

 [image: SSH, the Secure Shell, 2nd Edition]

 SSH, the Secure Shell, 2nd Edition

Daniel J. Barrett

Richard E. Silverman

Robert G. Byrnes

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Preface

Welcome to the second edition of our book on SSH, one of the world’s
 most popular approaches to computer network security. Here’s a sampling of
 what’s new in this edition:
	Over 100 new features, options, and configuration keywords from
 the latest versions of OpenSSH and SSH Tectia (formerly known as SSH
 Secure Shell or SSH2 from ssh.com)

	Expanded material on the SSH-2 protocol and its internals,
 including a step-by-step tour through the transport, authentication,
 and connection phases

	Running OpenSSH on Microsoft Windows and Macintosh OS X

	All-new chapters on Windows software such as Tectia, SecureCRT,
 and PuTTY

	Scalable authentication techniques for large installations,
 including X.509 certificates

	Single sign-on between Linux and Windows via
 Kerberos/GSSAPI

	Logging and debugging in greater depth

	Tectia’s metaconfiguration, subconfiguration, and plugins, with
 examples

...and much more! You might be surprised at how much is changed, but
 in the past four years, SSH has significantly evolved:
	SSH-2 protocol triumphant
	Back in 2001, only a handful of SSH products supported the
 relatively new SSH-2 protocol, and the primary implementation was
 commercial. Today, the old SSH-1 protocol is dying out and all
 modern SSH products, free and commercial, use the more secure and
 flexible SSH-2 protocol. We now recommend that everyone avoid
 SSH-1.

	The rise of OpenSSH
	This little upstart from the OpenBSD world has become the
 dominant implementation of SSH on the Internet, snatching the crown
 from the original, SSH Secure Shell (now called SSH Tectia, which we
 abbreviate as Tectia). Tectia is still more powerful than OpenSSH in
 important ways; but as OpenSSH is now included as standard with
 Linux, Solaris, Mac OS X, and beyond, it dominates in pure
 numbers.

	The death of telnet and the r-tools
	The insecure programs telnet, rsh, rcp, and rlogin--long the standards for
 communication between computers—are effectively extinct.[1] FTP is also on the way out, except when operated
 behind firewalls or over private lines.

	An explosion of Windows products
	In 2001, there were a handful of SSH implementations for
 Windows; now there are dozens of GUI clients and several robust
 servers, not to mention a full port of the free OpenSSH.

	Increased attacks
	The Internet has experienced a sharp rise in computer
 intrusions. Now more than ever, your servers and firewalls should be
 configured to block all remote accesses except via SSH (or other
 secure protocols).

[1] Not counting secure versions of these tools, e.g., when
 enhanced with Kerberos support. [1.6.3]

Protect Your Network with SSH

Let’s start with the basics. SSH, the Secure Shell, is a reliable,
 reasonably easy to use, inexpensive security product for computer
 networks and the people who use them. It’s available for most of today’s
 operating systems.
Privacy is a basic human right, but on today’s computer networks,
 privacy isn’t guaranteed. Much of the data that travels on the Internet
 or local networks is transmitted as plain text, and may be captured and
 viewed by anybody with a little technical know-how. The email you send,
 the files you transmit between computers, even the passwords you type
 may be readable by others. Imagine the damage that can be done if an
 untrusted third party—a competitor, the CIA, your in-laws— intercepted
 your most sensitive communications in transit.
SSH is a small, unassuming, yet powerful and robust solution to
 many of these issues. It keeps prying eyes away from the data on your
 network. It doesn’t solve every privacy and security problem, but it
 eliminates several of them effectively. Its major features are:
	A secure, client/server protocol for encrypting and
 transmitting data over a network

	Authentication (recognition) of users by password, host, or
 public key, plus optional integration with other popular
 authentication systems, such as PAM, Kerberos, SecurID, and
 PGP

	The ability to add security to insecure network applications
 such as Telnet, NNTP, VNC, and many other TCP/IP-based programs and
 protocols

	Almost complete transparency to the end user

	Implementations for most operating systems

Intended Audience

We’ve written this book for system administrators and technically
 minded users. Some chapters are suitable for a wide audience, while
 others are thoroughly technical and intended for computer and networking
 professionals.
End-User Audience

Do you have two or more computer accounts on different machines?
 SSH lets you connect one to another with a high degree of security.
 You can remotely log into one account from the other, execute remote
 commands, and copy files between accounts, all with the confidence
 that nobody can intercept your username, password, or data in
 transit.
Do you connect from a personal computer to an Internet service
 provider (ISP)? In particular, do you connect to a Unix shell account
 at your ISP? If so, SSH can make this connection significantly more
 secure. An increasing number of ISPs are running SSH servers for their
 users. In case your ISP doesn’t, we’ll show you how to run a server
 yourself.
Do you develop software? Are you creating distributed
 applications that must communicate over a network securely? Then don’t
 reinvent the wheel: use SSH to encrypt the connections. It’s a solid
 technology that may reduce your development time.
Even if you have only a single computer account, as long as it’s
 connected to a network, SSH can still be useful. For example, if
 you’ve ever wanted to let other people use your account, such as
 family members or employees, but didn’t want to give them unlimited
 use, SSH can provide a carefully controlled, limited-access channel
 into your account.
Prerequisites

We assume you are familiar with computers and networking as
 found in any modern business office or home system with an Internet
 connection. Ideally, you are familiar with network applications like
 Telnet and FTP. If you are a Unix user, you should be familiar with
 standard network applications (e.g., ftp) and the basics of writing shell
 scripts and Perl scripts.

System-Administrator Audience

If you’re a Unix or Macintosh OS X system administrator, you
 probably know about SSH already. It’s less well known in the Windows
 world, where secure logins are usually accomplished with radmin (Remote Administrator) and other
 remote desktop applications, and network file transfers are done using
 network shares. In contrast, SSH is more focused on the command line
 and is therefore more scriptable than the usual Windows techniques.
 SSH also can increase the security of other TCP/IP-based applications
 on your network by transparently “tunneling” them through
 SSH-encrypted connections. You will love SSH.
Prerequisites

In addition to the end-user prerequisites in the previous
 section, you should be familiar with user accounts and groups,
 networking concepts such as TCP/IP and packets, and basic encryption
 techniques.

Reading This Book

This book is divided roughly into three parts. The first three
 chapters are a general introduction to SSH, first at a high level for
 all readers (Chapters 1 and 2), and then in detail for technical
 readers (Chapter 3).
The next nine chapters cover SSH for Unix and similar operating
 systems (OpenBSD, Linux, Solaris, etc.). The first two (Chapters 4 and 5) cover SSH installation and serverwide
 configuration for system administrators. The next four (Chapters 6,7,8,9)
 cover advanced topics for end users, including key management, client
 configuration, per-account server configuration, and forwarding. We
 complete the Unix sequence with our recommended setup (Chapter 10), some detailed case studies
 (Chapter 11), and troubleshooting
 tips (Chapter 12). The remaining
 chapters cover SSH products for Windows and the Macintosh, plus brief
 overviews of implementations for other platforms.
Each section in the book is numbered, and we provide
 cross-references throughout the text. If further details are found in
 Section 7.1.2.2, we use the notation [7.1.2.2] to indicate
 it.

Our Approach

This book is organized by concept rather than syntax. We begin
 with an overview and progressively lead you deeper into the
 functionality of SSH. So, we might introduce a topic in Chapter 1, show its basic use in Chapter 2, and reveal advanced uses in
 Chapter 7. If you prefer the whole
 story at once, Appendix E presents all commands and configuration
 options in one location.
We focus strongly on three levels of server configuration, which
 we call compile-time, serverwide, and per-account configuration.
 Compile-time configuration (Chapter
 4) means selecting appropriate options when you build the SSH
 clients and servers. Serverwide configuration (Chapter 5) applies when the SSH server is
 run and is generally done by system administrators, while per-account
 configuration (Chapter 8) can be
 done anytime by end users. It’s vitally important for system
 administrators to understand the relationships and differences among
 these three levels. Otherwise, SSH may seem like a morass of random
 behaviors.
Although the bulk of material focuses on Unix implementations of
 SSH, you don’t have to be a Unix user to understand it. Fans of Windows
 and the Macintosh may stick to the later chapters devoted to their
 platforms, but a lot of the meaty details are in the Unix chapters, so
 we recommend reading them, at least for reference.

Which Chapters Are for You?

We propose several “tracks” for readers with different interests
 and skills:
	System administrators
	Chapters 3,4-5 and 10 are the most important for
 understanding SSH and how to build and configure servers. However,
 as the administrator of a security product, you should read the
 whole book.

	Unix users (not system administrators)
	Chapters 1 and 2 provide an overview, and Chapters 6,7,8-9 discuss SSH clients in
 depth.

	Windows end users
	Read Chapters 1, 2, 13, 14, and 16,17-18 for starters, and then others
 as your interests guide you.

	Macintosh end users
	Read Chapters 1, 2, 13, and 15 for starters, and then others
 as your interests guide you.

	Users of other computer platforms
	Read Chapters 1, 2, and 13 for starters, and then others
 as your interests guide you.

Even if you are experienced with SSH, you’ll likely find value in
 Chapters 3,4,5,6,7,8,9,10,11-12. We cover significant details the
 Unix manpages leave unclear or unmentioned, including major concepts,
 compile-time flags, server configuration, and forwarding.

Supported Platforms

This book covers Unix, Windows, and Macintosh implementations of
 SSH.
Tip
When we say “Unix” in this book, we mean the whole family of
 Unix-like operating systems such as Linux, OpenBSD, and
 Solaris.

SSH products are also available for the Amiga, BeOs, Java, OS/2,
 Palm Pilot, VMS, and Windows CE, and although we don’t cover them, their
 principles are the same.
This book is current for the following Unix SSH versions:
	OpenSSH
	3.9[a]

	SSH Tectia
	4.2

	[a] See Appendix A for a preview of new features in
 OpenSSH 4.0.

Version information for non-Unix products is found in their
 respective chapters.

Disclaimers

We identify some program features as “undocumented.” This means
 the feature isn’t mentioned in the official documentation but works in
 the current release and/or is clear from the program source code.
 Undocumented features might not be officially supported by the software
 authors and can disappear in later releases.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Constant width
	For configuration files, things that can be found in
 configuration files (such as keywords and configuration file
 options), source code, and interactive terminal sessions.

	Constant width italic
	For replaceable parameters on command lines or within
 configuration files.

	Italic
	For filenames, URLs, hostnames, command names, command-line
 options, and new terms where they are defined.

	AK
	In figures, the object labeled A has been secured using a
 cryptographic key labeled K. “Secured” means encrypted, signed, or
 some more complex relationship, depending on the context. If A is
 secured using multiple keys (say, K and L), they are listed in the
 subscript, separated by commas: A K,
 L.

Tip
This icon indicates a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/sshtdg2/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers,
 and the O’Reilly Network, see the O’Reilly web site at:
	http://www.oreilly.com

Safari Enabled

[image: image with no caption]

When you see a Safari® Enabled icon on the cover of
 your favorite technology book, it means the book is available online
 through the O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top technology
 books, cut and paste code samples, download chapters, and find quick
 answers when you need the most accurate, current information. Try it for
 free at http://safari.oreilly.com.

Acknowledgments

Our biggest thanks go to the two parties who made this second
 edition a reality: the many readers who purchased the first edition, and
 our editor Mike Loukides. We couldn’t have done this without you!
We thank the O’Reilly “tools” team for Frame typesetting advice,
 and Rob Romano for turning our hasty sketches into polished
 illustrations. Special thanks to the O’Reilly production team, Keith
 Fahlgren, John Bickelhaupt, Audrey Doyle, and Mary Brady, for their hard
 work creating the final package.
We thank our excellent technical reviewers for their thorough
 reading and insightful comments: Markus Friedl and Damien Miller of the
 OpenSSH team, Paul Lussier, Drew Simonis, and Mike Smith. Big thanks
 also to several vendors of SSH products who provided us with free copies
 of their software, reviewed the manuscript, and answered our questions.
 From SSH Communications Security, maker of SSH Tectia, we thank Nicolas
 Gabriel-Robez, Tommi Lampila, Sami J. Lehtinen, Timo J. Rinne, Janne
 Saarikko, Petri Sakkinen, Vesa Vatka, and Timo Westerberg. From VanDyke
 Software, maker of SecureCRT, SecureFX, and VShell, we thank Jill
 Christian, Maureen Jett, Marc Orchant, and Tracy West. SSH
 Communications Security also kindly gave us permission to include the
 sshregex manpage (Appendix B) and the
 sshdebug.h error codes (Appendix
 C).
Dan Barrett thanks Lisa and Sophie for bearing the late-night
 writing and hacking sessions required for this book. He also thanks Alex
 Schowtka and Robert Dulaney of VistaPrint, his employer, for their kind
 permission to work on this project. Bob Byrnes thanks Alison and Rebecca
 for all of their help and understanding throughout the many nights and
 weekends when he was glued to his keyboard. Richard Silverman thanks his
 coauthors for their unfailing good humor and patience—even when a sudden
 decision to change jobs and move out of state threw his book schedule
 into chaos. He also thanks his various friends, especially Bob Stepno,
 for listening to his endless chatter about The Book. It’s truly a wonder
 they still speak to him at all.

Chapter 1. Introduction to SSH

Many people today have multiple computer accounts. If you’re a
 reasonably savvy user, you might have a personal account with an Internet
 service provider (ISP), a work account on your employer’s local network,
 and a few computers at home. You might also have permission to use other
 accounts owned by family members or friends.
If you have multiple accounts, it’s natural to want to make
 connections between them. For instance, you might want to copy files
 between computers over a network, log into one account remotely from
 another, or transmit commands to a remote computer for execution. Various
 programs exist for these purposes, such as ftp
 for file transfers, telnet for remote logins, and
 rsh for remote execution of commands.
Unfortunately, many of these network-related programs have a
 fundamental problem: they lack security. If you
 transmit a sensitive file via the Internet, an intruder can potentially
 intercept and read the data. Even worse, if you log onto another computer
 remotely using a program such as telnet, your
 username and password can be intercepted as they travel over the network.
 Yikes!
How can these serious problems be prevented? You can use an
 encryption program to scramble your data into a
 secret code nobody else can read. You can install a
 firewall, a device that shields portions of a
 computer network from intruders, and keep all your communications behind
 it. Or you can use a wide range of other solutions, alone or combined,
 with varying complexity and cost.

What Is SSH?

 SSH, the Secure Shell, is a popular, powerful,
 software-based approach to network security.[2] Whenever data is sent by a computer to the network, SSH
 automatically encrypts (scrambles) it. Then, when the data reaches its
 intended recipient, SSH automatically decrypts (unscrambles) it. The
 result is transparent encryption: users can work
 normally, unaware that their communications are safely encrypted on the
 network. In addition, SSH uses modern, secure encryption algorithms and
 is effective enough to be found within mission-critical applications at
 major corporations.
SSH has a client/server architecture, as shown in Figure
 1-1. An SSH server program, typically
 installed and run by a system administrator, accepts or rejects incoming
 connections to its host computer. Users then run SSH
 client programs, typically on other computers, to
 make requests of the SSH server, such as “Please log me in,” “Please
 send me a file,” or “Please execute this command.” All communications
 between clients and servers are securely encrypted and protected from
 modification.
[image: SSH architecture]

Figure 1-1. SSH architecture

Our description is simplified but should give you a general idea
 of what SSH does. We’ll go into depth later. For now, just remember that
 SSH clients communicate with SSH servers over encrypted network
 connections.
SSH software is very common today. It comes with most Linux
 distributions, Macintosh OS X, Sun Solaris, OpenBSD, and virtually all
 other Unix-inspired operating systems. Microsoft Windows has plenty of
 SSH clients and servers, both free and commercial. You can even find it
 for PalmOS, Commodore Amiga, and most other platforms. [13.3]
Many SSH clients are inspired by old Unix programs called the
 “r-commands:” rsh (remote shell),
 rlogin (remote login), and rcp
 (remote copy). In fact, for many purposes the SSH clients are drop-in
 replacements for the r-commands, so if you’re still using them, switch
 to SSH immediately! The old r-commands are notoriously insecure, and the
 SSH learning curve is small.

[2] “SSH” is pronounced by spelling it aloud: S-S-H.

What SSH Is Not

Although SSH stands for Secure Shell, it is not a true shell in
 the sense of the Unix Bourne shell and C shell. It is not a command
 interpreter, nor does it provide wildcard expansion, command history,
 and so forth. Rather, SSH creates a channel for running a shell on a
 remote computer, with end-to-end encryption between the two
 systems.
SSH is also not a complete security solution—but then, nothing is.
 It won’t protect computers from active break-in attempts or
 denial-of-service attacks, and it won’t eliminate other hazards such as
 viruses, Trojan horses, and coffee spills. It does, however, provide
 robust and user-friendly encryption and authentication.

The SSH Protocol

SSH is a protocol, not a product. It is a
 specification of how to conduct secure communication over a
 network.[3]
The SSH protocol covers authentication, encryption, and the
 integrity of data transmitted over a network, as shown in Figure 1-2. Let’s define these
 terms:
	Authentication
	Reliably determines someone’s identity. If you try to log
 into an account on a remote computer, SSH asks for digital proof
 of your identity. If you pass the test, you may log in; otherwise,
 SSH rejects the connection.

	Encryption
	Scrambles data so that it is unintelligible except to the
 intended recipients. This protects your data as it passes over the
 network.

	Integrity
	Guarantees the data traveling over the network arrives
 unaltered. If a third party captures and modifies your data in
 transit, SSH detects this fact.

[image: Authentication, encryption, and integrity]

Figure 1-2. Authentication, encryption, and integrity

In short, SSH makes network connections between computers, with
 strong guarantees that the parties on both ends of the connection are
 genuine. It also ensures that any data passing over these connections
 arrives unmodified and unread by eavesdroppers.
1.3.1 Protocols, Products, Clients, and Confusion

The first SSH product, created by Tatu Ylönen for Unix,
 was simply called “SSH.” This caused confusion because SSH was also
 the name of the protocol. In this book, we use more precise
 terminology to refer to protocols, products, and programs, summarized
 in the sidebar “Terminology: SSH Protocols and Products.” In
 short:
	Protocols are denoted with dashes: SSH-1, SSH-2.

	Products are denoted in mixed case, without dashes: OpenSSH,
 Tectia, PuTTY, etc.

	Client programs are in lowercase: ssh,
 scp, putty, etc.

Terminology: SSH Protocols and Products
	SSH
	A generic term referring to SSH protocols and software
 products.

	SSH-1
	The SSH protocol, Version 1. This is the original
 protocol, and it has serious limitations, so we do not
 recommend its use anymore.

	SSH-2
	The SSH protocol, Version 2, the most common and secure
 SSH protocol used today. It is defined by draft standards
 documents of the IETF SECSH working group. [3.4]

	SSH1
	The granddaddy of it all: the original SSH product
 created by Tatu Ylönen. It implemented (and defined) the SSH-1
 protocol and is now obsolete.

	SSH2
	The original SSH-2 product, created by Tatu Ylönen and
 his company, SSH Communications Security (http://www.ssh.com).

	ssh (all lowercase letters)
	A client program run on the command line and included in
 many SSH products, for running secure terminal sessions and
 remote commands. On some systems it might be named
 ssh1 or ssh2.

	OpenSSH
	The product OpenSSH from the OpenBSD project, http://www.openssh.com.

	Tectia
	The successor to SSH2, this refers to the product suite
 “SSH Tectia” from SSH Communications Security. We abbreviate
 the name as simply “Tectia.” Since Tectia is available for
 both Unix and Windows, when we write “Tectia” we generally
 mean the Unix version unless we say otherwise.

[3] Although we say “the SSH protocol,” there are actually two
 incompatible versions of the protocols in common use: SSH-1 (a.k.a. SSH-1.5) and SSH-2. We
 distinguish these protocols later.

Overview of SSH Features

 So, what can SSH do? Let’s run through some examples that
 demonstrate the major features of SSH, such as secure remote logins , secure file copying, and secure invocation of remote
 commands.
1.4.1 Secure Remote Logins

Suppose you have login accounts on several computers on
 the Internet. Common programs like telnet let you
 log into one computer from another, say, from your home PC to your web
 hosting provider, or from one office computer to another.
 Unfortunately, telnet and similar programs
 transmit your username and password in plain text over the Internet,
 where a malicious third party can intercept them.[4] Additionally, your entire telnet
 session is readable by a network snooper.
Terminology: Networking
	Local computer (local host, local
 machine)
	A computer on which you are logged in and, typically,
 running an SSH client.

	Remote computer (remote host, remote
 machine)
	A second computer you connect to via your local
 computer. Typically, the remote computer is running an SSH
 server and is accessed via an SSH client. As a degenerate
 case, the local and remote computers can be the same
 machine.

	Local user
	A user logged into a local computer.

	Remote user
	A user logged into a remote computer.

	Server
	An SSH server program.

	Server machine
	A computer running an SSH server program. We sometimes
 simply write “server” for the server machine when the context
 makes clear (or irrelevant) the distinction between the
 running SSH server program and its host machine.

	Client
	An SSH client program.

	Client machine
	A computer running an SSH client. As with the server
 terminology, we simply write “client” when the context makes
 the meaning clear.

	~ or $HOME
	A user’s home directory on a Unix machine, particularly
 when used in a file path such as
 ~/filename. Most shells recognize ~
 as a user’s home directory, with the notable exception of the
 Bourne shell. $HOME is recognized by all
 shells.

SSH completely avoids these problems. Rather than running the
 insecure telnet program, you run the SSH client
 program ssh. To log into an account with the
 username smith on the remote computer
 host.example.com, use this command:
 $ ssh -l smith host.example.com
The client authenticates you to the remote computer’s SSH server
 using an encrypted connection, meaning that your username and password
 are encrypted before they leave the local machine. The SSH server then
 logs you in, and your entire login session is encrypted as it travels
 between client and server. Because the encryption is transparent, you
 won’t notice any differences between telnet and
 the telnet-like SSH client.

1.4.2 Secure File Transfer

Suppose you have accounts on two Internet computers,
 me@firstaccount.com and
 metoo@secondaccount.com, and you want to transfer a
 file from the first to the second account. The file contains trade
 secrets about your business, however, that must be kept from prying
 eyes. A traditional file-transfer program, such as
 ftp, doesn’t provide a secure solution. A third
 party can intercept and read the packets as they travel over the
 network. To get around this problem, you can encrypt the file on
 firstaccount.com with a program such as Pretty
 Good Privacy (PGP), transfer it via traditional means, and decrypt the
 file on secondaccount.com, but such a process is
 tedious and nontransparent to the user.
Using SSH, the file can be transferred securely between machines
 with a single secure copy command. If the file were named myfile, the command executed on
 firstaccount.com might be:
 $ scp myfile metoo@secondaccount.com:
When transmitted by scp, the file is
 automatically encrypted as it leaves
 firstaccount.com and decrypted as it arrives on
 secondaccount.com.

1.4.3 Secure Remote Command Execution

Suppose you are a system administrator who needs to run the same
 command on many computers. You’d like to view the active processes for
 each user on four different computers--grape,
 lemon, kiwi, and
 melon--on a local area network using the Unix
 command /usr/bin/w. Many SSH
 clients can run a single remote command if you provide it at the end
 of the command line. This short shell script does the trick:
 #!/bin/sh
 for machine in grape lemon kiwi melon
 do
 ssh $machine /usr/bin/w Execute remote command by ssh
 done
Each w command and its
 results are encrypted as they travel across the network, and strong
 authentication techniques may be used when connecting to the remote
 machines.

1.4.4 Keys and Agents

Suppose you have accounts on many computers on a network. For
 security reasons, you prefer different passwords on all accounts; but
 remembering so many passwords is difficult. It’s also a security
 problem in itself. The more often you type a password, the more likely
 you’ll mistakenly type it in the wrong place. (Have you ever
 accidentally typed your password instead of your username, visible to
 the world? Ouch! And on many systems, such mistakes are recorded in a
 system log file, revealing your password in plain text.) Wouldn’t it
 be great to identify yourself only once and get secure access to all
 the accounts without continually typing passwords?
SSH has various authentication mechanisms, and the most secure
 is based on keys rather than passwords. Keys are discussed in great
 detail in Chapter 6, but for now
 we define a key as a small blob of bits that uniquely identifies an
 SSH user. For security, a key is kept encrypted; it may be used only
 after entering a secret passphrase to decrypt
 it.
Using keys, together with a program called an
 authentication agent, SSH can authenticate you to
 all your computer accounts securely without requiring you to memorize
 many passwords or enter them repeatedly. It works like this:
	In advance (and only once), place special, nonsecure files
 called public key files into your remote
 computer accounts. These enable your SSH clients
 (ssh, scp) to access
 your remote accounts.

	On your local machine, invoke the
 ssh-agent program, which runs in the
 background.

	Choose the key (or keys) you will need during your login
 session.

	Load the keys into the agent with the
 ssh-add program. This requires knowledge of
 each key’s secret passphrase.

At this point, you have an ssh-agent
 program running on your local machine, holding your secret keys in
 memory. You’re now done. You have passwordless access to all your
 remote accounts that contain your public key files. Say goodbye to the
 tedium of retyping passwords! The setup lasts until you log out from
 the local machine or terminate ssh-agent.

1.4.5 Access Control

Suppose you want to permit another person to use your
 computer account, but only for certain purposes. For example, while
 you’re out of town you’d like your secretary to read your email but
 not to do anything else in your account. With SSH, you can give your
 secretary access to your account without revealing or changing your
 password, and with only the ability to run the email program. No
 system-administrator privileges are required to set up this restricted
 access. (This topic is the focus of Chapter 8.)

1.4.6 Port Forwarding

SSH can increase the security of other TCP/IP-based applications
 such as telnet, ftp, and the
 X Window System. A technique called port
 forwarding or tunneling reroutes a TCP/IP
 connection to pass through an SSH connection, transparently encrypting
 it end to end. Port forwarding can also pass such applications through
 network firewalls that otherwise prevent their use.
Suppose you are logged into a machine away from work and want to
 access the internal news server at your office,
 news.yoyodyne.com. The Yoyodyne network is
 connected to the Internet, but a network firewall blocks incoming
 connections to most ports, particularly port 119, the news port. The
 firewall does allow incoming SSH connections, however, since the SSH
 protocol is secure enough that even Yoyodyne’s rabidly paranoid system
 administrators trust it. SSH can establish a secure tunnel on an
 arbitrary local TCP port—say, port 3002--to the news port on the
 remote host. The command might look a bit cryptic at this early stage,
 but here it is:
 $ ssh -L 3002:localhost:119 news.yoyodyne.com
This says "ssh, please establish a secure
 connection from TCP port 3002 on my local machine to TCP port 119, the
 news port, on news.yoyodyne.com.” So, in order to
 read news securely, configure your news-reading program to connect to
 port 3002 on your local machine. The secure tunnel created by
 ssh automatically communicates with the news
 server on news.yoyodyne.com, and the news traffic
 passing through the tunnel is protected by encryption. [9.1]

[4] This is true of standard Telnet, but some implementations
 add security features.

History of SSH

 SSH1 and the SSH-1 protocol were developed in 1995 by Tatu Ylönen, a researcher at
 the Helsinki University of Technology in Finland. After his university
 network was the victim of a password-sniffing attack earlier that year,
 Ylönen whipped up SSH1 for himself. When beta versions started gaining
 attention, however, he realized his security product could be put to
 wider use.
In July 1995, SSH1 was released to the public as free software
 with source code, permitting people to copy and use the program without
 cost. By the end of the year, an estimated 20,000 users in 50 countries
 had adopted SSH1, and Ylönen was fending off 150 email messages per day
 requesting support. In response, Ylönen founded SSH Communications
 Security Corp., (SCS, http://www.ssh.com/)
 in December of 1995 to maintain, commercialize, and continue development
 of SSH. Today he is a board member and technical advisor to the
 company.
Also in 1995, Ylönen documented the SSH-1 protocol as an Internet
 Engineering Task Force (IETF) Internet Draft, which essentially
 described the operation of the SSH1 software after the fact. It was a
 somewhat ad hoc protocol with a number of problems and limitations
 discovered as the software grew in popularity. These problems couldn’t
 be fixed without losing backward compatibility, so in 1996, SCS
 introduced a new, major version of the protocol, SSH 2.0 or SSH-2, that
 incorporates new algorithms and is incompatible with SSH-1. In response,
 the IETF formed a working group called Secure Shell (SECSH) to
 standardize the protocol and guide its development in the public
 interest. The SECSH working group submitted the first Internet Draft for
 the SSH-2.0 protocol in February 1997.
In 1998, SCS released the software product SSH Secure Shell
 (SSH2), based on the superior SSH-2 protocol. However, SSH2 didn’t
 replace SSH1 in the field: it was missing some features of SSH1 and had
 a more restrictive license, so many users felt little reason to switch,
 even though SSH-2 is a better and more secure protocol.
This situation changed with the appearance of OpenSSH (http://www.openssh.com/), a free
 implementation of the SSH-2 protocol from the OpenBSD project (http://www.openbsd.org/).
 It was based on the last free release of the original SSH, 1.2.12, but
 developed rapidly into one of the reigning SSH implementations in the
 world. Though many people have contributed to it, OpenSSH is largely the
 work of software developer Markus Friedl. It has been ported
 successfully to Linux, Solaris, AIX, Mac OS X, and other operating
 systems, in tight synchronization with the OpenBSD releases.
SCS has continued to improve its SSH products, in some cases
 beyond what OpenSSH supports. Its product line now carries the name
 Tectia. And nowadays there are dozens of SSH implementations, both free
 and commercial, for virtually all platforms. Millions of people use it
 worldwide to secure their communications.

Related Technologies

 SSH is popular and convenient, but we certainly don’t
 claim it is the ultimate security solution for all networks.
 Authentication, encryption, and network security originated long before
 SSH and have been incorporated into many other systems. Let’s survey a
 few representative systems.
1.6.1 rsh Suite (r-Commands)

The Unix programs rsh,
 rlogin, and
 rcp--collectively known as the
 r-commands --are the direct ancestors of the SSH clients
 ssh, slogin, and
 scp. The user interfaces and visible
 functionality are nearly identical to their SSH counterparts, except
 that SSH clients are secure. The r-commands, in contrast, don’t
 encrypt their connections and have a weak, easily subverted
 authentication model.
An r-command server relies on two mechanisms for security: a
 network naming service and the notion of “privileged” TCP ports. Upon
 receiving a connection from a client, the server obtains the network
 address of the originating host and translates it into a hostname.
 This hostname must be present in a configuration file on the server,
 typically /etc/hosts.equiv, for
 the server to permit access. The server also checks that the source
 TCP port number is in the range 1-1023, since these port numbers can
 be used only by the Unix superuser (or root uid). If the connection
 passes both checks, the server believes it is talking to a trusted
 program on a trusted host and logs in the client as whatever user it
 requests!
These two security checks are easily subverted. The translation
 of a network address to a hostname is done by a naming service such as
 Sun’s Network Information Service (NIS) or the Internet Domain Name System (DNS). Most
 implementations and/or deployments of NIS and DNS services have
 security holes, presenting opportunities to trick the server into
 trusting a host it shouldn’t. Then, a remote user can log into someone
 else’s account on the server simply by having the same
 username.
Likewise, blind trust in privileged TCP ports represents a
 serious security risk. A cracker who gains root privilege on a trusted
 machine can simply run a tailored version of the
 rsh client and log in as any user on the server
 host. Overall, reliance on these port numbers is no longer trustworthy
 in a world of desktop computers whose users have administrative access
 as a matter of course, or whose operating systems don’t support
 multiple users or privileges (such as Windows 9x and Macintosh OS
 9).
If user databases on trusted hosts were always synchronized with
 the server, installation of privileged programs (setuid root) strictly
 monitored, root privileges guaranteed to be held by trusted people,
 and the physical network protected, the r-commands would be reasonably
 secure. These assumptions made sense in the early days of networking,
 when hosts were few, expensive, and overseen by a small and trusted
 group of administrators, but they have far outlived their
 usefulness.
Given SSH’s superior security features and that
 ssh is backward-compatible with
 rsh (and scp with
 rcp), we see no compelling reason to run the
 r-commands anymore. Install SSH and be happy.

1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
 (GnuPG)

PGP is a popular encryption program available for many
 computing platforms, created by Phil Zimmerman. It can authenticate
 users and encrypt data files and email messages. GnuPG is a more
 powerful successor to PGP with less-restrictive licensing.
SSH incorporates some of the same encryption algorithms as PGP
 and GnuPG, but applied in a different way. PGP is file-based,
 typically encrypting one file or email message at a time on a single
 computer. SSH, in contrast, encrypts an ongoing session between
 networked computers. The difference between PGP and SSH is like that
 between a batch job and an interactive process.
Tip
PGP and SSH are related in another way as well: Tectia can
 optionally use PGP keys for authentication. [5.4.5]

More PGP and GnuPG information is available at http://www.pgp.com/ and http://www.gnupg.org/, respectively.

1.6.3 Kerberos

Kerberos is a secure authentication system for environments
 where networks may be monitored, and computers aren’t under central
 control. It was developed as part of Project Athena, a wide-ranging
 research and development effort at the Massachusetts Institute of
 Technology (MIT). Kerberos authenticates users by way of
 tickets , small sequences of bytes with limited lifetimes, while
 user passwords remain secure on a central machine.
Kerberos and SSH solve similar problems but are quite different
 in scope. SSH is lightweight and easily deployed, designed to work on
 existing systems with minimal changes. To enable secure access from
 one machine to another, simply install an SSH client on the first and
 a server on the second, and start the server. Kerberos, in contrast,
 requires significant infrastructure to be established before use, such
 as administrative user accounts, a heavily secured central host, and
 software for networkwide clock synchronization. In return for this
 added complexity, Kerberos ensures that users’ passwords travel on the
 network as little as possible and are stored only on the central host.
 SSH sends passwords across the network (over encrypted connections, of
 course) on each login and stores keys on each host from which SSH is
 used. Kerberos also serves other purposes beyond the scope of SSH,
 including a centralized user account database, access control lists,
 and a hierarchical model of trust.
Another difference between SSH and Kerberos is the approach to
 securing client applications. SSH can easily secure most TCP/IP-based
 programs via a technique called port-forwarding. Kerberos, on the
 other hand, contains a set of programming libraries for adding
 authentication and encryption to other applications. Developers can
 integrate applications with Kerberos by modifying their source code to
 make calls to the Kerberos libraries. The MIT Kerberos distribution
 comes with a set of common services that have been “kerberized,”
 including secure versions of telnet,
 ftp, and rsh.
If the features of both Kerberos and SSH sound good, you’re in
 luck: they’ve been integrated. [11.5.2] More information on
 Kerberos can be found at http://web.mit.edu/kerberos/www/.

1.6.4 IPSEC and Virtual Private Networks

Internet Protocol Security (IPSEC) is an Internet
 standard for network security. Developed by an IETF working group,
 IPSEC comprises authentication and encryption implemented at the IP
 level. This is a lower level of the network stack than SSH addresses.
 It is entirely transparent to end users, who don’t need to use a
 particular program such as SSH to gain security; rather, their
 existing insecure network traffic is protected automatically by the
 underlying system. IPSEC can securely connect a single machine to a
 remote network through an intervening untrusted network (such as the
 Internet), or it can connect entire networks (this is the idea of the
 Virtual Private Network, or VPN).
SSH is often quicker and easier to deploy as a solution than
 IPSEC, since SSH is a simple application program, whereas IPSEC
 requires additions to the host operating systems on both sides if they
 don’t already come with it, and possibly to network equipment such as
 routers, depending on the scenario. SSH also provides user
 authentication, whereas IPSEC deals only with individual hosts. On the
 other hand, IPSEC is more basic protection and can do things SSH
 can’t. For instance, in Chapter
 11 we discuss the difficulties of trying to protect the FTP
 protocol using SSH. If you need to secure an existing insecure
 protocol such as FTP, which isn’t amenable to treatment with SSH,
 IPSEC is a way to do it.
IPSEC can provide authentication alone, through a means called
 the Authentication Header (AH), or both authentication and encryption,
 using a protocol called Encapsulated Security Payload (ESP). Detailed
 information on IPSEC can be found at http://www.ietf.org/html.charters/ipsec-charter.html.

1.6.5 Secure Remote Password (SRP)

The Secure Remote Password (SRP) protocol, created at
 Stanford University, is a security protocol very different in scope
 from SSH. It is specifically an authentication protocol, whereas SSH
 comprises authentication, encryption, integrity, session management,
 etc., as an integrated whole. SRP isn’t a complete security solution
 in itself, but rather, a technology that can be a part of a security
 system.
The design goal of SRP is to improve on the security properties
 of password-style authentication, while retaining its considerable
 practical advantages. Using SSH public-key authentication is difficult
 if you’re traveling, especially if you’re not carrying your own
 computer, but instead are using other people’s machines. You have to
 carry your private key on a portable storage device and hope that you
 can get the key into whatever machine you need to use.
Carrying your encrypted private key with you is also a weakness,
 because if someone steals it, they can subject it to a dictionary
 attack in which they try to find your passphrase and recover the key.
 Then you’re back to the age-old problem with passwords: to be useful
 they must be short and memorable, whereas to be secure, they must be
 long and random.
SRP provides strong two-party mutual authentication, with the
 client needing only to remember a short password which need not be so
 strongly random. With traditional password schemes, the server
 maintains a sensitive database that must be protected, such as the
 passwords themselves, or hashed versions of them (as in the Unix
 /etc/passwd and /etc/shadow files). That data must be kept
 secret, since disclosure allows an attacker to impersonate users or
 discover their passwords through a dictionary attack. The design of
 SRP avoids such a database and allows passwords to be less random (and
 therefore more memorable and useful), since it prevents dictionary
 attacks. The server still has sensitive data that should be protected,
 but the consequences of its disclosure are less severe.
SRP is also intentionally designed to avoid using encryption
 algorithms in its operation. Thus it avoids running afoul of
 cryptographic export laws, which prohibits certain encryption
 technologies from being shared with foreign countries.
SRP is an interesting technology we hope gains wider acceptance;
 it is an excellent candidate for an additional authentication method
 in SSH. The current SRP implementation includes secure clients and
 servers for the Telnet and FTP protocols for Unix and Windows. More
 SRP information can be found at http://srp.stanford.edu/.

1.6.6 Secure Socket Layer (SSL) Protocol

The Secure Socket Layer (SSL) protocol is an
 authentication and encryption technique providing security services to
 TCP clients by way of a Berkeley sockets-style API. It was initially
 developed by Netscape Communications Corporation to secure the HTTP
 protocol between web clients and servers, and that is still its
 primary use, though nothing about it is specific to HTTP. It is on the
 IETF standards track as RFC-2246, under the name “TLS” for Transport
 Layer Security.
An SSL participant proves its identity by a digital
 certificate, a set of cryptographic data. A certificate
 indicates that a trusted third party has verified the binding between
 an identity and a given cryptographic key. Web browsers automatically
 check the certificate provided by a web server when they connect by
 SSL, ensuring that the server is the one the user intended to contact.
 Thereafter, transmissions between the browser and the web server are
 encrypted.
SSL is used most often for web applications, but it can also
 “tunnel” other protocols. It is secure only if a “trusted third party”
 exists. Organizations known as certificate
 authorities (CAs) serve this function. If a company wants a
 certificate from the CA, the company must prove its identity to the CA
 through other means, such as legal documents. Once the proof is
 sufficient, the CA issues the certificate.
For more information, visit the OpenSSL project at http://www.openssl.org/.

1.6.7 SSL-Enhanced Telnet and FTP

Numerous TCP-based communication programs have been enhanced
 with SSL, including telnet (e.g., SSLtelnet, SRA
 telnet, SSLTel, STel) and ftp (SSLftp), providing
 some of the functionality of SSH. Though useful, these tools are
 fairly single-purpose and typically are patched or hacked versions of
 programs not originally written for secure communication. The major
 SSH implementations, on the other hand, are more like integrated
 toolsets with diverse uses, written from the ground up for
 security.

1.6.8 stunnel

 stunnel is an SSL tool created by
 Micha Trojnara of Poland. It adds SSL protection to existing TCP-based
 services in a Unix environment, such as POP or IMAP servers, without
 requiring changes to the server source code. It can be invoked from
 inetd as a wrapper for any number of service
 daemons or run standalone, accepting network connections itself for a
 particular service. stunnel performs
 authentication and authorization of incoming connections via SSL; if
 the connection is allowed, it runs the server and implements an
 SSL-protected session between the client and server programs.
This is especially useful because certain popular applications
 have the option of running some client/server protocols over SSL. For
 instance, email clients like Microsoft Outlook and Mozilla Mail can
 connect to POP, IMAP, and SMTP servers using SSL. For more
 stunnel information, see http://www.stunnel.org/.

1.6.9 Firewalls

A firewall is a hardware device or software
 program that prevents certain data from entering or exiting a network.
 For example, a firewall placed between a web site and the Internet
 might permit only HTTP and HTTPS traffic to reach the site. As another
 example, a firewall can reject all TCP/IP packets unless they
 originate from a designated set of network addresses.
Firewalls aren’t a replacement for SSH or other authentication
 and encryption approaches, but they do address similar problems. The
 techniques may be used together.

Summary

SSH is a powerful, convenient approach to protecting
 communications on a computer network. Through secure authentication and
 encryption technologies, SSH supports secure remote logins, secure
 remote command execution, secure file transfers, access control, TCP/IP
 port forwarding, and other important features.

Chapter 2. Basic Client Use

SSH is a simple idea but it has many parts, some of them complex.
 This chapter is designed to get you started with SSH quickly. We cover the
 basics of SSH’s most immediately useful features:
	Logging into a remote computer over a secure connection

	Transferring files between computers over a secure
 connection

We also introduce authentication with cryptographic keys, a more
 secure alternative to ordinary passwords. Advanced uses of client
 programs, such as multiple keys, client configuration files, and TCP port
 forwarding, are covered in later chapters. Our examples in this chapter
 work with OpenSSH and Tectia on Linux and other Unix-inspired operating
 systems.

A Running Example

 Suppose you’re out of town on a business trip and want to
 access your files, which sit on a Unix machine belonging to your ISP,
 shell.isp.com. A friend at a nearby university
 agrees to let you log into her Linux account on the machine
 local.university.edu, and then remotely log into
 yours. For the remote login you could use the
 telnet program, but as we’ve seen, this connection
 between the machines is insecure. (No doubt some subversive college
 student would grab your password and turn your account into a renegade
 web server for pirated software and death metal MP3s.) Fortunately, both
 your friend’s machine and your ISP’s have an SSH product
 installed.
In the example running through the chapter, we represent the shell
 prompt of the local machine, local.university.edu,
 as a dollar sign ($) and the prompt
 on shell.isp.com as shell.isp.com>.

Remote Terminal Sessions with ssh

Suppose your remote username on shell.isp.com
 is pat. To connect to your remote account from your friend’s account on
 local.university.edu, you type:
 $ ssh -l pat shell.isp.com
 pat's password: ******
 Last login: Mon Aug 16 19:32:51 2004 from quondam.nefertiti.org
 You have new mail.
 shell.isp.com>
This leads to the situation shown in Figure 2-1. The
 ssh command runs a client that contacts the SSH
 server on shell.isp.com over the Internet, asking
 to be logged into the remote account with username pat.[5] You can also provide user@host syntax
 instead of the -l option to accomplish the same
 thing:
 $ ssh pat@shell.isp.com
[image: Our example scenario]

Figure 2-1. Our example scenario

On first contact, SSH establishes a secure channel between the
 client and the server so that all transmissions between them are
 encrypted. The client then prompts for your password, which it supplies
 to the server over the secure channel. The server authenticates you by
 checking that the password is correct and permits the login. All
 subsequent client/server exchanges are protected by that secure channel,
 including everything you type into the SSH application and everything it
 displays to you from shell.isp.com.
It’s important to remember that the secure channel exists only
 between the SSH client and server machines. After logging into
 shell.isp.com via ssh, if you
 then telnet or ftp to a third
 machine, insecure.isp.com, the connection between
 shell.isp.com and
 insecure.isp.com is not secure. However, you can
 run another ssh client from
 shell.isp.com to
 insecure.isp.com, creating another secure channel,
 which keeps the chain of connections secure.
We’ve covered only the simplest use of ssh.
 Chapter 7 goes into far greater
 depth about its many features and options.
2.2.1 File Transfer with scp

Continuing the story, suppose that while browsing your
 files, you encounter a PDF file you’d like to print. In order to send
 the file to a local printer at the university, you must first transfer
 the file to local.university.edu. Once again, you
 reject as insecure the traditional file-transfer programs, such as
 ftp. Instead, you use another SSH client program,
 scp, to copy the file across the network via a
 secure channel.
First, you write the attachment to a file in your home directory
 on shell.isp.com using your mail client, naming
 the file printme.pdf. When you’ve
 finished reading your other email messages, log out of
 shell.isp.com, ending the SSH session and
 returning to the shell prompt on
 local.university.edu. You’re now ready to copy
 the file securely.
The scp program has syntax much like the traditional Unix cp
 program for copying files.[6] It is roughly:
 scpname-of-source name-of-destination
In this example, scp copies the file
 printme.pdf on
 shell.isp.com over the network to a local file in
 your friend’s account on local.university.edu,
 also called printme.pdf :
 $ scp pat@shell.isp.com:printme.pdf printme.pdf
The file is transferred over an SSH-secured connection. The
 source and destination files may be specified not only by filename,
 but also by username (“pat” in our example) and hostname
 (shell.isp.com), indicating the location of the
 file on the network. Depending on your needs, various parts of the
 source or destination name can be omitted, and default values used.
 For example, omitting the username and the at sign (pat@) makes
 scp assume that the remote username is the same
 as the local one.
Like ssh, scp prompts
 for your remote password and passes it to the SSH server for
 verification. If successful, scp logs into the
 pat account on shell.isp.com, copies your remote
 file printme.pdf to the local
 file printme.pdf, and logs out of
 shell.isp.com. The local file printme.pdf may now be sent to a
 printer.
The destination filename need not be the same as the remote one.
 For example, if you’re feeling French, you could call the local file
 imprime-moi.pdf :
 $ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf
The full syntax of scp can represent local
 and remote files in powerful ways, and the program also has numerous
 command-line options. [7.5]

[5] If the local and remote usernames are identical, you can omit
 the -l option (-l pat) and
 just type ssh
 shell.isp.com.

[6] Actually it’s modeled after the old rcp
 program for copying files insecurely between machines.

Adding Complexity to the Example

The preceding example session provided a quick introduction to the
 most often-used client programs--ssh and
 scp--in a format to follow while sitting at your
 computer. Now that you have the basics, let’s continue the example but
 include situations and complications glossed over the first time. These
 include the “known hosts” security feature and the SSH escape
 character.
Tip
If you’re following at the computer as you read, your SSH
 clients might behave unexpectedly or differently from ours. As you
 will see throughout the book, SSH implementations are highly
 customizable, by both yourself and the system administrator, on either
 side of the secure connection. Although this chapter describes common
 behaviors of SSH programs based on their installation defaults, your
 system might be set up differently.
If commands don’t work as you expect, try adding the
 -v (“verbose”) command-line option, for
 example:
 $ ssh -v shell.isp.com
This causes the client to print lots of information about its
 progress, often revealing the source of the discrepancy.

2.3.1 Known Hosts

The first time an SSH client encounters a new remote
 machine, it may report that it’s never seen the machine before,
 printing a message like the following:
 $ ssh -l pat shell.isp.com
 The authenticity of host 'shell.isp.com (192.168.0.2)' can't be established.
 RSA key fingerprint is 77:a5:69:81:9b:eb:40:76:7b:13:04:a9:6c:f4:9c:5d.
 Are you sure you want to continue connecting (yes/no)?
Assuming you respond yes (the
 most common response), the client continues:
 Warning: Permanently added 'shell.isp.com,192.168.0.2' (RSA) to the list of known hosts
 .
This message appears only the first time you contact a
 particular remote host. The message is a security feature related to
 SSH’s concept of known hosts.[7]
Suppose an adversary wants to obtain your password. He knows you
 are using SSH, and so he can’t monitor your connection by
 eavesdropping on the network. Instead, he subverts the naming service
 used by your local host so that the name of your intended remote host,
 shell.isp.com, translates falsely to the IP
 address of a computer run by him! He then installs an altered SSH
 server on the phony remote host and waits. When you log in via your
 trusty SSH client, the altered SSH server records your password for
 the adversary’s later use (or misuse, more likely). The bogus server
 can then disconnect with a preplanned error message such as “System
 down for maintenance—please try again after 4:00 p.m.” Even worse, it
 can fool you completely by using your password to log into the real
 shell.isp.com and transparently pass information
 back and forth between you and the server, monitoring your entire
 session. This hostile strategy is called a man-in-the-middle attack.
 [3.9.4] Unless you think
 to check the originating IP address of your session on the server, you
 might never notice the deception.
The SSH known-host mechanism prevents such
 attacks. When an SSH client and server make a connection, each of them
 proves its identity to the other. Yes, not only does the server
 authenticate the client, as we saw earlier when the server checked
 Pat’s password, but the client also authenticates the server by
 public-key cryptography. [3.4.3.6] In short, each SSH
 server has a secret, unique ID, called a host
 key, to identify itself to clients. The first time you
 connect to a remote host, a public counterpart of the host key gets
 copied and stored in your local account (assuming you responded “yes”
 to the client’s prompt about host keys , earlier). Each time you reconnect to that remote host,
 the SSH client checks the remote host’s identity using this public
 key.
Of course, it’s better to have recorded the server’s public host
 key before connecting to it the first time, since otherwise you are
 technically open to a man-in-the-middle attack that first time.
 Administrators can maintain systemwide known-hosts lists for given
 sets of hosts, but this doesn’t do much good for connecting to random
 new hosts around the world. Until a reliable, widely deployed method
 of verifying such keys securely exists (such as secure DNS, or
 X.509-based public-key infrastructure), this record-on-first-use
 mechanism is an acceptable compromise.
If authentication of the server fails, various things may happen
 depending on the reason for failure and the SSH configuration.
 Typically a warning appears on the screen, ranging from a repeat of
 the known-hosts message:
 Host key not found from the list of known hosts.
 Are you sure you want to continue connecting (yes/no)?
to more dire words:
 @@@
 @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
 @@@
 IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
 Someone could be eavesdropping on you right now (man-in-the-middle attack)!
 It is also possible that the RSA host key has just been changed.
 The fingerprint for the RSA key sent by the remote host is
 77:a5:69:81:9b:eb:40:76:7b:13:04:a9:6c:f4:9c:5d.
 Please contact your system administrator.
 Add correct host key in /home/smith/.ssh/known_hosts to get rid of this message.
 Offending key in /home/smith/.ssh/known_hosts:36
If you answer yes,
 ssh allows the connection, but disables various
 features as a security precaution and doesn’t update your personal
 known-hosts database with the new key; you must do that yourself to
 make this message go away.
As the text of the message says, if you see this warning, you
 aren’t necessarily being hacked: for example, the remote host key may
 have legitimately changed for some reason. In some cases, even after
 reading this book, you won’t know the cause of these messages. If you
 need assistance, contact your system administrator or a knowledgeable
 friend, rather than take a chance and possibly compromise your
 password. We’ll cover these issues further when we discuss personal
 known hosts databases and how to alter the behavior of SSH clients
 with respect to host keys.[7.4.3]

2.3.2 The Escape Character

Let us return to the shell.isp.com
 example, just after you’d discovered the attachment in your remote
 email message and saved it to the remote file printme.pdf. In our original example, you
 then logged out of shell.isp.com and ran
 scp to transfer the file. But what if you don’t
 want to log out? If you’re using a workstation running a window
 system, you can open a new window and run scp.
 But if you’re using a lowly text terminal, or you’re not familiar with
 the window system running on your friend’s computer, there is an
 alternative. You can temporarily interrupt the SSH connection,
 transfer the file (and run any other local commands you desire), and
 then resume the connection.
ssh supports an escape
 character , a designated character that gets the attention of the
 SSH client. Normally, ssh sends every character
 you type to the server, but the escape character is caught by the
 client, alerting it that special commands may follow. By default, the
 escape character is the tilde (~), but you can change it. To reduce
 the chances of sending the escape character unintentionally, that
 character must be the first character on the command line, i.e.,
 following a newline (Control-J) or return
 (Control-M) character. If not, the client treats it
 literally, not as an escape character.
After the escape character gets the client’s attention, the next
 character entered determines the effect of the escape. For example,
 the escape character followed by a Control-Z suspends ssh
 like any other shell job, returning control to the local shell. Such a
 pair of characters is called an escape sequence.
 We cover these in detail in a later chapter. [7.4.6.8]
To change the ssh escape character, use the
 -e command-line option. For example, type the
 following to make the percent sign (%) the escape character when connecting to
 shell.isp.com as user pat:
 $ ssh -e "%" -l pat shell.isp.com

[7] Depending on your client configuration,
 ssh might print a different message and
 automatically accept or reject the connection. [7.4.3.1]

Authentication by Cryptographic Key

In our running example, the user pat is authenticated by the SSH
 server via login password. Passwords, however, have serious
 drawbacks:
	In order for a password to be secure, it should be long and
 random, but such passwords are hard to memorize.

	A password sent across the network, even protected by an SSH
 secure channel, can be captured when it arrives on the remote host
 if that host has been compromised.

	Most operating systems support only a single password per
 account. For shared accounts (e.g., a superuser account), this
 presents difficulties:
	Password changes are inconvenient because the new password
 must be communicated to all people with access to the
 account.

	Tracking usage of the account becomes difficult because
 the operating system doesn’t distinguish between the different
 users of the account.

To address these problems, SSH supports public-key
 authentication: instead of relying on the password scheme of
 the host operating system, SSH may use cryptographic
 keys . [3.2.2]
 Keys are more secure than passwords in general and address all the
 weaknesses mentioned earlier.
2.4.1 A Brief Introduction to Keys

A key is a digital identity. It’s a unique string of
 binary data that means “This is me, honestly, I swear.” And with a
 little cryptographic magic, your SSH client can prove to a server that
 its key is genuine, and you are really you.
An SSH identity uses a pair of keys, one private and one public.
 The private key is a closely guarded secret only
 you have. Your SSH clients use it to prove your identity to servers.
 The public key is, like the name says, public.
 You place it freely into your accounts on SSH server machines. During
 authentication, the SSH client and server have a little conversation
 about your private and public key. If they match (according to a
 cryptographic test), your identity is proven, and authentication
 succeeds.
The following sequence demonstrates the conversation between
 client and server. [3.4.2.4] (It occurs behind
 the scenes, so you don’t need to memorize it or anything; we just
 thought you might be interested.)
	Your client says, “Hey server, I’d like to connect by SSH to
 an account on your system, specifically, the account owned by user
 smith.”

	The server says, “Well, maybe. First, I challenge you to
 prove your identity!” And the server sends some data, known as a
 challenge, to the client.

	Your client says, “I accept your challenge. Here is proof of
 my identity. I made it myself by mathematically using your
 challenge and my private key.” This response to the server is
 called an authenticator.

	The server says, “Thanks for the authenticator. I will now
 examine the smith account to see if you may enter.” Specifically,
 the server checks smith’s public keys to see if the authenticator “matches” any of them.
 (The “match” is another cryptographic operation.) If so, the
 server says, “OK, come on in!” Otherwise, the authentication
 fails.

Before you can use public-key authentication, some setup is
 required:
	You need a private key and a public key, known collectively
 as a key pair. You also need a secret
 passphrase to protect your private key. [2.4.2]

	You need to install your public key on an SSH server
 machine. [2.4.3]

2.4.2 Generating Key Pairs with ssh-keygen

To use cryptographic authentication, you must first
 generate a key pair for yourself, consisting of a private key (your
 digital identity that sits on the client machine) and a public key
 (that sits on the server machine). To do this, use the
 ssh-keygen program to produce either a DSA or RSA
 key. The OpenSSH version of ssh-keygen requires
 you to specify the key type with the -t option
 (there is no default):
 $ ssh-keygen -t dsa
 Generating public/private dsa key pair.
 Enter file in which to save the key (/home/dbarrett/.ssh/id_dsa): press ENTER
 Enter passphrase (empty for no passphrase): ********
 Enter same passphrase again: ********
 Your identification has been saved in /home/pat/.ssh/id_dsa.
 Your public key has been saved in /home/pat/.ssh/id_dsa.pub.
 The key fingerprint is:
 14:ba:06:98:a8:98:ad:27:b5:ce:55:85:ec:64:37:19 pat@shell.isp.com
On Tectia systems, ssh-keygen produces a
 DSA key by default, and also accepts the -t
 option:
 $ ssh-keygen
 Generating 2048-bit dsa key pair
 1 ..oOo.oOo.oO
 2 o.oOo.oOo.oO
 3 o.oOo.oOo.oO
 The program displays a "ripple" pattern to indicate progress; he characters are actually overwritten on a single line
 28 o.oOo.oOo.oO
 Key generated.
 2048-bit dsa, pat@shell.isp.com, Wed Jan 12 2005 20:22:21 -0500
 Passphrase : **************
 Again : **************
 Private key saved to /home/pat/.ssh2/id_dsa_2048_a
 Public key saved to /home/pat/.ssh2/id_dsa_2048_a.pub
Normally, ssh-keygen performs all necessary
 mathematics to generate a key, but on some operating systems you might
 be asked to assist it. Key generation requires some random numbers,
 and if your operating system doesn’t supply a random-number generator,
 you may be asked to type some random text or wiggle your mouse around.
 ssh-keygen uses the timings of your keystrokes to
 initialize its internal random-number generator. On a 3.2 GHz Pentium
 4 system running Linux, a 1024-bit RSA key generates in less than one
 second; if your hardware is slower or heavily loaded, generation could
 take minutes. It can also take longer if the process runs out of
 random bits and ssh-keygen waits to collect
 more.
ssh-keygen then creates your local SSH
 directory (~/.ssh for OpenSSH or
 ~/.ssh2 for Tectia) if it doesn’t
 already exist, and stores the private and public components of the
 generated key in two files there. By default, their names are
 id_dsa and id_dsa.pub (OpenSSH) or id_dsa_2048_a and id_dsa_2048_a.pub (Tectia). SSH clients
 consider these to be your default identity for authentication
 purposes.
Warning
Never reveal your private key and passphrase to anyone. They
 are just as sensitive as your login password. Anyone possessing them
 can impersonate you!

When created, the identity file is readable only by your
 account, and its contents are further protected by encrypting them
 with the passphrase you supplied during generation. We say
 “passphrase” instead of “password” both to differentiate it from a
 login password, and to stress that spaces and punctuation are allowed
 and encouraged. We recommend a passphrase at least 10 -15 characters
 long and not a grammatical sentence.
ssh-keygen has numerous options for
 managing keys: changing the passphrase, choosing a different name for
 the key file, and so forth. [6.2]

2.4.3 Installing a Public Key on an SSH Server Machine

When passwords are used for authentication, the host
 operating system maintains the association between the username and
 the password. For cryptographic keys, you must set up a similar
 association manually. After creating the key pair on the local host,
 you must install your public key in your account on the remote host. A
 remote account may have many public keys installed for accessing it in
 various ways.
Returning to our running example, you must install a public key
 into the pat account on shell.isp.com. This is
 done by editing a file in the SSH configuration directory: ~/.ssh/authorized_keys for OpenSSH or ~/.ssh2/authorization for Tectia.
2.4.3.1 Instructions for OpenSSH

Create or edit the remote file ~/.ssh/authorized_keys and append your
 public key—i.e., the contents of the id_dsa.pub file you generated on the
 local machine. A typical authorized_keys file contains a list of
 public-key data, one key per line. The example contains only two
 public keys, each on its own line of the file, but they are too long
 to fit on this page. The line breaks inside the long numbers are
 printing artifacts; if they were actually in the file, it would be
 incorrectly formatted and wouldn’t work:
 ssh-dss
 AAAAB3NzaC1kc3MAAACBAMCiL15WEI+0dFJZ9InMSh4PAZ3eFO7YJBFZ6ybl7ld+807z/jnXGghYVuvKbHdNlR
YWidhdFWtDW3l5v8Ce7nyYhcQU7x+j4JeUf7qmLmQxlu0v+O5rlg7L5U2RuW94yt1BGj+xk7vzLwOhKHE/+YFVz52s
FNazoYXqPnm1pRPRAAAAFQDGjroMj+ML= jones@client2.com
 ssh-rsa
 AAAAB3NzaC1yc2EAAAABIwAAAIEAvpB4lUbAaEbh9u6HLig7amsfywD4fqSZq2ikACIUBn3GyRPfeF93l/
weQh702ofXbDydZAKMcDvBJqRhUotQUwqV6HJxqoqPDlPGUUyo8RDIkLUIPRyqypZxmK9aCXokFiHoGCXfQ9imUP/
w/jfqb9ByDtG97tUJF6nFMP5WzhM= smith@client.net
The first entry is a DSA key and the second is RSA. [8.2.1]

2.4.3.2 Instructions for Tectia

For Tectia you need to edit two files, one on the
 client machine and one on the server machine. On the client machine,
 create or edit the file ~/.ssh2/identification and insert a line
 to identify your private-key file:
 IdKey id_dsa_2048_a
On the server machine, create or edit the file ~/.ssh2/authorization, which contains
 information about public keys, one per line. But unlike OpenSSH’s
 authorized_keys file, which
 contains copies of the public keys, the authorization file lists only the
 filename of the key:
 Key id_dsa_2048_a.pub
Finally, copy id_dsa_2048_a.pub from your local machine
 to the remote Tectia server machine, placing it in ~/.ssh2.
Installing OpenSSH Keys with ssh-copy-id
OpenSSH includes a program,
 ssh-copy-id, that installs a public key
 automatically on a remote server with a single command, placing it
 into ~/.ssh/authorized_keys:
 ssh-copy-id -i key_file [user@]server_name
For example, to install the key mykey in the dulaney account on
 server.example.com:
 $ ssh-copy-id -i mykey dulaney@server.example.com
You don’t need to list the .pub extension of the key file; or more
 specifically, you can provide either the private or public-key
 file, and the public key is copied to the remote server.
In order for the copy to take place, you’ll need an account
 on the remote machine, of course, and you’ll need to authenticate
 somehow. If you’ve never set up public-key authentication on
 server.example.com before, you’ll be prompted
 for your login password.
ssh-copy-id is convenient, but it has
 some subtle issues:
	If you have no authorized_keys file on the remote
 machine, ssh-copy-id creates one
 containing your new key; otherwise, it appends the new
 key.

	If you do already have a remote authorized_keys file, and it does
 not end with a newline character,
 ssh-copy-id blindly appends your new key
 onto the last public key in the file, with no newline between
 them. This effectively corrupts the last two keys in authorized_keys. Moral: always make
 sure authorized_keys ends
 with a newline. (This is easy to overlook, especially when
 running OpenSSH on Windows. [14.4])

	The syntax of ssh-copy-id is
 similar to that of scp, the secure copy
 program, but there’s an important difference:
 scp follows the hostname of the remote
 machine with a colon. Don’t use a colon with
 ssh-copy-id or you’ll get an error
 message, “Name or service not known,” as the hostname lookup
 fails.

Before you use ssh-copy-id to simplify
 or hide the details of public-key authentication, we recommend
 that you understand how to set it up manually. This point is often
 true of security-related software: you should know how and why it
 works.

Regardless of which SSH implementation you use, make sure your
 remote SSH directory and associated files are writable only by your
 account:[8]
 # OpenSSH
 $ chmod 755 ~/.ssh
 $ chmod 644 ~/.ssh/authorized_keys

 # Tectia
 $ chmod 755 ~/.ssh2
 $ chmod 644 ~/.ssh2/id_dsa_2048_a.pub
 $ chmod 644 ~/.ssh2/authorization
The SSH server is picky about file and directory permissions
 and may refuse authentication if the remote account’s SSH
 configuration files have insecure permissions. [5.3.2.1]
You are now ready to use your new key to access the pat
 account:
 $ ssh -l pat shell.isp.com
 Enter passphrase for key '/home/you/.ssh/id_dsa': ************
 Last login: Mon Aug 16 19:44:21 2004 from quincunx.nefertiti.org
 You have new mail.
 shell.isp.com>
If all goes well, you are logged into the remote account.
 Figure 2-2 shows the
 entire process.
Note the similarity to the earlier example with password
 authentication. [2.2] On
 the surface, the only difference is that you provide the passphrase
 to your private key, instead of providing your login password.
 Underneath, however, something quite different is happening. In
 password authentication, the password is transmitted to the remote
 host. With cryptographic authentication, the passphrase serves only
 to decrypt the private key to create an authenticator. [2.4.1]
Public-key authentication is more secure than password
 authentication because:
[image: Public-key authentication]

Figure 2-2. Public-key authentication

	It requires two secret components—the identity file on
 disk, and the passphrase in your head—so both must be captured
 in order for an adversary to access your account. Password
 authentication requires only one component, the password, which
 might be easier to steal.

	Neither the passphrase nor the key is sent to the remote
 host, just the authenticator discussed earlier. Therefore, no
 secret information is transmitted off the client machine.

	Machine-generated cryptographic keys are infeasible to
 guess. Human-generated passwords are routinely cracked by a
 password-guessing technique called a dictionary
 attack . A dictionary attack may be mounted on the
 passphrase as well, but this requires stealing the private-key
 file first.

A host’s security can be greatly increased by disabling
 password authentication altogether and permitting only SSH
 connections by key.

2.4.4 If You Change Your Key

Suppose you have generated a key pair, id_dsa and id_dsa.pub, and copied id_dsa.pub to a bunch of SSH server
 machines. All is well. Then one day, you decide to change your
 identity, so you run ssh-keygen a second time,
 overwriting id_dsa and id_dsa.pub. Guess what? Your previous
 public-key file is now invalid, and you must copy the new public key
 to all those SSH server machines again. This is a maintenance
 headache, so think carefully before changing (destroying!) a key pair. Some caveats:
	You are not limited to one key pair. You can generate as
 many as you like, stored in different files, and use them for
 diverse purposes. [6.4]

	If you just want to change your passphrase, you don’t have
 to generate a new key pair. ssh-keygen has
 command-line options for replacing the passphrase of an existing
 key: -p for OpenSSH [6.2.1] and
 -e for Tectia [6.2.2]. In this case your
 public key remains valid since the private key hasn’t changed,
 just the passphrase for decrypting it.

[8] We make files world-readable and directories
 world-searchable, to avoid NFS problems. [10.7.2] But if
 StrictModes is enabled in the
 server, you’ll need to make these permissions more restrictive.
 [5.3.2.1]

The SSH Agent

 Each time you run ssh or
 scp with public-key authentication, you have to
 retype your passphrase. The first few times you might not mind, but
 eventually this retyping gets annoying. Wouldn’t it be nicer to identify
 yourself just once and have ssh and
 scp remember your identity until further notice
 (for example, until you log out), not prompting for your passphrase? In
 fact, this is just what an SSH agent does for
 you.
An agent is a program that keeps private keys in memory and
 provides authentication services to SSH clients. If you preload an agent
 with private keys at the beginning of a login session, your SSH clients
 won’t prompt for passphrases. Instead, they communicate with the agent
 as needed. The effects of the agent last until you terminate the agent,
 usually just before logging out. The agent program for both OpenSSH and
 Tectia is called ssh-agent.
Generally, you run a single ssh-agent in your
 local login session, before running any SSH clients. You can run the
 agent by hand, but people usually edit their login files (for example,
 ~/.login or ~/.xsession) to run the agent automatically.
 SSH clients communicate with the agent via a local socket or named pipe
 whose filename is stored in an environment variable, so all clients (and
 all other processes) within your login session have access to the agent.
 [6.3.4] To try the agent,
 type:
 $ ssh-agent $SHELL
where SHELL is the environment
 variable containing the name of your login shell. Alternatively, you
 could supply the name of any other shell, such as
 sh, bash,
 csh, tcsh, or
 ksh. The agent runs and then invokes the given
 shell as a child process. The visual effect is simply that another shell
 prompt appears, but this shell has access to the agent.
Once the agent is running, it’s time to load private keys into it
 using the ssh-add program. By default,
 ssh-add loads the key from your default identity
 file:
 $ ssh-add
 Enter passphrase for /home/you/.ssh/id_dsa: ********
 Identity added: /home/you/.ssh/id_dsa (/home/you/.ssh/id_dsa)
Now ssh and scp can
 connect to remote hosts without prompting for your passphrase. Figure 2-3 shows the
 process.
ssh-add reads the passphrase from your
 terminal by default or, optionally, from standard input
 noninteractively. Otherwise, if you are running the X Window System with
 the DISPLAY environment variable set,
 and standard input isn’t a terminal, ssh-add reads
 your passphrase using a graphical X program,
 ssh-askpass. This behavior is useful when calling
 ssh-add from X session setup scripts.
Tip
To force ssh-add to use X to read the
 passphrase, type ssh-add < /dev/null at a
 command line.

[image: How the SSH agent works]

Figure 2-3. How the SSH agent works

ssh-add has further capabilities and can
 operate with multiple identity files. [6.3.3] For now, here are a few
 useful commands. To load a key other than your default identity into the
 agent, provide the filename as an argument to
 ssh-add:
 $ ssh-add my-other-key-file
You can also list the keys the agent currently holds:
 $ ssh-add -l
delete a key from the agent in memory:
 $ ssh-add -d name-of-key-file
or delete all keys from the agent in memory:
 $ ssh-add -D
Warning
When running an SSH agent, don’t leave your terminal unattended
 while logged in. While your private keys are
 loaded in an agent, anyone may use your terminal to connect to any
 remote accounts accessible via those keys, without needing your
 passphrase! Even worse, a sophisticated intruder can extract your keys
 from the running agent and steal them.
If you use an agent, make sure to lock your terminal if you
 leave it while logged in. You can also use ssh-add
 -D to clear your loaded keys and reload them when you
 return. In addition, ssh-agent can be “locked” by
 ssh-add, to protect the agent from unauthorized
 users. [6.3.3]

2.5.1 Agents and Automation

Suppose you have a batch script that runs
 ssh to launch remote processes. If the script
 runs ssh many times, it prompts for your
 passphrase repeatedly, which is inconvenient for automation (not to
 mention annoying and error-prone). If you run an agent, however, your
 script can run without a single passphrase prompt. [11.1]

2.5.2 A More Complex Passphrase Problem

In our running example, we copied a file from the remote to the
 local host:
 $ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf
In fact, scp can copy a file from the
 remote host shell.isp.com directly to a third
 host running SSH on which you have an account named, say,
 “psmith”:
 $ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf
Rather than copying the file first to the local host and then
 back out again to the final destination, this command has
 shell.isp.com send it directly to
 other.host.net. However, if you try this, you run
 into the following problem:
 $ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf
 Enter passphrase for RSA key 'Your Name <you@local.org>': ************
 You have no controlling tty and no DISPLAY. Cannot read passphrase.
 lost connection
What happened? When you run scp on your
 local machine, it contacts shell.isp.com and
 internally invokes a second scp command to do the
 copy. Unfortunately, the second scp command also
 needs the passphrase for your private key. Since there is no terminal
 session to prompt for the passphrase, the second
 scp fails, causing the original
 scp to fail. The SSH agent solves this problem:
 the second scp command simply queries your local
 SSH agent, so no passphrase prompting is needed.
The SSH agent also solves another, more subtle, problem in this
 example. Without the agent, the second scp (on
 shell.isp.com) needs access to your private-key
 file, but the file is on your local machine. So, you have to copy your
 private key file to shell.isp.com. This isn’t
 ideal; what if shell.isp.com isn’t a secure
 machine? Also, the solution doesn’t scale: if you have a dozen
 different accounts, it is a maintenance headache to keep your private
 key file on all of them. Fortunately, the SSH agent comes to the
 rescue once again. The remote scp process simply
 contacts your local SSH agent and authenticates, and the secure copy
 proceeds successfully, through a process called agent
 forwarding.

2.5.3 Agent Forwarding

In the preceding example, the remote instance of
 scp has no direct access to your private key,
 since the agent is running on the local host, not the remote host. SSH
 provides agent forwarding [6.3.5] to address this
 problem.
When agent forwarding is turned on,[9] the remote SSH server masquerades as a second
 ssh-agent, as shown in Figure 2-4. It takes
 authentication requests from your SSH client processes there, passes
 them back over the SSH connection to the local agent for handling, and
 relays the results back to the remote clients. In short, remote
 clients transparently get access to the local
 ssh-agent. Since any programs executed via
 ssh on the remote side are children of the
 server, they all have access to the local agent just as if they were
 running on the local host.
[image: How agent forwarding works]

Figure 2-4. How agent forwarding works

In our double-remote scp example, here is
 what happens when agent forwarding comes into play (see Figure 2-5):
	You run the command on your local machine:
 $ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

	This scp process contacts your local
 agent and authenticates you to
 shell.isp.com.

	A second scp command is automatically
 launched on shell.isp.com to carry out the
 copy to other.host.net.

	Since agent forwarding is turned on, the SSH server on
 shell.isp.com poses as an agent.

	The second scp process tries to
 authenticate you to other.host.net by
 contacting the “agent” that is really the SSH server on
 shell.isp.com.

	Behind the scenes, the SSH server on
 shell.isp.com communicates with your local
 agent, which constructs an authenticator proving your identity and
 passes it back to the server.

	The server verifies your identity to the second
 scp process, and authentication succeeds on
 other.host.net.

	The file copying occurs.

[image: Third-party scp with agent forwarding]

Figure 2-5. Third-party scp with agent forwarding

Agent forwarding works over multiple connections in a series,
 allowing you to ssh from one machine to another,
 and then to another, with the agent connection following along the
 whole way. These machines may be progressively less secure, but agent
 forwarding doesn’t send your private key to the remote host: it just
 relays authentication requests back to the first host for processing.
 Therefore, you don’t have to copy your private key to other
 machines.

[9] It is on by default in Tectia, but off in OpenSSH.

Connecting Without a Password or Passphrase

 One of the most frequently asked questions about SSH is:
 “How can I connect to a remote machine without having to type a password
 or passphrase?” As you’ve seen, an SSH agent can make this possible, but
 there are other methods as well, each with different trade-offs. Here we
 list the available methods with pointers to the sections discussing each
 one.
To use SSH clients for interactive sessions
 without a password or passphrase, you have several options:
	Public-key authentication with an agent [2.5] [6.3]

	Hostbased authentication [3.4.3.6]

	Kerberos authentication [11.4]

Warning
Another way to achieve passwordless logins is to use an
 unencrypted private key with no passphrase. Although this technique
 can be appropriate for automation purposes, never do this for
 interactive use. Instead, use the SSH agent, which provides the same
 benefits with much greater security. Don’t use unencrypted keys for
 interactive SSH!

On the other hand, noninteractive, unattended programs such as
 cron jobs or batch scripts may also benefit from
 not having a password or passphrase. In this case, the different
 techniques raise some complex issues, and we discuss their relative
 merits and security issues later. [11.1]

Miscellaneous Clients

Several other clients are included in addition to
 ssh and scp :
	sftp , an ftp-like client

	slogin, a link to
 ssh, analogous to the
 rlogin program

2.7.1 sftp

The scp command is convenient and useful,
 but many users are already familiar with FTP (File Transfer Protocol),
 a more widely used technique for transferring files on the
 Internet.[10] sftp is a separate file-transfer
 tool layered on top of SSH. The OpenSSH sftp can
 run over either SSH-1 or SSH-2, whereas the Tectia version runs over
 SSH-2 only due to implementation details.
sftp has several advantages:
	It is secure, using an SSH-protected channel for data
 transfer.

	Multiple commands for file copying and manipulation can be
 invoked within a single sftp session, whereas
 scp opens a new session each time it is
 invoked.

	It can be scripted using the familiar
 ftp command language.

	In other software applications that run an FTP client in the
 background, you can try substituting sftp,
 thus securing the file transfers of that application. You might
 need to run an agent, however, since programs that normally invoke
 ftp might not recognize the
 sftp passphrase prompt, or they might expect
 you to have suppressed FTP’s password prompt (using a .netrc file, for example).

Anyone familiar with FTP will feel right at home with
 sftp, but sftp has some
 additional features of note:
	Command-line editing using GNU Emacs-like keystrokes
 (Control-B for backward
 character, Control-E for end of
 line, and so forth).[11]

	Wildcards for matching filenames. OpenSSH uses the same
 “globbing” syntax that is supported by most common shells, while
 Tectia uses an extended regular expression syntax described in
 Appendix B.

	Several useful command-line options:

	-b filename (OpenSSH)
	

	 -B filename
 (Tectia)
	Read commands from the given file instead of the
 terminal.

	-S path
	Locate the ssh program using the
 given path.

	-v
	Print verbose messages as the program runs.

	-V
 (OpenSSH)
	Print the program version number and exit.

In addition, many of the command-line options for ssh can also
 be used for sftp.
The OpenSSH version of sftp supports only
 the binary transfer mode of standard FTP, in which files are
 transferred without modification. Tectia’s sftp
 also supports ASCII transfer mode, which translates end-of-line
 characters between systems that might use different conventions, e.g.,
 carriage return plus newline for Windows, newline (only) for Unix, or
 carriage return (only) for Macintosh.

2.7.2 slogin

 slogin is an alternative name for
 ssh, just as rlogin is a
 synonym for rsh. On Linux systems,
 slogin is simply a symbolic link to
 ssh. Note that the slogin
 link is found in OpenSSH but not Tectia. We recommend using just
 ssh for consistency: it’s found in all these
 implementations and is shorter to type.

[10] Due to the nature of the FTP protocol, FTP clients are
 difficult to secure using SSH port forwarding. It is possible,
 however. [11.2]

[11] OpenSSH 4.0 and higher.

Summary

From the user’s point of view, SSH consists of several client
 programs and some configuration files. The most commonly used clients
 are ssh for remote login, and
 scp and sftp for file
 transfer. Authentication to the remote host can be accomplished using
 existing login passwords or with public-key cryptographic techniques.
 Passwords are more immediately and easily used, but public-key
 authentication is more flexible and secure. The
 ssh-keygen, ssh-agent, and
 ssh-add programs generate and manage SSH
 keys.

Chapter 3. Inside SSH

SSH secures your data while it passes over a network, but how
 exactly does it work? In this chapter, we move firmly
 onto technical ground and explain the inner workings of SSH. Let’s roll up
 our sleeves and dive into the bits and bytes.
This chapter is written for system administrators, network
 administrators, and security professionals. Our goal is to teach you
 enough about SSH to make an intelligent, technically sound decision about
 using it. Mostly, we deal with SSH-2 as the current and recommended SSH protocol; our treatment
 of the old and deprecated SSH-1 is limited to a summary of its differences and limitations.
 When we refer to “the SSH protocol,” we mean SSH-2.
Of course, the ultimate references on SSH are the protocol standards
 and the source code of an implementation. We don’t completely analyze the
 protocols or recapitulate every step taken by the software. Rather, we
 summarize them to provide a solid, technical overview of their operation.
 If you need more specifics, you should refer to the standards documents.
 The SSH Version 2 protocol is in draft status on the IETF standards track;
 it is available at:
The older SSH-1 protocol is called Version 1.5 and is documented in
 a file named RFC included in the
 source package of the now-obsolete SSH1.

Overview of Features

The major features and guarantees of the SSH protocol are:
	Privacy of your data, via strong
 encryption

	Integrity of communications, guaranteeing
 they haven’t been altered

	Authentication, i.e., proof of identity
 of senders and receivers

	Authorization, i.e., access control to
 accounts

	Forwarding or
 tunneling to encrypt other TCP/IP-based
 sessions

3.1.1 Privacy (Encryption)

Privacy means protecting data from disclosure. Typical computer
 networks don’t guarantee privacy ; anyone with access to the network hardware, or to
 hosts connected to the network, may be able to read (or
 sniff) all data passing over the network.
 Although modern switched networks have reduced this problem in local
 area networks, it is still a serious issue; passwords are easily
 stolen by such sniffing attacks.
SSH provides privacy by encrypting data that passes over the
 network. This end-to-end encryption is based on random keys that are
 securely negotiated for that session and then destroyed when the
 session is over. SSH supports a variety of encryption algorithms for
 session data, including such standard ciphers as AES, ARCFOUR,
 Blowfish, Twofish, IDEA, DES, and triple-DES (3DES).

3.1.2 Integrity

Integrity means assuring that data transmitted from one
 end of a network connection arrives unaltered on the other end. The
 underlying transport of SSH, TCP/IP, does have integrity checking to detect alteration due to network problems
 (electrical noise, lost packets due to excessive traffic, etc.).
 Nevertheless, these methods are ineffective against deliberate
 tampering and can be fooled by a clever attacker. Even though SSH
 encrypts the data stream so that an attacker can’t easily change
 selected parts to achieve a specific result, TCP/IP’s integrity
 checking alone can’t prevent, say, an attacker’s deliberate injection
 of garbage into your session.
A more complex example is a replay attack.
 Imagine that Attila the Attacker is monitoring your SSH session and
 also simultaneously watching over your shoulder (either physically, or
 by monitoring your keystrokes at your terminal). In the course of your
 work, Attila sees you type the command rm -rf *
 within a small directory. He can’t read the encrypted SSH session
 data, of course, but he could correlate a burst of activity on that
 connection with your typing the command, and capture the packets
 containing the encrypted version of your command. Later, when you’re
 working in your home directory, Attila inserts the captured bits into
 your SSH session, and your terminal mysteriously erases all your
 files!
Attila’s replay attack succeeds because the packets he inserted
 are valid; he could not have produced them himself (due to the
 encryption), but he can copy and replay them later. TCP/IP’s integrity
 check is performed only on a per-packet basis, so it can’t detect
 Attila’s attack. Clearly, the integrity check must apply to the data
 stream as a whole, ensuring that the bits arrive as they were sent: in
 order and with no duplication.
The SSH protocol uses cryptographic integrity checking, which
 verifies both that transmitted data hasn’t been altered and that it
 truly comes from the other end of the connection. It uses keyed hash
 algorithms based on MD5 and SHA-1 for this purpose: well-known, widely
 trusted algorithms.

3.1.3 Authentication

Authentication means verifying someone’s identity. Suppose I
 claim to be Richard Silverman, and you want to authenticate that
 claim. If not much is at stake, you might just take my word for it. If
 you’re a little concerned, you might ask for my driver’s license or
 other photo ID. If you’re a bank officer deciding whether to open a
 safe-deposit box for me, you might also require that I possess a
 physical key, and so on. It all depends on how sure you want to be.
 The arsenal of high-tech authentication techniques is growing constantly and includes
 DNA-testing microchips, retina and hand scanners, and voice-print
 analyzers.
Every SSH connection involves two authentications: the client
 verifies the identity of the SSH server (server
 authentication), and the server verifies the identity of the user
 requesting access (user authentication). Server authentication ensures that the SSH server is
 genuine, not an impostor, guarding against an attacker’s redirecting
 your network connection to a different machine. Server authentication
 also protects against man-in-the-middle attacks, wherein the attacker
 sits invisibly between you and the server, pretending to be the client
 on one side and the server on the other, fooling both sides and
 reading all your traffic in the process!
User authentication is traditionally done with passwords, which
 unfortunately are a weak authentication scheme. To prove your identity
 you have to reveal the password, exposing it to possible theft.
 Additionally, in order to remember a password, people are likely to
 keep it short and meaningful, which makes the password easier for
 third parties to guess. For longer passwords, some people choose words
 or sentences in their native languages, and these passwords are likely
 to be crackable. From the standpoint of information theory,
 grammatical sentences contain little real information (technically
 known as entropy): generally less than two bits
 per character in English text, far less than the 8 -16 bits per
 character found in computer encodings.
SSH supports authentication by password, encrypting the password
 as it travels over the network. This is a vast improvement over other
 common remote-access protocols (Telnet, FTP) which generally send your
 password in the clear (i.e., unencrypted) over the network, where
 anyone with sufficient network access can steal it! Nevertheless, it’s
 still only simple password authentication, so SSH provides other
 stronger and more manageable mechanisms: per-user public-key
 signatures, and an improved rlogin-style
 authentication with host identity verified by public key. In addition,
 various SSH implementations support some other systems, including
 Kerberos, RSA Security’s SecurID tokens, S/Key one-time passwords, and
 the Pluggable Authentication Modules (PAM) system. An SSH client and
 server negotiate to determine which authentication mechanism to use,
 based on their configurations, and a server can even require multiple
 forms of authentication.

3.1.4 Authorization

Authorization means deciding what someone may or may not
 do. It occurs after authentication, since you can’t grant someone
 privileges until you know who she is. SSH servers have various ways of
 restricting clients’ actions. Access to interactive login sessions,
 TCP port and X Window forwarding , key agent forwarding, etc., can all be controlled,
 though not all these features are available in all SSH
 implementations, and they aren’t always as general or flexible as you
 might want. Authorization may be controlled at a serverwide level
 (e.g., the /etc/ssh/sshd_config
 file for OpenSSH), or per account, depending on the authentication
 method used (e.g., each user’s files ~/.ssh/authorized_keys, ~/.ssh2/authorization , ~/.shosts,
 ~/.k5login, etc.).

3.1.5 Forwarding (Tunneling)

Forwarding or tunneling means encapsulating another TCP-based service, such as
 Telnet or IMAP, within an SSH session. This brings the security
 benefits of SSH (privacy, integrity, authentication, authorization) to
 other TCP-based services. For example, an ordinary Telnet connection
 transmits your username, password, and the rest of your login session
 in the clear. By forwarding telnet through SSH,
 all of this data is automatically encrypted and integrity-checked, and
 you may authenticate using SSH credentials.
SSH supports three types of forwarding:
	TCP port forwarding
	Secures any TCP-based service [9.2]

	X forwarding
	Secures the X11 protocol (i.e., X Windows) [9.4]

	Agent forwarding
	Permits SSH clients to use SSH private keys held on remote
 machines [6.3.5]

From these basic facilities, some SSH products build more
 complex services, such as SOCKS proxies and special-purpose forwarders
 that can handle difficult protocols like FTP.

A Cryptography Primer

We’ve covered the basic properties of SSH. Now we focus on
 cryptography, introducing important terms and ideas regarding the
 technology in general. There are many good references on cryptographic
 theory and practice, and we make no attempt here to be comprehensive.
 (For more detailed information, check out Bruce Schneier’s excellent
 book, Applied Cryptography, published by John Wiley
 & Sons.) We introduce encryption and decryption, plaintext and
 ciphertext, keys, secret-key and public-key cryptography, and hash
 functions, both in general and as they apply to SSH.
Encryption is the process of scrambling data
 so that it can’t be read by unauthorized parties. An
 encryption algorithm (or cipher) is
 a particular method of performing the scrambling; examples of currently
 popular encryption algorithms are RSA, AES, DSA, and Blowfish. The original, readable
 data is called the plaintext , or data “in the clear,” while the encrypted version is
 called the corresponding ciphertext.
The goal of an encryption algorithm is to convert plaintext to
 ciphertext. To do this, you pass two inputs to the encryption algorithm:
 the plaintext itself, and a key, a string that is
 typically a secret known only to you. From these inputs, the algorithm
 produces the ciphertext. An encryption algorithm is considered secure if
 it is infeasible for anyone to read (or decrypt)
 the encrypted ciphertext without the key. An attempt to decrypt data
 without its key is called cryptanalysis.
3.2.1 How Secure Is Secure?

It’s important to understand the word “infeasible” in
 the previous paragraph. Today’s most popular and secure
 ciphers are vulnerable to brute-force
 attacks: if you try every possible key, you eventually succeed in
 decryption. However, when the number of possible keys is large, a brute-force search requires a great deal of
 time and computing power. Based on the state of the art in computer
 hardware and algorithms, it is possible to pick sufficiently large key
 sizes to render brute-force key-search unreasonable for your
 adversary. What counts as infeasible, though, depending on how
 valuable the data is, how long it must stay secure, and how motivated
 and well-funded your adversary is. Keeping something secret from your
 rival startup for a few days is one thing; keeping it secret from a
 major world government for 10 years is quite another.
Of course, for all this to make sense, you must be convinced
 that brute force is the only way to attack your cipher. Encryption
 algorithms have structure and are susceptible to mathematical
 analysis. Over the years, many ciphers previously thought secure have
 fallen to advances in cryptanalysis. It isn’t currently possible to
 prove a practical cipher secure. Rather, a cipher
 acquires respectability through intensive study by mathematicians and
 cryptographers. If a new cipher exhibits good design principles, and
 well-known researchers study it for some time and fail to find a
 practical, faster method of breaking it than brute force, then people
 will consider it secure.[12]

3.2.2 Public-and Secret-Key Cryptography

Encryption algorithms as described so far are called
 symmetric or secret-key
 ciphers; the same key is used for encrypting and decrypting. Examples
 are Blowfish, AES, 3DES, and RC4. Such a cipher immediately introduces
 the key-distribution problem: how do you get the key to your intended recipient? If
 you can meet in person every once in a while and exchange a list of
 keys, that’s all well and good, but for dynamic communication over
 computer networks, this doesn’t work.
Public-key, or
 asymmetric, cryptography replaces the single key
 with a pair of related keys: public and private. They are related in a
 mathematically clever way: data encrypted with one key may be
 decrypted only with the other member of the pair, and it is infeasible
 to derive the private key from the public one. You keep your private
 key, well, private, and give the public key to anyone who wants it,
 without worrying about disclosure. Ideally, you publish it in a
 directory next to your name, like a telephone book. When someone wants
 to send you a secret message, they encrypt it with your public key.
 Other people may have your public key, but that won’t allow them to
 decrypt the message; only you can do that with the corresponding
 private key. Public-key cryptography goes a long way toward solving
 the key-distribution problem.[13]
Tip
Public-key methods are also the basis for digital
 signatures: extra information attached to a digital
 document to provide evidence that a particular person has seen and
 agreed to it, much as a pen-and-ink signature does with a paper
 document. Any asymmetric cipher (RSA, ElGamal, Elliptic Curve, etc.)
 may be used for digital signatures, though the reverse isn’t true.
 For instance, the DSA algorithm is a signature-only public-key
 scheme and is not intended to be used for encryption. (That’s the
 idea, anyway, although it’s easy to use a general DSA implementation
 for both RSA and ElGamal encryption. That was not the intent,
 however.)

Secret-and public-key encryption algorithms differ in another
 way: performance. All common public-key algorithms are enormously
 slower than secret-key ciphers—by orders of magnitude. It is simply
 infeasible to encrypt large quantities of data using a public-key
 cipher. For this reason, modern data encryption uses both methods
 together. Suppose you want to send some data securely to your friend
 Bob Bitflipper. Here’s what a modern encryption program does:
	Generate a random key, called the bulk
 key, for a fast, secret-key algorithm like 3DES (a.k.a.
 the bulk cipher).

	Encrypt the plaintext with the bulk key.

	Secure the bulk key by encrypting it with Bob Bitflipper’s
 public key, so only Bob can decrypt it. Since secret keys are
 small (a few hundred bits long at most), the speed of the
 public-key algorithm isn’t an issue.

To reverse the operation, Bob’s decryption program first
 decrypts the bulk key, and then uses it to decrypt the ciphertext.
 This method yields the advantages of both kinds of encryption
 technology, and in fact, SSH uses this technique. User data crossing
 an SSH connection is encrypted using a fast secret-key cipher, the key
 for which is shared between the client and server using public-key
 methods.

3.2.3 Hash Functions

In cryptography (and elsewhere in computing and network
 technology), it is often useful to know if some collection of data has
 changed. Of course, one can just send along (or keep around) the
 original data for comparison, but that can be prohibitively expensive
 both in time and storage. The common tool addressing this need is
 called a hash function. Hash functions are used
 by SSH-1 for integrity checking (and have various other uses in
 cryptography we won’t discuss here).
A hash function is simply a mapping from a larger set of data
 values to a smaller set. For instance, a hash function
 H might take an input bit string of any
 length up to 50,000 bits, and uniformly produce a 128-bit output. The
 idea is that when sending a message m to Alice, I
 also send along the hash value H(m). Alice
 computes H(m) independently and compares it to
 the H(m) value I sent; if they differ, she
 concludes that the message was modified in transit.
This simple technique can’t be completely effective. Since the
 range of the hash function is strictly smaller than its domain, many
 different messages have the same hash value. To be useful,
 H must have the property that the kinds of
 alterations expected to happen to the messages in transit, must be
 overwhelmingly likely to cause a change in the message hash. Put
 another way: given a message m and a typical
 changed message m’, it must be extremely unlikely
 that H(m) = H(m').
Thus, a hash function must be tailored to its intended use. One
 common use is in networking: datagrams transmitted over a network
 frequently include a message hash that detects transmission errors due
 to hardware failure or software bugs. Another use is in cryptography,
 to implement digital signatures. Signing a large amount of data is
 prohibitively expensive, since it involves slow public-key operations
 as well as shipping along a complete encrypted copy of the data. What
 is actually done is to first hash the document, producing a small hash
 value, and then sign that, sending the signed hash along instead. A
 verifier independently computes the hash, then decrypts the signature
 using the appropriate public key, and compares them. If they are the
 same, he concludes (with high probability) that the signature is
 valid, and that the data hasn’t changed since the private-key holder
 signed it.
These two uses, however, have different requirements, and a hash
 function suitable for detecting transmission errors due to line noise
 might be ineffective at detecting deliberate alterations introduced by
 a human attacker! A cryptographic hash function must make it
 computationally infeasible to find two different messages having the
 same hash or to find a message having a particular fixed hash. Such a
 function is said to be collision-resistant (or
 collision-proof, though that’s a bit misleading),
 and pre-image-resistant. The Cyclic Redundancy
 Check (CRC) hash commonly used to detect accidental data changes
 (e.g., in Ethernet frame transmissions) is an example of a
 noncollision-resistant hash. It is easy to find CRC-32 hash
 collisions, and a well-known attack on SSH-1 is based on this fact.
 [3.5] Examples of
 cryptographically strong hash functions are MD5 and SHA-1.

[12] In his pioneering works on information theory and
 encryption, the mathematician Claude Shannon defined a model for
 cipher security and showed there is a cipher that is perfectly
 secure under that model: the so-called one-time
 pad. It is perfectly secure: the encrypted
 data gives an attacker no information whatsoever about the
 possible plaintext. The ciphertext literally can decrypt to any
 plaintext at all with equal likelihood. The problem with the
 one-time pad is that it is cumbersome and fragile. It requires
 that keys be as large as the messages they protect, be generated
 perfectly randomly, and never be reused. If any of these
 requirements are violated, the one-time pad becomes extremely
 insecure. The ciphers in common use today aren’t perfectly secure
 in Shannon’s sense, but for the best of them, brute-force
 attacks are infeasible.

[13] There is still the issue of reliably determining whose
 public key is whose; but that gets into public-key infrastructure,
 or PKI systems, and is a broader topic.

The Architecture of an SSH System

 SSH has about a dozen distinct, interacting components
 that produce the features we’ve covered. [3.1] Figure 3-1 illustrates the major
 components and their relationships to one another.
[image: SSH architecture]

Figure 3-1. SSH architecture

By “component” we don’t necessarily mean “program”: SSH also has
 keys, sessions, and other fun things. In this section we provide a brief
 overview of all the components, so you can begin to get the big picture
 of SSH:
	Server
	A program that allows incoming SSH connections to a machine,
 handling authentication, authorization, and so forth. In most Unix
 SSH implementations, the server is sshd.

	Client
	A program that connects to SSH servers and makes requests,
 such as “log me in” or “copy this file.” In OpenSSH and Tectia,
 the major clients are ssh,
 scp, and sftp.

	Session
	An ongoing connection between a client and a server. It
 begins after the client successfully authenticates to a server and
 ends when the connection terminates. Sessions may be interactive
 or batch.

	Key
	A relatively small amount of data, generally from tens of to
 1,000 or 2,000 bits, used as a parameter to cryptographic
 algorithms such as encryption or message authentication. The key
 binds the algorithm operation in some way to the key holder: in
 encryption, it ensures that only someone else holding that key (or
 a related one) can decrypt the message; in authentication, it
 allows you to verify later that the key holder actually signed the
 message. There are two kinds of keys : symmetric or secret key, and asymmetric or public
 key. [3.2.2] An
 asymmetric key has two parts: the public and private components.
 SSH has several types of keys, as summarized in Table 3-1.
Table 3-1. Keys, keys, keys
	Name
	Lifetime
	Created by
	Type
	Purpose

	User key
	Persistent
	User
	Public
	Identify a user to the
 server

	Host key
	Persistent
	Administrator
	Public
	Identify a
 server/machine

	Session key
	One session
	Client (and
 server)
	Secret
	Protect
 communications

	User key
	A persistent, asymmetric key used by clients as proof of a
 user’s identity. (A single user may have many
 keys/identities.)

	Host key
	A persistent, asymmetric key used by a server as proof of
 its identity, as well as by a client when proving its host’s
 identity as part of hostbased authentication. [3.4.3.6] If a machine
 runs a single SSH server, the host key also uniquely identifies
 the machine. (If a machine is running multiple SSH servers, each
 may have a different host key, or they may share.)

	Session key
	A randomly generated, symmetric key for encrypting the
 communication between an SSH client and server. It is shared by
 the two parties in a secure manner during the SSH connection setup
 so that an eavesdropper can’t discover it. Both sides then have
 the session key, which they use to encrypt their communications.
 When the SSH session ends, the key is destroyed.
Tip
An SSH connection has several session keys: each direction
 (server to client, and client to server) has keys for encryption
 and others for integrity checking. In our discussions we treat
 all the session keys as a unit and speak of “the session key”
 for convenience; they are all derived from a single master
 secret, anyway. If the context requires it, we identify the
 individual key we mean.

	Key generator
	A program that creates persistent keys (user keys and host
 keys) for SSH. OpenSSH and Tectia have the program
 ssh-keygen.

	Known-hosts database
	A collection of host keys. Clients and servers refer to this
 database to authenticate one another.

	Agent
	A program that caches user keys in memory, so users needn’t
 keep retyping their passphrases. The agent responds to requests
 for key-related operations, such as signing an authenticator, but
 it doesn’t disclose the keys themselves. It is a convenience
 feature. OpenSSH and Tectia have the agent
 ssh-agent, and the program
 ssh-add loads and unloads the key
 cache.

	Signer
	A program that signs hostbased authentication packets. We
 explain this in our discussion of hostbased authentication. [3.4.3.6]

	Random seed
	A pool of random data used by SSH components to initialize
 software pseudo-random number generators.

	Configuration file
	A collection of settings to tailor the behavior of an SSH
 client or server.

Not all these components are required in an implementation of SSH.
 Certainly servers, clients, and keys are mandatory, but many
 implementations don’t have an agent, and some don’t even include a key
 generator.

Inside SSH-2

 The SSH protocol has two major, incompatible versions,
 called Version 1[14] and Version 2. [1.5] We refer to these as SSH-1
 and SSH-2. The SSH-1 protocol is now a relic; it is less flexible than
 SSH-2, has unfixable security weaknesses, and has been deprecated for
 years. Its implementations see no real development aside from bug fixes,
 and the default protocol for most SSH software has been SSH-2 for some
 time now. In this chapter, as we describe “the SSH protocol,” we are
 talking about SSH-2. We limit our treatment of SSH-1 to a summary of its
 design, its differences with SSH-2, and its weaknesses.
The SSH protocol is actually divided into four major pieces,
 formally described as four separate protocols in different IETF
 documents, and in principle independent of one another. In practice,
 they are layered together to provide the set of services most users
 associate with SSH as a whole. These are:
	SSH Transport Layer Protocol (SSH-TRANS)

	SSH Authentication Protocol (SSH-AUTH)

	SSH Connection Protocol (SSH-CONN)

	SSH File Transfer Protocol (SSH-SFTP)

There are other documents that describe other aspects of, or
 extensions to, the protocols, but the preceding ones represent the core
 of SSH. As of this writing, these documents are still “Internet-Drafts,”
 but after much effort by the IETF SECSH working group, they have been
 submitted to the IESG for consideration as proposed standards and may
 soon be published as Internet RFCs.
Figure 3-2 outlines the
 division of labor between these protocols, and how they relate to each
 other, application programs, and the network. Elements in italics are
 protocol extensions defined in separate Internet-Draft documents, which
 have attained fairly widespread use.
[image: SSH-2 protocol family]

Figure 3-2. SSH-2 protocol family

SSH is designed to be modular and extensible. All of the core
 protocols define abstract services they provide and requirements they
 must meet, but allow multiple mechanisms for doing so, as well as a way
 of easily adding new mechanisms. All the critical parameters of an SSH
 connection are negotiable, including the methods and algorithms used
 in:
	Session key exchange

	Server authentication

	Data privacy and integrity

	User authentication

	Data compression

Client and server negotiate the use of a common set of methods,
 allowing broad interoperability among different implementations. In most
 categories, the protocol defines at least one
 required method, to further promote
 interoperability. Note that this only means a conforming implementation
 is required to support the method in its code; any particular method may
 in fact be turned off by the administrator in a particular environment.
 So, the fact that public-key authentication is required by
 SSH-AUTH doesn’t mean it’s always available to clients from any
 particular running SSH server; it merely means it must be available and
 could be turned on, if need be.
3.4.1 Protocol Summary

SSH-TRANS is the fundamental building block, providing the
 initial connection, record protocol, server authentication, and basic
 encryption and integrity services. After establishing an SSH-TRANS
 connection, the client has a single, secure, full-duplex byte stream
 to an authenticated peer.
Next, the client can use SSH-AUTH over the SSH-TRANS connection
 to authenticate itself to the server. SSH-AUTH defines a framework
 within which multiple authentication mechanisms may be used, fixing
 such things as the format and order of authentication requests,
 conditions for success or failure, and how a client learns the
 available methods. There may be any number of actual methods
 implemented, and the protocol allows arbitrary exchanges as part of
 any particular mechanism so that protocol extensions are easily
 defined to incorporate any desired authentication method in the
 future. SSH-AUTH requires only one method: public
 key with the DSS algorithm. It further defines two more methods:
 password and hostbased. A number of other methods have been defined in
 various Internet-Drafts, and some of them have gained wide
 acceptance.
After authentication, SSH clients invoke the SSH-CONN protocol, which provides a variety of richer services
 over the single pipe provided by SSH-TRANS. This includes everything
 needed to support multiple interactive and noninteractive sessions:
 multiplexing several streams (or channels
) over the underlying connection; managing X, TCP, and
 agent forwarding; propagating signals across the connection (such as
 SIGINT, when a user types ^C to interrupt a
 process); terminal handling; data compression; and remote program
 execution.
Finally, an application may use SSH-SFTP over an SSH-CONN channel to provide file-transfer and
 remote filesystem manipulation functions.
It’s important to understand that the arrangement, layering, and
 sequencing of these protocols is a matter of convention or need, not
 design; although they are typically used in a particular order, other
 arrangements are possible. For instance, note that SSH-CONN is not
 layered on top of SSH-AUTH; they are both at the same level above
 SSH-TRANS. Typically, an SSH server requires authentication via
 SSH-AUTH before allowing the client to invoke SSH-CONN—and also
 typically, clients want to use SSH-CONN in order to obtain the usual
 SSH services (remote terminal, agent forwarding, etc.). However, this
 need not be the case. A specialized SSH server for a particular,
 limited purpose might not require authentication, and hence could
 allow a client to invoke an application service (SSH-CONN, or perhaps
 some other locally defined service) immediately after establishing an
 SSH-TRANS connection. An anonymous SFTP server might be implemented
 this way, for example. However, such nonstandard protocol arrangements
 are probably seen only in a closed environment with custom
 client/server software. Since most SFTP clients in the world expect to
 do SSH-AUTH, they probably won’t interoperate with such a server. An
 anonymous SFTP server for general use would use SSH-AUTH in the usual
 fashion and simply report immediate success for any attempted client
 authentication.
That said, these protocols were conceived as a group and rely on
 each other in practice. For instance, SSH-SFTP on its own provides no
 security whatsoever; it is merely a language for conducting
 remote-filing operations. It’s assumed to be run over a secure
 transport if security is needed, such as an SSH session. However,
 using the sftp -S option of OpenSSH and Tectia,
 for example, you could connect the sftp client to
 an sftp-server running on another host using some
 other method: over a serial line, or some other secure network
 protocol...or rsh if you want to be perverse.
 Similarly, SSH-AUTH mechanisms rely on a secure underlying transport
 to varying degrees. The most obvious is the “password” mechanism,
 which simply sends the password in plaintext over the transport as
 part of an authentication request. Obviously, that mechanism would be
 disastrous over an insecure transport.
Another important point is that the SSH protocol deals
 only with communication “on-the-wire"--that is,
 its formats and conventions apply only to data being exchanged
 dynamically between the SSH client and server. It says nothing at all,
 for instance, about:
	Formats for storing keys on disk

	User authorization (e.g., ~/.ssh/authorized_keys)

	Key agents or agent forwarding

...and many other things that people typically think of as part
 of SSH. These facets are
 implementation-dependent: they are not specified
 by the standard, and hence may be done differently depending on what
 software you’re using. And in fact they do differ: OpenSSH and Tectia
 use different file formats for keys. Even if you convert one to the
 other, you’ll find that OpenSSH keys belong in ~/.ssh/authorized_keys, whereas each Tectia
 key goes in its own file, listed by reference in yet another file,
 ~/.ssh2/authorization. And
 although both products sport a private-key agent—with the same name
 even, ssh-agent--they are incompatible.
Now that we have an overview of the major components of SSH,
 let’s dive in and examine each of these protocols in detail. To give
 structure and concreteness to an otherwise abstract description of the
 protocols, we frame our discussion by following a particular SSH
 connection from beginning to end. We follow the thread of
 debugging messages produced by ssh -vv,
 explaining the significance of the various messages and turning aside
 now and then to describe the protocol phases occurring at that
 point.
Since this -vv level of verbosity produces
 quite a few messages not relevant to our protocol discussion, we omit
 some for the sake of clarity.

3.4.2 SSH Transport Layer Protocol (SSH-TRANS)

3.4.2.1 Connection

We begin by running an SSH client in verbose mode, requesting
 a connection to host.foo.net:
 $ ssh -vv host.foo.net
 OpenSSH_3.6.1p1+CAN-2003-0693, SSH protocols 1.5/2.0, OpenSSL 0x0090702f
 debug1: Reading configuration data /Users/res/.ssh/config
 debug1: Applying options for com
 debug1: Applying options for *
 debug1: Reading configuration data /etc/ssh/ssh_config
 debug1: Connecting to host.foo.net [10.1.1.1] port 22.
 debug1: Connection established.
The client is a version of OpenSSH running on a Macintosh. It
 reads its configuration files, then makes a TCP connection to the
 remote side, which succeeds.

3.4.2.2 Protocol version selection

As soon as the server accepts the connection, the SSH protocol
 begins. The server announces its protocol version using a text
 string:
 debug1: Remote protocol version 2.0, remote software version 4.1.0.34 SSH Secure Shell
You can see this string yourself by simply connecting to the
 server socket, e.g., with telnet:
 $ telnet host.foo.net 22
 Trying 10.1.1.1...
 Connected to host.foo.net
 Escape character is '^]'.
 SSH-2.0-4.1.0.34 SSH Secure Shell
 ^]
 telnet> quit
 Connection closed.
The format of the announcement is:
	SSH-<protocol
 version>-<comment>

In this case, the server implements the SSH-2 protocol, and
 the software version is 4.1.0.34 of SSH Secure Shell from SSH
 Communications Security. Although the comment field can contain
 anything at all, SSH servers commonly put their product name and
 version there. This is useful, as clients often recognize specific
 servers in order to work around known bugs or incompatibilities.
 Some people don’t like this practice on security grounds, and try to
 remove or change the comment. Be aware that if you do, you may cause
 more trouble than it’s worth, since previously working SSH sessions
 may suddenly start failing if they had relied on such
 workarounds.
The protocol version number “1.99” has special significance:
 it means the server supports both SSH-1 and SSH-2, and the client
 may choose either one.
Next, OpenSSH parses the comment:
 debug1: no match: 4.1.0.34 SSH Secure Shell
 debug1: Enabling compatibility mode for protocol 2.0
 debug1: Local version string SSH-2.0-OpenSSH_3.6.1p1+CAN-2003-0693
but does not find a match in its list of known problems to
 work around. It elects to proceed with SSH-2 (the only choice in
 this case), and sends its own version string to the server, in the
 same format. If the client and server agree that their versions are
 compatible, the connection process continues; otherwise, either
 party may decide to terminate the connection.
At this point, if the connection proceeds, both sides switch
 to a nontextual, record-oriented protocol for further communication,
 which is the basis of SSH transport. This is often referred to as
 the SSH binary packet protocol , and is defined in SSH-TRANS.

3.4.2.3 Parameter negotiation

Having established a connection and agreed on a
 protocol version, the first real function of SSH-TRANS is to arrange
 for the basic security properties of SSH:
	Privacy (encryption)

	Integrity (nonmodifiability and origin assurance)

	Server authentication (man-in-the-middle and spoofing
 resistance)

	Compression (not a security property per se, but included
 in this negotiation)

But first, the two sides must agree on session parameters,
 including the methods to achieve these properties. The whole process
 happens in the protocol phase called the key
 exchange , even though the first part also negotiates some
 parameters unrelated to the key exchange per se.
 debug1: SSH2_MSG_KEXINIT sent
 debug1: SSH2_MSG_KEXINIT received
The client sends its KEXINIT (“key exchange initialization”)
 message, and receives one from the server. Here are the choices it
 gives to the server:
 debug2: kex_parse_kexinit: gss-group1-sha1-toWM5Slw5Ew8Mqkay+al2g==,
 gss-group1-sha1-A/vxljAEU54gt9a48EiANQ==,
 diffie-hellman-group-exchange-sha1,
 diffie-hellman-group1-sha1
These are the key exchange algorithms the client supports,
 which are:
	diffie-hellman-group1-sha1
	This algorithm is defined and required by SSH-TRANS;
 this specifies the well-known Diffie-Hellman procedure for key
 agreement, together with specific parameters (Oakley Group 2
 [RFC-2409] and the SHA-1 hash algorithm).

	diffie-hellman-group-exchange-sha1
	Similar, but allows the client to choose from a list of
 group parameters, addressing concerns about possible attacks
 based on a fixed group; defined in the IETF draft document
 “secsh-dh-group-exchange.”[15]

	gss-group1-sha1-toWM5Slw5Ew8Mqkay+al2g==
	

	gss-group1-sha1-A/vxljAEU54gt9a48EiANQ==
	These odd-looking names are partially encoded in
 Base64--they represent two variants of a
 Kerberos-authenticated Diffie-Hellman exchange as defined in
 IETF draft “secsh-gsskeyex.” These are useful where a Kerberos
 infrastructure is available, providing automatic and flexible
 server authentication without maintaining separate SSH host
 keys and known-hosts files. The Kerberos authentication
 proceeds by way of GSSAPI, and the name suffixes are the
 Base64 encoding of the MD5 hash of the ASN.1 DER encoding of
 the underlying GSSAPI mechanism’s OID. Say that five times
 fast.

In terms of abstract requirements, an SSH key exchange
 algorithm has two outputs:
	A shared secret, K

	An “exchange hash,” H

K is the master secret for the
 session: SSH-TRANS defines a method for deriving from secret
 K the various keys and other
 cryptographic parameters needed for specific encryption and
 integrity algorithms used in the SSH connection. The exchange hash
 H does not have to be secret, although it
 should not be divulged unnecessarily. It should be unique to each
 session, and computed in such a way that neither side can force a
 particular value of hash H. We’ll see the
 significance of that later.
The key exchange should also perform server authentication, in
 order to guard against spoofing and
 man-in-the-middle (MITM) attacks. There is an
 inherent asymmetry in the SSH client/server relationship: the server
 accepts connections from as-yet unknown parties, whereas a client
 always has a particular server as the target of its connection. The
 server may demand secret information as part of user authentication
 (e.g., password). The client is the first party to rely on the
 identity of the other side, and hence server authentication comes
 first. Without server authentication, an attacker might redirect the
 client’s TCP connection to a host of his choice (perhaps by
 subverting the DNS or network routing) and trick the user into
 logging into the wrong host; this is called
 spoofing. Or, he might interpose himself
 between the client and the (legitimate) server, executing the SSH
 protocol as server on one side and client on the other, passing
 messages back and forth and reading all the traffic! This is a
 man-in-the-middle attack.
The key exchange phase of SSH-TRANS may be repeated later in a
 connection, in order to replace an aging master secret or
 re-authenticate the server. In fact, the draft recommends that a
 connection be re-keyed after each gigabyte of transmitted data or
 after each hour of connection time, whichever comes sooner. However,
 the hash output H of the very first key
 exchange is used as the “session identifier” for this SSH
 connection; we’ll see its use later.
Next, the client offers a choice of SSH host key types it can
 accept:
 debug2: kex_parse_kexinit: ssh-rsa,ssh-dss,null
In this case, it offers RSA, DSA, and “null,” for no key at
 all. It includes “null” because of its support of Kerberos for host
 authentication; if a Kerberos key exchange is used, no SSH-specific
 host key is needed for server authentication.
After that, the client lists the bulk data encryption ciphers
 it supports:
 debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,
 aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
The selected cipher is used for privacy of data flowing over
 the connection. Bulk data is never enciphered directly with
 public-key methods such as RSA or DSA because they are far too slow.
 Instead, we use a symmetric cipher such as those listed, protecting
 the session key for that cipher with public-key methods if
 appropriate. The names here indicate particular algorithms and
 associated cryptographic parameters; for instance, aes128-cbc refers to the Advanced
 Encryption Standard algorithm, with a 128-bit key in
 cipher-block-chaining mode.
Note the use of a private algorithm name as well: rijndael-cbc@lysator.liu.se
 . This email-address-like syntax is defined in the SSH
 Architecture draft (“secsh-architecture”), and allows any
 individuals or organizations to define and use their own algorithms
 or other SSH protocol identifiers without going through the IETF to
 have them approved. Identifiers that don’t contain an @ sign are
 global and must be centrally registered.
The draft also defines the “none” cipher, meaning no
 encryption is to be applied. While there are legitimate reasons for
 wanting such a connection (including debugging!), some SSH
 implementations do not support it, at least in their default
 configuration. Often, recompiling the software from source with
 different flags, or hacking the code itself, is needed to turn on
 support for “none” encryption .[16] The reason is that it’s deemed just too dangerous. If
 a user can easily turn off encryption, so can an attacker who gains
 access to a user’s account, even briefly. Imagine surreptitiously
 adding this to an OpenSSH user’s client configuration file,
 ~/.ssh/config:
 # OpenSSH
 Host *
 Ciphers none
or simply replacing the ssh program on a
 compromised machine with one that uses the “none” cipher, and issues
 no warnings about it. Bingo! All the user’s SSH sessions become
 transparent, until he notices the change (if ever). If the client
 doesn’t support “none,” then this simple config file hack won’t
 work; if the server doesn’t, then the client-side Trojan horse won’t
 work, either.
Next, the client presents its list of available integrity
 algorithms:
 debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,
 hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96
The integrity algorithm is applied to each message sent by the
 SSH record protocol, together with a sequence number and session
 key, to produce a message authentication code
 (MAC) appended to each message. The receiver can use the MAC and its
 own copy of the session key to verify that the message has not been
 altered in transit, is not a replay, and came from the other holder
 of the session key; these are the message integrity
 properties.
SSH-TRANS defines several MAC algorithms, and requires support
 for one: “hmac-sha1,” a 160-bit hash using the standard keyed HMAC
 construction with SHA-1 (see RFC-2104, “HMAC: Keyed-Hashing for
 Message Authentication”).
Finally, the client indicates which data-compression
 techniques it supports:
 debug2: kex_parse_kexinit: none,zlib
The draft does not require any compression to be available
 (i.e., “none” is the required type). It does define “zlib”: LZ77
 compression as described in RFC-1950 and in RFC-1951. Although it
 does not appear here, SSH speakers also at this point also can
 negotiate a language tag for the session (as
 described in RFC-3066), e.g., to allow a server to provide error
 messages in a language appropriate to the user.
Having sent its negotiation message, the client also receives
 one from the server, listing the various parameters it supports in
 the same categories:
 debug2: kex_parse_kexinit: diffie-hellman-group1-sha1
 debug2: kex_parse_kexinit: ssh-dss,x509v3-sign-rsa
 debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,twofish128-cbc,cast128-cbc,
 twofish-cbc, blowfish-cbc,aes192-cbc,aes256-cbc,
 twofish192-cbc,twofish256-cbc,arcfour
 debug2: kex_parse_kexinit: hmac-sha1,hmac-sha1-96,hmac-md5,hmac-md5-96
 debug2: kex_parse_kexinit: none,zlib
Note that this server supports a much smaller set of key
 exchange algorithms: only the required one, in fact. It has two host
 key types to offer: plain DSS, and RSA with X.509 public-key
 certificate attached. It does not support a null host key since its
 single key exchange algorithm requires one.
Next, each side chooses a cipher/integrity/compression
 combination from the other side’s set of supported
 algorithms:
 debug1: kex: server->client aes128-cbc hmac-md5 none
 debug1: kex: client->server aes128-cbc hmac-md5 none
In this case, the choices in both directions are the same;
 however, they need not be. The choice of these mechanisms is
 entirely independent, and they are independently keyed, as well.
 Data flowing in one direction might be encrypted with AES and
 compressed, while the return stream could be encrypted with 3DES
 without compression.

3.4.2.4 Key exchange and server authentication

At this point, we are ready to engage in the actual
 key exchange:
 debug2: dh_gen_key: priv key bits set: 131/256
 debug2: bits set: 510/1024
 debug1: sending SSH2_MSG_KEXDH_INIT
The client chooses an exchange algorithm from the server’s
 advertised set; in this case, the server offers only one, and we go
 with it. We generate an ephemeral key as part of the Diffie-Hellman
 algorithm, and send the initial message of the diffie-hellman-group1-sha1 exchange,
 simultaneously letting the server know which method we’re using, and
 actually starting it.
Next the client expects, and the server sends, its reply to
 our KEXDH_INIT message:
 debug1: expecting SSH2_MSG_KEXDH_REPLY
 debug1: Host 'host.foo.net' is known and matches the DSA host key.
 debug1: Found key in /Users/res/.ssh/known_hosts:169
 debug2: bits set: 526/1024
 debug1: ssh_dss_verify: signature correct
Contained in the reply is the server’s SSH public host key, of
 a type we said we’d accept in the earlier parameter negotiation
 (DSA), along with a signature proving it holds the corresponding
 private key. The signature is verified, of course, but that by
 itself is meaningless; for all we know, the server just generated
 this key. The crucial step here is to check that the public key
 identifies the server we wanted to contact. In this case, the client
 finds a record associating the name
 foo.host.net with the key supplied by the
 server, at line 169 in the user’s OpenSSH known_hosts file.
Note that the approach used to verify the host key is entirely
 unspecified by the SSH protocol; it’s completely
 implementation-dependent. Most SSH products provide some version of
 the known-hosts file method used here: simple, but limiting and
 cumbersome for large numbers of hosts, users, or different SSH
 implementations. A client could do anything that makes sense to
 verify the host key, perhaps taking advantage of some existing
 secure infrastructure, for example; look it up in a trusted LDAP
 directory.
Of course, the problem of verifying the owner of a public key
 is hardly a new one; that’s what Public Key Infrastructure
 (PKI) systems are for, such as the X.509 standard for
 public-key certificates. SSH-2 supports PKI, defining a number of
 key types which include attached certificates:
	 ssh-rsa
	Plain RSA key

	 ssh-dss
	Plain DSS key

	 x509v3-sign-rsa
	X.509 certificates (RSA
 key)

	 x509v3-sign-dss
	X.509 certificates (DSS
 key)

	 spki-sign-rsa
	SPKI certificates (RSA
 key)

	 spki-sign-dss
	SPKI certificates (DSS
 key)

	 pgp-sign-rsa
	OpenPGP certificates (RSA
 key)

	 pgp-sign-dss
	OpenPGP certificates (DSS
 key)

Many SSH products handle only plain DSS/RSA keys, but some
 (such as Tectia) offer PKI support as well. Recall that earlier, the
 server offered a key type of x509v3-sign-rsa along with plain DSS. Our
 OpenSSH client does not support certificates, and so selected the
 DSS key. However, with PKI support, the client could verify the host
 key by its accompanying certificate. New hosts could be added and
 existing keys changed, without having to push out new known-hosts
 files to all clients every time—often a practical impossibility
 anyway, when you consider laptops, many different SSH clients with
 different ways of storing host keys, etc. Instead, clients only need
 a single key; that of the authority issuing your host key
 certificates. We’ll cover PKI in more detail in a case study. [11.5]

3.4.2.5 Server authentication and antispoofing: some gory
 details

As noted earlier, we’re avoiding diving too deeply
 into protocol details, instead attempting a technical overview that
 covers the issues SSH administrators most need to understand to
 deploy effective systems. However, it’s worth going a little deeper
 here regarding the actual mechanism of server authentication, since
 our description begs the question. Simply saying that the server
 “provides a signature” to prove its identity doesn’t cut it. Here’s
 a naive protocol:
	Client sends a challenge.

	Server returns challenge signed with its host key.

	Client verifies the signature and the server/key binding
 and takes this as proof of the server’s identity.

We’re being at least moderately clever here; by using a random
 challenge, we assure that the response can’t be replayed by an
 attacker, i.e., is not a reply from an earlier session. Not bad, but
 no cigar: this simple procedure does not prevent MITM attacks! An
 MITM attacker can simply pass along the challenge to the server, get
 the signature, and pass it back to the client. All this protocol
 really proves to the client is that the entity at the other end of
 its connection can talk to the real server,
 when what the client wants to verify is that entity actually
 is the real server. So, here’s how it’s done:
 instead of a random challenge, the server signs the SSH session
 identifier, which we described earlier. Recall that the identifier
 is unique to each session, and that neither side can force a
 particular value for it. In order to do MITM, our attacker has to
 execute the SSH protocol independently on two sides: once with the
 client, and again with the server. The identifiers for those two
 connections are guaranteed to be different, no matter what the
 attacker does. He needs to produce the client-side identifier signed
 by the server in order to fool the client, but all he can get is the
 server-side identifier; he can’t force the server to sign the wrong
 identifier.
Cryptographers are devious people. We like them.

3.4.2.6 Wonder security powers, activate!

Back to our debug trace example: we’ve sent and received a
 single key-exchange message on each side now, and this key-exchange
 method in fact only requires the two messages. Other exchange
 mechanisms could take any number and form of messages, but ours is
 now complete. Based on the contents of these messages, both sides
 compute the needed shared master secret K
 and exchange hash H, in such a way that
 an observer can’t feasibly discover them (we leave the mathematical
 details to your perusal of the actual draft document, if you’re that
 curious). Having authenticated the exchange using the server’s host
 key, we are convinced that we have shared keys with the server we
 really wanted to talk to, and now everything is in place to turn on
 security in the form of encryption and integrity checking.
Using a procedure defined in the draft, the client derives
 appropriate encryption and integrity keys from the master secret;
 the server does the same to produce matching keys:
 debug2: kex_derive_keys
 debug2: set_newkeys: mode 1
 debug1: SSH2_MSG_NEWKEYS sent
 debug1: expecting SSH2_MSG_NEWKEYS
 debug2: set_newkeys: mode 0
 debug1: SSH2_MSG_NEWKEYS received
Both sides then send the NEWKEYS message, each which marks taking the new keys into
 effect in its own direction; all messages after NEWKEYS are
 protected using the new set of keys just negotiated. With a
 functioning SSH-TRANS session at hand, the client now requests the
 first service it wants access over the connection: user
 authentication.
 debug1: SSH2_MSG_SERVICE_REQUEST sent
 debug2: service_accept: ssh-userauth
 debug1: SSH2_MSG_SERVICE_ACCEPT received

3.4.3 SSH Authentication Protocol (SSH-AUTH)

Compared to SSH-TRANS, SSH-AUTH is a relatively simple
 affair, defined in a mere 12 pages as opposed to the 28 of the
 SSH-TRANS document (and that’s not counting various extensions!). As
 with SSH-TRANS and key-exchange methods, the authentication protocol
 defines a framework within which arbitrary authentication exchanges
 may take place. It then defines a small number of actual
 authentication mechanisms, and allows for easy extension to define
 others. The three defined methods are password, public-key, and
 host-based authentication, of which only public-key is
 required.
3.4.3.1 The authentication request

The authentication process is driven by the client,
 framed by client requests and server responses. A request contains
 the following parts:
	Username U
	The authorization identity the client is claiming. For
 most SSH systems, this means a user account in the usual
 sense: for instance, in Unix, granting the right to create
 processes with a particular uid. However, it might have some
 other meaning in other contexts; its interpretation is not
 defined by the protocol.

	Service name S
	The facility to which the client is requesting access,
 and hence implicitly the protocol to be started over the
 SSH-TRANS connection after authentication succeeds. There
 might be several authenticated services available, but
 typically there is only one: “ssh-connection,” requesting
 access to the various services provided via the SSH-CONN
 protocol: interactive login, remote command execution, file
 transfer, port forwarding, and all the other things users
 actually want to do with SSH.

	Method name M, and
 method-specific data D
	The particular authentication method being used in this
 request—say, “password” or “publickey"--and the
 method-specific data convey whatever is needed to start this
 particular authentication exchange, e.g., an actual password
 to be verified by the server. As with key-exchange names in
 SSH-TRANS, names with “@domain” syntax may be used by anyone
 to implement local methods, while names without @-signs must
 be globally registered SSH authentication methods.

Once a particular authentication method starts, it may include
 any number of other message types specific to its needs. Or in the
 simplest case, the data carried by the initial request is enough,
 and the server can respond right away. In any case, after the
 request and some number of subsequent method-specific messages back
 and forth, the server issues an authentication response.
Note that, strictly speaking, calling this an “authentication
 request” is not quite accurate; this request actually mixes
 authentication and authorization. It requests verifying an
 authentication identity via some method, and simultaneously asks the
 server to check that identity’s right to access a particular
 account: an authorization decision. If the attempt fails, the client
 doesn’t know whether this was because authentication failed (e.g.,
 it supplied the wrong password), or authentication succeeded but
 authorization failed (e.g., the password was right but the account
 was disabled). A human-readable error message might make that clear,
 but the situations are indistinguishable as far as the protocol is
 concerned (in general, but individual methods may provide more
 information, as we will see later with the public-key
 method).

