() { // This method overrides f() in A
 i = super.i + 1; // It can retrieve A.i like this
 return super.f() + i; // It can invoke A.f() like this
 }
}

Recall that when you use super to refer to a hidden field, it is the
same as casting this to the superclass type and accessing the field
through that. Using super to invoke an overridden method, however, is
not the same as casting the this reference. In other words, in the
previous code, the expression super.f() is not the same as
((A)this).f().

When the interpreter invokes an instance method with the super syntax,
a modified form of virtual method lookup is performed. The first step,
as in regular virtual method lookup, is to determine the actual class of
the object through which the method is invoked. Normally, the runtime
search for an appropriate method definition would begin with this class.
When a method is invoked with the super syntax, however, the search
begins at the superclass of the class. If the superclass implements the
method directly, that version of the method is invoked. If the
superclass inherits the method, the inherited version of the method is
invoked.

Note that the super keyword invokes the most immediately overridden
version of a method. Suppose class A has a subclass B that has a
subclass C and that all three classes define the same method f().
The method C.f() can invoke the method B.f(), which it overrides
directly, with super.f(). But there is no way for C.f() to invoke
A.f() directly: super.super.f() is not legal Java syntax. Of
course, if C.f() invokes B.f(), it is reasonable to suppose that
B.f() might also invoke A.f().

This kind of chaining is relatively common with overridden
methods: it is a way of augmenting the behavior of a method without
replacing the method entirely.

Note

Don’t confuse the use of super to invoke an overridden method with the
super() method call used in a constructor to invoke a superclass
constructor. Although they both use the same keyword, these are two
entirely different syntaxes. In particular, you can use super to
invoke an overridden method anywhere in the overriding class, while you
can use super() only to invoke a superclass constructor as the very
first statement of a constructor.

It is also important to remember that super can be used only to invoke an overridden method from within the class that overrides it.
Given a reference to a SportsCar object e, there is no way for a program that uses e to invoke the range() method defined by the Car class on e.

Data Hiding and Encapsulation

We started this chapter by describing a class as a collection of data
and methods. One of the most important object-oriented techniques we
haven’t discussed so far is hiding the data within the class and making
it available only through the methods.

This technique is known as encapsulation because it seals the data (and internal methods) safely inside the “capsule” of the class, where it can be accessed only by trusted users (i.e., the methods of the class).

Why would you want to do this? The most important reason is to hide the
internal implementation details of your class. If you prevent
programmers from relying on those details, you can safely modify the
implementation without worrying that you will break existing code that
uses the class.

Note

You should always encapsulate your code. It is almost always impossible
to reason through and ensure the correctness of code that hasn’t been
well-encapsulated, especially in multithreaded environments (and
essentially all Java programs are multithreaded).

Another reason for encapsulation is to protect your class against
accidental or willful stupidity. A class often contains a number of
interdependent fields that must be in a consistent state. If you allow a
programmer (including yourself) to manipulate those fields directly, he
may change one field without changing important related fields, leaving
the class in an inconsistent state. If instead he has to call a method
to change the field, that method can be sure to do everything necessary
to keep the state consistent. Similarly, if a class defines certain
methods for internal use only, hiding these methods prevents users of
the class from calling them.

Here’s another way to think about encapsulation: when all the data for a
class is hidden, the methods define the only possible operations that
can be performed on objects of that class.

Once you have carefully tested and debugged your methods, you can be
confident that the class will work as expected. On the other hand, if
all the fields of the class can be directly manipulated, the number of
possibilities you have to test becomes unmanageable.

Note

This idea can be carried to a very powerful conclusion, as we will see
in “Safe Java Programming” when we discuss the safety
of Java programs (which differs from the concept of type safety of the
Java programming language).

Other, secondary, reasons to hide fields and methods of a class include:

	
Internal fields and methods that are visible outside the class just
clutter up the API. Keeping visible fields to a minimum keeps your class
tidy and therefore easier to use and understand.

	
If a method is visible to the users of your class, you have to
document it. Save yourself time and effort by hiding it instead.

Access Control

Java defines access control rules that can restrict members of a class
from being used outside the class. In a number of examples in this
chapter, you’ve seen the public modifier used in field and method
declarations. This public keyword, along with protected and
private (and one other, special one) are access control
modifiers; they specify the access rules for the field or method.

Access to modules

One of the biggest changes in Java 9 was the arrival of Java platform modules.
These are a grouping of code that is larger than a single package, and which are intended as the future way to deploy code for reuse.
As Java is often used in large applications and environments, the arrival of modules should make it easier to build and manage enterprise codebases.

The modules technology is an advanced topic, and if Java is one of the first programming languages you have encountered, you should not try to learn it until you have gained some language proficiency.
An introductory treatment of modules is provided in Chapter 12 and we defer discussing the access control impact of modules until then.

Access to packages

Access control on a per-package basis is not directly part of the Java
language. Instead, access control is usually done at the level of
classes and members of classes.

Note

A package that has been loaded is always accessible to code defined
within the same package. Whether it is accessible to code from other
packages depends on the way the package is deployed on the host system.
When the class files that comprise a package are stored in a directory,
for example, a user must have read access to the directory and the files
within it in order to have access to the package.

Access to classes

By default, top-level classes are accessible within the package in
which they are defined. However, if a top-level class is declared
public, it is accessible everywhere.

Tip

In Chapter 4, we’ll meet nested classes.
These are classes that can be defined as members of other classes.
Because these inner classes are members of a class, they also obey the
member access-control rules.

Access to members

The members of a class are always accessible within the body of the
class. By default, members are also accessible throughout the package in
which the class is defined. This default level of access is often
called package access. It is only one of four possible levels of
access. The other three levels are defined by the public, protected,
and private modifiers. Here is some example code that uses these
modifiers:

public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They cannot use this internal field,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal field.
 // A subclass might want to tweak this field
 protected int temperature;
}

These access rules apply to members of a class:

	
All the fields and methods of a class can always be used within the
body of the class itself.

	
If a member of a class is declared with the public modifier, it
means that the member is accessible anywhere the containing class is
accessible. This is the least restrictive type of access control.

	
If a member of a class is declared private, the member is never
accessible, except within the class itself. This is the most restrictive
type of access control.

	
If a member of a class is declared protected, it is accessible to
all classes within the package (the same as the default package
accessibility) and also accessible within the body of any subclass of
the class, regardless of the package in which that subclass is defined.

	
If a member of a class is not declared with any of these modifiers, it
has default access (sometimes called package access) and it is
accessible to code within all classes that are defined in the same
package but inaccessible outside of the package.

Note

Default access is more restrictive than protected—as default access
does not allow access by subclasses outside the package.

protected access requires more elaboration. Suppose class A declares
a protected field x and is extended by a class B, which is defined
in a different package (this last point is important). Class B
inherits the protected field x, and its code can access that field
in the current instance of B or in any other instances of B that the
code can refer to. This does not mean, however, that the code of class
B can start reading the protected fields of arbitrary instances of
A.

Let’s look at this language detail in code. Here’s the definition for
A:

package javanut7.ch03;

public class A {
 protected final String name;

 public A(String named) {
 name = named;
 }

 public String getName() {
 return name;
 }
}

Here’s the definition for B:

package javanut7.ch03.different;

import javanut7.ch03.A;

public class B extends A {

 public B(String named) {
 super(named);
 }

 @Override
 public String getName() {
 return "B: " + name;
 }
}

Note

Java packages do not “nest,” so javanut7.ch03.different is just a
different package than javanut7.ch03; it is not contained inside it or
related to it in any way.

However, if we try to add this new method to B, we will get a
compilation error, because instances of B do not have access to
arbitary instances of A:

 public String examine(A a) {
 return "B sees: " + a.name;
 }

If we change the method to this:

 public String examine(B b) {
 return "B sees another B: " + b.name;
 }

then the compiler is happy, because instances of the same exact type can
always see each other’s protected fields. Of course, if B was in the
same package as A, then any instance of B could read any protected
field of any instance of A because protected fields are visible to
every class in the same package.

Access control and inheritance

The Java specification states that:

	
A subclass inherits all the instance fields and instance methods of
its superclass accessible to it.

	
If the subclass is defined in the same package as the superclass, it
inherits all non-private instance fields and methods.

	
If the subclass is defined in a different package, it inherits all
protected and public instance fields and methods.

	
private fields and methods are never inherited; neither are class
fields or class methods.

	
Constructors are not inherited (instead, they are chained, as
described earlier in this chapter).

However, some programmers are confused by the statement that a subclass
does not inherit the inaccessible fields and methods of its superclass.
It could be taken to imply that when you create an instance of a
subclass, no memory is allocated for any private fields defined by the
superclass. This is not the intent of the statement, however.

Note

Every instance of a subclass does, in fact, include a complete instance
of the superclass within it, including all inaccessible fields and
methods.

This existence of potentially inaccessible members seems to be in
conflict with the statement that the members of a class are always
accessible within the body of the class. To clear up this confusion, we
define “inherited members” to mean those superclass members that are
accessible.

Then the correct statement about member accessibility is: “All inherited
members and all members defined in this class are accessible.” An
alternative way of saying this is:

	
A class inherits all instance fields and instance methods (but not
constructors) of its superclass.

	
The body of a class can always access all the fields and methods it
declares itself. It can also access the accessible fields and members
it inherits from its superclass.

Member access summary

We summarize the member access rules in
Table 3-1.

 Table 3-1. Class member accessibility

 	
 	Member visibility
 	
 	
 	

 	Accessible to
 	Public
 	Protected
 	Default
 	Private

 	
 Defining class

 	
 Yes

 	
 Yes

 	
 Yes

 	
 Yes

 	
 Class in same package

 	
 Yes

 	
 Yes

 	
 Yes

 	
 No

 	
 Subclass in different package

 	
 Yes

 	
 Yes

 	
 No

 	
 No

 	
 Nonsubclass different package

 	Yes
 	No
 	No
 	No

There are a few generally observed rules about what parts of a Java program should use each visibility modifier. It is important that even beginning Java programmers follow these rules:

	
Use public only for methods and constants that form part of the
public API of the class. The only acceptable usage of public fields is
for constants or immutable objects, and they must be also declared
final.

	
Use protected for fields and methods that aren’t required by most
programmers using the class but that may be of interest to anyone
creating a subclass as part of a different package.

Note

protected members are technically part of the exported API of a class.
They must be documented and cannot be changed without potentially
breaking code that relies on them.

	
Use the default package visibility for fields and methods that are
internal implementation details but are used by cooperating classes in
the same package.

	
Use private for fields and methods that are used only inside the
class and should be hidden everywhere else.

If you are not sure whether to use protected, package, or private
accessibility, start with private. If this is overly restrictive, you
can always relax the access restrictions slightly (or provide accessor
methods, in the case of fields).

This is especially important for designing APIs because increasing
access restrictions is not a backward-compatible change and can break
code that relies on access to those members.

Data Accessor Methods

In the Circle example, we declared the circle radius to be a public
field. The Circle class is one in which it may well be reasonable to
keep that field publicly accessible; it is a simple enough class, with
no dependencies between its fields. On the other hand, our current
implementation of the class allows a Circle object to have a negative
radius, and circles with negative radii should simply not exist. As long
as the radius is stored in a public field, however, any programmer can
set the field to any value she wants, no matter how unreasonable. The
only solution is to restrict the programmer’s direct access to the field
and define public methods that provide indirect access to the field.
Providing public methods to read and write a field is not the same as
making the field itself public. The crucial difference is that methods
can perform error checking.

We might, for example, want to prevent Circle objects with negative
radii—these are obviously not sensible, but our current implementation
does not prohibit this. In Example 3-4, we
show how we might change the definition of Circle to prevent this.

This version of Circle declares the r field to be protected and
defines accessor methods named getRadius() and setRadius() to read
and write the field value while enforcing the restriction on negative
radius values. Because the r field is protected, it is directly (and
more efficiently) accessible to subclasses.

Example 3-4. The Circle class using data hiding and encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected void checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");
 }

 // The non-default constructor
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; }
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package named shapes; r is protected so any other classes in the shapes package
have direct access to that field and can set it however they like. The
assumption here is that all classes within the shapes package were
written by the same author or a closely cooperating group of authors, and
that the classes all trust each other not to abuse their privileged
level of access to each other’s implementation details.

Finally, the code that enforces the restriction against negative radius
values is itself placed within a protected method, checkRadius().
Although users of the Circle class cannot call this method, subclasses
of the class can call it and even override it if they want to change the
restrictions on the radius.

Note

It is a common convention in Java that data accessor methods begin with
the prefixes “get” and “set.” But if the field being accessed is of type
boolean, the get() method may be replaced with an equivalent method
that begins with “is”—the accessor method for a boolean
field named readable is typically called isReadable() instead of
getReadable().

Abstract Classes and Methods

In Example 3-4, we declared our Circle
class to be part of a package named shapes. Suppose we plan to
implement a number of shape classes: Rectangle, Square, Hexagon,
Triangle, and so on. We can give these shape classes our two basic
area() and circumference() methods. Now, to make it easy to work
with an array of shapes, it would be helpful if all our shape classes
had a common superclass, Shape. If we structure our class hierarchy
this way, every shape object, regardless of the actual type of shape it
represents, can be assigned to variables, fields, or array elements of
type Shape. We want the Shape class to encapsulate whatever features
all our shapes have in common (e.g., the area() and circumference()
methods). But our generic Shape class doesn’t represent any real kind
of shape, so it cannot define useful implementations of the methods.
Java handles this situation with abstract methods.

Java lets us define a method without implementing it by declaring the
method with the abstract modifier. An abstract method has no body;
it simply has a signature definition followed by a semicolon.2 Here are the rules about abstract methods and the
abstract classes that contain them:

	
Any class with an abstract method is automatically abstract itself
and must be declared as such. To fail to do so is a compilation error.

	
An abstract class cannot be instantiated.

	
A subclass of an abstract class can be instantiated only if it
overrides each of the abstract methods of its superclass and provides
an implementation (i.e., a method body) for all of them. Such a class is
often called a concrete subclass, to emphasize the fact that it is not
abstract.

	
If a subclass of an abstract class does not implement all the
abstract methods it inherits, that subclass is itself abstract and
must be declared as such.

	
static, private, and final methods cannot be abstract, because
these types of methods cannot be overridden by a subclass. Similarly, a
final class cannot contain any abstract methods.

	
A class can be declared abstract even if it does not actually have
any abstract methods. Declaring such a class abstract indicates that
the implementation is somehow incomplete and is meant to serve as a
superclass for one or more subclasses that complete the implementation.
Such a class cannot be instantiated.

Note

The Classloader class that we will meet in
Chapter 11 is a good example of an abstract class
that does not have any abstract methods.

Let’s look at an example of how these rules work. If we define the
Shape class to have abstract area() and circumference() methods,
any subclass of Shape is required to provide implementations of these
methods so that it can be instantiated. In other words, every Shape
object is guaranteed to have implementations of these methods defined.
Example 3-5 shows how this might work. It
defines an abstract Shape class and two concrete subclasses of it.

Example 3-5. An abstract class and concrete subclasses

public abstract class Shape {
 public abstract double area(); // Abstract methods: note
 public abstract double circumference(); // semicolon instead of body.
}

class Circle extends Shape {
 public static final double PI = 3.14159265358979323846;
 protected double r; // Instance data
 public Circle(double r) { this.r = r; } // Constructor
 public double getRadius() { return r; } // Accessor
 public double area() { return PI*r*r; } // Implementations of
 public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
 protected double w, h; // Instance data
 public Rectangle(double w, double h) { // Constructor
 this.w = w; this.h = h;
 }
 public double getWidth() { return w; } // Accessor method
 public double getHeight() { return h; } // Another accessor
 public double area() { return w*h; } // Implementation of
 public double circumference() { return 2*(w + h); } // abstract methods
}

Each abstract method in Shape has a semicolon right after its
parentheses. They have no curly braces, and no method body is defined.
Using the classes defined in Example 3-5, we
can now write code such as:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double totalArea = 0;
for(int i = 0; i < shapes.length; i++)
 totalArea += shapes[i].area(); // Compute the area of the shapes

Notice two important points here:

	
Subclasses of Shape can be assigned to elements of an array of
Shape. No cast is necessary. This is another example of a widening
reference type conversion (discussed in Chapter 2).

	
You can invoke the area() and circumference() methods for any
Shape object, even though the Shape class does not define a body for
these methods. When you do this, the method to be invoked is found using
virtual dispatch, which we met earlier.
In our case this means that the area of a circle is computed using the method defined by Circle, and the area of a rectangle is computed using the method defined by Rectangle.

Reference Type Conversions

Object references can be converted between different reference types. As with primitive types, reference type conversions can be widening conversions
(allowed automatically by the compiler) or narrowing conversions that
require a cast (and possibly a runtime check). In order to understand
reference type conversions, you need to understand that reference types
form a hierarchy, usually called the class hierarchy.

Every Java reference type extends some other type, known as its
superclass. A type inherits the fields and methods of its superclass
and then defines its own additional fields and methods. A special class named Object serves as the root of the class hierarchy in Java. All
Java classes extend Object directly or indirectly. The Object class
defines a number of special methods that are inherited (or overridden)
by all objects.

The predefined String class and the Point class we discussed earlier
in this chapter both extend Object. Thus, we can say that all String
objects are also Object objects. We can also say that all Point
objects are Object objects. The opposite is not true, however. We
cannot say that every Object is a String because, as we’ve just
seen, some Object objects are Point objects.

With this simple understanding of the class hierarchy, we can define the
rules of reference type conversion:

	
An object reference cannot be converted to an unrelated type. The Java compiler does not allow you to convert a String to a Point, for example, even if you use a cast operator.

	
An object reference can be converted to the type of its superclass or of any ancestor class. This is a widening conversion, so no cast is required.
For example, a String value can be assigned to a variable of type
Object or passed to a method where an Object parameter is expected.

Note

No conversion is actually performed; the object is simply treated as if
it were an instance of the superclass. This is a simple form of
the Liskov substitution principle, after Barbara Liskov, the computer
scientist who first explicitly formulated it.

	
An object reference can be converted to the type of a subclass, but this is a narrowing conversion and requires a cast. The Java compiler
provisionally allows this kind of conversion, but the Java interpreter
checks at runtime to make sure it is valid. Only cast a reference to the
type of a subclass if you are sure, based on the logic of your program,
that the object is actually an instance of the subclass. If it is not,
the interpreter throws a ClassCastException. For example, if we assign
a String reference to a variable of type Object, we can later cast the
value of that variable back to type String:

Object o = "string"; // Widening conversion from String
 // to Object later in the program...
String s = (String) o; // Narrowing conversion from Object
 // to String

Arrays are objects and follow some conversion rules of their own.
First, any array can be converted to an Object value through a
widening conversion. A narrowing conversion with a cast can convert such
an object value back to an array. Here’s an example:

// Widening conversion from array to Object
Object o = new int[] {1,2,3};
// Later in the program...

int[] a = (int[]) o; // Narrowing conversion back to array type

In addition to converting an array to an object, we can convert an array to another type of array if the “base types” of the two arrays
are reference types that can themselves be converted. For example:

// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;
// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match

sequences = s; // This line will not compile
// s can be converted to Object or Object[], because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;

Note that these array conversion rules apply only to arrays of objects
and arrays of arrays. An array of primitive type cannot be converted to
any other array type, even if the primitive base types can be converted:

// Can't convert int[] to double[] even though
// int can be widened to double
// This line causes a compilation error
double[] data = new int[] {1,2,3};
// This line is legal, however,
// because int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

Modifier Summary

As we’ve seen, classes, interfaces, and their members can be
declared with one or more modifiers—keywords such as public,
static, and final. Let’s conclude this chapter by listing the Java
modifiers, explaining what types of Java constructs they can modify,
and explaining what they do. Table 3-2
has the details; you can also refer back to
“Overview of Classes” and
“Field Declaration Syntax”, as well as
“Method Modifiers”.

Table 3-2. Java modifiers

	Modifier
	Used on
	Meaning

	abstract

	Class

	The class cannot be instantiated and may contain
unimplemented methods.

	
	Interface

	All interfaces are abstract. The modifier is optional
in interface declarations.

	
	Method

	No body is provided for the method; it is provided by a
subclass. The signature is followed by a semicolon. The enclosing class
must also be abstract.

	default

	Method

	Implementation of this interface method is optional.
The interface provides a default implementation for classes that elect
not to implement it. See Chapter 4 for more
details.

	final

	Class

	The class cannot be subclassed.

	
	Method

	The method cannot be overridden.

	
	Field

	The field cannot have its value changed. static final
fields are compile-time constants.

	
	Variable

	A local variable, method parameter, or exception parameter
cannot have its value changed.

	native

	Method

	The method is implemented in some platform-dependent
way (often in C). No body is provided; the signature is followed by a
semicolon.

	<None> (package)

	Class

	A non-public class is accessible only in its
package.

	
	Interface

	A non-public interface is accessible only in its
package.

	
	Member

	A member that is not private, protected, or public has
package visibility and is accessible only within its package.

	private

	Member

	The member is accessible only within the class
that defines it.

	protected

	Member

	The member is accessible only within the package
in which it is defined and within subclasses.

	public

	Class

	The class is accessible anywhere its package is.

	
	Interface

	The interface is accessible anywhere its package is.

	
	Member

	The member is accessible anywhere its class is.

	strictfp

	Class

	All methods of the class are implicitly strictfp.

	
	Method

	All floating-point computation done by the method must be
performed in a way that strictly conforms to the IEEE 754 standard. In
particular, all values, including intermediate results, must be
expressed as IEEE float or double values and cannot take advantage
of any extra precision or range offered by native platform
floating-point formats or hardware. This modifier is extremely rarely
used.

	static

	Class

	An inner class declared static is a top-level
class, not associated with a member of the containing class. See
Chapter 4 for more details.

	
	Method

	A static method is a class method. It is not passed an
implicit this object reference. It can be invoked through the class
name.

	
	Field

	A static field is a class field. There is only one instance
of the field, regardless of the number of class instances created. It
can be accessed through the class name.

	
	Initializer

	The initializer is run when the class is loaded rather
than when an instance is created.

	synchronized

	Method

	The method makes nonatomic modifications to the
class or instance, so care must be taken to ensure that two threads
cannot modify the class or instance at the same time. For a static
method, a lock for the class is acquired before executing the method.
For a non-static method, a lock for the specific object instance is
acquired. See Chapter 5 for more details.

	transient

	Field

	The field is not part of the persistent state of
the object and should not be serialized with the object. Used with
object serialization; see java.io.ObjectOutputStream.

	volatile

	Field

	The field can be accessed by unsynchronized threads,
so certain optimizations must not be performed on it. This modifier can
sometimes be used as an alternative to synchronized. See
Chapter 5 for more details.

1 There is also the default, aka package, visibility that we will meet later.
2 An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual function that is declared = 0). In C++, a class that contains a pure virtual function is called an abstract class and cannot be instantiated. The same is true of Java classes that contain abstract methods.

Chapter 4. The Java Type System

In this chapter, we move beyond basic object-oriented programming with classes and into the additional concepts required to work effectively with Java’s type system.

Note

A statically typed language is one in which variables have definite types, and where it is a compile-time error to assign a value of an incompatible type to a variable.
Languages that only check type compatibility at runtime are called dynamically typed.

Java is a fairly classic example of a statically typed language. JavaScript is an example of a dynamically typed language that allows any variable to store any type of value.

The Java type system involves not only classes and primitive types, but also other kinds of reference type that are related to the basic concept of a class, but which differ in some way, and are usually treated in a special way by javac or the JVM.

We have already met arrays and classes, two of Java’s most widely used kinds of reference type. This chapter starts by discussing another very important kind of reference type—interfaces.
We then move on to discuss Java’s generics, which have a major role to play in Java’s type system. With these topics under our belts, we can discuss the differences between compile-time and runtime types in Java.

To complete the full picture of Java’s reference types, we look at specialized kinds of classes and interfaces—known as enums and annotations.
We conclude the chapter by looking at lambda expressions and nested types, and then reviewing how enhanced type inference has allowed Java’s non-denotable types to become usable by programmers.

Let’s get started by taking a look at interfaces—probably the most important of Java’s reference types after classes, and a key building block for the rest of Java’s type system.

Interfaces

In Chapter 3, we met the idea of inheritance. We also saw that a Java class can only inherit from a single class.
This is quite a big restriction on the kinds of object-oriented programs that we want to build.
The designers of Java knew this, but they also wanted to ensure that Java’s approach to object-oriented programming was less complex and error-prone than, for example, that of C++.

The solution that they chose was to introduce the concept of an interface to Java.
Like a class, an interface defines a new reference type.
As its name implies, an interface is intended to represent only an API—so it
provides a description of a type, and the methods (and signatures) that
classes that implement that API must provide.

In general, a Java interface does not provide any implementation code for the methods that it describes. These methods are considered mandatory—any class that wishes to implement the interface must provide an implementation of these methods.

However, an interface may wish to mark that some API methods are optional, and that implementing classes do not need to implement them if they choose not to.
This is done with the default keyword—and the interface must provide an implementation of these optional methods, which will be used by any implementating class that elects not to implement them.

Note

The ability to have optional methods in interfaces was new in Java 8.
It is not available in any earlier version. See “Default Methods” for a full description of how optional (also called default) methods work.

It is not possible to directly instantiate an interface and create a member of the interface type. Instead, a class must implement the interface to provide the necessary method bodies.

Any instances of the implementing class are compatible with both the type defined by the class and the type defined by the interface.
This means that the instances may be substituted at any point in the code that requires an instance of either the class type or the interface type.
This extends the Liskov principle as seen in “Reference Type Conversions”.

Another way of saying this is that two objects that do not share the same class or superclass may still both be compatible with the same interface type if both objects are instances of classes that implement the interface.

Defining an Interface

An interface definition is much like a class definition in which all the (nondefault) methods are abstract and the keyword class has been replaced with interface.
For example, this code shows the definition of an interface named Centered (a Shape class, such as those defined in Chapter 3, might implement this interface if it wants to allow the coordinates of its center to be set and queried):

interface Centered {
 void setCenter(double x, double y);
 double getCenterX();
 double getCenterY();
}

A number of restrictions apply to the members of an interface:

	
All mandatory methods of an interface are implicitly abstract and must have a semicolon in place of a method body. The abstract modifier is allowed, but by convention is usually omitted.

	
An interface defines a public API. By convention, members of an interface are implicitly public and it is conventional to omit the unnecessary public modifier.

	
An interface may not define any instance fields. Fields are an implementation detail, and an interface is a specification, not an implementation.
The only fields allowed in an interface definition are constants that are declared both static and final.

	
An interface cannot be instantiated, so it does not define a constructor.

	
Interfaces may contain nested types.
Any such types are implicitly public and static. See “Nested Types” for a full description of nested types.

	
As of Java 8, an interface may contain static methods. Previous
versions of Java did not allow this, and this is widely believed to have
been a flaw in the design of the Java language.

	
As of Java 9, an interface may contain private methods.
These have limited use cases, but with the other changes to the interface construct, it seems arbitary to disallow them.
It is a compile-time error to try to define a protected method in an interface.

Extending Interfaces

Interfaces may extend other interfaces, and, like a class definition,
an interface definition indicates this by including an extends clause. When one interface extends another, it inherits all the methods and constants of its superinterface and can define new methods and constants.
Unlike classes, however, the extends clause of an interface definition may include more than one superinterface.
For example, here are some interfaces that extend other interfaces:

interface Positionable extends Centered {
 void setUpperRightCorner(double x, double y);
 double getUpperRightX();
 double getUpperRightY();
}
interface Transformable extends Scalable, Translatable, Rotatable {}
interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the methods and constants from each of those interfaces and can define its own additional methods and constants. A class that implements such an interface must implement the abstract methods defined directly by the interface, as well as all the abstract methods inherited from all the superinterfaces.

Implementing an Interface

Just as a class uses extends to specify its superclass, it can use implements to name one or more interfaces it supports.
The implements keyword can appear in a class declaration following the extends clause.
It should be followed by a comma-separated list of interfaces that the class implements.

When a class declares an interface in its implements clause, it is
saying that it provides an implementation (i.e., a body) for each
mandatory method of that interface. If a class implements an interface
but does not provide an implementation for every mandatory interface
method, it inherits those unimplemented abstract methods from the
interface and must itself be declared abstract. If a class implements
more than one interface, it must implement every mandatory method of
each interface it implements (or be declared abstract).

The following code shows how we can define a CenteredRectangle class
that extends the Rectangle class from
Chapter 3 and implements our Centered
interface:

public class CenteredRectangle extends Rectangle implements Centered {
 // New instance fields
 private double cx, cy;

 // A constructor
 public CenteredRectangle(double cx, double cy, double w, double h) {
 super(w, h);
 this.cx = cx;
 this.cy = cy;
 }

 // We inherit all the methods of Rectangle but must
 // provide implementations of all the Centered methods.
 public void setCenter(double x, double y) { cx = x; cy = y; }
 public double getCenterX() { return cx; }
 public double getCenterY() { return cy; }
}

Suppose we implement CenteredCircle and CenteredSquare just as we
have implemented this CenteredRectangle class. Each class extends
Shape, so instances of the classes can be treated as instances of the
Shape class, as we saw earlier. Because each class implements the
Centered interface, instances can also be treated as instances of that
type. The following code demonstrates how objects can be members of
both a class type and an interface type:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all compatible assignments
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and
// average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
 totalArea += shapes[i].area(); // Compute the area of the shapes

 // Be careful, in general, the use of instanceof to determine the
 // runtime type of an object is quite often an indication of a
 // problem with the design
 if (shapes[i] instanceof Centered) { // The shape is a Centered shape
 // Note the required cast from Shape to Centered (no cast would
 // be required to go from CenteredSquare to Centered, however).
 Centered c = (Centered) shapes[i];

 double cx = c.getCenterX(); // Get coordinates of the center
 double cy = c.getCenterY(); // Compute distance from origin
 totalDistance += Math.sqrt(cx*cx + cy*cy);
 }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

Note

Interfaces are data types in Java, just like classes. When a class
implements an interface, instances of that class can be assigned to
variables of the interface type.

Don’t interpret this example to imply that you must assign a CenteredRectangle object to a Centered variable before you can invoke the setCenter() method or to a Shape variable before invoking the area() method. Instead, because the CenteredRectangle class defines setCenter() and inherits area() from its Rectangle superclass, you can always invoke these methods.

As we could see by examining the bytecode (e.g., by using the javap tool we will meet in Chapter 13), the JVM calls the setCenter() method slightly differently depending on whether the local variable holding the shape is of the type CenteredRectangle or Centered, but this is not a distinction that matters most of the time when you’re writing Java code.

Default Methods

From Java 8 onward, it is possible to declare methods in interfaces that include an implementation. In this section, we’ll discuss these methods, which should be understood as optional methods in the API the interfaces represent—they’re usually called default methods. Let’s start by looking at the reasons why we need the default mechanism in the first place.

Backward compatibility

The Java platform has always been very concerned with backward
compatibility. This means that code that was written (or even compiled)
for an earlier version of the platform must continue to work
with later releases of the platform. This principle allows development
groups to have a high degree of confidence that an upgrade of their JDK
or JRE will not break currently working applications.

Backward compatibility is a great strength of the Java platform, but in
order to achieve it, some constraints are placed on the platform. One of
them is that interfaces may not have new mandatory methods added to them
in a new release of the interface.

For example, let’s suppose that we want to update the Positionable
interface with the ability to add a bottom-left bounding point as well:

public interface Positionable extends Centered {
 void setUpperRightCorner(double x, double y);
 double getUpperRightX();
 double getUpperRightY();
 void setLowerLeftCorner(double x, double y);
 double getLowerLeftX();
 double getLowerLeftY();
}

With this new definition, if we try to use this new interface with code
developed for the old, it just won’t work, as the existing code is
missing the mandatory methods setLowerLeftCorner(), getLowerLeftX(),
and getLowerLeftY().

Note

You can see this effect quite easily in your own code. Compile a class
file that depends on an interface. Then add a new mandatory method to
the interface, and try to run the program with the new version of the
interface, together with your old class file. You should see the program
crash with a NoClassDefError.

This limitation was a concern for the designers of Java 8—as one of their goals was to be able to upgrade the core Java Collections libraries, and introduce methods that made use of lambda expressions.

To solve this problem, a new mechanism was needed, essentially to allow interfaces to evolve by allowing new methods to be added without breaking backward compatibility.

Implementation of default methods

Adding new methods to an interface without breaking backward
compatibility requires providing some implementation for the
older implementations of the interface so that they can continue to
work. This mechanism is a default method, and it was first added to
the platform in JDK 8.

Note

A default method (sometimes called an optional method) can be added to
any interface. This must include an implementation, called the default
implementation, which is written inline in the interface definition.

The basic behavior of default methods is:

	
An implementing class may (but is not required to) implement the default method.

	
If an implementing class implements the default method, then the implementation in the class is used.

	
If no other implementation can be found, then the default implementation is used.

An example default method is the sort() method. It’s been added to
the interface java.util.List in JDK 8, and is defined as:

// The <E> syntax is Java's way of writing a generic type-see
// the next section for full details. If you aren't familiar with
// generics, just ignore that syntax for now.
interface List<E> {
 // Other members omitted

 public default void sort(Comparator<? super E> c) {
 Collections.<E>sort(this, c);
 }
}

Thus, from Java 8 upward, any object that implements List has an instance method sort() that can be used to sort the list using a suitable Comparator.
As the return type is void, we might expect that this is an in-place sort, and this is indeed the case.

One consequence of default methods is that when implementing multiple interfaces, it’s possible that two or more interfaces may contain a default method with a completely identical name and signature.

For example:

interface Vocal {
 default void call() {
 System.out.println("Hello!");
 }
}

interface Caller {
 default void call() {
 Switchboard.placeCall(this);
 }
}

public class Person implements Vocal, Caller {
 // ... which default is used?
}

These two interfaces have very different default semantics for call() and could cause a potential implementation clash—a colliding default method.
In versions of Java prior to 8, this could not occur, as the language only permitted single inheritance of implementation.
The introduction of default methods means that Java now permits a limited form of multiple inheritance (but only of method implementations).
Java still does not permit (and has no plans to add) multiple inheritance of object state.

Tip

In some other languages, notably C++, this problem is known as diamond inheritance.

Default methods have a simple set of rules to help resolve any potential ambiguities:

	
If a class implements multiple interfaces in such a way as to cause a potential clash of default method implementations, the implementing class must override the clashing method and provide a definition of what is to be done.

	
Syntax is provided to allow the implementing class to simply call one of the interface default methods if that is what is required:

public class Person implements Vocal, Caller {

 public void call() {
 // Can do our own thing
 // or delegate to either interface
 // e.g.,
 // Vocal.super.call();
 // or
 // Caller.super.call();
 }
}

As a side effect of the design of default methods, there is a slight, unavoidable usage issue that may arise in the case of evolving interfaces with colliding methods.
Consider the case where a (version 7) class implements two interfaces A and B with versions a.0 and b.0, respectively.
As defaults are not available in Java 7, this class will work correctly.
However, if at a later time either or both interfaces adopt a default implementation of a colliding method, then compile time breakage can occur.

For example, if version a.1 introduces a default method in A, then the implementing class will pick up the implementation when run with the new version of the dependency.
If version b.1 now introduces the same method, it causes a collision:

	
If B introduces the method as a mandatory (i.e., abstract) method, then the implementing class continues to work—both at compile time and at runtime.

	
If B introduces the method as a default method, then this is not safe and the implementing class will fail both at compile and at runtime.

This minor issue is very much a corner case and in practice is a very small price to pay in order to have usable default methods in the language.

When working with default methods, we should be aware that there is a slightly restricted set of operations we can perform from within a default method:

	
Call another method present in the interface’s public API (whether mandatory or optional); some implementation for such methods is guaranteed to be available.

	
Call a private method on the interface (Java 9 and up).

	
Call a static method, whether on the interface or defined elsewhere.

	
Use the this reference (e.g., as an argument to method calls).

The biggest takeaway from these restrictions is that even with default methods, Java interfaces still lack meaningful state; we cannot alter or store state within the interface.

Default methods have had a profound impact on the way that Java practitioners approach object-oriented programming.
When combined with the rise of lambda expressions, they have upended many previous conventions of Java coding; we will discuss this in detail in the next chapter.

Marker Interfaces

Occasionally it is useful to define an interface that is entirely empty.
A class can implement this interface simply by naming it in its implements clause without having to implement any methods.
In this case, any instances of the class become valid instances of the interface as well and can be cast to the type. Java code can check whether an object is an instance of the interface using the instanceof operator, so this technique is a useful way to provide additional information about an object. It can be thought of as providing additional, auxiliary type information about a class.

Tip

Marker interfaces are much less widely used than they once were.
Java’s annotations (which we shall meet presently) have largely replaced them due to their much greater flexibility at conveying extended type information.

The interface java.util.RandomAccess is an example of a marker interface: java.util.List implementations use this interface to advertise that they provide fast random access to the elements of the list.
For example, ArrayList implements RandomAccess, while LinkedList does not.
Algorithms that care about the performance of random-access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want
// to make sure that the list allows fast random access. If not,
// it may be quicker to make a random-access copy of the list before
// sorting it. Note that this is not necessary when using
// java.util.Collections.sort().
List l = ...; // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess)) {
 l = new ArrayList(l);
}
sortListInPlace(l);

As we will see later, Java’s type system is very tightly coupled to the names that types have—an approach called nominal typing.
A marker interface is a great example of this—it has nothing at all except a name.

Java Generics

One of the great strengths of the Java platform is the standard library that it ships.
It provides a great deal of useful functionality—and in particular robust implementations of common data structures.
These implementations are relatively simple to develop with and are well
documented.
The libraries are known as the Java Collections, and we will spend a big chunk of Chapter 8 discussing them.
For a far more complete treatment, see the book Java Generics and Collections by Maurice Naftalin and Philip Wadler (O’Reilly).

Although they were still very useful, the earliest versions of the collections had a fairly major limitation, however.
This limitation was that the data structure (sometimes called the container) essentially obscured the type of the data being stored in it.

Note

Data hiding and encapsulation is a great principle of object-oriented
programming, but in this case, the opaque nature of the container caused
a lot of problems for the developer.

Let’s kick off the section by demonstrating the problem, and showing how the introduction of generic types solved it and made life much easier for Java developers.

Introduction to Generics

If we want to build a collection of Shape instances, we can use a
List to hold them, like this:

List shapes = new ArrayList(); // Create a List to hold shapes

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));
// This is legal Java-but is a very bad design choice
shapes.add(new CenteredSquare(2.5, 2, 3));

// List::get() returns Object, so to get back a
// CenteredCircle we must cast
CenteredCircle c = (CentredCircle)shapes.get(0);

// Next line causes a runtime failure
CenteredCircle c = (CentredCircle)shapes.get(1);

A problem with this code stems from the requirement to perform a cast to get the shape objects back out in a usable form—the List doesn’t know what type of objects it contains.
Not only that, but it’s actually possible to put different types of objects into the same container—and everything will work fine until an illegal cast is used, and the program crashes.

What we really want is a form of List that understands what type it contains.
Then, javac could detect when an illegal argument was passed to the methods of List and cause a compilation error, rather than deferring the issue to runtime.

Note

Collections that have all elements of the same type are called homogeneous, while the collections that can have elements of potentially different types are called heterogeneous (or sometimes “mystery meat collections”).

Java provides a simple syntax to cater for homogeneous collections—to indicate that a type is a container that holds instances of another reference type, we enclose the payload type that the container holds within angle brackets:

// Create a List-of-CenteredCircle
List<CenteredCircle> shapes = new ArrayList<CenteredCircle>();

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));

// Next line will cause a compilation error
shapes.add(new CenteredSquare(2.5, 2, 3));

// List<CenteredCircle>::get() returns a CenteredCircle, no cast needed
CenteredCircle c = shapes.get(0);

This syntax ensures that a large class of unsafe code is caught by the compiler, before it gets anywhere near runtime.
This is, of course, the whole point of static type systems—to use compile-time knowledge to help eliminate runtime problems wherever possible.

The resulting types, which combine an enclosing container type and a payload type, are usually called generic types—and they are declared like this:

interface Box<T> {
 void box(T t);
 T unbox();
}

This indicates that the Box interface is a general construct, which can hold any type of payload.
It isn’t really a complete interface by itself—it’s more like a general description of a whole family of interfaces, one for each type that can be used in place of T.

Generic Types and Type Parameters

We’ve seen how to use a generic type, to provide enhanced program
safety, by using compile-time knowledge to prevent simple type errors.
In this section, let’s dig deeper into the properties of generic types.

The syntax <T> has a special name—it’s called a type parameter,
and another name for a generic type is a parameterized type. This
should convey the sense that the container type (e.g., List) is
parameterized by another type (the payload type). When we write a type
like Map<String, Integer>, we are assigning concrete values to the
type parameters.

When we define a type that has parameters, we need to do so in a way
that does not make assumptions about the type parameters. So the List
type is declared in a generic way as List<E>, and the type parameter
E is used all the way through to stand as a placeholder for the actual
type that the programmer will use for the payload when she makes use of
the List data structure.

Tip

Type parameters always stand in for reference types. It is not possible
to use a primitive type as a value for a type parameter.

The type parameter can be used in the signatures and bodies of methods
as though it is a real type, for example:

interface List<E> extends Collection<E> {
 boolean add(E e);
 E get(int index);
 // other methods omitted
}

Note how the type parameter E can be used as a parameter for both return types and method arguments.
We don’t assume that the payload type has any specific properties, and only make the basic assumption of consistency—that the type we put in is the same type that we will later get back out.

This enhancement has effectively introduced a new kind of type to Java’s type system—by combining the container type with the value of the type parameter we are making new types.

Diamond Syntax

When we create an instance of a generic type, the righthand side of the
assignment statement repeats the value of the type parameter. This is
usually unnecessary, as the compiler can infer the values of the type
parameters. In modern versions of Java, we can leave out the repeated
type values in what is called diamond syntax.

Let’s look at an example of how to use diamond syntax, by rewriting one
of our earlier examples:

// Create a List-of-CenteredCircle using diamond syntax
List<CenteredCircle> shapes = new ArrayList<>();

This is a small improvement in the verbosity of the assignment
statement—we’ve managed to save a few characters of typing. We’ll return
to the topic of type inference when we discuss lambda expressions
later on in this chapter.

Type Erasure

In “Default Methods”, we discussed the Java platform’s strong preference for backward compatibility.
The addition of generics in Java 5 was another example of where backward compatibility was an issue for a new language feature.

The central question was how to make a type system that allowed older, nongeneric collection classes to be used alongside with newer, generic collections.
The design decision was to achieve this by the use of casts:

List someThings = getSomeThings();
// Unsafe cast, but we know that the
// contents of someThings are really strings
List<String> myStrings = (List<String>)someThings;

This means that List and List<String> are compatible as types, at least at some level.
Java achieves this compatibility by type erasure. This means that generic type parameters are only visible at compile time—they are stripped out by javac and are not reflected in the bytecode.1

Warning

The nongeneric type List is usually called a raw type. It is still
perfectly legal Java to work with the raw form of types—even for types that are now generic.
This is almost always a sign of poor-quality code, however.

The mechanism of type erasure gives rise to a difference in the type
system seen by javac and that seen by the JVM—we will discuss this
fully in “Generic Methods”.

Type erasure also prohibits some other definitions, which would
otherwise seem legal. In this code, we want to count the orders as
represented in two slightly different data structures:

// Won't compile
interface OrderCounter {
 // Name maps to list of order numbers
 int totalOrders(Map<String, List<String>> orders);

 // Name maps to total orders made so far
 int totalOrders(Map<String, Integer> orders);
}

This seems like perfectly legal Java code, but it will not compile. The
issue is that although the two methods seem like normal overloads, after
type erasure, the signature of both methods becomes:

 int totalOrders(Map);

All that is left after type erasure is the raw type of the container—in
this case, Map. The runtime would be unable to distinguish between the
methods by signature, and so the language specification makes this
syntax illegal.

Bounded Type Parameters

Consider a simple generic box:

public class Box<T> {
 protected T value;

 public void box(T t) {
 value = t;
 }

 public T unbox() {
 T t = value;
 value = null;
 return t;
 }
}

This is a useful abstraction, but suppose we want to have a restricted form of box that only holds numbers.
Java allows us to achieve this by using a bound on the type parameter.
This is the ability to restrict the types that can be used as the value of a type parameter, for example:

public class NumberBox<T extends Number> extends Box<T> {
 public int intValue() {
 return value.intValue();
 }
}

The type bound T extends Number ensures that T can only be substituted with a type that is compatible with the type Number.
As a result of this, the compiler knows that value will definitely have a method intValue() available on it.

Note

Notice that because the value field has protected access, it can be accessed directly in the subclass.

If we attempt to instantiate NumberBox with an invalid value for the type parameter, then the result will be a compilation error, as we can see:

NumberBox<Integer> ni = new NumberBox<>();
// Won't compile
NumberBox<Object> no = new NumberBox<>();

You must take care with raw types when working with type bounds, as the type bound can be evaded, but in doing so, the code is left vulnerable to a runtime exception:

// Compiles
NumberBox n = new NumberBox();
// This is very dangerous
n.box(new Object());
// Runtime error
System.out.println(n.intValue());

The call to intValue() fails with a java.lang.ClassCastException—as javac has inserted an unconditional cast of value to Number before calling the method.

In general, type bounds can be used to write better generic code and libraries.
With practice, some fairly complex constructions can be built, for example:

public class ComparingBox<T extends Comparable<T>> extends Box<T>
 implements Comparable<ComparingBox<T>> {
 @Override
 public int compareTo(ComparingBox<T> o) {
 if (value == null)
 return o.value == null ? 0 : -1;
 return value.compareTo(o.value);
 }
}

The definition might seem daunting, but the ComparingBox is really just a Box that contains a Comparable value. The type also extends the comparison operation to the ComparingBox type itself, by just comparing the contents of the two boxes.

Introducing Covariance

The design of Java’s generics contains the solution to an old problem.
In the earliest versions of Java, before the collections libraries were
even introduced, the language had been forced to confront a deep-seated type system design issue.

Put simply, the question is this:

Should an array of strings be compatible with a variable of type array-of-object?

In other words, should this code be legal?

String[] words = {"Hello World!"};
Object[] objects = words;

Without this, then even simple methods like Arrays::sort would have been very difficult to write in a useful way, as this would not work as expected:

Arrays.sort(Object[] a);

The method declaration would only work for the type Object[] and not for any other array type. As a result of these complications, the very first version of the Java Language Standard determined that:

If a value of type C can be assigned to a variable of type P then a value of type C[] can be assigned to a variable of type P[].

That is, arrays’ assignment syntax varies with the base type that they hold, or arrays are covariant.

This design decision is rather unfortunate, as it leads to immediate negative consequences:

String[] words = {"Hello", "World!"};
Object[] objects = words;

// Oh, dear, runtime error
objects[0] = new Integer(42);

The assignment to objects[0] attempts to store an Integer into a piece of storage that is expecting to hold a String.
This obviously will not work, and will throw an ArrayStoreException.

Warning

The usefulness of covariant arrays led to them being seen as a necessary evil in the very early days of the platform, despite the hole in the static type system that the feature exposes.

However, more recent research on modern open source codebases indicates that array covariance is extremely rarely used and is a language misfeature.2 You should avoid it when writing new code.

When considering the behavior of generics in the Java platform, a very similar question can be asked: “Is List<String> a subtype of List<Object>?” That is, can we write this:

// Is this legal?
List<Object> objects = new ArrayList<String>();

At first glance, this seems entirely reasonable—String is a subclass of Object, so we know that any String element in our collection is also a valid Object.

However, consider the following code (which is just the array covariance code translated to use List):

// Is this legal?
List<Object> objects = new ArrayList<String>();

// What do we do about this?
objects.add(new Object());

As the type of objects was declared to be List<Object>, then it should be legal to add an Object instance to it.
However, as the actual instance holds strings, then trying to add an Object would not be compatible, and so this would fail at runtime.

This would have changed nothing from the case of arrays, and so the resolution is to realize that although this is legal:

Object o = new String("X");

that does not mean that the corresponding statement for generic container types is also true, and as a result:

// Won't compile
List<Object> objects = new ArrayList<String>();

Another way of saying this is that List<String> is not a subtype of
List<Object> or that generic types are invariant, not covariant.
We will have more to say about this when we discuss bounded wildcards.

Wildcards

A parameterized type, such as ArrayList<T>, is not instantiable; we
cannot create instances of them. This is because <T> is just a type
parameter—merely a placeholder for a genuine type. It is only when we
provide a concrete value for the type parameter (e.g.,
ArrayList<String>) that the type becomes fully formed and we can
create objects of that type.

This poses a problem if the type that we want to work with is unknown at compile time.
Fortunately, the Java type system is able to accommodate this concept.
It does so by having an explicit concept of the unknown type—which is represented as <?>. This is the simplest example of Java’s wildcard types.

We can write expressions that involve the unknown type:

ArrayList<?> mysteryList = unknownList();
Object o = mysteryList.get(0);

This is perfectly valid Java—ArrayList<?> is a complete type that a variable can have, unlike ArrayList<T>.
We don’t know anything about mysteryList’s payload type, but that may not be a problem for our code.

For example, when we get an item out of mysteryList, it has a completely unknown type.
However, we can be sure that the object is assignable to Object—because all valid values of a generic type parameter are reference types and all reference values can be assigned to a variable of type Object.

On the other hand, when we’re working with the unknown type, there are some limitations on its use in user code.
For example, this code will not compile:

// Won't compile
mysteryList.add(new Object());

The reason for this is simple—we don’t know what the payload type of
mysteryList is! For example, if mysteryList was really a instance of
ArrayList<String>, then we wouldn’t expect to be able to put an
Object into it.

The only value that we know we can always insert into a container is
null—as we know that null is a possible value for any reference type.
This isn’t that useful, and for this reason, the Java language spec also
rules out instantiating a container object with the unknown type as
payload, for example:

// Won't compile
List<?> unknowns = new ArrayList<?>();

The unknown type may seem to be of limited utility, but one very important use for it is as a starting point for resolving the covariance question.
We can use the unknown type if we want to have a subtyping relationship for
containers, like this:

// Perfectly legal
List<?> objects = new ArrayList<String>();

This means that List<String> is a subtype of List<?>—although when we use an assignment like the preceding one, we have lost some type information.
For example, the return type of get() is now effectively Object.

Note

List<?> is not a subtype of any List<T>, for any value of T.

The unknown type sometimes confuses developers—provoking questions like,
“Why wouldn’t you just use Object instead of the unknown type?”
However, as we’ve seen, the need to have subtyping relationships between
generic types essentially requires us to have a notion of the unknown
type.

Bounded wildcards

In fact, Java’s wildcard types extend beyond just the unknown type,
with the concept of bounded wildcards.

They are used to describe the inheritance hierarchy of a mostly unknown
type—effectively making statements like, for example, “I don’t know
anything about this type, except that it must implement List.”

This would be written as ? extends List in the type parameter. This
provides a useful lifeline to the programmer—instead of being restricted
to the totally unknown type, she knows that at least the capabilities of
the type bound are available.

Warning

The extends keyword is always used, regardless of whether the constraining type is a class or interface type.

This is an example of a concept called type variance, which is the
general theory of how inheritance between container types relates to the
inheritance of their payload types.

	Type covariance

	
This means that the container types have the same relationship to
each other as the payload types do. This is expressed using the
extends keyword.

	Type contravariance

	
This means that the container types have the inverse relationship to
each other as the payload types. This is expressed using the super
keyword.

These ideas tend to appear when discussing container types.
For example, if Cat extends Pet, then List<Cat> is a subtype of List<? extends Pet>, and so:

List<Cat> cats = new ArrayList<Cat>();
List<? extends Pet> pets = cats;

However, this differs from the array case, because type safety is maintained in the following way:

pets.add(new Cat()); // won't compile
pets.add(new Pet()); // won't compile
cats.add(new Cat());

The compiler cannot prove that the storage pointed at by pets is capable of storing a Cat and so it rejects the call to add().
However, as cats definitely points at a list of Cat objects, then it must be acceptable to add a new one to the list.

As a result, it is very commonplace to see these types of generic constructions with types that act as producers or consumers of payload types.

For example, when the List is acting as a producer of Pet objects, then the appropriate keyword is extends.

Pet p = pets.get(0);

Note that for the producer case, the payload type appears as the return type of the producer method.

For a container type that is acting purely as a consumer of instances
of a type, we would use the super keyword, and we would expect to see the payload type as the type of a method argument.

Note

This is codified in the Producer Extends, Consumer Super (PECS)
principle coined by Joshua Bloch.

As discussed in Chapter 8, we see both covariance and contravariance throughout the Java Collections.
They largely exist to ensure that the generics just “do the right thing” and behave in a manner that should not surprise the developer.

Generic Methods

A generic method is a method that is able to take instances of any reference type.

For example, this method emulates the behavior of the , (comma) operator from the C language, which is usually used to combine expressions with side effects together:

// Note that this class is not generic
public class Utils
 public static <T> T comma(T a, T b) {
 return a;
 }
}

Even though a type parameter is used in the definition of the method, the class it is defined in need not be generic—instead, the syntax is used to indicate that the method can be used freely, and that the return type is the same as the argument.

Let’s look at another example, from the Java Collections library.
In the ArrayList class we can find a method to create a new array object from an arraylist instance:

@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
 if (a.length < size)
 // Make a new array of a's runtime type, but my contents:
 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
 System.arraycopy(elementData, 0, a, 0, size);
 if (a.length > size)
 a[size] = null;
 return a;
}

This method uses the low-level arraycopy() method to do the actual work.

Note

If we look at the class definition for ArrayList we can see that it is a generic class—but the type parameter is <E>, not <T>, and the type parameter <E> does not appear at all in the definition of toArray().

The toArray() method provides one half of a bridge API between the collections and Java’s original arrays.
The other half of the API—moving from arrays to collections—involves a few additional subtleties, as we will discuss in Chapter 8.

Compile and Runtime Typing

Consider an example piece of code:

List<String> l = new ArrayList<>();
System.out.println(l);

We can ask the following question: what is the type of l? The answer to that question depends on whether we consider l at compile time (i.e., the type seen by javac) or at runtime (as seen by the JVM).

javac will see the type of l as List-of-String, and will use that type information to carefully check for syntax errors, such as an attempted add() of an illegal type.

Conversely, the JVM will see l as an object of type ArrayList—as we
can see from the println() statement. The runtime type of l is a
raw type due to type erasure.

The compile-time and runtime types are therefore slightly different from
each other. The slightly strange thing is that in some ways, the runtime
type is both more and less specific than the compile-time type.

The runtime type is less specific than the compile-time type, because
the type information about the payload type is gone—it has been erased,
and the resulting runtime type is just a raw type.

The compile-time type is less specific than the runtime type, because we
don’t know exactly what concrete type l will be—all we know is that it
will be of a type compatible with List.

The differences between compile and runtime typing sometimes confuse new Java programmers, but the distinction quickly comes to be seen as a normal part of working in the language.

Using and Designing Generic Types

When working with Java’s generics, it can sometimes be helpful to think
in terms of two different levels of understanding:

	Practitioner

	
A practitioner needs to use existing generic libraries, and to build
some fairly simple generic classes. At this level, the developer
should also understand the basics of type erasure, as several Java
syntax features are confusing without at least an awareness of the
runtime handling of generics.

	Designer

	
The designer of new libraries that use generics needs to understand
much more of the capabilities of generics. There are some nastier
parts of the spec—including a full understanding of wildcards, and
advanced topics such as “capture-of” error messages.

Java generics are one of the most complex parts of the language
specification with a lot of potential corner cases, which not every
developer needs to fully understand, at least on a first encounter with
this part of Java’s type system.

Enums and Annotations

Java has specialized forms of classes and interfaces that are used to
fulfill specific roles in the type system. They are known as enumerated
types and annotation types, or normally just enums and annotations.

Enums

Enums are a variation of classes that have limited functionality and
that have only a small number of possible values that the type permits.

For example, suppose we want to define a type to represent the primary
colors of red, green, and blue, and we want these to be the only
possible values of the type. We can do this by making use of the enum
keyword:

public enum PrimaryColor {
 // The ; is not required at the end of the list of instances
 RED, GREEN, BLUE
}

Instances of the type PrimaryColor can then be referenced as though
they were static fields: PrimaryColor.RED, PrimaryColor.GREEN, and
PrimaryColor.BLUE.

Note

In other languages, such as C++, the role of enum types is fulfilled by using constant integers, but Java’s approach provides better type safety and more flexiblity.

As enums are specialized classes, enums can have member fields and methods.
If they do have a body (consisting of fields or methods), then the semicolon at the end of the list of instances is required, and the list of enum constants must precede the methods and fields.

For example, suppose that we want to have an enum that encompasses the
first few regular polygons (shapes with all sides and all angles equal),
and we want them to have some behavior (in the form of methods). We
could achieve this by using an enum that takes a value as a parameter,
like this:

public enum RegularPolygon {
 // The ; is mandatory for enums that have parameters
 TRIANGLE(3), SQUARE(4), PENTAGON(5), HEXAGON(6);

 private Shape shape;

 public Shape getShape() {
 return shape;
 }

 private RegularPolygon(int sides) {
 switch (sides) {
 case 3:
 // We assume that we have some general constructors
 // for shapes that take the side length and
 // angles in degrees as parameters
 shape = new Triangle(1,1,1,60,60,60);
 break;
 case 4:
 shape = new Rectangle(1,1);
 break;
 case 5:
 shape = new Pentagon(1,1,1,1,1,108,108,108,108,108);
 break;
 case 6:
 shape = new Hexagon(1,1,1,1,1,1,120,120,120,120,120,120);
 break;
 }
 }
}

These parameters (only one of them in this example) are passed to the
constructor to create the individual enum instances. As the enum
instances are created by the Java runtime, and can’t be instantiated
from outside, the constructor is declared as private.

Enums have some special properties:

	
All (implicitly) extend java.lang.Enum

	
May not be generic

	
May implement interfaces

	
Cannot be extended

	
May only have abstract methods if all enum values provide an
implementation body

	
May not be directly instantiated by new

Annotations

Annotations are a specialized kind of interface that, as the name
suggests, annotate some part of a Java program.

For example, consider the @Override annotation. You may have seen it
on some methods in some of the earlier examples, and may have asked the
following question: what does it do?

The short, and perhaps surprising, answer is that it does nothing at
all.

The less short (and flippant) answer is that, like all annotations, it
has no direct effect, but instead acts as additional information about
the method that it annotates; in this case, it denotes that a method
overrides a superclass method.

This acts as a useful hint to compilers and integrated development
environments (IDEs)—if a developer has misspelled the name of a method
that she intended to be an override of a superclass method, then the
presence of the @Override annotation on the misspelled method (which
does not override anything) alerts the compiler to the fact that
something is not right.

Annotations, as originally conceived, were not supposed to alter program semantics; instead, they were to provide optional metadata.
In its strictest sense, this means that they should not affect program execution and instead should only provide information for compilers and other pre-execution phases.

In practice, modern Java applications make heavy use of annotations, and this now includes many use cases that essentially render the annotated classes useless without additional runtime support.

For example, classes bearing annotations such as @Inject, @Test, or @Autowired cannot realistically be used outside of a suitable container.
As a result, it is difficult to argue that such annotations do not violate the “no semantic meaning” rule.

The platform defines a small number of basic annotations in
java.lang. The original set were @Override, @Deprecated, and
@SuppressWarnings—which were used to indicate that a method was
overriden, deprecated, or that it generated some compiler warnings that
should be suppressed.

These were augmented by @SafeVarargs in Java 7 (which provides extended warning suppression for varargs methods) and @FunctionalInterface in Java 8.

This last annotation indicates an interface can be used as a target for a lambda expression—it is a useful marker annotation although not mandatory, as we will see.

Annotations have some special properties, compared to regular
interfaces:

	
All (implicitly) extend java.lang.annotation.Annotation

	
May not be generic

	
May not extend any other interface

	
May only define zero-arg methods

	
May not define methods that throw exceptions

	
Have restrictions on the return types of methods

	
Can have a default return value for methods

In practice, annotations do not typically have a great deal of functionality and instead are a fairly simple language concept.

Defining Custom Annotations

Defining custom annotation types for use in your own code is not that
hard. The @interface keyword allows the developer to define a new
annotation type, in much the same way that class or interface is
used.

Note

The key to writing custom annotations is the use of “meta-annotations.”
These are special annotations that appear on the
definition of new (custom) annotation types.

The meta-annotations are defined in java.lang.annotation and allow
the developer to specify policy for where the new annotation type is to
be used, and how it will be treated by the compiler and runtime.

There are two primary meta-annotations that are both essentially
required when creating a new annotation type—@Target and
@Retention. These both take values that are represented as enums.

The @Target meta-annotation indicates where the new custom annotation
can be legally placed within Java source code. The enum ElementType
has the possible values TYPE, FIELD, METHOD,
PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE, ANNOTATION_TYPE,
PACKAGE, TYPE_PARAMETER, and TYPE_USE, and annotations can indicate that they intend to be used at one or more of these locations.

The other meta-annotation is @Retention, which indicates how javac
and the Java runtime should process the custom annotation type. It can
have one of three values, which are represented by the enum
RetentionPolicy:

	SOURCE

	
Annotations with this retention policy are discarded by javac during compilation.

	CLASS

	
This means that the annotation will be present in the class file, but
will not necessarily be accessible at runtime by the JVM. This is
rarely used, but is sometimes seen in tools that do offline analysis
of JVM bytecode.

	RUNTIME

	
This indicates that the annotation will be available for user code to
access at runtime (by using reflection).

Let’s take a look at an example, a simple annotation called @Nickname,
which allows the developer to define a nickname for a method, which can
then be used to find the method reflectively at runtime:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Nickname {
 String[] value() default {};
}

This is all that’s required to define the annotation—a syntax element
where the annotation can appear, a retention policy, and the name of the
element. As we need to be able to supply the nickname we’re assigning to
the method, we also need to define a method on the annotation. Despite
this, defining new custom annotations is a remarkably compact
undertaking.

In addition to the two primary meta-annotations, there are also the
@Inherited and @Documented meta-annotations. These are much less
frequently encountered in practice, and details on them can be found in
the platform documentation.

Type Annotations

With the release of Java 8, two new values for ElementType were
added—TYPE_PARAMETER and TYPE_USE. These new values allow the use of
annotations in places where they were previously not legal, such as at
any site where a type is used. This enables the developer to write code
such as:

@NotNull String safeString = getMyString();

The extra type information conveyed by the @NotNull can then be used by a special type checker to detect problems (a possible NullPointerException, in this example) and to perform additional static analysis.
The basic Java 8 distribution ships with some basic pluggable type checkers, but also provides a framework for allowing developers and library authors to create their own.

In this section, we’ve met Java’s enum and annotation types.
Let’s move on to consider the next important part of Java’s type system: lambda expressions.

Lambda Expressions

One of the most eagerly anticipated features of Java 8 was the introduction of lambda expressions (frequently referred to as just lambdas).

This was a major upgrade to the Java platform and was driven by five goals, in roughly descending order of priority:

	
More expressive programming

	
Better libraries

	
Concise code

	
Improved programming safety

	
Potentially increased data parallelism

Lambdas have three key aspects that help define the essential nature of the feature:

	
They allow small bits of code to be written inline as literals in a program.

	
They relax the strict naming rules of Java code by using type inference.

	
They are intended to facilitate a more functional style of programming Java.

As we saw in Chapter 2, the syntax for a lambda
expression is to take a list of parameters (the types of which are
typically inferred), and to attach that to a method body, like this:

(p, q) -> { /* method body */ }

This can provide a very compact way to represent what is effectively a single method.
It is also a major departure from earlier versions of Java—until now, we have always had to have a class declaration and then a complete method declaration, all of which adds to the verboseness of the code.

In fact, before the arrival of lambdas, the only way to approximate this coding style was to use anonymous classes, which we will discuss later in this chapter.
However, since Java 8, lambdas have proved to be very popular with Java programmers and now have mostly taken over the role of anonymous classes wherever they are able to do so.

Note

Despite the similarities between lambda expressions and anonymous classes, lambdas are not simply syntactic sugar over anonymous classes.
In fact, lambdas are implemented using method handles (which we will meet in Chapter 11) and a new, special JVM bytecode called invokedynamic.

Lambda expressions represent the creation of an object of a specific type.
The type of the instance that is created is known as the target type of the lambda.

Only certain types are eligible to be the target of a lamba.

Target types are also called functional interfaces and they must:

	
Be interfaces

	
Have only one nondefault method (but may have other methods that are default)

Some developers also like to use the single abstract method (or SAM) type to refer to the interface type that the lambda is converted into.
This draws attention to the fact that to be usable by the lambda expression mechanism, an interface must have only a single nondefault method.

Note

A lambda expression has almost all of the component parts of a method, with the obvious exception that a lambda doesn’t have a name.
In fact, many developers like to think of lambdas as “anonymous methods.”

As a result, this means that the single line of code:

Runnable r = () -> System.out.println("Hello");

actually represents the creation of an object, which is assigned to a variable r, of type Runnable.

Lambda Expression Conversion

When javac encounters a lambda expression, it interprets it as the
body of a method with a specific signature—but which method?

To resolve this question, javac looks at the surrounding code. To be
legal Java code, the lambda expression must satisfy the following properties:

	
The lambda must appear where an instance of an interface type is
expected.

	
The expected interface type should have exactly one mandatory method.

	
The expected interface method should have a signature that exactly matches that of the lambda expression.

If this is the case, then an instance is created of a type that implements the expected interface, and uses the lambda body as the implementation for the mandatory method.