3.4.3.2 The authentication response

An SSH-AUTH authentication response comes in two flavors:
 SUCCESS and FAILURE (an early version of the protocol had chocolate,
 too, which was unfortunately abandoned). A SUCCESS message carries
 no other data; it simply means that authentication was successful,
 and the requested service has been started; further SSH-TRANS
 messages sent by the client should be defined within that service’s
 protocol, and the SSH-AUTH run is over.
A FAILURE message has more structure:
	A list of authentication methods that can continue

	A “Partial success” flag

The name “failure” is actually a bit misleading here. If the
 partial success flag is false, then this message does mean the
 preceding authentication method has failed for some reason (e.g., a
 supplied password was incorrect, a mismatched public key produced an
 incorrect signature, the requested account is locked out, etc.). If
 the flag is true, however, the message means that the method
 succeeded; however, the server requires that
 additional methods also succeed before granting access. Thus, the
 protocol allows an SSH server to require multiple authentication
 methods—although not all implementations provide the feature; Tectia
 does, for instance, while OpenSSH currently does not.[17]
In either case, the message also supplies the list of
 authentication methods the server is willing to accept next. This
 allows for much flexibility; if it wants, the server can completely
 control the authentication process by only allowing one method at
 any time. But it can also specify multiple methods, allowing the
 client to choose them in an order which makes sense for the user.
 For instance, given a choice, a SSH client usually first tries
 methods that allow automatic authentication, such as Kerberos or
 public key with an agent, before those that require user
 intervention, such as entering a password or key passphrase.

3.4.3.3 Getting started: the “none” request

One thing is missing from all this: if the client
 drives the authentication process by making requests, but the list
 of available authentication methods is contained in server
 responses, then how does the client pick a first method to try? Of
 course, it could always just try any method and see what happens;
 the worst that could happen is that it fails or isn’t available, and
 the client gets a correct list to pick from. But that’s messy, and
 there’s a standard way to do it: the “none” method. The protocol
 reserves the method name “none,” and gives it a special meaning: if
 authentication is required at all, then this method must always
 fail. A client typically starts SSH-AUTH by sending a “none”
 request, expecting failure and getting back the list of available
 non-"none” methods to try. Of course, if the account in question
 does not require authentication, the server may
 respond with SUCCESS, immediately granting access.
Here, the client, having already sent the “none” request to
 start with, now receives its initial list of methods to try:
 debug1: Authentications that can continue: publickey,password
If you’re debugging on the server side, you see something like
 this (with the OpenSSH server):
 debug1: userauth-request for user res service ssh-connection method none
 debug1: attempt 0 failures 0
 Failed none for res from 10.1.1.1 port 50459 ssh2
This message is confusing if you’re debugging some other
 problem, as it appears to show some mysterious failure.
The client continues, choosing public-key
 authentication to try first, with a DSS key stored in the SSH
 agent:
 debug1: Next authentication method: publickey
 debug1: Offering agent key: res-dsa
 debug2: we sent a publickey packet, wait for reply

3.4.3.4 Public-key authentication

A public-key authentication request carries the method name
 “publickey” and may have different forms depending on a flag
 setting. One form has this method-specific payload:
	Flag = FALSE

	Algorithm name

	Key data

The usable public-key algorithms are the same set defined in
 SSH-TRANS, and the format key data depends on the type; e.g., for
 “ssh-dss” it contains just the key, whereas for x509v3-sign-rsa it
 contains an X.509 public-key certificate.
With the flag set to FALSE, this message is merely an
 authorization test: it asks the server to check whether this key is
 authorized to access the desired account, without actually
 performing authentication. If it is, a special response message
 comes back; this is an example of the possible method-specific
 SSH-AUTH messages we mentioned earlier. If the key is not
 authorized, the response is simply FAILURE.
The second form is:
	Flag = TRUE

	Algorithm name

	Key data - signature

This actually requests authentication; the signature is
 computed over a set of request-specific data which includes the
 session ID, which binds the request to this SSH session and gives
 the public-key method its own measure of MITM resistance, similar to
 that described earlier for key exchange.
The reason for providing both forms of request is that
 computing and verifying public-key signatures are compute-intensive
 tasks, which might also require interaction with the user (e.g.,
 typing in a key passphrase). Hence, it makes sense to test a key
 first, to see whether it’s worth going to the trouble of using
 it.
The way a server actually authorizes a key for access to an
 account is outside the scope of the protocol, and can be anything at
 all. The usual way is to list or refer to the key in some file in
 the account, as with the OpenSSH ~/.ssh/authorized_keys file. However, the
 server might access any type of service to do this; again, checking
 an entry in an LDAP directory comes to mind. Or again, certificates
 might be used: just as with host authentication, the key here might
 include a certificate, and any of the certificate’s data might be
 used to make the authorization decision.
Coming back to our debug trace, we see that the server accepts
 the offered key:
 debug1: Server accepts key: pkalg ssh-dss blen 435 lastkey 0x309a40 hint -1
 debug2: input_userauth_pk_ok: fp 63:24:90:03:cb:78:85:e6:59:71:49:26:55:81:f5:70
 debug1: Authentication succeeded (publickey).
Then it logs the key’s fingerprint and returns the final
 SUCCESS message, indicating that access is granted and the SSH-AUTH
 session is finished.
Before moving on to the final protocol phase, let’s examine
 two other methods defined in SSH-AUTH: password and hostbased
 authentication.

3.4.3.5 Password authentication

The password method is very simple: its name is “password,”
 and the data is, surprise, the password. The server simply returns
 success or failure messages as appropriate. The method it uses to
 verify the password is implementation-dependent, and varies a great
 deal: PAM, Unix password files, LDAP, Kerberos, NTLM; all these are
 available in various products.
The password is passed in plaintext, at least as far as
 SSH-AUTH is concerned; hence, it is critical that this method be
 used over an encrypted connection (as is usually the case with SSH).
 Furthermore, since this method reveals the password to the server,
 it is crucial that the server not be an impostor. Even if an SSH
 product may warn of, but allow, a connection to an unauthenticated
 server in SSH-TRANS, it usually disallows password
 authentication in SSH-AUTH for this reason. Compare this with the
 public-key method, which doesn’t reveal the user’s key in the
 authentication process.
It should be mentioned that “password authentication” is a
 pretty broad term, and might be construed as encompassing other,
 better methods. If you think of it as describing any mechanisms that
 rely on secrets that can be easily memorized and typed by a human,
 then there are “password” methods with much better security
 properties than the trivial one described here; the Secure Remote
 Password protocol (SRP, http://srp.stanford.edu/) is one. [1.6.5] In this book,
 however, when we talk about “password” authentication, we mean as
 defined in SSH-AUTH.
SSH-AUTH also has a set of messages for password changing—for
 example, allowing a user whose password has expired to set a new one
 before logging in.

3.4.3.6 Hostbased authentication

Hostbased authentication is fundamentally different
 from its public-key and password cousins, in that the server
 actually delegates responsibility for user authentication to the
 client host. In short, hostbased authentication establishes trust
 relationships between machines. Rather than directly verifying the
 user’s identity, the SSH server verifies the identity of the client
 host--and then believes the host when it says
 the user has already authenticated on the client side. Therefore,
 you needn’t prove your identity to every host that you visit. If you
 are logged in as user andrew on machine A, and you connect by SSH to
 account bob on machine B using hostbased authentication, the SSH
 server on machine B doesn’t check your identity directly. Instead,
 it checks the identity of host A, making sure that A is a trusted
 host. It further checks that the connection is coming from a trusted
 program on A, one installed by the system administrator that won’t
 lie about andrew’s identity. If the connection passes these two
 tests, the server takes A’s word that you have been authenticated as
 andrew and proceeds to make an authorization check that
 andrew@A is allowed to access the account
 bob@B.
This sort of authentication makes sense only in a tightly
 administrated environment with less stringent security requirements,
 or when deployed for very specific and limited purposes, such as
 batch jobs. It demands that all participating hosts be centrally
 administered, making sure that usernames are globally selected and
 coordinated. If not, you could get access to someone else’s account
 just by adding an account with the same name to your own machine!
 Also, there’s the problem of transitive compromise: once one host is
 broken, the attacker automatically gets access to all accounts
 accessible via hostbased authentication from there, without any
 further work.
Nevertheless, hostbased authentication has advantages. For
 one, it is simple: you don’t have to type passwords or passphrases,
 or generate, distribute, and maintain keys. It also provides ease of
 automation. Unattended processes such as cron
 jobs may have difficulty using SSH if they need a key, passphrase,
 or password coded into a script, placed in a protected file, or
 stored in memory. This isn’t only a potential security risk but also
 a maintenance nightmare. If the authenticator ever changes, you must
 hunt down and change these hardcoded copies, a situation just
 begging for things to break mysteriously later on. Hostbased
 authentication gets around this problem neatly.
The “hostbased” request looks like:
	Host key algorithm

	Client host key

	Client hostname

	Client-side username, C

	Signature

Note that this request has two usernames: the requested
 server-side account name U present in
 every SSH-AUTH request, and the client-side username
 C specific to the hostbased request. The
 interpretation is that user C on the client is
 requesting access to account U on the server,
 and the client’s authentication as C is vouched
 for by the signature of the client host key. The mapping of which
 client usernames may access which accounts on the server is up to
 the implementation. Unix products tend to use semantics similar to
 the historical rhosts syntax, in the files
 /etc/shosts.equiv and ~/.shosts. These can implement global
 identity mappings, allowing matching usernames automatic access, as
 well as more complicated or limited access patterns.
In order to perform this authentication, the server must
 verify the client host identity—that is, it must check that the
 supplied key matches the claimed client hostname (e.g., with a
 known-hosts file). Having checked that and verified the signature,
 it then uses that same hostname in the authorization check (e.g., in
 /etc/shosts.equiv), to see if
 the requested client/server name pair is allowed access from this
 client host. Some implementations also check that the client’s
 network address actually maps to the given hostname via the local
 naming service (DNS, NIS, etc.), but this is not really necessary;
 the meat of the authorization is in the association of the verified
 hostname supplied in the request, and the authorization rules. In
 fact, the address check may cause more trouble than it’s worth, in
 the presence of poorly maintained DNS, network complications such as
 NAT, firewalls, proxying, etc.
Of course, for this whole scenario to make any sense at all,
 there are yet more administrative burdens to be met. The signature,
 after all, is supplied by the client; and yet it is interpreted here
 as a trusted third party—the client host as a
 separate entity—vouching for the user’s identity. But the user is
 behind the SSH client; how does this work? The answer is that the
 client host and SSH software must be arranged so that the user is
 not fully in control of what’s going on. The
 private client host key must not be accessible to the user; rather,
 there must be a trusted service whereby the user can obtain the
 needed signature for the hostbased authentication request, and such
 signatures are only issued as appropriate. In a Unix context,
 usually the private host key file is readable only by the root
 account, and some part of SSH is installed with special privileges
 by the sysadmin (“setuid root”; typically this is a separate program
 called ssh-signer, which serves only this
 purpose). This trusted program checks the uid of the user running
 it, and issues signatures only for the corresponding username. This
 effectively translates the local authentication that allowed the
 person to log in to begin with, into an SSH certificate which can be
 transmitted and trusted as part of hostbased authentication. This
 description makes it even more clear how the whole arrangement is
 predicated on a very centrally controlled and consistently
 administrated system. One should evaluate very carefully whether
 hostbased authentication is the right choice.

3.4.4 SSH Connection Protocol (SSH-CONN)

In its final, successful authentication request, the client
 specified a service name of “ssh-connection”; this is not visible in
 the OpenSSH client debug trace but shows up on the server as:
 debug1: userauth-request for user res service ssh-connection method publickey
Since it authenticated the client, the server now starts that
 service, and we move on to the SSH Connection Protocol. This layer
 actually provides the capabilities that users want to employ directly
 and that define SSH for most people: remote login and command
 execution, agent forwarding, file transfer, TCP port forwarding, X
 forwarding, etc.
There is a lot of detail in the connection protocol, but much of
 it is too low-level for our present discussion; we give a fairly
 high-level description here, sufficient to interpret most debugging
 messages and to understand how an SSH product provides its services
 using SSH-CONN. Unlike the earlier protocols, a really detailed
 understanding of SSH-CONN is not usually needed for debugging everyday
 SSH problems.
3.4.4.1 Channels

The basic service SSH-CONN provides is
 multiplexing. SSH-CONN takes the single,
 secure, duplex byte-stream provided by SSH-TRANS, and allows its
 clients to create dynamically any number of logical SSH-CONN
 channels over it. Channels are identified by channel
 numbers , and may be created or destroyed by either side.
 Channels are individually flow-controlled, and each channel has a
 channel type which defines its use. Types and
 other items in SSH-CONN are named in the same extensible manner as
 other SSH namespaces (key exchanges, key algorithm and authenticated
 method names, etc.). The defined types are:
	session
	The remote execution of a program.
Merely opening a session channel does not start a
 program; that is done using subsequent requests on the
 channel. An SSH-CONN session may have multiple session
 channels open at once, simultaneously supporting several
 terminal, file-transfer, or program executions at once.
 Various Windows-based SSH products have used this ability for
 some time now; it has only recently appeared in OpenSSH with
 the ControlMaster/ControlPath feature. [7.4.4.2]

	x11
	An X11 client connection.
One of these is opened from server to client, for each
 X11 program using X forwarding as established by an
 x11-req on a session channel (discussed
 later).

	forwarded-tcpip
	An inbound connection to a remotely forwarded
 port.
When a connection arrives on a remotely forwarded TCP
 port, the server opens this channel back to the client to
 carry the connection.

	direct-tcpip
	An outbound TCP connection.
This directs the peer to open a TCP connection to a
 given socket, and attach the channel to that connection. The
 socket may be specified using a domain name or IP address,
 allowing a name to be resolved on the remote side in a
 possibly different namespace than the client. These channels
 are used to implement local TCP forwarding (ssh
 -L). Preparing for local forwarding is purely a
 client-side affair: the client simply starts listening on the
 requested port.[18] The server first hears of it when a connection
 actually arrives on the port, whereupon the client opens a
 direct-tcpip channel with the appropriate
 target socket. This means that if certain local forwardings
 are disallowed by the server, this isn’t noticed on connection
 setup, but only when a connection is actually attempted

Channel semantics are richer than a traditional Unix file
 handle; the data they carry can be typed, and this facility is used
 to distinguish between stdout and stderr output from a program on a
 single channel.

3.4.4.2 Requests

In addition to an array of channel operations—open,
 close, send data, send urgent data, etc.--SSH-CONN defines a set of
 requests , with global or channel scope. A global request
 affects the state of the connection as a whole, whereas a channel
 request is tied to a particular open channel. The global
 requests are:
	tcpip-forward
	Request a remote TCP port forwarding.
If the user requests a TCP port be forwarded on the
 remote side back to the local side (as with “ssh -R”), the SSH
 client issues this global request. In response, the server
 starts listening on the indicated port and starts a
 “forwarded-tcpip” channel back to the client for each
 connection.
This request actually contains the full socket to be
 bound on the remote: an
 (address,port) pair
 and not just a port number. This allows the client to be
 selective in remote-forwarding remote ports on a multihomed
 server, or to implement local-only remote forwardings by
 binding only the loopback address (127.0.0.1), on a
 per-request basis. Not all implementations take advantage of
 this feature, however; Tectia does, but OpenSSH currently does
 not.[19]

	cancel-tcpip-forward
	Cancel an existing remote forwarding.

Now let’s summarize the channel requests ; except as indicated, most operations refer to the
 remote side of a session channel:
	pty-req
	Allocate a pty, including window
 size and terminal modes.
This creates a pseudo-terminal for the channel,
 generally required for interactive applications; the
 pseudo-terminal is a virtual device which makes it appear that
 the remote program is directly connected to a terminal.

	x11-req
	Set up X11 forwarding.
Do the preparation necessary for X11 forwarding on the
 remote; usually involves listening on a socket (TCP or
 otherwise) for X11 connections, setting the DISPLAY variable
 to point to that socket, and setting up proxy X11
 authentication.

	env
	Set an environment variable.
Although useful, this feature is also a potential
 security problem. It has not been widely supported by SSH
 implementations until recently and is generally carefully
 controlled.

	shell, exec, subsystem
	Run the default account shell, an arbitrary program, or
 an abstract service, respectively.
These requests start a program running on the remote
 side, and connect the channel to the program’s standard
 input/output/error streams. The “subsystem” request allows a
 remote program to be named abstractly, rather than being
 depended on by a particular remote filename. For instance, an
 SFTP file transfer is usually started by sending a subsystem
 request with the name “sftp.” The SSH server is configured to
 execute the correct server program in response to the request;
 this way, the location of the SFTP server program can change
 without affecting clients. Or indeed, SFTP could be
 implemented internal to the SSH server itself, rather than
 being a separate program, and this, too, would be transparent
 to clients; this is an option with Tectia.

	window-change
	Change terminal window size.

	xon-xoff
	Use client-side ^S/^Q flow control.

	signal
	Send a specified signal to a remote process (as in the
 Unix kill command).

	exit-status
	Return the program’s exit status to the
 initiator.

	exit-signal
	Return the signal that terminated the program (e.g., if
 a remote program dies by signal, as from a segmentation fault
 or manual kill -9 command).

Theoretically, all these requests are symmetric; that is, the
 protocol allows the server to open a session channel to the client
 and request a program to be started on it, for example. However, in
 most SSH implementations as a remote-login tool, this simply doesn’t
 make sense, and is an obvious security risk to boot! So, such
 requests are usually not honored by clients (and the SSH-CONN draft
 recommends as much).

3.4.4.3 The finish line

With all this behind us, we can easily make sense of
 the remainder of the connection setup. The client opens a session
 channel with id 0:
 debug1: channel 0: new [client-session]
 debug2: channel 0: send open
 debug1: Entering interactive session.
This session is a terminal login, so next we request a
 pseudo-terminal on the session channel:
 debug1: channel 0: request pty-req
X forwarding is turned on, so the client first gets the local
 X11 display key by running the xauth program on
 this side, then requests X forwarding on the remote by sending an
 x11-req global request:
 debug2: x11_get_proto: /usr/X11R6/bin/xauth list :0 2>/dev/null
 debug1: Requesting X11 forwarding with authentication spoofing.
 debug1: channel 0: request x11-req
Agent forwarding is also turned on, so we open a channel for
 that as well:
 debug1: Requesting authentication agent forwarding.
 debug1: channel 0: request auth-agent-req@openssh.com
But wait... we didn’t mention agent forwarding anywhere in
 SSH-CONN, nor the channel type that appears here, auth-agent-req@openssh.com
 . Indeed, that’s because it’s not there; key agents are an
 implementation detail outside the purview of the protocol. This
 channel type is an example of the naming extension syntax; it is
 particular to the OpenSSH implementation. An OpenSSH server accepts
 such a channel request and sets up an agent-forwarding socket on the
 remote end (whose details are specific to the OpenSSH program
 suite). A non-OpenSSH server would refuse the unrecognized request,
 and agent forwarding would not be available.
Finally, the client issues a “shell” request on the session
 channel:
 debug1: channel 0: request shell
directing the remote account’s default command be started. And
 at long last...
 debug1: channel 0: open confirm rwindow 100000 rmax 1638
 Last login: Mon Aug 30 2004 18:04:10 -0400 from foo.host.net
 $
...we’re logged in!

[14] SSH Version 1 went through several revisions, the most popular
 known as Versions 1.3 and 1.5.

[15] A group is a mathematical
 abstraction relevant to the Diffie-Hellman procedure; see
 a reference on group theory, number theory, or abstract
 algebra if you’re curious.

[16] OpenSSH has no support for the “none” cipher; it can’t
 even be enabled at compile time. In contrast, Tectia fully
 supports the “none” cipher, but it is not enabled by default; it
 needs to be explicitly included using the Ciphers keyword. [5.3.5]

[17] The OpenSSH team is working on multiple authentication
 support.

[18] Unlike remote forwarding, no initial setup is
 required on the remote side.

[19] The OpenSSH team is working on adding this
 feature.

Inside SSH-1

With a solid understanding of the current SSH protocol
 behind us, we now quickly summarize SSH-1 in terms of its differences, weaknesses, and shortcomings
 in comparison with SSH-2:
	Non-modular
	SSH-1 is defined as a single monolithic protocol, rather
 than the modular approach taken with the SSH-2 suite.

	Less negotiation
	SSH-1 has more fixed parameters; in fact, only the bulk
 cipher is negotiated. The integrity algorithm, host key type,
 key-exchange methods, etc., are all fixed.

	Ad hoc naming
	SSH-1 lacks the well-defined naming syntax for SSH-2
 entities which allows for smooth, implementation-specific
 extensions.

	Single authentication
	SSH-1’s user authentication process allows only one method
 to succeed; the server can’t require multiple methods.

	RhostsRSA authentication
	SSH-1’s RhostsRSA authentication, analogous to hostbased, is
 in principle limited to using a network address as the client host
 identifier. This limits its usefulness in the face of network
 issues such as NAT, proxying, mobile clients, etc.

	Less flexible remote forwarding
	SSH-1 remote forwarding specifies only a port, not a full
 socket, so can’t be bound to different addresses on multihomed
 servers, and the gatewayhosts option must be
 set globally for all remote forwardings rather than per
 port.

	Weaker integrity checking
	SSH-1 uses a weak integrity check, the CRC-32 algorithm.
 CRC-32 is not cryptographically strong, and its weakness is the
 basis of the Futoransky/Kargieman “insertion attack”; see http://seclists.org/lists/firewall-wizards/1998/Jun/0095.html.

	Server keys
	The fixed key exchange of SSH-1 employs an extra asymmetric
 key called the server key, not to be confused
 with a host key. [3.6.1] The server key is
 an ephemeral public/private key pair, regenerated once per hour
 and used to provide forward secrecy for the session key. Forward
 secrecy means that even if long-term secrets such as user or host
 private keys are compromised later, these can’t be used to decrypt
 SSH sessions recorded earlier; the use of an extra key which is
 never written to disk assures this. The Diffie-Hellman algorithm
 which is the basis of all the SSH-2 key exchanges provides forward
 secrecy by itself, and so an extra “server key” is not
 needed.

	Weak key exchange
	The SSH-1 key exchange is weak in that the client alone
 determines the session key, and simply sends it to the server. A
 Trojaned client can easily use weak keys to compromise all its
 sessions undetectably.

Implementation Issues

 There are many differences among the current crop of SSH
 implementations: features that aren’t dictated by the protocols, but are
 simply inclusions or omissions by the software authors. Here we discuss
 a few implementation-dependent features of various products:
	Host keys

	Authorization in hostbased authentication

	SSH-1 backward compatibility

	Randomness

	Privilege separation

3.6.1 Host Keys

SSH host keys are long-term asymmetric keys that distinguish and
 identify hosts running SSH, or instances of the SSH server, depending
 on the SSH implementation. This happens in two places in the SSH
 protocol:
	Server authentication verifying the server host’s identity
 to connecting clients. This process occurs for every SSH
 connection.[20]

	Authentication of a client host to the server; used only
 during RhostsRSA or hostbased user authentication.

Unfortunately, the term “host key” is confusing. It implies that
 only one such key may belong to a given host. This is true for client
 authentication but not for server authentication, because multiple SSH
 servers may run on a single machine, each with a different identifying
 key.[21] This so-called “host key” actually identifies a running
 instance of the SSH server program, not a machine.
OpenSSH maintains a single database serving both server
 authentication and client authentication. It is the union of the
 system’s known_hosts file
 (/etc/ssh/ssh_known_hosts),
 together with the user’s ~/.ssh/known_hosts file on either the
 source machine (for server authentication) or the target machine (for
 client authentication). The database maps a hostname or address to a
 set of keys acceptable for authenticating a host with that name or
 address. One name may be associated with multiple keys (more on this
 shortly).
Tectia, on the other hand, maintains two separate maps for these
 purposes:
	The hostkeys map for
 authentication of the server host by the client

	The knownhosts map for
 authentication of the client host by the server

Hooray, more confusing terminology. Here, the term “known hosts”
 is reused with slightly different formatting (“knownhosts” versus
 “known_hosts”) for an overlapping but not identical purpose.
While OpenSSH keeps host keys in a file with multiple entries,
 Tectia stores them in a filesystem directory, one key per file,
 indexed by filename. For instance, a knownhosts directory looks like
 this:
 $ ls -l /etc/ssh2/knownhosts/
 total 2
 -r--r—r-- 1 root root 697 Jun 5 22:22 wynken.sleepy.net.ssh-dss.pub
 -r--r—r-- 1 root root 697 Jul 21 1999 blynken.sleepy.net.ssh-dss.pub
Note that the filename is of the form <hostname>.<key
 type>.pub.
The other map, hostkeys, is keyed not just
 on name/address, but also on the server’s TCP listening port; that is
 to say, it is keyed on TCP sockets. This allows for multiple keys per
 host in a more specific manner than before. Here, the filenames are of
 the form key_lt;port
 number>_<hostname>.pub. The following example
 shows the public keys for one SSH server running on
 blynken, port 22, and two running on
 wynken, ports 22 and 220. Furthermore, we’ve
 created a symbolic link to make “nod” another name for the server at
 wynken:22. End users may add to these maps by
 placing keys (either manually or automatically by client) into the
 directories ~/.ssh2/knownhosts
 and ~/.ssh2/hostkeys.
 $ ls -l /etc/ssh2/hostkeys/
 total 5
 -rw-r—r-- 1 root root 757 May 31 14:52 key_22_blynken.sleepy.net.pub
 -rw-r—r-- 1 root root 743 May 31 14:52 key_22_wynken.sleepy.net.pub
 -rw-r—r-- 1 root root 755 May 31 14:52 key_220_wynken.sleepy.net.pub
 lrwxrwxrwx 1 root root 28 May 31 14:57 key_22_nod.pub -> key_22_wynken.sleepy.net.pub
Even though it allows for multiple keys per host, Tectia is
 missing one useful feature of OpenSSH: multiple keys per
 name. This sounds like the same thing, but there’s a subtle
 difference: names can refer to more than one host. A common example is
 a set of load-sharing login servers hidden behind a single hostname. A
 university might have a set of three machines intended for general
 login access, each with its own name and address:
	login1.foo.edu →10.0.0.1
	login2.foo.edu → 10.0.0.2
	login3.foo.edu → 10.0.0.3

In addition, there is a single generic name that carries all
 three addresses:
	login.foo.edu →{10.0.0.1, 10.0.0.2, 10.0.0.3}

The university computing center tells people to connect only to
 login.foo.edu, and the university’s naming
 service hands out the three addresses in round-robin order (e.g.,
 using round-robin DNS) to share the load among the three machines. SSH
 has problems with this setup by default. Each time you connect to
 login.foo.edu, you have a two-thirds chance of
 reaching a different machine than you reached last time, with a
 different host key. SSH repeatedly complains that the host key of
 login.foo.com has changed and issues a warning
 about a possible attack against your client. This soon gets annoying.
 With OpenSSH, you can edit the known_hosts file to associate the generic
 name with each of the individual host keys, changing this:
 login1.foo.edu 1024 35 1519086808544755383...
 login2.foo.edu 1024 35 1508058310547044394...
 login3.foo.edu 1024 35 1087309429906462914...
to this:
 login1.foo.edu,login.foo.edu 1024 35 1519086808544755383...
 login2.foo.edu,login.foo.edu 1024 35 1508058310547044394...
 login3.foo.edu,login.foo.edu 1024 35 1087309429906462914...
With Tectia, however, there’s no general way to do this; since
 the database is indexed by entries in a directory, with one key per
 file, it can’t have more than one key per name.
It might seem that you’re losing some security by doing this,
 but we don’t think so. All that’s really happening is the recognition
 that a particular name may refer to different hosts at different
 times, and thus you tell SSH to trust a connection to that name if
 it’s authenticated by any of a given set of keys. Most of the time,
 that set happens to have size 1, and you’re telling SSH, “When I
 connect to this name, I want to make sure I’m connecting to this
 particular host.” With multiple keys per name, you can also say, “When
 I connect to this name, I want to make sure that I get one of the
 following set of hosts.” That’s a perfectly valid and useful thing to
 do.
Another way to solve this problem is for the system
 administrators of login.foo.com to install the
 same host key on all three machines. But this defeats the ability of
 SSH to distinguish between these hosts, even if you want it to. We
 prefer the former approach.

3.6.2 Authorization in Hostbased Authentication

The most complicated aspect of hostbased authentication
 is not the method itself, but the implementation details of
 configuring it, particularly authorization. We’ll discuss:
	Hostbased access files

	Control file details

	Netgroups as wildcards

3.6.2.1 Hostbased access files

Two pairs of files on the SSH server machine provide
 access control for hostbased authentication, in both its weak and
 strong forms:
	/etc/hosts.equiv and
 ~/.rhosts (weak)

	/etc/shosts.equiv and
 ~/.shosts (strong)

The files in /etc have
 machine-global scope, while those in the target account’s home
 directory are specific to that account. The hosts.equiv and shosts.equiv files have the same syntax,
 as do the .rhosts and .shosts files, and by default they are
 all checked.
Warning
If any of the four access files allows access for a
 particular connection, it’s allowed, even if another of the files
 forbids it.

The /etc/hosts.equiv and
 ~/.rhosts files originated with
 the insecure r-commands. For backward compatibility, SSH can also
 use these files for making its hostbased authentication decisions.
 If you’re using both the r-commands and SSH, however, you might not
 want the two systems to have the same configuration. Also, because
 of their poor security, it’s common to disable the r-commands, by
 turning off the servers in your inetd.conf files and/or removing the
 software. In that case, you may not want to have any traditional
 control files lying around, as a defensive measure in case an
 attacker managed to get one of these services turned on
 again.
To separate itself from the r-commands, SSH reads two
 additional files, /etc/shosts.equiv and ~/.shosts, which have the same syntax and
 meaning as /etc/hosts.equiv and
 ~/.rhosts, but are specific to
 SSH. If you use only the SSH-specific files, you can have SSH
 hostbased authentication without leaving any files the r-commands
 would look at.[22]
All four files have the same syntax, and SSH interprets them
 very similarly—but not identically—to the way the r-commands do.
 Read the following sections carefully to make sure you understand
 this behavior.

3.6.2.2 Control file details

Here is the common format of all four hostbased
 control files. Each entry is a single line, containing either one or
 two tokens separated by tabs and/or spaces. Comments begin with
 #, continue to the end of the
 line, and may be placed anywhere; empty and comment-only lines are
 allowed.
 # example control file entry
 [+-][@]hostspec [+-][@]userspec # comment
The two tokens indicate host(s) and user(s), respectively; the
 userspec may be omitted. If the at sign (@) is
 present, then the token is interpreted as a netgroup (see the
 sidebar "Netgroups“) and is looked
 up using the innetgr() library
 call, and the resulting list of user or hostnames is substituted.
 Otherwise, the token is interpreted as a single host or username.
 Hostnames must be canonical as reported by gethostbyaddr() on the server host; other
 names won’t work.
x = a
 or x is null or a is null
and:
y = b
 or y is null or b is null
and:
z = c
 or z is null or c is null
This means that a null field in a triple acts as a wildcard.
 By “null,” we mean missing; that is, in the triple (,
 user, domain), the host
 part is null. This isn’t the same as the empty string: (“”,
 user, domain). In this
 triple, the host part isn’t null. It is the empty string, and the
 triple can match only another whose host part is also the empty
 string.
When SSH matches a username U against a
 netgroup, it matches the triple (, U,);
 similarly, when matching a hostname H, it
 matches (H,,). You might expect it to use
 (, U, D) and (H,, D) where
 D is the host’s domain, but it doesn’t.
If either or both tokens are preceded by a minus sign (-), the
 whole entry is considered negated. It doesn’t matter which token has
 the minus sign; the effect is the same. Let’s see some examples
 before explaining the rules.
The following hostspec allows anyone from
 fred.flintstone.gov to log in if the remote and
 local usernames are the same:
 # /etc/shosts.equiv
 fred.flintstone.gov
The following hostspecs allow anyone from
 any host in the netgroup “hostbasedusers” to log in, if the remote
 and local usernames are the same, but not from
 evil.empire.org, even if it is in the
 hostbasedusers netgroup:
 # /etc/shosts.equiv
 -evil.empire.org
 @hostbasedusers
This next entry (hostspec and
 userspec) allows
 mark@way.too.trusted to log into any local account!
 Even if a user has -way.too.trusted mark in
 ~/.shosts, it won’t prevent
 access since the global file is consulted first. You probably never
 want to do this.
 # /etc/shosts.equiv
 way.too.trusted mark Don't do this!!
On the other hand, the following entries allow anyone from
 sister.host.org to connect under the same
 account name, except mark, who can’t access any local
 account:
 # /etc/shosts.equiv
 sister.host.org -mark
 sister.host.org
Remember, however, that a target account can override this
 restriction by placing sister.host.org
 mark in ~/.shosts.
 Note also, as shown earlier, that the negated line must come first;
 in the other order, it’s ineffective.
This next hostspec allows user wilma on
 fred.flintstone.gov to log into the local wilma
 account:
 # ~wilma/.shosts
 fred.flintstone.gov
This entry allows user fred on
 fred.flintstone.gov to log into the local wilma
 account, but no one else—not even
 wilma@fred.flintstone.gov :
 # ~wilma/.shosts
 fred.flintstone.gov fred
Netgroups
A netgroup defines a list of (host,
 user, domain) triples.
 Netgroups are used to define lists of users, machines, or
 accounts, usually for access-control purposes; for instance, one
 can usually use a netgroup to specify what hosts are allowed to
 mount an NFS filesystem (e.g., in the Solaris
 share command or BSD
 exportfs).
Different flavors of Unix vary in how they implement
 netgroups , though you must always be the system administrator
 to define a netgroup. Possible sources for netgroup definitions
 include:
	A plain file, e.g., /etc/netgroup

	A database file in various formats, e.g., /etc/netgroup.db

	An information service, such as Sun’s YP/NIS

On many modern Unix flavors, the source of netgroup
 information is configurable with the Network Service Switch
 facility; see the file /etc/nsswitch.conf. Be aware that in
 some versions of SunOS and Solaris, netgroups may be defined only
 in NIS; it doesn’t complain if you specify “files” as the source
 in nsswitch.conf, but it
 doesn’t work either. Recent Linux systems support /etc/netgroup, though C libraries
 before glibc 2.1 support
 netgroups only over NIS.
Some typical netgroup definitions might look like
 this:
 # defines a group consisting of two hosts: hostnames "print1" and
 # "print2", in the (probably NIS) domains one.foo.com and two.foo.com.
 print-servers (print1,,one.foo.com) (print2,,two.foo.com)
 # a list of three login servers
 login-servers (login1,,foo.com) (login2,,foo.com) (login1,,foo.com)
 # Use two existing netgroups to define a list of all hosts, throwing in
 # another.foo.com as well.
 all-hosts print-servers login-servers (another,,foo.com)
 # A list of users for some access-control purpose. Mary is allowed from
 # anywhere in the foo.com domain, but Peter only from one host. Alice
 # is allowed from anywhere at all.
 allowed-users (,mary,foo.com) (login1,peter,foo.com) (,alice,)
When deciding membership in a netgroup, the thing being
 matched is always construed as an appropriate triple. A triple
 (x, y, z) matches a netgroup
 N if there exists a triple (a, b,
 c) in N which matches
 (x, y, z). In turn, you define that these two
 triples match if and only if the following conditions are
 met:

These entries allow both fred and wilma on
 fred.flintstone.gov to log into the local wilma
 account:
 # ~wilma/.shosts
 fred.flintstone.gov fred
 fred.flintstone.gov
Now that we’ve covered some examples, let’s discuss the
 precise rules. Suppose the client username is
 C, and the target account of the SSH command is
 T. Then:
	A hostspec entry with no
 userspec permits access from all
 hostspec hosts when T
 = C.

	In a per-account file (~/.rhosts or ~/.shosts), a hostspec
 userspec entry permits access to the containing
 account from hostspec hosts when
 C is any one of the
 userspec usernames.

	In a global file (/etc/hosts.equiv or /etc/shosts.equiv), a
 hostspec userspec entry permits access to
 any local target account from any hostspec
 host, when C is any one of the
 userspec usernames.

	For negated entries, replace “permits” with “denies” in
 the preceding rules.

Note Rule #3 carefully. You never, ever want to open your
 machine to such a security hole. The only reasonable use for such a
 rule is if it is negated, thus disallowing access to any local
 account for a particular remote account. We present some examples
 shortly.
The files are checked in the following order (a missing file
 is simply skipped, with no effect on the authorization
 decision):
	/etc/hosts.equiv

	/etc/shosts.equiv

	~/.shosts

	~/.rhosts

SSH makes a special exception when the target user is root: it
 doesn’t check the global files. Access to the root account can be
 granted only via the root account’s /.rhosts and /.shosts files. If you block the use of
 those files with the IgnoreRootRhosts server directive, this
 effectively prevents access to the root account via hostbased
 authentication.
When checking these files, there are two rules to keep in
 mind. The first rule is: the first accepting line wins. That is, if
 you have two netgroups:
 set (one,,) (two,,) (three,,)
 subset (one,,) (two,,)
the following /etc/shosts.equiv file permits access
 only from host three:
 -@subset
 @set
But this next one allows access from all three:
 @set
 -@subset
The second line has no effect, because all its hosts have
 already been accepted by a previous line.
The second rule is: if any file accepts the connection, it’s
 allowed. That is, if /etc/shosts.equiv forbids a connection
 but the target user’s ~/.shosts
 file accepts it, then it is accepted. Therefore, the sysadmin
 cannot rely on the global file to block
 connections. Similarly, if your per-account file forbids
 a connection, it can be overridden by a global file that accepts it.
 Keep these facts carefully in mind when using hostbased
 authentication.[23]

3.6.2.3 Netgroups as wildcards

You may have noticed the rule syntax has no wildcards;
 this omission is deliberate. The r-commands recognize bare + and -
 characters as positive and negative wildcards, respectively, and a
 number of attacks are based on surreptitiously adding a “+” to
 someone’s .rhosts file,
 immediately allowing anyone to rlogin as that
 user. So, SSH deliberately ignores these wildcards. You’ll see
 messages to that effect in the server’s debugging output if it
 encounters such a wildcard:
 Remote: Ignoring wild host/user names in /etc/shosts.equiv
However, there’s still a way to get the effect of a wildcard:
 using the wildcards available in netgroups. An empty
 netgroup:
 empty # nothing here
matches nothing at all. However, this netgroup:
 wild (,,)
matches everything. In fact, a netgroup containing (,,) anywhere matches everything,
 regardless of what else is in the netgroup. So, this entry:
 # ~/.shosts
 @wild
allows access from any host at all,[24] as long as the remote and local usernames match. This
 one:
 # ~/.shosts
 way.too.trusted @wild
allows any user on way.too.trusted to log
 into this account, while this entry:
 # ~/.shosts
 @wild @wild
allows any user access from anywhere.
Given this wildcard behavior, it’s important to pay careful
 attention to netgroup definitions. It’s easier to create a wildcard
 netgroup than you might think. Including the null triple (,,) is the obvious approach. However,
 remember that the order of elements in a netgroup triple is
 (host, user, domain). Suppose you define a
 group “oops” like this:
 oops (fred,,) (wilma,,) (barney,,)
You intend for this to be a group of usernames, but you’ve
 placed the usernames in the host slots, and the username fields are
 left null. If you use this group as the userspec of a rule, it acts
 as a wildcard. Thus, this entry:
 # ~/.shosts
 home.flintstones.gov @oops
allows anyone on home.flintstones.gov,not
 just your three friends, to log into your account. Beware!

3.6.2.4 Summary

Hostbased authentication is convenient for users and
 administrators, because it can set up automatic authentication
 between hosts based on username correspondence and interhost trust
 relationships. This removes the burden of typing passwords or
 dealing with key management. However, it is heavily dependent on the
 correct administration and security of the hosts involved;
 compromising one trusted host can give an attacker automatic access
 to all accounts on other hosts. Also, the rules for the access
 control files are complicated, fragile, and easy to get wrong in
 ways that compromise security. In an environment more concerned with
 eavesdropping and disclosure than active attacks, it may be
 acceptable to deploy hostbased authentication for general user
 authentication. In a more security-conscious scenario, however, it
 is probably inappropriate, though it may be acceptable for limited
 use in special-purpose accounts, such as for unattended batch jobs.
 [11.1.3]

3.6.3 SSH-1 Backward Compatibility

The Tectia server can provide backward
 compatibility for the SSH-1 protocol, as long as another package
 supporting SSH-1 (such as OpenSSH) is also installed on the same
 machine. When the Tectia server encounters a client requesting an
 SSH-1 connection, it simply runs the SSH-1 server.[25] This is rather cumbersome. It’s also wasteful and slow,
 since each new sshd1 needs to generate its own
 server key, which otherwise the single master server regenerates only
 once an hour. This wastes random bits, sometimes a precious commodity,
 and can cause noticeable delays in the startup of SSH-1 connections to
 a Tectia server. Further, it is an administrative headache and a
 security problem, since one must maintain two separate SSH server
 configurations and try to make sure all desired restrictions are
 adequately covered in both.
OpenSSH, on the other hand, supports both SSH-1 and SSH-2 in a
 single set of programs, an approach we prefer.

3.6.4 Randomness

Cryptographic algorithms and protocols require a good
 source of random bits. Randomness is used in
 various ways:
	To generate data-encryption keys

	As plaintext padding and initialization vectors in
 encryption algorithms, to help foil cryptanalysis

	For check-bytes or cookies in protocol
 exchanges, as a measure against packet-spoofing attacks

Randomness is harder to achieve than you might think; in fact,
 even defining randomness is difficult (or picking the right definition
 for a given situation). For example, “random” numbers that are
 perfectly good for statistical modeling might be terrible for
 cryptography. Each of these applications requires certain properties
 of its random input, such as an even distribution. Cryptography, in
 particular, demands unpredictability, so an
 attacker reading our data can’t guess our keys.
True randomness—in the sense of complete unpredictability—can’t
 be produced by a computer program. Any sequence of bits produced as
 the output of a program eventually repeats itself. For true
 randomness, you have to turn to physical processes, such as fluid
 turbulence or the quantum dice of radioactive decay. Even there, you
 must take great care that measurement artifacts don’t introduce
 unwanted structure.
There are algorithms, however, that produce long sequences of
 practically unpredictable output, with good statistical randomness
 properties. These are good enough for many cryptographic applications,
 and such algorithms are called pseudo-random
 number generators, or PRNGs. A PRNG
 requires a small random input, called the seed,
 so it doesn’t always produce the same output. From the seed, the PRNG
 produces a much larger string of acceptably random output;
 essentially, it is a randomness “stretcher.” So, a program using a
 PRNG still needs to find some good random bits, just fewer of them,
 but they had better be quite unpredictable.
Since various programs require random bits, some operating
 systems have built-in facilities for providing them. Some Unix
 variants (including Linux and OpenBSD) have a device driver, accessed
 through /dev/random and /dev/urandom, that provides random bits
 when opened and read as a file. These bits are derived by all sorts of
 methods, some quite clever. Correctly filtered timing measurements of
 disk accesses, for example, can represent the fluctuations due to air
 turbulence around the drive heads. Another technique is to look at the
 least significant bits of noise coming from an unused microphone port.
 And of course, they can track fluctuating events such as network
 packet arrival times, keyboard events, interrupts, etc.
SSH implementations make use of randomness, but the process is
 largely invisible to the end user. Here’s what happens under the hood.
 OpenSSH and Tectia, for example, use a kernel-based randomness source
 if it is available, along with their own sampling of (one hopes)
 fluctuating system parameters, gleaned by running such programs as
 ps or netstat. It uses these
 sources to seed its PRNG, as well as to “stir in” more randomness
 every once in a while. Since it can be expensive to gather randomness,
 SSH stores its pool of random bits in a file between invocations of
 the program, as shown in the following table:
	 	OpenSSH
	Tectia

	Server
	 /etc/ssh/ssh_random_seed

	 /etc/ssh2/random_seed

	Client
	 ~/.ssh/random_seed
	 ~/.ssh2/random_seed

These files should be kept protected, since they contain
 sensitive information that can weaken SSH’s security if disclosed to
 an attacker, although SSH takes steps to reduce that possibility. The
 seed information is always mixed with some new random bits before
 being used, and only half the pool is ever saved to disk, to reduce
 its predictive value if stolen.
In OpenSSH and Tectia, all this happens automatically and
 invisibly. OpenSSH links against the OpenSSL library and uses its
 randomness source, a kernel source if available. When building OpenSSH
 on a platform without /dev/random, you have a choice. If you have
 installed an add-on randomness source, such as the Entropy Gathering
 Daemon (EGD, http://www.lothar.com/tech/crypto/), you can compile
 OpenSSH to use it with the --with-egd-pool
 compile-time configuration option. Or you can use the OpenSSH
 entropy-gathering mechanism. You can tailor which programs are run to
 gather entropy and “how random” they’re considered to be, by editing
 the file /etc/ssh/ssh_prng_cmds.
 Also, note that the OpenSSH random seed is kept in the ~/.ssh/prng_seed file, even the daemon’s,
 which is just the root user’s seed file. Earlier versions of OpenSSH
 use this method internally and automatically if there is no /dev/random and no pool specified. OpenSSH
 3.8 and later have the random generator factored into a separate
 program, ssh-rand-helper, selected with the
 --with-rand-helper compile-time configuration
 option.

3.6.5 Privilege Separation in OpenSSH

A persistent problem in the world of Unix security is
 the lack of fine-grained permissions when it comes to process
 capabilities. Basically, either you’re God (that is, “root”) or you’re
 not. The “Church” of Unix is missing the hosts of angels, archangels,
 cherubim, etc., that fill other pantheons and smooth the relationship
 between mere mortals and the divine, embodied for us in the mystical
 uid 0. This means that in order to accomplish some common tasks, such
 as listening on port 22 or creating processes under other uid’s, the
 SSH server must also take on all the other powers of the root account.
 This flies in the face of a basic rule of security engineering: the
 Principle of Least Privilege, which says that a process should have
 only the privileges it needs, only when it needs them, and no more. If
 a serious vulnerability is found in the code of a server running as
 root, you can kiss your system goodbye, because when an attacker gets
 in, he has complete control.
In order to address this general problem, OpenSSH has a feature
 called privilege separation . The developers have factored out those server
 functions which require root privilege, and placed them in a separate
 process. The main server does not run as root; it gives up that
 privilege as soon as possible after startup, leaving a separate
 privileged “monitor” process with which it can communicate. The
 monitor opens the server listening socket which the main server
 inherits, but then closes its copy so that it does not communicate
 directly with clients (i.e., potential attackers). It communicates
 only by a private pipe to the main server and obeys a strict protocol,
 performing only those privileged operations necessary from time to
 time for the operation of the main server, and nothing else. This
 design mitigates the problem by restoring the Principle of Least
 Privilege, at least as much as is possible given the limitations of
 Unix.
Privilege separation is a complicated feature to implement,
 however, due to many small differences among Unix platforms with
 regard to the exact behavior of relevant system calls such as
 setuid, seteuid, setgid, etc., as well as difficulties with
 related software such as PAM. The early implementations of privilege
 separation in OpenSSH were notorious for causing mysterious errors in
 the operation of the server. Things have improved a great deal, but if
 you run into odd problems you can’t explain—especially having to do
 with a privilege or access violation on the part of the server—you
 could do worse than to disable privilege separation and see what
 happens.
For more information on privilege separation, see:
	http://www.citi.umich.edu/u/provos/ssh/privsep.html

	“Preventing Privilege Escalation,” Niels Provos, Markus
 Friedl, and Peter Honeyman, 12th USENIX Security Symposium,
 Washington, D.C., August 2003, http://www.citi.umich.edu/u/provos/papers/privsep.pdf.

[20] In SSH-1, the host key also encrypts the session key for
 transmission to the server. However, this use is actually for
 server authentication, rather than for data protection per se;
 the server later proves its identity by showing that it
 correctly decrypted the session key. Protection of the session
 key is obtained by encrypting it a second time with the
 ephemeral server key.

[21] Or sharing the same key, if you wish, assuming the servers
 are compatible with one another.

[22] Unfortunately, you can’t configure the server to look at
 one set but not the other. If it looks at ~/.shosts, then it also considers
 ~/.rhosts, and both global
 files are always considered.

[23] By setting the server’s IgnoreRhosts keyword to yes, you can cause the server to
 ignore the per-account files completely and consult the global
 files exclusively instead. [5.4.4]

[24] If strong hostbased authentication is in use, this means
 any host verified by public key against the server’s known hosts
 database.

[25] Or it can use an internal SSH-1 compatibility mode.

SSH and File Transfers (scp and sftp)

 The first thing to understand about SSH and file
 transfers is this: SSH doesn’t really do file
 transfers. That is, the core SSH protocol as implemented by a program
 such as ssh (SSH-TRANS, SSH-AUTH, and SSH-CONN) has
 no file-transfer capability at all. Following good modular design, file
 transfer is simply one of many services that might be run over an SSH
 connection channel. In fact, the file-transfer programs bundled with
 most Unix-based SSH products, scp and
 sftp, typically don’t even implement SSH in
 themselves; they simply run ssh in a subprocess to
 connect to the remote host, start the remote file-transfer agent, and
 talk to it.
Historically, the first file-transfer mechanism implemented with
 SSH was the program scp, included with the original
 SSH1 product. scp is simply an “ssh-ification” of
 the venerable Unix rcp program; just as rcp runs the
 rsh program to contact the remote host,
 scp runs ssh instead. If
 existing rsh software had supported a switch to
 select a different program than the default rsh
 (like scp -S), scp might never
 have been written; there would have been no need.
The rcp protocol used by
 scp is very limited. In a single session it can
 only transfer a set of whole files in one direction; there’s no
 directory browsing, partial transfer, resumption of interrupted
 transfers, multiple transfer directions—in other words, it’s nothing
 like FTP. When SSH Communications Security (SCS) defined the first
 version of the SSH-2 protocol and delivered its implementation, it
 wanted to include a much better file-transfer utility. To that end, it
 defined a completely new remote-filing protocol, designed to work easily
 over a single, reliable, secure, duplex byte-stream connection—that is,
 over SSH. The utility was called sftp. As with
 SSH-2, this initially undocumented and proprietary protocol was
 eventually moved onto the standards track of the IETF SECSH working
 group, as the “SSH File Transfer Protocol” (SSH-SFTP). Once that
 happened it began to appear in other implementations as well—for
 example, the sftp program in OpenSSH—first as a
 client only for compatibility with SCS servers, with
 sftp-server following later.
The name “SFTP” is unfortunate in two respects. First, it suggests
 that SFTP has something to do with the FTP protocol as defined in
 RFC-959 et al. It doesn’t: they are completely different. Indeed, that’s
 largely the point; as with rcp: were FTP amenable
 to use over SSH, SFTP might never have been written. But SSH and FTP are
 not a good match [11.2], so
 SFTP was born. It is a common mistake to think you can somehow use an
 sftp program to connect securely to an FTP server—a
 reasonable enough supposition, given the name—but you can’t; they’re
 entirely incompatible.
The name “SFTP” is also misleading in that it suggests security;
 many assume it stands for “Secure FTP.” This isn’t so. The SFTP protocol
 has no security features at all; implementations derive their security
 by speaking the protocol over an SSH connection.
3.7.1 What’s in a Name?

So far, this isn’t too bad. There are two file-transfer
 protocols commonly used over SSH—RCP and SFTP, usually implemented on
 the client side by the programs scp and
 sftp. The situation is a bit more complicated,
 though, because of the way the Tectia software operates. Although
 Tectia includes a program named scp2 , it does not use the RCP protocol;
 instead, it uses SFTP. The Tectia programs scp2
 and sftp2 are simply two different frontends for
 the SFTP protocol. They merely provide different user interfaces:
 scp2 acts like
 rcp/scp, and
 sftp2 is deliberately similar to an FTP
 client.
None of this confusing terminology is made any easier by the
 fact that when installed, Tectia makes symbolic links allowing you to
 use the plain names scp,
 ssh, etc., instead of scp2
 or ssh2. Even more bizarrely,
 scp2 has a -1 option that
 causes it to run a program named scp1 for
 backward compatibility (of a sort). The upshot is that typing “scp”
 may get you either of two entirely different protocols, depending on
 what software is installed, and how it was installed. In our
 discussion, we ignore this complication; when we refer to
 scp, we mean an OpenSSH-style
 scp which uses the RCP protocol.

3.7.2 scp Details

When you run scp to copy a file from client
 to server, it invokes ssh with various options,
 like so:
 /usr/bin/ssh -x -o ForwardAgent=no -o ClearAllForwardings=yes server-host scp ...
Tip
Earlier versions of scp actually searched
 your PATH for the
 ssh program rather than specifying it
 completely. This was a problem if multiple SSH software packages
 were installed, since it could run mismatched pieces of software
 together.

This runs another copy of scp on the remote
 host. That copy is invoked with the undocumented switches
 -t and -f (for “to” and
 “from”), putting it into SCP server mode. This next table shows some
 examples; Figure 3-3 shows
 the details.
	This client scp
 command:
	Runs this remote
 command:

	scp foo server:bar
	scp -t bar

	scp server:bar foo
	scp -f bar

	scp *.txt server:dir
	scp -d -t dir

If you run scp to copy a file between two
 remote hosts, it simply executes another scp
 client on the source host to copy the file to the target. For example,
 this command:
 scp source:music.au target:playme
runs this in the background:
 ssh -x -o ClearAllForwardings=yes -n source scp music.au target:playme
Note that the options are changed appropriately: agent
 forwarding is not turned off, as that may be needed by the remote
 scp client in order to contact the target
 host.

3.7.3 scp2/sftp Details

When you run scp2 or sftp under Unix, it also runs an ssh
 program behind the scenes, as with scp.[26] The exact details vary depend on which software is in
 use; remember that sftp comes with both OpenSSH
 and Tectia. However, they both look like:
 ssh [options] server-host -s sftp
Instead of a remote command, this uses an SSH-2 subsystem
 request to start the sftp server on the remote
 host. This insulates the client from the details of how SFTP is
 implemented on the server, rather than embed the
 sftp-server pathname in the command (which might
 change), or relaying on the remote PATH setting to find it (which might not
 work). Unlike scp, here the command line doesn’t
 specify the files to be transferred; that information is carried
 inside the SFTP protocol.
Using a subsystem means that the SSH server must be specifically
 configured to handle SFTP. For OpenSSH:
 # sshd_config
 subsystem sftp /usr/libexec/sftp-server
Tectia can either execute an external SFTP server in the same
 way:
 # sshd2_config
 subsystem-sftp /usr/libexec/sftp-server2
or run the SFTP protocol within the SSH server process
 itself:
 # sshd2_config
 subsystem-sftp internal://sftp-server
Figure 3-4 shows more
 details of how sftp operates.
[image: scp2/sftp operation]

Figure 3-3. scp2/sftp operation

[26] Tectia for Windows simply integrates SSH into these
 programs.

Algorithms Used by SSH

We now summarize each of the algorithms we have mentioned.
 Don’t treat these summaries as complete analyses, however. You can’t
 necessarily extrapolate from characteristics of individual algorithms
 (positive or negative) to whole systems without considering the other
 parts. Security is complicated that way.
3.8.1 Public-Key Algorithms

3.8.1.1 Rivest-Shamir-Adleman (RSA)

The Rivest-Shamir-Adleman (RSA) public-key algorithm is the
 most widely used asymmetric cipher. It derives its security from the
 difficulty of factoring large integers
[image: scp operation]

Figure 3-4. scp operation

that are the product of two large primes of roughly equal
 size. Factoring is widely believed to be intractable (i.e.,
 infeasible, admitting no efficient, polynomial-time solution),
 although this isn’t proven. RSA can be used for both encryption and
 signatures.
Until September 2000, RSA was claimed to be patented in the
 U.S. states by Public Key Partners, Inc., a company in which RSA
 Security, Inc. is a partner. (The algorithm is now in the public
 domain.) While the patent was in force, PKP claimed that it
 controlled the use of the RSA algorithm in the U.S., and that the
 use of unauthorized implementations was illegal. Until the
 mid-1990s, RSA Security provided a freely available reference
 implementation, RSAref, with a license allowing educational and
 broad commercial use (as long as the software itself was not sold
 for profit). Since RSA is now in the public domain, RSAref has
 disappeared.
The SSH-1 protocol specified use of RSA explicitly. SSH-2 can
 use multiple public-key algorithms, but originally defined only DSA.
 [3.8.1.2] The SECSH
 working group added the RSA algorithm to SSH-2 shortly after the
 patent expired.

3.8.1.2 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) was developed by
 the U.S. National Security Agency (NSA), and promulgated by the U.S.
 National Institute of Standards and Technology (NIST) as part of the
 Digital Signature Standard (DSS). The DSS was issued as a Federal
 Information Processing Standard, FIPS-186, in May 1994. It is a
 public-key algorithm, based on the Schnorr and ElGamal methods, and
 relies on the difficulty of computing discrete logarithms in a
 finite field. It is designed as a signature-only scheme that can’t
 be used for encryption, although a fully general implementation may
 easily perform both RSA and ElGamal encryption.
DSA has also been surrounded by a swirl of controversy since
 its inception. The NIST first claimed that it had designed DSA, then
 eventually revealed that the NSA had done so. Many question the
 motives and ethics of the NSA, with ample historical reason to do
 so.[27] Researcher Gus Simmons discovered a subliminal channel
 in DSA that allows an implementor to leak information—for instance,
 secret key bits—with every signature.[28] Since the algorithm was to be made available as a
 closed hardware implementation in smart cards as part of the
 government’s Capstone program, many people considered this property
 highly suspicious. Finally, the NIST intended DSA to be available
 royalty-free to all users. To that end it was patented by David
 Kravitz (patent #5,231,668), then an employee of the NSA, who
 assigned the patent to the U.S. government. There have been claims,
 however, that DSA infringes existing cryptographic patents,
 including the Schnorr patent. To our knowledge, this issue has yet
 to be settled in court.
The SSH-2 protocol uses DSA as its required (and currently,
 only defined) public-key algorithm for host identification.

3.8.1.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement algorithm was the first public-key system published in the open
 literature, invented by Whitfield Diffie, Martin Hellman, and Ralph
 Merkle in 1976. It was patented by them in 1977 (issued in 1980,
 patent #4,200,770); that patent has now expired, and the algorithm
 is in the public domain. Like DSA, it is based on the discrete
 logarithm problem, and it allows two parties to derive a shared
 secret key securely over an open channel. That is, the parties
 engage in an exchange of messages, at the end of which they share a
 secret key. It isn’t feasible for an eavesdropper to determine the
 shared secret merely from observing the exchanged messages.
SSH-2 uses the Diffie-Hellman algorithm as its required (and
 currently, its only defined) key-exchange method.

3.8.2 Secret-Key Algorithms

3.8.2.1 International Data Encryption Algorithm
 (IDEA)

The International Data Encryption Algorithm (IDEA) was
 designed in 1990 by Xuejia Lai and James Massey,[29] and went through several revisions, improvements, and
 renamings before reaching its current form. Although relatively new,
 it is considered secure; the well-known cryptographer Bruce Schneier
 in 1996 pronounced it “the best and most secure block algorithm
 available to the public at this time.”
IDEA is patented in Europe and the U.S. by the Swiss company
 Ascom-Tech AG.[30] The name “IDEA” is a trademark of Ascom-Tech. The
 attitude of Ascom-Tech toward this patent and the use of IDEA in the
 U.S. has changed over time, especially with regard to its inclusion
 in PGP. It is free for noncommercial use. Government or commercial
 use may require a royalty, where “commercial use” includes use of
 the algorithm internal to a commercial organization, not just
 directly selling an implementation or offering its use for profit.
 Here are two sites for more information:
	http://vmsbox.cjb.net/idea.html

	http://home.ecn.ab.ca/~jsavard/crypto/co040302.htm

3.8.2.2 Advanced Encryption Standard (AES)

In 1997, the NIST began a program to develop a
 replacement for the existing government-standard symmetric
 encryption algorithm, DES, which was beginning to show its age. The
 process involved soliciting designs from the worldwide cryptographic
 community, and pitting them against one another in a design contest
 of sorts. After a five-year process, the winner was finally
 selected. The algorithm designed by Joan Daemen and Vincent Rijmen
 and originally known as Rijndael became the Advanced Encryption
 Standard, codified in FIPS-197. AES is a symmetric block cipher with
 key sizes of either 128, 192, or 256 bits. You can find more
 information at the following site:
	http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3.8.2.3 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the old
 workhorse of symmetric encryption algorithms, now finally put out to
 pasture, replaced by AES. Designed by researchers at IBM in the
 early 1970s under the name Lucifer, the U.S. government adopted DES
 as a standard on November 23, 1976 (FIPS-46). It was patented by
 IBM, but IBM granted free worldwide rights to its use. It has been
 used extensively in the public and private sectors ever since. DES
 has stood up well to cryptanalysis over the years and is
 increasingly viewed as outdated only because its 56-bit key size is
 too small relative to modern computing power. A number of
 well-publicized designs for special-purpose “DES-cracking” machines
 have been put forward, and their putative prices are falling more
 and more into the realm of plausibility for governments and large
 companies. It seems sure that at least the NSA has such
 devices.

3.8.2.4 Triple-DES

Triple-DES, or 3DES, is a variant of DES intended to increase its
 security by increasing the key length. It has been proven that the
 DES function can increase its security by encrypting multiple times
 with independent keys.[31] 3DES encrypts the plaintext with three iterations of
 the DES algorithm, using three separate keys. The effective key
 length of 3DES is 112 bits, a vast improvement over the 56-bit key
 of plain DES.

3.8.2.5 ARCFOUR (RC4)

Ron Rivest designed the RC4 cipher in 1987 for RSA
 Data Security, Inc. (RSADSI); the name is variously claimed to stand
 for “Rivest Cipher” or “Ron’s Code.” It was an unpatented trade
 secret of RSADSI, used in quite a number of commercial products by
 RSADSI licensees. In 1994, though, source code claiming to implement
 RC4 appeared anonymously on the Internet. Experimentation quickly
 confirmed that the posted code was indeed compatible with RC4, and
 the cat was out of the bag. Since it had never been patented, RC4
 effectively entered the public domain. This doesn’t mean that RSADSI
 won’t sue someone who tries to use it in a commercial product, so it
 is less expensive to settle and license than to fight. We aren’t
 aware of any test cases of this issue. Since the name “RC4” is
 trademarked by RSADSI, the name “ARCFOUR” has been coined to refer
 to the publicly revealed version of the algorithm.
ARCFOUR is very fast but less studied than many other
 algorithms. It uses a variable-size key; SSH-1 employs independent
 128-bit keys for each direction of the SSH session. The use of
 independent keys for each direction is an exception in SSH-1, and
 crucial: ARCFOUR is essentially a pad using the output of a
 pseudo-random number generator. As such, it is important never to
 reuse a key because to do so makes cryptanalysis trivially easy. If
 this caveat is observed, ARCFOUR is considered secure by many,
 despite the dearth of public cryptanalytic results.

3.8.2.6 Blowfish

Blowfish was designed by Bruce Schneier in 1993, as a
 step toward replacing the aging DES. It is much faster than DES and
 IDEA, though not as fast as ARCFOUR, and is unpatented and free for
 all uses. It is intended specifically for implementation on large,
 modern, general-purpose microprocessors and for situations with
 relatively few key changes. It isn’t particularly suited to low-end
 environments such as smart cards. It employs a variable-size key of
 32 to 448 bits; SSH-2 uses 128-bit keys. Blowfish has received a
 fair amount of cryptanalytic scrutiny and has proved impervious to
 attack so far. Information is available from Counterpane, Schneier’s
 security consulting company, at:
	http://www.schneier.com/blowfish.html

3.8.2.7 Twofish

Twofish is another design by Bruce Schneier, together with J.
 Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. It was
 submitted in 1998 to the NIST as a candidate for the Advanced
 Encryption Standard, to replace DES as the U.S. government’s
 symmetric data encryption standard. It was one of the five finalists
 in the AES selection process, out of 15 initial submissions, but
 eventually lost to Rijndael. Like Blowfish, it is unpatented and
 free for all uses, and Counterpane has provided uncopyrighted
 reference implementations, also freely usable.
Twofish admits keys of lengths 128, 192, or 256 bits; SSH-2
 specifies 256-bit keys. Twofish is designed to be more flexible than
 Blowfish, allowing good implementation in a larger variety of
 computing environments (e.g., slower processors, small memory,
 in-hardware). It is very fast, its design is conservative, and it is
 likely to be quite strong. You can read more about Twofish
 at:
	http://www.schneier.com/twofish.html

You can read more about the NIST AES program at:
	http://www.nist.gov/aes/

3.8.2.8 CAST

CAST was designed in the early 1990s by Carlisle Adams
 and Stafford Tavares. Tavares is on the faculty of Queen’s
 University at Kingston in Canada, while Adams is an employee of
 Entrust Technologies of Texas. CAST is patented, and the rights are
 held by Entrust, which has made two versions of the algorithm
 available on a worldwide royalty-free basis for all uses. These
 versions are CAST-128 and CAST-256, described in RFC-2144 and
 RFC-2612, respectively. SSH-2 uses CAST-128, which is named for its
 128-bit key length.

3.8.3 Hash Functions

3.8.3.1 CRC-32

The 32-bit Cyclic Redundancy Check (CRC-32), defined in ISO 3309,[32] is a noncryptographic hash function for detecting
 accidental changes to data. The SSH-1 protocol uses CRC-32 (with the
 polynomial 0xEDB88320) for integrity checking, and this weakness
 admits the “insertion attack” discussed elsewhere. [3.5] The SSH-2 protocol
 employs cryptographically strong hash functions for integrity checking, obviating this attack.

3.8.3.2 MD5

MD5 (“Message Digest algorithm number 5”) is a
 cryptographically strong, 128-bit hash algorithm designed by Ron
 Rivest in 1991, one of a series he designed for RSADSI (MD2 through
 MD5). MD5 is unpatented, placed in the public domain by RSADSI, and
 documented in RFC-1321. It has been a standard hash algorithm for
 several years, used in many cryptographic products and standards. A
 successful collision attack against the MD5 compression function by
 den Boer and Bosselaers in 1993 caused some concern, and though the
 attack hasn’t resulted in any practical weaknesses, there is an
 expectation that it will, and people are beginning to avoid MD5 in
 favor of newer algorithms. RSADSI recommends moving away from MD5 in
 favor of SHA-1 or RIPEMD-160 for future applications demanding
 collision-resistance.[33]

3.8.3.3 SHA-1

SHA-1 (Secure Hash Algorithm) was designed by the NSA and the NIST for use with the
 U.S. government Digital Signature Standard. Like MD5, it was
 designed as an improvement on MD4, but takes a different approach.
 It produces 160-bit hashes. There are no known attacks against
 SHA-1, and, if secure, it is stronger than MD5 simply for its longer
 hash value. It has replaced MD5 in some applications; for example,
 SSH-2 uses SHA-1 as its required MAC hash function, as opposed to
 MD5 in SSH-1.[34]

3.8.3.4 RIPEMD-160

Yet another 160-bit MD4 variant, RIPEMD-160, was developed by
 Hans Dobbertin, Antoon Bosselaers, and Bart Preneel as part of the
 European Community RIPE project. RIPE stands for RACE Integrity
 Primitives Evaluation;[35] RACE, in turn, was the program for Research and
 Development in Advanced Communications Technologies in Europe, an
 EC-sponsored program which ran from June 1987 to December 1995. RIPE
 was part of the RACE effort, devoted to studying and developing data
 integrity techniques. Hence, RIPEMD-160 should be read as “the RIPE
 Message Digest (160 bits).” In particular, it has nothing to do with
 RIPEM, an old Privacy-Enhanced Mail (PEM) implementation by Mark
 Riordan.
RIPEMD-160 isn’t defined in the SSH protocol, but it is used
 for an implementation-specific MAC algorithm in OpenSSH, under the
 name
 hmac-ripemd160@openssh.com . RIPEMD-160 is
 unpatented and free for all uses. You can read more about it
 at:
	http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

3.8.4 Compression Algorithms: zlib

zlib is currently the only compression algorithm defined for
 SSH. In the SSH protocol documents, the term “zlib” refers to the
 “deflate” lossless compression algorithm as first implemented in the
 popular gzip compression utility, and later
 documented in RFC-1951. It is available as a software library called
 ZLIB at:
	http://www.zlib.net/

[27] See James Bamford’s book, The Puzzle
 Palace (Penguin), for an investigative history of the
 NSA.

[28] G. J. Simmons, “The Subliminal Channels in the U.S.
 Digital Signature Algorithm (DSA).” Proceedings of the
 Third Symposium on: State and Progress of Research in
 Cryptography, Rome: Fondazione Ugo Bordoni, 1993, pp.
 35-54.

[29] X. Lai and J. Massey, “A Proposal for a New Block
 Encryption Standard,” Advances in Cryptology—EUROCRYPT
 ’92 Proceedings, Springer-Verlag, 1992, pp.
 389-404.

[30] U.S. patent #5,214,703, 25 May 1993; international patent
 PCT/CH91/00117, 28 November 1991; European patent EP 0 482 154
 B1.

[31] Because it doesn’t form a group over its keys. See W.
 Campbell and M. J. Wiener, “DES Is Not a Group,”
 Advances in Cryptology—CRYPTO ’92
 Proceedings, Springer-Verlag, pp. 512-520.

[32] International Organization for Standardization,
 ISO Information Processing Systems—Data Communication
 High-Level Data Link Control Procedure—Frame
 Structure, ISO 3309, October 1984, 3rd
 Edition.

[33] RSA Laboratories Bulletin #4, 12 November 1996, ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf.

[34] As this book went to press, the NIST announced plans to
 phase out SHA-1 by the year 2010, in favor of stronger
 algorithms like SHA-256 and SHA-512.

[35] Not to be confused with another “RIPE,” Réseaux IP
 Européens (“European IP Networks”), a technical and coordinating
 association of entities operating wide area IP networks in
 Europe and elsewhere (http://www.ripe.net).

Threats SSH Can Counter

 Like any security tool, SSH has particular threats against
 which it is effective and others that it doesn’t address. We’ll discuss
 the former first.
3.9.1 Eavesdropping

An eavesdropper is a network snooper who
 reads network traffic without affecting it in any way. SSH’s
 encryption prevents eavesdropping . The contents of an SSH session, even if intercepted,
 can’t be decrypted by a snooper.

3.9.2 Name Service and IP Spoofing

If an attacker subverts your naming service (DNS, NIS, etc.),
 network-related programs may be coerced to connect to the wrong
 machine. Similarly, an attacker can impersonate a host by stealing use
 of its IP address(es). In either case, you’re in trouble: your client
 program can connect to a false server that steals your password when
 you supply it. SSH guards against this attack by cryptographically
 verifying the server host identity. When setting up a session, the SSH
 client validates the server’s host key against a local list
 associating server names and addresses with their keys. If the
 supplied host key doesn’t match the one on the list, SSH complains.
 This feature may be disabled in less security-conscious settings if
 the warning messages get annoying. [7.4.3.1]
The SSH-2 protocol allows for including PKI certificates along
 with keys. In the future, we hope that implementation of this feature
 in SSH products along with more common deployment of PKI will ease the
 burden of key management and reduce the need for this particular
 security trade-off.

3.9.3 Connection Hijacking

An “active attacker"--one who not only can listen to network
 traffic, but also can inject his own—can hijack a TCP connection,
 literally stealing it away from one of its legitimate endpoints. This
 is obviously disastrous: no matter how good your authentication method
 is, the attacker can simply wait until you’ve logged in, then steal
 your connection and insert his own nefarious commands into your
 session. SSH can’t prevent hijacking, since this is a weakness in TCP,
 which operates below SSH. However, SSH renders it ineffective (except
 as a denial-of-service attack). SSH’s integrity checking detects if a
 session is modified in transit, and shuts down the connection
 immediately without using any of the corrupted data.

3.9.4 Man-in-the-Middle Attacks

A man-in-the-middle attack is a
 particularly subtle type of active attack and is illustrated in Figure 3-5. An adversary sits
 between you and your real peer (i.e., between the SSH client and
 server), intercepting all traffic and altering or deleting messages at
 will. Imagine that you try to connect to an SSH server, but Malicious
 Mary intercepts your connection. She behaves just like an SSH server,
 though, so you don’t notice, and she ends up sharing a session key
 with you. Simultaneously, she also initiates her own connection to
 your intended server, obtaining a separate session key with the
 server. She can log in as you because you used password authentication
 and thus conveniently handed her your password. You and the server
 both think you have a connection to each other, when in fact you both
 have connections to Mary instead. Then she just sits in the middle,
 passing data back and forth between you and the server (decrypting on
 one side with one key and re-encrypting with the other for
 retransmission). Of course, she can read everything that goes by and
 undetectably modify it if she chooses.
[image: Man-in-the-middle attack]

Figure 3-5. Man-in-the-middle attack

SSH counters this attack in two ways. The first is server host
 authentication. Unless Mary has broken into the server host, she is
 unable to effect her impersonation, because she doesn’t have the
 server’s private host key. Note that for this protection to work, it
 is crucial that the client actually check the server-supplied public
 host key against its known hosts list; otherwise, there is no
 guarantee that the server is genuine. If you connect for the first
 time to a new server and let ssh accept the host
 key, you are actually open to a man-in-the-middle attack. However,
 assuming you aren’t spoofed that one time, future connections to this
 server are safe as long as the server host key isn’t stolen.
The second protection SSH affords is via certain user
 authentication methods. The password method is obviously vulnerable,
 but publickey and hostbased authentication resist MITM attacks. Mary
 can’t discover the session key simply by observing the key exchange;
 she must perform an active attack in which she carries out separate
 exchanges with each side, obtaining separate keys of her own with the
 client and server. In both SSH-1 and SSH-2, the key exchange is
 designed so that if she does this, the session identifiers for each
 side are different. When a client provides a digital signature for
 either public-key or hostbased authentication, it includes the session
 identifier in the data signed. Thus, Mary can’t just pass on the
 client-supplied authenticator to the server, nor does she have any way
 of coercing the client into signing the other session ID.[36]
If you don’t verify the server name/key correspondence, Mary can
 still perform the man-in-the-middle attack, even though she can’t log
 in as you on the server side. Perhaps she can log into her own account
 or another she has cracked. With some cleverness, she might still
 deceive you long enough to do damage.

[36] This is not true of the older SSH-1 protocol,
 however.

Threats SSH Doesn’t Prevent

 SSH isn’t a total security solution. We’ll now present
 some examples of attacks that SSH wasn’t designed to prevent.
3.10.1 Password Cracking

SSH dramatically improves password security by encrypting your
 password as it passes over the network. Nevertheless, a password is
 still a weak form of authentication, and you must take care with it.
 You must choose a good password, memorable to you but not obvious to
 anyone else, and not easily guessable. You must also avoid having your
 password stolen, since possession alone is sufficient to grant access
 to your account. So, watch out: the guy at the next terminal might be
 surreptitiously “shoulder surfing” (watching as you type). That
 computer kiosk you’re about to use may have been tricked up to log all
 keystrokes to Cracker Central Command. And the nice-sounding fellow
 who calls from Corporate IT and asks for your password to “fix your
 account” might not be who he claims.
Consider public-key authentication instead, since it is
 two-factor : a stolen passphrase is useless
 without the private-key file, so an attacker needs to steal both. Of
 course, the SSH client on the computer you’re borrowing can be rigged
 to squirrel away your key after you blithely supply your passphrase to
 decrypt it. If you’re that worried, you shouldn’t use strange
 computers. In the future, one hopes, cryptographic smartcards and
 readers will be ubiquitous and supported by SSH so that you can carry
 your keys conveniently and use them in other computers without fear of
 disclosure.
If you must use password authentication because of its
 convenience, consider using a one-time password scheme such as S/Key
 to reduce risk. [5.4.5]

3.10.2 IP and TCP Attacks

SSH operates on top of TCP, so it is vulnerable to some
 attacks against weaknesses in TCP and IP. The privacy, integrity, and
 authentication guarantees of SSH limit this vulnerability to
 denial-of-service attacks.
TCP/IP is resistant to network problems such as congestion and
 link failure. If the enemy blows up a router, IP can route around it.
 It wasn’t designed to resist an adversary injecting bogus packets into
 the network, however. The origin of TCP or IP control messages isn’t
 authenticated. As a result, TCP/IP has a number of inherent
 exploitable weaknesses, such as:
	SYN flood
	SYN stands for “synchronize,” and is a TCP packet
 attribute. In this case, it refers to the initial packet sent to
 start the setup of a TCP connection. This packet often causes
 the receiver to expend resources preparing for the coming
 connection. If an attacker sends large numbers of these packets,
 the receiving TCP stack may run out of space and be unable to
 accept legitimate connections.

	TCP RST, bogus ICMP
	Another TCP packet type is RST, for “reset.” Either side
 of a TCP connection can send an RST packet at any time, which
 causes immediate teardown of the connection. RST packets may be
 injected easily into a network, immediately disconnecting any
 target TCP connection.
Similarly, there is ICMP, the Internet Control Message
 Protocol. ICMP allows IP hosts and routers to communicate
 information about network conditions and host reachability. But
 again, there is no authentication, so injecting bogus ICMP
 packets can have drastic effects. For instance, there are ICMP
 messages that say a particular host or TCP port is unreachable;
 forging such packets can cause connections to be torn down.
 There are also ICMP messages that communicate routing
 information (redirects and router discovery); forging such
 messages can cause sensitive data to be routed through
 unintended and possibly compromised systems.

	TCP desynchronization and
 hijacking
	By clever manipulation of the TCP protocol, an attacker
 can desynchronize two sides of a TCP connection with respect to
 data byte sequence numbers. In this state, it is possible to
 inject packets that are accepted as a legitimate part of the
 connection, allowing the attacker to insert arbitrary
 information into the TCP data stream.

SSH provides no protection against attacks that break or prevent
 setup of TCP connections. On the other hand, SSH’s encryption and host
 authentication are effective against attacks that involve
 inappropriate routing that would otherwise permit reading of sensitive
 traffic or redirect a connection to a compromised server. Likewise,
 attacks that hijack or alter TCP data will fail, because SSH detects
 them, but they also break the SSH connection, because SSH responds to
 such problems by termination.
Because these threats focus on problems with TCP/IP, they can be
 effectively countered only by lower, network-level techniques, such as
 hardware link encryption or IPSEC. [1.6.4] IPSEC is the IP
 Security protocol that is part of the next-generation IP protocol,
 IPv6, and available as an add-on to the current IP standard, IPv4. It
 provides encryption, integrity, and data origin-authentication
 services at the IP packet level.

3.10.3 Traffic Analysis

Even if an attacker can’t read your network traffic, he can
 glean a great deal of useful information by simply watching it—noting
 the amount of data, the source and destination addresses, and timing.
 A sudden increase in traffic with another company might tip him off
 that an impending business deal is in the works. Traffic patterns can
 also indicate backup schedules or times of day most vulnerable to
 denial-of-service attacks. Prolonged silence on an SSH connection from
 a sysadmin’s desktop might indicate that she’s stepped out, and that
 now is a good time to break in, electronically or physically.
SSH doesn’t address traffic-analysis attacks. SSH connections
 are easily identifiable as they generally go to a well-known port, and
 the SSH protocol makes no attempt to obfuscate traffic
 analysis . An SSH implementation could conceivably send random,
 no-op traffic over a connection when it’s otherwise idle, to frustrate
 activity correlation. OpenSSH, in fact, sends no-op packets in
 response to keystrokes when a program turns off tty echo (e.g., the
 su program prompting for a password). This makes
 it harder for an attacker to identify the keystrokes of value in a
 session.
Tip
Although the SSH protocol doesn’t specifically deal with
 traffic analysis, some implementations take steps against it.
 OpenSSH, for example, hides the fact that terminal echoing has been
 turned off by sending fake echo packets, making it harder to
 recognize signatures of non-echoing commands, such as typing the
 root password after an su prompt.

A more serious concern regarding traffic analysis arises from
 recent work by U.C. Berkeley researchers Dawn Song, David Wagner, and
 Xuqing Tian. At the 10th Usenix Security Symposium (Washington D.C.,
 August 2001), they presented a paper titled “Timing Analysis of
 Keystrokes and Timing Attacks on SSH”:
	http://www.usenix.org/publications/library/proceedings/sec01/song.html

The paper applies traffic-analysis techniques to interactive SSH
 connections to infer information about the encrypted contents. The
 authors conclude that the keystroke timing data observable from
 existing SSH implementations reveals a dangerously significant amount
 of information about user terminal sessions—enough to locate typed
 passwords in the session data stream and reduce the computational work
 involved in guessing those passwords by a factor of 50. While this
 work describes a very sophisticated attack which has yet to yield any
 practical exploits (that we know of!), this area bears
 watching.

3.10.4 Covert Channels

A covert channel is a means of
 signaling information in an unanticipated and unnoticed fashion.
 Suppose that one day, Sysadmin Sally decides her users are having too
 much fun, and she turns off email and instant messaging so that they
 can’t chat. To get around this, you and your friend agree to put
 messages to each other into world-readable files in your home
 directories, which you’ll check every once in a while for new
 messages. This unanticipated communication mechanism is a covert
 channel.
Covert channels are hard to eliminate. If Sysadmin Sally
 discovers your file-based technique, she can make all home directories
 unreadable and unsearchable by anyone but their owners, and prevent
 the owners from changing this restriction. While she’s at it, she can
 also make sure you can’t create files anywhere else, like /tmp. (Most of your programs don’t work
 now, but that doesn’t matter to Sally.) Even so, you and your friend
 can still list each other’s home directory nodes themselves, which
 reveals the directory modification date and number of files, so you
 devise a secret code based on these visible parameters and communicate
 by modifying them. This is a more complex covert channel, and you can
 imagine even more outlandish ones in the face of further restrictions
 from Sally.
SSH doesn’t attempt to eliminate covert channels . Their analysis and control are generally part of
 highly secure computer systems, such as those designed to handle
 information safely at various security classification levels within
 the same system. Incidentally, the SSH data stream itself can be used
 perfectly well as a covert channel: the encrypted contents of your SSH
 session might be a recipe for chocolate chip cookies, while a secret
 message about an impending corporate merger is represented in Morse
 code using even/odd packet lengths for dashes and dots.

3.10.5 Carelessness

Mit der Dummheit kämpfen Götter selbst
 vergebens.
(Against stupidity, even the Gods struggle in
 vain.)
Friedrich von Schiller

Security tools don’t secure anything; they only help people to
 do so. It’s almost a cliché, but so important that it bears any amount
 of repeating. The best cryptography or most secure protocols in the
 world won’t help if users pick bad passwords, or write their
 passphrases on Post-it notes stuck to the undersides of their
 keyboards. They also won’t help sysadmins who neglect other aspects of
 host security, allowing host-key theft or wiretapping of terminal
 sessions.
As Bruce Schneier is fond of saying, “Security is a process, not
 a product.” SSH is a good tool, but it must be part of an overall and
 ongoing process of security awareness. Other aspects of host integrity
 must still be attended to; security advisories for relevant software
 and operating systems monitored, appropriate patches or workarounds
 applied promptly, and people educated and kept aware of their security
 responsibilities. Don’t just install SSH and think that you’re now
 secure; you’re not.

Threats Caused by SSH

 We can hear the chorus now..."What? I’m using SSH to
 improve security; what do you mean it causes
 threats!?” Calm down, we’re just being complete here. There are no new
 threats that SSH causes per se, but there are existing issues that it
 perhaps exacerbates.
To employ SSH, your users must be able to make outbound TCP
 connections: and really, that gives them the power to do just about
 anything. Think you can restrict which Internet hosts they can contact?
 Think again: all they need is a proxy on a host they
 can reach to redirect their traffic. Think they can
 only use TCP because that’s all the firewall lets through? Not at all:
 there are freely available tools that can operate a full-blown VPN over
 a TCP (e.g., OpenVPN). Think you’re safe from inbound attacks because
 you allow only outbound connections? Don’t be naive: that “outbound”
 connection is a two-way street once established and can be connected to
 anything at all.
The only things that keep people from violating your security
 policy with this access, aside from respecting the policy itself, are
 ignorance and inconvenience. Your users might not know how to play any
 of the preceding tricks, or it might be too much trouble if they do.
 SSH, however, makes some of these things very easy: tunneling outbound
 connections to “forbidden” TCP ports, reverse forwarding to tunnel
 back through your firewall and circumvent it,
 etc...and everything nicely encrypted so that you can’t see what’s
 happening!
The important lesson here is not that SSH is dangerous, but that
 truly limiting network access is a very difficult proposition: usually
 impossible, in fact, with any kind of reasonable effort (and if you want
 to get any other work done). When there are convenient tools like SSH
 lying around tempting people to get around annoying limitations, you can
 no longer rely on ignorance and inconvenience to enforce your security
 policy. Ultimately, you must gain the trust and cooperation of your
 users to have an effective security policy.

Summary

The SSH protocol uses openly published, strong cryptographic tools
 to provide network connections with privacy, integrity, and mutual
 authentication. The original SSH-1 protocol (a.k.a. SSH 1.5) was wildly
 popular, despite being somewhat ad hoc: essentially a documentation of
 SSH1’s program behavior. It had a number of shortcomings and flaws, of
 which the weak integrity check and resulting Futoransky/Kargieman
 insertion attack is perhaps the most egregious example. The current
 protocol version, SSH-2, is far superior, but was slow to take off due
 to the dearth of implementations, licensing restrictions, and the
 continued availability of the free SSH1 software for many commercial
 purposes. Thankfully, the tide has now turned, due primarily to the
 gargantuan and mostly unpaid efforts of the OpenSSH team in bringing
 forth a free implementation of the SSH-2 protocol.
SSH counters many network-related security threats, but not all.
 In particular, it is vulnerable to denial-of-service attacks based on
 weaknesses in TCP/IP, its underlying transport...though now that IPSec
 is widespread, these weaknesses can be addressed if need be. SSH also
 doesn’t address attacks such as traffic analysis and covert channels,
 which may be of concern depending on the environment.

Chapter 4. Installation and Compile-Time Configuration

Now that you know what SSH is and how it works, where do you get it
 and how do you install it? This chapter surveys several popular and robust
 implementations of SSH and explains how to obtain, compile, and install
 them:
	OpenSSH
	A free implementation, originally part of OpenBSD, and
 available for many other operating systems including Linux, Solaris,
 Mac OS X, and Windows.

	Tectia
	A suite of commercial products from SSH Communications
 Security Corp., that run on a variety of platforms including Linux,
 Solaris, HP-UX, AIX, and Windows. Formerly known as SSH2 and SSH
 Secure Shell.

Non-Unix implementations of SSH are covered in Chapters 13,14,15,16,17,-18.

Overview

 The first question to consider when installing any
 implementation of SSH is whether to use a binary or source
 distribution.
Binary distributions are already configured
 and compiled, and are therefore easy to use. They are available for
 popular SSH implementations like OpenSSH and Tectia on a variety of
 common platforms. The packaging technology and installation instructions
 vary according to the target system—consult the documentation provided
 by your vendor for details. For example, on Linux systems, binary
 distributions are usually shipped as RPM packages, and can be installed
 using a single command like:
 $ rpm -Uhv openssh-3.9p1-1.i386.rpm
Installation on Unix systems typically requires root access, to
 install files in system directories, and to update the databases that
 keep track of installed packages.
Binary distributions are often cryptographically signed, to ensure
 that no one has tampered with the files. Signatures can be provided as
 separate files, or (depending on the package format) embedded within the
 binary distribution files, and the technique to verify the signature
 depends on how the files were signed. For example, on RPM-based Linux
 systems, first import the vendor’s public key, which is distributed by
 keyservers or the vendor’s web site:
 $ rpm --import http://www.redhat.com/security/db42a60e.txt
Then use the public key to check the signature:
 $ rpm --checksig -v openssh-3.9p1-1.i386.rpm
Warning
Always check the signatures of binary distributions before
 installing. Imagine the havoc that could be caused if a maliciously
 hacked version of SSH was unwittingly used on your system.

Source distributions require more work to
 install, but allow many more configuration options. They can also be
 used on platforms for which no binary distributions are
 available.
To install from sources, perform the following general steps;
 we’ll cover specific details for OpenSSH and Tectia in subsequent
 sections.
4.1.1 Install the Prerequisites

Some SSH implementations rely on other software
 packages; these must be obtained and installed first. The precise
 requirements sometimes depend on the configuration options chosen:
 e.g., support for hardware authentication devices (smartcards) might
 require special libraries.

4.1.2 Obtain the Sources

Source code for open source SSH implementations can be
 downloaded from each project’s web site, and often a large number of
 mirror sites. Sources for commercial products are sometimes provided
 on the distribution media, or are available on vendors’
 password-protected web sites.

4.1.3 Verify the Signature

Sources should be distributed with a signature file that
 guarantees the distribution is genuine and has not been modified.
 [1.6.2] The precise
 steps used to verify the signature depend on how the source file was
 signed.
Always check the signature before installing sources. Otherwise,
 you can be fooled by a hacked version created by an untrusted third
 party. If you blindly install a source without checking the signature,
 you can seriously compromise your system’s security.

4.1.4 Extract the Source Files

Source distributions are almost invariably packaged in
 compressed tar format.[37] Filenames ending in .tar.gz (or sometimes .tgz) are compressed using gzip, and can be extracted using a command
 like:
 $ tar xzvf openssh-3.9p1.tar.gz
If your version of tar does
 not support the z option for running gunzip automatically, try:
 $ gunzip < openssh-3.9p1.tar.gz | tar xvf -
gzip (and gunzip) can be obtained, if you don’t
 already have them, from http://www.gzip.org/.
Similarly, filenames ending in .tar.bz2 are compressed using bzip2, and can be extracted using a command
 like:
 $ tar xjvf openssh-3.9p1.tar.bz2
If your version of tar does
 not support the j option for running bunzip2 automatically, try:
 $ bunzip2 < openssh-3.9p1.tar.bz2 | tar xvf -
bzip2 (and bunzip2) can be obtained from http://sources.redhat.com/bzip2.
In all cases, the result is a new subdirectory containing all
 files in the distribution. The name of the source directory is usually
 the same as the tar file, e.g.,
 openssh-3.9p1.
To list the contents of the tar file, without extracting, use the
 t option instead of x; for
 example:
 $ tar tzvf openssh-3.9p1.tar.gz

4.1.5 Perform Compile-Time Configuration

Most SSH implementations have dozens of
 configuration options you can set at compile time. It’s a good idea
 to carefully consider each one, instead of blindly accepting the
 defaults. In fact, the flexibility provided by this compile-time
 configuration process is a primary motivation for installing from
 source distributions.
Compile-time configuration is performed by running a script
 named configure that is usually
 found in the top-level source directory.[38] Roughly speaking, the configure script accomplishes two
 tasks:
	It examines the local system, setting various
 platform-specific and operating-system-specific options. For
 example, configure notices
 which header files and libraries are available and whether your C
 compiler is ANSI or not. It does this by compiling and running a
 series of carefully constructed, small test programs, examining
 system files, etc. This happens automatically in most cases, so
 you can just sit back and watch the script announce what it
 discovers as it runs.

	It includes or excludes certain features found in the SSH
 source code. For example, configure can keep or remove support for
 Kerberos authentication.

We’ll discuss only the second task, since it’s SSH-specific, and
 cover only the configuration options that are directly related to SSH
 or security. For example, we won’t cover options that relate to the
 compiler (e.g., whether warnings should be printed or suppressed) or
 operating system (e.g., whether particular Unix library functions
 should be used). To see the full set of configure options, use the
 command:
 $ configure --help
Also, read the installation documentation, which is often found
 in files named README and
 INSTALL in the source
 directory.
The behavior of SSH servers can be controlled at three levels.
 The first is compile-time configuration as discussed in this chapter.
 In addition, serverwide configuration (Chapter 5) controls global settings for
 a running SSH server, and per-account
 configuration (Chapter 8)
 controls settings for each user account accepting SSH connections.
 Figure 4-1 illustrates
 where compile-time configuration fits into the whole spectrum. We’ll
 remind you of this picture each time we introduce a new type of
 configuration.
Compile-time configuration affects both the SSH server and
 client programs. Changing the configuration requires recompiling and
 reinstalling, which is neither easy nor convenient, so for most
 aspects of server and client operation, it’s more appropriate to edit
 configuration files after installation. Nevertheless, there are some
 good reasons to use compile-time configuration:
	Some configuration options can only be set at compile
 time.

	Features that are disabled at compile time can’t be
 accidentally enabled by erroneous configuration files.
 Inflexibility can be an asset.
[image: SSH compile-time configuration (highlighted parts)]

Figure 4-1. SSH compile-time configuration (highlighted
 parts)

	Removing code for unused features improves security—you
 can’t be burned by security holes in code that you don’t
 compile!

	Similarly, code removal sometimes yields a performance
 advantage, since less memory and disk space is used.

The configure script accepts
 command-line flags, each beginning with a double dash (--), to control its
 actions. Flags are of two types:
	With/without flags
	Include a package during compilation. These flags begin
 with --with or --without. For
 example, support for the X Window System can be included using
 the flag --with-x and omitted using
 --without-x.

	Enable/disable flags
	Set the default behavior of SSH. These flags begin with
 --enable or --disable. For
 example, the X forwarding feature in Tectia is enabled by the
 flag --enable-X11-for warding or disabled with
 --disable-X11-forwarding. Some of these
 defaults can be overridden later by serverwide or per-account
 configuration.

Flags beginning with --with or
 --enable may optionally be followed by an equals sign
 and a string value, such as:
 --with-etcdir=/usr/local/etc
 --enable-X11-forwarding=no
Various string values are used, but the most common are
 yes and no. For a given package
 P, the flags --with-
 P and --with-
 P = yes are equivalent.
 The following table illustrates the relationship:
	If you write:
	It’s equivalent to:

	 --with-
 P =yes

	 --with-
 P

	 --with-
 P =no

	 --without-
 P

This next table shows the relationships for a given feature
 F :
	If you write:
	It’s equivalent to:

	 --enable-
 F =yes

	 --enable-
 F

	 --enable-
 F =no

	 --disable-
 F

In the sections that follow, we show many examples of
 configure with different command-line flags. Most
 examples demonstrate only one flag at a time, but keep in mind that
 other flags might be present on the command line. The proper way to
 run configure is just once, before compilation,
 with all desired flags on the same command line.
Specifying Options for the configure Script
Be careful when specifying configure
 options, or you might waste a lot of time. The
 configure script is not very smart, performing
 little or no sanity checking on its input. For example, if you
 provide an invalid value, configure can naively
 run for several minutes, handling 100 other configuration options,
 before finally reaching the bad value and dying. Now you have to run
 the script all over again.
Unrecognized command-line options are silently ignored, which
 makes typos especially dangerous. Be sure to check the messages
 produced by configure as it runs, and
 especially the configuration summary printed at the end to verify
 that your options were understood as you intended.
Don’t depend on default values, since they might differ among
 SSH implementations. For maximum security and control, explicitly
 specify all the options you care about when running
 configure.
The --no-create option causes the
 configure script to perform all of its checks,
 but not to create any output files in the build directory. This can
 be useful if you need to debug an unexpected interpretation of the
 other options.

The configure script uses directory
 information from its own location to embed pathnames into the
 Makefiles, header files, etc.,
 that it creates. Relying on the PATH environment variable to find the
 configure script is therefore a bad practice. If
 you choose to compile within the source directory, specify the current
 directory explicitly when you run
 configure:
 $./configure ...options...
Alternately, you can compile in a different directory, which is
 convenient if the source directory is used for multiple platforms. To
 do this, create a separate, empty build directory, and run
 configure there, specifying the source directory
 for the configure pathname:
 $ mkdir -p /elsewhere/build/ssh
 $ cd /elsewhere/build/ssh
 $ /somewhere/src/ssh/configure ...
In our examples, we’ll omit the directory components from the
 configure pathname, but remember that they should
 be included when you run the script.

4.1.6 Compile Everything

This is simple—just type:
 $ make
Compiling can take a while, depending on the speed of your
 system.
The make command should be run in the same
 directory where the configure script ran.
Tip
If make fails when you attempt to use a
 separate build directory (i.e., different from the source
 directory), then you might need to upgrade your version of the
 make program. A good choice is GNU
 make, available from http://www.gnu.org/software/make/.

4.1.7 Install the Programs and Configuration Files

You need root privileges to install files in system directories,
 which is the usual location:
 $ su
 Password: ********
 # make install

[37] Often called a “tarball.”

[38] The configure script is
 generated by a Free Software Foundation package called autoconf . You don’t need to know this to compile SSH, but if
 you’re interested in learning more about autoconf, visit the GNU web site at
 http://www.gnu.org/software/autoconf/.

Installing OpenSSH

OpenSSH is a free implementation of the SSH-1 and SSH-2 protocols,
 obtained from the OpenSSH web site:
OpenSSH is a very complete implementation and includes:
	Client programs for remote logins, remote command execution,
 and secure file copying across a network, all with many runtime
 options

	A highly configurable SSH server

	Command-line interfaces for all programs, facilitating
 scripting with standard Unix tools (shells, Perl, etc.)

	Numerous, selectable encryption algorithms and authentication
 mechanisms

	An SSH agent, which caches keys for ease of use

	Support for SOCKS proxies

	Support for TCP port forwarding and X11 forwarding

	History and logging features to aid in debugging

	Example configuration files /etc/ssh/ssh_config and /etc/ssh/sshd_config

Since it is developed by the OpenBSD Project, the main version of
 OpenSSH is specifically for the OpenBSD Unix operating system, and is in
 fact included in the base OpenBSD installation. As a separate but related effort, another team maintains
 a “portable” version that compiles on a variety of Unix flavors and
 tracks the main development effort. The supported platforms include
 Linux, Solaris AIX, IRIX, HP/UX, FreeBSD, NetBSD, and Windows via the
 Cygwin compatibility library. The portable version carries a “p” suffix.
 For example, 3.9p1 is the first release of the portable version of
 OpenSSH 3.9.
4.2.1 Prerequisites

OpenSSH depends on two other software packages:
 OpenSSL and zlib. OpenSSL is a cryptographic library available at http://www.openssl.org/; all the cryptography used in
 OpenSSH is pulled from OpenSSL. zlib is a library of data-compression
 routines, available at http://www.gzip.org/zlib/. These packages must be on
 your system before you build OpenSSH.

4.2.2 Downloading and Extracting the Files

Distributions are packaged in gzipped tar
 format and are extracted with the tar command in
 the usual way. [4.1.4]
 The results are stored in a directory with a name like openssh-3.9p1.
4.2.2.1 Verifying with GnuPG

Along with each OpenSSH distribution is a GnuPG (Gnu Privacy
 Guard) signature. The file openssh-3.9p1.tar.gz, for example, is
 accompanied by openssh-3.9p1.tar.gz.sig containing the
 GnuPG signature. To verify the file is genuine, you need GnuPG
 installed (http://www.gnupg.org/).
 Then:
	If you have not done so previously, obtain the GnuPG
 public key for the distribution, available from various
 keyservers on the Internet, such as:
	http://www.keyserver.net
	http://pgp.mit.edu

Add the key to your GnuPG key ring by running:
 $ gpg --keyserver keyserver --search-keys openssh
and following the instructions.

	Download both the distribution file (e.g., openssh-3.9p1.tar.gz) and the
 signature file (e.g., openssh-3.9p1.tar.gz.sig).

	Verify the signature with the command:
 $ gpg --verify openssh-3.9p1.tar.gz.sig openssh-3.9p1.tar.gz
If no warning messages are produced, the distribution file
 is genuine.

Always check the GnuPG signatures.

4.2.3 Building and Installing

Building and installing OpenSSH follows the familiar
 pattern for Unix open source software: configure,
 make, and make install.
 [4.1.6] Read the file
 INSTALL in the top-level source
 directory for full instructions.

4.2.4 Configuration Options

OpenSSH’s configure script understands a
 wide range of options to customize its operation. We cover the most
 significant ones.
4.2.4.1 File locations

 --prefix Determine where to install the software
The make install command installs OpenSSH
 in the /usr/local hierarchy by
 default, placing ssh into /usr/local/bin, sshd
 into /usr/local/sbin,
 configuration files into /usr/local/etc, and so forth. You can
 specify a different installation hierarchy, such as /usr, with:
 $ configure --prefix=/usr
Other options offer more fine-grained control over
 installation directories, such as --bindir for the
 executables normally placed in a bin directory, --sbindir
 for the sbin files,
 --sysconfdir for the etc files, --mandir for
 manpages, and so on: run configure - -help for the full list.
 --with-default-path=PATH Default server PATH
 --with-superuser-path=PATH Superuser's server PATH
You can set the default command search path for
 OpenSSH when attempting to run a subprogram, and an
 alternative path for the superuser.
 --with-ssl-dir=PATH Set path to OpenSSL installation
If OpenSSL isn’t installed in the usual place, /usr/local/ssl, use this option to
 indicate its location.
 --with-xauth=PATH Set path to xauth program
In OpenSSH, the default location of the
 xauth program for X authentication is a
 compile-time parameter.
 --with-pid-dir=PATH Specify location of ssh.pid file
The location of the OpenSSH pid file, where it stores the pid
 of the currently running daemon, can be changed via the
 --with-pid-dir option. The default is /var/run/sshd.pid.

4.2.4.2 Random number generation

 --with-random=FILE Read random bits from given file, normally /dev/urandom
 --with-rand-helper Use external program to generate randomness
OpenSSH normally relies on the OpenSSL library to provide a
 stream of random bits for its cryptographic needs. The OpenSSL
 pseudo-random number generator (PRNG) needs to be “seeded” to start
 with, and then periodically, with an initial segment of
 unpredictable bits (as truly random as is available). If the
 operating system supplies random bits, OpenSSL uses this to seed
 itself; for example, many Unix variants provide random bits via a
 device driver accessible through /dev/random or /dev/urandom.
If your platform doesn’t provide any randomness source, you
 need to build OpenSSH with:
 configure --with-rand-helper
OpenSSH then runs the external program
 ssh-rand-helper to seed the PRNG.
 --with-prngd-port=PORT Read entropy from PRNGD/EGD TCP localhost:PORT
 --with-prngd-socket=FILE Read entropy from PRNGD/EGD socket FILE (default= /var/run/egd-pool)
If your system is running the Entropy Gathering Daemon (EGD)
 package (http://www.lothar.com/tech/crypto/),
 you can use it with the --with-prngd-port and
 --with-prngd-socket options.
The ssh-rand-helper program uses a
 configurable set of commands that monitor changing aspects of system
 operation, mixing their output together to produce its random bits.
 You can control which commands are used and how, with the file
 /etc/ssh/ssh_prng_cmds.
 --with-egd-pool=FILE Read randomness from EGD pool FILE (default none)
If you install EGD as described earlier, use the
 --with-egd-pool option to have OpenSSH use EGD as
 its randomness source.

4.2.4.3 Networking

 --with-ipaddr-display Use IP address instead of hostname in $DISPLAY
In X forwarding, use DISPLAY values of the form
 192.168.10.1:10.0 instead of hostname:10.0.
 This option works around certain buggy X libraries that do weird
 things with the hostname version, using some sort of IPC mechanism
 for talking to the X server rather than TCP.
--with-ipv4-default Use IPv4 unless "-6" is given
--with-4in6 Check for and convert IPv4 in IPv6 mapped addresses
OpenSSH supports IPv6, the next-generation TCP/IP protocol
 suite that is still in the development and very early deployment
 stages on the Internet (the current version of IP is IPv4). The
 default configuration of OpenSSH attempts to use IPv6 where
 possible, and sometimes this results in problems. If you encounter
 errors mentioning “af=10” or “address family 10,” that’s IPv6, and
 you should try the -4 runtime option, or compiling
 --with-ipv4-default.

4.2.4.4 Authentication

--with-pam Enable PAM support
--without-pam Disable PAM support
PAM, the Pluggable Authentication Modules system, is a generic
 framework for authentication, authorization, and accounting (AAA).
 The idea is that programs call PAM to perform AAA functions, rather
 than implementing these functions themselves. This allows the
 sysadmin to configure individual programs to use various kinds of
 authentication, apply account restrictions, do logging, etc., via
 dynamically loaded libraries. PAM-aware services can be configured
 to do almost anything in the way of AAA, in a consistent manner and
 without having to change the services themselves. See the manpage
 for pam or visit http://www.kernel.org/pub/linux/libs/pam/ for more
 information on PAM.
In order for OpenSSH to use PAM, the support must be compiled
 in. PAM is very common these days, so most OpenSSH binary packages
 include support; if your’s doesn’t, use the
 --with-pam option. Actually,
 configure detects PAM if you have it, so the
 option is often not necessary.
In addition, you must set the UsePAM configuration keyword in the SSH
 server:
 # sshd_config
 UsePAM yes
(This is off by default.) Setting UsePAM causes sshd to
 do three separate things:
	Enable the PAM “device” for keyboard-interactive
 authentication [5.4.6]

	Verify password authentication using PAM

	Execute all system PAM modules configured for
 ssh (usually found in /etc/pam.d/ssh)

Note that the execution action is a very powerful feature; you
 can customize sshd’s behavior in many ways with
 PAM modules. Look on your system for the PAM modules available and
 their documentation, e.g., /lib/security and /usr/share/doc/libpam-doc.
Generally, if a program uses PAM, some host configuration is
 necessary to describe how PAM should behave for that program. The
 PAM configuration files are usually in the directory /etc/pam.d, or in the single file
 /etc/pam.conf. Most OpenSSH
 packages automatically add the requisite PAM configuration for
 sshd; otherwise, you’ll need to do it, usually
 by copying the appropriate sshd.pam file from the contrib directory to /etc/pam.d/sshd. Samples for various
 operating systems are included in the contrib directory of the OpenSSH source.
 Note that you don’t need to restart sshd if you
 change its PAM configuration; the configuration files are checked on
 every use of PAM.
 --with-md5-passwords Enable use of MD5 passwords
 --without-shadow Disable shadow password support
These options control OpenSSH’s treatment of the Unix account
 database (a.k.a. passwd map). They are relevant only if OpenSSH
 isn’t using PAM, since otherwise PAM deals with reading the account
 information, not the OpenSSH code proper.
Enable --with-md5-passwords if your system
 uses MD5 instead of the traditional crypt
 function to hash passwords, and you are not using PAM.
“Shadow passwords” refers to the practice of keeping the
 hashed password in a restricted file, /etc/shadow (/etc/passwd must be world-readable). Use
 --without-shadow to suppress reading of the
 /etc/shadow file, should it be
 necessary.
 --with-kerberos5=PATH Enable Kerberos-5 support
 --with-skey Enable S/Key support
The --with-kerberos5 option installs Kerberos
 support [11.4],
 and the --with-skey option
 enables support for the S/Key one-time password system for password
 authentication. [5.4.5]

4.2.4.5 Access control

 --with-tcp-wrappers Include TCP-wrappers support
 --without-tcp-wrappers Remove TCP-wrappers support
These options include support for TCP-wrappers, providing the
 path to the wrapper library, libwrap.a. If the library and header file
 for TCP-wrappers are not installed in the standard locations, you
 can provide a pathname as an argument. The pathname can either be a
 build directory that contains both the library and header
 file:
 $ configure --with-tcp-wrappers=/var/tmp/build/tcp-wrappers
or it can be an installation directory with lib and include subdirectories:
 $ configure --with-tcp-wrappers=/usr/local/tcp-wrappers
If your Unix installation doesn’t include the TCP-wrappers
 library, you can retrieve and compile it yourself fromftp://ftp.porcupine.org/pub/security/index.html.For
 more information on TCP-wrappers, read the manpages for
 tcpd and hosts_access.

Installing Tectia

Tectia is a commercial implementation of the SSH-2 protocol, with
 some limited support for compatibility with the older (and deprecated)
 SSH-1 protocol. Binary distributions can be downloaded for evaluation
 (with a limited license that is valid for 30 days) from the SSH
 Communications Security web site:
	http://www.ssh.com/

Fully licensed Tectia products, with distribution media and
 documentation, can be purchased from the same web site.
Tectia is designed for deployment across large corporate networks,
 and offers tremendous flexibility, power, and reliability. The products
 include:
	Client programs for remote logins, remote command execution,
 and secure file copying across a network, all with many runtime
 options

	A highly configurable SSH server

	Command-line interfaces for all programs, facilitating
 scripting with standard Unix tools (shells, Perl, etc.)

	Numerous, selectable encryption algorithms and authentication
 mechanisms

	An SSH agent, which caches keys for ease of use

	Support for SOCKS proxies

	Support for TCP port forwarding and X11 forwarding

	History and logging features to aid in debugging

	FIPS 140-2 certification for U.S. government
 applications

4.3.1 Prerequisites

Tectia is fully self contained, and requires no other
 packages if installed on one of the supported platforms. Some
 configuration options require you to install other software packages,
 however; these are discussed below.

4.3.2 Obtaining and Extracting the Files

Binary distributions are packaged according to the target
 platform, and can be installed according to the documentation provided
 for each system.
Source distributions are packaged in gzipped
 tar format. For Version 4.1 and earlier, the
 sources are included with the distribution media for the Tectia Server
 for Unix product. Starting with Version 4.2, the sources are available
 only for commercial licenses and only upon request, via a protected
 area of the SSH Communications Security web site. No sources are
 provided for the Windows products.
To extract the files, use the tar command
 in the usual way. [4.1.4] The results are stored
 in a directory with a name like ssh-4.2.1.1-commercial.

4.3.3 Verifying with md5sum

Binary and source distribution files are protected from
 tampering by MD5 message digests. Each file is accompanied by a
 separate file with an extra .md5
 suffix containing the digest.
To verify the integrity of the files, use the
 md5sum command to compute the digest, and compare
 the result to the contents of the corresponding .md5 file:
 $ md5sum ssh-4.1.0.34-commercial.tar.gz
 0c7be85eb79e80e893d4c258df8443f0 ssh-4.1.0.34-commercial.tar.gz
 $ cat ssh-4.1.0.34-commercial.tar.gz.md5
 0c7be85eb79e80e893d4c258df8443f0
Here’s a brash one-liner for verification in a single
 step:
 $ md5sum ssh-4.1.0.34-1.i386.rpm | cut -c 1-32 | cmp - ssh-4.1.0.34-1.i386.rpm.md5
If the command succeeds silently, the message digests are
 equal.
Unfortunately, Tectia doesn’t sign installers for binary package
 formats (like RPM) that support embedded signatures. MD5 message
 digests are provided for these installers, however.

4.3.4 Building and Installing

To build and install Tectia, use the standard steps that we have described
 previously: configure, make,
 and make install. [4.1.6] The following files
 are installed:
	The server program sshd2, and a link to
 it called sshd.

	The secure FTP server program
 sftp-server2, and a link to it called
 sftp-server.

	The clients ssh2,
 scp2, and sftp2, and
 links to them called ssh,
 scp, and sftp,
 respectively.

	Support programs ssh-add2,
 ssh-agent2,
 ssh-askpass2,
 ssh-keygen2, ssh-probe2,
 and ssh-signer2, and links to them called
 ssh-add, ssh-agent,
 ssh-askpass, ssh-keygen,
 ssh-probe, and
 ssh-signer, respectively.

	The additional support programs
 sshd-check-conf and
 ssh-dummy-shell.

	The standard crypto library libsshcrypto-std and the FIPS-compliant
 library libsshcrypto-fips if
 supported for the target system. The library filenames will have a
 platform-dependent suffix, e.g., libsshcrypto.a or libsshcrypto.so.

	The ssh-crypto-library-chooser script
 used to switch between standard and FIPS mode. [5.3.5]

	The password change plugin
 ssh-passwd-plugin [5.4.2.3] and (if
 configured) the SecurID plugins
 ssh-securidv4-plugin and
 ssh-securidv5-plugin. [5.4.5.2]

	A newly generated host key pair, created by
 ssh-keygen2 and placed by default into
 /etc/ssh2/hostkey (private
 key) and /etc/ssh2/hostkey.pub (public
 key).

	The server configuration file, /etc/ssh2/sshd2_config by default [5.2.1], plus sample
 subconfiguration files in /etc/ssh2/subconfig.

	The client configuration file, /etc/ssh2/ssh2_config by default. [7.1.2]

	The password plugin configuration file, /etc/ssh2/plugin/passwd_config. [5.4.2.3]

	Manpages for the various programs.

4.3.5 Configuration Options

Tectia’s configure script
 understands a wide variety of options to customize its operation. We
 cover the most significant ones.
4.3.5.1 File locations and permission

 --prefix Determine where to install the software
The make install command installs Tectia
 in the /usr/local directory by
 default. Programs that are normally run by users (e.g.,
 ssh) are installed in the bin subdirectory, programs run by
 sysadmins (e.g., sshd) in the sbin subdirectory, manpages in the
 man subdirectory, etc. Use the
 --prefix option to specify a different parent
 directory, such as /usr/local/tectia:
 $ configure --prefix=/usr/local/tectia
If your system uses an unusual layout for specific
 subdirectories, options such as --bindir,
 --sbindir, and --mandir allow more
 precise control over the location of individual components. The
 configure --help command lists all of the
 options for the subdirectories.
 --with-foreign-etcdir Specify directory for system configuration files
 --with-etcdir Specify directory for Tectia configuration files
By default, Tectia assumes that the standard location for
 system configuration files is the /etc directory, and installs its own
 configuration files in a subdirectory, /etc/ssh2. To change the system
 configuration directory (continuing to use an ssh2 subdirectory for Tectia’s files by
 default), use the --with-foreign-etcdir
 option:
 $ configure --with-foreign-etcdir=/usr/local/etc
To independently change Tectia’s configuration directory, use
 the --with-etcdir option:
 $ configure --with-etcdir=/usr/local/etc/ssh2
 --with-piddir Specify directory for pid files
The Tectia server stores its process ID (pid) in a file to
 facilitate sending signals. [5.3.1.3] By default, the
 pid file is created in the /var/run directory. Use the
 --with-piddir option to change this
 directory:
 $ configure --with-piddir=/var/local/pid
Tip
The --with-foreign-etcdir,
 --with-etcdir, and --with-piddir
 options are unusual because there are no corresponding “--without”
 options.

 --enable-suid-ssh-signer Install ssh-signer setuid root
 --disable-suid-ssh-signer Install ssh-signer unprivileged
Tectia uses a separate ssh-signer program
 to sign authentication packets for trusted-host authentication.
 Normally this program is installed with setuid root permissions so
 it can read the local host key file, which is readable only by the
 superuser.
You can install the program without setuid root permissions to
 eliminate possible security holes, but then hostbased authentication
 fails. [3.4.3.6]

4.3.5.2 Random number generation

 --with-ansi-rng Use ANSI X9.62 random number generator
 --without-ansi-rng Use SSH random number generator
Tectia uses its own random number generator by default. The
 --with-ansi-rng option configures Tectia to use the
 ANSI X9.62 random number generator (a.k.a. the Elliptic Curve
 Digital Signature Algorithm, or ECDSA) instead. This might be
 required for FIPS-standard compliance in some deployments.

4.3.5.3 Networking

 --with-ipv6 Include IPv6 support
 --without-ipv6 Remove IPv6 support
Tectia supports IPv6, the next generation of IP protocols, in
 addition to IPv4, the current standard. You can remove IPv6 support
 if you don’t need it or if you experience problems with it on your
 operating system.
 --enable-tcp-nodelay Enable Nagle Algorithm
 --disable-tcp-nodelay Disable Nagle Algorithm
If you plan to operate Tectia over a wide-area network as
 opposed to a speedy Ethernet connection, you might consider
 disabling TCP/IP’s NODELAY feature, a.k.a. the Nagle Algorithm, for
 SSH connections. The Nagle Algorithm reduces the number of TCP
 segments sent with very small amounts of data, such as the small
 byte sequences of a terminal session. You can disable it at compile
 time with the --disable-tcp-nodelay flag.
 Alternatively, you can enable or disable it during serverwide
 configuration using the NoDelay
 configuration keyword. [5.3.3.9]
 --with-libwrap Include TCP-wrappers support
 --without-libwrap Remove TCP-wrappers support
TCP-wrappers is a security feature for applying access control
 to incoming TCP connections based on their source address. [9.5] For example,
 TCP-wrappers can verify the identity of a connecting host by
 performing DNS lookups, or it can reject connections from given
 addresses, address ranges, or DNS domains. Although Tectia already
 includes some of this kind of control with features such as AllowHosts, DenyHosts, etc., TCP-wrappers is more
 complete. It allows some controls not currently implemented in any
 SSH version, such as restricting the source of forwarded X
 connections.
Tectia includes support for TCP-wrappers if the flag
 --with-libwrap is given at compile time. If the
 TCP-wrappers library and header file were not installed in the
 standard locations, provide a pathname as an argument. The pathname
 can refer to the library in a build directory:
 $ configure --with-libwrap=/var/tmp/build/tcp-wrappers/libwrap.a
in which case the tcpd.h
 header file is assumed to be located in the same directory.
 Alternately, the pathname can refer to the directory where the
 library was installed:
 $ configure --with-libwrap=/usr/local/lib
in which case the tcpd.h
 header file is assumed to be in a directory with its last component
 replaced by “include” (for the previous command, /usr/local/include).
If your Unix installation doesn’t include the TCP-wrappers
 library, you can retrieve and compile it yourself from:
	ftp://ftp.porcupine.org/pub/security/index.html

For more information on TCP-wrappers, read the manpages for
 tcpd and hosts_access.
 --with-ssh-connection-limit Specify maximum number of simultaneous connections
You can instruct Tectia to limit the maximum number of
 simultaneous connections it supports. By default, it accepts an
 unlimited number of connections, but if you want to conserve
 resources on the server machine, you can set a limit. The
 appropriate flag is --with-ssh-connection-limit
 with a nonnegative integer argument; for example:
 $ configure --with-ssh-connection-limit=50
You can override this value at runtime with the serverwide
 configuration keyword MaxConnections. [5.3.3.7]

4.3.5.4 X Window System

 --with-x Include X Window System support
 --without-x Remove X Window System support
If you plan to use SSH to communicate between hosts running
 the X Window System, make sure to include support for X at compile
 time. (By default, it is included.) Conversely, if you never have
 anything to do with X, you can leave out the support, thereby saving
 some memory and disk space. Few people have a strong need to
 eliminate X support.
 --enable-X11-forwarding Enable X forwarding
 --disable-X11-forwarding Disable X forwarding
These options enable or disable support for X forwarding,
 which allows X applications opened on the SSH server machine to
 appear on the SSH client machine’s display. [9.4] These flags set Tectia’s
 default behavior only. X forwarding can be further enabled or
 disabled through serverwide configuration using the ForwardX11 configuration keyword. [9.4.3]
 --with-x11-security Use the X SECURITY extension
 --without-x11-security Don't use the X SECURITY extension
By default, Tectia uses the X SECURITY extension (if supported
 by your X installation) to control the level of display access
 granted to X clients through forwarded connections. The
 --without-x11-security option causes Tectia to
 treat all X clients as trusted, which grants full access to the
 display. Trusted X clients can use their display access to capture
 information from other clients, so you should carefully consider the
 ramifications of disabling the X SECURITY extension.

4.3.5.5 TCP port forwarding

 --enable-tcp-port-forwarding Enable port-forwarding support
 --disable-tcp-port-forwarding Disable port-forwarding support
Port forwarding enables Tectia to encrypt the data passing
 through any TCP/IP-based program. [9.2] This feature can be
 disabled at compile time if desired. X Window forwarding isn’t
 affected by these general port-forwarding flags.

4.3.5.6 Encryption

 --with-rsa Include support for RSA encryption
 --without-rsa Remove support for RSA encryption
By default, Tectia includes an implementation of the RSA
 encryption algorithm for public-key authentication. [3.8.1.1] You can remove
 support for RSA if you’ll never need it. The option was formerly
 used to avoid infringing a patent that expired in 2000. Now that the
 algorithm is in the public domain, it is rarely desirable to remove
 RSA support.

4.3.5.7 Authentication

 --with-passwd-plugin Include support for password-change plugins
 --without-passwd-plugin Remove support for password-change plugins
Tectia can run a separate password-change plug-in program to
 manage the process of changing expired passwords during
 authentication. [5.4.2.3] The
 configuration option --with-passwd-plugin includes
 support for this mechanism in the server, and also builds a generic
 plugin named ssh-passwd-plugin.
 The option --without-passwd-plugin can be used to
 remove these features if they are not needed.
 --enable-server-kbd-interactive Include support for keyboard-interactive authentication in the server
 --disable-server-kbd-interactive Remove support for keyboard-interactive authentication from the server
 --enable-client-kbd-interactive Include support for keyboard-interactive authentication in the client
 --disable-client-kbd-interactive Remove support for keyboard-interactive authentication from the client
Keyboard-interactive authentication is an extensible,
 general-purpose mechanism for implementing a variety of
 authentication techniques that require interaction with the remote
 user. Support for keyboard-interactive authentication is included by
 default, but it can be removed from the Tectia server and client
 using separate configure options.
Note that other authentication techniques such as SecurID and
 PAM are based on keyboard-interactive authentication, so if you
 remove support for it, these techniques will not work.
 --with-serversecurid Include support for SecurID authentication
SecurID is an authentication mechanism in which users carry
 electronic cards, approximately the size of a credit card, that
 display randomly changing integers. During authentication, the user
 is prompted to type whatever number appears on the card at the time,
 in addition to a username and password.
To compile Tectia with SecurID support, use the flag
 --with-serversecurid, providing the path to the
 directory containing SecurID’s header files and libraries:
 $ configure --with-serversecurid=/usr/local/ace
SecurIDv5 is the most recent version at press time.
 --enable-serversecurid-submethod Include SecurID support in the server
 --disable-serversecurid-submethod Use an external plugin for SecurID support
By default, SecurID support is built into the Tectia server,
 and is used as a keyboard-interactive submethod. Alternately,
 SecurID can be supported by an external program,
 ssh-securidv5-plugin. [5.4.5.2]
--with-serversecuridv4
Include support for SecurIDv4 plugin
 authentication
Support for the older SecurIDv4 can be included by specifying
 the --with-serversecuridv4 option. The SecurIDv4
 installation directory must be provided as an argument:
 $ configure --with-serversecuridv4=/usr/local/ace4

 --enable-legacy-securid Include support for old SecurID clients
Very old SecurID clients can be supported by a legacy securid-1@ssh.com keyboard-interactive
 submethod.
 --with-daemonpam Include support for PAM authentication in the server
 --without-daemonpam Remove support for PAM authentication from the server
 --with-clientpam Include support for PAM authentication in the client
 --without-clientpam Remove support for PAM authentication from the client
Normally PAM support is included for both the SSH server and
 client if it is provided by the target system. This support can be
 removed using separate options for the server or client, but it is
 rarely desirable to do so.
 --with-daemon-pam-service-name Specify PAM service name
By default, Tectia uses “sshd2” as the PAM service name: this
 refers to Tectia in the PAM configuration files. You can change the
 name by providing it as an argument for the
 --with-daemon-pam-service-name option:
 $ configure --with-daemon-pam-service-name=tectia

 --with-pgp Include support for PGP authentication
 --without-pgp Remove support for PGP authentication
Pretty Good Privacy, or PGP, is a popular encryption and
 authentication program available for many computing platforms. [1.6.2] Tectia optionally
 authenticates users based on their PGP keys, so long as those keys
 comply with the OpenPGP standard (RFC-2440, “OpenPGP Message
 Format”; some PGP versions, especially older ones, might not be
 OpenPGP-compliant). PGP support is included by default. [6.5]
 --with-kerberos5 Include support for Kerberos-5 authentication
 --without-kerberos5 Remove support for Kerberos-5 authentication
Kerberos is an authentication mechanism that passes around
 tickets, small sequences of bytes with limited lifetimes, in place
 of user passwords. [11.5.2.2] The
 configuration flags --with-kerberos5 and
 --without-kerberos5 control whether Kerberos
 support is included or excluded during the build. Tectia’s
 Kerberos-5 support is experimental, and is not included by
 default.
If Kerberos was installed in a nonstandard location, the
 installation directory can be provided as an argument:
 $ configure --with-kerberos5=/usr/local/kerberos5

 --with-gssapi Include support for GSSAPI authentication
 --without-gssapi Remove support for GSSAPI authentication
GSS (Generic Security Services) is an emerging standard that
 facilitates negotiation of security parameters among a wide variety
 of platforms. [11.5.2.2] Tectia can be
 compiled to use GSSAPI libraries and header files to support this
 standard. If the GSSAPI installation is in a nonstandard location,
 specify the directory (with lib
 and include subdirectories) as
 an argument for the --with-gssapi option:
 $ configure --with-gssapi=/usr/local/gssapi
 --enable-gssapi-dynamic Enable dynamic loading of GSSAPI libraries
 --disable-gssapi-dynamic Force static linking of GSSAPI libraries
By default, GSSAPI libraries are linked statically into the
 SSH server and client. The libraries can optionally be loaded
 dynamically at runtime: this allows new security mechanisms to be
 added by replacing the libraries, without recompiling Tectia.

4.3.5.8 SOCKS proxies

 --with-socks-server Specify default SOCKS server
SOCKS is a network protocol for proxies. A
 proxy is a software component that masquerades
 as another component to hide or protect it. For example, suppose a
 company permits its employees to surf the Web but doesn’t want the
 hostnames of its internal machines to be exposed outside the
 company. A proxy server can be inserted between the internal network
 and the Internet so that all web requests appear to be coming from
 the proxy. In addition, a proxy can prevent unwanted transmissions
 from entering the internal network, acting as a firewall.
Tectia supports both Versions 4 and 5 of the SOCKS
 protocol,[39] and no external library or special configuration
 options are needed. The SOCKS feature is controlled by the SocksServer client configuration keyword.
 [7.4.7] In addition to
 the usual methods of setting this in a configuration file or on the
 command line with -o, you can also set it using the
 SSH_SOCKS_SERVER environment
 variable.
SocksServer has an empty
 default value, causing Tectia to assume there’s no SOCKS server. The
 configuration flag --with-socks-server gives
 nonempty default value to this parameter, allowing you to set up a
 Tectia installation that assumes the presence of a SOCKS server.
 Note that this isn’t the same as using the SocksServer keyword in the global client
 configuration file, because the keyword overrides the environment
 variable. If you use the compilation option, users can specify an
 alternate SOCKS server with SSH_SOCKS_SERVER; if you use the global
 file, they can’t (although they can still override using their own
 SocksServer directive).
See http://www.socks.permeo.com/ for
 more information on SOCKS. [7.4.7]

4.3.5.9 Debugging

 --enable-debug Enable light debugging
 --disable-debug Disable light debugging
 --enable-debug-heavy Enable heavy debugging
 --disable-debug-heavy Disable heavy debugging
Tectia programs (both the server and client) produce detailed
 debugging output on demand. [5.9] If desired, Tectia can
 be compiled with or without two levels of debugging output. Without
 the debugging code, the programs might experience a slight increase
 in performance, but with it, the programs are easier to maintain. We
 recommend including at least some debugging code, because you never
 know when you’ll need to diagnose a problem.
“Light” and “heavy” debugging are two levels of debugging that
 you can specify in the source code. Light debugging output is
 controlled by the configure flags
 --enable-debug and --disable-debug
 (the default). Heavy debugging output is controlled by the
 configure flags
 --enable-debug-heavy and
 --disable-debug-heavy (the default). Heavy
 debugging automatically enables light debugging. We recommend
 turning on heavy debugging or else the messages will contain too
 little information to be useful.
 --enable-efence Use the Electric Fence memory allocation debugger
Tectia’s memory allocations can be tracked by Electric Fence,
 a freely distributable memory allocation debugger created by Bruce
 Perens. You must have Electric Fence installed on the server machine
 in order for this to work.
The --enable-efenceflag causes Tectia’s
 programs to be linked with the Electric Fence library,
 libefence.a, which provides instrumented
 versions of malloc(), free(), and other memory-related
 functions. Electric Fence is available from http://www.perens.com/FreeSoftware/.
 --with-purify Use Rational Purify to track memory accesses
Rational Purify is a commercial product that supports tracking
 of memory accesses at runtime. It is able to detect memory leaks and
 corruption due to buffer overruns, etc.
The --with-purify flag includes support for
 Rational Purify. When the Tectia programs run, they produce a report
 about memory activity that can be analyzed after each program
 exits.
Rational Purify is available from http://www.ibm.com/software/awdtools/purify/.

4.3.5.10 SSH-1 protocol compatibility

 --with-internal-ssh1-compat Include SSH-1 protocol support in the client
 --without-internal-ssh1-compat Remove SSH-1 protocol support from the client
The Tectia SSH client can support the older (and deprecated)
 SSH-1 protocol by running a separate client program named
 ssh1, which must be installed separately. [5.10] By default, the Tectia
 SSH client also supports SSH-1 directly using its own
 implementation. If you don’t use the SSH-1 protocol, use the
 --without-internal-ssh1-compat option to remove the
 internal SSH-1 support and save some space in the client.
 --with-ssh-agent1-compat Include SSH-1 protocol support in the agent
 --without-ssh-agent1-compat Remove SSH-1 protocol support from the agent
SSH agents [2.5]
 that use the protocols SSH-1 and SSH-2 are normally not compatible.
 That is, each version of the agent can’t store keys or forward
 connections from the other. However, the Tectia agent has an
 optional feature to serve SSH-1 protocol applications, if it is run
 with the option -1 (that’s a one, not a lowercase
 L).
SSH-1 protocol support is included in the Tectia agent by
 default, but you can use the
 --without-ssh-agent1-compat option to remove it if
 you never plan to use SSH-1 clients.
RSA support must be included (either by default, or using the
 --with-rsa configure option) for the agent to support
 the SSH-1 protocol.

4.3.6 SSH-1 Compatibility Support for Tectia

The Tectia server only supports the SSH-2 protocol, but
 it can be configured to run a separate SSH-1 server to support clients
 that are still using the older protocol. [5.10] The Tectia client can
 similarly run a separate SSH-1 client program, or it can use its own
 internal SSH-1 implementation.
If separate SSH-1 programs are used, they must be obtained and
 installed. OpenSSH is a good choice for SSH-1 client support, but for
 SSH-1 server support, only versions earlier than 3.7 can be
 used.
An alternative is the latest SSH1 implementation, which is quite
 old and (even worse) is no longer being actively maintained, but at
 least is designed to be integrated seamlessly with Tectia.
To install SSH1, download the tar file and associated signature file from
 ftp://ftp.ssh.com/pub/ssh/. At press time, these
 were ssh-1.2.33.tar.gz and
 ssh-1.2.33.tar.gz.sig,
 respectively.
To verify the signature, you also need to download the key, in
 the file SSH1-DISTRIBUTION-KEY-RSA.asc. Import the
 key into your key ring:
 $ gpg --import SSH1-DISTRIBUTION-KEY-RSA.asc
Then check the integrity of the tar file:
 $ gpg --verify ssh-1.2.33.tar.gz.sig
Extract the files from the tar file in the usual way to create a source
 directory named ssh-1.2.33. [4.1.4]
Run the configure script. We won’t go over
 its options because they are obsolete for the most part, and because
 fancy features are presumably not needed (or even desirable) if SSH1
 is only going to be employed as part of a transition strategy until
 older SSH-1 clients can be upgraded to use SSH-2. You can, however,
 remove unneeded features to prevent them from being exploited if any
 security holes are lurking in the code (which becomes increasingly
 likely as the software continues to age). As usual, see the output
 from configure --help for details.
You can install SSH1 in the same directory as Tectia using the
 same configure --prefix option for each. [4.1.5] Finally, compile
 everything with make, and install (typically as
 root) with make install. [4.1.6] The following files
 are installed:
	The server program, sshd1, and a link
 to it called sshd

	The clients ssh1 and
 scp1, and respective links called
 ssh and scp

	The symbolic link slogin1, pointing to
 ssh1, and likewise a link called
 slogin pointing to
 slogin1

	Support programs ssh-add1,
 ssh-agent1,
 ssh-askpass1, and
 ssh-keygen1, and links to them called
 ssh-add, ssh-agent,
 ssh-askpass, and
 ssh-keygen, respectively

	The support program
 make-ssh-known-hosts

	A newly generated host key pair, created by
 ssh-keygen1 and placed by default into
 /etc/ssh/ssh_host_key
 (private key) and /etc/ssh/ssh_host_key.pub (public
 key)

	The server configuration file, /etc/ssh/sshd_config by default [5.2.1]

	The client configuration file, /etc/ssh/ssh_config by default [7.1.2]

	Manpages for the various programs

Notice that SSH1 and Tectia create some files with the same
 names, such as the link sshd. What happens if you
 install both SSH1 and Tectia on the same machine? Happily, everything
 works out, even if you install the two products into the same
 bin and etc directories, provided you install the
 most recent versions. Each of their Makefiles is constructed to check for the
 existence of the other version and respond appropriately.[40]
Specifically, both SSH1 and Tectia create symbolic links called
 sshd, ssh,
 scp, ssh-add,
 ssh-agent, ssh-askpass, and
 ssh-keygen. If you install SSH1 and then Tectia,
 the Tectia Makefile renames these
 files by appending the suffix .old and then creates new symbolic links
 pointing to its own Tectia programs. For instance,
 ssh originally points to
 ssh1; after installing Tectia,
 ssh points to ssh2, and
 ssh.old points to ssh1. This
 is appropriate since Tectia is considered a later version than
 SSH1.
On the other hand, if you install Tectia and then SSH1, the SSH1
 Makefile leaves Tectia’s links
 untouched. As a result, ssh remains pointing to
 ssh2, and no link points to
 ssh1. This is consistent with the practice of
 installing SSH1 to allow Tectia to provide fallback SSH1
 support.
You need to set up the SSH1 configuration files in addition to
 the Tectia configuration files, and then keep them synchronized. [5.10.1]

[39] Except for SOCKS5 authentication methods.

[40] Installers for Tectia binary distributions behave the same
 way when integrating with SSH1 installations.

Software Inventory

 Table 4-1
 provides a reference to the many files and programs installed with
 SSH.
Table 4-1. Software inventory
	Component
	OpenSSH
	Tectia

	Server config
	 /etc/ssh/sshd_config
	 /etc/ssh2/sshd2_config

	Global client config
	 /etc/ssh/ssh_config
	 /etc/ssh2/ssh2_config

	Host private key
	 /etc/ssh/ssh_host_dsa_key

	 /etc/ssh2/hostkey

	Host public key
	 /etc/ssh/ssh_host_dsa_key.pub

	 /etc/ssh2/hostkey.pub

	Client host keys
	 /etc/ssh/ssh_known_hosts

 ~/.ssh/known_hosts

	 /etc/ssh2/hostkeys

 ~/.ssh2/hostkeys/*

	Remote host keys
	 ~/.ssh/known_hosts
	 ~/.ssh2/knownhosts/*

	 libwrap control
 files
	 /etc/hosts.allow

 /etc/hosts.deny

	 /etc/hosts.allow

 /etc/hosts.deny

	Authorization for login via public
 key
	 ~/.ssh/authorized_keys

	 ~/.ssh2/authorization

	Authorization for login via trusted
 host
	 /etc/hosts.equiv

 /etc/shosts.equiv

 ~/.shosts

 ~/.rhosts

	 /etc/hosts.equiv

 /etc/shosts.equiv

 ~/.shosts

 ~/.rhosts

	Default key pair for public-key
 authentication
	 SSH-2/RSA:
 ~/.ssh/id_rsa{.pub}

 SSH-2/DSA:

 ~/.ssh/id_dsa{.pub}

	 (No
 default)

	Random seed
	 ~/.ssh/prng_seed [a]
	 ~/.ssh2/random_seed

 /etc/ssh2/random_seed

	Commands for generating
 randomness
	 /etc/ssh/ssh_prng_cmds

	 -

	Terminal client
	 ssh
 slogin link to ssh
	 ssh2 [b]

	Secure file copy client
	 scp
	 scp2 b

	Signer program
	 ssh-keysign
	 ssh-signer2
 b

	
 sftp2/scp2
 server
	 sftp-server
	 sftp-server2
 b

	Authentication agent
	 ssh-agent
	 ssh-agent2
 b

	Key generator
	 ssh-keygen
	 ssh-keygen2
 b

	Key add/remove
	 ssh-add
	 ssh-add2 b

	Find SSH servers
	 ssh-keyscan
	 ssh-probe2
 b

	Get passphrase via terminal or
 X
	 ssh-askpass
 x11-ssh-askpass
	 ssh-askpass2
 b

	Server program
	 sshd
	 sshd2 b

	[a] Present only if using OpenSSH’s internal
 entropy-gathering mechanism (i.e., no /dev/random or equivalent on
 system).

[b] A symbolic link without the “2” suffix is also
 installed.

Replacing r-Commands with SSH

 SSH and the r-commands (rsh,
 rcp, rlogin) can coexist
 peacefully on the same machine. Since the r-commands are insecure,
 however, system administrators should replace them by their SSH
 counterparts (ssh, scp,
 slogin). This replacement has two parts:
	Installing SSH and removing rsh,
 rcp, and rlogin; requires
 some user retraining

	Modifying other programs or scripts that invoke the
 r-commands

The r-commands are so similar to their analogous SSH commands, you
 might be tempted to rename the SSH commands as the r-commands (e.g.,
 rename ssh as rsh, etc.).
 After all, common commands like these are practically identical in
 syntax:
 $ rsh -l jones remote.example.com
 $ ssh -l jones remote.example.com

 $ rcp myfile remote.example.com:
 $ scp myfile remote.example.com:
Why not just rename? Well, the two sets of programs are
 incompatible in some ways. For example, some old versions of
 rcp use a different syntax for specifying remote
 filenames.
In the following sections, we discuss some common Unix programs
 that invoke the r-commands and how to adapt them to use SSH
 instead.
4.5.1 Concurrent Versions System (CVS)

CVS is a version-control system. It
 maintains a history of changes to sets of files, and helps coordinate
 the work of multiple people on the same files. It can use
 rsh to connect to repositories on remote hosts.
 For example, when you check in a new version of a file:
 $ cvs commit myfile
if the repository is located on a remote machine, CVS can invoke
 rsh to access the remote repository. For a more
 secure solution, CVS can run ssh instead of
 rsh. Of course, the remote machine must be
 running an SSH server, and if you use public-key authentication, your
 remote account must contain your key in the appropriate
 place.[41]
To make CVS use ssh, simply set the
 environment variable CVS_RSH to
 contain the path to your ssh client:
 # Bourne shell family
 # Put in ~/.profile to make permanent.
 CVS_RSH=/usr/bin/ssh
 export CVS_RSH

 # C shell family
 # Put in ~/.login to make permanent.
 setenv CVS_RSH /usr/bin/ssh
This approach has one problem: each time you check in a file,
 the logger’s name is the remote account owner, which might not be your
 own. The problem is solved by manually setting the remote LOGNAME variable using the environment option in your remote authorized_keys file. [8.2.5.1]

4.5.2 GNU Emacs

The Emacs variable remote-shell-program contains the path to
 any desired program for invoking a remote shell. Simply redefine it to
 be the full path to your ssh executable. Also,
 the rlogin package, rlogin.el, defines a variable rlogin-program you can redefine to use
 slogin.

4.5.3 Pine

The Pine mail reader uses rsh to invoke
 mail-server software on remote machines. For example, it might invoke
 the IMAP daemon, imapd, on a remote mail server.
 Another program can be substituted for rsh by
 changing the value of a Pine configuration variable, rsh-path. This variable holds the name of
 the program for opening remote shell connections, normally /usr/bin/rsh. A new value can be assigned
 in an individual user’s Pine configuration file, ~/.pinerc, or in the systemwide Pine
 configuration file, typically /usr/local/lib/pine.conf. For
 example:
 # Set in a Pine configuration file
 rsh-path=/usr/local/bin/ssh
A second variable, rsh-command, constructs the actual command
 string to be executed for the remote mail server. The value is a
 pattern in the style of the C function printf(). Most likely, you won’t need to
 change the value because both rsh and
 ssh fit the default pattern, which is:
 "%s %s -l %s exec /etc/r%sd"
The first three “%s” pattern substitutions refer to the rsh-path value, the remote hostname, and the
 remote username. (The fourth forms the remote mail daemon name, which
 doesn’t concern us.) So, by default, if your username is
 alice and the remote mail server is
 mail.example.com, rsh-command evaluates to:
 /usr/bin/rsh mail.example.com -l alice ...
By changing the rsh-path, it
 becomes instead:
 /usr/local/bin/ssh mail.example.com -l alice ...
As we said, you probably don’t need to do anything with rsh-command, but just in case, we’ve
 included it for reference. We present a detailed case study of
 integrating Pine and SSH later. [11.3]

4.5.4 rsync, rdist

 rsync and
 rdist are software tools for synchronizing sets
 of files between different directories on the same machine or on two
 different hosts. Both can call rsh to connect to
 a remote host, and both can easily use SSH instead: simply set the
 RSYNC_RSH environment variable or
 use the -e command-line option for
 rsync, and use the -P option
 with rdist. rsync with SSH
 is a particularly simple and effective method to securely maintain
 remote mirrors of whole directory trees.

[41] CVS also has a remote-access method involving its own
 server, called pserver. This mechanism can be
 secured using SSH port forwarding instead; read Chapter 9 for the general
 technique.

Summary

OpenSSH and Tectia can be tailored in various ways by compile-time
 configuration with the configure script. We’ve
 covered the SSH-specific flags, but remember that other
 operating-system-specific flags might also apply to your installation,
 so be sure to read the installation notes supplied with the
 software.
Once installed, SSH software can replace the insecure r-commands
 on your Unix system, not only when run directly, but also within other
 programs that invoke rsh, such as Emacs and
 Pine.

Chapter 5. Serverwide Configuration

After installing an SSH server (sshd),[42] it’s time to make informed decisions about your server’s
 operation. Which authentication techniques should be permitted? How many
 bits should the server key contain? Should idle connections be dropped
 after a time limit or left connected indefinitely? These and other
 questions must be considered carefully. sshd has
 reasonable defaults, but don’t accept them blindly. Your server should
 conform to a carefully planned security policy. Fortunately,
 sshd is highly configurable, so you can make it do
 all kinds of interesting tricks.
This chapter covers serverwide configuration,
 in which a system administrator controls the global runtime behavior of
 the SSH server. This includes a large, rich set of features, such as
 TCP/IP settings, encryption, authentication, access control, and error
 logging. Some features are controlled by modifying a serverwide
 configuration file, and others by command-line options passed to the
 server at invocation.
Serverwide configuration is just one of three levels for controlling
 the behavior of SSH servers. The other two levels are compile-time
 configuration (Chapter 4), in which
 the server is compiled with or without certain functionality; and
 per-account configuration (Chapter
 8), in which the server’s behavior is modified by end users for
 their accounts only. We’ll discuss the distinction between the three
 levels in more detail later. [5.2]
This chapter covers only the OpenSSH and Tectia servers, focusing on
 the Unix implementations (including Unix variants such as Linux and
 OpenBSD). We’ve tried to indicate which features are present or absent in
 each flavor of sshd, but these will certainly change
 as new versions appear, so read each product’s documentation for the
 latest information.

[42] Tectia’s server might also be named sshd2,
 with sshd being a symbolic link to
 sshd2. See the upcoming sidebar "Tectia’s File-Naming
 Conventions.”

Running the Server

Ordinarily, an SSH server is invoked when the host
 computer is booted, and it is left running as a daemon. This works fine
 for most purposes. Alternatively, you can invoke the server manually.
 This is helpful when you’re debugging a server, experimenting with
 server options, or running a server as a nonsuperuser. Manual invocation
 requires a bit more work and forethought but might be the only
 alternative for some situations.
Most commonly, a computer has just one SSH server running on it.
 It handles multiple connections by spawning child processes, one per
 connection.[43] You can run multiple servers if you like: for example, two
 copies of sshd listening on different TCP ports, or
 even several versions of sshd at once.
5.1.1 Running sshd as the Superuser

The SSH server is invoked by simply typing its
 name:
 $ sshd
The server automatically runs in the background, so no ampersand
 is required at the end of the line.
To invoke the server when the host computer boots, add
 appropriate lines to an appropriate startup file on your system, such
 as /etc/rc.local on Linux. For
 example:
 # Specify the path to sshd.
 SSHD=/usr/local/sbin/sshd
 # If sshd exists and is executable, run it and echo success to the system console.
 if [-x "$SSHD"]
 then
 $SSHD && echo 'Starting sshd'
 fi
Both OpenSSH and Tectia come with a startup or boot script
 (i.e., a System-V-style init control script)
 found in the appropriate directory for each Unix variant. For Linux,
 for example, the scripts are /etc/init.d/sshd for OpenSSH and /etc/init.d/sshd2 for Tectia.[44]

5.1.2 Running sshd as an Ordinary User

Any user can run sshd if several
 steps are completed beforehand:
	Get permission from your system administrator.

	Generate a host key.
Tectia’s File-Naming Conventions
At first glance, Tectia’s filenames might seem rather
 inconsistent, but actually they follow conventions designed for
 flexibility and ease of use:
	Most filenames contain a “2” suffix, e.g., sshd2. These filenames
 distinguish the SSH-2 protocol implementation provided by
 Tectia from other implementations (e.g., OpenSSH). As a
 result, you could install SSH-1 protocol programs (not
 provided by Tectia) with filenames containing a “1” suffix,
 even in the same directories used by Tectia, without
 conflicts.

	Tectia installs symbolic links so that you can omit
 the “2” suffix when referring to programs, manpages, etc.
 For example, there’s a symbolic link sshd pointing to sshd2. You can set up search
 paths so that Tectia is the preferred implementation, hiding
 other implementations that might be installed in other
 directories.

	On platforms like Microsoft Windows that don’t support
 symbolic links, the program names all have the “2”
 suffix.

There are a few exceptions:
	Configuration files that live (at least by default) in
 fixed locations use only filenames with
 the “2” suffix, e.g., /etc/ssh2 or ~/.ssh2, with no corresponding
 symbolic links. This avoids confusing other SSH
 implementations that refer to similar locations without the
 “2” suffix (e.g., /etc/ssh or ~/.ssh).

	Files unique to Tectia have only
 filenames that omit the “2” suffix. Strictly speaking, the
 “2” suffix is unnecessary in this case, but the convention
 is unfortunate, because it sometimes leads to unexpected
 filename comparisons. For example, the Tectia program for
 verifying sshd2 configuration files is
 called sshd-check-conf,
 even though the default files it checks are named /etc/ssh2/sshd2_config and
 ~/.ssh2/sshd2_config.
 [5.2.2]

	Select a port number.

	Create a server configuration file (optional but strongly
 recommended).

Before starting, ask your system administrator if you may run an
 SSH server. While this isn’t necessary from a technical standpoint, it
 is a wise idea. An administrator might not appreciate your creating a
 new avenue for logins behind his back. Likewise, if the administrator
 has disabled SSH or certain SSH features, there’s probably a good
 security reason and you shouldn’t just work around it!
Next, generate your own host key. Any other existing host key is
 probably readable only by the superuser. Host keys are generated with
 the program ssh-keygen. [6.2] For now, to create a
 1024-bit DSA host key and store it in the file ~/myserver/hostkey, type the following for
 OpenSSH:
 # OpenSSH: Note the -N value is two single quotes, not a double-quote
 $ ssh-keygen -N '' -b 1024 -t dsa -f ~/myserver/hostkey
This command generates the files hostkey and hostkey.pub in the directory ~/myserver (so make sure the directory
 exists). Here’s the analogous command for Tectia:
 # Tectia
 $ ssh-keygen -P -b 1024 -t dsa ~/myserver/hostkey
The -N (OpenSSH) and
 -P (Tectia) options cause the generated key to be
 left unencrypted because sshd expects to read it
 without a passphrase.
Third, select a port number on which the SSH server listens for
 connections. The port number is set with the -p
 command-line option of sshd or the Port keyword in the configuration file, as
 we discuss later. Your server can’t listen on port 22, the default,
 because only the superuser may run processes to listen on that port.
 Your port number must be greater than or equal to 1024, as lower port
 numbers are reserved by the operating system for use by privileged
 programs. [3.4.3.6]
 The port number also must not conflict with those in use by other
 programs on the server computer; if it does, you get an error message
 when you try to start the server:
 error: bind: Address already in use
If you receive this error, try another integer in the free range
 (above 1024). Avoid numbers mentioned in the computer’s services map
 (usually /etc/services or the
 Network Information Service [NIS] “services” map, which you can view
 with the Unix command ypcat -k services). These
 numbers have been designated by the system administrator for use with
 particular programs or protocols, so you might cause trouble if you
 steal one. The command netstat -a lists all ports
 in use; add the -n option to see numeric values
 for the ports instead of service names.
Finally, create your own SSH server configuration file.
 Otherwise, your server will use built-in defaults or a systemwide
 configuration file (if one exists) and might not operate as you
 intend.
Assuming you have generated a host key in ~/myserver/hostkey, selected the port
 number 2345, and created a configuration file in ~/myserver/config, the server is invoked
 with the command:
 $ sshd -h ~/myserver/hostkey -p 2345 -f ~/myserver/config
A server run by an ordinary user has some
 disadvantages:
	It runs under the uid of the ordinary user, not root, so it
 can connect only to that user’s account.

	It is invoked manually, rather than automatically when the
 computer boots. As a result, to run the server, you must connect
 once without SSH to the computer. And each time the computer is
 rebooted, the server dies, and you need to redo this step.
 Conceivably you can set up a cron job to keep
 it running automatically.

	While setting up a server, consider running it in debug mode
 and reading the diagnostic messages it prints, in case something
 isn’t working right. By default, your server’s log messages are
 written to the system log files, which you don’t own and possibly
 can’t access. This is because sshd does its
 logging via the syslog service; ordinary users can’t control where
 the log messages are sent, usually /var/adm/messages, /var/log/messages, or someplace else
 depending on how syslogd is set up, and you
 need appropriate permissions to read these files. Running the
 server in debug mode gets around this annoyance. Messages will
 appear on your terminal (as well as in the system logs). [5.9] This way, you can more
 easily see error messages until you get the server working.

Nevertheless, for many users, the advantages of SSH outweigh
 these inconveniences. Assuming your system administrator approves, you
 can secure your logins with sshd even if you
 aren’t a superuser.

[43] Or sshd can be invoked by
 inetd, creating one sshd
 process per connection. [5.3.3.2]

[44] OpenSSH also includes /usr/sbin/rcsshd, a symbolic link to
 the startup script in /etc/init.d.

Server Configuration: An Overview

As mentioned at the beginning of the chapter, the behavior of the
 server, sshd, may be controlled at three
 levels:
	Compile-time configuration (Chapter 4) is accomplished when
 sshd is built. For example, a server may be
 compiled with or without support for rhosts
 authentication.

	Serverwide configuration, the subject of
 this chapter, is performed by a system administrator and applies to
 a running instance of the server. For instance, an administrator may
 deny SSH access by all hosts in a given domain or make the server
 listen on a particular port.
Serverwide configuration may depend on compile-time
 configuration. For example, a server’s hostbased authentication
 options work only if the server is compiled with hostbased
 authentication support included. Otherwise, the options have no
 effect. We identify such dependencies throughout the book. Figure 5-1 highlights the
 serverwide configuration tasks.

	Per-account configuration (Chapter 8) is performed by the end
 user, specifically, the owner of the account to which an SSH
 connection has been requested. For example, users may permit or deny
 access to their own accounts from particular hosts, overriding the
 serverwide configuration.

Suppose user deborah on the machine
 client.unc.edu invokes an SSH client. The client’s
 behavior is determined by several factors:
	The compile-time options selected when the software was
 built

	The machinewide client configuration file on
 client.unc.edu

	User deborah’s own client configuration file

	The command-line options used by deborah when invoking the
 client

An SSH server running on server.unc.edu
 accepts deborah’s connection to the account charlie. The server’s
 behavior is determined by the compile-time options used when
[image: Serverwide configuration (highlighted parts)]

Figure 5-1. Serverwide configuration (highlighted parts)

sshd was built, the machinewide server
 configuration file on server.unc.edu, the
 command-line options used when the SSH server was run, and charlie’s
 personal server configuration file (e.g., an authorized_keys file), plus several files
 that set environment variables for the successful login session.
With three levels of server configuration, and multiple entry
 points for modifying the behavior at each level, things can get
 complicated. In particular, different options may work together or
 cancel each other. For example, user charlie can configure his account
 on server.unc.edu to accept connections from
 client.unc.edu, while the system administrator of
 server.unc.edu can configure the SSH server to
 reject them. (In this case, Charlie loses.) Administrators must
 understand not only how to configure the server themselves, but also how
 their choices interact with compile-time and per-account
 settings.
5.2.1 Server Configuration Files

Serverwide configuration is accomplished in two ways:
 through a server configuration file, or through command-line options.
 In a server configuration file, numerous
 configuration variables, called keywords
 , may have their values set. For example, to set the TCP
 port on which the server will listen, a configuration file can contain
 the line:
 Port 1022
You may also separate the keyword and value by an equals sign
 (with optional whitespace):
 Port = 1022
The configuration file is typically /etc/ssh/sshd_config for OpenSSH or
 /etc/ssh2/sshd2_config for
 Tectia.[45] The file contains keywords and their values, as in the
 Port example, with one pair
 (keyword and value) per line. Keywords are case-insensitive: Port, port, and PoRt are all treated identically. Comments
 may appear in the file as well: any line beginning with a hash sign
 (#) is a comment:
 # This is a comment
Comments cannot be appended to keyword lines. For example, the
 following does not work:
 Port 1022 # This comment is not allowed here, so don't do this
Empty lines (or lines containing only whitespace) are also
 ignored as comments.
To use a configuration file other than the default, invoke
 sshd with the -f
 command-line option, providing the alternative filename as an
 argument:
 $ sshd -f /usr/local/ssh/my_config
Tectia supports some extensions to configuration files that we
 cover in a detailed case study: [11.6]
	Metaconfiguration information
	Structured comments at the top of the server configuration
 file that define syntax rules for the rest of the file. For
 example, the REGEX-SYNTAX
 metaconfiguration statement selects one of several different
 regular expression standards: grep style (egrep), filename globbing (zsh_fileglob), and others.

	Subconfiguration files
	Alternative configuration files specific to particular
 local accounts or remote hosts. The keywords UserSpecificConfig and HostSpecificConfig define the
 associations between subconfiguration files and the affected accounts and hosts,
 respectively. For example, the line:
 # Tectia
 UserSpecificConfig smith /usr/local/ssh/smith.config
states that all connection attempts to the smith account
 must adhere to the configuration in file /usr/local/ssh/smith.config.

	Quoted values
	Tectia has unusual rules for quoted strings, namely, that quotes are largely ignored. The
 following sshd2_config
 lines are equivalent:
 # Tectia
 Port 1022
 Port "1022"
 Port "10"22

5.2.2 Checking Configuration Files

After you’ve changed a server configuration file (or
 constructed an initial version of the file), how do you know it’s
 going to work and have the effects you intend? Later, when you upgrade
 the server to a more recent version, how can you detect incompatible
 changes in the meaning of keywords that you’ve been using?
The most thorough way to verify the server configuration, of
 course, is to run the server exactly as you plan to deploy it, and
 test all of the functionality that you expect to use. This kind of
 testing can be time-consuming, however, and you might not be able to
 afford interrupting service on a busy production machine.
Alternately, you could use some other test machine, or run the
 server on a different port [5.3.3.1] while the old
 configuration is still being used on the original machine. These
 approaches are almost as good, but they can be complicated if the
 server configuration refers to network characteristics of the machine
 where it will be deployed, or by firewalls that block access to
 nonstandard ports.
Both OpenSSH and Tectia have test features to help with these
 situations, or to just provide a quick check of the server
 configuration before more rigorous testing.
5.2.2.1 Checking OpenSSH configuration files

If the OpenSSH server is started with the
 -t (test) option, it starts up, checks the
 validity of its host keys and the server configuration file, and
 then immediately exits without performing any other actions. When no
 problems are found, the server silently returns a zero exit status
 to indicate successful operation. Otherwise, error messages are
 printed to the standard error and the server exits with a nonzero
 status:
 # OpenSSH
 $ sshd -t
 /etc/ssh/sshd_config: line 33: Bad configuration option: BlurflPox
 /etc/ssh/sshd_config: Bad yes/no argument: maybe
The server must be run by a user (typically root) who has read
 access to the host key files and the server configuration file. Any
 other server options can be used in conjunction with
 -t, such as -h options
 [5.3.1.1] to specify
 new host key files, the -f option [5.2.1] to specify a new
 configuration file, or -d options [5.9] for more detailed
 debugging output (even if no errors are detected).

5.2.2.2 Checking Tectia configuration files

Tectia provides a separate program,
 sshd-check-conf, to check server configuration
 files.[46] Supply a hypothetical user and remote host, and
 sshd-check-conf will describe its access
 control decisions for them:
 # Tectia
 $ sshd-check-conf rebecca@client.friendly.org
 Verifying rebecca@client.friendly.org[10.1.2.3]...
 Logins from client.friendly.org[10.1.2.3] allowed.
 Hostbased can be used from client.friendly.org[10.1.2.3].
 Login by user rebecca allowed.
 User rebecca will not be chrooted.
 TCP forwarding by user rebecca allowed.
sshd-check-conf is especially helpful for
 verifying policies described by complicated patterns and
 subconfiguration files. [11.6.2] It uses the same
 code as sshd to parse the server configuration
 files and understands metaconfiguration information. [11.6.1]
If any errors are detected,
 sshd-check-conf prints messages to the standard
 error, as sshd would:
 # Tectia
 $ sshd-check-conf rebecca@client.friendly.org
 Warning: Unrecognized configuration parameter 'BlurflPox'.
 Warning: Illegal IdleTimeout value 'never'.
 Warning: Failed to parse some variables from config file '/etc/ssh2/sshd2_config'.
 FATAL: Failed to read config file "/etc/ssh2/sshd2_config"
It is not necessary to run
 sshd-check-config as root, as long as the
 server configuration files can be read. By default, /etc/ssh2/sshd2_config is used if the
 program is run by the superuser, or $HOME/.ssh2/sshd2_config otherwise. As
 for sshd, the -f option
 specifies a different configuration file:
 # Tectia
 $ sshd-check-conf -f /tmp/sshd2_config_new rebecca@client.friendly.org
The hypothetical SSH sessions are described by one or more
 [user@]host
 arguments on the command line. A numerical user ID can be used in
 place of a username, or the username can be omitted entirely to
 check only the remote host. In this case,
 sshd-check-conf substitutes UNKNOWN for the username when it analyzes
 the access controls:
 # Tectia
 $ sshd-check-conf client.friendly.org
 Verifying UNKNOWN@client.friendly.org[10.1.2.3]...
 Logins from client.friendly.org[10.1.2.3] allowed.
 Hostbased can be used from client.friendly.org[10.1.2.3].
 Login by user UNKNOWN denied.
An IP address can be used instead of a hostname: both the
 hostname and IP address are checked.
Tip
If a hostname resolves to multiple IP addresses, then only
 the first IP address is used, and a warning is printed by
 sshd-check-conf.

Here’s a brash one-liner to check the access controls for all
 local users:
 # Tectia
 $ sed -e "s/:.*/@`hostname`/" /etc/passwd | xargs sshd-check-conf
You can also run sshd-check-conf
 interactively: just don’t supply any
 [user@]host arguments on the command
 line. The program prompts for [user@]host
 strings, permits Emacs-style editing of the strings as you enter
 them (using the GNU readline library), and maintains a history of
 previously entered values.
In addition, sshd-check-conf recognizes a
 dump command to print keywords and values for
 the server configuration:
 # Tectia
 $ sshd-check-conf
 ...
 ssh-check-conf> dump
 # General
 Port = 22
 ProtocolVersionString = 4.1.3.2 SSH Secure Shell
 MaxConnections = 0
 ...
 # Authentication and authorization
 AllowedAuthentications = publickey,password
 IgnoreRhosts = no
 ...
 # Forwardings
 ForwardX11 = yes
 ForwardAgent = yes
 ...
 # Miscellaneous user setup
 UserConfigDirectory = %D/.ssh2
 PrintMOTD = yes
 ...
 sshd-check-conf> quit
 $
Warning
Tectia’s sshd-check-conf dump command
 prints most configuration keywords and values, but not all of
 them.

To exit from interactive mode, use the quit command, or type the end-of-file
 character (usually ^D), or just kill the program
 (typically with ^C). The quit and dump commands are case-insensitive.
Tip
Because sshd-check-conf matches
 patterns for subconfiguration files [11.6.2], it reads the
 main configuration file only when a
 [user@]host string has been given.
 Therefore, the dump command
 can’t be used before then:

 # Tectia
 $ sshd-check-conf
 sshd-check-conf> dump
 No config data to dump; input <user@host> first.
The sshd-check-conf program accepts the
 debug options -d and -v
 [5.9] to print more
 detailed debugging information as it reads the configuration files
 and analyzes access control decisions.

5.2.3 Command-Line Options

Additionally, when invoking the server, you may supply
 command-line options. For example, the port value may be specified on the
 command line with the -p option:
 $ sshd -p 1022
Command-line options override settings in the configuration
 file. Thus, if the configuration file says port 1022 but the server is
 invoked with -p 2468, the port used will be
 2468.
Most command-line options duplicate the features found in the
 configuration file, for convenience, while a few provide unique
 functionality. For instance, the -f option
 instructs sshd to use a different configuration
 file, a feature that’s useless to put in a configuration file.
On the other hand, most keywords don’t have command-line
 equivalents. However, the -o option lets you
 specify any keyword and its value on the command line; for example, to
 set the TCP port number by this method:
 $ sshd -o "Port 1022"
The argument for the -o option should be a
 keyword and value, exactly as specified in the configuration
 file.[47] An equals sign (with optional whitespace) can also be
 used:
 $ sshd -o "Port = 1022"
You can omit the quotes if you avoid characters special to the
 shell (including the whitespace around the equals sign):
 $ sshd -o Port=1022
You can repeat the -o option to set values
 for multiple keywords on the same command line.
Tip
Tectia servers always use the default
 egrep syntax for regular expressions on the
 command line. Unlike configuration files, command-line options have
 no way to change this via metaconfiguration, e.g., for
 -o options.

Command-line options can be repeated, but the effects of such
 repetition vary and even differ depending on the server
 implementation. In almost all cases, only the last repeated option is
 used, and all earlier instances of the same option are (silently)
 ignored. For example, an attempt to read two configuration
 files:
 $ sshd -f /usr/local/ssh/main.conf -f /usr/local/ssh/alt.conf
 Beware! Does not read both files!
will actually read only alt.conf and ignore main.conf.
The “last option wins” rule can be handy for scripting. Suppose
 you launch the server from a shell script called
 launch-sshd:
 # launch-sshd:
 sshd -f /usr/local/ssh/main.conf "$@"
Since the $@ is replaced by
 options from the command line, you can substitute a different
 configuration file when using the script:
 $ launch-sshd -f /usr/local/ssh/alt.conf
We have seen that the -o option is an
 exception: it can be repeated to set values for as many keywords as
 needed. There are only a few other exceptions, all for OpenSSH. The
 -p option can be repeated to listen on multiple
 ports: [5.3.3.1]
 # OpenSSH
 $ sshd -p 2222 -p 3333
The -h option can be used multiple times to
 specify different types of host keys in separate files: [5.3.1.1]
 # OpenSSH
 $ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my_old_ssh1_key
Repeating the -d option increases the level
 of verbosity for debugging: [5.9]
 # OpenSSH
 $ sshd -d -d -d
Tectia is more consistent than OpenSSH: it
 always uses the last instance of each option on
 the command line.

5.2.4 Changing the Configuration

 sshd reads its configuration file
 at startup. Therefore, if you modify the file while the server is
 running, the changes don’t affect the server. You must force the
 server to reread the file in order to accept the changes. This is done
 by sending a SIGHUP signal to the server process. The pid of the server is found
 in a file, usually /var/run/sshd.pid for OpenSSH or /var/run/sshd2_22.pid for Tectia. [5.3.1.3]
Suppose the pid file is /var/run/sshd.pid, the default for OpenSSH.
 To send the SIGHUP signal, run the Unix kill
 command:
 $ cat /etc/sshd.pid
 19384
 $ kill -HUP 19384
or more succinctly, with backquotes:
 $ kill -HUP `cat /etc/sshd.pid`
or on systems with the pidof command, which
 prints pids of given, named processes:
 $ kill -HUP `pidof sshd`
Linux systems (and others) have boot scripts that can signal the
 SSH server. For example, instead of explicitly sending SIGHUP to
 sshd, you can run:
 $ /etc/init.d/sshd reload
Regardless of how it’s sent, the SIGHUP signal restarts
 sshd (with a different pid) but doesn’t terminate
 existing SSH connections, so you can send it safely while clients are
 connected. The new sshd process reads and
 conforms to the new configuration.
The SIGHUP technique affects settings defined in the
 configuration file, not command-line options. To change those, you
 must kill and restart the server with the new options. For
 example:
 $ kill 19384
 $ sshd new_options
Command-line options are often specified in boot scripts that
 are used to start sshd. For example, some Linux
 systems read an OPTIONS variable
 assignment from the file /etc/sysconfig/sshd (if it exists). You may
 need to edit such options files if you want to permanently change the
 command-line options used to start the SSH server at boot time. After
 doing this, you can use the boot script to restart the server with the
 new command-line options:
 $ /etc/init.d/sshd restart
Boot scripts can perform other useful functions. To determine
 whether the SSH server is running, use:
 $ /etc/init.d/sshd status
To start or stop the server, use:
 $ /etc/init.d/sshd start
 $ /etc/init.d/sshd stop
Tip
Some configuration keywords refer to external files. If the
 contents of those files change, you might wonder if it is necessary
 to signal the SSH server. In almost all cases, the answer is no:
 only the filenames are recorded when the configuration file is read,
 and the external file’s contents are reread each time they are
 needed. The host key file is an important exception, because it is
 normally read only when the server starts. [5.3.1.1]

5.2.5 A Tricky Reconfiguration Example

Because command-line options override their
 configuration file equivalents, some interesting situations can arise.
 Suppose the configuration file sets the TCP port number to be
 2222:
 Port 2222
but the server is invoked with the -p
 command-line option, overriding this value with 3333:
 $ sshd -p 3333
The server uses TCP port 3333. Now, suppose you restart
 sshd with SIGHUP:
 $ kill -HUP `pidof sshd`
forcing sshd to reread the configuration
 file. What do you think happens to the port number? Does the server
 use port 2222 after rereading the configuration file, or does the
 command-line option remain in effect for port 3333? In fact, the
 command-line option takes precedence again, so port 3333 is reused.
 sshd saves its argument vector[48] and reapplies it on restart.

[45] On Windows, Tectia’s configuration files are located in the
 SSH Tectia Server installation folder.

[46] sshd-check-conf doesn’t read or
 verify host keys.

[47] Except for comments, which will not work, e.g.,
 sshd -o “# Your message here”. But this would
 be silly.

[48] argv, to C
 programmers.

Getting Ready: Initial Setup

We now embark on a detailed discussion of SSH server
 configuration, using both keywords and command-line options. Please keep
 in mind that modern SSH products are actively developed and their
 features may change. Be sure to read their documentation for the latest
 information.
We begin with initial setup decisions, such as: where should important files be kept?
 What should their permissions be? What TCP/IP settings should be used?
 Which encryption algorithms should be supported?
5.3.1 File Locations

sshd expects certain files to exist,
 containing the server’s host key, the random seed, and other data. The
 server looks for these files in default locations, or you may override
 them with keywords and command-line options as described later.
Although you may place these files anywhere you like, we
 strongly recommend keeping them on a local disk on your server
 machine, not on a remotely mounted disk (e.g., via NFS). This is for
 security reasons, as NFS will gleefully transmit your sensitive files
 unencrypted across the network. This would be especially disastrous
 for the unencrypted private host key!
As a running example, we use an invented directory, /usr/local/ssh, as our preferred
 (nondefault) location for the SSH server’s files.
5.3.1.1 Host key files

The host key of sshd uniquely
 identifies a server to SSH clients. The host key is stored in a pair
 of files, one containing the private key and the other the public
 key. OpenSSH has distinct host keys in DSA (/etc/ssh/ssh_host_dsa_key) and RSA
 (/etc/ssh/ssh_host_rsa_key)
 formats, as well as a legacy SSH-1 protocol key, /etc/ssh/ssh_host_key. These private keys
 are readable only by privileged programs such as the SSH server and
 clients. Their locations may be changed with the HostKey keyword:[49]
 # OpenSSH
 HostKey /usr/local/ssh/my_dsa_key
 HostKey /usr/local/ssh/my_rsa_key
 HostKey /usr/local/ssh/my_old_ssh1_key
Each private key has a corresponding public key, stored in a
 second file with the same name but with .pub
 appended. So, in the above example, the public keys would be
 /usr/local/ssh/my_dsa_key.pub,
 /usr/local/ssh/my_rsa_key.pub,
 and /usr/local/ssh/my_old_ssh1_key.pub.
For Tectia, the default private key file is /etc/ssh2/hostkey if the server is run by
 the superuser or ~/.ssh2/hostkey if run by any other user.
 To specify a different private key file, use the HostKeyFile keyword:
 # Tectia
 HostKeyFile /usr/local/ssh/key
The server’s public key file, normally /etc/ssh2/hostkey.pub for superusers or
 ~/.ssh2/hostkey.pub for others,
 may be changed independently with the PublicHostKeyFile keyword:
 # Tectia
 PublicHostKeyFile /usr/local/ssh/pubkey
If you prefer command-line options, sshd
 supports the -h command-line option to specify
 the private key file:
 $ sshd -h /usr/local/ssh/key
Once again, the public key filename is derived by appending
 .pub to the private key
 filename, in this case, /usr/local/ssh/key.pub.
OpenSSH allows each type of host key to be specified with a
 separate -h option (and detects the type of
 each key automatically):
 # OpenSSH
 $ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my_old_ssh1_key
For Tectia, if the -h option is repeated,
 only the last file is used and all earlier -h
 options are ignored. This is consistent with its usual behavior with
 command-line options. [5.2.3]

5.3.1.2 Random seed file

The SSH server generates pseudo-random numbers for
 cryptographic operations. [3.6.4] It maintains a pool
 of random data for this purpose, derived either from the operating
 system if provided (e.g., /dev/random on Linux) or from various
 bits of changing machine state (e.g., clock time, statistics on
 resource use by processes, etc.). This pool is called the
 random seed.
If running on a system with a random-bit source, such as
 /dev/urandom, OpenSSH doesn’t
 create a random seed file. Tectia stores a random seed in /etc/ssh2/random_seed, and the location
 may be overridden with the RandomSeedFile keyword:
 # Tectia
 RandomSeedFile /usr/local/ssh/seed2

5.3.1.3 Process ID file

The OpenSSH server’s pid is stored in /var/run/sshd.pid, and you can override
 this location with the PidFile
 keyword:
 # OpenSSH
 PidFile /usr/local/ssh/pid
OpenSSH doesn’t record the process ID when it runs in debug
 mode. [5.9]
There is no corresponding keyword for Tectia. Its pid file is
 always named /var/run/sshd2_
 n .pid, or
 if there is no /var/run
 directory, /etc/ssh2/sshd2_
 n .pid,
 where n is the TCP port number of the
 server.[50] Since the default port is 22, the default pid file is
 sshd2_22.pid. If multiple
 sshd2 processes are run simultaneously on
 different ports of the same machine, their pid files can be
 distinguished by this naming convention. The directory used to store
 pid files can be changed by the configure
 option --with-piddir. [4.3.5.1]

5.3.1.4 Server configuration file

The server configuration file is normally /etc/ssh/sshd_config for OpenSSH and
 /etc/ssh2/sshd2_config for
 Tectia. An alternative configuration file can be specified with the
 -f command-line option:
 $ sshd -f /usr/local/ssh/config
This is useful when testing a new server configuration: create
 a new file and instruct sshd to read it. It is
 also necessary if you are running multiple sshd
 s on the same machine and want them to operate with different
 configurations.
Only a single configuration file is read. If you provide
 multiple -f options, the last one is used and
 all others are ignored.

5.3.1.5 User SSH directory

Tectia’s sshd expects a user’s
 SSH-related files to be in the directory ~/.ssh2 by default, but this can be
 changed with the UserConfigDirectory keyword. (OpenSSH has
 no such capability.) The directory name may be literal, as
 in:
 # Tectia
 UserConfigDirectory /usr/local/ssh/my_dir
or it may be specified with printf-like patterns, as in:
 # Tectia
 UserConfigDirectory %D/.my-ssh
The %D pattern expands to
 the user’s home directory. So, the preceding example expands to
 ~/.my-ssh. The following table
 shows the available patterns:
	Pattern
	Meaning

	%D
	User’s home directory

	%U
	User’s login name

	%IU
	User’s uid (Unix user ID)

	%IG
	User’s gid (Unix group ID)

If the % character is
 followed by any other characters, it is left unchanged.[51]
For the system administrator, the UserConfigDirectory keyword provides a
 quick way to override all users’ Tectia preferences. Specifically,
 you can cause sshd to ignore everybody’s
 ~/.ssh2 directories,
 substituting your own instead. For instance, the line:
 # Tectia
 UserConfigDirectory /usr/sneaky/ssh/%U
tells sshd to seek the preferences for
 each user in /usr/sneaky/ssh/
 <username> instead of ~/.ssh2. This powerful feature can also
 be misused if your machine is compromised. If an intruder inserted
 the following line into sshd2_config:
 # Tectia
 UserConfigDirectory /tmp/hack
and uploaded his own public key file into /tmp/hack, he would gain SSH access to
 every user’s account.

5.3.1.6 Per-account authorization files

The OpenSSH server expects to find a user’s public-key
 authorization file in ~/.ssh/authorized_keys. This location can
 be changed with the AuthorizedKeysFile keyword, followed by
 the new location:
 # OpenSSH
 AuthorizedKeysFile .ssh/permitted_keys
Filenames can be absolute or are relative to the user’s home
 directory. Additionally, the location can contain a few special
 symbols: %h to mean the user’s
 home directory, %u for the
 username, or %% for a percent
 sign. So, when user smith authenticated on a server machine with
 this line in /etc/ssh/sshd_config:
 # OpenSSH
 AuthorizedKeysFile /usr/local/access/%u
the authorization filename would expand to /usr/local/access/smith.
The Tectia server uses a different key file layout than
 OpenSSH. [6.1.2] Its
 authorization file, normally ~/.ssh2/authorization, contains names of
 separate public key files, rather than the keys themselves.
 sshd can be instructed to find the
 authorization file elsewhere via the keyword AuthorizationFile:
 # Tectia
 AuthorizationFile my_public_keys
Filenames can be absolute or are relative to each user’s
 Tectia configuration (.ssh2)
 directory. The preceding example specifies the file ~/.ssh2/my_public_keys.

5.3.1.7 utmp file structure

The utmp file
 (e.g., /var/run/utmp) contains
 information about users currently logged in, such as their username,
 tty, and most notably for us, the hostname from which they’ve logged
 in (for remote logins). OpenSSH’s sshd can
 limit the length of hostname information written to the utmp file. (It’s inspired by a similar
 feature in the telnet daemon telnetd.)
 # OpenSSH
 $ sshd -u 25 Limit hostnames to 25 characters or less
If a remote hostname is longer than this limit, the host’s IP
 address will be written instead. Why is this useful? For two
 reasons:
	Hostnames longer than the default length—which may vary on
 different systems—will normally be truncated in the utmp file. While you cannot increase
 the utmp length with the
 -u option, you can notify
 sshd of the length limitation so that IP
 addresses get used in place of long hostnames. This way, you’ll
 accurately record the host’s identity. See /usr/include/utmp.h to learn the
 length limit for your system.

	If you specify -u0, IP addresses will
 always be used in place of hostnames. This has the side effect
 of forcing sshd not to make DNS requests
 for these hostname lookups. (It will not entirely suppress DNS,
 however, since it might be needed for authentication.)

5.3.2 File Permissions

As security products, OpenSSH and Tectia require certain
 files and directories on the server machine to be protected from
 unwanted access. Imagine if your authorized_keys or .rhosts file were world-writable; anyone on
 that host could modify them and gain convenient access to your
 account. sshd has several configuration keywords
 for reducing this risk.
5.3.2.1 Acceptable permissions for user files

Users aren’t always careful to protect important files and
 directories in their accounts, such as their .rhosts file or personal SSH directory.
 Such lapses can lead to security holes and compromised accounts. To
 combat this, you can configure sshd to reject
 connections to any user account that has unacceptable
 permissions.
The StrictModes keyword,
 with a value of yes (the
 default), causes sshd to check the permissions
 of important files and directories. They must be owned by the
 account owner or by root, and group and world write permission must
 be disabled. For OpenSSH, StrictModes checks:
	The user’s home directory

	The user’s ~/.rhosts
 and ~/.shosts file

	The user’s SSH configuration directory, ~/.ssh

	The user’s SSH ~/.ssh/authorized_keys file

	The user and system “known hosts” files

For Tectia, the list is smaller and is checked only for
 hostbased authentication:[3.4.3.6]
	The user’s home directory

	The user’s ~/.rhosts
 and ~/.shosts file

If any check fails, the server rejects SSH connection attempts
 to the account. If StrictModes is
 given the value no, these checks
 aren’t performed:
 StrictModes no
However, we strongly suggest you leave these checks
 enabled.
Tectia recognizes an undocumented keyword, StrictModes.UserDirMaskBits, to control
 the checks more precisely. The value is an octal number representing
 the file permission bits that must be disabled. For example, to
 require that files grant no group or world access (read, write, or
 execute):
 # Tectia
 StrictModes.UserDirMaskBits 077
The default value is 022, indicating that group and world
 write permission must be disabled.
Even if StrictModes is
 enabled, it can be defeated by using POSIX access control lists
 (ACLs), which are supported in Solaris and some other flavors of
 Unix, to set file permissions with greater precision.
 sshd doesn’t check ACLs, so one could argue
 that StrictModes is an incomplete
 test.
Boolean Values in Configuration Files
Many keywords, such as StrictModes, require Boolean values.
 OpenSSH and Tectia have different standards for these
 values.
OpenSSH recognizes either yes or true to enable the behavior described by
 a keyword, as well as the opposite values no or false to disable. These values cannot be
 abbreviated, and must be lowercase.
Tectia is much more lenient: it recognizes any word starting
 with the letters y (yes),
 t (true), or k (kyllä:
 Finnish for “yes”) in lowercase or uppercase to enable, and
 anything else to disable.
We use yes and no in our examples because they are
 accepted by both products, and we recommend you do the
 same.

5.3.3 TCP/IP Settings

Since the SSH protocol operates over TCP/IP,
 sshd permits control over various parameters
 related to TCP/IP.
5.3.3.1 Port number and network interface

By default, sshd listens on TCP
 port 22. The port number may be changed with the Port keyword:
 Port 9876
or the -p command-line option:
 $ sshd -p 9876
If you repeat the Port
 keyword or -p option, OpenSSH listens on all of
 the specified ports:
 # OpenSSH
 $ sshd -p 22 -p 9876
Tectia, on the other hand, allows only a single port setting:
 if multiple Port keywords or
 -p options are specified, the server uses only
 the last one and ignores all earlier instances.[52]
You may also configure sshd to bind its
 listening port on a particular network interface. By default, the
 port is bound on all active network interfaces on the host. The
 ListenAddress keyword limits
 sshd to listen only on specific interfaces; the
 default value is 0.0.0.0.
For example, suppose a computer has two Ethernet cards and is
 attached to two different networks. One interface has the address
 192.168.10.23, and the other, 192.168.11.17. By default,
 sshd listens on both interfaces; therefore, you
 can reach the server by connecting to port 22 at either address.
 However, this may not always be what you want; perhaps you want to
 provide SSH service only to hosts on one network and not the
 other:
 ListenAddress 192.168.10.23
Of course, this represents a real restriction only if the two
 networks aren’t otherwise connected together (say, by a router) so
 that port 22 on 192.168.10.23 is not reachable from the network
 192.168.11.24.
To listen on multiple, specific interfaces, repeat the
 ListenAddress keyword:
 ListenAddress 192.168.10.23
 ListenAddress 192.168.11.17
Numeric Values in Configuration Files
OpenSSH accepts numeric values in decimal, octal, or
 hexadecimal, using standard C language notation. If a value begins
 with 0x, it is treated as
 hexadecimal. If it begins with a leading zero, it is considered
 octal. Any other numeric value is read as decimal.
Tectia, in contrast, requires all numbers to be given in
 decimal, except for StrictModes.UserDirMaskBits, which uses
 an octal value.

For even more precise control, you can also specify the port
 for listening on a given interface. The syntax differs for OpenSSH
 and Tectia:
 # OpenSSH
 ListenAddress 192.168.11.17:12345 Port 12345. Notice the colon between the address and the port.

 # Tectia
 ListenAddress 192.168.11.17 12345 Port 12345. Notice the space between the address and the port.
The address 0.0.0.0 means to listen on all interfaces:
 ListenAddress 0.0.0.0
optionally qualified by a port number:
 # OpenSSH
 ListenAddress 0.0.0.0:9876

 # Tectia
 ListenAddress 0.0.0.0 9876
OpenSSH servers allow the address to be omitted (meaning all
 interfaces) if the port is specified:
 # OpenSSH
 ListenAddress :9876
Tip
For OpenSSH, a ListenAddress of 0.0.0.0:2222 will listen on port 2222
 only on IPv4 interfaces, whereas :2222 means to listen on both IPv4 and
 IPv6 addresses. Additionally, you can specify IPv6 addresses with
 colons, but to avoid ambiguity between the address and the port
 specification, enclose the IPv6 part in square brackets, e.g.,
 ListenAddress
 [::1]:2222.

Tectia servers recognize the address any for all interfaces, with or without a
 port:
 # Tectia
 ListenAddress any
 ListenAddress any 9876
Since Tectia uses only a single Port value, the only way to configure the
 server to listen on multiple ports is to use multiple ListenAddress keywords.
OpenSSH also permits hostnames in place of numeric
 addresses:
 ListenAddress server.example.com
If the hostname lookup yields multiple addresses, then they
 are all used.
Tip
If a ListenAddress value
 has no port specified, then the value (or possibly multiple
 values, for OpenSSH) of the Port keyword is used for that address.
 In such a case, the Port
 keyword(s) must precede that ListenAddress keyword.
Additionally, the -p command-line
 option overrides all Port and
 ListenAddress keywords in the
 configuration file. The server listens on all interfaces if any
 -p options are used. Use one or several
 -o options with the ListenAddress keyword to indicate
 specific interfaces on the command line.

5.3.3.2 Invocation by inetd or xinetd

 sshd normally runs as a daemon,
 listening for incoming connection requests, and forking whenever it
 accepts a connection from a client. This spawns a separate child
 process (a copy of the parent sshd process) to
 handle each session. The child process exits when the session
 ends.
Alternatively, the server may be invoked by
 inetd or xinetd, like many
 other network daemons. In this case, the general-purpose network
 daemon listens for and accepts the SSH connections. It then starts a
 new instance of sshd for each session with the
 already-connected socket attached to the standard input, output, and
 error streams of sshd. Each
 sshd invocation is responsible for a single
 session.
If you prefer this behavior, place an appropriate line in the
 inetd or xinetd
 configuration file to describe the SSH service, invoking
 sshd with the -i
 command-line option. For inetd, add a single
 line to /etc/inetd.conf:
 ssh stream tcp nowait root /usr/local/sbin/sshd sshd -i
Or if you’re using xinetd, create a new
 file /etc/xinetd.d/ssh
 containing:
 service ssh
 {
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/local/sbin/sshd
 server_args = -i
 disable = no
 }
You will also need an entry for SSH in the server machine’s
 TCP/IP services database, usually /etc/services (or sometimes /etc/inet/services), such as:
 ssh 22/tcp # SSH Remote Login Protocol
The -i option causes
 sshd to:
	Ignore all Port and
 ListenAddress keywords and
 the -p command-line option, because
 inetd or xinetd itself
 is responsible for listening

	(OpenSSH only) Ignore all MaxStartups keywords

	(OpenSSH only) Direct debug output to syslog [5.9] instead of the
 standard error stream, since stderr is attached to the SSH
 socket by inetd or
 xinetd, and debug output would confuse the
 SSH client at the other end of the connection

The inetd/xinetd approach has advantages
 and disadvantages. On the up side, it allows a wrapper program to
 invoke sshd, should that be needed, and
 xinetd particularly supports many options that
 can complement the SSH server configuration. Also,
 inetd and xinetd provide a
 single, centralized point of control for all types of network
 connections, which simplifies maintenance. If you want to forbid all
 types of TCP/IP connections, for example, you can simply disable
 inetd/xinetd instead of running around killing
 other daemons. On systems where SSH connections are rare, using
 inetd/xinetd for the SSH
 service saves resources (memory and a process slot) otherwise
 consumed by the SSH server as it listens for incoming connections.
 Finally, starting a new sshd instance for each
 connection can make attacks more difficult by introducing additional
 randomness. On the down side,
 inetd/xinetd-based SSH connections may be
 slower to start up.[53]

5.3.3.3 Restarting the SSH server for each connection

SSH servers use randomness extensively for
 cryptographic algorithms and protocols, typically relying on the
 operating system (or other external state) to provide a source of
 random bits. [3.6.4]
 Some operating systems also support Address Space Layout
 Randomization (ASLR), which protects against certain kinds of attacks that
 require knowledge of predictable memory locations. ASLR causes
 random offsets to be used when program segments or shared libraries
 are loaded, memory regions are dynamically allocated, etc.
Most of the randomness introduced by ASLR occurs when a
 program is initially loaded and starts running. Even on systems
 without ASLR, dynamic memory allocations that primarily occur in the
 early stages of program execution can be affected by the global
 state of the system’s virtual memory, which is hard to predict. In
 contrast, when a long-running program merely forks to create many
 child processes, all of the children inherit the memory layout (and
 even contents) from the parent process. Restarting the child
 processes after each fork mitigates the risks associated with
 attacks that are based on guessing memory locations.
By default, the OpenSSH server restarts itself after it
 accepts each connection from a client, and forks to create a
 separate child process to handle the session.[54] Relative pathnames can’t be used for server restarts,
 since sshd changes its working directory
 shortly after it begins running:
 # OpenSSH
 $./sshd
 sshd re-exec requires execution with an absolute path
Tip
We’ll continue to use the relative pathname “sshd” for our
 examples as an abbreviation, since the full, absolute pathname
 usually isn’t relevant to our discussions about the
 sshd command line. Nevertheless, an absolute
 pathname is recommended in practice, and newer versions of OpenSSH
 now enforce this, as shown in the preceding example.

If the server restart fails for some other reason (e.g., the
 executable file used originally to start sshd
 was renamed or removed), then the child process continues to run
 after forking, but produces a warning (which is usually sent to
 syslog):
 error: rexec of /usr/sbin/sshd failed: No such file or directory
Before it restarts, the child process adds the undocumented
 -R option at the end of its command line: this
 is used by the new process to detect that it has been restarted, and
 should therefore use the already connected socket that it inherits
 from its parent for communication with the client.[55] The parent process (i.e., the one that listens for
 incoming connections) sends a copy of its configuration and the
 SSH-1 server key (if one is used) via another socket to the
 restarted child process, which knows to read the data because of the
 same -R option. The child process then proceeds
 to handle the session normally.
If OpenSSH is started by inetd or
 xinetd, then there is no need to restart the
 SSH server, because a new instance of sshd is
 started by inetd/xinetd
 for each connection. [5.3.3.2] In fact, the
 function of the restarted child process is so similar to the
 operation of the server with
 inetd/xinetd that the
 -R option enables the same side effects as the
 -i option: notably, debug output is forced to
 syslog instead of the standard error.
The restart mechanism can be disabled by the undocumented,
 lowercase -r option:
 # OpenSSH
 $ sshd -r
This is useful in conjunction with server debugging features,
 since restarts are an inconvenient complication, and the side effect
 of sending debug output to syslog after the child process restarts
 is undesirable. [5.9]
 The -r option can also be used to avoid the
 slight performance cost for server restarts, especially on systems
 without ASLR, where such restarts provide little or no additional
 randomness. There is no configuration option to disable the server
 restart feature at build time.

5.3.3.4 Keepalive messages

The keepalive feature (TCPKeepAlive in OpenSSH, KeepAlive in Tectia) is concerned with
 recognizing when a connection has failed. Suppose a client
 establishes an SSH connection, and sometime later, the client host
 crashes abruptly. If the SSH server has no reason to send
 unsolicited messages to the client, it may never notice the
 half-dead TCP connection to its partner, and the
 sshd remains around indefinitely, using up
 system resources such as memory and a process slot (and making the
 sysadmin’s ps output messy).
The TCPKeepAlive or
 KeepAlive keyword instructs
 sshd how to proceed if a connection problem
 occurs, such as a prolonged network outage or a client machine
 crash:
 # OpenSSH
 TCPKeepAlive yes
 # Tectia
 KeepAlive yes
The value yes (the default)
 tells the server to set the TCP keepalive option on its connection
 to the client. This causes TCP to transmit and expect periodic
 keepalive messages. If it doesn’t receive responses to these
 messages for a while, it returns an error to
 sshd, which then shuts down the
 connection.
The value no means not to
 use keepalive messages. Note that SSH clients can also enable
 keepalive messages from their side of the connections, so it’s
 important to disable those too if you want to avoid keepalive
 traffic completely. [7.4.5.4]
The TCP keepalive feature is intended to prevent half-dead
 connections from building up over time. The keepalive message
 interval and timeout period reflect this: they are quite long,
 typically on the order of hours. This is to minimize the network
 load imposed by the keepalive messages and also to prevent
 connections from being unnecessarily torn down because of transient
 problems, such as a temporary network outage or routing flap. These
 timers aren’t set in SSH; they are properties of the host’s TCP
 stack. They shouldn’t be altered lightly, since they affect every
 TCP connection using keepalives on that host.
This feature isn’t intended to prevent lost connections due to
 firewall, proxying, NAT, or IP masquerading timeouts. For instance,
 when your SSH connection is going across a firewall but has been
 idle for a while, the firewall can decide to tear down the
 connection. Since this is done to conserve shared resources (such as
 a limited pool of external, routable IP addresses), these timeouts
 are typically quite short, perhaps a few minutes to an hour or so.
 The name “keepalive” suggests that it might be the right thing to
 use, since that’s what you want to do—keep your connection alive.
 But really, “keepalive” is the wrong name for it; it would be better
 named “detect dead” (but that sounds like a second-level cleric
 spell to avoid being eaten by zombies). To deal with this problem,
 you’d have to shorten the TCP keepalive interval dramatically on the
 SSH host. This is contrary to its purpose and unwise because it
 affects not only SSH connections, but also every other TCP
 connection using keepalives, even those that don’t need it. Doing
 this on the server side is an especially bad idea as a general
 principle, since a busy server may be using lots of TCP connections,
 and enabling keepalives on many of them since it’s supposed to be an
 inexpensive feature. This can impose an unnecessary and damaging
 additional network load, especially if it becomes a widespread
 practice.
It’s good to remember that the timeout annoying you so much is
 there for a reason. You might like to leave an unused SSH connection
 up for a long time, but if it’s occupying one of a limited number of
 simultaneous outbound Internet TCP connections for your company,
 perhaps it’s better if you just suck it up for the common good.
 Typing ssh again once in a while
 is really not that hard; use your shell’s alias feature if you find
 the number of keystrokes onerous. If you genuinely think the timeout
 is inappropriate or unnecessary, argue the case with the network
 administrator, and try to get it changed.
For the occasions when it’s really necessary, the right way to
 accomplish this sort of keepalive behavior is with an
 application-level mechanism implemented in SSH—having it
 periodically send SSH protocol messages over the connection to make
 it appear nonidle. This is exactly what OpenSSH does with its
 ClientAliveInterval and ClientAliveCountMax keywords. ClientAliveInterval controls how the
 server sends client-alive messages.[56] Its argument is a length of time in seconds:
 # OpenSSH
 ClientAliveInterval 300 Send client-alive every 300 seconds, or five minutes
or a time value with optional units:
 # OpenSSH
 ClientAliveInterval 5m Send client-alive every five minutes
If your server hasn’t heard from the client within the given
 amount of time, the server will send a client-alive message to the
 client. It will continue sending these messages at the given
 interval (in this case, every five minutes) until it receives a
 response or gives up. You control how it gives up with the third
 keyword, ClientAliveCountMax,
 representing the maximum number of consecutive client-alive messages
 the server will send:
 # OpenSSH
 ClientAliveCountMax 8 Try eight times, then give up. The default is three times.
Once this maximum is reached, the server considers the SSH
 connection inactive and terminates it. If you don’t want the server
 to send client-alive messages, set ClientAliveInterval to zero.
If your SSH implementation has no similar feature (Tectia
 doesn’t), we recommend simply sending characters over your
 connection once in a while. Run Emacs with a clock in its mode line.
 Run a program in the background that prints “Boo!” to your terminal
 if it’s been idle for 20 minutes. You get the idea.
Time Values in Configuration Files
Some keywords specify intervals of time. By default, the
 values are numbers of seconds, but both OpenSSH and Tectia
 recognize single-character suffixes for units, in either lowercase
 or uppercase: s for seconds,
 m for minutes, h for hours, d for days, and w for weeks. For example, one day could
 be represented as 1d or
 24H or 1440m.
OpenSSH adds sequences of time values, so a 90-minute
 interval can be specified as 1h30m. Tectia allows only a single
 time-unit suffix.
OpenSSH recognizes time values with units for the keywords
 ClientAliveInterval, LoginGraceTime, and KeyRegenerationTime.
Unfortunately, Tectia handles time values rather
 inconsistently. Units are recognized only for the keywords
 IdleTimeout, HostkeyEKTimeOut, and ExternalMapperTimeout. Other keywords
 that specify intervals accept only numbers of seconds, without
 units: LoginGraceTime, AuthInteractiveFailureTimeout, and
 RekeyIntervalSeconds (which is
 especially unusual, since the time unit “seconds” is in the
 keyword name).

5.3.3.5 Idle connections

Keepalive messages are concerned with recognizing that
 a connection has failed. A related feature is recognizing when a
 healthy connection is unused and should be terminated. Tectia
 supports the IdleTimeout keyword
 for this purpose. If an SSH connection is established between a
 server and a client, but no data passes over the connection for a
 long time, what should the server do: keep the connection, or
 terminate it?
The IdleTimeout keyword
 tells the server what to do if a connection is idle, i.e., if the
 user doesn’t transmit any data in a given period. If IdleTimeout is zero (the default), the
 server does nothing, leaving idle connections intact:
 # Tectia
 IdleTimeout 0
Otherwise, the server terminates the connection after a
 specified interval of idleness. The time value can specify units,
 e.g., three hours:
 # Tectia
 IdleTimeout 3H
See the sidebar "Time Values in Configuration
 Files" for more syntax details.
The idle timeout can also be set for a given key in a user’s
 authorized_keys file using the
 idle-timeout option. [8.2.7] Notably, this option
 overrides the server’s IdleTimeout value but only for that key.
 This is a rare instance of a per-account option overriding a
 serverwide option; however, the server will only allow a client to
 decrease the timeout.

5.3.3.6 Failed logins

Suppose a user attempts to log in via SSH but fails to
 authenticate. What should the server do? The keywords LoginGraceTime, MaxAuthTries (OpenSSH), and PasswordGuesses (Tectia) control the
 server’s response.
Users are given a limited time to authenticate successfully.
 The default is 120 seconds (2 minutes) for OpenSSH or 600 seconds
 (10 minutes) for Tectia. This timeout is controlled by the LoginGraceTime keyword, given a value in
 seconds:
 LoginGraceTime 60
or the -g command-line option:
 $ sshd -g 60
OpenSSH allows time units to be used in the configuration file
 or on the command line:
 # OpenSSH
 LoginGraceTime 5m

 # OpenSSH
 $ sshd -g 5m
To disable this feature, provide a LoginGraceTime value of zero:
 LoginGraceTime 0
or by command-line option:
 $ sshd -g 0
Tip
OpenSSH ignores LoginGraceTime in debug mode. [5.9]

OpenSSH limits the number of times (six by default) that a
 user can attempt to authenticate in a single SSH connection:
 # OpenSSH
 MaxAuthTries 4 Permit four attempts, and log the third and fourth failures if they occur
If authentication fails half the number of times specified (in
 this example, two times, half of four), then failures are logged by
 sshd. In other words, sshd
 gives you the benefit of the doubt at first, then considers you
 suspicious. By default, you have six chances to authenticate in one
 connection.
If password authentication is used for a connection request,
 Tectia’s sshd permits a client three tries to
 authenticate before dropping the connection. This restriction may be
 modified with the PasswordGuesses
 keyword for Tectia:
 # Tectia
 PasswordGuesses 5
There are two sorts of requests a client can make in this
 regard: a query whether a particular public key is authorized to log
 into the target account, and an actual authentication attempt
 including a signature by the corresponding private key. As Tectia
 does not limit the number of public-key authentication requests,
 there’s no issue with it. The OpenSSH MaxAuthTries setting, however, limits the
 number of failed authentication requests overall, of any type, and
 OpenSSH counts a “no” answer to a public-key query as a failure. A
 common side effect is an unexpected limit to the number of keys you
 can usefully have in an agent! If you have five keys in your agent,
 and it happens to be the fifth one that would let you in, you’re out
 of luck: the server will disconnect you after the client tries the
 fourth key. And that’s assuming the client didn’t try and fail some
 other methods first, e.g., GSSAPI or hostbased; then even fewer keys
 could be tried. (See [7.4.2.1] for a
 workaround.)
There are various security arguments to made here, of course.
 The server can’t distinguish between a legitimate user trying keys
 and an attacker knocking on the door, so it measures all attempts
 against the repeated-authentication limit. In fact, one can argue
 that the server shouldn’t honor public-key queries because they
 reveal information to an attacker: which key to try to steal, or
 whether an account can be accessed at all. These are all trade-offs
 of convenience versus security, and different server implementations
 take different approaches.
You can work around this issue by listing your most relevant
 keys in your client configuration file, ~/.ssh/config, with the IdentityFile keyword. [7.4.2] Keys that are in
 both the agent and the configuration file are tried first by the
 client. Therefore, you can associate particular keys with a
 particular host so that they’re tried first for
 authentication.

5.3.3.7 Limiting simultaneous connections

 sshd can handle an arbitrary
 number of simultaneous connections by default. Both OpenSSH and
 Tectia provide keywords to limit the maximum number, if you want to
 conserve resources on your server machine or reduce the risk of
 denial-of-service attacks. For OpenSSH it is MaxStartups, and for Tectia it is MaxConnections:
 # OpenSSH
 MaxStartups 32

 # Tectia
 MaxConnections 32
To specify an unlimited number of connections, provide a value
 of zero:
 # OpenSSH
 MaxStartups 0

 # Tectia
 MaxConnections 0
Of course, the number of connections is also limited by
 available memory or other operating system resources. These keywords
 have no effect on these other factors. (Sorry, you can’t increase
 your CPU speed by setting a keyword!)
OpenSSH’s MaxStartups
 keyword has one additional bit of functionality. If you provide a
 triple of integers separated by colons, of the form
 A:B:C, this tells the server to refuse
 connections based on probabilities. Specifically, if the number of
 connections is A or greater,
 sshd will begin rejecting connections. When
 there are A connections, the probability
 of rejection is B%. When there are
 C connections, the probability of
 rejection is 100% (every attempt is rejected). Between
 A and C
 connections, the probability increases linearly from
 B% to 100%. So, for example, if you
 have:
 # OpenSSH
 MaxStartups 10:50:20
then at a load of 10 connections, the probably of rejection is
 50%; at 15 connections (halfway between 10 and 20) it’s 75% (halfway
 between 50% and 100%), and at 20 connections it’s 100%.
Tectia’s behavior is simpler. After the maximum number of
 connections have been accepted, new connection attempts are
 rejected, and the server sends a “Too many connections” error
 message back to the client before it disconnects. Tectia can also
 limit the number of connections at compile time via the
 --with-ssh-connection-limit option. [4.3.5.3]
If sshd is launched by
 xinetd, then you can control server resources
 much more precisely: the rate of incoming connections, server
 memory, and more. [5.3.3.2]

5.3.3.8 Reverse IP mappings

The SSH server optionally does a reverse DNS lookup on
 a client’s IP address. That is, it looks up the name associated with
 the address, then looks up the addresses for that name and makes
 sure that the client’s address is among them. If this check fails,
 the server refuses the connection. This feature uses standard system
 services like gethostbyname()
 and gethostbyaddr() to perform
 these mappings, so the databases that are consulted depend on the
 host operating system configuration. It might use the DNS, the
 Network Information Service (NIS or YP), static files on a server
 machine, or some combination.
To enable this check for OpenSSH, provide the UseDNS keyword with a value of yes or no:[57]
 # OpenSSH
 UseDNS yes
This feature is a bit of security-oriented consistency
 checking. SSH uses cryptographic signatures to determine a peer’s
 identity, but the list of peer public keys (the known hosts
 database) is often indexed by hostname, so SSH must translate the
 address to a name in order to check the peer’s identity. Reverse
 mapping tries to ensure that someone isn’t playing games with the
 naming service in a cracking attempt. There is a trade-off, however,
 since in today’s Internet, the DNS reverse-address mappings aren’t
 always kept up to date. The SSH server might reject legitimate
 connection attempts because of poorly maintained reverse-address
 mappings over which you have no control. In general, we recommend
 turning off this feature; it isn’t usually worth the hassle, and you
 avoid long reverse-lookup delays at times when DNS is down.

5.3.3.9 Controlling the Nagle Algorithm

TCP/IP has a feature called the Nagle Algorithm, which
 is designed to reduce the number of TCP segments sent with very
 small amounts of data (e.g., one byte), usually as part of an
 interactive terminal session. Over fast links such as Ethernet, the
 Nagle Algorithm generally isn’t needed. Over a wide-area network,
 however, it can cause noticeable delays in the responsiveness of X
 clients and character terminal displays, as multibyte terminal
 control sequences may be transmitted inconveniently by the
 algorithm. In such cases, you should turn off the Nagle Algorithm
 using the NoDelay keyword:
 # Tectia
 NoDelay yes
NoDelay disables the Nagle
 Algorithm by toggling the TCP_NODELAY bit when requesting a TCP connection from the Unix
 kernel. Legal values are yes (to
 disable) and no (to enable; the
 default).
NoDelay can be enabled or
 disabled by the Tectia client, rather than serverwide, using the
 client configuration keyword NoDelay. [7.4.5.5] It usually makes
 more sense to use NoDelay for a
 single client connection than to control the Nagle Algorithm
 globally for all connections on the server side.

5.3.3.10 Discovering other servers

Tectia can seek out and discover other Tectia servers
 automatically. The keyword MaxBroadcastsPerSecond, when given an
 integer value greater than zero, causes a Tectia server to respond
 to UDP broadcasts sent to port 22:
 # Tectia
 MaxBroadcastsPerSecond 10
The server responds to only this many queries per second; any
 excess broadcasts are silently ignored. All UDP broadcasts received
 on port 22 apply to this limit, including unrecognized or malformed
 packets. The rate limiting prevents a denial-of-service attack that
 floods the server with queries, causing it to spend all its time
 replying to them.
By default, Tectia servers do not respond to UDP broadcasts.
 This behavior can be specified explicitly by setting MaxBroadcastsPerSecond to zero:
 # Tectia
 MaxBroadcastsPerSecond 0
No mechanism is provided to use a UDP port other than 22, and
 the UDP port is completely independent of the TCP port(s) used for
 ordinary SSH connections.
A program supplied with Tectia,
 ssh-probe, sends queries to one or more
 specified broadcast addresses. It listens for replies, and prints
 the locations (IP addresses and ports) along with the versions of
 any Tectia servers that it finds:
 # Tectia
 $ ssh-probe 10.1.2.255
 10.1.2.3:22:SSH Tectia Server 4.1.3.2
 10.1.2.5:22:SSH Tectia Server 4.1.3.2
 10.1.2.5:2222:SSH Tectia Server 4.1.3.2
 10.1.2.5:3333:SSH Tectia Server 4.1.3.2
 10.1.2.9:22:SSH Tectia Server 4.1.3.2
 ...
Directed broadcasts (i.e., those on different networks) can be
 used if intervening gateways are willing to forward them. IP
 addresses of specific hosts (but not hostnames) can also be
 used.
Tip
UDP datagrams received on non-broadcast addresses are
 usually delivered only to a single process, so if several Tectia
 servers are running on a target host, then only one will respond.
 Use broadcast addresses to detect multiple servers.

ssh-probe does not
 use the ProtocolVersionString to
 determine the version: this string is part of the initial
 negotiation between SSH servers and clients for TCP connections.
 [5.3.7] Tectia servers
 always supply their actual version string in response to UDP queries
 by ssh-probe.
The default output format is intended to be parsed easily by
 programs. The -r option prints results in a
 more human-readable format:
 # Tectia
 $ ssh-probe -r 10.1.2.255
 Server address = "10.1.2.3"
 Server port = "22"
 Server version = "SSH Tectia Server 4.1.3.2"
 ...
 12 servers detected.
The -s option causes
 ssh-probe to operate silently, returning only
 an exit value of 0 to indicate that at least one server was found, 1
 if no replies were received, or -1 if some other error
 occurred:
 # Tectia
 $ ssh-probe -s 10.1.2.255
 $ case $? in
 > 0) echo "Tectia found.";;
 > 1) echo "Tectia missing.";;
 > *) echo "Something bad happened to ssh-probe!";;
 > esac
 Tectia found.
By default, ssh-probe waits one second
 for replies. The -t option specifies a longer
 timeout, e.g., for slow or distant servers:
 # Tectia
 $ ssh-probe -t 5 10.1.2.255
ssh-probe supports the
 -d option for debug output. [5.9] The program uses the
 module names SshProbe and
 SshServerProbe.
Port-scanning programs such as nmap
 provide a more general way to locate SSH servers,
 including other implementations like OpenSSH, even though port scans
 typically don’t provide version information as
 ssh-probe does for Tectia servers. For example,
 to use nmap to scan a range of network
 addresses for any kinds of SSH servers listening on (TCP) port
 22:
 $ nmap -v -p 22 10.1.2.0/24
The ScanSSH program [58] scans ranges of network addresses, identifying SSH
 servers (along with open proxies and other interesting servers, such
 as HTTP and SMTP). It attempts to determine the version for each.
 For example, to scan the same network address range:
 $ scanssh -s ssh 10.1.2.0/24
MaxBroadcastsPerSecond and
 ssh-probe are a rather ad hoc solution for
 locating Tectia servers, and port scans are questionable, since
 authorized users typically know the identity of specific servers to
 which they have been granted access. Probes often don’t work across
 firewalls, and they might be mistaken for attacks by people and
 programs that monitor network activity.
Better techniques are available to enumerate servers for
 administrative tasks, e.g., maintaining a list of servers in a
 netgroup or other database. Dynamic DNS and SRV records are
 alternatives, although this nameserver functionality is still not
 widely used.

5.3.4 Key Regeneration

All SSH servers maintain a persistent host key. It is
 generated by the system administrator when installing SSH and
 identifies the host for authentication purposes. [5.3.1.1] Additionally,
 SSH-2 clients and servers exchange keys for data encryption and
 integrity. By default, the Tectia client and server perform this key
 exchange every hour (3600 seconds) but you can set this with the
 RekeyIntervalSeconds keyword. A
 value of zero disables rekeying.
 # Tectia
 RekeyIntervalSeconds 7200
This keyword only controls the automatic, periodic session
 rekeying that is initiated by the server. An SSH client can still
 request session rekeying at any time.
You can make the ssh client force rekeying
 with the escape sequence ~R
 (OpenSSH) or ~r (for Tectia). [7.4.6.8]

5.3.5 Encryption Algorithms

The SSH server can use a number of data-encryption
 algorithms for its secure connection; the client chooses a cipher
 from the list the server allows. The Ciphers keyword describes the subset of
 allowable ciphers, selected from those the server software supports.
 Its value is a comma-separated list of algorithm names (strings),
 case-sensitive,[59] indicating which algorithms are permissible. For
 example:
 Ciphers 3des-cbc
 Ciphers 3des-cbc,blowfish-cbc,arcfour
The order of the values is not significant, since the client
 drives the choice of the cipher.
If multiple Ciphers keywords
 are specified, the values are not accumulated into a single list.
 Instead, OpenSSH uses the list for the first Ciphers keyword, and Tectia uses the
 last.
Warning
OpenSSH treats unrecognized cipher names as fatal errors, but
 Tectia silently ignores them, which makes typos hard to detect. For
 troubleshooting, use the sshd -d command-line
 option [5.9] with the
 SshConfigParse module and a high
 debug level:
 # Tectia
 sshd -d SshConfigParse=9
Look for “ssh_config_set_param_algs” in the output to see the
 actual list of cipher names that were used.

The Ciphers keyword is useful
 for quickly disabling individual encryption algorithms—say, if a
 security hole is discovered in one of them. Just omit that algorithm
 from the Ciphers list and restart
 the server.
Both OpenSSH and Tectia support the following standard ciphers
 that are defined by the IETF SECSH draft:
In addition, Tectia implements the following standard
 ciphers:[60]
	none
	twofish-cbc
	twofish128-cbc
	twofish192-cbc
	twofish256-cbc

The “none” cipher means that no encryption is used. This is
 unsuitable for production use, but it might occasionally be convenient
 for testing, e.g., if you are watching SSH traffic using a network
 sniffer for diagnostic purposes. Subconfiguration files can restrict
 insecure ciphers like “none” to specific hosts or users. [11.6.2]
OpenSSH also implements a number of nonstandard ciphers:
	acss@openssh.org [61]
	aes128-ctr
	aes192-ctr
	aes256-ctr
	rijndael-cbc@lysator.liu.se

By default, all ciphers supported by the OpenSSH server (both
 standard and nonstandard) are allowed.
Tectia supports a different set of recommended, nonstandard
 ciphers:
	cast128-12-cbc@ssh.com
	des-cbc@ssh.com
	rc2-cbc@ssh.com
	rc2-128-cbc@ssh.com
	rijndael-cbc@ssh.com

Tectia also recognizes special values for the Cipher keyword indicating sets of
 algorithms:
Tectia FIPS Mode
The FIPS 140-2 standard defines strict requirements for
 performing cryptographic operations, including allowable ciphers.
 Tectia servers can use a special cryptographic library that is
 certified to be FIPS 140-2 compliant. In FIPS mode, the server
 supports only the following ciphers:
	3des-cbc
	aes128-cbc
	aes192-cbc
	aes256-cbc
	des-cbc@ssh.com

To enable FIPS mode, run the
 ssh-crypto-library-chooser command:
 # Tectia
 $ ssh-crypto-library-chooser fips
To use the standard cryptographic library that supports all of
 the ciphers:
 # Tectia
 $ ssh-crypto-library-chooser std
With no command-line argument, the
 ssh-crypto-library-chooser command just prints
 the currently used library.
The server must be restarted whenever the library is
 changed.

	AnyStd
	Any standard algorithm implemented by Tectia, including
 none

	AnyStdCipher
	Same as AnyStd, but
 excluding none

	Any
	Any standard or recommended, nonstandard algorithm
 implemented by Tectia, including none

	AnyCipher
	Same as Any, but
 excluding none

These special values are case-insensitive, in contrast to the
 other values for cipher names. We recommend using the capitalization
 shown earlier, but you may see lowercase values in older Tectia
 configuration files or documentation.
An important and unfortunate restriction is that the special
 values for cipher sets cannot be mixed with other cipher names:
 # Tectia: This is ILLEGAL
 Ciphers 3des-cbc,AnyStd
The default for Tectia is AnyStdCipher.
Cipher Naming Conventions
Ciphers use a conventional naming scheme that encodes the
 algorithm and any variable parameters. We illustrate the conventions
 by dissecting a sample cipher name:
 cast128-12-cbc@ssh.com. Here is the meaning of
 each part:
	cast
	The name of the algorithm in lowercase. [3.8]

	128
	Many algorithms can use different key lengths. For
 these, the number of bits in the key immediately follows the
 algorithm name. If the algorithm name ends in a digit, then a
 hyphen is added between the name and the key size (e.g.,
 rc2-128 for the RC2 algorithm using
 128-bit keys).

	-12
	A few algorithms are defined in terms of other
 parameters. If needed, these are specified next, each with a
 leading hyphen. For example, the CAST algorithm can use
 different numbers of rounds of encryption instead of the
 default 16.

	-cbc
	Block cipher algorithms can be run in a variety of modes
 of operation:
	ECB
	Electronic code book

	CBC
	Cipher block chaining

	CFB
	Cipher feedback

	OFB
	Output feedback

	CTR
	Counter

The mode is appended to the cipher name, again
 translated to lowercase, with a hyphen.

	@ssh.com:
	Finally, the IETF SECSH draft specifies that nonstandard
 ciphers must have a suffix with a leading @ character indicating the domain
 that defined the cipher.

Tectia’s extensive but poorly documented cryptographic library
 actually supports a much wider range of ciphers, including:
	3des-ecb@ssh.com
	3des-cfb@ssh.com
	3des-ofb@ssh.com
	aes-ecb@ssh.com
	aes-cbc@ssh.com
	aes-cfb@ssh.com
	aes-ofb@ssh.com
	aes-ctr@ssh.com
	blowfish-ecb@ssh.com
	blowfish-cfb@ssh.com
	blowfish-ofb@ssh.com
	cast128-ecb@ssh.com
	cast128-cfb@ssh.com
	cast128-ofb@ssh.com
	cast128-12-ecb@ssh.com
	cast128-12-cfb@ssh.com
	cast128-12-ofb@ssh.com
	des-ecb@ssh.com
	des-cfb@ssh.com
	des-ofb@ssh.com
	rc2-ecb@ssh.com
	rc2-cfb@ssh.com
	rc2-ofb@ssh.com
	rc2-128-ecb@ssh.com
	rc2-128-cfb@ssh.com
	rc2-128-ofb@ssh.com
	rijndael-ecb@ssh.com
	rijndael-cfb@ssh.com
	rijndael-ofb@ssh.com
	rijndael-ctr@ssh.com
	twofish-ecb@ssh.com
	twofish-cfb@ssh.com
	twofish-ofb@ssh.com

These are not included in the sets for Any or AnyCipher. In some cases, this is because
 the ciphers are considered experimental or inferior. For example, DES
 is usually not recommended because of its short key length, and block
 ciphers in ECB mode are considered vulnerable to replay attacks. Other
 modes such as CFB, OFB, and CTR are plausible alternatives to the
 default CBC, however.
Finally, Tectia recognizes a small number of convenient aliases
 for sets of ciphers:
	Value
	Meaning

	aes-cbc
	aes128-cbc, aes192-cbc aes256-cbc

	cast
	cast128-cbc

	twofish
	twofish-cbc, twofish128-cbc, twofish192-cbc,
 twofish256-cbc

Tip
In most cases, the names of block ciphers in CBC mode are also
 recognized by Tectia without “-cbc”, since CBC is considered the
 default mode. There are exceptions, however, that don’t follow any
 obvious pattern:
	aes-cbc@ssh.com

	cast128-cbc

	cast128-12-cbc@ssh.com

	rc2-cbc@ssh.com

	rc2-128-cbc@ssh.com

	twofish-cbc

We therefore recommend explicitly specifying -cbc in cipher names.
Tectia is rather forgiving (or sloppy, depending on your point
 of view) about the @ssh.com suffix for cipher names, which is
 supposed to be used consistently for nonstandard ciphers.
Most standard cipher names are also recognized with this
 suffix. The exceptions are:
	aes128-cbc

	aes192-cbc

	aes256-cbc

	twofish128-cbc

	twofish192-cbc

	twofish256-cbc

Similarly, the suffix can be omitted from most nonstandard
 cipher names. The lone exception is
 aes-cbc@ssh.com, because the name without the
 suffix is used as an alias for all AES ciphers in CBC mode with any
 key length, as described earlier.
Misusing the @ssh.com suffix in this way is inadvisable,
 because it violates the IETF SECSH draft.

5.3.6 Integrity-Checking (MAC) Algorithms

The MACs keyword
 selects the allowable integrity-checking algorithms, known as the
 message authentication code (MAC), used by sshd.
 [3.4.2.3] Except as
 described below, the MACs keyword
 behaves exactly like the Ciphers
 keyword. [5.3.5] Here
 are some examples:
 MACs hmac-sha1
 MACs hmac-sha1,hmac-md5
Both OpenSSH and Tectia support the following standard MAC
 algorithms defined by the IETF SECSH draft:
	hmac-sha1
	hmac-sha1-96
	hmac-md5
	hmac-md5-96

In addition, Tectia implements the standard “none” MAC, meaning
 that no integrity checking is performed. This is intended only for
 testing.
Tip
In Tectia’s FIPS mode, only the hmac-sha1
 MAC is supported.

OpenSSH also implements a nonstandard MAC algorithm,
 hmac-ripemd160@openssh.org. The name hmac-ripemd160 is also recognized
 without the @openssh.org suffix, but this is deprecated, since all
 nonstandard names are supposed to use a domain suffix. Tectia also
 supports some nonstandard MAC algorithms:
	hmac-ripemd160@ssh.com
	hmac-ripemd160-96@ssh.com
	hmac-sha256@ssh.com
	hmac-sha256-96@ssh.com
	hmac-tiger128@ssh.com
	hmac-tiger128-96@ssh.com
	hmac-tiger160@ssh.com
	hmac-tiger160-96@ssh.com
	hmac-tiger192@ssh.com
	hmac-tiger192-96@ssh.com
	ssl3-md5@ssh.com
	ssl3-sha1@ssh.com

Tectia recognizes special values for the Macs keyword to describe sets of
 algorithms:
	AnyStd
	Any standard algorithm implemented by Tectia, including
 none

	AnyStdMac
	Same as AnyStd, but
 excluding none

	Any
	Any standard or nonstandard algorithm implemented by
 Tectia, including none

	AnyMac
	Same as Any, but
 excluding none

Algorithm Naming Conventions
MAC names encode the algorithm and parameters, as for cipher
 names. To demonstrate, let’s decode a sample name:
 hmac-ripemd160-96@ssh.com:
	hmac-
	Algorithms are prefixed by the name of the scheme that
 is used to combine a shared secret key with the contents of
 each packet. The most common is HMAC, the keyed hashing
 technique described by RFC-2104. Tectia also supports an early
 HMAC variant used by SSL Version 3, denoted by the prefix
 “ssl3-”.

	ripemd160
	The name of MAC hash algorithm is next, which often
 contains digits that indicate either a version (e.g., sha1 and
 md5) or the number of bits produced by the hash. [3.8.3] The names are
 translated to lowercase, and any hyphens are removed.

	-96
	Some MAC algorithms have variants that truncate a larger
 message digest to a smaller number of bits. These are appended
 to the name, preceded by a hyphen.

	@ssh.com
	A suffix is required by the IETF SECSH draft for
 nonstandard ciphers, describing the domain that defined the
 MAC algorithm, preceded by an @ character.

By default, Tectia allows algorithms in the AnyStdMac set. (The Any value includes all
 supported MAC algorithms, unlike the Ciphers keyword.) OpenSSH allows all its
 available MACs by default.
Tip
Tectia also recognizes standard MAC names with the @ssh.com
 suffix. The suffix cannot be omitted for nonstandard MAC names,
 however, in contrast to the Ciphers keyword.
It’s best to use the suffix consistently according to the IETF
 SECSH draft, only for nonstandard names.

5.3.7 SSH Protocol Settings

OpenSSH lets you limit its protocol support to SSH-1,
 SSH-2, or both, using the Protocol
 keyword. Permissible values are 1
 (for SSH-1), 2 (for SSH-2), or both
 1 and 2 separated by a comma (the default):
 # OpenSSH
 Protocol 2,1
If you specify both protocols, the order doesn’t matter since
 the client, not the server, drives the authentication process. And as
 we’ve said before, the SSH-1 protocol is less secure and we recommend
 avoiding it. [3.5]
5.3.7.1 Protocol version string

SSH servers and clients exchange protocol version information
 as part of their initial negotiations, to agree on a protocol. [3.4.4.2] You can see the
 protocol version string used by the server by connecting to the SSH
 port:
 $ telnet localhost 22
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 SSH-2.0-4.1.3.2 SSH Secure Shell
By default, Tectia servers use a string like “4.1.3.2 SSH
 Secure Shell” for the comment part (after the second hyphen) of the
 protocol version. This can be changed using the undocumented
 ProtocolVersionString
 keyword:
 # Tectia
 ProtocolVersionString Generic SSH Implementation
Port-scanning tools that connect to the SSH port and observe
 the protocol version string will not see the detailed information
 about the specific installed version of Tectia if the string is
 changed:
 $ telnet localhost 22
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 SSH-2.0-Generic SSH Implementation
Tip
ProtocolVersionString
 changes only the comment part of the version string. The initial
 parts (e.g., SSH-2.0) always specify the protocol(s) that the
 server is willing to use, according to the SSH protocol
 standard.

Although an obscured ProtocolVersionString might thwart very
 simplistic port-scanning tools, in practice it doesn’t help much,
 since many attacks try to exploit bugs regardless of the version
 string, and determined attackers can probably figure out the
 implementation by noticing specific behavioral quirks of the server
 anyway. If the Tectia server is configured to respond to UDP queries
 by ssh-probe [5.3.3.10], then it
 always will respond to such queries with the actual version
 information, not the changed ProtocolVersionString. Furthermore,
 changing ProtocolVersionString
 might prevent workarounds by clients for known server
 incompatibilities or bugs.
The OpenSSH server always uses a string like “OpenSSH_3.9p1”
 for its protocol version string. This cannot be changed except by
 modifying the source code.

5.3.8 Compression

The data flowing between the SSH client and server may
 optionally be compressed to save bandwidth. Often this option is set
 by the client [7.4.14],
 but OpenSSH gives the server the ultimate authority on whether data
 compression is permitted, using the Compression keyword:
 # OpenSSH
 Compression no
The default value is yes.

[49] HostKey has the aliases
 HostRsaKey and HostDsaKey, but they are deprecated
 and might be removed in a future version of OpenSSH.

[50] More precisely, n is the value for
 the Port keyword, even if
 ListenAddress keywords cause
 the server to use different ports. [5.3.3.1]

[51] You need not double the percent sign (%%) to get a literal percent
 character, i.e., as required for the C function printf.

[52] The port setting (either explicit or the default value,
 22) is used in the name of the process ID file. [5.3.1.3] Tectia
 servers can listen on multiple ports, but this requires use of
 the ListenAddress keyword.

[53] Only if you use the SSH-1 protocol, where
 sshd generates a new server key each time
 it’s invoked. But you’re not using SSH-1, are you?

[54] This feature is new in OpenSSH 3.9.

[55] Never use the -R option to start
 sshd; it’s really part of the protocol for
 communication between the parent and the (restarted) child
 server processes.

[56] OpenSSH clients have analogous ServerAliveInterval and ServerAliveCountMax keywords. [7.4.5.4]

[57] Tectia has a similar-sounding keyword, RequireReverseMapping, but it applies
 only to the AllowHosts and
 DenyHosts features. [5.5.3]

[58] http://www.monkey.org/~provos/scanssh/

[59] Older versions of OpenSSH treat the algorithm names as
 case-insensitive.

[60] A few standard ciphers aren’t supported by either OpenSSH or
 Tectia: idea-cbc, serpent128-cbc, serpent192-cbc, and
 serpent256-cbc. These are all considered optional by the IETF
 SECSH draft.

[61] Cipher acss@openssh.org is not allowed by default; it must
 be explicitly enabled.

Authentication: Verifying Identities

 A large part of the SSH server’s job is to grant or deny
 connection requests from clients. This is done at two levels:
 authentication and access control (a.k.a.
 authorization). We discuss the former here and the
 latter in the section "Access
 Control: Letting People In.” [5.5] Authentication, as we’ve
 seen, means verifying the identity of the user requesting a
 connection.
5.4.1 Authentication Syntax

 sshd supports several different
 techniques for authentication that may be enabled or disabled. [3.1.3] [3.4.3] For example, if you
 don’t trust password authentication, you can turn it off serverwide
 but still permit public-key authentication.
As SSH has evolved, the syntax for configuring authentication
 has changed several times, and OpenSSH and Tectia use entirely
 different syntaxes. In OpenSSH, different authentication techniques
 are turned on and off with keywords of the form:
<Name_Of_Technique>Authentication
For example, password authentication is controlled by the
 keyword PasswordAuthentication,
 public-key authentication by PubKeyAuthentication, and so forth, one
 keyword per technique. Values may be yes or no, as in:
 # OpenSSH
 PubKeyAuthentication yes
Table 5-1 lists all
 the authentication techniques supported by OpenSSH, and each is
 described in detail later.
Table 5-1. OpenSSH authentication keywords
	Keyword
	Meaning

	 ChallengeResponseAuthentication

	One-time passwords.

	 GSSAPIAuthentication
	Typically used for
 Kerberos.

	 HostbasedAuthentication

	Host-based
 authentication.

	 PasswordAuthentication

	Password authentication. Exactly
 what this means is determined by the UsePAM and KerberosAuthentication
 keywords.

	 PubKeyAuthentication
	Public-key
 authentication.

	 RhostsRSAAuthentication

	SSH-1 protocol only:
 avoid.

	 RSAAuthentication
	SSH-1 protocol only:
 avoid.

Tectia has a more extensible syntax. Instead of creating a new
 keyword for each technique, you use only two keywords, AllowedAuthentications and RequiredAuthentications. Each is followed by
 the names of one or more authentication techniques, separated by commas. For example:
 # Tectia
 AllowedAuthentications password,hostbased,publickey
AllowedAuthentications means
 that any of the given techniques
 can be used. In contrast, RequiredAuthentications means that
 all of the listed techniques
 must be used. If both keywords are present, then
 RequiredAuthentications is used,
 and AllowedAuthentications is
 ignored.[62] Table 5-2
 lists the supported values for these keywords. The first four
 techniques are specified by the IETF SECSH draft, while the ones with
 the @ssh.com suffix are nonstandard. It doesn’t matter in what order
 you list the values because the SSH client, not the server, drives the
 authentication process. By default, Tectia’s sshd
 allows only password and public-key authentication.
Table 5-2. Tectia authentication techniques for AllowedAuthentications
 and RequiredAuthentications
	Value
	Meaning

	 password
	Password
 authentication.

	 publickey
	Public-key
 authentication.

	 hostbased
	Host-based
 authentication.

	 keyboard-interactive
	Extensible, general-purpose,
 interactive authentication.

	 gssapi-with-mic
	GSSAPI authentication with Message
 Integrity Code (MIC).

	 gssapi
	GSSAPI authentication (deprecated in
 favor of gssapi-with-mic).

	
 kerberos-2@ssh.com
	Kerberos. Unsupported. Not available
 by default: requires recompilation.

	
 kerberos-tgt-2@ssh.com

	Kerberos authentication with TGT
 (passed to server). Unsupported.
 Not available by
 default: requires recompilation.

	
 pam-1@ssh.com
	Mostly obsolete: replaced by
 keyboard-interactive. Used
 only for old clients.

	
 securid-1@ssh.com
	Mostly obsolete: replaced by
 keyboard-interactive. Used
 only for old clients.

We now describe how to enable and disable each type of
 authentication except the deprecated SSH-1 keywords, which are in
 Appendix D.

5.4.2 Password Authentication

Password authentication accepts your login password as
 proof of identity. [3.4.3.5] OpenSSH allows or
 disallows password authentication with the PasswordAuthentication keyword, given the
 value yes (the default) or no:
 # OpenSSH
 PasswordAuthentication yes
Normally, OpenSSH password authentication requires your ordinary
 login password. However, this may be changed via PAM [5.4.8], Kerberos [5.4.7], or other
 features.
For Tectia, you can allow or require password authentication by
 adding the value password to the
 lists for AllowedAuthentications or
 RequiredAuthentications,
 respectively:
 # Tectia
 AllowedAuthentications password
5.4.2.1 Failed password attempts

Tectia servers wait two seconds by default after each failed
 password authentication attempt, to thwart brute-force
 password-guessing attacks. The AuthInteractiveFailureTimeout keyword
 controls this delay:
 # Tectia
 AuthInteractiveFailureTimeout 5

5.4.2.2 Empty passwords

If an account has an empty password, both the OpenSSH and
 Tectia servers may refuse access to the account. This feature is
 controlled by the keyword PermitEmptyPasswords with a value of
 yes (the default) or no. If enabled:
 PermitEmptyPasswords yes
empty passwords are permissible; otherwise, they are not.

5.4.2.3 Expired passwords

Some operating systems support expiration dates for passwords.
 For those that do, OpenSSH and Tectia allow expired
 passwords to be changed during authentication.
If the OpenSSH server detects an expired password, it runs the
 system passwd command to change it once the
 user has logged in. It then closes the connection so that the user
 must log in again:
 $ ssh -oPubKeyAuthentication=no -l smith server.example.com
 smith@server.example.com's password:
 Last login: Sat Jan 22 17:07:27 2005 from client.example.com
 WARNING: Your password has expired.
 You must change your password now and login again!
 Changing local password for smith.
 Old password:
 New password:
 Retype new password:
 Connection to server.example.com closed.
For Tectia, by default, after the server verifies the user’s
 password, if the password is found to be expired, then the system’s
 password-change program (e.g., passwd) is run
 as a forced command. [8.2.3] An alternate
 password-change program (e.g., one that enforces policies for
 choosing good passwords) can be specified by the PasswdPath keyword:
 # Tectia
 PasswdPath /usr/local/bin/goodpasswd
The password-change program runs with the privileges of the
 user, not those of the server (typically root). Here’s an example of
 a password change during authentication, from the client’s
 perspective:
 $ ssh server.example.com
 rebecca's password: < ... old, expired password ... >
 Authentication successful.
 < ... the following output is from running the passwd forced command ... >
 Changing password for user rebecca.
 Changing password for rebecca
 (current) UNIX password: < ... old, expired password, again ... >
 New password: < ... new password ... >
 Retype new password: < ... new password, again ... >
 passwd: all authentication tokens updated successfully.
 Connection to server.example.com closed.
We discuss more powerful alternatives to this technique in a
 later case study. [11.7.1]

5.4.3 Public-Key Authentication

Public-key authentication verifies a user’s identity by
 cryptographic key. [2.4]
 In OpenSSH, public-key authentication is permitted or forbidden with the PubKeyAuthentication keyword which may have
 the value yes (the default) or
 no:[63]
 # OpenSSH
 PubKeyAuthentication yes
For Tectia, you allow or require public-key authentication by
 adding the value publickey to the
 lists for AllowedAuthentications or
 RequiredAuthentications,
 respectively:
 # Tectia
 AllowedAuthentications publickey
Tectia provides keywords that restrict the minimum and maximum
 sizes for public keys:
 # Tectia
 AuthPublicKey.MinSize 1024
 AuthPublicKey.MaxSize 2048
You might want to require a minimum key size for improved
 security, but reject huge keys because they slow down authentication.
 A value of zero (the default) disables the key-size checks.
Public-key authentication is marvelously configurable for most
 SSH implementations. See Chapter
 8 for details on tailoring authentication for individual
 accounts.

5.4.4 Hostbased Authentication

 Hostbased authentication verifies
 an SSH client’s identity by checking the remote hostname and username
 associated with it. [3.4.3.6] This mimics the
 behavior of the insecure Berkeley r-commands
 (rsh, rlogin,
 rcp) which check the server files /etc/hosts.equiv and ~/.rhosts for permission to authenticate.
 SSH’s hostbased authentication is more secure, however: instead of
 relying on a potentially compromised network naming service (e.g.,
 DNS, NIS) and a privileged TCP source port, the SSH server uses
 secure, cryptographic tests of host keys to verify the client host’s
 identity.
OpenSSH has the keyword HostbasedAuthentication (surprise!) to
 enable or disable this type of authentication:[64]
 # OpenSSH
 HostbasedAuthentication yes
For Tectia, you allow or require hostbased
 authentication by adding the value hostbased to the lists for AllowedAuthentications or RequiredAuthentications,
 respectively:
 # Tectia
 AllowedAuthentications hostbased
Hostbased authentication is useful but unfortunately also
 enables connections via the insecure r-commands, since it obeys the
 same permission files. To eliminate this potential security risk, use
 the SSH-specific files /etc/shosts.equiv and ~/.shosts instead of /etc/hosts.equiv and ~/.rhosts. In fact, we recommend you delete
 /etc/hosts.equiv and forbid your
 users to create ~/.rhosts files.
 (An even better approach is to disable the services for insecure
 protocols like the r-commands; these services are usually started by
 inetd or xinetd.)
You can also tell the SSH server to ignore all users’ .rhosts and .shosts files with the keyword IgnoreRhosts. (This keyword does not impact
 the system files /etc/shosts.equiv and /etc/hosts.equiv, however.) Permissible
 values are yes (to ignore them) or
 no (the default):
 IgnoreRhosts yes
Ignoring users’ files might be appropriate in an environment of
 centralized control, where only sysadmins are authorized to decide
 which hosts are trusted for authentication.
Tectia permits separate control over hostbased authentication
 for root. The keyword IgnoreRootRhosts permits or prevents use of
 the superuser’s .rhosts and
 .shosts files, overriding
 IgnoreRhosts:
 # Tectia
 IgnoreRootRhosts yes
Values of yes (ignore the
 files) and no (don’t ignore) are
 permitted. If not specified, the value of IgnoreRootRhosts defaults to that of
 IgnoreRhosts. For example, you can
 permit all .rhosts and .shosts files except root’s:
 # Tectia
 IgnoreRhosts no
 IgnoreRootRhosts yes
or ignore all .rhosts files
 except root’s:
 # Tectia
 IgnoreRhosts yes
 IgnoreRootRhosts no
Again, IgnoreRootRhosts
 doesn’t stop the server from considering /etc/hosts.equiv and /etc/shosts.equiv. For stronger security,
 it’s best to disable hostbased access entirely.
The SSH server needs the public keys of all hosts from which it
 accepts connections via hostbased authentication. These keys are kept
 in a single file, /etc/ssh/ssh_known_hosts (for OpenSSH), or
 in separate files in the directory /etc/ssh2/knownhosts (for Tectia). A host’s
 public key is fetched from these locations whenever that host requests
 a connection. Optionally, the server also searches the file ~/.ssh/known_hosts (for OpenSSH) or
 separate files in the directory ~/.ssh2/knownhosts in the target user’s
 account.
This optional feature (which is enabled by default) can be
 controlled with the keywords IgnoreUserKnownHosts (for OpenSSH):
 # OpenSSH
 IgnoreUserKnownHosts yes
or UserKnownHosts (for
 Tectia):
 # Tectia
 UserKnownHosts no
Having sshd consult the user’s known hosts
 database might be unacceptable in a security-conscious environment.
 Since hostbased authentication relies on the integrity and correct
 administration of the client host, the system administrator usually
 grants hostbased authentication privileges to only a limited set of
 audited hosts. If the user’s file is respected, however, a user can
 extend this trust to a possibly insecure remote host. An attacker can
 then:
	Compromise the insecure, remote host

	Impersonate the user on the remote host

	Access the user’s local account via SSH, without needing a
 key passphrase or the local account password

Hostbased authentication can be complicated by other aspects of
 your server machine’s environment, such as DNS, NIS, and the ordering
 of entries in static host files. It may also open new avenues for
 attack on a system. [3.4.3.6]
Tectia servers can re quire that the hostname provided by the
 client must match the one found in DNS, using the keyword HostbasedAuthForceClientHostnameDNSMatch:
 # Tectia
 HostbasedAuthForceClientHostnameDNSMatch yes
By default, no such check is performed, and in practice, this
 feature provides only a moderate level of protection against spoofing,
 since the DNS server(s) can still be attacked. [3.6.2]

5.4.5 Keyboard-Interactive Authentication

 Keyboard-interactive
 authentication is an extensible, general-purpose mechanism
 for implementing a variety of authentication techniques that require
 interaction with the remote user, such as one-time passwords and challenge-response schemes. Clients must implement
 the keyboard-interactive protocol (described in an IETF SECSH draft,
 and tunneled securely over the SSH transport layer) but need no other
 modifications as new authentication techniques are added.
An example of a keyboard-interactive authentication technique is one-time passwords,
 found in systems like Bellcore’s S/Key. “One-time” means that each
 time you authenticate, you provide a different password, helping to
 guard against attacks, since a captured password will likely be
 useless. Here’s how it works:
	When you connect to a remote service, it provides you with
 an integer and a string, called the sequence
 number and the key,
 respectively.

	You enter the sequence number and key into an
 S/Key calculator program on your local
 machine.

	You also enter a secret passphrase into the calculator,
 known only to yourself. This passphrase isn’t transmitted over the
 network, only into the calculator on your local machine, so
 security is maintained.

	Based on the three inputs you provided, the calculator
 produces your one-time password.

	You enter the password to authenticate to the remote
 service.

More information on one-time passwords is available at:
	http://www.ietf.org/html.charters/otp-charter.html

5.4.5.1 OpenSSH keyboard-interactive authentication

In OpenSSH, you enable keyboard-interactive
 authentication with the keyword ChallengeResponseAuthentication:
 # sshd_config
 ChallengeResponseAuthentication yes
OpenSSH supports three challenge/response methods, called
 “devices,” listed in Table
 5-3. Since these methods are dependent on external software,
 you have to configure OpenSSH at compile time to support
 them.
Table 5-3. OpenSSH keyboard-interactive (challenge/response)
 authentication methods
	Method
	Device name
	Compilation option

	BSD authentication
	 bsdauth
	--with-bsd-auth

	PAM
	 pam
	--with-pam

	S/Key
	 skey
	--with-skey

PAM is widely available and hence often included in compiled
 OpenSSH packages. Just make sure the server configuration keyword
 UsePAM is set: [5.4.8]
 # OpenSSH
 UsePAM yes
BSD authentication will likely be available only if running on
 a BSD platform (e.g., OpenBSD); see the manpage for login.conf for details on its operation.
 If you want S/Key support, you have two options: obtain a PAM
 library that supports it, such as libpam_opie or libpam_skey, or build OpenSSH yourself to
 get direct S/Key support. We recommend the PAM library
 approach.
In conducting keyboard-interactive authentication, the client
 by default specifies no device, which means the server will try all.
 There’s an undocumented client-side option, KbdInteractiveDevices, however, whose
 value is the list of devices to try:
 # OpenSSH
 KbdInteractiveDevices pam,skey,bsdauth

5.4.5.2 Tectia’s keyboard-interactive authentication

For Tectia, you can allow or require
 keyboard-interactive authentication by adding the value keyboard-interactive to the lists for
 AllowedAuthentications or
 RequiredAuthentications,
 respectively:
 # Tectia
 AllowedAuthentications keyboard-interactive
Tectia servers support the following keyboard-interactive
 authentication techniques:
	password
	Standard password authentication [5.4.2]

	pam
	Pluggable Authentication Modules [5.4.8]

	securid
	SecurID hardware-based authentication

	plugin
	Programmatic authentication [11.7.2]

Keyboard-interactive authentication techniques can be either
 optional or required (or both), and are specified using the keywords
 AuthKbdInt.Optional or AuthKbdInt.Required. Multiple
 authentication techniques are separated by commas:
 # Tectia
 AuthKbdInt.Optional pam,securid,password
 AuthKbdInt.Required plugin,password
The order of the authentication techniques is not significant
 for either keyword, since the client drives the authentication
 process.
Warning
Beware of typographic errors in the values of AuthKbdInt.Optional and AuthKbdInt.Required: they are not
 checked when the server reads them from configuration files.
 Invalid or unrecognized techniques are detected only when
 keyboard-interactive authentication is attempted, which can be
 long after the server starts.

Authentication succeeds if all of the
 required authentication techniques succeed, as well as a number of
 optional authentication techniques specified by the AuthKbdInt.NumOptional keyword:
 # Tectia
 AuthKbdInt.NumOptional 2
The default for AuthKbdInt.NumOptional is zero if there
 are any required authentication techniques, or one otherwise.
The AuthKbdInt.Retries
 keyword determines how many attempts are allowed for
 keyboard-interactive authentication:
 # Tectia
 AuthKbdInt.Retries 5
By default, three retries are allowed.
The Tectia server waits after each failed keyword-interactive
 authentication attempt, as for password authentication; the AuthInteractiveFailureTimeout keyword
 applies to this delay. [5.4.2.1]
The keyboard-interactive password authentication technique is
 functionally identical to standard password authentication. [5.4.2]
PAM authentication is supported by binary distributions of
 Tectia on systems that provide PAM (e.g., Linux, Solaris). On other
 systems, support for PAM requires recompiling the SSH server with
 the appropriate PAM headers and libraries. [5.4.8]
SecurID from Security Dynamics is a hardware-based
 authentication technique. Users need a physical card, called a
 SecurID card, in order to authenticate. The card contains a
 microchip that displays (on a little LCD) an integer that changes at
 regular intervals. To authenticate, provide this integer along with
 your password. Some versions of the SecurID card also have a keypad
 that supports entering a password, for two-factor authentication.
 Users must provide the current integer from their card in order to
 authenticate.
By default, Tectia allows three attempts to enter the SecurID
 password. This can be changed with the SecurIdGuesses keyword:
 # Tectia
 SecurIdGuesses 5
SecurID support is included in binary distributions of Tectia.
 The securid keyboard-interactive
 authentication technique mentioned previously refers to code
 incorporated into the server. Alternately, separate plugins called
 ssh-securidv5-plugin and
 ssh-securidv4-plugin are provided for different
 RSA ACE versions on some platforms.[65] In either case, recompiling the server or plugins
 requires special SecurID headers and libraries. SecurID must also be
 configured by setting the environment variable VAR_ACE to the pathname of the ACE data
 directory before the server is started: consult the SecurID
 documentation for details.
New authentication techniques can be added using
 keyboard-interactive plugins. If plugin is specified as either an optional
 or required keyboard-interactive authentication technique, then the
 AuthKbdInt.Plugin keyword must be
 used to identify a program that controls the interactive
 authentication steps:[66]
 # Tectia
 AuthKbdInt.Plugin /usr/local/sbin/ssh-keyboard-interactive-plugin
The server communicates with the plugin program using the
 Tectia plugin protocol, which we’ll describe in a later case study.
 [11.7.2]

5.4.6 PGP Authentication

Tectia can authenticate users via the PGP key. We cover this topic in Chapter 6. [6.5]

5.4.7 Kerberos Authentication

Kerberos, the well-known secure authentication system,
 can be used by OpenSSH and Tectia. We summarize the Kerberos-related
 configuration keywords here and defer a more detailed treatment of the
 topic. [11.4]
5.4.7.1 Kerberos and OpenSSH

Kerberos authentication is supported only if enabled at compile time by the
 configuration option --with-kerberos5. Assuming the
 SSH server was built in this manner, Kerberos authentication can be
 used in two ways: directly, and as a verifier for password
 authentication.
Direct Kerberos authentication is enabled by the GSSAPIAuthentication keyword:
 # OpenSSH
 GSSAPIAuthentication yes
This allows normal, ticket-based Kerberos user authentication:
 it requires that the usual service principal
 host/server@REALM be added to the Kerberos KDC, and
 that principal’s key added to the server host keytab, usually /etc/krb5.keytab. By default, the
 Kerberos principal foo@REALM will be allowed access
 to server account “foo”; you can allow others by adding them to
 ~foo/.k5login (along with
 foo@REALM itself, which would otherwise lose
 access!). There is also the default:
 # OpenSSH
 GSSAPICleanupCredentials yes
which means sshd will delete a user’s
 forwarded Kerberos credentials on logout; this is usually a good
 idea and should be left on. [11.5.2]
The second method, password verification, is indirect. It does
 not require any Kerberos support on the client at all: it simply
 means that for regular SSH password authentication,
 sshd will verify a user’s password against
 Kerberos. This mode is enabled or disabled by the keyword KerberosAuthentication with the value
 yes or no:
 # OpenSSH
 KerberosAuthentication yes
Instead of checking against the local login password,
 sshd requests a Kerberos ticket-granting ticket
 (TGT) for the user and allows login if the ticket matches the
 password.[67] It also stores that TGT in the user’s credentials
 cache, eliminating the need to do a separate
 kinit. Note that for technical reasons, the
 server also requires a service principal in this case, even though
 it might not seem necessary: there’s an extra step involved that
 protects against a KDC spoofing attack.
If Kerberos fails to validate a password, the server
 optionally validates the same password by ordinary password
 authentication. This is convenient in an environment where not
 everyone uses Kerberos. To enable this option, use the keyword
 KerberosOrLocalPasswd with a
 value of yes; the default is
 no:
 # OpenSSH
 KerberosOrLocalPasswd yes
Finally, since password authentication via Kerberos may also
 result in stored Kerberos user credentials, there’s a KerberosTicketCleanup keyword:
 # OpenSSH
 KerberosTicketCleanup yes
Similar to GSSAPICleanupCredentials, this has the
 server delete such credentials upon logout.
OpenSSH also used to support Kerberos TGT passing via the
 KerberosTgtPassing keyword, but
 at press time the support has been removed.

5.4.7.2 Kerberos and Tectia

Kerberos is used with Tectia via GSSAPI
 authentication. You can allow or require GSSAPI authentication by
 adding the value gssapi
 to the lists for AllowedAuthentications or RequiredAuthentications,
 respectively:
 # Tectia
 AllowedAuthentications gssapi
Tip
GSSAPI authentication was added in Tectia Version 4.2. The
 older kerberos-2@ssh.com and
 kerberos-tgt-2@ssh.com authentication methods are
 still available if they were enabled when Tectia was configured,
 but they are unsupported.

The GSSAPI.AllowedMethods
 keyword specifies a list of allowed GSSAPI methods. Currently, only
 kerberos is supported:
 # Tectia
 GSSAPI.AllowedMethods kerberos
The kerberos GSSAPI method
 is allowed by default, so there is currently no reason to use the
 GSSAPI.AllowedMethods keyword,
 unless you want to be explicit.
Tectia’s GSSAPI authentication attempts to use the MIC. If the
 keyword GSSAPI.AllowOldMethodWhichIsInsecure is
 enabled, then Tectia is willing to fall back to using GSSAPI without
 MIC:
 # Tectia
 GSSAPI.AllowOldMethodWhichIsInsecure yes
The default is yes, since
 GSSAPI with MIC is not yet widely supported. If the value no is used, then GSSAPI authentication
 requires MIC: another way to specify this is to use gssapi-with-mic instead of gssapi as the authentication
 method.
The GSSAPI.Dlls keyword
 identifies the location of the GSSAPI libraries, as a
 comma-separated list of full pathnames:
 # Tectia
 GSSAPI.Dlls /usr/local/gssapi/lib/libgssapi.so
By default, Tectia searches a list of common locations for the
 libraries, including:
	/usr/lib/libgssapi_krb5.so

	/usr/lib/libkrb5.so

	/usr/lib/libgss.so

	/usr/local/gss/gl/mech_krb5.so

	/usr/local/lib/libgssapi_krb5.so

	/usr/local/lib/libkrb5.so

	/usr/kerberos/lib/libgssapi_krb5.so

	/usr/kerberos/lib/libkrb5.so

	/usr/lib/gss/libgssapi_krb5.so

The .so suffix varies for
 different Unix platforms.

5.4.8 PAM Authentication

The Pluggable Authentication Modules system (PAM) by Sun
 Microsystems is an infrastructure for supporting multiple
 authentication methods; it’s found on Solaris and most Linux systems.
 Ordinarily when a new authentication mechanism comes along, programs
 need to be rewritten to accommodate it. PAM eliminates this hassle.
 Programs are written to support PAM, and new authentication mechanisms
 may be plugged in at runtime without further source-code modification.
 More PAM information is found at:
	http://www.sun.com/software/solaris/pam/

OpenSSH includes support for PAM, enabled with the UsePAM keyword, which defaults to no:
 # OpenSSH
 UsePAM yes
Tectia supports PAM as a keyboard-interactive authentication
 technique. [5.4.5]

5.4.9 Privilege Separation

OpenSSH supports privilege separation, a security feature that isolates the code that
 requires root privileges. [3.6.5] You can enable and
 disable it with the keyword UsePrivilegeSeparation with the value
 yes (the default) or no.
 # OpenSSH
 UsePrivilegeSeparation yes

5.4.10 Selecting a Login Program

Most Unix systems have a program called
 login for setting up a new user login process. It
 can be called by the getty process, for instance,
 when processing logins on a terminal line, or by a Telnet server. By
 default, OpenSSH does not use the system’s login
 program. You can make it do so with the UseLogin keyword:
 # OpenSSH
 UseLogin yes
You might need to do this if your system has a
 login program that performs some specialized
 processing missing from OpenSSH. However, there are drawbacks to
 UseLogin yes:
	X forwarding is turned off, since sshd
 loses the chance to specially handle its
 xauth cookies for X authentication.

	Privilege separation is turned off after user
 authentication, in order to allow login to
 function correctly.

The behavior of a login program versus a login shell is entirely
 implementation- and operating-system-specific, so we won’t cover the
 intricacies. If you need to muck about with UseLogin, you first need to understand the
 features of your operating system and your login
 program in detail.

[62] This behavior, with RequiredAuthentications overriding
 AllowedAuthentications, began
 in Version 3.1.0 of Tectia’s sshd. In
 previous versions, the two keywords were used together, but in
 practice this forced the two lists of techniques to be identical:
 a required technique must also be allowed, and an allowed
 technique that is not required is pointless, since it would be
 insufficient for authentication.

[63] For SSH-1 protocol connections in OpenSSH, use the keyword
 RSAAuthentication
 instead.

[64] OpenSSH has another keyword, RhostsRSAAuthentication, that applies
 only to SSH-1 protocol connections.

[65] If SecurID plugins are used, specify plugin instead of securid as the value of AuthKbdInt.Optional or AuthKbdInt.Required, and set AuthKbdInt.Plugin to the pathname for
 the appropriate plugin.

[66] If no plugin program is specified, or the specified
 program cannot be run, then keyboard-interactive plugin
 authentication will always fail.

[67] It also requires a successful granting of a host ticket
 for the local host as an antispoofing measure.

Access Control: Letting People In

Serverwide access control permits or denies connections from particular hosts or
 Internet domains, or to specific user accounts on the server machine.
 It’s applied separately from authentication: for example, even if a
 user’s identity is legitimate, you might still want to reject
 connections from her computer. Similarly, if a particular computer or
 Internet domain has poor security policies, you might want to reject all
 SSH connection attempts from that domain.
SSH access control is scantily documented and has many subtleties
 and “gotchas.” The configuration keywords look obvious in meaning, but
 they aren’t. Our primary goal in this section is to illuminate the murky
 corners so that you can develop a correct and effective access-control
 configuration.
Keep in mind that SSH access to an account is permitted only if
 both the server and the account are configured to allow it. If a server
 accepts SSH connections to all accounts it serves, individual users may
 still deny connections to their accounts. [8.2] Likewise, if an account is
 configured to permit SSH access, the SSH server on its host can
 nonetheless forbid access. This two-level system applies to all SSH
 access control, so we won’t state it repeatedly. Figure 5-2 summarizes the two-level
 access control system.[68]
[image: Access control levels]

Figure 5-2. Access control levels

5.5.1 Account Access Control

Ordinarily, any account may receive SSH connections as
 long as it is set up correctly. This access may be overridden by the
 server keywords AllowUsers and
 DenyUsers. AllowUsers specifies that only a limited set
 of local accounts may receive SSH connections. For example, the
 line:
 AllowUsers smith
permits the local smith account, and only
 the smith account, to receive SSH connections. The configuration file
 may have multiple AllowUsers
 lines:
 AllowUsers smith
 AllowUsers jones
 AllowUsers oreilly
in which case the results are cumulative: the local accounts
 smith, jones, and oreilly, and only those accounts, may receive SSH
 connections. The SSH server maintains a list of all AllowUsers values, and when a connection
 request arrives, it does a string comparison (really a pattern match,
 as we’ll see in a moment) against the list. If a match occurs, the
 connection is permitted; otherwise, it’s rejected.
Warning
A single AllowUsers keyword
 in the configuration file cuts off SSH access for all other accounts
 not mentioned. If the configuration file has no AllowUsers keywords, the server’s AllowUsers list is empty, and connections
 are permissible to all accounts.

DenyUsers is the opposite of
 AllowUsers: it shuts off SSH access
 to particular accounts. For example:
 DenyUsers smith
states that the smith account may not receive SSH connections.
 DenyUsers keywords may appear
 multiple times, just like AllowUsers, and the effects are again
 cumulative. As for AllowUsers, the
 server maintains a list of all DenyUsers values and compares incoming
 connection requests against them.
Tectia recognizes numerical user IDs in place of account names
 (but OpenSSH does not):
 # Tectia
 AllowUsers 123
 DenyUsers 456
Both AllowUsers and DenyUsers accept more complicated values
 than simple account names. An interesting but potentially confusing
 syntax is to specify both an account name and a hostname (or numeric
 IP address), separated by an @ symbol:
 AllowUsers jones@example.com
Despite its appearance, this string isn’t an email address, and
 it doesn’t mean “the user jones on the machine
 example.com.” Rather, it describes a relationship
 between a local account, jones, and a
 remote client machine,
 example.com. The meaning is: “clients on
 example.com may connect to the server’s jones
 account.” Although this meaning is surprising, it would be even
 stranger if jones were a remote account, since the SSH server has no
 way to verify account names on remote client machines (except when
 using hostbased authentication).
For OpenSSH, wildcard characters are acceptable in AllowUsers and DenyUsers arguments. The ? symbol represents
 any single character except @, and the * represents any sequence of
 characters, again not including @. For Tectia, the patterns use the
 regular-expression syntax that is specified by the REGEX-SYNTAX metaconfiguration parameter;
 see Appendix B.[69]
Warning
The default egrep regex syntax used by
 Tectia treats “.” as a wildcard that matches any character, so a
 hostname pattern like example.com will also
 match unqualified hostnames like examplexcom.
 If you are using the egrep regex syntax, be
 sure to escape literal “.” characters in hostnames, IP addresses,
 etc., with a backslash character:
 # Tectia (egrep regex syntax)
 AllowUsers jones@example\.com
Alternatively, use the zsh_fileglob or traditional regex syntax,
 which treats “.” characters literally. See Appendix B for more detailed
 information about the different regex syntaxes supported by
 Tectia.