This slightly complex conversion approach comes from the desire to keep Java’s
type system as purely nominative (based on names). The lambda expression
is said to be converted to an instance of the correct interface type.

From this discussion, we can see that although Java 8 has added lambda
expressions, they have been specifically designed to fit into Java’s
existing type system—which has a very strong emphasis on nominal types (rather than the other possible sorts of types that exist in some other programming languages).

Let’s consider an example of lambda conversion—the list() method of the java.io.File class.
This method lists the files in a directory. Before it returns the list, though, it passes the name of each file to a FilenameFilter object that the programmer must supply.
This FilenameFilter object accepts or rejects each file, and is a SAM type defined in the java.io package:

@FunctionalInterface
public interface FilenameFilter {
 boolean accept(File dir, String name);
}

The type FilenameFilter carries the @FunctionalInterface to indicate that it is a suitable type to be used as the target type for a lambda.
However, this annotation is not required and any type that meets the requirements (by being an interface and a SAM type) can be used as a target type.

This is because the JDK and the existing corpus of Java code already had a huge number of SAM types available before Java 8 was released.
To require potential target types to carry the annotation would have prevented lambdas from being retrofitted to existing code for no real benefit.

Tip

In code that you write, you should always try to indicate when your types are usable as target types, which you can do by adding the @FunctionalInterface to them.
This aids readability and can help some automated tools as well.

Here’s how we can define a FilenameFilter class to list only those
files whose names end with .java, using a lambda:

File dir = new File("/src"); // The directory to list

String[] filelist = dir.list((d, fName) -> fName.endsWith(".java"));

For each file in the list, the block of code in the lambda expression is
evaluated. If the method returns true (which happens if the filename
ends in .java), then the file is included in the output—which ends up
in the array filelist.

This pattern, where a block of code is used to test if an element of a
container matches a condition, and to only return the elements that pass
the condition, is called a filter idiom—and is one of the standard
techniques of functional programming, which we will discuss in more
depth presently.

Method References

Recall that we can think of lambda expressions as objects representing methods that don’t have names.
Now, consider this lambda expression:

// In real code this would probably be
// shorter because of type inference
(MyObject myObj) -> myObj.toString()

This will be autoconverted to an implementation of a @FunctionalInterface type that has a single nondefault method that takes a single MyObject and returns a String—specifically, the string obtained by calling toString() on the instance of MyObject.
However, this seems like excessive boilerplate, and so Java 8 provides a syntax for making this easier to read and write:

MyObject::toString

This is a shorthand, known as a method reference, that uses an existing method as a lambda expression. The method reference syntax is completely equivalent to the previous form expressed as a lambda. It can be thought of as using an existing method, but ignoring the name of the method, so it can be used as a lambda and then autoconverted in the usual way. Java defines four types of method reference, which are equivalent to four slightly different lambda expression forms (see Table 4-1).

Table 4-1. Method references

	Name
	Method reference
	Equivalent lambda

	Unbound

	Trade::getPrice

	trade -> trade.getPrice()

	Bound

	System.out::println

	s -> System.out.println(s)

	Static

	System::getProperty

	key -> System.getProperty(key)

	Constructor

	Trade::new

	price -> new Trade(price)

The form we originally introduced can be seen to be an unbound method reference.
When we use an unbound method reference, it is equivalent to a lambda that is expecting an instance of the type that contains the method reference—in Table 4-1 that is a Trade object.

It is called an unbound method reference because the receiver object needs to be supplied (as the first argument to the lambda) when the method reference is used.
That is, we are going to call getPrice() on some Trade object, but the supplier of the method reference has not defined which one—that is left up to the user of the reference.

By contrast, a bound method reference always includes the receiver as part of the instantiation of the method reference.
In Table 4-1, the receiver is System.out—so when the reference is used, the println() method will always be called on System.out, and all the parameters of the lambda will be used as method parameters to println().

We will discuss use cases for method references versus lambda expressions in more detail in the next chapter.

Functional Programming

Java is fundamentally an object-oriented lanaguage. However, with the
arrival of lambda expressions, it becomes much easier to write code that
is closer to the functional approach.

Note

There’s no single definition of exactly what constitutes a functional
language—but there is at least a consensus that it should at minimum
contain the ability to represent a function as a value that can be put
into a variable.

Java has always (since version 1.1) been able to represent functions via
inner classes, but the syntax was complex and lacking in clarity.
Lambda expressions greatly simplify that syntax, and so it is only
natural that more developers will be seeking to use aspects of
functional programming in their Java code.

The first taste of functional programming that Java developers are
likely to encounter are three basic idioms that are remarkably useful:

	map()

	
The map idiom is used with lists and list-like containers. The idea
is that a function is passed in that is applied to each element in the
collection, and a new collection is created—consisting of the results
of applying the function to each element in turn. This means that a
map idiom converts a collection of one type to a collection of
potentially a different type.

	filter()

	
We have already met an example of the filter idiom, when we discussed
how to replace an anonymous implementation of FilenameFilter with a
lambda. The filter idiom is used for producing a new subset of a
collection, based on some selection criteria.
Note that in functional programming, it is normal to produce a new collection, rather than modifying an existing one in-place.

	reduce()

	
The reduce idiom has several different guises. It is an aggregation
operation, which can be called fold, accumulate, or aggregate
as well as reduce. The basic idea is to take an initial value, and an
aggregation (or reduction) function, and apply the reduction function
to each element in turn, building up a final result for the whole
collection by making a series of intermediate results—similar to a
“running total”—as the reduce operation traverses the collection.

Java has full support for these key functional idioms (and several
others). The implementation is explained in some depth in
Chapter 8, where we discuss Java’s data structures
and collections, and in particular the stream abstraction, which makes
all of this possible.

Let’s conclude this introduction with some words of caution. It’s worth
noting that Java is best regarded as having support for “slightly
functional programming.” It is not an especially functional language,
nor does it try to be. Some particular aspects of Java that militate
against any claims to being a functional language include the following:

	
Java has no structural types, which means no “true” function types.
Every lambda is automatically converted to the appropriate nominal target type.

	
Type erasure causes problems for functional programming—type safety
can be lost for higher-order functions.

	
Java is inherently mutable (as we’ll discuss in
Chapter 6)—mutability is often regarded as highly
undesirable for functional languages.

	
The Java collections are imperative, not functional. Collections must be converted to streams to use functional style.

Despite this, easy access to the basics of functional programing—and
especially idioms such as map, filter, and reduce—is a huge step forward
for the Java community. These idioms are so useful that a large majority
of Java developers will never need or miss the more advanced
capabilities provided by languages with a more thoroughbred functional
pedigree.

In truth, many of these techniques were possible using nested
types, via patterns like callbacks and handlers, but the syntax was
always quite cumbersome, especially given that you had to explicitly define
a completely new type even when you only needed to express a single line of
code in the callback.

Lexical Scoping and Local Variables

A local variable is defined within a block of code that defines its scope, and outside of that scope, a local variable cannot be accessed and ceases to exist.
Only code within the curly braces that define the boundaries of a block can use local variables defined in that block.
This type of scoping is known as lexical scoping, and just defines a section of source code within which a variable can be used.

It is common for programmers to think of such a scope as temporal instead—that is, to think of a local variable as existing from the time the JVM begins executing the block until the time control exits the block.
This is usually a reasonable way to think about local variables and their scope.
However, lambda expressions (and anonymous and local classes, which we will meet later) have the ability to bend or break this intuition somewhat.

This can cause effects that some developers initially find surprising.
This is because lambdas can use local variables, and so they can contain copies of values from lexical scopes that no longer exist.
This can been seen in the following code:

public interface IntHolder {
 public int getValue();
}

public class Weird {
 public static void main(String[] args) {
 IntHolder[] holders = new IntHolder[10];
 for (int i = 0; i < 10; i++) {
 final int fi = i;

 holders[i] = () -> {
 return fi;
 };
 }
 // The lambda is now out of scope, but we have 10 valid instances
 // of the class the lambda has been converted to in our array.
 // The local variable fi is not in our scope here, but is still
 // in scope for the getValue() method of each of those 10 objects.
 // So call getValue() for each object and print it out.
 // This prints the digits 0 to 9.
 for (int i = 0; i < 10; i++) {
 System.out.println(holders[i].getValue());
 }
 }
}

Each instance of a lambda has an automatically created private copy of each of the final local variables it uses, so, in effect, it has its own private copy of the scope that existed when it was created.
This is sometimes referred to as a captured variable.

Lambdas that capture variables like this are referred to as closures, and the variables are said to have been closed over.

Warning

Other programming languages may have a slightly different definition of a closure.
In fact, some theorists would dispute that Java’s mechanism counts as a closure because, technically, it is the contents of the variable (a value) and not the variable itself that is captured.

In practice, the preceding closure example is more verbose than it needs to be in two separate ways:

	
The lambda has an explicit scope {} and return statement.

	
The variable fi is explicitly declared final.

The compiler javac helps with both of these.

Lambdas that only return the value of a single expression need not include a scope or return; instead, the body of the lambda is just the expression without the need for curly braces.
In our example we have explicitly included the braces and return statement to spell out that the lambda is defining its own scope.

In early versions of Java there were two hard requirements when closing over a variable:

	
The captures must not be modified after they have been captured (e.g., after the lambda)

	
The captured variables must be declared final

However, in recent Java versions, javac can analyze the code and detect whether the programmer attempts to modify the captured variable after the scope of the lambda.
If not, then the final qualifier on the captured variable can be omitted (such a variable is said to be effectively final).
If the final qualifier is omitted, then it is a compile-time error to attempt to modify a captured variable after the lambda’s scope.

The reason for this is that Java implements closures by copying the bit pattern of the contents of the variable into the scope created by the closure.
Further changes to the contents of the closed-over variable would not be reflected in the copy contained in closure scope, so the design decision was made to make such changes illegal, and a compile-time error.

These assists from javac mean that we can rewrite the inner loop of the preceding example to the very compact form:

for (int i = 0; i < 10; i++) {
 int fi = i;
 holders[i] = () -> fi;
}

Closures are very useful in some styles of programming, and different programming languages define and implement closures in different ways.
Java implements closures as lambda expressions, but local classes and anonymous classes can also capture state—and in fact this is how Java implemented closures before lambdas were available.

Nested Types

The classes, interfaces, and enum types we have seen so far in this book have all been defined as top-level types.
This means that they are direct members of packages, defined independently of other types.
However, type definitions can also be nested within other type definitions. These nested types, commonly known as “inner classes,” are a powerful feature of the Java language.

In general, nested types are used for two separate purposes, both related to encapsulation.
First, a type may be nested because it needs especially intimate access to the internals of another type.
By being a nested type, it has access in the same way that member variables and methods do.
This means that nested types have privileged access and can be thought of as “slightly bending the rules of encapsulation.”

Another way of thinking about this use case of nested types is that they are types that are somehow tied together with another type.
This means that they don’t really have a completely independent existence as an entity, and only coexist.

Alternatively, a type may be only required for a very specific reason, and in a very small section of code.
This means that it should be tightly localized, as it is really part of the implementation detail.

In older versions of Java, the only way to do this was with a nested type, such as an anonymous implementation of an interface.
In practice, with the advent of Java 8, this use case has substantially been taken over by lambda expressions. The use of anonymous types as closely localized types has dramatically declined, although it still persists for some cases.

Types can be nested within another type in four different ways:

	Static member types

	
A static member type is any type defined as a static member of
another type. Nested interfaces, enums, and annotations are always
static (even if you don’t use the keyword).

	Nonstatic member classes

	
A “nonstatic member type” is simply a member type that is not declared
static. Only classes can be nonstatic member types.

	Local classes

	
A local class is a class that is defined and only visible within a
block of Java code. Interfaces, enums, and annotations may not be
defined locally.

	Anonymous classes

	
An anonymous class is a kind of local class that has no meaningful name that is useful to humans, merely an arbitary name assigned by the compiler, which programmers should not use directly.

Interfaces, enums, and annotations cannot
be defined pass:[anonymously].

The term “nested types,” while a correct and precise usage, is not widely used by developers. Instead, most Java programmers use the much vaguer term “inner class.” Depending on the situation, this can refer to a nonstatic member class, local class, or anonymous class, but not a static member type, with no real way to distinguish between them.

Fortunately, although the terminology for describing nested types is not always clear, the syntax for working with them is, and it is usually apparent from context which kind of nested type is being discussed.

Note

Until Java 11, nested types were implemented using a compiler trick. Experienced Java programmers should note that this detail has actually changed in Java 11, and it is no longer done in quite the same way as it used to be.

Let’s move on to describe each of the four kinds of nested types in greater detail.
Each section describes the features of the nested type, the restrictions on its use, and any special Java syntax used with the type.

Static Member Types

A static member type is much like a regular top-level type. For
convenience, however, it is nested within the namespace of another
type. Static member types have the following basic properties:

	
A static member type is like the other static members of a class:
static fields and static methods.

	
A static member type is not associated with any instance of the
containing class (i.e., there is no this object).

	
A static member type can access (only) the static members of the
class that contains it.

	
A static member type has access to all the static members (including
any other static member types) of its containing type.

	
Nested interfaces, enums, and annotations are implicitly static,
whether or not the static keyword appears.

	
Any type nested within an interface or annotation is also implicitly
static.

	
Static member types may be defined within top-level types or nested to
any depth within other static member types.

	
A static member type may not be defined within any other kind of
nested type.

Let’s look at a quick example of the syntax for static member types.
Example 4-1 shows a helper interface defined
as a static member of a containing class.

Example 4-1. Defining and using a static member interface

// A class that implements a stack as a linked list
public class LinkedStack {

 // This static member interface defines how objects are linked
 // The static keyword is optional: all nested interfaces are static
 static interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list is a Linkable object
 Linkable head;

 // Method bodies omitted
 public void push(Linkable node) { ... }

 public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
 // Here's the node's data and constructor
 int i;
 public LinkableInteger(int i) { this.i = i; }

 // Here are the data and methods required to implement the interface
 LinkedStack.Linkable next;

 public LinkedStack.Linkable getNext() { return next; }

 public void setNext(LinkedStack.Linkable node) { next = node; }
}

The example also shows how this interface is used both within the class that contains it and by external classes. Note the use of its hierarchical name in the external class.

Features of static member types

A static member type has access to all static members of its containing
type, including private members. The reverse is true as well: the
methods of the containing type have access to all members of a static
member type, including the private members. A static member type even
has access to all the members of any other static member types,
including the private members of those types. A static member type can
use any other static member without qualifying its name with the name of
the containing type.

Top-level types can be declared as either public or package-private
(if they’re declared without the public keyword). But declaring
top-level types as private and protected wouldn’t make a great deal
of sense—protected would just mean the same as package-private and a
private top-level class would be unable to be accessed by any other
type.

Static member types, on the other hand, are members and so can use any
access control modifiers that other members of the containing type can.
These modifiers have the same meanings for static member types as they
do for other members of a type.

For example, in Example 4-1, the Linkable
interface is declared public, so it can be implemented by any class
that is interested in being stored on a LinkedStack.

In code outside the containing class, a static member type is named by
combining the name of the outer type with that of the inner
(e.g., LinkedStack.Linkable).

Under most circumstances, this syntax provides a helpful reminder that
the inner class is interconnected with its containing type. However, the
Java language does permit you to use the import directive to
directly import a static member type:

import pkg.LinkedStack.Linkable; // Import a specific nested type
// Import all nested types of LinkedStack
import pkg.LinkedStack.*;

You can then reference the nested type without including the name of its
enclosing type (e.g., just as Linkable).

Note

You can also use the import static directive to import a static member
type. See “Packages and the Java Namespace” in
Chapter 2 for details on import and
import static.

However, importing a nested type obscures the fact that that type is
closely associated with its containing type—which is usually important
information—and as a result it is not commonly done.

Nonstatic Member Classes

A nonstatic member class is a class that is declared as a member
of a containing class or enumerated type without the static keyword:

	
If a static member type is analogous to a class field or class method,
a nonstatic member class is analogous to an instance field or instance
method.

	
Only classes can be nonstatic member types.

	
An instance of a nonstatic member class is always associated with an
instance of the enclosing type.

	
The code of a nonstatic member class has access to all the fields and
methods (both static and non-static) of its enclosing type.

	
Several features of Java syntax exist specifically to work with the
enclosing instance of a nonstatic member class.

Example 4-2 shows how a member class can be
defined and used. This example extends the previous LinkedStack
example to allow enumeration of the elements on the stack by defining an
iterator() method that returns an implementation of the
java.util.Iterator interface. The implementation of this interface is
defined as a member class.

Example 4-2. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {

 // Our static member interface
 public interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list
 private Linkable head;

 // Method bodies omitted here
 public void push(Linkable node) { ... }
 public Linkable pop() { ... }

 // This method returns an Iterator object for this LinkedStack
 public Iterator<Linkable> iterator() { return new LinkedIterator(); }

 // Here is the implementation of the Iterator interface,
 // defined as a nonstatic member class.
 protected class LinkedIterator implements Iterator<Linkable> {
 Linkable current;

 // The constructor uses a private field of the containing class
 public LinkedIterator() { current = head; }

 // The following three methods are defined
 // by the Iterator interface
 public boolean hasNext() { return current != null; }

 public Linkable next() {
 if (current == null)
 throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }

 public void remove() { throw new UnsupportedOperationException(); }
 }
}

Notice how the LinkedIterator class is nested within the LinkedStack
class. Because LinkedIterator is a helper class used only within
LinkedStack, having it defined so close to where it is used by the
containing class makes for a clean design, just as we discussed when we
introduced nested types.

Features of member classes

Like instance fields and instance methods, every instance of a
nonstatic member class is associated with an instance of the class in
which it is defined. This means that the code of a member class has
access to all the instance fields and instance methods (as well as the
static members) of the containing instance, including any that are
declared private.

This crucial feature was already illustrated in
Example 4-2. Here is the
LinkedStack.LinkedIterator() constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to
the value of the head field of the containing class. The code works as
shown, even though head is declared as a private field in the
containing class.

A nonstatic member class, like any member of a class, can be assigned
one of the standard access control modifiers. In
Example 4-2, the LinkedIterator class is
declared protected, so it is inaccessible to code (in a different
package) that uses the LinkedStack class but is accessible to any
class that subclasses LinkedStack.

Member classes have two important restrictions:

	
A nonstatic member class cannot have the same name as any containing
class or package. This is an important rule, one that is not shared by
fields and methods.

	
Nonstatic member classes cannot contain any static fields, methods,
or types, except for constant fields declared both static and final.

Syntax for member classes

The most important feature of a member class is that it can access the
instance fields and methods in its containing object.

If we want to use explicit references, and make use of this, then we
have to use a special syntax for explicitly referring to the containing
instance of the this object. For example, if we want to be explicit in
our constructor, we can use the following syntax:

public LinkedIterator() { this.current = LinkedStack.this.head; }

The general syntax is classname.this, where classname is the
name of a containing class. Note that member classes can themselves
contain member classes, nested to any depth.

However, no member class can have the same name as any containing class, so the use of the enclosing class name prepended to this is a perfectly general way to
refer to any containing instance.
Another way of saying this is that the syntax construction EnclosingClass.this is an unambiguous way of referring to the containing instance as an uplevel reference.

Local Classes

A local class is declared locally within a block of Java code
rather than as a member of a class. Only classes may be defined locally:
interfaces, enumerated types, and annotation types must be top-level or
static member types. Typically, a local class is defined within a
method, but it can also be defined within a static initializer or
instance initializer of a class.

Just as all blocks of Java code appear within class definitions, all
local classes are nested within containing blocks. For this reason,
local classes share many of the features of member classes. It is
usually more appropriate to think of them as an entirely separate kind
of nested type.

Note

See Chapter 5 for details as to when it’s
appropriate to choose a local class versus a lambda expression.

The defining characteristic of a local class is that it is local to a
block of code. Like a local variable, a local class is valid only within
the scope defined by its enclosing block.
Example 4-3 illustrates how we can modify the
iterator() method of the LinkedStack class so it defines
LinkedIterator as a local class instead of a member class.

By doing this, we move the definition of the class even closer to where
it is used and hopefully improve the clarity of the code even further.
For brevity, Example 4-3 shows only the
iterator() method, not the entire LinkedStack class that contains
it.

Example 4-3. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> iterator() {
 // Here's the definition of LinkedIterator as a local class
 class LinkedIterator implements Iterator<Linkable> {
 Linkable current;

 // The constructor uses a private field of the containing class
 public LinkedIterator() { current = head; }

 // The following three methods are defined
 // by the Iterator interface
 public boolean hasNext() { return current != null; }

 public Linkable next() {
 if (current == null)
 throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }

 public void remove() { throw new UnsupportedOperationException(); }
 }

 // Create and return an instance of the class we just defined
 return new LinkedIterator();
}

Features of local classes

Local classes have the following interesting features:

	
Like member classes, local classes are associated with a containing
instance and can access any members, including private members, of the
containing class.

	
In addition to accessing fields defined by the containing class, local
classes can access any local variables, method parameters, or exception
parameters that are in the scope of the local method definition and are
declared final.

Local classes are subject to the following restrictions:

	
The name of a local class is defined only within the block that
defines it; it can never be used outside that block. (Note, however,
that instances of a local class created within the scope of the class
can continue to exist outside of that scope. This situation is described
in more detail later in this section.)

	
Local classes cannot be declared public, protected, private, or
static.

	
Like member classes, and for the same reasons, local classes cannot
contain static fields, methods, or classes. The only exception is for
constants that are declared both static and final.

	
Interfaces, enumerated types, and annotation types cannot be defined
locally.

	
A local class, like a member class, cannot have the same name as any
of its enclosing classes.

	
As noted earlier, a local class can close over the local variables, method parameters, and even exception parameters that are in its scope but only if those variables or parameters are effectively final.

Scope of a local class

In discussing nonstatic member classes, we saw that a member class can access any members inherited from superclasses and any members defined by its containing classes.

The same is true for local classes, but local classes can also behave like lambdas and access effectively final local variables and parameters.
Example 4-4 illustrates the different kinds of fields and variables that may be accessible to a local class (or a lambda, for that matter):

Example 4-4. Fields and variables available to a local class

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
 private char c = 'c'; // Private fields visible to local class
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {
 // All of these fields and variables are accessible to this class
 System.out.println(g); // (this.g) g is a field of this class
 System.out.println(f); // f is a final local variable
 System.out.println(e); // e is a final local parameter
 System.out.println(d); // (C.this.d) d field of containing class
 System.out.println(c); // (C.this.c) c field of containing class
 System.out.println(b); // b is inherited by this class
 System.out.println(a); // a is inherited by the containing class
 }
 }
 Local l = new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }
}

Local classes have quite a complex scoping structure, therefore. To see why, notice that instances of a local class can have a lifetime that extends past the time that the JVM exits the block where the local class is defined.

Note

In other words, if you create an instance of a local class, that
instance does not automatically go away when the JVM finishes executing
the block that defines the class. So, even though the definition of the
class was local, instances of that class can escape out of the place
they were defined.

Local classe, therefore, behave like lambdas in many regards, although the use case of local classes is more general than that of lambdas.
However, in practice the extra generality is rarely required, and lambdas are preferred wherever possible.

Anonymous Classes

An anonymous class is a local class without a name. It is defined and instantiated in a single expression using the new operator.
While a local class definition is a statement in a block of Java code, an anonymous class definition is an expression, which means that it can be included as part of a larger expression, such as a method
call.

Note

For the sake of completeness, we cover anonymous classes here, but for most use cases, lambda expressions (see “Lambda Expressions”) have replaced anonymous classes.

Consider Example 4-5, which shows the
LinkedIterator class implemented as an anonymous class within the
iterator() method of the LinkedStack class. Compare it with
Example 4-4, which shows the same class
implemented as a local class.

Example 4-5. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator() {
 // The anonymous class is defined as part of the return statement
 return new Iterator<Linkable>() {
 Linkable current;
 // Replace constructor with an instance initializer
 { current = head; }

 // The following three methods are defined
 // by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null)
 throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }; // Note the required semicolon. It terminates the return statement
}

As you can see, the syntax for defining an anonymous class and creating
an instance of that class uses the new keyword, followed by the name
of a type and a class body definition in curly braces.
If the name following the new keyword is the name of a class, the anonymous class is a subclass of the named class.
If the name following new specifies an interface, as in the two previous examples, the anonymous class implements that interface and extends Object.

Note

The syntax for anonymous classes does not include any way to specify an
extends clause, an implements clause, or a name for the class.

Because an anonymous class has no name, it is not possible to define a
constructor for it within the class body. This is one of the basic
restrictions on anonymous classes. Any arguments you specify between the
parentheses following the superclass name in an anonymous class
definition are implicitly passed to the superclass constructor.
Anonymous classes are commonly used to subclass simple classes that do
not take any constructor arguments, so the parentheses in the anonymous
class definition syntax are often empty.

Because an anonymous class is just a type of local class, anonymous
classes and local classes share the same restrictions. An anonymous
class cannot define any static fields, methods, or classes, except for
static final constants. Interfaces, enumerated types, and annotation
types cannot be defined anonymously. Also, like local classes,
anonymous classes cannot be public, private, protected, or
static.

The syntax for defining an anonymous class combines definition with instantiation, similar to a lambda expression.
Using an anonymous class instead of a local class is not appropriate if you need to create more than a single instance of the class each time the containing block is executed.

Because an anonymous class has no name, it is not possible to define a constructor for an anonymous class.
If your class requires a constructor, you must use a local class instead.

Non-Denotable Types and var

One of the only new language features to arrive in Java 10 is Local Variable Type Inference, otherwise known as var.
This is an enhancement to Java’s type inference capabilities that may prove to be more significant than it first appears.
In the simplest case, it allows code such as:

var ls = new ArrayList<String>();

which moves the inference from the type of values to the type of variables.

The implementation in Java 10 achieves this by making var a reserved type name rather than a keyword.
This means that code can still use var as a variable, method, or package name without being affected by the new syntax.
However, code that has previously used var as the name of a type will have to be recompiled.

This simple case is designed to reduce verbosity and to make programmers coming to Java from other languages (especially Scala, .NET, and JavaScript) feel more comfortable.
However, it does carry the risk that overuse will potentially obscure the intent of the code being written, so it should be used sparingly.

As well as the simple cases, var actually permits programming constructs that were not possible before.
To see the differences, let’s consider that javac has always permitted a very limited form of type inference:

public class Test {
 public static void main(String[] args) {
 (new Object() {
 public void bar() {
 System.out.println("bar!");
 }
 }).bar();
 }
}

The code will compile and run, printing out bar!.
This slightly counterintuitive result occurs because javac preserves enough type information about the anonymous class (i.e., that it has a bar() method) for just long enough that the compiler can conclude that the call to bar() is valid.

In fact, this edge case has been known in the Java community since at least 2009, long before the arrival of even Java 7.

The problem with this form of type inference is that it has no real practical applications—the type of “Object-with-a-bar-method” exists within the compiler, but the type is impossible to express as the type of a variable—it is not a denotable type.
This means that before Java 10 the existence of this type is restricted to a single expression and cannot be used in a larger scope.

With the arrival of Java 10, however, the type of variables does not always need to be made explicit.
Instead, we can use var to allow us to preserve the static type information by avoiding denoting the type.

This means we can now modify our example and write:

var o = new Object() {
 public void bar() {
 System.out.println("bar!");
 }
};

o.bar();

This has allowed us to preserve the true type of o beyond a single expression.
The type of o cannot be denoted, and so it cannot appear as the type of either a method parameter or return type.
This means that the type is still limited to only a single method, but it is still useful to express some constructions that would be awkward or impossible otherwise.

This use of var as a “magic type” allows the programmer to preserve type information for each distinct usage of var, in a way that is somewhat reminiscent of bounded wildcards from Java’s generics.

More advanced usages of var with non-denotable types are possible.
While the feature is not able to satisfy every criticism of Java’s type system, it does represent a definite (if cautious) step forward.

Summary

By examining Java’s type system, we have been able to build up a clear
picture of the worldview that the Java platform has about data types.
Java’s type system can be characterized as:

	Static

	
All Java variables have types that are known at compile time.

	Nominal

	
The name of a Java type is of paramount importance. Java does not
permit structural types and has only limited support for non-denotable
types.

	Object/imperative

	
Java code is object-oriented, and all code must live inside methods,
which must live inside classes. However, Java’s primitive types
prevent full adoption of the “everything is an object” worldview.

	Slightly functional

	
Java provides support for some of the more common functional idioms,
but more as a convenience to programmers than anything else.

	Type-inferred

	
Java is optimized for readability (even by novice progammers) and
prefers to be explicit, but uses type inference to reduce boilerplate
where it does not impact the legibility of the code.

	Strongly backward compatible

	
Java is primarily a business-focused language, and backward
compatibility and protection of existing codebases is a very high
priority.

	Type erased

	
Java permits parameterized types, but this information is not
available at runtime.

Java’s type system has evolved (albeit slowly and cautiously) over the years—and is now on par with the type systems of other mainstream programming languages.
Lambda expressions, along with default methods, represent the greatest transformation since the advent of Java 5, and the introduction of generics, annotations, and related innovations.

Default methods represent a major shift in Java’s approach to object-oriented programming—perhaps the biggest since the language’s inception.
From Java 8 onward, interfaces can contain implementation code.
This fundamentally changes Java’s nature—previously a single-inherited language, Java is now multiply inherited (but only for behavior—there is still no multiple inheritance of state).

Despite all of these innovations, Java’s type system is not (and is not intended to be) equipped with the power of the type systems of languages such as Scala or Haskell.
Instead, Java’s type system is strongly biased in favor of simplicity, readability, and a simple learning curve for newcomers.

Java has also benefited enormously from the approaches to types developed in other languages over the last 10 years.
Scala’s example of a statically typed language that nevertheless achieves much of the feel of a dynamically typed language by the use of type inference has been a good source of ideas for features to add to Java, even though the languages have quite different design philosophies.

One remaining question is whether the modest support for functional idioms that lambda expressions provide in Java is sufficient for the majority of Java programmers.

Note

The long-term direction of Java’s type system is being explored in research projects such as Valhalla, where concepts such as data classes, pattern matching, and sealed classes are being explored.

It remains to be seen whether the majority of ordinary Java programmers require the added power—and attendant complexity—that comes from an advanced (and much less nominal) type system such as Scala’s, or whether the “slightly functional programming” introduced in Java 8 (e.g., map, filter, reduce, and their peers) will suffice for most developers’ needs.

1 Some small traces of generics remain, which can be seen at runtime via reflection.
2 Raoul-Gabriel Urma and Janina Voigt, “Using the OpenJDK to Investigate Covariance in Java,” Java Magazine (May/June 2012): 44–47.

Chapter 5. Introduction to Object-Oriented Design in Java

In this chapter, we’ll look at how to work with Java’s objects,
covering the key methods of Object, aspects of object-oriented design,
and implementing exception handling schemes. Throughout the chapter, we
will be introducing some design patterns—essentially best practices
for solving some very common situations that arise in software design.
Toward the end of the chapter, we’ll also consider the design of safe
programs—those that are designed so as not to become inconsistent over
time. We’ll get started by considering the subject of Java’s calling and
passing conventions and the nature of Java values.

Java Values

Java’s values, and their relationship to the type system, are quite straightforward. Java has two types of values—primitives and object references.

Note

There are only eight different primitive types in Java and new primitive types cannot be defined by the programmer.

The key difference between primitive values and references is that
primitive values cannot be altered; the value 2 is always the same value.
By contrast, the contents of object references can usually be
changed—often referred to as mutation of object contents.

Also note that variables can only contain values of the appropriate type.
In particular, variables of reference type always contain a reference to the memory location holding the object—they do not contain the object contents directly.
This means that in Java there is no equivalent of a dereference operator or a struct.

Java tries to simplify a concept that often confused C++
programmers: the difference between “contents of an object” and
“reference to an object.” Unfortunately, it’s not possible to completely
hide the difference, and so it is necessary for the programmer to
understand how reference values work in the platform.

Is Java “Pass by Reference”?

Java handles objects “by reference,” but we must not confuse this with
the phrase “pass by reference.” “Pass by reference” is a term used to
describe the method-calling conventions of some programming languages.
In a pass-by-reference language, values—even primitive values—are not
passed directly to methods. Instead, methods are always passed
references to values. Thus, if the method modifies its parameters, those
modifications are visible when the method returns, even for primitive
types.

Java does not do this; it is a “pass-by-value” language. However,
when a reference type is involved, the value that is passed is a copy of
the reference (as a value). But this is not the same as pass by
reference. If Java were a pass-by-reference language, when a reference
type is passed to a method, it would be passed as a reference to the
reference.

The fact that Java is pass by value can be demonstrated very simply. The
following code shows that even after the call to manipulate(), the
value contained in variable c is unaltered—it is still holding a
reference to a Circle object of radius 2. If Java was a
pass-by-reference language, it would instead be holding a reference to a
radius 3 Circle:

public void manipulate(Circle circle) {
 circle = new Circle(3);
}

Circle c = new Circle(2);
manipulate(c);
System.out.println("Radius: "+ c.getRadius());

If we’re scrupulously careful about the distinction, and about referring
to object references as one of Java’s possible kinds of values, then
some otherwise surprising features of Java become obvious. Be
careful—some older texts are ambiguous on this point. We will meet this
concept of Java’s values again when we discuss memory and garbage
collection in Chapter 6.

Important Methods of java.lang.Object

As we’ve noted, all classes extend, directly or indirectly,
java.lang.Object. This class defines a number of useful methods that
were designed to be overridden by classes you write.
Example 5-1 shows a class that overrides
these methods. The sections that follow this example document the
default implementation of each method and explain why you might want to
override it.

Example 5-1 uses a lot of the extended features of the type system that
we introduced in Chapter 4. First, this example implements a parameterized, or generic,
version of the Comparable interface. Second, it uses the
@Override annotation to emphasize (and have the compiler verify) that
certain methods override Object.

Example 5-1. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
 // These fields hold the coordinates of the center and the radius.
 // They are private for data encapsulation and final for immutability
 private final int x, y, r;

 // The basic constructor: initialize the fields to specified values
 public Circle(int x, int y, int r) {
 if (r < 0) throw new IllegalArgumentException("negative radius");
 this.x = x; this.y = y; this.r = r;
 }

 // This is a "copy constructor"--a useful alternative to clone()
 public Circle(Circle original) {
 x = original.x; // Just copy the fields from the original
 y = original.y;
 r = original.r;
 }

 // Public accessor methods for the private fields.
 // These are part of data encapsulation.
 public int getX() { return x; }
 public int getY() { return y; }
 public int getR() { return r; }

 // Return a string representation
 @Override public String toString() {
 return String.format("center=(%d,%d); radius=%d", x, y, r);
 }

 // Test for equality with another object
 @Override public boolean equals(Object o) {
 // Identical references?
 if (o == this) return true;
 // Correct type and non-null?
 if (!(o instanceof Circle)) return false;
 Circle that = (Circle) o; // Cast to our type
 if (this.x == that.x && this.y == that.y && this.r == that.r)
 return true; // If all fields match
 else
 return false; // If fields differ
 }

 // A hash code allows an object to be used in a hash table.
 // Equal objects must have equal hash codes. Unequal objects are
 // allowed to have equal hash codes as well, but we try to avoid that.
 // We must override this method because we also override equals().
 @Override public int hashCode() {
 int result = 17; // This hash code algorithm from the book
 result = 37*result + x; // Effective Java, by Joshua Bloch
 result = 37*result + y;
 result = 37*result + r;
 return result;
 }

 // This method is defined by the Comparable interface. Compare
 // this Circle to that Circle. Return a value < 0 if this < that
 // Return 0 if this == that. Return a value > 0 if this > that.
 // Circles are ordered top to bottom, left to right, and then by radius
 public int compareTo(Circle that) {
 // Smaller circles have bigger y
 long result = (long)that.y - this.y;
 // If same compare l-to-r
 if (result==0) result = (long)this.x - that.x;
 // If same compare radius
 if (result==0) result = (long)this.r - that.r;

 // We have to use a long value for subtraction because the
 // differences between a large positive and large negative
 // value could overflow an int. But we can't return the long,
 // so return its sign as an int.
 return Long.signum(result);
 }
}

toString()

The purpose of the toString() method is to return a textual
representation of an object. The method is invoked automatically on
objects during string concatenation and by methods such as
System.out.println(). Giving objects a textual representation can be
quite helpful for debugging or logging output, and a well-crafted
toString() method can even help with tasks such as report generation.

The version of toString() inherited from Object returns a string
that includes the name of the class of the object as well as a
hexadecimal representation of the hashCode() value of the object
(discussed later in this chapter). This default implementation provides
basic type and identity information for an object but is not usually
very useful. The toString() method in
Example 5-1 instead returns a human-readable
string that includes the value of each of the fields of the Circle
class.

equals()

The == operator tests two references to see if they refer to the
same object. If you want to test whether two distinct objects are equal
to one another, you must use the equals() method instead. Any class
can define its own notion of equality by overriding equals(). The
Object.equals() method simply uses the == operator: this default
method considers two objects equal only if they are actually the very
same object.

The equals() method in Example 5-1
considers two distinct Circle objects to be equal if their fields are
all equal. Note that it first does a quick identity test with == as an
optimization and then checks the type of the other object with
instanceof: a Circle can be equal only to another Circle, and it
is not acceptable for an equals() method to throw a
ClassCastException. Note that the instanceof test also rules out
null arguments: instanceof always evaluates to false if its
lefthand operand is null.

hashCode()

Whenever you override equals(), you must also override hashCode().
This method returns an integer for use by hash table data structures.
It is critical that two objects have the same hash code if they are
equal according to the equals() method.

It is important (for efficient
operation of hash tables) but not required that unequal objects have
unequal hash codes, or at least that unequal objects are unlikely to
share a hash code. This second criterion can lead to hashCode()
methods that involve mildly tricky arithmetic or bit manipulation.

The Object.hashCode() method works with the Object.equals() method
and returns a hash code based on object identity rather than object
equality. (If you ever need an identity-based hash code, you can access
the functionality of Object.hashCode() through the static method
System.identityHashCode().)

Tip

When you override equals(), you must always override hashCode() to
guarantee that equal objects have equal hash codes. Failing to do this
can cause subtle bugs in your programs.

Because the equals() method in Example 5-1
bases object equality on the values of the three fields, the
hashCode() method computes its hash code based on these three fields
as well. It is clear from the code that if two Circle objects have the
same field values, they will have the same hash code.

Note that the hashCode() method in Example 5-1 does not simply add the three fields and return their sum. Such an
implementation would be legal but not efficient because two circles with
the same radius but whose x and y coordinates were reversed would
then have the same hash code. The repeated multiplication and addition
steps “spread out” the range of hash codes and dramatically reduce the
likelihood that two unequal Circle objects have the same code.

Tip

In practice, modern Java programmers will typically autogenerate hashCode(), equals(), and toString() from within their IDE.

Effective Java by Joshua Bloch (Addison Wesley) includes a helpful recipe for constructing efficient hashCode() methods, if the programmer chooses not to autogenerate.

Comparable::compareTo()

Example 5-1 includes a compareTo()
method. This method is defined by the java.lang.Comparable interface
rather than by Object, but it is such a common method to implement
that we include it in this section. The purpose of Comparable and its
compareTo() method is to allow instances of a class to be compared to
each other in a similar way to how the <, <=, >, and >= operators
compare numbers.
If a class implements Comparable, we can call methods to allow us to say that one instance is less than, greater than, or equal to another instance.
This also means that instances of a Comparable class can be sorted.

Note

The method compareTo() sets up a total ordering of the objects of the type. This is referred to as the natural order of the type, and the method is called the natural comparison method.

Because compareTo() is not declared by the Object class, it is up to
each individual class to determine whether and how its instances should
be ordered and to include a compareTo() method that implements that
ordering.

The ordering defined by Example 5-1
compares Circle objects as if they were words on a page. Circles are
first ordered from top to bottom: circles with larger y coordinates
are less than circles with smaller y coordinates. If two circles have
the same y coordinate, they are ordered from left to right. A circle
with a smaller x coordinate is less than a circle with a larger x
coordinate. Finally, if two circles have the same x and y
coordinates, they are compared by radius. The circle with the smaller
radius is smaller. Notice that under this ordering, two circles are
equal only if all three of their fields are equal. This means that the
ordering defined by compareTo() is consistent with the equality
defined by equals(). This is very desirable (but not strictly
required).

The compareTo() method returns an int value that requires further
explanation. compareTo() should return a negative number if the this
object is less than the object passed to it. It should return 0 if the
two objects are equal. And compareTo() should return a positive number
if this is greater than the method argument.

clone()

Object defines a method named clone() whose purpose is to return
an object with fields set identically to those of the current object.
This is an unusual method for two reasons. First, it works only if the
class implements the java.lang.Cloneable interface. Cloneable does
not define any methods (it is a marker interface), so implementing it is
simply a matter of listing it in the implements clause of the class
signature. The other unusual feature of clone() is that it is declared
protected. Therefore, if you want your object to be cloneable by other
classes, you must implement Cloneable and override the clone()
method, making it public.

The Circle class of Example 5-1 does not
implement Cloneable; instead it provides a copy constructor for
making copies of Circle objects:

Circle original = new Circle(1, 2, 3); // regular constructor
Circle copy = new Circle(original); // copy constructor

It can be difficult to implement clone() correctly, and it is usually
easier and safer to provide a copy constructor.

Aspects of Object-Oriented Design

In this section, we will consider several techniques relevant to
object-oriented design in Java. This is a very incomplete treatment and
merely intended to showcase some examples—we encourage you to
consult additional resources, such as the aforementioned Effective
Java by Joshua Bloch.

We start by considering good practices for defining constants in Java,
before moving on to discuss different approaches to using Java’s
object-oriented capabilities for modeling and domain object design. At
the end of the section, we conclude by covering the implementation of
some common design patterns in Java.

Constants

As noted earlier, constants can appear in an interface definition.
Any class that implements an interface inherits the constants it
defines and can use them as if they were defined directly in the class
itself. Importantly, there is no need to prefix the constants with the
name of the interface or provide any kind of implementation of the
constants.

When a set of constants is used by more than one class, it is tempting
to define the constants once in an interface and then have any classes
that require the constants implement the interface. This situation might
arise, for example, when client and server classes implement a network
protocol whose details (such as the port number to connect to and listen
on) are captured in a set of symbolic constants. As a concrete example,
consider the java.io.ObjectStreamConstants interface, which defines
constants for the object serialization protocol and is implemented by
both ObjectInputStream and ObjectOutputStream.

The primary benefit of inheriting constant definitions from an interface
is that it saves typing: you don’t need to specify the type that defines
the constants. Despite its use with ObjectStreamConstants, this is not
a recommended technique. The use of constants is an implementation
detail that is not appropriate to declare in the implements clause of
a class signature.

A better approach is to define constants in a class and use the
constants by typing the full class name and the constant name. You can
save typing by importing the constants from their defining class with
the import static declaration. See
“Packages and the Java Namespace” for details.

Interfaces Versus Abstract Classes

The advent of Java 8 has fundamentally changed Java’s object-oriented
programming model. Before Java 8, interfaces were pure API specification
and contained no implementation. This could often lead to duplication of
code if the interface had many implementations.

In response, a coding pattern developed. This pattern takes advantage of
the fact that an abstract class does not need to be entirely abstract;
it can contain a partial implementation that subclasses can take
advantage of. In some cases, numerous subclasses can rely on method
implementations provided by an abstract superclass.

The pattern consists of an interface that contains the API spec for the
basic methods, paired with a primary implementation as an abstract
class. A good example would be java.util.List, which is paired with
java.util.AbstractList. Two of the main implementations of List
that ship with the JDK (ArrayList and LinkedList) are subclasses of
AbstractList. As another example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
 void setSize(double width, double height);
 void setPosition(double x, double y);
 void translate(double dx, double dy);
 double area();
 boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape
 implements RectangularShape {
 // The position and size of the shape
 protected double x, y, w, h;

 // Default implementations of some of the interface methods
 public void setSize(double width, double height) {
 w = width; h = height;
 }
 public void setPosition(double x, double y) {
 this.x = x; this.y = y;
 }
 public void translate (double dx, double dy) { x += dx; y += dy; }
}

The arrival of default methods in Java 8 changes this picture considerably. Interfaces can now contain implementation code, as we saw in “Default Methods”.

This means that when defining an abstract type (e.g., Shape) that you expect to have many subtypes (e.g., Circle, Rectangle, Square), you are faced with a choice between interfaces and abstract classes.
As they now have potentially similar features, it is not always clear which to use.

Remember that a class that extends an abstract class cannot extend any other class, and that interfaces still cannot contain any nonconstant fields.
This means that there are still some restrictions on how we can use object orientation in our Java programs.

Another important difference between interfaces and abstract classes has
to do with compatibility. If you define an interface as part of a public
API and then later add a new mandatory method to the interface, you
break any classes that implemented the previous version of the
interface—in other words, any new interface methods must be declared as
default and an implementation provided. If you use an abstract class,
however, you can safely add nonabstract methods to that class without
requiring modifications to existing classes that extend the abstract
class.

Note

In both cases, adding new methods can cause a clash with subclass
methods of the same name and signature—with the subclass methods always
winning. For this reason, think carefully when adding new
methods—especially when the method names are “obvious” for this type, or
where the method could have several possible meanings.

In general, the suggested approach is to prefer interfaces when an API
specification is needed. The mandatory methods of the interface are
nondefault, as they represent the part of the API that must be present
for an implementation to be considered valid. Default methods should be
used only if a method is truly optional, or if they are really only
intended to have a single possible implementation.

Finally, the older technique of documenting which methods of an
interface are considered “optional” and throwing a
java.lang.UnsupportedOperationException if the programmer does not
want to implement them is fraught with problems, and should not be used
in new code.

Can Default Methods Be Used as Traits?

Before Java 8, the strict single inheritance model was clear.
Every class, except Object had exactly one direct superclass, and method implementations could only either be defined in a class, or be inherited from the superclass hierarchy.

Default methods change this picture, because they allow method implementations to be inherited from multiple places—either from the superclass hierarchy or from default implementation provided in interfaces.

Note

This is effectively the Mixin pattern from C++, and can be seen as a form of the trait language feature that appears in some languages.

In the Java case, any potential conflicts between different default methods from separate interfaces will result in a compile-time error.
This means that there is no possibility of conflicting multiple inheritance of implementation, as in any clash the programmer is required to manually disambiguate.
Not only that, but there is also no multiple inheritance of state.

However, the official view from Java’s language designers is that default methods fall short of being full traits.
However, this view is somewhat undermined by the code that ships within the JDK—even the interfaces within java.util.function (such as Function itself) behave as simple traits.

For example, consider this piece of code:

public interface IntFunc {
 int apply(int x);

 default IntFunc compose(IntFunc before) {
 return (int y) -> apply(before.apply(y));
 }

 default IntFunc andThen(IntFunc after) {
 return (int z) -> after.apply(apply(z));
 }

 static IntFunc id() {
 return x -> x;
 }
}

It is a simplified form of the function types present in java.util.function—it removes the generics and only deals with int as a data type.

This case shows an important point for the functional composition methods (compose() and andThen()) present: these functions will only ever be composed in the standard way, and it is highly implausible that any sane override of the default compose() method could exist.

This is, of course, also true for the function types present in java.util.function, and shows that within the limited domain provided, default methods can be treated as a form of stateless trait.

Instance Methods or Class Methods?

Instance methods are one of the key features of object-oriented
programming. That doesn’t mean, however, that you should shun class
methods. In many cases, it is perfectly reasonable to define class
methods.

Tip

Remember that in Java, class methods are declared with the static
keyword, and the terms static method and class method are used
interchangeably.

For example, when working with the Circle class you might find that
you often want to compute the area of a circle with a given radius but
don’t want to bother creating a Circle object to represent that
circle. In this case, a class method is more convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with
the same name, as long as the methods have different parameters. This
version of the area() method is a class method, so it does not have an
implicit this parameter and must have a parameter that specifies the
radius of the circle. This parameter keeps it distinct from the instance
method of the same name.

As another example of the choice between instance methods and class
methods, consider defining a method named bigger() that examines two
Circle objects and returns whichever has the larger radius. We can
write bigger() as an instance method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
 if (this.r > that.r) return this;
 else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circles a and b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a;
 else return b;
}

Given two Circle objects, x and y, we can use either the instance
method or the class method to determine which is bigger. The invocation
syntax differs significantly for the two methods, however:

// Instance method: also y.bigger(x)
Circle biggest = x.bigger(y);
Circle biggest = Circle.bigger(x, y); // Static method

Both methods work well, and, from an object-oriented design standpoint,
neither of these methods is “more correct” than the other. The instance
method is more formally object oriented, but its invocation syntax
suffers from a kind of asymmetry. In a case like this, the choice
between an instance method and a class method is simply a design
decision. Depending on the circumstances, one or the other will likely
be the more natural choice.

A word about System.out.println()

We’ve frequently encountered the method System.out.println()—it’s
used to display output to the terminal window or console. We’ve never
explained why this method has such a long, awkward name or what those
two periods are doing in it. Now that you understand class and instance
fields and class and instance methods, it is easier to understand what
is going on: System is a class. It has a public class field named
out. This field is an object of type java.io.PrintStream, and it
has an instance method named println().

We can use static imports to make this a bit shorter with
import static java.lang.System.out;—this will enable us to refer to
the printing method as out.println() but as this is an instance
method, we cannot shorten it any further.

Composition Versus Inheritance

Inheritance is not the only technique at our disposal in
object-oriented design. Objects can contain references to other objects,
so a larger conceptual unit can be aggregated out of smaller component
parts; this is known as composition. One important related technique
is delegation, where an object of a particular type holds a reference
to a secondary object of a compatible type, and forwards all operations
to the secondary object. This is frequently done using interface types,
as shown in this example where we model the employment structure of
software companies:

public interface Employee {
 void work();
}

public class Programmer implements Employee {
 public void work() { /* program computer */ }
}

public class Manager implements Employee {
 private Employee report;

 public Manager(Employee staff) {
 report = staff;
 }

 public Employee setReport(Employee staff) {
 report = staff;
 }

 public void work() {
 report.work();
 }
}

The Manager class is said to delegate the work() operation to
their direct report, and no actual work is performed by the Manager
object. Variations of this pattern involve some work being done in the
delegating class, with only some calls being forwarded to the delegate
object.

Another useful, related technique is called the decorator
pattern. This provides the capability to extend objects with new
functionality, including at runtime. The slight overhead is some extra
work needed at design time. Let’s look at an example of the decorator
pattern as applied to modeling burritos for sale at a taqueria. To keep
things simple, we’ve only modeled a single aspect to be decorated—the
price of the burrito:

// The basic interface for our burritos
interface Burrito {
 double getPrice();
}

// Concrete implementation-standard size burrito
public class StandardBurrito implements Burrito {
 private static final double BASE_PRICE = 5.99;

 public double getPrice() {
 return BASE_PRICE;
 }
}

// Larger, super-size burrito
public class SuperBurrito implements Burrito {
 private static final double BASE_PRICE = 6.99;

 public double getPrice() {
 return BASE_PRICE;
 }
}

These cover the basic burritos that can be offered—two different sizes,
at different prices. Let’s enhance this by adding some optional
extras—jalapeño chilies and guacamole. The key design point here is to
use an abstract base class that all of the optional decorating
components will subclass:

/*
 * This class is the Decorator for Burrito. It represents optional
 * extras that the burrito may or may not have.
 */
public abstract class BurritoOptionalExtra implements Burrito {
 private final Burrito burrito;
 private final double price;

 protected BurritoOptionalExtra(Burrito toDecorate,
 double myPrice) {
 burrito = toDecorate;
 price = myPrice;
 }

 public final double getPrice() {
 return (burrito.getPrice() + price);
 }
}

Note

Combining an abstract base, BurritoOptionalExtra, and a
protected constructor means that the only valid way to get a
BurritoOptionalExtra is to construct an instance of one of the
subclasses, as they have public constructors (which also hide the setup
of the price of the component from client code).

Let’s test the implementation out:

Burrito lunch = new Jalapeno(new Guacamole(new SuperBurrito()));
// The overall cost of the burrito is the expected $8.09.
System.out.println("Lunch cost: "+ lunch.getPrice());

The decorator pattern is very widely used—not least in the JDK utility
classes. When we discuss Java I/O in Chapter 10,
we will see more examples of decorators in the wild.

Field Inheritance and Accessors

Java offers multiple potential approaches to the design issue of the
inheritance of state. The programmer can choose to mark fields as
protected and allow them to be accessed directly by subclasses
(including writing to them). Alternatively, we can provide accessor
methods to read (and write, if desired) the actual object fields,
while retaining encapsulation and leaving the fields as private.

Let’s revisit our earlier PlaneCircle example from the end of
Chapter 3 and explicitly show the field
inheritance:

public class Circle {
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // State inheritance via a protected field

 // A method to enforce the restriction on the radius
 protected void checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not < 0");
 }

 // The non-default constructor
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; }
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 private final double cx, cy;

 // A new constructor to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 public double getCentreX() {
 return cx;
 }

 public double getCentreY() {
 return cy;
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the
 // circle; note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy;
 // Pythagorean theorem
 double distance = Math.sqrt(dx*dx + dy*dy);
 return (distance < r); // Returns true or false
 }
}

Instead of the preceding code, we can rewrite PlaneCircle using
accessor methods, like this:

public class PlaneCircle extends Circle {
 // Rest of class is the same as above; the field r in
 // the superclass Circle can be made private because
 // we no longer access it directly here

 // Note that we now use the accessor method getRadius()
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < getRadius());
 }
}

Both approaches are legal Java, but they have some differences. As we
discussed in “Data Hiding and Encapsulation”, fields that are
writable outside of the class are usually not a correct way to model
object state. In fact, as we will see in
“Safe Java Programming” and again in
“Java’s Support for Concurrency”, they can damage the running
state of a program irreparably.

It is therefore unfortunate that the protected keyword in Java allows
access to fields (and methods) from both subclasses and classes in the
same packages as the declaring class. This, combined with the ability
for anyone to write a class that belongs to any given package (except
system packages), means that protected inheritance of state is
potentially flawed in Java.

Tip

Java does not provide a mechanism for a member to be visible only in the
declaring class and its subclasses.

For all of these reasons, it is usually better to use accessor methods
(either public or protected) to provide access to state for
subclasses—unless the inherited state is declared final, in which case
protected inheritance of state is perfectly permissible.

Singleton

The singleton pattern is another well-known design pattern. It is
intended to solve the design issue where only a single instance of a
class is required or desired. Java provides a number of different
possible ways to implement the singleton pattern. In our discussion, we
will use a slightly more verbose form, which has the benefit of being
very explicit in what needs to happen for a safe singleton:

public class Singleton {
 private final static Singleton instance = new Singleton();
 private static boolean initialized = false;

 // Constructor
 private Singleton() {
 super();
 }

 private void init() {
 /* Do initialization */
 }

 // This method should be the only way to get a reference
 // to the instance
 public static synchronized Singleton getInstance() {
 if (initialized) return instance;
 instance.init();
 initialized = true;
 return instance;
 }
}

The crucial point is that for the singleton pattern to be effective, it
must be impossible to create more than one of them, and it must be
impossible to get a reference to the object in an uninitialized state
(see later in this chapter for more on this important point). To achieve
this, we require a private constructor, which is only called once. In
our version of Singleton, we only call the constructor when we
initialize the private static variable instance. We also separate out
the creation of the only Singleton object from its
initialization—which occurs in the private method init().

With this mechanism in place, the only way to get a reference to the
lone instance of Singleton is via the static helper method,
getInstance(). This method checks the flag initialized to see if the
object is already in an active state. If it is, then a reference to the
singleton object is returned. If not, then getInstance() calls
init() to activate the object, and flicks the flag to true, so that
next time a reference to the Singleton is requested, further
initialization will not occur.

Finally, we also note that getInstance() is a synchronized method.
See Chapter 6 for full details of what this means,
and why it is necessary, but for now, know that it is present to guard
against unintended consequences if Singleton is used in a
multithreaded program.

Tip

Singleton, being one of the simplest patterns, is often overused. When
used correctly, it can be a useful technique, but too many singleton
classes in a program is a classic sign of badly engineered code.

The singleton pattern has some drawbacks—in particular, it can be hard
to test and to separate out from other classes. It also requires care
when used in mulithreaded code. Nevertheless, it is important that
developers are familiar with it, and do not accidentally reinvent it. The
singleton pattern is often used in configuration management, but modern
code will typically use a framework (often a dependency injection) to
provide the programmer with singletons automatically, rather than via an
explicit Singleton (or equivalent) class.

Object-Oriented Design with Lambdas

Consider this simple lambda expression:

Runnable r = () -> System.out.println("Hello World");

The type of the lvalue is Runnable, which is an interface type.
For this statement to make sense, the rvalue must contain an instance of some class type (because interfaces cannot be instantiated) that implements Runnable.
The minimal implementation that satisfies these constraints is a class type (of inconsequential name) that directly extends Object and implements Runnable.

Recall that the intention of lambda expressions is to allow Java programmers to express a concept that is as close as possible to the anonymous or inline methods seen in other languages.

Furthermore, given that Java is a statically typed language, this leads directly to the design of lambdas as implemented.

Tip

Lambdas are a shorthand for the construction of a new instance of a class type that is essentially Object enhanced by a single method.

A lambda’s single extra method has a signature provided by the interface type, and the compiler will check that the rvalue is consistent with this type signature.

Lambdas Versus Nested Classes

The addition of lambdas to the language in Java 8 was relatively late, as compared to other programming languages.
As a consequence, the Java community had established patterns to work around the absence of lambdas.
This manifests in a heavy usage of nested (aka inner) classes to fill the niche that lambdas usually occupy.

In modern Java projects that are developed from scratch, developers will typically use lambdas wherever possible.
We also strongly suggest that, when refactoring old code, you take some time to convert inner classes to lambdas wherever possible.
Some IDEs even provide an automatic conversion facility.

However, this still leaves the design question of when to use lambdas and when nested classes are still the correct solution.

Some cases are obvious—for example, when extended from a default implementation (e.g., for a Visitor pattern), like this file reaper for deleting a whole subdirectory and everything in it:

public final class Reaper extends SimpleFileVisitor<Path> {
 @Override
 public FileVisitResult visitFile(Path p, BasicFileAttributes a)
 throws IOException {
 Files.delete(p);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path p, IOException x)
 throws IOException {
 Files.delete(p);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path p, IOException x)
 throws IOException {
 if (x == null) {
 Files.delete(p);
 return FileVisitResult.CONTINUE;
 } else {
 throw x;
 }
 }
}

This is an extension of an existing class—and of course lambdas can only be used for interfaces, not for classes (even abstract classes with a single abstract method).
As a result, this is a clear use case for an inner class, not a lambda.

Another major use case to consider is that of stateful lambdas.
As there is nowhere to declare any fields, it would appear at first glance that lambdas cannot directly be used for anything that involves state—the syntax only gives the opportunity to declare a method body.

However, a lambda can refer to a variable defined in the scope that the lambda is created in, so we can create a closure, as discussed in Chapter 4, to fill the role of a stateful lambda.

Lambdas Versus Method References

The question of when to use a lambda and when to use a method reference is largely a matter of personal taste and style.
There are, of course, some circumstances where it is essential to create a lambda.
However, in many simple cases, a lambda can be replaced by a method reference.

One possible approach is to consider whether the lambda notation adds anything to the readability of the code.
For example, in the streams API, there is a potential benefit in using the lambda form, as it uses the -> operator.
This provides a form of visual metaphor—the stream API is a lazy abstraction that can be visualized as data items “flowing through a functional pipeline.”
For example:

List<kathik.Person> ots = null;
double aveAge = ots.stream()
 .mapToDouble(o -> o.getAge())
 .reduce(0, (x, y) -> x + y) / ots.size();

The idea that the mapToDouble() method has an aspect of motion, or transformation, is strongly implied by the usage of an explicit lambda.
For less experienced programmers, it also draws attention to the use of a functional API.

For other use cases (e.g., dispatch tables) method references may well be more appropriate. For example:

public class IntOps {
 private Map<String, BinaryOperator> table =
 Map.of("add", IntOps::add, "subtract", IntOps::sub);

 private static int add(int x, int y) {
 return x + y;
 }

 private static int sub(int x, int y) {
 return x - y;
 }

 public int eval(String op, int x, int y) {
 return table.get(op).apply(x, y);
 }
}

In situations where either notation could be used, you will come to develop a preference that fits your individual style over time.
The key consideration is whether, when returning to reread code written several months (or years) ago, the choice of notation still makes sense and the code is easy to read.

Exceptions and Exception Handling

We met checked and unchecked exceptions in
“Checked and Unchecked Exceptions”. In this section, we
discuss some additional aspects of the design of exceptions, and how to
use them in your own code.

Recall that an exception in Java is an object. The type of this object
is java.lang.Throwable, or more commonly, some subclass of
Throwable that more specifically describes the type of exception that
occurred. Throwable has two standard subclasses: java.lang.Error and
java.lang.Exception. Exceptions that are subclasses of Error
generally indicate unrecoverable problems: the virtual machine has run
out of memory, or a class file is corrupted and cannot be read, for
example. Exceptions of this sort can be caught and handled, but it is
rare to do so—these are the unchecked exceptions previously mentioned.

Exceptions that are subclasses of Exception, on the other hand,
indicate less severe conditions. These exceptions can be reasonably
caught and handled. They include such exceptions as
java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a
program has tried to read past the end of an array. These are the
checked exceptions from Chapter 2 (except for
subclasses of RuntimeException, which are also a form of unchecked
exception). In this book, we use the term “exception” to refer to any
exception object, regardless of whether the type of that exception is
Exception or Error.

Because an exception is an object, it can contain data, and its class
can define methods that operate on that data. The Throwable class and
all its subclasses include a String field that stores a human-readable
error message that describes the exceptional condition. It’s set when
the exception object is created and can be read from the exception with
the getMessage() method. Most exceptions contain only this single
message, but a few add other data. The java.io.InterruptedIOException,
for example, adds a field named bytesTransferred that specifies how
much input or output was completed before the exceptional condition
interrupted it.

When designing your own exceptions, you should consider what other
additional modeling information is relevant to the exception object.
This is usually situation-specific information about the aborted
operation, and the exceptional circumstance that was encountered (as we
saw with java.io.InterruptedIOException).

There are some trade-offs in the use of exceptions in application
design. Using checked exceptions means that the compiler can enforce the
handling (or propagation up the call stack) of known conditions that
have the potential of recovery or retry. It also means that it’s more
difficult to forget to actually handle errors—thus reducing the risk
that a forgotten error condition causes a system to fail in production.

On the other hand, some applications will not be able to recover from
certain conditions—even conditions that are theoretically modeled by
checked exceptions. For example, if an application requires a config
file to be placed at a specific place in the filesystem and can’t
locate it at startup, it may have no option but to print an
error message and exit—despite the fact that
java.io.FileNotFoundException is a checked exception. Forcing
exceptions that cannot be recovered from to be either handled or
propagated is, in these circumstances, bordering on perverse.

When designing exception schemes, there are some good practices that
you should follow:

	
Consider what additional state needs to be placed on the
exception—remember that it’s also an object like any other.

	
Exception has four public constructors—under normal circumstances,
custom exception classes should implement all of them—to initialize the
additional state or to customize messages.

	
Don’t create many fine-grained custom exception classes in your
APIs—the Java I/O and reflection APIs both suffer from this and it
needlessly complicates working with those packages.

	
Don’t overburden a single exception type with describing too many
conditions; for example, the Nashorn JavaScript implementation (new with
Java 8) originally had overly coarse-grained exceptions, although this
was fixed before release.

Finally, two exception-handling antipatterns that you should avoid:

// Never just swallow an exception
try {
 someMethodThatMightThrow();
} catch(Exception e){
}

// Never catch, log, and rethrow an exception
try {
 someMethodThatMightThrow();
} catch(SpecificException e){
 log(e);
 throw e;
}

The former of these two just ignores a condition that almost certainly
required some action (even if just a notification in a log). This
increases the likelihood of failure elsewhere in the system—potentially
far from the original, real source.

The second one just creates noise. We’re logging a message but not
actually doing anything about the issue; we still require some other code
higher up in the system to actually deal with the problem.

Safe Java Programming

Programming languages are sometimes described as being type
safe; however, this term is used rather loosely by working
programmers. There are a number of different viewpoints on and definitions
for type safety, not all of which are mutually compatible.
The most useful view for our purposes is that type safety is the
property of a programming language that prevents the type of data being
incorrectly identified at runtime. This should be thought of as a
sliding scale—it is more helpful to think of languages as being more (or
less) type safe than each other, rather than a simple binary property of
safe/unsafe.

In Java, the static nature of the type system helps prevent a large
class of possible errors, by producing compilation errors if, for
example, the programmer attempts to assign an incompatible value to a
variable. However, Java is not perfectly type safe, as we can perform a
cast between any two reference types—this will fail at runtime with a
ClassCastException if the value is not compatible.

In this book, we prefer to think of safety as inseparable from the
broader topic of correctness. This means that we should think in terms
of programs, rather than languages. This emphasizes the point that safe
code is not guaranteed by any widely used language, and instead
considerable programmer effort (and adherence to rigorous coding
discipline) must be employed if the end result is to be truly safe and
correct.

We approach our view of safe programs by working with the state model
abstraction as shown in Figure 5-1. A safe
program is one in which:

	
All objects start off in a legal state after creation

	
Externally accessible methods transition objects between legal states

	
Externally accessible methods must not return with objects in an
inconsistent state

	
Externally accessible methods must reset objects to a legal state
before throwing

In this context, “externally accessible” means public,
package-private, or protected. This defines a reasonable model for
safety of programs, and as it is bound up with defining our abstract
types in such a way that their methods ensure consistency of state, it’s
reasonable to refer to a program satisfying these requirements as a
“safe program,” regardless of the language in which such a program is
implemented.