Here are some examples. SSH connections are permitted only to
 accounts with five-character names ending in “mith”:
 # OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers ?mith

 # Tectia with egrep regex syntax
 AllowUsers .mith
SSH connections are permitted only to accounts with names
 beginning with the letter “s”, coming from hosts whose names end in
 “.edu”:
 # OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers s*@*.edu

 # Tectia with egrep regex syntax
 AllowUsers s.*@.*\.edu
Tectia connections are permitted only to account names of the
 form “testn" where n
 is a number, e.g., “test123”.
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers test[[:digit:]]##

 # Tectia with egrep regex syntax
 AllowUsers test[[:digit:]]+
Tectia connections are permitted only to accounts with numerical
 user IDs in the range 3000-6999:
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers [3-6][[:digit:]][[:digit:]][[:digit:]]

 # Tectia with egrep regex syntax
 AllowUsers [3-6][[:digit:]]{3}
IP addresses can be used instead of hostnames. For example, to
 allow access to any user from the network 10.1.1.0/24:[70]
 # OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers *@10.1.1.*
 # Tectia with egrep regex syntax
 AllowUsers .*@10\.1\.1\..*
Tectia also recognizes netmasks preceded by the \m prefix:
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers *@\m10.1.1.0/28

 # Tectia with egrep regex syntax
 AllowUsers .*@\m10.1.1.0/28
Warning
Wildcards and regular-expression metacharacters are not used
 in netmasks, so netmasks are independent of the regex syntax, and
 “.” characters are not escaped with backslashes as usual for the
 egrep regex syntax. Netmasks are always
 interpreted IP address ranges, without hostname lookups, so \mexample.com/28 does not work.

Netmasks are often more concise than other patterns for
 expressing IP address ranges, especially those that don’t coincide
 with an octet boundary. For example, 10.1.1.0/28 is equivalent to the
 range of addresses 10.1.1.0 through 10.1.1.15, which is expressed
 as:
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers *@10.1.1.([[:digit:]]|1[0-5])

 # Tectia with egrep regex syntax
 AllowUsers .*@10\.1\.1\.([[:digit:]]|1[0-5])
The specification of address ranges is even more of a struggle
 using OpenSSH’s limited wildcards, and it is frequently necessary to
 enumerate individual addresses:
 # OpenSSH
 AllowUsers *@10.1.1.?
 AllowUsers *@10.1.1.10 *@10.1.1.11 *@10.1.1.12 *@10.1.1.13 *@10.1.1.14 *@10.1.1.15
By default, a reverse lookup is first attempted to convert the
 client’s IP address to a canonical hostname, and if the lookup
 succeeds, then the hostname is used for pattern matches. Next, the IP
 address is checked using the same patterns.
Access control using IP addresses can avoid some attacks on
 hostname lookup mechanisms, such as compromised nameservers, but we
 need to be careful. For example, our previous example that intended to
 limit access to the network 10.1.1.0/24 would actually also allow
 connections from a machine on some remote network named
 10.1.1.evil.org!
Tectia provides several ways to fix this. We can use a more
 precise pattern that matches only digits, to reject arbitrary domains
 like evil.org.
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers *@10.1.1.[[:digit:]]##

 # Tectia with egrep regex syntax
 AllowUsers .*@10\.1\.1\.[[:digit:]]+
An even better approach is to add the \i prefix to force the pattern to be
 interpreted only as an IP address. This avoids the hostname lookup
 entirely, and allows us to use simpler patterns safely:
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers *@\i10.1.1.*

 # Tectia with egrep regex syntax
 AllowUsers .*@\i10\.1\.1\..*
Even this isn’t foolproof: source IP addresses can be easily
 spoofed. Address-based access controls are most appropriate for
 trusted internal networks protected by an external firewall.
Tectia allows some control of the hostname lookups performed for
 all of the access control patterns. To disable hostname lookups
 completely, use the ResolveClientHostName keyword:
 # Tectia
 ResolveClientHostName no
This is appropriate if only IP address matching is desired. It
 can also be useful if hostname lookups would cause unnecessary delays,
 e.g., if some nameservers aren’t available.
Conversely, to insist that hostname lookups must succeed,
 rejecting connections instead of resorting to IP address matching
 whenever the hostname lookups fail, use the RequireReverseMapping keyword:
 # Tectia
 RequireReverseMapping yes
This is appropriate if only hostname address matching is
 desired. It also provides some limited protection against connections
 from unrecognized machines.
Of course, hostname lookups should not be disabled by ResolveClientHostName if they are forced by
 RequireReverseMapping.
Keep in mind that hostname-based access controls are even more
 inherently weak restrictions than address-based controls, and both
 should be used only as an adjunct to other strong authentication
 methods.
Multiple strings may appear on a single AllowUsers line, but the syntax differs for
 OpenSSH and Tectia. OpenSSH separates strings with whitespace:
 # OpenSSH
 AllowUsers smith jones
and Tectia separates them with commas:
 # Tectia
 AllowUsers smith,jones
 AllowUsers rebecca, katie, sarah Whitespace after commas is undocumented but works
Tip
Commas must be escaped with backslashes within regular
 expressions, to prevent misinterpretation as list separators. For
 example, to allow access by usernames that begin with “elf” and are
 followed by one to three digits, plus elvis:
 # Tectia with egrep regex syntax
 AllowUsers elf[[:digit:]]{1\,3},elvis

AllowUsers and DenyUsers may be combined effectively.
 Suppose you’re teaching a course and want your students to be the only
 users with SSH access to your server. It happens that only student
 usernames begin with “stu”, so you specify:
 # OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers stu*

 # Tectia with egrep regex syntax
 AllowUsers stu.*
Later, one of your students, stu563, drops the course, so you
 want to disable her SSH access. Simply add the following to the
 configuration:
 DenyUsers stu563
Hmm...this seems strange. The AllowUsers and DenyUsers lines appear to conflict because
 the first permits stu563 but the second rejects it. The server handles
 this in the following way: if any line prevents access to an account,
 the account can’t be accessed. So, in the preceding example, stu563 is
 denied access by the second line.
Consider another example with this AllowUsers line:
 # OpenSSH, Tectia
 AllowUsers smith
followed by a DenyUsers line
 (appropriate to your SSH implementation):
 # OpenSSH, Tectia with zsh_fileglob or traditional regex syntax
 DenyUsers s*

 # Tectia with egrep regex syntax
 DenyUsers s.*
The pair of lines permits SSH connections to the smith account
 but denies connections to any account beginning with “s”. What does
 the server do with this clear contradiction? It rejects connections to
 the smith account, following the same rule: if any restriction
 prevents access, such as the DenyUsers line shown, access is denied.
 Access is granted only if there are no restrictions against it.
Finally, here is a useful configuration example:
 # OpenSSH
 AllowUsers walrus@* carpenter@* *@*.beach.net

 # Tectia with zsh_fileglob or traditional regex syntax
 AllowUsers walrus@*,carpenter@*,*@*.beach.net

 # Tectia with egrep regex syntax
 AllowUsers walrus@.*,carpenter@.*,.*@.*\.beach\.net
This restricts access for most accounts to connections
 originating inside the domain beach.net--except
 for the accounts walrus and carpenter, which may be accessed from
 anywhere. The hostname qualifiers following walrus and carpenter
 aren’t strictly necessary but help make clear the intent of the
 line.
5.5.1.1 Restricting all logins

AllowUsers and DenyUsers operate on individual accounts,
 but you can also deny access to all users in a pinch. If the file
 /etc/nologin exists,
 sshd allows only root to log in; no other
 accounts are allowed access. Thus, touch
 /etc/nologin is a quick way to restrict access to the
 system administrator only, without having to reconfigure or shut
 down SSH.
Tectia also checks /etc/nologin_
 <hostname>, where
 <hostname> should match the output
 from the hostname command. This is useful if
 the /etc directory is shared
 among several machines in a cluster.

5.5.2 Group Access Control

 sshd may permit or deny SSH access
 to all accounts in a Unix group on the server machine. The keywords
 AllowGroups and DenyGroups serve this purpose:
 AllowGroups faculty
 DenyGroups students
These keywords operate much like AllowUsers and DenyUsers. OpenSSH accepts the wildcards
 * and ? within group names, and separates multiple
 groups with whitespace. Tectia accepts patterns according to the
 regular-expression syntax determined by the metaconfiguration
 information [11.6.1],
 and separates groups with commas:
 # OpenSSH
 AllowGroups good* better
 DenyGroups bad* worse

 # Tectia with zsh_fileglob or traditional regex syntax
 AllowGroups good*,better
 DenyGroups bad*, worse

 # Tectia with egrep regex syntax
 AllowGroups good.*,better
 DenyGroups bad.*, worse
Tectia recognizes numerical group IDs as well (but OpenSSH does
 not):
 # Tectia
 AllowGroups 513
 DenyGroups 781
By default, access is allowed to all groups. If any AllowGroups keyword appears, access is
 permitted only to the groups specified (and may be further restricted
 with DenyGroups).
These directives apply to both the primary group (typically
 listed in /etc/passwd or the
 corresponding NIS map) and all supplementary groups (in /etc/group or an NIS map). If a user is a
 member of any group that matches a pattern listed by AllowGroups or DenyGroups, then access is restricted
 accordingly.
Group access control is often more convenient than restricting
 specific users, since group memberships can be changed without
 updating the configuration of the SSH server.
AllowGroups and DenyGroups do not accept hostname
 qualifiers, however, in contrast to AllowUsers and DenyUsers. This is a surprising and
 unfortunate inconsistency: if hostname (or IP address) restrictions
 are useful for controlling access by specific users, then those same
 restrictions could be even more useful for controling access for
 entire groups.
As was the case for AllowUsers and DenyUsers, conflicts are resolved in the
 most restrictive way. If any AllowGroups or DenyGroups line prevents access to a given
 group, access is denied to that group even if another line appears to
 permit it.

5.5.3 Hostname Access Control

We’ve described previously how to use hostname
 qualifiers with AllowUsers and
 DenyUsers. [5.5.1] For the common case
 when you don’t need to restrict username, Tectia provides the keywords
 AllowHosts and DenyHosts to restrict access by hostname (or
 IP address) more concisely, without wildcards to match
 usernames:[71]
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowHosts good.example.com,\i10.1.2.3
 DenyHosts bad.example.com, \m10.1.1.0/24

 # Tectia with egrep regex syntax
 AllowHosts good\.example\.com,\i10\.1\.2\.3
 DenyHosts bad\.example\.com, \m10.1.1.0/24
As with AllowUsers and
 DenyUsers:
	Patterns are interpreted according to the regular-expression
 syntax determined by the metaconfiguration information (Appendix B).

	Values may contain multiple strings separated by commas,
 plus optional whitespace.

	Keywords may appear multiple times in the configuration
 file, and the results are cumulative.

	Hostnames or IP addresses may be used, with optional
 \i or \m prefixes.

	By default, access is allowed to all hosts, and if any
 AllowHosts keyword appears,
 access is permitted only to the hosts specified (and may be
 further restricted with DenyHosts).

You can also make AllowHosts
 and DenyHosts do reverse DNS
 lookups (or not) with the RequireReverseMapping keyword, providing a
 value of yes or no:
 # Tectia
 RequireReverseMapping yes

5.5.4 shosts Access Control

 AllowHosts and
 DenyHosts offer total
 hostname-based access control, regardless of the type of
 authentication requested. A similar but less restrictive access
 control is specific to hostbased authentication. The Tectia server can
 deny access to hosts that are named in .rhosts, .shosts, /etc/hosts.equiv, and /etc/shosts.equiv files. This is
 accomplished with the keywords AllowSHosts and DenySHosts:[72]
For example, the line:
 # Tectia with zsh_fileglob or traditional regex syntax
 DenySHosts *.badguy.com

 # Tectia with egrep regex syntax
 DenySHosts .*\.badguy\.com
forbids access by connections from hosts in the
 badguy.com domain, but only when hostbased
 authentication is being attempted. Likewise, AllowSHosts permits access only to given
 hosts when hostbased authentication is used. Values follow the same
 syntax as for AllowHosts and
 DenyHosts. As a result, system
 administrators can override values in users’ .rhosts and .shosts files (which is good, because this
 can’t be done via the /etc/hosts.equiv or /etc/shosts.equiv files).
AllowSHosts and DenySHosts have caveats similar to those of
 AllowHosts and DenyHosts:
	Patterns are interpreted according to the regular-expression
 syntax determined by the metaconfiguration information (Appendix B).

	Values may contain multiple patterns separated by commas,
 plus optional whitespace.

	Keywords may appear multiple times in the configuration
 file, and the results are cumulative.

	Hostnames or IP addresses may be used, with optional
 \i or \m prefixes.

	By default, access is allowed to all hosts, and if any
 AllowSHosts keyword appears,
 access is permitted only to the hosts specified (and may be
 further restricted with DenySHosts).

5.5.5 Root Access Control

sshd has a separate access-control
 mechanism for the superuser. The keyword PermitRootLogin allows or denies access to
 the root account by SSH:
 PermitRootLogin no
Permissible values for this keyword are yes (the default) to allow access to the
 root account by SSH; no to deny all
 such access; and without-password
 (OpenSSH) or nopwd (Tectia) to
 allow access except by password authentication.
In addition, OpenSSH recognizes the value forced-commands-only to allow access only
 for forced commands specified in authorized_keys [8.2.3]; Tectia always allows
 such access for all values of PermitRootLogin. OpenSSH’s level of control
 is useful, for example, if root’s authorized_keys file contains a line
 beginning with:
 command="/bin/dump"
Then the root account may be accessed by SSH to run the
 dump command. This capability lets remote clients
 run superuser processes, such as backups or filesystem checks, but not
 unrestricted login sessions.
The server checks PermitRootLogin after authentication is
 complete. In other words, if PermitRootLogin is no, a client is offered the opportunity to
 authenticate (e.g., is prompted for a password or passphrase) but is
 shut down afterward regardless.
We’ve previously seen a similar keyword, IgnoreRootRhosts, that controls access to
 the root account by hostbased authentication. [5.4.4] It prevents entries in
 ~root/.rhosts and ~root/.shosts from being used to
 authenticate root. Because sshd checks PermitRootLogin after authentication is
 complete, it overrides any value of IgnoreRootRhosts. Table 5-4 illustrates the
 interaction of these two keywords.
Table 5-4. Can root log in?
	
	IgnoreRootRhosts yes
	IgnoreRootRhosts no

	 PermitRootLogin yes
	Yes, except by
 hostbased
	Yes

	 PermitRootLogin no
	No
	No

	 PermitRootLogin without-password
 (OpenSSH);
 PermitRootLogin nopwd (Tectia)

	Yes, except by hostbased or
 password
	Yes, except by
 password

5.5.6 External Access Control

Tectia allows access control (authorization) decisions
 to be made by an external program, which is identified by the ExternalAuthorizationProgram
 keyword:[73]
 # Tectia
 ExternalAuthorizationProgram /usr/local/sbin/ssh-external-authorization-program
The program can be used to implement arbitrary access control
 logic, extending the mechanisms that are supported directly by the
 Tectia server.[74] The server communicates with the program using the
 Tectia plugin protocol, and we’ll go into more detail in a later case
 study. [11.7.3]
Tip
The external authorization program can only veto access
 controls applied by other keywords in the server’s configuration.
 This follows the same policy that we have seen earlier: conflicts
 are always resolved using the most restrictive
 interpretation.

5.5.7 Restricting Directory Access with chroot

The Unix system call chroot causes a process (and any
 subprocesses) to treat a given directory as the root directory. After
 chroot, absolute filenames
 beginning with “/” actually refer to subdirectories of the given
 directory. Access is effectively restricted to the given directory,
 because it is impossible to name files outside. This is useful for
 restricting a user or process to a subset of a filesystem for security
 reasons.
Tectia provides two keywords for imposing this restriction on
 incoming SSH clients. ChRootUsers
 specifies that SSH clients, when accessing a given account, are
 restricted to the account’s home directory and its
 subdirectories:
 # Tectia
 ChRootUsers guest
Values for ChRootUsers use
 the same syntax as for AllowUsers:
 [5.5.1]
 # Tectia with zsh_fileglob or traditional regex syntax
 ChRootUsers guest*,backup,300[[:digit:]],visitor@*.friendly.org

 # Tectia with egrep regex syntax
 ChRootUsers guest.*,backup,300[[:digit:]],visitor@.*\.friendly\.org
The other keyword, ChRootGroups, works similarly but applies to
 all accounts that belong to a group that matches any of the specified
 patterns:
 # Tectia
 ChRootGroups guest[a-z],ops,999[[:digit:]]
Values for ChRootGroups use
 the same syntax as for AllowGroups.
 [5.5.2]
ChRootUsers and ChRootGroups can be specified multiple times
 in configuration files; the values are accumulated into a single list
 for each keyword. Each account that matches a pattern from either
 ChRootUsers or ChRootGroups is individually restricted when
 accessed via Tectia.
Files Used by the Tectia Server After chroot
After chroot, the Tectia
 server needs only minimal access to files. All its configuration
 files (and subconfiguration files, if any) have already been read,
 and all authentication and authorization steps completed, before
 chroot is done. The server
 therefore needn’t access devices, shared libraries, system
 configuration files, etc., used during these earlier operations. The
 only files accessed after chroot
 are related to starting a user session:
	Setting up the environment: [5.6.2]
/etc/environment
$HOME/.ssh2/environment

	The user rc file(s)
 [5.6.3], plus any
 programs and files used by the scripts:
$HOME/.ssh2/rc
/etc/ssh2/sshrc (if $HOME/.ssh2/rc doesn't exist)

	X authentication, if no user rc files are found [9.4.5.2], plus any
 shared libraries, files, etc., used by
 xauth:
/usr/X11R6/bin/xauth (or a similar location, possibly determined by XauthPath)

	Suppressing login messages: [5.6.1]
$HOME/.hushlogin

	Message of the day: [5.6.1]
/etc/motd

	Checking for mail: [5.6.1]
/var/spool/mail/$USER (or a similar location)

In most cases, accounts using chroot are heavily restricted and wouldn’t
 use these features anyway, so this is rarely a problem.
Sometimes the Tectia server uses the original pathname from
 the passwd database for
 $HOME after chroot, even though it really should use
 “/” instead. This can be fixed by a symbolic link in the user’s home
 directory (after any necessary parent directories are
 created):
 $ mkdir -p "$HOME$HOME"
 $ rmdir "$HOME$HOME"
 $ ln -s / "$HOME$HOME"
If, for example, $HOME is
 /home/elvis according to the
 passwd database, then this sets
 up a symbolic link:
 /home/elvis/home/elvis -> /
After chroot("/home/elvis"), the symbolic link
 will cause the original /home/elvis pathname to be equivalent to
 the new root directory, as it should be. Crude but effective!

To make chroot functionality
 work, all system files used by any programs run via the Tectia server
 must be copied into the home directory for each restricted account.
 Such files can include special device files like /dev/null or /dev/zero, shared libraries from /lib or /usr/lib, configuration files like
 /etc/termcap, etc.
The permissions for the copied system files (and the directories
 in which they live) need to be carefully controlled. Typically they
 should not be writable by the owner of the
 restricted account.
Discovering all of the system files needed for all of the
 programs used by an account can be challenging, and may require
 considerable experimentation and debugging: tools that monitor
 filesystem usage (like lsof,
 strace, and ldd) can
 help.[75] Dependencies on shared libraries can be eliminated by
 statically linking the programs.
Maintenance costs for restricted accounts are minimized if the
 accounts are further restricted to run only a very limited set of
 carefully controlled commands. The login shell is typically set to a
 special-purpose program, or access is allowed only to a collection of
 forced commands. [8.2.3]

5.5.8 Summary of Authentication and Access Control

SSH provides several ways to permit or restrict
 connections to particular accounts or from particular hosts. Tables 5-5 and 5-6 summarize the available
 options.
Table 5-5. OpenSSH summary of authentication and access control
	If you are...
	And you want to allow or
 restrict...
	Then use...

	User
	Connections to your account by
 public-key authentication
	 authorized_keys [8.2.1]

	Administrator
	Connections to an
 account
	 AllowUsers, DenyUsers

	User
	Connections by a host
	 from option in authorized_keys [8.2.4.1]

	Administrator
	Connections by a host
	 AllowUsers, DenyUsers

	User
	Connections to your account by
 hostbased authentication
	 .shosts

	Administrator
	Hostbased
 authentication
	 HostbasedAuthentication, IgnoreRhosts

	Administrator
	Root logins
	 PermitRootLogin

Table 5-6. Tectia summary of authentication and access control
	If you are...
	And you want to allow or
 restrict...
	Then use...

	User
	Connections to your account by
 public-key authentication
	 authorization file [8.2.2]

	Administrator
	Connections to an
 account
	 AllowUsers, DenyUsers

	User
	Connections by a host
	 allow-from, deny-from options in the authorization file [8.2.4.2]

	Administrator
	Connections by a host
	 AllowHosts, DenyHosts (or AllowUsers, DenyUsers)

	User
	Connections to your account by
 hostbased authentication
	 .shosts

	Administrator
	Hostbased
 authentication
	 AllowedAuthentications, AllowSHosts, DenySHosts, IgnoreRhosts

	Administrator
	Root logins
	 PermitRootLogin, IgnoreRootRhosts

[68] This concept is true for the configuration keywords discussed
 in this section but not for hostbased control files, e.g., ~/.rhosts and /etc/hosts.equiv. Each of these may in
 fact override the other. [3.4.3.6]

[69] Our general discussion of metaconfiguration might also be of
 help. [11.6.1]

[70] In this notation, the mask specifies the number of 1 bits in
 the most-significant portion of the netmask. You might be more
 familiar with the older, equivalent notation giving the entire
 netmask, e.g., 10.1.1.0/255.255.255.0.

[71] Finer-grained control is provided by the from option in authorized_keys. [8.2.4] Each public key
 may be tagged with a list of acceptable hosts that may connect via
 that key.

[72] Even though the keywords have “SHosts” in their names, they
 apply also to .rhosts and
 /etc/hosts.equiv
 files.

[73] If the specified program cannot be run, then access is
 denied.

[74] The external authorization program is similar in function to
 a keyboard-interactive plugin that is used for authentication,
 except that access control does not need interaction with the
 remote user, because the user has already authenticated
 successfully before the program is run.

[75] We discuss this in more detail in our other O’Reilly book,
 Linux Security Cookbook.

User Logins and Accounts

 When a login occurs, the SSH server can take special
 actions. Here, we discuss:
	Printing welcome messages for the user

	Setting environment variables

	Taking arbitrary actions with initialization scripts

5.6.1 Welcome Messages for the User

 sshd can display custom messages
 for the user before and after authentication. Before authentication,
 the SSH server can optionally display the contents of any file you
 select with the Banner keyword
 (OpenSSH) or BannerMessageFile
 keyword (Tectia):
 # OpenSSH
 Banner /usr/local/etc/warning.txt

 # Tectia
 BannerMessageFile /usr/local/etc/warning.txt
By default, OpenSSH displays no banner message, whereas Tectia
 displays the contents of /etc/ssh2/ssh_banner_message if the file
 exists.[76] The banner message is often used for legal statements
 that forbid unauthorized access. Since the file is sent before
 authentication, be careful that it doesn’t reveal sensitive
 information.
After authentication, both OpenSSH’s and Tectia’s
 sshd optionally prints the standard Unix “message
 of the day” file (/etc/motd).
 This output may be turned on and off with the PrintMotd keyword with the value yes (the default) or no:
 PrintMotd no
Since most Unix shells print /etc/motd on login, this SSH feature is
 often redundant and turned off.
For Tectia, a message about email (e.g., “You have mail”) is
 printed on login if the CheckMail
 keyword has the value of yes (the
 default), or the message is skipped if the value is no:
 # Tectia
 CheckMail yes
In OpenSSH, the last login time is also printed if the PrintLastLog keyword has the value of
 yes (the default), or the message
 is skipped if the value is no:
 # OpenSSH
 PrintLastLog yes
Tectia has no separate keyword to control printing the last
 login time—it’s always printed, if available.
The SSH server also obeys the Unix hushlogin convention, which
 allows each user to control whether these welcome messages are
 printed. If the file ~/.hushlogin
 exists, then the message of the day, the mail notification message
 (for Tectia), and the last login time are all omitted.

5.6.2 Setting Environment Variables

As we’ll see later, SSH clients have several ways to set
 environment variables in the server before the login shell is
 invoked,[77] such as the environment file [7.1.3], the SendEnv (OpenSSH) or SetRemoteEnv (Tectia) configuration keywords
 [7.4.4.3], and the
 environment option in the authorized_keys (OpenSSH) or authorization (Tectia) file [8.2.5]. However, these
 changes happen only with the server’s permission; otherwise, SSH
 clients could circumvent server security policies.
The OpenSSH server grants or denies permission for clients to
 modify the environment in this manner, using the PermitUserEnvironment and AcceptEnv keywords. PermitUserEnvironment controls whether the
 server pays attention to the user’s ~/.ssh/environment file and authorized_keys files, with a value of
 yes or no (the default):
 # OpenSSH
 PermitUserEnvironment yes
AcceptEnv controls how the
 server accepts or rejects environment variables that are sent from the
 SSH client according to the SendEnv
 (OpenSSH) or SetRemoteEnv (Tectia)
 keywords. Normally the SSH server pays no attention to such
 environment variables, but you can use the AcceptEnv keyword to allow specific
 variables to be copied, with their values, into SSH sessions on the
 server machine.
The AcceptEnv keyword lists
 the environment variables that are accepted, either separated by
 whitespace or specified by multiple keywords. Wildcard characters
 * and ? will match classes of environment
 variables.
 # OpenSSH
 AcceptEnv LANG LC_*
 AcceptEnv PATH TERM TZ
Likewise, the Tectia SSH server permits or denies permission for
 clients to modify the environment prior to login. Its SettableEnvironmentVars keyword lists
 environment variables that can be set by any of the methods, separated
 by commas (and optional whitespace), or specified by multiple
 keywords. The environment variables are matched against patterns.
 [11.6.1]
 # Tectia
 SettableEnvironmentVars LANG,LC_(ALL|COLLATE|CTYPE|MONETARY|NUMERIC|TIME)
 SettableEnvironmentVars PATH, TERM, TZ
The SettableEnvironmentVars
 keyword applies only to user-configurable environment variables. Files
 like /etc/environment controlled
 by the server administrator are not affected.
In all these cases, users are still free to set any environment
 variables after their login shells are invoked. The restrictions apply
 only to the mechanisms for initializing the environment of the login
 shell.

5.6.3 Initialization Scripts

When a user logs in, her Unix shell runs one or more
 initialization scripts , such as /etc/profile. In addition,
 sshd runs the script /etc/ssh/sshrc (OpenSSH) or /etc/ssh2/sshrc (Tectia) for each SSH-based
 login. This feature lets the system administrator run special commands
 for SSH logins that don’t occur for ordinary logins. For example, you
 can do some additional logging of SSH connections, print welcome
 messages for SSH users only, etc.
The /etc/ssh/sshrc or
 /etc/ssh2/sshrc script is always
 processed by the Bourne shell (/bin/sh), rather than the user’s shell, so
 it can run reliably for all accounts regardless of their various
 shells. It is run for logins (e.g., ssh my-host)
 and remote commands (ssh my-host /bin/who), just
 before the user’s shell or command is invoked but after environment
 variables are initialized. The script runs in a separate shell, which
 exits after the script finishes, so it cannot initialize environment
 variables for the session. The script runs under the target account’s
 uid, so it can’t take privileged actions. If the script exits due to
 an error (say, a syntax error), the SSH session continues
 normally.
Note that this file is run as input to the Bourne shell:
 sshd runs /bin/sh
 /etc/ssh/sshrc, not /bin/sh -c
 /etc/ssh/sshrc. This means that it can’t be an arbitrary
 program; it must be a file containing Bourne-shell commands (and it
 doesn’t need the execute mode bit set).
/etc/ssh/sshrc or /etc/ssh2/sshrc operates machinewide: it is
 run for every incoming SSH connection. For more fine-grained control,
 users may create the script ~/.ssh/rc (OpenSSH) or ~/.ssh2/rc (Tectia) to be run instead of
 the machinewide script /etc/ssh/sshrc or /etc/ssh2/sshrc, respectively. [8.4] The machinewide script
 isn’t executed if the user-specific script exists in the target
 account, but a user script can run the machinewide script directly.
 OpenSSH always runs ~/.ssh/rc
 using the Bourne shell (like /etc/ssh/sshrc), but Tectia runs ~/.ssh2/rc using each user’s shell (in
 contrast to /etc/ssh2/sshrc).
 OpenSSH ignores user scripts if a subsystem is used, but Tectia does
 not. [5.8]
Note that SSH rc files interact with X
 authentication. [9.4.5.2]

[76] SSH clients are not required (by the SSH-2 protocol) to
 display the message.

[77] And also before the user rc script, ~/.ssh/rc (OpenSSH) or ~/.ssh2/rc (Tectia). [5.6.3]

Forwarding

 Forwarding (or tunneling) is the use of SSH to protect
 another network service. We discuss it in detail in Chapter 9, but here we describe the
 available serverwide configuration options.
5.7.1 Port Forwarding

SSH’s forwarding (or tunneling) features protect other TCP/IP-based
 applications by encrypting their connections. We cover forwarding in
 great detail in Chapter 9, but we
 introduce here the serverwide configuration keywords for controlling
 it.
TCP port forwarding can be enabled or disabled by the keyword AllowTcpForwarding, with the value yes (the default) or no:
 AllowTcpForwarding no
Tectia can specify this more selectively for particular users or
 Unix groups, with the keywords AllowTcpForwardingForUsers, AllowTcpForwardingForGroups, DenyTcpForwardingForUsers, and DenyTcpForwardingForGroups:
 # Tectia
 AllowTcpForwardingForUsers smith
 AllowTcpForwardingForGroups students
 DenyTcpForwardingForUsers evildoer
 DenyTcpForwardingForGroups badguys
The values for these keywords use the same syntax as for
 AllowUsers, AllowGroups, DenyUsers, and DenyGroups, respectively: [5.5.1] [5.5.2]
 # Tectia with zsh_fileglob or traditional regex syntax
 AllowTcpForwardingForUsers good*@*.friendly.org,*@\i10.1.2.*,12[[:digit:]]
 DenyTcpForwardingForGroups bad*,33[[:digit:]]

 # Tectia with egrep regex syntax
 AllowTcpForwardingForUsers good.*@.*\.friendly\.org,.*@\i10\.1\.2\.*,12[[:digit:]]
 DenyTcpForwardingForGroups bad.*,33[[:digit:]]
Tectia’s ForwardACL keyword
 provides the most precise access control for specific
 forwardings.[78] Its use is complicated but it provides great
 flexibility. It uses multiple values (separated by whitespace), with
 the general format:
 # Tectia
 ForwardACL access direction client forward [originator]
The values stand for:
	access
	Either allow or
 deny, indicating the type of
 control to be applied.

	direction
	Either local or
 remote, specifying the kind
 of forwarding being controlled.[79]

	client
	A pattern describing the SSH client, with the same syntax
 as the UserSpecificConfig
 keyword, with the components user [% group][@ chost
]: [11.6.2]
	user
	Matches the username requested by the client

	group
	(Optional) Matches any of the groups that claim the
 user as a member

	chost
	(Optional) Matches the machine from which the SSH
 connection originates, i.e., where the SSH client program
 runs

	forward
	For local forwardings, a pattern that matches the
 forwarding target, where the application server runs, as shown
 in Figure 5-3, which
 illustrates the result of running the command:[80]
 chost$ ssh -L[faddr:]fport:thost:tport shost
The local forward value has the form
 thost [%
 tport],
 where the thost component uses the same
 syntax as the AllowHost
 keyword, and matches either the hostname provided by the SSH
 client, or the address resulting from the hostname lookup that
 is performed by the SSH server for the forwarding. The optional
 tport is a pattern matching the numeric
 value of the port on which the application server is listening,
 and to which the SSH server connects for the forwarding. If the
 port is not specified, then the access control applies to all
 ports.
For remote forwardings, the forward value matches the
 address and (optionally) the port on which the SSH server
 listens for forwarded connections, as shown in Figure 5-4, which
 illustrates the result of running the command:
 chost$ ssh -R[faddr:]fport:thost:tport shost
The remote forward value uses the same syntax as for local
 forwardings, with the components
 faddr[%fport].

	originator
	(Optional) A pattern that matches the source address used
 by the application client to connect to the forwarded port,
 labeled ohost in Figures 5-3 and 5-4. This is most useful
 for remote forwarding, since the source address can be directly
 determined by the SSH server when it accepts the forwarded
 connection.
[image: Local forwarding with the Tectia ForwardACL keyword]

Figure 5-3. Local forwarding with the Tectia ForwardACL
 keyword

[image: Remote forwarding with the Tectia ForwardACL keyword]

Figure 5-4. Remote forwarding with the Tectia ForwardACL
 keyword

For local forwarding, the SSH server must rely on the SSH
 client to provide the source address, and a malicious client
 might forge the address, so it really can’t be trusted as a
 basis for granting access. In addition, the source address
 reported by the SSH client might belong to private address space
 that is not meaningful to the SSH server, e.g., if network
 address translation (NAT) is used.
The ForwardACL keyword
 is one of the most complex keywords available for configuring
 Tectia, because so many parameters are needed to describe
 forwarded connections fully. The reward for conquering this
 complexity is precision. For example, to allow any user in the
 trusted group to use local forwarding when initiating SSH
 connections from any machine in the
 friendly.org domain, but only to forward
 IMAP connections (port 143) to the internal server
 mail.example.com, use:
 # Tectia with zsh_fileglob or traditional regex syntax
 ForwardACL allow local *%trusted@*.friendly.org mail.example.com%143

 # Tectia with egrep regex syntax
 ForwardACL allow local .*%trusted@.*\.friendly\.org mail\.example\.com%143

A trusted user could then run her SSH client on
 somewhere.friendly.org as:
 $ ssh -L2001:mail.example.com:143 ssh.example.com
where ssh.example.com is the host that runs
 the SSH server. Note that no restrictions are imposed on the listening
 port for local forwardings (2001 in this case); the SSH server has no
 reason to care about that, and no way to verify it anyway.
To allow guest users (i.e., those whose usernames start with
 “guest”) initiating SSH connections from a range of addresses
 described by the netmask 10.1.2.0/24 to use remote forwarding, but
 only listening on the localhost interface and accepting forwarded
 connections on a range of ports 7000-7009:
 # Tectia with zsh_fileglob or traditional regex syntax
 ForwardACL allow remote guest*@\m10.1.2.0/24 localhost:700[[:digit:]]

 # Tectia with egrep regex syntax
 ForwardACL allow remote guest.*@\m10.1.2.0/24 localhost:700[[:digit:]]
The user guest33 could then run his SSH client on a host with
 address 10.1.2.3 as:
 # Tectia
 $ ssh -Rlocalhost:7005:server.elsewhere.net:8080 ssh.example.com
Note that there are no restrictions on the target for the
 forwarding (port 8080 on server.elsewhere.net);
 the SSH server again neither knows nor cares about the forwarded
 connection on the SSH client side.
To relax this access control, allowing the SSH server to accept
 connections on any listening address, but only from application
 clients originating forwarded connections from hosts in the
 outbound.example.com domain, replace the
 localhost component in the previous forward pattern with a “match
 anything” wildcard, and add a fifth originator
 pattern:
 # Tectia with zsh_fileglob or traditional regex syntax
 ForwardACL allow remote guest*@\m10.1.2.0/24 *:700[[:digit:]] *.outbound.example.com

 # Tectia with egrep regex syntax
 ForwardACL allow remote guest.*@\m10.1.2.0/24 .*:700[[:digit:]] .*\.outbound\.example\.com
ForwardACL restrictions for
 local and remote forwardings are completely independent. If any
 ForwardACL keywords allow specific,
 limited access for either kind of forwarding, then all other access
 for that kind of forwarding will be denied.
Tectia uses the most restrictive interpretation for forwarding
 access control: if multiple ForwardACL keywords match a requested
 forwarding, and any of them deny access, then the forwarding is
 rejected. This can be useful for creating exceptions. For example, to
 allow local forwarding to any port on any target host in the
 example.com domain, but not to any port on the
 database server db.example.com, or to http
 servers (port 80) on any example.com
 hosts:
 # Tectia with zsh_fileglob or traditional regex syntax
 ForwardACL allow local * *.example.com
 ForwardACL deny local * db.example.com
 ForwardACL deny local * *.example.com%80

 # Tectia with egrep regex syntax
 ForwardACL allow local .* .*\.example\.com
 ForwardACL deny local .* db\.example\.com
 ForwardACL deny local .* .*\.example\.com%80
Furthermore, ForwardACL
 keywords cannot override restrictions imposed by the other forwarding
 access control keywords (AllowTcpForwardingForUsers, AllowTcpForwardingForGroups, DenyTcpForwardingForUsers, DenyTcpForwardingForGroups, or AllowTcpForwarding): if any of these
 applicable keywords deny access for a requested forwarding, then the
 forwarding is forbidden.

5.7.2 X Forwarding

Forwarding for X, the popular Window System, can be
 separately enabled or disabled with the keyword X11Forwarding:[81]
 X11Forwarding no
OpenSSH automatically disables X11Forwarding if UseLogin is enabled. [5.4.10]
Administrators may wish to disable forwarding for users who are
 not trusted to have forwarding securely configured on the client side.
 For example, it is usually desirable to avoid SSH clients that
 indiscriminately accept connections from anywhere, and then forward
 them across SSH tunnels to trusted servers. Similarly, misconfigured X
 servers (which run on the SSH client side) can expose X client
 programs running on the SSH server side to attack, if the X server
 access is overly permissive.
Disabling forwarding isn’t effective for users who are granted
 shell access to run arbitrary commands, because such users can use
 their own programs to set up equivalent forwarding functionality. For
 better control, set up special-purpose accounts that use carefully
 written, restricted programs instead of standard shells, and consider
 using subsystems. [5.8]

5.7.3 Agent Forwarding

Agent forwarding permits a series of SSH connections (from one
 machine to another to another, ...) to operate seamlessly using a
 single agent. [6.3.5]
 Agent forwarding may be enabled or disabled in the Tectia server using
 the keyword AllowAgentForwarding
 with a value of yes (the default)
 or no:[82]
 # Tectia
 AllowAgentForwarding no
It may also be enabled or disabled by OpenSSH and Tectia
 clients. [6.3.5.3]
Agent forwarding is convenient, but in a security-sensitive
 environment, it might be appropriate to disable this feature. Because
 forwarded agent connections are implemented as Unix domain sockets, an
 attacker can conceivably gain access to them. These sockets are just
 nodes in the filesystem, protected only by file permissions that can
 be compromised.
For example, suppose you maintain a network of exposed,
 untrusted machines that you access from a more secure network using
 SSH. You might consider disabling agent forwarding on the untrusted machines. Otherwise, an attacker can
 compromise an untrusted machine; take control of a forwarded agent
 from a legitimate, incoming SSH connection; and use the agent’s loaded
 keys to gain access to the secure network via SSH. (The attacker can’t
 retrieve the keys themselves in this way, however.)

[78] ACL stands for “access control list.”

[79] These keywords are case-insensitive, but the
 documentation mentions only lowercase, so we recommend
 it.

[80] Only Tectia SSH clients allow the listening address
 faddr to be specified with the
 forwarding command-line options -L and
 -R.

[81] Tectia supports the keywords ForwardX11 and AllowX11Forwarding as synonyms for
 X11Forwarding.

[82] The keyword ForwardAgent
 is also supported as a synonym for backward compatibility.

Subsystems

 Subsystems are a layer of abstraction for defining and
 running remote commands via SSH.[83] Normally remote commands are specified ad hoc on the
 client command line. For example, the following command runs a script to
 perform tape backups:
 $ ssh server.example.com /usr/local/sbin/tape-backups
Subsystems are a set of remote commands predefined on the server
 machine, with simple names so that they can be executed
 conveniently.
The syntax to define subsystems in the server configuration file is slightly different for OpenSSH and Tectia. A
 subsystem for the preceding backup command is:
 # OpenSSH
 Subsystem backups /usr/local/sbin/tape-backups

 # Tectia
 Subsystem-backups /usr/local/sbin/tape-backups
Note that OpenSSH uses the keyword Subsystem with a separate value for the
 subsystem name, whereas Tectia uses a keyword of the form Subsystem- name. This
 Tectia syntax is quite odd and unlike anything else in its configuration
 language; we don’t know how it ended up that way.
To run this tape backup script on the server machine, use the
 ssh -s option:
 $ ssh server.example.com -s backups
This command behaves identically to the previous one in which the
 script was specified explicitly.
Subsystems are mainly a convenience feature to predefine commands
 for SSH clients to invoke easily. The additional level of abstraction is
 useful for system administrators, who can hide (and therefore easily
 change) details for the subsystem commands. For example, the backups subsystem could be changed to use a
 completely different script, without any changes in the
 ssh client command that operators run to perform
 tape backups.
System administrators can also define and advertise more generally
 useful subsystems. Suppose your users run the Pine email reader to
 connect to your IMAP server to secure the connection. [11.3] Instead of telling
 everyone to use the command:
 $ ssh server.example.com /usr/sbin/imapd
and revealing the path to the IMAP daemon,
 imapd, you can define an imap subsystem to hide the path in case it
 changes in the future:
 # OpenSSH
 Subsystem imap /usr/sbin/imapd

 # Tectia
 Subsystem-imap /usr/sbin/imapd
Now users can run the command:
 $ ssh server.example.com -s imap
to establish secure IMAP connections via the subsystem.
Subsystems are especially useful for tunneling other protocols. If
 clients refer only to a subsystem, the corresponding server
 implementation can be changed without modifying (and redeploying) the
 clients, which might be numerous and widely scattered.
The best example is the sftp subsystem, which
 provides secure file transfers. [2.7.1] The
 sftp client runs ssh -s sftp
 to launch an sftp-server program and set up a
 secure tunnel for communication between the client and server.[84] The default server configuration file for both OpenSSH and
 Tectia contains a definition of the sftp subsystem,
 with the correct, absolute pathname for
 sftp-server. Tectia also provides an internal
 implementation of the sftp subsystem
 that is built into the SSH server itself. This can be selected by using
 a special syntax for the command:
 # Tectia
 Subsystem-sftp internal://sftp-server
The internal sftp subsystem is
 much more convenient than the default (external)
 sftp-server command for accounts that are subject
 to chroot restrictions. [5.5.7]
Subsystem commands are executed by each user’s shell, and they can
 be affected by environment variables set by the user (if permitted by
 the server [5.6.2]), shell
 start-up scripts, etc. OpenSSH avoids running the ~/.ssh/rc script for subsystems, but Tectia
 always runs ~/.ssh2/rc. If a
 subsystem server command uses a special token to mark the start of its
 output, clients can ignore unexpected output from user scripts. Of
 course, the token must be defined as part of the protocol that’s
 understood and used by the client and server.
OpenSSH requires that subsystem commands use absolute filenames,
 since no PATH search is performed. If
 a relative filename is used, e.g.:
 # OpenSSH: this does not work
 Subsystem backups tape-backups
then no error occurs when the server configuration file is read,
 but on subsequent attempts to use the subsystem, clients fail silently,
 and the server emits syslog warnings:
 Dec 20 14:14:47 server.example.com sshd[1554]: error: subsystem: cannot stat
tape-backups: No such file or directory
Furthermore, OpenSSH doesn’t permit command-line arguments for
 subsystem commands:
 # OpenSSH: this does not work
 Subsystem backups /usr/local/sbin/tape-backups --full --filesystem=/home
This restriction is enforced when the server configuration file is
 read:
 /etc/ssh/sshd_config line 99: garbage at end of line; "--full".
Tectia is more permissive. The server searches for simple commands
 (i.e., relative filenames and no command-line arguments) in the
 libexec and bin subdirectories of the Tectia install directory, and then searches each
 directory in the PATH. Absolute
 filenames are still recommended, however, since the PATH can be redefined or modified by each
 user, and (if not set explicitly) defaults to the value inherited when
 the server was started.
Tectia also allows extra arguments or even shell metacharacters in
 subsystem commands:
 # Tectia
 Subsystem-backups /usr/local/sbin/tape-backups --full 2>&1 | tee /var/log/backups
This is usually a bad idea, because various shells for individual
 users differ in their interpretation of metacharacters (e.g., the
 2>&1 notation in the previous
 example is understood only by Bourne-style shells). The SSH server
 configuration file is the wrong place for this complexity: a better
 approach is to wrap the details in a separate script, and use the name
 of that script as the subsystem command.
Subsystem keywords can be repeated to define multiple, independent
 subsystems. OpenSSH can define a maximum of 256 subsystems; there is no
 limit for Tectia. OpenSSH refuses to allow subsystem names to be
 reused:
 /etc/ssh/sshd_config line 98: Subsystem 'backups' already defined.
Tectia uses later subsystem definitions with the same name to
 override the commands from earlier definitions. This can be useful in
 conjunction with subconfiguration files. [11.6.2]
OpenSSH subsystem names are case-sensitive. In contrast, Tectia
 maps subsystem names to lowercase when the configuration file is read,
 but then uses case-sensitive comparisons to look up the subsystems
 specified by clients. This unfortunate and confusing behavior
 effectively restricts Tectia subsystem names to be all
 lowercase.[85]
The IETF SECSH draft only defines the “sftp” subsystem name and
 mandates that other, nonstandard names use an @ suffix to identify the domain that defined
 the subsystem:
 # OpenSSH
 Subsystem smail@example.com /usr/local/sbin/secure-mail-server

 # Tectia
 Subsystem-smail@example.com /usr/local/sbin/secure-mail-server
This convention should be followed to avoid name clashes for
 software that is widely used, but the domain suffix is commonly omitted
 for subsystems that are used only within a single organization, and the
 convention is not enforced.

[83] Subsystems are supported only by the SSH-2 protocol.

[84] Tectia’s scp client also uses the
 sftp subsystem.

[85] We suspect this is a consequence of Tectia’s peculiar syntax
 for the Subsystem keyword in
 server configuration files. Keywords are case-insensitive, and it’s
 therefore consistent to ignore the case of the subsystem name when
 the name is appended to the keyword.

Logging and Debugging

 As an SSH server runs, it optionally produces log messages
 to describe what it’s doing. Log messages aid the system administrator
 in tracking the server’s behavior and detecting and diagnosing problems.
 For example, if a server is mysteriously rejecting connections, one of
 the first places to look is the server’s log output.
By default, the SSH server writes log messages to
 syslog , the standard Unix logging service (see the sidebar,
 "The Syslog Logging
 Service“). For example, an SSH server typically announces its
 startup with log messages like:[86]
 Server listening on 0.0.0.0 port 22.
 Generating 768 bit RSA key.
 RSA key generation complete.
and a connection from a client is recorded with log messages
 like:
 session opened for user rebecca by (uid=9005)
 Accepted publickey for rebecca from 10.1.2.3 port 1265
 ssh2 session closed for user rebecca
The SyslogFacility keyword
 specifies how the SSH server tags log messages:
 SyslogFacility LOCAL3
The value is one of the (case-insensitive) syslog facility codes,
 and the default is AUTH.
The Syslog Logging Service
Syslog is the standard Unix logging service. Programs send their
 log messages to the syslog daemon, syslogd, which
 forwards them to other destinations such as files, the system console,
 or even other machines. Destinations are specified in the syslog
 configuration file, /etc/syslog.conf.
Messages received by syslogd are processed
 according to their facility, which indicates
 their origin. Standard syslog facilities include AUTH (security and authorization), AUTHPRIV (similar, but for sensitive
 information), DAEMON (system
 daemons), LOCAL0 through LOCAL7 (reserved for local use), and
 USER (user processes).
Log messages are also assigned a priority
 level, which indicates their importance. The standard
 syslog priorities are, in order from most to least important, EMERG, ALERT, CRIT, ERR, WARNING, NOTICE, INFO, and DEBUG.
See the manpages for syslog,
 syslogd, and syslog.conf for more information about this
 logging service.

Warning
Tectia confusingly interprets AUTH to actually mean AUTHPRIV (this also applies to the default
 behavior), and does not recognize AUTHPRIV as a syslog facility code. On
 systems that do not support a separate AUTHPRIV facility, Tectia resorts to
 AUTH. Otherwise, Tectia provides no
 way to specify the AUTH facility
 explicitly.

For Tectia, a separate syslog facility code is used for the
 sftp subsystem. [5.8] This is specified by the
 SftpSysLogFacility keyword:
 # Tectia
 SftpSysLogFacility LOCAL7
By default, no logging is performed for
 sftp.
Tip
If the sftp subsystem is implemented by an
 external program, then the Tectia server passes the
 sftp syslog facility code via the environment
 variable SSH2_SFTP_LOG_FACILITY.
 Otherwise, if the internal sftp subsystem that is
 built into the server is used, then the value for the SftpSysLogFacility keyword is consulted
 directly.

SSH servers use a range of syslog priority levels, depending on
 the types of log messages that are sent. These priority levels aren’t
 directly controllable, but the syslog configuration determines where and
 how they are recorded (or discarded).
The amount of detail provided by log messages can be specified in
 a variety of ways, however. OpenSSH uses the keyword LogLevel to control the verbosity
 level:
 # OpenSSH
 LogLevel VERBOSE
The permitted values (in order of increasing verbosity) are
 QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, and DEBUG1 through DEBUG3.[87]
The QUIET level sends nothing
 whatsoever to the system log (although some messages resulting from
 OpenSSH activity may still be recorded by other programs and libraries,
 such as PAM). Tectia uses a separate keyword, QuietMode, to suppress all log messages
 (except fatal errors), with the values yes or no
 (the default):
 # Tectia
 QuietMode yes
The -q command-line option also selects quiet
 operation:
 $ sshd -q
5.9.1 OpenSSH Logging and Debugging

For OpenSSH, the LogLevel values DEBUG1 through DEBUG3 produce voluminous information useful
 only for diagnostic purposes.[88] These levels are sufficiently verbose to reveal
 sensitive personal information that should not normally be recorded,
 so avoid them for routine operation. Debugging output is usually
 requested on the command line:
 # OpenSSH
 $ sshd -o "LogLevel DEBUG2"
More concisely, the -d command-line option
 can be specified one to three times, to set the LogLevel to DEBUG1 through DEBUG3, respectively:
 # OpenSSH
 $ sshd -d -d DEBUG2 level
The -t (test) option causes the OpenSSH
 server to start up, check the validity of its host keys and the server
 configuration file, and exit. [5.2.2] Combine it with
 -d to see more details about successful
 operation:
 # OpenSSH
 $ sshd -d -t
 debug1: sshd version OpenSSH_3.9p1
 debug1: read PEM private key done: type RSA
 debug1: private host key: #0 type 1 RSA
 debug1: read PEM private key done: type DSA
 debug1: private host key: #1 type 2 DSA
For OpenSSH, the -d command-line option
 also causes the server to run in “debug mode,” which alters its
 behavior to support debugging. The LogLevel keyword does
 not enable debug mode—it only sets the verbosity
 level.
In debug mode, the OpenSSH server runs in the foreground,
 without forking, instead of running detached as a daemon. Normally,
 the server forks again after it accepts each connection from a client,
 and continues further work for the session in a separate child
 process, while the parent process resumes listening for more
 connection requests. In debug mode, however, the OpenSSH server
 handles only a single connection, again without forking, and then
 exits. This is usually convenient for debugging, when forking and
 multiple processes are unwelcome complications; it’s often easier to
 determine what’s happening if all actions are performed by a single
 process.
OpenSSH doesn’t bother to record its process ID in the PidFile [5.3.1.3] when it runs in
 debug mode, since no forking occurs, and it’s easy to determine the
 process ID if the server needs to be signaled.
OpenSSH can also be prevented from running as a daemon by using
 the -D command-line option:
 # OpenSSH
 $ sshd -D
The -D option does not change the LogLevel or enable any of the other side
 effects of debug mode. The OpenSSH server still forks to handle
 multiple client connections, even when -D is
 specified.
The -D option is handy in special
 circumstances when some other process needs to monitor the OpenSSH
 server, and would incorrectly conclude that sshd
 had exited if it forked and ran in the background. For example, the
 Cygwin program cygrunsrv uses sshd
 -D to launch OpenSSH as a Windows service. [14.1]
In debug mode, the OpenSSH server prints log messages to the
 standard error, instead of sending them to syslog. For example, we can
 use the -p option to test the server without
 disturbing normal operation on the standard port: [5.3.3.1]
 # OpenSSH
 $ sshd -d -p 2222
 debug1: sshd version OpenSSH_3.5p1
 debug1: private host key: #0 type 0 RSA1
 debug1: read PEM private key done: type RSA
 debug1: private host key: #1 type 1 RSA
 debug1: read PEM private key done: type DSA
 debug1: private host key: #2 type 2 DSA
 debug1: rexec_argv[0]='/usr/sbin/sshd'
 debug1: rexec_argv[1]='-d'
 debug1: rexec_argv[2]='-p'
 debug1: rexec_argv[3]='2222'
 debug1: Bind to port 2222 on 0.0.0.0.
 Server listening on 0.0.0.0 port 2222.
 Generating 768 bit RSA key.
 RSA key generation complete.
 ... The server waits for an incoming connection request, and then ...
 debug1: Server will not fork when running in debugging mode.
 debug1: rexec start in 4 out 4 newsock 4 pipe -1 sock 7
 ... Further debug output is sent to syslog: see below ...
Log messages that would have been sent to syslog are printed
 directly. Extra debug messages are printed with the debug1 prefix (or debug2 or debug3 if more verbose debugging log levels
 are used). Lots of sample output from sshd -d can
 be found in Chapter 3.
The -e option causes the OpenSSH server to
 independently redirect syslog output to the standard error, without
 all of the other side effects of debug mode. For example:
 # OpenSSH
 $ sshd -D -e -p 2222
 Server listening on 0.0.0.0 port 2222.
 Accepted publickey for rebecca from 10.1.2.3 port 32788 ssh2
 ...
When debugging OpenSSH, it’s usually a good idea to disable
 server restarts with the undocumented -r option,
 again to confine all activity to a single process for simplicity, and
 to prevent debug output from being diverted from stderr to syslog
 after the restart. [5.3.3.3] In the previous
 example for sshd -d, debug output lines that
 mention rexec refer to server restarts, and debug
 output sent to stderr abruptly ends after the
 rexec start line. If we repeat the example with
 the -r option, we see much more debugging
 information sent to stderr, without any of the
 rexec clutter:
 # OpenSSH
 $ sshd -d -r -p 2222
 debug1: sshd version OpenSSH_3.9p1
 debug1: private host key: #0 type 0 RSA1
 debug1: read PEM private key done: type RSA
 debug1: private host key: #1 type 1 RSA
 debug1: read PEM private key done: type DSA
 debug1: private host key: #2 type 2 DSA
 debug1: Bind to port 2222 on 0.0.0.0.
 Server listening on 0.0.0.0 port 2222.
 Generating 768 bit RSA key.
 RSA key generation complete.
 ... The server waits for an incoming connection request, and then ...
 debug1: Server will not fork when running in debugging mode.
 Connection from 10.1.2.3 port 32777
 debug1: Client protocol version 2.0; client software version OpenSSH_3.9p1
 debug1: match: OpenSSH_3.9p1 pat OpenSSH*
 debug1: Enabling compatibility mode for protocol 2.0
 debug1: Local version string SSH-1.99-OpenSSH_3.9p1
 ... Lots more output follows ...
Alternately, if the restart mechanism itself is being debugged,
 the -e option can be used to prevent the
 diversion of debug output from syslog to stderr after the server
 restarts:
 # OpenSSH
 $ sshd -d -e -p 2222
 debug1: sshd version OpenSSH_3.9p1
 debug1: private host key: #0 type 0 RSA1
 debug1: read PEM private key done: type RSA
 debug1: private host key: #1 type 1 RSA
 debug1: read PEM private key done: type DSA
 debug1: private host key: #2 type 2 DSA
 debug1: rexec_argv[0]='/usr/sbin/sshd'
 debug1: rexec_argv[1]='-d'
 debug1: rexec_argv[2]='-e'
 debug1: rexec_argv[3]='-p'
 debug1: rexec_argv[4]='2222'
 debug1: Bind to port 2222 on 0.0.0.0.
 Server listening on 0.0.0.0 port 2222.
 Generating 768 bit RSA key.
 RSA key generation complete.
 ... The server waits for an incoming connection request, and then ...
 debug1: Server will not fork when running in debugging mode.
 debug1: rexec start in 4 out 4 newsock 4 pipe -1 sock 7
 ... The restarted process rereads the host keys as it repeats all of the initializations ...
 debug1: sshd version OpenSSH_3.9p1
 debug1: private host key: #0 type 0 RSA1
 debug1: read PEM private key done: type RSA
 debug1: private host key: #1 type 1 RSA
 debug1: read PEM private key done: type DSA
 debug1: private host key: #2 type 2 DSA
 ... The restarted process uses the SSH socket accepted by the original process ...
 debug1: inetd sockets after dupping: 3, 3
 ... Finally, the server continues to handle the session, as before ...
 Connection from 10.1.2.3 port 32778
 debug1: Client protocol version 2.0; client software version OpenSSH_3.9p1
 debug1: match: OpenSSH_3.9p1 pat OpenSSH*
 debug1: Enabling compatibility mode for protocol 2.0
 debug1: Local version string SSH-1.99-OpenSSH_3.9p1
 ... Lots more output follows ...
When the OpenSSH server is running in debug mode, extra
 information is also sent to (and displayed by) the client, such as
 environment variables, initialization scripts,
 xauth actions, etc., which aid in debugging
 connection problems.
For example, a connection to the server on the alternate port
 shown earlier produces diagnostic output like this:
 $ ssh -p 2222 server.example.com
 Environment:
 USER=elvis
 LOGNAME=elvis
 HOME=/u/elvis
 PATH=/usr/local/bin:/bin:/usr/bin
 MAIL=/var/mail/elvis
 SHELL=/bin/tcsh
 SSH_CLIENT=10.1.2.3 1059 2222
 SSH_CONNECTION=10.1.2.3 1059 10.4.5.6 2222
 SSH_TTY=/dev/pts/2
 TERM=xterm
 DISPLAY=localhost:10.0
 SSH_AUTH_SOCK=/tmp/ssh-XXg0cfvG/agent.1989
 Running /bin/tcsh -c '/bin/sh .ssh/rc'
 ... or ...
 Running /bin/sh /etc/ssh/sshrc
 ... or ...
 Running /usr/X11R6/bin/xauth remove unix:13.0
 /usr/X11R6/bin/xauth add unix:13.0 MIT-MAGIC-COOKIE-1 007ab9e94cf72f081390f46ab0d92f1f
The OpenSSH server ignores the LoginGraceTime keyword [5.3.3.6] when it runs in
 debug mode, since debugging sessions often last much longer!

5.9.2 Tectia Logging and Debugging

Debug mode for Tectia is also controlled by the
 -d command-line option,[89] but the option requires an argument indicating the debug
 level.
Tip
We strongly recommend compiling Tectia with heavy debugging
 turned on, using the --enable-debug-heavy configure option.
 [4.3.5.9] The
 resulting log messages are far more detailed than those printed by
 default.

Debug levels may be indicated in a variety of ways. The simplest
 is a nonnegative integer:
 # Tectia
 $ sshd -d 2
Specifying a debug level means that messages for all lower
 levels will be printed as well. Higher numbers indicate increased
 verbosity. The approximate meanings of the integer debug levels
 are:
	Level
	Approximate meaning

	0-2
	Software malfunctions

	3
	Non-fatal, high-level errors caused by data
 received from the network

	4
	Successful, high-level operations

	5
	Start of high-level operations

	6
	Uncommon situations that might indicate
 bugs

	7
	Successful, mid-level operations

	8
	Data block dumps

	9
	Protocol packet dumps

	10
	Successful, low-level operations

	11-15
	Miscellaneous, extremely low-level
 operations

The -v command line option is equivalent to
 -d 2:
 # Tectia
 $ sshd -v
Alternatively, the VerboseMode keyword (or the abbreviated
 synonym Verbose) is equivalent to
 the -v option:
 # Tectia
 VerboseMode yes
Since debug logging isn’t recommended for normal operation, the
 VerboseMode keyword is useful
 primarily in alternate configuration files that are specified with the
 -f command-line option [5.2.1], or in
 subconfiguration files. [11.6.2]
The integer debug levels affect all aspects of Tectia’s
 operation. Debug levels can also be set differently for each module in
 the Tectia source distribution. This permits much finer-grained
 control over logging.
To use module-based debugging effectively, you should have some
 understanding of C programming, and consult the source code
 (especially the header file lib/sshutil/sshcore/sshdebug.h). Each
 source file is considered to be a “module” for debugging purposes, as
 determined by the definition of SSH_DEBUG_MODULE within the file. For
 example, the file apps/ssh/authspasswd.c has the module name
 Ssh2AuthPasswdServer because it
 contains the line:
 #define SSH_DEBUG_MODULE "Ssh2AuthPasswdServer"
The complete set of module names for Tectia at press time is
 found in Appendix C. To extract
 the current set of module names from the source code, search for
 SSH_DEBUG_MODULE definitions in all
 source files from within the Tectia distribution:
 $ find . -type f -print | xargs grep "define.*SSH_DEBUG_MODULE"
Module names are case-sensitive. Once you have identified the
 name of your desired module, run the server in debug mode, providing
 the module’s name and debug level. For example, to cause the Ssh2AuthPasswdServer module to log at debug
 level 2:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer=2"
If the debug level is omitted (i.e., only the module name is
 specified), then the debug level is taken to be zero, so either of the
 following forms can be used:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer"
 $ sshd -d "Ssh2AuthPasswdServer=0"
The special module name global refers to all modules, and is
 equivalent to specifying an integer debug level. For example, the
 following two commands function identically:
 # Tectia
 $ sshd -d "global=2"
 $ sshd -d 2
The default global debug level is zero.
Multiple modules may be specified, separated by commas, each set
 to individual debug levels:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"
Add whitespace to improve readability:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer = 2, SshAdd = 3, SshSftpServer = 5"
If the -d option is repeated, the debug
 levels are concatenated. This is an alternative to comma-separated
 lists:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer=2" -d "SshAdd=3" -d "SshSftpServer=5"
More generally, module names are patterns that can contain the
 wildcards * and ? to match multiple modules:
 # Tectia
 $ sshd -d "Ssh2Auth*=3"
Warning
These two wildcards have the same meaning as for zsh_fileglob or traditional regex syntax,
 but debug module patterns are not full regular expressions: no other
 wildcards or regex syntax is recognized.

Remember to enclose wildcards for the patterns in quotes to
 prevent their expansion by the Unix shell.
Wildcards cannot match the special global module name, so the following does
 not work:
 # Tectia: does not work
 $ sshd -d "glo*=2"
Setting the global debug level (using either a simple integer or
 the special global module name)
 causes all earlier module debug level assignments to be ignored, so
 global assignments should always be specified first:
 # Tectia
 $ sshd -d 1 -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"
 $ sshd -d "global=1, Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"
The global debug level is
 used as the default for all modules; otherwise, the debug level for a
 specific module is determined by the last match
 in the list. This rule, when combined with wildcards, can be used to
 conveniently set debug levels for entire categories of modules, by
 overriding earlier, more general assignments with a sequence of
 increasingly specific patterns. For example:
 # Tectia
 $ sshd -d "global = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"
The “match anything” pattern * functions similarly to the global debug
 level:
 # Tectia
 $ sshd -d "* = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"
Debug output lines always start with the word “debug,” followed
 by the process ID in square brackets. Messages for specific modules
 mention the module name, and provide the name of the source file (with
 a line number) in which the code is found, plus the name of the
 function in which they occur. For example:
 # Tectia
 $ sshd -d "Ssh2AuthPasswdServer=2"
 ...
 debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:136/ssh_server_auth_passwd:
password auth.
 debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:138/ssh_server_auth_passwd: op = 0
user = elvis
 ...
 debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:250/ssh_
 server_auth_passwd: ssh_server_auth_passwd: accepted by local passwd
 ...
Some debug output isn’t associated with any module, and is
 printed for all debug levels. In addition, some modules produce output
 even for debug level 0:
 # Tectia
 $ sshd -d 0
 debug[3320]: Host key pair is not specified, trying to use default 'hostkey'.
 debug[3320]: Becoming server.
 debug[3320]: Creating listener(s)
 ...
 debug[3320]: Listeners created
 debug[3320]: no udp listener created.
 ...
 debug[3320]: Running event loop
 ...
 debug[3320]: Ssh2Common/sshcommon.c:510/ssh_common_wrap: local ip = 10.1.2.3, local
port = 22
 debug[3320]: Ssh2Common/sshcommon.c:512/ssh_common_wrap: remote ip = 10.1.2.3,
remote port = 32793
 ...
 debug[3320]: Sshd2/sshd2.c:334/server_disconnect: locally_generated = TRUE
Warning
Just because a source code file has a debugging module name
 associated with it doesn’t mean it actually logs any information
 that way. You may find that turning on debugging for specific
 modules doesn’t produce any extra debugging output.

The sshd-check-conf program [5.2.2] also accepts the debug
 options -d and -v. Use the
 module names SshdCheckConf,
 SshConfigParse, or SshConfig to see more details about parsing
 of configuration files:
 # Tectia
 $ sshd-check-conf -d "SshConfigParse=9"
 debug: SshConfigParse/sshconfig_parse.c:224/ssh_parse_config_ext: Got metaconfig line
 `## REGEX-SYNTAX egrep'.
 debug: SshConfigParse/sshconfig_parse.c:246/ssh_parse_config_ext: Metaconfig
 specifies regex style 'EGREP'.
 debug: SshConfigParse/sshconfig_parse.c:252/ssh_parse_config_ext: Metaconfig parsing
 stopped at line 3.
 debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_
 var = `Port', n_val = `22'
 debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_var
 = `SettableEnvironmentVars', n_val = `LANG,LC_
 (ALL|COLLATE|CTYPE|MONETARY|NUMERIC|TIME),PATH,TERM,TZ'
 debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_var =
 `subsystem-sftp', n_val = `sftp-server'
 ...
As for OpenSSH, the -d command-line option
 causes the Tectia server to run in the foreground, processing a single
 connection, and then exiting.
Tip
Although the VerboseMode
 keyword is equivalent to the -v option, which
 in turn means the same as -d 2, the keyword cannot
 prevent forking if it is used in a subconfiguration file [11.6.2], because forking
 will have already occurred when the subconfiguration file is read.
 Therefore, VerboseMode in a
 subconfiguration file only determines the debug level. In the main
 configuration file, the keyword controls forking too.

To continue listening for more connections, use the
 -D option instead of
 -d:
 # Tectia
 $ sshd -D "Ssh*TCP*=8"
When the Tectia server is started with the
 -D option, it runs in the foreground, but
 subsequently forks to spawn a separate child process to handle the
 session for each client connection. In all other respects, the
 -D and -d options function
 identically.
Tectia doesn’t provide any means to run the server in the
 foreground without enabling debug mode. However, debug output can be
 minimized by using the -D option with a debug
 level of zero, and the relatively small amount of unneeded debug
 information can be discarded:
 # Tectia
 $ sshd -D 0 2> /dev/null
If you need this quieter mode of operation frequently, consider
 rebuilding the server without debugging support. [4.3.5.9]
Tip
When specifying debug options (-d,
 -D, or -v) on the
 sshd command line, list them first so that
 debugging output starts as early as possible. This is especially
 important if you are investigating the parsing of command-line
 options or configuration files.

Tectia always sends debug output to the standard error, distinct
 from the messages sent to syslog. In debug mode, messages continue to
 be sent to syslog as they are for normal operation, but these messages
 are also copied to the standard error, and intermingled with the debug
 output. The copied syslog messages are annotated with the name of the
 Tectia server program (usually “sshd2”) instead of “debug,” and they
 are unaffected by the debug level:
 # Tectia
 $ sshd -d 0
 sshd2[3320]: Listener created on *** SSH_IPADDR_ANY ***:22.
 sshd2[3320]: Daemon is running.
 sshd2[3320]: connection from "10.1.2.3" (listen iface: *** SSH_IPADDR_ANY ***:22)
 ...
 sshd2[3320]: Destroying session channel 0
 sshd2[3320]: Local disconnected: Connection closed.
 sshd2[3320]: connection lost: 'Connection closed.'
 sshd2[3320]: Logout for user elvis.
If syslog output is not desired when debugging Tectia, it can be
 directed to some syslog facility that is discarded by
 syslogd:
 # Tectia
 $ sshd -d 0 -o "SysLogFacility LOCAL3"
The Tectia server catches the signal SIGUSR1 after it accepts a connection from a
 client, and finishes authentication and authorization. When SIGUSR1 is received, the server prints
 detailed information about the connection to its standard error
 stream. This is useful only when the server is running in the
 foreground (i.e., with the -d or
 -D options), since output to stderr is discarded
 when sshd is running in the background, as a
 daemon.
If the -d option is used, no forking
 occurs, and SIGUSR1 can be sent to
 the single server process anytime after the single session starts. For
 the -D option, however, a separate child process is
 used for each connection, and SIGUSR1 must be sent to children, not the
 original parent process that continues to listen for
 connections:[90]
 # Tectia
 $ sshd -D 0 -p 2222
 ...
 debug[1234]: Becoming server.
 debug[1234]: Creating listener(s)
 sshd2[1234]: Listener created on *** SSH_IPADDR_ANY ***:2222.
 debug[1234]: Listeners created
 debug[1234]: no udp listener created.
 sshd2[1234]: Daemon is running.
 ...
 sshd2[5678]: Public key authentication for user elvis accepted.
 sshd2[5678]: User elvis (uid 501), coming from client.friendly.org, authenticated.
 sshd2[5678]: Received a channel open request, type session, channel id 0
 sshd2[5678]: Received a session channel extension request of type x11-req for
channel number 0
 sshd2[5678]: Received a session channel extension request of type exec for channel
number 0
 ...
Here the parent process that is listening for connections is
 1234, while the child that accepted the connection is 5678. If we send
 SIGUSR1 to the latter:
 $ kill -USR1 5678
then the server responds with the requested information:
 *** Config Data ***
 Server Protocol Version String: 4.1.0.34 SSH Secure Shell

 *** Connection Data ***
 Server on host: client.friendly.org (10.1.2.3)
 Server listening on port: 2222
 Connection from 10.1.2.3
 Client hostname: client.friendly.org

 *** Algorithm Data ***
 Chosen Hostkey Algorithm: ssh-dss

 Client to Server Algorithms:
 Chosen Cipher: aes128-cbc
 Chosen MAC: hmac-sha1
 Chosen Compression: none

 Server to Client Algorithms:
 Chosen Cipher: aes128-cbc
 Chosen MAC: hmac-sha1
 Chosen Compression: none

 *** Channel Data ***
 Number of Channels: 1
 Channel 0 (session):
 Sent bytes: 0
 Received bytes: 0

 Incoming window size: 100000
 Incoming window left: 100000
 Outgoing window left: 99249

 *** Connection Statistics ***
 compressed bytes in: 3918
 uncompressed bytes in: 3918
 compressed bytes out: 5418
 uncompressed bytes out: 5418
 packets in: 22
 packets out: 22
 rekeys: 0

 *** User Data ***
 Username: elvis
 User's uid: 501
 User belongs to the following groups:
 Group: memphis, gid: 501
 User's home directory: /u/elvis
 User's shell: /bin/tcsh

 *** Local/Remote Tunnel Data ***
 No active local forwards.
 No active remote forwards.
In debug mode, the Tectia server sends extra information to the
 client. The content and format are similar to information sent by the
 OpenSSH server, except for Tectia’s annotations identifying debug and
 (copied) syslog messages, with the process ID of the server after it
 forks to launch the user’s shell:
 # Tectia
 $ ssh -p 2222 server.example.com
 debug[2045]: /etc/nologin_server.example.com does not exist.
 sshd2[2045]: Now running on elvis's privileges.
 debug[2045]: Environment:
 debug[2045]: HOME=/u/elvis
 debug[2045]: USER=elvis
 debug[2045]: LOGNAME=elvis
 debug[2045]: PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
 debug[2045]: MAIL=/var/spool/mail/elvis
 debug[2045]: SHELL=/bin/tcsh
 debug[2045]: SSH2_CLIENT=10.1.2.3 32781 10.1.2.3 2222
 debug[2045]: DISPLAY=server.example.com:10.0
 debug[2045]: SSH2_SFTP_LOG_FACILITY=-1
 debug[2045]: Running /bin/tcsh /u/elvis/.ssh2/rc
 ... or ...
 debug[2045]: Running /bin/sh /etc/ssh2/sshrc
 ... or ...
 debug[2045]: Running /usr/X11R6/bin/xauth add server.example.com:10.0 MIT-MAGIC-
 COOKIE-1 81e51d2ccefaf62b288e9f772cdaa21d
 debug[2045]: Running /usr/X11R6/bin/xauth add 10.1.2.3:10.0 MIT-MAGIC-COOKIE-1
 81e51d2ccefaf62b288e9f772cdaa21d

5.9.3 Debugging Under inetd or xinetd

If you run the SSH server from
 inetd or xinetd using the
 -i command-line option [5.3.3.2], debugging can be
 tricky. It is necessary for sshd to avoid sending
 any extra debugging output to the standard error, since it would be
 relayed by inetd or xinetd
 to the SSH client along with the normal SSH protocol conversation,
 messing it up and causing the connection to fail.
OpenSSH forces all debug output to be sent to syslog if the
 -i option is used, which neatly solves the
 problem. For Tectia, however, the easiest approach is to redirect the
 debug output from the standard error to a file. Because many versions
 of inetd or xinetd do not
 support shell metacharacters in their configuration files, it’s best
 to use a short shell script to invoke sshd with
 the redirected output:
 #!/bin/sh
 # redirect Tectia sshd standard error to a file
 exec /usr/local/sbin/sshd -d 2 -i 2> /tmp/sshd2.debug
Simply specify this shell script in place of
 sshd in the inetd or
 xinetd configuration files.
Alternately, you can send debug output to syslog using the
 logger program:
 #!/bin/sh
 # send Tectia sshd debug output to syslog
 exec /usr/local/sbin/sshd -d 2 -i 2>&1 | grep "^debug" | logger -p local3.debug
grep selects only the debug output,
 discarding the duplicate syslog messages that are also sent to the
 standard error in debug mode.

[86] The system logger adds other information to each log message,
 such as a timestamp, the name of the machine, and the process ID of
 the SSH server, so lines in the log files will actually look
 like:
Aug 30 17:41:47 graceland sshd[731]: Illegal user elvis from
 10.11.12.13

[87] These names are not syslog priority
 levels, although some of the names are similar.

[88] DEBUG is a synonym for
 DEBUG1.

[89] The -d option has no corresponding
 keyword.

[90] If SIGUSR1 is sent to the
 parent, it will die, since it has not arranged to catch the
 signal.

Compatibility Between SSH-1 and SSH-2 Servers

 OpenSSH supports both the SSH-1 and SSH-2 protocols within
 a single daemon accepting both types of connections. The Protocol keyword can be used to limit the
 support to either protocol exclusively. [5.3.7]
For Tectia, however, the story is more complicated. The Tectia
 server itself only supports the SSH-2 protocol, but it can accept
 connections from clients that request the older SSH-1 protocol. This
 backward compatibility is achieved by having the Tectia server run some
 other server program for the SSH-1 protocol instead, whenever an SSH-1
 connection is requested. This feature is enabled and disabled with the
 Tectia Ssh1Compatibility keyword,
 given a value of yes or no (the default):
 # Tectia
 Ssh1Compatibility yes
When Ssh1Compatibility is
 enabled, and an SSH-1 client connects to the Tectia server, the two
 programs exchange strings indicating their versions. [3.6.3]
 sshd (also known as sshd2, see
 the sidebar "Tectia’s
 File-Naming Conventions" [5.1]) then locates the
 sshd1 executable by examining the value of the
 Sshd1Path keyword:
 # Tectia
 Sshd1Path /usr/local/sbin/sshd1
and invokes sshd1. The Tectia server adds the
 -i option [5.3.3.2] to the
 sshd1 command line to indicate that the client
 connection has already been accepted by Tectia, and
 sshd1 should expect the socket to be attached to
 its standard input, output, and error streams. In addition, the Tectia
 server passes the client’s version string using the (mostly
 undocumented) -V command-line option:
 # Tectia, invoked automatically by sshd
 /usr/local/sbin/sshd1 -i -V "client version string" <other arguments>
Tip
Although sshd2 can accept and reroute SSH-1
 client connections, the reverse isn’t true: sshd1
 can’t accept SSH-2 connections.

The -V command-line option is supported by
 sshd1 implementations for internal use only by
 sshd2. It is necessary because when
 sshd1 starts this way, the client has already sent
 its initial version announcement, which sshd1 needs
 to get somehow. We can’t think of any practical reason to use this
 option manually, but we mention it here for completeness.
The OpenSSH server also implements the -V
 option, so you could use OpenSSH to handle SSH-1 protocol connections
 that are delegated from Tectia in its backward-compatibility mode. Be
 sure to set OpenSSH’s Protocol
 keyword value to 1 to force protocol
 SSH-1.
Warning
Unfortunately, Tectia’s SSH-1 compatibility mode is scarcely
 supported by other SSH implementations. Only OpenSSH versions earlier
 than 3.7 understand the -V option. An alternative
 is to use the latest implementation of SSH1--the original SSH
 product—which is still available from ftp://ftp.ssh.com/pub/ssh/, but it is ancient and no
 longer actively maintained.

Most other command-line options are passed on from
 sshd2 to sshd1 without
 modification. Specifically, the Tectia server leaves the following
 options untouched: -b, -g,
 -h, -k,
 -p, -q, and
 -i. The -d option [5.9] is passed to
 sshd1, but the debug level argument is removed,
 since it is Tectia-specific. Similarly, the argument for the
 -f option is unsuitable for
 sshd1, since it specifies an alternate
 configuration file, and the syntax for sshd2 and
 sshd1 configuration files isn’t compatible.
 Therefore, if an sshd2 -f option is specified, then
 Tectia uses the Sshd1ConfigFile
 keyword to modify the argument for the -f option
 that is used for the sshd1 invocation:
 # Tectia
 Sshd1ConfigFile /usr/local/etc/sshd1_config
The Sshd1ConfigFile is only
 used if sshd2 was invoked with an explicit
 -f command-line option. Otherwise, no
 -f option is passed on the
 sshd1, and sshd1 uses its own
 default configuration file, just like sshd2.
All other sshd2 options are removed from the
 command line that is passed to sshd1.
Warning
Other command-line options besides -f can
 cause compatibility problems when they are passed on from
 sshd2 to sshd1. Some
 sshd2 options are not supported by all
 sshd1 implementations, and (even worse) some
 options with the same names have different interpretations. Be sure to
 carefully compare the sshd2 and
 sshd1 documentation for any options that are
 used. It is usually best to use keywords in different configuration
 files for sshd2 and sshd1
 instead of command-line options in SSH-1 compatibility mode.

If SSH-1 compatibility mode is used, only the Tectia server should
 be started at boot time. sshd1 is then launched by
 sshd2 only when needed for SSH-1
 connections.
5.10.1 Security Issues with Tectia’s SSH-1 Compatibility
 Mode

There’s one vital thing to keep in mind if you’re using
 the SSH-1 compatibility feature in Tectia: you must maintain two
 separate SSH server configurations. When sshd2
 starts sshd1, it is an entirely new process, with
 its own SSH-1 server configuration file. No restrictions set in your
 sshd2 server configuration apply to it. Even
 restrictions that could apply, such as AllowHosts, don’t, because
 sshd2 invokes sshd1 before
 performing such checks.
This means you must keep the two configurations synchronized
 with respect to your security intent. Otherwise, an attacker can
 circumvent your carefully crafted sshd2
 configuration simply by connecting with an SSH-1 client.
A good strategy for automating the synchronization of
 sshd2 and sshd1
 configurations is to derive the configuration files from a common
 template file, using a general-purpose macro preprocessor like
 m4. The following list describes the basic
 idea.
	Invent symbols like TECTIA and OPENSSH to label the implementations for
 the sshd2 and sshd1
 configurations.

	Construct the template file using m4
 preprocessor conditionals like ifdef to handle incompatibilities
 between sshd2 and sshd1,
 such as syntax differences:
 ifdef(TECTIA, 'DenyGroups bad.*, worse')
 ifdef(OPENSSH,'DenyGroups bad* worse')
The template file helps to maintain the configurations
 because similar constructs are kept together, and duplicate
 information is minimized. Any common keywords and values can be
 specified in the template file without conditionals.

	Generate the sshd2 and
 sshd1 configurations from the template by
 defining the appropriate implementation symbols on the command
 line using the m4 preprocessor:
 m4 -DTECTIA sshd_config_template > sshd2_config
 m4 -DOPENSSH sshd_config_template > sshd1_config

	For even more automation, set up a Makefile containing targets for the
 sshd2 and sshd1
 configuration files, with m4 preprocessor
 commands for each:
 all: sshd2_config sshd1_config
 sshd2_config: sshd_config_template
 m4 -DTECTIA $< > $@
 sshd1_config: sshd_config_template
 m4 -DOPENSSH $< > $@

	To ensure that the real sshd2 and
 sshd1 configuration files are up to date
 whenever the template file changes, regenerating the configuration
 files if necessary, simply use the command
 make. This can be done at boot time before
 the Tectia server is started, or subsequently when the
 configuration file is reread using SIGHUP. [5.2.4]

Summary

As you can see, SSH servers have a tremendous number of
 configuration options, and in some cases, multiple ways to achieve the
 same results. All this power comes at a price, however. When setting up
 a secure system, it is vital to consider each option carefully and
 select appropriate values. Don’t skimp on understanding: the security of
 your systems may depend on it. Chapter
 10 lists configurations for OpenSSH and Tectia. In addition, all
 the keywords and options in this chapter appear in Appendix E.
Remember that serverwide configuration is only one avenue for
 affecting server behavior. We discuss compile-time configuration in
 Chapter 4 and per-account
 configuration in Chapter 8.

Chapter 6. Key Management and Agents

Your SSH private key is a precious thing. When you use public-key
 authentication, your key proves your identity to SSH servers. We’ve
 encountered several programs related to keys:
	ssh-keygen
	Creates key pairs

	ssh-agent
	Holds private keys in memory, saving you from typing your
 passphrase repeatedly

	ssh-add
	Loads private keys into the agent

However, we haven’t gone into much depth, covering only the most
 basic operations with keys. Now it’s time to examine these concepts and
 programs in detail.
We begin with an overview of SSH identities
 and the keys that represent them. After that, we thoroughly
 cover SSH agents and their many features. Finally, we extol the virtues of
 having multiple SSH identities. If you’ve been getting by with a single
 key and only light agent use, we have a lot of cool stuff in store for
 you. Figure 6-1 summarizes the
 role of key management in the overall configuration process.
This chapter is the first in a sequence on advanced SSH for end
 users, as opposed to system administrators. Once you’ve covered key
 management in this chapter, we’ll take you through client configuration,
 server configuration, and forwarding in Chapters 7-9.

What Is an Identity?

 An SSH identity is a sequence of bits that says, “I am
 really me.” It is a mathematical construct that permits an SSH client to
 prove itself to an SSH server, so the SSH server says, “Ah, I see, it’s
 really you. You are hereby authenticated. Come in.”
[image: SSH user key and agent configuration (highlighted parts)]

Figure 6-1. SSH user key and agent configuration (highlighted
 parts)

An identity consists of two parts, called the private key and the
 public key. Together, they are known as a key
 pair.
The private key represents your identity for
 outgoing SSH connections. When you run an SSH
 client in your account, such as ssh or
 scp, and it requests a connection with an SSH
 server, the client uses this private key to prove your identity to the
 server.
Warning
Private keys must be kept secret. An
 intruder with your private key can access your account as easily as
 you can.

The public key represents your identity for
 incoming connections to your account. When an SSH
 client requests access to your account, using a private key as proof of
 identity, the SSH server examines the corresponding public key. If the
 keys “match” (according to a cryptographic test), authentication
 succeeds and the connection proceeds. Public keys don’t need to be
 secret; they can’t be used to break into an account.
A key pair is typically stored in a pair of files with related
 names. In SSH, the public-key filename is the same as the private one,
 but with the suffix .pub added. For
 example, if the file mykey holds a
 private key, its corresponding public key is found in mykey.pub.
You may have as many SSH identities as you like. Most SSH implementations let you specify a
 default identity clients use unless told otherwise. To use an alternative
 identity, you must change a setting by command-line argument,
 configuration file, or some other configuration tool.
The structure of identity files differs for OpenSSH and Tectia, so we explain them separately. Their
 locations in the filesystem are shown in Figures 6-2 (private keys) and
 6-3 (public keys).
[image: SSH identity files (private keys) and the programs that use them]

Figure 6-2. SSH identity files (private keys) and the programs that use
 them

6.1.1 OpenSSH Identities

An OpenSSH identity is stored in two files. By default,
 the private key is stored in the file id_dsa, and the public key in id_dsa.pub.[91] This key pair, which is kept in your ~/.ssh directory, is your default identity
 that clients use unless told otherwise. The private key looks
 something like this:
 -----BEGIN DSA PRIVATE KEY----- Or "BEGIN RSA" for RSA keys
 Proc-Type: 4,ENCRYPTED
 DEK-Info: DES-EDE3-CBC,89C3AE51BC5876FD

 MXZJgnkYE+1+eff3yt9j/aCCABz75egbGJfAbWrseiu0k3Dim9Teu2Ob1Xjdv4U9
 II1hVYOkgQYuhdJbzrLMpJ0W1+N5ujI8akJ6j0ESeGTwJbhGyst71Y3A2+w4m1iv
 ... lines omitted ...
 gMtQSdL26V1+EmGiPfio8Q==
 -----END DSA PRIVATE KEY-----
[image: SSH authorization files (public keys) and the programs that use them]

Figure 6-3. SSH authorization files (public keys) and the programs that
 use them

and the public key file contains a long, single line:
 ssh-dss AAAAB3NzaC1kc3MAAACBAM4a2KKBE6zhPBgR ...more... smith@example.com
The file format for these keys is known as “OpenSSH
 format.”
The .pub file containing
 your public key has no function by itself. Before it can be used for
 authentication, this public key must be copied into an authorization
 file on an SSH server machine, ~/.ssh/authorized_keys. Thereafter, when an
 SSH client requests a connection to your server account using a
 private key as proof of identity, the OpenSSH server consults your
 authorized_keys file to find the
 matching public key.

6.1.2 Tectia Identities

A Tectia key pair is also stored in two files with
 related names (i.e., the private-key filename plus .pub yields the public-key filename).
 Tectia key files are often named based on the key’s cryptographic
 properties. For example, a 2048-bit, DSA-encrypted key is generated by
 default in the Tectia files id_dsa_2048_a and id_dsa_2048_a.pub. These files are in a
 format known as “SECSH public-key file format” and sometimes “SSH2
 format.” The encrypted private key looks like this:
 ---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
 Subject: smith
 Comment: "2048-bit dsa, smith@example.com, Sat Feb 12 2005 15:17:53 -0200"
Converting SSH-1 Keys to SSH-2 with ssh-keyconverter
OpenSSH includes the program
 ssh-keyconverter, which converts old SSH-1 RSA
 keys into a format suitable for SSH-2 authentication. If you used
 SSH-1 in the early days but are just getting around to upgrading,
 ssh-keyconverter might save you the time of
 generating and installing new keys. There are two uses:
	Converting key files
	Run ssh-keyconverter with the
 -k option to convert a single SSH-1 RSA
 key file to SSH-2 format. If your private key file is
 mykey, run:
 $ ssh-keyconverter -k -o newfile mykey
 Creates newfile and newfile.pub

	Converting your entire authorized_keys
 file
	Run ssh-keyconverter with the
 -a option to convert all SSH-1 RSA keys
 in your authorized_keys
 file to SSH-2 format:
 $ cd ~/.ssh
 $ ssh-keyconverter -a -o newfile authorized_keys
 ...Check that file newfile looks correct, and then...
 $ mv newfile authorized_keys
 $ chmod 600 authorized_keys

Existing SSH-2 format keys are ignored.
See the manpage for ssh-keyconverter for
 more details.

 P2/56wAAA4oAAAAmZGwtbW9kcHtzaWdue2RzYS1uaXN5LXNoYTF9LGRoe3BsYWlufX0AAA
 AIM2Rlcy1jYmMAAANIEYkNTUySnPZlYsNh15lkVfzRk6dPx4XYcXe+4f45XHIxwqcUo2Cd
 ... lines omitted ...
 RFI0RQxDhgWS/SXlFF
 ---- END SSH2 ENCRYPTED PRIVATE KEY ----
and the public key like this:
 ---- BEGIN SSH2 PUBLIC KEY ----
 Subject: smith
 AAAAB3NzaC1kc3MAAAEBAP3QfkjOBm1+aPgEUG39j5va13CRrPSedFYtv/52VqIgrBzRV8
 Es1KHPIwmB1FOn5ej02FATNGtaR/fg6K4DVoWscIHGZk95OjLgAz+JeBq7lxYwQ0EzpsTQ
 ... lines omitted ...
 mQ1et1r4Wr0fj0F/2tXf+o71P2HfNw1M6I0B/54eI=
 ---- END SSH2 PUBLIC KEY ----
Unlike OpenSSH, however, a Tectia identity is not a single key
 but a collection of keys. When a Tectia client
 tries to authenticate, it may use all keys in the collection. If the
 first key fails to authenticate, the Tectia client automatically tries
 the second, and so forth, until it succeeds or fails
 completely.
To create an identity in Tectia, private keys must be listed in
 a file called an identification file. Your
 default identity file is ~/.ssh2/identification. [92] Inside the file, private keys are listed one per line.
 For public-key authentication, a line begins with the keyword IdKey, followed by the name of the
 private-key file:
 # Tectia identification file
 # The following names are relative to ~/.ssh2
 IdKey id_dsa_2048_a
 IdKey my-other-tectia-key
 # This key uses an absolute path
 IdKey /usr/local/etc/third-key
The identification file may also contain PGP-related keywords:
 [6.5]
 # Tectia identification file
 PgpSecretKeyFile my-file.pgp
 IdPgpKeyName my-key-name
Like OpenSSH, Tectia has an authorization file for incoming connections, but with a difference.
 Instead of containing copies of the public keys, the Tectia
 authorization file merely lists the public-key filenames using the
 Key keyword:
 # Tectia authorization file
 Key id_dsa_2048_a.pub
 Key something-else.pub
Notice you have only one copy of each public key. This is
 slightly easier to maintain than OpenSSH’s system, which has separate
 copies in the .pub file and
 authorized_keys file. [8.2.1]
Tip
Tectia’s identification file can group multiple keys as a
 single identity. You can approximate this behavior in OpenSSH with
 the IdentityFile keyword. [7.4.2] To set up a default
 “identity” with multiple keys, add the following section to the end
 of your ~/.ssh/config
 file:
 Host *
 IdentityFile key1
 IdentityFile key2
 IdentityFile key3
Now this multiple-key “identity” is available for all SSH
 connections. Similarly, you can place multiple IdentityFile values in any other section
 of the configuration file to associate a multikey identity with a
 particular host or set of hosts.

[91] If your default key is an RSA key, the filenames are
 id_rsa and id_rsa.pub

[92] This default may be changed with the IdentityFile keyword. [7.4.2]

Creating an Identity

 Most SSH implementations include a program for
 creating key pairs. We cover ssh-keygen from
 OpenSSH and Tectia.
6.2.1 Generating Keys for OpenSSH

OpenSSH uses the program ssh-keygen
 to create key pairs. [2.4.2] Let’s go into more
 detail about this program for creating new keys or modifying existing
 keys.
6.2.1.1 Creating OpenSSH keys

When creating a new key, you must
 indicate the key type (DSA or RSA) using the -t
 flag:
 $ ssh-keygen -t dsa
You may also specify these options for creating keys:
	The number of bits in the key, using
 -b; the default is 1024 bits:
 $ ssh-keygen -t dsa -b 2048

	The name of the private-key file to be generated, using
 -f. The name is relative to your current
 directory. Recall that the public-key file is named after the
 private one with .pub
 appended.
 $ ssh-keygen -t dsa -f mykey Creates mykey and mykey.pub
If you omit the -f option, you are
 prompted for the information:
 $ ssh-keygen -t dsa
 ...
 Enter file in which to save the key (/home/barrett/.ssh/id_dsa): mykey
The default filename for DSA keys is ~/.ssh/id_dsa, and for RSA keys it’s
 ~/.ssh/id_rsa.

	The passphrase to decode the key, using
 -N:
 $ ssh-keygen -t dsa -N secretword
If you omit this option, you’ll be prompted for the
 information:
 $ ssh-keygen -t dsa
 ...
 Enter passphrase: [nothing is echoed]
 Enter the same passphrase again: [nothing is echoed]

	A textual comment associated with the key, using
 -C. If you omit this option, the comment is
 username@host,
 where username is your username and
 host is the local hostname:
 $ ssh-keygen ... -C "my favorite key"

Warning
Before using any option that places your passphrase on the
 shell command line, such as the -N or
 -P options of
 ssh-keygen, carefully consider the security
 implications. Because the passphrase appears on your screen, it
 may be visible to onlookers, and while running, it may be visible
 to other users viewing the machine’s process list via the
 ps command. In addition, if your shell
 creates history files of the commands you type, the passphrase is
 inserted into a history file where it can be read by a third
 party.
Also, if you think you have a good reason just to type
 Return and give your key no passphrase, think
 again. That is essentially equivalent to putting your password in
 a file in your home directory named MY-PASSWORD.PLEASE-STEAL-ME. If you
 don’t want to have to type a passphrase, the right thing to do is
 to use ssh-agent, hostbased authentication,
 or Kerberos. There are very limited circumstances having to do
 with unattended usage (e.g., cron jobs) where
 a plaintext, passphrase-less client key might be acceptable. [11.1]

If you use both -f (specify output file)
 and -N (specify passphrase),
 ssh-keygen issues no prompts. Therefore, you
 can automate key generation using these options (and perhaps
 redirecting output to /dev/null):
 $ ssh-keygen -f mykey -N secretword
You might use this technique to automate generation of a large
 number of keys for some purpose. Use it carefully, though, and
 always on a secure machine. The password on the command line is
 probably visible to other users on the same machine via
 ps or similar programs; and if you’re scripting
 with this technique, obviously the passphrases shouldn’t be kept in
 files for long.

6.2.1.2 Working with OpenSSH keys

In addition to creating keys, ssh-keygen
 can manipulate existing keys in the following ways:
	Changing the passphrase of an existing key, using
 - p. You can specify the
 filename with -f and the old and new
 passphrases with -P and
 -N, respectively:
 $ ssh-keygen -t dsa -p -f mykey -P secretword -N newword
 Your identification has been saved with the new passphrase.
But if you omit them, you are prompted:
 $ ssh-keygen -t dsa -p
 Enter file in which the key is (/home/barrett/.ssh/id_rsa): mykey
 Enter old passphrase: [nothing is echoed]
 Key has comment 'my favorite key'
 Enter new passphrase (empty for no passphrase): [nothing is echoed]
 Enter the same passphrase again:
 Your identification has been saved with the new passphrase.
Note that this changes the passphrase but
 doesn’t change the key, it just re-encrypts
 the key with the new passphrase. So, the corresponding
 public-key file on remote machines doesn’t change or need to be
 replaced.

	Printing the fingerprint of a given
 key file, with -l. See the sidebar "Key Fingerprints" for
 more information. The fingerprint can be calculated from the
 public key:
 $ ssh-keygen -l -f stevekey.pub
 1024 5c:f6:e2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 steve@snailbook.com
 $ ssh-keygen -B -f stevekey.pub
 1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
 Steve@snailbook.com

	Printing a DNS resource record with
 -r, and using DNS resource record format
 with -g. These options produce key
 fingerprints in a format suitable for a BIND nameserver, for the
 purposes of verifying SSH host keys via the DNS. [7.4.3.2]

	Converting between SECSH (Tectia) and OpenSSH key-storage
 formats, with -e, -i,
 and -y.
	Option
	Extract/convert
 from...
	To...

	 -e

	OpenSSH private-key file
 (“export”)
	SECSH public key (Tectia
 format)

	 -i

	SECSH public-key file
 (“import”)
	OpenSSH public
 key

	 -y

	OpenSSH private-key
 file
	OpenSSH public
 key

An OpenSSH “private” key file actually contains both the
 public and private keys of a pair, so the
 -e and -y options
 simply extract the public key and print it out in the desired
 format. Use -e to convert an OpenSSH public
 key for your ~/.ssh2/authorization file on a
 Tectia server host, and -i to do the opposite.
 The -y option is useful if you accidentally
 delete your OpenSSH public-key file and need to restore it.
 Tectia keys are in a format called SECSH Public Key File Format
 or SSH2 format, also used by other SSH implementations whose
 keys you may import and export.
A function that’s missing is converting the
 private keys as well. This is useful if you
 have an OpenSSH server host on which you also want to run
 Tectia, and you want the two SSH servers to share a host
 key.

When you make changes to a key, such as its passphrase or
 comment, the changes are applied to the key file only. If you have
 keys loaded in an SSH agent, the copies in the agent don’t get
 changed. For instance, if you list the keys in the agent with
 ssh-add -l (lowercase L) after changing the
 comment, you still see the old comment in the agent. To make the
 changes take effect in the agent, unload and reload the affected
 keys.

6.2.2 Generating Keys for Tectia

Tectia also uses a program named ssh-keygen
 to create key pairs and manipulate existing keys.
Key Fingerprints
Fingerprints are a common cryptographic feature for checking
 that two keys in different places are the same, when comparing them
 literally—bit by bit—is infeasible. OpenSSH and Tectia can compute
 fingerprints.
Suppose Steve wants SSH access to Judy’s account. He sends his
 public key to Judy by email, and she installs it in her SSH
 authorization file. While this key exchange seems straightforward,
 it is insecure: a hostile third party could intercept Steve’s key
 and substitute his own, gaining access to Judy’s account.
To prevent this risk, Judy needs some way to verify that the
 key she receives is Steve’s. She can call Steve on the telephone and
 check, but reading a 500-byte encrypted public key over the phone is
 annoying and error-prone. This is why fingerprints exist.
A fingerprint is a short value computed
 from a key. It’s analogous to a checksum, verifying that a string of
 data is unaltered—in our case, a key. To check the validity of a key
 using fingerprints, Steve and Judy could do the following:
	Judy receives a public key that is supposed to be Steve’s,
 storing it in the file stevekey.pub.

	Separately, Judy and Steve view the fingerprint of the
 key:
 # OpenSSH
 $ ssh-keygen -l -f stevekey.pub
 1024 5c:f6:e2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 Steve@snailbook.com
 $ ssh-keygen -B -f stevekey.pub
 1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
 Steve@snailbook.com

 # Tectia
 $ ssh-keygen -F stevekey.pub
 Fingerprint for key:
 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

	Judy calls Steve on the telephone and asks him to read the
 fingerprint over the phone. Judy verifies that it matches the
 fingerprint of the key she received. Fingerprints are not
 unique, but for any two keys, the probability that their
 fingerprints are identical is extremely small. Therefore,
 fingerprints are a quick and convenient method for checking that
 a key is unaltered.

As you can see, OpenSSH and Tectia use different output
 formats for fingerprints. OpenSSH supports both a numeric format
 which is more traditional and should be familiar to users of PGP,
 and a textual format called “Bubble Babble” which is claimed to be
 easier to read and remember. Tectia supports only Bubble Babble
 fingerprints.
Fingerprints also surface when you connect to an SSH server
 whose host key has changed. In this case, OpenSSH prints a warning
 message and the fingerprint of the new key, which may be
 conveniently compared with the fingerprint of the real host key,
 should you have it.

6.2.2.1 Creating Tectia keys

When creating a new key, you may choose the name of the
 private-key file to be generated, by specifying the name at the end
 of the command line:
 $ ssh-keygen mykey creates mykey and mykey.pub
The name is relative to your current directory, and as usual,
 the public key file is named after the private one with .pub appended. The key is saved in the
 directory ~/.ssh2 in a file
 whose name indicates the key type and number of bits. An example is
 id_dsa_2048_a, which was
 generated by the DSA algorithm with 2048 bits.
You also may indicate the following with command-line
 options:
	The number of bits in the key, using
 -b; the default is 2048 bits:
 $ ssh-keygen -b 4096

	The key type, such as DSA or RSA, using
 -t:
 $ ssh-keygen -t dsa

	A textual comment associated with the key, using
 -c:
 $ ssh-keygen -c "my favorite Tectia key"
If you omit this option, the generated comment describes
 how and by whom the key was generated. For example:
 "2048-bit dsa, barrett@server.example.com, Tue Feb 22 2000 02:03:36"

	The passphrase to decode the key, using
 -p. If you omit this option, you are
 prompted after generation.
 $ ssh-keygen -p secretword
You can also designate an empty password using
 -P. This shouldn’t be done in general but
 is appropriate in some special cases: [11.1.2.2]
 $ ssh-keygen -P

	Whether or not to overwrite the key file, if it already
 exists, with --overwrite and the value yes (the default) or no:
 $ ssh-keygen --overwrite no mykeyfile

6.2.2.2 Working with Tectia keys

In addition to creating keys, ssh-keygen
 can operate on keys in the following ways:
	By changing the passphrase and comment of an existing key,
 using -e. This option causes
 ssh-keygen to become interactive, prompting
 for the new information. This interactive mode is primitive and
 annoying, requiring nearly 10 user responses to change the
 passphrase and comment, but it does the job:
 $ ssh-keygen -e mykey
 Passphrase needed for key "my favorite Tectia key"
 Passphrase : [nothing is echoed]
 Do you want to edit key "my favorite Tectia key" (yes or no)? yes
 Your key comment is "my favorite Tectia key".
 Do you want to edit it (yes or no)? yes
 New key comment: this is tedious
 Do you want to edit passphrase (yes or no)? yes
 New passphrase : [nothing is echoed]
 Again : [nothing is echoed]
 Do you want to continue editing key "this is tedious" (yes or no)? god no
 (yes or no)? no
 Do you want to save key "this is tedious" to file mykey (yes or no)? yes
Changes are applied to the key files but not propagated to
 any copies currently loaded in an agent. (So, if you run
 ssh-add -l to list the keys in your agent,
 for example, you still see the old comment.)

	By converting between various key-storage formats, with
 the following options:

	Option
	Extract/convert
 from...
	To...

	 a Handy if
 you ever lose your public-key file.
	 	
	 -1

	SSH1 key
	SECSH key

	
 --import-public-key
	OpenSSH public key
	SECSH public key

	
 --import-private-key
	OpenSSH private key, unencrypted
 only
	SECSH private key

	
 --import-ssh1-authorized-keys

	An OpenSSH or SSH1 authorized_keys
 file
	Tectia authorization file, plus an
 individual file for each referenced public
 key

	 -D

	SECSH private key
	SECSH public key a

	 -x

	X.509 private key
	SECSH private key

	 -k

	PKCS 12 file
	SECSH certificate and private
 key

	 -7

	PKCS 7 file
	Certificates from that
 file

ssh-keygen also gives you some control
 over input, output, and diagnostics:
	By printing the fingerprint of a
 given key file, with -F. See the sidebar
 "Key
 Fingerprints" for more information. [6.2] The fingerprint is
 calculated from the public key:
 $ ssh-keygen -F stevekey.pub
 Fingerprint for key:
 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

	By printing cryptographic information about a key, with
 -i:
 $ ssh-keygen -i stevekey.pub
 DSA Public Key
 [Strength estimation as of July, 2000 considering NFS and Pollard rho: Attack
 requires O(2^80) steps, which is roughly equivalent to 6.7 * 10^7 years of effort
 with 1GHz machine.]
 p = [Large prime, characteristic of the finite field]
 18257155510680634708091813901445079313554557329637337413272033369505053693222548
 32994959179095338002184212706407725165597654255005411958024968996544803955496850.
 ...
You can display this information in different bases with
 -B; the default is base 10:
 $ ssh-keygen -i -B 16 stevekey.pub Base 16, hexadecimal
 ...
 0x909fe130f9fa7192dc2a28591a53c0687...

	By printing the program version number, with
 -V:
 $ ssh-keygen -V
 ssh-keygen: SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
 Build: 1
 Crypto library version: SSH Cryptographic Library, version 1.2.4

	By printing a help message, with -h
 or -?; most Unix shells require you to
 escape the question mark to prevent the shell from interpreting
 it as a wildcard:
 $ ssh-keygen -h
 $ ssh-keygen -\? escaping the question mark

	By printing debug information, with
 -d, as for Tectia’s
 sshd. [5.9]

	By suppressing the progress indicator, using
 -q. The progress indicator is a sequence of
 O’s and periods that displays while
 ssh-keygen runs, like this: .oOo.oOo.oOo.oOo:
 $ ssh-keygen
 Generating 2048-bit dsa key pair
 .oOo.oOo.oOo.oOo
 Key generated.

 $ ssh-keygen -q
 Generating 2048-bit dsa key pair
 Key generated.

Finally, ssh-keygen has one guru-level
 advanced option, -r, for affecting the random
 numbers used for key generation. It causes
 ssh-keygen to modify ~/.ssh2/random_seed using data you enter
 on standard input. [3.6.4] The Tectia manpages
 call this “stirring data into the random pool.” Note that the
 program doesn’t prompt you to enter data, it just sits there looking
 like it’s hung. When this occurs, type as much data as you like and
 press the EOF character (Control-D in most shells):
 $ ssh-keygen -r
 I am stirring the random pool.
 blah blah blah
 ^D
 Stirred in 46 bytes.
See Table 6-1 for
 a description of ssh-keygen options.
Table 6-1. ssh-keygen options
	ssh-keygen feature
	OpenSSH
	Tectia

	 a Any
 illegal argument, such as -h, causes a
 help message to print.

	 b You might
 need to escape the question mark in your shell, e.g.,
 -\?.

	 c The key
 file format used by SSH Tectia and several other
 implementations, but not OpenSSH.

	 Set
 number of bits
	-b bits

	-b bits

	 Set
 output file
	-f file

	final argument of the
 command

	 Overwrite
 output file if present
	 	 --overwrite
 [
 yes|no
]

	 Set
 comment string
	-C
 comment
	-c
 comment

	 Change
 comment string
	-c
	-e file

	 Set (new)
 passphrase
	-N
 phrase
	-p
 phrase

	 Set empty
 passphrase
	-N `'
	-P

	 Specify
 current passphrase
	-P
	
	 Change
 passphrase
	-p
	-e file

	 Set
 encryption algorithm
	-t
 algorithm
	-t
 algorithm

	 Change
 encryption algorithm
	-u
	
	 Derive
 public key from private
	 	-D file

	 Quieter
 output
	-q
	-q

	 Describe
 key
	 	-i file

	 Set
 numeric base for printing key information

	 	-B base

	 Print
 version number
	-V
	-V

	 Print
 help message
	-h
 a
	-h, -?
 b

	 Print
 debugging information
	 	-d
 debug_spec

	 Use data
 from stdin for randomness
	 	-r

	 Print a
 key’s fingerprint
	- l or -B
	-F file

	 Convert
 from SSH-1 to SSH-2 format
	 	-1 file

	 	 	
	 Convert
 OpenSSH private to Tectia public
	-e
	
	 Convert
 OpenSSH private to Tectia private
	 	 --import-private-key

	 Convert
 Tectia public to OpenSSH public
	-i
	 --import-public-key

	 Extract
 OpenSSH private to public
	-y
	
	 Convert
 authorized_keys to
 authorization
 file
	 	 --import-ssh1-authorized-keys

	 Convert
 X.509 key to SECSH format
 c

	 	-x file

	 Convert
 PKCS 12 file to SECSH format
	 	-k file

	 Convert
 PKCS 7 file to SECSH format
	 	-7 file

6.2.3 Selecting a Passphrase

Choose your passphrases carefully. Make them at least 10
 characters long, containing a mix of uppercase and lowercase letters,
 digits, and nonalphanumeric symbols. At the same time, you want the
 passphrase to be easy to remember, but hard for others to guess. Don’t
 use your name, username, phone number, or other easily guessed
 information in the passphrase. Coming up with an effective passphrase
 can be a chore, but the added security is worth it.
If you forget a passphrase, you are out of luck: the
 corresponding SSH private key becomes unusable because you can’t
 decrypt it. The same encryption that makes SSH so secure also makes
 passphrases impossible to recover. You have to abandon your SSH key,
 generate a new one, and choose a new passphrase for it. You must also
 install the new public key on every machine that holds the original
 one.
Smartcard Support in OpenSSH
OpenSSH includes experimental support for hardware devices
 (smartcards) that can hold private user keys. This includes:
	ssh-keygen
	The -D (download) and
 -U (upload) options

	ssh-add
	The -s (add key) and
 -e (remove key) options

	ssh
	The -I option and the SmartCardDevice configuration
 keyword, to choose a smartcard device

At press time, smartcard support in OpenSSH is still experimental, so we don’t cover
 it. We mention it only for completeness.

6.2.4 Generating New Groups for Diffie-Hellman Key
 Exchange

As we saw in Chapter
 3, the SSH Transport Protocol uses the Diffie-Hellman
 key-agreement algorithm to generate cryptographic session keys for the
 SSH connection. [3.8.1.3] One parameter to
 this algorithm is a mathematical structure from algebra known as a
 “group”; specifically, a finite integer group with respect to
 multiplication modulo a prime. In the initial SSH protocol, a single
 fixed group was used for the key exchange. Due to concern over
 possible future attacks against this fixed parameter, an extension was
 created to allow the group to be negotiated, and this extension is now
 widely implemented.
The OpenSSH server selects the groups to be offered the client
 from the file /etc/moduli.
 OpenSSH comes with a moduli file
 defining a set of suitable groups, and for most people this is
 sufficient; there is no pressing need to regenerate them. On
 particularly slow systems, you might edit this file to select groups
 with a smaller prime modulus, to speed up the key exchange.
If you like, you can generate your own set of key-exchange
 groups using ssh-keygen -G. This usage is quite
 technical and infrequently used, so we won’t delve further into it
 here; refer to the ssh-keygen manpage, in the
 section “MODULI GENERATION,” for details. You can also see an example
 in OpenBSD’s usr/src/etc/Makefile
 for OpenSSH, e.g.:
http://www.openbsd.org/cgi-bin/cvsweb/src/etc/Makefile?rev=1.215&content-type=text/x-cvsweb-markup

SSH Agents

An SSH agent is a program that caches private keys and responds to
 authentication-related queries from SSH clients. [2.5] They are terrific
 labor-saving devices, handling all key-related operations and
 eliminating the need to retype your passphrase.
The programs related to agents are ssh-agent and
 ssh-add. ssh-agent runs an
 agent, and ssh-add inserts and removes keys from
 the agent’s key cache. A typical use might look like this:
 # Start the agent
 $ ssh-agent $SHELL
 # Load your default identity
 $ ssh-add
 Need passphrase for /home/barrett/.ssh/identity (barrett@example.com).
 Enter passphrase: ********
By typing your passphrase a single time, you decrypt the private
 key which is then stored in memory by the agent. From now on, until you
 terminate the agent or log out, SSH clients automatically contact the
 agent for all key-related operations. You needn’t type your passphrase
 again.
We now briefly discuss how agents work. After that we get
 practical and illustrate different ways to start an agent, various
 configuration options, and several techniques for automatically loading
 your keys into the agent. Finally, we cover agent security and agent
 forwarding.
6.3.1 Agents Do Not Expose Keys

Agents perform two tasks:
	Store your private keys in memory

	Answer questions (from SSH clients) about those keys

Agents don’t, however, send your private keys anywhere. This is
 important to understand. Once loaded, private keys remain within an
 agent, unseen by SSH clients. To access a key, a client says, “Hey
 agent! I need your help. Please perform a key-related operation for
 me.” The agent obeys and sends the results to the client, as in Figure 6-4.
[image: How an SSH agent works with its clients]

Figure 6-4. How an SSH agent works with its clients

For example, if ssh needs to sign an
 authenticator, it sends the agent a signing request containing the
 authenticator data and an indication of which key to use. The agent
 performs the cryptographic operation itself and returns the
 signature.
In this manner, SSH clients use the agent without seeing its
 private keys. This technique is more secure than handing out keys to
 clients. The fewer places that private keys get stored or sent, the
 harder it is to steal them.[93]

6.3.2 Starting an Agent

There are two ways to invoke an agent in your login
 account:
	The single-shell method that uses your
 current login shell

	The subshell method that forks a
 subshell to facilitate the inheritance of some environment
 variables

Warning
Don’t invoke an agent with the “obvious” but wrong
 command:
 $ ssh-agent
Although the agent runs without complaint, SSH clients can’t
 contact it, and the termination command (ssh-agent
 -k) doesn’t kill it, because some environment variables
 aren’t properly set.

6.3.2.1 Single-shell method

The single-shell method runs an agent in your current login
 shell. This is most convenient if you’re running a login shell on a
 single terminal, as opposed to a Unix Window system such as X.
 Type:
 $ eval `ssh-agent`
and an ssh-agent process is forked in the
 background. The process detaches itself from your terminal,
 returning a prompt to you, so you needn’t run it in the background
 manually (i.e., with an ampersand on the end). Note that the quotes
 around ssh-agent are backquotes, not
 apostrophes.
What purpose does eval serve? Well, when
 ssh-agent runs, it not only forks itself in the
 background, but it also outputs some shell commands to set several
 environment variables necessary for using the agent. The variables
 are SSH_AUTH_SOCK and SSH_AGENT_PID for OpenSSH, or SSH2_AUTH_SOCK and SSH2_AGENT_PID for Tectia. The
 eval command causes the current shell to
 interpret the commands output by ssh-agent,
 setting the environment variables. If you omit the
 eval, the following commands are printed on
 standard output as ssh-agent is invoked. For
 example:
 # OpenSSH
 $ ssh-agent
 SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_SOCK;
 SSH_AGENT_PID=22842; export SSH_AGENT_PID;
 echo Agent pid 22842;

 # Tectia
 SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_AUTH_SOCK;
 SSH2_AGENT_PID=22842; export SSH2_AGENT_PID;
 echo Agent pid 22842;
Now you’ve got an agent running, but inaccessible to the
 shell. You can either kill it using the pid printed in the previous
 output:
 $ kill 22842
or point your shell manually to the agent by setting the
 environment variables exactly as given:[94]
 # OpenSSH
 $ SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_SOCK
 $ SSH_AGENT_PID=22842; export SSH_AGENT_PID

 # Tectia
 $ SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_AUTH_SOCK
 $ SSH2_AGENT_PID=22842; export SSH2_AGENT_PID
Nevertheless, it’s easier to use eval, so
 everything is set up for you.[95]
To terminate the agent, kill its pid:
 $ kill 22842
and unset the environment variables:
 # OpenSSH
 $ unset SSH_AUTH_SOCK
 $ unset SSH_AGENT_PID

 # Tectia
 $ unset SSH2_AUTH_SOCK
 $ unset SSH2_AGENT_PID
Or for OpenSSH, use the more convenient
 -k command-line option:
 # OpenSSH
 $ eval `ssh-agent -k`
This prints termination commands on standard output so that
 eval can invoke them. If you forget
 eval, the agent is still killed, but your
 environment variables don’t get unset automatically:
 # OpenSSH
 $ ssh-agent -k
 unset SSH_AUTH_SOCK; # This won't get unset,
 unset SSH_AGENT_PID # and neither will this,
 echo Agent pid 22848 killed # but the agent gets killed.
Running an agent in a single shell, as opposed to the method
 we cover next (spawning a subshell), has one problem. When your
 login session ends, the ssh-agent process
 doesn’t die. After several logins, you see many agents running,
 serving no purpose:[96]
 $ ps uax | grep ssh-agent
 barrett 7833 0.4 0.4 828 608 pts/1 S 21:06:10 0:00 grep agent
 barrett 4189 0.0 0.6 1460 844 ? S Feb 21 0:06 ssh-agent
 barrett 6134 0.0 0.6 1448 828 ? S 23:11:41 0:00 ssh-agent
 barrett 6167 0.0 0.6 1448 828 ? S 23:24:19 0:00 ssh-agent
 barrett 7719 0.0 0.6 1456 840 ? S 20:42:25 0:02 ssh-agent
You can get around this problem by running ssh-agent
 -k automatically when you log out. In Bourne-style shells
 (sh, ksh,
 bash), this may be done with a trap of Unix
 signal 0 at the top of ~/.profile:
 # ~/.profile
 trap '
 test -n "$SSH_AGENT_PID" && eval `ssh-agent -k` ;
 test -n "$SSH2_AGENT_PID" && kill $SSH2_AGENT_PID
 ' 0
For C shells and for tcsh, terminate the
 agent in your ~/.logout
 file:
 # ~/.logout
 if ("$SSH_AGENT_PID" != "") then
 eval `ssh-agent -k`
 endif
 if ("$SSH2_AGENT_PID" != "") then
 kill $SSH2_AGENT_PID
 endif
Once this trap is set, your ssh-agent
 process is killed automatically when you log out, printing a message
 like:
 Agent pid 8090 killed

6.3.2.2 Subshell method

The second way to invoke an agent spawns a
 subshell. You provide an argument to
 ssh-agent, which is a path to a shell or shell
 script. Examples are:
 $ ssh-agent /bin/sh
 $ ssh-agent /bin/csh
 $ ssh-agent $SHELL
 $ ssh-agent my-shell-script # Run a shell script instead of a shell
This time, instead of forking a background process,
 ssh-agent runs in the foreground, spawning a
 subshell and setting the aforementioned environment variables
 automatically. The rest of your login session runs within this
 subshell, and when you terminate it, ssh-agent
 terminates as well. This method, as you will see later, is most
 convenient if you run a Window System such as X and invoke the agent
 in your initialization file (e.g., ~/.xsession).[97] However, the method is also perfectly reasonable for
 single-terminal logins.
When using the subshell method, invoke it at an appropriate
 time. We recommend the last line of your login initialization file
 (e.g., ~/.profile or ~/.login) or the first typed command
 after you log in. Otherwise, if you first run some background
 processes in your shell and then invoke the agent, those initial
 background processes become inaccessible until you terminate the
 agent’s subshell. For example, if you run the
 vi editor, suspend it, and then run the agent,
 you lose access to the editor session until you terminate the
 agent:
 $ vi myfile # Run your editor.
 ^Z # Suspend it.
 $ jobs # View your background processes.
 [1] + Stopped (SIGTSTP) vi
 $ ssh-agent $SHELL # Run a subshell.
 $ jobs # No jobs here! They're in the parent shell.
 $ exit # Terminate the agent's subshell.
 $ jobs # Now we can see our processes again.
 [1] + Stopped (SIGTSTP) vi
The advantages and disadvantages of the two methods are shown
 in Table 6-2.
Table 6-2. Pros and cons of invoking an agent
	Method
	Pros
	Cons

	 eval
 'ssh-agent'
	Simple, intuitive.
	Must be terminated
 manually.

	 ssh-agent $SHELL
	Agent’s environment variables are
 propagated automatically; terminates on logout. Conveniently
 set up by many Linux distributions.
	Your login shell becomes dependent
 on the agent’s health; if the agent dies, your login shell
 may die.

6.3.2.3 Format of environment variable commands

As we’ve said, ssh-agent prints a
 sequence of shell commands to set several environment variables. The
 syntax of these commands differs depending on which shell is being
 used. You can force the commands to use Bourne-style or
 C-shell-style syntax with the -s and
 -c options, respectively:
 # Bourne-shell style commands
 $ ssh-agent -s
 SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-3654-agent; export SSH_AUTH_SOCK;
 SSH_AGENT_PID=3655; export SSH_AGENT_PID;
 echo Agent pid 3655;

 # C-shell style commands
 $ ssh-agent -c
 setenv SSH_AUTH_SOCK /tmp/ssh-barrett/ssh-3654-agent;
 setenv SSH_AGENT_PID 3655;
 echo Agent pid 3655;
Normally ssh-agent detects your login
 shell and prints the appropriate lines, so you don’t need
 -c or -s. One situation
 where you need these options is if you invoke
 ssh-agent within a shell script, but the
 script’s shell is not the same type as your login shell. For
 example, if your login shell is /bin/csh, and you invoke this
 script:
 #!/bin/sh
 `ssh-agent`
ssh-agent outputs C-shell-style commands,
 which fails. So, you should use:
 #!/bin/sh
 `ssh-agent -s`
This is particularly important if you run an agent under X,
 and your ~/.xsession file (or
 other startup file) is executed by a shell different from your login
 shell.

6.3.3 Loading Keys with ssh-add

The program ssh-add is your
 personal communication channel to an ssh-agent
 process. When you first invoke an SSH agent, it contains no keys.
 ssh-add, as you might guess from its name, can
 add private keys to an SSH agent. But the name is
 misleading because ssh-add also controls the
 agent in other ways, such as listing keys, deleting keys, and locking
 the agent from accepting further keys.
If you invoke ssh-add with no arguments,
 your default SSH keys are loaded into the agent, once you have typed
 their passphrases.[98] For example:
 # Output shown for OpenSSH
 $ ssh-add
 Enter passphrase for /home/smith/.ssh/id_dsa: ********
 Identity added: /home/smith/.ssh/id_dsa
Normally, ssh-add reads the passphrase from
 the user’s terminal. If the standard input isn’t a terminal, however,
 and the DISPLAY environment
 variable is set, ssh-add instead invokes an X
 Window graphical program called ssh-askpass or
 x11-ssh-askpass that pops up a window to read
 your passphrase. This is especially convenient in
 xdm startup scripts.[99]
Tip
If you don’t like ssh-askpass, set your
 environment variable SSH_ASKPASS
 to the full path to an alternative program (say, /usr/local/bin/my-ask-pass). Then this
 other program, rahter than ssh-askpass, runs
 automatically to gather your passphrase. (OpenSSH only.)

ssh-add supports the following command-line
 options for listing and deleting keys, and for reading the passphrase:
	List all identities loaded in the agent. OpenSSH lists the
 key fingerprints with -l (see the earlier
 sidebar "Key
 Fingerprints" for more detail):
 # OpenSSH
 $ ssh-add -l
 1024 e9:39:50:f0:b4:65:ba:b9:d7:d3:69:10:d0:23:a7:88 a (DSA)
 1024 7c:91:07:29:46:a8:61:b4:7c:95:69:fc:47:1e:3c:ff b (RSA)
To print the public keys held in the OpenSSH agent, use
 -L:
 # OpenSSH
 $ ssh-add -L
 ssh-dss AAAAB3NzaC1kc3MAAACBAK5ArDaZyPXa5Iz... and so forth
 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAtIgHblLp1i... and so forth
Tectia lists brief information about the loaded keys with
 -l:
 # Tectia
 $ ssh-add -l
 Listing identities.
 The authorization agent has two keys:
 id_dsa_2048_a: my main key
 id_dsa_2048_b: another key

	Delete an identity from the agent, with
 -d:
 $ ssh-add -d ~/.ssh/second_id
 Identity removed: /home/smith/.ssh/second_id (second_id.pub)
If you don’t specify a key file,
 ssh-add deletes your default identity from
 the agent:
 $ ssh-add -d
 Identity removed: /home/smith/.ssh/id_dsa (/home/smith/.ssh/id_dsa.pub)

	Delete all identities from the agent, with
 -D; this unloads every currently loaded key
 but leaves the agent running:
 # OpenSSH
 $ ssh-add -D
 All identities removed.

 # Tectia
 $ ssh-add -D
 Deleting all identities.

	Set a timeout for a key, with -t.
 Normally when you add a key, it remains loaded in the agent
 indefinitely, until the agent terminates or you unload the key
 manually. The -t option assigns a lifetime to
 a key, measured in seconds (OpenSSH) or minutes (Tectia). After
 this time has passed, the agent automatically unloads the
 key:
 $ ssh-add -t 30 mykey
OpenSSH has a richer syntax for specifying times that may
 also be used here; see the sidebar "Time Values in Configuration
 Files" in Chapter
 5:
 # OpenSSH
 $ ssh-add -t 3W mykey Set a key lifetime of three weeks
You can also specify the maximum lifetime for all keys in
 the agent:
 # OpenSSH
 $ eval 'ssh-agent -t 3W' All keys in the agent have a lifetime of three weeks or less

	Lock and unlock the agent with a password, using
 -x and -X (OpenSSH) or
 -L and -U (Tectia). A
 locked agent refuses all ssh-add operations
 except an unlock request. If you try to modify the state of the
 agent (adding or deleting keys, etc.), the operation is rejected,
 and if you try to list the agent’s keys, you are told the agent
 has no keys.
To lock:
 # OpenSSH
 $ ssh-add -x
 Enter lock password: ****
 Again: ****
 Agent locked

 # Tectia
 $ ssh-add -L
 Enter lock password: ****
 Again: ****
and to unlock:
 # OpenSSH
 ssh-add -X
 Enter lock password: ****
 Agent unlocked

 # Tectia
 $ ssh-add -U
 Enter lock password: ****
Locking is a convenient way to protect the agent if you step
 away from your computer but leave yourself logged in. You can
 instead unload all your keys with ssh-add -D,
 but then you have to reload them again when you return. If you
 have only one key there’s no difference, but if you use several
 it’s a pain. Unfortunately, both OpenSSH and Tectia’s locking
 mechanism aren’t tremendously secure.
 ssh-agent simply stores the lock password in
 memory, refusing to honor any more requests until it receives an
 unlock message containing the same password. The locked agent is
 still vulnerable to attack: if an intruder gains access to your
 account (or the root account), he can dump the agent’s process
 address space and extract your keys. The lock feature certainly
 deters casual misuse, but the potential for an attack is real. If
 you’re seriously concerned about key disclosure, think twice
 before relying on locking. We prefer to see this feature
 implemented by encrypting all the agent’s loaded keys with the
 lock password. This gives the same user convenience and provides
 better protection.

OpenSSH’s ssh-add program can also be
 forced to confirm identities via ssh-askpass
 before using them, with -c. [6.3.3]
Tectia’s ssh-add program has additional
 features controlled by command-line options:
	Place limits on agent forwarding with
 -f and -F. (Agent
 forwarding, which we’ll cover soon, transmits agent requests
 between hosts.) The -f option lets you limit,
 for a given key, the distance that requests for this key may
 traverse. If a request is made from too far away, measured in hops
 from machine to machine, the request fails. A hop count of zero
 disables forwarding for this key alone.
 # Tectia
 $ ssh-add -f 0 mykey Load a key that may be used only locally
 $ ssh-add -f 3 mykey Load a key and accept requests from up to three hops away
The -F option lets you limit the set of
 hosts that may make requests relating to this key. It takes as an
 argument a set of hostnames, domains, and IP addresses that may
 make or forward requests. The argument is a comma-separated list
 of wildcard patterns, as for the serverwide configuration keywords
 AllowHosts and DenyHosts. [5.5.3]
 # Tectia
 $ ssh-add -F '*.example.com' mykey Permit forwarding only in the example.com domain
 $ ssh-add -F 'server.example.com,*.harvard.edu' mykey Permit forwarding from server
 example.com and the harvard.edu domain
 $ ssh-add -F 'server.example.com,*.harvard.edu' -f 2 mykey Same as the preceding
 command, but limit forwarding to two hops

	Reading your passphrase from standard input, with
 -p, to provide it by a pipe or similar means.
 So, if you had a program passphraser that
 produces the passphrase, you could feed the passphrase to
 ssh-add:
 # Tectia
 $ passphraser | ssh-add

	Read keys from a URL rather than a file, with
 -u:
 # Tectia
 $ ssh-add -u http://server.example.com/mykey

	Prohibit keys from being used for SSH-1 protocol
 connections, with -1:
 # Tectia
 $ ssh-add -1 my-ssh2-only-key

	Perform PGP key operations. Tectia’s
 ssh-add2 manpage documents the options
 -R, -N,
 -P, and -I for OpenPGP
 keyring operations, but they aren’t officially supported.