Warning

Private methods do not have to start or end with objects in a legal
state, as they cannot be called by an external piece of code.

As you might imagine, actually engineering a substantial piece of code
so that we can be sure that the state model and methods respect these
properties can be quite an undertaking. In languages such as Java, in
which programmers have direct control over the creation of preemptively
multitasked execution threads, this problem is a great deal worse.

[image: JN7 0501]
Figure 5-1. Program state transitions

Moving on from our introduction of object-oriented design, there is one
final aspect of the Java language and platform that needs to be
understood for a sound grounding. That is the nature of memory and
concurrency—one of the most complex of the platform, but also one that
rewards careful study with large dividends. It is the subject of our
next chapter and concludes Part I.

Chapter 6. Java’s Approach to Memory and Concurrency

This chapter is an introduction to the handling of concurrency
(multithreading) and memory in the Java platform. These topics are
inherently intertwined, so it makes sense to treat them together. We
will cover:

	
Introduction to Java’s memory management

	
The basic mark-and-sweep Garbage Collection (GC) algorithm

	
How the HotSpot JVM optimizes GC according to the lifetime of the object

	
Java’s concurrency primitives

	
Data visibility and mutability

Basic Concepts of Java Memory Management

In Java, the memory occupied by an object is automatically reclaimed
when the object is no longer needed. This is done through a process
known as garbage collection (or automatic memory management). Garbage
collection is a technique that has been around for years in languages
such as Lisp. It takes some getting used to for programmers accustomed
to languages such as C and C++, in which you must call the free()
function or the delete operator to reclaim memory.

Note

The fact that you don’t need to remember to destroy every object you
create is one of the features that makes Java a pleasant language to
work with. It is also one of the features that makes programs written in
Java less prone to bugs than those written in languages that don’t
support automatic garbage collection.

Different VM implementations handle garbage collection in different
ways, and the specifications do not impose very stringent restrictions
on how GC must be implemented. Later in this chapter, we will discuss
the HotSpot JVM (which is the basis of both the Oracle and OpenJDK
implementations of Java). Although this is not the only JVM that you may
encounter, it is the most common among server-side deployments, and
provides a good example of a modern production JVM.

Memory Leaks in Java

The fact that Java supports garbage collection dramatically reduces the
incidence of memory leaks. A memory leak occurs when memory is
allocated and never reclaimed. At first glance, it might seem that
garbage collection prevents all memory leaks because it reclaims all
unused objects.

A memory leak can still occur in Java, however, if a valid (but unused)
reference to an unused object is left hanging around. For example, when
a method runs for a long time (or forever), the local variables in that
method can retain object references much longer than they are actually
required. The following code illustrates:

public static void main(String args[]) {
 int bigArray[] = new int[100000];

 // Do some computations with bigArray and get a result.
 int result = compute(bigArray);

 // We no longer need bigArray. It will get garbage collected when
 // there are no more references to it. Because bigArray is a local
 // variable, it refers to the array until this method returns. But
 // this method doesn't return. So we've got to explicitly get rid
 // of the reference ourselves, so the garbage collector knows it can
 // reclaim the array.
 bigArray = null;

 // Loop forever, handling the user's input
 for(;;) handle_input(result);
}

Memory leaks can also occur when you use a HashMap or similar data
structure to associate one object with another. Even when neither
object is required anymore, the association remains in the hash table,
preventing the objects from being reclaimed until the hash table itself
is reclaimed. If the hash table has a substantially longer lifetime than
the objects it holds, this can cause memory leaks.

Introducing Mark-and-Sweep

To explain a basic form of the mark-and-sweep algorithm that appears in the JVM, let’s assume that there are two basic data structures that the JVM maintains.
These are:

	Allocation table

	
Stores references to all objects (and arrays) that have been allocated and not yet collected

	Free list

	
Holds a list of blocks of memory that are free and available for allocation

Note

This is a simplified mental model that is purely intended to help the newcomer start thinking about garbage collection. Real production collectors actually work somewhat differently.

With these definitions it is now obvious when GC must occur; it is required when a Java thread tries to allocate an object (via the new operator) and the free list does not contain a block of sufficient size.
Also note that the JVM keeps track of type information about all allocations and so can figure out which local variables in each stack frame refer to which objects and arrays in the heap.
By following references held by objects and arrays in the heap, the JVM can trace through and find all objects and arrays are still referred to, no matter how indirectly.

Thus, the runtime is able to determine when an allocated object is no
longer referred to by any other active object or variable. When the
interpreter finds such an object, it knows it can safely reclaim the
object’s memory and does so. Note that the garbage collector can also
detect and reclaim cycles of objects that refer to each other, but are
not referenced by any other active objects.

We define a reachable object to be an object that can be reached by
starting from some local variable in one of the methods in the stack
trace of some application thread, and following references until we
reach the object. Objects of this type are also said to be live.1

Note

There are a couple other possibilities for where the chain of
references can start, apart from local variables. The general name for
the root of a reference chain leading to a reachable object is a GC
root.

With these simple definitions, let’s look at a simple method for
performing garbage collection based on these principles.

The Basic Mark-and-Sweep Algorithm

The usual (and simplest) algorithm for the collection process is called
mark-and-sweep. This occurs in three phases:

	
Iterate through the allocation table, marking each object as dead.

	
Starting from the local variables that point into the heap, follow all references from all objects we reach.
Every time we reach an object or array we haven’t seen yet, mark it as live.
Keep going until we’ve fully explored all references we can reach from the local variables.

	
Sweep across the allocation table again. For each object not marked as live, reclaim the memory in heap and place it back on the free list.
Remove the object from the allocation table.

Note

The form of mark-and-sweep just outlined is the usual simplest
theoretical form of the algorithm. As we will see in the following
sections, real garbage collectors do more work than this. Instead, this
description is grounded in basic theory and is designed for easy
understanding.

As all objects are allocated from the allocation table, GC will trigger
before the heap gets full. In this description of mark-and-sweep, GC
requires exclusive access to the entire heap. This is because
application code is constantly running, creating, and changing objects,
which could corrupt the results.

In a real JVM, there will very likely be different areas of heap memory and real programs will make use of all of them in normal operation. In Figure 6-1 we show a typical layout of the heap, with two threads (T1 and T2) holding references that point into the heap.

[image: JN7 0601]
Figure 6-1. Heap structure

This shows that it would be dangerous to move objects that application threads have references to while the program is running.

To avoid this, a simple GC like the one just shown will cause a
stop-the-world (STW) pause when it runs—because all application threads
are stopped, then GC occurs, and finally application threads are started
up again. The runtime takes care of this by halting application threads
as they reach a safepoint—for example, the start of a loop or just before a method call. At these execution points, the runtime knows
that it can stop an application thread without a problem.

These pauses sometimes worry developers, but for most mainstream usages,
Java is running on top of an operating system that is constantly
swapping processes on and off processor cores, so this slight additional
stoppage is usually not a concern. In the HotSpot case, a large amount
of work has been done to optimize GC and to reduce STW times, for those
cases where it is important to an application’s workload. We will
discuss some of those optimizations in the next section.

How the JVM Optimizes Garbage Collection

The weak generational hypothesis (WGH) is a great example of one
of the runtime facts about software that we introduced in
Chapter 1. Simply put, it is that objects tend to
have one of a small number of possible life expectancies (referred to
as generations).

Usually objects are alive for a very short amount of time (sometimes
called transient objects), and then become eligible for garbage
collection. However, some small fraction of objects live for longer, and
are destined to become part of the longer-term state of the program
(sometimes referred to as the working set of the program). This can
be seen in Figure 6-2 where we see volume of
memory (or number of objects created) plotted against expected lifetime.

[image: JN7 0602]
Figure 6-2. Weak generational hypothesis

This fact is not deducible from static analysis, and yet when we measure
the runtime behavior of software, we see that it is broadly true across
a wide range of workloads.

The HotSpot JVM has a garbage collection subsystem that is designed
specifically to take advantage of the weak generational hypothesis, and
in this section, we will discuss how these techniques apply to
short-lived objects (which is the majority case). This discussion is
directly applicable to HotSpot, but other server-class JVMs often employ
similar or related techniques.

In its simplest form, a generational garbage collector is simply one
that takes notice of the WGH. They take the position that some extra
bookkeeping to monitor memory will be more than paid for by gains
obtained by being friendly to the WGH. In the simplest forms of
generational collector, there are usually just two generations—usually
referred to as young and old generation.

Evacuation

In our original formulation of mark-and-sweep, during the cleanup phase,
we reclaimed individual objects, and returned their space to the free
list. However, if the WGH is true, and on any given GC cycle most
objects are dead, then it may make sense to use an alternative approach
to reclaiming space.

This works by dividing the heap up into separate memory spaces. Then,
on each GC run, we locate only the live objects and move them to a
different space, in a process called evacuation. Collectors that do
this are referred to as evacuating collectors, and they have the property
that the entire memory space can be wiped at the end of the collection,
to be reused again and again.

Figure 6-3 shows an evacuating collector in action, with solid blocks representing surviving objects, and hatched boxes representing allocated, but now dead (and unreachable) objects.

[image: JN7 0603]
Figure 6-3. Evacuating collectors

This is potentially much more efficient than the naive collection
approach, because the dead objects are never touched. GC cycle length is
proportional to the number of live objects, rather than the number of
allocated objects. The only downside is slightly more bookkeeping—we
have to pay the cost of copying the live objects, but this is almost
always a very small price compared to the huge gains realized by
evacuation strategies.

An alternative to an evacuating collector is a compacting collector.
The chief defining feature of these is that at the end of the collection cycle, allocated memory (i.e., surviving objects) is arranged as a single contiguous area within the collected region.

The normal case is that all the surviving objects have been “shuffled up” within the memory pool (or region) usually to the start of the memory range and there is now a pointer indicating the start of empty space that is available for objects to be written into once application threads restart.

Compacting collectors will avoid memory fragmentation, but typically are much more expensive in terms of amount of CPU consumed than evacuating collectors.
There are design trade-offs between the two algorithms (the details of which are beyond the scope of this book), but both techniques are used in production collectors in Java (and in many other programming languages).

Note

HotSpot manages the JVM heap itself, completely in user space, and does
not need to perform system calls to allocate or free memory. The area
where objects are initially created is usually called Eden or the
Nursery, and most production JVMs (at least in the SE/EE space) will use
an evacuating strategy when collecting Eden.

The use of an evacuating collector also allows the use of per-thread
allocation. This means that each application thread can be given a
contiguous chunk of memory (called a thread-local allocation buffer)
for its exclusive use when allocating new objects. When new objects are
allocated, this only involves bumping a pointer in the allocation
buffer, an extremely cheap operation.

If an object is created just before a collection starts, then it will
not have time to fulfill its purpose and die before the GC cycle starts.
In a collector with only two generations, this short-lived object will
be moved into the long-lived region, almost immediately die, and then
stay there until the next full collection. As these are a lot less
frequent (and typically a lot more expensive), this seems rather
wasteful.

To mitigate this, HotSpot has a concept of a survivor space_an area that is used to house objects that have survived from previous
collections of young objects. A surviving object is copied by the
evacuating collector between survivor spaces until a _tenuring
threshold is reached, when the object will be promoted to the old
generation.

A full discussion of survivor spaces and how to tune GC is outside the
scope of this book. For production applications, specialist material
should be consulted.

The HotSpot Heap

The HotSpot JVM is a relatively complex piece of code, made up of an
interpreter and a just-in-time compiler, as well as a user-space memory
management subsystem. It is composed of a mixture of C, C++, and a
fairly large amount of platform-specific assembly code.

At this point, let’s summarize our description of the HotSpot heap, and
recap its basic features. The Java heap is a contiguous block of memory,
which is reserved at JVM startup, but only some of the heap is initially
allocated to the various memory pools. As the application runs, memory
pools are resized as needed. These resizes are performed by the GC
subsystem.

Objects in the Heap

Objects are created in Eden by application threads, and are removed by
a nondeterministic garbage collection cycle. The GC cycle runs when
necessary (i.e., when memory is getting low). The heap is divided into
two generations, young and old. The young generation is made up of Eden and survivor spaces, whereas the old generation is just one memory space.

After surviving several GC cycles, objects get promoted to the old
generation. Collections that only collect the young generation are
usually very cheap (in terms of computation required). HotSpot uses a
more advanced form of mark-and-sweep than we have seen so far, and is
prepared to do extra bookkeeping to improve GC performance.

When discussing garbage collectors, there is one other important terminology distinction that developers should know:

	Parallel collector

	
A garbage collector that uses multiple threads to perform collection

	Concurrent collector

	
A garbage collector that can run at the same time as application
threads are still running

In the discussion so for, the collection algorithms we have been describing have implicitly all been parallel, but not concurrent, collectors.

Note

In modern approaches to GC there is a growing trend toward using partially concurrent algorithms.
These types of algorithms are much more elaborate and computationally expensive than STW algorithms and involve trade-offs.
However, they are believed to be a better path forward for today’s applications.

Not only that, but in Java version 8 and below, the heap has a simple structure: each memory pool (Eden, survivor spaces, and Tenured) is a contiguous block of memory.
The default collector for these older versions is called Parallel.
However, with the arrival of Java 9, a new collection algorithm known as G1 becomes the default.

The Garbage First collector (known as G1) is a new garbage collector that was developed during the life of Java 7 (with some preliminary work done in Java 6).
It became production quality and officially fully supported with the release of Java 8 Update 40, and is the default from Java 9 onward (although other collectors are still available as an alternative).

Warning

G1 uses a different version of the algorithm in each Java version and there are some important differences in terms of performance and other behavior between versions.
It is very important that, when upgrading from Java 8 to a latter version and adopting G1, you undertake a full performance retest.

G1 has a different heap layout and is an example of a region-based collector.
A region is an area of memory (usually 1M in size, but larger heaps may have regions of 2, 4, 8, 16, or 32M in size) where all the objects belong to the same memory pool.
However, in a regional collector, the different regions that make up a pool are not necessarily located next to each other in memory.
This is unlike the Java 8 heap, where each pool is contiguous, although in both cases the entire heap remains contiguous.

G1 focuses its attention on regions that are mostly garbage, as they have the best free memory recovery.
It is an evacuating collector, and does incremental compaction when evacuating individual regions.

G1 was orignally designed to take over from a previous collector, CMS, as the low-pause collector, and it allows the user to specify pause goals in terms of how long and how often to pause for when doing GC.

The JVM provides a command-line switch that controls how long the collector will aim to pause for: -XX:MaxGCPauseMillis=200.
This means that the default pause time goal is 200ms, but you can change this value depending on your needs.

There are, of course, limits to how far the collector can be pushed.
Java GC is driven by the rate at which new memory is allocated, which can be highly unpredictable for many Java applications.
This can limit G1’s ability to meet the user’s pause goals, and in practice, pause times under <100ms are hard to achieve reliably.

As noted, G1 was origially intended to be a replacement low-pause collector.
However, the overall characteristics of its behavior have meant that it has actually evolved into a more general-purpose collector (which is why it has now become the default).

Note that the development of a new production-grade collector that is suitable for general use is not a quick process.
In the next section, let’s move on to discuss the alternative collectors that are provided by HotSpot (including the parallel collector of Java 8).

Other Collectors

This section is completely HotSpot-specific, and a detailed treatment is
outside the scope of the book, but it is worth knowing about the
existence of alternate collectors. For non-HotSpot users, you should
consult your JVM’s documentation to see what options may be available
for you.

ParallelOld

By default, in Java 8 the collector for the old generation is a parallel (but not concurrent) mark-and-sweep collector.
It seems, at first glance, to be similar to the collector used for the young generation.
However, it differs in one very important respect: it is not an evacuating collector.
Instead, the old generation is compacted when collection occurs.
This is important so that the memory space does not become fragmented over the course of time.

The ParallelOld collector is very efficient, but it has two properties that make it less desirable for modern applications. It is:

	
Fully STW

	
Linear in pause time with the size of the heap

This means that once GC has started, it cannot be aborted early and the cycle must be allowed to finish.
As heap sizes increase, this makes ParallelOld a less attractive option than G1, which can keep a constant pause time regardless of heap size (assuming the allocation rate is manageable).

At the time of writing, G1 gives acceptable performance on a large majority of applications that previously used ParallelOld—and in many cases will perform better.
The ParallelOld collector is still available as of Java 11, for those (hopefully few) apps that still need it, but the direction of the platform is clear—and it is toward using G1 wherever possible.

Concurrent Mark-and-Sweep

The most widely used alternate collector in HotSpot is Concurrent
Mark-and-Sweep (CMS). This collector is only used to collect the old
generation—it is used in conjunction with a parallel collector that is
responsible for cleaning up the young generation.

Note

CMS is designed for use only in low-pause applications, those that
cannot deal with a stop-the-world pause of more than a few milliseconds.
This is a surprisingly small class—very few applications outside of
financial trading have a genuine need for this requirement.

CMS is a complex collector, and often difficult to tune effectively. It
can be a very useful tool in the developer’s armory, but should not be
deployed lightly or blindly. It has the following basic properties that you
should be aware of, but a full discussion of CMS is beyond the scope of
this book. Interested readers should consult specialist blogs and
mailing lists (e.g., the “Friends of jClarity” mailing list quite often
deals with GC-performance-related questions).

	
CMS only collects the old generation.

	
CMS runs alongside application threads for most of the GC cycle,
reducing pauses.

	
Application threads don’t have to stop for as long.

	
It has six phases, all designed to minimize STW pause times.

	
It replaces main STW pause with two (usually very short) STW pauses.

	
It uses considerably more bookkeeping and lots more CPU time.

	
GC cycles overall take much longer.

	
By default, half of CPUs are used for GC when running concurrently.

	
It should not be used except for low-pause applications.

	
It definitely should not be used for applications with high-throughput
requirements.

	
It does not compact, and in cases of high fragmentation will fall back to
the default (parallel) collector.

Finally, HotSpot also has a Serial collector (and SerialOld collector) and a
collector known as “Incremental CMS.” These collectors are all
considered deprecated and should not be used.

Finalization

There is one old technique for resource management known as
finalization that the developer should be aware of. However, this
technique is extremely heavily deprecated and the vast majority of Java
developers should not directly use it under any circumstances.

Note

Finalization has only a very small number of legitimate use cases, and
only a tiny minority of Java developers will ever encounter them. If in any
doubt, do not use finalization—try-with-resources is usually the
correct alternative.

The finalization mechanism was intended to automatically release
resources once they are no longer needed. Garbage collection
automatically frees up the memory resources used by objects, but objects
can hold other kinds of resources, such as open files and network
connections. The garbage collector cannot free these additional
resources for you, so the finalization mechanism was intended to allow
the developer to perform cleanup tasks as closing files, terminating
network connections, deleting temporary files, and so on.

The finalization mechanism works as follows: if an object has a
finalize() method (usually called a finalizer), this is invoked
some time after the object becomes unused (or unreachable) but before the
garbage collector reclaims the space allocated to the object. The
finalizer is used to perform resource cleanup for an object.

In Oracle/OpenJDK the technique used is as follows:

	
When a finalizable object is no longer reachable, a reference to it
is placed on an internal finalization queue and the object is marked,
and considered live for the purposes of the GC run.

	
One by one, objects on the finalization queue are removed and their
finalize() methods are invoked.

	
After a finalizer is invoked, the object is not freed right away.
This is because a finalizer method could resurrect the object by storing
the this reference somewhere (for example, in a public static field on
some class) so that the object once again has references.

	
Therefore, after finalize() has been called, the garbage
collection subsytem must redetermine that the object is unreachable
before it can be garbage collected.

	
However, even if an object is resurrected, the finalizer method is
never invoked more than once.

	
All of this means that objects with a finalize() will usually
survive for (at least) one extra GC cycle (and if they’re long-lived,
that means one extra full GC).

The central problem with finalization is that Java makes no guarantees
about when garbage collection will occur or in what order objects will
be collected. Therefore, the platform can make no guarantees about when
(or even whether) a finalizer will be invoked or in what order
finalizers will be invoked.

Finalization Details

For the few use cases where finalization is appropriate, we include some
additional details and caveats:

	
The JVM can exit without garbage collecting all outstanding objects,
so some finalizers may never be invoked. In this case, resources such as
network connections are closed and reclaimed by the operating system.
Note, however, that if a finalizer that deletes a file does not run,
that file will not be deleted by the operating system.

	
To ensure that certain actions are taken before the VM exits, Java
provides Runtime::addShutdownHook—it can safely execute arbitrary code
before the JVM exits.

	
The finalize() method is an instance method, and finalizers act on
instances. There is no equivalent mechanism for finalizing a class.

	
A finalizer is an instance method that takes no arguments and returns
no value. There can be only one finalizer per class, and it must be
named finalize().

	
A finalizer can throw any kind of exception or error, but when a
finalizer is automatically invoked by the garbage collection subsystem,
any exception or error it throws is ignored and serves only to cause the
finalizer method to return.

The finalization mechanism is an attempt to implement a similar concept present in other languages and environments.
In particular, C++ has a pattern known as RAII (Resource Acquisition Is Initialization) that provides automatic resource management in a similar way.
In that pattern, a destructor method (which would be called finalize() in Java) is provided by the programmer, to perform cleanup and release of resources when the object is destroyed.

The basic use case for this is fairly simple: when an object is created, it takes ownership of some resource, and the object’s ownership of that resource is tied to the lifetime of the object.
When the object dies, the ownership of the resource is automatically relinquished, as the platform calls the destructor without any programmer intervention.

While finalization superficially sounds similar to this mechanism, in reality it is fundamentally different.
In fact, the finalization language feature is fatally flawed, due to differences in the memory management schemes of Java versus C++.

In the C++ case, memory is handled manually, with explicit lifetime management of objects under the control of the programmer.
This means that the destructor can be called immediately after the object is deleted (the platform guarantees this), and so the acquisition and release of resources is directly tied to the lifetime of the object.

On the other hand, Java’s memory management subsystem is a garbage collector that runs as needed, in response to running out of available memory to allocate.
It therefore runs at variable (and nondeterministic) intervals and so finalize() is run only when the object is collected, and this will be at an unknown time.

If the finalize() mechanism was used to automatically release resources (e.g., filehandles), then there is no guarantee as to when (if ever) those resources will actually become available.
This has the result of making the finalization mechanism fundamentally unsuitable for its stated purpose—automatic resource management.
We cannot guarantee that finalization will happen fast enough to prevent us from running out of resources.

Note

An automatic cleanup mechanism for protecting scarce resources (such as filehandles), finalization is broken by design.

The only real use case for a finalizer is the case of a class with native methods, holding open some non-Java resource.
Even here, the block-structured approach of try-with-resources is preferable, but it can make sense to also declare a public native finalize() (which would be called by the close() method); this would release native resources, including off-heap memory that is not under the control of the Java garbage collector.
This would enable the finalization mechanism to act as a “Hail Mary” protection in case a programmer fails to call close().
However, even here, TWR provides a better mechanism and automatic support for block-structured code.

Java’s Support for Concurrency

The idea of a thread is that of a lightweight unit of
execution—smaller than a process, but still capable of executing
arbitrary Java code. The usual way that this is implemented is for each
thread to be a fully fledged unit of execution to the operating system
but to belong to a process, with the address space of the process being
shared between all threads comprising that process. This means that each
thread can be scheduled independently and has its own stack and program
counter but shares memory and objects with other threads in the same
process.

The Java platform has had support for multithreaded programming from the
very first version. The platform exposes the ability to create new
threads of execution to the developer.

To understand this, first we must consider what happens in detail when a Java program starts up and the original application thread (usually referred to as main thread) appears:

	
The programmer executes java Main.

	
This causes the Java Virtual Machine, the context within which all Java programs run, to start up.

	
The JVM examines its arguments, and sees that the programmer has requested execution starting at the entry point (the main() method) of Main.class.

	
Assuming that Main passes classloading checks, a dedicated thread for the execution of the program is started (main thread).

	
The JVM bytecode interpreter is started on main thread.

	
Main thread’s interpreter reads the bytecode of Main::main() and execution begins, one bytecode at a time.

Every Java program starts this way, but this also means that:

	
Every Java program starts as part of a managed model with one interpreter per thread.

	
The JVM has a certain ability to control a Java application thread.

Following on from this, when we create new threads of execution in Java code, this is usually as simple as:

Thread t = new Thread(() -> {System.out.println("Hello Thread");});
t.start();

This small piece of code creates and starts a new thread, which executes
the body of the lambda expression and then executes.

Note

For programmers coming from older versions of Java, the lambda is effectively being converted to an instance of the Runnable interface before being passed to the Thread constructor.

The threading mechanism allows new threads to execute concurrently with
the original application thread and the threads that the JVM itself
starts up for various purposes.

For mainstream implementations of the Java platform, every time we call Thread::start() this call is delegated to the operating system, and a new OS thread is created.
This new OS thread exec()’s a new copy of the JVM bytecode interpreter.
The interpreter starts executing at the run() method (or, equivalently, at the body of the lambda).

This means that application threads have their access to the CPU controlled by the operating system scheduler—a built-in part of the OS that is responsible for managing timeslices of processor time (and that will not allow an application thread to exceed its allocated time).

In more recent versions of Java, an increasing trend toward
runtime-managed concurrency has appeared. This is the idea that for
many purposes it’s not desirable for developers to explicitly manage threads. Instead, the runtime should provide “fire and forget”
capabilities, whereby the program specifies what needs to be done, but
the low-level details of how this is to be accomplished are left to the
runtime.

This viewpoint can be seen in the concurrency toolkit contained in
java.util.concurrent, a full discussion of which is outside the scope
of this book. The interested reader should refer to Java Concurrency in
Practice by Brian Goetz et al. (Addison-Wesley).

For the remainder of this chapter, we will introduce the low-level
concurrency mechanisms that the Java platform provides, and that every
Java developer should be aware of.

Thread Lifecycle

Let’s start by looking at the lifecycle of an application thread.
Every operating system has a view of threads that can differ in the
details (but in most cases is broadly similar at a high level). Java
tries hard to abstract these details away, and has an enum called
Thread.State, which wrappers over the operating system’s view of the
thread’s state. The values of Thread.State provide an overview of the
lifecycle of a thread:

	NEW

	
The thread has been created, but its start() method has not yet been
called. All threads start in this state.

	RUNNABLE

	
The thread is running or is available to run when the operating system
schedules it.

	BLOCKED

	
The thread is not running because it is waiting to acquire a lock so
that it can enter a synchronized method or block. We’ll see more
about synchronized methods and blocks later in this section.

	WAITING

	
The thread is not running because it has called Object.wait() or
Thread.join().

	TIMED_WAITING

	
The thread is not running because it has called Thread.sleep() or
has called Object.wait() or Thread.join() with a timeout value.

	TERMINATED

	
The thread has completed execution. Its run() method has exited
normally or by throwing an exception.

These states represent the view of a thread that is common (at least
across mainstream operating systems), leading to a view like that in
Figure 6-4.

[image: JN7 0604]
Figure 6-4. Thread lifecycle

Threads can also be made to sleep, by using the Thread.sleep()
method. This takes an argument in milliseconds, which indicates how
long the thread would like to sleep for, like this:

try {
 Thread.sleep(2000);
} catch (InterruptedException e) {
 e.printStackTrace();
}

Note

The argument to sleep is a request to the operating system, not a
demand. For example, your program may sleep for longer than requested,
depending on load and other factors specific to the runtime environment.

We will discuss the other methods of Thread later in this chapter, but
first we need to cover some important theory that deals with how threads
access memory, and that is fundamental to understanding why
multithreaded programming is hard and can cause developers a lot of
problems.

Visibility and Mutability

In mainstream Java implementations, all Java application threads in a
process have their own call stacks (and local variables) but share a
single heap. This makes it very easy to share objects between threads,
as all that is required is to pass a reference from one thread to
another. This is illustrated in Figure 6-5.

This leads to a general design principle of Java—that objects are
visible by default. If I have a reference to an object, I can copy it
and hand it off to another thread with no restrictions. A Java reference
is essentially a typed pointer to a location in memory—and threads share
the same address space, so visible by default is a natural model.

In addition to visible by default, Java has another property that is
important to fully understand concurrency, which is that objects are
mutable—the contents of an object instance’s fields can usually be
changed. We can make individual variables or references constant by
using the final keyword, but this does not apply to the contents of
the object.

As we will see throughout the rest of this chapter, the combination of
these two properties—visibility across threads and object
mutability—gives rise to a great many complexities when trying to reason
about concurrent Java programs.

[image: JN7 0605]
Figure 6-5. Shared memory between threads

Concurrent safety

If we’re to write correct multithreaded code, then we want our programs
to satisfy a certain important property.

In Chapter 5, we defined a safe object-oriented
program to be one where we move objects from legal state to legal
state by calling their accessible methods. This definition works well
for single-threaded code. However, there is a particular difficulty that
comes about when we try to extend it to concurrent programs.

Tip

A safe multithreaded program is one in which it is impossible for
any object to be seen in an illegal or inconsistent state by any
another object, no matter what methods are called, and no matter in what order the application threads are scheduled by the operating system.

For most mainstream cases, the operating system will schedule threads to
run on particular processor cores at seemingly random times, depending on load
and what else is running in the system. If load is high, then there may
be other processes that also need to run.

The operating system will forcibly remove a Java thread from a CPU core
if it needs to. The thread is suspended immediately, no matter what it’s
doing—including being partway through a method. However, as we discussed
in Chapter 5, a method can temporarily put an
object into an illegal state while it is working on it, providing it
corrects it before the method exits.

This means that if a thread is swapped off before it has completed a
long-running method, it may leave an object in an inconsistent state,
even if the program follows the safety rules. Another way of saying
this is that even data types that have been correctly modeled for the
single-threaded case still need to protect against the effects of
concurrency. Code that adds on this extra layer of protection is
called concurrently safe, or (more informally) threadsafe.

In the next section, we’ll discuss the primary means of achieving this
safety, and at the end of the chapter, we’ll meet some other mechanisms
that can also be useful under some circumstances.

Exclusion and Protecting State

Any code that modifies or reads state that can become inconsistent
must be protected. To achieve this, the Java platform provides only one
mechanism: exclusion.

Consider a method that contains a sequence of operations that, if
interrupted partway through, could leave an object in an inconsistent or
illegal state. If this illegal state was visible to another object,
incorrect code behavior could occur.

For example, consider an ATM or other cash-dispensing machine:

public class Account {
 private double balance = 0.0; // Must be >= 0
 // Assume the existence of other field (e.g., name) and methods
 // such as deposit(), checkBalance(), and dispenseNotes()

 public Account(double openingBal) {
 balance = openingBal;
 }

 public boolean withdraw(double amount) {
 if (balance >= amount) {
 try {
 Thread.sleep(2000); // Simulate risk checks
 } catch (InterruptedException e) {
 return false;
 }
 balance = balance - amount;
 dispenseNotes(amount);
 return true;
 }
 return false;
 }
}

The sequence of operations that happens inside withdraw() can leave
the object in an inconsistent state. In particular, after we’ve checked
the balance, a second thread could come in while the first was sleeping
in simulated risk checks, and the account could be overdrawn, in
violation of the constraint that balance >= 0.

This is an example of a system where the operations on the objects are
single-threaded safe--(because the objects cannot reach an illegal state
(balance < 0) if called from a single thread)--but not concurrently
safe.

To allow the developer to make code like this concurrently safe, Java
provides the synchronized keyword. This keyword can be applied to a
block or to a method, and when it is used, the platform uses it to
restrict access to the code inside the block or method.

Note

Because synchronized surrounds code, many developers are led to the
conclusion that concurrency in Java is about code. Some texts even refer
to the code that is inside the synchronized block or method as a
critical section and consider that to be the crucial aspect of
concurrency. This is not the case; instead, it is the inconsistency of
data that we must guard against, as we will see.

The Java platform keeps track of a special token, called a monitor,
for every object that it ever creates. These monitors (also called
locks) are used by synchronized to indicate that the following code
could temporarily render the object inconsistent. The sequence of
events for a synchronized block or method is:

	
Thread needs to modify an object and may make it briefly
inconsistent as an intermediate step

	
Thread acquires the monitor, indicating it requires temporary
exclusive access to the object

	
Thread modifies the object, leaving it in a consistent, legal state
when done

	
Thread releases the monitor

If another thread attempts to acquire the lock while the object is being
modified, then the attempt to acquire the lock blocks, until the holding
thread releases the lock.

Note that you do not have to use the synchronized statement unless
your program creates multiple threads that share data. If only one
thread ever accesses a data structure, there is no need to protect it
with synchronized.

One point is of critical importance—acquiring the monitor does
not prevent access to the object. It only prevents any other thread
from claiming the lock. Correct concurrently safe code requires
developers to ensure that all accesses that might modify or read
potentially inconsistent state acquire the object monitor before
operating on or reading that state.

Put another way, if a synchronized method is working on an object and
has placed it into an illegal state, and another method (which is not
synchronized) reads from the object, it can still see the inconsistent
state.

Note

Synchronization is a cooperative mechanism for protecting state and it
is very fragile as a result. A single bug (such as missing a single
synchronized keyword from a method it’s required on) can have
catastrophic results for the safety of the system as a whole.

The reason we use the word synchronized as the keyword for “requires
temporary exclusive access” is that in addition to acquiring the
monitor, the JVM also rereads the current state of the object from main
memory when the block is entered. Similarly, when the synchronized
block or method is exited, the JVM flushes any modified state of the
object back to main memory.

Without synchronization, different CPU cores in the system may not see
the same view of memory, and memory inconsistencies can damage the state
of a running program, as we saw in our ATM example.

The simplest example of this is known as lost update, as demonstrated in the following code:

public class Counter {
 private int i = 0;

 public int increment() {
 return i = i + 1;
 }

}

This can be driven via a simple control program:

 Counter c = new Counter();
 int REPEAT = 10_000_000;
 Runnable r = () -> {
 for (int i = 0; i < REPEAT; i++) {
 c.increment();
 }
 };
 Thread t1 = new Thread(r);
 Thread t2 = new Thread(r);

 t1.start();
 t2.start();
 t1.join();
 t2.join();

 int anomaly = (2 * REPEAT + 1) - c.increment();
 double perc = ((anomaly + 0.0) * 100) / (2 * REPEAT);
 System.out.println("Lost updates: "+ anomaly +" ; % = " + perc);

If this concurrent program was correct, then the value for lost update should be exactly zero.
It is not, and so we may conclude that unsynchronized access is fundamentally unsafe.

By contrast, we also see that the addition of the keyword synchronized to the increment method is sufficient to reduce the lost update anomaly to zero—that is, to make the method correct, even in the presence of multiple threads.

volatile

Java provides another keyword for dealing with concurrent access to
data. This is the volatile keyword, and it indicates that before
being used by application code, the value of the field or variable must
be reread from main memory. Equally, after a volatile value has been
modified, as soon as the write to the variable has completed, it
must be written back to main memory.

One common usage of the volatile keyword is in the
“run-until-shutdown” pattern. This is used in multithreaded programming
where an external user or system needs to signal to a processing thread
that it should finish the current job being worked on and then shut down
gracefully. This is sometimes called the “graceful completion” pattern.
Let’s look at a typical example, supposing that this code for our
processing thread is in a class that implements Runnable:

private volatile boolean shutdown = false;

public void shutdown() {
 shutdown = true;
}

public void run() {
 while (!shutdown) {
 // ... process another task
 }
}

All the time that the shutdown() method is not called by another
thread, the processing thread continues to sequentially process tasks
(this is often combined very usefully with a BlockingQueue to deliver
work). Once shutdown() is called by another thread, the
processing thread immediately sees the shutdown flag change to true.
This does not affect the running job, but once the task finishes, the
processing thread will not accept another task and instead will shut
down gracefully.

However, useful as the volatile keyword is, it does not provide a complete protection of state—as we can see by using it to mark the field in Counter as volatile.
We might naively assume that this would protect the code in Counter.
Unfortunately, the observed value of the anomaly (and therefore, the presence of the lost update problem) indicates that this is not the case.

Useful Methods of Thread

The Thread class has a
number of methods on it to make your life easier when you’re creating new application threads. This is
not an exhaustive list—there are many other methods on Thread, but
this is a description of some of the more common methods.

getId()

This method returns the ID number of the thread, as a long. This ID
will stay the same for the lifetime of the thread.

getPriority() and setPriority()

These methods are used to control the priority of threads. The
scheduler decides how to handle thread priorities—for example, one
strategy could be to not have any low-priority threads run while there
are high-priority threads waiting. In most cases, there is no way to
influence how the scheduler will interpret priorities. Thread priorities
are represented as an integer between 1 and 10, with 10 being the highest.

setName() and getName()

These methods allow the developer to set or retrieve a name for an individual
thread. Naming threads is good practice, as it can make debugging much
easier, especially when using a tool such as jvisualvm, which we will
discuss in “Introduction to JShell”.

getState()

This returns a Thread.State object that indicates which state this thread
is in, as per the values defined in
“Thread Lifecycle”.

isAlive()

This method is used to test whether a thread is still alive.

start()

This method is used to create a new application thread, and to schedule
it, with the run() method being the entry point for execution. A
thread terminates normally when it reaches the end of its run() method
or when it executes a return statement in that method.

interrupt()

If a thread is blocked in a sleep(), wait(), or join() call, then
calling interrupt() on the Thread object that represents the thread
will cause the thread to be sent an InterruptedException (and to wake
up).

If the thread was involved in interruptible I/O, then the I/O will
be terminated and the thread will receive a
ClosedByInterruptException. The interrupt status of the thread will be
set to true, even if the thread was not engaged in any activity that
could be interrupted.

join()

The current thread waits until the thread corresponding to the Thread
object has died. It can be thought of as an instruction not to proceed
until the other thread has completed.

setDaemon()

A user thread is a thread that will prevent the process from exiting
if it is still alive—this is the default for threads. Sometimes,
programmers want threads that will not prevent an exit from
occurring—these are called daemon threads. The status of a thread as
a daemon or user thread can be controlled by the setDaemon() method and checked using isDaemon().

setUncaughtExceptionHandler()

When a thread exits by throwing an exception (i.e., one that the program did not catch), the default behavior is to print the name of the thread, the type of the exception, the
exception message, and a stack trace. If this isn’t sufficient, you can
install a custom handler for uncaught exceptions in a thread. For
example:

// This thread just throws an exception
Thread handledThread =
 new Thread(() -> { throw new UnsupportedOperationException(); });

// Giving threads a name helps with debugging
handledThread.setName("My Broken Thread");

// Here's a handler for the error.
handledThread.setUncaughtExceptionHandler((t, e) -> {
 System.err.printf("Exception in thread %d '%s':" +
 "%s at line %d of %s%n",
 t.getId(), // Thread id
 t.getName(), // Thread name
 e.toString(), // Exception name and message
 e.getStackTrace()[0].getLineNumber(),
 e.getStackTrace()[0].getFileName()); });
handledThread.start();

This can be useful in some situations—for example, if one thread is
supervising a group of other worker threads, then this pattern can be
used to restart any threads that die.

There is also setDefaultUncaughtExceptionHandler(), a static method that sets a backup handler for catching any thread’s uncaught exceptions.

Deprecated Methods of Thread

In addition to the useful methods of Thread, there are a number of
unsafe methods that you should not use. These methods form
part of the original Java thread API, but were quickly found to be not
suitable for developer use. Unfortunately, due to Java’s backward
compatibility requirements, it has not been possible to remove them from
the API. Developers simply need to be aware of them, and to avoid
using them under all circumstances.

stop()

Thread.stop() is almost impossible to use correctly without violating
concurrent safety, as stop() kills the thread immediately, without
giving it any opportunity to recover objects to legal states. This is in
direct opposition to principles such as concurrent safety, and so should
never be used.

suspend(), resume(), and countStackFrames()

The suspend() mechanism does not release any monitors it holds when
it suspends, so any other thread that attempts to access those
monitors will deadlock. In practice, this mechanism produces race
conditions between these deadlocks and resume() that render this
group of methods unusable.

destroy()

This method was never implemented—it would have suffered from the same
race condition issues as suspend() if it had been.

All of these deprecated methods should always be avoided. A set
of safe alternative patterns that achieve the same intended aims as the
preceding methods have been developed. A good example of one of these
patterns is the run-until-shutdown pattern that we have already met.

Working with Threads

In order to work effectively with multithreaded code, it’s important to
have the basic facts about monitors and locks at your command. This
checklist contains the main facts that you should know:

	
Synchronization is about protecting object state and memory, not code.

	
Synchronization is a cooperative mechanism between threads. One bug
can break the cooperative model and have far-reaching consequences.

	
Acquiring a monitor only prevents other threads from acquiring the
monitor—it does not protect the object.

	
Unsynchronized methods can see (and modify) inconsistent state, even
while the object’s monitor is locked.

	
Locking an Object[] doesn’t lock the individual objects.

	
Primitives are not mutable, so they can’t (and don’t need to) be
locked.

	
synchronized can’t appear on a method declaration in an interface.

	
Inner classes are just syntactic sugar, so locks on inner classes have
no effect on the enclosing class (and vice versa).

	
Java’s locks are reentrant. This means that if a thread holding a
monitor encounters a synchronized block for the same monitor, it can
enter the block.2

We’ve also seen that threads can be asked to sleep for a period of time.
It is also useful to go to sleep for an unspecified amount of time, and
wait until a condition is met. In Java, this is handled by the
wait() and notify() methods that are present on Object.

Just as every Java object has a lock associated with it, every object
maintains a list of waiting threads. When a thread calls the wait()
method of an object, any locks the thread holds are temporarily
released, and the thread is added to the list of waiting threads for
that object and stops running. When another thread calls the
notifyAll() method of the same object, the object wakes up the
waiting threads and allows them to continue running.

For example, let’s look at a simplified version of a queue that is safe
for multithreaded use:

/*
 * One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 */
public class WaitingQueue<E> {
 LinkedList<E> q = new LinkedList<E>(); // storage
 public synchronized void push(E o) {
 q.add(o); // Append the object to the end of the list
 this.notifyAll(); // Tell waiting threads that data is ready
 }
 public synchronized E pop() {
 while(q.size() == 0) {
 try { this.wait(); }
 catch (InterruptedException ignore) {}
 }
 return q.remove();
 }
}

This class uses a wait() on the instance of WaitingQueue if the
queue is empty (which would make the pop() fail). The waiting thread
temporarily releases its monitor, allowing another thread to claim it—a
thread that might push() something new onto the queue. When the
original thread is woken up again, it is restarted where it originally
began to wait—and it will have reacquired its monitor.

Note

wait() and notify() must be used inside a synchronized method or
block, because of the temporary relinquishing of locks that is required
for them to work properly.

In general, most developers shouldn’t roll their own classes like the
one in this example—instead, make use of the libraries and components
that the Java platform provides for you.

Summary

In this chapter, we’ve discussed Java’s view of memory and concurrency,
and seen how these topics are intrinsically linked. As processors
develop more and more cores, we will need to use concurrent programming
techniques to make effective use of those cores. Concurrency is key to
the future of well-performing applications.

Java’s threading model is based on three fundamental concepts:

	Shared, visible-by-default mutable state

	
This means that objects are easily shared between different threads in
a process, and that they can be changed (“mutated”) by any thread
holding a reference to them.

	Preemptive thread scheduling

	
The OS thread scheduler can swap threads on and off cores at more or
less any time.

	Object state can only be protected by locks

	
Locks can be hard to use correctly, and state is quite vulnerable—even
in unexpected places such as read operations.

Taken together, these three aspects of Java’s approach to concurrency
explain why multithreaded programming can cause so many headaches for
developers.

1 The process whereby we exhaustively explore from the GC roots produces what is known as the transitive closure of live objects—a term that is borrowed from the abstract mathematics of graph theory.
2 Outside of Java, not all implementations of locks have this property.

Part II. Working with the Java Platform

Part II is an introduction to some of the core libraries that ship with
Java and some programming techniques that are common to intermediate and
advanced Java programs.

 	Chapter 7, Programming and Documentation Conventions

 	Chapter 8, Working with Java Collections

 	Chapter 9, Handling Common Data Formats

 	Chapter 10, File Handling and I/O

 	Chapter 11, Classloading, Reflection, and Method Handles

 	Chapter 12, Java Platform Modules

 	Chapter 13, Platform Tools

Chapter 7. Programming and Documentation Conventions

This chapter explains a number of important and useful Java programming
and documentation conventions. It covers:

	
General naming and capitalization conventions

	
Portability tips and conventions

	
javadoc documentation comment syntax and conventions

Naming and Capitalization Conventions

The following widely adopted naming conventions apply to modules, packages,
reference types, methods, fields, and constants in Java. Because these
conventions are almost universally followed and because they affect the
public API of the classes you define, you should adopt them as well:

	Modules

	
As modules are the preferred unit of distribution for Java applications from Java 9 onward, you should take special care when naming them.

Module names must be globally unique—the modules system is essentially predicated on this assumption.
As modules are effectively super-packages (or aggregates of packages) the module name should be closely related to the package names that are grouped into the module.
One recommended way to do this is to group together the packages within a module, and use the root name of the packages as the module name.

	Packages

	
It is customary to ensure that your publicly visible package names are unique.
One common way of doing this is by prefixing them with the inverted name of an internet domain that you own (e.g., com.oreilly.javanutshell).

This convention is now followed less strictly than it used to be, with some projects merely adopting a simple, recognizable, and unique prefix instead.
All package names should be lowercase.

	Classes

	
A type name should begin with a capital letter and be written in
mixed case (e.g., String).
If a class name consists of more than one word, each word should begin with a capital letter (e.g., StringBuffer).
If a type name, or one of the words of a type name, is an acronym, the acronym can be written in all capital letters (e.g., URL, HTMLParser).

Because classes and enumerated types are designed to represent
objects, you should choose class names that are nouns (e.g., Thread,
Teapot, FormatConverter).

Enum types are a special case of a class where there are only finitely many instances.
They should be named as nouns in all but highly exceptional circumstances.
The constants defined by enum types are also typically written in all capital letters, as per the rules for constants below.

	Interfaces

	
Java programmers typically use interfaces in one of two ways: either to convey that a class has additional, supplementary aspects or behaviors; or to indicate that the class is one possible implementation of an interface for which there are multiple valid implementation choices.

When an interface is used to provide additional information about the classes that implement it, it is common to choose an interface name that is an adjective (e.g., Runnable, Cloneable, Serializable).

When an interface is intended to work more like an abstract superclass, use a name that is a noun (e.g., Document, FileNameMap, Collection).

	Methods

	
A method name always begins with a lowercase letter. If the name
contains more than one word, every word after the first begins with a
capital letter (e.g., insert(), insertObject(),
insertObjectAt()). This is usually referred to as camel case.

Method names are typically chosen so that the first word is a verb.
Method names can be as long as is necessary to make their purpose
clear, but choose succinct names where possible. Avoid overly general
method names, such as performAction(), go(), or the dreadful
doIt().

	Fields and constants

	
Nonconstant field names follow the same capitalization conventions as method names. A field name should be chosen to best describe the purpose of the field or the value it holds.

If a field is a static final constant, it should be written in all uppercase.
If the name of a constant includes more than one word, the words should be separated with underscores (e.g., MAX_VALUE).

	Parameters

	
Method parameters follow the same capitalization conventions as
nonconstant fields. The names of method parameters appear in the
documentation for a method, so you should choose names that make the
purpose of the parameters as clear as possible. Try to keep parameter
names to a single word and use them consistently. For example, if a
WidgetProcessor class defines many methods that accept a Widget
object as the first parameter, name this parameter widget.

	Local variables

	
Local variable names are an implementation detail and never visible
outside your class. Nevertheless, choosing good names makes your code
easier to read, understand, and maintain. Variables are typically
named following the same conventions as methods and fields.

In addition to the conventions for specific types of names, there are
conventions regarding the characters you should use in your names.
Java allows the $ character in any identifier, but, by convention,
its use is reserved for synthetic names generated by source-code
processors. For example, it is used by the Java compiler to make inner
classes work. You should not use the $ character in any name that
you create.

Java allows names to use any alphanumeric characters from the entire
Unicode character set. While this can be convenient for
non-English-speaking programmers, this has never really taken off and
this usage is extremely rare.

Practical Naming

The names we give to our constructs matter—a lot. Naming is a key part
of the process that conveys our abstract designs to our peers. The
process of transferring a software design from one human mind to another
is hard—harder, in many cases, than the process of transferring our
design from our mind to the machines that will execute it.

We must, therefore, do everything we can to ensure that this process is
eased. Names are a keystone of this. When reviewing code (and all code
should be reviewed), pay particular attention to the
names that have been chosen:

	
Do the names of the types reflect the purpose of those types?

	
Does each method do exactly what its name suggests? Ideally, no more,
and no less?

	
Are the names descriptive enough? Could a more specific name be used
instead?

	
Are the names well suited for the domain they describe?

	
Are the names consistent across the domain?

	
Do the names mix metaphors?

	
Does the name reuse a common term of software engineering?

Mixed metaphors are common in software, especially after several
releases of an application. A system that starts off perfectly
reasonably with components called Receptionist (for handling incoming
connections), Scribe (for persisting orders), and Auditor (for
checking and reconciling orders) can quite easily end up in a later
release with a class called Watchdog for restarting processes. This
isn’t terrible, but it breaks the established pattern of people’s job
titles that previously existed.

It is also incredibly important to realize that software changes a lot
over time. A perfectly apposite name on release 1 can become highly
misleading by release 4. Care should be taken that as the system focus
and intent shifts, the names are refactored along with the code. Modern
IDEs have no problem with global search and replace of symbols, so there
is no need to cling to outdated metaphors once they are no longer
useful.

One final note of caution: an overly strict interpretation of these
guidelines can lead the developer to some very odd naming constructs.
There are a number of excellent descriptions of some of the absurdities
that can result by taking these conventions to their extremes.

In other words, none of the conventions described here is mandatory.
Following them will, in the vast majority of cases, make your code
easier to read and maintain.
However, you should not be afraid to deviate from these guidelines
if it makes your code easier to read and understand.

Break any of these rules rather than say anything outright barbarous.

George Orwell

Above all, you should have a sense of the expected lifetime of the code
you are writing. A risk calculation system in a bank may have a lifetime
of a decade or more, whereas a prototype for a startup may only be
relevant for a few weeks. Document accordingly—the longer the code is
likely to be live, the better its documentation needs to be.

Java Documentation Comments

Most ordinary comments within Java code explain the implementation
details of that code. By contrast, the Java language specification
defines a special type of comment known as a doc comment that serves
to document the API of your code.

A doc comment is an ordinary multiline comment that begins with /**
(instead of the usual /*) and ends with */. A doc comment appears
immediately before a type or member definition and contains
documentation for that type or member. The documentation can include
simple HTML formatting tags and other special keywords that provide
additional information.

Doc comments are ignored by the compiler, but
they can be extracted and automatically turned into online HTML
documentation by the javadoc program. (See
Chapter 13 for more information about javadoc.)

Here is an example class that contains appropriate doc comments:

/**
 * This immutable class represents <i>complex numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
 /**
 * Holds the real part of this complex number.
 * @see #y
 */
 protected double x;

 /**
 * Holds the imaginary part of this complex number.
 * @see #x
 */
 protected double y;

 /**
 * Creates a new Complex object that represents the complex number
 * x+yi. @param x The real part of the complex number.
 * @param y The imaginary part of the complex number.
 */
 public Complex(double x, double y) {
 this.x = x;
 this.y = y;
 }

 /**
 * Adds two Complex objects and produces a third object that
 * represents their sum.
 * @param c1 A Complex object
 * @param c2 Another Complex object
 * @return A new Complex object that represents the sum of
 * <code>c1</code> and <code>c2</code>.
 * @exception java.lang.NullPointerException
 * If either argument is <code>null</code>.
 */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.x + c2.x, c1.y + c2.y);
 }
}

Structure of a Doc Comment

The body of a doc comment should begin with a one-sentence summary of
the type or member being documented. This sentence may be displayed by
itself as summary documentation, so it should be written to stand on its
own. The initial sentence may be followed by any number of other
sentences and paragraphs that describe the class, interface, method, or
field in full detail.

After the descriptive paragraphs, a doc comment can contain any number
of other paragraphs, each of which begins with a special doc-comment
tag, such as @author, @param, or @returns. These tagged paragraphs
provide specific information about the class, interface, method, or
field that the javadoc program displays in a standard way. The full
set of doc-comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup
tags, such as <i> for emphasis; <code> for class, method, and field
names; and <pre> for multiline code examples. It can also contain
<p> tags to break the description into separate paragraphs and ,
, and related tags to display bulleted lists and similar
structures. Remember, however, that the material you write is embedded
within a larger, more complex HTML document. For this reason, doc
comments should not contain major structural HTML tags, such as <h2>
or <hr>, that might interfere with the structure of the larger
document.

Avoid the use of the <a> tag to include hyperlinks or cross-references
in your doc comments. Instead, use the special {@link} doc-comment
tag, which, unlike the other doc-comment tags, can appear anywhere
within a doc comment. As described in the next section, the {@link}
tag allows you to specify hyperlinks to other classes, interfaces,
methods, and fields without knowing the HTML-structuring conventions and
filenames used by javadoc.

If you want to include an image in a doc comment, place the image file
in a doc-files subdirectory of the source code directory. Give the
image the same name as the class, with an integer suffix. For example,
the second image that appears in the doc comment for a class named
Circle can be included with this HTML tag:

Because the lines of a doc comment are embedded within a Java comment,
any leading spaces and asterisks (*) are stripped from each line of
the comment before processing. Thus, you don’t need to worry about the
asterisks appearing in the generated documentation or about the
indentation of the comment affecting the indentation of code examples
included within the comment with a <pre> tag.

Doc-Comment Tags

The javadoc program recognizes a number of special tags, each of
which begins with an @ character. These doc-comment tags allow you to
encode specific information into your comments in a standardized way,
and they allow javadoc to choose the appropriate output format for
that information. For example, the @param tag lets you specify the
name and meaning of a single parameter for a method. javadoc can
extract this information and display it using an HTML <dl> list, an
HTML <table>, or whatever it sees fit.

The following doc-comment tags are recognized by javadoc; a doc
comment should typically use these tags in the order listed here:

	@author name

	
Adds an “Author:” entry that contains the specified name. This tag
should be used for every class or interface definition but must not be
used for individual methods and fields. If a class has multiple
authors, use multiple @author tags on adjacent lines. For example:

@author Ben Evans
@author David Flanagan

List the authors in chronological order, with the original author
first. If the author is unknown, you can use “unascribed.” javadoc
does not output authorship information unless the -author
command-line argument is specified.

	@version text

	
Inserts a “Version:” entry that contains the specified text. For
example:

@version 1.32, 08/26/04

This tag should be included in every class and interface doc comment
but cannot be used for individual methods and fields. This tag is
often used in conjunction with the automated version-numbering
capabilities of a version control system, such as git, Perforce, or
SVN. javadoc does not output version information in its generated
documentation unless the -version command-line argument is
specified.

	@param parameter-name description

	
Adds the specified parameter and its description to the “Parameters:”
section of the current method. The doc comment for a method or
constructor must contain one @param tag for each parameter the
method expects. These tags should appear in the same order as the
parameters specified by the method. The tag can be used only in doc
comments for methods and constructors.

You are encouraged to use phrases and sentence fragments where
possible to keep the descriptions brief. However, if a parameter
requires detailed documentation, the description can wrap onto
multiple lines and include as much text as necessary. For readability
in source-code form, consider using spaces to align the descriptions
with each other. For example:

@param o the object to insert
@param index the position to insert it at

	@return description

	
Inserts a “Returns:” section that contains the specified description.
This tag should appear in every doc comment for a method, unless the
method returns void or is a constructor. The description can be as
long as necessary, but consider using a sentence fragment to keep it
short. For example:

@return <code>true</code> if the insertion is successful, or
 <code>false</code> if the list already contains the object.

	@exception full-classname description

	
Adds a “Throws:” entry that contains the specified exception name and
description. A doc comment for a method or constructor should contain
an @exception tag for every checked exception that appears in its
throws clause. For example:

@exception java.io.FileNotFoundException
 If the specified file could not be found

The @exception tag can optionally be used to document unchecked
exceptions (i.e., subclasses of RuntimeException) the method may
throw, when these are exceptions that a user of the method may
reasonably want to catch. If a method can throw more than one
exception, use multiple @exception tags on adjacent lines and list
the exceptions in alphabetical order. The description can be as short
or as long as necessary to describe the significance of the exception.
This tag can be used only for method and constructor comments. The
@throws tag is a synonym for @exception.

	@throws full-classname description

	
This tag is a synonym for @exception.

	@see reference

	
Adds a “See Also:” entry that contains the specified reference. This
tag can appear in any kind of doc comment. The syntax for the
reference is explained in
“Cross-References in Doc Comments”.

	@deprecated explanation

	
This tag specifies that the following type or member has been
deprecated and that its use should be avoided. javadoc adds a
prominent “Deprecated” entry to the documentation and includes the
specified explanation text. This text should specify when the
class or member was deprecated and, if possible, suggest a replacement
class or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
 by {@link #setColor}.

The @deprecated tag is an exception to the general rule that javac
ignores all comments. When this tag appears, the compiler notes the
deprecation in the class file it produces. This allows it to issue
warnings for other classes that rely on the deprecated feature.

	@since version

	
Specifies when the type or member was added to the API. This tag
should be followed by a version number or other version specification.
For example:

@since JNUT 3.0

Every doc comment for a type should include an @since tag, and any
members added after the initial release of the type should have
@since tags in their doc comments.

	@serial description

	
Technically, the way a class is serialized is part of its public
API. If you write a class that you expect to be serialized, you should
document its serialization format using @serial and the related tags
listed next. @serial should appear in the doc comment for any field
that is part of the serialized state of a Serializable class.

For classes that use the default serialization mechanism, this means
all fields that are not declared transient, including fields
declared private. The description should be a brief description
of the field and of its purpose within a serialized object.

You can also use the @serial tag at the class and package level to
specify whether a “serialized form page” should be generated for the
class or package. The syntax is:

@serial include
@serial exclude

	@serialField name type description

	
A Serializable class can define its serialized format by declaring
an array of ObjectStreamField objects in a field named
serialPersistentFields. For such a class, the doc comment for
serialPersistentFields should include an @serialField tag for each
element of the array. Each tag specifies the name, type, and
description for a particular field in the serialized state of the
class.

	@serialData description

	
A Serializable class can define a writeObject() method to write
data other than that written by the default serialization mechanism.
An Externalizable class defines a writeExternal() method
responsible for writing the complete state of an object to the
serialization stream. The @serialData tag should be used in the doc
comments for these writeObject() and writeExternal() methods, and
the description should document the serialization format used by
the method.

Inline Doc-Comment Tags

In addition to the preceding tags, javadoc also supports several
inline tags that may appear anywhere that HTML text appears in a doc
comment. Because these tags appear directly within the flow of HTML
text, they require the use of curly braces as delimiters to separate the
tagged text from the HTML text. Supported inline tags include the
following:

	{@link reference }

	
The {@link} tag is like the @see tag except that instead of
placing a link to the specified reference in a special “See Also:”
section, it inserts the link inline. An {@link} tag can appear
anywhere that HTML text appears in a doc comment. In other words, it
can appear in the initial description of the class, interface, method,
or field and in the descriptions associated with the @param,
@returns, @exception, and @deprecated tags. The reference
for the {@link} tag uses the syntax described next in
“Cross-References in Doc Comments”. For example:

@param regexp The regular expression to search for. This string
 argument must follow the syntax rules described for
 {@link java.util.regex.Pattern}.

	{@linkplain reference }

	
The {@linkplain} tag is just like the {@link} tag, except that
the text of the link is formatted using the normal font rather than
the code font used by the {@link} tag. This is most useful when
reference contains both a feature to link to and a label
that specifies alternate text to be displayed in the link. See
“Cross-References in Doc Comments” for more on the
feature and label portions of the reference argument.

	{@inheritDoc}

	
When a method overrides a method in a superclass or implements a
method in an interface, you can omit a doc comment, and javadoc
automatically inherits the documentation from the overridden or
implemented method. You can use the {@inheritDoc} tag to inherit the
text of individual tags. This tag also allows you to inherit and
augment the descriptive text of the comment. To inherit individual
tags, use it like this:

@param index {@inheritDoc}
@return {@inheritDoc}

	{@docRoot}

	
This inline tag takes no parameters and is replaced with a reference
to the root directory of the generated documentation. It is useful in
hyperlinks that refer to an external file, such as an image or a
copyright statement:

This is Copyrighted material.

	{@literal text }

	
This inline tag displays text literally, escaping any HTML in it
and ignoring any javadoc tags it may contain. It does not retain
whitespace formatting but is useful when used within a <pre> tag.

	{@code text }

	
This tag is like the {@literal} tag, but displays the literal
text in code font. Equivalent to:

<code>{@literal <replaceable>text</replaceable>}</code>

	{@value}

	
The {@value} tag, with no arguments, is used inline in doc comments
for static final fields and is replaced with the constant value of
that field.

	{@value reference }

	
This variant of the {@value} tag includes a reference to a
static final field and is replaced with the constant value of that
field.

Cross-References in Doc Comments

The @see tag and the inline tags {@link}, {@linkplain}, and
{@value} all encode a cross-reference to some other source of
documentation, typically to the documentation comment for some other
type or member.

reference can take three different forms. If it begins with a quote
character, it is taken to be the name of a book or some other printed
resource and is displayed as is. If reference begins with a <
character, it is taken to be an arbitrary HTML hyperlink that uses the
<a> tag and the hyperlink is inserted into the output documentation
as is. This form of the @see tag can insert links to other online
documents, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, it is expected
to have the following form:

feature [label]

In this case, javadoc outputs the text specified by label and
encodes it as a hyperlink to the specified feature. If label is
omitted (as it usually is), javadoc uses the name of the specified
feature instead.

feature can refer to a package, type, or type member, using one of
the following forms:

	pkgname

	
A reference to the named package. For example:

@see java.lang.reflect

	pkgname.typename

	
A reference to a class, interface, enumerated type, or annotation type
specified with its full package name. For example:

@see java.util.List

	typename

	
A reference to a type specified without its package name. For example:

@see List

javadoc resolves this reference by searching the current package and
the list of imported classes for a class with this name.

	typename # methodname

	
A reference to a named method or constructor within the specified
type. For example:

@see java.io.InputStream#reset
@see InputStream#close

If the type is specified without its package name, it is resolved as
described for typename. This syntax is ambiguous if the method is
overloaded or the class defines a field by the same name.

	typename # methodname (paramtypes)

	
A reference to a method or constructor with the type of its parameters
explicitly specified. This is useful when cross-referencing an
overloaded method. For example:

@see InputStream#read(byte[], int, int)

	# methodname

	
A reference to a nonoverloaded method or constructor in the current
class or interface or one of the containing classes, superclasses, or
superinterfaces of the current class or interface. Use this concise
form to refer to other methods in the same class. For example:

@see #setBackgroundColor

	# methodname (paramtypes)

	
A reference to a method or constructor in the current class or
interface or one of its superclasses or containing classes. This form
works with overloaded methods because it lists the types of the method
parameters explicitly. For example:

@see #setPosition(int, int)

	typename # fieldname

	
A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf

If the type is specified without its package name, it is resolved as
described for typename.

	# fieldname

	
A reference to a field in the current type or one of the containing
classes, superclasses, or superinterfaces of the current type. For
example:

@see #x

Doc Comments for Packages

Documentation comments for classes, interfaces, methods, constructors,
and fields appear in Java source code immediately before the definitions
of the features they document. javadoc can also read and display
summary documentation for packages. Because a package is defined in a
directory, not in a single file of source code, javadoc looks for the
package documentation in a file named package.html in the directory
that contains the source code for the classes of the package.

The package.html file should contain simple HTML documentation for the
package. It can also contain @see, @link, @deprecated, and
@since tags. Because package.html is not a file of Java source code,
the documentation it contains should be HTML and should not be a Java
comment (i.e., it should not be enclosed within /** and */
characters). Finally, any @see and @link tags that appear in
package.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can
also provide high-level documentation for a group of packages by
defining an overview.html file in the source tree for those packages.
When javadoc is run over that source tree, it uses overview.html as
the highest-level overview it displays.

Doclets

The javadoc tool that is used to generate HTML documentation is based upon a standard API.
Since Java 9, this standard interface has been delivered in the module jdk.javadoc and tools leveraging this API are typically called doclets (with javadoc being referred to as the standard doclet).

The Java 9 release also included a major upgrade of the standard doclet.
In particular, it now (as of Java 10) generates modern HTML5 by default.
This allows for other impovements—such as implementing the WAI-ARIA standard for accessibility.
This standard makes it easier for people with visual or other impairments to access javadoc output using tools such as screen readers.

Note

javadoc has also been enhanced to understand the new platform modules, and so the semantic meaning of what constitutes an API (and so what should be documented) is now aligned with the modular Java definition.

The standard doclet now also automatically indexes the code as documentation is generated, and creates a client-side index in JavaScript.
The resulting web pages have a search capability to allow developers to easily find some common program components, such as the names of:

	
Modules

	
Packages

	
Types and members

	
Method parameter types

The developer can also add search terms or phrases using an @index inline javadoc tag.