	Print the program version number, with
 -V:
 # Tectia
 $ ssh-add -V
 ssh-add2 SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
 Build: 1
 Released 2004-11-30 (YYYY-MM-DD).

6.3.3.1 Automatic agent loading (single-shell method)

It’s a pain to invoke ssh-agent
 and/or ssh-add manually each time you log in.
 With some clever lines in your login initialization file, you can
 automatically invoke an agent and load your default identity. We’ll
 demonstrate this with both methods of agent invocation, single-shell
 and subshell.
With the single-shell method, here are the major steps:
	Make sure you’re not already running an agent, by testing
 the environment variable SSH_AUTH_SOCK or SSH2_AUTH_SOCK.

	Run ssh-agent using
 eval.

	If your shell is attached to a tty, load your default
 identity with ssh-add.

For the Bourne shell and its derivatives
 (ksh, bash), the following
 lines can be placed into ~/.profile:
 # Make sure ssh-agent dies on logout
 trap '
 test -n "$SSH_AGENT_PID" && eval `ssh-agent -k` ;
 test -n "$SSH2_AGENT_PID" && kill $SSH2_AGENT_PID
 ' 0

 # If no agent is running and we have a terminal, run ssh-agent and ssh-add.
 # (For Tectia, change this to use SSH2_AUTH_SOCK.)
 if ["$SSH_AUTH_SOCK" = ""]
 then
 eval `ssh-agent`
 /usr/bin/tty > /dev/null && ssh-add
 fi
For the C shell and tcsh, the following
 lines can be placed into ~/.login:
 # Use SSH2_AUTH_SOCK instead for Tectia
 if (! $?SSH_AUTH_SOCK) then
 eval `ssh-agent`
 /usr/bin/tty > /dev/null && ssh-add
 endif
and termination code in ~/.logout:
 # ~/.logout
 if ("$SSH_AGENT_PID" != "") eval `ssh-agent -k`
 if ("$SSH2_AGENT_PID" != "") kill $SSH2_AGENT_PID
Tip
Another single-shell technique to make your clients aware of
 the agent is to use OpenSSH’s ssh-agent -a
 option. (This does not work with Tectia’s agent.) With this
 approach, you choose your own socket in advance—say, ~/.ssh/mysocket--and make decisions
 based on its existence. For example, in your ~/.profile you could have:
 #!/bin/bash
 SOCKETFILE=~/.ssh/mysocket
 if [! -S "$SOCKETFILE"]
 then
 eval `ssh-agent -a $SOCKETFILE`
 fi
Since you know the socket path, you can direct SSH clients
 to it by setting
 SSH_AUTH_SOCK=~/.ssh/mysocket as needed. When
 you terminate the OpenSSH agent with ssh-agent
 -k, the socket file is deleted automatically.

6.3.3.2 Automatic agent loading (subshell method)

The second way to load an agent on login uses the
 subshell method to invoke the agent, and is described in the
 following list. This time, you add lines to both your login
 initialization file (~/.profile
 or ~/.login), an optional
 second file of your choice, and your shell initialization file
 (~/.cshrc, ~/.bashrc, etc.). This method doesn’t
 work for the Bourne shell, which has no shell initialization
 file.
	In your login initialization file,
 make sure you’re not already running an agent, by testing the
 environment variable SSH_AUTH_SOCK or SSH2_AUTH_SOCK.

	As the last line of your login initialization file, exec
 ssh-agent, which spawns a subshell.
 Optionally run a second initialization file
 to configure aspects of the subshell.

	In your shell initialization file,
 check whether the shell is attached to a tty and the agent has
 no identities loaded yet. If so, load your default identity with
 ssh-add.

Now let’s see how to do this with Bourne-shell and C-shell
 families. For derivatives of the Bourne shell
 (ksh, bash), put the
 following line at the end of ~/.profile:
 test -n "$SSH_AUTH_SOCK" && exec ssh-agent $SHELL
This runs the agent, spawning a subshell. If you want to
 tailor the environment of the subshell, create a script (say,
 ~/.profile2) to do so, and use
 this instead:
 test -n "$SSH_AUTH_SOCK" && exec ssh-agent $SHELL $HOME/.profile2
Next, in your shell initialization file ($ENV for ksh, or
 ~/.bashrc for
 bash), place the following lines to load your
 default identity only if it’s not loaded already:
 # Make sure we are attached to a tty
 if /usr/bin/tty > /dev/null
 then
 # Check the output of "ssh-add -l" for identities.
 ssh-add -l | grep 'no identities' > /dev/null
 if [$? -eq 0]
 then
 # Load your default identity.
 ssh-add
 fi
 fi

6.3.3.3 Automatic agent loading (X Window System)

If you’re using X and want to run an agent and load
 your default identity automatically, it’s simple. Just use the
 single-shell method. For example, in your X startup file, usually
 ~/.xsession, you can use these
 two lines:
 eval `ssh-agent`
 ssh-add
However, first check if your window environment (e.g., GNOME
 or KDE) is already running an SSH agent for you, in which case you
 needn’t do it yourself. This setup is commonly found in Linux
 distributions.

6.3.4 Agents and Security

As we mentioned earlier, agents don’t expose private keys to SSH
 clients. Instead, they answer requests from clients
 using the keys. This approach is more secure than
 passing keys around, but it still has security concerns. It is
 important to understand these concerns before completely trusting the
 agent model:
	Agents rely on external access control mechanisms.

	Agents can be cracked.

6.3.4.1 Access control

When your agent is loaded with private keys, a potential
 security issue arises. How does your agent distinguish between
 legitimate requests from your SSH clients and illegitimate requests
 from unauthorized sources? Since the agent speaks only to other
 processes on the same host, it uses the host’s existing security
 mechanisms. These vary from one operating system to another, but the
 four main mechanisms are:
	File permissions

	Client identification

	Protected memory

	Prompt-on-use

File permissions. Under
 Unix, the agent communicates with users via a named pipe
 (Unix-domain socket) in the filesystem, so the first line of defense
 is the file permissions on the socket. OpenSSH and Tectia keep agent
 sockets in a protected directory. OpenSSH’s socket is named
 /tmp/ssh-
 STRING /agent. n, where
 STRING is random text based on the agent’s
 process ID, and n is a number:
 # OpenSSH
 $ ls -la /tmp/ssh-alHMKX4537
 drwx------ 2 smith smith 4096 Feb 4 13:40 .
 drwxrwxrwt 7 root root 4096 Feb 4 13:40 ..
 srwxr-xr-x 1 smith smith 0 Feb 4 13:40 agent.4537
while Tectia’s is named /tmp/ssh- USERNAME
 / ssh2
 - n
 - agent,
 where USERNAME is your username and
 n is again a number:
 # Tectia
 $ ls -la /tmp/ssh-smith/
 drwx------ 2 smith smith 4096 Feb 4 13:40 .
 drwxrwxrwt 7 root root 4096 Feb 4 13:40 ..
 srw------- 1 smith smith 0 Feb 4 13:40 ssh2-4537-agent
The number n is usually one less than the
 process ID (pid) of the agent itself. This is because
 ssh-agent first creates the socket using its
 pid, then later starts another process that actually persists as the
 agent. In these examples, user smith has a socket for an agent which
 probably has PID 4536. The containing directory itself has mode
 0700.
This organization of a user’s sockets into a single directory
 is not only for neatness but also for security and portability,
 because different operating systems treat socket permissions in
 different ways. For example, Solaris appears to ignore them
 completely; even a socket with permission 000 (no access for anyone)
 accepts all connections. Linux respects socket permissions, but a
 write-only socket permits both reading and writing. To deal with
 such diverse implementations, SSH keeps your sockets in a directory
 owned by you, with directory permissions that forbid anyone else to
 access the sockets inside.
Using a subdirectory of /tmp, rather than /tmp itself, also prevents a class of
 attacks called temp races. A temp-race attack
 takes advantage of race conditions inherent in the common setting of
 the “sticky” mode bit on the Unix /tmp directory, allowing anyone to create
 a file there, but only allowing deletion of files owned by the same
 uid as the deleting process.
If you want to move the socket out of the default /tmp directory, use the
 -a option: [6.3.3.1]
 # OpenSSH
 ssh-agent -a /private/ssh/mysocket
 SSH_AUTH_SOCK=/private/ssh/mysocket; export SSH_AUTH_SOCK;
 echo Agent pid 28320;
Client identification. Some
 flavors of Unix allow one process to find out who’s on the other end
 of a named pipe: the peer’s process ID, user ID, etc. If this
 feature is available, an agent can verify that the client’s user ID
 matches its own.
Protected memory. The
 ssh-agent process won’t reveal keys via the
 agent protocol, but those keys are in its memory. A privileged user
 might be able to attach to the agent process and read the keys from
 its memory space, bypassing the usual Unix process separation. Some
 Unixes allow a process to limit or prevent this kind of external
 interference, so some agents make use of this feature.
Prompt-on-use. Some agents
 can query the user for permission each time a request comes in over
 the agent socket (e.g., OpenSSH ssh-add -c). If
 you use this feature and a window pops up unexpectedly asking about
 your agent, something’s wrong!

6.3.4.2 Cracking an agent

If the machine running your agent is compromised, an
 attacker can easily gain access to the IPC channel and thus to your
 agent. This permits the interloper to make requests of the agent, at
 least for a time. Once you log out or unload your keys from the
 agent, the security hole is closed. Therefore, you should run agents
 only on trusted machines, perhaps unloading your keys
 (ssh-agent -D) if you’re away from the computer
 for an extended time, such as overnight.
Since agents don’t give out keys, your keys seem safe from
 theft if the machine is compromised. Alas, that’s not the case. An
 enterprising cracker, once logged into the machine, has other means
 for getting your keys, such as:
	Stealing your private-key file and attempting to guess
 your passphrase

	Tracing processes that you’re running, and catching your
 passphrase while you type it

	Trojan horse attacks: installing modified versions of
 system programs, such as the login program, shells, or the SSH
 implementation itself, that steal your passphrase

	Obtaining a copy of the memory space of your running agent
 and picking the keys out of it directly (this is a bit harder
 than the others)

The bottom line is this: run agents only on trusted machines.
 SSH does not excuse you from securing other aspects of your
 system.

6.3.5 Agent Forwarding

So far, our SSH clients have conversed with an SSH agent
 on the same machine. Using a feature called agent
 forwarding , clients can also communicate with agents on remote
 machines. This is both a convenience feature—permitting your clients
 on multiple machines to work with a single agent—and a means for
 avoiding some firewall-related problems.
6.3.5.1 A firewall example

Suppose you want to connect from your home computer,
 H, to a computer at work, W. Like many corporate computers, W is
 behind a network firewall and not directly accessible from the
 Internet, so you can’t create an SSH connection from H to W.
 Hmm...what can you do? You call technical support and for once, they
 have good news. They say that your company maintains a gateway or
 “bastion” host, B, that is accessible from the Internet and runs an
 SSH server. This means you should be able to
 reach W by opening an SSH connection from H to B, and then from B to
 W, since the firewall permits SSH traffic. Tech support gives you an
 account on the bastion host B, and the problem seems to be solved...or is
 it?
For security reasons, the company permits access to its
 computers only by public-key authentication. So, using your private
 key on home machine H, you successfully connect to bastion host B.
 And now you run into a roadblock: also for security reasons, the
 company prohibits users from storing SSH keys on the exposed bastion
 host B, since they can be stolen if B is hacked. That’s bad news,
 since the SSH client on B needs a key to connect to your work
 account on W. Your key is at home on H. (Figure 6-5 illustrates the
 problem.) What now? Use SSH agent forwarding.
[image: Bastion host scenario]

Figure 6-5. Bastion host scenario

SSH agent forwarding allows a program running on a remote
 host, such as B, to access your ssh-agent on H
 transparently, as if the agent were running on B. Thus, a remote SSH
 client running on B can now sign and decrypt
 data using your key on H, as shown in Figure 6-6. As a result, you
 can invoke an SSH session from B to your work machine W, solving the
 problem.
[image: Solution with SSH agent forwarding]

Figure 6-6. Solution with SSH agent forwarding

6.3.5.2 How agent forwarding works

Agent forwarding, like all SSH forwarding (Chapter 9), works “behind the
 scenes.” In this case, the key-related requests of an SSH client are
 forwarded across a separate, previously established SSH session to
 an agent holding the needed keys, shown in Figure 6-7. Let’s examine in
 detail the steps that occur.
	Suppose you’re logged onto machine X, and you invoke ssh
 to establish a remote terminal session on machine Y.
 # On machine X:
 $ ssh Y

	Assuming that agent forwarding is turned on, the client
 says to the SSH server, “I would like to request agent
 forwarding, please,” when establishing the connection.

	sshd on machine Y checks its configuration to see if
 it permits agent forwarding. Let’s assume that it’s
 enabled.

	sshd on machine Y sets up an
 interprocess communication (IPC) channel local to Y by creating
 some Unix domain sockets and setting some environment variables.
 [6.3.2.1] The
 resulting IPC mechanism is just like the one
 ssh-agent sets up. As a result,
 sshd is now prepared to pose as an SSH
 agent.

	Your SSH session is now established between X and
 Y.
[image: Agent forwarding]

Figure 6-7. Agent forwarding

	Next, from machine Y, you run another
 ssh command to establish an SSH session
 with a third machine, Z:
 # On machine Y:
 $ ssh Z

	This new ssh client now needs a key
 to make the connection to Z. It believes there’s an agent
 running on machine Y, because sshd on Y is
 posing as one. So, the client makes an authentication request
 over the agent IPC channel.

	sshd intercepts the request,
 masquerading as an agent, and says, “Hello, I’m the agent. What
 would you like to do?” The process is transparent: the client
 believes it’s talking to an agent.

	sshd then forwards the agent-related
 request back to the original machine, X, over the secure
 connection between X and Y. The agent on machine X receives the
 request and accesses your local key, and its response is
 forwarded back to sshd on machine
 Y
 .

	sshd on Y passes the response on to
 the client, and the connection to machine Z proceeds.

Thanks to agent forwarding, you have transparent access from
 machine Y to any SSH keys back on machine X. Thus, any SSH clients
 on Y can access any hosts permitted by your keys on X. To test this,
 run this command on machine Y to list your keys:
 # On machine Y:
 $ ssh-add -l
You see all keys that are loaded in your agent on machine
 X.
It’s worth noting that the agent-forwarding relationship is
 transitive: if you repeat this process, making a chain of SSH
 connections from machine to machine, then clients on the final host
 still have access to your keys on the first host (X). (This assumes
 agent forwarding is permitted by sshd on each
 intermediate host.)

6.3.5.3 Enabling agent forwarding

Before an SSH client can take advantage of agent
 forwarding, the feature must be turned on. SSH implementations vary
 in their default settings of this feature, and of course the system
 administrator can change it. If necessary, you can turn it on
 manually with the configuration keyword ForwardAgent in the client configuration
 file ~/.ssh/config, giving a
 value of yes (the default) or
 no:[100]
 ForwardAgent yes
Likewise, you can use command-line options. In addition to the
 -o command-line option, which accepts any
 configuration keyword and its value:
 $ ssh -o "ForwardAgent yes" ...
ssh accepts command-line options to turn
 on agent forwarding, even though it’s on by default:
 # OpenSSH
 $ ssh -A ...

 # Tectia
 $ ssh +a ...
The option -a turns off agent
 forwarding:
 $ ssh -a ...

6.3.6 Agent CPU Usage

Before we leave our discussion of agents, we’ll make one final
 note about performance. Agents carry out all cryptographic work that
 is otherwise done by SSH clients. This means an agent can accumulate
 substantial CPU time. In one case we saw, some friends of ours were
 using SSH for a great deal of automation, running hundreds of
 short-lived sessions in a row. Our friends were quite puzzled to find
 that the single ssh-agent used by all these
 processes was eating the lion’s share of CPU on that machine!

6.3.7 Debugging the Agent

OpenSSH’s ssh-agent has a primitive
 debugging mode that’s enabled with the -d
 option:
 # OpenSSH
 ssh-agent -d
 SSH_AUTH_SOCK=/tmp/ssh-nQxHO27500/agent.27500; export SSH_AUTH_SOCK;
 echo Agent pid 27500;
In debug mode, the agent runs in the foreground instead of
 putting itself into the background (forking). To communicate with the
 agent and watch it print debug messages, open a second shell (e.g., in
 a separate X terminal window) and run the variable-setting command
 that ssh-agent printed on invocation:
 $ SSH_AUTH_SOCK=/tmp/ssh-nQxHO27500/agent.27500; export SSH_AUTH_SOCK;
Then try some ssh-add commands and see what
 the agent does. For example, if you run this in your second
 shell:
 $ ssh-add -l
 The agent has no identities.
then the agent in the original shell prints:
 debug1: type 1
 debug1: type 11
The type output indicates the
 type of message that ssh-agent has received.
 Types 1 and 11 are requests for identities (SSH-1 and SSH-2,
 respectively), which makes perfect sense because that’s what
 ssh-add -l does. A few other message codes are 17
 to load an identity, 18 to delete one, and 19 to delete all
 identities. You can learn more message types by reading the C header
 file authfd.h in the OpenSSH
 source code.

[93] This design also fits well with token-based key
 storage, in which your keys are kept on a smart card
 carried with you. Like agents, smart cards respond to key-related
 requests but don’t give out keys, so integration with SSH would be
 straightforward. Though adoption of tokens has been slow, we
 believe it will be commonplace in the future.

[94] This is Bourne shell syntax. If your shell is
 csh or tcsh, use the
 appropriate syntax. [6.3.2.3]

[95] Why can’t ssh-agent set its
 environment variables without all this trickery? Because under
 Unix, a program can’t set environment variables in its parent
 shell.

[96] Actually, you can reconnect to an agent launched in a
 previous login, by modifying your SSH_AUTH_SOCK variable to point to the
 old socket.

[97] In fact, many Linux distributions set this up for you,
 automatically launching ssh-agent when you
 log in via KDE or GNOME. Red Hat Linux and SUSE Linux are two
 examples. After logging in, run a ps
 command and grep for “agent” to see this in action.

[98] OpenSSH’s ssh-add tries to reuse a
 passphrase to load subsequent keys.

[99] X has its own security problems, of course. If someone can
 connect to your X server, they can monitor all your keystrokes,
 including your passphrase. Whether this is an issue in using
 ssh-askpass depends on your system and
 security needs.

[100] Tectia supports the keyword AllowAgentForwarding as a synonym for
 ForwardAgent.

Multiple Identities

 Until now, we’ve assumed you have a single SSH identity
 that uniquely identifies you to an SSH server. You do have a default
 identity—our earlier ssh-add examples operated on
 it—but you may create as many other identities as you like.
Why use several identities? After all, with a single SSH identity,
 you can connect to remote machines with a single passphrase. That’s very
 simple and convenient. In fact, most people can survive perfectly well
 with just one identity. Multiple identities have important uses,
 however:
	Additional security
	If you use different SSH keys for different remote accounts,
 and one of your keys is cracked, only some of your remote accounts
 are vulnerable.

	Secure batch processes
	Using an SSH key with an empty passphrase, you can create
 secure, automated processes between interacting computers, such as
 unattended backups. [11.1.2.2] However, you
 definitely don’t want your regular logins to use an unencrypted
 private key, so you should create a second key for this
 purpose.

	Different account settings
	You can configure your remote account to respond differently
 based on which key is used for connecting. For example, you can
 make your Unix login session run different startup files depending
 on which key is used.

	Triggering remote programs
	Your remote account can be set up to run specific programs
 when an alternative key is used, via forced commands. [8.2.3]

In order to use multiple identities, you need to know how to
 switch between them. There are two ways: manually, and automatically
 with an agent.
6.4.1 Switching Identities Manually

 ssh and scp
 let you switch your identity with the -i
 command-line option and the IdentityFile configuration keyword. For
 either of these techniques, you provide the name of your desired
 private-key file (OpenSSH) or identification file (Tectia). [7.4.2] Table 6-3 displays a summary of
 the syntax.
Table 6-3. Specifying an alternate identity
	Version
	ssh
	scp
	IdentityFile keyword

	OpenSSH
	ssh -i key_file ...
	scp -i key_file ...
	IdentityFile key_file

	Tectia
	ssh -i id_file ...
	scp -i id_file ...
	IdentityFile id_file

6.4.2 Switching Identities with an Agent

If you use an SSH agent, identity switching is handled
 automatically. Simply load all the desired identities into the agent
 using ssh-add. Thereafter, when you attempt a
 connection, your SSH client requests and receives a list of all your
 identities from the agent. The client then tries each identity in turn
 until one authenticates successfully, or they all fail. Even if you
 have 10 different identities for 10 different SSH servers, a single
 agent (containing these keys) provides appropriate key information to
 your SSH clients for seamless authentication with all 10
 servers.
All of this happens transparently with no effort on your part.
 Well, almost no effort. If you have several identities loaded in the
 agent, and more than one can apply in a given situation, the agent
 might pick the wrong one. For example, suppose you have two OpenSSH
 identities stored in the files id-normal and id-backups. You use id-normal for terminal sessions, and
 id-backups for invoking a remote
 backup program on the same server machine (e.g., using a forced
 command [8.2.3]). Each
 day when you log in, you load both keys into an agent, using a clever
 script that locates and loads all key files in a given
 directory:
 #!/bin/csh
 cd ~/.ssh/my-keys # An example directory
 foreach keyfile (*)
 ssh-add $keyfile
 end
What happens when you invoke an SSH client?
 $ ssh server.example.com
In this case, the remote backup program gets run, authenticating
 with the key in file id-backups.
 You see, the wildcard in your script returns a list of key files in
 alphabetical order, so id-backups
 is added before id-normal, as if
 you’d typed:
 $ ssh-add id-backups
 $ ssh-add id-normal
Therefore, your SSH clients always use the
 key id-backups when connecting to
 server.example.com because the agent provides it
 first in response to a client request. This might not be what you
 intended. In this case you could specify the right key on the command
 line using the -i option:
 $ ssh -i id-normal server.example.com
or use the IdentityFile
 configuration keyword in ~/.ssh/config. [7.4.2]

6.4.3 Tailoring Sessions Based on Identity

Multiple identities can be extremely useful. In
 particular, you can configure your remote accounts to respond
 differently to different identities. This is a three-step
 process:
	Generate a new SSH identity, as we have discussed in this
 chapter.

	Set up a detailed client configuration that does what you
 want, using your new identity. This is the subject of Chapter 7.

	Set up your account on the SSH server machine to respond to
 your new identity in a desired manner. This is covered in detail
 in Chapter 8.

We strongly encourage you to experiment
 with this technique. You can do some really powerful and interesting
 things with SSH this way. If you’re just running simple terminal
 sessions with SSH, you are missing half the fun.

PGP Authentication in Tectia

 Pretty Good Privacy (PGP) is another security product
 employing public-key authentication. [1.6.2] PGP keys and SSH keys
 are implemented differently and aren’t interchangeable, however, Tectia
 can perform authentication by PGP key, following the OpenPGP
 standard.[101] Yes, you can use your favorite PGP key to prove your
 identity to a Tectia server (as long as the key file is
 OpenPGP-compatible; some PGP keys, especially those produced by older
 software versions, aren’t). At press time, this feature is only
 sketchily documented. Here’s how to make it work.
First, you need Tectia installed on both the client and server
 machines. Also, both implementations must be compiled with PGP support
 included, using the compile-time flag --with-pgp. [4.3.5.7]
On the client machine, you need to make your PGP secret key ring
 and the desired secret key for authentication available to Tectia
 clients. Here’s how:
	Copy your PGP secret key ring to your account’s Tectia
 directory, ~/.ssh2. Suppose it
 is called secring.pgp.

	In an identification file, either ~/.ssh2/identification or another of your
 choice, indicate the secret key ring with the keyword PgpSecretKeyFile:
 # Tectia
 PgpSecretKeyFile secring.pgp

	Identify the PGP key you wish to use for authentication. This
 may be done with any of three keywords:
	To identify the key by name, use IdPgpKeyName:
 # Tectia
 IdPgpKeyName mykey

	To identify the key by its PGP fingerprint, use IdPgpKeyFingerprint:
 # Tectia
 IdPgpKeyFingerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20

	To identify the key by its key ID, use IdPgpKeyId:
 # Tectia
 IdPgpKeyId 0xD914738D

For IdPgpKeyId, the leading
 0x is necessary, indicating that the
 value is in hexadecimal. You can give the value in decimal instead,
 without the leading 0x, but since PGP
 displays the value in hex already, it’s unlikely you’d want to do
 this.
On the server machine, you need to make your PGP public-key ring
 and the desired public key for authentication available to the Tectia
 server:
	Copy your public-key ring from the client machine to the
 server machine. (Note that this is a key ring, not a lone public
 key.) Place the ring into your ~/.ssh2 directory on the server. Suppose
 it is called pubring.pgp.

	In your authorization file, ~/.ssh2/authorization, identify the
 public-key ring with the keyword PgpPublicKeyFile:
 # Tectia
 PgpPublicKeyFile pubring.pgp

	Identify the public key by name, fingerprint, or key ID, as in
 the client’s identification file. The relevant keywords are slightly
 different: PgpKeyName, PgpKeyFingerprint, and PgpKeyId, respectively. (The keywords for
 the identification file begin with “Id”.)
 # Tectia: use any ONE of these
 PgpKeyName mykey
 PgpKeyFingerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20
 PgpKeyId 0xD914738D

You are done! From the client, initiate a Tectia SSH session.
 Suppose you create an alternative identification file to use PGP
 authentication, called ~/.ssh2/idpgp, containing your PgpSecretKeyFile and other lines. Use the
 -i flag to indicate this file, and initiate a
 connection:
 # Tectia
 $ ssh -i idpgp server.example.com
If everything is set up properly, you are prompted for your PGP
 passphrase:
 Passphrase for pgp key "mykey":
Enter your PGP passphrase, and authentication should
 succeed.

[101] According to SSH Communications Security, PGP authentication
 in Tectia is not officially supported, nor is any other feature
 that is enabled by recompiling the source code.

Tectia External Keys

 Tectia clients can use external key providers that
 distribute keys, somewhat like authentication agents. These are
 typically part of a more general solution for PKI (Public Key
 Infrastructure). The ssh -E command-line option
 identifies the name of the provider, and Tectia currently supports two
 of them:
	entrust
	Entrust products, such as the Entrust Authority Security
 Manager; see http://www.entrust.com/authority.

	pkcs11
	PKCS#11-compliant dynamic libraries.

An initialization string must be sent to the external key provider
 using the -I option. The format of this string
 depends on the provider. It typically includes authentication
 information and identifies the desired key. Sometimes you also need a
 DLL supplied by the provider. Consult the documentation for specific
 providers, and the ssh-externalkeys
 manpage, for details about the initialization string.
 # Tectia
 $ ENTRUST_INIT="dll(libentrust.so)"
 $ ENTRUST_INIT="$ENTRUST_INIT password(blartz)"
 $ ENTRUST_INIT="$ENTRUST_INIT ini-file($HOME/solo.ini)"
 $ ENTRUST_INIT="$ENTRUST_INIT profile-file($HOME/solo_user.epf)"
 $ ENTRUST_INIT="$ENTRUST_INIT login-options(entrust)""
 $ ssh -E entrust -I "$ENTRUST_INIT"
The external key provider and initialization string can also be
 specified in the client configuration file, using the keywords EkProvider and EkInitString, respectively:
 # Tectia
 EkProvider pkcs11
 EkInitString "lib=libpcks11.so password=blurfl key=laptop"
The keywords are usually more convenient than the command-line
 options, especially for long initialization strings, but beware of
 storing sensitive authentication information in configuration files. Be
 sure to quote the initialization string if it contains characters with
 special meaning to the shell (e.g., wildcards) or to the configuration
 file itself.

Summary

In this chapter, we’ve seen how to create and use SSH identities,
 represented by key pairs, either individually (OpenSSH) or in
 collections (Tectia). Keys are created by
 ssh-keygen and are accessed by clients as needed.
 Tectia provides an additional layer of configuration, the identification
 file, which lets you use a set of identities as a single identity. You
 may have as many identities as you like. Be sure to read our case study
 on PKI and scalable authentication for another detailed look at
 identities. [11.5]
SSH agents are useful timesavers to avoid retyping passphrases.
 Their operation has numerous subtleties, but once you get the hang of
 it, running an agent should become second nature.

Chapter 7. Advanced Client Use

SSH clients are marvelously configurable. Chapter 2 introduced remote logins and file
 copying but covered only the tip of the iceberg. You can also connect with
 multiple SSH identities, use a variety of authentication and encryption
 techniques, exercise control over TCP/IP settings, and generally tailor
 the feel and operation of SSH clients to your liking. You can even save
 common collections of SSH settings in configuration files for ease of use.
We’ll be focusing on outgoing SSH use, running
 SSH clients to connect to remote hosts, using the components highlighted
 in Figure 7-1. A related topic,
 not covered in this chapter, is how to control incoming SSH connections to
 your account. That sort of access control is a function of the SSH server,
 not the clients, and is covered in Chapter
 8.

How to Configure Clients

The clients ssh and scp
 are quite configurable, with many settings that can be changed to suit
 your whim. If you want to modify the behavior of these clients, three
 general techniques are at your disposal:
	Command-line options
	For changing the behavior of ssh or
 scp for a single invocation

	Configuration keywords
	For changes that remain in force until you change them
 again; these are stored in a client configuration file

	Environment variables
	For a few miscellaneous features

We now present a general overview of these three methods.
[image: Client configuration (highlighted parts)]

Figure 7-1. Client configuration (highlighted parts)

7.1.1 Command-Line Options

Command-line options let you change a client’s behavior just
 once, at invocation. For example, if you’re using
 ssh over a slow modem connection, you can tell it
 to compress the data with the -C
 command-line option:
 $ ssh -C server.example.com
ssh, scp, and most of
 their support programs, when invoked with the
 --help option, will print a helpful summary
 describing all their command-line options.[102] For example:
 $ ssh --help
 $ scp --help
 $ ssh-keygen -help

7.1.2 Client Configuration Files

If you don’t want to retype command-line options continually,
 configuration files let you change a client’s behavior now and in the
 future, until you change the configuration file again. For example,
 you can enable compression for all clients you invoke by inserting
 this line into a client configuration file:
 Compression yes
In a client configuration file, client settings are changed by
 specifying keywords and values. In the example, the keyword is
 Compression and the value is
 yes. You may also separate the
 keyword and value with an equals sign, with optional
 whitespace:
 Compression = yes
You may configure clients to behave differently for each remote
 host you visit. This can be done on the fly with command-line options,
 but for anything reasonably complex, you’ll end up typing long,
 inconvenient command lines like:
 $ ssh -a -p 220 -c blowfish -l sally -i myself server.example.com
Alternatively, you can set these options within a configuration
 file. The following entry duplicates the function of the preceding
 command-line options, collecting them under the name
 “myserver”:
 # OpenSSH (Tectia's syntax differs slightly as we'll see later)
 Host myserver
 ForwardAgent no
 Port 220
 Cipher blowfish
 User sally
 IdentityFile myself
 HostName server.example.com
Now, to run a client with these options enabled, simply
 type:
 $ ssh myserver
Configuration files take some time to set up, but in the long
 run they are significant timesavers. We now discuss the general
 structure of these files (host specifications followed by
 keyword/value pairs), then dive into specific keywords.
7.1.2.1 Keywords versus command-line options

Configuration files and command-line options have two
 important relationships:
	Every configuration keyword can appear on the command line
 with the -o option.

	Alternative configuration files are referenced with the
 -F option.

For any configuration line of the form:
Keyword Value
you may type:
 $ ssh -o "Keyword Value" ...
For example, the configuration file lines:
 User sally
 Port 220
can be specified on the command line as:
 $ ssh -o "User sally" -o "Port 220" server.example.com
As in the configuration file, an equals sign (with optional
 whitespace) is permitted between the keyword and the value:
 $ ssh -o User=sally -o Port=220 server.example.com
If you use an equals sign, and the value for the keyword
 contains special characters that would be misinterpreted by the
 shell, surround the value with quotes.
The -o option may appear multiple times
 on the same command line, for both ssh and
 scp:
 # OpenSSH
 $ scp -o "User sally" -o "Port 220" myfile server.example.com:
The other relationship between command-line options and
 configuration keywords is found in the -F
 option, which instructs a client to use a different configuration
 file instead of the default. For example:
 $ ssh -F /usr/local/ssh/other_config
Warning
OpenSSH and Tectia treat the -F option
 differently. OpenSSH will ignore the default configuration file
 (/etc/ssh/ssh_config) and use
 only the one you provide. Tectia, on the other hand, will still
 process its default configuration file (/etc/ssh2/ssh2_config), and then your
 provided file can override those settings.

7.1.2.2 Global and local files

Client configuration files come in two flavors. A
 single, global client configuration file,
 usually created by a system administrator, governs client behavior
 for an entire computer. The file is traditionally /etc/ssh/ssh_config (OpenSSH) or
 /etc/ssh2/ssh2_config (Tectia).
 (Don’t confuse these with the server
 configuration files in the same directories.) Each user may also
 create a local client configuration file within
 his or her account, usually ~/.ssh/config (OpenSSH) or ~/.ssh2/ssh2_config (Tectia). This file
 controls the behavior of clients run in the user’s login
 session.[103]
Values in a user’s local file take precedence over those in
 the global file. For instance, if the global file turns on data
 compression, and your local file turns it off, the local file wins
 for clients run in your account. We cover precedence in more detail
 later. [7.2]

7.1.2.3 Configuration-file sections

Client configuration files are divided into
 sections. Each section contains settings for
 one remote host or for a set of related remote hosts, such as all
 hosts in a given domain.
The beginning of a section is marked differently in different
 SSH implementations. For OpenSSH, the keyword Host begins a new section, followed by a
 string called a host specification. The string
 may be a hostname:
 Host server.example.com
an IP address:
 Host 123.61.4.10
a nickname for a host: [7.1.2.5]
 Host my-nickname
or a wildcard pattern representing a set of hosts, where ?
 matches any single character and * any sequence of characters (just
 like filename wildcards in your favorite Unix shell):
 Host *.example.com
 Host 128.220.19.*
Some further examples of wildcards:
 Host *.edu Any hostname in the edu domain
 Host a* Any hostname whose name begins with "a"
 Host *1* Any hostname (or IP address!) with 1 in it
 Host * Any hostname or IP address
Tectia, in contrast, does not use a Host keyword. A new section is marked by a
 host specification string followed by a colon. This string may
 likewise be a computer name:
 server.example.com:
an IP address:
 123.61.4.10:
a nickname:
 my-nickname:
or a wildcard pattern:
 *.example.com:
 128.220.19.*:
You then follow the host-specification line with one or more
 settings, i.e., configuration keywords and values, as in the example
 we saw earlier. The following table contrasts OpenSSH and Tectia
 configuration files:
	OpenSSH
	Tectia

	 Host
 myserver
	 myserver:

	 User sally
	 User sally

	 IdentityFile myself

	 IdentityFile myself

	 ForwardAgent no

	 ForwardAgent no

	 Port 220
	 Port 220

	 Cipher blowfish

	 Ciphers blowfish

The settings apply only to the hosts named in the host
 specification. The section ends at the next host specification or
 the end of the file, whichever comes first.

7.1.2.4 Multiple matches

Because wildcards are permitted in host
 specifications, a single hostname might match two or more sections
 in the configuration file. For example, if one section
 begins:[104]
 Host *.edu
and another begins:
 Host *.harvard.edu
and you connect to server.harvard.edu,
 which section applies? Believe it or not, they both do. Every
 matching section applies, and if a keyword is set more than once
 with different values, only one value applies. For OpenSSH, the
 earliest value takes precedence, whereas for Tectia the latest value
 wins.
Suppose your client configuration file contains two sections
 to control data compression, password authentication, and the
 ssh escape character:
 Host *.edux
 Compression yes
 PasswordAuthentication yes

 Host *.harvard.edu
 Compression no
 EscapeChar %
and you connect to
 server.harvard.edu:
 $ ssh server.harvard.edu
Notice that the string server.harvard.edu matches both Host patterns, *.edu and *.harvard.edu. As we’ve said, the keywords
 in both sections apply to your connection. Therefore, the preceding
 ssh command sets values for the keywords
 Compression, PasswordAuthentication, and EscapeChar.
But notice, in the example, that the two sections set
 different values for Compression.
 What happens? The rule is that the first value prevails -- in this
 case, yes. So, in the previous
 example, the values used for server.harvard.edu are:
 Compression yes The first of the Compression lines
 PasswordAuthentication yes Unique to first section
 EscapeChar % Unique to second section
and as shown in Figure
 7-2. Compression no is
 ignored because it is the second Compression line encountered. Likewise, if
 10 different Host lines match
 server.harvard.edu, all 10 of those sections
 apply, and if a particular keyword is set multiple times, only the
 first value is used.
[image: OpenSSH client configuration file with multiple matches (Tectia not shown)]

Figure 7-2. OpenSSH client configuration file with multiple matches
 (Tectia not shown)

While this feature might seem confusing, it has useful
 properties. Suppose you want some settings applied to all remote
 hosts. Simply create a section beginning with:
 Host *
and place the common settings within it. This section should
 be either the first or the last in the file. If first, its settings
 take precedence over any others. This can be used to guard against
 your own errors. For example, if you want to make sure you never,
 ever, accidentally use the old SSH-1 protocol, at the beginning of
 your configuration file put:
 # First section of file
 Host *
 Protocol 2
Alternatively, if you place Host
 * as the last section in the configuration file, its
 settings are used only if no other section overrides them. This is
 useful for changing SSH’s default behavior, while still permitting
 overrides. For example, by default, data compression is disabled.
 You can make it enabled by default by ending your configuration file
 with:
 # Last section of file
 Host *
 Compression yes
Voilá, you have changed the default behavior of
 ssh and scp for your
 account! Any other section, earlier in the configuration file, can
 override this default simply by setting Compression to no.
Tip
The precedence rule is different for keywords that can apply
 multiple times in a section. For example, you can legitimately
 have more than one IdentityFile
 keyword in a section of ~/.ssh/config (OpenSSH), meaning to try
 all the listed keys in turn. [7.4.2] Likewise, if more
 than one section applies to a host, and they each contain IdentityFile lines, then the union of
 all the named keys will be tried for authentication. In other
 words, IdentityFile values
 accumulate rather than override each
 other.

7.1.2.5 Making nicknames for hosts

Suppose your client configuration file contains a
 section for the remote host
 myserver.example.com :
 Host myserver.example.com
 ...
One day, while logged onto
 ourclient.example.com, you decide to establish
 an SSH connection to myserver.example.com.
 Since both computers are in the same domain,
 example.com, you can omit the domain name on
 the command line and simply type:
 $ ssh myserver
This does establish the SSH connection, but you run into an
 unexpected nuance of configuration files. ssh
 compares the command-line string “myserver” to the Host string
 “myserver.example.com”, determines that they don’t match, and
 doesn’t apply the section of the configuration file. Yes, the
 software requires an exact textual match between the hostnames on
 the command line and in the configuration file.
You can get around this limitation by declaring myserver to be a nickname for
 myserver.example.com. In OpenSSH, this is done
 with the Host and HostName keywords. Simply use Host with the nickname and HostName with the fully qualified
 hostname:
 # OpenSSH
 Host myserver
 HostName myserver.example.com
 ...
ssh will now recognize that this section
 applies to your command ssh myserver. You may
 define any nickname you like for a given computer, even if it isn’t
 related to the original hostname:
 # OpenSSH
 Host simple
 HostName myserver.example.com
 ...
Then you can use the nickname on the command line:
 $ ssh simple
For Tectia, the syntax is different but the effect is the
 same. Use the nickname in the host specification, and provide the
 full name to the Host
 keyword:
 # Tectia
 simple:
 Host myserver.example.com
 ...
Then type:
 $ ssh simple
Nicknames are convenient for testing new client settings.
 Suppose you have an OpenSSH configuration for
 server.example.com:
 Host server.example.com
 ...
and you want to experiment with different settings. You could
 just modify the settings in place, but if they don’t work, you’d
 have to waste time changing them back. The following steps
 demonstrate a more convenient way:
	Within the configuration file, make a copy of the section
 you want to change:
 # Original
 Host server.example.com
 ...
 # Copy for testing
 Host server.example.com
 ...

	In the copy, change “Host” to “HostName”:
 # Original
 Host server.example.com
 ...
 # Copy for testing
 HostName server.example.com
 ...

	Add a new Host line at
 the beginning of the copy, using a phony name; for example,
 “Host my-test”:
 # Original
 Host server.example.com
 ...
 # Copy for testing
 Host my-test
 HostName server.example.com
 ...

	Setup is done. In the copy (my-test), make all the changes you
 want and connect using ssh my-test. You can
 conveniently compare the old and new behavior by running
 ssh server.example.com versus ssh
 my-test. If you decide against the changes, simply
 delete the my-test section.
 If you like the changes, copy them to the original section (or
 delete the original and keep the copy).

You can do the same with Tectia:
 # Original
 server.example.com:
 ...
 # Copy for testing
 my-test:
 Host server.example.com
 ...

7.1.2.6 Comments, indenting, and style

You probably noticed in the previous examples that we
 use the # symbol to represent
 comments:
 # This is a comment
In fact, any line beginning with # in the configuration file
 is treated as a comment and ignored. Likewise, blank lines (empty or
 containing only whitespace) are also ignored.
You might also have noticed that the lines following a host
 specification are indented:
 # OpenSSH
 Host server.example.com
 Keyword1 value1
 Keyword2 value2

 # Tectia
 server.example.com:
 Keyword1 value1
 Keyword2 value2
Indenting is considered good style because it visually
 indicates the beginning of a new section. It isn’t required, but we
 recommend it.

7.1.3 Environment Variables

SSH clients set a number of environment variables, and a few miscellaneous features are controlled by
 variables you can set. We’ll point out these variables as we encounter
 them from time to time. Environment variables may be set in your
 current shell by the standard methods:
 # C shell family (csh, tcsh)
 $ setenv MY_VARIABLE 1

 # Bourne shell family (sh, ksh, bash)
 $ MY_VARIABLE=1
 $ export MY_VARIABLE
Alternatively, environment variables and values may be specified
 in a file. System administrators can set environment variables for all
 users in /etc/environment, and
 users can set them in ~/.ssh/environment (OpenSSH) and ~/.ssh2/environment (Tectia). These files
 contain lines of the format:
NAME=VALUE
where NAME is the name of an
 environment variable, and VALUE is its
 value. The value is taken literally, read from the equals sign to the
 end of the line. Don’t enclose the value in quotes, even if it
 contains whitespace, unless you want the quotes to be part of the
 value.

[102] Tectia recognizes -h as an abbreviation
 of --help.

[103] The system administrator may change the locations of
 client configuration files via the compile-time flag
 --with-etcdir [4.3.5.1] or the
 serverwide keyword UserConfigDirectory. [5.3.1.5] If the files
 aren’t in their default locations on your computer, contact your
 system administrator.

[104] We use only the OpenSSH file syntax here to keep things
 tidy, but the explanation is true of Tectia as well.

Precedence

Perhaps you are wondering: what happens if some
 configuration settings conflict? For instance, if you use the Compression keyword to turn compression off,
 and also the -C command-line option to turn it on,
 who wins? In other words, who has precedence
 ?
For OpenSSH and Tectia clients, the order of precedence is, from
 strongest to weakest:
	Command-line options

	The user’s local client configuration file

	The global client configuration file[105]

Command-line options have the highest precedence, overriding any
 client configuration files. The user’s local file has next highest
 precedence, and the global file has lowest precedence. So, in our
 compression example, -C takes precedence over the
 Compression keyword, and compression
 is enabled. If a setting isn’t changed by any keyword or command-line
 option, the client’s default setting is used.
Remember that we’re speaking only of outgoing connections
 initiated by clients. Incoming connections, controlled by the SSH
 server, have other precedence rules. For servers, the user’s local
 configuration file definitely does not override the
 global file; otherwise, users could override global server settings,
 creating security holes and wreaking other havoc. [8.1.1]

[105] We don’t mention environment variables in this list
 because they don’t compete for precedence. Environment variables
 control different features that don’t overlap with command-line
 options and configuration files.

Introduction to Verbose Mode

Now that we’ve covered the generalities of command-line options
 and configuration files, we’re about to launch into an extended
 discussion of configuration. Before we begin, let’s practice some
 defense. As you try these options, occasionally you might see behavior
 that’s not what you expected. Whenever this occurs, your first instinct
 should be: turn on verbose mode with the -v command-line option to
 track down the problem:
 $ ssh -v server.example.com
In verbose mode, the client prints messages as it proceeds,
 providing clues to the problem. New SSH users (and quite a few
 experienced ones) frequently forget or neglect to use verbose mode when
 problems arise. Don’t hesitate! Many questions we’ve seen in the Usenet
 SSH newsgroup, comp.security.ssh [12.3], could have been answered
 immediately by running ssh -v and examining the
 output.
Suppose you just installed your public key on
 server.example.com and are trying to authenticate
 with it. Strangely, you are prompted for your login password instead of
 your public-key passphrase:
 $ ssh server.example.com
 barrett@server.example.com's password:
Don’t just sit there scratching your head in wonder. Let verbose
 mode come to the rescue:
 $ ssh -v server.example.com
 OpenSSH_3.8p1, SSH protocols 1.5/2.0, OpenSSL 0.9.7d 17 Mar 2004
 debug1: Reading configuration data /etc/ssh/ssh_config
 debug1: Applying options for *
 debug1: Connecting to server.example.com [192.168.0.10] port 22.
 debug1: Connection established.
 debug1: Remote: Bad file modes for /users/barrett/.ssh Uh oh!
 debug1: Server refused our key.
 debug1: Doing password authentication.
 barrett@server.example.com's password:
These messages (which are abbreviated for this example) confirm
 that the SSH connection is succeeding, but public-key authentication is
 failing. The reason is “bad file modes”: the remote SSH directory,
 /home/barrett/.ssh, has incorrect
 permissions. A quick trip to the server and a well-placed
 chmod command later, the problem is solved:
 # On the server
 $ chmod 700 ~/.ssh
Repeating the -v option causes OpenSSH
 clients to produce even more detailed information:
 # OpenSSH
 $ ssh -v -v -v server.example.com
whereas for Tectia, use its -d option, as we
 saw in detail for sshd: [5.9]
 # Tectia
 $ ssh -d3 server.example.com
And of course, verbose mode also works for
 scp :
 $ scp -v myfile server.example.com:
 Executing: program /usr/bin/ssh host server.example.com, user (unspecified), command
scp -v -t .
 OpenSSH_3.9p1, SSH protocols 1.5/2.0, OpenSSL 0.9.7e 24 Oct 2004
 ...
except that Tectia’s scp uses
 -D instead of -d:[106]
 # Tectia
 $ scp -D3 myfile server.example.com:
scp also supports the -q
 option for no output at all:
 # Tectia
 $ scp -q myfile server.example.com: Be completely quiet
Verbose mode is your friend. Use it liberally. Now we’re ready to
 learn those dozens of options.

[106] Tectia’s -v option is equivalent to
 -D2, and can also be written as
 --verbose.

Client Configuration in Depth

 ssh and scp
 take their cues from command-line options, configuration-file keywords,
 and environment variables. OpenSSH and Tectia clients behave differently
 and obey different settings, but as usual, we cover them simultaneously.
 When a setting is supported by only some of these products, we’ll say
 so.
Both OpenSSH and Tectia ssh will print a
 usage message briefly describing all its options:
 $ ssh --help
You can get the same effect if you omit all arguments (OpenSSH) or
 use -h (Tectia). Tectia will also print its version
 number on request, with the -V option:
 # Tectia
 $ ssh -V
 ssh: SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
 Build: 1
 Released 2004-11-30 (YYYY-MM-DD).
 Crypto library version: SSH Cryptographic Library, version 1.2.4
 FIPS certification mode: DISABLED
 Product: SSH Tectia Server (T)
 License type: commercial
7.4.1 Remote Account Name

 ssh and scp
 assume that your local and remote usernames are the same. If your
 local username is henry and you run:
 $ ssh server.example.com
ssh assumes your remote username is also
 henry and requests a connection to that account on
 server.example.com. If your remote account
 name differs from the local one, you must tell the SSH
 client your remote account name. For henry to connect to a remote
 account called sally, he can use the -l
 command-line option:
 $ ssh -l sally server.example.com
If copying files with scp, the syntax is
 different for specifying the remote account name, looking more like an
 email address. [7.5.1]
 To copy the file myfile to the
 remote account sally on
 server.example.com:
 $ scp myfile sally@server.example.com:
If you frequently connect to a remote machine using a different
 username, instead of monkeying with command-line options specify the
 remote username in your client configuration file. The User keyword serves this purpose, and both
 ssh and scp pay attention to
 it. Here’s how to declare that your remote username is sally on a
 given remote host:
	OpenSSH
	Tectia

	 Host
 server.example.com
	 server.example.com:

	 User
 sally
	 User
 sally

Now, when connecting to server.example.com,
 you don’t have to specify that your remote username is sally:
 # The remote username sally will be used automatically
 $ ssh server.example.com
7.4.1.1 Tricks with remote account names

With User and
 nicknames, you can significantly shorten the command lines you type
 for ssh and scp.
 Continuing the preceding example with sally, if you have the
 configuration shown:
	OpenSSH
	Tectia

	 Host
 simple
	 simple:

	 HostName server.example.com

	 Host server.example.com

	 User sally
	 User sally

then these long commands:
 $ ssh server.example.com -l sally
 $ scp myfile sally@server.example.com:
may be reduced to:
 $ ssh simple
 $ scp myfile simple:
Here’s how to specify separately several different account
 names on different hosts, each in its own section of the
 configuration file:
	OpenSSH
	Tectia

	 Host
 server.example.com
	 server.example.com:

	 User sally
	 User sally

	 ...
	 ...

	 Host
 another.example.com
	 another.example.com:

	 User sharon
	 User sharon

	 ...
	 ...

This technique is convenient if you have only one account on
 each remote machine. But suppose you have two accounts on
 server.example.com, called sally and sally2. Is
 there some way to specify both in the configuration file? The
 following attempt doesn’t work (we show OpenSSH
 syntax only):
 # THIS WILL NOT WORK PROPERLY!!!
 Host server.example.com
 User sally
 User sally2
 Compression yes
because only the first value (sally) prevails. To get around this
 limitation, you can use nicknames to create two sections for the
 same machine in your configuration file, each with a different
 User:
 # OpenSSH
 # Section 1: Convenient access to the sally account
 Host sally-account
 HostName server.example.com
 User sally
 Compression yes

 # Section 2: Convenient access to the sally2 account
 Host sally2-account
 HostName server.example.com
 User sally2
 Compression yes
Now you can access the two accounts easily by nickname:
 $ ssh sally-account
 $ ssh sally2-account
This works, but it isn’t ideal. You’ve duplicated your
 settings (HostName and Compression) in each section. Duplication
 makes a configuration file harder to maintain, since any future
 changes need to be applied twice. (In general, duplication isn’t
 good software engineering.) Are you doomed to duplicate? No, there’s
 a better solution. Immediately after the two sections, create a
 third section with a Host
 wildcard that matches both sally-account and sally2-account. Suppose you use sally*-account and move all duplicated
 settings into this new section:
 # OpenSSH
 Host sally*-account
 HostName server.example.com
 Compression yes
The end result is:
	OpenSSH
	Tectia

	 Host
 sally-account
	 sally-account:

	 User sally
	 User sally

	 Host
 sally2-account
	 sally2-account:

	 User sally2
	 User sally2

	 Host
 sally*-account
	 sally*-account:

	 HostName server.example.com

	 Host server.example.com

	 Compression yes

	 Compression yes

Since sally*-account
 matches both previous sections, its full name and compression
 settings apply to both sally-account and sally2-account. Any settings that differ
 between sally-account and
 sally2-account (in this case,
 User) are kept in their
 respective sections. You’ve now achieved the same effect as in the
 previous example—two accounts with different settings on the same
 remote machine—but with no duplication of settings.

7.4.2 User Identity

SSH identifies you by an identity
 represented by a key pair (OpenSSH) or a collection of key pairs
 (Tectia). [6.1] Normally,
 SSH clients use your default key file (OpenSSH) or default
 identification file (Tectia) to establish an authenticated connection.
 However, if you’ve created other keys, you may instruct SSH clients to
 use them to establish your identity. A command-line option
 (-i) and configuration keyword (IdentityFile) are available for this
 purpose.
In OpenSSH, for example, if you have a private-key file called
 my-key, you can make clients use
 it with the commands:
 $ ssh -i my-key server.example.com
 $ scp -i my-key myfile server.example.com:
or with the configuration keyword:
 IdentityFile my-key
The file location is assumed to be relative to the current
 directory, i.e., in these cases the file is ./my-key.
Tectia also has -i and IdentityFile, but their meanings are
 slightly different from those of OpenSSH. Instead of a key file, you
 supply the name of an identification file:
 # Tectia
 $ ssh -i my-id-file server.example.com

 # Tectia configuration file
 IdentityFile my-id-file
Tip
If Tectia complains about your identity file:
 warning: /home/smith/.ssh2/id_dsa_2048_a: 4: parsing line failed.
you probably handed ssh a key file
 (id_dsa_2048_a) instead of an
 identity file like ~/.ssh2/identification.

Multiple identities can be quite useful. [6.4] For example, you can set
 up your remote account to run specific programs when a second key is
 used. The ordinary command:
 $ ssh server.example.com
initiates a regular login session, but:
 $ ssh -i other_identity server.example.com
can run a complex batch process on
 server.example.com. Using configuration keywords,
 you can accomplish the same effect by specifying an alternative
 identity, as shown in this table:
	OpenSSH
	Tectia

	 Host
 SomeComplexAction
	 SomeComplexAction:

	 HostName server.example.com

	 Host
 server.example.com

	 IdentityFile other_identity

	 IdentityFile other_identity

	 ...
	 ...

You can then invoke:
 $ ssh SomeComplexAction
OpenSSH can specify multiple identities in a single
 command:[107]
 # OpenSSH
 $ ssh -i id1 -i id2 -i id3 server.example.com
or:
 # OpenSSH
 Host server.example.com
 IdentityFile id1
 IdentityFile id2
 IdentityFile id3
Multiple identities are tried in order until one successfully
 authenticates. However, OpenSSH limits you to 100 identities per
 command.[108]
If you plan to use multiple identities frequently, remember that
 an SSH agent can eliminate hassle. Simply load each identity’s key
 into the agent using ssh-add, and you won’t have
 to remember multiple passphrases while you work.
7.4.2.1 Using identities

 IdentityFile
 specifies an identity you’d like to use for authentication, but it
 does not restrict authentication to that
 identity. Suppose your client configuration file says:
 # OpenSSH
 Host server.example.com
 IdentityFile wendy
 IdentityFile abby
and you run:
 # OpenSSH
 $ ssh server.example.com
ssh will dutifully try to authenticate
 using identities wendy and
 abby; but if it fails,
 ssh will try other identities held in your SSH
 agent, in case one of them might succeed. You can change this
 behavior with the IdentitiesOnly
 keyword:
 # OpenSSH
 Host server.example.com
 IdentityFile wendy
 IdentityFile abby
 IdentitiesOnly yes Restrict authentication only to listed identity files
Now if ssh fails to authenticate by
 identities wendy and abby, it will stop trying (and move on to
 other non-public-key techniques, if configured to do so).
This feature is particularly useful with a server that limits
 the number of public-key authentication attempts, such as OpenSSH.
 If you have many keys in your agent, only a few can be tried before
 the server disconnects you for “too many failures.” The
 configuration shown avoids this problem by indicating exactly which
 keys to use for a given host. Even though the IdentityFile keyword refers to files, the
 OpenSSH client will try those keys from the agent if they’ve been
 loaded. You are prompted for a passphrase only if the needed key
 isn’t in the agent and is encrypted on disk.

7.4.3 Host Keys and Known-Hosts Databases

Every SSH server has a host key [3.3] that uniquely identifies
 the server to clients. This key helps prevent spoofing attacks. When
 an SSH client requests a connection and receives the server’s host
 key, the client checks it against a local database of known host
 keys . If the keys match, the connection proceeds. If they
 don’t, the client behaves according to several options you can
 control.
In OpenSSH, the host key database is maintained partly in a
 serverwide location (/etc/ssh/ssh_known_hosts) and partly in the
 user’s SSH directory (~/.ssh/known_hosts). In Tectia, there are
 two databases of host keys for authenticating server hosts (the
 “hostkeys” map in /etc/ssh2/hostkeys) and client hosts (the
 “knownhosts” map); in this section we are concerned only with the
 former. Similar to its OpenSSH counterpart, the Tectia hostkeys map is
 maintained in a serverwide directory (/etc/ssh2/hostkeys/) and a per-account
 directory (~/.ssh2/hostkeys/). In
 this section, we refer to the OpenSSH and Tectia map simply as the
 host key database.
7.4.3.1 Strict host-key checking

Suppose you request an SSH connection with
 server.example.com, which sends its host key in
 response. Your client looks up
 server.example.com in its host key database.
 Ideally, a match is found and the connection proceeds. But what if
 this doesn’t happen? Two scenarios may arise:
	SCENARIO 1: Mismatched key
	A host key is found for
 server.example.com in the database, but
 it doesn’t match the incoming key. This can indicate a
 security hazard, or it can mean that
 server.example.com has changed its host
 key, which can happen legitimately. [3.9.4]

	SCENARIO 2: No key
	No host key for server.example.com
 exists in the database. In this case, the SSH client is
 encountering server.example.com for the
 first time.

In each scenario, should the client proceed or fail? Should it
 store the new host key in the database, or not? These decisions are
 controlled by the keyword StrictHostKeyChecking, which may have
 three values:
	yes
	Be strict. If a key is unknown or has changed, the
 connection fails. This is the most secure value, but it can be
 inconvenient or annoying if you connect to new hosts regularly
 or if your remote host keys change frequently.

	no
	Not strict. If a key is unknown, automatically add it to
 the user’s database and proceed. If a key has changed, leave
 the known hosts entry intact, print a warning, and permit the
 connection to proceed. This is the least secure value.

	ask
	Prompt the user. If a key is unknown, ask whether it
 should be added to the user’s database and whether to connect.
 If a key has changed, ask whether to connect. This is the
 default and a sensible value for knowledgeable users.
 (Less-experienced users might misunderstand what they’re being
 asked and make the wrong decision.)

Here’s an example:
 StrictHostKeyChecking yes
Table 7-1
 summarizes SSH’s StrictHostKeyChecking’s behavior.
Table 7-1. StrictHostKeyChecking behavior
	Key found?
	Match?
	Strict?
	Action

	Yes
	Yes
	-
	Connect

	Yes
	No
	Yes
	Warn and fail

	Yes
	No
	No
	Warn and connect

	Yes
	No
	Ask
	Warn and ask whether to
 connect

	No
	-
	Yes
	Warn and fail

	No
	-
	No
	Add key and connect

	No
	-
	Ask
	Ask whether to add key and to
 connect

OpenSSH has an additional keyword, CheckHostIP, to make a client verify the
 IP address of an SSH server in the database. Its values may be
 yes (the default, to verify the
 address) or no. The value
 yes provides security against
 name service spoofing attacks: [3.9.2]
 # OpenSSH
 CheckHostIP no

7.4.3.2 Verifying host keys by DNS

The known-hosts mechanism for verifying hostkeys is
 fine when dealing with a handful of hosts, but quickly becomes
 unwieldy for larger numbers. Later we discuss overarching
 authentication systems such as PKI or Kerberos to address this
 problem. [11.5] Another
 method is to use the DNS: if we could attach hostkeys to domain
 names, then SSH could verify the server by looking up its keys in
 the DNS. The method is documented in draft-ietf-secsh-dns. It uses
 DNS resource records with the following format:
 IN SSHFP <key type> <fingerprint type> <fingerprint>
where the key types can be 1 (for RSA) or 2 (DSS), and the
 fingerprint type can be 1 (for SHA-1).
ssh-keygen can generate these DNS records
 in a form ready to be included in a zone file for the BIND
 nameserver:
 # OpenSSH
 $ ssh-keygen -r host.domain.net -f /etc/ssh/ssh_host_dsa_key.pub
 host.domain.net IN SSHFP 2 1 7ae79057cbff7de6d61b30fba02d936d6a0f5b5f

 $ ssh-keygen -r host.domain.net -f /etc/ssh/ssh_host_dsa_key.pub -g
 host.domain.net IN TYPE44 \# 22 02 01 7ae79057cbff7de6d61b30fba02d936d6a0f5b5f
The -g form is for nameservers that don’t
 understand the SSHFP RR type.
To have OpenSSH use these DNS records, set the VerifyHostDNS keyword to yes, no, or ask:
 # ~/ssh/config
 VerifyHostKeyDNS=yes
It’s vitally important to remember that the DNS itself is
 usually not secure! There is a standard for DNS security (DNSSEC,
 RFC-2535), but it is not much used yet. Without DNSSEC, DNS queries
 and replies can be easily intercepted and forged by attackers, so
 this level of hostkey verification may not be acceptable.
If VerifyHostKeyDNS is
 ask, and StrictHostKeyChecking is yes or ask, OpenSSH will indicate whether it
 found a matching hostkey in the DNS, but still obey the usual
 semantics of StrictHostKeyChecking in deciding whether
 to approve the server. VerifyHostKeyDNS
 yes is the same, except that matching fingerprints
 obtained via secure DNS are considered just as trustworthy as those
 stored in the known-hosts list. If StrictHostKeyChecking is no, then VerifyHostKeyDNS makes no
 difference.

7.4.3.3 Host key aliasing

OpenSSH uses a simple method to find the host key for
 server authentication: it simply looks up in the known-hosts list
 exactly what you type on the command line for the remote server
 name. Sometimes, the situation is more complicated; you know which
 host you’re actually contacting, but OpenSSH doesn’t. For instance,
 you might be using SSH-over-SSH to contact a remote host through a
 second SSH port forwarding, like so:
 $ ssh -L 2001:david:22 goliath
 $ ssh -p 2001 localhost
The second command will connect to the SSH server
 David through another one,
 goliath. However, the second
 ssh may complain about a host-key mismatch. It
 has no way of knowing about the port-forwarding indirection; it
 thinks you are connecting to an SSH server which is actually running
 on the local host, compares goliath’s hostkey
 to that of the local host, and finds they do not match. In this
 situation, you can tell OpenSSH which key to use with HostKeyAlias:
 # OpenSSH
 $ ssh -p 2001 -o HostKeyAlias=david localhost

7.4.3.4 Ignoring host keys for localhost

In many computing environments, users’ home directories are
 shared across many machines. As a result, users’ ~/.ssh configuration files are shared in
 this manner. This is useful but has one little glitch: the idiom
 ssh localhost.
The problem is that “localhost” means something different on
 every host! The first time you run this command,
 ssh will add a key for “localhost” to your
 known-hosts file—but the next time you do it on a different machine,
 SSH will complain about a host-key mismatch! You could get around
 this by adding multiple “localhost” lines to the known-hosts list,
 expanding the set of keys acceptable for that destination. However,
 since there’s little security to be gained in verifying the identity
 of the host you’re already logged into, OpenSSH has a special
 option, NoHostAuthenticationForLocalhost, to
 disable server authentication for the connections to the loopback
 address:
 # ~/.ssh/config
 NoHostAuthenticationForLocalhost yes

7.4.3.5 Moving the known hosts files

OpenSSH permits the locations of the host key
 database, both the serverwide and per-account parts, to be changed
 using configuration keywords. GlobalKnownHostsFile defines an
 alternative location for the serverwide file. It doesn’t actually
 move the file—only the system administrator can do that—but it does
 force your clients to use another file in its place. This keyword is
 useful if the default file is outdated and you want your clients to
 ignore the serverwide file, particularly if you’re tired of seeing
 warning messages from your clients about changed keys:
 # OpenSSH
 GlobalKnownHostsFile /users/smith/.ssh/my_global_hosts_file
Similarly, you can change the location of your per-user part
 of the database with the keyword UserKnownHostsFile:
 # OpenSSH
 UserKnownHostsFile /users/smith/.ssh/my_local_hosts_file

7.4.4 SSH Protocol Settings

OpenSSH lets the client control a number of features relating to
 the SSH protocol itself.
7.4.4.1 Choosing a protocol version

OpenSSH supports protocols SSH-1 and SSH-2. By default, the
 client and server will try to negotiate an SSH-2 connection first,
 then fall back to an SSH-1 connection if unsuccessful. You can
 control which protocols are tried by the client, and in what order,
 with the Protocol keyword, just
 as for the server: [5.3.7]
 # OpenSSH
 Protocol 2,1 Comma-separated list of protocol versions
You should always use SSH-2 for maximum security, if your
 software supports it, so it’s a good idea to instruct your clients
 to avoid SSH-1 servers. You can do this for all hosts by placing a
 Protocol line at the bottom of
 your ~/.ssh/config file:
 # OpenSSH
 Host *
 Protocol 2
or by the command-line arguments -1 and
 -2, for protocols SSH-1 and SSH-2,
 respectively:
 # OpenSSH
 $ ssh -2 server.example.com Require an SSH-2 connection
Tectia supports the -1 option, with
 required qualifiers t and i to
 control how the SSH-1 support is accomplished:
 # Tectia
 $ ssh-1t server.example.com "traditional": invoke an external ssh1 program
 $ ssh-1i server.example.com "internal": do SSH-1 protocol internally

7.4.4.2 Connection sharing

A single SSH connection can have multiple
 channels simultaneously supporting a variety of
 services: interactive terminals, remote program execution, file
 transfer, agent forwarding, etc. [3.4.4.1] Setting up an
 SSH connection is a computationally expensive process, and can take
 a few seconds. That’s no big deal if you do it once in a while, but
 if you have a procedure that makes many connections, the delay can
 get pretty annoying or problematic. The Unix “style” promotes this
 problem: for instance, you can use CVS over SSH by setting the
 environment variable CVS_RSH=ssh.
 If you’re running a lot of CVS commands, however, each will now take
 an extra five seconds or so, and computer users are notoriously
 impatient. Given that SSH can use channels, wouldn’t it be better to
 set up one SSH connection to a given host, and then somehow issue
 our various commands over that one session?
Well, yes it would, and OpenSSH has this feature in its
 ControlMaster and ControlPath keywords, and the
 -M and -S options of
 ssh. This command:
 # OpenSSH
 $ ssh -S /tmp/ssh-snowcrash -MfN snowcrash.neal.org
opens an SSH connection to the server
 snowcrash.neal.org, placing it in the
 background. It also tells this SSH process to act as a “master”
 process, allowing other ssh invocations (its
 “slaves”) to open channels to this server through it. Master and
 slave communicate via the Unix socket /tmp/ssh-snowcrash. So this:
 # OpenSSH
 $ ssh -S /tmp/ssh-snowcrash snowcrash.neal.org
will open a remote terminal on snowcrash,
 and will do it quickly because no new SSH connection is set up; it
 goes through the existing connection. You can make this more
 convenient with custom configuration:
 # ~/.ssh/config
 host snowcrash-master
 hostname snowcrash.neal.org
 ControlPath /tmp/ssh-snowcrash
 ControlMaster

 host snowcrash-slave
 hostname snowcrash.neal.org
 ControlPath /tmp/ssh-snowcrash
And thus you can efficiently run:
 # OpenSSH
 $ ssh -fN snowcrash-master
 $ ssh snowcrash-slave

7.4.4.3 Setting environment variables in the server

SSH clients can set environment variables in their
 remote SSH sessions. This mechanism is supported only by the SSH-2
 protocol, and works only if it is permitted by the server, according
 to the keywords AcceptEnv
 (OpenSSH) or SettableEnvironmentVars (Tectia). [5.6.2]
OpenSSH clients use the SendEnv keyword to specify the names of
 environment variables that are sent to the server:
 # OpenSSH
 SendEnv COLOR
Multiple variables can be listed, separated by whitespace, or
 specified by multiple keywords. Wildcard characters * and ?
 send all variables in the client’s environment whose name matches
 the pattern:
 # OpenSSH
 SendEnv LANG LC_*
 SendEnv PATH TERM TZ
The value for each variable is copied from the environment of
 the OpenSSH client.
Tectia clients use the SetRemoteEnv keyword to specify both the
 name and the value, separated by an equals sign (with no
 whitespace):
 # Tectia
 SetRemoteEnv COLOR=blue
Use multiple keywords to send several variables to the server.
 Each variable must be named explicitly: no wildcards or patterns are
 used. The value can be omitted (to indicate an empty string), but
 the equals sign is required. Whitespace is permitted within the
 value, and is copied verbatim:
 # Tectia
 SetRemoteEnv GRANDDAUGHTERS=katie rebecca sarah
Note that the Tectia client’s environment is not consulted at
 all, and the variables that are sent to the server need not even be
 present in the environment of the client.

7.4.5 TCP/IP Settings

SSH uses TCP/IP as its transport mechanism. Most times you don’t
 need to change the default TCP settings, but in some situations it’s
 necessary:
	Connecting to SSH servers on other TCP ports

	Connecting via a particular network interface

	Using privileged versus nonprivileged ports

	Keeping an idle connection open by sending keepalive
 messages

	Enabling the Nagle Algorithm (TCP_NODELAY)

	Requiring IP addresses to be Version 4 or 6

7.4.5.1 Selecting a remote port

Most SSH servers listen on TCP port 22, so clients
 connect to this port by default. Nevertheless, sometimes you need to
 connect to an SSH server on a different port number. For example, if
 you are a system administrator testing a new SSH server, you might
 run it on a different port to avoid interference with an existing
 server. Then your clients need to connect to this alternate port.
 This can be done with the client’s Port keyword, followed by a port
 number:
 Port 2035
or the -p command-line option, followed
 by the port number:
 $ ssh -p 2035 server.example.com
You can also specify an alternative port for
 scp, but the command-line option is
 -P instead of -p
 : [109]
 $ scp -P 2035 myfile server.example.com:
Tectia also accepts a port number as part of the user and host
 specification, preceded by a hash sign. For example, the
 commands:
 # Tectia
 $ ssh server.example.com#2035
 $ ssh smith@server.example.com#2035
 $ scp smith@server.example.com#2035:myfile localfile
each connect to remote port 2035. (We don’t see much use for
 this syntax, but it’s available.)
After connecting to the server, ssh sets
 an environment variable in the remote shell to hold the port
 information. For OpenSSH, the variable is called SSH_CLIENT, and for Tectia it is SSH2_CLIENT. The variable contains a
 string with three values, separated by a space character: the
 client’s IP address, the client’s TCP port, and the server’s TCP
 port. For example, if your client originates from port 1016 on IP
 address 24.128.23.102, connecting to the server’s port 22, the value
 is:
 # OpenSSH
 $ echo $SSH_CLIENT
 ::ffff:24.128.23.102 1016 22

 # Tectia
 $ echo $SSH2_CLIENT
 24.128.23.102 1016 22
OpenSSH also sets an environment variable, SSH_CONNECTION, with slightly extended
 port information, appending the server’s IP address and port:
 # OpenSSH
 $ echo $SSH_CONNECTION
 ::ffff:24.128.23.102 10969 ::ffff:128.220.67.30 22
These variables are useful for scripting. In your shell’s
 startup file (e.g., ~/.profile,
 ~/.login), you can test for the
 variable and, if it exists, take actions. For example:
 #!/bin/sh
 # Test for an SSH_CLIENT value of nonzero length
 if [-n "$SSH_CLIENT"]
 then
 # We logged in via SSH.
 echo 'Welcome, OpenSSH user!'
 # Extract the IP address from SSH_CLIENT
 IP=`echo $SSH_CLIENT | awk '{print $1}'`
 # Translate it to a hostname.
 HOSTNAME=`host $IP | grep Name: | awk '{print $2}'`
 echo "I see you are connecting from $HOSTNAME."
 else
 # We logged in not by SSH, but by some other means.
 echo 'Welcome, O clueless one. Feeling insecure today?'
 fi

7.4.5.2 Connecting via a given network interface

If your client machine has more than one network
 interface or IP address, OpenSSH clients can connect through a
 particular one with the BindAddress keyword:
 # OpenSSH
 BindAddress 192.168.10.235
or the -b command-line option:
 # OpenSSH
 $ ssh -b 192.168.10.235 server.example.com

7.4.5.3 Forcing a nonprivileged local port

SSH connections get locally bound to a privileged TCP port,
 one whose port number is below 1024. If you ever need to override
 this feature—say, if your connection must pass through a firewall
 that doesn’t permit privileged source ports—use the configuration
 keyword UsePrivilegedPort. Its
 values are yes (use a privileged
 port) and no (use a nonprivileged
 port, the default):
 # OpenSSH
 UsePrivilegedPort no
Hostbased authentication requires a privileged port.

7.4.5.4 Keepalive messages

The TCPKeepAlive
 (OpenSSH) and KeepAlive (Tectia)
 keywords instruct the client how to proceed if a TCP connection
 problem occurs, such as a prolonged network outage or a server
 machine crash:
 # OpenSSH
 TCPKeepAlive yes

 # Tectia
 KeepAlive yes
The value yes (the default)
 tells the client to transmit and expect periodic keepalive
 messages. If the client detects a lack of responses to
 these messages, it shuts down the connection. The value no means not to use keepalive
 messages.
Keepalive messages represent a trade-off. If they are enabled,
 a faulty connection is shut down even if the problem is transient.
 However, the TCP keepalive timeout on which this feature is based is
 typically several hours, so this shouldn’t be a big problem. If
 keepalive messages are disabled, an unused faulty connection can
 persist indefinitely.
TCP keepalive messages are generally more useful in the SSH
 server, since a user sitting on the client side will certainly
 notice if the connection becomes unresponsive. However, SSH can
 connect two programs together, with the one running the SSH client
 waiting for input from the other side. In such a situation, it may
 be necessary to detect dead connections eventually.
TCPKeepAlive and KeepAlive aren’t intended to deal with the
 problem of SSH sessions being torn down because of firewall,
 proxying, NAT, or IP masquerading timeouts. [5.3.3.4] In these cases,
 if you don’t send any data for some period of time, the firewall (or
 whatever) closes the TCP connection. Additionally, TCP keepalive
 messages are not secure, as they don’t use any real authentication
 technique.
OpenSSH provides a robust and secure solution to keep the
 connection up, called client-alive and
 server-alive messages. OpenSSH clients can send
 client-alive messages to the server, indicating the client is up.
 The client also detects server-alive messages sent by the OpenSSH
 server. [5.3.3.4]
If certain criteria are met, the client or server will tear
 down the connection. You can control this at three levels. First,
 the client’s initial connection to the server can obey a timeout. If
 the server hasn’t responded at all within a certain number of
 seconds, the client will give up. This is controlled by the ConnectTimeout keyword:
 # OpenSSH
 ConnectTimeout 60 If no connection with the server within one minute, give up
Next, the ServerAliveInterval keyword controls how
 the client sends server-alive messages. Its argument is a length of
 time in seconds:
 # OpenSSH
 ServerAliveInterval 300 Send server-alive every 300 seconds, or five minutes
If your client hasn’t heard from the server within the given
 amount of time, the client will send a server-alive message to the
 server. It will continue sending these messages at the given
 interval (in this case, every five minutes) until it receives a
 response or gives up. You control how it gives up with the third
 keyword, ServerAliveCountMax,
 representing the maximum number of consecutive server-alive messages
 the client will send:
 # OpenSSH
 ServerAliveCountMax 8 Try eight times, then give up. The default is three times.
Once this maximum is reached, the client says, “Oh well, I
 guess the server has gone out for a walk,” and terminates the SSH
 connection. If you don’t want the client to send server-alive
 messages, set ServerAliveInterval
 to zero.

7.4.5.5 Controlling TCP_NODELAY

TCP/IP has a feature called the Nagle Algorithm, an
 optimization for reducing the number of TCP segments sent with very
 small amounts of data. [5.3.3.9] Tectia clients
 may also enable or disable the Nagle Algorithm using the NoDelay keyword:
 # Tectia
 NoDelay yes
Legal values are yes (to
 disable the algorithm) and no (to
 enable it; the default).

7.4.5.6 Requiring IPv4 and IPv6

OpenSSH can force its clients to use Internet Protocol Version
 4 (IPv4) or 6 (IPv6) addresses. IPv4 is the current version of IP
 used on the Internet; IPv6 is the future version, permitting far
 more addresses than IPv4 can support. For more information on these
 address formats, visit:
http://www.ipv6.org/

To force IPv4 addressing, use the -4
 flag:
 # OpenSSH
 $ ssh -4 server.example.com
or likewise for IPv6, use -6:
 # OpenSSH
 $ ssh -6 server.example.com
You can also control these settings with the AddressFamily keyword, with the values
 inet (IPv4 only), inet6 (IPv6 only), or any:
 # OpenSSH
 AddressFamily inet6 Use IPv6 only

7.4.6 Making Connections

Under the best conditions, an SSH client attempts a
 secure connection, succeeds, obtains your authentication credentials,
 and executes whatever command you’ve requested, be it a shell or
 otherwise. Various steps in this process are configurable,
 including:
	The number of times the client attempts the
 connection

	The look and behavior of the password prompt (for password
 authentication only)

	Suppressing all prompting

	Running remote commands interactively with a tty

	Running remote commands in the background

	Whether or not to fall back to an insecure connection, if a
 secure one can’t be established

	The escape character for interrupting and resuming an SSH
 session

7.4.6.1 Number of connection attempts

If you run an OpenSSH client and it can’t establish a secure
 connection, it will retry. By default, it tries once. You can change
 this behavior with the keyword ConnectionAttempts:
 # OpenSSH
 ConnectionAttempts 10
In this example, ssh tries 10 times
 before admitting defeat. Most people don’t have much use for this
 keyword, but it might be helpful if your network is unreliable. Just
 for fun, you can force ssh to give up
 immediately by setting ConnectionAttempts equal to zero:
 # OpenSSH
 $ ssh -o ConnectionAttempts=0 server.example.com
 ssh: connect to host server.example.com port 22: Success
 $ ssh has exited: no connection was made

7.4.6.2 Password prompting in OpenSSH

If you’re using password authentication in OpenSSH, you may
 control the number of times you are prompted for your password if
 mistyped. By default, you’re prompted three times, and if you
 mistype the password repeatedly, the client exits. You can change
 this number with the keyword NumberOfPasswordPrompts:[110]
 # OpenSSH
 NumberOfPasswordPrompts 2
Now your SSH client provides only two chances to type your
 password correctly.

7.4.6.3 Password prompting in Tectia

Tectia adds flexibility to password prompting. Instead
 of preset prompt strings, you can design your own with the PasswordPrompt keyword:
 # Tectia
 PasswordPrompt Enter your password right now, infidel:
You can insert the remote username or hostname with the
 symbols %U (remote username) or
 %H (remote hostname). For a
 typical username@hostname prompt you could use:
 # Tectia
 PasswordPrompt "%U@%H's password:"
Or you can be fancier:
 # Tectia
 PasswordPrompt "Welcome %U! Please enter your %H password:"

7.4.6.4 Batch mode: suppressing prompts

In some cases, you don’t want to be prompted for your password
 or passphrase. If ssh is invoked by an
 unattended shell script, for example, nobody will be at the keyboard
 to type a password. This is why SSH batch mode
 exists. In batch mode, all prompting for authentication credentials
 is suppressed. The keyword BatchMode can have a value of yes (disable prompting) or no (the default, with prompting
 enabled):
 BatchMode yes
Batch mode may be enabled for scp also
 with the -B option, for OpenSSH:
 # OpenSSH
 $ scp -B myfile server.example.com:
Batch mode doesn’t replace authentication. If a password or
 passphrase is required, you can’t magically log in without it by
 suppressing the prompt. If you try, your client exits with an error
 message such as “permission denied.” In order for batch mode to
 work, you must arrange for authentication to work without a
 password/passphrase—say, with hostbased authentication or an SSH
 agent. [11.1]

7.4.6.5 Pseudo-terminal allocation (TTY/PTY/PTTY)

A Unix tty (pronounced as it’s
 spelled, T-T-Y) is a software abstraction representing a computer
 terminal, originally an abbreviation for “teletype.” As part of an
 interactive session with a Unix machine, a tty is allocated to
 process keyboard input, limit screen output to a given number of
 rows and columns, and handle other terminal-related activities.
 Since most terminal-like connections don’t involve an actual
 hardware terminal, but rather a window, a software construct called
 a pseudo-tty (or pty,
 pronounced P-T-Y) handles this sort of connection.
When a client requests an SSH connection, the server doesn’t
 necessarily allocate a pty for the client. It does so, of course, if
 the client requests an interactive terminal session, e.g., just
 ssh host. But if you ask
 ssh to run a simple command on a remote server,
 such as ls :
 $ ssh remote.server.com /bin/ls
no interactive terminal session is needed, just a quick dump
 of the output of ls. In fact, by default
 sshd doesn’t allocate a pty for such a command.
 On the other hand, if you try running an interactive command like
 the text editor Emacs in this manner, you get an error
 message:
 $ ssh remote.server.com emacs -nw
 emacs: standard input is not a tty
because Emacs is a screen-based program intended for a
 terminal. In such cases, you can request that SSH allocate a pty
 using the -t option:
 $ ssh -t server.example.com emacs
Tectia also has the keyword ForcePTTYAllocation, which does the same
 thing as -t .[111]
 # Tectia
 ForcePTTYAllocation yes
Also, OpenSSH can request not to use a
 pty with the -T option, though most of the time
 this isn’t needed:
 # OpenSSH
 $ ssh -T server.example.com who
 barrett :0 Aug 25 21:51 (console)
 byrnes pts/1 Aug 25 15:19 (yoyodyne.org)
 silverman pts/2 Aug 22 09:42 (client.example.com)
If SSH allocates a pty, it also automatically defines an
 environment variable in the remote shell. The variable is SSH_TTY (for OpenSSH) or SSH2_TTY (for Tectia) and contains the
 name of the character device file connected to the “slave” side of
 the pty, the side that emulates a real tty. We can see this in
 action with a few simple commands. Try printing the value of
 SSH_TTY on a remote machine. If
 no tty is allocated, the result is blank:
 $ ssh server.example.com 'echo SSH_TTYSSH_TTY2'
 [no output]
If you force allocation, the result is the name of the
 tty:
 $ ssh -t server.example.com 'echo SSH_TTYSSH_TTY2'
 /dev/pts/1
Thanks to this variable, you can run shell scripts on the
 remote machine that use this information. For example, here’s a
 script that runs your default editor only if a terminal is
 available:
 #!/bin/sh
 if [-n $SSH_TTY -o -n $SSH2_TTY]; then
 echo 'Success!'
 exec $EDITOR
 else
 echo "Sorry, interactive commands require a tty"
 fi
Place this script in your remote account, calling it
 myscript (or whatever), and run:
 $ ssh server.example.com myscript
 Sorry, interactive commands require a tty
 $ ssh -t server.example.com myscript
 Success!
 ...Emacs runs...

7.4.6.6 Backgrounding a remote command

If you try running an SSH remote command in the
 background, you might be surprised by the result. After the remote
 command runs to completion, the client automatically suspends before
 the output is printed:
 $ ssh server.example.com ls &
 [1] 11910
 $
 ... time passes ...
 [1] + Stopped (SIGTTIN) ssh server.example.com ls &
This happens because ssh is attempting to
 read from standard input while in the background, which causes the
 shell to suspend ssh. To see the resulting
 output, you must bring ssh into the
 foreground:
 $ fg
 README
 myfile
 myfile2
ssh provides the -n
 command-line option to get around this problem. It redirects
 standard input to come from /dev/null, which prevents
 ssh from blocking for input. Now when the
 remote command finishes, the output is printed immediately:
 $ ssh -n server.example.com ls &
 [1] 11912
 $
 ... time passes ...
 README
 myfile
 myfile2
Tectia has a keyword, DontReadStdin, that does the same thing as
 -n, accepting the values yes or no (the default is no):
 # Tectia
 DontReadStdin yes

7.4.6.7 Backgrounding a remote command, take two

The preceding section assumed you didn’t need to type a
 password or passphrase, e.g., that you’re running an SSH agent. What
 happens if you use -n or Tectia’s DontReadStdin but the SSH client needs to
 read a password or passphrase from you?
 $ ssh -n server.example.com ls &
 $
 Enter passphrase for RSA key 'smith@client':
Warning
STOP! Don’t type your passphrase! Because the command is run
 in the background with -n, the prompt is also
 printed in the background. If you respond, your password will be
 visible! This is because you will be typing to the shell, not the
 ssh prompt.

You need a solution that not only disables input and sends the
 process into the background, but also permits
 ssh to prompt you. This is the purpose of the
 -f command-line option, which instructs
 ssh to do the following, in order:
	Perform authentication, including any prompting

	Cause the process to read from /dev/null, exactly like
 -n

	Put the process into the background: no “&” is
 needed

Here’s an example:
 $ ssh -f server.example.com ls
 Enter passphrase for RSA key 'smith@client': ********
 $
 ... time passes...
 README
 myfile
 myfile2
Tectia has a keyword, GoBackground, that does the same thing,
 accepting the values yes or
 no (the default):
 # Tectia
 GoBackground yes
GoBackground and
 -f also set up any port forwardings you may
 have specified on the command line. [9.2.6] The setup occurs
 after authentication but before backgrounding.

7.4.6.8 Escaping

Recall that the ssh client has an
 escape sequence feature. [2.3.2] By typing a
 particular character, normally a tilde (~), immediately after a
 newline or carriage return, you can send special commands to
 ssh: terminate the connection, suspend the
 connection, and so forth. Table 7-2 summarizes the
 supported escape sequences. It’s followed by a list that describes
 each sequence’s meaning.
Tip
If the next character following the escape character isn’t
 in Table 7-2, then
 OpenSSH sends the entire (unrecognized) escape sequence to the
 server verbatim, whereas Tectia discards the escape sequence and
 sends nothing.

Table 7-2. ssh escape sequences
	Sequence
	Example with <ESC> =
 ~
	Meaning

	 <ESC> ^Z

	 ~ ^Z

	Suspend the connection
 (^Z means Control-Z)

	 <ESC> .

	 ~ .

	Terminate the
 connection

	 <ESC> #

	 ~ #

	List all forwarded
 connections

	
 <ESC><ESC>
	 ~ ~

	Send the escape character (by
 typing it twice)

	 <ESC> ?

	 ~ ?

	Print a help
 message

	 OpenSSH
 only:
	 	
	 <ESC>
 &
	 ~ &

	Send ssh into
 the background when waiting for connections to
 terminate

	 <ESC> B

	 ~ B

	Send a break to the server
)

	 <ESC> C

	 ~ C

	Open a command line to add or
 remove a port forwarding

	 <ESC> R

	~R
	Request rekeying
 immediately

	 Tectia
 only:
	 	
	 <ESC> -

	 ~ -

	Disable the escape
 character

	 <ESC> c

	 ~ c

	Print statistics for individual
 channels

	 <ESC> l

	 ~ l

	Switch to line mode

	 <ESC> r

	~r
	Request rekeying
 immediately

	 <ESC> s

	 ~ s

	Print statistics about this
 session

	 <ESC> V

	 ~ V

	Print version
 information

	“Suspend the connection” puts ssh
 into the background, suspended, returning control of the
 terminal to the local shell. To return to
 ssh, use the appropriate job control
 command of your shell, typically fg. While
 suspended, ssh doesn’t run, and if left
 suspended long enough, the connection may terminate since the
 client isn’t responding to the server. Also, any forwarded
 connections are similarly blocked while ssh
 is suspended. [9.2.9]

	“Terminate the connection” ends the SSH session
 immediately. This is most useful if you have lost control of the
 session: for instance, if a shell command on the remote host has
 hung and become unkillable, or if you tried exiting while a
 tunnel (forwarding) is still active. Any X or TCP port
 forwardings are terminated immediately as well. [9.2.9]

	“List all forwarded connections” prints a list of each X
 forwarding or TCP port forwarding connection currently
 established. This lists only active instances of forwarding; if
 forwarding services are available but not currently in use,
 nothing is listed here.

	“Send ssh into the background,” like
 the “suspend connection” command, reconnects your terminal to
 the shell that started ssh, but it doesn’t
 suspend the ssh process. Instead,
 ssh continues to run. This isn’t ordinarily
 useful, since the backgrounded ssh process
 immediately encounters an error.[112] This escape sequence becomes useful if your
 ssh session has active, forwarded
 connections when you log out. Normally in this situation, the
 client prints a message about waiting for forwarded connections
 to terminate. The client typically waits (silently) in the
 foreground for the forwarded connections to close before it
 exits: you can detect this by using the “list all forwarded
 connections” escape. While the client is in this state, the
 “send ssh into the background” escape
 sequence returns you to the local shell prompt.

	“Request rekeying immediately” causes the SSH client and
 server to generate and use some new internal keys for encryption
 and integrity. Normally, the client and server agree to rekey
 automatically at regular intervals. [5.3.4]

	“Send the escape character” tells the client to send a
 real tilde (or whatever the escape character is) to the SSH
 server as plaintext, not to interpret it as an escape.

	“Disable the escape character” prevents further escape
 sequences from having any effect, and is therefore
 irrevocable.

	“Open a command line to add or remove a port forwarding”
 prompts for -L or -R
 options to create a new local or remote port forwarding,
 respectively. [9.2]
 An existing remote forwarding can be canceled using
 -KR, followed by the target port
 number.[113] To obtain a help message, type -h or ?.

	“Switch to line mode” causes characters to be collected by
 the client and then sent together to the server after a newline
 has been entered. This allows line-editing features that are
 available on the client machine to be used, even in situations
 when similar features are not available on the server machine.
 Line mode is temporary: after a single line has been sent, the
 client resumes its normal operation of sending each character to
 the server as soon as it has been entered.

The rest of the escape sequences are self-explanatory.
Sometimes the default escape character can cause a problem.
 Suppose you connect by ssh from host A to host
 B, then from host B to host C, and finally from host C to host D,
 making a chain of ssh
 connections (we represent the machines’ shell prompts as A$, B$,
 C$, and D$):
 A$ ssh B
 ...
 B$ ssh C
 ...
 C$ ssh D
 ...
 D$
While logged onto host D, you press the Return key, then
 ~ ^Z (tilde followed by
 Control-Z) to suspend the
 connection temporarily. Well, you’ve got three
 ssh connections active, so which one gets
 suspended? The first one does, and this escape sequence brings you
 back to the host A prompt. Well, what if you want to escape back to
 host B or C? There are two methods, one with forethought and one on
 the spur of the moment.
If you prepare in advance, you may change the escape character
 for each connection with the configuration keyword EscapeChar, followed by a
 character:
 EscapeChar %
or the -e command-line option, followed
 again by the desired character (quoted if necessary to protect it
 from expansion by the shell):
 $ ssh -e '%' server.example.com
OpenSSH supports the value none to mean no escape character:
 # OpenSSH
 EscapeChar none
So, going back to our example of hosts
 A through D,
 you want a different escape character for each segment of this chain
 of connections. For example:
 A$ ssh B
 ...
 B$ ssh -e '$' C
 ...
 C$ ssh -e '%' D
 ...
 D$
Now, while logged onto host D, a
 tilde still brings you back to host A, but a dollar sign brings you
 back to host B and a percent sign back to host C. The same effect
 can be achieved with the EscapeChar keyword, but the following
 table shows that more forethought is required to set up
 configuration files on three hosts.
	OpenSSH
	Tectia

	 # Host A
 configuration file
	 # Host A
 configuration file

	 Host
 B
	 B:

	 EscapeChar ~
	 EscapeChar ~

	 	
	 # Host B
 configuration file
	 # Host B
 configuration file

	 Host
 C
	 C:

	 EscapeChar ^
	 EscapeChar ^

	 	
	 # Host C
 configuration file
	 # Host C
 configuration file

	 Host
 D
	 D:

	 EscapeChar %
	 EscapeChar %

Even if you don’t normally make chains of SSH connections, you
 might still want to change the escape character. For example, your
 work might require you to type a lot of tildes for other reasons,
 and you might accidentally type an escape sequence such as ~. (tilde period) and disconnect your
 session. Oops!
There’s a second method that requires no forethought: type the
 escape character multiple times. Typing it twice sends the character
 literally across the SSH connection. [7.4.6.8] Therefore, you
 can suspend the second SSH connection by typing two escapes, the
 third by typing three escapes, and so on. Remember, you must precede
 your escape characters by pressing the Return key. While logged onto
 host D, you could escape back to host B, for example, by hitting the
 Return key, then typing two tildes, and Control-Z.

7.4.7 Proxies and SOCKS

SOCKS is an application-layer network proxying system
 supported by various SSH implementations. Proxying in general provides
 a way to connect two networks at the application level, without
 allowing direct network-level connectivity between them. Figure 7-3 shows a typical SOCKS
 installation.
The figure shows a private network and the Internet. The gateway
 machine is connected to both, but doesn’t function as a router;
 there’s no direct IP connectivity between the two networks. If a
 program running on H wants to make a TCP connection to a server on S,
 it instead connects to the SOCKS server running on G. Using the SOCKS
 protocol, H requests a connection to S. The SOCKS server makes a
 connection from G to S on behalf of H and then steps out of the way,
 passing data back and forth between H and S.
[image: A typical SOCKS installation]

Figure 7-3. A typical SOCKS installation

A general drawback of application-level proxying is lack of
 transparency: only those programs written with support for the
 particular proxying scheme have network access. SOCKS, however, isn’t
 specific to any higher-level protocol such as HTTP or SMTP. It
 provides general services: makes a TCP connection, pings a host,
 performs a traceroute, etc. Many of its services match the existing
 programming boundary between applications and network-services
 libraries. As a result, on modern computer systems employing
 dynamically linked libraries, it is often possible to extend SOCKS to
 non-SOCKS-aware applications, such as SSH, by replacing the right
 libraries with SOCKS-aware ones.
SOCKS comes in two versions, SOCKS4 and SOCKS5. There are two
 major added features in SOCKS5: authentication and naming support.
 SOCKS5 supports user authentication so that a proxy can apply access
 control and user logging to its service. “Naming support” refers to
 the fact that in SOCKS4, a proxy client expresses the socket it wants
 to reach as an (IP address, port) pair. In
 real-world situations, however, the client will often know only the
 name, not the address, of the host it wants to reach. Furthermore, it
 may not be able to resolve that name directly, since being behind a
 proxy, it is likely to be in a different naming context than the
 server (e.g., a corporate network with split DNS). With SOCKS5, the
 client can instead pass a (name, port) pair
 to the proxy server, leaving the proxy to perform the name lookup
 where it is mostly likely to succeed.
There are two ways in which SSH clients use SOCKS:
	As a normal SOCKS client, as described earlier.

	As a SOCKS server, in conjunction with
 port forwarding. This allows for dynamic
 forwarding, by which other SOCKS clients may reach any
 TCP socket on the other side of an SSH connection, through a
 single forwarded port.

OpenSSH supports only the second method, while Tectia supports
 both.
7.4.7.1 SOCKS in OpenSSH: using DynamicForward

Dynamic forwarding in OpenSSH is done using the
 -D switch or DynamicForward configuration
 statement:
 $ ssh -D1080 server
or:
 # ~/.ssh/config:
 host server
 DynamicForward 1080
As with static (-L) port forwarding, this
 command causes the SSH client to listen for TCP connections on the
 given port (here 1080, the standard SOCKS port). Note, however, that
 there’s no argument specifying a target socket for the forwarding!
 That’s because this sort of forwarding is completely flexible: each
 connection to port 1080 can go to a different remote socket, given
 at connection time via the SOCKS protocol. Set any network client
 with SOCKS support to use this SSH-forwarded port as its “SOCKS
 server,” and it will have complete TCP access to the network on the
 other side of the SSH connection.
Just as with static forwarding, a dynamically forwarded port
 by default listens only on the loopback address. Use the
 -g switch to have it listen on all host addresses.
 This option affects all locally forwarded ports
 established with this instance of ssh.
Unfortunately, OpenSSH does not have SOCKS
 client support built in. However, there are a
 number of packages around for conveniently “socksifying” existing
 programs on the fly; two such packages are
 tsocks and runsocks. They
 both play with the system dynamic linker to replace basic network
 library calls with SOCKS-aware wrappers, and they are both effective
 on OpenSSH.
If this sort of linking trick doesn’t work, then you can use a
 separate program instead. You’ll need a simple utility which makes
 the connection through your SOCKS proxy, e.g., a socksified version
 of netcat (nc):
http://www.securityfocus.com/tools/137
http://netcat.sourceforge.net/

Then simply:
 # OpenSSH
 # ssh -o ProxyCommand="nc %h %p" ...

7.4.7.2 SOCKS in Tectia

Tectia supports both SOCKS client and server
 (dynamic-forwarding) features, and both SOCKS4 and SOCKS5. However,
 it does not support user authentication in the SOCKS5 client.
Tectia SOCKS client The
 Tectia SOCKS client feature is controlled with a single parameter,
 set with the SocksServer
 configuration keyword or the SSH_SOCKS_SERVER environment variable. The
 configuration option overrides the environment variable if both are
 present.
The SocksServer keyword is
 a string with the following format:
socks://[user]@gateway[:port]/[net1/mask1,net2/mask2,...]
Here, gateway is the machine running the
 SOCKS server, user is the username you supply
 for identification to SOCKS, and port is the
 TCP port for the SOCKS server (by default, 1080). The
 net/mask entries indicate
 netblocks that are to be considered local; that is,
 ssh uses SOCKS only for connections lying
 outside the given network ranges. The mask is given as the length of
 the network prefix, not an explicit mask, e.g., 192.168.10.0/24
 rather than 192.168.10.0/255.255.255.0.
The parts of the string enclosed in square brackets are
 optional. So, an SSH_SOCKS_SERVER
 value can be as simple as this:
	socks://laces.shoes.net

With this value, ssh uses SOCKS for all
 connections. It connects to a SOCKS server running on
 laces.shoes.net, port 1080, and it doesn’t
 supply a username. You’ll probably never want to use an SSH_SOCKS_SERVER setting as simple as this
 one, which uses the SOCKS server for all ssh
 connections, even those connecting back to the same machine or to a
 machine on the same network. A better setup is to use SOCKS only for
 hosts on the other side of the gateway from you. Here’s a more
 complete example:
	socks://dan@laces.shoes.net:4321/127.0.0.0/8,192.168.10.0/24

With this value, ssh connects directly to
 itself via its loopback address (127.0.0.1), or to hosts on the
 class C network, 192.168.10.0. It uses SOCKS for all other
 connections, supplying the username “dan” and looking for the SOCKS
 server on port 4321.
Tectia SOCKS server (dynamic port
 forwarding) Tectia also has dynamic port forwarding
 via SOCKS, as described earlier for the OpenSSH
 -D option. [7.4.7.1] It works
 analogously, using this syntax:
 # Tectia
 $ ssh -L socks/1080 server
You could then even use a separate ssh
 command as a SOCKS client of this one, to reach a second SSH server
 on the far side of the first one:
 # Tectia
 $ ssh -o 'SocksServer socks://localhost/' ...

7.4.8 Forwarding

Port forwarding and X forwarding are covered in Chapter 9 and agent forwarding in Chapter 6. We mention them here only
 for completeness, since forwarding can be controlled in the client
 configuration file and on the command line.

7.4.9 Encryption Algorithms

When establishing a connection, an SSH client and server have a
 little conversation about encryption. The server says, “Hello client,
 here are the encryption algorithms I support.” In return, the client says, “Hi there
 server, I’d like to choose this particular algorithm, please.”
 Normally, they reach agreement, and the connection proceeds. If they
 can’t agree on an encryption algorithm, the connection fails.
Most users let the client and server work things out themselves.
 But if you like, you may instruct the client to request particular
 encryption algorithms in its conversation with the server. This is
 done with the Ciphers keyword
 followed by a comma-separated list of encryption algorithms of
 choice:
 Ciphers blowfish,3des
or the -c command-line option, either
 followed by a comma-separated list (OpenSSH) or specified multiple
 times (Tectia):
 # OpenSSH
 $ ssh -c blowfish,3des server.example.com

 # Tectia
 $ ssh -c blowfish -c 3des server.example.com
indicating that any of these algorithms is acceptable.
All ciphers acceptable by a server may be specified for the
 client. [5.3.5] Check
 the latest SSH documentation for a current list of supported
 ciphers.

7.4.10 Integrity-Checking (MAC) Algorithms

The -m command-line option lets you
 select the integrity-checking algorithm, known as the message
 authentication code (MAC), used by the SSH-2 protocol : [3.8.3]
 $ ssh -m hmac-sha1 server.example.com
You can specify multiple algorithms on the command line, either
 as a comma-separated list (OpenSSH) or with multiple
 -m options (Tectia):
 # OpenSSH
 $ ssh -m hmac-sha1,hmac-md5 server.example.com

 # Tectia
 $ ssh -m hmac-sha1 -m hmac-md5 server.example.com
and the SSH server selects one to use. OpenSSH supports the
 MACs keyword to do the same
 thing:
 # OpenSSH
 MACs hmac-sha1,hmac-md5

7.4.11 Host Key Types

OpenSSH lets you choose host key types you will accept. Provide a comma-separated list of
 types, from highest to lowest precedence, to the HostKeyAlgorithms keyword. See the
 ssh_config manpage for the current selection of
 algorithms.
 # OpenSSH
 HostKeyAlgorithms ssh-dss,ssh-rsa
Suppose you are about to SSH to a new server for the first time.
 Being security conscious, you have obtained the server’s RSA hostkey
 through reliable means and placed it in ~/.ssh/known-hosts. But when you connect,
 you find that OpenSSH uses the server’s DSA key instead, and complains
 about an unknown hostkey. OpenSSH is not smart enough to prefer a key
 type it has over one it doesn’t—but you can work around this by
 setting HostKeyAlgorithms to
 ssh-rsa.

7.4.12 Session Rekeying

The RekeyIntervalSeconds keyword specifies how
 often (in seconds) the Tectia client performs key exchange with the
 server to replace the session data-encryption and integrity keys. The
 default is 3600 seconds (one hour), and a zero value disables
 rekeying:
 # Tectia
 RekeyIntervalSeconds 7200

7.4.13 Authentication

In a typical SSH setup, clients try to authenticate by the
 strongest methods first. If a particular method fails or isn’t set up,
 the next one is tried, and so on. This default behavior should work
 fine for most needs.
Nevertheless, your clients may request specific types of
 authentication if they need to do so. For example, you might want to
 use public-key authentication only, and if it fails, no other methods
 should be tried.
7.4.13.1 Requesting an authentication technique

OpenSSH clients can request specific authentication methods by
 keyword. The syntax is the same as the server’s in /etc/ssh/sshd_config, and you can specify
 all the same authentication methods. [5.4.1] Examples are
 PasswordAuthentication, PubKeyAuthentication, and KerberosAuthentication, followed by
 yes or no:
 # OpenSSH
 PasswordAuthentication no
 PubKeyAuthentication yes
Additionally, you can specify the order in which the client
 should try these authentication methods, with the PreferredAuthentications keyword:
 # OpenSSH
 PreferredAuthentications publickey,hostbased,password
The ssh_config(5) manpage lists the
 currently supported methods.
For Tectia, the AllowedAuthentications keyword selects one
 or more authentication techniques. Again, the keyword has the same
 use here as for the Tectia server: [5.4.1]
 # Tectia
 AllowedAuthentications publickey, password

7.4.13.2 The server is the boss

When a client specifies an authentication technique,
 this is just a request, not a requirement. For example, the
 configuration:
 PasswordAuthentication yes
informs the SSH server that you, the client, agree to
 participate in password authentication. It doesn’t guarantee that
 you will authenticate by password, just that you are willing to do
 it if the server agrees. The server makes the decision and might
 still authenticate you by another method.
For a client to require an authentication technique, it must
 tell the server that one, and only one, technique is acceptable. To
 do this, the client must deselect every other authentication
 technique. For example, to try only password authentication with the
 server, use OpenSSH’s PreferredAuthentications keyword:
 # OpenSSH
 PreferredAuthentications password
or Tectia’s AllowedAuthentications keyword, which has
 the same syntax as the server keyword of the same name: [5.4.1]
 # Tectia
 AllowedAuthentications password
If the server doesn’t support password authentication,
 however, this connection attempt will fail.

7.4.13.3 Detecting successful authentication

Tectia provides two keywords for reporting whether
 authentication is successful: AuthenticationSuccessMsg and AuthenticationNotify. Each of these causes
 Tectia clients to print a message after attempting
 authentication.
AuthenticationSuccessMsg
 controls the appearance of the message “Authentication successful”
 after authentication, which is printed on standard error. Values may
 be yes (the default, to display
 the message) or no:
 # Tectia
 $ ssh server.example.com
 Authentication successful.
 Last login: Sat Jun 24 2000 14:53:28 -0400
 ...
 $ ssh -p221 -o 'AuthenticationSuccessMsg no' server.example.com
 Last login: Sat Jun 24 2000 14:53:28 -0400
 ...
AuthenticationNotify, an
 undocumented keyword, causes Tectia’s ssh to
 print a different message, this time on standard output. If the
 authentication is successful, the message is “AUTHENTICATED YES”;
 otherwise, it’s “AUTHENTICATED NO”. Values may be yes (print the message) or no (the default):
 $ ssh -q -o 'AuthenticationNotify yes' server.example.com
 AUTHENTICATED YES
 Last login: Thu Jun 24 2004 14:53:35 -0400
 ...
The behavior of these two keywords differs in the following
 ways:
	AuthenticationSuccessMsg writes to
 stderr; AuthenticationNotify
 writes to stdout.

	The -q command-line option [7.4.17] silences
 AuthenticationSuccessMsg but
 not AuthenticationNotify.
 This makes AuthenticationNotify better for
 scripting (for example, to find out if an authentication can
 succeed or not). Notice that exit is used
 as a remote command so that the shell terminates
 immediately:
 #!/bin/csh
 # Tectia
 # Get the AUTHENTICATION line
 set line = `ssh -q -o 'AuthenticationNotify yes' server.example.com exit`
 # Capture the second word
 set result = `echo $line | awk '{print $2}'`
 if ($result == "YES") then
 ...
In fact, AuthenticationNotify is used precisely
 in this manner by Tectia’s scp and
 sftp, when these programs run
 ssh in the background to connect to the
 remote host for file transfers. They wait for the appearance of
 the “AUTHENTICATED YES” message to know that the connection was
 successful, and they can now start speaking to the
 sftp-server.

AuthenticationSuccessMsg
 provides an additional safety feature: a guarantee that
 authentication has occurred. Suppose you invoke Tectia’s
 ssh and are prompted for your
 passphrase:
 # Tectia
 $ ssh server.example.com
 Passphrase for key "mykey": ********
You then see, to your surprise, a second passphrase
 prompt:
 Passphrase for key "mykey":
You might conclude that you mistyped your passphrase the first
 time, and so you type it again. But what if the second prompt came
 not from your ssh client, but from the server,
 which has been cracked by an evil intruder? Your passphrase has just
 been stolen! To counteract this potential threat,
 ssh prints “Authentication successful” after
 authentication, so the previous session actually looks like
 this:
 # Tectia
 $ ssh server.example.com
 Passphrase for key "mykey": ********
 Authentication successful.
 Passphrase for key "mykey": Suspicious!
The second passphrase prompt is now revealed as a
 fraud.

7.4.13.4 Using ssh-keysign for hostbased
 authentication

Earlier we described how hostbased authentication
 requires a privileged program that provides SSH credentials to user
 processes. [3.4.3.6]
 In OpenSSH, this program is ssh-keysign. It
 must be installed setuid root (or any account that can read the
 client hostkey).
To allow a client system to perform hostbased authentication,
 the system administrator must set the EnableSSHKeysign keyword in /etc/ssh/ssh_config:
 # ssh_config
 EnableSSHKeysign yes
Most options in ssh_config are for the
 ssh program itself, but this one option is read
 by ssh-keysign. Hostbased authentication relies
 critically on the integrity of the client host and on other
 administrative requirements, such as correspondence of account names
 across hosts. It is crucial that it not be used unless these
 requirements are met; this option is to make sure that it is not
 enabled unless the system administrator consciously chooses to do
 so.

7.4.14 Data Compression

SSH connections may be compressed. That is, data sent over an
 SSH connection may be compressed automatically before it is encrypted
 and sent, and automatically uncompressed after it is received and
 decrypted. If you’re running SSH software on fast, modern processors,
 compression is generally a win. However, it also depends on your
 network speed, and whether the data you’re transferring is already
 compressed or not (say, a large compressed tar
 file).
To enable compression for a single session, use command-line
 options. Unfortunately, the implementations have incompatible syntax.
 For OpenSSH, compression is disabled by default, and the
 -C command-line option turns it on:
 # OpenSSH: turn compression ON
 $ ssh -C server.example.com
 $ scp -C myfile server.example.com:
For Tectia, however, -C means the opposite,
 turning compression off:
 # Tectia: turn compression OFF
 $ ssh -C server.example.com
and +C turns it on:
 # Tectia: turn compression ON
 $ ssh +C server.example.com
(There is no compression option for Tectia’s
 scp.) To enable or disable compression for all
 sessions, use the Compression
 keyword, given a value of yes or
 no (the default):
 Compression yes

7.4.15 Program Locations

The auxiliary Tectia program
 ssh-signer is normally located in Tectia’s
 installation directory, along with the other Tectia binaries. [3.4.3.6] You can change
 this location with the undocumented keyword SshSignerPath:
 # Tectia
 SshSignerPath /usr/alternative/bin/ssh-signer2
If you use this keyword, be sure to set it to the fully
 qualified path of the program. If you use a relative path, hostbased
 authentication works only for users who have
 ssh-signer2 in their search path, and
 cron jobs fail without
 ssh-signer2 in their path.

7.4.16 Subsystems

Subsystems are predefined commands supported by an SSH server.
 [5.8] Each installed
 server can implement different subsystems, so check with the system administrator of the server
 machine for a list.[114]
The -s option of ssh
 invokes a subsystem on a remote machine. For example, if the SSH
 server running on server.example.com has a “backups”
 subsystem defined, you run it as:
 $ ssh server.example.com -s backups
OpenSSH uses the remote command as the subsystem name: this must
 be specified last on the ssh command line. In
 contrast, Tectia obtains the subsystem name from the command-line
 argument that immediately follows the -s option.
 Therefore, our previous example works in both cases, so we highly
 recommend this syntax. Other orderings of the command line are
 possible for specific implementations:
 # OpenSSH
 $ ssh -s server.example.com backups

 # Tectia
 $ ssh -s backups server.example.com
Command-line arguments cannot be used with subsystems: neither
 OpenSSH nor Tectia provides any mechanism for passing them from client
 to server. If any extra arguments are given on the
 ssh command line, OpenSSH (mis)interprets them as
 part of the subsystem name:
 # OpenSSH
 $ ssh server.example.com -s backups /home
 Request for subsystem 'backups /home' failed on channel 0
whereas Tectia simply forbids extra command-line arguments if
 -s is used:
 # Tectia
 $ ssh server.example.com -s backups /home
 ssh: FATAL: No command allowed with subsystem.

7.4.17 Logging and Debugging

Earlier in the chapter, we introduced the
 -v command-line option which causes SSH clients
 to print verbose debugging messages. [7.3] Verbose mode works for
 ssh and scp, e.g.:
 $ ssh -v server.example.com
OpenSSH also has the LogLevel
 keyword, which takes the following levels as an argument: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG1, DEBUG2, and DEBUG3 (in order of increasing verbosity).
 The value DEBUG is equivalent to
 DEBUG1, and:
 # OpenSSH
 $ ssh -o LogLevel=DEBUG
is equivalent to ssh -v.
Verbose mode can also be turned on for Tectia with the
 (surprise!) VerboseMode
 keyword:
 # Tectia
 VerboseMode yes
If you ever encounter problems or strange behavior from SSH,
 your first instinct should be to turn on verbose mode.
Tectia’s ssh has multiple levels of debug
 messages; verbose mode corresponds to level 2. You can specify greater
 or less debugging with the -d command-line
 option, followed by an integer from 0 to 99:
 # Tectia
 $ ssh -d0 No debugging messages
 $ ssh -d1 Just a little debugging
 $ ssh -d2 Same as -v
 $ ssh -d3 A little more detailed
 $ ssh -d# And so on...
Tectia’s -d option may also use the same
 module-based syntax as for serverdebugging: [5.9]
 # Tectia
 $ ssh -d Ssh2AuthPasswdServer=2 server.example.com
Tectia’s scp also supports this level of
 debugging, but the option is -D instead of
 -d since scp -d is already
 used to mean something else:
 # Tectia
 $ scp -D Ssh2AuthPasswdServer=2 myfile server.example.com
To disable all debug messages, use
 -q:
 $ ssh -q server.example.com
or specify it with the LogLevel (OpenSSH) or QuietMode (Tectia) keyword:
 # OpenSSH
 LogLevel QUIET

 # Tectia
 QuietMode yes
Finally, to print the program version number, use
 -V:
 $ ssh -V

7.4.18 Random Seeds

Tectia lets you change the location of your random seed
 file, which is ~/.ssh2/random_seed by default: [5.3.1.2]
 # Tectia
 RandomSeedFile /u/smith/.ssh2/new_seed

[107] Tectia accomplishes the same thing with identification
 files, which may contain multiple keys.

[108] Per the constant SSH_MAX_IDENTITY_FILES in the source
 code.

[109] scp already has a lowercase
 -p option that means “preserve file
 permissions.” [7.5.4]

[110] Although this is a client setting, the SSH server
 ultimately controls how many authentication attempts to
 accept.

[111] The no-pty option in
 the authorization file can override this request for a tty.
 [8.2.8]

[112] The error occurs as ssh attempts
 to read input from the now disconnected
 pseudo-terminal.

[113] Local forwardings cannot be canceled.

[114] Or examine the remote machine’s server configuration file
 yourself for lines beginning with
 subsystem.

Secure Copy with scp

The secure copy program, scp, obeys keywords
 in your client configuration file just as ssh does.
 In addition, scp provides other features and
 options that we’ll cover in this section. Remember that
 scp supports several options for logging and
 debugging, so you can watch what’s going on when it runs. [7.3]
7.5.1 Full Syntax of scp

So far, we’ve described the syntax of scp
 only in general: [2.2.1]
 scp name-of-source name-of-destination
Each of the two names, or path
 specifications, on the command line represents files or
 directories in the following manner (it is fairly consistent with the
 behavior of Unix cp or
 rcp):
	If name-of-source is a file,
 name-of-destination may be a file (existing
 or not) or a directory (which must exist). In other words, a
 single file may be copied to another file or into a
 directory.

	If name-of-source is two or more files,
 one or more directories, or a combination,
 name-of-destination must be an existing
 directory into which the copy takes place.[115] In other words, multiple files and directories may
 be copied only into a directory.

Both name-of-source and
 name-of-destination may have the following form
 from left to right:
	The username of the account containing
 the file or directory, followed by @. This part is optional, and
 if omitted, the value is the username of the user invoking
 scp.

	The hostname of the host containing the
 file or directory, followed by a colon. This part is optional, if
 the path is present, and the username isn’t; if omitted, the value
 is localhost. Tectia permits an optional
 TCP port number for the SSH connection to be
 inserted between the hostname and the colon, preceded by a hash
 sign.

	The directory path to the file or
 directory. (Optional if the hostname is present.) Relative
 pathnames are assumed relative to the default
 directory, which is the current directory (for local
 paths) or the user’s home directory (for remote paths). If omitted
 entirely, the path is assumed to be the default directory.

Although each field is optional, you can’t omit them all at the
 same time, yielding the empty string. Either the hostname (•) or the
 directory path (•) must be present. Some examples:
	MyFile
	The file . /MyFile on
 localhost

	MyDirectory
	The directory ./MyDirectory on
 localhost

	. (period)
	The current directory on
 localhost

	server.example.com:
	The directory ~username on
 server.example.com

	server.example.com
	A local file named “server.example.com” (Oops: did you
 forget the trailing colon? This is a common mistake.)

	server.example.com:MyFile
	The file MyFile in
 the remote user’s home directory on
 server.example.com

	
 bob@server.example.com:
	The directory ~bob on
 server.example.com

	
 bob@server.example.com
	A local file named "bob@server.example.com"
 (oops; forgot the trailing colon again)

	
 bob@server.example.com:MyFile
	The file ~bob/MyFile
 on server.example.com

	server.example.com:dir/MyFile
	The file dir/MyFile
 in the remote user’s home directory on
 server.example.com

	server.example.com:/dir/MyFile
	The file /dir/MyFile
 on
 server.example.com (note the absolute
 path)

	
 bob@server.example.com:dir/MyFile

	The file ~bob/dir/MyFile on
 server.example.com

	
 bob@server.example.com:/dir/MyFile

	The file /dir/MyFile
 on server.example.com (although you
 authenticate as bob, the path is absolute)

	server.example.com#2000:
	The remote user’s home directory on
 server.example.com, via TCP port 2000
 (Tectia only)

Here are a few complete examples:
 $ scp myfile myfile2 A local copy just like cp
 $ scp myfile bob@host1: Copy . /myfile to ~bob on host1
 $ scp bob@host1:myfile . Copy ~bob/myfile on host1 to . /myfile
 $ scp host1:file1 host2:file2 Copy file1 from host1 to file2 on host2
 $ scp bob@host1:file1 jen@host2:file2 Same as above, but copying from bob's to jen's account
Table 7-3
 summarizes the syntax of an scp path.
Table 7-3. scp path specifications
	Field
	Other syntax
	Optional?
	Default for local
 host
	Default for remote
 host

	 a Tectia
 only.

	Username
	Followed by @
	Yes
	Invoking user’s
 username
	Invoking user’s
 username

	Hostname
	Followed by :
	Only if username is omitted and path
 is present
	None, file is accessed
 locally
	N/A

	Port number
 a
	Preceded by #
	Yes
	22
	22

	Directory path
	N/A
	Only if hostname is
 present
	Current (invoking)
 directory
	Username’s remote home
 directory

7.5.2 Handling of Wildcards

 scp for OpenSSH has no special
 support for wildcards in filenames. It simply lets the shell expand
 them:
 $ scp *.txt server.example.com:
Watch out for wildcards in remote file specifications, as they
 are evaluated on the local machine, not the remote. For example, this
 attempt is likely to fail:
 $ scp server.example.com:*.txt . Bad idea!
The Unix shell attempts to expand the wildcard before
 scp is invoked, but the current directory
 contains no filename matching “server.example.com:*.txt”. The C shell
 and its derivatives will report “no match” and will not execute
 scp. Bourne-style shells, noticing no match in
 the current directory, will pass the unexpanded wildcard to
 scp, and the copy may succeed as planned, but
 this coincidental behavior shouldn’t be relied on. Always escape your
 wildcards so that they are explicitly ignored by the shell and are
 passed to scp:
 $ scp server.example.com:*.txt .
Tectia’s scp does its own regular
 expression matching after shell-wildcard expansion is complete. The
 sshregex manpage for Tectia (see Appendix B) describes the supported
 operators. Even so, escape your wildcard characters if you want your
 local shell to leave them alone.

7.5.3 Recursive Copy of Directories

Sometimes you want to copy not just a single file, but a
 directory hierarchy. In this case, use the -r
 option, which stands for recursive. For example,
 to securely copy the directory /usr/local/bin and all its files and
 subdirectories to another machine:
 $ scp -r /usr/local/bin server.example.com:
If you forget the -r option when copying
 directories, scp complains:
 $ scp /usr/local/bin server.example.com:
 /usr/local/bin: not a regular file
Although scp can copy directories, it isn’t
 necessarily the best method. If your directory contains hard links or
 soft links, they won’t be duplicated. Links are copied as plain files
 (the link targets). Other types of special files, such as named pipes,
 also aren’t copied correctly.[116] A better solution is to use tar,
 which handles special files correctly, and send it to the remote
 machine to be untarred, via SSH:
 $ tar cf - /usr/local/bin | ssh server.example.com tar xf -
or rsync, tunneled through SSH:
 $ rsync -e ssh /usr/local/bin server.example.com:

7.5.4 Preserving Permissions

When scp copies files, the
 destination files are created with certain file attributes. By
 default, the file permissions adhere to a umask on the destination host, and the
 modification and last access times will be the time of the copy.
 Alternatively, you can tell scp to duplicate the
 permissions and timestamps of the original files. The
 -p option accomplishes this:
 $ scp -p myfile server.example.com:
For example, if you transfer your entire home directory to a
 remote machine, you probably want to keep the file attributes the same
 as the original:
 $ scp -rp $HOME server.example.com:myhome/
Again, scp does not duplicate special files
 and links, so consider tar or rsync
 -a instead:
 $ rsync -a -e ssh /usr/local/bin server.example.com:

7.5.5 Automatic Removal of Original File

After copying a file, Tectia’s scp can
 optionally remove the original if desired. The -u
 command-line option specifies this:
 # Tectia
 $ scp myfile server.example.com:
 $ ls myfile
 myfile
 $ scp -u myfile server.example.com:
 $ ls myfile
 myfile: No such file or directory
If you’ve ever wanted a “secure move” command in addition to
 secure copy, you can define one in terms of scp
 -u:
 # Tectia
 $ alias smv='scp -u'

7.5.6 Safety Features

Tectia’s scp has several features to
 protect you from running dangerous commands.
7.5.6.1 Directory confirmation

Suppose you want to copy a local file, myfile, to a remote directory. You
 type:
 $ scp myfile server.example.com:mydir
 $ rm myfile
Then you connect to server.example.com
 and find, to your horror, that mydir was a file, not a directory, and
 you just overwrote it! Tectia’s -d option
 prevents this tragedy. If the destination isn’t a directory,
 scp complains and exits without copying the
 file:
 # Tectia
 $ scp -d myfile server.example.com:mydir
 scp: warning: Destination (example.com:mydir) is not a directory.
This option is necessary only if you are copying a single
 file. If you are copying multiple files or a directory, all the
 scp implementations check by default that the
 remote destination is a directory.[117]

7.5.6.2 No-execute mode

Another safety feature of Tectia’s scp is
 the -n option, which instructs the program to
 describe its actions but not perform any copying. This is useful for
 verifying the behavior of scp before executing
 a potentially risky command.
 # Tectia
 $ scp -n myfile server.example.com:
 Not transferring myfile -> server.example.com:./myfile (1k)

7.5.6.3 Overwriting existing files

Tectia’s scp will refuse to overwrite
 existing files if you desire. The -I or
 --interactive option will prompt you before
 overwriting a destination file:
 # Tectia
 $ scp -I myfile server.example.com:
 Overwrite destination file './myfile' with '/home/smith/myfile' (yes/yes to all/no/no
 to all/abort) [y/Y/n/N/a]:n
As an alternative, if you know in advance whether you’ll want
 to overwrite existing files, use the
 --overwrite option (the default is no):
 # Tectia
 $ scp --overwrite yes myfile server.example.com: Always overwrite

7.5.7 Batch Mode

If you’re using scp in scripts with
 passwordless authentication [11.1], you might want to
 suppress all prompting of the user. That’s what the
 -B option is for, which enables batch
 mode. When present, this option suppresses all interaction
 with the user. [7.4.6.4]
 $ scp -B myfile server.example.com:

7.5.8 User Identity

OpenSSH provides the -i option for
 scp, as it does for ssh, to
 specify a particular identity file for authentication. [7.4.2]
 # OpenSSH
 $ scp -i my_favorite_key myfile server.example.com:
Tectia has no option like this, but you can get around this
 limitation with - o: [7.1.2.1]
 # Tectia
 $ scp -o "IdentityFile my_identity_file" myfile server.example.com:

7.5.9 SSH Protocol Settings

You can downgrade scp to use the SSH-1
 protocol with the -1 option, if you are feeling
 insecure:
 $ scp -1 myfile server.example.com:
or redundantly specify the SSH-2 protocol, which is the default
 anyway:
 # OpenSSH
 $ scp -2 myfile server.example.com:

7.5.10 TCP/IP Settings

You can specify the remote TCP port contacted by
 scp with the -P option
 (OpenSSH):
 # OpenSSH
 $ scp -P 23456 myfile server.example.com:
or by appending a hash mark and port number to the file
 specification (Tectia):
 # Tectia
 $ scp myfile server.example.com#23456:
Both OpenSSH and Tectia can require the use of IP Version 4 or
 6, as ssh does, with the -4
 and -6 options. [7.4.5.6]

7.5.11 Encryption Algorithms

You can set the encryption cipher for scp
 with the -c option, exactly as for
 ssh. [7.4.9]

7.5.12 Controlling Bandwidth

The -l (lowercase L) option of OpenSSH’s
 scp command will limit the bandwidth of the
 connection, in case you want to avoid saturating a slower
 network.
 # OpenSSH
 $ scp -l 1000 myfile server.example.com: Limit bandwidth to 1000 kilobits per second
Tectia’s scp command can limit the maximum
 number of concurrent requests it will issue, with the
 -N option:
 # Tectia
 $ scp -r -N 5 mydirectory server.example.com: Limit to five concurrent requests in this recursive directory transfer
Finally, Tectia’s -b option controls the
 buffer size for the file transfer; the default is 32K:
 # Tectia
 $ scp -b 65536 myfile server.example.com: Set buffer size to 64K

7.5.13 Data Compression

OpenSSH’s scp command can compress
 the data before sending it, with the -C option,
 to speed up transfers: [7.4.14]
 # OpenSSH
 $ scp -C myfile server.example.com:
Tectia does not provide a similar option, but you can get around
 this and enable compression with -o: [7.1.2.1]
 $ scp -o "Compression yes" myfile server.example.com:

7.5.14 File Conversion

Tectia’s scp has several options for
 changing the files in transit. It can change the destination filenames
 to all lowercase, with the --force-lower-case
 option:
 # Tectia
 $ scp --force-lower-case MyFile server.example.com:
The destination file on server.example.com
 will be named myfile rather than
 MyFile.
Another Tectia transformation involves the treatment of lines in
 a text file. scp normally transfers files
 literally, as binary data. You can choose to treat the files specially
 as text files—that is, lines of ASCII characters terminated by
 carriage returns and/or linefeeds—with the -a
 option. Unix, DOS, and Macintosh operating systems use different
 standards for terminating lines of text, and scp
 can convert between these standards.
 # Tectia
 $ scp -a my_text_file server.example.com:
The above command assumes that the SSH client and server can
 accurately communicate and agree upon the text file standards. If not,
 you can use a more advanced syntax for -a that
 specifies the line terminators as unix, dos, or mac. This is done by placing src: (for the source machine) and dst: (for the destination machine) after the
 -a option. Some examples:
 # Tectia
 $ scp -asrc:unix -adst:dos myfile server.example.com: Convert from Unix to DOS/Windows format
 $ scp -asrc:dos -adst:mac myfile server.example.com: Convert from DOS/Windows to Macintosh format
 $ scp -asrc:mac -adst:unix myfile server.example.com: Convert from Macintosh to Unix format

7.5.15 Optimizations

Tectia’s scp does a few
 optimizations to avoid transferring unnecessary files and data. Before
 coping a file, scp compares the file sizes. If
 they are different, the copy commences, but if they are the same,
 scp computes an MD5 checksum of the source and
 destination file. If the checksums are equal, the files are assumed to
 be identical and no copy takes place, and you’ll see a message like
 this:
 myfile: complete md5 match -> transfer skipped
If you always want your files copied, even if they are identical
 (i.e., have equal checksums), you can disable the MD5 test with the
 --checksum option, providing the value no:
 # Tectia
 $ scp --checksum no myfile server.example.com: Don't compute checksums for files
Tectia’s scp performs similar checking on
 individual data blocks to determine whether to transfer them or not.
 You can control this with the -W or
 --whole-file options, providing the value
 yes or no:
 # Tectia
 $ scp --whole-file yes myfile server.example.com: Always transfer whole files

7.5.16 Statistics Display

As scp copies files, it prints information
 about its progress, including statistics about the file transfer. You
 can control this information with various options.
OpenSSH simply lets you suppress the statistics with its
 -q option:
 # OpenSSH
 $ scp -q myfile server.example.com:
Tectia can likewise suppress statistics with the
 -Q option (Tectia).
 # Tectia
 $ scp -Q myfile server.example.com:
but permits more control with the
 --statistics option:
 # Tectia
 $ scp --statistics no myfile server.example.com: Same as -Q option

 $ scp --statistics simple myfile server.example.com: Minimal statistics
 /home/smith/myfile | 4B | 4B/s | TOC: 00:00:01

 $ scp --statistics yes myfile server.example.com: Full statistics
 myfile | 4B | 4B/s | TOC: 00:00:01 | 100%

7.5.17 Locating the ssh Executable

To copy files securely, scp invokes
 ssh internally. Therefore,
 scp needs to know where the
 ssh executable resides on disk. Normally, the
 path to ssh is made known to
 scp at compile time (by the compile-time flag
 --prefix), but you can specify the path manually if
 you like. [4.3.5.1]
 For instance, you can test a new version of ssh
 with an old version of scp. The command-line
 option -S specifies the path:
 $ scp -S /usr/alternative/bin/ssh myfile server.example.com:

7.5.18 Getting Help

Both OpenSSH and Tectia scp will print a
 usage message briefly describing all its options:
 $ scp --help
You can get the same effect if you omit all arguments (OpenSSH)
 or use -h (Tectia). Tectia will also print its
 version number on request:
 # Tectia
 $ scp --version
 $ scp -V

7.5.19 For Internal Use Only

scp for OpenSSH has two undocumented
 options, -t and -f, for
 internal use. Most likely you will never need to use them explicitly.
 They inform scp of the direction of the copy:
 from the local to the remote machine, or from remote to local. The
 -t option means copying to a remote machine and
 -f means copying from a remote machine.
Whenever you invoke scp, it invisibly runs
 a second scp process on the remote host that
 includes either -t or -f on
 its command line. You can see this if you run scp
 in verbose mode. If copying from the local to the remote machine, you
 see:
 $ scp -v myfile server.example.com:
 Executing: host server.example.com, ..., command scp -v -t .
 ...
On the other hand, if you copy from the remote to the local
 machine, you see:
 $ scp -v server.example.com:myfile .
 Executing: host server.example.com, ..., command scp -v -f .
 ...
Again, it’s likely you’ll never use these options, but they’re
 useful to know when reading scp’s output in
 verbose mode.

7.5.20 Further Configuration

You can set any client configuration keywords for
 scp using the -o option,
 exactly as for ssh. Additionally, OpenSSH lets
 you specify an alternative configuration file with
 -F. [7.1.2.1]

[115] We say “must,” but technically you
 could specify a file as a destination in
 some cases. However, this behavior is probably not what you
 want. As your multiple files get copied into a single
 destination file, each is overwritten by the next!

[116] These limitations also are true when copying single files,
 but at least you see the erroneous result quickly. With
 directories, you can copy a hierarchy incorrectly and not
 notice.

[117] There’s one degenerate case. If your copy occurs on a
 single machine, e.g., scp *.c mydir, the
 scp client doesn’t necessarily check that
 mydir is a
 directory.

Secure, Interactive Copy with sftp

 The sftp client is an alternative to
 scp, though under the hood it does mostly the same
 thing: it copies files between SSH client and server machines securely.
 The main difference is that sftp is interactive,
 with an interface much like the old FTP programs. [2.7.1]
7.6.1 Interactive Commands

To get started, run sftp with a remote
 hostname:
 $ sftp server.example.com
or username and hostname:
 $ sftp smith@server.example.com
You’ll get a prompt:
 sftp>
and now may type commands to transfer files between your local
 and remote machine. For example:
 sftp> cd remote_directory Change to a particular remote directory
 sftp> ls List the names of available files
 sftp> get remotefile Download the file "remotefile"
 sftp> get remotefile newname Same as above, but the local file will be renamed as "newname"
 sftp> put localfile Upload the file "localfile"
 sftp> put localfile othername Same as above, but the remote file will be renamed as "othername"
 sftp> quit Quit sftp
The basic use of sftp will feel familiar to
 anyone who’s used an FTP program. Use the cd
 command to move around the remote filesystem (or
 lcd for the local filesystem),
 ls to list the available remote files, and the
 get and put commands to
 download and upload files, respectively. Table 7-4 lists the interactive
 commands available during an sftp
 connection.
Table 7-4. Interactive commands for sftp, grouped by function
	Command
	Meaning
	Support

	 a Not needed
 unless you run Tectia sftp with no
 arguments, so no initial connection is
 established.

	 b On Tectia,
 get and mget are equivalent, and so are
 put and mput.

	 Basic
 commands
	 	
	open
	Open a connection to the remote
 machine a

	Tectia

	lopen
	Open a connection to the local
 machine a

	Tectia

	close
	Close the connection to the remote
 machine
	Tectia

	lclose
	Close the connection to the local
 machine
	Tectia

	bye, quit
	Quit sftp

	OpenSSH, Tectia

	exit
	Quit sftp

	OpenSSH

	help
	Print a help message
	OpenSSH, Tectia

	?
	Print a help message
	OpenSSH

	version
	Display the SFTP protocol
 version
	OpenSSH

	!
	Shell escape: execute a local shell
 or command
	OpenSSH

	 Directory
 commands
	 	
	ls
	List files in a remote
 directory
	OpenSSH, Tectia

	lls
	List files in a local
 directory
	OpenSSH, Tectia

	cd
	Change the remote working
 directory
	OpenSSH, Tectia

	lcd
	Change the local working
 directory
	OpenSSH, Tectia

	pwd
	Print the name of the remote working
 directory
	OpenSSH, Tectia

	lpwd
	Print the name of the local working
 directory
	OpenSSH, Tectia

	mkdir
	Create a remote
 directory
	OpenSSH, Tectia

	lmkdir
	Create a local
 directory
	OpenSSH, Tectia

	rmdir
	Delete a remote
 directory
	OpenSSH, Tectia

	lrmdir
	Delete a local
 directory
	Tectia

	lsroots
	List virtual roots of a VShell SSH
 server [17.9]

	Tectia

	 File
 commands
	 	
	get
	Download a file from the remote
 machine
	OpenSSH, Tectia
 b

	mget
	Download multiple files by
 wildcard
	OpenSSH, Tectia
 b

	put
	Upload a file to the remote
 machine
	OpenSSH, Tectia
 b

	mput
	Upload multiple files to the remote
 machine
	OpenSSH, Tectia
 b

	rename
	Rename a remote file
	OpenSSH, Tectia

	lrename
	Rename a local file
	Tectia

	ln, symlink
	Create a symbolic link on the remote
 machine
	OpenSSH

	rm
	Delete a remote file
	OpenSSH, Tectia

	lrm
	Delete a local file
	Tectia

	chmod
	Change the permissions on a remote
 file
	OpenSSH, Tectia

	lchmod
	Change the permissions on the local
 file
	Tectia

	chown
	Change the owner of a remote
 file
	OpenSSH

	chgrp
	Change the group ownership of a
 remote file
	OpenSSH

	 Transfer
 settings
	 	
	binary
	Transfer all files as
 binary
	Tectia

	ascii
	Transfer all files as
 ASCII
	Tectia

	auto
	Determine the file type using the
 “setext” list
	Tectia

	getext
	Print the list of file extensions
 that indicate text files
	Tectia

	setext
	Set the list of file extensions that
 indicate text files
	Tectia

	lumask
	Set the umask for downloaded
 files
	OpenSSH

	progress
	Toggle the display of a progress
 meter for file transfers
	OpenSSH

7.6.2 Command-Line Options

Virtually all command-line options available to scp will work for
 sftp. [7.5]

Summary

SSH clients are highly configurable through environment variables,
 command-line options, and keywords in configuration files. Remember that
 command-line options have the highest precedence, followed by your local
 client configuration file, and finally the global client configuration
 file.
Client configuration files consist of sections that apply to
 individual hosts or groups of hosts. When you run an SSH client,
 remember that multiple sections can apply to it, according to the
 precedence rules we covered. If the same keyword is set multiple times,
 the earliest (OpenSSH) or latest (Tectia) value is the winner.
When experimenting with client configuration, remember verbose
 mode. If you experience unusual SSH behavior, your first instinct should
 be to add the -v option and run the client again,
 watching the debug output for clues.

Chapter 8. Per-Account Server Configuration

We’ve seen two techniques for controlling the SSH server’s behavior
 globally: compile-time configuration (Chapter 4) and serverwide configuration
 (Chapter 5). These techniques affect
 all incoming SSH connections to a given server
 machine. Now it’s time to introduce a third, finer-grained method of
 server control: per-account configuration .
As the name implies, per-account configuration controls the SSH
 server differently for each user account on the server machine. For
 example, a user account sandy can accept incoming SSH connections from any
 machine on the Internet, while rick permits connections only from the
 domain verysafe.com, and fraidycat refuses key-based
 connections. Each user configures his own account, using the facilities
 highlighted in Figure 8-1,
 without needing special privileges or assistance from the system
 administrator.
We have already seen a simple type of per-account configuration. A
 user may place a public key into her authorization file, instructing the
 SSH server to permit logins to her account by public-key authentication.
 But per-account configuration can go further, becoming a powerful tool for
 access control and playing some fun tricks with your account. Accepting or
 rejecting connections by particular keys or hosts is just the beginning.
 For instance, you can make an incoming SSH connection run a program of
 your choice, instead of the client’s choice. This is called a
 forced command, and we’ll cover quite a few
 interesting applications.
Per-account configuration may control only
 incoming SSH connections to your account. If you’re
 interested in configuring outgoing SSH connections by
 running SSH clients, refer to Chapter
 7.

Limits of This Technique

 Per-account configuration can do many interesting things,
 but it has some restrictions that we will discuss:
[image: Per-account configuration (highlighted parts)]

Figure 8-1. Per-account configuration (highlighted parts)

	It can’t defeat security measures put in place by compile-time
 or serverwide configuration. (Thank goodness.)

	It is most flexible and secure if you use public-key
 authentication. Hostbased and password authentication provide a much
 narrower range of options.

8.1.1 Overriding Serverwide Settings

SSH settings in a user’s account may only
 restrict the authentication of incoming
 connections. They can’t enable any SSH features that have been turned
 off more globally, and they can’t permit a forbidden user or host to
 authenticate. For example, if your SSH server rejects all connections
 from the domain evil.org, you can’t override this
 restriction within your account by per-account configuration.[118]
This limitation makes sense. No end-user tool should be able to
 violate a server security policy. However, end users should be (and
 are) allowed to restrict incoming connections to their
 accounts.
A few features of the server may be overridden by per-account
 configuration. The most notable one is the server’s idle timeout,
 which may be extended beyond the serverwide setting. But such features
 can’t coerce the server to accept a connection it has been globally
 configured to reject.
If you are an end user, and per-account configuration doesn’t
 provide enough flexibility, you can run your own instance of the SSH
 server, which you may configure to your heart’s content. [5.1.2] Be cautious, though,
 since this is seldom the right thing to do. The restrictions you’re
 trying to circumvent are part of the security policy defined for the
 machine by its administrators, and you shouldn’t run a program that
 flouts this policy just because you can. If the machine in question is
 under your administrative control, simply configure the main SSH
 server as you wish. If not, then installing and running your own
 sshd might violate your usage agreement and/or
 certainly annoy your sysadmin. And that’s never a wise thing to
 do.

8.1.2 Authentication Issues

To make the best use of per-account configuration, use
 public-key authentication. Password authentication is too limited, since the only
 way to control access is with the password itself. Hostbased
 authentication permits a small amount of flexibility, but not nearly
 as much as public-key authentication.
If you’re still stuck in the password-authentication dark ages,
 let this be another reason to switch to public keys. Even though
 passwords and public-key passphrases might seem similar (you type a
 secret word, and voilà, you’re logged in), public
 keys are far more flexible for permitting or denying access to your
 account. Read on and learn how.

[118] There is one exception to this rule: hostbased
 authentication. A user’s ~/.shosts file may override a
 restriction placed by the system administrator in /etc/shosts.equiv. [8.3]

Public-Key-Based Configuration

To set up public-key authentication in your account on an SSH
 server machine, you create an authorization file, typically called
 authorized_keys (OpenSSH) or
 authorization (Tectia), and list
 the keys that provide access to your account. [2.4] Well, we’ve been keeping a
 secret. Your authorization file can contain not only keys, but also
 other keywords or options to control the SSH server in powerful ways. We
 will discuss:
	The full format of an authorization file

	Forced commands for limiting the set of programs that the
 client may invoke on the server

	Restricting incoming connections from particular hosts

	Setting environment variables for remote programs

	Setting an idle timeout so that clients will be forcibly
 disconnected if they aren’t sending data

	Disabling or placing limits on certain features of the
 incoming SSH connection, such as port forwarding and tty
 allocation

As we demonstrate how to modify your authorization file, remember
 that the file is consulted by the SSH server only at authentication
 time. Therefore, if you change your authorization file, only new
 connections will use the new information. Any existing connections are
 already authenticated and won’t be affected by the change.
Also remember that an incoming connection request won’t reach your
 authorization file if the SSH server rejects it for other reasons,
 namely, failing to satisfy the serverwide configuration. If a change to
 your authorization file doesn’t seem to be having an effect, make sure
 it doesn’t conflict with a (more powerful) serverwide configuration
 setting.
8.2.1 OpenSSH Authorization Files

Your OpenSSH authorization file, ~/.ssh/authorized_keys, is a secure doorway
 into your account via SSH. Each line of the file contains a public key
 and means the following: “I give permission for SSH clients to access
 my account, in a particular way, using this key as authentication.”
 Notice the words “in a particular way.” Until now, public keys have
 provided unlimited access to an account. Now we’ll see the rest of the
 story.
Each line may contain, in order:
	A set of authorization options for the key (optional)

	A string indicating the key type: ssh-dss for a DSA key, or ssh-rsa for an RSA key (required)

	The public key, represented as a long string
 (required)

	A descriptive comment (optional); this can be any text, such
 as “Bob’s public key” or “My home PC using SecureCRT 3.1”

Here’s an example:
 from="192.168.10.1" ssh-dss AAAAB3NzaC1kc3MA... My OpenSSH key
It contains authorization options (from="192.168.10.1"), the key type (ssh-dss), the public key itself (abbreviated
 here with an ellipsis), and the final comment (“My OpenSSH
 key”).
Public keys are generated by ssh-keygen in
 .pub files, you may recall, and
 you typically insert them into authorized_keys by copying. [2.4.3] Options, however, are
 usually typed into authorized_keys with a text
 editor.[119]
An option may take two forms. It may be a keyword, such
 as:
 # OpenSSH: Turn off port forwarding
 no-port-forwarding
or it may be a keyword followed by an equals sign and a value,
 such as:
 # OpenSSH: Allow connections only from myhost
 from=myhost
Multiple options may be given together, separated by commas,
 with no whitespace between the options:
 # OpenSSH
 no-port-forwarding,from=myhost
If you mistakenly include whitespace:
 # THIS IS ILLEGAL: whitespace between the options
 no-port-forwarding, from=myhost
your connection by this key won’t work properly. If you connect
 with debugging turned on (ssh -v), you will see a
 “bad options” message from the SSH server.
Many SSH users aren’t aware of options or neglect to use them.
 This is a pity because options provide extra security and convenience.
 The more you know about the clients that access your account, the more
 options you can use to control that access.

8.2.2 Tectia Authorization Files

A Tectia authorization file, typically found in
 ~/.ssh2/authorization,[120] has a different format than OpenSSH’s. Instead of public
 keys, it contains keywords and values, much like other SSH
 configuration files we’ve seen. Each line of the file contains one
 keyword followed by its value. The most commonly used keywords are
 Key and Options.
Public keys are indicated using the Key keyword. Key is followed by whitespace, and then the
 name of a file containing a public key. Relative filenames refer to
 files in ~/.ssh2. For
 example:
 # Tectia
 Key myself.pub
means that an SSH-2 public key is contained in ~/.ssh2/myself.pub. Your authorization file must contain at least
 one Key line for public-key
 authentication to occur.
Each Key line may optionally
 be followed immediately by an Options keyword and its value, which is a
 comma-separated list of options:
 # Tectia
 Key myself.pub
 Options no-port-forwarding, no-x11-forwarding, command="mycommand"
One common option is command,
 which specifies a forced command, i.e., a command
 to be executed whenever the key immediately above
 is used for access. We discuss forced commands later in great detail. [8.2.3] For now, all you need
 to know is this: a forced command begins with the keyword Options followed by command and its quoted value, a shell
 command line. For example:
 # Tectia
 Key somekey.pub
 Options command="/bin/echo All logins are disabled"
Remember that an Options line
 by itself is an error. The following examples are illegal:
 # Tectia
 # THIS IS ILLEGAL: no Key line
 Options command="/bin/echo This line is bad."
 # THIS IS ILLEGAL: no Key line precedes the second Options
 Key somekey.pub
 Options command="/bin/echo All logins are disabled"
 Options command="/bin/echo This line is bad."
8.2.2.1 Tectia PGP key authentication

Tectia supports authentication by PGP key. [6.5] Your authorization file may also include
 PgpPublicKeyFile, PgpKeyName, PgpKeyFingerprint, and PgpKeyId lines. An Options line may follow PgpKeyName, PgpKeyFingerprint, or PgpKeyId, just as it may follow Key.
 # Tectia
 PgpKeyName my-key
 Options command="/bin/echo PGP authentication was detected"

8.2.3 Forced Commands

Ordinarily, an SSH connection invokes a remote command chosen by
 the client:
 # Invoke a remote login shell
 $ ssh server.example.com
 # Invoke a remote directory listing
 $ ssh server.example.com /bin/ls
A forced command transfers this control
 from the client to the server. Instead of the client deciding which
 command will run, the owner of the server account decides. In Figure 8-2, the client has
 requested the command /bin/ls, but the
 server-side forced command runs /bin/who
 instead.
[image: Forced command substituting /bin/who for /bin/ls]

Figure 8-2. Forced command substituting /bin/who for /bin/ls

Forced commands can be quite useful. Suppose you want to give
 your assistant access to your account, but only to read your email.
 You can associate a forced command with your assistant’s SSH key to
 run only your email program and nothing else.
In OpenSSH, a forced command may be specified in authorized_keys with the
 command option preceding the desired key. For
 example, to run the email program pine whenever
 your assistant connects:
 # OpenSSH
 command="/usr/bin/pine" ...secretary's public key...
In Tectia, a forced command appears on the line immediately
 following the desired Key, using
 the command option. The previous
 example would be represented like so:
 # Tectia
 Key secretary.pub
 Options command "/usr/bin/pine"
You may associate, at most, one forced command with a given key.
 To associate multiple commands with a key, put them into a script on
 the remote machine and run the script as the forced command. (We will
 demonstrate this. [8.2.3.3])
8.2.3.1 Security issues

Before we begin in-depth examples of forced commands,
 let’s discuss security. At first glance, a forced command seems at
 least as secure as a “normal” SSH connection that invokes a shell.
 This is because a shell can invoke any program, while a forced
 command can invoke only one program, the forced command itself. If a
 forced command is /usr/bin/pine, only /usr/bin/pine can be invoked.
Nevertheless, there’s a caveat. A forced command, carelessly
 used, may lull you into a sense of false security, believing that
 you have limited the client’s capabilities when you haven’t. This
 occurs if the forced command unintentionally permits a
 shell escape, i.e., a way to invoke a shell
 from within the forced command. Using a shell escape, a client can
 invoke any program available to a shell. Many Unix programs have
 shell escapes, such as text editors (vi,
 Emacs), pagers (more,
 less), programs that invoke pagers
 (man), news readers (rn),
 mail readers (such as Pine in the previous example!), and debuggers
 (gdb). Interactive programs are the most common
 culprits, but even noninteractive commands may run shell commands
 (find, xargs,
 etc.).
When you define a forced command, you probably don’t want its
 key used for arbitrary shell commands. Therefore, we propose the
 following safety rules for deciding whether a program is appropriate
 as a forced command:
	Avoid programs that have shell escapes. Read their
 documentation carefully. If you still aren’t sure, get
 help.

	Avoid compilers, interpreters, or other programs that let
 the user generate and run arbitrary executable code.

	Treat very carefully any program that creates or deletes
 files on disk in user-specified locations. This includes not
 only applications (word processors, graphics programs, etc.),
 but also command-line utilities that move or copy files
 (cp, mv,
 rm, scp,
 ftp, etc.).

	Avoid programs with their setuid or setgid bits set,
 particularly setuid root.

	If using a script as a forced command, follow traditional
 rules of safe script writing. Within the script, limit the
 search path to relevant directories (omitting “.”), invoke all
 programs by absolute path, don’t blindly execute user-supplied
 strings as commands, and don’t make the script setuid
 anything.[121] And again, don’t invoke any program that has a
 shell escape.

	Consider using a restricted shell to limit what the
 incoming client can do. For example, the restricted shell
 /usr/lib/rsh (not to be
 confused with the r-command also called “rsh”) can limit the
 remote directories the client can enter.

	Associate the forced command with a separate, dedicated
 SSH key, not the one used for your logins, so that you can
 conveniently disable the key without affecting your login
 capability.

	Disable unnecessary SSH features using other options we
 cover later. Under OpenSSH, you may disable port forwarding with
 no-port-forwarding, X
 forwarding with no-x11-forwarding, agent forwarding
 with no-agent-forwarding, and
 tty allocation using no-pty.

Any program may be used as a forced command, but some may be
 risky choices. In the examples that follow, we cover several of
 these issues as they’re encountered.

8.2.3.2 Rejecting connections with a custom message

Suppose you’ve permitted a friend to access your
 account by SSH, but now you’ve decided to disable the access. You
 can simply remove his key from your authorization file, but here’s
 something fancier. You can define a forced command to print a custom
 message for your friend, indicating that his access has been
 disabled. For example:
 # OpenSSH
 command="/bin/echo Sorry, buddy, but you've been terminated!" ...key...

 # Tectia
 Key friend.pub
 Options command="/bin/echo Sorry, buddy, but you've been terminated!"
Any incoming SSH connection that successfully authenticates
 with this key causes the following message to be displayed on
 standard output:
 Sorry, buddy, but you've been terminated!
and then the connection closes. If you’d like to print a
 longer message, which might be awkward to include in your
 authorization file, you can store it in a separate file (say,
 ~/go.away) and display it using
 an appropriate program (e.g., cat):
 # OpenSSH
 command="/bin/cat $HOME/go.away" ...key...

 # Tectia
 Key friend.pub
 Options command="/bin/cat $HOME/go.away"
Since the message is long, you might be tempted to display it
 one screenful at a time with a pager program such as
 more or less. Don’t do
 it!
 # OpenSSH: Don't do this!
 command="/usr/bin/less $HOME/go.away" ...key...
This forced command opens an unwanted hole into your account:
 the less program, like most Unix pager
 programs, has a shell escape. Instead of restricting access to your
 account, this forced command permits unlimited access.[122]

8.2.3.3 Displaying a command menu

Suppose you want to provide limited access to your
 account, permitting the incoming SSH client to invoke only a few,
 specific programs. Forced commands can accomplish this. For
 instance, you can write a shell script that permits a known set of
 programs to be executed and then run the script as a forced command.
 A sample script, shown in Example
 8-1, permits only three programs to be chosen from a
 menu.
Example 8-1. Menu script
#!/bin/sh
/bin/echo "Welcome!
Your choices are:

1 See today's date
2 See who's logged in
3 See current processes
q Quit"

/bin/echo "Your choice: \c"
read ans
while ["$ans" != "q"]
do
 case "$ans" in
 1)
 /bin/date
 ;;
 2)
 /bin/who
 ;;
 3)
 /usr/ucb/w
 ;;
 q)
 /bin/echo "Goodbye"
 exit 0
 ;;
 *)
 /bin/echo "Invalid choice '$ans': please try again"
 ;;
 esac
 /bin/echo "Your choice: \c"
 read ans
done
exit 0

When someone accesses your account by public key and invokes
 the forced command, the script displays:
 Welcome!
 Your choices are:
 1 See today's date
 2 See who's logged in
 3 See current processes
 q Quit

 Your choice:
The user may then type 1, 2, 3, or q to run the associated
 program. Any other input is ignored, so no other programs can be
 executed.
Such scripts must be written carefully to avoid security
 holes. In particular, none of the permitted programs should provide
 a means to escape to a shell, or else the user may execute any
 command in your account.

8.2.3.4 Examining the client’s original command

As we’ve seen, a forced command gets substituted for
 any other command the SSH client might send. If an SSH client
 attempts to invoke the program ps:
 $ ssh server.example.com ps
but a forced command is set up to execute “/bin/who”
 instead:
 # OpenSSH
 command="/bin/who" ...key...

 # Tectia
 key mykey.pub
 Options command="/bin/who"
then ps is ignored and /bin/who runs instead. Nevertheless, the
 SSH server does read the original command string sent by the client
 and stores it in an environment variable. For OpenSSH, the
 environment variable is SSH_ORIGINAL_COMMAND, and for Tectia, it’s
 SSH2_ORIGINAL_COMMAND . So, in our example, the value of SSH_ORIGINAL_COMMAND would be
 ps.
A quick way to see these variables in action is to print their
 values with forced commands. For OpenSSH, create a forced command
 like the following:
 # OpenSSH
 command="/bin/echo You tried to invoke $SSH_ORIGINAL_COMMAND" ...key...
Then connect with an SSH client, supplying a remote command
 (which won’t be executed), such as:
 $ ssh server.example.com cat /etc/passwd
Instead of executing cat, the OpenSSH
 server simply prints:
 You tried to invoke cat /etc/passwd
and exits. Similarly, for Tectia, you can set up a forced
 command like this:
 # Tectia
 Key mykey.pub
 Options command="/bin/echo You tried to invoke $SSH2_ORIGINAL_COMMAND"
Then, a client command like:
 $ ssh server.example.com cat /etc/passwd
produces:
 You tried to invoke cat /etc/passwd

8.2.3.5 Restricting a client’s original command

Let’s try a slightly more complex example using the
 environment variable SSH_ORIGINAL_COMMAND. We create a forced
 command that examines the environment variable and turns a requested
 command into another of our choice. For example, suppose you want to
 permit a friend to invoke remote commands in your account, except
 for the rm (remove file) command. In other
 words, a command like:
 $ ssh server.example.com rm myfile
is rejected. Here’s a script that checks for the presence of
 rm in the command string and, if present,
 rejects the command:
 #!/bin/sh
 # OpenSSH. For Tectia, use $SSH2_ORIGINAL_COMMAND.
 #
 case "$SSH_ORIGINAL_COMMAND" in
 rm)
 echo "Sorry, rejected"
 ;;
 *)
 $SSH_ORIGINAL_COMMAND
 ;;
 esac
Save this script in ~/rm-checker, and define a forced command
 to use it:
 # OpenSSH
 command="$HOME/rm-checker" ...key...

 # Tectia
 Key mykey.pub
 Options command="$HOME/rm-checker"
Our script is just an example: it isn’t secure. It can be
 easily bypassed by a clever command sequence to remove a
 file:
 $ ssh server.example.com '/bin/ln -s /bin/r? ./killer && ./killer myfile'
which creates a link to /bin/rm with a different name (killer) and then performs the removal.
 Nevertheless, the concept is still valid: you can examine SSH_ORIGINAL_COMMAND to select another
 command to execute instead.

8.2.3.6 Logging a client’s original command

Another cool use of the “original command” environment
 variables is to keep a log of commands that are run using a given
 key. For example:
 # OpenSSH
 command="log-and-run" ...key...

 # Tectia
 Key mykey.pub
 Options command="log-and-run"
where log-and-run is the following
 script. It appends a line to a log file, containing a timestamp and
 the command attempted:
 #!/bin/sh
 # OpenSSH. For Tectia, use $SSH2_ORIGINAL_COMMAND.
 if [-n "$SSH_ORIGINAL_COMMAND"]
 then
 echo "`/bin/date`: $SSH_ORIGINAL_COMMAND" >> $HOME/ssh-command-log
 exec $SSH_ORIGINAL_COMMAND
 fi

8.2.3.7 Forced commands and secure copy (scp)

We’ve seen what happens when ssh
 encounters a key with a forced command. But what does
 scp do in this situation? Does the forced
 command run, or does the copy operation take place?
In this case, the forced command executes, and the original
 operation (file copy) is ignored. Depending on your needs, this
 behavior might be good or bad. In general, we do not recommend using
 scp with any key that has a forced command.
 Instead, use two keys, one for ordinary logins and file copying and
 the other for the forced command.
Now that we’ve thoroughly examined forced commands, let’s move
 on to other features of per-account configuration.

8.2.4 Restricting Access by Host or Domain

Public-key authentication requires two pieces of information:
 the corresponding private key and its passphrase (if any). Without
 either piece, authentication can’t succeed. Per-account configuration
 lets you add a third requirement for additional security: a
 restriction on the client’s hostname or IP address.
8.2.4.1 OpenSSH host access control

In OpenSSH, host access control is accomplished in the
 authorized_keys file with the
 from option. For example:
 # OpenSSH
 from="client.example.com" ...key...
enforces that any SSH connection must come from
 client.example.com, or else it is rejected.
 Therefore, if your private-key file is somehow stolen, and your
 passphrase cracked, an attacker might still be stymied if he can’t
 connect from the authorized client machine.
If the concept of “from” sounds familiar, you’ve got a good
 memory: it’s the same access control provided by the AllowUsers keyword for serverwide
 configuration. [5.5.1]
 The authorized_keys option,
 however, is set by you within your account and applies to a single
 key, while AllowUsers is
 specified by the system administrator and applies to all connections
 to an account. Here’s an example to demonstrate the difference.
 Suppose you want to permit connections from
 remote.org to enter the benjamin account. As
 system administrator, you can configure this within /etc/ssh/sshd_config:
 # OpenSSH
 AllowUsers benjamin@remote.org
Using per-account configuration, the user benjamin can
 configure the identical setting within his authorized_keys file, for a particular
 key only:
 # OpenSSH
 # File ~benjamin/.ssh/authorized_keys
 from="remote.org" ...key...
Of course, the serverwide setting takes precedence. If the
 system administrator had denied this access using the DenyUsers keyword:
 # OpenSSH
 DenyUsers benjamin@remote.org
then user benjamin can’t override this restriction using the
 from option in authorized_keys.
Just like AllowUsers, the
 from option can use the wildcard
 characters *, matching any
 string, and ?, matching any one
 character:
 from="*.someplace.org" Matches any host in the someplace.org domain
 from="som?pla?e.org" Matches somXplaYe.org but not foo.someXplaYe.org or foo.somplace.org
It may also match the client IP address, with or without
 wildcards:
 from="192.220.18.5"
 from="192.2??.18.*"
There can also be multiple patterns, this time separated by
 commas (AllowUsers employs
 spaces). No whitespace is allowed. You may also negate a pattern by
 prefixing it with an exclamation point (!). The exact matching rules are: every
 pattern in the list is compared to either the client’s canonical
 hostname or its IP address. If the pattern contains only numerals,
 dots, and wildcards, it is matched against the address, otherwise,
 it is matched against the hostname.[123] The connection is accepted if and only if the client
 matches at least one positive pattern and no negated patterns. So
 for example, the following rule denies connections from
 saruman.ring.org, allows connections from other
 hosts in the domain ring.org, and denies
 everything else:
 from="!saruman.ring.org,*.ring.org"
while this one again denies
 saruman.ring.org but allows all other
 clients:
 from="!saruman.ring.org,*"
Remember that access control by hostname may be problematic,
 due to issues with name resolution and security. [3.4.3.6] Fortunately, the
 from option is just an auxiliary
 feature of OpenSSH public-key authentication, which provides
 stronger security than would an entirely hostname-based
 solution.

8.2.4.2 Tectia host access control

Host access control in Tectia is accomplished in the
 authorization file with the
 allow-from and deny-from options. For example, to permit
 connections to your account from the
 example.com domain:
 # ~/.ssh2/authorization
 Key mykey.pub
 Options allow-from="example.com"
or to deny them from
 very.evil.org:
 # ~/.ssh2/authorization
 Key otherkey.pub
 Options deny-from="very.evil.org"
These options follow the same rules as the AllowHosts and DenyHosts server configuration keywords,
 respectively. [5.5.3]
 However, allow-from and deny-from control access per key, rather
 than serverwide.

8.2.5 Setting Environment Variables

The environment option
 instructs the SSH server to set an environment variable when a client
 connects via the given key. For example, the OpenSSH authorized_keys line:
 # OpenSSH
 environment="EDITOR=emacs" ...key...
or Tectia authorization
 file option:
 # Tectia
 Key mykey.pub
 Options environment="editor=emacs"
sets the environment variable EDITOR to the value emacs, thereby setting the client’s default
 editor for the login session. The syntax following environment= is a quoted string containing a
 variable, an equals sign, and a value. All characters between the
 quotes are significant, i.e., the value may contain whitespace:
 # OpenSSH
 environment="MYVARIABLE=this value has whitespace in it" ...key...

 # Tectia
 Key mykey.pub
 Options environment="MYVARIABLE=this value has whitespace in it"
or even a double quote, if you escape it with a forward
 slash:
 # OpenSSH
 environment="MYVARIABLE=I have a quote\" in my middle" ...key...

 # Tectia
 Key mykey.pub
 Options environment="MYVARIABLE=I have a quote\" in my middle"
Also, a single key may have multiple environment variables
 set:
 # OpenSSH
 environment="EDITOR=emacs",environment="MYVARIABLE=26" ...key...

 # Tectia
 Key mykey.pub
 environment="EDITOR=emacs",environment="MYVARIABLE=26"
Why set an environment variable for a key? This feature lets you
 tailor your account to respond differently based on which key is used.
 For example, suppose you create two keys, each of which sets a
 different value for an environment variable—say, SPECIAL:
 # OpenSSH
 environment="SPECIAL=1" ...key...
 environment="SPECIAL=2" ...key...

 # Tectia
 Key key1.pub
 Options environment="SPECIAL=1"
 Key key2.pub
 Options environment="SPECIAL=2"
Now, in your account’s shell configuration file, you can examine
 $SPECIAL and trigger actions
 specific to each key:
 # In your .login file
 switch ($SPECIAL)
 case 1:
 echo 'Hello Bob!'
 set prompt = 'bob> '
 breaksw
 case 2:
 echo 'Hello Jane!'
 set prompt = jane> '
 source ~/.janerc
 breaksw
 endsw
Here, we print a custom welcome message for each key user, set
 an appropriate shell prompt, and in Jane’s case, invoke a custom
 initialization script, ~/.janerc.
 Thus, the environment option
 provides a convenient communication channel between a particular key
 and the remote shell.
8.2.5.1 Example: CVS and $LOGNAME

As a more advanced example of the environment option, suppose a team of open
 source software developers around the Internet is developing a
 computer program. The team decides to practice good software
 engineering and store its code with CVS, the Concurrent Versions
 System, a popular version control tool. Lacking the funds to set up
 a server machine, the team places the CVS repository into the
 computer account of one of the team members, Benjamin, since he has
 lots of available disk space. Benjamin’s account is on the SSH
 server machine cvs.repo.com.
The other developers do not have accounts on
 cvs.repo.com, so Benjamin places their public
 keys into his authorized_keys
 file so that they can do check-ins. Now there’s a problem. When a
 developer changes a file and checks the new version into the
 repository, a log entry is made by CVS, identifying the author of
 the change. But everyone is connecting through the benjamin account,
 so CVS always identifies the author as “benjamin,” no matter who
 checked in the changes. This is bad from a software engineering
 standpoint: the author of each change should be clearly
 identified.[124]
You can eliminate this problem by modifying Benjamin’s file,
 preceding each developer’s key with an environment option. CVS examines the
 LOGNAME environment variable to
 get the author’s name, so you set LOGNAME differently for each developer’s
 key:
 # OpenSSH
 environment="LOGNAME=dan" ...key...
 environment="LOGNAME=richard" ...key...
 ...

 # Tectia
 Key dan.pub
 Options environment="LOGNAME=dan"
 Key richard.pub
 Options environment="LOGNAME=richard"
 ...
Now, when a given key is used for a CVS check-in, CVS
 identifies the author of the change by the associated, unique
 LOGNAME value. Problem
 solved![125]

8.2.6 Setting Idle Timeout

Tectia’s idle-timeout
 option tells the SSH server to disconnect a session that has been idle
 for a certain time limit. This is just like Tectia’s IdleTimeout keyword for serverwide
 configuration but is set by you within your account, instead of by the
 system administrator. [5.3.3.5]
Suppose you let your friend Jamie access your account by SSH.
 Jamie works in an untrusted environment, however, and you are worried
 that he might walk away from his computer while connected to your
 account, and someone else might come by and use his session. One way
 to reduce the risk is to set an idle timeout on
 Jamie’s key, automatically disconnecting the SSH session after a given
 period of idle time. If the client stops sending output for a while,
 Jamie has probably walked away, and the session is terminated.
Timeouts are set with the idle-timeout option. For example, to set the
 idle timeout to 60 seconds:
 # Tectia
 Key mykey.pub
 Options idle-timeout=60s
idle-timeout uses the same
 notation for time as the IdleTimeout server keyword. [5.3.3.5] It also
 overrides any serverwide value set with the
 IdleTimeout keyword. For example,
 if the serverwide idle timeout is five minutes:
 # Tectia
 IdleTimeout 5m
but your authorization file
 sets it to 10 minutes for your account:
 # Tectia
 Key mykey.pub
 Options idle-timeout=10m
then any connection using this key has an idle timeout of 10
 minutes, regardless of the serverwide setting.
This feature has more uses than disconnecting absent typists.
 Suppose you’re using an SSH key for an automated process, such as
 backups. An idle timeout value kills the process automatically if it
 hangs due to an error.

8.2.7 Disabling or Limiting Forwarding

Although you’re permitting SSH access to your account, you might
 not want your account to be used as a springboard to other machines by
 port forwarding. [9.2] To
 prevent this, use the no-port-forwarding option for that
 key:
 # OpenSSH
 no-port-forwarding ...key...

 # Tectia
 Key mykey.pub
 Options no-port-forwarding
Rather than disable forwarding, OpenSSH can place limits on it
 with the permitopen option for a
 key. For example, to restrict port forwarding to local port 12345
 connecting to remote host
 server.example.com:
 # OpenSSH
 permitopen="server.example.com:12345" ...key...
permitopen may have multiple
 values separated by commas. The syntax is
 hostname:port
 for IPv4 addresses and
 hostname/port
 for IPv6 addresses.
X forwarding [9.4]
 can be prohibited per key with the no-x11-forwarding option:
 # OpenSSH
 no-x11-forwarding ...key...

 # Tectia
 Key mykey.pub
 Options no-x11-forwarding
Agent forwarding can also be disabled per key, if you don’t want
 remote users to travel through your account and onto other computers
 using the given key. [6.3.5] This is done with the
 no-agent-forwarding option:
 # OpenSSH
 no-agent-forwarding ...key...

 # Tectia
 Options no-agent-forwarding
Warning
These aren’t strong restrictions. As long as you allow shell
 access, just about anything can be done over the connection. The
 user need employ only a pair of custom programs that talk to each
 other across the connection and directly implement port forwarding,
 agent forwarding, or anything else you thought you were preventing.
 To be more than just a reminder or mild deterrent, these options
 must be used together with carefully restricted access on the server
 side, such as forced commands or a restricted shell on the target
 account.

8.2.8 Disabling TTY Allocation

Normally, when you log in via SSH, the server allocates
 a pseudo-terminal (henceforth, tty) for the login session: [7.4.6.5]
 # A tty is allocated for this client
 $ ssh server.example.com
The server even sets an environment variable, SSH_TTY for OpenSSH or SSH2_TTY for Tectia, with the name of the
 tty allocated. For example:
 # After logging in via OpenSSH
 $ echo $SSH_TTY Use $SSH2_TTY for Tectia
 /dev/pts/1
When you run a noninteractive command, however, the SSH server
 doesn’t allocate a tty to set the environment variable, e.g.:
 # OpenSSH: No tty is allocated
 $ ssh server.example.com /bin/ls
Suppose you want to give someone SSH access for invoking
 noninteractive commands, but not for running an interactive login
 session. You’ve seen how forced commands can limit access to a
 particular program, but as an added safety precaution, you can also
 disable tty allocation with the no-pty option:
 # OpenSSH
 no-pty ...key...

 # Tectia
 Key mykey.pub
 Options no-pty
Noninteractive commands will now work normally, but requests for
 interactive sessions are refused by the SSH server. If you try to
 establish an interactive session, your client may appear to
 hang.[126] Run it in verbose mode to see the reason:
 # OpenSSH output
 debug1: Remote: Pty allocation disabled.
Just for fun, let’s observe the effect of no-pty on the environment variable with a
 simple experiment. Set up a public key and precede it with the
 following forced command:
 # OpenSSH
 command="echo SSH_TTY is [$SSH_TTY]" ...key...

 # Tectia
 Key mykey.pub
 Options command="echo SSH2_TTY is [$SSH2_TTY]"
Now try connecting noninteractively and interactively, and watch
 the output. The interactive command assigns a value to the environment
 variable, but the noninteractive one doesn’t:
 $ ssh server.example.com
 SSH_TTY is [/dev/pts/2] For Tectia it would be SSH2_TTY

 $ ssh server.example.com anything
 SSH_TTY is [] For Tectia it would be SSH2_TTY
Next, add the no-pty
 option:
 # OpenSSH
 no-pty,command="echo SSH_TTY is [$SSH_TTY]" ...key...

 # Tectia
 Key mykey.pub
 no-pty,command="echo SSH_TTY is [$SSH_TTY]"
and try connecting interactively. The connection (properly)
 fails and the environment variable has no value:
 $ ssh server.example.com
 SSH_TTY is [] For Tectia it would be SSH2_TTY
 Connection to server.example.com closed.
Even if a client requests a tty specifically (with ssh
 -t), the no-pty option
 forbids its allocation. For instance, if you try running the Emacs
 editor over the SSH connection:
 $ ssh -t server.example.com emacs
Emacs will fail to run or appear to hang.

[119] When editing authorized_keys, be sure to use a text
 editor capable of handling long lines. The public key may be
 several hundred characters long. Some text editors can’t display
 long lines, won’t edit them properly, automatically insert line
 breaks, or wreak other sorts of havoc upon your nice public keys.
 (Aaargh. Don’t get us started talking about brain-damaged text
 editors.) Use a modern editor, and turn off automatic line
 breaking. We use GNU Emacs.

[120] The name can be changed with the keyword AuthorizationFile in the serverwide
 configuration file. [5.3.1.6]

[121] Modern Unix implementations often ignore the setuid
 bit on scripts for security reasons.

[122] The less program has a secure mode
 that disables shell escapes. See the manpage for
 less about the environment variable
 LESSSECURE.

[123] OpenSSH unfortunately doesn’t let you specify arbitrary IP
 networks using an address and mask, nor by “address / number of
 bits.” libwrap does [9.5], but its
 restrictions apply to all connections, not
 on a per-key basis.

[124] In an industrial setting, each developer would have an
 account on the CVS repository machine, so the problem wouldn’t
 exist.

[125] Incidentally, the authors used this technique while
 collaborating on this book.

[126] If the connection hangs and your client appears to be
 frozen, type the ssh escape character
 followed by a period (usually ~. unless you’ve overridden it) to close
 the connection.

Hostbased Access Control

 A limited type of per-account configuration is possible in
 OpenSSH if you use hostbased authentication rather than public-key
 authentication. Specifically, you can permit SSH access to your account
 based on the client’s remote username and hostname via the system files
 /etc/shosts.equiv and /etc/hosts.equiv, and personal files
 ~/.rhosts and ~/.shosts. A line like:
 +client.example.com jones
permits hostbased SSH access by the user
 jones@client.example.com. Since we’ve already covered the
 details of these four files, we won’t repeat the information in this
 chapter. [3.6.2]
Per-account configuration with hostbased authentication is similar
 to using host access control in your OpenSSH authorized_keys or Tectia authorization file. [8.2.4] Both methods may
 restrict SSH connections from particular hosts. The differences are
 shown in this table:
	Feature
	Hostbased access
	Public-key host access

	 Authenticate
 by hostname
	Yes
	Yes

	 Authenticate
 by IP address
	Yes
	Yes

	 Authenticate
 by remote username
	Yes
	No

	 Wildcards in
 hostnames and IP
	No
	Yes

	 Passphrase
 required for logins
	No
	Yes

	 Use other
 public-key features
	No
	Yes

	 Security
	Less
	More

To use hostbased authentication for access control, all of the
 following conditions must be true:
	Hostbased authentication is enabled in the server, both at
 compile time and in the serverwide configuration file.

	Your desired client hosts aren’t specifically excluded by
 serverwide configuration, e.g., by AllowHosts and DenyHosts.

	For OpenSSH, the server configuration keyword EnableSSHKeysign must be set to yes.[127]

Despite its capabilities, hostbased authentication is more complex
 than one might expect. For example, if your carefully crafted .shosts file denies access to
 sandy@trusted.example.com:
 # ~/.shosts
 -trusted.example.com sandy
but your .rhosts file
 inadvertently permits access:
 # ~/.rhosts
 +trusted.example.com
then sandy will have SSH access to your account. Worse, even if
 you don’t have a ~/.rhosts file,
 the system files /etc/hosts.equiv
 and /etc/shosts.equiv can still
 punch a hostbased security hole into your account against your wishes.
 Unfortunately, using per-account configuration, there’s no way to
 prevent this problem. Only compile-time or serverwide configuration can
 disable hostbased authentication.
Because of these issues and other serious, inherent weaknesses, we
 recommend against using the weak form of hostbased authentication,
 Rhosts authentication, as a form of per-account configuration. (By
 default it is disabled, and we approve.) If you require the features of
 hostbased authentication, we recommend the stronger form, called
 RhostsRSAAuthentication (OpenSSH) or
 hostbased (Tectia), which adds cryptographic verification of host
 keys.

[127] In olden days, the ssh executable
 needed to be setuid root.

The User rc File

 The shell script /etc/ssh/sshrc is invoked by the SSH server
 for each incoming SSH connection. [5.6.3] You may define a similar
 script in your account, ~/.ssh/rc
 (OpenSSH) or ~/.ssh2/rc (Tectia),
 to be invoked for every SSH connection to your account. If this file
 exists, /etc/ssh/sshrc isn’t
 run.
The SSH rc file is much like
 a shell startup file (e.g., ~/.profile or ~/.cshrc), but it executes only when your
 account is accessed by SSH. It is run for both interactive logins and
 remote commands. Place any commands in this script that you would like
 executed when your account is accessed by SSH, rather than an ordinary
 login. For example, you can run and load your
 ssh-agent in this file:
 # ~/.ssh/rc, assuming your login shell is the C shell
 if (! $?SSH_AUTH_SOCK) then
 eval `ssh-agent`
 /usr/bin/tty | grep 'not a tty' > /dev/null
 if (! $status) then
 ssh-add
 endif
 endif
Like /etc/ssh/sshrc, your
 personal rc file is executed just
 before the shell or remote command requested by the incoming connection.
 OpenSSH always uses the Bourne shell (/bin/sh) for ~/.ssh/rc, as it does for /etc/ssh/sshrc. In contrast, Tectia uses your
 login shell for ~/.ssh2/rc, unlike
 /etc/ssh2/sshrc.

Summary

Per-account configuration lets you instruct the SSH server
 to treat your account differently. Using public-key authentication, you
 can permit or restrict connections based on a client’s key, hostname, or
 IP address. With forced commands, you can limit the set of programs that
 a client may run in your account. You can also disable unwanted features
 of SSH, such as port forwarding, agent forwarding, and tty
 allocation.
Using hostbased authentication, you can permit or restrict
 particular hosts or remote users from accessing your account. This uses
 the file ~/.shosts or (less
 optimally) ~/.rhosts. However, the
 mechanism is less secure and less flexible than public-key
 authentication.

Chapter 9. Port Forwarding and X Forwarding

One of SSH’s major benefits is transparency
 . A terminal session secured by SSH behaves like an
 ordinary, insecure one (e.g., created by telnet or rsh) once it has
 been established. Behind the scenes, however, SSH keeps the session secure
 with strong authentication, encryption, and integrity checking.
In some situations, however, transparency is hard to achieve. A
 network firewall might be in the way, interfering with certain network
 traffic you need. Corporate security policies might prohibit you from
 storing SSH keys on certain machines. Or you might need to use insecure
 network applications in a secure environment.
In this chapter, we’ll discuss an important feature of SSH, called
 forwarding or tunneling, that
 addresses several concerns about transparency:
	Securing other TCP/IP applications
	SSH can transparently encrypt another application’s data
 stream. This is called port forwarding
 .

	Securing X Window applications
	Using SSH, you can invoke X programs on a remote machine and
 have them appear, securely, on your local display. (This feature of
 X is insecure ordinarily.) This is called X
 forwarding , a special case of port forwarding for which SSH has
 extra support.

SSH forwarding isn’t completely transparent, since it occurs at the
 application level, not the network level. Applications must be configured
 to participate in forwarding, and a few protocols are problematic to
 forward (FTP data channels are a notable example). But in most common
 situations, once a secure tunnel is set up, the participating applications
 appear to the user to operate normally. For complete application-level
 transparency, you need a network-level technique, such as IPSEC [1.6.4] or a proprietary Virtual
 Private Network (VPN) technology available from various vendors, in host
 software or dedicated routers. While VPNs provide a more complete
 solution, they require significantly more work and expense to set up
 compared to SSH forwarding.
So, when we say “transparent” in this chapter, we mean “transparent
 to the application, once a little configuration has been done.”
Warning
In this chapter, we discuss SSH forwarding techniques to allow otherwise prohibited traffic across
 firewalls. This can be a perfectly legitimate and adequately safe
 practice if done properly: the firewall prevents unauthorized traffic,
 while SSH forwarding allows authorized users to bypass the restriction.
 However, don’t forget you are bypassing a security restriction that is
 in place for a reason. Be sure to follow the guidelines we give for safe
 SSH forwarding. Also, take care that you are not violating a company
 policy by using forwarding. Just because you can do
 something doesn’t automatically mean that it’s a good idea. If in doubt,
 consult with your system administrators.

What Is Forwarding?

Forwarding is a type of interaction with another network
 application, as shown in Figure
 9-1. SSH intercepts a service request from some other program on
 one side of an SSH connection, sends it across the encrypted connection,
 and delivers it to the intended recipient on the other side. This
 process is mostly transparent to both sides of the connection: each
 believes it is talking directly to its partner and has no knowledge that
 forwarding is taking place. Even more powerfully, SSH forwarding can
 achieve certain types of communication that are impossible without
 it.
[image: SSH forwarding]

Figure 9-1. SSH forwarding

Forwarding isn’t a new concept. The basic operation of a terminal
 connection over a network (say, using telnet) is
 also a kind of forwarding. In a telnet connection,
 you sit on one end, your remote shell is on the other, and both sides
 operate as if directly connected by a serial cable. Nevertheless,
 sitting in the middle is a cooperating telnet
 client and server, forwarding bytes back and forth. SSH forwarding is
 much the same, except SSH plays fancy tricks with the data to add
 security.
We have also seen another type of SSH forwarding, agent
 forwarding . [6.3.5]
 This let us create SSH connections from one computer, through a second
 computer, and onto a third using public-key authentication, but without
 installing our private key on the second machine. To accomplish this, an
 SSH server pretended to be an SSH agent, while transparently forwarding
 data to and from a remote agent. This paradigm holds true for TCP port
 forwarding and X forwarding, as the SSH server transparently
 masquerades as another network application.

Port Forwarding

SSH uses TCP/IP as its transport mechanism, usually TCP port 22 on
 the server machine, as it encrypts and decrypts the traffic passing over
 the connection. We now discuss a cool feature that encrypts and decrypts
 TCP/IP traffic belonging to other applications, on
 other TCP ports, using SSH. This process, called port
 forwarding, is largely transparent and quite powerful.
 Telnet, SMTP, NNTP, IMAP, and other insecure protocols running over TCP
 can be made secure by forwarding the connections through SSH. Port
 forwarding is sometimes called tunneling because the SSH connection provides a secure “tunnel”
 through which another TCP/IP connection may pass.
Suppose you have a home machine H that runs an IMAP-capable email
 reader, and you want to connect to an IMAP server on machine S to read
 and send mail. Normally, this connection is insecure, with your mail
 account password transmitted as plaintext between your mail program and
 the server. With SSH port forwarding, you can transparently reroute the
 IMAP connection (found on server S’s TCP port 143) to pass through SSH,
 securely encrypting the data over the connection.[128] The IMAP server machine must be running an SSH server for
 port forwarding to provide real protection.
In short, with minimal configuration changes to your programs, SSH
 port forwarding protects arbitrary TCP/IP connections by redirecting
 them through an SSH session. Port forwarding can even pass a connection
 safely through a firewall if you configure things properly. Once you
 start securing your communications with port forwarding, you’ll wonder
 how you ever got along without it. Here are examples of what you can
 do:
	Access various kinds of TCP servers (e.g., SMTP, IMAP, POP,
 LDAP, etc.) across a firewall that prevents direct access.

	Provide protection for your sessions with these same TCP
 servers, preventing disclosure or alteration of passwords and other
 content that would otherwise be sent in the clear as part of the
 session.

	Tunnel the control connection of an FTP session, to encrypt
 your username, password, and commands. (It isn’t usually possible to
 protect the data channels that carry the file contents, though.
 [11.2])

	Use your ISP’s SMTP servers for sending mail, even if you’re
 connected outside the ISP’s network and the ISP forbids mail
 relaying from your current location. [11.3.2]

Tip
SSH port forwarding is a general proxying mechanism for TCP
 only. (See the sidebar "TCP
 Connections" for an overview of TCP concepts.) Forwarding can’t
 work with protocols not built on TCP, such as the UDP-based DNS, DHCP,
 NFS, and NetBIOS,[129] or with non-IP-based protocols, such as AppleTalk or
 Novell’s SPX/IPX.

9.2.1 Local Forwarding

In our earlier example, we had an IMAP server running on machine
 S, and an email reader on home machine H, and we wanted to secure the
 IMAP connection using SSH. Let’s delve into that example in more
 detail.
IMAP uses TCP port 143; this means that an IMAP server listens
 for connections on port 143 on the server machine. To tunnel the IMAP
 connection through SSH, we need to pick a local port on home machine H
 (between 1024 and 65535) and forward it to the remote socket (S,143).
 Suppose you randomly pick local port 2001. The following command then
 creates the tunnel:[130]
 $ ssh -L2001:localhost:143 S
The -L option specifies local
 forwarding, in which the TCP client is on the local machine with
 the SSH client. The option is followed by three values separated by
 colons: a local port to listen on (2001), the remote machine name or
 IP address (S), and the remote, target port number (143).
The previous command logs you into S, just like ssh
 S does. However, this SSH session has also forwarded TCP
 port 2001 on H to port 143 on S; the forwarding remains in effect
 until you log out of the session. To make use of the tunnel, the final
 step is to tell your email reader to use the forwarded port. Normally,
 your email program connects to port 143 on the server machine—that is,
 the socket (S,143). Instead, it’s configured to connect to port 2001
 on home machine H itself, i.e., socket (localhost,2001). So the path
 of the connection follows the list shown next.
TCP Connections
To understand port forwarding, it’s important to know some
 details about TCP, the Transmission Control
 Protocol. TCP is a fundamental building block of the
 Internet. Built on top of IP, it is the transport mechanism for many
 application-level Internet protocols such as FTP, Telnet, HTTP,
 SMTP, POP, IMAP, and SSH itself.
TCP comes with strong guarantees. A TCP connection is a
 virtual, full-duplex circuit between two communicating parties,
 acting like a two-way pipe. Either side may write any number of
 bytes at any time to the pipe, and the bytes are guaranteed to
 arrive unaltered and in order at the other side.[131] If an application doesn’t need these strong
 guarantees, or doesn’t want the overhead associated with them,
 another protocol called UDP (User Datagram
 Protocol) often suffices. It is packet-oriented, rather
 than connection-based, and has no guarantees of delivery or packet
 ordering. Some protocols that exclusively or commonly run over UDP
 are NFS, DNS, DHCP, NetBIOS, TFTP, Kerberos, SYSLOG, and NTP.
When a program establishes a TCP connection to a service, the
 program needs two pieces of information: the IP address of the
 destination machine, and a way to identify the desired service. TCP
 (and UDP) use a positive integer, called a port
 number, to identify a service. For example, SSH uses port
 22, telnet uses port 23, and IMAP uses port
 143. Port numbers allow multiple services at the same IP
 address.
If you combine an IP address and a port number, the pair is
 called a socket. For example, if you run
 telnet to connect to port 23 on the machine at
 IP address 128.220.91.4, the socket is denoted “(128.220.91.4,23).”
 Simply put, when you make a TCP connection, its destination is a
 socket. The source (client program) also has a socket on its end of
 the connection, and the connection as a whole is completely defined
 by the pair of source and destination sockets.
In order for a connection attempt to a socket to succeed,
 something must be “listening” on that socket. That is, a program
 running on the destination machine has asked TCP to accept
 connection requests on that port, and to pass the connections on to
 the program. If you’ve ever attempted a TCP connection and received
 the response “connection refused,” it means that the remote machine
 is up and running, but nothing is listening on the target
 socket.
How does a client program know the target port number of a
 listening server? Port numbers for many protocols are standardized,
 being assigned by the Internet Assigned Numbers
 Authority (IANA).[132] For instance, the TCP port number assigned to the NNTP
 (Usenet news) protocol is 119. Therefore, news servers listen on
 port 119, and newsreaders (clients) connect to them via port 119.
 More specifically, if a newsreader is configured to talk to a news
 server at IP address 10.1.2.3, it requests a TCP connection to the
 socket (10.1.2.3,119).
Port numbers are not always hardcoded into programs. Many
 operating systems let applications refer to protocols by name,
 instead of number, by defining a table of TCP names and port
 numbers. Programs can then look up port numbers by the protocol
 name. Under Unix, the table is often contained in the file /etc/services or the NIS services map,
 and queries are performed using the library routines getservbyname, getservbyport, and related procedures.
 Other environments allow servers to register their listening ports
 dynamically via a naming service, such as the AppleTalk Name Binding
 Protocol or DNS’s WKS and SRV records.
So far, we’ve discussed the port number used by a TCP server
 when a TCP client program wants to connect. We call this the
 target port number. The client also uses a port
 number, called the source port number, so the
 server can transmit to the client. If you combine the client’s IP
 address and its source port number, you get the client’s
 socket.
Unlike target port numbers, source port numbers are not
 standard. In most cases, in fact, neither the client nor the server
 cares which source port number is used by the client. Often a client
 lets TCP select an unused port number for the source.[133] If you examine the existing TCP connections on a
 machine with a command like netstat -a or
 lsof -i tcp, you’ll see connections to the
 well-known port numbers for common services (e.g., 23 for
 telnet, 22 for SSH), with large, apparently
 random source port numbers on the other end. Those source ports were
 chosen from the range of unassigned ports by TCP on the machines
 initiating those connections.
Once established, a TCP connection is completely determined by
 the combination of its source and target sockets. Therefore,
 multiple TCP clients may connect to the same target socket. If the
 connections originate from different hosts, then the IP address
 portions of their source sockets differ, distinguishing the
 connections. If they come from two different programs running on the
 same host, then TCP on that host ensures they have different source
 port numbers.

	The email reader on home machine H sends data to local port
 2001.

	The local SSH client on H reads port 2001, encrypts the
 data, and sends it through the SSH connection to the SSH server on
 S.

	The SSH server on S decrypts the data and sends it to the
 IMAP server listening on port 143 on S.

	Data is sent back from the IMAP server to home machine H by
 the same process in reverse.

Port forwarding can be specified only when you create an SSH
 connection. You can’t add a forwarding to an existing SSH connection
 with any SSH implementation we know of, though there’s nothing
 intrinsic to the SSH protocol that would prevent it, and it would
 sometimes be a useful feature. Instead of using the
 -L option to establish a local forwarding, you
 can use the LocalForward keyword in
 your client configuration file:
 # OpenSSH
 LocalForward 2001 localhost:143
 # Tectia
 LocalForward "2001:localhost:143"
Note the small syntactic differences. In OpenSSH, there are two
 arguments: the local port number, and the remote socket expressed as
 host:port. In Tectia, the expression is just as
 on the command line, except that it must be enclosed in double quotes.
 If you forget the quotes, ssh doesn’t complain,
 but it doesn’t forward the port, either.
Our example with home machine H and IMAP server S can be set up
 like this:
 # OpenSSH
 Host local-forwarding-example
 HostName S
 LocalForward 2001 localhost:143

 # Run on home machine H
 $ ssh local-forwarding-example
9.2.1.1 Local forwarding and GatewayPorts

In OpenSSH, by default, only the host running the SSH
 client can connect to locally forwarded ports. This is because
 ssh listens only on the machine’s loopback
 interface for connections to the forwarded port; that is, it binds
 the socket (localhost,2001), a.k.a. (127.0.0.1,2001), and not
 (H,2001). So, in the preceding example, only machine H can use the
 forwarding; attempts by other machines to connect to (H,2001) get
 the message “connection refused.” However, ssh
 for OpenSSH has a command-line option, -g, that
 disables this restriction, permitting any host to connect to locally
 forwarded ports:
 # OpenSSH
 $ ssh -g -L<localport>:<remotehost>:<remoteport> hostname
The client configuration keyword GatewayPorts also controls this feature;
 the default value is no, whereas
 yes does the same thing as
 -g:
 # OpenSSH
 GatewayPorts yes
Tectia provides the +g option as the opposite
 of -g.
Warning
GatewayPorts and
 -g are disabled by default. They are a
 security risk. [9.2.4.3]

9.2.1.2 Remote forwarding

A remotely forwarded port is just like a local one,
 but the directions are reversed. This time the TCP client is remote,
 its server is local, and a forwarded connection is initiated from
 the remote machine.
Continuing with our example, suppose instead that you are
 logged into server machine S to begin with, where the IMAP server is
 running. You can now create a secure tunnel for remote clients to
 reach the IMAP server on port 143. Once again, you select a random
 port number to forward (say, 2001 again) and create the
 tunnel:
 $ ssh -R2001:localhost:143 H
The -R option specifies remote
 forwarding. It is followed by three values, separated by colons
 as before but interpreted slightly differently. The
 remote port to be forwarded (2001) is now
 first, followed by the machine name or IP address (localhost) and
 port number (143). SSH can now forward connections from
 (localhost,143) to (H,2001).
Once this command has run, a secure tunnel has been
 constructed from the port 2001 on the remote machine H, to port 143
 on the server machine S. Now any program on H can use the secure
 tunnel by connecting to (localhost,2001). As before, the command
 also runs an SSH terminal session on remote machine H, just as
 ssh H does.
As with local forwarding, you may establish a remote
 forwarding using a keyword in your client configuration file. The
 RemoteForward keyword is
 analogous to LocalForward, with
 the same syntactic differences between OpenSSH and Tectia:
 # OpenSSH
 RemoteForward 2001 S:143

 # Tectia
 RemoteForward "2001:S:143"
For example, here’s the preceding forwarding defined in a
 Tectia-format configuration file:
 # Tectia
 remote-forwarding-example:
 Host H
 RemoteForward "2001:S:143"

 $ ssh remote-forwarding-example
Tip
You might think that the GatewayPorts feature discussed in the
 last section applies equally well to remote port forwardings. This
 would make sense as a feature, but as it happens, it isn’t done.
 There would have to be a way for the client to communicate this
 parameter to the server for a given forwarding, and that feature
 hasn’t been included in the SSH protocol. In Tectia, remotely
 forwarded ports always listen on all network interfaces and accept
 connections from anywhere.
The OpenSSH server does accept the GatewayPorts configuration option, and
 it applies globally to all remote forwardings established by that
 server. This allows the server administrator to control whether
 users can bind to nonlocal sockets.

9.2.2 Trouble with Multiple Connections

If you use LocalForward or RemoteForward in your configuration file,
 you might run into a subtle problem. Suppose you have set up a section
 in your configuration file to forward local port 2001 to an IMAP
 server:
 # OpenSSH syntax used for illustration
 Host server.example.com
 LocalForward 2001 server.example.com:143
This configuration works fine if you connect once:
 $ ssh server.example.com
But if you try to open a second ssh
 connection to server.example.com at the same
 time—perhaps to run a different program in another window of your
 workstation—the attempt fails:
 $ ssh server.example.com
 Local: bind: Address already in use
Why does this happen? Because your configuration file section
 tries to forward port 2001 again but finds that port is already in use
 (“bound” for listening) by the first instance of
 ssh. You need some way to make the connection but
 omit the port forwarding.
OpenSSH provides a solution, the client configuration keyword
 ClearAllForwardings. From the name,
 you might think it terminates existing forwardings, but it doesn’t.
 Rather, it nullifies any forwardings specified in the
 current ssh command. In the previous example, you
 can connect without forwardings to
 server.example.com with:
 # OpenSSH
 $ ssh -o ClearAllForwardings=yes server.example.com
The original tunnel, set up by the first invocation, continues
 to exist, but ClearAllForwardings
 prevents the second invocation from attempting to re-create the
 tunnel. To illustrate the point further, here’s a rather silly
 command:
 # OpenSSH
 $ ssh -L2001:localhost:143 -o ClearAllForwardings=yes mymachine
The -L option specifies a forwarding, but
 ClearAllForwardings cancels it.
 This silly command is identical in function to:
 $ ssh mymachine
ClearAllForwardings may also
 be placed in your client configuration file, of course. It seems more
 useful on the command line, however, where it can be used on the fly
 without editing a file.

9.2.3 Comparing Local and Remote Port Forwarding

The differences between local and remote forwarding can
 be subtle. It can get a bit confusing to know which kind of forwarding
 to use in a given situation. The quick rule is look for the
 TCP client application.
Tip
If the TCP client application (whose connections you want to
 forward) is running locally on the SSH client machine, use local
 forwarding. Otherwise, the client application is on the remote SSH
 server machine, and you use remote forwarding.

The rest of this section is devoted to dissecting the forwarding
 process in detail and understanding where this rule comes from.
9.2.3.1 Common elements

Local and remote forwarding can be confusing because of
 overloaded terminology. In a given port-forwarding situation, there
 are two clients and two
 servers lying around. We have the SSH client and server
 programs (e.g., ssh and
 sshd), plus the TCP application’s client and
 server programs whose connection you want to protect by port
 forwarding.
An SSH session has a direction of establishment. That is, you
 run an SSH client on one machine, and it initiates a session with an
 SSH server on another. Likewise, a forwarded connection has a
 direction of establishment: you run an application client on one
 machine, and it initiates a session with a service on another. These
 two directions may or may not match. This is
 the difference between local and remote forwarding. Let’s introduce
 some terminology and provide some diagrams to make sense of
 this.
To begin with, we have an application client and server
 running on two hosts, A and B (Figure 9-2).
The application server is listening on a well-known port W for
 incoming client connections. Without SSH, you can tell the
 application client that its server is on host B, port W. The client
 makes a direct connection to the server, and all application
 protocol data goes in the clear over the network (Figure 9-3).
[image: Application client and server]

Figure 9-2. Application client and server

[image: Direct client/server connection (no forwarding)]

Figure 9-3. Direct client/server connection (no forwarding)

To protect the application protocol data by forwarding, you
 establish an SSH session between these two hosts. When setting up
 the SSH session, you select an unused port number P on the
 application client side (host A), and request SSH port forwarding
 from the socket (A,P) to the socket (B,W). Once the session is
 established, the SSH process on A is listening for incoming TCP
 connection requests on port P. Tell the application client that its
 server is on (A,P) instead of (B,W), and the stage is now set for
 port forwarding (Figure
 9-4).
There are now two cooperating SSH processes with an
 established, encrypted SSH session between them; you don’t
 distinguish between the SSH client and server. Inside that session,
 SSH creates multiple channels, or logical
 streams for carrying data. It uses channels to carry and distinguish
 the input, output, and error streams for an interactive login or
 remote command run via SSH, and similarly creates a new channel for
 each use of a port forwarding, to carry the forwarded data inside
 the protected SSH session.
[image: A forwarded port]

Figure 9-4. A forwarded port

Figure 9-5 shows
 that now, when the application client tries to connect to its
 server, it connects instead to the listening SSH process (1). The
 SSH listener notices this and accepts the connection. It then
 notifies its partner SSH process that a new instance of this port
 forwarding is starting up, and they cooperate to establish a new
 channel for carrying the data for this forwarding instance (2).
 Finally, the partner SSH process initiates a TCP connection to the
 target of the port forwarding: the application server listening on
 (B,W) (3). Once this connection succeeds, the port-forwarding
 instance is in place. The SSH processes cooperate to pass back and
 forth any data transmitted by the application client and server,
 over the channel inside the SSH session. This allows them to
 communicate and secures the application’s activities on the
 network.
[image: A forwarded connection]

Figure 9-5. A forwarded connection

9.2.3.2 Local versus remote forwarding: the
 distinction

With this general framework in place, you can distinguish
 between local and remote forwarding. First we introduce some terms.
 In the generic port-forwarding description in the last section, you
 saw that one SSH process listens for connections, while the other is
 ready to initiate connections in response to connections accepted on
 the other side, to complete the forwarded path. We call the first
 side the listening side of the SSH session with
 respect to this forwarding, and the other, the
 connecting side. For example, in Figure 9-4, host A is the
 listening side, while host B is the connecting side. Note that these
 terms aren’t mutually exclusive. Since a single SSH session may have
 multiple forwardings in place, the same side of a session may be the
 listening side for some forwardings, and simultaneously the
 connecting side for others. But with respect to any particular
 forwarding, it’s one or the other.
Now, recall that in the last section we didn’t label the SSH
 processes according to which was the SSH client and which was the
 SSH server, but simply referred to two cooperating SSH processes. We
 do so now and can state succinctly the local versus remote
 distinction:
	In a local forwarding (Figure 9-6), the
 application client and hence the listening side are located with
 the SSH client. The application server and connecting side are
 located with the SSH server.

	In a remote forwarding (Figure 9-7), the situation
 is reversed: the application client and listening side are
 located with the SSH server, while the application server and
 connecting side are located with the SSH client.

[image: Local forwarding]

Figure 9-6. Local forwarding

So, as we said at the beginning of this section: use a local
 forwarding when the application client is on the local side of the
 SSH connection, and a remote forwarding when it’s on the remote
 side.

9.2.4 Forwarding Off-Host

In all our discussions of port forwarding so far, the
 application client and server have been located on the machines on the
 ends of the SSH session. This is reflected in our always using
 “localhost” in naming the target socket of a forwarding:
 $ ssh -L2001:localhost:143 server.example.com
[image: Remote forwarding]

Figure 9-7. Remote forwarding

Since the application server is located on the same machine as
 the connecting side of the SSH port forwarding, the target host can be
 “localhost.” But the connections between the application client and
 the SSH listening side, and between the application server and the SSH
 connecting side, are themselves TCP connections. For convenience, TCP
 implementations allow programs to make connections between two sockets
 on the same host. The connection data is simply transferred from one
 process to another without actually being transmitted on any real
 network interface. However, in principle, either the application
 client or server—or both—could be on different machines, potentially
 involving as many as four hosts in a single forwarding (Figure 9-8).
[image: Off-host port forwarding]

Figure 9-8. Off-host port forwarding

Although this situation is possible, you generally don’t want to
 do it for security reasons—namely, privacy and access control.
9.2.4.1 Privacy

As shown in Figure
 9-8, the complete path followed by forwarded data includes
 three TCP connections. But only the second connection, between the
 two SSH processes, is protected as a channel inside the SSH session.
 The other two connections are just simple TCP connections. Normally,
 each of these is on a single host, and is therefore protected from
 network snooping or interference, so the entire forwarding path is
 secure. But if either of these two connections is between different
 hosts, its data is vulnerable in transit.

9.2.4.2 Access control and the loopback address

The other security problem of off-host forwarding concerns the
 listening side. In short, the listening side of a forwarding has no
 access control, so intruders may gain access to it. To explain this
 problem, we must first discuss the loopback
 address of a host.
In addition to physical network interfaces, a host running IP
 also has a virtual interface called the
 loopback interface. This is a software
 construct, not corresponding to any network hardware. Nonetheless,
 the loopback appears and responds like a real interface. Under Unix,
 it is often named lo0 and is
 listed by ifconfig:
 $ ifconfig -a
 ...
 lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
 inet 127.0.0.1 netmask ff000000
The loopback interface leads back to the host itself. A
 datagram “transmitted” on the loopback interface immediately appears
 as an incoming packet on the loopback interface and is picked up and
 processed by IP as being destined for the local host.
The loopback interface is always assigned the same IP
 address—127.0.0.1, the loopback address
 [134]—and the local naming service provides the name
 “localhost” for that address. This mechanism gives a reliable way
 for processes to communicate with one another on the local host via
 IP, regardless of what IP addresses the host may have on real
 connected networks, or indeed if the host has no real network
 connections at all. You can always refer to your local host using
 the well-known loopback address.
By design, a loopback address is local to its host. One
 machine can’t contact the loopback address of another. Since the
 loopback address 127.0.0.1 is standard on all IP hosts, any
 connection to 127.0.0.1 leads a machine to talk to itself. (Plus,
 the loopback network isn’t routed on the Internet.)

9.2.4.3 Listening on (“binding”) an interface

When a host listens on a TCP port, it establishes a potential
 endpoint for a TCP connection. But the endpoints of a TCP connection
 are sockets, and a socket is an (address,port) pair, not a
 (host,port) pair. Listening must take place on a particular socket
 and thus be associated with a particular address, hence a particular
 interface on the host. This is called binding
 the interface.[135] Unless otherwise specified, when asked to listen on a
 particular port, TCP binds all the host’s interfaces and accepts
 connections on any of them. This is generally the right behavior for
 a server. It doesn’t care how many network interfaces the local host
 has: it just accepts any connection made to its listening port,
 regardless of which host address was requested.
Consider, however, what this means in the case of SSH port
 forwarding. There is no authentication or access control at all
 applied to the listening side of a forwarding; it simply accepts any
 connection and forwards it. If the listening side binds all the
 host’s interfaces for the forwarded port, this means that
 anyone with network connectivity to the
 listening host—possibly the whole Internet—can use your forwarding.
 This is obviously not a good situation. To address it, SSH by
 default binds only the loopback address for the listening side of a
 forwarding. This means that only other programs on the same host may
 connect to the forwarded socket. This makes it reasonably safe to
 use port forwarding on a PC or other single-user machine, but is
 still a security problem on multiuser hosts. On most Unix machines,
 for example, a knowledgeable user can connect to any listening
 sockets and see what’s on them. Keep this in mind when using port
 forwarding on a Unix machine!
If you want to allow off-host connections to your forwarded
 ports, you can use the -g switch or GatewayPorts option to have the listening
 side bind all interfaces, as we did in an earlier example: [9.2.4]
 $ ssh -g -L P:S:W B
But be aware of the security implications! You may want to
 exercise more control over the use of forwarded ports in this
 situation by using TCP-wrappers, which we discuss later in this
 chapter.

9.2.5 Bypassing a Firewall

Let’s tackle a more complicated example of port
 forwarding. Figure 9-9
 returns us to the same company situation as in Figure 6-5, when we discussed
 agent forwarding. [6.3.5] Your home machine H
 talks to work machine W via a bastion host, B, and you want to access
 your work email from home. Machine W runs an IMAP server, and your
 home machine H has an IMAP-capable email reader, but you can’t hook
 them up. Your home IMAP client expects to make a TCP connection
 directly to the IMAP server on W, but unfortunately that connection is
 blocked by the firewall. Since host B is inside the firewall, and it’s
 running an SSH server, there should be some way
 to put all the pieces together and make the IMAP connection from H to
 W.
[image: Port forwarding through a firewall]

Figure 9-9. Port forwarding through a firewall

Port forwarding can solve this problem. As before, the IMAP
 server is on port 143, and we select a random local port number, 2001.
 This time, however, we use a slightly different command to set up
 forwarding:
 # Executed on home machine H
 $ ssh -L2001:W:143 B
This establishes an interactive SSH session from home machine H
 to bastion host B and also creates an SSH tunnel from local host H to
 the email server machine W. Specifically, in response to a connection
 on port 2001, the local SSH client directs the SSH server running on B
 to open a connection to port 143 on W, that is, socket W:143. The SSH
 server can do this because B is inside the firewall. If you configure
 your email reader to connect to local port 2001, as before, the
 communication path is now as follows:
	The email reader on home machine H sends data to local port
 2001.

	The local SSH client reads port 2001, encrypts the data, and
 sends it into the tunnel.

	The tunnel passes through the firewall, because it is an SSH
 connection (port 22) that the firewall accepts.

	The SSH server on bastion host B decrypts the data and sends
 it to port 143 on work machine W. This transmission isn’t
 encrypted, but it’s protected behind the firewall, so encryption
 isn’t necessary. (Assuming you’re not worried about snooping on
 your internal network.)

	Data is sent back from the IMAP server to home machine H by
 the same process in reverse.

You have now bypassed the firewall by tunneling the IMAP traffic
 through SSH.

9.2.6 Port Forwarding Without a Remote Login

It may happen that you’d like to forward a port via SSH but
 don’t want an SSH login session to the remote host. For example, if
 you’re using the IMAP forwarding example we’ve been harping on, you
 may want only to read email, not open an unnecessary terminal
 connection at the same time. With Tectia, this is simple: just provide
 the -f option to ssh in your
 port-forwarding command:
 # Tectia
 $ ssh -f -L2001:localhost:143 server.example.com
or use the GoBackground
 keyword for the same effect:
 # Tectia
 GoBackground yes
As a result, ssh puts itself into the
 background and handles connections to the forwarded port 2001, and
 that is all. It doesn’t create an interactive terminal session with
 standard input, output, and error channels. The
 -S option also avoids starting a terminal
 session, but unlike -f, it doesn’t put the
 session in the background (in other words, the -f
 option implies -S):
 # Tectia
 $ ssh -S -L2001:localhost:143 server.example.com
The -f option is also supported by OpenSSH,
 but by default it still requires a command to execute. This usage is
 intended more for executing remote commands that don’t require
 terminal interaction, such as graphical programs using X.
 Specifically, it causes the backgrounded ssh to
 connect the local end of the terminal session to /dev/null (that is, -f
 implies the -n option).
For example, if X forwarding is turned on (which we’ll discuss
 later), the following command puts itself into the background, popping
 up a graphical clock on your local display, with the clock program
 running on the remote host zwei.uhr.org:
 # OpenSSH
 $ ssh -f zwei.uhr.org xclock
This is similar to the background command:
 # OpenSSH
 $ ssh -n zwei.uhr.org xclock &
but -f is better because it performs any
 needed user interaction—like prompting for a password—before forking
 into the background. If you want to background an OpenSSH session
 without a remote command, as with Tectia earlier, then add the
 -N switch as well:
 $ ssh -fN -L2001:localhost:143 server.example.com
Technically, this means the client will not create a “shell
 channel” in the SSH protocol. Tectia doesn’t require the extra option,
 it just does the right thing whether you give a remote command or not;
 with OpenSSH, you must use the -N option if you
 don’t provide a command. If you forget the option, you’ll see:
 # OpenSSH
 $ ssh -f -L2001:localhost:143 server.example.com
 Cannot fork into background without a command to execute.
The old SSH-1 protocol always requires the remote command, so as
 a workaround, provide one that does nothing for a long time, such as
 sleep:
 # An SSH-1 client
 $ ssh -f -L2001:localhost:143 server.example.com sleep 1000000
9.2.6.1 One-shot forwarding

When invoked with -f or GoBackground, ssh
 persists until you explicitly kill it with the Unix
 kill command. (You can find its pid with the
 ps command.) Alternatively, you can request
 one-shot forwarding, which causes the client to
 exit when forwarding is over with. Specifically, the client waits
 indefinitely for the first forwarded connection. After that, when
 the number of forwarded connections drops to zero, the client
 exits.
One-shot forwarding is accomplished easily in Tectia with the
 -fo command-line option, a variation on
 -f (the “o” stands for “one shot”).
 # Tectia
 $ ssh -fo -L2001:localhost:143 server
One-shot forwarding isn’t directly supported by OpenSSH, but
 you can get the same effect with the following method:
	Set up the forwarding with ssh -f,
 and for the required remote command, use
 sleep with a short duration:
 $ ssh -f -L2001:localhost:143 server sleep 10

	Before the sleep interval expires, use the forwarded
 connection:
 $ ssh -p2001 localhost

Once the sleep command finishes, the
 first ssh tries to exit—but it notices a
 forwarded connection is in use and refuses to exit, printing a
 warning you can ignore:
 Waiting for forwarded connections to terminate...
 The following connections are open:
 port 2001, connection from localhost port 143
ssh waits until that connection ends, and
 then terminates, providing the behavior of one-shot
 forwarding.

9.2.7 The Listening Port Number

Earlier, we suggested selecting any unused port for the
 listening side of a forwarding. Port numbers are encoded in a 16-bit
 field and can have any value from 1 to 65535 (port 0 is reserved). On
 multiuser operating systems such as Unix, ports 1 through 1023 are
 called privileged and are reserved for processes
 run by the superuser (user ID zero). If a nonprivileged process tries
 to bind a privileged port for listening, it fails with an error
 message such as “insufficient permission.”[136]
When setting up the listening side of a tunnel, you generally
 must select a port number between 1024 and 65535, inclusive. This is
 because an SSH program running under your user ID, not the
 superuser’s, is responsible for listening on that port. If SSH reports
 that your chosen port is already in use, just choose another; it
 shouldn’t be hard to find a free one.
For the target side of the tunnel, you can specify any port
 number, privileged or not. You are attempting to connect
 to the port, not listen on it. In fact, most of the time
 the target side is a privileged port, since the most common TCP
 services have ports in the privileged range.
If you are the superuser on a machine with SSH clients, you can
 perform local forwarding with a privileged port. Likewise, you can
 forward a remote privileged port if your remote account has superuser
 privileges.
Some TCP applications hardcode the server port numbers and don’t
 permit them to be changed. These applications aren’t usable with port
 forwarding if the operating system has a privileged port restriction.
 For example, suppose you have an FTP client that’s hardwired to
 connect to the server on the standard FTP control port, 21. To set up
 port forwarding, you have to forward the local port 21 to the remote
 port 21. But since port 21 is privileged, you can’t use it as a
 listening port number unless you are the superuser. Fortunately, most
 Unix TCP-based programs let you set the destination port number for
 connections.

9.2.8 Choosing the Target Forwarding Address

Suppose you want to forward a connection from your local
 machine to remote.host.net. Both
 of the following commands work:
 $ ssh -L2001:localhost:143 remote.host.net
 $ ssh -L2001:remote.host.net:143 remote.host.net
The forwarded connection is made from the remote machine to
 either the loopback address or remote.host.net,
 and in either case, the connection stays on the remote machine and
 doesn’t go over the network. However, the two connections are
 perceptibly different to the server receiving the forwarded
 connection. This is because the source sockets of
 the connections are different. The connection to localhost appears to
 come from source address 127.0.0.1, whereas the connection to
 remote.host.net is from the address associated
 with that name.
Most of the time this difference doesn’t matter, but sometimes
 you must take it into account. The application server (e.g., the IMAP
 daemon) might be doing access control based on the source address and
 may not be configured to accept the loopback address. Or it might be
 running on a multihomed host, and have bound only a subset of the
 addresses the host has, possibly not including the loopback address.
 Each of these situations is usually an oversight, but you might not be
 able to do anything about it. If you’re getting “connection refused”
 from the connecting side of the forwarding, but you’ve verified that
 the server appears to be running and responding to normal clients,
 this might be the problem. If the server machine is running Unix, the
 command netstat -a -n should list all the network
 connections and listeners on that machine. Look for listeners on the
 relevant port, and the addresses on which they are listening.
Sometimes, the problem can be more acute if the server uses the
 source IP address itself as part of whatever protocol it’s speaking.
 This problem crops up when trying to forward FTP over SSH. [11.2]
In general, we recommend using localhost as the forwarding
 target whenever possible. This way, you are less likely to set up an
 insecure off-host forwarding by accident.

9.2.9 Termination

What happens to forwardings when an SSH connection
 terminates? The ports simply cease being forwarded; that is, SSH is no
 longer listening on them, and connection attempts to those ports will
 fail with the error “connection refused.”
What happens if you try to terminate an SSH session while it
 still has active forwarded connections? SSH notices and waits for them
 to disconnect before stopping the session. The details of this
 behavior differ among implementations.
In Tectia, if you log out of a session that has an active
 forwarded connection, the session stays open but sends itself into the
 background:
 remote$ logout
 warning: ssh[7021]: number of forwarded channels still open, forked to background to
 wait for completion.
 local$
The ssh process now waits in the background
 until the forwarded connections terminate, and then it exits. In
 contrast, with OpenSSH, if you disconnect a session with active
 forwardings, you get a warning, but the session stays in the
 foreground:
 remote$ logout
 Waiting for forwarded connections to terminate...
 The following connections are open:
 port 2002, connection from localhost port 1465
To send it into the background and return to your local shell
 prompt, type the escape sequence Return-tilde-ampersand: [7.4.6.8]
 ~& [backgrounded]
 local$
and as with Tectia, the connection exits only after its
 forwarded connections terminate. Be careful not to use the SSH
 ^Z escape for this purpose. That sends
 ssh into the background, but in a suspended
 state, unable to accept TCP connections to its forwarded ports. If you
 do this accidentally, use your shell’s job control commands (e.g.,
 fg and bg) to resume the
 process.
9.2.9.1 The TIME_WAIT problem

Sometimes a forwarded port mysteriously hangs around
 after the forwarding SSH session has gone away. You try a command
 you’ve used successfully several times in a row and suddenly get an
 error message:
 $ ssh -L2001:localhost:21 server.example.com
 Local: bind: Address already in use
(This happens commonly if you’re experimenting with port
 forwarding, trying to get something to work.) You know that you
 have no active SSH command listening on port 2001, so what’s going
 on? If you use the netstat command to look for
 other listeners on that port, you may see a connection hanging
 around in the TIME_WAIT state:
 $ netstat -an | grep 2001
 tcp 0 0 127.0.0.1:2001 127.0.0.1:1472 TIME_WAIT
The TIME_WAIT state is an artifact of the TCP protocol. In
 certain situations, the teardown of a TCP connection can leave one
 of its socket endpoints unusable for a short period of time, usually
 only a few minutes. As a result, you can’t reuse the port for TCP
 forwarding (or anything else) until the teardown completes. If
 you’re impatient, choose another port for the time being (say, 2002
 instead of 2001) and get on with your work, or wait a short time for
 the port to become usable again.

9.2.10 Configuring Port Forwarding in the Server

We’ve seen several keywords and command-line options for
 configuring SSH clients for port forwarding, such as
 -L and -R. In addition, the
 SSH server can be configured for port forwarding.
 We’ll cover compile-time, serverwide, and per-account
 configuration.
9.2.10.1 Compile-time configuration

You can enable or disable port forwarding at compile time in
 Tectia with configure. [4.3.5.5] The Tectia flag
 --disable-tcp-port-forwarding disables port
 forwarding for both clients and servers.

9.2.10.2 Serverwide configuration

Port forwarding can be globally enabled or disabled in
 sshd. This is done with the serverwide
 configuration keyword AllowTcpForwarding in /etc/sshd_config. The keyword may have
 the value yes (the default,
 enabling forwarding) or no
 (disabling forwarding):
 AllowTcpForwarding no
In addition, Tectia has the following options:
 # Tectia
 AllowTcpForwardingForUsers
 AllowTcpForwardingForGroups
The syntax of these is the same as for the AllowUsers and AllowGroups options. [5.5.1] They specify a list
 of users or groups that are allowed to use port forwarding; the
 server refuses to honor port-forwarding requests for anyone else.
 Note that these refer to the target account of
 the SSH session, not the client username (which is often not
 known).

9.2.10.3 Per-account configuration

In your account, you can disable port forwarding for
 any client that connects via a particular key. [8.2.7] For OpenSSH, locate
 the public key in your authorized_keys file and precede it with
 the option no-port-forwarding:
 # OpenSSH
 no-port-forwarding ...key...
or for Tectia, follow the Key line with an Options line:
 # Tectia
 Key mykey.pub
 Options no-port-forwarding
Any SSH client that authenticates using this key can’t perform
 port forwarding with your SSH server. Nevertheless, the earlier
 remarks we made about serverwide port-forwarding configuration apply
 here: the restriction isn’t really meaningful unless you further
 restrict what this key is allowed to do.

9.2.11 Protocol-Specific Forwarding: FTP

SSH port forwarding works best with protocols that make
 simple use of TCP: those which operate over a single TCP connection
 and are not sensitive to its network-related details such as IP
 addresses or ports—in other words, they could operate just as well
 over a serial line or other similar path. Many common protocols fall
 in this category, but not all. The exceptions tend to be older
 protocols designed before the rise of firewalls and NAT on the
 Internet, which degrade true peer-to-peer connectivity and make some
 techniques problematic. As we have already mentioned, a prime example
 is FTP, which exhibits several forwarding problems all at once:
	It uses multiple TCP connections.

	They may go in different directions.

	The destination ports may be dynamically determined.

	It carries TCP port numbers and IP addresses inside the
 protocol.

This is all pretty disastrous from a forwarding perspective in
 the presence of NAT, and we’ll share those gory details later. [11.2.6] Some SSH
 implementations, though, have an FTP-specific forwarding feature
 designed to work around these problems. This protocol-specific
 forwarding involves the SSH client watching the tunneled FTP protocol
 as it operates, creating dynamic forwardings to accommodate it, and
 possibly altering some FTP messages as they pass through in order to
 accommodate this hacking. Tectia has an FTP forwarding mode, while
 OpenSSH doesn’t. The Tectia usage is:
 # Tectia
 $ ssh -L ftp/2001:localhost:21 S
This logs into server S, forwarding local port 2001 with the FTP
 workaround magic, to the FTP server running on S (the normal FTP
 control port is 21). To use the forwarding, point your FTP client at
 localhost:2001. FTP programs vary in syntax for
 this; some examples are:
 $ ftp localhost 2001
 $ ftp -P 2001 localhost
As long as the FTP and SSH clients are together on one host, the
 servers are together on another, and “localhost” is used as shown in
 the commands, both active and passive FTP now work. This is normally
 the way you want it, since if the clients or servers are split up,
 then FTP data transfers (which include directory listings) pass in the
 clear over a portion of the path, unprotected by SSH. However, in some
 circumstances you might be forced to split one side up. As a result of
 the way Tectia FTP forwarding works, the rule is:
Tip
In active mode, the servers must be together; in passive mode,
 the clients must be together.

Observe that if you split up both sides so that four separate
 hosts (technically, addresses) are in the picture, then
 neither mode works, and FTP won’t work at all
 beyond the initial connection and login.
This rule applies because when Tectia forwards ports to
 accommodate FTP data connections, the ports listen on the loopback
 address only, forcing both participants on one side or the other to be
 on the same host. Which side depends on which mode: in active mode the
 FTP server makes the data connections, so the SSH forwardings are
 remote, forcing the servers to be together. In passive mode, the FTP
 client makes the connections, so the SSH forwardings are local,
 forcing the clients to be together.

[128] Our port forwarding example protects your IMAP connection but
 doesn’t truly protect your email messages. Before reaching your IMAP
 server, the messages pass through other mail servers and may be
 intercepted in transit. For end-to-end email security, you and your
 correspondent should use tools such as PGP or S/MIME to sign and/or
 encrypt the messages themselves.

[129] We’re being a little imprecise here. DHCP is entirely based
 on UDP, so SSH port forwarding can’t do anything with it. The
 others, however, either use both TCP and UDP for different
 purposes or can sometimes be configured to run over TCP, though
 they generally use UDP. Nevertheless, in most common situations,
 SSH can’t forward them.

[130] You can also use ssh -L2001:S:143 S,
 substituting “S” for localhost, but we discuss later why localhost
 is the better alternative when possible.

[131] The mechanisms used to implement these guarantees, though,
 are designed to counter transmission problems in the network,
 such as routing around failed links, or retransmitting data
 corrupted by noise or lost due to temporary network congestion.
 They are not very effective against deliberate attempts to steal
 a connection or alter data in transit part. SSH provides this
 protection that TCP alone lacks.

[132] IANA’s complete list of port numbers is found at http://www.isi.edu/in-notes/iana/assignments/port-numbers/.

[133] The Berkeley r-commands, however, do care about source
 ports.

[134] Actually, the entire network 127.0.0.0/8—comprising 24
 million addresses—is reserved for addresses that refer to the
 local host. Only the address 127.0.0.1 is commonly used,
 although we have seen devices use a handful of others for
 special purposes, such as “reject” interfaces on a terminal
 server or router.

[135] Named after the Berkeley sockets library routine
 bind, commonly used to establish the
 association.

[136] Microsoft Windows has no privileged port restriction, so any
 user can listen on any free port.

Dynamic Port Forwarding

We are often asked, “How can I tunnel my web browsing over SSH?”
 The usual reasons are for privacy or for browsing across a firewall. The
 SSH port forwarding we’ve described so far doesn’t meet this need very
 well, but there is another flavor called dynamic port
 forwarding which does. We’ll call the previous technique “static
 forwarding” in contrast.
Suppose you’re at home, using your home machine H, and need to
 access a web server W1 at work, but your employer’s internal network is
 behind a firewall. You might attempt to do this through a bastion server
 at work (say, B) which you can log into via SSH; and then from B, you
 can reach whatever internal web servers you want. So you create a tunnel
 using the following port-forwarding command on home machine H:
 $ ssh -L 8080:W1:80 B This runs into problems
and point your web browser on H at http://localhost:8080/. This is a reasonable try, based
 on forwarding as we’ve seen it so far, but there are lots of
 problems:
	Problem 1: virtual hosts
	Web servers can make decisions based on the hostname portion
 of the URL you request. For example, if the names
 foo and bar are aliases
 for the same host, then the URLs http://foo/
 and http://bar/ may return different pages.
 A practical example is an ISP’s web server, which could host
 content for dozens or hundreds of customers’ web sites under
 different hostnames, all of which point to that same machine. This
 web server configuration is often called virtual
 hosts.
In our home/work example, we’re trying to access web server
 W1 as “localhost,” but it might not be configured to serve any
 content under this name; and even if it does, it might not be the
 content you want. To address this problem, you’d have to get the
 browser to recognize other names as aliases for localhost, e.g.,
 by hacking /etc/hosts on a
 Unix box—not exactly a smooth solution.

	Problem 2: absolute links
	Suppose problem 1 is a non-issue, and you see the web page
 you want. However, if that web page has any absolute links that
 directly reference the hostname W1, they might not work. For
 example, the absolute URL http://W1/some_great_content.html fails when your
 browser tries to follow it, because your browser knows the site
 only as localhost.

	Problem 3: links to other secured
 servers
	Even if problems 1 and 2 don’t bite you, your luck runs out
 when you hit a link to another internal web
 server, W2, or even a page on the same server but on a different
 port (e.g., http://W1:81/java-is-great.jsp).

Clearly, static port forwarding is woefully inadequate for this
 scenario. You could get around individual problems by editing your host
 file or stopping now and then to forward another port, but who wants the
 annoyance? And such a burdensome solution isn’t exactly convenient to
 explain to your Aunt Mae. Or your boss.
We can address problems 1 and 2 by making a realization: that we
 want to redirect the web browser over SSH without fussing with the URL.
 Most browsers have just such a feature: a proxy. We
 can set the browser’s HTTP proxy to our SSH-forwarded port
 localhost:8080; this means it
 always connects to our forwarded port in response
 to any HTTP URL we provide. The browser assumes this port leads to a
 proxy server that knows how to get the content for the various web
 servers we seek, so the browser doesn’t have to contact those servers
 directly.
Proxying gets us part of the way there, but doesn’t solve problem
 3: what happens if we hit a link to a hostname besides W1? The browser
 sends it to W1 anyway via its proxy setting, but W1 won’t know how to
 handle it, so we’ll get a web server error along the lines of
 “unrecognized URL.” We can’t feasibly deal with this manually; not only
 would we have to forward another port, but also we’d have to reset the
 browser to proxy through the new port, at which point it could reach the
 new URLs but not the old ones on W1! That’s just a mess...what we really
 need is a way for the browser to communicate dynamically with SSH
 itself, telling it to forward to the correct web server for each URL the
 browser handles. And indeed, there is a feature to do exactly this,
 called dynamic forwarding or SOCKS
 forwarding.
SOCKS is a small protocol, defined in RFC-1928. A SOCKS client
 connects via TCP, and indicates via the protocol the remote socket it
 wants to reach; the SOCKS server makes the connection, then gets out of
 the way, transparently passing data back and forth. Thereafter, it is
 just as if the client had connected directly to the remote socket. The
 OpenSSH and Tectia syntax for this kind of forwarding would be:
 # OpenSSH
 $ ssh -D 1080 B

 # Tectia
 $ ssh -L socks/1080 B
We’ve switched to port 1080 since that’s the usual SOCKS port;
 8080 or any other port would do, as usual. Note that there’s no
 destination socket in either command, just the local port to be
 forwarded; that’s because the destination is determined dynamically, and
 can be different for each connection. We can use this solution only if
 the browser has an option to use a SOCKS proxy (as most do).
This solves the whole problem neatly! The process goes like
 so:
	The user types URL scheme://foo:1234/
 into the browser. The port 1234 might be implicit, as in 80 for HTTP
 or 443 for HTTPS.

	The browser connects to the SSH SOCKS proxy on
 localhost:1080, and asks for a connection to
 foo:1234 using the SOCKS protocol.

	In response, the SSH client associates the browser’s
 connection with a new direct-tcpip channel in
 the existing SSH session [3.4.4.1], connected to
 foo:1234 via another TCP connection established
 by the SSH server.

	The SSH client and server “get out of the way,” and the
 browser is connected to the desired web server. Note that there is
 nothing here specific to HTTP; the browser can next build an SSL
 session if the scheme is HTTPS, or use any protocol at all over the
 proxied connection.

Each time a new connection arrives on port 1080, it can be
 forwarded to a different socket. This might seem odd if you have static
 forwarding firmly in mind, but it’s just an extension of what you
 already know. With static forwarding, the SSH client still creates a new
 channel for each connection; it just sends them all to the same place.
 With dynamic forwarding, SOCKS allows each connection to indicate its
 own destination, and SSH obliges.
No special support is required for dynamic forwarding on the SSH
 server, since it in fact uses the same mechanism as static forwarding.
 Only the client needs to support dynamic forwarding.
So, this would be a perfect lightweight solution: complete remote
 web browsing with just SSH. Ah, if only we lived in such a simple
 world....
9.3.1. SOCKS v4, SOCKS v5, and Names

There are actually two commonly used versions of the SOCKS
 protocol: Version 4 and Version 5. Both OpenSSH and Tectia clients can
 do SOCKS proxying, and recent versions implement SOCKS5 as well as
 SOCKS4. SOCKS5 added many features over SOCKS4—authentication, UDP
 support, bidirect forwarding, and more—but the germane feature here is
 that SOCKS4 only understands IP addresses in destination sockets,
 whereas SOCKS5 accepts domain names as well. This is crucial for both
 practical and privacy reasons. Often, the naming context on either
 side of the SSH connection is different: in our current example, your
 company’s network probably has a private namespace for hosts (e.g., an
 internal-only DNS which isn’t available to the outside world). With
 SOCKS4, your browser must look up the name in the URL locally, then
 ask the SOCKS proxy to connect to the resulting address. That won’t
 work for us; we want to give the proxy the (name,port) to reach, and
 have it resolve the name on the far side of the connection, in the
 correct context.
The privacy aspect is, if you’re proxying your browsing traffic
 to shield your local web traffic from prying eyes, you don’t want to
 reveal the names of all the web servers you’re hitting to anyone who
 can watch the DNS traffic from your browsing host.
OK, so SOCKS4 is out; that’s no problem, as many browsers
 support SOCKS5. But there’s a further complication; the ugly face of
 reality nosing into our elegant solution. Disappointingly, most of the
 major browsers, even when they support SOCKS5, don’t actually use it
 properly: they look up names locally, even though they could be passed
 through the proxy. We’ve tried dozens of OS/browser combinations,
 including Firefox, Safari, Netscape, Mozilla, Internet Explorer (IE),
 and Opera, and the only one we’ve found so far
 which does the right thing is...(drum roll please...) IE 5.2 on
 Macintosh OS X. We guess that the main motivation for adding SOCKS5
 support was authentication, and so it was added without changing the
 address-lookup logic—but this is an oversight that makes any use of
 SOCKS5 proxying much less useful than it could be. So: write your
 browser developers and ask for better SOCKS5 support! A switch for
 choosing either local or remote name resolution would be ideal.
Given the realities of browser SOCKS support, the best solution
 for now is usually using a static SSH port forwarding to a separate
 HTTP proxy server, such as Squid or Privoxy. These proxies can also
 provide lots of other useful features, such as pop-up blocking and
 cookie management—but one doesn’t always have such a proxy available
 or the ability to set one up, so the SSH-only approach with dynamic
 forwarding is preferable if you can use it.

9.3.2 Other Uses of Dynamic Forwarding

The remote web-browsing problem provided a perfect setting in
 which to introduce dynamic forwarding, but there are certainly other
 uses. Any program which can use a SOCKS proxy is a candidate, and
 there are lots of them if you look. For instance: SSH itself! With
 dynamic forwarding, SSH acts as a SOCKS server, but as a completely
 separate feature, some SSH products can also be SOCKS
 clients. The usual use for this is for external
 connectivity where the local network isn’t directly connected to the
 Internet, but provides only proxied Net access via SOCKS. However, it
 has a neat use in combination with dynamic forwarding:
 # Tectia
 # In one window:
 $ ssh -L socks/1080 B
 # In another window:
 $ export SSH_SOCKS_SERVER=socks://localhost:1080/
 $ ssh -o'usesocks5 yes' HOST1
where you’re on the outside but HOST1 is on your company’s
 internal network. The second
 ssh command uses the SSH/SOCKS proxy established
 by the first to connect through the bastion host B to HOST1, resolving
 the name HOST1 on the inside. This is obviously more convenient than
 forwarding a separate port to host:22 for each
 internal host you might want to reach. It also has many advantages
 over the idiom ssh B -t ssh HOST1,
 including:
	It’s faster, since multiple subsequent SSH commands to
 internal hosts use the same SSH/SOCKS connection, rather than
 waiting for two connections every time.

	It doesn’t require an SSH client or other state (keys,
 known-hosts files, etc.) on bastion host B. Indeed, this technique
 could work were a shell login not allowed on B, only SSH
 connections for forwarding purposes.

	There is an SSH connection directly between home machine H
 and HOST1, which simplifies things immensely if you want to do X
 forwarding or port forwarding between them.

X Forwarding

Now that you’ve seen general TCP port forwarding, we move to a new
 topic: forwarding of X protocol connections. X is a popular window
 system for Unix workstations, and one of its best features is its
 transparency. Using X, you can run remote X applications that open their
 windows on your local display (and vice versa, running local
 applications on remote displays). Unfortunately, the inter-machine
 communication is insecure and wide open to snoopers. But there’s good
 news: SSH X forwarding makes the communication
 secure by tunneling the X protocol.
X forwarding also addresses some firewall-related difficulties.
 Suppose you’re a system administrator with a set of exposed production
 machines on the other side of a firewall from you. You log into one of
 these machines using SSH, and want to run a graphical
 performance-monitoring tool, such as Solaris’s
 perfmon, that uses the X Window System. You can’t,
 though, because to do that, the external machine needs to make a TCP
 connection back to the internal machine you started on, and the firewall
 blocks it (as it should, since X is quite insecure). X forwarding solves
 this problem, permitting X protocol connections to pass through the
 firewall, securely tunneled via SSH.
Our discussion begins with a brief overview, then explains the
 details of X forwarding. In addition to explaining how to use X
 forwarding, we also expose the internals of X authentication and how it
 interacts with SSH, as well as other technical topics.
9.4.1 The X Window System

The X Window System, or X, is the most widely used graphical
 display system for Unix machines. Like SSH, X has clients and servers.
 X clients are windowing application programs, such as terminal
 emulators, paint programs, graphical clocks, and so forth. An X server
 is the underlying display engine that processes requests from X
 clients, communicating via a network protocol called the X
 protocol. A machine typically runs a single X server but
 possibly many X clients.
Most important to our discussion, X supports sophisticated
 window management over a network. X clients can open windows not only
 on their local machine, but also on other computers on the network,
 whether they are down the hall or across the globe. To accomplish
 this, an X client makes a network connection to a remote X
VNC Forwarding: An Alternative to X Forwarding
X forwarding is problematic from a security point of view, for
 the same reason as X itself. As you will see, the design of X means
 that remote programs must make separate network connections back to
 the user; this requires yet another layer of authentication and
 authorization, complicating the situation and opening an avenue of
 attack. SSH X forwarding tries to secure this as much as possible,
 but it may still be unacceptable in some environments.
An alternative technique is to use Virtual Network Computing
 (VNC) over SSH. VNC is free software developed by AT&T
 Laboratories in the UK, which provides remote GUI access for Unix
 and Windows platforms. With VNC, you can open a window on your Unix
 machine running X, and have the desktop of a remote Windows machine
 appear there, so you can operate the Windows box remotely.
 Conversely, you can run the VNC client on a Windows machine and
 connect to a remote X display running on a Unix host. Since VNC
 involves only a single outbound connection, it is easy and safer to
 tunnel through SSH than X. You can find out more about VNC (and
 download the software) at http://www.realvnc.com/.

server and carries on a conversation, using the X protocol to
 draw on the remote screen, receive remote keyboard events, learn the
 remote mouse location, and so on. This obviously requires some type of
 security, which we discuss soon.
A central concept of X is the display, an
 abstraction for the screen managed by an X server. When an X client is
 invoked, it needs to know which display to use. Displays are named by
 strings of the form HOST:n.v, where:
	HOST is the name of the machine running
 the X server controlling the display.

	n is the display
 number, an integer, usually 0. X allows for multiple displays
 controlled by a single server; additional displays are numbered 1,
 2, and so on.

	v is the visual
 number, another integer. A visual is a virtual display. X supports
 multiple virtual displays on a single, physical display. If
 there’s only one virtual display (which is the most common
 scenario), you omit the “.v”, and the default is visual 0.

For example, on the machine
 server.example.com, display 0, visual 1 is
 represented by the display string “server.example.com:0.1”.
Under Unix, most X client programs let you specify the display
 string in two ways: the -d or
 -display command-line option, or the environment
 variable DISPLAY. For example, to
 run the X client program xterm on the only X
 display of the workstation anacreon, use the
 command-line option:
 $ xterm -d anacreon:0 &
or the environment variable:
 $ setenv DISPLAY anacreon:0
 $ xterm &
X is a large, deep software product whose documentation fills a
 dozen O’Reilly books. We’ve barely scratched the surface with our
 explanation, but you’ve now seen enough to understand X
 forwarding.

9.4.2 How X Forwarding Works

Although X clients can communicate with remote X servers, this
 communication isn’t secure. All interactions between the X client and
 server, such as keystrokes and displayed text, can be easily monitored
 by network snooping because the connection isn’t encrypted. In
 addition, most X environments use primitive authentication methods for
 connecting to a remote display. A knowledgeable attacker can get a
 connection to your display, monitor your keystrokes, and control other
 programs you’re running.
Once again, SSH comes to the rescue. An X protocol connection
 can be routed through an SSH connection to provide security and
 stronger authentication. This feature is called X
 forwarding.
X forwarding works in the following way, as illustrated in Figure 9-10. An SSH client
 requests X forwarding when it connects to an SSH server (assuming X
 forwarding is enabled in the client). If the server allows X
 forwarding for this connection, your login proceeds normally, but the
 server takes some special steps behind the scenes. In addition to
 handling your terminal session, it sets itself up as a proxy X server
 running on the remote machine and sets the DISPLAY environment variable in your remote
 shell to point to the proxy X display:
 syrinx$ ssh sys1
 Last login: Sat Nov 13 01:10:37 1999 from blackberry
 Sun Microsystems Inc. SunOS 5.6 Generic August 1997
 You have new mail.
 sys1$ echo $DISPLAY
 sys1:10.0
 sys1$ xeyes
 The "xeyes" X client appears on the screen
The DISPLAY value appears to
 refer to X display #10 on sys1, but there’s no
 such display. (In fact, there might be no true displays on
 sys1 at all!) Instead, the DISPLAY value points to the X proxy
 established by the SSH server, i.e., the SSH server is masquerading as
 an X server. If you now run an X client program, it connects to the
 proxy. The proxy behaves just like a “real” X server, and in turn
 instructs the SSH client to behave as a proxy X client, connecting to
 the X server on your local machine. The SSH client and server then
 cooperate to pass X protocol information back and forth over the SSH
 pipe between the two X sessions, and the X client program appears on
 your screen just as if it had connected directly to your display.
 That’s the general idea of X forwarding.
[image: X forwarding]

Figure 9-10. X forwarding

X forwarding can even solve the firewall problem mentioned
 earlier, as long as the firewall permits SSH connections to pass
 through. If a firewall sits between your local and remote machines,
 and you run an X client on the remote machine, X forwarding tunnels
 the X connection through the firewall’s SSH port to the local machine.
 Therefore, the X client’s windows can open on your local display. If X
 forwarding were not present, the firewall would block the
 connection.
Some aspects of X forwarding probably sound familiar from our
 earlier explanation of port forwarding. In fact, X forwarding is just
 a special case of port forwarding for which SSH has special
 support.

9.4.3 Enabling X Forwarding

X forwarding is on by default. If you need to enable or
 disable X forwarding for your clients, here’s how to do it. Unlike
 general port forwarding, which requires you to fiddle with TCP port
 numbers, X forwarding has only an on/off switch. In your SSH client
 configuration file, use the keyword ForwardX11 with a value of yes (the default, to enable) or no (to disable):
 ForwardX11 yes
On the command line, you may also use -x to
 disable X forwarding:
 $ ssh -x server.example.com
OpenSSH and Tectia enable X forwarding with the following
 options:
 # OpenSSH
 $ ssh -X server.example.com

 # Tectia
 $ ssh +x server.example.com

9.4.4 Configuring X Forwarding

The behavior of X forwarding can be modified through
 compile-time configuration, serverwide configuration, and per-account
 configuration.
9.4.4.1 Compile-time configuration

Tectia can be compiled with or without X support. The
 compile-time flags --with-x and
 --without-x make this determination:
 $ configure ... --without-x ...
You can also enable or disable all X forwarding by default
 with --enable-X11-forwarding or
 --disable-X11-forwarding:
 # Tectia
 $ configure ... --enable-X11-forwarding ...
Remember, enable/disable flags simply set the default
 behavior. You can override these defaults with serverwide and
 per-account configuration.

9.4.4.2 Serverwide configuration

The serverwide configuration keyword X11Forwarding [137] enables or disables X forwarding in the SSH server. By
 default, it is enabled.
 X11Forwarding no
The X11DisplayOffset
 keyword lets you reserve some X11 display numbers so that
 sshd can’t use them. This keyword specifies the
 lowest display number SSH may use, preventing
 sshd from clashing with real X servers on the
 lower-numbered displays. For example, if you normally run actual X
 servers on displays 0 and 1, set:
 # OpenSSH
 X11DisplayOffset 2
The XAuthLocation keyword
 specifies the path to the xauth program, which
 manipulates authorization records for X. We describe this keyword
 later, after we discuss xauth. [9.4.6.4]
 # OpenSSH
 XAuthLocation /usr/local/bin/xauth

9.4.4.3 Per-account configuration

In your authorization file for public keys, you may disallow X
 forwarding for incoming SSH connections that use a particular key
 for authentication. [8.2.7] In OpenSSH and
 Tectia this is done with the option no-X11-forwarding:
 # OpenSSH
 no-x11-forwarding ...key...

 # Tectia
 Key mykey.pub
 Options no-x11-forwarding

9.4.5 X Authentication

We’ve mentioned in passing that X performs its own
 authentication when X clients connect to X servers. Now we’re going to
 dive into technical detail on the inner workings of X authentication,
 why it’s insecure, and how SSH X forwarding builds on it to create a
 secure solution.
In most cases, X forwarding simply works, and you don’t have to
 think about it. The following material is to aid your understanding
 and satisfy any intense cravings for tech talk (both yours and
 ours).
9.4.5.1 How X authentication works

When an X client requests a connection to an X server, the
 server authenticates the client. That is, the X server determines
 the client’s identity to decide whether to allow a connection to the
 server’s display. The current release of the X Window System (X11R6)
 provides two categories of authentication: host-based and
 key-based:
	Host-based X authentication
	The simpler method. Using the program
 xhost, you indicate a list of hosts that
 may connect to your X display. Notice that connections are
 authenticated only by hostname, not by username. That is,
 any user on a listed host may connect to
 your display.

	Key-based X authentication
	Uses the xauth program to maintain
 a list of X authentication keys, or display
 keys, for X clients. Keys are kept in a file,
 usually ~/.Xauthority,
 along with other data associated with the various displays the
 client wants to access. When an X client connects to a server
 requiring authentication, the client supplies the appropriate
 credentials for that display from the
 xauth data. If authentication is
 successful, the X client can then connect to the display
 managed by the X server.

Display keys are obtained from the X server in various ways
 depending on the environment. For example, if you start the server
 directly on the console of a machine using
 xinit or startx, these
 programs invoke an X server and insert a copy of the server’s key
 directly into your xauth data. Alternatively,
 if you connect to a remote machine that runs the X Display Manager
 (XDM), the key is sent to your remote account when establishing your
 XDM session.

9.4.5.2 xauth and the SSH rc files

SSH has startup files that can be set to execute on the server
 side when a client logs in. These are the systemwide /etc/sshrc and the per-account ~/.ssh/rc files. These can be shell
 scripts or any kind of executable program.
An important thing to note is that sshd
 runs xauth only to add the proxy display key if
 it doesn’t run an rc program. If it does run an
 rc program, it feeds the key type and data to
 the program on a single line to its standard input, and it is up to
 the rc program to store the display key. This
 feature provides a way to customize handling the display key, in
 case just running xauth isn’t the right thing
 to do in your situation.

9.4.5.3 Trusted X forwarding

The X Windows protocol was not designed with much
 security in mind. Usually, once an application has access to an X
 display, it pretty much has the run of it. A malicious X client can
 easily read all keyboard input, see all screen contents, add or
 modify keystrokes, and so on. This is why X forwarding is risky and
 should generally be turned on only when you need it, and only for
 hosts you trust.
There is a security extension to the X Windows protocol that
 allows at least some further granularity, partitioning X clients
 into “trusted” and “untrusted” groups. Programs like the X Window
 Manager must be trusted, since they have to manipulate the windows
 of other applications and perform other global operations on the
 display. Other programs may be left untrusted, though, with more
 limited access to the display and less opportunity for
 mischief.
Both OpenSSH and Tectia support this trust distinction in X
 forwarding. OpenSSH has the ForwardX11Trusted client option and Tectia
 has TrustX11Applications. Set to
 yes or no, these keywords control whether remote
 X clients accessing the local display via SSH X forwarding will be
 considered trusted or untrusted by the X server.
 # OpenSSH
 ForwardX11Trusted yes

 # Tectia
 TrustX11Applications yes
The default setting is no,
 meaning “untrusted.” You can override this setting per connection
 with ssh -Y (OpenSSH) or ssh
 +X (Tectia):
 # OpenSSH
 $ ssh -Y ... Equivalent to ssh -X -o ForwardX11Trusted=yes

 # Tectia
 $ ssh +X ... Equivalent to ssh +x -o TrustX11Applications=yes
Technically, for trusted forwarding, the client uses the
 existing xauth key to access the display: that
 is, it inherits whatever trust is already in effect. For untrusted
 forwarding it generates a new, specifically untrusted key using the
 command xauth generated ... untrusted, and uses
 the new key with forwarded X connections. In either case, the local
 key never goes to the remote host; that is always a throwaway key
 used only for authenticating the connection within SSH.

9.4.5.4 Problems with X authentication

If you’ve used X, the authentication was probably transparent
 and seemed to work fine. Behind the scenes, however, the mechanism
 is insecure. Here are the major problems:
	xhost is insecure
	Once you give permission for a remote host to connect to
 your display, any user on that host can
 connect. As with the r-commands, this authentication method
 depends on the network address of the connecting host, which
 can be easy for an attacker to usurp.

	Key transfer may be manual and
 insecure
	Some remote-login protocols, such as
 telnet, don’t assist with X
 authentication. If your display keys aren’t available on a
 remote machine, you have to transfer them yourself, either
 manually or by automating the transfer, perhaps in your login
 script. This isn’t only a nuisance but also insecure, since
 you’re sending the key in plaintext over the network.

	The most common key-based method,
 MIT-MAGIC-COOKIE-1, is insecure
	Although it uses a random string of bits, or
 cookie, as the xauth
 display key, this key is transmitted in plaintext at the
 beginning of every connection, where it can be intercepted and
 read.

	The remote host might not support your chosen X
 authentication method
	X11R6 supports other, more secure authentication
 methods. SUN-DES-1 employs Sun’s secure RPC system,
 XDM-AUTHORIZATION-1 uses DES, and MIT-KERBEROS-5 involves
 Kerberos user-to-user authentication.[138] Unfortunately, these methods are often not
 available in particular instances of the X software. Sometimes
 they aren’t compiled into X installations due to cryptographic
 export restrictions; other times, the X version is too old to
 support the more secure methods.

	If the remote host is insecure, your display key
 can be compromised
	In the best scenario, where the X server supports strong
 authentication and your key can be copied securely to the
 remote machine, you still have to store your sensitive display
 key there. If that machine is untrustworthy, your key can be
 at risk. (SSH doesn’t have this problem, since only your
 public key is stored on the SSH server machine.)

9.4.5.5 SSH and authentication spoofing

Through X forwarding, SSH provides transparent, secure
 authentication and key transfer for X sessions. This is done by a
 technique called authentication spoofing, as
 depicted in Figure 9-11.
 Authentication spoofing involves a fake display key, which we call
 the proxy key, that authenticates to the SSH X
 proxy server on the remote side. When relaying X traffic containing
 a key, SSH cleverly substitutes the real display key. Here’s how it
 works.
[image: Authentication of forwarded X connections]

Figure 9-11. Authentication of forwarded X connections

The players begin in the following positions. You are logged
 into a local machine with a local display. The local machine runs an
 X server and SSH clients. On the other side of the network
 connection, an SSH server is running on a remote machine, where you
 invoke X clients. The goal is for the remote X clients to appear on
 your local display by way of SSH.
First, you run a local SSH client, asking it to set up X
 forwarding. The SSH client requests X forwarding from the remote SSH
 server, and it also reads your local display key from your .Xauthority file.
Next, the SSH client generates a proxy key. This is a string
 of random data of the same length as your local display key. The SSH
 client then sends the proxy key and its key type (e.g.,
 MIT-MAGIC-COOKIE-1) to the remote machine, and the SSH server runs
 the xauth program on your behalf to associate
 the proxy key with your local display. The stage is now set for X
 forwarding.
When you start a remote X client, your local SSH client
 connects to your local X display. It then watches for the first X
 protocol message sent over the forwarded connection and treats it
 specially. Specifically, the SSH client parses the message, finds
 the X authentication key inside it, and compares it to the proxy
 key. If the keys don’t match, the SSH client rejects and closes the
 connection. Otherwise, if the keys match, the SSH client substitutes
 the real display key in place of the proxy key and relays the
 modified message to your local X server. The X server, blissfully
 unaware that a key switch has taken place, reads the display key and
 proceeds normally with X authentication. The forwarded X connection
 is now established.
X forwarding with authentication spoofing solves all but one
 of the X authentication problems we raised earlier:
	xhost
	X forwarding doesn’t use xhost. (By
 the way, make sure to disable all xhost
 permissions when using X forwarding, or you’ll undermine the X
 security provided by SSH.)

	Key transfer
	SSH transfers the X display key automatically and runs
 xauth on your behalf to install it on the
 remote side. The transfer is secure since the key travels over
 the encrypted SSH connection.

	MIT-MAGIC-COOKIE-1 insecurity
	The key transmitted at the beginning of every X session
 is now encrypted, along with the rest of the X traffic, inside
 the SSH session. This greatly increases the operational
 security of this common X authentication scheme.

	Untrustworthy remote hosts
	With authentication spoofing, only the proxy key, not
 the true display key, is sent to the remote host. The proxy
 key is good only for connecting to your display through SSH,
 not for connecting to your display directly. As soon as your
 SSH session ends, the proxy key becomes useless. Since SSH
 sessions come and go, but some people leave their X sessions
 up (with the same key) for days, X forwarding can be a great
 improvement.

9.4.5.6 Improving authentication spoofing

The remaining problem with X forwarding is the possibility of
 unsupported X authentication mechanisms. The local side can use a
 more sophisticated authentication method that a remote host might
 not support.
In theory, SSH X forwarding can solve this problem by always
 installing a proxy key of type MIT-MAGIC-COOKIE-1, no matter what
 local authentication method is actually in use. After the SSH client
 has checked the X client’s key against the proxy key for a match,
 its client could then generate and substitute whatever local
 authenticator is required using the true authentication type and
 key.
Unfortunately, SSH implementations don’t go this far. The
 server compares keys literally as bit strings, and the SSH client
 substitutes keys verbatim, regardless of the key types. As a result,
 if you use a stronger X authentication method such as
 XDM-AUTHORIZATION-1, sshd blindly compares an
 encrypted authenticator with the proxy key, rightly determines that
 they don’t match, and invalidly rejects the connection. The failure
 is silent and mysterious; we wish the software would detect the
 presence of an unsupported mode and issue a warning when setting up
 the connection.
If SSH knew the details of all X authentication modes, it
 could check the proxy authenticators on one side and generate
 correct ones for the X server on the other. However, this can be a
 significant development effort, though perhaps one could link SSH
 against the X11 libraries to obtain the necessary algorithms. SSH
 would also have to deal with differing key data lengths,
 constructing a new X message to hold the proxy key instead of
 copying it to an existing message.
It would also be useful if X forwarding could be used without
 authentication spoofing. Then you could arrange your own security
 for the connection by, say, using xhost to
 allow any connection from your local machine (and hence the SSH X
 proxy), while still applying key-based authentication to X
 connections originating from elsewhere. You can accomplish this with
 general port forwarding, as discussed in the next section, but
 direct support is more convenient.

9.4.5.7 Nonstandard X clients

X clients generally do X xauth-style
 authentication by virtue of having been linked against Xlib, the
 common X programming library. Occasionally, though, you run across
 particular X client programs that don’t use Xlib and simply ignore
 authentication issues. Since you can’t turn off SSH X authentication
 spoofing, you can’t use such programs across SSH X forwarding; you
 get this message:
 X11 connection requests different authentication protocol: 'MIT-MAGIC-COOKIE-1' vs.
 ''
You can, however, use a general port forwarding instead. For
 example:
 foo% ssh -R6010:localhost:6000 bar
 bar% setenv DISPLAY bar:10
Note that this bypasses the discipline imposed by X
 forwarding, of requiring xauth authentication
 on forwarded X connections. If your real X server is using
 xhost for access control, this port forwarding
 allows anyone on host foo to connect to your X server. Use this sort
 of thing with caution.

9.4.6 Further Issues

As we’ve said, X forwarding usually works fine without any
 special effort on your part. In some special situations, however, you
 might need to take some extra steps.
9.4.6.1 X server configuration

In order for X forwarding to work, your X server must accept
 the proxy X connections from your SSH client. This is sometimes not
 set up to begin with, because normal use doesn’t require it. For
 example, if you’re using an X server on a PC to access a remote Unix
 machine via XDM, you might never run local X clients at all, and
 they may not be allowed by default. You can use xhost
 +localhost to allow all connections from your PC, while
 still applying key-based authentication to connections from other
 sources. This allows SSH-forwarded (and authenticated) connections
 to be accepted.

9.4.6.2 Setting your DISPLAY environment variable

SSH sets the DISPLAY
 variable automatically only if X forwarding is in effect. If you
 don’t use X forwarding but want to use X on a remote machine you
 logged into via SSH, remember that you have to set the DISPLAY variable yourself. You should
 really do this only when both machines are on the same, trusted
 network, as the X protocol by itself is quite insecure.
Be careful not to set DISPLAY unintentionally! It is common for
 people to set the DISPLAY
 variable in a login command file or by other means. If you’re not
 careful, this can make your X connections insecure without your
 noticing! If you use SSH to tunnel through a firewall that blocks
 normal X connections, then of course you’ll notice because your X
 clients won’t work. But if normal X connections are possible but
 undesirable, and X forwarding isn’t in effect, your X programs will
 work but (silently) not be secured! This is a good reason to block X
 traffic at the firewall if it presents a security risk or to
 configure your X server to accept connections only from the local
 host (the source of the SSH-forwarded X connections). If that’s not
 feasible, you may want to put something like this in your login
 script:
 #!/bin/csh
 if ($?DISPLAY) then
 set display_host = `expr "$DISPLAY" : '\(.*\):'`
 set display_number = `expr "$DISPLAY" : '.*:\([^.]*\)'`
 set my_host = `hostname`
 set result = `expr '(' "$display_host" = "$my_host" ')' '&' '(' \
 "$display_number" '>' "0" ')'`
 if ($result == 0) then
 echo "WARNING: X display $DISPLAY does not appear to be protected by SSH!"
 echo "unsetting DISPLAY variable just to be safe"
 unsetenv DISPLAY
 endif
 endif

9.4.6.3 Shared accounts

If you share a single account among multiple people, you may
 have some trouble with X forwarding. For example, it is common for a
 group of sysadmins to share use of the root account. For each person
 to retain their own environment when using the root account, they
 may set their USER, LOGNAME, and HOME environment variables explicitly to
 reflect their personal accounts rather than the root account. If you
 use SSH to log into the root account with X forwarding turned on,
 though, it adds the proxy xauth key to root’s
 .Xauthority file before the
 shell reads your login script and resets these environment
 variables. The result is that once you’re logged in and try to use
 X, it fails: the X client looks in your .Xauthority file (because of the setting
 of your HOME variable), but the
 key isn’t there.
You can deal with this problem by setting the XAUTHORITY variable to point to root’s
 .Xauthority file, or by using
 code like the following in your login script to copy the needed key
 into your personal one:
 if (($uid == 0) && ($?SSH_CLIENT) && ($?DISPLAY)) then
 # If I do ssh -l root with X forwarding, the X proxy server's xauth key
 # gets added to root's xauth db, not mine. See if there's an entry for my
 # display in root's xauth db...
 set key = `bash -c "xauth -i -f /.Xauthority list $DISPLAY 2> /dev/null"`
 # ... and if so, copy it into mine.
 if ($? == 0) then
 xauth -bi add $key
 chown res ~res/.Xauthority >& /dev/null
 endif
 endif

9.4.6.4 Location of the xauth program

Remember that sshd runs the
 xauth program on your behalf, to add the proxy
 key to your .Xauthority file on
 the remote side. The location of the xauth
 program is discovered when you configure the SSH package and compile
 into the sshd executable. If
 xauth is subsequently moved, X forwarding won’t
 work (ssh -v reveals this explicitly). For
 OpenSSH, the system administrator on the server side can use the
 serverwide configuration keyword XAuthLocation to set the path to the
 xauth program without having to recompile
 sshd1:
 # OpenSSH
 XAuthLocation /usr/local/bin/xauth
XAuthLocation can also
 appear in the OpenSSH client configuration file; the client uses
 xauth to get the local X display key.