Conventions for Portable Programs

One of the earliest slogans for Java was “write once, run anywhere.”
This emphasizes that Java makes it easy to write portable programs, but
it is still possible to write Java programs that do not automatically
run successfully on any Java platform. The following tips help to avoid
portability problems:

	Native methods

	
Portable Java code can use any methods in the core Java APIs,
including methods implemented as native methods. However, portable
code must not define its own native methods. By their very nature,
native methods must be ported to each new platform, so they directly
subvert the “write once, run anywhere” promise of Java.

	The Runtime.exec() method

	
Calling the Runtime.exec() method to spawn a process and execute an
external command on the native system is rarely allowed in portable
code. This is because the native OS command to be executed is never
guaranteed to exist or behave the same way on all platforms.

The only time it is legal to use Runtime.exec() in portable code is when the user is allowed to specify the command to run, either by typing the command at runtime or by specifying the command in a configuration file or preferences dialog box.

If the programmer wishes to control external processes, then this should be done through the enhanced ProcessHandle capability introduced in Java 9, rather than by using Runtime.exec() and parsing the output.
This is not fully portable, but at least reduces the amount of platform-specific logic necessary to control external processes.

	The System.getenv() method

	
Using System.getenv() is inherently nonportable.

	Undocumented classes

	
Portable Java code must use only classes and interfaces that are a
documented part of the Java platform. Most Java implementations ship
with additional undocumented public classes that are part of the
implementation but not part of the Java platform specification.

The modules system prevents a program from using and relying on these
implementation classes, but as of Java 11 it is still possible to circumvent this protection by using reflection or runtime switches.

However, doing so is not portable because the implementation classes are not guaranteed to exist in all Java implementations or on all platforms, and they may change or disappear in future versions of the implementation that they target.

Of particular note is the sun.misc.Unsafe class, which provides
access to a number of “unsafe” methods, which can allow developers to
circumvent a number of key restrictions of the Java platform.
Developers should not make direct use of the Unsafe class under any
circumstances.

	Implementation-specific features

	
Portable code must not rely on features specific to a single
implementation.
For example, in the early years of Java, Microsoft distributed a version of the Java runtime system that included a number of additional methods that were not part of the Java platform as defined by the specifications.
Any program that depends on such extensions is obviously not portable to other platforms.

	Implementation-specific bugs

	
Just as portable code must not depend on implementation-specific features, it must not depend on implementation-specific bugs.
If a class or method behaves differently than the specification says it should, a portable program cannot rely on this behavior, which may be different on different platforms, and ultimately may be fixed.

	Implementation-specific behavior

	
Sometimes different platforms and different implementations present different behaviors, all of which are legal according to the Java specification.
Portable code must not depend on any one specific behavior.
For example, the Java specification does not indicate whether threads of equal priority share the CPU or if one long-running thread can starve another thread at the same priority.
If an application assumes one behavior or the other, it may not run properly on all platforms.

	Defining system classes

	
Portable Java code never attempts to define classes in any of the system or standard extension packages. Doing so violates the protection boundaries of those packages and exposes package-visible implementation details, even in those cases where it is not forbidden by the modules system.

	Hardcoded filenames

	
A portable program contains no hardcoded file or directory names.
This is because different platforms have significantly different
filesystem organizations and use different directory separator
characters. If you need to work with a file or directory, have the
user specify the filename, or at least the base directory beneath
which the file can be found. This specification can be done at
runtime, in a configuration file, or as a command-line argument to the
program. When concatenating a file or directory name to a directory
name, use the File() constructor or the File.separator constant.

	Line separators

	
Different systems use different characters or sequences of characters
as line separators. Do not hardcode \n, \r, or \r\n as the line
separator in your program. Instead, use the println() method of
PrintStream or PrintWriter, which automatically terminates a line
with the line separator appropriate for the platform, or use the value
of the line.separator system property. You can also use the “%n”
format string to printf() and format() methods of
java.util.Formatter and related classes.

Chapter 8. Working with Java Collections

This chapter introduces Java’s interpretation of fundamental data
structures, known as the Java Collections. These abstractions are core
to many (if not most) programming types, and form an essential part of
any programmer’s basic toolkit. Accordingly, this is one of the most
important chapters of the entire book, and provides a toolkit that is
essential to virtually all Java programmers.

In this chapter, we will introduce the fundamental interfaces and the
type hierarchy, show how to use them, and discuss aspects of their
overall design. Both the “classic” approach to handling the Collections
and the newer approach (using the Streams API and the lambda expressions
functionality introduced in Java 8) will be covered.

Introduction to Collections API

The Java Collections are a set of generic interfaces that describe the
most common forms of data structure. Java ships with several
implementations of each of the classic data structures, and because the
types are represented as interfaces, it is very possible for development
teams to develop their own, specialized implementations of the
interfaces for use in their own projects.

The Java Collections define two fundamental types of data structures. A
Collection is a grouping of objects, while a Map is a set of
mappings, or associations, between objects. The basic layout of the Java
Collections is shown in Figure 8-1.

Within this basic description, a Set is a type of Collection with no
duplicates, and a List is a Collection in which the elements are
ordered (but may contain duplicates).

[image: JN7 0801]
Figure 8-1. Collections classes and inheritance

SortedSet and SortedMap are specialized sets and maps that maintain
their elements in a sorted order.

Collection, Set, List, Map, SortedSet, and SortedMap are all
interfaces, but the java.util package also defines various concrete
implementations, such as lists based on arrays and linked lists, and
maps and sets based on hash tables or binary trees. Other important
interfaces are Iterator and Iterable, which allow you to loop
through the objects in a collection, as we will see later on.

The Collection Interface

Collection<E> is a parameterized interface that represents a generalized grouping of objects of type E. We can create a collection of any kind of reference type.

Note

To work properly with the expectations of collections, you must take care when defining hashCode() and equals() methods, as discussed in Chapter 5.

Methods are defined for adding and removing objects from the group, testing an object for membership in the group, and iterating through all elements in the group.
Additional methods return the elements of the group as an array and return the size of the collection.

Note

The grouping within a Collection may or may not allow duplicate
elements and may or may not impose an ordering on the elements.

The Java Collections Framework provides Collection because it defines
the features shared by all common forms of data structure. The JDK
ships Set, List, and Queue as subinterfaces of Collection.
The following code illustrates the operations you can perform on
Collection objects:

// Create some collections to work with.
Collection<String> c = new HashSet<>(); // An empty set

// We'll see these utility methods later. Be aware that there are
// some subtleties to watch out for when using them
Collection<String> d = Arrays.asList("one", "two");
Collection<String> e = Collections.singleton("three");

// Add elements to a collection. These methods return true
// if the collection changes, which is useful with Sets that
// don't allow duplicates.
c.add("zero"); // Add a single element
c.addAll(d); // Add all of the elements in d

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear return true if the collection changes.
c.remove("zero"); // Remove a single element
c.removeAll(e); // Remove a collection of elements
c.retainAll(d); // Remove all elements that are not in d
c.clear(); // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // c is now empty, so true
int s = c.size(); // Size of c is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on the equals
// method, not the == operator.
b = c.contains("zero"); // true
b = c.containsAll(d); // true

// Most Collection implementations have a useful toString() method
System.out.println(c);

// Obtain an array of collection elements. If the iterator guarantees
// an order, this array has the same order. The array is a copy, not a
// reference to an internal data structure.
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray method will allocate an array for us
strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown here with any Set,
List, or Queue. These subinterfaces may impose membership
restrictions or ordering constraints on the elements of the collection
but still provide the same basic methods.

Note

Methods such as addAll(), retainAll(), clear(), and remove() that
alter the collection were conceived of as optional parts of the API.
Unfortunately, they were specified a long time ago, when the received
wisdom was to indicate the absence of an optional method by throwing
UnsupportedOperationException. Accordingly, some implementations
(notably read-only forms) may throw this unchecked exception.

Collection, Map, and their subinterfaces do not extend the interfaces
Cloneable or Serializable. All of the collection and
map implementation classes provided in the Java Collections Framework,
however, do implement these interfaces.

Some collection implementations place restrictions on the elements that
they can contain. An implementation might prohibit null as an element,
for example. And EnumSet restricts membership to the values of a
specified enumerated type.

Attempting to add a prohibited element to a collection always throws an
unchecked exception such as NullPointerException or
ClassCastException. Checking whether a collection contains a
prohibited element may also throw such an exception, or it may simply
return false.

The Set Interface

A set is a collection of objects that does not allow duplicates: it
may not contain two references to the same object, two references to
null, or references to two objects a and b such that
a.equals(b). Most general-purpose Set implementations impose no
ordering on the elements of the set, but ordered sets are not prohibited
(see SortedSet and LinkedHashSet). Sets are further distinguished
from ordered collections like lists by the general expectation that they
have an efficient contains method that runs in constant or
logarithmic time.

Set defines no additional methods beyond those defined by
Collection but places additional restrictions on those methods. The
add() and addAll() methods of a Set are required to enforce the
no-duplicates rules: they may not add an element to the Set if the set
already contains that element. Recall that the add() and addAll()
methods defined by the Collection interface return true if the call
resulted in a change to the collection and false if it did not. This
return value is relevant for Set objects because the no-duplicates
restriction means that adding an element does not always result in a
change to the set.

Table 8-1 lists the implementations of the
Set interface and summarizes their internal representation, ordering
characteristics, member restrictions, and the performance of the basic
add(), remove(), and contains operations as well as iteration
performance. You can read more about each class in the reference
section. Note that CopyOnWriteArraySet is in the
java.util.concurrent package; all the other implementations are part
of java.util. Also note that java.util.BitSet is not a Set
implementation. This legacy class is useful as a compact and efficient
list of boolean values but is not part of the Java Collections
Framework.

Table 8-1. Set implementations

	Class
	Internal representation
	Since
	Element order
	Member
restric-tions
	Basic opera-tions
	Iteration perfor-mance
	Notes

	HashSet

	Hashtable

	1.2

	None

	None

	O(1)

	O(capacity)

	Best
general-purpose implementation.

	LinkedHashSet

	Linked hashtable

	1.2

	Insertion order

	None

	O(1)

	O(n)

	Preserves insertion order.

	EnumSet

	Bit fields

	5.0

	Enum declaration

	Enum values

	O(1)

	O(n)

	Holds non-null enum values only.

	TreeSet

	Red-black tree

	1.2

	Sorted ascending

	Comparable

	O(log(n))

	O(n)

	Comparable elements or Comparator.

	CopyOnWriteArraySet

	Array

	5.0

	Insertion order

	None

	O(n)

	O(n)

	Threadsafe without synchronized methods.

The TreeSet implementation uses a red-black tree data structure to
maintain a set that is iterated in ascending order according to the
natural ordering of Comparable objects or according to an ordering
specified by a Comparator object. TreeSet actually implements the
SortedSet interface, which is a subinterface of Set.

The SortedSet interface offers several interesting methods that take
advantage of its sorted nature. The following code illustrates:

public static void testSortedSet(String[] args) {
 // Create a SortedSet
 SortedSet<String> s = new TreeSet<>(Arrays.asList(args));

 // Iterate set: elements are automatically sorted
 for (String word : s) {
 System.out.println(word);
 }

 // Special elements
 String first = s.first(); // First element
 String last = s.last(); // Last element

 // all elements but first
 SortedSet<String> tail = s.tailSet(first + '\0');
 System.out.println(tail);

 // all elements but last
 SortedSet<String> head = s.headSet(last);
 System.out.println(head);

 SortedSet<String> middle = s.subSet(first+'\0', last);
 System.out.println(middle);
}

Warning

The addition of \0 characters is needed because the tailSet() and
related methods use the successor of an element, which for strings is
the string value with a NULL character (ASCII code 0) appended.

From Java 9 onward, the API has also been upgraded with a helper static method on the Set interface, like this:

Set<String> set = Set.of("Hello", "World");

This API has several overloads that each take a fixed number of arguments, and also a varargs overload.
The latter is used for the case where arbitarily many elements are wanted in the set, and falls back to the standard varargs mechanism (marshaling the elements into an array before the call).

The List Interface

A List is an ordered collection of objects. Each element of a list
has a position in the list, and the List interface defines methods to
query or set the element at a particular position, or index. In this
respect, a List is like an array whose size changes as needed to
accommodate the number of elements it contains. Unlike sets, lists allow
duplicate elements.

In addition to its index-based get() and set() methods, the List
interface defines methods to add or remove an element at a particular
index and also defines methods to return the index of the first or last
occurrence of a particular value in the list. The add() and remove()
methods inherited from Collection are defined to append to the list
and to remove the first occurrence of the specified value from the list.
The inherited addAll() appends all elements in the specified
collection to the end of the list, and another version inserts the
elements at a specified index. The retainAll() and removeAll()
methods behave as they do for any Collection, retaining or removing
multiple occurrences of the same value, if needed.

The List interface does not define methods that operate on a range of
list indexes. Instead, it defines a single subList() method that
returns a List object that represents just the specified range of the
original list. The sublist is backed by the parent list, and any changes
made to the sublist are immediately visible in the parent list. Examples
of subList() and the other basic List manipulation methods are shown
here:

// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");
List<String> words2 = List.of("hello", "world");

// Querying and setting elements by index
String first = l.get(0); // First element of list
String last = l.get(l.size -1); // Last element of list
l.set(0, last); // The last shall be first

// Adding and inserting elements. add can append or insert
l.add(first); // Append the first word at end of list
l.add(0, first); // Insert first at the start of the list again
l.addAll(words); // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3); // second and third elements
sub.set(0, "hi"); // modifies 2nd element of l
// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));
// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));

// Searching lists
int p = l.indexOf(last); // Where does the last word appear?
p = l.lastIndexOf(last); // Search backward

// Print the index of all occurrences of last in l. Note subList
int n = l.size();
p = 0;
do {
 // Get a view of the list that includes only the elements we
 // haven't searched yet.
 List<String> list = l.subList(p, n);
 int q = list.indexOf(last);
 if (q == -1) break;
 System.out.printf("Found '%s' at index %d%n", last, p+q);
 p += q+1;
} while(p < n);

// Removing elements from a list
l.remove(last); // Remove first occurrence of the element
l.remove(0); // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList
l.retainAll(words); // Remove all but elements in words
l.removeAll(words); // Remove all occurrences of elements in words
l.clear(); // Remove everything

Foreach loops and iteration

One very important way of working with collections is to process each
element in turn, an approach known as iteration. This is an older way
of looking at data structures, but is still very useful (especially for
small collections of data) and is easy to understand. This approach
fits naturally with the for loop, as shown in this bit of code, and is
easiest to illustrate using a List:

ListCollection<String> c = new ArrayList<String>();
// ... add some Strings to c

for(String word : c) {
 System.out.println(word);
}

The sense of the code should be clear—it takes the elements of c one
at a time and uses them as a variable in the loop body. More formally,
it iterates through the elements of an array or collection (or any
object that implements java.lang.Iterable). On each iteration it
assigns an element of the array or Iterable object to the loop
variable you declare and then executes the loop body, which typically
uses the loop variable to operate on the element. No loop counter or
Iterator object is involved; the loop performs the iteration
automatically, and you need not concern yourself with correct
initialization or termination of the loop.

This type of for loop is often referred to as a foreach loop.
Let’s see how it works. The following bit of code shows a rewritten (and
equivalent) for loop, with the method calls explicitly shown:

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();) {
 System.out.println(i.next());
}

The Iterator object, i, is produced from the collection, and used
to step through the collection one item at a time. It can also be used
with while loops:

//Iterate through collection elements with a while loop.
//Some implementations (such as lists) guarantee an order of iteration
//Others make no guarantees.
Iterator<String> iterator() = c.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}

Here are some more things you should know about the syntax of the
foreach loop:

	
As noted earlier, expression must be either an array or an object
that implements the java.lang.Iterable interface. This type must be
known at compile time so that the compiler can generate appropriate
looping code.

	
The type of the array or Iterable elements must be
assignment-compatible with the type of the variable declared in the
declaration. If you use an Iterable object that is not
parameterized with an element type, the variable must be declared as an
Object.

	
The declaration usually consists of just a type and a variable
name, but it may include a final modifier and any appropriate
annotations (see Chapter 4). Using final
prevents the loop variable from taking on any value other than the array
or collection element the loop assigns it and serves to emphasize that
the array or collection cannot be altered through the loop variable.

	
The loop variable of the foreach loop must be declared as part of the
loop, with both a type and a variable name. You cannot use a variable
declared outside the loop as you can with the for loop.

To understand in detail how the foreach loop works with collections, we
need to consider two interfaces, java.util.Iterator and
java.lang.Iterable:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

Iterator defines a way to iterate through the elements of a collection
or other data structure. It works like this: while there are more
elements in the collection (hasNext() returns true), call next to
obtain the next element of the collection. Ordered collections, such as
lists, typically have iterators that guarantee that they’ll return
elements in order. Unordered collections like Set simply guarantee
that repeated calls to next() return all elements of the set without
omissions or duplications but do not specify an ordering.

Warning

The next() method of Iterator performs two functions—it advances
through the collection and also returns the element of the
collection that we have just moved past. This combination of operations can cause problems when you are programming in a functional
or immutable style, as it mutates the underlying collection.

The Iterable interface was introduced to make the foreach loop work.
A class implements this interface in order to advertise that it is able
to provide an Iterator to anyone interested:

public interface Iterable<E> {
 java.util.Iterator<E> iterator();
}

If an object is Iterable<E>, that means that it has an
iterator() method that returns an Iterator<E>, which has a next()
method that returns an object of type E.

Note

If you use the foreach loop with an Iterable<E>, the loop
variable must be of type E or a superclass or interface.

For example, to iterate through the elements of a List<String>, the
variable must be declared String or its superclass Object, or one of
the interfaces it implements: CharSequence, Comparable, or
Serializable.

Random access to Lists

A general expectation of List implementations is that they can be
efficiently iterated, typically in time proportional to the size of the
list. Lists do not all provide efficient random access to the elements
at any index, however. Sequential-access lists, such as the LinkedList
class, provide efficient insertion and deletion operations at the
expense of random-access performance. Implementations that provide
efficient random access implement the RandomAccess marker interface,
and you can test for this interface with instanceof if you need to
ensure efficient list manipulations:

// Arbitrary list we're passed to manipulate
List<?> l = ...;

// Ensure we can do efficient random access. If not, use a copy
// constructor to make a random-access copy of the list before
// manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);

The Iterator returned by the iterator() method of a List iterates
the list elements in the order that they occur in the list. List
implements Iterable, and lists can be iterated with a foreach loop
just as any other collection can.

To iterate just a portion of a list, you can use the subList() method
to create a sublist view:

List<String> words = ...; // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size))
 System.out.println(word);

Table 8-2 summarizes the five
general-purpose List implementations in the Java platform. Vector
and Stack are legacy implementations and should not be used.
CopyOnWriteArrayList is part of the java.util.concurrent package
and is only really suitable for multithreaded use cases.

Table 8-2. List implementations

	Class
	Representation
	Since
	Random access
	Notes

	ArrayList

	Array

	1.2

	Yes

	Best all-around implementation.

	LinkedList

	Double-linked list

	1.2

	No

	Efficient insertion and
deletion.

	CopyOnWriteArrayList

	Array

	5.0

	Yes

	Threadsafe; fast traversal,
slow modification.

	Vector

	Array

	1.0

	Yes

	Legacy class; synchronized methods. Do not
use.

	Stack

	Array

	1.0

	Yes

	Extends Vector; adds push(), pop(),
peek(). Legacy; use Deque instead.

The Map Interface

A map is a set of key objects and a mapping from each member of
that set to a value object. The Map interface defines an API for
defining and querying mappings. Map is part of the Java Collections
Framework, but it does not extend the Collection interface, so a Map
is a little-c collection, not a big-C Collection. Map is a
parameterized type with two type variables. Type variable K represents
the type of keys held by the map, and type variable V represents the
type of the values that the keys are mapped to. A mapping from String
keys to Integer values, for example, can be represented with a
Map<String,Integer>.

The most important Map methods are put(), which defines a key/value
pair in the map; get(), which queries the value associated with a
specified key; and remove(), which removes the specified key and its
associated value from the map. The general performance expectation for
Map implementations is that these three basic methods are quite
efficient: they should usually run in constant time and certainly no
worse than in logarithmic time.

An important feature of Map is its support for “collection views.”
These can be summarized simply:

	
A Map is not a Collection

	
The keys of a Map can be viewed as a Set

	
The values can be viewed as a Collection

	
The mappings can be viewed as a Set of Map.Entry objects.

Note

Map.Entry is a nested interface defined within Map: it simply
represents a single key/value pair.

The following sample code shows the get(), put(), remove(), and
other methods of a Map and also demonstrates some common uses of the
collection views of a Map:

// New, empty map
Map<String,Integer> m = new HashMap<>();

// Immutable Map containing a single key/value pair
Map<String,Integer> singleton = Collections.singletonMap("test", -1);

// Note this rarely used syntax to explicitly specify the parameter
// types of the generic emptyMap method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put method to define mappings
// from array elements to the index at which each element appears
String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++) {
 m.put(words[i], i); // Note autoboxing of int to Integer
}

// Each key must map to a single value. But keys may map to the
// same value
for(int i = 0; i < words.length; i++) {
 m.put(words[i].toUpperCase(), i);
}

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get() method
for(int i = 0; i < words.length; i++) {
 if (m.get(words[i]) != i) throw new AssertionError();
}

// Key and value membership testing
m.containsKey(words[0]); // true
m.containsValue(words.length); // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful
// toString methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
 m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
 // Print out mappings
 System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
 // And increment the value of each Entry
 pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null); // Mapping to null can "erase" a mapping:
m.get("testing"); // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing"); // Deletes the mapping altogether
m.get("testing"); // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.
// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]); // Same as m.remove(words[0]);

// Removes one mapping to the value 2 - usually inefficient and of
// limited use
m.values().remove(2);
// Remove all mappings to 4
m.values().removeAll(Collections.singleton(4));
// Keep only mappings to 2 & 3
m.values().retainAll(Arrays.asList(2, 3));

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
 Map.Entry<String,Integer> e = iter.next();
 if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps. In general, addAll()
// and retainAll() with keySet() and values() allow union and
// intersection
Set<Integer> v = new HashSet<>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear(); // Deletes all mappings
m.size(); // Returns number of mappings: currently 0
m.isEmpty(); // Returns true
m.equals(empty); // true: Maps implementations override equals

With the arrival of Java 9, the Map interface has also been enhanced with factory methods for spinning up collections easily:

Map<String, Double> capitals =
 Map.of("Barcelona", 22.5, "New York", 28.3);

The situation is a little more complicated as compared to Set and List, as the Map type has both keys and values, and Java does not allow more than one varargs parameter in a method declaration.
The solution is to have fixed argument size overloads, up to 10 entries and also to provide a new static method, entry(), that will construct an object to represent the key/value pair.

The code can then be written to use the varargs form like this:

Map<String, Double> capitals = Map.ofEntries(entry("Barcelona", 22.5),
 entry("New York", 28.3));

Note that the method name has to be different from of() due to the difference in type of the arguments—this is now a varargs method in Map.Entry.

The Map interface includes a variety of general-purpose and
special-purpose implementations, which are summarized in
Table 8-2. As always, complete details are
in the JDK’s documentation and javadoc. All classes in
Table 8-2 are in the java.util package
except ConcurrentHashMap and ConcurrentSkipListMap, which are
part of java.util.concurrent.

Table 8-3. Map implementations

	Class
	Representation
	Since
	null keys
	null values
	Notes

	HashMap

	Hashtable

	1.2

	Yes

	Yes

	General-purpose implementation.

	ConcurrentHashMap

	Hashtable

	5.0

	No

	No

	General-purpose threadsafe
implementation; see ConcurrentMap interface.

	ConcurrentSkipListMap

	Hashtable

	6.0

	No

	No

	Specialized threadsafe
implementation; see ConcurrentNavigableMap interface.

	EnumMap

	Array

	5.0

	No

	Yes

	Keys are instances of an enum.

	LinkedHashMap

	Hashtable plus list

	1.4

	Yes

	Yes

	Preserves
insertion or access order.

	TreeMap

	Red-black tree

	1.2

	No

	Yes

	Sorts by key value. Operations
are O(log(n)). See SortedMap interface.

	IdentityHashMap

	Hashtable

	1.4

	Yes

	Yes

	Compares with == instead
of equals().

	WeakHashMap

	Hashtable

	1.2

	Yes

	Yes

	Doesn’t prevent garbage
collection of keys.

	Hashtable

	Hashtable

	1.0

	No

	No

	Legacy class; synchronized
methods. Do not use.

	Properties

	Hashtable

	1.0

	No

	No

	Extends Hashtable with String
methods.

The ConcurrentHashMap and ConcurrentSkipListMap classes of the
java.util.concurrent package implement the ConcurrentMap
interface of the same package. ConcurrentMap extends Map and
defines some additional atomic operations that are important in
multithreaded programming. For example, the putIfAbsent() method is
like put() but adds the key/value pair to the map only if the key is
not already mapped.

TreeMap implements the SortedMap interface, which extends Map to
add methods that take advantage of the sorted nature of the map.
SortedMap is quite similar to the SortedSet interface. The
firstKey() and lastKey() methods return the first and last keys in
the keySet(). And headMap(), tailMap(), and subMap() return a
restricted range of the original map.

The Queue and BlockingQueue Interfaces

A queue is an ordered collection of elements with methods for
extracting elements, in order, from the head of the queue. Queue
implementations are commonly based on insertion order as in first-in,
first-out (FIFO) queues or last-in, first-out (LIFO) queues.

Note

LIFO queues are also known as stacks, and Java provides a Stack
class, but its use is strongly discouraged—instead, use implementations of
the Deque interface.

Other orderings are also possible: a priority queue orders its
elements according to an external Comparator object, or according to
the natural ordering of Comparable elements. Unlike a Set, Queue
implementations typically allow duplicate elements. Unlike List, the
Queue interface does not define methods for manipulating queue
elements at arbitrary positions. Only the element at the head of the
queue is available for examination. It is common for Queue
implementations to have a fixed capacity: when a queue is full, it is
not possible to add more elements. Similarly, when a queue is empty, it
is not possible to remove any more elements. Because full and empty
conditions are a normal part of many queue-based algorithms, the Queue
interface defines methods that signal these conditions with return
values rather than by throwing exceptions. Specifically, the peek()
and poll() methods return null to indicate that the queue is empty.
For this reason, most Queue implementations do not allow null
elements.

A blocking queue is a type of queue that defines blocking put()
and take() methods. The put() method adds an element to the queue,
waiting, if necessary, until there is space in the queue for the
element. And the take() method removes an element from the head of the
queue, waiting, if necessary, until there is an element to remove.
Blocking queues are an important part of many multithreaded algorithms,
and the BlockingQueue interface (which extends Queue) is defined as
part of the java.util.concurrent package.

Queues are not nearly as commonly used as sets, lists, and maps, except
perhaps in certain multithreaded programming styles. In lieu of example
code here, we’ll try to clarify the different possible queue insertion
and removal operations.

Adding Elements to Queues

	add()

	
This Collection method simply adds an element in the normal way. In
bounded queues, this method may throw an exception if the queue is
full.

	offer()

	
This Queue method is like add() but returns false instead of
throwing an exception if the element cannot be added because a bounded
queue is full.

BlockingQueue defines a timeout version of offer() that waits up
to a specified amount of time for space to become available in a full
queue. Like the basic version of the method, it returns true if the
element was inserted and false otherwise.

	put()

	
This BlockingQueue method blocks: if the element cannot be inserted
because the queue is full, put() waits until some other thread
removes an element from the queue, and space becomes available for the
new element.

Removing Elements from Queues

	remove()

	
In addition to the Collection.remove() method, which removes a
specified element from the queue, the Queue interface defines a
no-argument version of remove() that removes and returns the element
at the head of the queue. If the queue is empty, this method throws a
NoSuchElementException.

	poll()

	
This Queue method removes and returns the element at the head of the
queue, like remove() does, but returns null if the queue is empty
instead of throwing an exception.

BlockingQueue defines a timeout version of poll() that waits up to
a specified amount of time for an element to be added to an empty
queue.

	take()

	
This BlockingQueue method removes and returns the element at the
head of the queue. If the queue is empty, it blocks until some other
thread adds an element to the queue.

	drainTo()

	
This BlockingQueue method removes all available elements from the
queue and adds them to a specified Collection. It does not block to
wait for elements to be added to the queue. A variant of the method
accepts a maximum number of elements to drain.

Querying

In this context, querying refers to examining the element at the head
without removing it from the queue.

	element()

	
This Queue method returns the element at the head of the queue but
does not remove that element from the queue. It throws NoSuchElementException if the queue is empty.

	peek()

	
This Queue method is like element but returns null if the queue
is empty.

Note

When using queues, it is usually a good idea to pick one particular
style of how to deal with a failure. For example, if you want
operations to block until they succeed, then choose put() and
take(). If you want to examine the return code of a method to see if
the queue operation suceeded, then offer() and poll() are an
appropriate choice.

The LinkedList class also implements Queue. It provides unbounded
FIFO ordering, and insertion and removal operations require constant
time. LinkedList allows null elements, although their use is
discouraged when the list is being used as a queue.

There are two other Queue implementations in the java.util package.
PriorityQueue orders its elements according to a Comparator or
orders Comparable elements according to the order defined by their
compareTo() methods. The head of a PriorityQueue is always the
smallest element according to the defined ordering. Finally,
ArrayDeque is a double-ended queue implementation. It is often used
when a stack implementation is needed.

The java.util.concurrent package also contains a number of
BlockingQueue implementations, which are designed for use in
multithreaded programing style; advanced versions that can remove the
need for synchronized methods are available.

Utility Methods

The java.util.Collections class is home to quite a few static utility
methods designed for use with collections. One important group of these
methods are the collection wrapper methods: they return a
special-purpose collection wrapped around a collection you specify. The
purpose of the wrapper collection is to wrap additional functionality
around a collection that does not provide it itself. Wrappers exist to
provide thread-safety, write protection, and runtime type checking.
Wrapper collections are always backed by the original collection,
which means that the methods of the wrapper simply dispatch to the
equivalent methods of the wrapped collection. This means that changes
made to the collection through the wrapper are visible through the
wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around
collections. Except for the legacy classes Vector and Hashtable, the
collection implementations in java.util do not have synchronized
methods and are not protected against concurrent access by multiple
threads. If you need threadsafe collections and don’t mind the
additional overhead of synchronization, create them with code like this:

List<String> list =
 Collections.synchronizedList(new ArrayList<>());
Set<Integer> set =
 Collections.synchronizedSet(new HashSet<>());
Map<String,Integer> map =
 Collections.synchronizedMap(new HashMap<>());

A second set of wrapper methods provides collection objects through
which the underlying collection cannot be modified. They return a
read-only view of a collection: an UnsupportedOperationException will result from changing the collection’s content. These wrappers
are useful when you must pass a collection to a method that must not be
allowed to modify or mutate the content of the collection in any way:

List<Integer> primes = new ArrayList<>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
// But we can't modify through the read-only wrapper
readonly.add(23); // UnsupportedOperationException

The java.util.Collections class also defines methods to operate on
collections. Some of the most notable are methods to sort and search the
elements of collections:

Collections.sort(list);
// list must be sorted first
int pos = Collections.binarySearch(list, "key");

Here are some other interesting Collections methods:

// Copy list2 into list1, overwriting list1
Collections.copy(list1, list2);
// Fill list with Object o
Collections.fill(list, o);
// Find the largest element in Collection c
Collections.max(c);
// Find the smallest element in Collection c
Collections.min(c);

Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

It is a good idea to familiarize yourself fully with the utility methods
in Collections and Arrays, as they can save you from writing your own
implementation of a common task.

Special-case collections

In addition to its wrapper methods, the java.util.Collections class
also defines utility methods for creating immutable collection
instances that contain a single element and other methods for creating
empty collections. singleton(), singletonList(), and
singletonMap() return immutable Set, List, and Map objects that
contain a single specified object or a single key/value pair. These
methods are useful when you need to pass a single object to a method
that expects a collection.

The Collections class also includes methods that return empty
collections. If you are writing a method that returns a collection, it
is usually best to handle the no-values-to-return case by returning an
empty collection instead of a special-case value like null:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String,Integer> m = Collections.emptyMap();

Finally, nCopies() returns an immutable List that contains a
specified number of copies of a single specified object:

List<Integer> tenzeros = Collections.nCopies(10, 0);

Arrays and Helper Methods

Arrays of objects and collections serve similar purposes. It is
possible to convert from one to the other:

String[] a ={ "this", "is", "a", "test" }; // An array
// View array as an ungrowable list
List<String> l = Arrays.asList(a);
// Make a growable copy of the view
List<String> m = new ArrayList<>(l);

// asList() is a varargs method so we can do this, too:
Set<Character> abc =
 new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
// Get set elements as an array
Object[] members = set.toArray();
// Get list elements as an array
Object[] items = list.toArray();
// Get map key objects as an array
Object[] keys = map.keySet().toArray();
// Get map value objects as an array
Object[] values = map.values().toArray();

// If you want the return value to be something other than Object[],
// pass in an array of the appropriate type. If the array is not
// big enough, another one of the same type will be allocated.
// If the array is too big, the collection elements copied to it
// will be null-filled
String[] c = l.toArray(new String[0]);

In addition, there are a number of useful helper methods for working
with Java’s arrays, which are included here for completeness.

The java.lang.System class defines an arraycopy() method that is
useful for copying specified elements in one array to a specified
position in a second array. The second array must be the same type as
the first, and it can even be the same array:

char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy,
// starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
// If target and source are the same,
// this will involve copying to a temporary
System.arraycopy(copy, 3, copy, 6, 7);

There are also a number of useful static methods defined on the
Arrays class:

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray); // Sort it in place
// Value 7 is found at index 2
int pos = Arrays.binarySearch(intarray, 7);
// Not found: negative return value
pos = Arrays.binarySearch(intarray, 12);

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray); // sorted to: { "is", "now", "the", "time" }

// Arrays.equals compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill initializes array elements
// An empty array; elements set to 0
byte[] data = new byte[100];
// Set them all to -1
Arrays.fill(data, (byte) -1);
// Set elements 5, 6, 7, 8, 9 to -2
Arrays.fill(data, 5, 10, (byte) -2);

Arrays can be treated and manipulated as objects in Java. Given an
arbitrary object o, you can use code such as the following to find out
if the object is an array and, if so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {
 Class elementType = type.getComponentType();
}

Java Streams and Lambda Expressions

One of the major reasons for introducing lambda expressions in Java 8
was to facilitate the overhaul of the Collections API to allow more
modern programming styles to be used by Java developers. Until the
release of Java 8, the handling of data structures in Java looked a
little bit dated.
Many languages now support a programming style that allows collections to be treated as a whole, rather than requiring them to be broken apart and iterated over.

In fact, many Java developers had taken to using alternative data
structures libraries to achieve some of the expressivity and
productivity that they felt was lacking in the Collections API.
The key to upgrading the APIs was to introduce new classes and methods that would accept lambda expressions as parameters—to define what needed to be done, rather than precisely how.
This is a conception of programming that comes from the functional style.

The introduction of the functional collections—which are called Java Streams to make clear their divergence from the older collections approach—is an important step forward.
A stream can be created from a collection simply by calling the stream() method on an existing collection.

Note

The desire to add new methods to existing interfaces was directly
responsible for the new language feature referred to as default
methods (see “Default Methods” for more
details). Without this new mechanism, older implementations of the
Collections interfaces would fail to compile under Java 8, and would
fail to link if loaded into a Java 8 runtime.

However, the arrival of the Streams API does not erase history.
The Collections API is deeply embedded in the Java world, and it is not functional.
Java’s commitment to backward compatibility and to a rigid language grammar means that the Collections will never go away.
Java code, even when written in a functional style, will never be full of boilerplate, and will never have the concise syntax that we see in languages such as Haskell or Scala.

This is part of the inevitable trade-off in language design—Java has retrofitted functional capabilities on top of an imperative design and base.
This is not the same as designing for functional programming from the ground up.
A more important question is: are the functional capabilities supplied from Java 8 onward what working programmers need to build their applications?

The rapid adoption of Java 8 over previous versions and the community reaction seem to indicate that the new features have been a success, and that they have provided what the ecosystem was looking for.

In this section, we will give a basic introduction to the use of Java streams and lambda expressions in the Java Collections.
For a fuller treatment, see Java 8 Lambdas by Richard Warburton (O’Reilly).

Functional Approaches

The approach that Java 8 Streams wished to enable was derived from functional
programming languages and styles. We met some of these key patterns in
“Nonstatic Member Classes”—let’s reintroduce them and
look at some examples of each.

Filter

The idiom applies a piece of code (that returns either true or false)
to each element in a collection, and builds up a new collection
consisting of those elements that “passed the test” (i.e., the bit of
code returned true when applied to the element).

For example, let’s look at some code to work with a collection of cats
and pick out the tigers:

String[] input = {"tiger", "cat", "TIGER", "Tiger", "leopard"};
List<String> cats = Arrays.asList(input);
String search = "tiger";
String tigers = cats.stream()
 .filter(s -> s.equalsIgnoreCase(search))
 .collect(Collectors.joining(", "));
System.out.println(tigers);

The key piece is the call to filter(), which takes a lambda
expression. The lambda takes in a string and returns a Boolean value.
This is applied over the whole collection cats, and a new collection
is created, which only contains tigers (however they were capitalized).

The filter() method takes in an instance of the Predicate
interface, from the package java.util.function. This is a
functional interface, with only a single nondefault method, and so is a
perfect fit for a lambda expression.

Note the final call to collect(); this is an essential part of the
API and is used to “gather up” the results at the end of the lambda
operations. We’ll discuss it in more detail in the next section.

Predicate has some other very useful default methods, such as for
constructing combined predicates by using logic operations. For example,
if the tigers want to admit leopards into their group, this can be
represented by using the or() method:

Predicate<String> p = s -> s.equalsIgnoreCase(search);
Predicate<String> combined = p.or(s -> s.equals("leopard"));
String pride = cats.stream()
 .filter(combined)
 .collect(Collectors.joining(", "));
System.out.println(pride);

Note that it’s much clearer if the Predicate<String> object p is explicitly created, so that the defaulted or() method can be called on it and the second lambda expression (which will also be automatically converted to a Predicate<String>) passed to it.

Map

The map idiom in Java 8 makes use of a new interface Function<T, R>
in the package java.util.function.
Like Predicate<T>, this is a functional interface, and so only has one nondefaulted method, apply().
The map idiom is about transforming a stream of one type into a stream of a potentially different type. This shows up in the API as the fact that Function<T, R> has two separate type parameters.
The name of the type parameter R indicates that this represents the return type of the function.

Let’s look at a code example that uses map():

List<Integer> namesLength = cats.stream()
 .map(String::length)
 .collect(Collectors.toList());
System.out.println(namesLength);

This is called upon the previous cats variable (which is a Stream<String>) and applies the function String::length (a method reference) to each string in turn.
The result is a new stream—but of Integer this time.
Note that unlike the collections API, the map() method does not mutate the stream in place, but returns a new value.
This is key to the functional style as used here.

forEach

The map and filter idioms are used to create one collection from
another. In languages that are strongly functional, this would be
combined with requiring that the original collection was not affected by
the body of the lambda as it touched each element. In computer science
terms, this means that the lambda body should be “side-effect free.”

In Java, of course, we often need to deal with mutable data, so the Streams API provides a way to mutate elements as the collection is traversed—the forEach() method. This takes an argument of type Consumer<T>, which is a functional interface that is expected to operate by side effects (although whether it actually mutates the data or not is of lesser importance).
This means that the signature of lambdas that can be converted to Consumer<T> is (T t) → void.
Let’s look at a quick example of forEach():

List<String> pets =
 Arrays.asList("dog", "cat", "fish", "iguana", "ferret");
pets.stream().forEach(System.out::println);

In this example, we are simply printing out each member of the
collection. However, we’re doing so by using a special kind of method
reference as a lambda expression. This type of method reference is
called a bound method reference, as it involves a specific object (in
this case, the object System.out, which is a static public field of
System). This is equivalent to the lambda expression:

s -> System.out.println(s);

This is of course eligible for conversion to an instance of a type that
implements Consumer<? super String> as required by the method
signature.

Warning

Nothing prevents a map() or filter() call from mutating elements. It
is only a convention that they must not, but it’s one that every Java
programmer should adhere to.

There’s one final functional technique that we should look at before we
move on. This is the practice of aggregating a collection down to a
single value, and it’s the subject of our next section.

Reduce

Let’s look at the reduce() method. This implements the reduce idiom,
which is really a family of similar and related operations, some
referred to as fold, or aggregation, operations.

In Java 8, reduce() takes two arguments. These are the initial value,
which is often called the identity (or zero), and a function to apply
step by step. This function is of type BinaryOperator<T>, which is
another functional interface that takes in two arguments of the same
type, and returns another value of that type. This second argument to
reduce() is a two-argument lambda. reduce() is defined in the
javadoc like this:

T reduce(T identity, BinaryOperator<T> aggregator);

The easy way to think about the second argument to reduce() is that it
creates a “running total” as it runs over the stream. It starts by
combining the identity with the first element of the stream to produce
the first result, then combines that result with the second element of
the stream, and so on.

It can help to imagine that the implementation of reduce() works a bit
like this:

public T reduce(T identity, BinaryOperator<T> aggregator) {
 T runningTotal = identity;
 for (T element : myStream) {
 runningTotal = aggregator.apply(runningTotal, element);
 }

 return result;
}

Note

In practice, implementations of reduce() can be more sophisticated
than these, and can even execute in parallel if the data structure and
operations are amenable to this.

Let’s look at a quick example of a reduce() and calculate the sum of
some primes:

double sumPrimes = ((double)Stream.of(2, 3, 5, 7, 11, 13, 17, 19, 23)
 .reduce(0, (x, y) -> {return x + y;}));
System.out.println("Sum of some primes: " + sumPrimes);

In all of the examples we’ve met in this section, you may have noticed
the presence of a stream() method call on the List instance. This
is part of the evolution of the Collections—it was originally chosen
partly out of necessity, but has proved to be an excellent abstraction.
Let’s move on to discuss the Streams API in more detail.

The Streams API

The fundamental issue that caused the Java library designers to introduce the Streams API was the large number of implementations of the core collections interfaces present in the wild.
As these implementations predate Java 8 and lambdas, they would not have any of the methods corresponding to the new functional operations.
Worse still, as method names such as map() and filter() have never been part of the interface of the Collections, implementations may already have methods with those names.

To work around this problem, a new abstraction called a Stream was introduced.
The idea is that a Stream object can be generated from a collection object via the stream() method.
This Stream type, being new and under the control of the library designers, is then guaranteed to be free of collisions.
This then mitigates the risk of clash, as only Collections implementations that contained a stream() method would be affected.

A Stream object plays a similar role to an Iterator in the new approach to collections code.
The overall idea is for the developer to build up a sequence (or “pipeline”) of operations (such as map, filter, or reduce) that need to be applied to the collection as a whole.
The actual content of the operations will usually be expressed by using a
lambda expression for each operation.

At the end of the pipeline, the results usually need to be gathered up, or “materialized” back into an actual collection again.
This is done either by using a Collector or by finishing the pipeline with a “terminal method” such as reduce() that returns an actual value, rather than another stream.
Overall, the new approach to collections looks like
this:

 stream() filter() map() collect()
Collection -> Stream -> Stream -> Stream -> Collection

The Stream class behaves as a sequence of elements that are accessed
one at a time (although there are some types of streams that support
parallel access and can be used to process larger collections in a
naturally multithreaded way). In a similar way to an Iterator, the
Stream is used to take each item in turn.

As is usual for generic classes in Java, Stream is parameterized by a
reference type. However, in many cases, we actually want streams of
primitive types, especially ints and doubles. We cannot have
Stream<int>, so instead in java.util.stream there are special
(nongeneric) classes such as IntStream and DoubleStream. These are
known as primitive specializations of the Stream class and have
APIs that are very similar to the general Stream methods, except that
they use primitives where appropriate.

For example, in the reduce() example, we’re actually using primitive
specialization over most of the pipeline.

Lazy evaluation

In fact, streams are more general than iterators (or even collections),
as streams do not manage storage for data. In earlier versions of Java,
there was always a presumption that all of the elements of a collection
existed (usually in memory). It was possible to work around this in a
limited way by insisting on the use of iterators everywhere, and by
having the iterators construct elements on the fly. However, this was
neither very convenient nor that common.

By contrast, streams are an abstraction for managing data, rather than
being concerned with the details of storage. This makes it possible to
handle more subtle data structures than just finite collections. For
example, infinite streams can easily be represented by the Stream
interface, and can be used as a way to, for example, handle the set of
all square numbers. Let’s see how we could accomplish this using a
Stream:

public class SquareGenerator implements IntSupplier {
 private int current = 1;

 @Override
 public synchronized int getAsInt() {
 int thisResult = current * current;
 current++;
 return thisResult;
 }
}

IntStream squares = IntStream.generate(new SquareGenerator());
PrimitiveIterator.OfInt stepThrough = squares.iterator();
for (int i = 0; i < 10; i++) {
 System.out.println(stepThrough.nextInt());
}
System.out.println("First iterator done...");

// We can go on as long as we like...
for (int i = 0; i < 10; i++) {
 System.out.println(stepThrough.nextInt());
}

One significant consequence of modeling the infinite stream is that
methods like collect() won’t work. This is because we can’t
materialize the whole stream to a collection (we would run out of memory
before we created the infinite amount of objects we would need).
Instead, we must adopt a model in which we pull the elements out of the stream as we need them.
Essentially, we need a bit of code that returns the next element as we demand it.
The key technique that is used to accomplish this is lazy evaluation. This essentially means that values are not necessarily computed until they are needed.

Note

Lazy evaluation is a big change for Java, as until JDK 8 the value of an
expression was always computed as soon as it was assigned to a variable
(or passed into a method). This familiar model, where values are
computed immediately, is called “eager evaluation” and it is the
default behavior for evaluation of expressions in most mainstream
programming languages.

Fortunately, lazy evaluation is largely a burden that falls on the
library writer, not the developer, and for the most part when using the
Streams API, Java developers don’t need to think closely about lazy
evaluation. Let’s finish off our discussion of streams by looking at an
extended code example using reduce(), and calculate the average word
length in some Shakespeare quotes:

String[] billyQuotes = {"For Brutus is an honourable man",
 "Give me your hands if we be friends and Robin shall restore amends",
 "Misery acquaints a man with strange bedfellows"};
List<String> quotes = Arrays.asList(billyQuotes);

// Create a temporary collection for our words
List<String> words = quotes.stream()
 .flatMap(line -> Stream.of(line.split(" +")))
 .collect(Collectors.toList());
long wordCount = words.size();

// The cast to double is only needed to prevent Java from using
// integer division
double aveLength = ((double) words.stream()
 .map(String::length)
 .reduce(0, (x, y) -> {return x + y;})) / wordCount;
System.out.println("Average word length: " + aveLength);

In this example, we’ve introduced the flatMap() method. In our
example, it takes in a single string, line, and returns a stream of
strings, which is obtained by splitting up the line into its component
words. These are then “flattened” so that all the sub-streams from each
string are just combined into a single stream.

This has the effect of splitting up each quote into its component words,
and making one superstream out of them. We count the words by creating
the object words, essentially “pausing” halfway through the stream
pipeline, and rematerializing into a collection to get the number of
words before resuming our stream operations.

Once we’ve done that, we can proceed with the reduce, and add up the
length of all the words, before dividing by the number of words that we
have, across the quotes. Remember that streams are a lazy abstraction,
so to perform an eager operation (like getting the size of a collection
that backs a stream) we have to rematerialize the collection.

Streams utility default methods

Java 8 takes the opportunity to introduce a number of new methods to
the Java Collections libraries. Now that the language supports default
methods, it is possible to add new methods to the Collections without
breaking backward compatibility.

Some of these methods are scaffold methods for the Streams
abstraction. These include methods such as Collection::stream,
Collection::parallelStream, and Collection::spliterator (which has
specialized forms List::spliterator and Set::spliterator).

Others are “missing methods,” such as Map::remove and Map::replace.
Some of these have been backported from the java.util.concurrent package where they were originally defined.
As an example, this includes the List::sort method, which is defined in List like this:

// Essentially just forwards to the helper method in Collections
public default void sort(Comparator<? super E> c) {
 Collections.<E>sort(this, c);
}

Another example is the missing method Map::putIfAbsent, which has been
adopted from the ConcurrentMap interface in java.util.concurrent.

We also have the method Map::getOrDefault, which allows the programmer to avoid a lot of tedious null checks, by providing a value that should be returned if the key is not found.

The remaining methods provide additional functional techniques using the
interfaces of java.util.function:

	Collection::removeIf

	
This method takes a Predicate and iterates internally over the
collection, removing any elements that satisfy the predicate object.

	Map::forEach

	
The single argument to this method is a lambda expression that takes
two arguments (one of the key’s type and one of the value’s type) and
returns void. This is converted to an instance of BiConsumer and
is applied to each key/value pair in the map.

	Map::computeIfAbsent

	
This takes a key and a lambda expression that maps the key type to the
value type. If the specified key (first parameter) is not present in
the map, then it computes a default value by using the lambda expression
and puts it in the map.

(See also Map::computeIfPresent, Map::compute, and Map::merge.)

Summary

In this chapter, we’ve met the Java Collections libraries, and seen
how to start working with Java’s implementations of fundamental and
classic data structures. We’ve met the general Collection interface,
as well as List, Set, and Map. We’ve seen the original, iterative
way of handling collections, and also introduced the new Java 8 style,
based on ideas from fundamental programming.
Finally, we’ve met the Streams API and seen how the new approach is more general, and is able to express more subtle programming concepts than the classic approach.

We’ve only scratched the surface—the Streams API is a fundamental shift in how Java code is written and architected.
There are inherent design limitations in how far the ideals of functional programming can be implemented in Java.
Having said that, the possibility that Streams represent “just enough functional programming” is compelling.

Let’s move on. In the next chapter, we’ll continue looking at data, and
common tasks like text processing, handling numeric data, and Java 8’s
new date and time libraries.

Chapter 9. Handling Common Data Formats

Most of programming is handling data in various formats. In this
chapter, we will introduce Java’s support for handling two big classes
of data—text and numbers. The second half of the chapter will focus on
handling date and time information. This is of particular interest, as
Java 8 ships a completely new API for handling date and time. We cover
this new interface in some depth, before finishing the chapter by
briefly discussing Java’s original date and time API.

Many applications are still using the legacy APIs, so developers need to
be aware of the old way of doing things, but the new APIs are so much
better that we recommend converting as soon as possible. Before we get
to those more complex formats, let’s get under way by talking about
textual data and strings.

Text

We have already met Java’s strings on many occasions. They consist of
sequences of Unicode characters, and are represented as instances of
the String class. Strings are one of the most common types of data
that Java programs process (a claim you can investigate for yourself by
using the jmap tool that we’ll meet in Chapter 13).

In this section, we’ll meet the String class in some more depth, and
understand why it is in a rather unique position within the Java
language. Later in the section, we’ll introduce regular expressions, a
very common abstraction for searching text for patterns (and a classic
tool in the programmer’s arsenal).

Special Syntax for Strings

The String class is handled in a somewhat special way by the Java
language. This is because, despite not being a primitive type, strings
are so common that it makes sense for Java to have a number of special
syntax features designed to make handling strings easy. Let’s look at
some examples of special syntax features for strings that Java provides.

String literals

As we saw in Chapter 2, Java allows a sequence
of characters to be placed in double quotes to create a literal string
object. Like this:

String pet = "Cat";

Without this special syntax, we would have to write acres of horrible
code like this:

char[] pullingTeeth = {'C', 'a', 't'};
String pet = new String(pullingTeeth);

This would get tedious extremely quickly, so it’s no surprise that Java,
like all modern programming languages, provides a simple string literal
syntax. The string literals are perfectly sound objects, so code like
this is completely legal:

System.out.println("Dog".length());

toString()

This method is defined on Object, and is designed to allow easy
conversion of any object to a string. This makes it easy to print out
any object, by using the method System.out.println(). This method is
actually PrintStream::println because System.out is a static field
of type PrintStream. Let’s see how this method is defined:

 public void println(Object x) {
 String s = String.valueOf(x);
 synchronized (this) {
 print(s);
 newLine();
 }
 }

This creates a new string by using the static method
String::valueOf():

 public static String valueOf(Object obj) {
 return (obj == null) ? "null" : obj.toString();
 }

Note

The static valueOf() method is used instead of toString() directly,
to avoid a NullPointerException in the case where obj is null.

This construction means that toString() is always available for any
object, and this turns out to come in very handy for another major
syntax feature that Java provides: string concatenation.

String concatenation

Java allows us to create new strings by “adding” the characters from one string onto the end of another. This is called string concatenation and uses the operator +.
In versions of Java up to and including Java 8, it works by first creating a “working area” in the form of a StringBuilder object that contains the same sequence of characters as the original string.

Note

Java 9 introduced a new mechanism that uses the invokedynamic instruction instead of StringBuilder directly. This is an advanced piece of functionality and out of scope for this discussion, but it doesn’t change the behavior visible to the Java developer.

The builder object is then updated and the characters from the
additional string are added onto the end. Finally, toString() is
called on the StringBuilder object (which now contains the characters
from both strings). This gives us a new string with all the characters
in it. All of this code is created automatically by javac whenever we
use the + operator to concatenate strings.

The concatenation process returns a completely new String object, as
we can see in this example:

String s1 = "AB";
String s2 = "CD";

String s3 = s1;
System.out.println(s1 == s3); // Same object?

s3 = s1 + s2;
System.out.println(s1 == s3); // Still same?
System.out.println(s1);
System.out.println(s3);

The concatenation example directly shows that the + operator is not
altering (or mutating) s1 in place. This is an example of a more
general principle: Java’s strings are immutable. This means that once
the characters that make up the string have been chosen and the String
object has been created, the String cannot be changed. This is an
important language principle in Java, so let’s look at it in a little
more depth.

String Immutability

In order to “change” a string, as we saw when we discussed string
concatenation, we actually need to create an intermediate
StringBuilder object to act as a temporary scratch area, and then
call toString() on it, to bake it into a new instance of String.
Let’s see how this works in code:

String pet = "Cat";
StringBuilder sb = new StringBuilder(pet);
sb.append("amaran");
String boat = sb.toString();
System.out.println(boat);

Code like this behaves equivalently to the following, although in Java 9 and above the actual bytecode sequences will differ:

String pet = "Cat";
String boat = pet + "amaran";
System.out.println(boat);

Of course, as well as being used under the hood by javac, the
StringBuilder class can also be used directly in application code, as
we’ve seen.

Warning

Along with StringBuilder, Java also has a StringBuffer class. This
comes from the oldest versions of Java, and should not be used for new
development—use StringBuilder instead, unless you really need to share
the construction of a new string between multiple threads.

String immutability is an extremely useful language feature. For
example, suppose the + changed a string instead of creating a new one;
then, whenever any thread concatenated two strings together, all other
threads would also see the change. This is unlikely to be a useful
behavior for most programs, and so immutability makes good sense.

Hash codes and effective immutability

We have already met the hashCode() method in
Chapter 5, where we described the contract that
the method must satisfy. Let’s take a look at the JDK source code and
see how the method String::hashCode() is defined:

 public int hashCode() {
 int h = hash;
 if (h == 0 && value.length > 0) {
 char val[] = value;

 for (int i = 0; i < value.length; i++) {
 h = 31 * h + val[i];
 }
 hash = h;
 }
 return h;
 }

The field hash holds the hash code of the string, and the field
value is a char[] that holds the characters that actually make up
the string. As we can see from the code, Java computes the hash by looping
over all the characters of the string. It therefore takes a number of
machine instructions proportional to the number of characters in the
string. For very large strings, this could take a bit of time. Rather
than pre-compute the hash value, Java only calculates it when it is
needed.

When the method runs, the hash is computed by stepping through the array
of characters. At the end of the array, we exit the for loop and write
the computed hash back into the field hash. Now, when this method is
called again, the value has already been computed, so we can just
use the cached value and subsequent calls to hashCode() return
immediately.

Note

The computation of a string’s hash code is an example of a benign data
race. In a program with multiple threads, they could race to compute
the hash code. However, they would all eventually arrive at exactly the
same answer—hence the term benign.

All of the fields of the String class are final, except for hash. So
Java’s strings are not, strictly speaking, immutable. However, because
the hash field is just a cache of a value that is deterministically
computed from the other fields, which are all immutable, then provided
String has been coded correctly, it will behave as if it were
immutable. Classes that have this property are called effectively
immutable—they are quite rare in practice, and working programmers
can usually ignore the distinction between truly immutable and
effectively immutable data.

Regular Expressions

Java has support for regular expressions (often shortened to
regex or regexp). These are a representation of a search pattern
used to scan and match text. A regex is a sequence of characters that we
want to search for. They can be very simple—for example, abc means
that we’re looking for a, followed immediately by b, followed
immediately by c, anywhere within the text we’re searching through.
Note that a search pattern may match an input text in zero, one, or more
places.

The simplest regexes are just sequences of literal characters, like
abc. However, the language of regexes can express more complex and
subtle ideas than just literal sequences. For example, a regex can
represent patterns to match like:

	
A numeric digit

	
Any letter

	
Any number of letters, which must all be in the range a to j but
can be upper- or lowercase

	
a followed by any four characters, followed by b

The syntax we use to write regular expressions is simple, but because we
can build up complex patterns, it is often possible to write an
expression that does not implement precisely what we wanted. When using
regexes, it is very important to always test them fully. This should
include both test cases that should pass and cases that should fail.

To express these more complex patterns, regexes use metacharacters.
These are special characters that indicate that special processing is
required. This can be thought of as similar to the use of the *
character in operating system shells. In those circumstances, it is
understood that the * is not to be interpreted literally but instead
means “anything.” If we wanted to list all the Java source files in the
current directory on Unix, we would issue the command:

ls *.java

The metacharacters of regexes are similar, but there are far more of
them, and they are far more flexible than the set available in shells.
They also have different meanings than they do in shell scripts, so
don’t get confused.

Let’s meet a couple of examples. Suppose we want to have a
spell-checking program that is relaxed about the difference in spelling
between British and American English. This means that honor and
honour should both be accepted as valid spelling choices. This is easy
to do with regular expressions.

Java uses a class called Pattern (from the package
java.util.regex) to represent a regex. This class can’t be directly
instantiated, however. Instead, new instances are created by using a
static factory method, compile(). From a pattern, we then derive a
Matcher for a particular input string that we can use to explore the
input string. For example, let’s examine a bit of Shakespeare from the
play Julius Caesar:

Pattern p = Pattern.compile("honou?r");

String caesarUK = "For Brutus is an honourable man";
Matcher mUK = p.matcher(caesarUK);

String caesarUS = "For Brutus is an honorable man";
Matcher mUS = p.matcher(caesarUS);

System.out.println("Matches UK spelling? " + mUK.find());
System.out.println("Matches US spelling? " + mUS.find());

Note

Be careful when using Matcher, as it has a method called matches().
However, this method indicates whether the pattern can cover the entire
input string. It will return false if the pattern only starts matching
in the middle of the string.

The last example introduces our first regex metacharacter ?, in the
pattern honou?r. This means “the preceding character is optional”—so
both honour and honor will match. Let’s look at another example.
Suppose we want to match both minimize and minimise (the latter
spelling is more common in British English). We can use square brackets
to indicate that any character from a set (but only one alternative)
[] can be used—like this:

Pattern p = Pattern.compile("minimi[sz]e");

Table 9-1 provides an
expanded list of metacharacters available for Java regexes.

Table 9-1. Regex metacharacters

	Metacharacter
	Meaning
	Notes

	?

	Optional character—zero or one instance

	

	*

	Zero or more of preceding character

	

	+

	One or more of preceding character

	

	{M,N}

	Between M and N instances of preceding character

	

	\d

	A digit

	

	\D

	A nondigit character

	

	\w

	A word character

	Digits, letters, and _

	\W

	A nonword character

	

	\s

	A whitespace character

	

	\S

	A nonwhitespace character

	

	\n

	Newline character

	

	\t

	Tab character

	

	.

	Any single character

	Does not include newline in Java

	[]

	Any character contained with the brackets

	Called a character
class

	[^]

	Any character not contained with the brackets

	Called a negated
character class

	()

	Build up a group of pattern elements

	Called a group (or
capturing group)

	|

	Define alternative possbilities

	Implements logical OR

	^

	Start of string

	

	$

	End of string

	

	\\

	Literal escape (\) char

	

There are a few more, but this is the basic list, and from this, we can
construct more complex expressions for matching such as the examples
given earlier in this section:

// Note that we have to use \\ because we need a literal \
// and Java uses a single \ as an escape character, as per the table
String pStr = "\\d"; // A numeric digit
String text = "Apollo 13";
Pattern p = Pattern.compile(pStr);
Matcher m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

pStr = "[a..zA..Z]"; //Any letter
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

// Any number of letters, which must all be in the range 'a' to 'j'
// but can be upper- or lowercase
pStr = "([a..jA..J]*)";
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

text = "abacab";
// 'a' followed by any four characters, followed by 'b'
pStr = "a....b";
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

Let’s conclude our quick tour of regular expressions by meeting a new
method that was added to Pattern as part of Java 8: asPredicate().
This method is present to allow us to easily bridge from regular
expressions to the Java Collections and their new support for lambda
expressions.

For example, suppose we have a regex and a collection of strings. It’s
very natural to ask the question: “Which strings match against the
regex?” We do this by using the filter idiom, and by converting the
regex to a Predicate using the helper method, like this:

String pStr = "\\d"; // A numeric digit
Pattern p = Pattern.compile(pStr);

String[] inputs = {"Cat", "Dog", "Ice-9", "99 Luftballoons"};
List<String> ls = Arrays.asList(inputs);
List<String> containDigits = ls.stream()
 .filter(p.asPredicate())
 .collect(Collectors.toList());
System.out.println(containDigits);

Java’s built-in support for text processing is more than adequate for
the majority of text processing tasks that business applications
normally require. More advanced tasks, such as the search and processing
of very large data sets, or complex parsing (including formal grammars)
are outside the scope of this book, but Java has a large ecosystem of
helpful libraries and bindings to specialized technologies for text
processing and analysis.

Numbers and Math

In this section, we will discuss Java’s support for numeric types in
some more detail. In particular, we’ll discuss the two’s complement
representation of integral types that Java uses. We’ll introduce
floating-point representations, and touch on some of the problems they
can cause. We’ll work through examples that use some of Java’s library
functions for standard mathematical operations.

How Java Represents Integer Types

Java’s integer types are all signed, as we first mentioned in
“Primitive Data Types”. This means that all integer
types can represent both positive and negative numbers. As computers
work with binary, this means that the only really logical way to
represent this is to split the possible bit patterns up and use half of
them to represent negative numbers.

Let’s work with Java’s byte type to investigate how Java represents
integers. This has 8 bits, so can represent 256 different numbers (i.e.,
128 negative and 128 non-negative numbers). It’s logical to use the
pattern 0b0000_0000 to represent zero (recall that Java has the syntax
0b<binary digits> to represent numbers as binary), and then it’s easy
to figure out the bit patterns for the positive numbers:

byte b = 0b0000_0001;
System.out.println(b); // 1

b = 0b0000_0010;
System.out.println(b); // 2

b = 0b0000_0011;
System.out.println(b); // 3

// ...

b = 0b0111_1111;
System.out.println(b); // 127

When we set the first bit of the byte, the sign should change (as we
have now used up all of the bit patterns that we’ve set aside for
non-negative numbers). So the pattern 0b1000_0000 should represent
some negative number—but which one?

Note

As a consequence of how we’ve defined things, in this representation we
have a very simple way to identify whether a bit pattern corresponds to
a negative number: if the high-end bit of a bit pattern is a 1, then
the number being represented is negative.

Consider the bit pattern consisting of all set bits: 0b1111_1111. If
we add 1 to this number, then the result will overflow the 8 bits of
storage that a byte has, resulting in 0b1_0000_0000. If we want to
constrain this to fit within the byte data type, then we should ignore
the overflow, so this becomes 0b0000_0000, otherwise known as zero. It is therefore
natural to adopt the representation that “all set bits is -1.” This
allows for natural arithmetic behavior, like this:

b = (byte) 0b1111_1111; // -1
System.out.println(b);
b++;
System.out.println(b);

b = (byte) 0b1111_1110; // -2
System.out.println(b);
b++;
System.out.println(b);

Finally, let’s look at the number that 0b1000_0000 represents. It’s
the most negative number that the type can represent, so for byte:

b = (byte) 0b1000_0000;
System.out.println(b); // -128

This representation is called two’s complement, and is the most
common representation for signed integers. To use it effectively, there
are only two points that you need to remember:

	
A bit pattern of all 1’s is the representation for −1.

	
If the high bit is set, the number is negative.

Java’s other integer types (short, int, and long) behave in very
similar ways but with more bits in their representation. The char
data type is different because it represents a Unicode character, but in
some ways behaves as an unsigned 16-bit numeric type. It is not normally
regarded as an integer type by Java programmers.

Java and Floating-Point Numbers

Computers represent numbers using binary. We’ve seen how Java uses the
two’s complement representation for integers. But what about fractions
or decimals? Java, like almost all modern programming languages,
represents them using floating-point arithmetic. Let’s take a look
at how this works, first in base-10 (regular decimal) and then in
binary. Java defines the two most important mathematical constants, e
and π (pi), as constants in java.lang.Math like this:

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

Of course, these constants are actually irrational numbers and cannot
be precisely expressed as a fraction, or by any finite decimal number.1 This means that whenever we try to represent them in a
computer, there is always rounding error. Let’s suppose we only want to
deal with eight digits of π, and we want to represent the digits as a
whole number. We can use a representation like this:

 314159265
 •
 10 -8

This starts to suggest the basis of how floating-point numbers work. We
use some of the bits to represent the significant digits (314159265,
in our example) of the number and some bits to represent the exponent
of the base (-8, in our example). The collection of significant digits
is called the significand and the exponent describes whether we need
to shift the significand up or down to get to the desired number.