9.4.6.5 X forwarding and the GatewayPorts feature

The GatewayPorts
 (-g) feature discussed earlier applies only to
 general port forwarding, not to X forwarding. The X proxies in
 OpenSSH and Tectia always listen on all network interfaces and
 accept connections from anywhere, though those connections are then
 subject to X authentication as described earlier. To restrict X
 client source addresses, use TCP-wrappers, which we discuss in the next section.

[137] And its Tectia synonyms ForwardX11 and AllowX11Forwarding.

[138] See the X11R6 Xsecurity(1)
 manpage for details on these methods. Also, remember that
 this is authentication only, not encryption. The contents
 of your X connection remain unencrypted and open to
 snooping or modification on the network.

Forwarding Security: TCP-Wrappers and libwrap

At several points in this chapter, we have talked about security
 issues and limitations of forwarding. So far, we’ve seen very little
 control over who can connect to a forwarded port. The OpenSSH default is
 to allow connections only from the local host, which is reasonably
 secure for a single-user machine. But if you need to allow connections
 from elsewhere, you have a problem, since it’s all or nothing: to allow
 connections from elsewhere (using -g or GatewayPorts yes), you must allow them from
 anywhere. And with Tectia it’s worse: forwarded
 ports always accept connections from anywhere. X
 forwarding is in a slightly better position, since the X protocol has
 its own authentication, but you might still prefer to restrict access,
 preventing intruders from exploiting an unknown security flaw or
 performing a denial-of-service attack. SSH on the Unix platform provides
 an optional feature for access control based on the client address,
 called “TCP-wrappers.”
The term “TCP-wrappers” refers to software written by Wietse
 Venema. If it isn’t already installed in your Unix distribution, you can
 get it at:
ftp://ftp.porcupine.org/pub/security/index.html

TCP-wrappers are a global access control mechanism that integrates
 with other TCP-based servers, such as sshd or
 telnetd. Access control is based on the source
 address of incoming TCP connections. That is, a TCP-wrapper permits or
 denies connections based on their origin, as specified in the
 configuration files /etc/hosts.allow and /etc/hosts.deny. Figure 9-12 shows where
 TCP-wrappers fit into the scheme of SSH configuration.
There are two ways to use TCP-wrappers. The most common method,
 wrapping, is applied to TCP servers that are
 normally invoked by inetd. You “wrap” the server by
 editing /etc/inetd.conf and
 modifying the server’s configuration line. Instead of invoking the
 server directly, you invoke the TCP-wrapper daemon,
 tcpd, which in turn invokes the original server.
 Then, you edit the TCP-wrapper configuration files to specify your
 desired access control. tcpd makes authorization
 decisions based on the their contents.
The inetd technique applies access control
 without having to modify the TCP server program. This is nice. However,
 sshd is usually not invoked by
 inetd [5.3.3.2], so the second
 method, source code modification, must be applied.
 To participate in TCP-wrapper control, the SSH server must be compiled
 with the flag --with-tcp-wrappers [4.2.4.5] or
 --with-libwrap [4.3.5.3] to enable internal
 support for TCP-wrappers. sshd then invokes
 TCP-wrapper library functions to do explicit access-control checks
 according to the rules in /etc/hosts.allow and /etc/hosts.deny. So, in a sense, the term
 “wrapper” is misleading since sshd is modified, not
 wrapped, to support TCP-wrappers. Figure 9-13 illustrates the
 process.
9.5.1 TCP-Wrappers Configuration

The access control language for TCP-wrappers has quite a
 few options and may vary depending on whose package you use and what
 version it is. We won’t cover the language completely in this book.
 Consult your local documentation for a complete
[image: TCP-wrappers and SSH configuration (highlighted parts)]

Figure 9-12. TCP-wrappers and SSH configuration (highlighted
 parts)

understanding: the manpages on tcpd, hosts_access, and hosts_options. We just indicate some
 simple, common configurations.
The TCP-wrapper configuration is kept in the files /etc/hosts.allow and /etc/hosts.deny. These files contain
 patterns of the form:
 service_1 [service_2 service_3 ...] : client_1 [client_2 client_3 ...]
Each pattern matches some (server,client) pairs, and hence may
 match a particular client/server TCP connection. Specifically, a
 connection between client C and server S matches this rule if some
 service servicei matches S, and some
 clientj matches C. (We explain the format and
 matching rules for these subpatterns shortly.) The hosts.allow file is searched first,
 followed by hosts.deny. If a
 matching pattern is found in hosts.allow, the connection is allowed. If
 none is found there, but one matches in hosts.deny, the connection is dropped.
 Finally, if no patterns match in either file, the connection is
 allowed. Nonexistence of either file is treated as if the file existed
 and contained no matching patterns. Note that the default, then, is to
 allow everything.
[image: TCP-wrapper (libwrap) operation]

Figure 9-13. TCP-wrapper (libwrap) operation

There is also an extended syntax, documented on the hosts_options manpage. It may or may not be
 available, depending on how your TCP-wrapper library was built. It has
 many more options, but in particular, it allows tagging an individual
 rule as denying or rejecting a matching connection, for
 example:
 sshd : bad.host.com : DENY
Using this syntax, you can put all your rules into the hosts.allow file, rather than having to use
 both files. To reject anything not explicitly allowed, just put
 ALL : ALL : DENY at the end of the
 file.
In a pattern, each service is a name
 indicating a server to which this pattern applies. SSH recognizes the
 following service names:
	sshd
	The main SSH server. This can be
 sshd, sshd1,
 sshd2, or whatever name you invoke the
 daemon under (its argv[0]
 value, in C-programmer-speak).

	sshdfwd-x11
	The X forwarding port.

	sshdfwd-N
	Forwarded TCP port n (e.g., forwarded
 port 2001 is service
 sshdfwd-2001).

Tip
The X and port -orwarding control features are available only
 in Tectia; OpenSSH uses libwrap only to control
 access to the main server.

Each client is a pattern that matches a
 connecting client. It can be:
	An IP address in dotted-quad notation (e.g.,
 192.168.10.1).

	A hostname (DNS, or whatever naming services the host is
 using).

	An IP network as
 network-number/mask
 (e.g., 192.168.10.0/255.255.255.0; note that the
 “/n-mask-bits" syntax, 192.168.10.0/24,
 isn’t recognized).

	“ALL”, matching any client source address.

Example 9-1 shows a
 sample /etc/hosts.allow
 configuration. This setup allows connections to any service from the
 local host’s loopback address, and from all addresses 192.168.10.x.
 This host is running publicly available servers for POP and IMAP, so
 we allow connections to these from anywhere, but SSH clients are
 restricted to sources in another particular range of networks.
Example 9-1. Sample /etc/hosts.allow file
#
/etc/hosts.allow
#
network access control for programs invoked by tcpd (see inetd.conf) or
using libwrap. See the manpages hosts_access(5) and hosts_options(5).

allow all connections from my network or localhost (loopback address)
#
ALL : 192.168.10.0/255.255.255.0 localhost

allow connections to these services from anywhere
#
ipop3d imapd : ALL

allow SSH connections from these eight class C networks
192.168.20.0, 192.168.21.0, ..., 192.168.27.0
#
sshd : 192.168.20.0/255.255.248.0

allow connections to forwarded port 1234 from host blynken
Tectia only
sshdfwd-1234 : blynken.sleepy.net

restrict X forwarding access to localhost
Tectia only
sshdfwd-x11 : localhost

deny everything else
#
ALL : ALL : DENY

We allow connections to the forwarded port 1234 from a
 particular host, blynken.sleepy.net. Note that
 this host doesn’t have to be on any of the networks listed so far but
 can be anywhere at all. The rules so far say what is allowed, but
 don’t by themselves forbid any connections. So, for example, the
 forwarding established by the command ssh
 -L1234:localhost:21 remote is accessible only to the local
 host, since Tectia defaults to binding only the loopback address in
 any case. But ssh -g -L1234:localhost:21 remote
 is accessible to blynken.sleepy.net as well. The
 important difference is that with this use of TCP-wrappers,
 sshd rejects connections to the forwarded port,
 1234, from any other address.
The sshdfwd-x11 line
 restricts X-forwarding connections to the local host. This means that
 if ssh connects to this host
 with X forwarding, only local X clients can use the forwarded X
 connection. X authentication does this already, but this configuration
 provides an extra bit of protection.
The final line denies any connection that doesn’t match the
 earlier lines, making this a default-to-closed configuration. If you
 wanted instead to deny some particular connections but allow all
 others, you would use something like this:
 ALL : evil.mordor.net : DENY
 telnetd : completely.horked.edu : DENY
 ALL : ALL : ALLOW
The final line is technically not required, but it’s a good idea
 to make your intentions explicit. If you don’t have the host_options syntax available, you instead
 have an empty hosts.allow file,
 and the following lines in hosts.deny:
 ALL : evil.mordor.net
 telnetd : completely.horked.edu

9.5.2 Notes About TCP-Wrappers

Here are a few things to remember when using
 TCP-wrappers:
	You can’t distinguish between ports forwarded by SSH-1 and
 SSH-2: the “sshdfwd” rules refer to both simultaneously. You can
 work around this limitation by linking each against a different
 libwrap.a, compiled with
 different filenames for the allow and deny files, or by patching
 the ssh and sshd
 executables directly, but then you have to keep track of these
 changes and extra files.

	The big drawback to TCP-wrappers is that it affects all
 users simultaneously. An individual user can’t specify custom
 access rules for himself; there’s just the single set of global
 configuration files for the machine. This limits its usefulness on
 multiuser machines.

	If you compile SSH with the --with-libwrap
 option, it is automatically and always turned on; there’s no
 configuration or command-line option to disable the TCP-wrappers
 check. Remember that SSH does this check not only for forwarded
 ports and X connections, but also for connections to the main SSH
 server! As soon as you install a version of
 sshd with TCP-wrappers, you must ensure that
 the TCP-wrappers configuration allows connections to the
 server—for instance, with the rule sshd :
 ALL in /etc/hosts.allow.

	Using hostnames instead of addresses in the TCP-wrappers
 rule set involves the usual security trade-off. Names are more
 convenient, and their use avoids breakage in the future if a host
 address changes. On the other hand, an attacker can potentially
 subvert the naming service and circumvent the access control. If
 the host machine is configured to use only
 its /etc/hosts file for name
 lookup, this may be acceptable even in a highly secure
 environment.

	The TCP-wrappers package includes a program called
 tcpdchk. This program examines the wrapper
 control files and reports inconsistencies that might signal
 problems. Many sites run this periodically as a safety check.
 Unfortunately, tcpdchk is written only with
 explicit wrapping via inetd.conf in mind. It doesn’t have any
 way of knowing about programs that refer to the control files via
 the libwrap routines, as does
 sshd. When tcpdchk reads
 control files with SSH rules, it finds uses of the service names
 “sshd1,” “sshdfwd-n,” etc., but no
 corresponding wrapped services in inetd.conf, and it generates a warning.
 Unfortunately, we know of no workaround.

Summary

In this chapter, we discussed SSH port forwarding and X
 forwarding. Port forwarding is a general TCP proxying feature that
 tunnels TCP connections through an SSH session. This is useful for
 securing otherwise insecure protocols running on top of TCP or for
 tunneling TCP connections through firewalls that would otherwise forbid
 access. X forwarding is a special case of port forwarding for X Window
 System connections, for which SSH has extra support. This makes it easy
 to secure X connections with SSH, which is good because X, while popular
 and useful, is notoriously insecure. Access control on forwarded ports
 is normally coarse, but you can achieve finer control with the
 TCP-wrappers feature.

Chapter 10. A Recommended Setup

We’ve just covered a pile of chapters on SSH configuration: is your
 head spinning yet? With so many choices, you might be wondering which
 options you should use. How can system administrators secure their systems
 most effectively with SSH?
When set up properly, SSH works well and invisibly, but sometimes a
 good setup takes a few tries. In addition, there are some ways to
 configure the software that are simply wrong. If you’re not careful, you
 can introduce security holes into your system.
In this chapter we present a recommended set of options for
 compilation, server configuration, key management, and client
 configuration. We assume:
	You’re running SSH on a Unix machine.

	You want a secure system, sometimes at the expense of
 flexibility. For instance, rather than tell you to maintain your
 .rhosts files carefully, we
 recommend disabling Rhosts authentication altogether.

Of course, no single configuration covers all the possibilities;
 that is, after all, the point of configuration. This is just a sample
 setup, more on the secure side, to give you a starting point and cover
 some of the issues involved.

The Basics

Before you start configuring, make sure you’re running an
 up-to-date SSH version. Some older versions have known security holes
 that are easily exploited. Always run the latest stable version, and
 apply updates or patches in a timely manner. (The same goes for your
 other security software.)
Always keep important SSH-related files and directories protected.
 The server’s host key should be readable only by root. Each user’s home
 directory, SSH configuration directory, and .rhosts and .shosts files should be owned by the user and
 protected against all others.
Also, remember that SSH doesn’t and can’t protect against all
 threats. It can secure your network connections but does nothing against
 other types of attacks, such as dictionary attacks against your password
 database. SSH should be an important part, but not the only part, of a
 robust security policy. [3.10]

Compile-Time Configuration

 In Chapter 4, we
 covered many compile-time flags for building SSH distributions. Several
 flags should be carefully set to make your server machine maximally
 secure:
	--sysconfdir=...
 (OpenSSH, Tectia)
	Make sure your etc
 directory is on a local disk, not an NFS-mounted partition. If the
 SSH server reads a file via NFS, the contents are transmitted in
 the clear across the network, violating security. This is
 especially true of the host key, which is stored unencrypted in
 this directory.

	--bindir=...
 (OpenSSH, Tectia)
	

	--sbindir=...
 (OpenSSH, Tectia)
	Likewise, make sure your SSH executables are installed on a
 local disk, as they can be spoofed if loaded over NFS.[139]

	--disable-suid-ssh-signer
 (Tectia)
	Our recommended serverwide configuration disables hostbased authentication, so there’s no
 need for setuid permissions for
 ssh-signer.

	--with-tcp-wrappers
 (OpenSSH)
	

	--with-libwrap
 (Tectia)
	libwrap affords more precise control
 over which client machines are allowed to connect to your server.
 It also makes port and X forwarding more flexible, since otherwise
 local forwardings are available either only to the local host or
 from anywhere at all. With GatewayPorts (or ssh
 -g) and libwrap, you can limit
 forwarding access to specific hosts. [9.2.1.1]

[139] Or use --prefix to
 root all SSH system directories together.

Serverwide Configuration

Chapter 5 provided a detailed
 discussion of sshd and how to configure its runtime
 behavior. Now let’s determine which configuration options are most
 important for security.
10.3.1 Disable Other Means of Access

SSH can provide a secure front door into your system, but don’t
 forget to close the back doors. If your system allows access via the
 infamous r-commands, disable them. This means:
	Remove the file /etc/hosts.equiv, or make it a
 read-only empty file.

	Disable rshd,
 rlogind, and rexecd by
 removing or commenting out their lines in the
 inetd or xinetd
 configuration file. For example, in /etc/inetd.conf you might do:
 # turned off -- don't use!
 #shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
Make sure you restart inetd or
 xinetd after doing this so that the change
 takes effect.

	Educate users not to create .rhosts files.

You might also consider disabling telnetd and other insecure avenues
 for logging in, permitting logins only via SSH.

10.3.2 sshd_config for OpenSSH

We’ll now discuss our recommended sshd_config settings for OpenSSH. We have
 omitted some keywords that aren’t particularly security-related, such
 as PrintMotd, which simply prints a
 message after login. For any remaining keywords, use your judgment
 based on your system and needs.
10.3.2.1 Choice of protocol

We recommend disabling the SSH-1 protocol altogether:
 # OpenSSH
 Protocol 2

10.3.2.2 Important files

Important files containing your host key, PID, and so on, may
 be located anywhere on the machine’s local disk. For security’s
 sake, don’t put them on an NFS-mounted partition. If you do, each
 time the files are accessed by the SSH server, their contents are
 transmitted in the clear over the network.
 # OpenSSH
 HostKey /etc/ssh/ssh_host_key
 PidFile /var/run/sshd.pid

10.3.2.3 File and directory permissions

The StrictModes value
 requires users to protect their SSH-related files and directories,
 or else they can’t authenticate.
 # OpenSSH
 StrictModes yes

10.3.2.4 TCP/IP settings

The Port and ListenAddress values we recommend are
 standard. Also, we enable keepalive messages so that connections to
 clients that have crashed or otherwise become unreachable will
 terminate rather than hang around and require manual reaping by the
 sysadmin.
 # OpenSSH
 Port 22
 ListenAddress 0.0.0.0
 TcpKeepAlive yes
We also disable reverse DNS lookups on incoming
 connections:
 # OpenSSH
 UseDNS no
You might think security is increased by reverse DNS lookups,
 but in fact, DNS isn’t secure enough to guarantee accurate lookups.
 Also, due to other issues in your Unix and network environment,
 reverse DNS mappings might not even work properly. [5.3.3.8] Finally, SSH
 connections can be tremendously slowed down or fail altogether if
 the client’s DNS is hosed (e.g., lots of nameservers, all
 unresponsive, so sshd times out). The IP
 addresses of connecting hosts end up in your logs anyway, so you can
 look them up later.

10.3.2.5 Login time

For logins we allow 30 seconds for a successful
 authentication, which should be long enough for users and automated
 processes:
 # OpenSSH
 LoginGraceTime 30

10.3.2.6 Authentication

We enable only public-key authentication. Password
 authentication is disabled because passwords can be stolen and used
 more easily than public keys. This is a fairly harsh restriction, so
 you might want to leave it enabled depending on your needs. Without
 password authentication, you have a “chicken and egg” problem: how
 do users upload their public keys securely the first time? As system
 administrator, you have to institute a process for this transfer:
 for example, users can generate keys on a client machine and then
 request that you install them on the server machine. Rhosts
 authentication is disabled because it can be spoofed. RhostsRSA
 authentication is disabled too, because overall it is a
 medium-security method and this configuration is on the side of
 higher security.
 # OpenSSH
 PubkeyAuthentication yes

 PasswordAuthentication no
 PermitEmptyPasswords no Already disabled, but we're being paranoid
 RSAAuthentication no
 RhostsRSAAuthentication no
 HostbasedAuthentication no
 KerberosAuthentication no Optional
 ChallengeResponseAuthentication no Optional
 GSSAPIAuthentication no Optional
We optionally disable Kerberos, keyboard-interactive, and
 GSSAPI authentication, even though they are quite secure, under the
 “keep it simple” principle: disable what you aren’t using. Most SSH
 users aren’t set up to use these techniques. Reenable them if your
 server needs to support them.
Although we’ve disabled hostbased authentication already, we
 still forbid sshd to use .rhosts files at all (just in case you
 reenable hostbased authentication):
 # OpenSSH
 IgnoreRhosts yes
 IgnoreRootRhosts yes

10.3.2.7 Access control

If you want to restrict access to particular local
 accounts or Unix groups, add AllowUsers and AllowGroups lines (or DenyUsers and DenyGroups). We recommend creating a group
 for all your system’s SSH users, called “ssh”, and configuring the
 server with:
 AllowGroups ssh
Now you’ve made SSH access a specific privilege to be granted
 or revoked, and you can easily do it for a user without changing the
 sshd configuration:
 # usermod -G ssh,... joe Add user joe to the SSH group
As a bonus, you’ve disallowed SSH access by system accounts
 like bin, sys, and daemon that should never use SSH
 anyway.
We also permit the superuser to connect via SSH but not by
 password authentication. This is redundant but consistent with
 turning off PasswordAuthentication.
 # OpenSSH
 PermitRootLogin without-password

10.3.2.8 Forwarding

We permit TCP port forwarding and X forwarding so that users
 can secure their other TCP connections:
 # OpenSSH
 AllowTcpForwarding yes
 X11Forwarding yes

10.3.2.9 SFTP

Confirm that the SFTP subsystem is defined so that incoming
 sftp connections will work. (It is enabled in
 the default /etc/ssh/sshd_config file for
 OpenSSH.)
 # OpenSSH
 Subsystem sftp /usr/lib/ssh/sftp-server

10.3.3 sshd2_config for Tectia

We now move to our recommended sshd2_config settings for Tectia. Again,
 we’ve omitted some keywords that are not security-related.
10.3.3.1 Choice of protocol

We recommend disabling the SSH-1 protocol altogether:
 # Tectia
 Ssh1Compatibility no
 Sshd1Path /dev/null Not strictly necessary, just our paranoia

10.3.3.2 Important files

As we have mentioned for OpenSSH [10.3.2.2], make sure all
 SSH-related files are on local disks, not remotely mounted
 partitions:
 # Tectia
 HostKeyFile /etc/ssh2/hostkey
 PublicHostKeyFile /etc/ssh2/hostkey.pub
 RandomSeedFile /etc/ssh2/random_seed
For the following settings, consider the pros and cons of
 storing user files on NFS-mounted filesystems: [10.7]
 # Tectia
 UserConfigDirectory directory
 IdentityFile filename
 AuthorizationFile filename

10.3.3.3 File and directory permissions

The StrictModes value
 requires users to protect their SSH-related files and directories,
 or else they can’t authenticate:
 # Tectia
 StrictModes yes

10.3.3.4 TCP/IP settings

We recommend the same configuration as for OpenSSH, for the
 same reasons: [10.3.2.4]
 # Tectia
 Port 22

 ListenAddress 0.0.0.0
 KeepAlive yes
 RequireReverseMapping no

10.3.3.5 Login time

For logins we allow 30 seconds for a successful
 authentication, which should be long enough for users and automated
 processes:
 # Tectia
 LoginGraceTime 30

10.3.3.6 Authentication

These settings mirror those for OpenSSH:
 # Tectia
 AllowedAuthentications publickey
 RequiredAuthentications publickey Overrides AllowedAuthentications; we're being paranoid
 PermitEmptyPasswords no Already disabled, but we're being paranoid
Although we’ve disabled hostbased authentication already, we
 still forbid sshd to use .rhosts files at all (just in case you
 reenable hostbased authentication). We also disable UserKnownHosts to prevent users from
 extending trust to unknown hosts for the purpose of hostbased
 authentication. The superuser can still specify trusted hosts in
 /etc/ssh2/knownhosts.
 # Tectia
 IgnoreRhosts yes
 IgnoreRootRhosts yes
 UserKnownHosts no

10.3.3.7 Access control

We permit SSH connections only from within the local
 domain[140]:
 # Tectia
 AllowHosts fred@* *.your.domain.com Just an example
except for the account fred in this example, which may receive
 connections from anywhere.
If you want to restrict access to particular local accounts or
 Unix groups, add AllowUsers and
 AllowGroups lines (or DenyUsers and DenyGroups). Also create an “ssh” group as we described earlier.
 [10.3.2.7]
We permit the superuser to connect via SSH but not by password
 authentication. This is redundant but consistent with turning off
 PasswordAuthentication.
 # Tectia
 PermitRootLogin nopwd

10.3.3.8 Forwarding

We permit TCP port forwarding and X forwarding so that users
 can secure their other TCP connections:
 # Tectia
 AllowTcpForwarding yes
 X11Forwarding yes

10.3.3.9 Encryption

Use either of the following settings as fits your
 needs. The notable feature is that they both exclude the “none”
 cipher which may be a security risk.
 # Tectia
 Ciphers anycipher
 Ciphers anystdcipher

10.3.3.10 SFTP

Confirm that the SFTP subsystem is defined so that incoming
 sftp connections will work. (It is enabled in the default /etc/ssh2/sshd2_config for
 Tectia.)
 # Tectia
 subsystem-sftp sftp-server

[140] The reliability of this restriction depends on the
 integrity of DNS. Unfortunately, due to the implementation of
 AllowHosts, restriction by IP
 address is no more secure. [5.5.1]

Per-Account Configuration

Users should be instructed not to create .rhosts files. If hostbased authentication is
 enabled in the local SSH server, advise users to create .shosts files instead of .rhosts files.
For OpenSSH, each key in ~/.ssh/authorized_keys should be restricted
 by appropriate options. First, use the from option to restrict access to particular
 keys by particular hosts when appropriate. For example, suppose your
 authorized_keys file contains a
 public key for your home PC, myhome.isp.net. No
 other machine will ever authenticate using this key, so make the
 relationship explicit:
 from="myhome.isp.net" ...key...
Also set idle timeouts for appropriate keys:
 from="myhome.isp.net",idle-timeout=5m ...key...
Finally, for each key, consider whether port forwarding, agent
 forwarding, and tty allocation are ever necessary for incoming
 connections. If not, disable these features with no-port-forwarding, no-agent-forwarding, and no-pty, respectively:
 from="myhome.isp.net",idle-timeout=5m,no-agent-forwarding ...key...

Key Management

We recommend creating user keys at least 1024 bits long. Protect
 your key with a good passphrase. Make it lengthy and use a mixture of
 lowercase, uppercase, numeric, and symbolic characters. Don’t use words
 found in a dictionary.
Empty passphrases should be avoided unless you absolutely need to
 use one—for example, in an automated batch script. [11.1.2.2]

Client Configuration

 Most SSH security pertains to the server, but SSH clients
 have security-related settings too. Here are a few tips:
	Whenever you leave a computer while SSH clients are running,
 lock the computer’s display with a password-protected screen locker.
 This is particularly important if you’re running an agent that
 permits an intruder to access your remote accounts without a
 passphrase.

	In your client configuration file, turn on some safety features as mandatory
 values:
 # OpenSSH
 # Put at the top of your configuration file
 Host *
 GatewayPorts no
 StrictHostKeyChecking ask
 ForwardX11Trusted no

 # Tectia
 # Put at the bottom of your configuration file
 *:
 GatewayPorts no
 StrictHostKeyChecking ask
 TrustX11Applications no
The GatewayPorts value
 forbids remote clients from connecting to locally forwarded ports.
 Finally, rather than blindly connect, the StrictHostKeyChecking value warns you of
 any changed host keys and asks what you want to do. For X11
 forwarding we elect to generate a new, untrusted
 xauth key rather than inherit the trust already
 in effect. [9.4.5.3]

Remote Home Directories (NFS, AFS)

We’ve mentioned NFS several times as a potential security risk for
 SSH installations. Now we delve into more detail on this topic.
In today’s world of ubiquitous networking, it is common for your
 home directory to be shared among many machines via a network
 file-sharing protocol, such as SMB for Windows machines or NFS and AFS
 for Unix. This is convenient, but it does raise some issues with SSH,
 both technical and security-related.
SSH examines files in the target account’s home directory in order
 to make critical decisions about authentication and authorization. For
 every form of authentication except password, the various control files
 in your home directory (authorized_keys,
 .shosts, .k5login, etc.) enable SSH access to your account.
 Two things are therefore important:
	Your home directory needs to be safe from tampering.

	SSH must have access to your home directory.

10.7.1 NFS Security Risks

The security of shared home directories is often not
 very high. Although the NFS protocol has versions and implementations
 that afford greater security, it is woefully insecure in most
 installations. Often, it employs no reliable form of authentication
 whatsoever, but rather, uses the same scheme as
 rsh: the source IP address and DNS identify
 clients, and a privileged source port is proof of trustworthiness. It
 then simply believes the uid number encoded in NFS requests and grants
 access as that user. Breaking into a home directory can be as simple
 as:
	Discover the uid, and create an account with that uid on a
 laptop running Unix.

	Connect that machine to the network, borrowing the IP
 address of a trusted host.

	Issue a mount command,
 su to the account with the uid, and start
 rifling through the files.

At this point, an intruder can easily add another public key to
 authorized_keys, and the account
 is wide open. The moral is that when designing a system, keep in mind
 that the security of SSH is no stronger than that of the home
 directories involved. You need at least to be aware of the trade-off
 between security and convenience involved here. If you are using an
 insecure NFS and want to avoid this weakness, you can:
	Use Tectia, which has the UserConfigDirectory option to place the
 per-user SSH configuration files, normally in ~/.ssh2, elsewhere—say, in /var/ssh/
 <username>. You can still set the
 permissions so their owners can control them, but they won’t be
 shared via NFS and thus not vulnerable. You can do the same with
 OpenSSH, but as it lacks such a configuration option, you need to
 edit the source code.

	Turn off hostbased authentication, since the ~/.shosts control file is vulnerable,
 and you can’t change its location. Or, if you want to use
 hostbased authentication, set the IgnoreRhosts option. This causes
 sshd to ignore ~/.shosts, relying instead solely on
 the systemwide /etc/shosts.equiv file.

	If you are truly paranoid, disable swapping on your Unix
 machine. Otherwise, sensitive information such as server, host,
 and user keys, or passwords, may be written to disk as part of the
 normal operation of the Unix virtual memory system (should the
 running sshd be swapped out to disk). Someone
 with root access (and a lot of knowledge and luck) could read the
 swap partition and tease this information out of the mess
 there—though it’s a difficult feat. Another option is to use an
 operating system that encrypts swap pages on disk, such as
 OpenBSD.

10.7.2 NFS Access Problems

Another problem that can arise with SSH and NFS is one
 of access rights. With the public-key or hostbased methods, if the
 per-user control files are in the usual place,
 sshd must read the target account’s home
 directory in order to perform authentication. When that directory is
 on the same machine as sshd, this isn’t a
 problem. sshd runs as root, and therefore has
 access to all files. However, if the directory is mounted from
 elsewhere via NFS, sshd might not have access to
 the directory. NFS is commonly configured so that the special access
 privileges accorded the root account don’t extend to remote
 filesystems.
Now, this isn’t a truly serious restriction. Since one of the
 root privileges is the ability to create a process with any uid, root
 can simply “become” the right user, and access the remote directory.
 Current versions of Tectia and OpenSSH handle this correctly, but you
 might run into older versions that do not. You can work around the
 problem, but to do so you must make your authorized_keys file world-readable; the
 only way to let root read it remotely is to let everyone read it. This
 isn’t too objectionable. The authorized_keys file contains no secrets;
 though you might prefer not to reveal which keys allow access to your
 account, thus advertising which keys to steal. However, to grant this
 access, you must make your home directory and ~/.ssh world-searchable (that is,
 permissions at least 711). This doesn’t allow other users to steal the
 contents, but it does allow them to guess at filenames and have those
 guesses verified. It also means that you must be careful about
 permissions on your files, since the top-level permissions on your
 directory don’t prevent access by others.
All this may be entirely unacceptable or no problem at all; it
 depends on your attitude toward your files and the other users on the
 machines where your home directory is accessible.

10.7.3 AFS Access Problems

The Andrew File System, or AFS, is a file-sharing protocol
 similar in purpose to NFS, but considerably more sophisticated. It
 uses Kerberos-4 for user authentication and is generally more secure
 than NFS. The access problem discussed previously comes up for AFS,
 but it’s more work to solve, and this time, OpenSSH is the
 winner.
AFS uses its own authentication system; access to remote files
 is controlled by possession of an appropriate AFS
 token. There are no uid-switching games root can
 play; sshd must have the right AFS token in order
 to access your home directory. If you were logged into that machine,
 of course, you could use the usual AFS klog
 command to authenticate to AFS. However, sshd
 needs it before you’ve logged in, so there’s a bit of a
 quandary.
There is one solution available, though, involving Kerberos. If
 Kerberos is available, AFS will usually be configured so that AFS
 tokens can be obtained via Kerberos, bringing AFS into the Kerberos
 single-signon universe. If you have protocol-2 Kerberos support
 enabled with ticket forwarding [11.5.2.2], then OpenSSH
 can use your forwarded credentials to automatically obtain the needed
 AFS token:
 # ~/.ssh/config
 GSSAPIAuthentication yes
 GSSAPIDelegateCredentials yes
 KerberosGetAFSToken yes
Note that the older OpenSSH Kerberos-4 mechanism for this,
 controlled by the keyword AFSTokenPassing, is no longer available. The
 current support is only for Kerberos-5 and GSSAPI.

Summary

OpenSSH and Tectia are complex and have many options. It is
 vitally important to understand all options when installing and running
 SSH servers and clients, so their behavior will conform to your local
 security policy.
We have presented our recommended options for a high security
 setting. Your needs may vary. For instance, you might want the
 flexibility of other authentication methods that we have forbidden in
 our configuration.

Chapter 11. Case Studies

In this chapter we’ll delve deeply into some advanced topics:
 complex port forwarding, integration of SSH with other applications, and
 more. Some interesting features of SSH don’t come to the surface unless
 examined closely, so we hope you get a lot out of these case studies. Roll
 up your sleeves, dive in, and have fun.

Unattended SSH: Batch or cron Jobs

SSH isn’t only a great interactive tool, but also a
 resource for automation. Batch scripts, cron jobs,
 and other automated tasks can benefit from the security provided by SSH,
 but only if implemented properly. The major challenge is authentication:
 how can a client prove its identity when no human is available to type a
 password or passphrase? (We’ll just write “password” from now on to mean
 both.) You must carefully select an authentication method, and then
 equally carefully make it work. Once this infrastructure is established,
 you must invoke ssh properly to avoid prompting the
 user. In this case study, we discuss the pros and cons of different
 authentication methods for operating an SSH client unattended.
Note that any kind of unattended authentication presents a
 security problem and requires compromise, and SSH is no exception.
 Without a human present when needed to provide credentials (type a
 password, provide a thumbprint, etc.), those credentials must be stored
 persistently somewhere on the host system. Therefore, an attacker who
 compromises the system badly enough can use those credentials to
 impersonate the program and gain whatever access it has. Selecting a
 technique is a matter of understanding the pros and cons of the
 available methods, and picking your preferred poison.
11.1.1 Password Authentication

Rule number 1: forget password authentication if you care about the security of your batch
 jobs. As we mentioned, authentication for any unattended
 process will require some kind of persistent secret lying around, so
 it might seem that a password in a protected file will do as well as
 anything else, and password authentication is simple. In a strict
 sense that’s correct, but it’s a bad idea both practically and
 securitywise. Embedding a password in a command line is unwise: it may
 be exposed to other users by simple commands such as
 ps, end up in shell history files (e.g. ~/.bash_history) or system logs, etc. In
 fact, most SSH clients deliberately require terminal input (a “tty”)
 for a password, precisely to discourage this. You can use a tool like
 Expect to get around this limitation, but that will be awkward.
 Another practical limitation is that more methods tend to be available
 on the server side to restrict logins with public-key
 authentication, e.g., the “command” parameters in ~/.ssh/authorized_keys (OpenSSH) and
 ~/.ssh2/authorization (Tectia).
 This is just an implementation detail, but it’s very relevant since
 you definitely want to restrict unattended logins to do just what
 they’re intended to do.
More generally, compared to other available methods, SSH
 password authentication is just inherently weak: passwords tend to be
 short and often guessable, and the client must reveal the password to
 the server as part of the authentication process; so if the server has
 been compromised, it will get your password. Public-key
 authentication, however, does not reveal the private key in the
 process.
In the real world, though, you might be stuck using password
 authentication anyway. Perhaps you have to automate a transaction with
 a server not under your control; it only supports passwords, and you
 can’t get that changed. If you must, we suggest co-opting the
 “askpass” facility if it’s available. [6.3.3] The
 ssh-askpass program normally displays a window
 prompting for the password, but it can use instead a program that
 provides the password from wherever you’re storing it. It does so via
 a pipe, which is much better than letting it appear on a command
 line.

11.1.2 Public-Key Authentication

In public-key authentication, a private key is the
 client’s credentials. Therefore, the batch job needs access to the
 key, which must be stored where the job can access it. You have three
 choices of location for the key, which we discuss separately:
	Store the encrypted key and its passphrase in the
 filesystem.

	Store a plaintext (unencrypted) private key in the
 filesystem, so it doesn’t require a passphrase.

	Store the key in an agent, which keeps secrets out of the
 filesystem but requires a human to decrypt the key at system boot
 time.

11.1.2.1 Storing the passphrase in the filesystem

In this technique, you store an encrypted key and its
 passphrase in the filesystem so that a script can access them. We
 don’t recommend this method, since you can store an unencrypted key
 in the filesystem with the same level of security (and considerably
 less complication). In either case, you rely solely on the
 filesystem’s protections to keep the key secure. This observation is
 the rationale for the next technique.

11.1.2.2 Using a plaintext key

A plaintext or unencrypted key requires no passphrase. To
 create one, run ssh-keygen and simply press the
 Return key when prompted for a passphrase (or similarly, remove the
 passphrase from an existing key using ssh-keygen
 -p). You can then supply the key filename on the
 ssh command line using the
 -i option, or in the client configuration file
 with the IdentityFile keyword.
 [7.4.2]
Usually plaintext keys are undesirable, equivalent to leaving your password
 in a file in your account. They are never a good idea for
 interactive logins, since the SSH agent provides the same benefits
 in a much more secure fashion. But a plaintext key is a viable
 option for automation, since the unattended aspect forces us to rely
 on some kind of persistent state in the machine. The filesystem is
 one possibility.
Plaintext keys are frightening, though. To steal the key, an
 attacker needs to override filesystem protections only once, and
 this doesn’t necessarily require any fancy hacking: stealing a
 single backup tape will do. You can arrange to keep them off
 backups, but that’s an additional complication. If you need your
 batch jobs to continue working after an unattended system restart,
 plaintext keys are pretty much your best option. If the situation
 allows for some leeway in this regard, however, consider using
 ssh-agent instead.

11.1.2.3 Using an agent

 ssh-agent provides another,
 somewhat less vulnerable method of key storage for batch jobs. A
 human invokes an agent and loads the needed keys from
 passphrase-protected key files, just once. Thereafter, unattended
 jobs use this long-running agent for authentication.
In this case, the keys are still in plaintext but within the
 memory space of the running agent rather than in a file on disk. As
 a matter of practical cracking, it is more difficult to extract a
 data structure from the address space of a running process than to
 gain illicit access to a file. Also, this solution avoids the
 problem of an intruder walking off with a backup tape containing the
 plaintext key.
Security can still be compromised by other methods, though.
 The agent provides access to its services via a Unix-domain socket,
 which appears as a node in the filesystem. Anyone who can read and
 write that socket might be able to instruct the agent to sign
 authentication requests and thus gain use of the keys. Some agent
 implementations attempt further checks, such as ensuring the
 communicating process runs under the same uid, but not all flavors
 of Unix support this. [6.3.4.1] In any event,
 this compromise isn’t quite so devastating since the attacker can’t
 obtain the actual keys through the agent socket. She merely gains
 use of the keys for as long as the agent is running and as long as
 she can maintain her compromise of the host.
The agent method does have a down side: the system can’t
 continue unattended after a reboot. When the host comes up again
 automatically, the batch jobs won’t have their keys until someone
 shows up to restart the agent and provide the passphrases to load
 the keys. This is just a cost of the improved security, and you have
 a pager, right?
Another bit of complication with the agent method is that you
 must arrange for the batch jobs to find the agent. SSH clients
 locate an agent via an environment variable pointing to the agent
 socket, such as SSH_AUTH_SOCK for the OpenSSH agent. [6.3.2.1] When you start
 the agent for batch jobs, you need to record its output where the
 jobs can find it. For instance, if the job is a shell script, you
 can store the environment values in a file:
 $ ssh-agent | head -2 > ~/agent-info
 $ cat ~/agent-info
 setenv SSH_AUTH_SOCK /tmp/ssh-res/ssh-12327-agent;
 setenv SSH_AGENT_PID 12328;
You can add keys to the agent (assuming C-shell syntax
 here):
 $ source ~/agent-info
 $ ssh-add batch-key
 Need passphrase for batch-key (batch job SSH key).
 Enter passphrase: **************
then instrument any scripts to set the same values for the
 environment variables:
 #!/bin/csh
 # Source the agent-info file to get access to our ssh-agent.
 set agent = ~/agent-info
 if (-r $agent) then
 source $agent
 else
 echo "Can't find or read agent file; exiting."
 exit 1
 endif
 # Now use SSH for something...
 ssh -q -o 'BatchMode yes' user@remote-server my-job-command
You also need to ensure that the batch jobs (and nobody else!)
 can read and write the socket. If there’s only one uid using the
 agent, the simplest thing to do is start the agent under that uid
 (e.g., as root, do su <batch_account> ssh-agent
 ...). If multiple uids are using the agent, you must
 adjust the permissions on the socket and its containing directory so
 that these uids can all access it, perhaps using group
 permissions.
Tip
Some operating systems behave oddly with respect to
 permissions on Unix-domain sockets. Some versions of Solaris, for
 example, completely ignore the modes on a socket, allowing any
 process at all full access to it. To protect a socket in such
 situations, set the containing directory to forbid access. For
 example, if the containing directory is mode 700, only the
 directory owner may access the socket. (This assumes there’s no
 other shortcut to the socket located elsewhere, such as a hard
 link.)

Using an agent for automation is more complicated and
 restrictive than using a plaintext key; however, it is more
 resistant to attack and doesn’t leave the key on disk and tape where
 it can be stolen. Considering that the agent is still vulnerable to
 being misused via the filesystem, and that it is intended to run
 indefinitely, the advantages of this method are debatable. Still, we
 recommend the agent method as the most secure and flexible strategy
 for automated SSH usage in a security-conscious environment.

11.1.3 Hostbased Authentication

If security concerns are relatively light, consider
 hostbased authentication for batch jobs. In this case, the “credentials” are the
 operating system’s notion of a process’s uid: the identity under which
 a process is running, which determines what rights it has over
 protected objects. An attacker need only manage to get control of a
 process running under your uid, to impersonate you to a remote SSH
 server. If he breaks root on the client, this is particularly simple,
 since root may create processes under any uid. The real crux, though,
 is the client host key: if the attacker gets that, he can sign bogus
 authentication requests presenting himself as any user at all, and
 sshd will believe them.
Hostbased authentication is in many ways the least secure SSH
 authentication method. [3.4.3.6] It leaves systems
 vulnerable to transitive compromise: if an attacker gains access to an
 account on host H, she immediately has access to the same account on
 all machines that trust H, with no further effort. Also, hostbased
 configuration is limited, fragile, and easy to get wrong. Public-key
 authentication affords both greater security and flexibility,
 particularly since you can restrict the commands that may be invoked
 and the client hosts that may connect, using its forced commands and
 other options in the authorization file.
Of course, if your security policy permits and you’re already
 using hostbased for general user authentication, then you’re all set
 for batch jobs too. However if you’re using something stronger for
 user authentication, and you’re considering the hostbased method for
 batch jobs, then we recommend that you:
	Restrict its use to the batch accounts
 only (via /etc/shosts.equiv rules); continue to
 use stronger methods for interactive authentication.

	Use only the SSH-specific configuration files /etc/shosts.equiv and ~/.shosts, and not the legacy files
 /etc/hosts.equiv and
 ~/.rhosts. This avoids any
 accidental changes to the behavior of wildly insecure mechanisms
 like rcmd and
 rsh.

	Set options such as OpenSSH IgnoreRhosts and IgnoreUserKnownHosts, and Tectia
 AllowSHosts/DenySHosts, if possible. Since
 per-account hostbased configuration can override the systemwide
 files, it’s best to disable them.

11.1.4 Kerberos

There’s no reason to deploy Kerberos [11.4] solely in order to
 support batch jobs; it has no special overall advantage in this
 regard. However, if you’re already using Kerberos, you might want to
 keep things simple by using it for batch as well as interactive jobs.
 Unattended Kerberos usage has similar security properties to using a
 plaintext SSH key as described earlier: the Kerberos principal’s key
 is stored on disk, can be similarly strong since it does not have to
 be derived from a user-memorable passphrase, and is not revealed in
 the authentication process.
To do this, use the kadmin command:
 $ kadmin -q "ktadd -k keytab principal"
to store the principal’s key in the file keytab, and protect that file appropriately
 (e.g., so that only the Unix batch account can read it). The batch job
 can then call kinit:
 $ kinit -k -t keytab
to obtain Kerberos credentials for that principal.
We suggest the following arrangement:
	Arrange that the keytab
 file does not travel insecurely over the network, e.g., on an
 unsecured NFS filesystem. Perhaps also arrange that it is not
 dumped to backup tapes.

	Create separate principals for batch jobs; do not use
 existing user principals.

	Create a random key for the batch principal using the
 kadmin option, addprinc -randkey.

	If feasible, periodically change these keys. An advantage of
 the Kerberos system is that this does not require changing
 corresponding authorization entries, as changing a simple SSH key
 would require updating the matching authorized_keys files. Any running jobs
 will have to be restarted, though, since their credentials will
 become invalid.

	As always, restrict what the batch principal can do on the
 server side, here using the Kerberos ~/.k5login or ~/.k5users files.

Kerberos-5 contains support for long-running jobs with
 “renewable” tickets, but note that this is still intended for jobs
 started interactively; it just supports those that may run for a long
 time. It is not intended as a solution for truly unattended
 jobs.

11.1.5 General Precautions for Batch Jobs

Regardless of the method you choose, some extra
 precautions will help secure your environment.
11.1.5.1 Least-privilege accounts

The account under which the automated job runs should have
 only those privileges needed to run the job, and no more. Don’t run
 every batch job as root just because it’s convenient. Arrange your
 filesystem and other protections so that the job can run as a
 less-privileged user. Remember that unattended remote jobs increase
 the risk of account compromise, so take the extra trouble to avoid
 the root account whenever possible.

11.1.5.2 Separate, locked-down automation accounts

Create accounts that are used solely for automation.
 Try not to run system batch jobs in a user account, since you might
 not be able to reduce its privileges to the small set necessary to
 support the job. In many cases, an automation account doesn’t even
 need to admit interactive logins. If jobs running under its uid are
 created directly by the batch job manager (e.g.,
 cron), the account doesn’t need a password and
 should be locked.

11.1.5.3 Restricted-use keys

As much as possible, restrict the target account to perform
 only the work needed for the job. With public-key authentication,
 automated jobs should use keys that aren’t shared by interactive
 logins. Imagine that someday you might need to eliminate the key for
 security reasons, and you don’t want to affect other users or jobs
 by this change. For maximum control, use a separate key for each
 automated task. Additionally, place all possible restrictions on the
 key by setting options in the authorization file. [8.2] The command option restricts the key to
 running only the needed remote command, and the from option restricts usage to appropriate
 client hosts. Consider always adding the following options as well,
 if they don’t interfere with the job:
 no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty
These make it harder to misuse the key should it be
 stolen.
If you’re using hostbased authentication, these restrictions
 aren’t available. In this case, it’s best to use a special shell for
 the account, which limits the commands that may be executed. Since
 sshd uses the target account’s shell to run any
 commands on the user’s behalf, this is an effective restriction. One
 standard tool is the Unix “restricted shell.” Confusingly, the restricted shell is usually named
 “rsh,” but has nothing to do with the Berkeley r-command for opening
 a remote shell, rsh.

11.1.5.4 Useful ssh options

When running SSH commands in a batch job, it’s a good
 idea to use these options:
 ssh -q -o 'BatchMode yes'
The -q option is for quiet mode,
 preventing SSH from printing a variety of warnings. This is
 sometimes necessary if you’re using SSH as a pipe from one program
 to another. Otherwise, the SSH warnings may be interpreted as remote
 program output and confuse the local program. [7.4.17]
The BatchMode keyword tells
 SSH not to prompt the user, who in this case doesn’t exist. This
 makes error reporting more straightforward, eliminating some
 confusing SSH messages about failing to access a tty. [7.4.6.4]

11.1.6 Recommendations

Our recommended method for best security with unattended
 SSH operation is public-key authentication with keys stored in an
 agent. If that isn’t feasible, hostbased or plaintext-key
 authentication may be used instead; your local security concerns and
 needs will determine which is preferable, using the foregoing
 discussion as a guideline.
To the extent possible, use separate accounts and keys for each
 job. By doing so, you limit the damage caused by compromising any one
 account, or stealing any one key. But of course, there is a complexity
 trade-off here; if you have 100 batch jobs, separate accounts or keys
 for each one may be too much to deal with. In that case, partition the
 jobs into categories according to the privileges they need, and use a
 separate account and/or key for each category of job.
You can ease the burden of multiple keys by applying a little
 automation to the business of loading them. The keys can all be stored
 under the same passphrase: a script prompts for the passphrase, then
 runs ssh-add multiple times to add the various
 keys. Or they have different passphrases, and the human inserts a
 diskette containing the passphrases when loading them. Perhaps the
 passphrase list itself is encrypted under a single password provided
 by the human. For that matter, the keys themselves can be kept on the
 key diskette and not stored on the filesystem at all: whatever fits
 your needs and paranoia level.

FTP and SSH

One of the most frequently asked questions about SSH is,
 “How can I use port forwarding to secure FTP?” If the forwarding in
 question is the traditional sort of static port forwarding provided by
 SSH clients such as OpenSSH, then the short answer is that you usually
 can’t, at least not completely, as we will explain in detail in this
 section. Such port forwarding can protect your account password, but
 usually not the files being transferred. Still, protecting your password
 is a big win, since the most egregious problem with FTP is that it
 usually reveals your password to network snoopers.
Tip
It’s worth noting that FTP can in fact be used securely on its
 own. Both FTP and Telnet are famously considered “insecure,” but it’s
 more accurate to say that they are simply used
 insecurely most of the time. Both protocols allow the use of strong
 authentication and encryption methods, such as SSL or Kerberos.
 However, the vast majority of FTP and Telnet servers in the world do
 not provide these features, and so we are left trying to secure them
 as best we can with other tools, such as SSH.

Before trying to figure out how to forward FTP over SSH, you
 should first ask yourself whether you really need to use FTP at all. If
 possible, it’s far less trouble to simply use a file-transfer method
 that works easily over SSH, such as scp,
 sftp, rsync, etc. (and
 remember that SFTP and FTP have nothing to do with
 one another, save the acronym). If you’re going to secure FTP end-to-end
 with SSH, then the FTP server must already be running an SSH
 server—which means it shouldn’t be hard to make the requisite files
 available via SSH as well. But the real world is messy, and you might be
 stuck with FTP.
11.2.1 FTP-Specific Tools for SSH

As we will describe, the FTP protocol is not amenable to
 standard SSH port forwarding. There are SSH clients, however, with
 features tailored specifically for dealing with FTP. We describe two
 of them here.
11.2.1.1 VanDyke’s SecureFX

VanDyke Software (http://www.vandyke.com/) has a useful Windows
 product, specifically designed to forward FTP over SSH, data
 connections and all: SecureFX. It is a specialized combination of
 SSH-2 and FTP clients. SecureFX acts as a GUI FTP client, first
 creating an SSH connection, then logging into the remote FTP server
 via an SSH channel. Whenever it needs an FTP data connection, it
 dynamically creates the needed tcpip-direct
 channels (for passive mode) or remote forwardings (active mode); to
 the remote FTP server, SecureFX looks like an FTP client connecting
 from the same host. SecureFX works very smoothly and we recommend
 the product.
SecureFX is a great solution if you can choose your client.
 However, perhaps you need to secure FTP traffic in an existing
 system, where you can’t replace the client side. In this case,
 Tectia has a feature that will help.

11.2.1.2 Tectia client

The Tectia software has a special FTP-aware
 port-forwarding mode. In the GUI Windows client, when configuring
 tunneling in the Add New Outgoing Tunnel dialog box, set Type = FTP. In the command-line version,
 FTP forwarding works this way:
 # Tectia
 $ ssh -L ftp/1234:localhost:21 server
This forwards local port 1234 to an FTP server running on the
 standard FTP port (21), on the same machine as the SSH server. After
 connecting with a regular FTP client to the forwarded port, FTP
 data-transfer commands such as ls,
 get, put, etc., should
 work normally, in either FTP’s “active” or “passive” mode. Tectia
 intercepts and alters FTP command traffic, particularly the PORT and PASV commands and their responses. It does
 this to “fool” the FTP client and server into using SSH-forwarded
 ports it creates for data channels, instead of the direct
 connections each side intends to make.

11.2.2 Static Port Forwarding and FTP: A Study in Pain

So far, we’ve described a number of alternatives for
 dealing with SSH and FTP. If you’re particularly unlucky, though, you
 might be stuck having to secure FTP with SSH, without any of these
 options—for instance, using OpenSSH, which has no FTP-specific
 forwarding features. If so, this section is for you. And even if
 you’re not stuck with this unenviable task, you may find the
 discussion useful for understanding the general problem and
 limitations. Or simply for the morbid fascination of it all.
Here, we explain in detail what you can and can’t do with FTP
 and SSH, and why. Some difficulties are due to limitations of FTP, not
 only when interacting with SSH, but also in the presence of firewalls
 and network address translation (NAT). We will discuss each of these
 situations, since firewalls and NAT are common nowadays, and their
 presence might be the reason you’re trying to forward FTP securely. If
 you are a system administrator responsible for both SSH and these
 networking components, we will try to guide you to a general
 understanding that will help you design and troubleshoot entire
 systems.
Depending on your network environment, different problems may
 arise when combining SSH with FTP. Since we can’t cover every possible
 environment, we describe each problem in isolation, illustrating its
 symptoms and recommending solutions. If you have multiple problems
 occurring simultaneously, the software behavior you observe might not
 match the examples we’ve given. We recommend reading the entire case
 study once (at least cursorily) before experimenting with your system,
 so you will have an idea of the problems you might encounter.
 Afterward, go ahead and try the examples at your computer.

11.2.3 The FTP Protocol

To understand the problems between FTP and SSH, you need
 to understand a bit about the FTP protocol. Most TCP services involve
 a single connection from client to server on a known, server-side
 port. FTP, however, involves multiple connections in both directions,
 mostly to unpredictable port numbers:
	A single control connection for
 carrying commands from the client and responses from the server.
 It connects on TCP port 21 and persists for the entire FTP
 session.

	A number of data connections for
 transferring files and other data, such as directory listings. For
 each file transfer, a new data connection is opened and closed,
 and each one may be on a different port. These data connections
 may come from the client or the server.

Let’s run a typical FTP client and view the control connection.
 We’ll use debug mode (ftp -d) to make visible the
 FTP protocol commands the client sends on the control connection,
 since they aren’t normally displayed. Debug mode prints these commands
 preceded by "--->”. For
 example:
 ---> USER res
You’ll also see responses from the server, which the client
 prints by default. These are preceded by a numerical code:
 230 User res logged in.
Here’s a session in which the user res connects to an FTP
 server, logs in, and attempts to change directory twice, once
 successfully and once not:
 $ ftp -d aaor.lionaka.net
 Connected to aaor.lionaka.net.
 220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
 ---> SYST
 215 UNIX Type: L8 Version: SUNOS
 Remote system type is UNIX.
 Using binary mode to transfer files.
 ftp> user res
 ---> USER res
 331 Password required for res.
 Password:
 ---> PASS XXXX
 230 User res logged in.
 ftp> cd rep
 ---> CWD rep
 250 CWD command successful.
 ftp> cd utopia
 ---> CWD utopia
 550 utopia: No such file or directory.
 ftp> quit
 ---> QUIT
 221 Goodbye.
The control connection can be secured by standard port
 forwarding because it is on a known port (21). [9.2] In contrast, the
 destination port numbers for data connections are generally not known
 in advance, so setting up SSH forwarding for these connections is far
 more difficult. There’s a second standard port number associated with
 FTP, the ftp-data port (20). But this is only the
 source port for data connections coming from the server; nothing ever
 listens on it.
Surprisingly, the data connections generally go in the opposite
 direction from the control one; that is, the server makes a TCP
 connection back to the client in order to transfer data. The ports on
 which these connections occur can be negotiated dynamically by the FTP
 client and server, and doing so involves sending explicit IP address
 information inside the FTP protocol. These features of usual FTP
 operation can cause difficulties when forwarding SSH connections and
 in other scenarios involving firewalls or NAT.
An alternative FTP mode, called passive
 mode, addresses one of these problems: it reverses the
 sense of the data connections so that they go from the client to the
 server. Passive mode is a matter of FTP client behavior, and so is
 determined by a client setting. The behavior of setting up data
 connections from the server to the client, which we will call
 active-mode FTP, is traditionally the default in
 FTP clients, although that’s changing. With a command-line client, the
 passive command switches to passive mode. The
 internal command that the client sends the server to tell it to enter
 passive mode is PASV. We discuss
 specific problems, and how passive mode solves them, in upcoming
 sections. Figure 11-1
 summarizes the workings of passive and active FTP.
[image: Basic FTP operation: control connection and active- versus passive-mode transfers]

Figure 11-1. Basic FTP operation: control connection and active- versus
 passive-mode transfers

11.2.4 Forwarding the Control Connection

Since the FTP control connection is just a single,
 persistent TCP connection to a well-known port, you can forward it
 through SSH. As usual, the FTP server machine must be running an SSH
 server, and you must have an account on it that you may access via SSH
 (see Figure 11-2).
[image: Forwarding the control connection]

Figure 11-2. Forwarding the control connection

Suppose you are logged into the machine
 client and want to connect securely to an FTP
 server on the machine server. To forward the FTP
 control connection, run a port-forwarding command on client:[141]
 client% ssh -L2001:server:21 server
Then, to use the forwarded port:
 client% ftp localhost 2001
 Connected to localhost
 220 server FTP server (SunOS 5.7) ready.
 Password:
 230 User res logged in.
 ftp> passive
 Passive mode on.
 ftp> ls
 ... and so on
There are two important things to notice about the commands we
 just recommended. We will discuss each.
	The target of the forwarding is server,
 not localhost.

	The client uses passive mode.

11.2.4.1 Choosing the forwarding target

We chose server as the target of
 our forwarding, not localhost (i.e., we didn’t
 use -L2001:localhost:21). This is contrary to
 our previous advice, which was to use localhost
 where possible as the forwarding target. [9.2.8] Well, that technique
 isn’t advisable here. Here’s what can happen if you do:
 client% ftp localhost 2001
 Connected to client
 220 client FTP server (SunOS 5.7) ready.
 331 Password required for res.
 Password:
 230 User res logged in.
 ftp> ls
 200 PORT command successful.
 425 Can't build data connection: Cannot assign requested address.
 ftp>
The problem is a bit obscure but can be revealed by an
 execution trace of the FTP server as it responds to the
 ls command. The following output was produced
 by the Linux strace command:[142]
 so_socket(2, 2, 0, "", 1) = 5
 bind(5, 0x0002D614, 16, 3) = 0
 AF_INET name = 127.0.0.1 port = 20
 connect(5, 0x0002D5F4, 16, 1) Err#126 EADDRNOTAVAIL
 AF_INET name = 192.168.10.1 port = 2845
 write(1, " 4 2 5 C a n ' t b u".., 67) = 67
The FTP server is trying to make a TCP connection to the
 correct client address but from the wrong socket: the ftp-data port
 on its loopback address, 127.0.0.1. The loopback interface can talk
 only to other loopback addresses on the same machine. TCP knows this
 and responds with the error “address not available” (EADDRNOTAVAIL).
 The FTP server is being careful to originate the data connection
 from the same address to which the client made the control
 connection. Here, the control connection has been forwarded through
 SSH; so to the FTP server, it appears to come from the local host.
 And because we used the loopback address as the forwarding target,
 the source address of that leg of the forwarded path (from
 sshd to ftpd) is also the
 loopback address. To eliminate the problem, use the server’s
 nonloopback IP address as the target; this causes the FTP server to
 originate data connections from that address.
You might try to solve this problem using passive mode, since
 then the server wouldn’t originate any connections. But if you
 try:
 ftp> passive
 Passive mode on.

 ftp> ls
 227 Entering Passive Mode (127,0,0,1,128,133)
 ftp: connect: Connection refused
 ftp>
In this case, the failure is a slightly different
 manifestation of the same problem. This time, the server listens for
 an incoming data connection from the client, but again, it thinks
 the client is local, so it listens on its loopback address. It sends
 this socket (address 127.0.0.1, port 32901) to the client, and the
 client tries to connect to it. But this causes the client to try to
 connect to port 32901 on the client host, not the server! Nothing is
 listening there, of course, so the connection is refused.

11.2.4.2 Using passive mode

Note that we had to put the client into passive mode.
 You will see later that passive mode is beneficial for FTP in
 general, because it avoids some common firewall and NAT problems.
 Here, however, it’s used because of a specific FTP/SSH problem; if
 you didn’t, here’s what happens:
 $ ftp -d localhost 2001
 Connected to localhost.
 220 server FTP server (SunOS 5.7) ready.
 ---> USER res
 331 Password required for res.
 Password:
 ---> PASS XXXX
 230 User res logged in.
 ftp> ls
 ---> PORT 127,0,0,1,11,50
 200 PORT command successful.
 ---> LIST
 425 Can't build data connection: Connection refused.
 ftp>
This is a mirror image of the problem we saw when localhost
 was the forwarding target, but this time it happens on the client
 side. The client supplies a socket for the server to connect to, and
 since it thinks the server is on the local host, that socket is on
 the loopback address. This causes the server to try connecting to
 its local host instead of the client machine.
Passive mode can’t always be used: the FTP client or server
 might not support it, or server-side firewall/NAT considerations may
 prevent it (you’ll see an example of that shortly). If so, you can
 use the GatewayPorts feature of
 SSH and solve this problem as we did the previous one: use the
 host’s real IP address instead of the loopback. To wit:
 client% ssh -g -L2001:server:21 server
Then connect to the client machine by name, rather than to
 localhost:
 client% ftp client 2001
This connects to the SSH proxy on the client’s nonloopback
 address, causing the FTP client to listen on that address for data
 connections. The -g option has security
 implications, however. [9.2.1.1]
Of course, as we mentioned earlier, it’s often the case that
 active-mode FTP isn’t usable. It’s perfectly possible that your
 local firewall/NAT setup requires passive mode, but you can’t use
 it. In that case, you’re just out of luck. Put your data on a
 diskette and contribute to the local bicycle-courier economy.
The various problems we have described, while common, depend
 on your particular Unix flavor and FTP implementation. For example,
 some FTP servers fail even before connecting to a loopback socket;
 they see the client’s PORT
 command and reject it, printing “illegal PORT command”. If you
 understand the reasons for the various failure modes, however, you
 will learn to recognize them in different guises.

11.2.4.3 The “PASV port theft” problem

Trying to use FTP with SSH can be sort of like playing
 a computer dungeon game: you find yourself in a twisty maze of TCP
 connections, all of which look alike and none of which seem to go
 where you want. Even if you follow all of our advice so far, and
 understand and avoid the pitfalls we’ve mentioned, the connection
 might still fail:
 ftp> passive
 Passive mode on.
 ftp> ls
 connecting to 192.168.10.1:6670
 Connected to 192.168.10.1 port 6670
 425 Possible PASV port theft, cannot open data connection.
 ! Retrieve of folder listing failed
Assuming you don’t decide to give up entirely and move into a
 less irritating career, you may want to know, “What now?” The
 problem here is a security feature of the FTP server, specifically
 the popular wu-ftpd from Washington University. (See http://www.wu-ftpd.org/. This feature might be
 implemented in other FTP servers, but we haven’t seen it.) The
 server accepts an incoming data connection from the client, then
 notices that its source address isn’t the same as that of the
 control connection (which was forwarded through SSH and thus comes
 from the server host). It concludes that an attack is in progress!
 The FTP server believes someone has been monitoring your FTP control
 connection, seen the server response to the PASV command containing the listening
 socket, and jumped in to connect to it before the legitimate client
 can do so. So, the server drops the connection and reports the
 suspected “port theft” (see Figure 11-3).
There’s no way around this problem but to stop the server from
 performing this check. It’s a problematic feature to begin with,
 since it prevents not only attacks, but also legitimate FTP
 operations. For example, passive-mode operation was originally
 intended to allow an FTP client to effect a file transfer between
 two remote servers
[image: “PASV port theft”]

Figure 11-3. “PASV port theft”

directly, rather than first fetching the file to the client
 and then sending it to the second server. This isn’t a common
 practice, but it is part of the protocol design, and the “port
 theft” check of wu-ftpd prevents its use. You
 can turn it off by recompiling wu-ftpd without
 FIGHT_PASV_PORT_RACE (use configure
 --disable-pasvip). You can also leave the check on but
 allow certain accounts to use alternate IP addresses for data
 connections, with the pasv-allow and
 port-allow configuration statements. See the
 ftpaccess (5) manpage for details. Note that
 these features are relatively recent additions to
 wu-ftpd and aren’t in earlier versions.

11.2.5 FTP, Firewalls, and Passive Mode

Recall that in active mode, the FTP data connections go
 in the opposite direction than you might expect—from the server back
 to the client. This usual mode of operation (shown in Figure 11-4) often develops
 problems in the presence of a firewall. Suppose the client is behind a
 firewall that allows all outbound connections but restricts inbound
 ones. Then the client can establish a control connection to log in and
 issue commands, but data-transfer commands such as
 ls, get, and
 put will fail, because the firewall blocks the
 data connections coming back to the client machine. Simple
 packet-filtering firewalls can’t be configured to allow these
 connections, because they appear as separate TCP destinations to
 random ports, with no obvious relation to the established FTP control
 connection.[143] The failure might happen quickly with the message
 “connection refused,” or the connection might hang for a while and
 eventually fail. This depends on whether the firewall explicitly
 rejects the connection attempt with an ICMP or TCP RST message, or
 just silently drops the packets. Note that this problem can occur
 whether or not SSH is forwarding the control connection.
[image: FTP client behind a firewall]

Figure 11-4. FTP client behind a firewall

Passive mode usually solves this problem, reversing the
 direction of data connections so they go from the client to the
 server. Unfortunately, not all FTP client or servers implement
 passive-mode transfers. Command-line FTP clients generally use the
 passive command to toggle
 passive-mode transfers on and off; if it doesn’t recognize that
 command, it probably doesn’t do passive mode. If the client supports
 passive mode but the server doesn’t, you may see a message like “PASV:
 command not understood” from the server. PASV is the FTP protocol command that
 instructs the server to listen for data connections. Finally, even if
 passive mode solves the firewall problem, it doesn’t help with SSH
 forwarding, since the ports in question are still dynamically
 chosen.
Here is an example of the firewall problem, blocking the return
 data connections:
 $ ftp lasciate.ogni.speranza.org
 Connected to lasciate.ogni.speranza.org
 220 ProFTPD 1.2.0pre6 Server (Lasciate FTP Server) [lasciate.ogni.speranza.org]
 331 Password required for slade.
 Password:
 230 User slade logged in.
 Remote system type is UNIX.
 Using binary mode to transfer files.
 ftp> ls
 200 PORT command successful.
 [...long wait here...]
 425 Can't build data connection: Connection timed out
Passive mode comes to the rescue:
 ftp> passive
 Passive mode on.
 ftp> ls
 227 Entering Passive Mode (10,25,15,1,12,65)
 150 Opening ASCII mode data connection for file list
 drwxr-x—x 21 slade web 2048 May 8 23:29 .
 drwxr-xr-x 111 root wheel 10240 Apr 26 00:09 ..
 -rw------- 1 slade other 106 May 8 15:22 .cshrc
 -rw------- 1 slade other 31384 Aug 18 1997 .emacs
 226 Transfer complete.
 ftp>
Now, in discussing the problem of using FTP through a firewall,
 we didn’t mention SSH at all; it is a problem inherent in the FTP
 protocol and firewalls. However, even when forwarding the FTP control
 connection through SSH, this problem still applies, since the
 difficulty is with the data connection, not the control, and those
 don’t go through SSH. So, this is yet another reason why you will
 normally want to use passive mode with FTP and SSH.

11.2.6 FTP and Network Address Translation (NAT)

Passive-mode transfers can also work around another
 common problem with FTP: its difficulties with network address
 translation, or NAT. NAT is the practice of connecting two networks by
 a gateway that rewrites the source and destination addresses of
 packets as they pass through. One benefit is that you may connect a
 network to the Internet or change ISPs without having to renumber the
 network (that is, change all your IP addresses). It also allows
 sharing a limited number of routable Internet addresses among a larger
 number of machines on a network using private addresses not routed on
 the Internet. This flavor of NAT is often called
 masquerading .
Suppose your FTP client is on a machine with a private address
 usable only on your local network, and you connect to the Internet
 through a NAT gateway. The client can establish a control connection
 to an external FTP server. However, there will be a problem if the
 client attempts the usual reverse-direction data connections. The
 client, ignorant of the NAT gateway, tells the server (via a PORT command) to connect to a socket
 containing the client’s private address. Since that address isn’t
 usable on the remote side, the server generally responds “no route to
 host” and the connection will fail.[144] Figure 11-5
 illustrates this situation. Passive mode gets around this problem as
 well, since the server never has to connect back to the client and so
 the client’s address is irrelevant.
[image: Client-side NAT prevents active-mode FTP transfers]

Figure 11-5. Client-side NAT prevents active-mode FTP transfers

So far, we’ve listed three situations requiring passive-mode
 FTP: control connection forwarding, client inside a firewall, and
 client behind NAT. Given these potential problems with active-mode
 FTP, and that there’s no down side to passive mode that we know of, we
 recommend always using passive-mode FTP if you can.
11.2.6.1 Server-side NAT issues

The NAT problem we just discussed was a client-side
 issue. A more difficult problem can occur if the FTP server is
 behind a NAT gateway, and you’re forwarding the FTP control
 connection through SSH.
First, let’s understand the basic problem without SSH in the
 picture. If the server is behind a NAT gateway, then you have the
 mirror-image problem to the one discussed earlier. Before,
 active-mode transfers didn’t work because the client supplied its
 internal, non-NAT’d address to the server in the PORT command, and this address wasn’t
 reachable. In the new situation, passive-mode transfers don’t work
 because the server supplies its internal-only address to the client
 in the PASV command response, and
 that address is unreachable to the client (see Figure 11-6).
[image: Server-side NAT prevents passive-mode FTP transfers]

Figure 11-6. Server-side NAT prevents passive-mode FTP transfers

The earlier answer was to use passive mode; here the simplest
 answer is the reverse: use active mode. Unfortunately, this isn’t
 very helpful. If the server is intended for general Net access, it
 should be made useful to the largest number of people. Since
 client-side NAT and firewall setups requiring passive-mode FTP are
 common, it won’t do to use a server-side NAT configuration that
 requires active mode instead; this makes access impossible. One
 approach is to use an FTP server with special features designed to
 address this very problem. The wu-ftpd server
 we touched on earlier has such a feature. Quoting from the
 ftpaccess (5) manpage:
 passive address <externalip> <cidr>
 Allows control of the address reported in response to
 a PASV command. When any control connection matching
 the <cidr> requests a passive data connection (PASV),
 the <externalip> address is reported. NOTE: this
 does not change the address the daemon actually lis-
 tens on, only the address reported to the client.
 This feature allows the daemon to operate correctly
 behind IP-renumbering firewalls.

 For example:
 passive address 10.0.1.15 10.0.0.0/8
 passive address 192.168.1.5 0.0.0.0/0

 Clients connecting from the class-A network 10 will be
 told the passive connection is listening on IP-address
 10.0.1.15 while all others will be told the connection is
 listening on 192.168.1.5

 Multiple passive addresses may be specified to handle com-
 plex, or multi-gatewayed, networks.
This handles the problem quite neatly, unless you happen to be
 forwarding the FTP control connection through SSH. Site
 administrators arrange for FTP control connections originating from
 outside the server’s private network to have external addresses
 reported in the PASV responses.
 But the forwarded control connection appears to come from the server
 host itself, rather than the outside network. Control connections
 coming from inside the private network should
 get the internal address, not the external one. The only way this
 will work is if the FTP server is configured to provide the external
 address to connections coming from itself as well as from the
 outside. This is actually quite workable, as there’s little need in
 practice to transmit files by FTP from a machine back to itself. You
 can use this technique to allow control-connection forwarding in the
 presence of server-side NAT or suggest it to the site administrators
 if you have this problem.
Another way of addressing the server-side NAT problem is to
 use an intelligent NAT gateway of the type mentioned earlier. Such a
 gateway automatically rewrites the FTP control traffic in transit to
 account for address translation. This is an attractive solution in
 some respects, because it is automatic and transparent; there is
 less custom work in setting up the servers behind the gateway, and
 there are fewer dependencies between the server and network
 configurations. As it happens, though, this solution is actually
 worse for our purposes than the server-level one. This technique
 relies on the gateway’s ability to recognize and alter the FTP
 control connection as it passes through. But such manipulation is
 exactly what SSH is designed to prevent! If the control connection
 is forwarded through SSH, the gateway doesn’t know there is a
 control connection, because it’s embedded as a channel inside the
 SSH session. The control connection isn’t a separate TCP connection
 of its own; it’s on the SSH port rather than the FTP port. The
 gateway can’t read it because it’s encrypted, and the gateway can’t
 modify it even if the gateway can read it, because SSH provides
 integrity protection. If you’re in this situation—the client must
 use passive-mode FTP, and the server is behind a NAT gateway doing
 FTP control traffic rewriting—you must convince the server
 administrator to use a server-level technique in addition to the
 gateway, specifically to allow forwarding. Otherwise, it’s not going
 to happen, and we see trucks filled with tapes in your future, or
 perhaps HTTP over SSL with PUT commands.
We have now concluded our discussion of forwarding the control
 connection of FTP, securing your login name, password, and FTP
 commands. If that’s all you want to do, you are done with this case
 study. We’re going to continue, however, and delve into the murky
 depths of data connections. You’ll need a technical background for
 this material as we cover minute details and little-known modes of
 FTP. (You might even wonder if we’ve accidentally inserted a portion
 of an FTP book into the SSH book.) Forward, brave reader!

11.2.7 All About Data Connections

Ask most SSH users about forwarding the FTP data
 connection, and they’ll respond, “Sorry, it’s not possible.” Well, it
 is possible. The method we’ve discovered is
 obscure, inconvenient, and not usually worth the effort, but it works.
 Before we can explain it, we must first discuss the three major ways
 that FTP accomplishes file transfers between client and server:
	The usual method

	Passive-mode transfers

	Transfers using the default data ports

We’ll just touch briefly on the first two, since we’ve already
 discussed them; we’ll just amplify with a bit more detail. Then we’ll
 discuss the third mode, which is the least known and the one you need
 if you really, really want to forward your FTP data
 connections.
11.2.7.1 The usual method of file transfer

Most FTP clients attempt data transfers in the following way.
 After establishing the control connection and authenticating, the
 user issues a command to transfer a file. Suppose the command is
 get fichier.txt, which asks to
 transfer the file fichier.txt
 from the server to the client. In response to this command, the
 client selects a free local TCP socket, call it C, and starts
 listening on it. It then issues a PORT command to the FTP server, specifying
 the socket C. After the server acknowledges this, the client issues
 the command RETR fichier.txt,
 which tells the server to connect to the previously given socket (C)
 and send the contents of that file over the new data connection. The
 client accepts the connection to C, reads the data, and writes it
 into a local file also called fichier.txt. When done, the data
 connection is closed. Here is a transcript of such a session:
 $ ftp -d aaor.lionaka.net
 Connected to aaor.lionaka.net.
 220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
 ---> USER res
 331 Password required for res.
 Password:
 ---> PASS XXXX
 230 User res logged in.
 ---> SYST
 215 UNIX Type: L8 Version: SUNOS
 Remote system type is UNIX.
 Using binary mode to transfer files.
 ftp> get fichier.txt
 local: fichier.txt remote: fichier.txt
 ---> TYPE I
 200 Type set to I.
 ---> PORT 219,243,169,50,9,226
 200 PORT command successful.
 ---> RETR fichier.txt
 150 Binary data connection for fichier.txt (219.243.169.50,2530) (10876 bytes).
 226 Binary Transfer complete.
 10876 bytes received in 0.013 seconds (7.9e+02 Kbytes/s)
 ftp> quit
Note the PORT command,
 PORT 219,243,169,50,9,226. This
 says the client is listening on IP address 219.243.169.50, port 2530
 = (9<<8)+226; the final two integers in the comma-separated
 list are the 16-bit port number represented as two 8-bit bytes, most
 significant byte first. The server response beginning with “150”
 confirms establishment of the data connection to that socket. What
 isn’t shown is that the source port of that connection is always the
 standard FTP data port, port 20 (remember that FTP servers listen
 for incoming control connections on port 21).
There are two important points to note about this
 process:
	The data connection socket is chosen on the fly by the
 client. This prevents forwarding, since you can’t know the port
 number ahead of time to forward it with SSH. You can get around
 this problem by establishing the FTP process “by hand” using
 telnet. That is, choose a data socket
 beforehand and forward it with SSH, telnet
 to the FTP server yourself, and issue all the necessary FTP
 protocol commands by hand, using your forwarded port in the
 PORT command. But this can
 hardly be called convenient.

	Remember that the data connection is made in the
 reverse direction from the control
 connection; it goes from the server back to the client. As we
 discussed earlier in this chapter, the usual workaround is to
 use passive mode.

11.2.7.2 Passive mode in depth

Recall that in a passive-mode transfer, the client initiates a
 connection to the server. Specifically, instead of listening on a
 local socket and issuing a PORT
 command to the server, the client issues a PASV command. In response, the server
 selects a socket on its side to listen on and reveals it to the
 client in the response to the PASV command. The client then connects to
 that socket to form the data connection, and issues the
 file-transfer command over the control connection. With command
 line-based clients, the usual way to do passive-mode transfers is to
 use the passive command. Again, an
 example:
 $ ftp -d aaor.lionaka.net
 Connected to aaor.lionaka.net.
 220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
 ---> USER res
 331 Password required for res.
 Password:
 ---> PASS XXXX
 230 User res logged in.
 ---> SYST
 215 UNIX Type: L8 Version: SUNOS
 Remote system type is UNIX.
 Using binary mode to transfer files.
 ftp> passive
 Passive mode on.
 ftp> ls
 ---> PASV
 227 Entering Passive Mode (219,243,169,52,128,73)
 ---> LIST
 150 ASCII data connection for /bin/ls (219.243.169.50,2538) (0 bytes).
 total 360075
 drwxr-xr-x98 res 500 7168 May 5 17:13 .
 dr-xr-xr-x 2 root root 2 May 5 01:47 ..
 -rw-rw-r-- 1 res 500 596 Apr 25 1999 .FVWM2-errors
 -rw------- 1 res 500 332 Mar 24 01:36 .ICEauthority
 -rw------- 1 res 500 50 May 5 01:45 .Xauthority
 -rw-r—r-- 1 res 500 1511 Apr 11 00:08 .Xdefaults
 226 ASCII Transfer complete.
 ftp> quit
 ---> QUIT
 221 Goodbye.
Note that after the user gives the ls
 command, the client sends PASV
 instead of PORT. The server
 responds with the socket on which it will listen. The client issues
 the LIST command to list the
 contents of the current remote directory, and connects to the remote
 data socket; the server accepts and confirms the connection, then
 transfers the directory listing over the new connection.
An interesting historical note, which we alluded to earlier,
 is that the PASV command wasn’t
 originally intended for this use; it was designed to let an FTP
 client direct a file transfer between two remote servers. The client
 makes control connections to two remote servers, issues a PASV command to one causing it to listen
 on a socket, issues a PORT
 command to the other telling it to connect to the other server on
 that socket, then issues the data-transfer command (STOR, RETR, etc.). These days, most people don’t
 even know this is possible, and will pull a file from one server to
 the local machine, and transfer it again to get it to the second
 remote machine. It’s so uncommon that many FTP clients don’t support
 this mode, and some servers prevent its use for security reasons.
 [11.2.4.3]

11.2.7.3 FTP with the default data ports

The third file-transfer mode occurs if the client
 issues neither a PORT nor a
 PASV command. In this case, the
 server initiates the data connection from the well-known ftp-data
 port (20) to the source socket of the control connection, on which
 the client must be listening (these sockets are the “default data
 ports” for the FTP session). The usual way to use this mode is with
 the FTP client command sendport, which switches
 on and off the client’s feature of using a PORT command for each data transfer. For
 this mode, we want it turned off, and it is generally on by default.
 So, the sequence of steps is this:
	The client initiates the control connection from local
 socket C to server:21.

	The user gives the sendport command,
 and then a data-transfer command, such as
 put or ls. The FTP
 client begins listening on socket C for an incoming TCP
 connection.

	The server determines the socket C at the other end of the
 control connection. It doesn’t need the client to send this
 explicitly via the FTP protocol, since it can just ask TCP for
 it (e.g., with the getpeername() sockets API routine). It
 then opens a connection from its ftp-data port to C, and sends
 or receives the requested data over that connection.

Now, this is certainly a simpler way of doing things than
 using a different socket for each data transfer, and so it begs the
 question of why PORT commands are
 the norm. If you try this out, you will discover why. First off, it
 might fail on the client side with the message “bind: Address
 already in use”. And even if it does work, it does so only once. A
 second ls elicits another address-related
 error, this time from the server:
 aaor% ftp syrinx.lionaka.net
 Connected to syrinx.lionaka.net.
 220 syrinx.lionaka.net FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT
 331 Password required for res.
 Password:
 230 User res logged in.
 ftp> sendport
 Use of PORT cmds off.
 ftp> ls

 150 Opening ASCII mode data connection for file list.
 keep
 fichier.txt
 226 Transfer complete.
 19 bytes received in 0.017 seconds (1.07 Kbytes/s)
 ftp> ls
 425 Can't build data connection: Cannot assign requested address.
 ftp> quit
These problems are due to a technicality of the TCP protocol.
 In this scenario, every data connection is between the same two
 sockets, server:ftp-data and C. Since a TCP connection is fully
 specified by the pair of source and destination sockets, these
 connections are indistinguishable as far as TCP is concerned; they
 are different incarnations of the same connection and can’t exist at
 the same time. In fact, to guarantee that packets belonging to two
 different incarnations of a connection aren’t confused, there’s a
 waiting period after one incarnation is closed, during which a new
 incarnation is forbidden. In the jargon of TCP, on the side that
 performed an “active close” of the connection, the connection
 remains in a state called TIME_WAIT. This state lasts for a period
 that is supposed to be twice the maximum possible lifetime of a
 packet in the network (or “2MSL,” for two times the Maximum Segment
 Lifetime). After that, the connection becomes fully closed, and
 another incarnation can occur. The actual value of this timeout
 varies from system to system, but is generally in the range of 30
 seconds to 4 minutes.[145]
As it happens, some TCP implementations enforce even stronger
 restrictions. Often, a port that is part of a socket in the
 TIME_WAIT state is unavailable for use, even as part of a connection
 to a different remote socket. We have also run into systems that
 disallow listening on a socket that is currently an endpoint of some
 connection, regardless of the connection state. These restrictions
 aren’t required by the TCP protocol, but they are common. Such
 systems usually provide a way to avoid the restrictions, such as the
 SO_REUSEADDR option of the Berkeley sockets API. An FTP client
 generally uses this feature, of course, but it doesn’t always
 work!
This address-reuse problem comes up in two places in a
 default-port FTP transfer. The first one is when the client must
 start listening on its default data port, which by definition is
 currently the local endpoint of its control connection. Some systems
 simply don’t allow this, even if the program requests address reuse;
 that’s why the attempt might fail immediately with the message,
 “address already in use.”
The other place is on a second data transfer. When the first
 transfer is finished, the server closes the data connection, and
 that connection on the server side moves into the TIME_WAIT state.
 If you try another data transfer before the 2MSL period has elapsed,
 the server tries to set up another incarnation of the same
 connection, and it will fail saying “cannot assign requested
 address.” This happens regardless of the address reuse setting,
 since the rules of the TCP require it. You can transfer a file again
 within a few minutes, of course, but most computer users aren’t good
 at waiting a few seconds, let alone minutes. It is this problem that
 prompts the use of a PORT command
 for every transfer; since one end of the connection is different
 every time, the TIME_WAIT collisions don’t occur.
Because of these problems, the default-port transfer mode
 isn’t generally used. It has, however, an important property for us:
 it is the only mode in which the data connection destination port is
 fixed and knowable before the data-transfer command is given. With
 this knowledge, some patience, and a fair amount of luck, it is
 possible to forward your FTP data connections through SSH.

11.2.8 Forwarding the Data Connection

With all the foregoing discussion in mind, here we
 simply state the sequence of steps to set up data-connection
 forwarding. One caveat is that SSH must request address reuse from TCP
 for forwarded ports. Tectia and OpenSSH do this already, but not all
 SSH clients may.
Another issue is that the operating system in which the FTP
 client is running must allow a process to listen on a socket already
 in use as the endpoint of an existing connection. Some don’t. To test
 this, try an FTP data transfer on the default data ports without SSH,
 just by using ftp as usual but giving the
 sendport command before ls,
 get, or whatever. If you get:
 ftp: bind: Address already in use
then your operating system probably won’t cooperate. There may
 be a way to alter this behavior; check the operating system
 documentation. Figure 11-7
 illustrates the following steps:
	Start an SSH connection to forward the control channel as
 shown earlier in this chapter, and connect with the FTP client.
 Make sure that passive mode is off. For OpenSSH:
 client% ssh -f -n -L2001:localhost:21 server sleep 10000 &
or for Tectia:
 client% ssh -f -n -L2001:localhost:21 server
Then:
 client% ftp localhost 2001
 Connected to localhost
 220 server FTP server (SunOS 5.7) ready.
 Password:
 230 User res logged in.
 ftp> sendport
 Use of PORT cmds off.
 ftp> passive
[image: Forwarding the FTP data connection]

Figure 11-7. Forwarding the FTP data connection

 Passive mode on.
 ftp> passive
 Passive mode off.
Note that we are using localhost as the forwarding target
 here, despite our earlier advice. That’s OK, because there won’t
 be any PORT or PASV commands with addresses that can be
 wrong.

	Now, we need to determine the real and proxy default data
 ports for the FTP client. On the client side, you can do this with
 netstat:
 client% netstat -n | grep 2001
 tcp 0 0 client:2001 client:3175 ESTABLISHED
 tcp 0 0 client:3175 client:2001 ESTABLISHED
This shows that the source of the control connection from
 the FTP client to SSH is port 3175. You can do the same thing on
 the server side, but this time you need to know what’s connected
 to the FTP server port (netstat -n |
 egrep '\<21\>'), and there may be many
 things connected to it. If you have a tool like
 lsof, it’s better to find out the pid of the
 ftpd or sshd serving
 your connection and use lsof -p <pid>
 to find the port number. If not, you can do a
 netstat before connecting via FTP and then
 one right afterward, and try to see which is the new connection.
 Let’s suppose you’re the only one using the FTP server, and you
 get it this way:
 server% netstat | grep ftp
 tcp 0 0 server:32714 server:ftp ESTABLISHED
 tcp 0 0 server:ftp server:32714 ESTABLISHED
So now, we have the FTP client’s default data port (3175),
 and the source port of the forwarded control connection to the FTP
 server (32714), which we’ll call the proxy default data port; it
 is what the FTP server thinks is the client’s default data
 port.

	Now, forward the proxy default data port to the real
 one:
 # OpenSSH
 client% ssh -f -n -R32714:localhost:3175 server sleep 10000 &

 # Tectia
 client% ssh -f -R32714:localhost:3175 server
If, as we mentioned earlier, you don’t replace
 sshd or run a second one, then you’d use the
 modified ssh on the server in the other
 direction, like this:
 server% ./ssh -f -n -L32714:localhost:3175 client sleep 10000 &

	Now, try a data-transfer command with
 ftp. If all goes well, it should work once,
 then fail with this message from the FTP server:
 425 Can't build data connection: Address already in use.
(Some FTP servers return that error immediately; others will
 retry several times before giving up, so it may take a while for
 that error to appear.) If you wait for the server’s 2MSL timeout
 period, you can do another single data transfer. You can use
 netstat to see the problem and track its
 progress:
 server% netstat | grep 32714
 127.0.0.1.32714 127.0.0.1.21 32768 0 32768 0 ESTABLISHED
 127.0.0.1.21 127.0.0.1.32714 32768 0 32768 0 ESTABLISHED
 127.0.0.1.20 127.0.0.1.32714 32768 0 32768 0 TIME_WAIT
The first two lines show the established control connection
 on port 21; the third one shows the old data connection to port
 20, now in the TIME_WAIT state. When that disappears, you can do
 another data-transfer command.

And there you have it: you have forwarded an FTP data connection
 through SSH. You have achieved the Holy Grail of FTP with SSH, though
 perhaps you agree with us and Sir Gawain that “it’s only a model.”
 Still, if you’re terribly concerned about your data connections, have
 no other way to transfer files, can afford to wait a few minutes
 between file transfers, and are quite lucky, then this will work. It
 also makes a great parlor trick at geek parties.

[141] If you’re using the popular ncftp
 client, run this instead: ncftp
 ftp://client:2001.

[142] If you’re on a Solaris 2 (SunOS 5) system, the
 corresponding operating system-supplied program is called
 truss. There is also an
 strace program with Solaris, but it is
 completely unrelated. Solaris 1 (SunOS 4 and earlier) has a
 trace command, and BSD has
 ktrace.

[143] More sophisticated firewalls can take care of this problem.
 These products are a cross between an application-level proxy and
 a packet filter and are often called “transparent
 proxies" or “stateful packet filters.” Such a firewall
 understands the FTP protocol and watches for FTP control
 connections. When it sees a PORT command issued by an FTP client, it
 dynamically opens a temporary hole in the firewall, allowing the
 specified FTP data connection back through. This hole disappears
 automatically after a short time and can only be between the
 socket given in the PORT
 command and the server’s ftp-data socket. These products often
 also do NAT and can transparently deal with the FTP/NAT problems
 we describe next.

[144] It could be worse, too. The server could also use private
 addressing, and if you’re unlucky, the client’s private address
 might coincidentally match a completely different machine on the
 server side. It’s unlikely, though, that a server-side machine
 would happen to listen on the random port picked by your FTP
 client, so this would probably just generate a “connection
 refused” error.

[145] See TCP/IP Illustrated, Volume 1: The
 Protocols, by W. Richard Stevens (Addison Wesley),
 for more technical information about the TIME_WAIT
 state.

Pine, IMAP, and SSH

 Pine is a popular, Unix-based email program from the
 University of Washington (http://www.washington.edu/pine/). In addition to handling
 mail stored and delivered in local files, Pine also supports
 IMAP[146] for accessing remote mailboxes and SMTP[147] for posting mail.
In this case study, we integrate Pine and SSH to solve two common
 problems:
	IMAP authentication
	In many cases, IMAP permits a password to be sent in the
 clear over the network. We discuss how to protect your password
 using SSH, but (surprisingly) not by port forwarding.

	Restricted mail relaying
	Many ISPs permit their mail and news servers to be accessed
 only by their customers. In some circumstances, this restriction
 may prevent you from legitimately relaying mail through your ISP.
 Once again, SSH comes to the rescue.

We also discuss techniques to avoid Pine connection delays and
 facilitate access to multiple servers and mailboxes, including the use
 of a Pine-specific SSH connection script. This discussion will delve
 into more detail than the previous one on Pine/SSH integration. [4.5.3]
11.3.1 Securing IMAP Authentication

Like SSH, IMAP is a client/server protocol. Your email
 program (e.g., Pine) is the client, and an IMAP server process (e.g.,
 imapd) runs on a remote machine, the
 IMAP host, to control access to your remote
 mailbox. Also like SSH, IMAP generally requires you to authenticate
 before accessing your mailbox, typically by password. Unfortunately,
 in some cases this password is sent to the IMAP host in the clear over
 the network; this represents a security risk (see Figure 11-8).[148]
[image: A normal IMAP connection]

Figure 11-8. A normal IMAP connection

There’s no longer any good reason for this. Years ago, security
 options were rarely available in IMAP software; these days, however,
 they’re common and should be used! There are standard ways to secure
 IMAP traffic using SSL or Kerberos. With SSL, the entire IMAP session
 is protected, so even plain password authentication can be used
 relatively securely. Kerberos can provide secure authentication and
 single-signon with or without session encryption; for example, the
 Apple Mail client implements both. Pine uses Kerberos only for
 authentication, not encryption—but you can combine Kerberos with SSL
 to get both single-signon and privacy. Note the power of having
 multiple independent and standards-based options available!
Nonetheless, it is still all too common to encounter IMAP
 servers with no security features; here, we show you how to address
 this problem with SSH.
If your mail server is sealed--that is,
 your only access to it is via the IMAP protocol—then there’s nothing
 you can do to improve security using SSH. However, if you can also log
 into the IMAP server host via SSH, you have options. Because IMAP is a
 TCP/IP-based protocol, one approach is to use SSH port forwarding
 between the machine running Pine and the IMAP host (see Figure 11-9). [9.2.1]
[image: Forwarding an IMAP connection]

Figure 11-9. Forwarding an IMAP connection

However, this technique has two drawbacks:
	Security risk
	On a multiuser machine, any other user can connect to your
 forwarded port. [9.2.4.3] If you use
 forwarding only to protect your password, this isn’t a big deal,
 since at worst, an interloper could access a separate connection
 to the IMAP server having nothing to do with your connection. On
 the other hand, if port forwarding is permitting you to access
 an IMAP server behind a firewall, an interloper can breach the
 firewall by hijacking your forwarded port, a more serious
 security risk.

	Inconvenience
	In this setup, you must authenticate twice: first to the
 SSH server on the IMAP host (to connect and to create the
 tunnel) and then to the IMAP server by password (to access your
 mailbox). This is redundant and annoying.

Fortunately, we can address both of these drawbacks and run Pine
 over SSH securely and conveniently.
11.3.1.1 Pine and preauthenticated IMAP

There are two broad types of Unix-based IMAP servers,
 exemplified by the University of Washington (UW)
 imapd and the Carnegie Mellon Cyrus software.
 Cyrus is a self-contained system: it uses an internal database to
 hold user mail, and the only access to it is via the IMAP protocol
 or particular programs for mail delivery or administration. In
 particular, there is no relationship between Unix accounts on the
 server host, and IMAP accounts; they are completely separate.
The UW imapd, on the other hand, is a
 lighter-weight affair: it simply provides an IMAP view of the
 traditional Unix mail store: files in /var/spool/mail or elsewhere, owned by
 the Unix accounts of the mail recipients. Thus, its notion of user
 account and access control is tied to that of the host. If your mail
 is stored in a spool file owned by you, and you can log into the
 host via SSH, then you’ve already proven you have access to that
 file—why should you have to prove it again to
 the IMAP server? In fact, with the UW server, you don’t have to. We
 now discuss how to do this with UW imapd, or
 another IMAP server with similar behavior.
The IMAP protocol defines two modes in which an IMAP server
 can start: normal and preauthenticated (see Figure 11-10). Normally,
 imapd runs with special privileges to access
 any user’s mailbox (as when started as root by
 inetd), and hence it requires authentication
 from the client.
[image: Pine/IMAP over SSH, preauthenticated]

Figure 11-10. Pine/IMAP over SSH, preauthenticated

Here’s a sample session that invokes an IMAP server,
 imapd, through inetd so
 that it runs as root:
 server% telnet localhost imap
 * OK localhost IMAP4rev1 v12.261 server ready
 0 login res password'
 1 select inbox
 * 3 EXISTS
 * 0 RECENT
 * OK [UIDVALIDITY 964209649] UID validity status
 * OK [UIDNEXT 4] Predicted next UID
 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
 1 OK [READ-WRITE] SELECT completed
 2 logout
 * BYE imap.example.com IMAP4rev1 server terminating connection
 2 OK LOGOUT completed
Alternatively, in preauthenticated mode, the IMAP server
 assumes that authentication has already been done by the program
 that started the server and that it already has the necessary rights
 to access the user’s mailbox. If you invoke
 imapd on the command line under a nonroot uid,
 imapd skips the authentication phase and simply
 opens the mailbox file of the current account (which must be
 accessible via the existing Unix permissions structure). You can
 then type IMAP commands and access your mailbox without
 authentication:
 server% /usr/local/sbin/imapd
 * PREAUTH imap.example.com IMAP4rev1 v12.261 server ready
 0 select inbox
 * 3 EXISTS
 * 0 RECENT
 * OK [UIDVALIDITY 964209649] UID validity status
 * OK [UIDNEXT 4] Predicted next UID
 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
 0 OK [READ-WRITE] SELECT completed
 1 logout
 * BYE imap.example.com IMAP4rev1 server terminating connection
 1 OK LOGOUT completed
Notice the PREAUTH response
 at the beginning of the session, indicating preauthenticated mode.
 It is followed by the command select inbox,
 which causes the IMAP server implicitly to open the inbox of the
 current user without demanding authentication.
Now, how does all this relate to Pine? Pine has a built-in
 feature whereby, instead of using a direct IMAP connection, it logs
 into the IMAP host using ssh and runs a
 preauthenticated instance of imapd directly. If
 this succeeds, Pine then converses with the IMAP server over the SSH
 connection, and has automatic access to the remote inbox without
 further authentication.

11.3.1.2 Making Pine use SSH

Pine’s SSH feature is controlled by three
 configuration variables in the ~/.pinerc file: ssh-path, ssh-command, and ssh-open-timeout. ssh-path stores the program name for
 opening a Unix remote shell connection. The default should point to
 a usable SSH program, but you may have to set it yourself:
 ssh-path=/usr/bin/ssh
ssh-command represents the
 Unix command line for opening the SSH connection. The value is a
 printf-style format string with
 four “%s” conversion specifications that are automatically filled in
 at runtime. From first to last, these four specifications stand
 for:
	The value of ssh-path

	The remote hostname

	The remote username

	The connection method; in this case, “imap”

The default value of ssh-command is:
 "%s %s -l %s exec /etc/r%sd"
To access the mailbox on imap.example.com
 for user smith via SSH, Pine would then run the command:
 /usr/bin/ssh imap.example.com -l smith exec /etc/rimapd
This follows a convention, somewhat antiquated nowadays, of
 having links named /etc/r<
 protocol >d that point to servers for various
 protocols that operate in this preauthenticated fashion. In modern
 systems such links are usually not available, so you may need to
 alter the ssh-command to run
 imapd. You can also use it to add other
 options, like so:
 ssh-command="%s %s -l %s -o BatchMode=yes -axq exec /usr/sbin/imapd"
With this setting, Pine would end up running this
 command:
 /usr/bin/ssh imap.example.com -l -o BatchMode=yes -axq exec /usr/sbin/imapd
The -q (Quiet) option is advisable so that
 ssh doesn’t emit warning messages that may
 confuse Pine, which would try to interpret them as part of the IMAP
 protocol. The options -ax turns off agent and X
 Windows forwarding, which might be on by default but are not
 necessary for this connection. BatchMode lets ssh
 know that it can’t prompt the user for a password on the terminal,
 since Pine is using it.
The third variable, ssh-open-timeout, sets the number of
 seconds Pine will wait for the SSH connection to succeed; its
 default value is 15. A value of 0 disables SSH entirely, which may
 be useful if the feature is on by default and you do not want to use
 it.
So, finally, the Pine configuration is:
 ssh-path=/usr/bin/ssh
 ssh-command="%s %s -l %s -o BatchMode=yes -axq exec /usr/sbin/imapd"
 ssh-open-timeout=15
Generally, you want to use an SSH authentication method that
 doesn’t require typing a password or passphrase, such as hostbased
 or public-key with an agent. SSH is run behind the scenes by Pine
 and doesn’t have access to the terminal to prompt you. If you’re
 running the X Window System, ssh can instead
 pop up an X widget --
Remote Usernames in Pine
By the way, it’s not mentioned in the
 Pine manpage or configuration file comments,
 but if you need to specify a different username for connecting to
 a remote mailbox, the syntax is:
 {hostname/user=jane}mailbox
This causes Pine to call the ssh-command with “jane” as the remote
 username (i.e., the third %s substitution).

ssh-askpass--to get input, but you
 probably don’t want that either. Pine may make several separate IMAP
 connections in the course of reading your mail, even if it’s all on
 the same server, and this will cause repeated queries for your
 password.
With the given settings in your ~/.pinerc file and the right kind of SSH
 authentication in place, you’re ready to try Pine over SSH. Just
 start Pine and open your remote mailbox; if all goes well, it will
 open without prompting for a password.

11.3.2 Mail Relaying and News Access

Pine uses IMAP to read mail but not to send it. For
 that, it can either call a local program (such as
 sendmail) or use an SMTP server. Pine can also be
 a newsreader and use NNTP (the Network News Transfer Protocol,
 RFC-977) to contact a news server.
An ISP commonly provides NNTP and SMTP servers for its
 customers, but obviously does not want to allow arbitrary people to
 use them. Modern extensions to the NNTP and SMTP protocols include
 authentication, and ISPs are starting to use and require them. Before
 such mechanisms were available, however, the usual method of
 restricting access to these services was via network address: the ISP
 would allow access from addresses within its own network (and hence
 hopefully only from its customers). Many ISPs have not yet switched to
 direct authentication for these services, and are still using
 address-based authorization; so, if you’re connected to the Internet
 from elsewhere and try to use your ISP’s mail server, the attempt
 might fail. Access to your usual servers might be blocked by a
 firewall, or the mail server might reject your mail with a message
 about “no relaying,” and the news server rejects you with a message
 about “unauthorized use.”
You are authorized to use the services, of course, so what do
 you do? Use SSH port forwarding! By forwarding your SMTP and NNTP
 connections over an SSH session to a machine inside the ISP’s network,
 your connections appear to come from that machine, thus bypassing the
 address-based restrictions. You can use separate SSH commands to
 forward each port:
 $ ssh -L2025:localhost:25 smtp-server ...
 $ ssh -L2119:localhost:119 nntp-server ...
Alternatively, if you have a shell account on one of the ISP’s
 machines running SSH but can’t log into the mail or news servers
 directly, do this:
 $ ssh -L2025:smtp-server:25 -L2119:nntp-server:119 shell-server ...
or neatly automate it this way:
 [~/.ssh/config]
 Host mail-news-forwarding
 Hostname shell-server
 LocalForward 2025 smtp-server:25
 LocalForward 2119 nntp-server:119

 $ ssh mail-news-forwarding
This is an off-host forwarding, and thus the last leg of the
 forwarded path isn’t protected by SSH. [9.2.4] But since the reason
 for this forwarding isn’t so much protection as it is bypassing the
 source-address restriction, that’s OK. Your mail messages and news
 postings are going to be transferred insecurely once you drop them
 off, anyway. (If you want security for them, you need to sign or
 encrypt them separately, e.g., with PGP or S/MIME.)
In any case, now configure Pine to use the forwarded ports by
 setting the smtp-server and
 nntp-server configuration options
 in your ~/.pinerc file:
 smtp-server=localhost:2025
 nntp-server=localhost:2119
Even if your ISP uses direct authentication, you might choose to
 use SSH anyway if it does so poorly. For instance, some badly deployed
 services require password authentication but do not provide encryption
 for the connection! In this case, you would forward over SSH in order
 to protect your password.
One possible complication: the SSH feature has a global on/off
 switch, applying to every remote mailbox. That is, if ssh-open-timeout is nonzero, Pine tries to
 use this style of access for every remote mailbox. If you have
 multiple mailboxes but only some of them are accessible via
 SSH/imapd, this leads to annoyance. Pine falls
 back to a direct TCP connection if SSH fails to get an IMAP
 connection, but you have to wait for it to fail. If the server in
 question is behind a firewall silently blocking the SSH port, this can
 be a lengthy delay. If you’re in this situation, you can disable SSH
 access for specific mailboxes using the /norsh switch, like this:
 {imap.example.com/user=smith/norsh}inbox
That’s not a typo: the switch is /norsh rather than /nossh. This is just an historical artifact
 of the software: originally, Pine supported this style of mailbox
 access via rsh. In fact, there are still
 configuration variables--rsh-path,
 rsh-command, and rsh-open-timeout--that function entirely
 analogously; so much so, that in the first edition of this book, we
 described how to use SSH with older versions of Pine by simply setting
 rsh-command to “ssh”. Anyway,
 /norsh turns off the use of both
 the ssh or rsh features of
 Pine for the mailbox in question.

11.3.3 Using a Connection Script

The Pine configuration option
 ssh-path can point not only to
 ssh, but also to any other program: most
 usefully, a script you’ve written providing any needed customizations.
 If your needs are complex, you might have to do this. For example, the
 ssh-path setting is global to all
 mailboxes, but perhaps the imapd executable is in
 different locations on different servers you want to access. You can
 solve this problem with a script which takes the four ssh-command arguments from Pine, and does
 the right thing depending on which server is specified:
 ssh-path=/home/smith/bin/my-pine-ssh-script
 ssh-command="%s %s %s %s"
where the script my-pine-ssh-script
 is:
 #!/bin/sh

 ssh=$1
 server=$2
 user=$3
 method=$4

 prefix="exec $ssh -qax $user@$server exec"

 case $server in
 mail.work.com) $prefix /usr/sbin/imapd ;;
 imap.isp.net) $prefix /usr/local/sbin/imapd ;;
 *) exit 0
 esac
The default action of exit
 will cause Pine to skip SSH access quickly for servers other than the
 two mentioned.

[146] Internet Message Access Protocol, RFC-2060.

[147] Simple Mail Transfer Protocol, RFC-821.

[148] IMAP does support more secure methods of authentication, but
 they aren’t widely deployed.

Connecting Through a Gateway Host

All along we’ve assumed that your outgoing connectivity is
 unlimited: that you can establish any outgoing TCP connection you
 desire. Even our discussions of firewalls have assumed that they
 restrict only incoming traffic. In more secure (or simply more
 regimented) environments, this might not be the case: in fact, you might
 not have direct IP connectivity at all to the outside world.
In the corporate world, companies commonly require all outgoing
 connections to pass through a proxy server or gateway
 host : a machine connected to both the company network and
 the outside. Although connected to both networks, a gateway host doesn’t
 act as a router, and the networks remain separated. Rather, it allows
 limited, application-level access between the two networks.
In this case study, we discuss issues of SSH in this
 environment:
	Connecting transparently to external hosts using chained SSH
 commands

	Making scp connections to these
 hosts

	Running SSH-within-SSH by port forwarding

	Running SSH-within-SSH by ProxyCommand

Tip
These gateway techniques apply equally well when the situation
 is reversed: you’re on an external machine, and
 need to access various internal hosts through a
 single SSH gateway.

11.4.1 Making Transparent SSH Connections

Suppose your company has a gateway host, G, which is
 your only gateway to the Internet. You are logged into a client host,
 C, and want to reach a server host, S, outside the company network, as
 shown in Figure 11-11. We
 assume that all three machines have SSH installed.
[image: Proxy gateway]

Figure 11-11. Proxy gateway

To make a connection from client C to server S now requires two
 steps:
	Connect from C to gateway G:
 # Execute on client C
 $ ssh G

	Connect from G to server S:
 # Execute on gateway G
 $ ssh S

This works, and using agent forwarding and public-key
 authentication on both hosts, you can avoid a second authentication
 prompt on gateway G.
Now, an obvious simplification would be this single
 command:
 $ ssh G ssh S
If you do this, though, you’ll have a problem: first, you’ll see
 this warning:
 Pseudo-terminal will not be allocated because stdin is not a terminal.
...and next, your shell on S will behave very strangely! You
 won’t get a prompt, or any fancy line-editing—but if you persist and
 enter some commands, they will get executed. The problem is that
 ssh only creates a pseudo-terminal, needed for
 interactive terminal-based programs, if you explicitly request a
 remote shell session; to ssh, this means that you
 do not specify a remote program to run. By
 default, it assigns no terminal when running remote commands like
 ssh host uname -a. Most of the time this is a
 reasonable default, but sometimes you’ll run a remote command that
 actually needs a terminal—in this case, the shell! You can fix this
 with the -t switch for force a
 pseudo-terminal:
 $ ssh -t G ssh S
But this introduces yet another messy aspect: to reach hosts
 through the gateway, you not only have to use
 double-ssh commands, but furthermore, specify
 -t in some cases but not others. Not a big burden
 for occasional use, perhaps, but cumbersome if large numbers of hosts
 or automation are involved.
Fortunately, SSH configuration is flexible enough to afford a
 neat solution, which we now present using OpenSSH features and
 syntax.[149] We use public-key authentication to take advantage of
 the options of the authorized_keys file, and
 ssh-agent with agent forwarding so that
 authentication passes on transparently to the second SSH connection
 (see Figure
 11-12).
[image: Chained SSH connections through a proxy gateway]

Figure 11-12. Chained SSH connections through a proxy gateway

Suppose your account on gateway G is gilligan, and on server S
 it is skipper. First, set up your SSH client configuration file so
 that the name S is a nickname for accessing your account on gateway
 G:
 # ~/.ssh/config on client C

 host S
 hostname G
 user gilligan
Next, on gateway G, associate a forced command with your chosen
 key to invoke an SSH connection to server S: [8.2.3]
 # ~/.ssh/authorized_keys on gateway G
 command="ssh -l skipper S" ...key..
Now, when you invoke the command ssh S on
 client C, it connects to gateway G, runs the forced command
 automatically, and establishes a second SSH session to server S. And
 thanks to agent forwarding, authentication from G to S happens
 automatically, assuming you’ve loaded the appropriate key. This can be
 the same key you used to access gilligan@G or a
 different one.[150]
This trick not only provides a transparent connection from
 client C to server S, it also sidesteps the fact that the name S might
 not have any meaning on client C. Often in this kind of network
 situation, your internal network naming scheme is cut off from the
 outside world (e.g., split DNS with internal roots). After all, what’s
 the point of allowing you to name hosts you can’t reach? Thanks to the
 Host configuration keyword for SSH
 clients, you can create a nickname S that instructs SSH to reach that
 host transparently via G. [7.1.2.5]
You’ll soon notice a problem, though. Interactive logins work
 fine, but remote commands are ignored! And worse, the missing terminal
 problem rears its head again:
 $ ssh S echo Hello
 Pseudo-terminal will not be allocated because stdin is not a terminal.
You’re left talking to a mute shell, and no “Hello” appears. The
 problem now is that we’ve done nothing to pass along any remote
 command to S; the forced command on G simply ignores it and always
 tries to start a remote-login SSH connection (hence provoking the
 missing terminal problem, as before). We can fix this using another
 OpenSSH feature:[151]
 command="ssh -l skipper S $SSH_ORIGINAL_COMMAND" ...key...
If a remote command is used, sshd stores it
 in the environment variable SSH_ORIGINAL_COMMAND; we use that here to
 pass it along to the next ssh command. The
 variable is not set, however, if there is no
 remote command. Some shells consider this an error, so you might have
 to augment this in some way to accommodate the shell’s predilections.
 For example, some shells have this syntax:
 command="ssh -l skipper S ${SSH_ORIGINAL_COMMAND:-}" ...key...
where ${foo:-bar} evaluates
 to “bar” if the variable foo is not
 set. And remember, the shell used here is the one belonging to the
 remote account; to be especially robust, it might be best to use a
 particular shell explicitly:
 command="/bin/bash -c 'ssh -l skipper S ${SSH_ORIGINAL_COMMAND:-}'" ...key...
This technique also neatly solves the “missing terminal” problem
 at the same time!

11.4.2 Using SCP Through a Gateway

Recall that the command:
 $ scp ... S:file ...
actually runs ssh in a subprocess to
 connect to S and invoke a remote scp server.
 [3.7] Now that we’ve
 gotten ssh working from client C to server S,
 you’d expect that scp would work between these
 machines with no further effort. Well, it almost does, but it wouldn’t
 be software if there weren’t a small problem to work around, in this
 case authentication. You can’t provide a password or passphrase to the
 second ssh program, since there is no
 pseudo-terminal on the first ssh
 session--ssh requires a terminal for user input.
 So, you need a form of authentication that doesn’t require user input:
 either hostbased, or public-key authentication with agent forwarding.
 Hostbased works as is, so if you plan to use it, you can skip to the
 next section. Public-key authentication, however, may have a problem:
 some versions of scp run ssh
 with the -a switch to disable agent forwarding.
 [6.3.5.3] You need to
 reenable agent forwarding for this to work, and this is surprisingly
 tricky.
Normally, you could turn on agent forwarding in your client
 configuration file:
 # ~/.ssh/config on client C, but this FAILS
 ForwardAgent yes
but this doesn’t help because as it happens, the
 -a on the command line takes precedence.
 Alternatively, you might try the -o option of
 scp, which can pass along options to
 ssh, such as -o ForwardAgent
 yes. But in this case, scp places the
 -a after any -o options it
 passes where it takes precedence, so that doesn’t work either.
There is a solution, though. scp has a
 -S option to indicate a path to the SSH client
 program it should use, so you create a “wrapper” script that tweaks
 the SSH command line as needed, and then make scp
 use it with -S. Place the following script in an
 executable file on client C—say, ~/bin/ssh-wrapper:
 #!/usr/bin/perl
 exec '/usr/bin/ssh', map {$_ eq '-a' ? () : $_} @ARGV;
This runs the real ssh, removing
 -a from the command line if it’s there. Now, give
 your scp a command like this:
 scp -S ~/bin/ssh-wrapper ...S:file ...
and it should work.

11.4.3 Another Approach: SSH-in-SSH (Port Forwarding)

Instead of using a forced command, here’s another way to
 connect by SSH through a gateway: forward a port on client C to the
 SSH server on S, using an SSH session from C to G, and then run a
 second SSH session through the first (see Figure 11-13).
[image: Forwarded SSH connection through a proxy gateway]

Figure 11-13. Forwarded SSH connection through a proxy gateway

That is:
 # Execute on client C
 $ ssh -L2001:S:22 G

 # Execute on client C in a different shell
 $ ssh -p 2001 -o HostKeyAlias=S localhost
This connects to server S by carrying the second SSH connection
 (from C to S) inside a port-forwarding channel of the first (from C to
 G). Note the use of HostKeyAlias,
 so ssh will look up S’s host key with the name
 “S.” Otherwise, it would try to use the key for “localhost,” which
 would be the wrong key.
You can make this more transparent by creating a nickname S in
 your client configuration file:
 # ~/.ssh/config on client C
 Host S
 Hostname localhost
 Port 2001
 HostKeyAlias S
Now the earlier commands become:
 # Execute on client C
 $ ssh -L2001:S:22 G

 # Execute on client C in a different shell
 $ ssh S
Because this technique requires a separate, manual step to
 establish the port forwarding, it is less transparent than the one in
 [11.4.1]. However, it
 has some advantages. If you plan to use port or X forwarding between C
 and S with the first method, it’s a little complicated.
 scp not only gives the -a
 switch to ssh to turn off agent forwarding, but
 also it gives -x and -o
 “ClearAllForwardings yes”, turning off X and port forwarding. So, you
 need to modify the earlier wrapper script to remove these unwanted
 options as well. [11.4.2] Then, for port
 forwarding you need to set up a chain of forwarded ports that connect
 to one another. For example, to forward port 2017 on client C to port
 143 (the IMAP port) on server S:
 # ~/.ssh/config on client C
 host S
 hostname G
 user gilligan

 # ~/.ssh/authorized_keys on gateway G
 command="ssh -L1234:localhost:143 skipper@S" ...key...

 # Execute on client C
 $ ssh -L2017:localhost:1234 S
This works, but it’s difficult to understand, error-prone, and
 fragile: if you trigger the TIME_WAIT problem [9.2.9.1], you have to edit
 files and redo the tunnel just to pick a new ephemeral port to replace
 1234.
Using the SSH-in-SSH technique instead, your port and
 X-forwarding options operate directly between client C and server S in
 the usual, straightforward manner. The preceding example
 becomes:
 # ~/.ssh/config on client C
 Host S
 Hostname localhost
 Port 2001
 HostKeyAlias S

 # Execute on client C
 $ ssh -L2001:S:22 G

 # Execute on client C in a different shell
 $ ssh -L2017:localhost:143 S
This final command connects to server S, forwarding local port
 2017 to the IMAP port on S.

11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)

Here’s yet another way to implement the tunneled SSH
 technique:
 # ~/.ssh/config on client C
 Host S
 ProxyCommand "ssh -qax G nc S 22"
If a ProxyCommand value is
 set, OpenSSH uses this command to get a communication channel to the
 remote host, rather than using the network directly. The command, in
 turn, can do anything at all—it could connect to an SSH server at the
 other end of a serial line, for example! In this case, we actually use
 a second ssh command to connect through gateway G
 to the SSH server TCP port on server S. The trick is that we really
 want a kind of connection that OpenSSH doesn’t provide. Ideally, we’d
 like to be able to say something like ssh --tcp S:22
 G (note: this syntax does not currently exist), the meaning
 of which would be: “connect to G via SSH, instruct G to make a TCP
 connection to host S port 22, and connect the local stdin/stdout to
 that stream.” Making remote TCP connections is already something
 sshd can do; that’s how local TCP forwarding is
 done. Unfortunately, no SSH clients we know of provide this useful
 feature. So, we must have a separate program on G, which just makes a
 simple TCP connection for us; here, we use netcat
 (nc).
Expanding on this a bit...instead of a single host on the other
 side of the gateway, suppose you have many you want to access. If
 their names follow a pattern, you may be able to express this behavior
 very succinctly using OpenSSH. Suppose the machines in question are a
 cluster with hostnames beowulf-1, beowulf-1, etc. Then you can use
 this:
 # ~/.ssh/config on client C
 Host beowulf-*
 ProxyCommand "ssh -qax G nc %h %p"
This Host directive will
 match any of the cluster hostnames, and use an
 ssh subprocess to reach the host in question
 through the gateway: OpenSSH substitutes the %h and %p
 in the ProxyCommand with the host
 and port to use.
The ProxyCommand technique is
 simpler than port forwarding: there’s no extra SSH command to start
 separately and no ad hoc port numbers to coordinate and possibly have
 to change. It also gains in security, since port forwarding always has
 the problem of unauthenticated access to the forwarded connection.
 And, we need no HostKeyAlias
 statements. However, we lose the speed advantage gained over chained
 ssh commands, since once again we end up waiting
 for two SSH connections every time. A compromise approach would be to
 use the ProxyCommand method
 together with an OpenSSH connection server. [7.4.4.2]

11.4.5 Comparing the Techniques

We’ve presented several methods of SSH access through a
 gateway. There are various trade-offs, but overall we think tunneling
 is usually the best way to go. Here’s why.
11.4.5.1 Smoothness

The tunneling methods are smoother end-to-end: the interaction
 between client C and server S is simpler because they talk directly
 to one another. This is especially true if you need to request
 additional services via SSH, such as any kind of forwarding. On the
 other hand, the setup for tunneled connections using port forwarding
 is more cumbersome with its extra SSH process. ProxyCommand tunneling, though, is both
 smoother than chaining and at least no slower—and may be sped up if
 the OpenSSH connection server is available. The speedup is again at
 the cost of an extra SSH process, but its startup could be
 automated, and coordinating the control socket is easier than
 picking ad hoc ports and dealing with possible TIME_WAIT problems. Overall, tunneling via
 ProxyCommand wins.

11.4.5.2 Security

A chained connection has a serious security problem:
 the gateway G. All data is decrypted on G in between the two SSH
 sessions; if G is compromised, then all is lost. There is simply no
 end-to-end security in this scenario, because there is no actual SSH
 session from client C to server S. In contrast, a compromise of G
 poses no extra threat to the security of a tunneled SSH connection
 from C to S. The break-in simply puts the attacker on G in the
 position of altering or diverting the data path between C and S—but
 SSH already has mechanisms for countering exactly that threat. In
 other words, the top SSH connection does not trust the lower one at
 all. It treats it as it would any other connection method, and thus
 is no more vulnerable to attacks on it than if a simple TCP
 connection were in use. Tunneling in either form is the clear winner
 here.

[149] The same method should work with Tectia: just adapt the
 client configuration to Tectia syntax. [7.1.2.3]

[150] Note that if you want to use this setup for an interactive
 connection, you need to use the -t option to
 ssh, to force it to allocate a tty on
 G. It doesn’t normally do that, because
 it doesn’t have any way to know that the remote command—in this
 case, another instance of ssh—needs
 one.

[151] For Tectia use SSH2_ORIGINAL_COMMAND.

Scalable Authentication for SSH

One of the main strengths of SSH is easy setup. Install an SSH
 server on one host and a client on another, and you immediately have
 secure login via password. Generate a key pair and put the public key on
 the server, and you immediately have even better
 authentication, and single-signon. This lightweight approach is one of
 the main reasons for the initial popularity of SSH.
No solution fits all situations, however, and this simplicity
 becomes a liability as the number of users and hosts grows. In large
 installations, managing both server and user authentication becomes
 difficult. Every time you add an SSH server host, or change its name, or
 add an alias for it, you must update the global known-hosts list. This
 by itself may be a practically impossible task, because there are no
 standards for representing these lists. OpenSSH uses one format, Tectia
 another; some Windows-based clients keep them in a file, some in the
 registry. Even if you had a means to generate lists for all your SSH
 clients in their various native formats, many of the actual client
 machines may be unreachable for updates (remote machines, laptops,
 etc.).
At all too many companies, the difficulty of managing SSH server
 keys leads to a very lax approach to server verification. Users
 frequently see warning messages about missing or changed keys, and the
 IT staff tells them to “just accept the new key.” Very soon, these
 messages are completely ignored by everyone—or worse, just made to go
 away entirely! We’ve actually encountered an SSH installation with this
 configuration:
 # /etc/ssh/ssh_config
 GlobalKnownHostsFile /dev/null
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
Scary, but understandable; SSH had cried wolf one too many times.
 Unfortunately, effectively skipping server authentication disables a
 vital part of SSH security: resistance to server host spoofing and
 man-in-the-middle attacks! This situation also makes it impractical to
 replace server keys periodically, as should be done, or to revoke a key
 in case it is known to be compromised (i.e., tell clients to no longer
 trust it).
All these remarks apply to the usual modes of SSH public-key user
 authentication, as well. Authorizing a user for login means modifying an
 authorization list on every host to which the user requires access,
 adding his key. Revoking that access means tracking all those files
 down—including files he may have modified himself, perhaps to allow
 access to accounts other than his own, that you know nothing about.
 Changing keys may be essentially impossible; after a while, the user
 himself may have no idea where that key has gotten to! Eventually, a
 compromised key is almost sure to work on some machine where it’s lying
 forgotten in a dusty authorized_keys file (or ~/.ssh2/authorization file, or registry key,
 or ...).
Now, none of these issues is new or unique to SSH. The problem of
 large-scale, centralized authentication and authorization (AA) has been
 studied for a long time, and standard solutions exist. Fortunately,
 besides simplicity, another strength of SSH is flexibility. The common
 devices that we’re complaining about are not implied by the SSH
 protocol; they’re just widespread implementations. The protocol says
 nothing about how a server key should be verified or a user key
 authorized for access, and SSH software is free to use more
 sophisticated methods. Moreover, the protocol is extensible so that new
 elements such as key types or authentication exchanges can be defined as
 needed in order to support such methods.
Of course, flexibility doesn’t help much if there
 are no such “sophisticated methods” actually
 available. For years, there weren’t—but recently, maturing SSH products
 have incorporated support for scalable AA. We will discuss two here:
 X.509 public-key infrastructure (PKI) with Tectia, and Kerberos with
 OpenSSH.
A word before we start: both Kerberos and X.509 PKI are
 substantial topics on their own, and we can’t do more than scratch the
 surface of them here. We’ll give just a brief (incomplete!) sketch of
 each system, present a simple working configuration, and make some
 comments about other features to look at. Beyond that, you’ll need to
 read up on these systems yourself in order to delve into their
 use.
11.5.1 Tectia with X.509 Certificates

11.5.1.1 What’s a PKI?

“X.509 PKI”—a forbidding term; it sounds like part of
 a warp engine that needs calibration, right after you reinitialize
 the field coils. Let’s break it down: PKI stands for Public Key
 Infrastructure, and refers to a system for dealing in scalable
 fashion with the trust issues raised by deploying asymmetric
 (public-key) cryptography, including:
	Binding public keys to identities: users, hosts, routers,
 etc.--these are the principals in the
 system

	Indicating or controlling the use of keys (encryption,
 signing, email, web/SSL, etc.)

	Replacing keys

	Renewing or revoking previously made bindings

	Securely communicating all these properties

Although the term sounds generic, in practice it has come to
 refer specifically to hierarchical systems in which so-called
 Certifying Authorities (CAs) vouch for the identity of principals
 and certify ownership of cryptographic keys. CAs can themselves be
 vouched for by higher CAs, arranged in a tree of
 trust. This reduces the trust problem to distributing the
 keys of a small number of well-known authorities, avoiding the
 combinatorial explosion of dealing individually with every pair of
 principals who might need to communicate securely.
X.509 is the name of a standards document of the International
 Telecommunications Union (ITU, formerly the CCITT). Its original
 intent was to describe an authentication system for another ITU
 standard: X.500 directories (the title is “Recommendation X.509: The
 Directory Authentication Framework”). However, in the process it
 specified a format for digital certificates:
 data structures which embody the key/principal binding we mentioned,
 and that portion of X.509 has become widely used in PKI
 systems.
X.509-style PKIs also use a great many other standards. To get
 an idea of the scope of the subject, just take a look at the home
 page of the IETF PKIX working group, at:
http://www.ietf.org/html.charters/pkix-charter.html

It’s a daunting list...but we’ll just sum up the essentials
 here. The most important components of a certificate are:
	Issuer name

	Subject name

	Public key

	Validity dates

	Signature

The signature is a cryptographic function
 of the entire certificate data structure, and is made by the issuer
 using its private key (which does not appear
 here). The meaning of the certificate is: “the issuer vouches that
 the subject owns the private counterpart to this public key (but
 this affidavit is only good between the given validity
 dates).”
Now in reality, certificates can be much more complex,
 containing many more attributes. Also, the interpretation may be
 different: “owns” might mean “is authorized to use,” or “has access
 to sign with but does not actually know,” etc. And there are many
 unanswered questions here, such as how carefully did the issuer
 check the subject’s identity? But we’ll leave all that alone and
 concentrate on the basics.
The issuer and subject
 name are expressed as Distinguished
 Names (DNs), as defined by X.509. These are
 attribute/value sets, represented in text like this:
 /C=US/ST=New York/O=Mad Writer Enterprises/CN=Richard E. Silverman
/emailAddress=res@oreilly.com
The attribute abbreviations here are Country, STate,
 Organization, and Common Name (and there are more).
Now, let’s see how all this helps with SSH host key
 verification.