Of course, in the examples we’ve met until now, we’ve been working in
base-10. Computers use binary, so we need to use this as the base in our
floating-point examples. This introduces some additional complications.

Note

The number 0.1 cannot be expressed as a finite sequence of binary
digits. This means that virtually all calculations that humans care
about will lose precision when performed in floating point, and rounding
error is essentially inevitable.

Let’s look at an example that shows the rounding problem:

double d = 0.3;
System.out.println(d); // Special-cased to avoid ugly representation

double d2 = 0.2;
// Should be -0.1 but prints -0.09999999999999998
System.out.println(d2 - d);

The official standard that describes floating-point arithmetic is IEEE-754, and Java’s support for floating point is based on that standard.
The standard uses 24 binary digits for standard precision and 53 binary digits for double precision.

As we mentioned briefly in Chapter 2, Java can be
more accurate than the standard requires, by using hardware features if
they are available. In extremely rare cases, usually where very strict
compatability with other (possibly older) platforms is required, we can switch off this
behavior by using strictfp to mandate perfect
compliance with the IEEE-754 standard. This is almost never necessary
and the vast majority of programmers will never need to use (or even
see) this keyword.

BigDecimal

Rounding error is a constant source of headaches for programmers who
work with floating-point numbers. In response, Java has a class
java.math.BigDecimal that provides arbitrary precision arithmetic, in
a decimal representation. This works around the problem of 0.1 not
having a finite representation in binary, but there are still some edge
conditions when converting to or from Java’s primitive types, as you can
see:

double d = 0.3;
System.out.println(d);

BigDecimal bd = new BigDecimal(d);
System.out.println(bd);

bd = new BigDecimal("0.3");
System.out.println(bd);

However, even with all arithmetic performed in base-10, there are still
numbers, such as 1/3, that do not have a terminating decimal
representation. Let’s see what happens when we try to represent such
numbers using BigDecimal:

bd = new BigDecimal(BigInteger.ONE);
bd.divide(new BigDecimal(3.0));
System.out.println(bd); // Should be 1/3

As BigDecimal can’t represent 1/3 precisely, the call to divide()
blows up with ArithmeticException. When you are working with BigDecimal, it
is therefore necessary to be acutely aware of exactly which operations
could result in a nonterminating decimal result. To make matters worse,
ArithmeticException is an unchecked, runtime exception and so the Java
compiler does not even warn about possible exceptions of this type.

As as a final note on floating-point numbers, the paper “What Every
Computer Scientist Should Know About Floating-Point Arithmetic” by David
Goldberg should be considered essential further reading for all
professional programmers. It is easily and freely obtainable on the
internet.

Java’s Standard Library of Mathematical Functions

To conclude this look at Java’s support for numeric data and math,
let’s take a quick tour of the standard library of functions that Java
ships with. These are mostly static helper methods that are located on
the class java.lang.Math and include functions like:

	abs()

	
Returns the absolute value of a number. Has overloaded forms for
various primitive types.

	Trigonometric functions

	
Basic functions for computing the sine, cosine, tangent, and so on. Java
also includes hyperbolic versions and the inverse functions (such as
arc sine).

	max(), min()

	
Overloaded functions to return the greater and smaller of two
arguments (both of the same numeric type).

	floor()

	
Used to return the largest integer smaller than the argument (which
is a double). ceil() returns the smallest integer larger than the
argument.

	pow(), exp(), log()

	
Functions for raising one number to the power of another, and for
computing exponentials and natural logarithms. log10() provides
logarithms to base-10, rather than the natural base.

Let’s look at some simple examples of how to use these functions:

System.out.println(Math.abs(2));
System.out.println(Math.abs(-2));

double cosp3 = Math.cos(0.3);
double sinp3 = Math.sin(0.3);
System.out.println((cosp3 * cosp3 + sinp3 * sinp3)); // Always 1.0

System.out.println(Math.max(0.3, 0.7));
System.out.println(Math.max(0.3, -0.3));
System.out.println(Math.max(-0.3, -0.7));

System.out.println(Math.min(0.3, 0.7));
System.out.println(Math.min(0.3, -0.3));
System.out.println(Math.min(-0.3, -0.7));

System.out.println(Math.floor(1.3));
System.out.println(Math.ceil(1.3));
System.out.println(Math.floor(7.5));
System.out.println(Math.ceil(7.5));

System.out.println(Math.round(1.3)); // Returns long
System.out.println(Math.round(7.5)); // Returns long

System.out.println(Math.pow(2.0, 10.0));
System.out.println(Math.exp(1));
System.out.println(Math.exp(2));
System.out.println(Math.log(2.718281828459045));
System.out.println(Math.log10(100_000));
System.out.println(Math.log10(Integer.MAX_VALUE));

System.out.println(Math.random());
System.out.println("Let's toss a coin: ");
if (Math.random() > 0.5) {
 System.out.println("It's heads");
} else {
 System.out.println("It's tails");
}

To conclude this section, let’s briefly discuss Java’s random()
function. When this is first called, it sets up a new instance of
java.util.Random. This is a pseudorandom number generator (PRNG)—a
deterministic piece of code that produces numbers that look random
but are actually produced by a mathematical formula.2 In Java’s
case, the formula used for the PRNG is pretty simple, for example:

 // From java.util.Random
 public double nextDouble() {
 return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
 }

If the sequence of pseudorandom numbers always starts at the same place,
then exactly the same stream of numbers will be produced. To get around
this problem, the PRNG is seeded by a value that should contain as much
true randomness as possible. For this source of randomness for the seed
value, Java uses a CPU counter value that is normally used for
high-precision timing.

Warning

While Java’s built-in pseudorandom numbers are fine for most general
applications, some specialist applications (notably cryptography and
some types of simulations) have much more stringent requirements. If you
are working on an application of that sort, seek expert advice from
programmers who are already working in the area.

Now that we’ve looked at text and numeric data, let’s move on to look at
another of the most frequently encountered kinds of data: date and
time information.

Java 8 Date and Time

Almost all business software applications have some notion of date
and time. When modeling real-world events or interactions, collecting a
point at which the event occurred is critical for future reporting or
comparison of domain objects. Java 8 brings a complete overhaul to the
way that developers work with date and time. This section introduces
those concepts for Java 8. In earlier versions, the only support is via
classes such as java.util.Date that do not model the concepts. Code
that uses the older APIs should move as soon as possible.

Introducing the Java 8 Date and Time API

Java 8 introduces the new package java.time, which contains the core
classes that most developers work with. It also contains four
subpackages:

	java.time.chrono

	
Alternative chronologies that developers using calendaring systems
that do not follow the ISO standard will interact with. An example
would be a Japanese calendaring system.

	java.time.format

	
Contains the DateTimeFormatter used for converting date and time
objects into a String and also for parsing strings into the data and
time objects.

	java.time.temporal

	
Contains the interfaces required by the core date and time classes
and also abstractions (such as queries and adjusters) for advanced
operations with dates.

	java.time.zone

	
Classes used for the underlying time zone rules; most developers
won’t require this package.

One of the most important concepts when representing time is the idea of
an instantaneous point on the timeline of some entity. While this
concept is well defined within, for example, Special Relativity,
representing it within a computer requires us to make some
assumptions. In Java 8, we represent a single point in time as an
Instant, which has these key assumptions:

	
We cannot represent more seconds than can fit into a long.

	
We cannot represent time more precisely than nanosecond precision.

This means that we are restricting ourselves to modeling time in a
manner that is consistent with the capabilities of current computer
systems. However, there is another fundamental concept that should also
be introduced.

An Instant is about a single event in space-time. However, it is far
from uncommon for programmers to have to deal with intervals between two
events, and so Java 8 also introduces the java.time.Duration class.
This class ignores calendar effects that might arise (e.g., from
daylight saving time). With this basic conception of instants and
durations between events, let’s move on to unpack the possible ways of
thinking about an instant.

The parts of a timestamp

In Figure 9-1, we show the breakdown of the
different parts of a timestamp in a number of possible ways.

[image: JN7 0901]
Figure 9-1. Breaking apart a timestamp

The key concept here is that there are a number of different
abstractions that might be appropriate at different times. For example,
there are applications where a LocalDate is key to business
processing, where the needed granularity is a business day.
Alternatively, some applications require subsecond, or even millisecond,
precision. Developers should be aware of their domain and use a suitable
representation within their application.

Example

The date and time API can be a lot to take in at first glance, so
let’s start by looking at an example, and discuss a diary class that
keeps track of birthdays. If you happen to be very forgetful about
birthdays, then a class like this (and especially methods like
getBirthdaysInNextMonth()) might be very helpful:

public class BirthdayDiary {
 private Map<String, LocalDate> birthdays;

 public BirthdayDiary() {
 birthdays = new HashMap<>();
 }

 public LocalDate addBirthday(String name, int day, int month,
 int year) {
 LocalDate birthday = LocalDate.of(year, month, day);
 birthdays.put(name, birthday);
 return birthday;
 }

 public LocalDate getBirthdayFor(String name) {
 return birthdays.get(name);
 }

 public int getAgeInYear(String name, int year) {
 Period period = Period.between(birthdays.get(name),
 birthdays.get(name).withYear(year));

 return period.getYears();
 }

 public Set<String> getFriendsOfAgeIn(int age, int year) {
 return birthdays.keySet().stream()
 .filter(p -> getAgeInYear(p, year) == age)
 .collect(Collectors.toSet());
 }

 public int getDaysUntilBirthday(String name) {
 Period period = Period.between(LocalDate.now(),
 birthdays.get(name));
 return period.getDays();
 }

 public Set<String> getBirthdaysIn(Month month) {
 return birthdays.entrySet().stream()
 .filter(p -> p.getValue().getMonth() == month)
 .map(p -> p.getKey())
 .collect(Collectors.toSet());
 }

 public Set<String> getBirthdaysInCurrentMonth() {
 return getBirthdaysIn(LocalDate.now().getMonth());
 }

 public int getTotalAgeInYears() {
 return birthdays.keySet().stream()
 .mapToInt(p -> getAgeInYear(p,
 LocalDate.now().getYear()))
 .sum();
 }
}

This class shows how to use the low-level API to build up useful
functionality. It also uses innovations such as the Java Streams API,
and demonstrates how to use LocalDate as an immutable class and how
dates should be treated as values.

Queries

Under a wide variety of circumstances we may find ourselves wanting
to answer a question about a particular temporal object. Some example
questions we may want answers to are:

	
Is the date before March 1st?

	
Is the date in a leap year?

	
How many days is it from today until my next birthday?

This is achieved by the use of the TemporalQuery interface, which is
defined like this:

public interface TemporalQuery<R> {
 R queryFrom(TemporalAccessor temporal);
}

The parameter to queryFrom() should not be null, but if the result
indicates that a value was not found, null could be used as a return
value.

Note

The Predicate interface can be thought of as a query that can only
represent answers to yes-or-no questions. Temporal queries are more
general and can return a value of “How many?” or “Which?” instead of
just “yes” or “no.”

Let’s look at an example of a query in action, by considering a query
that answers the following question: “Which quarter of the year is this
date in?” Java 8 does not support the concept of a quarter directly.
Instead, code like this is used:

LocalDate today = LocalDate.now();
Month currentMonth = today.getMonth();
Month firstMonthofQuarter = currentMonth.firstMonthOfQuarter();

This still doesn’t give quarter as a separate abstraction and instead
special case code is still needed. So let’s slightly extend the JDK
support by defining this enum type:

public enum Quarter {
 FIRST, SECOND, THIRD, FOURTH;
}

Now, the query can be written as:

public class QuarterOfYearQuery implements TemporalQuery<Quarter> {
 @Override
 public Quarter queryFrom(TemporalAccessor temporal) {
 LocalDate now = LocalDate.from(temporal);

 if(now.isBefore(now.with(Month.APRIL).withDayOfMonth(1))) {
 return Quarter.FIRST;
 } else if(now.isBefore(now.with(Month.JULY)
 .withDayOfMonth(1))) {
 return Quarter.SECOND;
 } else if(now.isBefore(now.with(Month.NOVEMBER)
 .withDayOfMonth(1))) {
 return Quarter.THIRD;
 } else {
 return Quarter.FOURTH;
 }
 }
}

TemporalQuery objects can be used directly or indirectly. Let’s look
at an example of each:

QuarterOfYearQuery q = new QuarterOfYearQuery();

// Direct
Quarter quarter = q.queryFrom(LocalDate.now());
System.out.println(quarter);

// Indirect
quarter = LocalDate.now().query(q);
System.out.println(quarter);

Under most circumstances, it is better to use the indirect approach,
where the query object is passed as a parameter to query(). This is
because it is normally a lot clearer to read in code.

Adjusters

Adjusters modify date and time objects. Suppose, for example, that
we want to return the first day of a quarter that contains a particular
timestamp:

public class FirstDayOfQuarter implements TemporalAdjuster {
 @Override
 public Temporal adjustInto(Temporal temporal) {

 final int currentQuarter = YearMonth.from(temporal)
 .get(IsoFields.QUARTER_OF_YEAR);

 switch (currentQuarter) {
 case 1:
 return LocalDate.from(temporal)
 .with(TemporalAdjusters.firstDayOfYear());
 case 2:
 return LocalDate.from(temporal)
 .withMonth(Month.APRIL.getValue())
 .with(TemporalAdjusters.firstDayOfMonth());
 case 3:
 return LocalDate.from(temporal)
 .withMonth(Month.JULY.getValue())
 .with(TemporalAdjusters.firstDayOfMonth());
 case 4:
 return LocalDate.from(temporal)
 .withMonth(Month.OCTOBER.getValue())
 .with(TemporalAdjusters.firstDayOfMonth());
 default:
 return null; // Will never happen
 }
 }
}

Let’s look at an example of how to use an adjuster:

LocalDate now = LocalDate.now();
Temporal fdoq = now.with(new FirstDayOfQuarter());
System.out.println(fdoq);

The key here is the with() method, and the code should be read as
taking in one Temporal object and returning another object that has
been modified. This is completely usual for APIs that work with
immutable objects.

Legacy Date and Time

Unfortunately, many applications are not yet converted to use the
superior date and time libraries that ship with Java 8. So, for
completeness, we briefly mention the legacy date and time support (which
is based on java.util.Date).

Warning

The legacy date and time classes, especially java.util.Date, should not be used in modern Java environments.
Consider refactoring or rewriting any code that still uses the legacy classes.

In older versions of Java, java.time is not available. Instead,
programmers rely upon the legacy and rudimentary support provided by
java.util.Date. Historically, this was the only way to represent
timestamps, and although named Date this class actually consisted of
both a date and a time component—and this led to a lot of confusion for
many programmers.

There are many problems with the legacy support provided by Date, for
example:

	
The Date class is incorrectly factored. It doesn’t actually refer to
a date, and instead is more like a timestamp. It turns out that we need
different representations for a date, versus a date and time, versus an
instantaneous timestamp.

	
Date is mutable. We can obtain a reference to a date, and then
change when it refers to.

	
The Date class doesn’t actually accept ISO-8601, the universal ISO
date standard, as being as valid date.

	
Date has a very large number of deprecated methods.

The current JDK uses two constructors for Date—the void constructor
that is intended to be the “now constructor,” and a constructor that
takes a number of milliseconds since epoch.

Summary

In this chapter, we’ve met several different classes of data. Textual
and numeric data are the most obvious examples, but as working
programmers we will meet a large number of different sorts of data.
Let’s move on to look at whole files of data, and new ways to work with
I/O and networking. Fortunately, Java provides good support for dealing
with many of these abstractions.

1 In fact, they are actually two of the known examples of transcendental numbers.
2 It is very difficult to get computers to produce true random numbers, and in the rare cases where this is done, specialized hardware is usually necessary.

Chapter 10. File Handling and I/O

Java has had input/output (I/O) support since the very first version.
However, due to Java’s strong desire for platform independence, the
earlier versions of I/O functionality emphasized portability over
functionality. As a result, they were not always easy to work with.

We’ll see later in the chapter how the original APIs have been supplemented—they are now rich, fully featured, and very easy to develop with.
Let’s kick off the chapter by looking at the original, “classic” approach to Java I/O, which the more modern approaches layer on top of.

Classic Java I/O

The File class is the cornerstone of Java’s original way to do
file I/O. This abstraction can represent both files and directories, but
in doing so is sometimes a bit cumbersome to deal with, and leads to
code like this:

// Get a file object to represent the user's home directory
File homedir = new File(System.getProperty("user.home"));

// Create an object to represent a config file (should
// already be present in the home directory)
File f = new File(homedir, "app.conf");

// Check the file exists, really is a file, and is readable
if (f.exists() && f.isFile() && f.canRead()) {

 // Create a file object for a new configuration directory
 File configdir = new File(f, ".configdir");
 // And create it
 configdir.mkdir();

 // Finally, move the config file to its new home
 f.renameTo(new File(configdir, ".config"));
}

This shows some of the flexibility possible with the File class, but
also demonstrates some of the problems with the abstraction. It is very
general, and so requires a lot of methods to interrogate a File
object in order to determine what it actually represents and its
capabilities.

Files

The File class has a very large number of methods on it, but some
basic functionality (notably a way to read the actual contents of a file) is
not, and never has been, provided directly.

Here’s a quick summary of File methods:

// Permissions management
boolean canX = f.canExecute();
boolean canR = f.canRead();
boolean canW = f.canWrite();

boolean ok;
ok = f.setReadOnly();
ok = f.setExecutable(true);
ok = f.setReadable(true);
ok = f.setWritable(false);

// Different views of the file's name
File absF = f.getAbsoluteFile();
File canF = f.getCanonicalFile();
String absName = f.getAbsolutePath();
String canName = f.getCanonicalPath();
String name = f.getName();
String pName = getParent();
URI fileURI = f.toURI(); // Create URI for File path

// File metadata
boolean exists = f.exists();
boolean isAbs = f.isAbsolute();
boolean isDir = f.isDirectory();
boolean isFile = f.isFile();
boolean isHidden = f.isHidden();
long modTime = f.lastModified(); // milliseconds since epoch
boolean updateOK = f.setLastModified(updateTime); // milliseconds
long fileLen = f.length();

// File management operations
boolean renamed = f.renameTo(destFile);
boolean deleted = f.delete();

// Create won't overwrite existing file
boolean createdOK = f.createNewFile();

// Temporary file handling
File tmp = File.createTempFile("my-tmp", ".tmp");
tmp.deleteOnExit();

// Directory handling
boolean createdDir = dir.mkdir();
String[] fileNames = dir.list();
File[] files = dir.listFiles();

The File class also has a few methods on it that aren’t a perfect fit
for the abstraction. They largely involve interrogating the filesystem
(e.g., inquiring about available free space) that the file resides on:

long free, total, usable;

free = f.getFreeSpace();
total = f.getTotalSpace();
usable = f.getUsableSpace();

File[] roots = File.listRoots(); // all available Filesystem roots

Streams

The I/O stream abstraction (not to be confused with the streams that
are used when dealing with the Java 8 Collection APIs) was present in
Java 1.0, as a way of dealing with sequential streams of bytes from
disks or other sources.

The core of this API is a pair of abstract classes, InputStream and
OutputStream. These are very widely used, and in fact the “standard”
input and output streams, which are called System.in and
System.out, are streams of this type. They are public, static fields
of the System class, and are often used in even the simplest programs:

System.out.println("Hello World!");

Specific subclasses of streams, including FileInputStream and
FileOutputStream, can be used to operate on individual bytes in a
file—for example, by counting all the times ASCII 97 (small letter a)
occurs in a file:

try (InputStream is = new FileInputStream("/Users/ben/cluster.txt")) {
 byte[] buf = new byte[4096];
 int len, count = 0;
 while ((len = is.read(buf)) > 0) {
 for (int i=0; i<len; i++)
 if (buf[i] == 97) count++;
 }
 System.out.println("'a's seen: "+ count);
} catch (IOException e) {
 e.printStackTrace();
}

This approach to dealing with on-disk data can lack some
flexibility—most developers think in terms of characters, not bytes. To
allow for this, the streams are usually combined with the higher-level
Reader and Writer classes, which provide a character-stream level of
interaction, rather than the low-level byte stream provided by
InputStream and OutputStream and their subclasses.

Readers and Writers

By moving to an abstraction that deals in characters, rather than
bytes, developers are presented with an API that is much more familiar,
and that hides many of the issues with character encoding, Unicode, and
so on.

The Reader and Writer classes are intended to overlay the byte
stream classes, and to remove the need for low-level handling of I/O
streams. They have several subclasses that are often used to layer on
top of each other, such as:

	
FileReader

	
BufferedReader

	
InputStreamReader

	
FileWriter

	
PrintWriter

	
BufferedWriter

To read all lines in from a file and print them out, we use a
BufferedReader layered on top of a FileReader, like this:

try (BufferedReader in =
 new BufferedReader(new FileReader(filename))) {
 String line;

 while((line = in.readLine()) != null) {
 System.out.println(line);
 }
} catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

If we need to read in lines from the console, rather than a file, we
will usually use an InputStreamReader applied to System.in. Let’s look at an example where we want to read in lines of input from the
console, but treat input lines that start with a special character as
special—commands (“metas”) to be processed, rather than regular text.
This is a common feature of many chat programs, including IRC. We’ll
use regular expressions from Chapter 9 to help
us:

Pattern SHELL_META_START = Pattern.compile("^#(\\w+)\\s*(\\w+)?");

try (BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in))) {
 String line;

 READ: while((line = console.readLine()) != null) {
 // Check for special commands ("metas")
 Matcher m = SHELL_META_START.matcher(line);
 if (m.find()) {
 String metaName = m.group(1);
 String arg = m.group(2);
 doMeta(metaName, arg);
 continue READ;
 }

 System.out.println(line);
 }
} catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

To output text to a file, we can use code like this:

File f = new File(System.getProperty("user.home")
 + File.separator + ".bashrc");
try (PrintWriter out =
 new PrintWriter(new BufferedWriter(new FileWriter(f)))) {
 out.println("## Automatically generated config file. DO NOT EDIT");
 // ...
} catch (IOException iox) {
 // Handle exceptions
}

This older style of Java I/O has a lot of other functionality that is
occasionally useful. For example, to deal with text files, the
FilterInputStream class is quite often useful. Or for threads that
want to communicate in a way similar to the classic “piped” I/O
approach, PipedInputStream, PipedReader, and their write
counterparts are provided.

Throughout this chapter so far, we have used the language feature known
as “try-with-resources” (TWR). This syntax was briefly introduced in
“The try-with-resources Statement”, but it is in conjunction
with operations like I/O that it comes into its fullest potential, and
it has granted a new lease on life to the older I/O style.

try-with-resources Revisited

To make the most of Java’s I/O capabilities, it is important to
understand how and when to use TWR. It is very easy to understand when
code should use TWR—whenever it is possible to do so.

Before TWR, resources had to be closed manually, and complex
interactions between resources that could fail to close led to buggy
code that could leak resources.

In fact, Oracle’s engineers estimate that 60% of the resource handling
code in the initial JDK 6 release was incorrect. So, if even the
platform authors can’t reliably get manual resource handling right, then
all new code should definitely be using TWR.

The key to TWR is a new interface—AutoCloseable. This interface is a direct superinterface of Closeable.
It marks a resource that must be automatically closed, and for which the compiler will insert special exception-handling code.

Inside a TWR resource clause, only declarations of objects that
implement AutoCloseable objects may appear—but the developer may
declare as many as required:

try (BufferedReader in = new BufferedReader(
 new FileReader("profile"));
 PrintWriter out = new PrintWriter(
 new BufferedWriter(
 new FileWriter("profile.bak")))) {
 String line;
 while((line = in.readLine()) != null) {
 out.println(line);
 }
} catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

The consequences of this are that resources are automatically scoped to
the try block. The resources (whether readable or writable) are
automatically closed in the correct order, and the compiler inserts
exception handling that takes dependencies between resources into
account.

TWR is related to similar concepts in other languages and environments—for example, RAII in C++.
However, as discussed in the finalization section, TWR is limited to block scope.
This minor limitation is due to the fact that the feature is implemented by the Java source code compiler—it automatically inserts bytecode that calls the resource’s close() method when the scope is exited (by whatever means).

As a result, the overall effect of TWR is more similar to C#’s using keyword, rather than the C++ version of RAII.
For Java developers, the best way to regard TWR is as “finalization done right.”
As noted in “Finalization”, new code should never directly use the finalization mechanism, and should always use TWR instead.
Older code should be refactored to use TWR as soon as is practicable, as it provides real tangible benefits to resource handling code.

Problems with Classic I/O

Even with the welcome addition of try-with-resources, the File
class and friends have a number of problems that make them less than
ideal for extensive use when performing even standard I/O operations.
For instance:

	
“Missing methods” for common operations

	
Does not deal with filenames consistently across platforms

	
Fails to have a unified model for file attributes (e.g., modeling
read/write access)

	
Difficult to traverse unknown directory structures

	
No platform- or OS-specific features

	
Nonblocking operations for filesystems not supported

To deal with these shortcomings, Java’s I/O has evolved over several
major releases. It was really with the release of Java 7 that this
support became truly easy and effective to use.

Modern Java I/O

Java 7 brought in a brand new I/O API—usually called NIO.2—and it
should be considered almost a complete replacement for the original
File approach to I/O. The new classes are contained in the
java.nio.file package.

The new API that was brought in with Java 7 is considerably easier to
use for many use cases. It has two major parts. The first is a new
abstraction called Path (which can be thought of as representing a
file location, which may or may not have anything actually at that
location). The second piece is lots of new convenience and utility
methods to deal with files and filesystems. These are contained as
static methods in the Files class.

Files

For example, when you are using the new Files functionality, a basic copy
operation is now as simple as:

File inputFile = new File("input.txt");
try (InputStream in = new FileInputStream(inputFile)) {
 Files.copy(in, Paths.get("output.txt"));
} catch(IOException ex) {
 ex.printStackTrace();
}

Let’s take a quick survey of some of the major methods in Files—the
operation of most of them is pretty self-explanatory. In many cases, the
methods have return types. We have omitted handling these, as they are
rarely useful except for contrived examples, and for duplicating the
behavior of the equivalent C code:

Path source, target;
Attributes attr;
Charset cs = StandardCharsets.UTF_8;

// Creating files
//
// Example of path --> /home/ben/.profile
// Example of attributes --> rw-rw-rw-
Files.createFile(target, attr);

// Deleting files
Files.delete(target);
boolean deleted = Files.deleteIfExists(target);

// Copying/moving files
Files.copy(source, target);
Files.move(source, target);

// Utility methods to retrieve information
long size = Files.size(target);

FileTime fTime = Files.getLastModifiedTime(target);
System.out.println(fTime.to(TimeUnit.SECONDS));

Map<String, ?> attrs = Files.readAttributes(target, "*");
System.out.println(attrs);

// Methods to deal with file types
boolean isDir = Files.isDirectory(target);
boolean isSym = Files.isSymbolicLink(target);

// Methods to deal with reading and writing
List<String> lines = Files.readAllLines(target, cs);
byte[] b = Files.readAllBytes(target);

BufferedReader br = Files.newBufferedReader(target, cs);
BufferedWriter bwr = Files.newBufferedWriter(target, cs);

InputStream is = Files.newInputStream(target);
OutputStream os = Files.newOutputStream(target);

Some of the methods on Files provide the opportunity to pass optional
arguments, to provide additional (possibly implementation-specific)
behavior for the operation.

Some of the API choices here produce occasionally annoying behavior. For
example, by default, a copy operation will not overwrite an existing
file, so we need to specify this behavior as a copy option:

Files.copy(Paths.get("input.txt"), Paths.get("output.txt"),
 StandardCopyOption.REPLACE_EXISTING);

StandardCopyOption is an enum that implements an interface called
CopyOption. This is also implemented by LinkOption. So
Files.copy() can take any number of either LinkOption or
StandardCopyOption arguments. LinkOption is used to specify how
symbolic links should be handled (provided the underlying OS supports
symlinks, of course).

Path

Path is a type that may be used to locate a file in a filesystem.
It represents a path that is:

	
System dependent

	
Hierarchical

	
Composed of a sequence of path elements

	
Hypothetical (may not exist yet, or may have been deleted)

It is therefore fundamentally different to a File. In particular, the
system dependency is manifested by Path being an interface, not a
class, which enables different filesystem providers to each implement the
Path interface, and provide for system-specific features while
retaining the overall abstraction.

The elements of a Path consist of an optional root component, which
identifies the filesystem hierarchy that this instance belongs to. Note
that, for example, relative Path instances may not have a root
component. In addition to the root, all Path instances have zero or
more directory names and a name element.

The name element is the element farthest from the root of the directory
hierarchy and represents the name of the file or directory. The Path
can be thought of as consisting of the path elements joined together by a
special separator or delimiter.

Path is an abstract concept; it isn’t necessarily bound to any physical file path.
This allows us to talk easily about the locations of files that don’t exist yet.
Java ships with a Paths class that provides factory methods for creating Path instances.

Paths provides two get() methods for creating Path objects.
The usual version takes a String, and uses the default filesystem provider. The URI version takes advantage of the ability of NIO.2 to plug in additional providers of bespoke filesystems.
This is an advanced usage, and interested developers should consult the primary documentation.
Let’s look at some simple examples of how to use Path:

Path p = Paths.get("/Users/ben/cluster.txt");
Path p = Paths.get(new URI("file:///Users/ben/cluster.txt"));
System.out.println(p2.equals(p));

File f = p.toFile();
System.out.println(f.isDirectory());
Path p3 = f.toPath();
System.out.println(p3.equals(p));

This example also shows the easy interoperation between Path and File objects.
The addition of a toFile() method to Path and a toPath() method to File allows the developer to move effortlessly between the two APIs and allows for a straightforward approach to refactoring the internals of code based on File to use Path instead.

We can also make use of some useful “bridge” methods that the Files
class also provides. These provide convenient access to the older I/O
APIs—for example, by providing convenience methods to open Writer
objects to specified Path locations:

Path logFile = Paths.get("/tmp/app.log");
try (BufferedWriter writer =
 Files.newBufferedWriter(logFile, StandardCharsets.UTF_8,
 StandardOpenOption.WRITE)) {
 writer.write("Hello World!");
 // ...
} catch (IOException e) {
 // ...
}

We’re making use of the StandardOpenOption enum, which provides
similar capabilities to the copy options, but for the case of opening a
new file instead.

In this example use case, we have used the Path API to:

	
Create a Path corresponding to a new file

	
Use the Files class to create that new file

	
Open a Writer to that file

	
Write to that file

	
Automatically close it when done

In our next example, we’ll build on this to manipulate a JAR file as
a FileSystem in its own right, modifying it to add an additional file
directly into the JAR.
Recall that JAR files are actually just ZIP files, so this technique will also work for .zip archives:

Path tempJar = Paths.get("sample.jar");
try (FileSystem workingFS =
 FileSystems.newFileSystem(tempJar, null)) {
 Path pathForFile = workingFS.getPath("/hello.txt");
 List<String> ls = new ArrayList<>();
 ls.add("Hello World!");

 Files.write(pathForFile, ls, Charset.defaultCharset(),
 StandardOpenOption.WRITE, StandardOpenOption.CREATE);
}

This shows how we use a FileSystem to make the Path objects inside
it, via the getPath() method. This enables the developer to
effectively treat FileSystem objects as black boxes.

Files also provides methods for handling temporary files and directories, which is a surprisingly common use case (and can be a source of security bugs).
For example, let’s see how to load a resources file from within the classpath, copy it to a newly created temporary directory, and then clean up the temporary files safely (using the Reaper class we introduced in Chapter 5):

Path tmpdir = Files.createTempDirectory(Paths.get("/tmp"), "tmp-test");
try (InputStream in =
 FilesExample.class.getResourceAsStream("/res.txt")) {
 Path copied = tmpdir.resolve("copied-resource.txt");
 Files.copy(in, copied, StandardCopyOption.REPLACE_EXISTING);
 // ... work with the copy
}
// Clean up when done...
Files.walkFileTree(tmpdir, new Reaper());

One of the criticisms of Java’s original I/O APIs was the lack of support for native and high-performance I/O.
A solution was initially added in Java 1.4, the Java New I/O (NIO) API, and it has been refined in later Java versions.

NIO Channels and Buffers

NIO buffers are a low-level abstraction for high-performance I/O.
They provide a container for a linear sequence of elements of a
specific primitive type. We’ll work with the ByteBuffer (the most
common case) in our examples.

ByteBuffer

This is a sequence of bytes, and can conceptually be thought of as a
performance-critical alternative to working with a byte[]. To get
the best possible performance, ByteBuffer provides support for dealing
directly with the native capabilities of the platform the JVM is running
on.

This approach is called the direct buffers case, and it bypasses the
Java heap wherever possible. Direct buffers are allocated in native
memory, not on the standard Java heap, and they are not subject to
garbage collection in the same way as regular on-heap Java objects.

To obtain a direct ByteBuffer, call the allocateDirect() factory
method. An on-heap version, allocate(), is also provided, but in
practice this is not often used.

A third way to obtain a byte buffer is to wrap an existing byte[]—this
will give an on-heap buffer that serves to provide a more
object-oriented view of the underlying bytes:

ByteBuffer b = ByteBuffer.allocateDirect(65536);
ByteBuffer b2 = ByteBuffer.allocate(4096);

byte[] data = {1, 2, 3};
ByteBuffer b3 = ByteBuffer.wrap(data);

Byte buffers are all about low-level access to the bytes. This means
that developers have to deal with the details manually—including the
need to handle the endianness of the bytes and the signed nature of
Java’s integral primitives:

b.order(ByteOrder.BIG_ENDIAN);

int capacity = b.capacity();
int position = b.position();
int limit = b.limit();
int remaining = b.remaining();
boolean more = b.hasRemaining();

To get data in or out of a buffer, we have two types of
operation—single value, which reads or writes a single value, and bulk,
which takes a byte[] or ByteBuffer and operates on a (potentially
large) number of values as a single operation. It is from the bulk
operations that we’d expect to realize performance gains:

b.put((byte)42);
b.putChar('x');
b.putInt(0xcafebabe);

b.put(data);
b.put(b2);

double d = b.getDouble();
b.get(data, 0, data.length);

The single value form also supports a form used for absolute positioning
within the buffer:

b.put(0, (byte)9);

Buffers are an in-memory abstraction. To affect the outside world (e.g.,
the file or network), we need to use a Channel, from the package
java.nio.channels. Channels represent connections to entities that
can support read or write operations. Files and sockets are the usual
examples of channels, but we could consider custom implementations used
for low-latency data processing.

Channels are open when they’re created, and can subsequently be closed.
Once closed, they cannot be reopened. Channels are usually either
readable or writable, but not both. The key to understanding channels is
that:

	
Reading from a channel puts bytes into a buffer

	
Writing to a channel takes bytes from a buffer

For example, suppose we have a large file that we want to checksum in
16M chunks:

FileInputStream fis = getSomeStream();
boolean fileOK = true;

try (FileChannel fchan = fis.getChannel()) {
 ByteBuffer buffy = ByteBuffer.allocateDirect(16 * 1024 * 1024);
 while(fchan.read(buffy) != -1 || buffy.position() > 0 || fileOK) {
 fileOK = computeChecksum(buffy);
 buffy.compact();
 }
} catch (IOException e) {
 System.out.println("Exception in I/O");
}

This will use native I/O as far as possible, and will avoid a lot of
copying of bytes on and off the Java heap. If the computeChecksum()
method has been well implemented, then this could be a very performant
implementation.

Mapped Byte Buffers

These are a type of direct byte buffer that contain a memory-mapped
file (or a region of one). They are created from a FileChannel
object, but note that the File object corresponding to the
MappedByteBuffer must not be used after the memory-mapped operations,
or an exception will be thrown. To mitigate this, we again use
try-with-resources, to scope the objects tightly:

try (RandomAccessFile raf =
 new RandomAccessFile(new File("input.txt"), "rw");
 FileChannel fc = raf.getChannel();) {

 MappedByteBuffer mbf =
 fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
 byte[] b = new byte[(int)fc.size()];
 mbf.get(b, 0, b.length);
 for (int i=0; i<fc.size(); i++) {
 b[i] = 0; // Won't be written back to the file, we're a copy
 }
 mbf.position(0);
 mbf.put(b); // Zeros the file
}

Even with buffers, there are limitations of what can be done in Java for
large I/O operations (e.g., transferring 10G between filesystems) that
perform synchronously on a single thread. Before Java 7, these types of
operations would typically be done by writing custom multithreaded code,
and managing a separate thread for performing a background copy. Let’s
move on to look at the new asynchronous I/O features that were added
with JDK 7.

Async I/O

The key to the new asynchronous functionality are some new subclasses
of Channel that can deal with I/O operations that need to be handed
off to a background thread. The same functionality can be applied to
large, long-running operations, and to several other use cases.

In this section, we’ll deal exclusively with AsynchronousFileChannel
for file I/O, but there are a couple of other asynchronous channels to
be aware of. We’ll deal with asynchronous sockets at the end of the
chapter. We’ll look at:

	
AsynchronousFileChannel for file I/O

	
AsynchronousSocketChannel for client socket I/O

	
AsynchronousServerSocketChannel for asynchronous sockets that
accept incoming connections

There are two different ways to interact with an asynchronous
channel—Future style and callback style.

Future-Based Style

A full discussion of the Future interface would take us too far into the details of Java concurrency.
However, for the purpose of this chapter, it can be thought of as an ongoing task that may or may not have completed yet. It has two key methods:

	isDone()

	
Returns a Boolean indicating whether the task has finished.

	get()

	
Returns the result. If finished, returns immediately. If not
finished, blocks until done.

Let’s look at an example of a program that reads a large file (possibly
as large as 100 Mb) asynchronously:

try (AsynchronousFileChannel channel =
 AsynchronousFileChannel.open(Paths.get("input.txt"))) {
 ByteBuffer buffer = ByteBuffer.allocateDirect(1024 * 1024 * 100);
 Future<Integer> result = channel.read(buffer, 0);

 while(!result.isDone()) {
 // Do some other useful work....
 }

 System.out.println("Bytes read: " + result.get());
}

Callback-Based Style

The callback style for asynchronous I/O is based on a
CompletionHandler, which defines two methods, completed() and
failed(), that will be called back when the operation either succeeds
or fails.

This style is useful if you want immediate notification of events in
asynchronous I/O—for example, if there are a large number of I/O
operations in flight, but failure of any single operation is not
necessarily fatal:

byte[] data = {2, 3, 5, 7, 11, 13, 17, 19, 23};
ByteBuffer buffy = ByteBuffer.wrap(data);

CompletionHandler<Integer,Object> h =
 new CompletionHandler() {
 public void completed(Integer written, Object o) {
 System.out.println("Bytes written: " + written);
 }

 public void failed(Throwable x, Object o) {
 System.out.println("Asynch write failed: "+ x.getMessage());
 }
};

try (AsynchronousFileChannel channel =
 AsynchronousFileChannel.open(Paths.get("primes.txt"),
 StandardOpenOption.CREATE, StandardOpenOption.WRITE)) {

 channel.write(buffy, 0, null, h);
 Thread.sleep(1000); // Needed so we don't exit too quickly
}

The AsynchronousFileChannel object is associated with a background
thread pool, so that the I/O operation proceeds, while the original
thread can get on with other tasks.

By default, this uses a managed thread pool that is provided by the
runtime. If required, it can be created to use a thread pool that is
managed by the application (via an overloaded form of
AsynchronousFileChannel.open()), but this is not often necessary.

Finally, for completeness, let’s touch upon NIO’s support for
multiplexed I/O. This enables a single thread to manage multiple
channels and to examine those channels to see which are ready for
reading or writing. The classes to support this are in the
java.nio.channels package and include SelectableChannel and
Selector.

These nonblocking multiplexed techniques can be extremely useful when you’re writing advanced applications that require high scalability, but a full discussion is outside the scope of this book.
In general, the nonblocking API should only be used for advanced use cases when high performance or other NFRs are genuinely required.

Watch Services and Directory Searching

The last class of asynchronous services we will consider are those
that watch a directory or visit a directory (or a tree). The watch
services operate by observing everything that happens within a
directory—for example, the creation or modification of files:

try {
 WatchService watcher = FileSystems.getDefault().newWatchService();

 Path dir = FileSystems.getDefault().getPath("/home/ben");
 WatchKey key = dir.register(watcher,
 StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY,
 StandardWatchEventKinds.ENTRY_DELETE);

 while(!shutdown) {
 key = watcher.take();
 for (WatchEvent<?> event: key.pollEvents()) {
 Object o = event.context();
 if (o instanceof Path) {
 System.out.println("Path altered: "+ o);
 }
 }
 key.reset();
 }
}

By contrast, the directory streams provide a view into all files
currently in a single directory. For example, to list all the Java
source files and their size in bytes, we can use code like:

try(DirectoryStream<Path> stream =
 Files.newDirectoryStream(Paths.get("/opt/projects"), "*.java")) {
 for (Path p : stream) {
 System.out.println(p +": "+ Files.size(p));
 }
}

One drawback of this API is that this will only return elements that
match according to glob syntax, which is sometimes insufficiently
flexible. We can go further by using the new Files.find() and
Files.walk() methods to address each element obtained by a recursive
walk through the directory:

final Pattern isJava = Pattern.compile(".*\\.java$");
final Path homeDir = Paths.get("/Users/ben/projects/");
Files.find(homeDir, 255,
 (p, attrs) -> isJava.matcher(p.toString()).find())
 .forEach(q -> {System.out.println(q.normalize());});

It is possible to go even further, and construct advanced solutions
based on the FileVisitor interface in java.nio.file, but that
requires the developer to implement all four methods on the interface,
rather than just using a single lambda expression as done here.

In the last section of this chapter, we will discuss Java’s networking
support and the core JDK classes that enable it.

Networking

The Java platform provides access to a large number of standard networking protocols, and these make writing simple networked applications quite easy.
The core of Java’s network support lives in the package java.net, with additional extensibility provided by javax.net (and in particular, javax.net.ssl).

One of the easiest protocols to use for building applications is
HyperText Transmission Protocol (HTTP), the protocol that is used as the
basic communication protocol of the Web.

HTTP

HTTP is the highest-level network protocol that Java supports out of
the box. It is a very simple, text-based protocol, implemented on top of
the standard TCP/IP stack. It can run on any network port, but is
usually found on port 80.

Java has two separate APIs for handling HTTP—one of which dates back to the earliest days of the platform, and the other of which is a more modern API that arrived in incubator form in Java 9.

Let’s take a quick look at the older API, for the sake of completeness.
In this API URL is the key class—it supports URLs of the form http://,
ftp://, file://, and https:// out of the box. It is very easy to
use, and the simplest example of Java HTTP support is to download a
particular URL. With Java 8, this is just:

URL url = new URL("http://www.google.com/");
try (InputStream in = url.openStream()) {
 Files.copy(in, Paths.get("output.txt"));
} catch(IOException ex) {
 ex.printStackTrace();
}

For more low-level control, including metadata about the request and
response, we can use URLConnection to give us more control, and
achieve something like:

try {
 URLConnection conn = url.openConnection();

 String type = conn.getContentType();
 String encoding = conn.getContentEncoding();
 Date lastModified = new Date(conn.getLastModified());
 int len = conn.getContentLength();
 InputStream in = conn.getInputStream();
} catch (IOException e) {
 // Handle exception
}

HTTP defines “request methods,” which are the operations that a client
can make on a remote resource. These methods are called GET, POST, HEAD, PUT, DELETE, OPTIONS, and TRACE.

Each has slightly different usages, for example:

	
GET should only be used to retrieve a document and never should
perform any side effects.

	
HEAD is equivalent to GET except the body is not returned—useful if a
program wants to quickly check whether a URL has changed.

	
POST is used when we want to send data to a server for processing.

By default, Java always uses GET, but it does provide a way to use other
methods for building more complex applications; however, doing so is a
bit involved. In this next example, we’re using the search function
provided by the BBC website to search for news articles about Java:

var url = new URL("http://www.bbc.co.uk/search");
var encodedData = URLEncoder.encode("q=java", "ASCII");
var contentType = "application/x-www-form-urlencoded";

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setInstanceFollowRedirects(false);
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", contentType);
conn.setRequestProperty("Content-Length",
 String.valueOf(encodedData.length()));

conn.setDoOutput(true);
OutputStream os = conn.getOutputStream();
os.write(encodedData.getBytes());

int response = conn.getResponseCode();
if (response == HttpURLConnection.HTTP_MOVED_PERM
 || response == HttpURLConnection.HTTP_MOVED_TEMP) {
 System.out.println("Moved to: "+ conn.getHeaderField("Location"));
} else {
 try (InputStream in = conn.getInputStream()) {
 Files.copy(in, Paths.get("bbc.txt"),
 StandardCopyOption.REPLACE_EXISTING);
 }
}

Notice that we needed to send our query parameters in the body of a
request, and to encode them before sending. We also had to disable
following of HTTP redirects, and to treat any redirection from the
server manually. This is due to a limitation of the HttpURLConnection
class, which does not deal well with redirection of POST requests.

The older API definitely shows its age, and in fact only implements version 1.0 of the HTTP standard, which is very inefficient and considered archaic.
As an alternative, modern Java programs can use the new API, which was added as a result of Java needing to support the new HTTP/2 protocol.

It was added as an incubator module in Java 9, but has been made into a fully supported module, java.net.http, in Java 11.
Let’s see a simple example of using the new API:

 import static java.net.http.HttpResponse.BodyHandlers.ofString;

 var client = HttpClient.newBuilder().build();
 var uri = new URI("https://www.oreilly.com");
 var request = HttpRequest.newBuilder(uri).build();

 var response = client.send(request,
 ofString(Charset.defaultCharset()));
 var body = response.body();
 System.out.println(body);

Note that this API is designed to be extensible, with interfaces such as HttpResponse.BodySubscriber being available to be implemented for custom handling.
The interface also seamlessly hides the differences between HTTP/2 and the older HTTP/1.1 protocol, meaning that Java applications will be able to migrate gracefully as web servers adopt the new version.

Let’s move on to look at the next layer down the networking stack, the
Transmission Control Protocol (TCP).

TCP

TCP is the basis of reliable network transport over the internet. It
ensures that web pages and other internet traffic are delivered in a
complete and comprehensible state. From a networking theory standpoint,
the protocol properties that allow TCP to function as this “reliability
layer” for internet traffic are:

	Connection based

	
Data belongs to a single logical stream (a connection).

	Guaranteed delivery

	
Data packets will be resent until they arrive.

	Error checked

	
Damage caused by network transit will be detected and fixed
automatically.

TCP is a two-way (or bidirectional) communication channel, and uses a
special numbering scheme (TCP sequence numbers) for data chunks to
ensure that both sides of a communication stream stay in sync. In order
to support many different services on the same network host, TCP uses
port numbers to identify services, and ensures that traffic intended for
one port does not go to a different one.

In Java, TCP is represented by the classes Socket and
ServerSocket. They are used to provide the capability to be the client
and server side of the connection, respectively—meaning that Java can be
used both to connect to network services and as a language for
implementing new services.

As an example, let’s consider reimplementing HTTP. This is a relatively
simple, text-based protocol. We’ll need to implement both sides of the
connection, so let’s start with an HTTP client on top of a TCP socket.
To accomplish this, we will actually need to implement the details of
the HTTP protocol, but we do have the advantage that we have complete
control over the TCP socket.

We will need to both read and write from the client socket, and we’ll
construct the actual request line in accordance with the HTTP standard
(which is known as RFC 2616, and uses explicit line-ending syntax). The resulting code will look something like this:

String hostname = "www.example.com";
int port = 80;
String filename = "/index.html";

try (Socket sock = new Socket(hostname, port);
 BufferedReader from = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 PrintWriter to = new PrintWriter(
 new OutputStreamWriter(sock.getOutputStream()));) {

 // The HTTP protocol
 to.print("GET " + filename +
 " HTTP/1.1\r\nHost: "+ hostname +"\r\n\r\n");
 to.flush();

 for(String l = null; (l = from.readLine()) != null;)
 System.out.println(l);

}

On the server side, we’ll need to receive possibly multiple incoming
connections. To handle this, we’ll need to kick off a main server loop,
then use accept() to take a new connection from the operating system.
The new connection then will need to be quickly passed to a separate
handler class, so that the main server loop can get back to listening
for new connections. The code for this is a bit more involved than the
client case:

// Handler class
private static class HttpHandler implements Runnable {
 private final Socket sock;
 HttpHandler(Socket client) { this.sock = client; }

 public void run() {
 try (BufferedReader in =
 new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 PrintWriter out =
 new PrintWriter(
 new OutputStreamWriter(sock.getOutputStream()));) {
 out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.println(line);
 }
 } catch(Exception e) {
 // Handle exception
 }
 }
}

// Main server loop
public static void main(String[] args) {
 try {
 int port = Integer.parseInt(args[0]);

 ServerSocket ss = new ServerSocket(port);
 for(;;) {
 Socket client = ss.accept();
 HTTPHandler hndlr = new HTTPHandler(client);
 new Thread(hndlr).start();
 }
 } catch (Exception e) {
 // Handle exception
 }
}

When designing a protocol for applications to communicate over TCP,
there’s a simple and profound network architecture principle, known as
Postel’s Law (after Jon Postel, one of the fathers of the internet) that
you should always keep in mind. It is sometimes stated as follows: “Be
strict about what you send, and liberal about what you will accept.”
This simple principle means that communication can remain broadly
possible in a network system, even in the event of quite imperfect
implementations.

Postel’s Law, when combined with the general principle that the
protocol should be as simple as possible (sometimes called the KISS
principle), will make the developer’s job of implementing TCP-based
communication much easier than it otherwise would be.

Below TCP is the internet’s general-purpose haulage protocol—the
Internet Protocol (IP) itself.

IP

IP is the “lowest common denominator” transport, and provides a useful
abstraction over the physical network technologies that are used to
actually move bytes from A to B.

Unlike TCP, delivery of an IP packet is not guaranteed, and a packet can
be dropped by any overloaded system along the path. IP packets do have a
destination, but usually no routing data—it’s the responsibility of the
(possibly many different) physical transports along the route to
actually deliver the data.

It is possible to create “datagram” services in Java that are based
around single IP packets (or those with a UDP header, instead of TCP),
but this is not often required except for extremely low-latency
applications. Java uses the class DatagramSocket to implement this
functionality, although few developers should ever need to venture this
far down the network stack.

Finally, it’s worth noting some changes that are currently in-flight in the addressing schemes that are used across the internet.
The current dominant version of IP in use is IPv4, which has a 32-bit space of
possible network addresses.
This space is now very badly squeezed, and various mitigation techniques have been deployed to handle the depletion.

The next version of IP (IPv6) is being rolled out, but it is not fully accepted and has yet to displace IPv4, although steady progress toward it becoming the standard continues.
In the next 10 years, IPv6 is likely to overtake IPv4 in terms of traffic volume, and low-level networking will need to adapt to this radically new version.
However, for Java programmers, the good news is that the language and platform have been working for many years on good support for IPv6 and the changes that it introduces.
The transition between IPv4 and IPv6 is likely to be much smoother and less problematic for Java applications than in many other languages.

Chapter 11. Classloading, Reflection, and Method Handles

In Chapter 3, we met Java’s Class objects, as a
way of representing a live type in a running Java process. In this
chapter, we will build on this foundation to discuss how the Java
environment loads and makes new types available. In the second half of
the chapter, we will introduce Java’s introspection capabilities—both
the original Reflection API and the newer Method Handles capabilities.

Class Files, Class Objects, and Metadata

Class files, as we saw in Chapter 1, are the
result of compiling Java source files (or, potentially, other languages)
into the intermediate form used by the JVM. These are binary files that
are not designed to be human readable.

The runtime representation of these class files are the class objects
that contain metadata, which represents the Java type that the class
file was created from.

Examples of Class Objects

You can obtain a class object in Java in several ways. The simplest
is:

Class<?> myCl = getClass();

This returns the class object of the instance that it is called from.
However, as we know from our survey of the public methods of Object,
the getClass() method on Object is public, so we can also obtain the
class of an arbitrary object o:

Class<?> c = o.getClass();

Class objects for known types can also be written as “class literals”:

// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "a string".getClass()
c = byte[].class; // Type of byte arrays

For primitive types and void, we also have class objects that are
represented as literals:

// Obtain a Class object for primitive types with various
// predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc.; see also Short, Character, Long, Float

For unknown types, we will have to use more sophisticated methods.

Class Objects and Metadata

The class objects contain metadata about the given type. This includes
the methods, fields, constructors, and the like that are defined on the class in
question. This metadata can be accessed by the programmer to investigate
the class, even if nothing is known about the class when it is loaded.

For example, we can find all the deprecated methods in the class file
(they will be marked with the @Deprecated annotation):

Class<?> clz = getClassFromDisk();
for (Method m : clz.getMethods()) {
 for (Annotation a : m.getAnnotations()) {
 if (a.annotationType() == Deprecated.class) {
 System.out.println(m.getName());
 }
 }
}

We could also find the common ancestor class of a pair of class files.
This simple form will work when both classes have been loaded by the
same classloader:

public static Class<?> commonAncestor(Class<?> cl1, Class<?> cl2) {
 if (cl1 == null || cl2 == null) return null;
 if (cl1.equals(cl2)) return cl1;
 if (cl1.isPrimitive() || cl2.isPrimitive()) return null;

 List<Class<?>> ancestors = new ArrayList<>();
 Class<?> c = cl1;
 while (!c.equals(Object.class)) {
 if (c.equals(cl2)) return c;
 ancestors.add(c);
 c = c.getSuperclass();
 }
 c = cl2;
 while (!c.equals(Object.class)) {
 for (Class<?> k : ancestors) {
 if (c.equals(k)) return c;
 }
 c = c.getSuperclass();
 }

 return Object.class;
}

Class files have a very specific layout that they must conform to if
they are to be legal and loadable by the JVM. The sections of the class
file are (in order):

	
Magic number (all class files start with the four bytes CA FE BA BE
in hexadecimal)

	
Version of class file standard in use

	
Constant pool for this class

	
Access flags (abstract, public, etc.)

	
Name of this class

	
Inheritance info (e.g., name of superclass)

	
Implemented interfaces

	
Fields

	
Methods

	
Attributes

The class file is a simple binary format, but it is not human readable.
Instead, tools like javap (see Chapter 13)
should be used to comprehend the contents.

One of the most often used sections in the class file is the Constant
Pool, which contains representations of all the methods, classes, fields,
and constants that the class needs to refer to (whether they are in this
class or another). It is designed so that bytecodes can simply refer to
a constant pool entry by its index number—which saves space in the
bytecode representation.

There are a number of different class file versions created by various
Java versions. However, one of Java’s backward compatibility rules is
that JVMs (and tools) from newer versions can always use older class
files.

Let’s look at how the classloading process takes a collection of bytes
on disk and turns it into a new class object.

Phases of Classloading

Classloading is the process by which a new type is added to a running
JVM process. This is the only way that new code can enter the system,
and the only way to turn data into code in the Java platform. There are
several phases to the process of classloading, so let’s examine them in
turn.

Loading

The classloading process starts with loading a byte array. This is
usually read in from a filesystem, but can be read from a URL or other
location (often represented as a Path object).

The Classloader::defineClass() method is responsible for turning a
class file (represented as a byte array) into a class object. It is a
protected method and so is not accessible without subclassing.

The first job of defineClass() is loading. This produces the skeleton
of a class object, corresponding to the class you’re attempting to load.
By this stage, some basic checks have been performed on the class (e.g.,
the constants in the constant pool have been checked to ensure that
they’re self-consistent).

However, loading doesn’t produce a complete class object by itself, and
the class isn’t yet usable. Instead, after loading, the class must be
linked. This step breaks down into separate subphases:

	
Verification

	
Preparation and resolution

	
Initialization

Verification

Verification confirms that the class file conforms to expectations,
and that it doesn’t try to violate the JVM’s security model (see
“Secure Programming and Classloading” for details).

JVM bytecode is designed so that it can be (mostly) checked statically.
This has the effect of slowing down the classloading process but
speeding up runtime (as checks can be omitted).

The verification step is designed to prevent the JVM from executing
bytecodes that might crash it or put it into an undefined and untested
state where it might be vulnerable to other attacks by malicious code.
Bytecode verification is a defense against malicious hand-crafted Java
bytecodes and untrusted Java compilers that might output invalid
bytecodes.

Note

The default methods mechanism works via classloading. When an
implementation of an interface is being loaded, the class file is
examined to see if implementations for default methods are present. If
they are, classloading continues normally. If some are missing, the
implementation is patched to add in the default implementation of the
missing methods.

Preparation and Resolution

After successful verification, the class is prepared for use. Memory is
allocated and static variables in the class are readied for
initialization.

At this stage, variables aren’t initialized, and no bytecode from the
new class has been executed. Before we run any code, the JVM checks
that every type referred to by the new class file is known to the
runtime. If the types aren’t known, they may also need to be
loaded—which can kick off the classloading process again, as the JVM
loads the new types.

This process of loading and discovery can execute iteratively until a
stable set of types is reached. This is called the “transitive closure”
of the original type that was loaded.1

Let’s look at a quick example, by examining the dependencies of
java.lang.Object. Figure 11-1 shows a
simplified dependency graph for Object. It only shows the direct
dependencies of Object that are visible in the public API of Object,
and the direct, API-visible dependencies of those dependencies. In
addition, the dependencies of Class on the reflection subsystem, and
of PrintStream and PrintWriter on the I/O subsystems, are shown in
very simplified form.

In Figure 11-1, we can see part of the
transitive closure of Object.

[image: JN7 1101]
Figure 11-1. Transitive closure of types

Initialization

Once resolved, the JVM can finally initialize the class. Static
variables can be initialized and static initialization blocks are run.

This is the first time that the JVM is executing bytecode from the newly
loaded class. When the static blocks complete, the class is fully loaded
and ready to go.

Secure Programming and Classloading

Java programs can dynamically load Java classes from a variety of
sources, including untrusted sources, such as websites reached across an
insecure network. The ability to create and work with such dynamic
sources of code is one of the great strengths and features of Java. To
make it work successfully, however, Java puts great emphasis on a
security architecture that allows untrusted code to run safely, without
fear of damage to the host system.

Java’s classloading subsystem is where a lot of safety features are
implemented. The central idea of the security aspects of the
classloading architecture is that there is only one way to get new
executable code into the process: a class.

This provides a “pinch point”—the only way to create a new class is to
use the functionality provided by Classloader to load a class from a
stream of bytes. By concentrating on making classloading secure, we can
constrain the attack surface that needs to be protected.

One extremely helpful aspect of the JVM’s design is that the
JVM is a stack machine, so all operations are evaluated on a stack,
rather than in registers. The stack state can be deduced at every point
in a method, and this can be used to ensure that the bytecode doesn’t
attempt to violate the security model.

Some of the security checks that are implemented by the JVM are:

	
All the bytecode of the class has valid parameters.

	
All methods are called with the right number of parameters of the
correct static types.

	
Bytecode never tries to underflow or overflow the JVM stack.

	
Local variables are not used before they are initialized.

	
Variables are only assigned suitably typed values.

	
Field, method, and class access control modifiers must be respected.

	
No unsafe casts (e.g., attempts to convert an int to a pointer).

	
All branch instructions are to legal points within the same method.

Of fundamental importance is the approach to memory, and pointers. In
assembly and C/C++, integers and pointers are interchangeable, so an
integer can be used as a memory address. We can write it in assembly
like this:

mov eax, [STAT] ; Move 4 bytes from addr STAT into eax

The lowest level of the Java security architecture involves the design
of the Java Virtual Machine and the bytecodes it executes. The JVM does
not allow any kind of direct access to individual memory addresses of
the underlying system, which prevents Java code from interfering with
the native hardware and operating system. These intentional restrictions
on the JVM are reflected in the Java language itself, which does not
support pointers or pointer arithmetic.

Neither the language nor the JVM allow an integer to be cast to an
object reference or vice versa, and there is no way whatsoever to obtain
an object’s address in memory. Without capabilities like these,
malicious code simply cannot gain a foothold.

Recall from Chapter 2 that Java has two types of
values—primitives and object references. These are the only things
that can be put into variables. Note that “object contents” cannot be
put into variables. Java has no equivalent of C’s struct and always
has pass-by-value semantics. For reference types, what is passed is a
copy of the reference—which is a value.

References are represented in the JVM as pointers, but they are not
directly manipulated by the bytecode. In fact, bytecode does not have
opcodes for “access memory at location X.”

Instead, all we can do is access fields and methods; bytecode cannot call
an arbitrary memory location. This means that the JVM always knows the
difference between code and data. In turn, this prevents a whole class
of stack overflow and other attacks.

Applied Classloading

To apply knowledge of classloading, it’s important to fully understand
java.lang.ClassLoader.

This is an abstract class that is fully functional and has no abstract
methods. The abstract modifier exists only to ensure that users must
subclass ClassLoader if they want to make use of it.

In addition to the aforementioned defineClass() method, we can load
classes via a public loadClass() method. This is commonly used by
the URLClassLoader subclass, which can load classes from a URL or file
path.

We can use URLClassLoader to load classes from the local disk like
this:

String current = new File(".").getCanonicalPath();
try (URLClassLoader ulr =
 new URLClassLoader(new URL[] {new URL("file://"+ current + "/")})) {
 Class<?> clz = ulr.loadClass("com.example.DFACaller");
 System.out.println(clz.getName());
}

The argument to loadClass() is the binary name of the class file. Note
that in order for the URLClassLoader to find the classes correctly,
they need to be in the expected place on the filesystem. In this
example, the class com.example.DFACaller would need to be found in the
file com/example/DFACaller.class relative to the working directory.

Alternatively, Class provides Class.forName(), a static method that
can load classes that are present on the classpath but that haven’t been
referred to yet.

This method takes a fully qualified class name. For example:

Class<?> jdbcClz = Class.forName("oracle.jdbc.driver.OracleDriver");

It throws a ClassNotFoundException if class can’t be found. As the
example indicates, this was commonly used in older versions of JDBC to
ensure that the correct driver was loaded, while avoiding a direct
import dependency on the driver classes.

With the advent of JDBC 4.0, this initialization step is no longer
required.

Class.forName() has an alternative, three-argument form, which is
sometimes used in conjunction with alternative class loaders:

Class.forName(String name, boolean inited, Classloader classloader);

There are a host of subclasses of ClassLoader that deal with
individual special cases of classloading—which fit into the classloader
hierarchy.

Classloader Hierarchy

The JVM has a hierarchy of classloaders; each classloader in the system
(apart from the initial, “bootstrap” classloader) has a parent that it can delegate to.

Note

The arrival of modules in Java 9 has affected the details of the way that classloading operates.
In particular, the classloaders that load the JRE classes are now modular classloaders.

The convention is that a classloader will ask its parent to resolve and
load a class, and will only perform the job itself if the parent
classloader is unable to comply. Some common classloaders are shown in
Figure 11-2.

[image: JN7 1102]
Figure 11-2. Classloader hierarchy

Bootstrap classloader

This is the first classloader to appear in any JVM process, and is only used to load the core system classes.
In older texts, it is sometimes referred to as the primordial classloader, but modern usage favors the bootstrap name.

For performance reasons, the bootstrap classloader does no verification, and relies on the boot classpath being secure.
Types loaded by the bootstrap classloader are implicitly granted all security permissions and so this group of modules is kept as restricted as possible.

Platform classloader

This level of the classloader hierarchy was originally used as the extension classloader, but this mechanism has now been removed.

In its new role this classloader (which has the bootstrap classloader as its parent) is now known as the platform classloader. It is available via the method ClassLoader::getPlatformClassLoader and appears in (and is required by) the Java specification from version 9 onward.
It loads the remaining modules from the base system (the equivalent of the old rt.jar used in version 8 and earlier).

In the new modular implementations of Java, far less code is required to bootstrap a Java process and accordingly, as much JDK code (now represented as modules) as possible has been moved out of the scope of the bootstrap loader and into the platform loader instead.

Application classloader

This was historically sometimes called the system classloader, but
this is a bad name, as it doesn’t load the system (the bootstrap and platform classloaders do).
Instead, it is the classloader that loads application code from either the module path or the classpath.
It is the most commonly encountered classloader, and it has the platform classloader as its parent.

To perform classloading, the application classloader first searches the named modules on the module path (the modules known to any of the three built-in classloaders).
If the requested class is found in a module known to one of these classloaders then that classloader will load the class.
If the class is not found in any known named module, the application classloader delegates to its parent (the platform classloader).
If the parent fails to find the class, the application classloader
searches the classpath.
If the class is found on the classpath, it is loaded as a member of the application classloader’s unnamed module.

The application classloader is very widely used, but many advanced Java
frameworks require functionality that the main classloaders do not
supply. Instead, extensions to the standard classloaders are required.
This forms the basis of “custom classloading”—which relies on
implementing a new subclass of ClassLoader.

Custom classloader

When performing classloading, sooner or later we have to turn data
into code. As noted earlier, the defineClass() (actually a group of
related methods) is responsible for converting a byte[] into a class
object.

This method is usually called from a subclass—for example, this simple
custom classloader that creates a class object from a file on disk:

public static class DiskLoader extends ClassLoader {
 public DiskLoader() {
 super(DiskLoader.class.getClassLoader());
 }

 public Class<?> loadFromDisk(String clzName) throws IOException {
 byte[] b = Files.readAllBytes(Paths.get(clzName));

 return defineClass(null, b, 0, b.length);
 }
}

Notice that in the preceding example we didn’t need to have the class
file in the “correct” location on disk, as we did for the
URLClassLoader example.

We need to provide a classloader to act as parent for any custom
classloader. In this example, we provided the classloader that loaded
the DiskLoader class (which would usually be the application
classloader).

Custom classloading is a very common technique in Java EE and advanced
SE environments, and it provides very sophisticated capabilities to the
Java platform. We’ll see an example of custom classloading later on in
this chapter.

One drawback of dynamic classloading is that when working with a class
object that we loaded dynamically, we typically have little or no
information about the class. To work effectively with this class, we
will therefore usually have to use a set of dynamic programming
techniques known as reflection.

Reflection

Reflection is the capability of examining, operating on, and modifying
objects at runtime. This includes modifying their structure and
behavior—even self-modification.

Warning

The Java modules system introduces major changes to how reflection works on the platform. It is important to reread this section after you have gained an understanding of how modules work, and how the two capabilities interact.

Reflection is capable of working even when type and method names are not
known at compile time. It uses the essential metadata provided by class
objects, and can discover method or field names from the class
object—and then acquire an object representing the method or field.

Instances can also be constructed reflexively (by using
Class::newInstance() or another constructor). With a reflexively
constructed object and a Method object, we can call any method
on an object of a previously unknown type.

This makes reflection a very powerful technique—so it’s important to
understand when we should use it, and when it’s overkill.

When to Use Reflection

Many, if not most, Java frameworks use reflection in some capacity.
Writing architectures that are flexible enough to cope with code that is
unknown until runtime usually requires reflection. For example, plug-in
architectures, debuggers, code browsers, and REPL-like environments are
usually implemented on top of reflection.

Reflection is also widely used in testing (e.g., by the JUnit and TestNG libraries) and for mock object creation. If you’ve used any kind
of Java framework you have almost certainly been using reflective
code, even if you didn’t realize it.

To start using the Reflection API in your own code, the most important
thing to realize is that it is about accessing objects where virtually
no information is known, and that the interactions can be cumbersome
because of this.

If some static information is known about dynamically
loaded classes (e.g., that the classes loaded all implement a known
interface), this can greatly simplify the interaction with the
classes and reduce the burden of operating reflectively.

It is a common mistake to try to create a reflective framework that
attempts to account for all possible circumstances, instead of dealing only
with the cases that are immediately applicable to the problem domain.

How to Use Reflection

The first step in any reflective operation is to get a Class object
representing the type to be operated on. From this, other objects,
representing fields, methods, or constructors, can be accessed and
applied to instances of the unknown type.

To get an instance of an unknown type, it is simplest to use the
no-arg constructor, which is made available directly via the Class
object:

Class<?> clz = getSomeClassObject();
Object rcvr = clz.newInstance();

For constructors that take arguments, you will have to look up the
precise constructor needed, represented as a Constructor object.

The Method objects are one of the most commonly used objects provided
by the Reflection API. We’ll discuss them in detail—the Constructor and
Field objects are similar in many respects.

Method objects

A class object contains a Method object for each method on the class.
These are lazily created after classloading, and so they aren’t immediately
visible in an IDE’s debugger.

Let’s look at the source code from Method to see what information and
metadata is held for each method:

private Class<?> clazz;
private int slot;
// This is guaranteed to be interned by the VM in the 1.4
// reflection implementation
private String name;
private Class<?> returnType;
private Class<?>[] parameterTypes;
private Class<?>[] exceptionTypes;
private int modifiers;
// Generics and annotations support
private transient String signature;
// Generic info repository; lazily initialized
private transient MethodRepository genericInfo;
private byte[] annotations;
private byte[] parameterAnnotations;
private byte[] annotationDefault;
private volatile MethodAccessor methodAccessor;

This provides all available information, including the exceptions the
method can throw, annotations (with a retention policy of RUNTIME),
and even the generics information that was otherwise removed by javac.

We can explore the metadata contained on the Method object by calling
accessor methods, but by far the single biggest use case for Method is
reflexive invocation.

The methods represented by these objects can be executed by reflection
using the invoke() method on Method. An example of invoking
hashCode() on a String object follows:

Object rcvr = "a";
try {
 Class<?>[] argTypes = new Class[] { };
 Object[] args = null;

 Method meth = rcvr.getClass().getMethod("hashCode", argTypes);
 Object ret = meth.invoke(rcvr, args);
 System.out.println(ret);

} catch (IllegalArgumentException | NoSuchMethodException |
 SecurityException e) {
 e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
 x.printStackTrace();
}

To get the Method object we want to use, we call getMethod() on the
class object. This will return a reference to a Method corresponding
to a public method on the class.

Note that the static type of rcvr was declared to be Object. No
static type information was used during the reflective invocation. The
invoke() method also returns Object, so the actual return type of
hashCode() has been autoboxed to Integer.

This autoboxing is one of the aspects of Reflection where you can see some of the
slight awkwardness of the API—which is the subject of the
next section.

Problems with Reflection

Java’s Reflection API is often the only way to deal with dynamically
loaded code, but there are a number of annoyances in the API that can
make it slightly awkward to deal with:

	
Heavy use of Object[] to represent call arguments and other
instances.

	
Also Class[] when talking about types.

	
Methods can be overloaded on name, so we need an array of types to
distinguish between methods.

	
Representing primitive types can be problematic—we have to manually
box and unbox.

void is a particular problem—there is a void.class, but it’s not
used consistently. Java doesn’t really know whether void is a type or
not, and some methods in the Reflection API use null instead.

This is cumbersome, and can be error prone—in particular, the slight
verbosity of Java’s array syntax can lead to errors.

One further problem is the treatment of non-public methods. Instead
of using getMethod(), we must use getDeclaredMethod() to get a
reference to a non-public method, and then override the Java access
control subsystem with setAccessible() to allow it to be executed:

public class MyCache {
 private void flush() {
 // Flush the cache...
 }
}

Class<?> clz = MyCache.class;
try {
 Object rcvr = clz.newInstance();
 Class<?>[] argTypes = new Class[] { };
 Object[] args = null;

 Method meth = clz.getDeclaredMethod("flush", argTypes);
 meth.setAccessible(true);
 meth.invoke(rcvr, args);
} catch (IllegalArgumentException | NoSuchMethodException |
 InstantiationException | SecurityException e) {
 e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
 x.printStackTrace();
}

However, it should be pointed out that reflection always involves
unknown information. To some degree, we just have to live with some of
this verbosity as the price of dealing with reflective invocation, and
the dynamic, runtime power that it gives to the developer.

As a final example in this section, let’s show how to combine
reflection with custom classloading to inspect a class file on disk
and see if it contains any deprecated methods (these should be marked
with @Deprecated):

public class CustomClassloadingExamples {
 public static class DiskLoader extends ClassLoader {

 public DiskLoader() {
 super(DiskLoader.class.getClassLoader());
 }

 public Class<?> loadFromDisk(String clzName)
 throws IOException {
 byte[] b = Files.readAllBytes(Paths.get(clzName));

 return defineClass(null, b, 0, b.length);
 }
 }

 public void findDeprecatedMethods(Class<?> clz) {
 for (Method m : clz.getMethods()) {
 for (Annotation a : m.getAnnotations()) {
 if (a.annotationType() == Deprecated.class) {
 System.out.println(m.getName());
 }
 }
 }
 }

 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 CustomClassloadingExamples rfx =
 new CustomClassloadingExamples();

 if (args.length > 0) {
 DiskLoader dlr = new DiskLoader();
 Class<?> clzToTest = dlr.loadFromDisk(args[0]);
 rfx.findDeprecatedMethods(clzToTest);
 }
 }
}

Dynamic Proxies

One last piece of the Java Reflection story is the creation of
dynamic proxies. These are classes (which extend
java.lang.reflect.Proxy) that implement a number of interfaces. The
implementing class is constructed dynamically at runtime, and forwards
all calls to an invocation handler object:

InvocationHandler h = new InvocationHandler() {
 @Override
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 String name = method.getName();
 System.out.println("Called as: "+ name);
 switch (name) {
 case "isOpen":
 return false;
 case "close":
 return null;
 }

 return null;
 }
};

Channel c =
 (Channel) Proxy.newProxyInstance(Channel.class.getClassLoader(),
 new Class[] { Channel.class }, h);
c.isOpen();
c.close();

Proxies can be used as stand-in objects for testing (especially in test
mocking approaches).

Another use case is to provide partial implementations of interfaces,
or to decorate or otherwise control some aspect of delegation:

public class RememberingList implements InvocationHandler {
 private final List<String> proxied = new ArrayList<>();

 @Override
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 String name = method.getName();
 switch (name) {
 case "clear":
 return null;
 case "remove":
 case "removeAll":
 return false;
 }

 return method.invoke(proxied, args);
 }
}

RememberingList hList = new RememberingList();

List<String> l =
 (List<String>) Proxy.newProxyInstance(List.class.getClassLoader(),
 new Class[] { List.class },
 hList);
l.add("cat");
l.add("bunny");
l.clear();
System.out.println(l);

Proxies are an extremely powerful and flexible capability that are used
within many Java frameworks.

Method Handles

In Java 7, a brand new mechanism for introspection and method access
was introduced. This was originally designed for use with dynamic
languages, which may need to participate in method dispatch decisions at
runtime. To support this at the JVM level, the new invokedynamic
bytecode was introduced. This bytecode was not used by Java 7 itself,
but with the advent of Java 8, it was extensively used in both lambda
expressions and the Nashorn JavaScript implementation.

Even without invokedynamic, the new Method Handles API is comparable
in power to many aspects of the Reflection API—and can be cleaner and
conceptually simpler to use, even standalone. It can be thought of as
Reflection done in a safer, more modern way.

MethodType

In Reflection, method signatures are represented as Class[]. This is
quite cumbersome. By contrast, method handles rely on MethodType
objects. These are a typesafe and object-oriented way to represent
the type signature of a method.

They include the return type and argument types, but not the receiver
type or name of the method. The name is not present, as this allows any
method of the correct signature to be bound to any name (as per the
functional interface behavior of lambda expressions).

A type signature for a method is represented as an immutable instance of
MethodType, as acquired from the factory method
MethodType.methodType(). For example:

MethodType m2Str = MethodType.methodType(String.class); // toString()

// Integer.parseInt()
MethodType mtParseInt =
 MethodType.methodType(Integer.class, String.class);

// defineClass() from ClassLoader
MethodType mtdefClz = MethodType.methodType(Class.class, String.class,
 byte[].class, int.class,
 int.class);

This single piece of the puzzle provides significant gains over
Reflection, as it makes method signatures significantly easier to
represent and discuss. The next step is to acquire a handle on a method.
This is achieved by a lookup process.

Method Lookup

Method lookup queries are performed on the class where a method is
defined, and are dependent on the context that they are executed from.
In this example, we can see that when we attempt to look up the protected
Class::defineClass() method from a general lookup context, we fail to
resolve it with an IllegalAccessException, as the protected method is
not accessible:

public static void lookupDefineClass(Lookup l) {
 MethodType mt = MethodType.methodType(Class.class, String.class,
 byte[].class, int.class,
 int.class);

 try {
 MethodHandle mh =
 l.findVirtual(ClassLoader.class, "defineClass", mt);
 System.out.println(mh);
 } catch (NoSuchMethodException | IllegalAccessException e) {
 e.printStackTrace();
 }
}

Lookup l = MethodHandles.lookup();
lookupDefineClass(l);

We always need to call MethodHandles.lookup()—this gives us a lookup
context object based on the currently executing method.

Lookup objects have several methods (which all start with find)
declared on them for method resolution. These include findVirtual(),
findConstructor(), and findStatic().

One big difference between the Reflection and Method Handles APIs is
access control. A Lookup object will only return methods that are
accessible to the context where the lookup was created—and there is no
way to subvert this (no equivalent of Reflection’s setAccessible()
hack).

Method handles therefore always comply with the security manager, even
when the equivalent reflective code does not. They are access-checked at
the point where the lookup context is constructed—the lookup object will
not return handles to any methods to which it does not have proper
access.

The lookup object, or method handles derived from it, can be returned to
other contexts, including ones where access to the method would no
longer be possible. Under those circumstances, the handle is still
executable—access control is checked at lookup time, as we can see in
this example:

public class SneakyLoader extends ClassLoader {
 public SneakyLoader() {
 super(SneakyLoader.class.getClassLoader());
 }

 public Lookup getLookup() {
 return MethodHandles.lookup();
 }
}

SneakyLoader snLdr = new SneakyLoader();
l = snLdr.getLookup();
lookupDefineClass(l);

With a Lookup object, we’re able to produce method handles to any
method we have access to. We can also produce a way of accessing fields
that may not have a method that gives access. The findGetter() and
findSetter() methods on Lookup produce method handles that can read
or update fields as needed.

Invoking Method Handles

A method handle represents the ability to call a method. They are
strongly typed and as typesafe as possible. Instances are all of some
subclass of java.lang.invoke.MethodHandle, which is a class that needs
special treatment from the JVM.

There are two ways to invoke a method handle—invoke() and
invokeExact(). Both of these take the receiver and call arguments as
parameters. invokeExact() tries to call the method handle directly as
is, whereas invoke() will massage call arguments if needed.

In general, invoke() performs an asType() conversion if
necessary—this converts arguments according to these rules:

	
A primitive argument will be boxed if required.

	
A boxed primitive will be unboxed if required.

	
Primitives will be widened is necessary.

	
A void return type will be massaged to 0 or null, depending on
whether the expected return was primitive or of reference type.

	
null values are passed through, regardless of static type.

With these potential conversions in place, invocation looks like this:

Object rcvr = "a";
try {
 MethodType mt = MethodType.methodType(int.class);
 MethodHandles.Lookup l = MethodHandles.lookup();
 MethodHandle mh = l.findVirtual(rcvr.getClass(), "hashCode", mt);

 int ret;
 try {
 ret = (int)mh.invoke(rcvr);
 System.out.println(ret);
 } catch (Throwable t) {
 t.printStackTrace();
 }
} catch (IllegalArgumentException |
 NoSuchMethodException | SecurityException e) {
 e.printStackTrace();
} catch (IllegalAccessException x) {
 x.printStackTrace();
}

Method handles provide a clearer and more coherent way to access the
same dynamic programming capabilities as Reflection. In addition, they
are designed to work well with the low-level execution model of the JVM
and thus hold out the promise of much better performance than Reflection
can provide.

1 As in Chapter 6, we’re borrowing the expression transitive closure from the branch of mathematics called graph theory.

Chapter 12. Java Platform Modules

With the release of Java 9, the platform finally gained the long-awaited modules system.
This feature had originally been intended to ship as part of Sun’s Java 7 release, before the acquisition by Oracle.
However, the task proved to be far more complex and subtle than anticipated.

When Oracle acquired Java (as part of the technology they received from Sun Microsystems) Mark Reinhold, Java’s Chief Architect, proposed “Plan B”, which reduced the scope of Java 7 to allow for a quicker release.

Java platform modules (“Project Jigsaw”) was pushed back, along with lambdas, to Java 8.
However, during the development of Java 8, the size and complexity of the feature led to a decision that, rather than delay Java 8 (and availability of lambdas and other highly desired features), it would be better to defer modules to Java 9.

The end result was that the modules capability was delayed first to Java 8 and then to Java 9.
Even then, the scope of the work led to substantial delays in the release of Java 9, and so modules did not actually ship until September 2017.

In this chapter we will provide a basic introduction to the Java Platform Modules System (JPMS).
However, this is a large and complex subject—interested readers may well require a more in-depth reference, such as Java 9 Modularity by Sander Mak and Paul Bakker (O’Reilly).

Warning

Modules are a relatively advanced feature that are primarily about packaging and deploying entire applications and their dependencies. It is not necessary for a new Java programmer to fully understand this topic while still learning how to write simple Java programs.

Due to the advanced nature of modules, this chapter assumes you are familiar with a modern Java build tool, such as Gradle or Maven.
If you are new to Java, you can safely ignore references to those tools and just read the chapter to get a first, high-level overview of JPMS.

Why Modules?

There were several major motivating reasons for wanting to add modules to the Java platform.
These included a desire for:

	
Strong encapsulation

	
Well-defined interfaces

	
Explicit dependencies

These are all language (and application design) level, and they were combined with the promise of new platform-level capabilities as well:

	
Scalable development

	
Improved performance (especially startup time) and reduced footprint

	
Reduced attack surface and better security

	
Evolvable internals

On the encapsulation point, this was driven by the fact that the original language specification only supports private, public, protected, and package-private visibility levels.
There is no way to control access in a more fine-grained way to express concepts such as:

	
Only specified packages are available as an API—others are internal and may not be accessed

	
Certain packages can be accessed by this list of packages but no others

	
Defining a strict exporting mechanism

The lack of these and related capabilities has been a significant shortcoming when architecting larger Java systems.
Not only that, but without a suitable protection mechanism, it would be very difficult to evolve the internals of the JDK—as nothing prevents user applications from directly accessing implementation classes.

The modules system attempts to address all of these concerns at once and to provide a solution that works both for the JDK and for user applications.

Modularizing the JDK

The monolithic JDK that shipped with Java 8 was the first target for the modules system, and the familiar rt.jar was broken up into modules.

Note

Java 8 had begun the work of modularisation, by shipping a feature called Compact Profiles that tidied up the code and made it possible to ship a reduced runtime footprint.

java.base is the module that represents the minimum that’s actually needed for a Java application to start up.
It contains core packages, such as:

java.io
java.lang
java.math
java.net
java.nio
java.security
java.text
java.time
java.util
javax.crypto
javax.net
javax.security

along with some subpackages and non-exported implementation packages such as sun.text.resources.
Some of the differences in compilation behavior between Java 8 and modular Java can be seen in this simple program, which extends an internal public class contained in java.base:

import java.util.Arrays;
import sun.text.resources.FormatData;

public final class FormatStealer extends FormatData {
 public static void main(String[] args) {
 FormatStealer fs = new FormatStealer();
 fs.run();
 }

 private void run() {
 String[] s = (String[]) handleGetObject("japanese.Eras");
 System.out.println(Arrays.toString(s));

 Object[][] contents = getContents();
 Object[] eraData = contents[14];
 Object[] eras = (Object[])eraData[1];
 System.out.println(Arrays.toString(eras));
 }
}

When compiled and run under Java 8, this produces a list of Japanese eras:

[, Meiji, Taisho, Showa, Heisei]
[, Meiji, Taisho, Showa, Heisei]

However, attempting to compile the code on Java 11 produces this error message:

$ javac javanut7/ch12/FormatStealer.java
javanut7/ch12/FormatStealer.java:4:
 error: package sun.text.resources is not visible
import sun.text.resources.FormatData;
 ^
 (package sun.text.resources is declared in module
 java.base, which does not export it to the unnamed module)
javanut7/ch12/FormatStealer.java:14: error: cannot find symbol
 String[] s = (String[]) handleGetObject("japanese.Eras");
 ^
 symbol: method handleGetObject(String)
 location: class FormatStealer
javanut7/ch12/FormatStealer.java:17: error: cannot find symbol
 Object[][] contents = getContents();
 ^
 symbol: method getContents()
 location: class FormatStealer
3 errors

With a modular Java, even classes that are public cannot be accessed unless they are explicitly exported by the module they are defined in.
We can temporarily force the compiler to use the internal package (basically reasserting the old access rules) with the --add-exports switch, like this:

$ javac --add-exports java.base/sun.text.resources=ALL-UNNAMED \
 javanut7/ch12/FormatStealer.java
javanut7/ch12/FormatStealer.java:5:
 warning: FormatData is internal proprietary API and may be
 removed in a future release
import sun.text.resources.FormatData;
 ^
javanut7/ch12/FormatStealer.java:7:
 warning: FormatData is internal proprietary API and may be
 removed in a future release
public final class FormatStealer extends FormatData {
 ^
2 warnings

We need to specify that the export is being granted to the unnamed module, as we are compiling our class standalone and not as part of a module.
The compiler warns us that we’re using an internal API and that this might break with a future release of Java.

Interestingly, if our code is run on Java 11, then the output produced is slightly different:

[, Meiji, Taisho, Showa, Heisei, NewEra]
[, Meiji, Taisho, Showa, Heisei, NewEra]

This is because the Japanese era will change from Heisei (the current era) to a new one on May 1, 2019.
By tradition, the name of the new era is not known ahead of time, so “NewEra” is a placeholder for the name that will be replaced by the official name in a future release.
Unicode code point U+32FF has been reserved for the character that will represent the new era name.

Although java.base is the absolute minimum that an application needs to start up, at compile time we want the visible platform to be as close to the expected (Java 8) experience as possible.

This means that we use a much larger set of modules, contained under an umbrella module, java.se.
This module has a dependency graph, shown in Figure 12-1.

[image: JN7 1201]
Figure 12-1. Module dependency graph of java.se

This brings in almost all of the classes and packages that most Java developers expect and use.
However, the modules defining the CORBA and Java EE APIs are not required by java.se, but they are required by the java.se.ee module.

Warning

This means that any project that depends on the Java EE APIs (or CORBA) will not compile by default on Java 9 onward and a special build config must be used.

This includes APIs like JAXB—to make such projects compile, java.se.ee must be explicitly included in the build.

As well as these changes to compilation visibility, due to the modularization of the JDK, the modules system is also intended to allow developers to modularize their own code.

Writing Your Own Modules

In this section, we will discuss the basic concepts needed to start writing modular Java applications.

Basic Modules Syntax

The key to modularizing is the new file module-info.java, which contains a description of a module. This is referred to as a module descriptor.

A module is laid out for compilation correctly on the filesystem in the following way:

	
Below the source root of the project (src), there needs to be a directory named the same as the module (the moduledir).

	
Inside the moduledir is the module-info.java, at the same level as where the packages start from.

The module info is compiled to a binary format, module-info.class, which contains the metadata that will be used when a modular runtime attempts to link and run our application.
Let’s look at a simple example of a module-info.java:

module kathik {
 requires java.net.http;

 exports kathik.main;
}

This introduces some new syntax: module, exports, and requires—but these are not really full keywords in the accepted sense. As stated in the Java Language Specification SE 9:

A further ten character sequences are restricted keywords: open, module, requires, transitive, exports, opens, to, uses, provides, and with. These character sequences are tokenized as keywords solely where they appear as terminals in the ModuleDeclaration and ModuleDirective productions.

This means that these keywords can only appear in the module metadata and are compiled into the binary format by javac.
The meaning of the major restricted keywords is:

	module

	
Starts the module’s metadata declaration

	requires

	
Lists a module on which this module depends

	exports

	
Declares which packages are exported as an API

The remaining keywords will be introduced throughout the rest of the chapter.

In our example, this means that we’re declaring a module kathik that depends upon the module java.net.http that was standardized in Java 11 (as well as an implicit dependency on java.base).
The module exports a single package, kathik.main, which is the only package in this module that will be accessible from other modules at compile time.

Building a Simple Modular Application

As an example, let’s build a simple tool that checks whether websites are using HTTP/2 yet, using the API that we met in Chapter 10:

import static java.net.http.HttpResponse.BodyHandlers.ofString;

public final class HTTP2Checker {
 public static void main(String[] args) throws Exception {
 if (args.length == 0) {
 System.err.println("Provide URLS to check");
 }
 for (final var location : args) {
 var client = HttpClient.newBuilder().build();
 var uri = new URI(location);
 var req = HttpRequest.newBuilder(uri).build();

 var response = client.send(req,
 ofString(Charset.defaultCharset()));
 System.out.println(location +": "+ response.version());
 }
 }
}

This relies on two modules—java.net.http and the ubiquitous java.base.
The module file for the app is very simple:

module http2checker {
 requires java.net.http;
}

Assuming a simple, standard module layout, this can be compiled like this:

$ javac -d out/http2checker\
 src/http2checker/javanut7/ch12/HTTP2Checker.java\
 src/http2checker/module-info.java

This creates a compiled module in the out/ directory.
For use, it needs to be packaged as a JAR file:

$ jar -cfe httpchecker.jar javanut7.ch12.HTTP2Checker\
 -C out/http2checker/ .

We used the -e switch to set an entry point for the module—that is, a class to be executed when we use the module as an application.
Let’s see it in action:

$ java -jar httpchecker.jar http://www.google.com
http://www.google.com: HTTP_1_1
$ java -jar httpchecker.jar https://www.google.com
https://www.google.com: HTTP_2

This shows that, at the time of writing, Google’s website was serving its main page over HTTPS using HTTP/2, but still over HTTP/1.1 for legacy HTTP service.

Now that we have seen how to compile and run a simple modular application, let’s meet some more of the core features of modularity that are needed to build and run full-size applications.

The Module Path

Many Java developers are familiar with the concept of the classpath.
When working with modular Java applications, we instead need to work with the module path.
This is a new concept for modules that replaces the classpath wherever possible.

Modules carry metadata about their exports and dependencies—they are not just a long list of types.
This means that a graph of module dependencies can be built easily and that module resolution can proceed efficiently.

Code that is not yet modularized continues to be placed on the classpath.
This code is loaded into the unnamed module, which is special and can read all other modules that can be reached from java.se.
Using the unnamed module happens automatically when classes are placed
on the classpath.

This provides a migration path to adopting a modular Java runtime without having to migrate to a fully modular application path.
However, it does have two major drawbacks: none of the benefits of modules will be available until the app is fully migrated, and the self-consistency of the classpath must be maintained by hand until modularization is complete.

Automatic Modules

One of the constraints of the modules system is that we can’t reference JARs on the classpath from named modules.
This is a safety feature—the designers of the module system wanted the module dependency graph to utilize full metadata.
However, there may be times when modular code needs to reference packages that have not yet been modularized.
The solution for this is to place the unmodified JAR onto the module path directly (and remove it from the classpath).
This has the following features:

	
A JAR on the module path becomes an automatic module

	
Module name derived from JAR name (or read from MANIFEST.MF)

	
Exports every package

	
Requires all other modules (including the unnamed module)

This is another feature designed to mitigate and help with migration, but some safety is still being given up by using automatic modules.

Open Modules

As noted, simply marking a method public no longer guarantees that the element will be accessible everywhere.
Instead, accessibility now depends also upon whether the package containing that element is exported by its defining module.
Another major issue in the design of modules is the use of reflection to access classes.

Reflection is such a wide-ranging, general-purpose mechanism that it is difficult to see, at first glance, how it can be reconciled with the strong encapsulation goals of JPMS.
Worse yet, so many of the Java ecosystem’s most important libraries and frameworks rely on reflection (e.g., unit testing, dependency injection, and many more) that not having a solution for reflection would make modules impossible to adopt for any real application.

The solution provided is twofold.
First, a module can declare itself an open module, like this:

open module kathik {
 exports kathik.api;
}

This declaration has the effect that:

	
All packages in the module can be accessed via reflection

	
Compile-time access is not provided for non-exported packages

This means that the configuration behaves like a standard module at compile time.
The overall intent is to provide simple compatibility with existing code and frameworks and ease migration pain.
With an open module, the previous expectation of being able to reflectively access code is restored.
In addition, the setAccessible() hack that allows access to private and other methods that would not normally permit access is preserved for open modules.

Finer-grained control over reflective access is also provided via the opens restricted keyword.
This selectively opens specific packages for reflective access by explicitly declaring packages to be accessible via reflection:

module kathik {
 exports kathik.api;
 opens kathik.domain;
}

This type of usage is likely to be useful when, for example, you are providing a domain model to be used by a module-aware object-relational mapping (ORM) system that needs full reflective access to the core domain types of a module.

It is possible to go further and restrict reflective access to specific client packages, using the to restricted keyword.
Where possible, this can be a good design principle, but of course such a technique will not work well with a general-purpose framework such as an ORM.

Note

In a similar way, it is possible to restrict the export of a package to only specific external packages. However, this feature was largely added to help with the modularization of the JDK itself, and it has limited applicability to user modules.

Not only that, but it is also possible to both export and open a package, but this is not recommended—during migration, access to a package should ideally be either compile-time or reflective but not both.

In the case where reflective access is required to a package now contained in a module, the platform provides some switches to act as band-aids for the transitional period.
In particular, the java option --add-opens module/package=ALL-UNNAMED can be used to open a specific package of module for reflective access to all code from the classpath, overriding the behavior of the modules system.

Tip

For code that is already modular, it can also be used to allow reflective access to a specific module.

When you are migrating to modular Java, any code that reflectively accesses internal code of another module should be run with that switch at first, until the situation can be remediated.

Related to this issue of reflective access (and a special case of it) is the issue of widespread use of internal platform APIs by frameworks.
This is usually characterized as the “Unsafe problem” and we will encounter it toward the end of the chapter.

Services

The modules system includes the services mechanism, to mitigate another problem with the advanced form of encapsulation.
This problem is simply explained by considering a familiar piece of code:

import services.Service;
Service s = new ServiceImpl();

Even if Service lives in an exported API package, this line of code still will not compile unless the package containing ServiceImpl is also exported.
What we need is a mechanism to allow fine-grained access to classes implementing service classes without needing the entire package to be imported.
For example, we could write something like this:

module kathik {
 exports kathik.api;
 requires othermodule.services;

 provides services.Service;
 with kathik.services.ServiceImpl;
}

Now the ServiceImpl class is accessible at compile time as an implementation of the Service interface.
Note that the services package must be contained in another module, which is required by the current module for this provision to work.

Multi-Release JARs

To explain the problem that is solved by multi-release JARs, let’s consider a simple example: finding the process ID (PID) of the currently executing process (i.e., the JVM that’s executing our code).

Note

We didn’t use the HTTP/2 example from earlier on, as Java 8 doesn’t have an HTTP/2 API—so we would have had to do a huge amount of work (essentially a full backport!) to provide the equivalent functionality for 8.

This may seem like a simple task, but on Java 8 this requires a surprising amount of boilerplate code:

public class GetPID {
 public static long getPid() {
 // This rather clunky call uses JMX to return the name that
 // represents the currently running JVM. This name is in the
 // format <pid>@<hostname>—on OpenJDK and Oracle VMs only—there
 // is no guaranteed portable solution for this on Java 8
 final String jvmName =
 ManagementFactory.getRuntimeMXBean().getName();
 final int index = jvmName.indexOf('@');
 if (index < 1)
 return -1;

 try {
 return Long.parseLong(jvmName.substring(0, index));
 } catch (NumberFormatException nfe) {
 return -1;
 }
 }
}

As we can see, this is nowhere near as straightforward as we might like.
Worse still, it is not supported in a standard way across all Java 8 implementations.
Fortunately, from Java 9 onward we can use the new ProcessHandle API, like this:

public class GetPID {
 public static long getPid() {
 // Use new Java 9 Process API...
 ProcessHandle processHandle = ProcessHandle.current();
 return processHandle.getPid();
 }
}

This now utilizes a standard API, but it leads to an essential problem: how can the developer write code that is guaranteed to run on all current Java versions?

What we want is to build and run a project correctly in multiple Java versions.
We want to depend on library classes that are only available in later versions, but still run on an earlier version by using some code “shims.”
The end result must be a single JAR and we do not require the project to switch to a multi-module format—in fact, the JAR must work as an automatic module.

Let’s look at an example project that has to run correctly in both Java 8 and Java 11.
The main codebase is built with Java 8 and the Java 11 portion must be built with Java 11.
This part of the build must be isolated from the main codebase to prevent compilation failures, although it can depend on the build artifacts of the Java 8 build.

To keep the build configuration simple, this feature is controlled using an entry in MANIFEST.MF within the JAR file:

Multi-Release: True

The variant code (i.e., that for a later version) is then stored in a special directory in META-INF.
In our case, this is META-INF/versions/11.

For a Java runtime that implements this feature, any classes in the version-specific directory override the versions in the content root.
On the other hand, for Java 8 and earlier versions, both the manifest entry and the versions/ directory are ignored and only the classes in the content root are found.

Converting to a Multi-Release JAR

To start deploying your software as a multi-release JAR, follow this outline:

	
Isolate code that is JDK-version-specific

	
If possible, place that code into a package or group of packages

	
Get the version 8 project building cleanly

	
Create a new, separate project for the supplementary classes

	
Set up a single dependency for the new project (the version 8 artifact)

For Gradle, you can also use the concept of a source set and compile the v11 code using a different (later) compiler.
This can then be built into a JAR using a stanza like this:

jar {
 into('META-INF/versions/11') {
 from sourceSets.java11.output
 }

 manifest.attributes(
 'Multi-Release': 'true'
)
}

For Maven, the current easiest route is to use the Maven Dependency Plug-in, and add the modular classes to the overall JAR as part of the separate generate-resources phase.

Migrating to Modules

Many Java developers are facing the question of when they should migrate their applications to use modules.

Tip

Modules should be the default for all greenfield apps, especially those that are architected in a microservices style.

When considering a migration of an existing app (especially a monolithic design), you can use the following roadmap:

	
First upgrade the application runtime to Java 11 (running from the classpath initially)

	
Identify any application dependencies that have been modularized and migrate those dependencies to modules

	
Retain any non-modularized dependencies as automatic modules

	
Introduce a single monolithic module of all application code

At this point, a minimally modularized application should now be ready for production deployment.
This module will usually be an open module at this stage of the process.
The next step is architectural refactoring, and it is at this point that applications can be broken out into individual modules as needed.

Once the application code runs in modules, it can make sense to limit reflective access to your code via opens.
This access can be restricted to specific modules (such as ORM or dependency injection modules) as a first step toward removing any unnecessary access.

For Maven users, it’s worth remembering that Maven is not a modules system, but it does have dependencies—and (unlike JPMS dependencies) they are versioned.
The Maven tooling is still evolving to fully integrate with JPMS (and many plug-ins have not caught up yet at the time of this writing).
However, some general guidelines for modular Maven projects are emerging, specifically:

	
Aim to produce one module per Maven POM

	
Don’t modularize a Maven project until you are ready (or have an immediate need to)

	
Remember that running on a Java 11 runtime does not require building on a Java 11 toolchain

The last point indicates that one path for migration of Maven projects is to start by building as a Java 8 project and ensuring that those Maven artifacts can deploy cleanly (as automatic modules) on a Java 11 runtime.
Only once that first step is working properly should a full modularization be undertaken.

There is some good tooling support available to help with the modularization process.
Java 8 and up ships with jdeps (see Chapter 13), a tool for determining what packages and modules your code depends upon.
This is very helpful for migrations from Java 8 to 11, and the use of jdeps when rearchitecting is recommended.

Custom Runtime Images

One of the key goals of JPMS is the possibility that applications may need not every class present in the traditional monolithic runtime of Java 8, and instead can manage with a smaller subset of modules.
Such applications can have a much smaller footprint in terms of startup time and memory overhead.
This can be taken further: if not all classes are needed, then why not ship an application together with a reduced, custom runtime image that only includes what’s necessary?

To demonstrate the idea, let’s package the HTTP/2 checker into a standalone tool with a custom runtime.
We can use the jlink tool (which has been part of the platform since Java 9) to achieve this as follows:

$ jlink --module-path httpchecker.jar:$JAVA_HOME/jmods \
--add-modules http2checker \
--launcher http2chk=http2checker \
--output http2chk-image

Note that this assumes that the JAR file httpchecker.jar was created with a main class (aka entry point).
The result is an output directory, http2chk-image, which is about 39M in size, much less than the full image, especially taking into account that because the tool uses the new HTTP module it requires the libraries for security, crypto, and so on.

From within the custom image directory we can run the http2chk tool directly, and see that it works even when the machine does not have the required version of java:

$ java -version
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
$./bin/http2chk https://www.google.com
https://www.google.com: HTTP_2

The deployment of custom runtime images is still a very new tool, but it has great potential to reduce your code footprint and help Java remain competitive in the age of microservices.
In the future, jlink could even be combined with new approaches to compilation, including the Graal compiler, which can be used as an ahead-of-time (AOT) compiler as well as a JIT compiler (see the jaotc).
As of Java 11, however, combining jlink and jaotc does not seem to offer any conclusive performance gains.

Issues with Modules

The modules system, despite being the flagship feature of Java 9 and having had a large amount of engineering time devoted to it, is not without its problems.
This was, perhaps, inevitable—the feature fundamentally changes the nature of how Java applications are architected and delivered.
It would have been almost impossible for modules to avoid running up against some problems when trying to retrofit over the large, mature ecosystem that is Java.

Unsafe and Related Problems

The class sun.misc.Unsafe is a class that is both widely used and popular with framework writers and other implementors within the Java world.
However, it is an internal implementation class and is not part of the standard API of the Java platform (as the package name clearly indicates).
The class name also provides a fairly strong clue that this is not really intended for use by Java applications.

Unsafe is an unsupported, internal API and so could be withdrawn or modified by any new Java version, without regard to the effect on user applications.
Any code which does use it is technically directly coupled to the HotSpot VM, and is also potentially nonstandard and may not run on other implementations.

Although not an official part of Java SE in any way, Unsafe has become a de facto standard and key part of the implementation of basically every major framework in one way or another.
Over subsequent versions it has evolved into a kind of dumping ground for nonstandard but necessary features.
This admixture of features is a real mixed bag, with varying degrees of safety provided by each capability.
Example uses of Unsafe include:

	
Fast de-/serialization

	
Threadsafe 64-bit sized native memory access (e.g., offheap)

	
Atomic memory operations (e.g., Compare-and-Swap)

	
Fast field/memory access

	
Multi-operating system replacement for JNI

	
Access to array items with volatile semantics (see Chapter 6)

The essential problem is that many frameworks/libraries were unable to move to Java 9 without replacement for some Unsafe features.
This impacts everyone using any libraries from a wide range of frameworks—basically every application in the Java ecosystem.

To fix this problem, Oracle created new supported APIs for some of the needed functionality, and segregated APIs that could not be encapsulated in time into a module, jdk.unsupported, which makes it clear that this is not a supported API and that developers use it at their own risk.

This gives Unsafe a temporary pass (which is strictly limited time) while encouraging library and framework developers to move to the new APIs.
An example of a replacement API is VarHandles.
These extend the Method Handles concept (from Chapter 11), and add new functionality, such as concurrency barrier modes for Java 9.
These, along with some modest updates to JMM, are intended to produce a standard API for accessing new low-level processor features without allowing developers full access to dangerous capabilities, as were found in Unsafe.

More details about Unsafe and related low-level platform techniques can be found in Optimizing Java (O’Reilly).

Lack of Versioning

The JPMS standard as of Java 11 does not include the versioning of dependencies.

Note

This was a deliberate design decision in order to reduce the complexity of the delivered system, and does not preclude the possibility that modules could include versioned dependencies in the future.

The current situation requires external tools to handle the versioning of module dependencies.
In the case of Maven, this will be within the project POM.
An advantage to this approach is that the download and management of versions is also handled within the local repository of the build tool.

However it is done, though, the simple fact is that the dependency version information must be stored out of the module and does not form part of the JAR artifact.

There’s no getting away from it—this is pretty ugly, but the counterpoint is that the situation is no worse than it was with dependencies being deduced from the classpath.

Slow Adoption Rates

With the release of Java 9, the Java release model fundamentally changed.
Java 8 and 9 used the “keystone release” model—where one star feature (such as lambdas or modules) essentially defines the release and so the ship date is determined by when the feature is done.
The problem with this model is that it can cause inefficiencies due to uncertainty about when versions will ship.
In particular, a small feature that just misses a release will have to wait a long time for the next major release.

As a result, from Java 10 onward, a new release model was adopted, which introduces strict time-based versioning.
This involves:

	
Java releases are now classified as “feature” releases, which occur at a regular cadence of once every six months.

	
Features are not merged into the platform until they are essentially complete.

	
The mainline repo is in a releasable state at all times.

These releases are only good for six months, after which time they are no longer supported.
Every three years, a special release is designated as a long-term support (LTS) release, which has extended support available.

Although the Java community is generally positive on the new faster release cycle, adoption rates of Java 9 and above have been much smaller than for previous releases.
This may be due to the desire of larger enterprises to have longer support cycles, rather than upgrading to each feature release after only six months.

It is also the case that the upgrade from Java 8 to 9 is not a drop-in replacement (unlike 7 to 8, and to a lesser extent 6 to 7).
The modules subsystem fundamentally changes many aspects of the Java platform, even if end-user applications do not take advantage of modules.
This makes teams reluctant to upgrade from 8 unless they can see clear benefits in doing so.

This leads to “chicken-and-egg” problems, where teams don’t move, because they perceive that the libraries and other components that they depend upon don’t yet support modular Java.
On the other side of the equation, the companies and open source communities who maintain libraries and other tools may well feel that because the user population for modular Java is still so small, it’s a low priority to support versions beyond 8.

The arrival of Java 11, the first post-8 LTS release, may help this situation, as it provides a supported environment that enterprise teams may find more comfortable as a migration target.

Summary

The modules feature, first introduced in Java 9, aims to solve several problems at once.
The aims of shorter startup time, lower footprint, and reduced complexity by denying access to internals have all been met.
The longer-term goals of enabling better architecture of applications and starting to think about new approaches for compilation and deployment are still in progress.

However, the plain fact is that as of the release of Java 11, not many teams and projects have moved wholeheartedly to the modular world.
This is to be expected, as modularity is a long-term project that has a slow payoff and relies on network effects within the ecosystem to achieve the full benefit.

New applications should definitely consider building in a modular way from the get go, but the overall story of platform modularity within the Java ecosystem is still only beginning itself.

Chapter 13. Platform Tools

This chapter discusses the tools that ship with the OpenJDK version of the Java platform. The tools covered are all command-line tools.
If you are using a different version of Java, you may find similar but different tools as part of your distribution instead.

Later in the chapter, we devote a dedicated section to the jshell tool, which has introduced interactive development to the Java platform as of version 9.

Command-Line Tools

The command-line tools we cover are the most commonly used tools, and those of greatest utility—they are not a complete description of every tool that is available.
In particular, tools concerned with CORBA and the server portion of RMI are not covered, as these modules have been removed from the platform with the release of Java 11.

Note

In some cases, we need to discuss switches that take filesystem paths.
As elsewhere in the book, we use Unix conventions for such cases.

The tools we are discussing are:

	
javac

	
java

	
jar

	
javadoc

	
jdeps

	
jps

	
jstat

	
jstatd

	
jinfo

	
jstack

	
jmap

	
javap

	
jaotc

	
jlink

	
jmod

javac

Basic usage

javac some/package/MyClass.java

Description

javac is the Java source code compiler—it produces bytecode (in the form of .class files) from .java source files.

For modern Java projects, javac is not often used directly, as it is rather low-level and unwieldy, especially for larger codebases. Instead, modern integrated development environments (IDEs) either drive javac automatically for the developer or have built-in compilers for use while code is being written. For deployment, most projects will make use of a separate build tool, such as Maven, Ant, or Gradle. Discussion of these tools is outside the scope of this book.

Nevertheless, it is useful for developers to understand how to use javac, as there are cases when compiling small codebases by hand is preferable to having to install and manage a production-grade build tool such as Maven.

Common switches

		-classpath

		
	Supplies classes we need for compilation.

	

		-d some/dir

		
	Tells javac where to output class files.

	

		@project.list

		
	Load options and source files from the file project.list.

	

		-help

		
	Help on options.

	

		-X

		
	Help on nonstandard options.

	

		-source <version>

		
	Control the Java version that javac will accept.

	

		-target <version>

		
	Control the version of class files that javac will output.

	

		-profile <profile>

		
	Control the profile that javac will use when compiling the application. See later in this chapter for more detail on Compact Profiles.

	

		-Xlint

		
	Enable detail about warnings.

	

		-Xstdout

		
	Redirect output of compilation run to a file.

	

		-g

		
	Add debug information to class files.

	

Notes

javac has traditionally accepted switches (-source and -target) that control the version of the source language that the compiler would accept, and the version of the class file format that was used for the outputted class files.

This facility introduces additional compiler complexity (as multiple language syntaxes must be supported internally) for some small developer benefit. In Java 8, this capability has begun to be slightly tidied up and placed on a more formal basis.

From JDK 8 onward, javac will only accept source and target options from three versions back. That is, only the formats from JDK 5, 6, 7, and 8 will be accepted by javac. This does not affect the java interpreter—any class file from any Java version will still work on the JVM shipped with Java 8.

C and C++ developers may find that the -g switch is less helpful to them than it is in those other languages. This is largely due to the widespread use of IDEs in the Java ecosystem—integrated debugging is simply a lot more useful, and easier to use, than additional debug symbols in class files.

The use of the lint capability remains somewhat controversial among developers. Many Java developers produce code that triggers a large number of compilation warnings, which they then simply ignore. However, experience on larger codebases (especially on the JDK codebase itself) suggests that in a substantial percentage of cases, code that triggers warnings is code in which subtle bugs may lurk. Use of the lint feature, or static analysis tools (such as FindBugs), is strongly recommended.

java

Basic usage

java some.package.MyClass java -jar my-packaged.jar

Description

java is the executable that starts up a Java Virtual Machine. The initial entry point into the program is the main() method that exists on the named class, and that has the signature:

public static void main(String[] args);

This method is run on the single application thread that is created by the JVM startup. The JVM process will exit once this method returns (and any additional nondaemon application threads that were started have terminated).

If the form takes a JAR file rather than a class (the executable JAR form), the JAR file must contain a piece of metadata that tells the JVM which class to start from.

This bit of metadata is the Main-Class: attribute, and it is contained in the MANIFEST.MF file in the META-INF/ directory. See the description of the jar tool for more details.

Common switches

		-cp <classpath>

		
	Define the classpath to read from.

	

		-X, -?, -help

		
	Provide help about the java executable and its switches.

	

		-D<property=value>

		
	Sets a Java system property that can be retrieved by the Java program. Any number of such properties can be specified this way.

	

		-jar

		
	Run an executable JAR (see the entry for jar).

	

		-Xbootclasspath(/a or /p)

		
	Run with an alternative system classpath (very rarely used).

	

		-client, -server

		
	Select a HotSpot JIT compiler (see “Notes” for this entry).

	

		-Xint, -Xcomp, -Xmixed

		
	Control JIT compilation (very rarely used).

	

		-Xms<size>

		
	Set the minimum committed heap size for the JVM.

	

		-Xmx<size>

		
	Set the maximum committed heap size for the JVM.

	

		-agentlib:<agent>, -agentpath:<path to agent>

		
	Specify a JVM Tooling Interface (JVMTI) agent to attach to the process being started. Agents are typically used for instrumentation or monitoring.

	

		-verbose

		
	Generate additional output, sometimes useful for debugging.

	

Notes

The HotSpot VM contains two separate JIT compilers—known as the client (or C1) compiler and the server (or C2) compiler. These were designed for different purposes, with the client compiler offering more predictable performance and quicker startup, at the expense of not performing aggressive code optimization.

Traditionally, the JIT compiler that a Java process used was chosen at process startup via the -client or -server switch. However, as hardware advances have made compilation ever cheaper, a new possibility has become available—to use the client compiler early on, while the Java process is warming up, and then to switch to the high-performance optimizations available in the server compiler when they are available. This scheme is called Tiered Compilation, and it is the default in Java 8. Most processes will no longer need explicit -client or -server switches.

On the Windows platform, a slightly different version of the java executable is often used—javaw. This version starts up a Java Virtual Machine, without forcing a Windows console window to appear.

In older Java versions, a number of different legacy interpreters and virtual machine modes were supported. These have now mostly been removed, and any remaining should be regarded as vestigial.

Switches that start with -X were intended to be nonstandard switches. However, the trend has been to standardize a number of these switches (particularly -Xms and -Xmx). In parallel, Java versions have introduced an increasing number of -XX: switches. These were intended to be experimental and not for production use. However, as the implementations have stabilized, some of these switches are now suitable for some advanced users (even in production deployments).

In general, a full discussion of switches is outside the scope of this book. Configuration of the JVM for production use is a specialist subject, and developers are urged to take care, especially when modifying any switches related to the garbage collection subsystem.

jar

Basic usage

jar cvf my.jar someDir/

Description

The JAR utility is used to create and manipulate Java Archive (.jar) files. These are ZIP format files that contain Java classes, additional resources, and (usually) metadata. The tool has five major modes of operation—Create, Update, Index, List, and Extract—on a JAR file.

These are controlled by passing a command option character (not a switch) to jar. Only one command character can be specified, but optional modifier characters can also be used.

Command options

		
	c: Create a new archive

	

		
	u: Update archive

	

		
	i: Index an archive

	

		
	t: List an archive

	

		
	x: Extract an archive

	

Modifiers

		
	v: Verbose mode

	

		
	f: Operate on a named file, rather than standard input

	

		
	0: Store, but do not compress, files added to the archive

	

		
	m: Add the contents of the specified file to the jar metadata manifest

	

		
	e: Make this jar executable, with the specified class as the entry point

	

Notes

The syntax of the jar command is intentionally very similar to that of the Unix tar command. This similarity is the reason why jar uses command options, rather than switches (as the other Java platform commands do).

When you create a JAR file, the jar tool will automatically add a directory called META-INF that contains a file called MANIFEST.MF—this is metadata in the form of headers paired with values. By default, MANIFEST.MF contains just two headers:

Manifest-Version: 1.0
Created-By: 1.8.0 (Oracle Corporation)

Using the m option allows additional metadata to be added into MANIFEST.MF at JAR creation time. One frequently added piece is the Main-Class: attribute, which indicates the entry point into the application contained in the JAR. A JAR with a specified Main-Class: can be directly executed by the JVM, via java -jar, or double-clicking the JAR in a graphical file browser.

The addition of the Main-Class: attribute is so common that jar has the e option to create it directly in MANIFEST.MF, rather than having to create a separate text file for this purpose.

javadoc

Basic usage

javadoc some.package

Description

javadoc produces documentation from Java source files. It does so by reading a special comment format (known as Javadoc comments) and parsing it into a standard documentation format, which can then be output into a variety of document formats (although HTML is by far the most common).

For a full description of Javadoc syntax, refer to Chapter 7.

Common switches

		-cp <classpath>

		
	Define the classpath to use

	

		-D <directory>

		
	Tell javadoc where to output the generated docs

	

		-quiet

		
	Suppress output except for errors and warnings

	

Notes

The platform API docs are all written in Javadoc.

javadoc is built on top of the same classes as javac, and uses some of the source compiler infrastructure to implement Javadoc features.

The typical way to use javadoc is to run it against a whole package, rather than just a class.

javadoc has a very large number of switches and options that can control many aspects of its behavior. Detailed discussion of all the options is outside the scope of this book.

jdeps

The jdeps tool is a static analysis tool for analyzing the dependencies of packages or classes. The tool has a number of usages, from identifying developer code that makes calls into the internal, undocumented JDK APIs (such as the sun.misc classes) to helping trace transitive dependencies.

jdeps can also be used to confirm whether a JAR file can run under a Compact Profile (see later in the chapter for more details on Compact Profiles).

Basic usage

jdeps com.me.MyClass

Description

jdeps reports dependency information for the classes it is asked to analyze. The classes can be specified as any class on the classpath, a file path, a directory, or a JAR file.

Common switches

		-s, -summary

		
	Prints dependency summary only.

	

		-v, -verbose

		
	Prints all class-level dependencies.

	

		-verbose:package

		
	Prints package-level dependencies, excluding dependencies within the same archive.

	

		-verbose:class

		
	Prints class-level dependencies, excluding dependencies within the same archive.

	

		-p <pkg name>, -package <pkg name>

		
	Finds dependencies in the specified package. You can specify this option multiple times for different packages. The -p and -e options are mutually exclusive.

	

		-e <regex>, -regex <regex>

		
	Finds dependencies in packages matching the specified regular expression pattern. The -p and -e options are mutually exclusive.

	

		-include <regex>

		
	Restricts analysis to classes matching pattern. This option filters the list of classes to be analyzed. It can be used together with -p and -e.

	

		-jdkinternals

		
	Finds class-level dependencies in JDK internal APIs (which may change or disappear in even minor platform releases).

	

		-apionly

		
	Restricts analysis to APIs—for example, dependencies from the signature of public and protected members of public classes including field type, method parameter types, returned type, and checked exception types.

	

		-R, -recursive

		
	Recursively traverses all dependencies.

	

		-h, -?, -help

		
	Prints help message for jdeps.

	

Notes

jdeps is a useful tool for making developers aware of their dependencies on the JRE not as a monolithic environment, but as something more modular.

jps

Basic usage

jps jps <remote URL>

Description

jps provides a list of all active JVM processes on the local machine (or a remote machine, if a suitable instance of jstatd is running on the remote side).

Common switches

		-m

		
	Output the arguments passed to the main method

	

		-l

		
	Output the full package name for the application’s main class (or the full path name to the application’s JAR file)

	

		-v

		
	Output the arguments passed to the JVM

	

Notes

This command is not strictly necessary, as the standard Unix ps command could suffice. However, it does not use the standard Unix mechanism for interrogating the process, so there are circumstances where a Java process stops responding (and looks dead to jps) but is still listed as alive by the operating system.

jstat

Basic usage

jstat <pid>

Description

This command displays some basic statistics about a given Java process. This is usually a local process, but can be located on a remote machine, provided the remote side is running a suitable jstatd process.

Common switches

		-options

		
	Reports a list of report types that jstat can produce

	

		-class

		
	Report on classloading activity to date

	

		-compiler

		
	JIT compilation of the process so far

	

		-gcutil

		
	Detailed GC report

	

		-printcompilation

		
	More detail on compilation

	

Notes

The general syntax jstat uses to identify a process (which may be remote) is:

[<protocol>://]<vmid>[@hostname][:port][/servername]

The general syntax is used to specify a remote process (which is usually connected to via JMX over RMI), but in practice, the local syntax is far more common, which simply uses the VM ID, which is the operating system process ID (PID) on mainstream platforms (Linux, Windows, Unix, macOS, etc.).

jstatd

Basic usage

jstatd <options>

Description

jstatd provides a way of making information about local JVMs available over the network. It achieves this using RMI, and can make these otherwise-local capabilities accessible to JMX clients. This requires special security settings, which differ from the JVM defaults. To start jstatd, first we need to create the following file and name it jstatd.policy:

grant codebase "file:${java.home}../lib/tools.jar {
 permission java.security.AllPermission
}

This policy file grants all security permissions to any class loaded from the JDK’s tools.jar file.

To launch jstatd with this policy, use this command line:

jstatd -J-Djava.security.policy=<path to jstat.policy>

Common switches

		-p <port>

		
	Look for an existing RMI registry on that port, and create one if not found

	

Notes

It is recommended that jstatd is always switched on in production environments, but not over the public internet. For most corporate and enterprise environments, this is nontrivial to achieve and will require the cooperation of Operations and Network Engineering staff. However, the benefits of having telemetry data from production JVMs, especially during outages, are difficult to overstate.

A full discussion of JMX and monitoring techniques is outside the scope of this book.

jinfo

Basic usage

jinfo <PID> jinfo <core file>

Description

This tool displays the system properties and JVM options for a running Java process (or a core file).

Common switches

		-flags

		
	Display JVM flags only

	

		-sysprops

		
	Display system properties only

	

Notes

In practice, this is very rarely used—although it can occasionally be useful as a sanity check that the expected program is actually what is executing.

jstack

Basic usage

jstack <PID>

Description

The jstack utility produces a stack trace for each Java thread in the process.

Common switches

		-F

		
	Force a thread dump

	

		-l

		
	Long mode (contains additional information about locks)

	

Notes

Producing the stack trace does not stop or terminate the Java process. The files that jstack produces can be very large, and some post-processing of the file is usually necessary.

jmap

Basic usage

jmap <process>

Description

jmap provides a view of memory allocation for a running Java process.

Common switches

		-histo

		
	Produces a histogram of the current state of allocated memory.

	

		-histo:live

		
	This version of the histogram only displays information for live objects.

	

		-heap

		
	Produces a heap dump from the running process.

	

Notes

The histogram forms walk the JVMs allocation list. This includes both live and dead (but not yet collected) objects. The histogram is organized by the type of objects using memory, and is ordered from greatest to least number of bytes used by a particular type. The standard form does not pause the JVM.

The live form ensures that it is accurate, by performing a full, stop-the-world (STW) garbage collection before executing. As a result, it should not be used on a production system at a time when a full GC would appreciably impact users.

For the -heap form, note that the production of a heap dump can be a time-consuming process, and is STW. Note that for many processes, the resulting file may be extremely large.

javap

Basic usage

javap <classname>

Description

javap is the Java class disassembler—effectively a tool for peeking inside class files. It can show the bytecode that Java methods have been compiled into, as well as the “constant pool” information (which contains information similar to that of the symbol table of Unix processes).

By default, javap shows signatures of public, protected, and default methods. The -p switch will also show private methods.

Common switches

		-c

		
	Decompile bytecode

	

		-v

		
	Verbose mode (include constant pool information)

	

		-p

		
	Include private methods

	

Notes

The javap tool will work with any class file, provided javap is from a JDK version the same as (or later than) the one that produced the file.

Note
Some Java language features may have surprising implementations in bytecode. For example, as we saw in Chapter 9, Java’s String class has effectively immutable instances and the JVM implements the string concatenation operator + in a different way in Java versions after 8 than previously. This difference is clearly visible in the disassembled bytecode shown by javap.

jaotc

Basic usage

jaotc --output libStringHash.so StringHash.class

Description

jaotc is the ahead-of-time compiler for the Java platform—a tool for compiling Java class files or modules to native code. This can be used to create shared objects that can greatly reduce process startup time and provide lower memory footprint due to reduced dynamic class operations.

Common switches

		--info

		
	Basic information about what’s being compiled

	

		--verbose

		
	Verbose mode (full details)

	

		--help

		
	Full list of options (very useful)

	

Notes

The jaotc tool will work with class files, JARs, or modules and can support multiple linker backends. On macOS, the shared objects produced will be Mach .dylib files rather than Linux shared objects.

Note
Some Java language features (e.g., reflection, method handles) may have some restrictions when compiling to static code.

jlink

Basic usage

jlink [options] --module-path modulepath --add-modules module

Description

jlink is the custom runtime image linker for the Java platform—a tool for linking and packaging Java classes, modules, and their dependencies into a custom runtime image. The image created by the jlink tool will comprise a linked set of modules, along with their transitive dependences.

Common switches

		--add-modules module [, module1]

		
	Adds modules to the root set of modules to be linked

	

		--endian {little|big}

		
	Specifies the endianness of the target architecture

	

		--module-path path

		
	Specify the path where the modules for linking can be found

	

		--save-opts file

		
	Saves the options to the linker in the specified file

	

		--help

		
	Print help information

	

		@filename

		
	Read options from filename instead of the command line

	

Notes

The jlink tool will work with any class file or module and linking will require the transitive dependencies of the code to be linked.

Note
Custom runtime images don’t have any support for automatic updates by default. This means that developers are responsible for rebuilding and updating their own applications in the field when necessary. Some Java language features may have some restrictions, as the runtime image may not include the full JDK; therefore reflection and other dynamic techniques may not be fully supported.

jmod

Basic usage

jmod create [options] my-new.jmod

Description

jmod prepares Java software components for use by the custom linker (jlink). The result is a .jmod file. This should be considered an intermediate file, not a primary artifact for distribution.

Basic modes

		create

		
	Create a new JMOD file

	

		extract

		
	Extract all files from a JMOD file (explode it)

	

		list

		
	List all files from a JMOD file

	

		describe

		
	Print details about a JMOD file

	

Common switches

		--module-path path

		
	Specify the module path where the core contents of the module can be found

	

		--libs path

		
	Specify the path where native libraries for inclusion can be found

	

		--help

		
	Print help information

	

		@filename

		
	Read options from filename instead of the command line

	

Notes

jmod reads and writes the JMOD format, but please note that this is different from the modular JAR format and is not intended as an immediate replacement for it.

Note
The jmod tool is only currently intended for modules that are intended to be linked into a runtime image (using the jlink tool). One other possible use case is for packaging modules that have native libraries or other configuration files that must be distributed along with the module.

Introduction to JShell

Java is traditionally understood as a language that is class-oriented and has a distinct compile-interpret-evaluate execution model.
However, in this section, we will discuss a new technology that extends this programming paradigm, by providing a form of interactive/scripting capability.

With the advent of Java 9, the Java runtime and JDK bundles a new tool, JShell. This is an interactive shell for Java, similar to the REPL seen in languages like Python, Scala, or Lisp.
The shell is intended for teaching and exploratory use and, due to the nature of the Java language, is not expected to be as much use to the working programmer as similar shells are in other languages.

In particular, it is not expected that Java will become a REPL-driven language.
Instead, this opens up an opportunity to use JShell for a different style of programming, one that complements the traditional use case but also provides new perspectives, especially for working with a new API.

It is very easy to use JShell to explore simple language features, for instance:

	
Primitive data types

	
Simple numeric operations

	
String manipulation basics

	
Object types

	
Defining new classes

	
Creating new objects

	
Calling methods

To start up JShell, we just invoke it from the command line:

$ jshell
| Welcome to JShell -- Version 10
| For an introduction type: /help intro

jshell>

From here, we can enter small pieces of Java code, which are known as snippets:

jshell> 2 * 3
$1 ==> 6

jshell> var i = 2 * 3
i ==> 6

The shell is designed to be a simple working environment, and so it relaxes some of the rules that working Java programmers may expect.
Some of the differences between JShell snippets and regular Java include:

	
Semicolons are optional in JShell

	
JShell supports a verbose mode

	
JShell has a wider set of default imports than a regular Java program

	
Methods can be declared at top level (outside of a class)

	
Methods can be redefined within snippets

	
A snippet may not declare a package or a module—everything is placed in an unnamed package controlled by the shell

	
Only public classes may be accessed from JShell

	
Due to package restrictions, it’s advisable to ignore access control when defining classes and working within JShell

It’s simple to create simple class hierarchies (e.g., for exploring Java’s inheritance and generics):

jshell> class Pet {}
| created class Pet

jshell> class Cat extends Pet {}
| created class Cat

jshell> var c = new Cat()
c ==> Cat@2ac273d3

Tab completion within the shell is also possible, such as for autocompletion of possible methods:

jshell> c.<TAB TAB>
equals(getClass() hashCode() notify() notifyAll()
toString() wait(

We can also create top-level methods, such as:

jshell> int div(int x, int y) {
 ...> return x / y;
 ...> }
| created method div(int,int)

Simple exception backtraces are also supported:

jshell> div(3,0)
| Exception java.lang.ArithmeticException: / by zero
| at div (#2:2)
| at (#3:1)

We can access classes from the JDK:

jshell> var ls = List.of("Alpha", "Beta", "Gamma", "Delta", "Epsilon")
ls ==> [Alpha, Beta, Gamma, Delta, Epsilon]

jshell> ls.get(3)
$11 ==> "Delta"

jshell> ls.forEach(s -> System.out.println(s.charAt(1)))
l
e
a
e
p

Or explicitly import classes if necessary:

jshell> import java.time.LocalDateTime

jshell> var now = LocalDateTime.now()
now ==> 2018-10-02T14:48:28.139422

jshell> now.plusWeeks(3)
$9 ==> 2018-10-23T14:48:28.139422

The environment also allows JShell commands, which start with a /.
It is useful to be aware of some of the most common basic commands:

	
/help intro is the introductory help text

	
/help is a more comprehensive entry point into the help system

	
/vars shows which variables are in scope

	
/list will show the shell history

	
/save outputs accepted snippet source to a file

	
/open reads a saved file and brings it into the environment

For example, the imports available within JShell include a lot more than just java.lang.
The whole list is loaded by JShell during startup, and can be seen as the special imports visible through the /list -all command:

jshell> /list -all

 s1 : import java.io.*;
 s2 : import java.math.*;
 s3 : import java.net.*;
 s4 : import java.nio.file.*;
 s5 : import java.util.*;
 s6 : import java.util.concurrent.*;
 s7 : import java.util.function.*;
 s8 : import java.util.prefs.*;
 s9 : import java.util.regex.*;
 s10 : import java.util.stream.*;

The JShell environment is tab-completed, which greatly adds to the usability of the tool.
The verbose mode is particularly useful when you are getting to know JShell—it can be activated by passing the -v switch at startup as well as via a shell command.

Summary

Java has changed a huge amount over the last 15+ years, and yet the
platform and community remain vibrant. To have achieved this, while
retaining a recognizable language and platform, is no small
accomplishment.

Ultimately, the continued existence and viability of Java depends upon
the individual developer. On that basis, the future looks bright, and we
look forward to the next wave, Java’s 25th birthday, and beyond.

Appendix A. Additional Tools

In this appendix, we will discuss two tools that used to ship as part of the JDK but are now either deprecated or only available as separate downloads.
The tools are:

	
Nashorn

	
VisualVM

Nashorn is a fully compliant implementation of JavaScript and an accompanying shell and was first made available as part of Java 8, but is officially deprecated as of Java 11.

JVisualVM (often referred to as VisualVM) is a graphical tool, based
on the Netbeans platform. It is used for monitoring JVMs and essentially
acts as an equivalent, graphical aggregate of many of the tools featured
in “Command-Line Tools”.

Introduction to Nashorn

In this section, we will assume some basic understanding of JavaScript.
If you aren’t already familiar with basic JavaScript concepts, then
Head First JavaScript by Michael Morrison
(O’Reilly) is a good place to start.

If you recall the comparison between Java and JavaScript outlined in
“Java Compared to JavaScript”, you know that the two languages are very different. It may, therefore, seem
surprising that JavaScript should be able to run on top of the same
virtual machine as Java.

Non-Java Languages on the JVM

In fact, there are a very large number of non-Java languages that run
on the JVM—and some of them are a lot more unlike Java than JavaScript
is. This is made possible by the fact that the Java language and JVM are
only very loosely coupled, and only really interact via the definition
of the class file format. This can be accomplished in two different
ways:

	
The source language has an interpreter that has been implemented in
Java. The interpreter runs on the JVM and executes programs written in the
source language.

	
The source language ships with a compiler that produces class files
from units of source language code. The resulting compiled class files are then directly executed on the
JVM, usually with some additional language-specific runtime support.

With Java 8, Oracle has included Nashorn, a new JavaScript
implementation that runs on the JVM. Nashorn is designed to replace the
original JavaScript-on-the-JVM project—which was called Rhino (Nashorn
is the German word for “rhino”).

Nashorn is a completely rewritten implementation and strives for easy
interoperability with Java, high performance, and precise conformance to
the JavaScript ECMA specifications. Nashorn was the first implementation
of JavaScript to hit a perfect 100% on spec compliance and is already at
least 20 times faster than Rhino on most workloads.

Nashorn takes the full-compilation approach—but with the added refinement that the compiler is inside the runtime, so that JavaScript source code is
never compiled before program execution begins. This means that
JavaScript that was not specifically written for Nashorn can still be
easily deployed on the platform.

Note

Nashorn is unlike many other JVM languages (such as JRuby) in that it
does not implement any form of interpreter. Nashorn always compiles
JavaScript to JVM bytecode and executes the bytecode directly.

This is interesting from a technical perspective, but many developers
are curious as to what role Nashorn is intended to play in the mature
and well-established Java ecosystem. Let’s look at that role next.

Motivation

Nashorn serves several purposes within the Java and JVM ecosystem.
First, it provides a viable environment for JavaScript developers to
discover the power of the JVM. Second, it enables companies to continue
to leverage their existing investment in Java technologies while
additionally adopting JavaScript as a development language. Last, it
provides a great engineering showcase for the advanced virtual machine
technology present in the HotSpot Java Virtual Machine.

With the continued growth and adoption of JavaScript, broadening out
from its traditional home in the browser to more general-purpose
computing and the server side, Nashorn represents a great bridge between
the existing rock-solid Java ecosystem and a promising wave of new
technologies.

For now, let’s move on to discuss the mechanics of how Nashorn works,
and how to get started with the platform. There are several different
ways in which JavaScript code can be executed on Nashorn, and in the
next section we’ll look at two of the most commonly used.

Executing JavaScript with Nashorn

In this section, we’ll be introducing the Nashorn environment, and
discuss two different ways of executing JavaScript (both of which are
present in the bin subdirectory of $JAVA_HOME):

	jrunscript

	
A simple script runner for executing JavaScript as .js files.

	jjs

	
A more full-featured shell—suitable for both running scripts and use
as an interactive, read-eval-print-loop (REPL) environment for
exploring Nashorn and its features.

Let’s start by looking at the basic runner, which is suitable for the
majority of simple JavaScript applications.

Running from the Command Line

To run a JavaScript file called my_script.js with Nashorn, just use
the jrunscript command:

jrunscript my_script.js

jrunscript can also be used with different script engines than Nashorn
(see “Nashorn and javax.script” for more details on
script engines) and it provides a -l switch to specify them if needed:

jrunscript –l nashorn my_script.js

Note

With this switch, jrunscript can even run scripts in languages other
than JavaScript, provided a suitable script engine is available.

The basic runner is perfectly suitable for simple use cases, but it has
limitations and so for serious use we need a more capable execution
environment. This is provided by jjs, the Nashorn shell.

Using the Nashorn Shell

The Nashorn shell command is jjs. This can be used either
interactively, or non-interactively, as a drop-in replacement for
jrunscript.

The simplest JavaScript example is, of course, the classic “Hello
World,” so let’s look at how we would achieve this in the interactive
shell:

$ jjs
jjs> print("Hello World!");
Hello World!
jjs>

Nashorn interoperability with Java can be easily handled from the shell.
We’ll discuss this in full detail in
“Calling Java from Nashorn”, but to give a first
example, we can directly access Java classes and methods from JavaScript
by using the fully qualified class name. As a concrete example, let’s
access Java’s built-in regular expression support:

jjs> var pattern = java.util.regex.Pattern.compile("\\d+");
jjs> var myNums = pattern.split("a1b2c3d4e5f6");

jjs> print(myNums);
[Ljava.lang.String;@10b48321

jjs> print(myNums[0]);
a

Note

When we used the REPL to print out the JavaScript variable myNums, we
got the result [Ljava.lang.String;@10b48321—this is a tell-tale sign
that despite being represented in a JavaScript variable, myNums is
really a Java array of strings.

We’ll have a great deal more to say about interoperation between Nashorn
and Java later on, but first let’s discuss some of the additional
features of jjs. The general form of the jjs command is:

jjs [<options>] <files> [-- <arguments>]

There are a number of options that can be passed to jjs—some of the
most common are:

	
-cp or -classpath indicates where additional Java classes can be
found (to be used via the Java.type mechanism, as we’ll see later).

	
-doe or -dump-on-error will produce a full error dump if Nashorn
is forced to exit.

	
-J is used to pass options to the JVM. For example, if we want to
increase the maximum memory available to the JVM:

$ jjs -J-Xmx4g
jjs> java.lang.Runtime.getRuntime().maxMemory()
3817799680

	
-strict causes all script and functions to be run in JavaScript
strict mode. This is a feature of JavaScript that was introduced with
ECMAScript version 5, and is intended to reduce bugs and errors. Strict
mode is recommended for all new development in JavaScript, and if you’re
not familiar with it you should read up on it.

	
-D allows the developer to pass key/value pairs to Nashorn as system
properties, in the usual way for the JVM. For example:

$ jjs –DmyKey=myValue
jjs> java.lang.System.getProperty("myKey");
myValue

	
-v or -version is the standard Nashorn version string.

	
-fv or -fullversion prints the full Nashorn version string.

	
-fx is used to execute a script as a JavaFx GUI application. This
allows a JavaFX programmer to write a lot less boilerplate by making use
of Nashorn.1

	
-h is the standard help switch.

Nashorn and javax.script

Nashorn is not the first scripting language to ship with the Java platform.
The story starts with the inclusion of javax.script in Java 6, which provided a general interface for scripting language engines to interoperate with Java.

This general interface included concepts fundamental to scripting
languages, such as execution and compilation of scripting code (whether
a full script or just a single scripting statement in existing context).
In addition, a notion of binding between scripting
entities and Java was introduced, as well as script engine discovery.
Finally, javax.script provides optional support for invocation
(distinct from execution, as it allows intermediate code to be exported
from a scripting language’s runtime and used by the JVM runtime).

The example language provided was Rhino, but many other scripting
languages were created to take advantage of the support provided. With
Java 8, Rhino has been removed, and Nashorn is now the default scripting
language supplied with the Java platform.

Introducing javax.script with Nashorn

Let’s look at a very simple example of how to use Nashorn to run
JavaScript from Java:

import javax.script.*;

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByName("nashorn");

try {
 e.eval("print('Hello World!');");
} catch (final ScriptException se) {
 // ...
}

The key concept here is ScriptEngine (obtained from a
ScriptEngineManager). This provides an empty scripting environment, to
which we can add code via the eval() method.

Tip

This is a very simple usage of eval()—however, we can easily imagine using it with the contents of a file loaded at runtime rather than a simple string as in this case.

The Nashorn engine provides a single global JavaScript object, so all
calls to eval() will execute on the same environment. This means that
we can make a series of eval() calls and build up JavaScript state in
the script engine. For example:

e.eval("i = 27;");
e.put("j", 15);
e.eval("var z = i + j;");

System.out.println(((Number) e.get("z")).intValue()); // prints 42

Note that one of the problems with interacting with a scripting engine
directly from Java is that we don’t normally have any information about
what the types of values are.

Nashorn has a fairly close binding to much of the Java type system, however, so
we need to be somewhat careful. When you are dealing with the
JavaScript equivalents of primitive types, these will typically be
converted to the appropriate (boxed) types when they are made visible to
Java. For example, if we add the following line to our previous example:

System.out.println(e.get("z").getClass());

it’s easy to see that the value e.get("z") returns is of type
java.lang.Integer. If we change the code very slightly, like this:

e.eval("i = 27.1;");
e.put("j", 15);
e.eval("var z = i + j;");

System.out.println(e.get("z").getClass());

then this is sufficient to alter the type of the return value of
e.get("z") to type java.lang.Double, which marks out the distinction
between the two type systems. In other implementations of JavaScript,
these would both be treated as the numeric type (as JavaScript does not
define integer types). Nashorn, however, is more aware of the actual
type of the data.

Note

When dealing wih JavaScript, the Java programmer must be consciously
aware of the difference between Java’s static typing and the dynamic
nature of JavaScript types. Bugs can easily creep in otherwise.

In our examples, we have made use of the get() and put() methods on
the ScriptEngine. These allow us to directly get and set objects
within the global scope of the script being executed by a Nashorn
engine, without having to write or eval JavaScript code directly.

The javax.script API

Let’s round out this section with a brief description of some key
classes and interfaces in the javax.script API. This is a fairly small
API (six interfaces, five classes, and one exception) that has not
changed since its introduction in Java 6.

	ScriptEngineManager

	
The entry point into the scripting support. It maintains a list of
available scripting implementations in this process. This is achieved
via Java’s service provider mechanism, which is a very general way
of managing extensions to the platform that may have wildly different
implementations. By default, the only scripting extension available is
Nashorn, although other scripting environments (such as Groovy or
JRuby) can also be plugged in by the programmer.

	ScriptEngine

	
This class represents the script engine responsible for maintaining
the environment in which our scripts will be interpreted.

	Bindings

	
This interface extends Map and provides a mapping between strings
(the names of variables or other symbols) and scripting objects.
Nashorn uses this to implement the ScriptObjectMirror mechanism for
interoperability.

In practice, most applications will deal with the relatively opaque
interface offered by methods on ScriptEngine such as eval(),
get(), and put(), but it’s useful to understand the basics of how
this interface plugs in to the overall scripting API.

Advanced Nashorn

Nashorn is a sophisticated programming environment that has been
engineered to be a robust platform for deploying applications, and to
have great interoperability with Java. Let’s look at some more advanced
use cases for JavaScript-to-Java integration, and examine how this is
achieved by looking inside Nashorn at some implementation details.

Calling Java from Nashorn

As each JavaScript object is compiled into an instance of a Java class,
it’s perhaps not surprising that Nashorn has seamless integration with
Java—despite the major difference in type systems and language features.
However, there are still mechanisms that need to be in place to get the
most out of this integration.

We’ve already seen that we can directly access Java classes and methods
from Nashorn, for example:

$ jjs -Dkey=value
jjs> print(java.lang.System.getProperty("key"));
value

Let’s take a closer look at the syntax and see how to achieve this
support in Nashorn.

JavaClass and JavaPackage

From a Java perspective, the expression
java.lang.System.getProperty("key") reads as fully qualified access
to the static method getProperty() on java.lang.System. However, as
JavaScript syntax, this reads like a chain of property accesses,
starting from the symbol java—so let’s investigate how this symbol
behaves in the jjs shell:

jjs> print(java);
[JavaPackage java]

jjs> print(java.lang.System);
[JavaClass java.lang.System]

So java is a special Nashorn object that gives access to the Java
system packages, which are given the JavaScript type JavaPackage,
and Java classes are represented by the JavaScript type JavaClass.
Any top-level package can be directly used as a package navigation
object, and subpackages can be assigned to a JavaScript object. This
allows syntax that gives concise access to Java classes:

jjs> var juc = java.util.concurrent;
jjs> var chm = new juc.ConcurrentHashMap;

In addition to navigation by package objects, there is another object,
called Java, that has a number of useful methods on it. One of the
most important is the Java.type() method. This allows the user to
query the Java type system and get access to Java classes. For example:

jjs> var clz = Java.type("java.lang.System");
jjs> print(clz);
[JavaClass java.lang.System]

If the class is not present on the classpath (e.g., specified using the
-cp option to jjs), then a ClassNotFoundException is thrown (jjs
will wrap this in a Java RuntimeException):

jjs> var klz = Java.type("Java.lang.Zystem");
java.lang.RuntimeException: java.lang.ClassNotFoundException:
 Java.lang.Zystem

The JavaScript JavaClass objects can be used like Java class objects
in most cases (they are a slightly different type—but just think of them
as the Nashorn-level mirror of a class object). For example, we can use
a JavaClass to create a new Java object directly from Nashorn:

jjs> var clz = Java.type("java.lang.Object");
jjs> var obj = new clz;
jjs> print(obj);
java.lang.Object@73d4cc9e

jjs> print(obj.hashCode());
1943325854

// Note that this syntax does not work
jjs> var obj = clz.new;
jjs> print(obj);
undefined

However, you should be slightly careful. The jjs environment
automatically prints out the results of expressions, which can lead to
some unexpected behavior:

jjs> var clz = Java.type("java.lang.System");
jjs> clz.out.println("Baz!");
Baz!

The point here is that java.lang.System.out.println() has a return
type of void (i.e., it does not return a value). However, jjs
expects expressions to have a value and, in the absence of a variable
assignment, it will print it out. So the nonexistent return value of
println() is mapped to the JavaScript value null and printed out.

Note

Java programmers who are not familiar with JavaScript should be aware
that the handling of null and missing values in JavaScript is subtle,
and in particular that null != undefined.

JavaScript functions and Java lambda expressions

The interoperability between JavaScript and Java goes to a very deep
level. We can even use JavaScript functions as anonymous implementations
of Java interfaces (or as lambda expressions). For example, let’s use a
JavaScript function as an instance of the Callable interface (which
represents a block of code to be called later). This has only a single
method, call(), which takes no parameters and returns void. In
Nashorn, we can use a JavaScript function as a lambda expression
instead:

jjs> var clz = Java.type("java.util.concurrent.Callable");
jjs> print(clz);
[JavaClass java.util.concurrent.Callable]
jjs> var obj = new clz(function () { print("Foo"); });
jjs> obj.call();
Foo

The takeaway here is that, in Nashorn, there is
no distinction between a JavaScript function and a Java lambda
expression. Just as we saw in Java, the function is being automatically
converted to an object of the appropriate type. Let’s look at how we
might use a Java ExecutorService to execute some Nashorn JavaScript
on a Java thread pool:

jjs> var juc = java.util.concurrent;
jjs> var exc = juc.Executors.newSingleThreadExecutor();
jjs> var clbl = new juc.Callable(function (){
 \java.lang.Thread.sleep(10000); return 1; });
jjs> var fut = exc.submit(clbl);
jjs> fut.isDone();
false
jjs> fut.isDone();
true

The reduction in boilerplate compared to the equivalent Java code (even
with Java 8 lambdas) is quite staggering. However, there are some
limitations caused by the manner in which lambdas have been implemented.
For example:

jjs> var fut=exc.submit(function (){\
java.lang.Thread.sleep(10000); return 1;});
java.lang.RuntimeException: java.lang.NoSuchMethodException: Can't
unambiguously select between fixed arity signatures
[(java.lang.Runnable), (java.util.concurrent.Callable)] of the method
java.util.concurrent.Executors.FinalizableDelegatedExecutorService↵
.submit for argument types
[jdk.nashorn.internal.objects.ScriptFunctionImpl]

The problem here is that the thread pool has an overloaded submit()
method. One version will accept a Callable and the other will accept a
Runnable. Unfortunately, the JavaScript function is eligible (as a
lambda expression) for conversion to both types. This is where the error
message about not being able to “unambiguously select” comes from. The
runtime could choose either, and can’t choose between them.

Nashorn’s JavaScript Language Extensions

As we’ve discussed, Nashorn is a completely conformant implementation
of ECMAScript 5.1 (as JavaScript is known to the standards body). In
addition, however, Nashorn also implements a number of JavaScript
language syntax extensions, to make life easier for the developer. These
extensions should be familiar to developers used to working with
JavaScript, and quite a few of them duplicate extensions present in the
Mozilla dialect of JavaScript. Let’s take a look at a few of the most
common, and useful, extensions.

Foreach loops

Standard JavaScript does not have an equivalent of Java’s foreach loop,
but Nashorn implements the Mozilla syntax for for each in loops, like
this:

var jsEngs = ["Nashorn", "Rhino", "V8", "IonMonkey", "Nitro"];
for each (js in jsEngs) {
 print(js);
}

Single expression functions

Nashorn also supports another small syntax enhancement, designed to
make one-line functions that comprise a single expression easier to
read. If a function (named or anonymous) comprises just a single
expression, then the braces and return statements can be omitted. In the
example that follows, cube() and cube2() are completely equivalent
functions, but cube() is not normally legal JavaScript syntax:

function cube(x) x*x*x;

function cube2(x) {
 return x*x*x;
}

print(cube(3));
print(cube2(3));

Multiple catch clauses

JavaScript supports try, catch, and throw in a similar way to
Java.

Warning

JavaScript has no support for checked exceptions—all JavaScript
exceptions are unchecked.

However, standard JavaScript only allows a single catch clause
following a try block. There is no support for different catch clauses
handling different types of exception. Fortunately, there is already an
existing Mozilla syntax extension to offer this feature, and Nashorn
implements it as well, as shown in this example:

function fnThatMightThrow() {
 if (Math.random() < 0.5) {
 throw new TypeError();
 } else {
 throw new Error();
 }
}

try {
 fnThatMightThrow();
} catch (e if e instanceof TypeError) {
 print("Caught TypeError");
} catch (e) {
 print("Caught some other error");
}

Nashorn implements a few other nonstandard syntax extensions (and when
we met scripting mode for jjs, we saw some other useful syntax
innovations), but these are likely to be the most familiar and widely
used.

Under the Hood

As we have previously discussed, Nashorn works by compiling JavaScript
programs directly to JVM bytecode, and then runs them just like any
other class. It is this functionality that enables, for example, the
straightforward representation of JavaScript functions as lambda
expressions and their easy interoperability.

Let’s take a closer look at an earlier example, and see how we’re able
to use a function as an anonymous implementation of a Java interface:

jjs> var clz = Java.type("java.util.concurrent.Callable");
jjs> var obj = new clz(function () { print("Foo"); });
jjs> print(obj);
jdk.nashorn.javaadapters.java.util.concurrent.Callable@290dbf45

This means that the actual type of the JavaScript object implementing
Callable is jdk.nashorn.javaadapters.java.util.concurrent.Callable.
This class is not shipped with Nashorn, of course. Instead, Nashorn
spins up dynamic bytecode to implement whatever interface is required
and just maintains the original name as part of the package structure
for readability.

Note

Remember that dynamic code generation is an essential part of Nashorn,
and that all JavaScript code is compiled by Nashorn in Java bytecode and
never interpreted.

One final note is that Nashorn’s insistence on 100% compliance with the
spec does sometimes restrict the capabilities of the implementation. For
example, consider printing out an object, like this:

jjs> var obj = {foo:"bar",cat:2};
jjs> print(obj);
[object Object]

The ECMAScript specification requires the output to be
[object Object]—conformant implementations are not allowed to give
more useful detail (such as a complete list of the properties and values
contained in obj).

The Future of Nashorn and GraalVM

In the spring of 2018 Oracle announced the first release of GraalVM, a research project from Oracle Labs that may in time lead to the replacement of the current Java runtime (HotSpot).
The research effort can be thought of as several separate but connected projects—it is a new JIT compiler for HotSpot, and also a new polyglot virtual machine.
We will refer to the JIT compiler as Graal and the new VM as GraalVM.

The overall aim of the Graal effort is a rethinking of how compilation works for Java (and, in the case of GraalVM, for other languages as well).
The basic observation that Graal starts from is very simple:

A compiler for Java transforms bytecode to machine code—in Java terms it is just a method that accepts a byte[] and returns another byte[]—so why wouldn’t we want to write the compiler in Java?

It turns out that there are some major advantages to writing a compiler in Java, rather than C++ (as the current compilers are):

	
No pointer handling bugs or crashes in the compiler

	
Able to use a Java toolchain for compiler development

	
Much lower barriers to entry for engineers to start working on the compiler

	
Much faster prototyping of new compiler features

	
The compiler could be made independent of HotSpot

Graal uses the new JVM Compiler Interface (JVMCI, delivered as JEP 243) to plug in to HotSpot, but it can also be used independently, and is a major part of GraalVM.
The Graal technology is present and shipping as of Java 11, but it is still not considered fully production-ready for most use cases.

Longer term, Oracle is investing considerable resources in GraalVM, and toward a future that is truly polyglot.
One initial step toward that future can be seen in GraalVM’s ability to fully embed non-Java languages in Java apps running inside GraalVM.

Note

Some of Graal’s capabilities can be thought of as a replacement for JSR 223 (Scripting for the Java Platform), but the Graal approach goes much further and deeper than comparable technologies in previous HotSpot capabilities.

The feature relies on GraalVM and the Graal SDK, which is provided as part of the GraalVM default classpath but should be included explicitly as a dependency in developer projects.
In this simple example, we’re just calling a JavaScript function from Java:

import org.graalvm.polyglot.Context;

public class HelloPolyglot {
 public static void main(String[] args) {
 System.out.println("Hello World: Java!");
 Context context = Context.create();
 context.eval("js", "print('Hello World: JavaScript!');");
 }
}

A basic form of polyglot capability has existed since Java 6 and the introduction of the Scripting API.
It was significantly enhanced in Java 8 with the arrival of Nashorn, the invokedynamic-based implementation of JavaScript.

What sets the technology in GraalVM apart is that the ecosystem now explicitly includes an SDK and supporting tools for implementing multiple languages and having them running as co-equal and interoperable citizens on the underlying VM.
Java becomes just one language (albeit an important one) among many that run on GraalVM.

The keys to this step forward are a component called Truffle and a simple, bare-bones VM, SubstrateVM, capable of executing JVM bytecode.
Truffle provides a runtime and libraries for creating interpreters for non-Java languages.
Once these interpreters are running, the Graal compiler will step in and compile the interpreters into fast machine code.
Out of the box, GraalVM ships with JVM bytecode, JavaScript, and LLVM support—with additional languages expected to be added over time.

The GraalVM approach means that, for example, the JS runtime can call a foreign method on an object in a separate runtime, with seamless type conversion (at least for simple cases).

This ability to have fungibility across languages that have very different semantics and type systems has been discussed among JVM engineers for a very long time (at least 10 years), and with the arrival of GraalVM it has taken a very significant step toward the mainstream.

The significance of GraalVM for Nashorn is that Oracle has announced their intention to deprecate Nashorn and to eventually remove it from their distribution of Java.
The intended replacement is the GraalVM version of JavaScript, but at the time of writing, there is no timescale for this, and Oracle has committed to not removing Nashorn until the replacement is fully ready.

VisualVM

VisualVM was introduced with Java 6, but has been removed from the main Java distribution package as of Java 9.
This means that the only way to get a version for use on current Javas is to use the standalone version of VisualVM.
However, even for Java 8 installations, the standalone is more up to date and a better choice for serious work.
You can download the latest version from
http://visualvm.java.net/.

After downloading VisualVM, ensure that the visualvm binary is added to your PATH
(otherwise, on Java 8 you’ll get the JRE default binary).

Tip

jvisualvm is a replacement for the jconsole tool common in earlier
Java versions. The compatability plug-in available for visualvm
obsoletes jconsole; all installations using jconsole should migrate.

The first time you run VisualVM, it will calibrate your machine, so make
sure that you aren’t running any other applications while calibration is
being performed. After calibration, VisualVM will open to a screen like
that shown in Figure A-1.

There are slightly different approaches for attaching VisualVM to a running process, depending on whether the process is local or remote.

Local processes are listed down the lefthand side of the screen.
Double-click on one of the local processes and it will appear as a new
tab on the righthand pane.

For a remote process, enter the hostname and a display name that will be
used on the tab. The default port to connect to is 1099, but this can be
changed.

In order to connect to a remote process, jstatd must be running on the
remote host (see the entry for jstatd in
“Command-Line Tools” for more details). If you are
connecting to an application server, you may find that the app server
vendor provides an equivalent capability to jstatd directly in the
server, and that jstatd is unnecessary.

[image: JN7 A01]
Figure A-1. VisualVM welcome screen

The Overview tab (see Figure A-2) provides
a summary of information about your Java process. This includes the
flags and system properties that were passed in, and the exact Java
version being executed.

[image: JN7 A02]
Figure A-2. Overview tab

In the Monitor tab, as shown in Figure A-3, graphs and data about the active parts of the JVM system are
displayed. This is essentially high-level telemetry data for the
JVM—including CPU usage and how much CPU is being used for GC.

[image: JN7 A03]
Figure A-3. Monitor tab

Other information displayed includes the number of classes loaded and
unloaded, basic heap memory information, and an overview of the numbers
of threads running.

From this tab, it is also possible to ask the JVM to produce a heap
dump, or to perform a full GC—although in normal production operation,
neither is recommended.

Figure A-4 shows the Threads tab, which
displays data on actively running threads in the JVM. This is displayed
as a continuous timeline, with the ability to inspect individual thread
details and perform thread dumps for deeper analysis.

This presents a similar view to jstack, but with better abilities to
diagnose deadlocks and thread starvation. Here we can clearly see the difference
between synchronized locks (i.e., operating system monitors) and the
user-space lock objects of java.util.concurrent.

Threads that are contending on locks backed by operating system monitors
(i.e., synchronized blocks) will be placed into the BLOCKED state. This
shows up as red in VisualVM.

[image: JN7 A04]
Figure A-4. Threads tab

Warning

Locked java.util.concurrent lock objects place their threads into
WAITING (yellow in VisualVM). This is because the implementation
provided by java.util.concurrent is purely user space and does not
involve the operating system.

The Sampler tab in memory sampling mode, as shown in Figure A-5, enables the developer to see what the most common objects are, in terms of bytes and instances (in a manner similar to jmap -histo).

The objects displayed on the Metaspace submode are typically core Java/JVM constructs.2 Normally, we need to look deeper into other parts of the system, such as classloading, to see the code responsible for creating these objects.

[image: JN7 A05]
Figure A-5. Sampler tab

jvisualvm has a plug-in system, which you can use to extend the functionality of the framework by downloading and installing extra plug-ins. We recommend always installing the MBeans plug-in (shown in Figure A-6) and the VisualGC plug-in (discussed next, and shown in Figure A-7), and usually the JConsole compatibility plug-in, just in case.

The MBeans tab allows the operator to interact with Java management
services (essentially MBeans). JMX is a great way to provide runtime
control of your Java/JVM applications, but a full discussion is outside
the scope of this book.

[image: JN7 A06]
Figure A-6. MBeans plug-in

The VisualGC plug-in, shown in Figure A-7,
is one of the simplest and best initial GC debugging tools available. As
mentioned in Chapter 6, for serious analysis, GC
logs are preferred to the JMX-based view that VisualGC provides.

[image: JN7 A07]
Figure A-7. VisualGC plug-in

Having said that, VisualGC can be a good way to start to understand the
GC behavior of an application, and to inform deeper investigations. It
provides a near real-time view of the memory pools inside HotSpot, and
allows the developer to see how GC causes objects to flow from space to
space over the course of GC cycles.

1 JavaFX is a standard Java technology used for making GUIs, but it is outside the scope of this book.
2 Before Java 8, a construct called PermGen was used instead of Metaspace.

Index
Symbols
	! (exclamation point)	!= (not equal to) operator, Operator summary table, Comparison Operators
	boolean NOT operator, Operator summary table, Boolean Operators

	" (quotes, double)	enclosing string literals, String literals
	escaping in char literals, The char Type
	in string literals, String literals
	literals in, Literals

	$ character, Naming and Capitalization Conventions
	% (percent sign)	%= (modulo assignment) operator, Operator summary table, Assignment Operators
	modulo operator, Operator summary table, Arithmetic Operators

	& (ampersand)	&& (conditional AND) operator, Operator summary table, Order of evaluation, Boolean Operators
	&= (bitwise AND assignment) operator, Operator summary table, Assignment Operators
	bitwise AND operator, Operator summary table, Bitwise and Shift Operators
	boolean AND operator, Operator summary table, Boolean Operators

	' (quotes, single)	enclosing character literals, The char Type
	escaping in char literals, The char Type
	in char literals, String literals
	in string literals, String literals
	literals in, Literals

	() (parentheses)	cast operator, Operator summary table, Special Operators
	enclosing expressions in if statements, The if/else Statement
	enclosing method parameter list, Defining Methods
	method invocation operator, Operator summary table, Side effects, Special Operators
	overriding operator precedence, Precedence
	separators (tokens), Punctuation

	* (asterisk)	*= (multiply assignment) operator, Operator summary table, Assignment Operators
	in doc comments, Structure of a Doc Comment
	in multiline comments, Comments
	multiplication operator, Operator summary table, Arithmetic Operators

	+ (plus sign)	++ (increment) operator, Operator summary table, Side effects, Increment and Decrement Operators, The while Statement
	+= (add assignment) operator, Operator summary table, String Concatenation Operator, Assignment Operators
	addition operator, Operator summary table, Arithmetic Operators
	string concatenation operator, Operator summary table, String Concatenation Operator, String literals, String concatenation
	unary plus operator, Operator summary table

	, (comma) separators (tokens), Punctuation
	- (minus sign)	-- (decrement) operator, Operator summary table, Increment and Decrement Operators
	-= (subtract assignment) operator, Operator summary table, Assignment Operators
	subtraction operator, Operator summary table, Operand number and type, Arithmetic Operators
	unary minus operator, Operator summary table, Operand number and type, Arithmetic Operators

	. (dot)	member access operator, Special Operators
	object member access operator, Operator summary table
	separators (tokens), Punctuation

	/ (slash)	/* */ in multiline comments, Comments
	/** */ in doc comments, Comments, Java Documentation Comments
	// in single-line comments, Comments
	/= (divide assignment) operator, Operator summary table, Assignment Operators
	division operator, Operator summary table, Arithmetic Operators

	0 (zero)	division by zero, Arithmetic Operators
	negative and positive zero, Floating-Point Types
	represented by float and double types, Floating-Point Types
	represented by integral types, How Java Represents Integer Types

	:: (colons) separators (tokens), Punctuation
	; (semicolon)	for empty statements, The Empty Statement
	in abstract methods, Method Modifiers
	in break statements, The break Statement
	in for loops, The for Statement
	separators (tokens), Punctuation
	terminating do loops, The do Statement

	< > (angle brackets)	< (less than) operator, Operator summary table, Comparison Operators
	<< (left shift) operator, Bitwise and Shift Operators
	<< (signed left shift) operator, Operator summary table
	<<= (left shift assignment) operator, Operator summary table, Assignment Operators
	<= (less than or equal to) operator, Operator summary table, Comparison Operators
	> (greater than) operator, Operator summary table, Comparison Operators
	>= (greater than or equal to) operator, Operator summary table, Comparison Operators
	>> (signed right shift) operator, Operator summary table, Bitwise and Shift Operators
	>>= (right shift assignment) operator, Operator summary table, Assignment Operators
	>>> (unsigned right shift) operator, Operator summary table, Bitwise and Shift Operators
	>>>= (unsigned right shift assignment) operator, Operator summary table, Assignment Operators
	homogeneous collections and, Introduction to Generics

	= (equals sign)	= (assignment) operator, confusion with == (equal to) operator, Assignment Operators
	== (equal to) operator, Operator summary table, Comparison Operators, Comparing Objects
	assignment operator, Operator summary table, Assignment Operators

	? (question mark)	? : (conditional) operator, Operator summary table, Operand number and type, Order of evaluation, The Conditional Operator
	regular expression metacharacter, Regular Expressions

	@ (at sign)	in doc-comment tags, Doc-Comment Tags
	separators (tokens), Punctuation

	[] (brackets)	accessing array elements, Special Operators, Accessing array elements
	after array element type, Special Operators, Array Types
	array access operator, Operator summary table
	in regular expressions, Regular Expressions

	\ (backslash)	in escape sequences, The char Type

	\\ (backslash)	\\ escape sequence in char literals, The char Type

	_ (underscore), Reserved Words
	{ } (curly braces)	in nested if/else statements, The if/else Statement
	in switch statements, The switch Statement
	in try/catch/finally statements, The try/catch/finally Statement
	members of a class in, Basic OO Definitions
	optional for small lambda expressions, Special Operators
	separators (tokens), Punctuation

	| (vertical bar)	bitwise OR operator, Operator summary table, Bitwise and Shift Operators
	boolean OR operator, Operator summary table, Boolean Operators
	|= (bitwise OR assignment) operator, Operator summary table, Assignment Operators
	|| (conditional OR) operator, Operator summary table, Order of evaluation, Boolean Operators

	~ (tilde), bitwise complement operator, Operator summary table, Bitwise and Shift Operators
	… (ellipses)	in variable-length argument lists, Variable-Length Argument Lists
	separators (tokens), Punctuation

	‸ (caret)	bitwise XOR operator, Operator summary table, Bitwise and Shift Operators
	boolean XOR operator, Operator summary table, Boolean Operators
	‸= (bitwise XOR assignment) operator, Operator summary table, Assignment Operators

	→ (lambda arrow) operator, Operator summary table, Special Operators

A
	abs(), Java’s Standard Library of Mathematical Functions
	abstract classes, Method Modifiers, Abstract Classes and Methods-Reference Type Conversions	defined, Class Definition Syntax
	interfaces vs., Interfaces Versus Abstract Classes

	abstract methods, Method Modifiers, Abstract Classes and Methods-Reference Type Conversions
	access control	data accessor methods, Data Accessor Methods-Data Accessor Methods
	for classes, Access to classes
	for members of a class, Access to members-Member access summary
	for modules, Access to modules
	for packages, Access to packages
	inheritance and, Access control and inheritance

	access modifiers, Method Modifiers, Basic OO Definitions
	accessor methods, field inheritance and, Field Inheritance and Accessors-Field Inheritance and Accessors
	addition operator (+), Arithmetic Operators
	adjusters	date and time, Adjusters

	allocateDirect(), ByteBuffer
	allocation table, Introducing Mark-and-Sweep
	Android, What Is the Java Ecosystem?
	annotations (annotated types), Annotations-Type Annotations	defining custom types, Defining Custom Annotations
	type annotations, Type Annotations

	anonymous classes, Lambda Expressions, Anonymous Classes-Anonymous Classes
	Apache Commons project, Globally Unique Package Names
	application classloader, Application classloader
	apply(), Map
	arithmetic operators, Arithmetic Operators
	ArithmeticException, Integer Types
	array covariance, Array type widening conversions
	array literal, Special Operators
	arrayCopy(), Copying arrays, Arrays and Helper Methods
	ArrayDeque class, Querying
	ArrayIndexOutOfBoundsException, Array bounds
	ArrayList class, Random access to Lists
	arrays, Arrays-Multidimensional Arrays	accessing elements, Special Operators, Accessing array elements, Accessing array elements
	array bounds, Array bounds
	array types, Array Types-C compatibility syntax
	as operand type, Increment and Decrement Operators, The instanceof Operator
	bounds, Array bounds
	C compatibility syntax, C compatibility syntax
	conversion rules, Reference Type Conversions
	converting to/from objects, Arrays and Helper Methods
	copying, Copying arrays
	creating and initializing, Creating and Initializing Arrays
	creation with new operator, Special Operators
	initializers, Array initializers
	iterating, The foreach Statement, Iterating arrays
	Java Collections and, Arrays and Helper Methods
	multidimensional, Multidimensional Arrays
	type widening conversions, Array type widening conversions
	types, Array Types-C compatibility syntax
	using, Using Arrays-Array utilities
	utility methods for working with, Array utilities

	Arrays class, Array utilities
	ArrayStoreException, Array type widening conversions
	ASCII escape sequences, The char Type
	asPredicate(), Regular Expressions
	assert statements, The assert Statement-Enabling assertions
	AssertionError, The assert Statement
	assertions, The assert Statement
	assignment operators, Assignment Operators	associativity, Associativity
	combined with arithmetic, bitwise, and shift operators, Assignment Operators

	associativity, Associativity
	Async I/O, Async I/O-Watch Services and Directory Searching	callback-based style, Callback-Based Style
	future-based style, Future-Based Style
	watch services and directory searching, Watch Services and Directory Searching

	AsynchronousFileChannel (see async I/O)
	@author doc-comment tag, Doc-Comment Tags
	autoboxing, Boxing and Unboxing Conversions
	AutoCloseable interface, try-with-resources Revisited
	automatic imports, Importing Types
	automatic modules, Automatic Modules

B
	\b (escape sequence for backspace), The char Type
	backward compatibility, interfaces and, Backward compatibility
	benign data race, Hash codes and effective immutability
	BigDecimal, BigDecimal
	binary operators, Operand number and type
	Bindings interface, The javax.script API
	bitwise operators, Bitwise and Shift Operators
	bitwise OR operator, Bitwise and Shift Operators
	blocking queue, defined, The Queue and BlockingQueue Interfaces
	BlockingQueue interface, The Queue and BlockingQueue Interfaces-Querying	adding elements to queues, Adding Elements to Queues
	querying of elements in queues, Querying
	removing elements from queues, Removing Elements from Queues

	body	in class definition, Basic OO Definitions
	of a method, Defining Methods

	Boolean operators, Boolean Operators-Boolean Operators
	boolean type, The boolean Type	Boolean class, The if/else Statement
	no conversions to other primitive types, Primitive Type Conversions
	operator return values, Return type, Comparison Operators
	using +=, -=, &=, and |= to work with boolean flags, Assignment Operators

	bootstrap classloader, Bootstrap classloader
	bound method reference, Method References, forEach
	bounded type parameters, Bounded Type Parameters-Bounded Type Parameters
	bounded wildcards, Bounded wildcards
	boxing and unboxing conversions, Boxing and Unboxing Conversions
	boxing conversions, Boxing and Unboxing Conversions
	break statements, The break Statement, finally	labels, use of, Labeled Statements
	specifying end of case clauses in switch statements, The switch Statement
	stopping switch statements, The switch Statement

	BufferedReader class, Readers and Writers
	buffers, NIO, NIO Channels and Buffers-Mapped Byte Buffers	ByteBuffer, ByteBuffer-ByteBuffer
	MappedByteBuffer, Mapped Byte Buffers

	byte type, Integer Types, Return type	Byte class, Integer Types
	conversions to other primitive types, Primitive Type Conversions

	ByteBuffer class, ByteBuffer-ByteBuffer
	bytecode	as terminology, Why is it called “bytecode”?
	class files and, What Is the JVM?
	defined, What is bytecode?
	endianness, Is bytecode really machine independent? What about things like endianness?
	machine-independence of, Is bytecode really machine independent? What about things like endianness?
	Nashorn and, Under the Hood
	optimization and, Is bytecode optimized?
	security and, Java Security
	verification, Java Security

	byte[], ByteBuffer

C
	C#, using keyword, try-with-resources Revisited
	C/C++	array compatibility syntax, C compatibility syntax
	as model for Java language, What Is the Java Language?
	compatibility syntax in variable declarations, C compatibility syntax
	enum types in, Enums
	interchangeability of integers/pointers, Secure Programming and Classloading
	Java compared to, Java Compared to C, Java Compared to C++
	operator precedence, Precedence
	pointers or memory addresses, references as, Reference Versus Primitive Types
	switch statement, The switch Statement
	using native methods to interface Java code to C/C++ libraries, Method Modifiers
	virtual keyword, Virtual method lookup

	Callable interface, JavaScript functions and Java lambda expressions, Under the Hood
	callback-based style, for async I/O, Callback-Based Style
	camel case, Identifiers, Naming and Capitalization Conventions
	capitalization conventions, Naming and Capitalization Conventions-Naming and Capitalization Conventions
	captured variable, Lexical Scoping and Local Variables
	case labels (switch statements), The switch Statement
	case sensitivity, Case Sensitivity and Whitespace
	casts, Primitive Type Conversions	() (cast) operator, Special Operators
	conversion rules and, Reference Type Conversions
	of primitive types, Primitive Type Conversions

	catch clause, catch, Multiple catch clauses
	ceil(), Java’s Standard Library of Mathematical Functions
	channels, NIO Channels and Buffers-Mapped Byte Buffers	ByteBuffer, ByteBuffer-ByteBuffer
	MappedByteBuffer, Mapped Byte Buffers

	char type, The char Type, Return type	Character class, static method, The char Type
	conversion to and from integer and floating-point types, Primitive Type Conversions
	conversion to other primitive types, The char Type
	escape characters in char literals, The char Type
	surrogate pair, Unicode supplementary characters, The char Type

	character sets, The Unicode Character Set
	checked exceptions, Checked and Unchecked Exceptions-Working with checked exceptions	in throws clause of method signature, Defining Methods
	JavaScript and, Multiple catch clauses
	working with, Working with checked exceptions

	Class class, Type literals
	class field, Class Fields
	class files, What Is the JVM?
	class hierarchy, Superclasses, Object, and the Class Hierarchy, Reference Type Conversions
	class keyword, Class Definition Syntax
	class methods, Class Methods	instance methods vs., Instance Methods or Class Methods?
	static modifier, Method Modifiers
	static synchronized, The synchronized Statement
	synchronized modifier, Method Modifiers

	Class object	reflection, How to Use Reflection
	type literals, Type literals

	class objects, Examples of Class Objects-Class Objects and Metadata	(see also classloading)
	examples of, Examples of Class Objects
	metadata with, Class Objects and Metadata

	class(es), Introduction to Classes and Objects-Lambda Expressions	abstract, Abstract Classes and Methods-Reference Type Conversions
	access control, Access to classes-Member access summary
	basic object-oriented definitions, Basic OO Definitions
	class hierarchy, Superclasses, Object, and the Class Hierarchy
	core classes of Java platform, Packages and the Java Namespace
	defined, Introduction to Classes and Objects, Basic OO Definitions
	defining a class, Defining a Class
	definition syntax, Class Definition Syntax
	enums, Enums
	extending, Extending a Class-Final classes
	fields and methods, Fields and Methods-How the this Reference Works
	final, Final classes
	hiding data within (see encapsulation)
	hierarchy, Superclasses, Object, and the Class Hierarchy
	in object-oriented programming, Overview of Classes-Class Definition Syntax
	initializer blocks, Initializer blocks
	name collisions, preventing, Globally Unique Package Names
	names, simple and fully qualified, Importing Types
	naming conventions, Naming and Capitalization Conventions
	subclasses and inheritance, Subclasses and Inheritance-Invoking an overridden method
	superclasses, Superclasses, Object, and the Class Hierarchy

	Class.forName(), Applied Classloading
	classic Java I/O, Classic Java I/O-Problems with Classic I/O	File class, Files
	problems with, Problems with Classic I/O
	readers and writers, Readers and Writers
	stream abstraction, Streams
	try-with-resources statement, try-with-resources Revisited

	classloading, Phases of Classloading-Custom classloader	application classloader, Application classloader
	applied, Applied Classloading-Custom classloader
	bootstrap classloader, Bootstrap classloader
	custom classloader, Custom classloader
	extension classloader, Platform classloader
	hierarchy of classloaders, Classloader Hierarchy-Custom classloader
	initialization phase, Initialization
	loading phase, Loading
	phases of, Phases of Classloading-Initialization
	platform classloader, Platform classloader
	preparation and resolution, Preparation and Resolution
	secure programming, Secure Programming and Classloading-Secure Programming and Classloading
	system classloader, Application classloader
	verification phase, Verification

	ClassNotFoundException, Applied Classloading, JavaClass and JavaPackage
	clone(), Array Types, Copying arrays
	Cloneable interface, Array Types, Copying arrays
	CloneNotSupportedException, Array Types
	closures, Lexical Scoping and Local Variables
	@code doc-comment tag, Inline Doc-Comment Tags
	collect(), Filter
	Collection interface, The Collection Interface-The Collection Interface
	collection views, The Map Interface
	collections, Working with Java Collections-Summary	arrays and helper methods, Arrays and Helper Methods
	basics, Introduction to Collections API-Arrays and Helper Methods
	BlockingQueue interface, The Queue and BlockingQueue Interfaces-Querying
	Collection interface, The Collection Interface-The Collection Interface
	iterating over with foreach loops, The foreach Statement
	Java Streams and (see Java Streams)
	List interface, The List Interface-Random access to Lists
	Map interface, The Map Interface-The Map Interface
	Queue interface, The Queue and BlockingQueue Interfaces-Querying
	Set interface, The Set Interface-The Set Interface
	special-case collections, Special-case collections
	utility methods, Utility Methods-Special-case collections

	colliding default method, Implementation of default methods
	command-line tools, Command-Line Tools
	comments, in Java programs, Comments
	compacting collector, Evacuation
	compareTo(), Comparable::compareTo()
	comparison operators, Comparison Operators
	compilation units, Java Programs from the Top Down
	compile-time typing, Compile and Runtime Typing
	compilers	javac’s similarity to, Is javac a compiler?

	CompletionHandler interface, Callback-Based Style
	composition, inheritance vs., Composition Versus Inheritance-Composition Versus Inheritance
	compound statement, Compound Statements
	concatenation, of strings, String concatenation
	concurrency, Java’s Approach to Memory and Concurrency	(see also memory management; threads)
	deprecated methods of threads, Deprecated Methods of Thread
	exclusion and protecting state, Exclusion and Protecting State-Exclusion and Protecting State
	Java's support for, Java’s Support for Concurrency-destroy()
	safety, Concurrent safety
	synchronize statement, The synchronized Statement
	thread lifecycle, Thread Lifecycle-Thread Lifecycle
	useful methods of threads, Useful Methods of Thread-setUncaughtExceptionHandler()
	visibility and mutability, Visibility and Mutability
	volatile keyword, volatile
	working with threads, Working with Threads

	concurrency primitives, The synchronized Statement
	concurrent collector, The HotSpot Heap
	Concurrent Mark-and-Sweep (CMS), Concurrent Mark-and-Sweep
	concurrent safety, Concurrent safety
	ConcurrentHashMap class, The Map Interface
	ConcurrentMap interface, The Map Interface
	ConcurrentSkipListMap class, The Map Interface
	conditional AND operator (&&), Boolean Operators
	conditional operator (? :), The Conditional Operator
	Constant Pool, Class Objects and Metadata
	constants	importing into code, Importing Static Members
	naming conventions, Naming and Capitalization Conventions
	object-oriented design and, Constants

	constructors, Special Operators, Defining Methods	chaining, Constructor Chaining and the Default Constructor
	default, The default constructor
	defining a single constructor, Defining a Constructor
	defining multiple constructors, Defining Multiple Constructors
	invoking one constructor from another, Invoking One Constructor from Another
	purpose of, Creating and Initializing Objects
	subclass, Subclass Constructors

	continue statements, Labeled Statements, The continue Statement, finally
	conventions, programming/documentation, Programming and Documentation Conventions-Conventions for Portable Programs	classes, Naming and Capitalization Conventions
	constants, Naming and Capitalization Conventions
	doclets, Doclets
	enums, Naming and Capitalization Conventions
	fields, Naming and Capitalization Conventions
	interfaces, Naming and Capitalization Conventions
	Java documentation comments, Java Documentation Comments-Doclets	(see also doc comments)

	local variables, Naming and Capitalization Conventions
	methods, Naming and Capitalization Conventions
	modules, Naming and Capitalization Conventions
	naming and capitalization conventions, Naming and Capitalization Conventions-Naming and Capitalization Conventions
	packages, Naming and Capitalization Conventions
	parameters, Naming and Capitalization Conventions
	portable code conventions, Conventions for Portable Programs-Conventions for Portable Programs
	practical naming, Practical Naming
	static final constant, Naming and Capitalization Conventions
	types, Naming and Capitalization Conventions
	variables, Naming and Capitalization Conventions

	conversions	boxing/unboxing, Boxing and Unboxing Conversions
	reference types, Reference Type Conversions-Reference Type Conversions

	CopyOnWriteArrayList class, Random access to Lists
	CopyOnWriteArraySet class, The Set Interface
	CopyOption interface, Files
	counters for loops, incrementing, The while Statement
	countStackFrames(), suspend(), resume(), and countStackFrames()
	covariance, generics and, Introducing Covariance-Introducing Covariance
	covariant return, Overriding Superclass Methods
	cross-references, in doc comments, Cross-References in Doc Comments-Cross-References in Doc Comments
	currency symbols in identifiers, Identifiers
	custom annotations, defining, Defining Custom Annotations
	custom classloader, Custom classloader
	custom runtime images, JMPS and, Custom Runtime Images

D
	daemon thread, setDaemon()
	data encapsulation (see encapsulation)
	data formats, handling of common, Handling Common Data Formats-Summary	date and time, Java 8 Date and Time-Legacy Date and Time
	numbers and math, Numbers and Math-Java’s Standard Library of Mathematical Functions
	text, Text-Regular Expressions

	data hiding (see encapsulation)
	data types	array elements, Array Types
	array index expressions, Iterating arrays
	array types, Array Types-C compatibility syntax
	boolean types, The boolean Type
	boxing and unboxing conversions, Boxing and Unboxing Conversions
	char types, The char Type
	conversions, Primitive Type Conversions
	expressions in switch statements, The switch Statement
	floating-point types, Floating-Point Types-Floating-Point Types
	instanceof operator, The instanceof Operator
	integer types, Integer Types
	of operands, Operand number and type
	primitive, Primitive Data Types-Primitive Type Conversions
	reference, Reference Types-Boxing and Unboxing Conversions
	type conversion or casting with (), Special Operators

	date and time API, Java 8 Date and Time-Legacy Date and Time	adjusters, Adjusters
	diary class example, Example
	legacy issues, Legacy Date and Time
	queries, Queries-Queries
	timestamp, The parts of a timestamp

	debugging, using assertions, The assert Statement
	decorator pattern, Composition Versus Inheritance
	decrement operator (--), Increment and Decrement Operators, Increment and Decrement Operators
	default access, Access to members
	default constructor, The default constructor
	default fall-through, The switch Statement
	default implementation, Implementation of default methods
	default keyword, Other Reference Types
	default methods	backward compatibility and, Backward compatibility
	collections and, Java Streams and Lambda Expressions
	implementation of, Implementation of default methods-Implementation of default methods
	interfaces and, Default Methods-Implementation of default methods
	traits and, Can Default Methods Be Used as Traits?

	default: label, The switch Statement
	defineClass(), Loading
	DELETE method (HTTP), HTTP
	@deprecated doc-comment tag, Doc-Comment Tags
	destroy(), destroy()
	diamond inheritance, Implementation of default methods
	diamond syntax, Diamond Syntax
	direct buffers, ByteBuffer
	directory streams, Async I/O, Watch Services and Directory Searching
	division operator, Arithmetic Operators
	do statements, The do Statement, The continue Statement
	doc comments, Comments, Java Documentation Comments-Doc Comments for Packages	cross-references in, Cross-References in Doc Comments-Cross-References in Doc Comments
	for packages, Doc Comments for Packages
	inline tags, Inline Doc-Comment Tags
	structure of, Structure of a Doc Comment
	tags, Doc-Comment Tags-Doc-Comment Tags

	doc-comment tags, Doc-Comment Tags-Doc-Comment Tags
	doclets, Doclets
	@docRoot doc-comment tag, Inline Doc-Comment Tags
	documentation (see conventions, programming/documentation) (see javadoc)
	domain names in package names, Globally Unique Package Names
	double type, Floating-Point Types	conversions, Floating-Point Types
	Double class, Floating-Point Types
	return type for operators, Return type

	dynamic bytecode, Nashorn and, Under the Hood
	dynamic proxies, Dynamic Proxies-Dynamic Proxies
	dynamically typed language, The Java Type System

E
	eager evaluation, Lazy evaluation
	ecosystem, Java, What Is the Java Ecosystem?
	effectively final variable, Lexical Scoping and Local Variables
	effectively immutable classes, Hash codes and effective immutability
	else clause, The if/else Statement
	else if clause, The else if clause
	empty collections, Collections class methods for, Special-case collections
	empty statements, The Empty Statement
	encapsulation, Basic OO Definitions, Data Hiding and Encapsulation-Data Accessor Methods	access control, Access Control-Member access summary
	data accessor methods, Data Accessor Methods-Data Accessor Methods

	endianness, bytecode and, Is bytecode really machine independent? What about things like endianness?
	enums (enumerated types), Enums, Naming and Capitalization Conventions
	equality operator (==), Floating-Point Types, Comparison Operators	comparing reference types, Comparing Objects
	confusion with = (assignment) operator, Assignment Operators

	equals(), equals()	Arrays class, Comparing Objects
	testing two nonidentical objects for equality, Comparing Objects

	Error class, Checked and Unchecked Exceptions
	escape sequences	in char literals, The char Type
	in string literals, String literals, String literals
	Unicode characters, The Unicode Character Set

	evacuating collectors, Evacuation
	evacuation, Evacuation
	eval(), Introducing javax.script with Nashorn
	evaluation of expressions	order of evaluation, Order of evaluation
	shortcutting, Boolean Operators

	@exception doc-comment tag, Doc-Comment Tags
	exception handlers, The throw Statement
	exception handling, Exceptions and Exception Handling
	exceptions	checked/unchecked, Defining Methods, Checked and Unchecked Exceptions-Working with checked exceptions
	Exception class, Checked and Unchecked Exceptions
	object-oriented design and, Exceptions and Exception Handling
	throwing, The throw Statement

	exclusion, protecting state with, Exclusion and Protecting State-Exclusion and Protecting State
	execution environment, JVM as, What Is the JVM?
	ExecutorService, JavaScript functions and Java lambda expressions
	exp(), Java’s Standard Library of Mathematical Functions
	exponential notation, Floating-Point Types
	exports keyword, Basic Modules Syntax
	expression statement, Expression Statements
	expressions, Expressions and Operators	array creation, Creating and Initializing Arrays
	defined, Expressions and Operators
	following return statements, The return Statement
	in assert statements, The assert Statement
	in for loops, The for Statement
	in if statements, The if/else Statement
	in switch statements, The switch Statement
	in synchronize statements, The synchronized Statement
	in throw statements, The throw Statement
	in while statements, The while Statement
	operators and, Expressions and Operators-Special Operators
	statements vs., Statements

	extending interfaces, Extending Interfaces
	extends clause, Extending Interfaces
	extension classloader, Platform classloader
	extensions, standard, Packages and the Java Namespace

F
	\f (form feed) escape sequence, The char Type
	fall-through, The switch Statement
	field hiding, overriding vs., Overriding is not hiding
	fields, Fields and Methods-How the this Reference Works	class, Class Fields
	declaration syntax, Field Declaration Syntax
	defaults and initializers, Field Defaults and Initializers-Initializer blocks
	hiding superclass fields, Hiding Superclass Fields-Hiding Superclass Fields
	inheritance, Field Inheritance and Accessors-Field Inheritance and Accessors
	initializer blocks, Initializer blocks
	instance, Instance Fields
	modifiers, Field Declaration Syntax
	naming conventions, Naming and Capitalization Conventions

	File class, Importing Types	classic Java I/O, Files
	modern Java I/O, Files

	file structure, Java, Java Source File Structure
	FileChannel class, Mapped Byte Buffers
	FileInputStream class, Streams
	filenames, hardcoded, Conventions for Portable Programs
	FileOutputStream class, Streams
	FileReader class, Readers and Writers
	FileSystem class, Path
	FileVisitor interface, Watch Services and Directory Searching
	filter(), Functional Programming	in Java 8, Filter
	Predicate interface, Filter

	FilterInputStream class, Readers and Writers
	final classes, Class Definition Syntax, Final classes
	final modifier, Field Declaration Syntax	in variable declaration statements, Local Variable Declaration Statements
	methods, Method Modifiers

	finalization (resource management technique), Finalization-Finalization Details
	finalize(), Finalization-Finalization Details
	finally clause (try/catch/finally), finally
	first-in, first-out (FIFO) queues, The Queue and BlockingQueue Interfaces
	flatMap(), Lazy evaluation
	floating-point numbers, Java and Floating-Point Numbers-BigDecimal
	floating-point types, Floating-Point Types-Floating-Point Types	as approximations, Floating-Point Types
	conversions, Primitive Type Conversions, Primitive Type Conversions
	division by zero, Arithmetic Operators
	Double class, Floating-Point Types
	double type, Floating-Point Types, Return type
	Float class, Floating-Point Types
	float type, Floating-Point Types, Return type
	floating-point arithmetic, Floating-Point Types, Arithmetic Operators
	floating-point literals, Floating-Point Types
	return type for operators, Return type
	strictfp modifier for methods, Method Modifiers
	testing if value is NaN, Comparison Operators
	wrapper classes, Integer Types

	floor(), Java’s Standard Library of Mathematical Functions
	flow-control statements, Statements
	for statements, The for Statement	break statement in, The break Statement
	comparison operators in, Comparison Operators
	continue statement in, The continue Statement
	initialize, test, and update expressions in, The for Statement
	iterating arrays, Iterating arrays

	foreach loops, Foreach loops and iteration-Foreach loops and iteration, Foreach loops
	foreach statements, The foreach Statement	iterating arrays, Iterating arrays
	limitations of, What foreach cannot do

	forEach(), forEach
	format()	line separators, Conventions for Portable Programs
	String class, Variable-Length Argument Lists

	Formatter class, Conventions for Portable Programs
	free list, Introducing Mark-and-Sweep
	functional collections, Java Streams and Lambda Expressions	(see also Java Streams)

	functional interfaces, Lambda Expressions
	functional programming	key patterns, Functional Approaches-Reduce
	lambda expressions and, Functional Programming-Functional Programming
	languages, Lambda Expressions

	@FunctionalInterface annotation, Annotations, Lambda Expression Conversion
	future-based style, for async I/O, Future-Based Style

G
	garbage collection (GC), How the JVM Optimizes Garbage Collection	(see also memory management)
	evacuation, Evacuation
	JVM's optimization of, How the JVM Optimizes Garbage Collection-Evacuation
	ParallelOld collector, ParallelOld

	Garbage First (G1) collector, The HotSpot Heap
	generational garbage collector, How the JVM Optimizes Garbage Collection
	generic methods, Defining Methods, Generic Methods
	generics, Java Generics-Using and Designing Generic Types	basics, Introduction to Generics
	bounded type parameters, Bounded Type Parameters-Bounded Type Parameters
	bounded wildcards, Bounded wildcards
	compile-time/runtime typing, Compile and Runtime Typing
	covariance, Introducing Covariance-Introducing Covariance
	diamond syntax, Diamond Syntax
	generic methods, Generic Methods
	type erasure, Type Erasure
	types/type parameters, Generic Types and Type Parameters
	using and designing, Using and Designing Generic Types
	wildcards, Wildcards

	GET method (HTTP), HTTP
	get(), Path, Future-Based Style, Introducing javax.script with Nashorn
	getClass(), Examples of Class Objects
	getId(), getId()
	getInstance(), Singleton
	getName(), setName() and getName()
	getPriority(), getPriority() and setPriority()
	getProperty(), JavaClass and JavaPackage
	getState(), getState()
	GraalVM, The Future of Nashorn and GraalVM
	Graceful Completion pattern, volatile
	Gradle, Converting to a Multi-Release JAR
	greater than operator (>), Comparison Operators
	greater than or equal to operator (>=), Comparison Operators

H
	hash codes, Hash codes and effective immutability
	hashCode(), hashCode()	and effective immutability, Hash codes and effective immutability
	String class, Hash codes and effective immutability

	HEAD method (HTTP), HTTP
	heap (see HotSpot heap)
	heterogeneous collections, Introduction to Generics
	hidden fields, overriding vs. field hiding, Overriding is not hiding
	homogeneous collections, Introduction to Generics
	HotSpot heap, The HotSpot Heap-Concurrent Mark-and-Sweep	Concurrent Mark-and-Sweep, Concurrent Mark-and-Sweep
	objects in the heap, The HotSpot Heap
	ParallelOld collector, ParallelOld

	HotSpot JVM, What Is the JVM?	introduction of, Performance Problems

	HTTP, HTTP-HTTP

I
	I/O (input/output), File Handling and I/O-IP	Async I/O, Async I/O-Watch Services and Directory Searching
	ByteBuffer, ByteBuffer-ByteBuffer
	classic Java I/O, Classic Java I/O-Problems with Classic I/O
	HTTP, HTTP-HTTP
	IP, IP
	MappedByteBuffer, Mapped Byte Buffers
	method names, Defining Methods
	modern Java I/O, Modern Java I/O-Path
	networking, Networking-IP
	NIO channels and buffers, NIO Channels and Buffers-Mapped Byte Buffers
	TCP, TCP-TCP

	identifiers, Identifiers
	IEEE-754 floating-point arithmetic standard, Java and Floating-Point Numbers
	if statements, The if/else Statement
	if/else statements, The if/else Statement-The else if clause	conditional operator (? :) as version of, The Conditional Operator
	else clause, The if/else Statement
	else if clause, The else if clause
	nested, The if/else Statement

	immutability	hash codes and, Hash codes and effective immutability
	string, String Immutability-Hash codes and effective immutability

	implementation-specific code, Conventions for Portable Programs
	implements keyword, Implementing an Interface
	import declarations, Java Programs from the Top Down, Importing Types	naming conflicts and shadowing, Naming conflicts and shadowing
	on-demand imports, Importing Types
	single type imports, Importing Types

	import static declarations, Importing Static Members, Static member imports and overloaded methods
	increment operator (++), Side effects, Increment and Decrement Operators
	incremental compaction, The HotSpot Heap
	indexes	array, Arrays, Array bounds
	list, The List Interface

	infinite loops	creating with syntax while(true), The while Statement
	writing with for(;;), The for Statement

	infinity	modulo operator (%) and, Arithmetic Operators
	positive and negative, Floating-Point Types
	positive infinity, division by zero in floating-point arithmetic, Arithmetic Operators

	inheritance	access control and, Access control and inheritance
	composition vs., Composition Versus Inheritance-Composition Versus Inheritance

	@inheritDoc doc-comment tag, Inline Doc-Comment Tags
	initialization, classloading and, Initialization
	initialize expressions (for loops), The for Statement
	initializers	array, Array initializers
	in variable declarations, Local Variable Declaration Statements

	initializing objects	defining a constructor, Defining a Constructor
	defining multiple constructors, Defining Multiple Constructors
	field defaults and initializers, Field Defaults and Initializers-Initializer blocks
	invoking one constructor from another, Invoking One Constructor from Another

	inline doc-comment tags, Inline Doc-Comment Tags
	inner classes (see nested types)
	InputStream class, Streams
	InputStreamReader class, Readers and Writers
	instance fields, Instance Fields
	instance methods, Instance Methods, Instance Methods or Class Methods?
	instanceof operator, Operator summary table, The instanceof Operator
	Instant class, Introducing the Java 8 Date and Time API
	int type, Integer Types	32-bit int values, Integer Types
	conversions to other primitive types, Primitive Type Conversions
	Integer class, Integer Types
	return type for operators, Return type

	integer literals, Integer Types
	integer types, Integer Types, How Java Represents Integer Types	conversions, Primitive Type Conversions
	integer arithmetic, Integer Types, Arithmetic Operators
	integer overflow, Integer Types
	wrapper classes, Integer Types

	interfaces, Interfaces-Marker Interfaces	abstract classes vs., Interfaces Versus Abstract Classes
	annotations, Annotations-Type Annotations
	backward compatibility, Backward compatibility
	default implementation, Implementation of default methods-Implementation of default methods
	default methods, Default Methods-Implementation of default methods
	defining, Defining an Interface
	definition of term, Other Reference Types
	extending, Extending Interfaces
	implementing, Implementing an Interface-Implementing an Interface
	marker, Marker Interfaces
	naming conventions, Naming and Capitalization Conventions
	restrictions on, Defining an Interface

	intermediate representation, bytecode as, What is bytecode?
	interpreted languages, Is Java an interpreted language?
	interrupt(), interrupt()
	introspection (see Method Handles) (see Reflection)
	invoke(), Method objects, Invoking Method Handles
	invokedynamic bytecode, Method Handles
	IOException objects, Working with checked exceptions
	IP, IP
	irrational numbers, Java and Floating-Point Numbers
	isAlive(), isAlive()
	isDone(), Future-Based Style
	isJavaIdentifierPart(): Character, Identifiers
	isJavaIdentifierStart(): Character, Identifiers
	isNan(), Comparison Operators
	Iterable interface, Foreach loops and iteration, Random access to Lists
	iteration	arrays, Iterating arrays
	foreach and, What foreach cannot do
	lists, Foreach loops and iteration-Foreach loops and iteration

	Iterator interface, Foreach loops and iteration
	Iterator object, foreach loop and, What foreach cannot do
	iterator(), Random access to Lists

J
	JAR (Java archive) files, Defining and Running Java Programs	manipulating as a FileSystem, Path
	multi-release, Multi-Release JARs-Converting to a Multi-Release JAR

	Java (generally)	answering criticisms of, Answering Some Criticisms of Java-Too Corporate
	calling from Nashorn, Calling Java from Nashorn-JavaScript functions and Java lambda expressions
	corporateness of, Too Corporate
	documentation comments, Java Documentation Comments-Doclets	(see also doc comments)

	history, A Brief History of Java and the JVM-A Brief History of Java and the JVM
	interpreted languages and, Is Java an interpreted language?
	other programming languages compared to, Comparing Java to Other Languages
	overview of versions 1.0 through 11, A Brief History of Java and the JVM-A Brief History of Java and the JVM
	pace of change, Slow to Change
	performance problems, Performance Problems
	security, Java Security
	security vulnerabilities, Insecure
	syntax (see syntax, Java)
	verbosity of, Overly Verbose

	java (Nashorn object), JavaClass and JavaPackage
	Java 11, Foreword, Changes in the Seventh Edition	migrating to modules, Migrating to Modules
	multi-release JARs, Multi-Release JARs
	nested types, Nested Types
	new features, A Brief History of Java and the JVM
	OpenJDK and, The Language, the JVM, and the Ecosystem

	Java 8, Foreword, Changes in the Seventh Edition	Date and Time API, Java 8 Date and Time-Legacy Date and Time
	ElementType values, Type Annotations
	G1 collector, The HotSpot Heap
	interfaces in, Interfaces, Default Methods, Interfaces Versus Abstract Classes
	lamdba expressions (see lambda expressions)
	language changes in, What Is the Java Language?
	method references, Method References
	Nashorn (see Nashorn)
	security issues, Java Security, Insecure
	sort(), Implementation of default methods
	static methods, Defining an Interface
	Streams, Java Streams and Lambda Expressions
	updates in, A Brief History of Java and the JVM

	Java 9, Foreword	doclet upgrade, Doclets
	G1 collector, The HotSpot Heap
	keystone release model, Slow Adoption Rates
	platform modules, Access to modules, Java Platform Modules

	Java Collections (see collections)
	java command, Defining and Running Java Programs
	Java ecosystem, What Is the Java Ecosystem?
	Java file structure, Java Source File Structure
	Java generics (see generics)
	Java interpreter, Defining and Running Java Programs
	Java language (see syntax, Java)
	Java Language Specification (JLS), What Is the Java Language?
	Java Platform Modules System (JPMS), Java Platform Modules-Summary	adoption rates, Slow Adoption Rates
	automatic modules, Automatic Modules
	basic modules syntax, Basic Modules Syntax
	building a simple modular application, Building a Simple Modular Application
	custom runtime images, Custom Runtime Images
	decision to migrate applications to use modules, Migrating to Modules-Migrating to Modules
	deploying software as multi-release JAR, Converting to a Multi-Release JAR
	issues with modules, Issues with Modules-Slow Adoption Rates
	lack of versioning, Lack of Versioning
	modularizing the JDK, Modularizing the JDK-Modularizing the JDK
	module path, The Module Path
	multi-release JARs, Multi-Release JARs-Converting to a Multi-Release JAR
	open modules, Open Modules-Open Modules
	reasons for creation of, Why Modules?-Modularizing the JDK
	services mechanism, Services
	Unsafe class and related problems, Unsafe and Related Problems
	writing your own modules, Writing Your Own Modules-Custom Runtime Images

	Java programming environment, Introduction to the Java Environment-Too Corporate	as open ecosystem, The Language, the JVM, and the Ecosystem
	Java ecosystem, What Is the Java Ecosystem?
	Java language and, What Is the Java Language?
	Java/JVM history, A Brief History of Java and the JVM-A Brief History of Java and the JVM
	JVM, What Is the JVM?-What Is the JVM?
	lifecycle of Java program, The Lifecycle of a Java Program-Can other languages run on the JVM?

	Java programs	contents of, Java Programs from the Top Down
	defining and running, Defining and Running Java Programs
	lexical structure of, Lexical Structure-Punctuation
	lifecycle of, The Lifecycle of a Java Program-Can other languages run on the JVM?

	Java Streams, Java Streams and Lambda Expressions-Summary	default methods, Streams utility default methods
	functional approaches, Functional Approaches-Reduce
	introduction of Streams API, The Streams API-Summary
	lambda expressions and, Java Streams and Lambda Expressions-Summary
	lazy evaluation, Lazy evaluation

	Java Virtual Machine (JVM)	classloader hierarchy, Classloader Hierarchy
	Compiler Interface, The Future of Nashorn and GraalVM
	garbage collection optimization by, How the JVM Optimizes Garbage Collection-Evacuation
	history, A Brief History of Java and the JVM-A Brief History of Java and the JVM
	Java programming environment and, What Is the JVM?-What Is the JVM?
	non-Java languages on, Non-Java Languages on the JVM
	running non-Java languages on, Can other languages run on the JVM?
	security checks implemented by, Secure Programming and Classloading
	verification of class file, Verification

	java.awt.List, Naming conflicts and shadowing
	java.base, Modularizing the JDK
	java.io.IOException objects, Working with checked exceptions
	java.io.ObjectInputStream class, Creating an Object
	java.io.PrintStream, A word about System.out.println()
	java.lang package, Importing Types
	java.lang.ClassLoader, Applied Classloading-Custom classloader
	java.lang.Double, Introducing javax.script with Nashorn
	java.lang.Error, Exceptions and Exception Handling
	java.lang.Exception, Exceptions and Exception Handling
	java.lang.Iterable, Foreach loops and iteration
	java.lang.Math, Java and Floating-Point Numbers
	java.lang.Object, Array Types	annotations in, Annotations
	clone() method, clone()
	compareTo() method, Comparable::compareTo()
	equals() method, equals()
	hashCode() method, hashCode()
	important methods of, Important Methods of java.lang.Object-clone()
	toString() method, toString()

	java.lang.reflect, Variable-Length Argument Lists
	java.lang.String, Final classes
	java.lang.System, Arrays and Helper Methods, JavaClass and JavaPackage
	java.lang.System.out, A word about System.out.println()
	java.lang.System.println(), JavaClass and JavaPackage
	java.lang.Throwable, Exceptions and Exception Handling
	java.net package, Networking
	java.nio.channels package, Callback-Based Style
	java.nio.file package, Modern Java I/O, Watch Services and Directory Searching
	java.se.ee module, Modularizing the JDK
	java.time package, Introducing the Java 8 Date and Time API
	java.time.chrono package, Introducing the Java 8 Date and Time API
	java.time.Duration package, Introducing the Java 8 Date and Time API
	java.time.format package, Introducing the Java 8 Date and Time API
	java.time.temporal package, Introducing the Java 8 Date and Time API
	java.time.zone package, Introducing the Java 8 Date and Time API
	Java.type(), JavaClass and JavaPackage
	java.util package	Map interface implementations, The Map Interface
	Set implementations, Introduction to Collections API

	java.util.AbstractList, Interfaces Versus Abstract Classes
	java.util.Arrays class, Array utilities
	java.util.Collections	special-case collections, Special-case collections
	wrapper methods, Utility Methods

	java.util.concurrent, Java’s Support for Concurrency, The Set Interface, VisualVM	BlockingQueue interface, The Queue and BlockingQueue Interfaces
	Map implementations, The Map Interface

	java.util.Formatter, Conventions for Portable Programs
	java.util.function, Can Default Methods Be Used as Traits?, Map
	java.util.Iterable, Foreach loops and iteration
	java.util.Iterator, Nonstatic Member Classes, Foreach loops and iteration
	java.util.List, Naming conflicts and shadowing	java.util.RandomAccess and, Marker Interfaces
	sort() method, Implementation of default methods

	java.util.RandomAccess, Marker Interfaces
	java.util.regex package, Regular Expressions
	javac	class initialization method generation, Field Defaults and Initializers
	lambda expression conversion, Lambda Expression Conversion, Lexical Scoping and Local Variables
	optimized bytecode, Is bytecode optimized?
	similarity to compiler, Is javac a compiler?
	virtual method lookup, Virtual method lookup

	JavaClass objects, JavaClass and JavaPackage, JavaClass and JavaPackage
	javadoc, Comments	doc comments, Java Documentation Comments
	doclets, Doclets
	package documentation, Doc Comments for Packages

	JavaPackage, Nashorn and, JavaClass and JavaPackage
	JavaScript	executing with Nashorn, Executing JavaScript with Nashorn-Using the Nashorn Shell
	Java compared to, Java Compared to JavaScript
	Nashorn's language extensions, Nashorn’s JavaScript Language Extensions
	using JavaScript function as lambda in Nashorn, JavaScript functions and Java lambda expressions

	javax., package names beginning with, Packages and the Java Namespace
	javax.net package, Networking
	javax.script, Nashorn and javax.script-The javax.script API
	JDK (Java Development Kit), modularizing of, Modularizing the JDK-Modularizing the JDK
	jjs command, Executing JavaScript with Nashorn, Using the Nashorn Shell
	join(), join()
	jrunscript command, Executing JavaScript with Nashorn
	JShell, Introduction to JShell-Introduction to JShell
	JUnit, The assert Statement
	jvisualvm tool, VisualVM, VisualVM
	JVM Compiler Interface (JVMCI), The Future of Nashorn and GraalVM

K
	Kanji character (in Java identifier), Identifiers
	keystone release model, Slow Adoption Rates

L
	labeled statements, Labeled Statements, The break Statement
	lambda expressions, Special Operators, Defining Methods, Lambda Expressions, Lambda Expressions-Lexical Scoping and Local Variables	anonymous classes and, Anonymous Classes
	basics, Lambda Expressions-Lambda Expressions
	conversion, Lambda Expression Conversion
	defined, Lambda Expressions
	functional programming and, Functional Programming-Functional Programming
	Java Streams and, Java Streams and Lambda Expressions-Summary
	lexical scoping and local variables, Lexical Scoping and Local Variables-Lexical Scoping and Local Variables
	method references and, Method References
	method references vs., Lambdas Versus Method References
	nested classes vs., Lambdas Versus Nested Classes
	object-oriented design and, Object-Oriented Design with Lambdas-Lambdas Versus Method References
	using JavaScript function as, JavaScript functions and Java lambda expressions

	last in, first-out (LIFO) queues, The Queue and BlockingQueue Interfaces
	Latin-1 character set, The char Type
	lazy evaluation, Lazy evaluation
	left shift operator (<<), Bitwise and Shift Operators
	length field, Arrays
	length of arrays, Arrays, Creating and Initializing Arrays
	less than operator (<), Comparison Operators
	less than or equal to operator (<=), Comparison Operators
	lexical scoping, Lexical Scoping and Local Variables
	lexical structure	case sensitivity, Case Sensitivity and Whitespace
	comments, Comments
	identifiers, Identifiers
	literals, Literals
	of Java program, Lexical Structure-Punctuation
	punctuation, Punctuation
	reserved words, Reserved Words
	Unicode character set, The Unicode Character Set
	whitespace, Case Sensitivity and Whitespace

	lifecycle, of Java program, The Lifecycle of a Java Program-Can other languages run on the JVM?
	line separators, Conventions for Portable Programs
	@link doc-comment tag, Structure of a Doc Comment, Inline Doc-Comment Tags, Cross-References in Doc Comments
	linked lists, iterating through, using for loop, The for Statement
	LinkedList class, Random access to Lists, Querying
	LinkOption class, Files
	@linkplain doc-comment tag, Inline Doc-Comment Tags, Cross-References in Doc Comments
	List interface, The List Interface-Random access to Lists	foreach loops and iteration, Foreach loops and iteration-Foreach loops and iteration
	generics and, Introduction to Generics
	random access to lists, Random access to Lists

	lists	iterating through using foreach loop, What foreach cannot do
	java.util.List and java.awt.List classes, Globally Unique Package Names, Naming conflicts and shadowing
	storing primitive values in, Globally Unique Package Names

	@literal doc-comment tag, Inline Doc-Comment Tags
	literals, Literals, Expressions and Operators
	loadClass(), Applied Classloading
	loading (classloading phase), Loading
	local classes, Local Classes-Scope of a local class	features of, Features of local classes
	scope of, Scope of a local class

	local variable declaration statements, Local Variable Declaration Statements
	local variable type inference (var), Non-Denotable Types and var
	local variables, Local Variable Declaration Statements	lambda expressions and, Lexical Scoping and Local Variables-Lexical Scoping and Local Variables
	naming conventions, Naming and Capitalization Conventions

	LocalDate class, The parts of a timestamp
	log(), Java’s Standard Library of Mathematical Functions
	log10(), Java’s Standard Library of Mathematical Functions
	logical operators, Boolean Operators-Boolean Operators
	long type, Integer Types, The switch Statement	64-bit long values, Integer Types
	conversions between char values and, Primitive Type Conversions
	Long class, Integer Types
	return type for operators, Return type

	long-term support (LTS) release, Changes in the Seventh Edition, A Brief History of Java and the JVM, Slow Adoption Rates
	Lookup object, Method Lookup
	lookup queries, Method Lookup
	looping	for statements, The for Statement
	while statements, The while Statement

	lvalue, Assignment Operators

M
	main thread, Java’s Support for Concurrency
	main(), The throw Statement, Defining and Running Java Programs, Defining and Running Java Programs
	MalformedURLException, Working with checked exceptions
	Map interface, The Map Interface-The Map Interface
	map(), Functional Programming, Map
	Map.Entry interface, The Map Interface
	MappedByteBuffer, Mapped Byte Buffers
	mark-and-sweep algorithm, Introducing Mark-and-Sweep-The Basic Mark-and-Sweep Algorithm	(see also Concurrent Mark-and-Sweep (CMS))

	marker interfaces, Marker Interfaces
	Matcher class, Regular Expressions
	Math class	on-demand static import, Importing Static Members
	static methods for rounding, Primitive Type Conversions

	mathematical functions, standard library of, Java’s Standard Library of Mathematical Functions-Java’s Standard Library of Mathematical Functions
	Maven, Converting to a Multi-Release JAR
	max(), Java’s Standard Library of Mathematical Functions
	MAX_VALUE constant	Float and Double classes, Floating-Point Types
	integer type wrapper classes, Integer Types

	member access operator (.), Special Operators
	member classes	features, Features of member classes
	nonstatic, Nonstatic Member Classes-Syntax for member classes
	static, Static Member Types-Features of static member types
	syntax for, Syntax for member classes

	members of a class, Basic OO Definitions, Access to members-Member access summary
	memory leaks, Memory Leaks in Java
	memory management, Basic Concepts of Java Memory Management	(see also concurrency)
	basic concepts, Basic Concepts of Java Memory Management-The Basic Mark-and-Sweep Algorithm
	finalization, Finalization-Finalization Details
	HotSpot heap, The HotSpot Heap-Concurrent Mark-and-Sweep
	JVM's optimization of garbage collection, How the JVM Optimizes Garbage Collection-Evacuation
	mark-and-sweep algorithm, Introducing Mark-and-Sweep-The Basic Mark-and-Sweep Algorithm
	memory leaks, Memory Leaks in Java

	memory, primitive and reference types requirements, Reference Versus Primitive Types
	meta-annotations, Defining Custom Annotations
	metacharacters in regular expressions, Regular Expressions
	metadata, class objects and, Class Objects and Metadata
	method body, Defining Methods
	Method Handles, Method Handles-Invoking Method Handles	invoking, Invoking Method Handles
	lookup queries, Method Lookup
	MethodType objects, MethodType

	method invocation operator (()), Side effects, Special Operators
	Method objects, Reflection and, Method objects-Method objects
	method overloading, Defining Methods, Static member imports and overloaded methods
	method references	lambda expressions and, Method References
	lambdas vs., Lambdas Versus Method References

	method signature, Defining Methods-Defining Methods
	MethodHandles.lookup(), Method Lookup
	methods, Methods-Variable-Length Argument Lists	abstract, Abstract Classes and Methods-Reference Type Conversions
	arguments passed to, primitive and reference types, Manipulating Objects and Reference Copies
	checked/unchecked exceptions, Checked and Unchecked Exceptions-Working with checked exceptions
	class, Class Methods
	data accessor methods, Data Accessor Methods-Data Accessor Methods
	defining, Defining Methods-Defining Methods
	instance, Instance Methods
	instance methods vs. class methods, Instance Methods or Class Methods?
	invoking an overridden method, Invoking an overridden method-Invoking an overridden method
	modifiers, Method Modifiers
	naming conventions, Naming and Capitalization Conventions
	native, Method Modifiers, Conventions for Portable Programs
	of java.lang.Object, Important Methods of java.lang.Object-clone()
	overriding superclass methods, Overriding Superclass Methods-Invoking an overridden method
	overriding vs. field hiding, Overriding is not hiding
	parameter list, Defining Methods
	signature, Defining Methods-Defining Methods
	synchronized, The synchronized Statement
	this reference, How the this Reference Works
	variable-length argument lists, Variable-Length Argument Lists
	virtual lookup, Virtual method lookup
	void, The return Statement

	MethodType objects, MethodType
	min(), Java’s Standard Library of Mathematical Functions
	MIN_VALUE constant	Float and Double classes, Floating-Point Types
	integer type wrapper classes, Integer Types

	modern Java I/O, Modern Java I/O-Path	File class, Files
	Path type, Path-Path

	modifiers	access, Method Modifiers
	method, Defining Methods, Method Modifiers

	module descriptor, Basic Modules Syntax
	module keyword, Basic Modules Syntax
	module path, The Module Path
	module-info.java file, Basic Modules Syntax
	modules, Java Platform Modules	(see also Java Platform Modules System (JPMS))
	access control, Access to modules
	naming conventions, Naming and Capitalization Conventions

	modulo operator (%), Arithmetic Operators
	monitor token, Exclusion and Protecting State
	multidimensional arrays, Multidimensional Arrays
	multiple inheritance, Implementation of default methods
	multiplication operator (*), Arithmetic Operators
	multithreading (see concurrency)
	mutability	concurrency and, Visibility and Mutability
	defined, Visibility and Mutability

N
	\n (newlines, escaping), The char Type
	names	of methods, Defining Methods
	package-naming rules, Globally Unique Package Names

	namespaces	globally unique package names, Globally Unique Package Names
	importing static members, Static member imports and overloaded methods
	importing types, Importing Types

	naming conflicts, Naming conflicts and shadowing
	naming conventions (see conventions, programming/documentation)
	NaN (Not a number), Floating-Point Types
	NaN (Not-a-number)	equality tests of, Comparison Operators
	floating-point calculations, division by zero, Arithmetic Operators
	modulo operator (%) and, Arithmetic Operators

	narrowing conversions, Primitive Type Conversions
	Nashorn, Introduction to Nashorn-The Future of Nashorn and GraalVM	advanced use cases, Advanced Nashorn-Under the Hood
	and non-Java languages on the JVM, Non-Java Languages on the JVM
	bytecode and, Under the Hood
	calling Java from, Calling Java from Nashorn-JavaScript functions and Java lambda expressions
	dynamic code generation, Under the Hood
	foreach loops, Foreach loops
	GraalVM and, The Future of Nashorn and GraalVM
	JavaClass and, JavaClass and JavaPackage
	JavaPackage and, JavaClass and JavaPackage
	JavaScript execution, Executing JavaScript with Nashorn-Using the Nashorn Shell
	JavaScript functions and lambda expressions, JavaScript functions and Java lambda expressions
	JavaScript language extensions, Nashorn’s JavaScript Language Extensions
	javax.script and, Nashorn and javax.script-The javax.script API
	multiple catch clauses, Multiple catch clauses
	purposes of, Motivation
	running a script from the command line, Running from the Command Line
	single expression functions, Single expression functions
	using the Nashorn shell, Using the Nashorn Shell

	native methods, Method Modifiers	implementation, Method Modifiers
	portable programs and, Conventions for Portable Programs

	natural comparison method, Comparable::compareTo()
	negative infinity, Floating-Point Types
	negative zero, Floating-Point Types
	NEGATIVE_INFINITY constant, Float and Double classes, Floating-Point Types
	nested classes, lambdas vs., Lambdas Versus Nested Classes
	nested types, Nested Types-Anonymous Classes	anonymous classes, Anonymous Classes-Anonymous Classes
	local classes, Local Classes-Scope of a local class
	nonstatic member class, Nonstatic Member Classes-Syntax for member classes
	static member types, Static Member Types-Features of static member types

	networking	HTTP, HTTP-HTTP
	IP, IP
	TCP, TCP-TCP

	new operator, Operator summary table, Side effects, Special Operators	creating arrays, Special Operators, Array initializers, Multidimensional Arrays
	creating new objects, Special Operators, Creating an Object

	next(), Foreach loops and iteration
	NIO channels and buffers, NIO Channels and Buffers-Mapped Byte Buffers	ByteBuffer, ByteBuffer-ByteBuffer
	MappedByteBuffer, Mapped Byte Buffers

	nominal typing, Marker Interfaces
	non-denotable types, Non-Denotable Types and var
	nonstatic members, Basic OO Definitions, Nonstatic Member Classes-Syntax for member classes
	not equals operator (!=), Comparison Operators
	NOT operator	bitwise NOT (), Bitwise and Shift Operators
	boolean NOT (!), Boolean Operators

	notify(), Working with Threads
	null reference, The null reference, JavaClass and JavaPackage
	numbers, Numbers and Math-Java’s Standard Library of Mathematical Functions	floating-point, Java and Floating-Point Numbers-BigDecimal
	integer types, How Java Represents Integer Types
	library of mathematical functions, Java’s Standard Library of Mathematical Functions-Java’s Standard Library of Mathematical Functions

O
	Object class, Array type widening conversions, Reference Type Conversions
	object references, Reference Type Conversions-Reference Type Conversions
	object state, The synchronized Statement
	object-oriented design, Introduction to Object-Oriented Design in Java-Safe Java Programming	by reference vs. pass by reference, Java Values
	composition vs. inheritance, Composition Versus Inheritance-Composition Versus Inheritance
	constants, Constants
	default methods and traits, Can Default Methods Be Used as Traits?
	exception handling, Exceptions and Exception Handling
	field inheritance and accessors, Field Inheritance and Accessors-Field Inheritance and Accessors
	important methods of java.lang.Object, Important Methods of java.lang.Object-clone()
	instance methods vs. class methods, Instance Methods or Class Methods?
	interfaces vs. abstract classes, Interfaces Versus Abstract Classes
	Java values, Java Values
	lambdas and, Object-Oriented Design with Lambdas-Lambdas Versus Method References
	safe programming, Safe Java Programming
	singleton pattern, Singleton-Singleton
	System.out.println() and, A word about System.out.println()

	object-oriented programming, Object-Oriented Programming in Java-Modifier Summary	abstract classes and methods, Abstract Classes and Methods-Reference Type Conversions
	classes, Overview of Classes-Class Definition Syntax
	creating/initializing objects, Creating and Initializing Objects-Initializer blocks
	data hiding and encapsulation, Data Hiding and Encapsulation-Data Accessor Methods
	fields and methods, Fields and Methods-How the this Reference Works
	modifier summary, Modifier Summary
	subclasses and inheritance, Subclasses and Inheritance-Invoking an overridden method
	superclasses and class hierarchy, Superclasses, Object, and the Class Hierarchy

	object-relational mapping (ORM), Open Modules
	ObjectInputStream class, Creating an Object
	objects	arrays as, Arrays-Multidimensional Arrays
	as operand type, Increment and Decrement Operators, The instanceof Operator
	classes and, Introduction to Classes and Objects-Lambda Expressions
	comparing, Comparing Objects
	converting to/from arrays, Arrays and Helper Methods
	creating, Creating an Object, Creating and Initializing Objects-Initializer blocks
	creation with new operator, Special Operators
	defined, Introduction to Classes and Objects, Basic OO Definitions
	in the heap, The HotSpot Heap
	initializing, Creating and Initializing Objects-Initializer blocks
	literals, Object Literals
	manipulating, Manipulating Objects and Reference Copies
	memory requirements for storing, Reference Versus Primitive Types
	using, Using an Object

	open modules, Open Modules-Open Modules
	operand, number and type of, Operand number and type
	operators, Punctuation, Expressions and Operators-Special Operators	arithmetic, Arithmetic Operators
	assignment, Assignment Operators
	associativity, Associativity
	bitwise, Bitwise and Shift Operators
	Boolean, Boolean Operators-Boolean Operators
	comparison, Comparison Operators
	conditional, The Conditional Operator
	in statements, Statements
	increment/decrement, Increment and Decrement Operators
	instanceof, The instanceof Operator
	operand number and type, Operand number and type
	order of evaluation, Order of evaluation
	precedence of, Precedence
	return type, Return type
	shift, Bitwise and Shift Operators, Bitwise and Shift Operators
	side effects, Side effects
	special, Special Operators-Special Operators
	string concatenation, String Concatenation Operator
	summary table, Operator summary table

	optimization, bytecode and, Is bytecode optimized?
	OPTIONS method (HTTP), HTTP
	or(), Filter
	Oracle Corporation	control of package names beginning with java, javax, and sun, Globally Unique Package Names
	Java 7 release, Java Platform Modules
	Java and, The Language, the JVM, and the Ecosystem
	Nashorn deprecation plans, The Future of Nashorn and GraalVM

	OutputStream class, Streams
	overflow, integer arithmetic and, Integer Types
	overloading, static member imports and, Static member imports and overloaded methods
	@Override annotation, Annotations
	overriding	field hiding vs., Overriding is not hiding
	invoking an overridden method, Invoking an overridden method-Invoking an overridden method

P
	package access, Access to members-Member access summary
	package declarations, Java Programs from the Top Down
	package keyword, Package Declaration
	packages, Packages and the Java Namespace-Static member imports and overloaded methods	access control, Access to packages
	declarations, Package Declaration
	doc comments for, Doc Comments for Packages
	globally unique names, Globally Unique Package Names
	importing static members, Importing Static Members, Static member imports and overloaded methods
	importing types, Importing Types
	naming conflicts and shadowing, Naming conflicts and shadowing
	naming conventions, Naming and Capitalization Conventions
	static member imports and overloaded methods, Static member imports and overloaded methods

	parallel collector, The HotSpot Heap
	ParallelOld collector, ParallelOld
	@param doc-comment tag, Doc-Comment Tags
	parameterized type, Generic Types and Type Parameters
	parameters, naming conventions for, Naming and Capitalization Conventions
	pass-by-reference language, Java Values
	pass-by-value language, Java Values
	Path type, Path-Path
	pause goals, The HotSpot Heap
	payload type, Introduction to Generics
	per-thread allocation, Evacuation
	platform classloader, Platform classloader
	Point class, Basic OO Definitions, Reference Type Conversions
	portable code, conventions for, Conventions for Portable Programs-Conventions for Portable Programs
	positive infinity, Floating-Point Types, Arithmetic Operators
	positive zero, Floating-Point Types
	POSITIVE_INFINITY constant, Float and Double classes, Floating-Point Types
	POST method (HTTP), HTTP
	post-decrement operator (--), Increment and Decrement Operators
	post-increment operator (++), Increment and Decrement Operators
	Postel's Law, TCP
	pow(), Java’s Standard Library of Mathematical Functions
	pre-decrement operator (--), Increment and Decrement Operators
	pre-increment operator (++), Increment and Decrement Operators
	precedence, operator, Precedence
	Predicate interface, Filter	converting regex to a Predicate, Regular Expressions
	temporal queries vs., Queries

	primary expressions, Expressions and Operators
	primitive types, Primitive Data Types-Primitive Type Conversions	boolean, The boolean Type
	boxing and unboxing conversions, Boxing and Unboxing Conversions
	char, The char Type
	conversions between, Primitive Type Conversions
	conversions to strings, String Concatenation Operator
	equals operator (==), testing operand values, Comparison Operators
	floating-point types, Floating-Point Types-Floating-Point Types
	integer types, Integer Types
	reference types vs., Reference Versus Primitive Types, Comparing Objects
	String literals, String literals
	wrapper classes, Boxing and Unboxing Conversions

	printf(), Variable-Length Argument Lists, Conventions for Portable Programs
	println(), Defining Methods, toString(), JavaClass and JavaPackage	line separators and, Conventions for Portable Programs
	out.println() instead of System.out.println(), Importing Static Members
	System.out.println() and, A word about System.out.println()

	priority queues, The Queue and BlockingQueue Interfaces
	private constructor, The default constructor
	private modifier, Field Declaration Syntax	methods, Method Modifiers
	rules governing, Member access summary

	ProcessHandle API, Multi-Release JARs
	Producer Extends, Consumer Super (PECS) principle, Bounded wildcards
	programming conventions (see conventions)
	protected access, Access to members, Field Inheritance and Accessors
	protected modifier, Field Declaration Syntax	methods, Method Modifiers
	rules governing, Member access summary

	pseudorandom number generator (PRNG), Java’s Standard Library of Mathematical Functions
	public modifier, Field Declaration Syntax	methods, Method Modifiers
	rules governing, Member access summary

	punctuation characters as tokens, Punctuation
	PUT method (HTTP), HTTP
	put(), Introducing javax.script with Nashorn
	putIfAbsent(), The Map Interface
	Python, Java compared to, Java Compared to Python

Q
	queries	date and time, Queries-Queries
	elements in queues, Querying
	temporal, Queries

	Queue interface, The Queue and BlockingQueue Interfaces-Querying	adding elements to queues, Adding Elements to Queues
	querying, Querying
	querying of elements in queues, Querying
	removing elements from queues, Removing Elements from Queues

R
	\r (carriage return) escape sequence, The char Type
	Random class, Java’s Standard Library of Mathematical Functions
	random(), Java’s Standard Library of Mathematical Functions
	RandomAccess interface, Random access to Lists
	raw type, Type Erasure
	reachable object, Introducing Mark-and-Sweep
	Reader and Writer classes, Streams
	reader class, Readers and Writers
	receiver object, Special Operators
	receiver of a method, Special Operators
	rectangular arrays, Multidimensional Arrays
	reduce(), Functional Programming, Reduce
	reference types, Java Programs from the Top Down, Reference Types-Boxing and Unboxing Conversions	array types, Array Types
	as operand type, The instanceof Operator
	boxing and unboxing conversions, Boxing and Unboxing Conversions
	boxing/unboxing conversions, Boxing and Unboxing Conversions
	comparing objects, Comparing Objects
	conversions, Reference Type Conversions-Reference Type Conversions
	manipulating objects and reference copies, Manipulating Objects and Reference Copies
	null, The null reference
	operands of, testing with == operator, Comparison Operators
	pointers in C/C++ vs., Reference Versus Primitive Types
	primitive types vs., Reference Versus Primitive Types

	reflection, Reflection-Dynamic Proxies	dynamic proxies, Dynamic Proxies-Dynamic Proxies
	how to use, How to Use Reflection-Problems with Reflection
	Method objects, Method objects-Method objects
	problems with, Problems with Reflection
	when to use, When to Use Reflection

	Reflection API, Variable-Length Argument Lists, Problems with Reflection
	region-based collector, The HotSpot Heap
	regular expressions (regex), Regular Expressions-Regular Expressions
	relational operators, Comparison Operators, Comparison Operators
	request methods (HTTP), HTTP
	requires keyword, Basic Modules Syntax
	reserved words, Reserved Words
	restricted keywords, Reserved Words, Basic Modules Syntax
	resume(), suspend(), resume(), and countStackFrames()
	@return doc-comment tag, Doc-Comment Tags
	return statements, The switch Statement, The return Statement, finally, Defining Methods
	return types	for operators, Return type
	specified by type in method signature, Defining Methods

	right shift operators, Bitwise and Shift Operators
	rounding numbers, Primitive Type Conversions
	run-until-shutdown pattern, volatile
	runtime typing, Compile and Runtime Typing
	runtime-managed concurrency, Java’s Support for Concurrency
	Runtime.exec(), Conventions for Portable Programs
	Runtime::addShutdownHook, Finalization Details
	RuntimeException, Checked and Unchecked Exceptions
	rvalue, Assignment Operators

S
	safe multithreaded program, Concurrent safety
	safepoint, The Basic Mark-and-Sweep Algorithm
	safety	classloading and secure programming, Secure Programming and Classloading-Secure Programming and Classloading
	concurrent, Concurrent safety
	object-oriented design and, Safe Java Programming

	scaffold methods, Streams utility default methods
	scientific notation, Floating-Point Types
	scope, of local variables, Local Variable Declaration Statements
	ScriptEngine, Introducing javax.script with Nashorn, The javax.script API
	ScriptEngineManager, Introducing javax.script with Nashorn, The javax.script API
	ScriptObjectMirror, The javax.script API
	search	Async I/O directory streams, Watch Services and Directory Searching
	regular expressions and, Regular Expressions-Regular Expressions

	secure programming, classloading and, Secure Programming and Classloading-Secure Programming and Classloading
	security, Java Security, Insecure
	@see doc-comment tag, Doc-Comment Tags, Cross-References in Doc Comments
	separators, Punctuation
	@serial doc-comment tag, Doc-Comment Tags
	@serialData doc-comment tag, Doc-Comment Tags
	@serialField doc-comment tag, Doc-Comment Tags
	Serializable interface, Array type widening conversions
	services mechanism (JPMS), Services
	Set interface, The Set Interface-The Set Interface
	setDaemon(), setDaemon()
	setName(), setName() and getName()
	setPriority(), getPriority() and setPriority()
	setUncaughtExceptionHandler(), setUncaughtExceptionHandler()
	shell (see jjs command; JShell)
	shift operators, Bitwise and Shift Operators
	short type, Integer Types, Integer Types, Return type
	shutdown(), volatile
	side effects	expressions having, Expression Statements
	of operators, Side effects
	operators, Side effects

	signature	in class definition, Basic OO Definitions
	of method, Defining Methods-Defining Methods

	signature of a method, Defining Methods-Defining Methods
	@since doc-comment tag, Doc-Comment Tags
	single abstract method (SAM) type, Lambda Expressions
	singleton pattern, Singleton-Singleton
	singletons, Collections class methods for, Special-case collections
	snippets, Introduction to JShell
	sort()	as default method, Implementation of default methods
	static member imports and, Static member imports and overloaded methods

	SortedMap interface, The Map Interface
	SortedSet interface, The Set Interface
	source file, Java, Java Source File Structure
	special operators (language constructs), Special Operators-Special Operators
	StandardCopyOption enum, Files
	standards bodies, packages named for, Packages and the Java Namespace
	start(), start()
	state, exclusion and, Exclusion and Protecting State-Exclusion and Protecting State
	statements, Java Programs from the Top Down, Statements-Enabling assertions	assert, The assert Statement-Enabling assertions
	break, The break Statement
	compound, Compound Statements
	continue, The continue Statement
	defined by Java, summary of, Statements
	do, The do Statement
	do/while, The while Statement
	empty, The Empty Statement
	expression, Expression Statements
	expression statements, Expression Statements
	expressions vs., Statements
	for, The for Statement
	foreach, The foreach Statement
	if/else, The if/else Statement-The else if clause
	labeled, Labeled Statements
	local variable declaration, Local Variable Declaration Statements
	return, The return Statement
	switch, The switch Statement-The switch Statement
	synchronized, The synchronized Statement
	throw, The throw Statement
	try-with-resources, The try-with-resources Statement
	try/catch/finally, The try/catch/finally Statement-finally
	while, The while Statement

	statements section, synchronize statement, The synchronized Statement
	static final constant, naming conventions for, Naming and Capitalization Conventions
	static import declarations, Importing Static Members
	static initializer, Initializer blocks
	static keyword, Instance Methods or Class Methods?
	static member types, Static Member Types-Features of static member types
	static members, Importing Static Members, Basic OO Definitions
	static methods, Method Modifiers
	static modifier, Field Declaration Syntax
	static synchronized method, The synchronized Statement
	statically typed language, The Java Type System
	stop(), stop()
	stop-the-world (STW) garbage collection, The Basic Mark-and-Sweep Algorithm
	storage location, Assignment Operators
	stream abstraction, Streams
	stream(), The Streams API
	Streams API (see Java Streams)
	strictfp modifier, Method Modifiers, Class Definition Syntax, Java and Floating-Point Numbers
	String class, Final classes	reference type conversions and, Reference Type Conversions
	special syntax for, Special Syntax for Strings-Hash codes and effective immutability

	string concatenation operator (+), String Concatenation Operator, String literals, String concatenation, String concatenation
	string literals, String literals, String literals, String literals
	String type, String literals vs., String literals
	StringBuffer class, String Immutability
	StringBuilder class, String concatenation
	strings, String literals, Special Syntax for Strings-Hash codes and effective immutability	concatenation, String concatenation
	conversions for all primitive types, String Concatenation Operator
	converting to integer values, Integer Types
	hash codes and effective immutability, Hash codes and effective immutability
	immutability, String Immutability-Hash codes and effective immutability
	literals, String literals
	String class, String literals, String literals, Packages and the Java Namespace
	toString() method, toString()

	subclasses	access control, Access control and inheritance
	constructor chaining, Constructor Chaining and the Default Constructor
	constructors, Subclass Constructors
	default constructor, The default constructor
	defined, Basic OO Definitions
	extending a class, Extending a Class-Final classes
	final classes and, Final classes
	inheritance and, Subclasses and Inheritance-Invoking an overridden method
	superclasses and, Superclasses, Object, and the Class Hierarchy

	subList(), The List Interface
	Substrate VM, The Future of Nashorn and GraalVM
	subtraction operator (-), Arithmetic Operators
	sun.misc.Unsafe class, Unsafe and Related Problems
	super keyword	as reserved word, Subclass Constructors
	invoking an overridden method, Invoking an overridden method-Invoking an overridden method
	super() vs., Invoking an overridden method

	super(), Subclass Constructors, Invoking an overridden method
	superclasses, Superclasses, Object, and the Class Hierarchy	default constructor, The default constructor
	defined, Basic OO Definitions
	hiding superclass fields, Hiding Superclass Fields-Hiding Superclass Fields
	overriding superclass methods, Overriding Superclass Methods-Invoking an overridden method
	reference type conversions, Reference Type Conversions

	surrogate pairs (Unicode supplementary characters), The char Type
	survivor space, Evacuation
	suspend(), suspend(), resume(), and countStackFrames()
	switch statements, The switch Statement-The switch Statement	case labels, The switch Statement
	data type of expression in, The switch Statement
	default: label, The switch Statement
	restrictions on, The switch Statement

	synchronized keyword, The synchronized Statement, Exclusion and Protecting State-Exclusion and Protecting State
	synchronized methods, Method Modifiers, Working with Threads
	synchronized statements, The synchronized Statement
	syntax, Java, Java Syntax from the Ground Up-Summary	arrays, Arrays-Multidimensional Arrays
	case sensitivity, Case Sensitivity and Whitespace
	classes and objects, Introduction to Classes and Objects-Lambda Expressions
	comments, Comments
	defining and running Java programs, Defining and Running Java Programs
	defining/running Java programs, Defining and Running Java Programs
	expressions and operators, Expressions and Operators-Special Operators
	field declaration syntax, Field Declaration Syntax
	identifiers, Identifiers
	Java file structure, Java Source File Structure
	Java source file structure, Java Source File Structure
	lambda expressions, Lambda Expressions
	lexical structure of Java program, Lexical Structure-Punctuation
	literals, Literals
	methods, Methods-Variable-Length Argument Lists
	operators, Expressions and Operators-Special Operators
	overview of Java program, Java Programs from the Top Down
	packages, Packages and the Java Namespace-Static member imports and overloaded methods
	packages and the Java namespace, Packages and the Java Namespace-Static member imports and overloaded methods
	primitive data types, Primitive Data Types-Primitive Type Conversions
	primitive type conversions, Primitive Type Conversions
	punctuation, Punctuation
	reference types, Reference Types-Boxing and Unboxing Conversions
	reserved words, Reserved Words
	statements, Statements-Enabling assertions
	Unicode character set, The Unicode Character Set
	whitespace, Case Sensitivity and Whitespace

	system (application) classloader, Application classloader
	system classes, Conventions for Portable Programs
	System.arraycopy(), Copying arrays
	System.exit(), finally
	System.getenv(), Conventions for Portable Programs
	System.in, Streams
	System.out, Streams
	System.out.printf(), Variable-Length Argument Lists
	System.out.println(), Defining Methods, Importing Static Members, A word about System.out.println(), toString()

T
	\t (tab), The char Type
	tags	doc-comment, Doc-Comment Tags-Doc-Comment Tags
	inline doc-comment, Inline Doc-Comment Tags

	TCP, TCP-TCP
	TemporalQuery interface, Queries
	tenuring threshold, Evacuation
	test expressions (for loops), The for Statement
	text, Text-Regular Expressions	regular expressions and, Regular Expressions-Regular Expressions
	strings, Special Syntax for Strings-Hash codes and effective immutability

	this keyword, How the this Reference Works, Invoking One Constructor from Another
	this(), Field Defaults and Initializers
	thread-local allocation buffer, Evacuation
	Thread.sleep(), Thread Lifecycle
	Thread.State, Thread Lifecycle
	threads, Java’s Support for Concurrency	(see also concurrency)
	deprecated methods of, Deprecated Methods of Thread
	lifecycle of, Thread Lifecycle-Thread Lifecycle
	useful methods of, Useful Methods of Thread-setUncaughtExceptionHandler()
	working with, Working with Threads

	throw statements, The throw Statement, finally	methods using to throw checked exceptions, Defining Methods
	stopping switch statements, The switch Statement

	Throwable class, catch, Exceptions and Exception Handling
	Throwable objects, Checked and Unchecked Exceptions
	throws clause (method signature), Defining Methods, Working with checked exceptions
	@throws doc-comment tag, Doc-Comment Tags
	timestamp, The parts of a timestamp
	tools, command-line, Command-Line Tools
	top-level types, Nested Types
	toString(), String Concatenation Operator, toString(), toString()
	TRACE method (HTTP), HTTP
	traits, default methods and, Can Default Methods Be Used as Traits?
	transient modifier, Field Declaration Syntax
	transitive closure, Introducing Mark-and-Sweep, Preparation and Resolution
	TreeMap class, The Map Interface
	TreeSet class, The Set Interface
	Truffle, The Future of Nashorn and GraalVM
	try block, The try/catch/finally Statement
	try clause, try
	try-with-resources (TWR) statements, The try-with-resources Statement, try-with-resources Revisited
	try/catch/finally statement, The try/catch/finally Statement-finally	catch clause, catch
	finally clause, finally
	try block syntax, The try/catch/finally Statement
	try clause, try
	try/finally, finally

	try/catch/throw statement, Multiple catch clauses
	two's complement, How Java Represents Integer Types
	type conversion or casting operator (()), Special Operators
	type erasure, Type Erasure
	type inference, Lambda Expressions
	type literals, Type literals
	type parameter, Generic Types and Type Parameters, Bounded Type Parameters-Bounded Type Parameters
	type safety, Safe Java Programming
	type system, The Java Type System-Summary	annotations, Annotations-Type Annotations
	characteristics of, Summary
	enums, Enums
	generics, Java Generics-Using and Designing Generic Types
	interfaces, Interfaces-Marker Interfaces
	lambda expressions, Lambda Expressions-Lexical Scoping and Local Variables
	nested types, Nested Types-Anonymous Classes
	non-denotable types and var, Non-Denotable Types and var

	type variance, Bounded wildcards
	types, Generic Types and Type Parameters	(see also generics)
	importing static members, Importing Static Members
	naming conventions, Naming and Capitalization Conventions
	wildcards, Wildcards

U
	umbrella module, Modularizing the JDK
	unary operators, Operand number and type	associativity, Associativity
	unary minus (-) operator, Arithmetic Operators

	unbound method reference, Method References
	unboxing conversions, Boxing and Unboxing Conversions
	unchecked exceptions, Checked and Unchecked Exceptions, Multiple catch clauses
	underflow, integer arithmetic and, Integer Types
	Unicode character set, The Unicode Character Set, The char Type	escaping in char literals, The char Type
	supplementary characters, The char Type

	unknown type, Wildcards	(see also wildcard types)

	update expressions (for loops), The for Statement
	URL class, Working with checked exceptions
	URLClassLoader, loadClass(), Applied Classloading
	user thread, setDaemon()
	UTF-8 identifier, Literals

V
	@value doc-comment tag, Inline Doc-Comment Tags
	var (local variable type inference), Non-Denotable Types and var
	varargs (variable-length argument) methods, Variable-Length Argument Lists
	variable declaration statement, Local Variable Declaration Statements
	variables	declaring, Local Variable Declaration Statements, C compatibility syntax
	local variable declaration statements, Local Variable Declaration Statements
	naming conventions, Naming and Capitalization Conventions

	verification (classloading phase), Verification
	@version doc-comment tag, Doc-Comment Tags
	versioning, as JPMS deficiency, Lack of Versioning
	virtual method lookup, Virtual method lookup
	visibility	concurrency and, Visibility and Mutability
	defined, Visibility and Mutability

	VisualGC, VisualVM
	VisualVM, VisualVM-VisualVM
	void keyword, The return Statement, Defining Methods, Problems with Reflection
	volatile keyword, Field Declaration Syntax, volatile

W
	wait(), Working with Threads
	watch services, Watch Services and Directory Searching
	weak generational hypothesis (WGH), How the JVM Optimizes Garbage Collection
	while statements, The while Statement	comparison operators in, Comparison Operators
	continue statement in, The break Statement
	data type of expression in, The while Statement
	do statements vs., The do Statement

	whitespace, Case Sensitivity and Whitespace
	widening conversions, Primitive Type Conversions, Primitive Type Conversions	array types, Array type widening conversions
	arrays, Array type widening conversions

	wildcard types, Wildcards, Bounded wildcards
	working set, How the JVM Optimizes Garbage Collection
	wrapper classes, Boxing and Unboxing Conversions
	wrapper collections, Utility Methods
	write once, run anywhere (WORA), What Is the JVM?
	writer class, Readers and Writers

X
	XOR operator	bitwise XOR (‸), Bitwise and Shift Operators
	boolean XOR (‸), Boolean Operators

Y
	Young Generation, How the JVM Optimizes Garbage Collection

Z
	zero (0)	division by zero, Arithmetic Operators
	positive and negative zero, Floating-Point Types
	represented by float and double types, Floating-Point Types

	zero extension, Bitwise and Shift Operators

About the Authors

Benjamin J. Evans is the cofounder of jClarity, a startup that delivers performance tools to help development and ops teams. He is an organizer for the LJC (London’s JUG) and a member of the JCP Executive Committee, helping define standards for the Java ecosystem. He is a Java Champion; JavaOne Rockstar; coauthor of The Well-Grounded Java Developer; and a regular public speaker on the Java platform, performance, concurrency, and related topics. Ben holds a master’s degree in mathematics from the University of Cambridge.

David Flanagan is a software engineer at Mozilla, currently working on MDN, the Mozilla Developer Network website. His books with O’Reilly include _Java in a Nutshell_, Java Examples in a Nutshell, Java Foundation Classes in a Nutshell, JavaScript: The Definitive Guide, and JavaScript Pocket Reference. David has a degree in computer science and engineering from the Massachusetts Institute of Technology. He lives with his wife and children in the U.S. Pacific Northwest between the cities of Seattle, Washington and Vancouver, British Columbia.

Colophon

The animal on the cover of Java in a Nutshell, Seventh Edition, is a Javan tiger (Panthera tigris sondaica), a subspecies unique to the island of Java. Although this tiger’s genetic isolation once presented an unrivaled opportunity for evolutionary study to biologists and other researchers, the subspecies has all but disappeared in the wake of human encroachment on its habitat: in a worst-case scenario for the tiger, Java developed into the most densely populated island on Earth, and awareness of the Javan tiger’s precarious position apparently came too late to secure the animal’s survival even in captivity.

The last confirmed sighting of the tiger occurred in 1976, and it was declared extinct by the World Wildlife Fund in 1994. However, reports of sightings around Meru Betiri National Park in East Java and in the Muria mountain range persist. Camera traps have been used as recently as 2012 in efforts to verify the Javan tiger’s continued existence.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/jns7_1101.png
Throwable

A

Exception

\

\

CloneNotSupportedException) \
InterruptedException

ClassLoader

SRRED
® Comparable
N\
N

.

/// CharSequence //’

OEBPS/assets/jns7_0801.png
Collection

SortedMap WeakHashMap Hashtable -

SortedSet

1
- Interface

extends implements

1

OEBPS/toc01.html
		Foreword

		Preface

		Changes in the Seventh Edition

		Contents of This Book

		Related Books

		Examples Online

		Conventions Used in This Book

		Request for Comments

		O’Reilly Safari

		Acknowledgments

		I. Introducing Java

		1. Introduction to the Java Environment

		The Language, the JVM, and the Ecosystem

		What Is the Java Language?

		What Is the JVM?

		What Is the Java Ecosystem?

		A Brief History of Java and the JVM

		The Lifecycle of a Java Program

		Frequently Asked Questions

		Java Security

		Comparing Java to Other Languages

		Java Compared to C

		Java Compared to C++

		Java Compared to Python

		Java Compared to JavaScript

		Answering Some Criticisms of Java

		Overly Verbose

		Slow to Change

		Performance Problems

		Insecure

		Too Corporate

		2. Java Syntax from the Ground Up

		Java Programs from the Top Down

		Lexical Structure

		The Unicode Character Set

		Case Sensitivity and Whitespace

		Comments

		Reserved Words

		Identifiers

		Literals

		Punctuation

		Primitive Data Types

		The boolean Type

		The char Type

		Integer Types

		Floating-Point Types

		Primitive Type Conversions

		Expressions and Operators

		Operator Summary

		Arithmetic Operators

		String Concatenation Operator

		Increment and Decrement Operators

		Comparison Operators

		Boolean Operators

		Bitwise and Shift Operators

		Assignment Operators

		The Conditional Operator

		The instanceof Operator

		Special Operators

		Statements

		Expression Statements

		Compound Statements

		The Empty Statement

		Labeled Statements

		Local Variable Declaration Statements

		The if/else Statement

		The switch Statement

		The while Statement

		The do Statement

		The for Statement

		The foreach Statement

		The break Statement

		The continue Statement

		The return Statement

		The synchronized Statement

		The throw Statement

		The try/catch/finally Statement

		The try-with-resources Statement

		The assert Statement

		Methods

		Defining Methods

		Method Modifiers

		Checked and Unchecked Exceptions

		Variable-Length Argument Lists

		Introduction to Classes and Objects

		Defining a Class

		Creating an Object

		Using an Object

		Object Literals

		Lambda Expressions

		Arrays

		Array Types

		Creating and Initializing Arrays

		Using Arrays

		Multidimensional Arrays

		Reference Types

		Reference Versus Primitive Types

		Manipulating Objects and Reference Copies

		Comparing Objects

		Boxing and Unboxing Conversions

		Packages and the Java Namespace

		Package Declaration

		Globally Unique Package Names

		Importing Types

		Importing Static Members

		Java Source File Structure

		Defining and Running Java Programs

		Summary

		3. Object-Oriented Programming in Java

		Overview of Classes

		Basic OO Definitions

		Other Reference Types

		Class Definition Syntax

		Fields and Methods

		Field Declaration Syntax

		Class Fields

		Class Methods

		Instance Fields

		Instance Methods

		How the this Reference Works

		Creating and Initializing Objects

		Defining a Constructor

		Defining Multiple Constructors

		Invoking One Constructor from Another

		Field Defaults and Initializers

		Subclasses and Inheritance

		Extending a Class

		Superclasses, Object, and the Class Hierarchy

		Subclass Constructors

		Constructor Chaining and the Default Constructor

		Hiding Superclass Fields

		Overriding Superclass Methods

		Data Hiding and Encapsulation

		Access Control

		Data Accessor Methods

		Abstract Classes and Methods

		Reference Type Conversions

		Modifier Summary

		4. The Java Type System

		Interfaces

		Defining an Interface

		Extending Interfaces

		Implementing an Interface

		Default Methods

		Marker Interfaces

		Java Generics

		Introduction to Generics

		Generic Types and Type Parameters

		Diamond Syntax

		Type Erasure

		Bounded Type Parameters

		Introducing Covariance

		Wildcards

		Generic Methods

		Compile and Runtime Typing

		Using and Designing Generic Types

		Enums and Annotations

		Enums

		Annotations

		Defining Custom Annotations

		Type Annotations

		Lambda Expressions

		Lambda Expression Conversion

		Method References

		Functional Programming

		Lexical Scoping and Local Variables

		Nested Types

		Static Member Types

		Nonstatic Member Classes

		Local Classes

		Anonymous Classes

		Non-Denotable Types and var

		Summary

		5. Introduction to Object-Oriented Design in Java

		Java Values

		Important Methods of java.lang.Object

		toString()

		equals()

		hashCode()

		Comparable::compareTo()

		clone()

		Aspects of Object-Oriented Design

		Constants

		Interfaces Versus Abstract Classes

		Can Default Methods Be Used as Traits?

		Instance Methods or Class Methods?

		Composition Versus Inheritance

		Field Inheritance and Accessors

		Singleton

		Object-Oriented Design with Lambdas

		Lambdas Versus Nested Classes

		Lambdas Versus Method References

		Exceptions and Exception Handling

		Safe Java Programming

		6. Java’s Approach to Memory and Concurrency

		Basic Concepts of Java Memory Management

		Memory Leaks in Java

		Introducing Mark-and-Sweep

		The Basic Mark-and-Sweep Algorithm

		How the JVM Optimizes Garbage Collection

		Evacuation

		The HotSpot Heap

		Other Collectors

		ParallelOld

		Finalization

		Finalization Details

		Java’s Support for Concurrency

		Thread Lifecycle

		Visibility and Mutability

		Exclusion and Protecting State

		volatile

		Useful Methods of Thread

		Deprecated Methods of Thread

		Working with Threads

		Summary

		II. Working with the Java Platform

		7. Programming and Documentation Conventions

		Naming and Capitalization Conventions

		Practical Naming

		Java Documentation Comments

		Structure of a Doc Comment

		Doc-Comment Tags

		Inline Doc-Comment Tags

		Cross-References in Doc Comments

		Doc Comments for Packages

		Doclets

		Conventions for Portable Programs

		8. Working with Java Collections

		Introduction to Collections API

		The Collection Interface

		The Set Interface

		The List Interface

		The Map Interface

		The Queue and BlockingQueue Interfaces

		Adding Elements to Queues

		Removing Elements from Queues

		Utility Methods

		Arrays and Helper Methods

		Java Streams and Lambda Expressions

		Functional Approaches

		The Streams API

		Summary

		9. Handling Common Data Formats

		Text

		Special Syntax for Strings

		String Immutability

		Regular Expressions

		Numbers and Math

		How Java Represents Integer Types

		Java and Floating-Point Numbers

		Java’s Standard Library of Mathematical Functions

		Java 8 Date and Time

		Introducing the Java 8 Date and Time API

		Queries

		Adjusters

		Legacy Date and Time

		Summary

		10. File Handling and I/O

		Classic Java I/O

		Files

		Streams

		Readers and Writers

		try-with-resources Revisited

		Problems with Classic I/O

		Modern Java I/O

		Files

		Path

		NIO Channels and Buffers

		ByteBuffer

		Mapped Byte Buffers

		Async I/O

		Future-Based Style

		Callback-Based Style

		Watch Services and Directory Searching

		Networking

		HTTP

		TCP

		IP

		11. Classloading, Reflection, and Method Handles

		Class Files, Class Objects, and Metadata

		Examples of Class Objects

		Class Objects and Metadata

		Phases of Classloading

		Loading

		Verification

		Preparation and Resolution

		Initialization

		Secure Programming and Classloading

		Applied Classloading

		Classloader Hierarchy

		Reflection

		When to Use Reflection

		How to Use Reflection

		Dynamic Proxies

		Method Handles

		MethodType

		Method Lookup

		Invoking Method Handles

		12. Java Platform Modules

		Why Modules?

		Modularizing the JDK

		Writing Your Own Modules

		Basic Modules Syntax

		Building a Simple Modular Application

		The Module Path

		Automatic Modules

		Open Modules

		Services

		Multi-Release JARs

		Converting to a Multi-Release JAR

		Migrating to Modules

		Custom Runtime Images

		Issues with Modules

		Unsafe and Related Problems

		Lack of Versioning

		Slow Adoption Rates

		Summary

		13. Platform Tools

		Command-Line Tools

		Introduction to JShell

		Summary

		A. Additional Tools

		Introduction to Nashorn

		Non-Java Languages on the JVM

		Motivation

		Executing JavaScript with Nashorn

		Running from the Command Line

		Using the Nashorn Shell

		Nashorn and javax.script

		Introducing javax.script with Nashorn

		Advanced Nashorn

		Calling Java from Nashorn

		Nashorn’s JavaScript Language Extensions

		Under the Hood

		The Future of Nashorn and GraalVM

		VisualVM

		Index

OEBPS/assets/jns7_0501.png
—| X

/

AN

-

OEBPS/assets/jns7_0601.png
Survivor Tenured

> Ly (||} | S
OOg
).
//
/17
H RS /
][] I £
X]xI([x] {11/
X1 1A A
/
/

T2

OEBPS/assets/jns7_aa07.png
6 8 & % 8

Applications €3
v & Local
¥ Visualvm
Eclipse (pid 445)

@ Logfiles
(35 VM Coredumps
() snapshots

VisualVM 1.3.4

Eclipse (pid 445) ©
[0 Overview i Monitor

£ Threads . Sampler () Profiler 8 MBeans (5 JConsole Plugins

< Eclipse (pid 445)

Visual GC (¥ spaces ¥ Graphs (V! Histogram
Refresh rate: Auto %] msec.
Spaces % Graphs x
Perm old Eden [Compile Time: 2589 compiles - 41.818s
Class LoaduTrme 24314 Ioaded 0 unln:ded 214 G]Os
-GC Time: 756 mum.ons, 6.7855 Last Cause: unknown GCCause——————
Eden Space (38.500M, 16.625M): 4.483M, 740 collections, 6.698s
Survivor 0 (4.750M, 2.062M): 1.76 1M
L}
S0 Survivor 1 (4.750M, 2.062M): 0
Bl 0!d Gen (336.000M, 212.434M): 167.392M, 16 collections, 86.811ms—————
s1
Perm Gen (256.000M, 214.324M): 213.743M
Histogram x
Parameters
Tenuring Thresho... 1 Max Tenuring Thresho... 4 Desired Survivor Size: 1081344 Current Survivor Size: 2162688
Histogram
o 1 2 3 4 5 6 7 8 9 10— (11— (12— (13— 14— (15

OEBPS/assets/jns7_aa05.png
VisualVM 1.3.4

Sample: | () cPu & Memory Stop

Staws: memory sampling in progress

[Heap hi | PermGen i | Per thread

| [8 overview Monitor [Threads ©profiler ® MBeans £ JConsole Plugins | =] Visual GC |
< Eclipse (pid 445)
Sampler | Settings

0O Q oeus 'ﬁsmnsnm‘

| petormcc I Heap Dump

#8 |[Class Name Filter]

Classes: 6,504 Instances: 4,101,577 Bytes: 209,481,632

Class Name Bytes [%] v Bytes.

char(] | 48,396,800
bytel) [20,596,088
java.lang.Object() [| 15,551,880
java.util.HashMap$ Entry[] [13,327,768
java.lang.String 1 9,664,224
org.eclipse.equinox.interal.p2.metadata. OSGiVersion || 9,302,016
java.util. HashMap$ Entry 1 8,577,088
java.util.LinkedHashMap$ Entry 1 7,894,440
java,util. HashMap] 5,239,200
org.eclipse.equinox.internal.p2.metadata.RequiredC... | 5,153,120
int(] | 5,057,608
org.eclipse.core.internal.resources.Resourceinfo | 3,616,320 (
org.eclipse.equinox.intemal.p2.metadata.ProvidedC... | 3,579,552

1.7

Instances
369,017 (5.9%
121,247 (2.9%
360,220 (5.7
156,295 (3.8%)
302,007 (7.3
290,688
268,034 (6.5
197,361 (4.8
109,150 (2.6
128,828 (3.1%
90,706 (2.2%
56,505 (1.3%)
149,148 (3.6%

OEBPS/assets/jns7_0901.png
29 Mar 2014 09:00 AM GMT

ZonedDateTime
LocalDateTime |
LocalDate |
LocalTime]

Zonedld [

OEBPS/assets/cover.png
OREILLY"

in a Nutshell

A DESKTOP QUICK REFERENCE

Benjamin J. Evans & David Flanagan

OEBPS/assets/jns7_aa02.png
¥ Visualvm

& Local Application (pid 50534)
& Remote
(55 VM Coredumps
(&) snapshots

Java VisualvM

Local Application (pid 50534) @)

read
~Dorg eclipse swtinternalcarbon.smallFonts
=256m

[Resources /Eclipse.icns
d

stThreag
“Dorg.eclipse swimternalcarbon.smallFonts

[Mo [=|Threads & Sampler © Pre

C Local Application (pid 50534)

Overview (¥ Saved data / Details
PID: 50534

Host: localhost

Main class: <unknown>

Arguments: <none>

JVM: Java HotSpot(TM) 64-Bit Server VM (23.21-b01, mixed mode)

Javasverion 1.7.0_21, vendor Oracle Corporation

Java H jdk1.7.0_21.jdk/C H

VM Flags: <none>

Heap dump on OOME: disabled

Saved data x| [JM arguments | System properties x
Thread Dumps: 0 ~Dosgirequiredjavaversion =15

Heap Dumps: 0 -Dhelp.lucene.tokeni tandard

Profiler Snapshots: 0 -XStartonFirstT!

OEBPS/assets/jns7_0101.png
Jjava

javac
—

.class

010110
001011
110100
100010

classloading

- — — — —

//

New
Type

interpreter

Peo———

|

OEBPS/assets/jns7_0603.png
Tenured

I
]

OEBPS/assets/jns7_aa03.png
VisualVM 1.3.4

[[0 Overview = Threads

dk Sampler
C Eclipse (pid 445)

©profiler 8 MBeans | [E) jConsole Plugins | = Visual GC |

Monitor
Uptime: 14 hrs 34 min 08 sec

CcPU

CPU usage: 1.0%

v cpu ¥ Memory ¥ Classes ¥ Threads
Perform GC Heap Dump
Heap | PermGen

x
GC activity: 0.0% 44,510,720 8 Used: 185,410,672 B
100% Max: 402,653,184 B
200M8
s0%
100 M8
ox owe
730 AM 743 AM 500 AM 15 AM TIOAM TASAM S00AM SISAM
B CPU usage B GC activity W Heap size M Used heap
Classes x Threads x
Total loaded: 15,720 Shared loaded: 0 Live: 28
Total unloaded: 0

Shared unloaded: 0

Daemon: 22
Live peak: 35

Total started: 855
15,000 1) SR S—— RSy E R
10,000 20
5,000 10
0 [}
730AM 745 AM 500 AM 815 AM 730AM 745 AM
1 Total loaded classes [Shared loaded classes

8.00 AM 815 AM

B Live threads @ Daemon threads

OEBPS/assets/jns7_0604.png
Object.notify();
Object.notify.AlL();

1
Sleeping Waiting
Thread.sleep(); Thread.wait();
v Chosen by
scheduler)

start(); Ready S — Running _Done Dead

to run Scheduler (executing) (finished)

swap Data/sync
received
Blocked on
10 or sync Another thread

closes socket

OEBPS/assets/jns7_1201.png
java.se

. . J'ava, . . .
f— .. 5 p . . .| .. g
java.sql.rowset java.xml.crypto management.mi java.prefs java.security.sas|

f $1¥‘¥‘¥ R

y IEEAN

. . java, . -
javasql java.desktop management java.security.jgss
A 4 A 4 l ‘ i A 4 A 4
java.scripting || java.naming |java.logging javaxml || java.datatransfer || java.compiler java.instrument java.rmi

& \ L P] java.base [« J J Lz L 2z J Z_J

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/jns7_0605.png
Eden Survivor Tenured

T T2

OEBPS/assets/jns7_aa04.png
VisualVM 1.3.4

v | [@ overview | i Monitor [IERTIEITN 4 Sampler (© Profiler @ MBeans & JConsole Plugins = Visual GC |
& VisualvM
@ Eclipse (pid 445) C Eclipse (pid 445)
Jremoce Threads (¥ Threads visualization (¥/ Threads inspector
@ Logfiles
5 VM Coredumps Live threads: 29 Thread Dump.
Snapshots Daemon threads: 23
Timeline | Table | Details x
@ & € Show: All Threads &
Threads [1211220 12:12:30 12hm's)

© Framework Active Thread
@ Poller SunPKCS11-Darwin
@ Signal Dispatcher

E3Running B33 Sleeping E1Wait B Monitor
Threads inspector x
() Atach Listener
[Bundle File Closer
() Finalizer
jmlEramewsricAcveThresd <Select thread(s) to display stack traces>
() Framework Event Dispatcher

[IMX server connection timeout &

Refresh

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/jns7_aa06.png
|| VisualvM

| [Overview = {# Monitor [Threads

VisualvM 1.3.4

dak Sampler © Profiler

< Eclipse (pid 445)
MBeans Browser

MBeans
» [)Mimplementation
¥ (@ com.sun.management
@ HospotDiagnostic
¥ @ java.lang
@ ClassLoading
@ Compilation
v (@ GarbageCollector
@ ConcurrentMarkSweep
@ ParNew
@ Memory
¥ @ MemoryManager
@ CodeCacheManager
¥ @ MemonyPool

L]
@ Code Cache
@ Par Eden Space
@ Par Survivor Space
OperatingSystem
@ Runtime
@ Threading
v @ Java.utillogging
@ Logging

IAnn'hules Operations | Notifications | Metadata

Attribute values

Name

CollectionUsage
CollectionUsageThreshold
CollectionUsageThresholdCount
CollectionUsageThresholdExceeded
CollectionUsageThresholdSupported
MemoryManagerNames

Name

PeakUsage

Type

Usage

UsageThreshold
UsageThresholdCount
UsageThresholdExceeded
UsageThresholdSupported
valid

Value
javax. Compos

true
Javalang.String[1]
CMS Perm Gen

javax. Compos

javax. Compos

OEBPS/assets/jns7_aa01.png
e 3 a8

Apphcations &
vE
& Visualvm
@ Eclipse (pid 445)

(35 VM Coredumps
Snapshots

VisualVM 1.3.4

VisualVM 1.3.4

.
VisualVM Home Java SE Reference at a Glance
Getting Started with VisualvM Troubleshooting Guide for Java SE 6
VisualVM Troubleshooting Guide Troubleshooting Java™ 2 SE 5.0

Getting Started Extending VisualVM | Monitoring and Managing Java SE 6

(¥ Show On Startup

OEBPS/assets/jns7_1102.png
Platform
(lassloaders

User and Application
(lassloaders

Bootstrap

Platform

Application
y

User defined

T
>

OEBPS/assets/jns7_0301.png
Object Circle PlaneCircle
Math
System
Reader InputStreamReader FileReader

FilterReader

StringReader

OEBPS/assets/jns7_0602.png
Volume of
memory

Lifetime

v