11.5.1.2 Using certificates with Tectia host keys

When an SSH client connects to a server, it needs to verify
 that the server’s host key actually belongs to the host it intended
 to contact. The usual way is to compare it to a local list of
 already known keys, but that has many drawbacks, as we pointed out
 earlier. Instead of managing an unwieldy, changing set of host keys,
 with PKI each client needs only one public key: that of a CA shared
 by all hosts in the system. Each time you deploy a new Tectia host,
 you generate a new hostkey as usual—but you also obtain a
 certificate, binding the host’s name to its public key. That
 certificate is signed by the CA, and every client has the CA’s
 public key. During the key-exchange phase of the SSH protocol, the
 client receives the certificate along with the server’s hostkey;
 there are key types x509v3-sign-rsa and
 x509v3-sign-dss for this purpose instead of the
 usual ssh-rsa and ssh-dss.
 Instead of looking up the hostkey in a list, the Tectia
 client:
	Compares the subject name in the certificate to the server
 hostname and verifies that they match

	Verifies the server’s signature on the key-exchange
 transaction, proving it actually holds the corresponding private
 key

	Verifies the issuer signature on the certificate using the
 CA’s public key, to be sure it’s genuine (i.e., that the
 certificate was actually issued by the trusted CA)

If the key passes all these tests, then the client considers
 the key valid, and server authentication succeeds. You’ll notice
 this doesn’t completely remove the need for key distribution: the
 clients do still need to get the CA key in a trusted manner. But
 it’s much easier to distribute or update a single key that changes
 very infrequently, than to manage a constantly changing known-hosts
 list!
Now we’ll get down to specifics with a simple example.

11.5.1.3 A simple configuration

For our example, we’ll start with a new instance of Tectia
 Server installed on a Linux host; first, we need to generate a
 hostkey with a certificate. This is not something we can describe
 very comprehensively, because it relies on outside factors: what
 actual PKI system is in use. You might be using anything from a
 home-brew CA using the free OpenSSL software that comes with most
 Unix variants these days, to a managed PKI service outsourced to a
 major security vendor, involving multiple layers of hierarchy,
 cross-certification among organizations, separate Registration
 Authorities, private-key escrow, etc.
If the PKI in question uses the Certificate Management
 Protocols (CMP, RFC-2510), then you can use
 ssh-cmpclient to communicate with the PKI
 system: generate keys; request, receive, revoke, or update
 certificates; etc. You should consult your PKI vendor or managing
 staff as to how to proceed in this case. To keep our example simple,
 we’ll follow an older but still widely used process: generating a
 keypair and certificate request using OpenSSL, which we then supply
 to the CA by some simple method (email and the Web are the usual
 ways).

11.5.1.4 Getting a certificate

Suppose our company is Vogon Construction, Inc., and the
 server hostname is jeltz.vcon.com. To generate a key pair and
 certificate request:
 % openssl req -nodes -config -new rsa:1024 -out request.pem \
 -outform pem -keyout private.pem -days 1095 \
 -subj '/C=US/ST=New York/L=Manhattan/O=Vogon Construction, Inc./CN=jeltz.vcon.com'
This generates a new 1024-bit RSA key pair and produces two
 files:
	private.pem
	The unencrypted private key

	request.pem
	An X.509 certificate request

The request.pem file
 contains the public key and asks to bind the hostname
 jeltz.vcon.com to that key for a period of
 three years (1095 days). The DN contains other information besides
 the hostname, and typically the CA will require set values for some
 of that, e.g., that the Organization field match that of the
 CA.
Next, send the request to the CA, and engage in whatever
 authentication procedures it requires: call Bob in IT, verify
 receipt of an email at your given address, swear an oath and sign in
 blood—whatever it takes. When the CA is satisfied, it will return to
 you a certificate, which you save in a file, certificate.blob. If it is an ASCII file
 looking like this:
 -----BEGIN CERTIFICATE-----
 MIIDbzCCAtigAwIBAgIDA9GvMA0GCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTAlVT
 MRAwDgYDVQQKEwdFcXVpZmF4MS0wKwYDVQQLEyRFcXVpZmF4IFNlY3VyZSBDZXJ0
 ...
 VdrJ1Z4HLT7PL+nEuvRJcpyw+A==
 -----END CERTIFICATE-----
then it is in a format called PEM; if it’s not, then it’s in
 another format called DER.
The two files, private.pem and certificate.blob, contain the host
 private key and our desired certificate; you can delete request.pem. Now, we need to convert
 these to Tectia’s format for host keys, in a two-step process.
 First:
 % openssl pkcs12 -export -out jeltz.p12 -in certificate.blob -inform {pem|der}
-inkey private.pem
Choose “pem” or “der” depending on the format of the
 certificate. This stores the combined public key, private key, and
 certificate in a single file using yet another format, PKCS-12. You
 will be prompted for a passphrase to protect the file. This is a
 good format in which to store the keypair and certificate in case
 you need to rebuild the host and restore the key, so keep that file.
 Next:
 $ ssh-keygen -k jeltz.p12 -p ''
This will, of course, prompt you for the passphrase (twice, in
 fact), and finally produce the two files we want:
	jeltz.p12-1_ssh2.crt
	Certificate in DER format

	jeltz.p12_ssh2
	Unencrypted private key in SECSH format used by Tectia
 [6.1.2]

Now, to get Tectia sshd to use
 them.

11.5.1.5 Hostkey verification: configuring the server

Install the new key and certificate in the Tectia
 configuration directory:
 # install -o root -m 444 jeltz.p12-1_ssh2.crt /etc/ssh2/jeltz.crt
 # install -o root -m 444 jeltz.p12_ssh2 /etc/ssh2/jeltz
and add this to sshd2_config:
 HostCertificateFile jeltz.crt
 HostKeyFile jeltz
If you want to continue offering the existing plain ssh-dss host key as well as the new
 certificate, you may need to add or uncomment the following:
 PublicHostKeyFile hostkey.pub
 HostKeyFile hostkey
These are the defaults if no hostkey is specified, but once
 you add the HostCertificateFile,
 the defaults will not apply. For our example, though, we suggest you
 turn or leave off all other hostkeys so that successful server
 authentication by the client depends on this one key working.
Lastly, restart Tectia Server:
 # service sshd2 restart
and try to connect with ssh:
 % ssh jeltz.vcon.com
 warning: Received host certificate is not valid, error:
 search-state = { certificate-was-not-found database-method-search-failed } warning:
 Authentication failed. Disconnected (local); key exchange or algorithm negotiation failed
 (Key exchange failed.).
This error message shows that we succeeded: the client
 received a certificate along with the host key. A debug trace will
 show more specifically that the host-key type has changed:
 % ssh -d4 jeltz.vcon.com
 ...
 debug: Ssh2Client/sshclient.c:244/ssh_client_key_check: Got key of type x509v3-sign-rsa
 debug: Ssh2Client/sshclient.c:286/ssh_client_key_check: Checking certificate validity
 ...
Now, we just need to arrange for the client to be able to
 verify the certificate.

11.5.1.6 Hostkey verification: configuring the Client

For this, we need the CA’s public key, itself in the
 form of a certificate. This should be readily available from your
 CA; after all, the CA isn’t much use unless everyone has it. Get it
 in DER format; if they provide it in PEM, convert it thus:
 $ openssl x509 -inform pem -outform der -in <certificate file> -out cacert.der
Now install the CA certificate:
 # install -o root -m 444 cacert.der /etc/ssh2
configure ssh to use it:
 # /etc/ssh2/ssh2_config
 # Note
that this
path must be absolute, unlike in the server config, since otherwise it is relative
 # to the user's ~/.ssh2 directory.
 HostCANoCRLs /etc/ssh2/cacert.der
...and try!
 # Tectia
 $ ssh -v jeltz.vcon.com
 ...
 debug:
Ssh2Client/sshclient.c:984/keycheck_cert_cb:
Host certificate valid and signed by a trusted CA, accepting
 ...
If all has gone according to plan, this works, using whatever
 user authentication method you have available; the debug message
 shown indicates that the certificate validation succeeded.

11.5.1.7 User authentication: configuring the client

We have just set up server authentication using a
 server-supplied certificate. In fact, the converse is possible as
 well: Tectia Server can authenticate users by certificate as well.
 As before, we need a new keypair and certificate, this time for a DN
 matching a user. We follow the same procedure we used earlier [11.5.1.4], but with the
 following subject name:
 /C=US/ST=New York/L=Manhattan/O=Vogon Construction, Inc./CN=Prostetnic V. Jeltz/
subjectAltName=email:pvj@vcon.com
Warning
It is critical to include a subjectAltName of type email as shown—even if the user has no
 email address at all, in fact, and you have to make one up. It is
 a very confusing and thoroughly undocumented fact that Tectia
 Server requires the presence of this attribute for user
 certificates, even if it’s not used. Otherwise, Tectia
 mysteriously rejects the certificate with no reason. It cost us
 several hours of bewilderment, culminating in an intense threesome
 with gdb and the Tectia source, to uncover
 this fact.
In a related bit of confusion, there’s a bug in OpenSSL
 whereby this attribute will not be
 automatically copied into the certificate request, like everything
 else next to it. You must edit the OpenSSL configuration file
 (often in /usr/share/ssl/openssl.cnf), and add or
 uncomment the following:
 [usr_cert]

Once you have your private key and user certificate, place
 them in ~/.ssh2, say:
	~/.ssh2/pvj.crt
	Certificate

	~/.ssh2/pvj
	Private key

and configure ssh to use this key:
 # ~/.ssh2/identification
 CertKey pvj
We know it won’t work, since we haven’t configured the server
 yet—but as a test:
 % ssh -l pvj jeltz -o AllowedAuthentications=publickey
 warning: Authentication failed.
 Disconnected (local); no more authentication methods available (No
further authentication methods available.).
We set ssh to try only public-key
 authentication since that’s what we want to test; this way it
 doesn’t end up asking for a password. The interesting message will
 be in the server log, typically /var/log/secure:
 sshd2: Authorization check for user pvj's certificate rejected, reason: No
certificate authorization configured.
And now finally, we tell the server how to authorize users
 based on their certificates.

11.5.1.8 User authentication: configuring the server

With the old method, there was an implicit correspondence
 between an account and a public key authorized to log into it: the
 key sat in a special file in the account’s home directory. With PKI,
 there is only the certificate, so we need a rule whereby Tectia can
 determine whether a particular certificate grants access to the
 requested account. In fact, Tectia allows great flexibility in
 expressing such rules. First, add this to the server
 configuration:
 # /etc/ssh2/sshd2_config
 PKI cacert.der
 PKIDisableCrls yes
 MapFile cert.users
This tells Tectia Server to trust user certificates signed by
 our CA, and to use the rules in /etc/ssh2/cert.users to authorize access
 to accounts. The rule language is described in the manpage for
 ssh_certd_config, section
 “MAPPING FILES.” We’ll give a few examples here:
 # allow a certificate issued to Prostetnic V. Jeltz in our company, access to account pvj
 #
 pvj subject C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.,CN=Prostetnic V. Jeltz

 # allow any certificate issued to Prostetnic V. Jeltz, whether by our organization or not
 #
 pvj subject CN=Prostetnic V. Jeltz

 # allow certificate serial number 17 issued by our CA
 #
 pvj SerialAndIssuer 17 C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.

 # allow any certificate issued by us to access account "shared"
 #
 shared Issuer C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.

 # allow certificate with email address pvj@vcon.com
 #
 pvj email pvj@vcon.com

 # pattern rule: allow certificate with email address <foo>@vcon.com to access account <foo>
 #
 %subst% EmailRegex ([a-z]+)@vcon\.com
You would think we’d now restart sshd to
 have these changes take effect, but in fact Tectia has a separate
 daemon responsible for certificate validation:
 ssh-certd. So:
 # service ssh-certd restart
Now, try logging in again:
 % ssh -l pvj jeltz -o AllowedAuthentications=publickey
If all has gone well, it will work, with the following
 telltale message in syslog:
 sshd2: Certificate authentication for user pvj accepted.
You can have multiple PKI blocks in the server configuration,
 directing trust of various CAs and each with its own account
 mapping.
We have presented the simplest possible view of PKI; it may be
 much more complicated. You might interact with something called a
 Registration Authority for obtaining your certificate, for example,
 rather than directly with the CA. Verifying a certificate might
 involve following a chain of certificates and signatures back to a
 trusted “root” certificate, rather than just one—or there might be
 multiple trust paths, if cross-certification is available,
 etc.

11.5.2 OpenSSH and Tectia with Kerberos

Kerberos is an authentication system that addresses the
 same set of problems as PKI: providing a scalable system for mutual
 authentication and secure communication. Kerberos simply uses a
 different basic model and set of technologies. It was originally
 developed as part of Project Athena, a wide-ranging research and
 development effort carried out at MIT between 1983 and 1991, funded
 primarily by IBM and Digital Equipment Corporation. Project Athena
 contributed many other pieces of technology to the computing world,
 including the well-known X Window System. There is now an IETF
 Kerberos working group:
http://www.ietf.org/html.charters/krb-wg-charter.html

which coordinates work on and standardization of the current
 version of the Kerberos protocol, Kerberos-5.
There are two main distinctions between Kerberos and PKI:
	Kerberos is based on symmetric encryption rather than
 public-key techniques.

	Kerberos is an active third-party
 system.

Both the Kerberos and PKI models have trusted third parties: in
 PKI it is the CA, and in Kerberos it is a service called the Key
 Distribution Center (KDC). Both are trusted in the sense that
 principals depend on them to correctly identify other users, and not
 to reveal certain cryptographic secrets. However, Kerberos requires
 the real-time, online participation of the KDC when two principals
 wish to communicate. This is in contrast to PKI: once two principals
 have obtained certificates from the CA, they may communicate at any
 time by speaking only to each other; the CA is not involved. It may be
 necessary to contact the CA for related services, such as checking for
 certificate revocation or obtaining issuance policies—but it is not
 required for the basic mutual authentication procedure.
This added availability requirement would seem to be a liability
 over PKI—but as usual, it’s all about trade-offs. In exchange,
 Kerberos offers a much simpler administration and user experience, as
 well as some different security properties. For instance, with
 Kerberos, users’ long-term secrets are never stored outside the KDC,
 whereas in PKI each user has the secret component of his keypair,
 which must be stored and protected.
11.5.2.1 How Kerberos works

Since it is based on symmetric cryptography, Kerberos
 is perforce a shared-secret system. The basic
 unit of Kerberos administration is called a
 realm, which consists of a set of principals
 and single KDC database they trust. When a principal joins a
 Kerberos realm, it shares a secret key with the KDC; the KDC
 database essentially consists of a list of principals and their
 keys. For user principals, the key is derived from a password.
 Principals may also correspond to software services, such as an SSH
 server, IMAP server, etc.; their keys are randomly generated and
 stored in protected files where the services can access them. A
 principal name looks like 1/2/3/.../ n @REALM. There can be any (positive) number
 of initial parts as shown, but in practice there are usually either
 one or two. A plain-user principal name would be res@REALM. A user principal name for
 particular uses, such as a privileged administrative instance, might
 be res/admin@REALM. And a
 principal representing a service—say, an IMAP server on host
 mail.foo.org--would have the name imap/mail.foo.org@REALM.
When principal A wants to communicate with another—say,
 B—principal A first tells the KDC that it wants to talk to B.
 Principal A needs to do two things: prove its identity to B, and
 establish a shared secret with B for secure communication, called a
 session key. The KDC provides these things in a
 message called a ticket, which it sends back to
 A. The ticket is sealed with A’s secret key, known only to the KDC
 and A—hence A trusts that it is genuine, and it is protected from
 network snooping. Unsealing the ticket, A finds the needed session
 key—and yet another ticket! This one, however, is sealed with B’s
 secret key (known only to the KDC and B). A can’t read this at all,
 but that doesn’t matter; all A needs to do is send this ticket as-is
 to B. When B unseals its ticket, it finds A’s name and another copy
 of the session key. Just as before, since B’s ticket is sealed with
 B’s key, B trusts that the ticket is genuine. The meaning of each
 ticket is that the KDC has shared the session key with A and B. The
 two principals then execute a protocol which proves to each that the
 other does in fact hold that key—at which point, mutual
 authentication is accomplished. Further, the session key can be used
 for subsequent security functions, such as encrypting a conversation
 between them.
Now, this explanation is very basic.[152] It doesn’t exactly describe the Kerberos protocol, but
 rather, a simpler one. However, it gives the essential flavor of how
 the third-party shared-secret model works. The real Kerberos-5
 protocol can be viewed as an elaboration on this basic idea, to
 address various possible attacks and provide more features. We won’t
 get any more detailed than we already have, except to list a few of
 the real-life differences:
	Our model requires the user to type his password for every
 Kerberos transaction. Real Kerberos instead involves first
 issuing to a user a special ticket, called a
 ticket-granting ticket (TGT). Subsequent
 tickets for other principals involve presenting the TGT back to
 the KDC, proving that the requestor has been recently
 authenticated. TGTs (and indeed all tickets) expire after a
 period of time, typically 10 hours. So, the user need only type
 his password infrequently, and it need not be locally stored.
 The TGT must be stored, but it is of limited value (and can’t be
 used to change the user’s password).

	The ticket expiration feature involves timestamps, which
 in turn require that all principals have synchronized clocks.
 Some skew is allowed (typically up to five minutes), but
 Kerberos will not function properly if hosts’ clocks drift too
 far from one another.

11.5.2.2 Kerberos support in SSH

Kerberos support for SSH is not defined directly;
 rather, there is a draft that extends SSH to use GSSAPI, as documented in “Generic Security
 Services/Application Programming Interface (RFC-2743).”
GSS is a sort of security meta-protocol, with a role and
 implementation structure similar to that of PAM or SASL. GSS allows
 two communicating peers to negotiate security parameters abstractly,
 in terms of types of protection and relative strength rather than
 particular protocols, ciphers, or algorithms. The GSS layers on
 either side will pick the strongest compatible mechanisms available
 to each which meet their clients’ needs, without the higher-level
 software needing to bother with the details. Typical GSS
 implementations allow adding new mechanisms in the form of system
 dynamic libraries, which then automatically become available to GSS
 clients without recompilation.
In particular, there is a GSS mechanism supporting Kerberos-5,
 documented in “The Kerberos Version 5 GSS-API Mechanism (RFC
 1964).”
Of course, this is a bit convoluted; why not simply support
 Kerberos directly as its own SSH protocol extension? This was in
 fact done in SSH-1. The answer is that GSS is becoming a widely used
 standard. By defining a method for using GSS in SSH, implementers
 can take advantage of existing GSSAPI software libraries. And in
 doing so, SSH can automatically use new GSS security mechanisms as
 they become available, without further standards work. For example,
 Tectia Windows Server provides both Kerberos and NTLM user
 authentication via GSSAPI. The relevant SSH protocol draft is
 “GSSAPI Authentication and Key Exchange for the Secure Shell
 Protocol” (draft-ietf-secsh-gsskeyex).
Just a few years ago, this whole area was a work in progress,
 with only patches and experimental implementations. Now, however, it
 has solidified and is present in several mainstream SSH products and
 platforms, including OpenSSH, OS X, and Tectia on both Windows and
 Unix. This matches the widening adoption of Kerberos in general. And
 amazingly...for the most part, they all interoperate! It is now
 possible to have strong authentication and single-signon among
 various OS/SSH combinations, using Kerberos.
Note that while it has been possible for a while to get
 something similar using SSH public-key authentication with
 ssh-agent, Kerberos is a win for two different
 reasons. The issue of central management and scalability for larger
 organizations, we’ve already discussed. The other important point is
 that public-key authentication is SSH-specific. You go to all the
 trouble to teach people about generating keys, using agents,
 enabling agent forwarding, etc.; and after all that work, you get a
 solution that works only for SSH. Suppose you
 log into a domain account on a Windows machine, then SSH to another
 one. Public-key authentication may let you log in, but you’ll have
 to type your password again at some point to gain access to
 resources such as network shares—your Windows domain credentials did
 not follow you over SSH. With Kerberos, however, the same
 credentials which allowed login can also be forwarded to the remote
 host and used there for other purposes. And since Kerberos is a
 standard, the same can be true connecting from a Windows to a Unix
 host. This provides a much more pervasive and useful single-signon
 system.

11.5.2.3 Kerberos interoperability with OpenSSH and
 Tectia

As an example, we will take a lone Debian GNU/Linux
 box, attached to a network of Windows machines in an Active
 Directory domain named AD.ORG. The Linux box, lonely.ad.org, is
 running Debian-unstable and has the following packages installed;
 krb5-user, krb5-doc, and ssh-krb5 (which as of this writing is based
 on OpenSSH 3.8.1). The Windows machines are running the Tectia
 Windows Server, Version 4.2 or later. Suppose you have an account,
 “joe,” in the Windows domain, you’re logged into the Debian machine,
 and you want to connect to the Windows server, “winnie,” You simply
 type:
 lonely% kinit -f joe@AD.ORG
Amazingly, this prompts for your Windows password, and
 (assuming you type it in correctly)--it works! No errors, no
 complaints, no “DANGER! WARNING! WINDOWS INCOMPATIBILITY DETECTED!”
 Disbelievingly, you type:
 lonely% klist
 Ticket cache: FILE:/tmp/krb5cc_11500

 Default principal: joe@AD.ORG

 Valid starting Expires Service principal
 01/30/05 02:28:35 01/30/05 10:28:41 krbtgt/AD.ORG@AD.ORG
 renew until 01/30/05 03:28:35
You have just received Kerberos credentials from a Windows
 Domain Controller—say, “dc1.” No local configuration was necessary,
 because kinit found the domain controller via
 the DNS, using records like this:
 $ORIGIN ad.org
 _kerberos TXT "AD.ORG"
 _kerberos._udp SRV 0 0 88 dc1
 _kerberos-master._udp SRV 0 0 88 dc1
 _kpasswd._udp SRV 0 0 464 dc1
 _kerberos-adm._tcp SRV 0 0 749 dc1
 _kerberos-iv._udp SRV 0 0 750 dc1
These tell a DNS client that machines with names under
 ad.org belong to the AD.ORG Kerberos realm, and
 that a Kerberos KDC is available on dc1.ad.org
 via UDP to port 88 (among other Kerberos services: some of these
 records might be absent or unnecessary in your DNS). The Windows DNS
 servers for the domain will publish such records automatically. If
 you have an alternate or more complicated configuration—say, using
 non-Windows nameservers—then you may have to add these records
 yourself (or you could resort to local configuration; see the
 manpage for krb5.conf).
Trembling with technological anticipation, you forge
 onward:
 lonely% ssh winnie
 The authenticity of host 'winnie (10.2.17.4)' can't be established.
 DSA key fingerprint is b6:b2:09:81:f4:c7:96:43:4a:0c:cc:12:9d:61:54:1f.
 Are you sure you want to continue connecting (yes/no)?
Remember that SSH server authentication happens first, before
 user authentication; this shows that we’re still using the usual SSH
 key-based server authentication (assuming you don’t already have
 winnie’s key in your known-hosts list). That’s disappointing, but
 we’ll talk about that later. Assuming you say yes and continue,
 though...
 Warning: Permanently added 'winnie,10.2.17.4' (DSA) to the list of known hosts.
 Microsoft Windows XP [Version 5.1.2600]
 (C) Copyright 1985-2001 Microsoft Corp.

 C:\Documents and Settings\joe>
You have been logged into the Windows machine! Furthermore,
 you’ll find that you have Windows domain credentials there; you
 could, for example, map a network share (via the net
 use command) that requires the joe identity to
 access—without retyping your password. Repeating the
 ssh command with -v will
 show the details:
 lonely% ssh -v winnie
 OpenSSH_3.8.1p1 Debian-krb5 3.8.1p1-7, OpenSSL 0.9.7e 25 Oct 2004
 debug1: Reading configuration data /etc/ssh/ssh_config

 debug1: Connecting to winnie [10.2.17.4] port 22.
 debug1: Connection established.
 ...
 debug1:
 Remote protocol version 2.0, remote software version 4.2.0.21 SSH
Secure Shell Windows NT Server
 debug1: no match: 4.2.0.21 SSH
Secure Shell Windows NT Server
 debug1: Enabling compatibility mode for protocol 2.0
 debug1: Local version string SSH-2.0-OpenSSH_3.8.1p1 Debian-krb5 3.8.1p1-7
 ...
 debug1: Authentications that can continue: gssapi-with-mic,gssapi,publickey,password
 debug1: Next authentication method: gssapi-with-mic
 debug1: Authentication succeeded (gssapi-with-mic).
The user authentication method chosen is gssapi-with-mic, an improvement which
 fixes a security flaw in the earlier method named simply gssapi. A subsequent
 klist on the client side shows the new Kerberos
 ticket acquired for the connection:
 lonely% klist
 Ticket cache: FILE:/tmp/krb5cc_11500
 Default principal: joe@AD.ORG

 Valid starting Expires Service principal
 01/30/05 02:28:35 01/30/05 10:28:41 krbtgt/AD.ORG@AD.ORG
 renew until 01/30/05 03:28:35
 01/30/05 02:45:00 01/30/05 03:45:00 host/winnie.ad.org@AD.ORG
 renew until 01/30/05 03:28:35
Now, of course, there are many possible combinations of
 client, server, and Kerberos systems, and some of them will require
 more work. For example, going the other way in this scenario
 (Windows to Linux) would mean joining the Debian box to the Windows
 Kerberos realm. You could do this using Resource Kit utilities to
 add its host principal,
 host/lonely.ad.org@AD.ORG , to the domain
 controller; extract a Unix-compatible keytab file from it; and copy it to
 /etc/krb5.keytab on the Linux
 machine. Or, you might solve the problem a different way by placing
 the non-Windows hosts in a separate realm, perhaps with Linux-based
 KDCs, and establishing inter-realm trust between them. These issues
 are more specific to Kerberos administration than to SSH proper, and
 are beyond our scope here.
Before leaving this case study, let’s discuss some final
 details of SSH configuration, server authentication, and network
 address translation (NAT).
SSH configuration. The
 Debian ssh-krb5 package is built with Kerberos
 authentication turned on by default; that’s not normally true. In
 other situations you would have to set some configuration
 options:
 # ~/.ssh/config
 GSSAPIAuthentication yes
 GSSAPIDelegateCredentials yes
You might not want to delegate credentials automatically for
 all connections, though, just as you might not set X forwarding on
 by default: it could give access to an attacker if the remote host
 has been compromised.
Server authentication. The
 secsh-keyex draft defines Kerberos server authentication as well, in
 the form of new SSH-TRANS key exchange methods using GSSAPI. This
 part of the draft is not as widely implemented as user
 authentication, however; for example, the Debian and OS X versions
 of OpenSSH support it, whereas the main OpenSSH and Tectia do not.
 Its use is controlled with the GSSAPIKeyExchange server keyword. To see
 that the client supports it, look in the -v trace
 for lines like this:
 debug1: Mechanism encoded as toWM5Slw5Ew8Mqkay+al2g==
 debug1: Mechanism encoded as A/vxljAEU54gt9a48EiANQ==
The “mechanisms” here are GSSAPI mechanisms, and these
 messages occur during the key-exchange phase.
Kerberos server authentication, when available, has several
 advantages:
	It relieves you of managing known-hosts
 lists
	The client doesn’t consult these files at all; instead,
 it relies on Kerberos to validate the server’s identity. In
 fact, depending on the server implementation, you may be able
 to dispense with even generating host keys at all; the draft
 defines a “null” host key type for just this situation, where
 none is required. Of course, this would keep non-Kerberized
 clients from connecting at all, so you might want to keep host
 keys anyway for compatibility’s sake.

	It automatically deals with host
 aliases
	With known-host lists, every possible name a host might
 be called must be listed with that host’s key in the file.
 Kerberos, though, uses the server’s canonical name from the
 DNS, obtained by mapping the given name to an address and then
 mapping that address back to a name. As long as you maintain
 your hosts’ canonical names properly and use them for
 corresponding Kerberos service principals, aliases will be
 handled automatically.
Note that this does entail some security trade-off: an
 attacker who can subvert the DNS can cause an SSH client to
 authenticate the server against the wrong name. Of course, the
 server it contacts must still actually validate against
 Kerberos with this name, so it can’t be just any machine—but
 it might have credentials from a host the attacker previously
 compromised. This level of risk may be acceptable, but should
 be considered. This isn’t really a Kerberos-specific problem;
 the same feature could be used with hostkey authentication,
 with the same usability/security trade-off.

	It’s much faster
	Since Kerberos uses symmetric cryptography, it is
 noticeably faster than public-key methods. If both server and
 user authentication happen via Kerberos, new SSH connections
 can be very fast. In fact, the Kerberos exchange that affects
 server authentication does client authentication as well, and
 some implementations support a userauth method named external-keyx that takes advantage
 of this fact. external-keyx
 says to the server, “Look back at the key exchange—you’ll find
 it already authenticated me, so please let me in!”

There are some limitations, though. One is name uniqueness:
 hosts must have unique names known beforehand in order to be joined
 to the Kerberos realm. This shows up most immediately with the
 “localhost” problem: ssh localhost doesn’t
 usually work with Kerberos server authentication, even when it works
 for connecting to the same machine using its hostname. This is
 because the name “localhost” means a different host on every
 machine—so there can’t be an entry in the Kerberos database for
 “localhost,” because it can only have one key. You can make it work
 by arranging /etc/hosts files
 so that on each host, 127.0.0.1 maps back to that host’s canonical
 name—but the way that hosts files work, this means the name must
 also forward-map to the loopback address, not the host’s “real”
 address. This has some advantages, actually, but is likely to break
 some things also; it may not be worth it.
The problem can also show up with more complicated network
 situations such as proxies, tunnels, or clusters of machines with
 dynamically assigned and shared addresses—anything in which the
 simple server/hostname/address correspondence Kerberos needs is
 violated. Furthermore, it won’t work for batch jobs if those don’t
 also use Kerberos for authentication, which is often not the best
 choice. The bottom line is that while Kerberos server authentication
 can be useful, hostkey-based authentication usually needs to be
 available as well for exceptional situations.
Network address translation
 (NAT). Kerberos originally bound credentials to the
 address of the machine to which they were issued, to make attacks
 harder: if someone managed to steal a ticket, it would be harder to
 (mis)use it. However, in today’s sad world of ubiquitous NAT, this
 can cause more trouble than it’s worth. Most recent Kerberos
 deployments have this address-matching feature turned off, but you
 may need to do it yourself if not, e.g., with a statement
 like:
 # /etc/krb5.conf
 [libdefaults]
 noaddresses = true
This actually controls whether clients include addresses in
 ticket requests, so when you change it you will need to run
 kinit again. Situations involving multiple
 credential-forwarding connections may have addresses creep back in
 anyway, due to forwarding code which requests them anyway even if
 the original ticket had none; again, most recent Kerberos code has
 eliminated this problem, but you may still see it.

[152] And in fact, in some ways an outright lie.

Tectia Extensions to Server Configuration Files

 In Chapter 5, we
 described the server configuration files in detail, including OpenSSH’s
 sshd_config and Tectia’s sshd2_config. Tectia provides several levels
 of configuration not found in OpenSSH, called
 metaconfiguration and subconfiguration, and also some
 unusual rules for quoted values. We now cover them in detail.
11.6.1 Metaconfiguration

Tectia recognizes specially structured comments at the beginning
 of configuration files. These lines determine the syntax rules for the
 rest of the file, and are therefore called
 metaconfiguration information.
Configuration files distributed with Tectia all start with lines
 of the form:
 ## SSH CONFIGURATION FILE FORMAT VERSION 1.1
 ## REGEX-SYNTAX egrep
 ## end of metaconfig
 ## (leave above lines intact!)
The first line specifies the syntax version number, and defines
 the start of the metaconfiguration information. Increasing syntax
 version numbers allow the syntax rules to be extended, possibly in
 incompatible ways. As long as older configuration files explicitly
 specify their syntax versions, they can still be correctly understood
 by newer versions of the Tectia server.
The default syntax version (used if there is no
 metaconfiguration information) is 1.0. This refers to the
 “traditional” syntax rules understood by Tectia versions before
 Version 3.0.0 (when the metaconfiguration information syntax was
 introduced). The latest syntax version at press time is 1.1.
Syntax rules are further refined by lines that immediately
 follow the syntax version. These lines contain pairs of
 metaconfiguration parameter names and values, and look similar to the
 keyword lines in the rest of the configuration file, with two
 important differences:
	The pairs occur within comment lines.

	The metaconfiguration parameter names must always be
 uppercase.

Syntax Version 1.1 adds support for the REGEX-SYNTAX parameter, which determines how
 regular expressions are interpreted. The three standards are:
These values are case-insensitive, unlike the parameter names.
 Full syntax rules are described in Appendix B.
Metaconfiguration information ends when an unrecognized comment
 line (or a standard, uncommented keyword line) is encountered. It’s a
 good idea to mark the end with an ordinary comment line (like “end of
 metaconfig” as shown earlier) that does not look like a
 metaconfiguration parameter, to prevent possible misinterpretation of
 adjacent comment lines and to enhance readability. Use of ## instead of # is just a stylistic convention to allow
 the metaconfiguration information to be more easily distinguished from
 unrelated comments.
Pitfalls with Tectia Metaconfiguration
Since metaconfiguration information in Tectia is represented
 as structured comments, there is an unfortunate consequence: typos
 can cause the information to be ignored silently, because
 unrecognized lines are just ordinary comments. This can cause subtle
 (and dangerous) misinterpretation of the rest of the configuration
 file.
We therefore recommend using the boilerplate metaconfiguration
 information in the sample configuration files from Tectia as a
 template. Edit carefully and sparingly, if you need to make changes
 (e.g., to use a different regex syntax). Resist the temptation to
 omit the metaconfiguration information, however, because explicitly
 specifying the syntax rules will protect you in the future if the
 default rules change.
For troubleshooting, the sshd -d
 command-line option [5.9] with the SshConfigParse module and a relatively
 high debug level can be informative:
 # Tectia
 sshd -d SshConfigParse=9
More precise rules for recognizing metaconfiguration
 information are:
	Metaconfiguration information must be at the beginning of
 the configuration file. It can only be preceded by empty lines
 or whitespace, but not by ordinary comments or uncommented
 keyword lines.

	Metaconfiguration information lines can only be separated
 by empty lines or whitespace. Don’t try to add ordinary comments
 (or standard keywords) within the metaconfiguration
 information.

	The syntax version line must match the
 (egrep) regular expression:
 #.*VERSION[[:space:]]+[[:digit:]]+\.[[:digit:]]+.*
Note that VERSION must
 be uppercase, but can be preceded by any other characters, which
 are ignored. At least one space must separate VERSION from the version number, which
 must have two numeric components, separated by a period. Any
 trailing characters are ignored. Here’s a valid example:
 #VERSION 1.1 -- Tectia Configuration File for server.example.com

	Metaconfiguration parameter lines must match the
 (egrep) regular expression:
 #[#[:space:]]+[[:upper:][:digit:]-]+\s+.*
Note that at least one space or extra # character must appear between the
 first # comment character and
 the parameter name (in contrast to the VERSION line), so a line like #REGEX egrep does not work.
Parameter names can contain only uppercase letters,
 digits, or hyphens. At least one space must separate the
 parameter name from the value. Values can contain
 whitespace.

	Unrecognized parameter names are ignored, but
 metaconfiguration information continues as long as the parameter
 line is well formed.

11.6.2 Subconfiguration Files

It is sometimes useful to customize the SSH server
 configuration depending on the type of connection or session. For
 example, a system administrator might want to impose stronger
 authentication requirements if a connection originates from a client
 outside of a firewall, or to record more detailed logging information
 about the activities of special-purpose guest accounts.
Tectia servers support these kinds of conditional configuration
 modifications with host-and user-specific configuration files, which
 are known collectively as subconfiguration files
 . The subconfiguration files use the same syntax as the
 main configuration file, except as noted later. Each file starts with
 its own, independent metaconfiguration information.
The HostSpecificConfig
 keyword is used to update the configuration based on the client
 host:
 # Tectia with zsh_fileglob or traditional regex syntax
 HostSpecificConfig *.example.com /etc/ssh2/subconfig/ourhosts

 # Tectia with egrep regex syntax
 HostSpecificConfig .*\.example\.com /etc/ssh2/subconfig/ourhosts
The first value is a pattern that matches hostnames or
 addresses, as described for the AllowHosts keyword. [5.5.3] For example, if all of
 the machines inside a firewall are assigned to a range of addresses,
 it might be convenient to use a netmask for the pattern:
 # Tectia
 HostSpecificConfig \m10.1.1.0/24 /etc/ssh2/subconfig/insiders
The second value is the filename containing the host-specific
 configuration.
Similarly, the UserSpecificConfig keyword specifies a
 pattern describing user accounts, and the filename with user-specific
 configuration settings that apply to those accounts. In the simplest
 case, the pattern matches usernames or numerical user IDs, as for the
 AllowUsers keyword: [5.5.1]
 # Tectia with zsh_fileglob or traditional regex syntax
 UserSpecificConfig guest[[:digit:]]## /etc/ssh2/subconfig/guests

 # Tectia with egrep regex syntax
 UserSpecificConfig guest[[:digit:]]+ /etc/ssh2/subconfig/guests

 # Tectia
 UserSpecificConfig 12[3-6][[:digit:]] /etc/ssh2/subconfig/guests
More generally, patterns have the form
 user[%group][@host].
 The optional group matches either group names or
 numerical group IDs, as for the AllowGroup keyword: [5.5.2]
 # Tectia with zsh_fileglob or traditional regex syntax
 UserSpecificConfig *%[x-z]guests /etc/ssh2/subconfig/xyz-guests

 UserSpecificConfig *%800[[:digit:]] /etc/ssh2/subconfig/guests-8k

 # Tectia with egrep regex syntax
 UserSpecificConfig .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests
 UserSpecificConfig .*%800[[:digit:]] /etc/ssh2/subconfig/guests-8k
Users can (and often do) belong to multiple groups: they are all
 checked.
The optional host matches the client
 hostname or address, as for the AllowHosts keyword [5.5.3] or HostSpecificConfig:
 # Tectia with zsh_fileglob or traditional regex syntax
 UserSpecificConfig guest@*.friendly.org /etc/ssh2/subconfig/friends
 UserSpecificConfig *%trusted@\m10.1.1.0/24 /etc/ssh2/subconfig/trusted-insiders

 # Tectia with egrep regex syntax
 UserSpecificConfig guest@.*\.friendly\.org /etc/ssh2/subconfig/friends
 UserSpecificConfig .*%trusted@\m10.1.1.0/24 /etc/ssh2/subconfig/trusted-insiders
The user cannot be omitted from the
 pattern. If the pattern has two or more components
 (user, group, or
 host), then all of them must
 match for the user-specific configuration to be read.
The Tectia server starts by reading the main configuration file,
 and sets up the default configuration, which can include references to
 the subconfiguration files, and an associated pattern for each. When a
 connection is accepted from a client host, the server forks, and the
 child process that handles the session inherits its own private copy
 of the configuration. This private configuration is discarded when the
 child process exits at the end of the session, so the private
 configuration can be modified without affecting the default
 configuration that is used as the starting point for other
 sessions.[153]
Tip
The metaconfiguration parameters are not considered part of
 the configuration and are not inherited by subconfiguration files.
 Metaconfiguration information is independently associated with each
 file, because it describes the syntax of that file’s contents.
 Although it’s possible to use different metaconfiguration parameters
 for subconfiguration files, this is confusing, and we strongly
 recommend starting each subconfiguration file with the same,
 explicit metaconfiguration information as the main configuration
 file.

Immediately after the server accepts a new connection, but
 before any conversation ensues with the client, the server uses the
 client hostname or address to check the patterns for all HostSpecificConfig keywords, in the order
 that they were specified in the main configuration file. The server
 reads each host-specific configuration file for patterns that match,
 and modifies its private configuration as it does so.
Later, when the username has been specified by the client (and
 group memberships have been determined by the server for the user),
 the server checks the patterns for all UserSpecificConfig keywords, again in the
 order indicated by the main configuration file, and reads
 user-specific configuration files for matching patterns to further
 customize the configuration.
The order for reading the configuration files is important
 because it determines how keywords apply to the final configuration
 that is used for each session. Keywords that are read later either
 override or append to the values for earlier keywords—this principle
 applies whether the keywords appear multiple times in a single file,
 or in separate files.
For example, suppose our main configuration file
 contains:[154]
 # Tectia: /etc/ssh2/sshd2_config
 PasswordGuesses 1

 UserSpecificConfig guest[[:digit:]]+ /etc/ssh2/subconfig/guests
 UserSpecificConfig .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests

 HostSpecificConfig .*\.example\.com /etc/ssh2/subconfig/ourhosts
 HostSpecificConfig .*\.foo\.example\.com /etc/ssh2/subconfig/foohosts

 PasswordGuesses 2
When the server starts, it reads this main configuration file,
 and sets the value for the PasswordGuesses keyword first to 1, and then to 2. The server also records the filenames and
 patterns for the subconfiguration files.
Later, the server checks the patterns for the host-specific
 configuration files, in order. If a connection is accepted from
 laptop.foo.example.com, then both host patterns
 match. So, if the files contain:
 # Tectia: /etc/ssh2/subconfig/ourhosts
 PasswordGuesses 3

 # Tectia: /etc/ssh2/subconfig/foohosts
 PasswordGuesses 4
then the value for the PasswordGuesses keyword is overridden to
 3, and subsequently to 4.
Finally, the server checks the patterns for the user-specific
 configuration files, again in order. If the client specifies the
 username as guest33, and the server determines that this user belongs
 to the group yguests, then both user patterns match. So, if the files
 contain:
 # Tectia: /etc/ssh2/subconfig/guests

 PasswordGuesses 5

 # Tectia: /etc/ssh2/subconfig/xyz-guests
 PasswordGuesses 6
then the value for the PasswordGuesses keyword is overridden to
 5, and eventually to 6, which is the value that is actually used
 for authentication.
The order for reading keywords is determined primarily by the
 order for reading files, and secondarily by the order of occurrence of
 the individual keywords within each file. In our example, even though
 the last PasswordGuesses keyword in
 the main configuration file appears after the subconfiguration
 keywords, the settings in the subconfiguration files still override
 the default configuration. Similarly, even though UserSpecificConfig keywords appear before
 HostSpecificConfig keywords in the
 main configuration file, the server always reads host-specific
 configuration files before user-specific configuration files.
It’s therefore a good idea to order the keywords in the main
 configuration file to reflect the order imposed by reading
 subconfiguration files, with default settings first, followed by
 HostSpecificConfig and UserSpecificConfig keywords at the end. Our
 example would be more clearly written as:[155]
 # Tectia: /etc/ssh2/sshd2_config
 PasswordGuesses 2

 HostSpecificConfig .*\.example\.com /etc/ssh2/subconfig/ourhosts
 HostSpecificConfig .*\.foo\.example\.com /etc/ssh2/subconfig/foohosts

 UserSpecificConfig guest[[:digit:]]+ /etc/ssh2/subconfig/guests
 UserSpecificConfig .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests
Because host- and user-specific configuration files are read in
 the order specified in the main configuration file, the patterns
 should be listed starting with general patterns first, followed by
 increasingly specific patterns.[156] Patterns can be carefully constructed and ordered to
 encode arbitrarily complicated logic for customizing almost any aspect
 of the configuration based on the client host, users, or groups: a
 very powerful feature.
Subconfiguration files can be further divided into
 sections , which are marked by even more specific patterns, each
 followed by a colon, on separate lines.[157] The keywords in each section are used only if the
 pattern for the section matches. Sections end when a new pattern line
 is encountered, or at the end of the subconfiguration file. The
 section patterns in host- and user-specific configuration files are
 interpreted in the same way as the patterns for the HostSpecificConfig and UserSpecificConfig keywords, in the main
 configuration file, respectively.
Warning
Any line that ends in a colon character
 (“:”) is considered to be a section pattern line.

Sections are a useful alternative to separate subconfiguration
 files. We might choose to combine the host-specific configuration
 files from our original example as:
 # Tectia: /etc/ssh2/subconfig/ourhosts
 PasswordGuesses 3
 # ... other general keywords for all hosts in example.com

 .*\.foo\.example\.com:
 PasswordGuesses 4
 # ... other more specific keywords for foo.example.com

 .*\.bar\.example\.com:
 PasswordGuesses 8
 # ... other more specific keywords for bar.example.com

 .*\.baz\.example\.com:
 PasswordGuesses 9
 # ... other more specific keywords for baz.example.com
This is especially convenient if there are many general keywords
 for the primary domain, but only a few, more specific keywords for
 each subdomain. It’s also handy if there are lots of subdomains,
 because we can add or remove subdomains without modifying the main
 configuration file.
Warning
Sections cannot be used in the main configuration file. This
 makes sense: it isn’t at all clear what would be used to match such
 patterns. The server warns if any section pattern lines are detected
 in configuration files where sections are inappropriate, like the
 main configuration file.

Sections for user-specific configuration files work similarly.
 We can override settings for specific users:
 # Tectia: /etc/ssh2/subconfig/guests
 PasswordGuesses 5
 # ... other general keywords for all guest usernames

 guest[0-4][[:digit:]]*:
 PasswordGuesses 10
 # ... other more specific keywords for guest usernames with [0-4] digits

 guest[5-9][[:digit:]]*:

 PasswordGuesses 12
 # ... other more specific keywords for guest usernames with [5-9] digits
or for specific groups:
 # Tectia: /etc/ssh2/subconfig/xyz-guests
 PasswordGuesses 6
 # ... other general keywords for all [x-z]guests groups

 .*%xguests:
 PasswordGuesses 15
 # ... other more specific keywords for the xguests group

 .*%yguests:
 PasswordGuesses 16
 # ... other more specific keywords for the yguests group

 .*%zguests:
 PasswordGuesses 17
 # ... other more specific keywords for the zguests group
Several other important aspects of server behavior follow
 directly as consequences of the order and timing for reading the
 configuration files. The server normally reads its main configuration
 file only when it starts, and must be signaled to reread the
 configuration later, if changes are made. [5.2.4] In contrast,
 subconfiguration files are reread for each connection, so no signaling
 is necessary if the files are modified. In fact, a “match anything”
 pattern can be used to store frequently changed keywords in a
 subconfiguration file, to avoid the need for frequent
 signaling:
 # Tectia with zsh_fileglob or traditional regex syntax
 HostSpecificConfig * /etc/ssh2/subconfig/volatile

 # Tectia with egrep regex syntax
 HostSpecificConfig .* /etc/ssh2/subconfig/volatile
If an error is detected while reading the main configuration
 file, then the server exits. Errors within host-specific configuration
 files cause the connection to be terminated. For user-specific
 configuration files, errors result in denial of access.
Some keywords cannot be specified in subconfiguration files. In
 some cases, the keywords control server behavior that happens before
 the subconfiguration files are read. For example, it doesn’t make
 sense to specify the Port keyword
 [5.3.3.1] in
 subconfiguration files, because the port (or ports) must be chosen to
 listen for incoming connections before any connections can be
 accepted. Certain other keywords are forbidden in subconfiguration
 files because they would be too confusing. For example, the HostSpecificConfig and UserSpecificConfig keywords are restricted
 to main configuration files: imagine trying to understand the pretzel
 logic resulting from nested subconfiguration files! Tables 11-1, 11-2, and 11-3 list the keywords
 permitted in each kind of configuration file.
Table 11-1. Tectia keywords permitted only in the main configuration
 file
	 AllowHosts
	 CertdListenerPath
	 DenyHosts

	 ExternalMapper
	 ExternalMapperTimeout

	 FIPSMode

	 HostCa
	 HostCAMoCRLs
	 HostCertificateFile

	 HostKeyFile
	 HostSpecificConfig
	 HostKeyEkInitString

	 HostKeyEkTimeOut
	 HostKeyEkProvider
	 KeepAlive

	 LDAPServers
	 ListenAddress
	 MapFile

	 MaxBroadcastsPerSecond

	 MaxConnections
	 NoDelay

	 OCSPResponderURL
	 PKI
	 PKIDisableCrls

	 PasswordAuthentication

	 Port
	 ProtocolVersionString

	 PubkeyAuthentication
	 PublicHostKeyFile
	 RSAAuthentication

	 RandomSeedFile
	 RequireReverseMapping

	 ResolveClientHostName

	 SocksServer
	 SshPAMClientPath
	 UseSOCKS5

	 UserSpecificConfig
	 XauthPath
	

Table 11-2. Tectia keywords permitted in the main and host-specific
 configuration files, but not user-specific ones
	 AllowGroups
	 AllowTcpForwardingForGroups

	 AllowTcpForwardingForUsers

	 AllowUsers
	 AuthPassword.ChangePlugin

	 BannerMessageFile

	 ChRootGroups
	 ChRootUsers
	 Ciphers

	 DenyGroups
	 DenyTcpForwardingForGroups

	 DenyTcpForwardingForUsers

	 DenyUsers
	 DisableVersionFallback

	 ExternalAuthorizationProgram

	 ForwardACL
	 LoginGraceTime
	 MACs

	 PermitRootLogin
	 Ssh1Compatibility
	 Sshd1ConfigFile

	 Sshd1Path
	 	

Table 11-3. Tectia keywords permitted in all configuration files
	 a The VerboseMode keyword (or the Verbose synonym) [5.8] prevents forking
 only if used in the main configuration file. In
 subconfiguration files, it merely enables debug
 output.

	 AllowAgentForwarding
	 AllowSHosts

	 AllowTcpForwarding
	 AllowX11Forwarding

	 AllowedAuthentications

	 AuthInteractiveFailureTimeout

	 AuthKbdInt.NumOptional

	 AuthKbdInt.Optional

	 AuthKbdInt.Plugin
	 AuthKbdInt.Required

	 AuthKbdInt.Retries
	 AuthPublicKey.Cert.MaxSize

	 AuthPublicKey.Cert.MinSize

	 AuthPublicKey.MaxSize

	 AuthPublicKey.MinSize

	 AuthorizationFile

	 Cert.RSA.Compat.HashScheme

	 CheckMail

	 DenySHosts
	 FascistLogging

	 ForwardAgent
	 ForwardX11

	 HostbasedAuthForceClientHostnameDNSMatch

	 IdleTimeout

	 IgnoreRhosts
	 IgnoreRootRhosts

	 NoOp
	 PGPPublicKeyFile

	 PGPSecretKeyFile
	 PasswdPath

	 PasswordGuesses
	 PermitEmptyPasswords

	 PrintMOTD
	 QuietMode

	 RekeyIntervalBytes
	 RekeyIntervalSeconds

	 RequiredAuthentications

	 SecurIdGuesses

	 SettableEnvironmentVars

	 SftpSysLogFacility

	 StrictModes
	 StrictModes.UserDirMaskBits

	 Subsystem-...
	 SysLogFacility

	 UserConfigDirectory
	 UserKnownHosts

	 Verbose
	 VerboseMode
 a

	 X11Forwarding
	

11.6.3 Quoted Values

Tectia removes double quotes from values. The following
 lines are all valid:[158]
 # Tectia
 PermitEmptyPasswords "no"
 PermitEmptyPasswords "y"es
In most cases, there is no reason to use quotes, but they are
 handy in a few, rare situations. If a value ends with a colon
 (:) character, it will be
 misinterpreted as a section pattern: [5.2.1]
 # Tectia: misinterpreted as a section pattern!
 AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt color:
This is a particularly insidious error if it occurs in a
 configuration file that supports sections (e.g., subconfiguration
 files), because the section pattern will probably never match, so the
 rest of the configuration file is silently ignored![159]
To prevent this, enclose the value in quotes:
 # Tectia
 AuthKbdInt.Plugin "/usr/local/sbin/kiplugin --prompt color:"
This works because the recognition of section pattern lines
 occurs before quotes are removed. Since the quoted line doesn’t end in
 a colon, it isn’t considered a section pattern line. Equivalently, you
 can also enclose only part of the value in quotes, as long as the
 quoted part includes the final colon:
 # Tectia
 AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt "color:"
 AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt color":"
To include a literal quote character in a value, precede it with
 a backslash. For example, to construct a shell command that uses
 (shell) quotes to protect a command-line argument with embedded
 whitespace from being split:
 # Tectia
 AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt \"Enter your favorite color:\"
When configuration files are read, the whitespace between the
 keyword and value is discarded, and any trailing whitespace at the end
 of each line is removed from the value.[160] Quotes can be used to retain this whitespace as part of
 the value. As a devious example, you can hide user configurations in a
 temporary directory named as a single space character:
 # Tectia
 UserConfigDirectory /tmp/" "

[153] If debugging options [5.9] prevent forking, then
 the single server process exits after handling a single session,
 so only a single copy of the configuration is needed.

[154] We’ll use egrep regex syntax
 exclusively in this running example for simplicity, but of course
 other regex syntaxes could be used as well.

[155] We have removed the first PasswordGuesses keyword, since it is
 always overridden by the second occurrence anyway.

[156] The order for reading files can also be viewed as a
 consistent progression from general settings in the main
 configuration file to increasingly specific settings for hosts and
 users in the subconfiguration files.

[157] The Tectia documentation also refers to sections as
 configuration blocks, or
 stanzas. Subconfiguration sections have the
 same structure as those used in client configuration files [7.1.2], except for the
 interpretation of the patterns.

[158] Single quotes have no special significance.

[159] The server does warn about section patterns in configuration
 files that should not have them, like the main configuration file,
 which makes the error easier to detect.

[160] Keywords that use multiple values separated by whitespace
 also discard the whitespace between those values. Otherwise,
 whitespace that is embedded within a single value is left
 unchanged.

Tectia Plugins

 The Tectia server can use external programs, known as
 plugins , for flexible handling of tasks like changing passwords
 [5.4.2.3], driving the
 process for keyboard-interactive authentication [5.4.5.2], or performing
 arbitrary checks for access control. [5.5.6] We’ll demonstrate how to
 use plugins with several examples:
	Handling expired passwords

	Extending keyboard-interactive authentication

	Authorization

11.7.1 A Plugin for Changing Expired Passwords

Remember our discussion of expired passwords in Chapter 5? [5.4.2.3] We showed how
 Tectia’s SSH server can detect an expired password at authentication
 time, and prompt the user to change it:
 $ ssh server.example.com
 rebecca's password: < ... old, expired password ... >
 Authentication successful.
 < ... the following output is from running the passwd forced command ... >
 Changing password for user rebecca.

 Changing password for rebecca
 (current) UNIX password: < ... old, expired password, again ... >
 New password: < ... new password ... >
 Retype new password: < ... new password, again ... >
 passwd: all authentication tokens updated successfully.
 Connection to server.example.com closed.
The SSH server accomplishes this by calling either the system
 password-change program (e.g., passwd) or an
 alternative program specified by the PasswdPath configuration keyword. This
 technique, which is the default, uses a forced command to change the
 password. This method is conceptually simple but has several
 drawbacks:
	No explicit indication is given that the password is
 expired, or that a forced command is being used. Of course, the
 prompts from the password-change program are a clue, but a user
 might be (understandably!) suspicious about prompts that demand
 passwords for no apparent reason. Furthermore, if the user intends
 to run some other command with similar prompts for unrelated
 passwords, she might be confused by unexpected interactions with
 the password-change program.

	While it makes sense to ask the user to type his
 new password twice, to avoid mistakes, it’s
 annoying and unnecessary to require entering the
 old password twice. This happens because the
 first old password is sent to the SSH server while the second is
 demanded by the password-change program, and the server doesn’t
 forward the password.

	The connection is closed after the forced command finishes,
 whether the password change was successful or not, and the user
 must then repeat the authentication with a separate
 ssh command, which in turn requires entering
 the new password yet again.

	The username isn’t passed from the SSH server to the
 password-change program, since most programs only allow non-root
 users to change their own passwords, and some allow only root to
 specify a username on the command line. If several usernames use
 the same numerical user ID (a bad practice, but it does occur),
 then only the first user’s password is changed.

Fortunately, the SSH-2 protocol provides a better mechanism for
 changing passwords during authentication, and Tectia allows a separate
 program, known as a password-change plugin, to
 manage the process. This mode of operation is enabled by the AuthPassword.ChangePlugin keyword:
 # Tectia
 AuthPassword.ChangePlugin /usr/local/libexec/ssh-passwd-plugin
Here’s an example of a password change using the plugin:
 $ ssh server.example.com
 rebecca's password: < ... old, expired password ... >
 Your password has expired.
 New password: < ... new password ... >

 Enter password again: < ... new password, again ... >
 Authentication successful.
 < ... login session starts ... >
As before, the client collects the user’s password and sends it
 to the server, which verifies it. When the server discovers that the
 password is expired, it sends an expiration message back to the
 client, which informs the user about what’s happening. The client then
 prompts for the new password and sends it to the server, which passes
 all of the necessary information (the username, plus the old and new
 passwords) to the plugin program to change the password. If the plugin
 tells the server that the change was successful, then the server
 considers authentication complete, and continues. Otherwise (if the
 change failed), the server tells the client, which can prompt the user
 to try again, without starting a new session or using a separate
 ssh command. Much better!
The plugin program runs with the privileges of the user, not
 those of the server. If the plugin program isn’t found or can’t be run
 for some other reason, then password changes always fail.
11.7.1.1 The ssh-passwd-plugin program

Tectia includes a generic plugin program,
 ssh-passwd-plugin, in most binary
 distributions.[161] ssh-passwd-plugin runs the
 system’s password-change program within a pseudo-terminal,
 effectively acting as an intermediary between the SSH server and the
 program that actually performs the password change, as shown in
 Figure 11-14.
[image: Tectia password-change plugin]

Figure 11-14. Tectia password-change plugin

The actions of ssh-passwd-plugin are
 controlled by the configuration file /etc/ssh2/plugin/passwd_config, which
 uses the same syntax as other server configuration files.[162] [5.2.1]
 The configuration file is read every time the plugin runs.
The ssh-passwd-plugin configuration
 consists of a series of Request
 and Response (or FinalResponse) keywords, which should
 occur in pairs:
 # Tectia: /etc/ssh2/plugin/passwd_config with egrep regex syntax
 Request "\(current\) UNIX password:"
 Response $old_password$\n

 Request "New password:"
 Response $new_password$\n

 Request "Retype new password:"
 FinalResponse $new_password$\n
This example describes the behavior of the password-change
 program used for the preceding forced-command example.
Request values are regular
 expressions that match output from the password-change
 program.
Warning
Quotes are required if the Request pattern ends with a colon
 (:) character, to prevent
 misinterpretation as a section pattern line [5.2.1], or if the pattern
 ends in whitespace, which is normally discarded. It’s a good idea
 always to quote Request
 values.

Response values are strings
 that are sent to the password-change program when the preceding
 Request value matches. These strings can contain the following
 special tokens:
	$user_name$

	$old_password$

	$new_password$

which are replaced by the values supplied by the client and
 forwarded via the server. Use $$
 in the string to send a single $
 character, or \n to send a
 newline.[163]
The last expected response is indicated by the FinalResponse keyword; its value uses the
 same format as Response.
Response strings can also
 be one of the following special result values:
	$ERROR_DISPLAY
	Send the match for the preceding Request value back to the client via
 the server and terminate, indicating that the password change
 failed.

	$ERROR_LOG
	The same, but only send the match to the server for
 logging, not to the client.

	$SUCCESS
	Indicate that the password change was completed
 successfully whenever the preceding Request value matches.

Tip
The special result values for the response strings have a
 $ character at the beginning
 only, not at the end, unlike the tokens for the username and
 passwords.
The result values are case-insensitive, but it’s best to use
 uppercase to distinguish them from the tokens, which
 must be lowercase.

Unrecognized output from the password-change program is
 ignored, so expected error messages should be matched and sent to
 the user:
 # Tectia: /etc/ssh2/plugin/passwd_config
 Request "BAD PASSWORD: it's WAY too short"
 Response $ERROR_DISPLAY
If error messages contain sensitive information, or aren’t
 interesting for users, then they can be logged instead:
 # Tectia: /etc/ssh2/plugin/passwd_config
 Request "internal error: database corruption"
 Response $ERROR_LOG
Similarly, if the password-change program prints a success
 message, ssh-passwd-plugin can use it to
 determine that the operation went well:
 # Tectia: /etc/ssh2/plugin/passwd_config
 Request "all authentication tokens updated successfully"
 Response $SUCCESS
Some password-change programs succeed silently, however. In
 this case, ssh-passwd-plugin can examine the
 exit status returned by the password-change program to detect
 success, using the GetSuccessFromExit keyword:
 # Tectia: /etc/ssh2/plugin/passwd_config
 GetSuccessFromExit yes
A zero exit status indicates success. The default value for
 GetSuccessFromExit is no, meaning that the exit status is
 ignored. Unless you are using a broken program that returns random
 exit status values, we recommend configuring
 ssh-passwd-plugin to enable GetSuccessFromExit.
By default, ssh-passwd-plugin waits up to
 four seconds for output from the password-change program. This can
 be changed using the DataTimeout
 keyword:
 # Tectia: /etc/ssh2/plugin/passwd_config
 DataTimeout 10
The value is a number of seconds; time units are not
 recognized.
An alternate password-change program can be specified using
 the PasswdPath keyword:
 # Tectia: /etc/ssh2/plugin/passwd_config
 PasswdPath /usr/local/bin/goodpasswd $user_name$
This differs from the PasswdPath keyword in the server
 configuration file in that ssh-passwd-plugin
 expands tokens, as shown for the username.
Warning
The server is supposed to supply the value for its PasswdPath keyword to the plugin as a
 default; the PasswdPath keyword
 in ssh-passwd-plugin’s own configuration file
 would then override the server’s value. However, this isn’t
 actually done (as of Tectia Version 4.1), so it’s necessary for
 ssh-passwd-plugin to always specify the
 PasswdPath if the value needs
 to be changed.

Debugging the interactions between
 ssh-passwd-plugin and the password-change
 program can be challenging. Because unrecognized output is simply
 discarded, the usual symptom of mismatches in the configuration file
 is the error:
 Timeout when waiting for exit status.
ssh-passwd-plugin recognizes the
 -d or --debug command-line
 options, but these are not passed automatically from the
 sshd command line to the
 ssh-passwd-plugin command line, so it’s
 necessary to specify the option in the value for the AuthPassword.ChangePlugin keyword. Use the
 GenPasswdPlugin module and a high
 debug level to see all of the data exchanged between the
 programs:
 # Tectia
 AuthPassword.ChangePlugin /usr/local/libexec/ssh-passwd-plugin -d GenPasswdPlugin=9 2>> /tmp/plugin.dbg
Alternately, ssh-passwd-plugin uses the
 value of the environment variable SSH_DEBUG_LEVEL, which can be set before
 starting the server. If both the environment variable and the
 command-line option are used, the option wins.
Debug output is written to the standard error stream, but the
 server runs the plugin using the (Bourne) shell, so we append the
 output to a file with the 2>> redirection. This is needed when
 the SSH server runs in the background as a daemon, because stderr is
 discarded. If the server is also running in debug mode, so stderr is
 already being sent to some convenient location, then the 2>> redirection can be omitted, and
 ssh-passwd-plugin will send its debug output to
 the same place as the server.

11.7.1.2 A Perl package implementing the Tectia plugin
 protocol

All Tectia plugins use a simple, line-oriented
 protocol designed to facilitate scripting. Here we discuss some of
 the common elements of the protocol, and illustrate them by writing
 a Perl package, Net::SSH::Tectia::Plugin, containing handy
 functions that we’ll use in our example plugin scripts. We chose the
 Net::SSH prefix to correspond
 with other Perl packages for SSH available on CPAN.
General Rules for Plugins
When working with plugins, be aware of the following
 important points:
	Use absolute pathnames to specify
 plugins
	This is true even though some Tectia sample
 configuration files suggest using only command names as
 values for plugin keywords. The server intends to search the
 libexec and bin subdirectories of the Tectia
 install directory for plugin programs. However, bugs prevent
 this feature from working (as of Tectia Version 4.1), so
 only the PATH inherited
 by the SSH server is actually used.

	Command-line arguments are
 supported
	Use quotes carefully in the values for plugin keywords
 if the command-line arguments include whitespace or colons.
 [11.6.3]

	Know your stdin, stdout, and
 stderr
	The server runs a plugin program with pipes connected
 to the plugin’s standard input and output streams for
 communication with the server. The standard error stream is
 discarded by both the server and the plugin, and should
 therefore be avoided.

As we discuss each type of plugin, we’ll provide examples
 written in Perl, but any language can be used; in fact, the Tectia
 source distribution includes some sample plugins written as Bourne
 shell scripts.
The package starts with the usual preliminaries, identifying
 the names of the exported functions, and a version number for the
 package:
 package Net::SSH::Tectia::Plugin;
 use strict;
 BEGIN {
 use Exporter;
 use vars qw(@ISA @EXPORT $VERSION);
 @ISA = qw(Exporter);
 @EXPORT = qw(
 &ssh_plugin_recv
 &ssh_plugin_params
 &ssh_plugin_send
 &ssh_plugin_success
 &ssh_plugin_failure
);
 $VERSION = 1.01;
 }

 1; # return true for import
The server sends lists of (key,value) pairs to the plugin,
 which reads them on its standard input. Each pair is formatted as
 “key:value” on a separate line, and the end of the list is marked by
 a line of the form “end_of_words” where “words” describes the kind
 of information in the list.
Keys and the end marker are case-insensitive. The plugin is
 supposed to ignore keys that it does not understand, to allow for
 future extensions to the protocol. If the end marker is not seen,
 the plugin must fail, as described shortly.
The ssh_plugin_recv
 function conveniently reads information lists from the
 server:
 # Read a list of "key:value\n" pairs from the server.
 # Usage: &ssh_plugin_recv($words), where "end_of_$words\n" (case-insensitive)
 # marks the end of the list.
 # Returns ("end_of_$words", key1, value1, key2, value2, ...) on success,
 # or an empty list on failure.
 sub ssh_plugin_recv
 {
 my $words = shift;
 my @pairs; # accumulated list of (key, value) pairs

 # read each line from the server
 while (<>) {
 chomp; # discard newlines
 # return the end marker and list of pairs if the end marker is seen
 return ($_, @pairs) if /^end_of_$words$/i; # case-insensitive

 my ($key, $value) = split(':', $_, 2);
 $key = lc($key); # keys are case-insensitive: translate to lowercase

 push(@pairs, $key, $value);
 }

 return undef; # return an empty list if no end marker was seen
 }
All plugins start by reading a list of parameters from the
 server, so we provide a shorthand function for that:
 # Read a list of parameters from the server.
 sub ssh_plugin_params { &ssh_plugin_recv("params"); }
The plugin sends messages back to the server by writing
 single-word tokens or “key:value” pairs, each on a separate line, to
 the plugin’s standard output stream:
 # Send a message to the server.
 # Usage: &ssh_plugin_send($token) to send "$token\n"
 # or &ssh_plugin_send($key, $value) to send "$key:$value\n".
 sub ssh_plugin_send
 {
 local $| = 1; # flush data to pipe after every write, to avoid buffering
 print join(':', @_), "\n";
 }
Special messages are used to indicate success or failure of
 the operation performed by the plugin:
 # Send success or failure messages to the server.
 sub ssh_plugin_success { &ssh_plugin_send("success"); }
 sub ssh_plugin_failure { &ssh_plugin_send("failure"); }
The server doesn’t examine the exit status values returned by
 the plugin; it only notices success or failure messages.
 Nevertheless, it’s good form to return a zero or nonzero exit status
 value for success or failure, respectively.

11.7.1.3 Creating a customized password-change plugin

Now that we’ve created the Net::SSH::Tectia::Plugin package, let’s
 write our own password-change plugin script with it. This might be
 useful if passwords are stored in some kind of nonstandard external
 database, and are changed by a mechanism other than a traditional
 passwd program, so that
 ssh-passwd-plugin can’t be used.
The plugin starts by reading parameters from the server, which
 include the username as well as old and new passwords supplied by
 the client:
 #!/usr/bin/perl -w
 use strict;
 use Net::SSH::Tectia::Plugin;
 my ($end, %params) = &ssh_plugin_params();
The keys and values for the parameters are stored in the
 %params hash for easy
 retrieval.
The plugin sends error messages back to the server using
 error_msg and error_log keys, which correspond to the
 $ERROR_DISPLAY and $ERROR_LOG special response values used by
 ssh-passwd-plugin:
 sub ssh_plugin_error_msg { &ssh_plugin_send("error_msg", @_); }
 sub ssh_plugin_error_log { &ssh_plugin_send("error_log", @_); }
It’s a good idea for the plugin to check for and log protocol
 violations:
 sub ssh_plugin_die
 {
 &ssh_plugin_error_log(@_);
 &ssh_plugin_failure();
 exit(2);
 }
 &ssh_plugin_die("missing end marker for params") unless defined($end);
 &ssh_plugin_die("missing user_name") unless exists($params{"user_name"});
 &ssh_plugin_die("missing old_password") unless exists($params{"old_password"});
 &ssh_plugin_die("missing new_password") unless exists($params{"new_password"});
Finally, the plugin changes the password, in our example using
 a change_password function that
 updates the database, and indicates the result of the operation to
 the server, which forwards it back to the client:
 my $result = &change_password($params{"user_name"},
 $params{"old_password"},
 $params{"new_password"});

 if ($result eq "success") {
 &ssh_plugin_success();
 exit(0);
 } else {

 &ssh_plugin_error_msg($result); # tell the client why it failed
 &ssh_plugin_failure();
 exit(1);
 }
The complete code for our plugin is shown in Example 11-1.
Example 11-1. Our password-change plugin
#!/usr/bin/perl -w

use strict;
use Net::SSH::Tectia::Plugin;

my ($end, %params) = &ssh_plugin_params();

sub ssh_plugin_error_msg { &ssh_plugin_send("error_msg", @_); }
sub ssh_plugin_error_log { &ssh_plugin_send("error_log", @_); }

sub ssh_plugin_die
{
&ssh_plugin_die("missing end marker for params") unless defined($end);
&ssh_plugin_die("missing user_name") unless exists($params{"user_name"});
&ssh_plugin_die("missing old_password") unless exists($params{"old_password"});
&ssh_plugin_die("missing new_password") unless exists($params{"new_password"});

my $result = &change_password($params{"user_name"},
 $params{"old_password"},
 $params{"new_password"});

if ($result eq "success") {
 &ssh_plugin_success();
 exit(0);
} else {
 &ssh_plugin_error_msg($result); # tell the client why it failed
 &ssh_plugin_failure();
 exit(1);
}

The server is supposed to pass the value for its PasswdPath keyword to the plugin using the
 SSH2_PASSWD_PATH environment
 variable, which could be accessed as:
 my $passwd = $ENV{"SSH2_PASSWD_PATH"};
However, the server doesn’t currently do this (as of Tectia
 Version 4.1).

11.7.2 A Plugin for Keyboard-Interactive Authentication

Keyboard-interactive authentication, including one-time
 passwords and challenge-response authentication, was covered in Chapter 5. [5.4.5] Here we’ll show how to
 construct a plugin with our Net::SSH::Tectia::Plugin package to hook
 into keyboard-interactive authentication. It will prompt the user for
 some personal information, which is recorded (perhaps at account
 creation time) in a database.[164]
The plugin starts by reading parameters from the server:
 #!/usr/bin/perl -w
 use strict;
 use Net::SSH::Tectia::Plugin;

 sub ssh_plugin_die
 {
 &ssh_plugin_failure();
 exit(2);
 }

 my ($end_params, %params) = &ssh_plugin_params();
 &ssh_plugin_die() unless defined($end_params);
The plugin checks for protocol violations, such as a missing end
 marker for the parameters, and indicates failure using the ssh_plugin_die function.
The parameters are stored in the %params hash for easy retrieval. Keys
 supplied by the server include:
	user_name
	The username requested by the client (to be used on the
 server).

	host_ip
	The local (server) host address.

	host_name
	The local (server) hostname.

	remote_user_name
	The remote (client) username. This is sent only if it is
 known by the server from an earlier hostbased
 authentication.

	remote_host_ip
	The remote (client) host address.

	remote_host_name
	The remote (client) hostname.

Warning
The RFC.kbdint_plugin_protocol file in the
 source distribution only defines the parameter’s user_name, remote_host_ip, and remote_host_name. The Tectia plugin
 protocol requires plugins to ignore unrecognized parameters.

The keyboard-interactive plugin next sends a list of prompts to
 be displayed by the client:
 &ssh_plugin_send("instruction", "Please provide some personal information.");
 &ssh_plugin_send("req", "Favorite color: ");
 &ssh_plugin_send("req", "Pet's name: ");
 &ssh_plugin_send("req_echo", "Do you like chocolate? ");
 &ssh_plugin_send("end_of_requests");
The optional “instruction” message is used to display
 introductory information.
Warning
Although the SSH-2 protocol (as described in the IETF SECSH
 draft) supports newlines in the instruction string, there is no way
 to send them using the Tectia plugin protocol, which uses newlines
 as delimiters. If multiple instruction strings are sent, only the
 last one is used by the server.

Responses collected by the client are not echoed for prompts
 specified by req messages. If the
 response should be echoed, then the req_echo message can be used instead.
The list of prompts ends with the end_of_requests marker. When the server
 reads the marker, it sends the list of requests to the client.
After the client collects the replies and sends them back to the
 server, the server forwards them to the plugin using the same kind of
 list:
 my ($end_replies, @replies) = &ssh_plugin_recv("replies");
 &ssh_plugin_die() unless defined($end_replies);
The replies are stored in the @replies list as a series of (key,value)
 pairs; each reply pair corresponds to a request prompt. We use a list
 rather than a hash because the server uses a reply message for each response value, but
 the plugin can step through the list to set up a %replies hash for easy retrieval, checking
 for and rejecting protocol violations as it does so:
 my %replies;
 foreach my $reply qw(color petname chocolate) {
 my ($key, $value) = splice(@replies, 0, 2);
 &ssh_plugin_die() unless defined($key) && $key eq "reply" &&
 defined($value);
 $replies{$reply} = $value;
 }
 &ssh_plugin_die() if @replies; # too many replies
Finally, the plugin uses any subset of the parameters and the
 replies collected from the user for authentication, in our example
 using a verify_personal_info
 function, and indicates the result of the operation to the server,
 which forwards it back to the client:
 my $result = &verify_personal_info($params{"user_name"},
 # ... and other params, if relevant ...

 $replies{"color"},
 $replies{"petname"},
 $replies{"chocolate"});

 if ($result eq "success") {
 &ssh_plugin_success();
 exit(0);
 } else {
 &ssh_plugin_failure();
 exit(1);
 }
Here’s an example of keyboard-interactive authentication in
 action, shown from the client’s perspective:
 $ ssh server.example.com
 Keyboard-interactive:
 Plugin authentication
 Please provide some personal information.
 Favorite color: green < ... not echoed ... >
 Pet's name: Elvis < ... not echoed ... >
 Do you like chocolate? yes < ... echoed ... >
 Authentication successful.
 < ... login session begins ... >
Of course, a GUI-based SSH client could display the information
 in a different format.
The plugin can perform additional rounds of request/reply
 interactions if needed.
For example, if some of the responses were malformed, the plugin
 can ask again; in this case, an instruction message is often used to provide
 guidance about allowable values:
 unless ($replies{"chocolate"} eq "yes" ||
 $replies{"chocolate"} eq "no") {
 &ssh_plugin_send("instruction", "Please answer \"yes\" or \"no\".");
 &ssh_plugin_send("req_echo", "Do you like chocolate? ");
 &ssh_plugin_send("end_of_requests");
 }
Subsequent interactions are sometimes needed to collect
 follow-up information whose relevance is based on previous
 responses:
 if ($replies{"chocolate"} eq "yes") {
 &ssh_plugin_send("instruction", "Tell us more about how you like chocolate!");
 &ssh_plugin_send("req", "Light or dark? ");
 &ssh_plugin_send("req", "With nuts? ");
 &ssh_plugin_send("end_of_requests");
 }
More realistic examples of additional queries would be prompting
 to update expired passwords, multistage challenge-response protocols,
 etc.
Only a single plugin can be specified by the AuthKbdInt.Plugin keyword. If multiple
 keyboard-interactive authentication techniques must be supported by
 the plugin, then it should ask the user to pick a technique during an
 initial round of interactions, and pose follow-up queries for specific
 techniques during subsequent rounds.
Tip
To use Tectia’s SecurID plugins along with other techniques
 that are supported by a custom plugin, the custom plugin can be
 written to forward information between the server and the SecurID
 plugins, according to the Tectia plugin protocol. An alternative is
 to recompile the server with built-in support for SecurID,
 eliminating the need for separate SecurID plugins.

The plugin should not implement its own
 retry logic for failed authentications. Instead, it should simply
 indicate failure and let the server manage retry attempts, according
 to the value for the AuthKbdInt.Retries keyword.
The plugin program must be written carefully, since it runs with
 all of the privileges of the SSH server (typically root). For example,
 it’s important to treat all data supplied by the user as potentially
 hostile: consider buffer overruns, special characters used to
 construct filenames, etc. Perl’s “taint mode” is useful for detecting
 possible security problems.
A more subtle danger is information leakage. For example, it
 might seem reasonable for a plugin to fail immediately after the
 initial parameters have been received from the server, if (say) the
 username is found to be invalid. After all, why ask for more
 information if the authentication will fail anyway? The problem with
 this approach is that it allows remote attackers to determine which
 usernames are valid, without authenticating. A system administrator
 might notice large numbers of failed authentications in the system
 logs [5.9], but by then,
 the damage has already been done.
A better approach is to always collect all
 information from the user, and make authentication decisions only
 after this has been done. The design of the prompts can be tricky when
 later interactions depend on the validity of previous responses. In
 some cases, it’s necessary to use “fake” information so that all of
 the interactions will seem plausible when early replies are
 incorrect.
Even timing can be a concern. If authentication is
 computationally expensive, or requires a measurable amount of time to
 complete for other reasons, it may be necessary for the plugin to
 sleep for an equivalent interval when those costly authentication
 steps are skipped, so an attacker can’t tell what’s happening.

11.7.3 A Plugin for External Authorization

Next we’ll write a plugin, once again using our Net::SSH::Tectia::Plugin package, to perform
 external access control. Our plugin will allow guest accounts to log
 in from untrusted systems, but only at certain times.[165] We covered external access control in Chapter 5. [5.5.6]
The plugin starts by reading parameters from the server:
 #!/usr/bin/perl -w
 use strict;
 use Net::SSH::Tectia::Plugin;

 my ($end, %params) = &ssh_plugin_params();

 unless (defined($end)) {
 &ssh_plugin_failure();
 exit(2);
 }
The plugin checks for protocol violations, such as a missing end
 marker for the parameters, and indicates failure (causing access to be
 denied) if any are detected.
The parameters are stored in the %params hash for easy retrieval. The server
 supplies the same keys as for keyboard-interactive plugins. [11.7.2]
The program then uses any of the parameters and other
 information at its disposal to determine if access should be allowed
 or denied:
 my $restrict =
 &account_type($params{"user_name"}) eq "guest" &&
 &host_trust_level($params{"remote_host_ip"},
 $params{"remote_host_name"}) eq "outside" &&
 &schedule(time) eq "prime";
Our example uses an &account_type function to categorize
 usernames, perhaps based on the username itself (like AllowUsers or DenyUsers [5.5.1]) or by looking up
 group memberships (like AllowGroups
 or DenyGroups [5.5.2]). Similarly, an
 &host_trust_level function
 classifies remote hosts, based on the address or hostname (like
 AllowHosts or DenyHosts [5.5.3]).
External authorization programs are especially useful when
 access control decisions must be based on complicated logic or
 information that is not understood directly by the Tectia server. For
 example, netgroups or other databases could be used by the &account_type or &host_trust_level functions to evaluate
 users or hosts, respectively, and other factors such as the time can
 be incorporated, in our example by a &schedule function.
Finally, the program indicates success or failure to the server
 to allow or deny access:
 if (! $restrict) {
 &ssh_plugin_success();
 exit(0);
 } else {

 &ssh_plugin_failure();
 &ssh_plugin_send("error_code", "generic_error");
 &ssh_plugin_send("error_msg", "Remote guest logins are not allowed during prime time.");
 exit(1);
 }
The program can send an error code and message to the server to
 describe failures. The protocol defines only two error codes:
	password_too_old
	The user’s password has expired.

	generic_error
	Some other error occurred.

If the program informs the server about password expiration,
 then the server runs the system password-change program (either the
 default, or the value for the PasswdPath keyword) as a forced command.
 [8.2.3] It does not,
 however, run a password-change plugin, because the plugin applies only
 to the authentication phase, which has already been completed when the
 external authorization program runs.
Warning
In practice, password expiration isn’t very useful for
 external authorization programs, since the programs don’t interact
 (even indirectly) with clients, and passwords are really associated
 with separate authentication techniques that are performed earlier.
 Instead of using the password_too_old error code with an
 external authorization program, use a keyboard-interactive plugin
 [11.7.2] to flexibly
 handle password expiration.
Because that leaves only the generic_error code, the error_code message is itself not very
 useful. Perhaps someday the protocol will be extended to define
 other, more meaningful error codes, if they are needed to modify
 server operation.

The error message is an arbitrary string that explains why
 access has been denied.
Warning
Unfortunately, the server doesn’t currently (as of Tectia V476
 Version 4.1) use the error message string for any purpose
 whatsoever. It isn’t forwarded to the client, so it can be displayed
 by the user, and it isn’t even recorded in the system log or
 mentioned in debug output. [5.9]
It’s still a good idea for external authorization programs to
 send an error message back to the server, however, so that future
 versions of the server might be able to use it.

The external authorization program should be written carefully,
 since it runs with all of the privileges of the SSH server (typically
 root). Perl’s “taint mode” is useful for detecting possible security
 problems.

[161] Alternatively, the ssh-passwd-plugin
 program can be built from the source distribution.

[162] Including metaconfiguration information.

[163] Newlines are not supplied automatically, so most response
 strings will need at least one explicit \n, usually at the end.

[164] See the file RFC.kbdint_plugin_protocol in the
 Tectia distribution for details, and kbdint_plugin_example.sh for another
 example implemented as a shell script.

[165] See the file RFC.authorization_program_protocol.

Chapter 12. Troubleshooting and FAQ

OpenSSH and Tectia are complex products. When a problem occurs, your
 plan of action should be, in order:
	Run the client and server in debug mode.

	Consult archives of questions and answers to see if anyone else
 has encountered and solved this problem.

	Seek help.

Many people jump immediately to Step 3, posting questions in public
 forums and waiting hours or days for a reply, when a simple ssh
 -v or FAQ can clarify the problem in moments. Be a smart and
 efficient technologist, and use your available resources before seeking
 help from the community. (Although the SSH community is eager to help if
 you’ve done your homework.)

Debug Messages: Your First Line of Defense

 SSH clients and servers have debugging built in. When
 invoked with appropriate options, these programs emit messages about their progress and failures. You can use these
 messages to isolate problems.
12.1.1 Client Debugging

Most clients print debug messages when invoked with the
 -v (verbose mode) option: [7.4.17]
 $ ssh -v server.example.com
 $ scp -v myfile server.example.com:otherfile
So many problems can be identified in verbose mode. This should
 be your first instinct whenever you encounter a problem.
Tip
Please take a deep breath and repeat after us:
"ssh -v is my friend....”
"ssh -v is my friend....”
"ssh -v is my friend....”

12.1.2 Server Debugging

The OpenSSH and Tectia servers also print debug messages
 when asked: [5.9]
 # OpenSSH
 $ sshd -d -e

 # Tectia
 $ sshd -v
 $ sshd -d debug_spec
In either case, the server enters a special debugging mode. It
 accepts a single connection, operates normally until the connection
 terminates, and then exits. It doesn’t go into the background or
 create a child process to handle the connection, and it prints
 information on its progress to the screen (that is, to the standard
 error stream).
Tectia has a more complicated system for debugging: numeric
 debugging levels, specified with the -d option,
 where a higher number means more information. [5.9] In fact,
 -v for verbose mode is actually just a shorthand
 for -d2. At higher debug levels, the output is so
 huge that only SSH developers will likely find it of use in tracking
 down obscure problems. But you may need to crank up the level beyond 2
 to see the information you need. For example, to have it report which
 algorithms are negotiated for a connection, use
 -d3. If you get the error message “TCP/IP
 Failure,” turning up to -d5 shows the more
 specific OS-level error message returned from the connection
 attempt.
When debugging a server, remember to avoid port conflicts with
 any other running SSH server. Either terminate the other server, or
 use an alternative port number for debugging via the Port keyword or -p
 option. For example, using OpenSSH syntax, run the server:
 # OpenSSH
 $ sshd -d -e -p 54321
Then use the -p option in the client when
 testing this debugging instance of the server:
 $ ssh -p 54321 localhost
This way, you don’t interrupt or affect another
 sshd in use.
The Top 10 SSH Questions

	Q:
	How do I install my public-key file on the remote host
 for the first time?

	A:
	Connect by password authentication and use your terminal
 program’s copy and paste feature. [12.2.2.4]

	Q:
	I put my SSH public-key file, mykey.pub, into my remote
 SSH directory, but public-key authentication doesn’t
 work.

	A:
	The public key must be referenced in your remote
 authorization file. [12.2.2.4]

	Q:
	Public-key authentication isn’t working.

	A:
	Use ssh -v, and check your keys,
 files, and permissions. [12.2.2.4]

	Q:
	Password authentication isn’t working.

	A:
	Use ssh -v. There are a variety of
 possible causes. [12.2.2.2]

	Q:
	Hostbased authentication isn’t working.

	A:
	Use ssh -v. Check your four control
 files, hostnames, and setuid status of the SSH client program
 or ssh-signer2. [12.2.2.3]

	Q:
	How do I authenticate without typing a password or
 passphrase?

	A:
	ssh-agent, unencrypted keys,
 trusted-host authentication, or Kerberos.

	Q:
	How do I secure FTP with port forwarding?

	A:
	Forward a local port to port 21 on the FTP server for
 the control connection; the data connection is much harder.
 [12.2.5.6]
 Alternatively, use an SSH client with special support for FTP
 forwarding, such as Tectia. [9.2.11] Also
 consider using the SFTP protocol instead of FTP.

	Q:
	X forwarding isn’t working.

	A:
	Don’t set your remote DISPLAY variable manually. (And
 there are other things to check.) [12.2.5.6]

	Q:
	Why don’t wildcards or shell variables work on the scp
 command line?

	A:
	Your local shell expands them before
 scp runs. Escape the special characters.
 [12.2.5.4]

	Q:
	A feature of ssh or scp isn’t working, but I’m sure I’m
 using it correctly.

	A:
	Use ssh -v. Also, the system
 configuration may be overriding your settings.

Problems and Solutions

In this section, we cover a wide range of difficulties,
 organized by category. The sidebar “The Top 10 SSH Questions” lists
 what, in our experience, are the most frequently asked of the frequently
 asked questions. We focus on problems that may occur in many versions of
 the SSH software on diverse operating systems. We don’t address the
 sorts of questions shown next that rapidly become obsolete.
	Compilation problems specific to one operating system, such as
 “HyperLinux beta 0.98 requires the --with-woozle flag”

	Problems and bugs that are specific to one version of SSH,
 particularly older versions

In all questions, we will assume you have already used debug or
 verbose mode (e.g., ssh -v) to isolate the problem.
 (If you haven’t, you should!)
12.2.1 General Problems

	Q:
	The commands ssh, scp, ssh-agent, ssh-keygen, etc., aren’t
 doing what I expect. Even the help messages look weird.

	A:
	Maybe they are Tectia programs when you are expecting
 OpenSSH, or vice versa. Try running these commands to find
 out:
 $ ssh -V
 $ ssh --help

	Q:
	When I try to connect to an SSH server, I get the error
 “Connection refused.”

	A:
	No SSH server is running where you tried to connect.
 Double-check the hostname and TCP port number: perhaps the
 server is running on a port different from the default?

	Q:
	When I log in, the message of the day (/etc/motd) prints twice.

	A:
	Both sshd and the
 login program are printing it. Disable
 sshd’s printing by setting the serverwide
 configuration keyword PrintMotd to no.

	Q:
	When I log in, I see two messages about email, such as “No
 mail” or “You have mail.”

	A:
	Both sshd and the
 login program are checking for mail.
 Prevent sshd from checking by setting the
 serverwide configuration keyword CheckMail to no.

12.2.2 Authentication Problems

12.2.2.1 General authentication problems

	Q:
	The SSH server says “Permission denied” and
 exits.

	A:
	This occurs if all authentication techniques have
 failed. Run your client in debug mode and read the diagnostic
 messages, looking for clues. Also read our solutions to
 specific authentication problems in the rest of this
 section.

	Q:
	How do I authenticate without typing a password or
 passphrase?

	A:
	The four available authentication methods for this
 are:
	Public-key with
 ssh-agent

	Public-key with an unencrypted key on disk (empty
 passphrase)

	Trusted-host

	Kerberos

Automatic authentication has a number of important
 issues you should carefully consider before selecting from the
 preceding list. Read our case study on this topic. [11.1]

	Q:
	I get prompted for my password or passphrase, but before
 I have time to respond, the SSH server closes the
 connection.

	A:
	Your server’s idle timeout value may be too short. If
 you are a system administrator of a Tectia server machine, set
 IdleTimeout to a larger
 value in the serverwide configuration file. [5.3.3.5] If you are
 an end user of OpenSSH, set an idle-timeout value in authorized_keys. [8.2.7]

12.2.2.2 Password authentication

	Q:
	Password authentication isn’t working.

	A:
	Use ssh -v. If the connection is
 being refused altogether, the SSH server is probably not
 running, or you are connecting to the wrong port. Port 22 is
 the default, but the remote system administrator might have
 changed it. If you see “permission denied,” password
 authentication might be disabled in the server.
Make sure the server permits password authentication in
 the serverwide configuration file (PasswordAuthentication yes for
 OpenSSH, AllowedAuthentications
 password for Tectia). Also check your client
 configuration file to make sure you don’t have PasswordAuthentication no.
If you are prompted for your password, but it is
 rejected, you might accidentally be connecting to the wrong
 account. Does your local username differ from the remote
 username? Then you must specify the remote username when
 connecting:
 $ ssh -l my_remote_username server.example.com
 $ scp myfile my_remote_username@server.example.com:
If this still doesn’t work, check your local client
 configuration file (~/.ssh/config or ~/.ssh2/ssh2_config) to make sure
 you haven’t accidentally set the wrong value for the User keyword. In particular, if your
 configuration file contains Host values with wildcards, check
 that your current command line (the one that isn’t working)
 isn’t matching the wrong section in the file. [7.1.2.4]
One common problem on the server side involves OpenSSH
 and Pluggable Authentication Modules configuration. PAM is a
 general system for performing authentication, authorization,
 and accounting in an application-independent fashion. If your
 operating system supports PAM (as Linux and HPUX do, for
 example), OpenSSH will probably have been automatically
 compiled to use it. Unless you take the extra step of
 configuring PAM to support SSH, all password authentication
 will mysteriously fail. This is usually just a matter of
 copying the appropriate sshd.pam file from the contrib directory in the OpenSSH
 distribution, naming the copy “sshd,” and placing it in the
 PAM configuration directory (usually /etc/pam.d). The contrib directory contains several
 example files for different flavors of Unix. For example, on a
 Red Hat Linux system:
 # cp contrib/redhat/sshd.pam /etc/pam.d/sshd
 # chown root.root /etc/pam.d/sshd
 # chmod 644 /etc/pam.d/sshd
If OpenSSH isn’t using PAM, and password authentication
 still isn’t working, the compilation options --with-md5-passwords or --without-shadow might be relevant.
 These make no difference if PAM support is enabled in OpenSSH,
 because they deal with how OpenSSH reads the Unix
 passwd map. When using PAM, the OpenSSH
 code doesn’t read the passwd map directly; the PAM
 libraries do it instead. Without PAM, though, if your system
 is using MD5-hashed passwords instead of the more traditional
 crypt (DES) hash, you must use --with-md5-passwords. You can tell
 which hash your system is using by inspecting the /etc/passwd and /etc/shadow files. The hashed
 password is the second field in each entry; if the password
 field in /etc/passwd is
 just “x”, then the real entry is in /etc/shadow instead. MD5 hashes are
 much longer and contain a wider range of characters:
 # /etc/shadow, MD5 hash
 test:1tEMXcnZB$rDEZbQXJzUz4g2J4qYkRh.:...

 # /etc/shadow, crypt hash
 test:JGQfZ8DeroV22:...
Finally, you can try the compilation option --without-shadow if you suspect
 OpenSSH is trying to use the shadow password file, but your
 system doesn’t use it.

	Q:
	The server won’t let me use an empty password.

	A:
	Empty passwords are insecure and should be avoided.
 Nevertheless, you can set PermitEmptyPasswords yes in the
 serverwide configuration file. [5.4.2.2]

12.2.2.3 Hostbased authentication

	Q:
	Hostbased authentication isn’t working.

	A:
	Use ssh -v. If everything looks
 right, check the following. Suppose the client user is
 orpheus@earth, and the target account is
 orpheus@hades--that is, on host
 earth, user orpheus invokes ssh
 hades.
For OpenSSH:
	PubkeyAuthentication
 yes belongs in the server and client
 configurations.

	EnableSSHKeysign
 yes must be in the client configuration.

	A copy of earth’s public host key must be in
 hades:/etc/ssh/ssh_known_hosts
 (or hades:~orpheus:/.ssh/known_hosts2).

	The entry may be in the target account’s known hosts
 file instead, i.e., in hades:~orpheus/.ssh/known_hosts.
 Take care that “earth” is the canonical name of the client
 host from the server’s point of view. That is, if the SSH
 connection is coming from the address 192.168.10.1, then
 gethostbyname(192.168.10.1) on
 hades must return “earth,” and not a nickname or alias for
 the host (e.g., if the hostname is
 river.earth.net, the lookup must not
 return just “river”). Note that this can involve multiple
 naming services, since gethostbyname can be configured
 to consult multiple sources to determine a translation
 (e.g., DNS, NIS, /etc/hosts). See /etc/nsswitch.conf. If your
 systems don’t agree on canonical hostnames, you’ll have no
 end of trouble with hostbased authentication. You can work
 around such problems to an extent by manually adding extra
 host nicknames to the known hosts file, like this:
 earth,gaia,terra 1024 37 71641647885140363140390131934...

For Tectia:
	AllowedAuthentications must
 include the value hostbased in the server and
 client configurations.

	ssh-signer must be setuid root.
 More precisely, it needs to be able to read the private
 host key, which in the normal installation means it must
 be setuid root.

	A copy of earth’s public host key in hades:/etc/ssh2/knownhosts/earth.ssh-dss.pub
 (or hades:~orpheus:/.ssh2/knownhosts/earth.ssh-dss.pub,
 if you specified UserKnownHosts
 yes on the server).

	Regarding canonical hostnames, the same comments as
 for OpenSSH apply.

12.2.2.4 Public-key authentication

	Q:
	How do I install my public key file on the remote host
 the first time?

	A:
	Here’s the general method:
	Generate a key pair.

	Copy the text of the public key into your computer’s
 clipboard or other cut/paste buffer.

	Log into the remote host via SSH with password
 authentication, which doesn’t require any special files in
 your remote account.

	Edit the appropriate authorization and key files on
 the remote host:
	For OpenSSH, append the public key to ~/.ssh/authorized_keys.
 Alternatively, run the program
 ssh-copy-id. [2.4.3]

	For Tectia, paste the public key into a new
 .pub file in
 ~/.ssh2 (say,
 newkey.pub), and
 append the line Key
 newkey.pub to ~/.ssh2/authorization.

	Log out from the remote host.

	Log back into the remote host using public-key
 authentication.

When editing the remote authorization file, make sure
 your text editor doesn’t insert line breaks into the middle of
 a public key. OpenSSH public keys are very long and must be
 kept on a single line.

	Q:
	I put my SSH public-key file, mykey.pub, into my remote
 SSH directory, but public-key authentication doesn’t
 work.

	A:
	Placing a valid public-key file (e.g., mykey.pub) in your SSH directory
 isn’t sufficient. For OpenSSH you must append the key (i.e.,
 the contents of mykey.pub) to ~/.ssh/authorized_keys. For Tectia,
 you must add a line of text to ~/.ssh2/authorization, Key mykey.pub.

	Q:
	Public-key authentication isn’t working.

	A:
	Invoke the client in debug mode (ssh
 -v). Make sure:
	Your local client is using the expected identity
 file

	The correct public key is on the remote host in the
 right location

	Your remote home directory, SSH directory, and other
 SSH-related files have the correct permissions [5.3.2.1]

	Q:
	I’m being prompted for my login password instead of my
 public-key passphrase. Or, my connection is rejected with the
 error message “No further authentication methods available.”
 (Tectia)

	A:
	There are several possible causes for both of these
 problems:
	Public-key authentication must be enabled in both
 the client and server (OpenSSH PubkeyAuthentication yes, Tectia
 AllowedAuthentications
 publickey).

	Specify your remote username with
 -l (lowercase L) if it differs from
 your local username, or else the SSH server will examine
 the wrong remote account:
 $ ssh -l jones server.example.com

	Check the file permissions in your server account.
 If certain files or directories have the wrong owner or
 careless access permissions, the SSH server refuses to
 perform public-key authentication. This is a security
 feature. Run ssh in verbose mode to
 reveal the problem:
 $ ssh -v server.example.com
 ...
 server.example.com: Remote: Bad file modes for /u/smith/.ssh
In your server account, make sure that the following
 files and directories are owned by you and are
 not world-writable: ~ (your home
 directory), ~/.ssh,
 ~/.ssh/authorized_keys,
 ~/.ssh2, ~/.rhosts, and ~/.shosts.

	For Tectia, if you use the -i
 option to specify an identification file:
 $ ssh -i my-identity server.example.com
check that my-identity is an
 identification file, not a private-key file. (In contrast,
 ssh -i for OpenSSH expects a
 private-key file.) Remember that Tectia identification
 files are text files containing the names of private
 keys.

	Q:
	I’m being prompted for the passphrase of the wrong
 key.

	A:
	Make sure your desired public key is in your
 authorization file on the SSH server machine. Also check for
 typographical errors in any options specified for the key.
 [8.2] A mistyped
 option causes the associated key line to be skipped silently.
 Remember that options are separated by commas, not
 whitespace.

	Q:
	I ran ssh-agent, but when I run ssh-add to add keys, it
 cannot find the agent.

	A:
	ssh-add can communicate with
 ssh-agent only if certain environment
 variables are set. These variables--SSH_AUTH_SOCK for OpenSSH and
 SSH2_AUTH_SOCK for
 Tectia—direct ssh-add to the socket used
 by ssh-agent. The environment variables
 are set automatically if you run the agent correctly. [6.3.2] This implies
 that any shells run before ssh-agent
 won’t know how to contact it.
In the shell where you’re running the failed
 ssh-add, check for the presence of the
 appropriate environment variable:
 $ env | grep SSH
 SSH_AGENT_PID=7206
 SSH_AUTH_SOCK=/tmp/ssh-gckksA7161/agent.7161
If you don’t see it, then either you didn’t run the
 agent correctly, you ran this shell before you ran
 ssh-agent, or you’re not properly
 exporting the SSH_AUTH_SOCK
 variable. If you do see the socket variable, then perhaps it
 has an old value (from a previously run and now-dead agent).
 Try opening a new shell and running
 ssh-add.

12.2.2.5 PGP key authentication

	Q:
	After the PGP passphrase prompt, I am being prompted for
 my login password.

	A:
	If you get prompted for your PGP key, and then your
 password:
 Passphrase for pgp key "mykey": ********
 smith's password:
first make sure you’re typing your PGP passphrase
 correctly. (For instance, PGP-encrypt a file with that public
 key and decrypt it.) If so, then there might be an
 incompatibility between the PGP implementations on your client
 and server machines. We’ve seen this behavior when the PGP key
 (generated on the client machine) doesn’t have sufficient bits
 for the PGP implementation on the server machine. Generate a
 new key on the server machine.

	Q:
	I get “Invalid pgp key id number ’0276C297’”.

	A:
	You probably forgot the leading “0x” on the key ID, and
 SSH is trying to interpret a hexadecimal number as a decimal.
 Use PgpKeyId 0x0276C297
 instead.

12.2.3 Key and Agent Problems

12.2.3.1 ssh-keygen

	Q:
	I generated an OpenSSH key and tried using it with
 Tectia, but it didn’t work. (Or vice versa.)

	A:
	This is normal. OpenSSH and Tectia (SECSH) keys aren’t
 compatible. However, you can convert one to the other with
 ssh-keygen. [6.2.1]

	Q:
	Each time I run ssh-keygen, it overwrites my default
 identity file.

	A:
	Tell ssh-keygen to write its output
 to a different file. For ssh-keygen in
 OpenSSH, use the -f option. For Tectia,
 specify the filename as the last argument on the command line;
 no option is needed.

	Q:
	Can I change the passphrase for a key without
 regenerating the key?

	A:
	Yes. For ssh-keygen in OpenSSH, use
 the -N option, and for Tectia use the
 -p option.

	Q:
	How do I generate a host key?

	A:
	Generate a key with an empty passphrase and install it
 in the correct location. The OpenSSH source distribution has a
 Makefile target to do this:
 # cd directory_containing_source_code
 # make host-key Will not overwrite existing keys
 # make host-key-force Will overwrite existing keys
or you can do it manually:
 # ssh-keygen -t rsa1 -f /usr/local/etc/ssh_host_key -N ""
 # ssh-keygen -t dsa -f /usr/local/etc/ssh_host_dsa_key -N ""
 # ssh-keygen -t rsa -f /usr/local/etc/ssh_host_rsa_key -N ""
Likewise, the Tectia source distribution has a Makefile target:
 # cd directory_containing_source_code
 # make generate-host-key Will not overwrite existing key
or you can do it manually:
 # ssh-keygen -P -t dsa -c "DSA hostkey" /etc/ssh2/hostkey

	Q:
	Generating a key takes a long time.

	A:
	Yes it may, depending on the speed of your CPU and the
 number of bits you have requested. DSA keys tend to take
 longer than RSA keys.

	Q:
	How many bits should I make my keys?

	A:
	We recommend at least 1024 bits for strong
 security.

	Q:
	What does oOo.oOo.oOo.oOo mean, as printed by Tectia’s
 ssh-keygen?

	A:
	The manpage calls it a “progress indicator.” We think
 it’s an ASCII representation of a sine wave. Or the sound of a
 chattering gorilla. You can hide it with the
 -q flag.

12.2.3.2 ssh-agent and ssh-add

	Q:
	My ssh-agent isn’t terminating after I log out.

	A:
	If you use the single-shell method to start an agent,
 this is normal. You must terminate the agent yourself, either
 manually (bleah) or by including appropriate lines in your
 shell configuration files. [6.3.2.1] If you use
 the subshell method, the agent automatically terminates when
 you log out (actually, when you exit the subshell). [6.3.2.2]

	Q:
	When I invoke ssh-add and type my passphrase, I get the
 error message “Could not open a connection to your
 authentication agent.”

	A:
	Follow this debugging process:
	Make sure you are running an
 ssh-agent process:
 $ /usr/bin/ps -ef | grep ssh-agent
 smith 22719 1 0 23:34:44 ? 0:00 ssh-agent
If not, you need to run an agent before
 ssh-add will work.

	Check that the agent’s environment variables are
 set:
 $ env | grep SSH
 SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22719-agent
 SSH_AGENT_PID=22720
If not, then you probably ran
 ssh-agent incorrectly, like
 this:
 # Wrong!
 $ ssh-agent
For the single-shell method, you must use
 eval with backquotes:
 $ eval `ssh-agent`
Or for the subshell method, you must instruct
 ssh-agent to invoke a shell:
 $ ssh-agent $SHELL

	Make sure the agent points to a valid socket:
 $ ls -lF $SSH_AUTH_SOCK
 prwx------ 1 smith 0 May 14 23:37 /tmp/ssh-smith/ssh-22719-agent|
If not, your SSH_AUTH_SOCK variable might be
 pointing to an old socket from a previous invocation of
 ssh-agent, due to user error.
 Terminate and restart the agent properly.

12.2.3.3 Per-account authorization files

	Q:
	My per-account server configuration isn’t taking
 effect.

	A:
	Check the following:
	You might be confused about which versions of SSH
 use which files:
	OpenSSH
	~/.ssh/authorized_keys

	Tectia
	~/.ssh2/authorization

	Remember that the authorized_keys file contains
 keys, whereas the Tectia authorization file contains
 directives referring to other key files.

	You might have a typographical error in one of these
 files. Check the spelling of options, and remember to
 separate OpenSSH authorized_keys options with
 commas, not whitespace. For example:
 # correct
 no-x11-forwarding,no-pty 1024 35 8697511247987525784866526224505...

 # INCORRECT (will silently fail)
 no-x11-forwarding no-pty 1024 35 8697511247987525784866526224505...
 # ALSO INCORRECT (note the extra space after "no-x11-forwarding,")
 no-x11-forwarding, no-pty 1024 35 8697511247987525784866526224505...

12.2.4 Server Problems

12.2.4.1 sshd_config, sshd2_config

	Q:
	How do I get sshd to recognize a new configuration
 file?

	A:
	You can terminate and restart sshd,
 but there’s quicker way: send the “hangup” signal (SIGHUP) to
 sshd with kill
 -HUP.

	Q:
	I changed the sshd config file and sent SIGHUP to the
 server. But it didn’t seem to make any difference.

	A:
	sshd may have been invoked with a
 command-line option that overrides that keyword. Command-line
 options remain in force and take precedence over
 configuration-file keywords. Try terminating and restarting
 sshd.

12.2.5 Client Problems

12.2.5.1 General client problems

	Q:
	A feature of ssh or scp isn’t working, but I’m sure I’m
 using it correctly.

	A:
	The feature might have been disabled by a system
 administrator, either when the SSH software was compiled
 (Chapter 4) or during
 serverwide configuration (Chapter 5). Compile-time flags
 cannot be checked easily, but serverwide configurations are
 found in the files /etc/ssh/sshd_config (OpenSSH) or
 /etc/ssh2/sshd2_config
 (Tectia). Ask your system administrator for assistance.

12.2.5.2 Client configuration file

	Q:
	ssh or scp is behaving unexpectedly, using features I
 didn’t request.

	A:
	The program might be responding to keywords specified in
 your client configuration file. [7.1.2] Remember that
 multiple sections of the config file apply if multiple
 Host lines match the remote
 machine name you specified on the command line.

	Q:
	My OpenSSH ~/.ssh/config file doesn’t seem to work
 right.

	A:
	Remember that after the first use of a Host directive in the config file, all statements are
 inside some Host block
 (because one Host block is
 terminated only by the start of another). The
 ssh manpage suggests that you put
 defaults at the end of the config file, which is correct; when
 looking up a directive in the config
 file, ssh uses the first match it finds,
 so defaults should go after any Host blocks. But don’t let your own
 indentation or whitespace fool you. The end of your file might
 look like this:
 # last Host block
 Host server.example.com
 User linda

 # defaults
 User smith
You intend that the username for logging into
 server.example.com is “linda”, and the
 default username for hosts not explicitly listed earlier is
 “smith”. However, the line User
 smith is still inside the Host server.example.com block. And
 since there’s an earlier User statement for
 server.example.com, User smith never matches anything,
 and ssh appears to ignore it. The right
 thing to do is this:
 # last Host block
 Host server.example.com
 User linda

 # defaults
 Host *
 User smith

	Q:
	My Tectia ~/.ssh2/ssh2_config file doesn’t seem to work
 right.

	A:
	See our answer to the previous question for OpenSSH.
 However, Tectia has the opposite precedence rule: if multiple
 configurations match your target, then the
 last, not the first, prevails. Therefore,
 your defaults go at the beginning of the file.

12.2.5.3 ssh

	Q:
	I want to suspend ssh with the escape sequence but I am
 running more than two levels of ssh (machine to machine to
 machine). How do I suspend an intermediate ssh?

	A:
	One method is to start each ssh
 with a different escape character; otherwise, the earliest
 ssh client in the chain interprets the
 escape character and suspends.
Or you can be clever. Remember that if you type the
 escape character twice, that’s the meta-escape: it allows you
 to send the escape character itself, circumventing its usual
 special function. So, if you have several chained
 ssh sessions all using the default escape
 character ~, you can suspend the n
 th one by pressing the Return key, then
 n tildes, then
 Control-Z.

	Q:
	I ran an ssh command in the background on the command
 line, and it suspended itself, not running unless I
 "fg" it.

	A:
	Use the -n command-line option,
 which instructs ssh not to read from
 stdin (actually, it reopens stdin on /dev/null instead of your
 terminal). Otherwise, the shell’s job-control facility
 suspends the program if it reads from stdin while in the
 background. Or better: use ssh -f
 (possibly with -N). [9.2.6]

	Q:
	ssh prints “Compression level must be from 1 (fast) to 9
 (slow, best)” and exits.

	A:
	Your CompressionLevel
 is set to an illegal value for this host, probably in your
 ~/.ssh/config file. It
 must be an integer between 1 and 9, inclusive. [7.4.14]

	Q:
	ssh prints “Cannot fork into background without a
 command to execute” and exits.

	A:
	You used the -f flag of
 ssh, didn’t you? This tells the client to
 put itself into the background as soon as authentication
 completes, and then execute whatever remote command you
 requested. But, you didn’t provide a remote command. You typed
 something like:
 # This is wrong
 $ ssh -f server.example.com
The -f flag makes sense only when
 you give ssh a command to run after it
 goes into the background:
 $ ssh -f server.example.com /bin/who

	Q:
	ssh prints “No host key is known for <server name>
 and you have requested strict checking (or ‘cannot confirm
 operation when running in batch mode'),” and exits.

	A:
	The client can’t find the server’s host key in its
 known-hosts list, and it is configured not to add it
 automatically (or is running in batch mode, so it can’t prompt
 you about adding it). You must add it manually to your
 per-account or systemwide known-hosts files.

	Q:
	ssh prints “Selected cipher type...not supported by
 server” and exits.

	A:
	You requested that ssh use a
 particular encryption cipher, but the SSH server doesn’t
 support it. Normally, the SSH client and server negotiate to
 determine which cipher to use, so you probably forced a
 particular cipher by providing the -c
 flag on the ssh command line or by using
 the Cipher keyword in the
 configuration file. Either don’t specify a cipher and let the
 client and server work it out, or select a different
 cipher.

	Q:
	ssh prints “channel_request_remote_forwarding: too many
 forwards” and exits.

	A:
	ssh has a static limit of 100
 forwardings per session, and you’ve requested more.

12.2.5.4 scp

	Q:
	scp printed an error message: “Write failed flushing
 stdout buffer. write stdout: Broken pipe.” or “packet too
 long”.

	A:
	Your shell startup file (e.g., ~/.cshrc, ~/.bashrc), which is run when
 scp connects, might be writing a message
 on standard output. These interfere with the communication
 between the two scp programs. If you
 don’t see any obvious output commands, look for
 stty or tset
 commands that might be printing something.
Either remove the offending statement from the startup
 file, or suppress it for noninteractive sessions:
 if ($?prompt) then
 echo 'Here is the message that screws up scp.'
 endif

	Q:
	scp printed an error message, “Not a regular
 file.”

	A:
	Are you trying to copy a directory? Use the
 -r option for a recursive copy.
 Otherwise, you may be trying to copy a special file that it
 doesn’t make sense to copy, such as a device node, socket, or
 named pipe. If you do an ls -l of the
 file in question and the first character in the file
 description is something other than "-" (for
 a regular file) or “d” (for a directory), this is probably
 what’s happening. You didn’t really want to copy that file,
 did you?

	Q:
	Why don’t wildcards or shell variables work on the scp
 command line?

	A:
	Remember that wildcards and variables are expanded by
 the local shell first, not on the remote
 machine. This happens even before scp
 runs. So if you type:
 $ scp server.example.com:a* .
the local shell attempts to find local files matching
 the pattern server.example.com:a*. This is
 probably not what you intended. You probably wanted files
 matching a* on
 server.example.com to be copied to the
 local machine.
Some shells, notably the C shell and its derivatives,
 simply report “No match” and exit. The Bourne shell and its
 derivatives (sh,
 ksh, bash), finding
 no match, will actually pass the string server.example.com:a* to the server
 as you’d hoped.
Similarly, if you want to copy your remote mail file to
 the local machine, the command:
 $ scp server.example.com:$MAIL .
might not do what you intend. $MAIL is expanded locally before
 scp executes. Unless (by coincidence)
 $MAIL is the same on the
 local and remote machines, the command won’t behave as
 expected.
Don’t rely on shell quirks and coincidences to get your
 work done. Instead, escape your wildcards and variables so
 that the local shell won’t attempt to expand them:
 $ scp server.example.com:a* .
 $ scp 'server.example.com:$MAIL' .

	Q:
	I used scp to copy a file from the local machine to a
 remote machine. It ran without errors. But when I logged into
 the remote machine, the file wasn’t there!

	A:
	By any chance, did you omit a colon? Suppose you want to
 copy the file myfile from
 the local machine to server.example.com.
 A correct command is:
 $ scp myfile server.example.com:
but if you forget the final colon:
 # This is wrong!
 $ scp myfile server.example.com
myfile gets copied
 locally to a file called
 "server.example.com“. Check for such a
 file on the local machine.

	Q:
	How can I give somebody access to my account by scp to
 copy files, but not give full login permissions?

	A:
	Bad idea. Even if you can limit the access to
 scp, this doesn’t protect your account.
 Your friend could run:
 $ scp evil_authorized_keys you@your.host:.ssh/authorized_keys
Oops, your friend has just replaced your authorized_keys file, giving
 himself full login permissions. Maybe you can accomplish what
 you want with a clever forced command, limiting the set of
 programs your friend may run in your account. [8.2.3.3]

	Q:
	scp -p preserves file timestamps and
 modes. Can it preserve file ownership?

	A:
	No. Ownership of remote files is determined by SSH
 authentication. Suppose user smith has accounts on local
 computer L and remote computer R. If the local smith copies a
 file by scp to the remote smith account,
 authenticating by SSH, then the remote file is owned by the
 remote smith. If you want the file to be
 owned by a different remote user, scp
 must authenticate as that different user.
 scp has no other knowledge of users and
 uids, and besides, only root can change file ownership (on
 most modern Unix variants, anyway).

	Q:
	OK, scp -p doesn’t preserve file ownership information.
 But I am the superuser, and I’m trying to copy a directory
 hierarchy between machines (scp -r) and the files have a
 variety of owners. How can I preserve the ownership
 information in the copies?

	A:
	Don’t use scp for this purpose.
 There are better ways, with tar:
 # tar cpf - local_dir | (ssh remote_machine "cd remote_dir; tar xpf -")
or rsync:
 # rsync -ra -e ssh local_dir remote_machine:/remote_dir
The rsync method has the advantage
 of being interruptible and resumable without retransferring
 files.

12.2.5.5 sftp

	Q:
	sftp reports “Cipher <name> is not supported.
 Connection lost.”

	A:
	Internally, sftp invokes an
 ssh command to contact
 sftp-server. [3.7.3] It searches
 the user’s PATH to locate the ssh
 executable rather than a hardcoded location. If you have more
 than one SSH product installed on your system,
 sftp might invoke the wrong
 ssh program. This can produce the error
 message shown.

	Q:
	sftp reports “ssh_packet_wrapper_input: invalid packet
 received.”

	A:
	Although this error appears mysterious, its cause is
 mundane. A command in the remote account’s shell startup file
 is printing something to standard output, even though stdout
 isn’t a terminal in this case, and sftp
 is trying to interpret this unexpected output as part of the
 SFTP packet protocol. It fails and dies.
You see, sshd uses the shell to
 start the sftp-server subsystem. The
 user’s shell startup file prints something, which the SFTP
 client tries to interpret as an SFTP protocol packet. This
 fails, and the client exits with the error message; the first
 field in a packet is the length field, which is why it’s
 always that message.
To fix this problem, be sure your shell startup file
 doesn’t print anything unless it’s running interactively.
 tcsh, for example, sets the variable
 $interactive if stdin is a
 terminal.

12.2.5.6 Port forwarding

	Q:
	I’m trying to do port forwarding, but ssh complains:
 “bind: Address already in use.”

	A:
	The port you’re trying to forward is already being used
 by another program on the listening side (the local host if
 it’s a -L forwarding or the remote host
 if it’s a -R). Try using the
 netstat -a command, available on most
 Unix implementations and some Windows platforms. If you see an
 entry for your port in the LISTEN state, you know that
 something else is using that port. Check to see whether you’ve
 inadvertently left another ssh command
 running that’s forwarding the same port. Otherwise, just
 choose another, unused port to forward.
This problem can occur when there doesn’t appear to be
 any other program using your port, especially if you’ve been
 experimenting with the forwarding feature and have repeatedly
 used the same ssh to forward the same
 port. If the last one of these died unexpectedly (you
 interrupted it, or it crashed, or the connection was forcibly
 closed from the other side, etc.), the local TCP socket may
 have been left in the TIME_WAIT state (you may see this if
 you used the netstat program as described
 earlier). When this happens, you have to wait a few minutes
 for the socket to time out of this state and become free for
 use again. Of course, you can just choose another port number
 if you’re impatient.

	Q:
	How do I secure FTP with port forwarding?

	A:
	This is a complex topic. [11.2] FTP has two
 types of TCP connections: control and data. The control
 connection carries your login name, password, and FTP
 commands; it is on TCP port 21 and can be forwarded by the
 standard method. In two windows, run:
 $ ssh -L2001:name.of.server.com:21 name.of.server.com
 $ ftp localhost 2001
Your FTP client probably needs to run in passive mode
 (execute the passive
 command). FTP data connections carry the files being
 transferred. These connections occur on randomly selected TCP
 ports and can’t be forwarded in general, unless you enjoy
 pain. If firewalls or NAT (network address translation) are
 involved, you may need additional steps (or it may not be
 possible).

	Q:
	X forwarding isn’t working.

	A:
	Use ssh -v, and see if the output
 points out an obvious problem. If not, check the
 following:
	Make sure you have X working before using SSH. Try
 running a simple X client such as
 xlogo or xterm
 first. Your local DISPLAY variable must be set, or
 SSH doesn’t attempt X forwarding.

	X forwarding must be turned on in the client and
 server, and not disallowed by the target account (that is,
 with no-X11-forwarding
 in the authorized_keys file).

	sshd must be able to find the
 xauth program to run it on the remote
 side. If it can’t, this should show up when running
 ssh -v. You can fix this on the
 server side with the XAuthLocation directive
 (OpenSSH), or by setting a PATH (that contains
 xauth) in your remote shell startup
 file.

	Don’t set the DISPLAY variable yourself on the
 remote side. sshd automatically sets
 this value correctly for the forwarding session. If you
 have commands in your login or shell startup files that
 unconditionally set DISPLAY, change the code to set
 it only if X forwarding isn’t in use.

	OpenSSH sets the remote XAUTHORITY variable as well,
 placing the xauth credentials file
 under /tmp. Make sure
 you haven’t overridden this setting, which should look
 like:
 $ echo $XAUTHORITY
 /tmp/ssh-maPK4047/cookies
Some flavors of Unix actually have code in the
 standard shell startup files (e.g., /etc/bashrc, /etc/csh.login)
 that unconditionally sets XAUTHORITY to ~/.Xauthority. If that’s the
 problem, you must ask the sysadmin to fix it; the startup
 file should set XAUTHORITY only if the variable
 is unset.

	If you are using an SSH startup file (/etc/ssh/sshrc or ~/.ssh/rc),
 sshd doesn’t run
 xauth for you on the remote side to
 add the proxy key; one of these startup files must do it,
 receiving the proxy key type and data on standard input
 from sshd.

	Try ssh -Y (OpenSSH) or
 ssh2 +X (Tectia) to make forwarded X
 clients “trusted” by the display server. [9.4.5.3]

Other SSH Resources

 If we haven’t answered your questions in this chapter, try
 the following good sources of help available on the Internet.
12.3.1 Web Sites

The SSH home page, maintained by SSH Communications Security, is
 also a good resource of general information and links to related
 content:
http://www.ssh.com/

Information on OpenSSH can be found at:
http://www.openssh.com/

And of course, check out this book’s web sites:
http://www.oreilly.com/catalog/sshtdg/
http://www.snailbook.com/

12.3.2 Usenet Newsgroups

On Usenet, the newsgroup comp.security.ssh
 discusses technical issues about SSH. If you don’t have Usenet access,
 you can read and search for its articles on the Web at Google
 Groups:
http://groups.google.com/

or any other site that archives Usenet posts.
Before posting a troubleshooting question, run the SSH client
 and server in debug or verbose mode and include the full text of the
 debug messages in your note.

Chapter 13. Overview of Other Implementations

SSH products are available not only for Unix, but also for Windows,
 Macintosh, Amiga, OS/2, VMS, BeOS, PalmOS, Windows CE, and Java. Some
 programs are original, finished products, and others are ports of OpenSSH
 or of Tectia ancestors, undertaken by volunteers and in various stages of
 completion.
In the remaining chapters of this book, we cover several robust
 implementations of SSH for Windows and the Macintosh. But first, in this
 chapter, we quickly survey SSH products for many platforms.
We have set up a web page pointing to SSH-related products that we
 know. From this book’s catalog page:
http://www.oreilly.com/catalog/sshtdg/

follow the link labeled Author’s Online Resources, or visit us
 directly at:
http://www.snailbook.com/

Also check out this third-party page listing many free SSH
 implementations:
http://www.freessh.org/

Common Features

Every SSH implementation has a different set of features, but
 virtually all have one thing in common: a client program for logging
 into remote systems securely. Some clients are command line-based, and
 others operate like graphical terminal emulators, opening windows with
 dozens of configurable settings.
The remaining features vary widely across implementations. Secure
 file copy (scp and sftp),
 remote batch command execution, SSH servers, SSH agents, and particular
 authentication and encryption algorithms are found in only some of the
 products. Most include a generator of public and private keys.

Covered Products

For Microsoft Windows, we cover in full chapters:
	OpenSSH, ported to Windows using the Cygwin library (Chapter 14)

	Tectia’s commercial products for Windows (Chapter 16)

	SecureCRT, a commercial SSH client by VanDyke Software (Chapter 17)

	PuTTY, a small, free suite of SSH clients (Chapter 18)

For Macintosh OS X, we cover in a full chapter:
	OpenSSH, as included with Macintosh OS X (Chapter 15)

Other SSH Products

 Unfortunately we can’t cover every SSH implementation, but
 here are summaries to aid your explorations. Because SSH products need
 to remain secure, we list only products that are in active development
 (or at least have been updated in the past year or two) and that support
 the SSH-2 protocol. This means we’ve intentionally left out dozens of
 older SSH products with respected histories, like NiftyTelnet SSH for
 the Mac, Top Gun SSH for Palm, FISH for VMS, and Sergey Okhapkin’s
 classic Windows port of the original SSH1. Old-timers like these have
 their place in history, but have been supplanted by more modern
 implementations.
We’ve organized the products by platform. Some products are free
 and others are shareware or commercial, usually quite inexpensive.
 Additionally, many of the commercial products have free evaluation
 versions available, so you can try before you buy.
13.3.1 BeOS

At press time, we have found no modern SSH clients for BeOS.
 There are a bunch of ancient ones (2000-2002) supporting the old SSH-1
 protocol: search http://www.bebits.com/ to find
 them.

13.3.2 Commodore Amiga

At press time, we have found no modern SSH clients for the
 Amiga. The closest is an Amiga port of OpenSSH (http://www.chernoff.org/amiga/, free). However, it’s a
 port of Version 3.0.2, which is several years out of date.

13.3.3 GNU Emacs

ssh.el (http://www.splode.com/~friedman/software/emacs-lisp/src/ssh.e
 l, free) is an Emacs interface for SSH client connections. It does not
 implement SSH itself, but invokes an external client (e.g.,
 ssh from OpenSSH or Tectia) within Emacs.

13.3.4 Java

JavaSSH (http://javassh.org/, free),
 a.k.a. Java Telnet/SSH Applet, is just what it sounds like: an SSH
 client applet.
JSch (http://www.jcraft.com/jsch/,
 free), a.k.a. Java Secure Channel, is an implementation of the SSH-2
 protocol.
MindTerm (http://www.mindbright.se/,
 commercial, but free for personal or limited commercial use) is an SSH
 client and terminal emulator. The same company sells Appgate Security
 Server, an enterprise-level security product with SSH
 capabilities.
SSHTerm Professional (http://www.sshtools.com/,
 commercial, but free for personal or limited commercial use). The same
 vendor also produces Maverick SSHD, an SSH server written in Java; J2SSH
 Maverick, a Java SSH library for programmers; and
 Maverick.NET, an SSH API for Microsoft’s .NET platform.

13.3.5 Macintosh OS 9

MacSSH (http://www.macssh.com/,
 shareware) is the premier SSH client for OS 9. It supplanted
 NiftyTelnet SSH, which we covered in the first edition of this
 book.
MacSFTP (http://www.macssh.com/,
 shareware) is an SFTP client by the maker of MacSSH, for copying files
 securely between computers.

13.3.6 Macintosh OS X

Macintosh OS X comes with OpenSSH installed. However, MacSFTP is
 also available. [13.3.5]

13.3.7 Microsoft Windows

Windows SSH products have exploded in number in the past few
 years. Frankly, there are so many commercial SSH terminal clients it’s
 almost ridiculous. On the other hand, it’s nice to have
 choices.
Axessh 2.6 (http://www.labf.com/axessh/,
 commercial) is a terminal emulator and file-transfer program
 supporting SSH.
Ericom PowerTerm (http://www.ericom.com/,
 commercial) is a whole suite of SSH products for the
 enterprise.
F-Secure SSH (http://www.f-secure.com/,
 commercial) is an SSH-based terminal emulator.
Kermit 95 (http://www.columbia.edu/kermit/k95.html, commercial) is
 the classic program and protocol from the 1980s, updated to support
 SSH by borrowing code from OpenSSH.
OpenSSH on Cygwin (http://www.cygwin.com/, free) is
 a port of the whole OpenSSH suite to Windows and is the subject of
 Chapter 14.
PenguiNet (http://www.siliconcircus.com/penguinet/, commercial) is
 an SSH terminal emulator and secure file-copy program.
Pragma Fortress (http://www.pragmasys.com/,
 commercial) is an enterprise-level SSH server.
PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/,
 free), is a small but mighty suite of SSH clients covered fully in
 Chapter 18.
RemotelyAnywhere (http://www.remotelyanywhere.com/, commercial) is a
 remote system administration package that includes an SSH
 server.
Secure iXplorer (http://www.i-tree.org/,
 commercial) is a Windows Explorer-like program for accessing remote
 files. It is based internally on PuTTY.
Secure KoalaTerm (http://www.foxitsoftware.com/,
 commercial) is an SSH terminal emulator with particular focus on
 terminal emulation features.
SecureCRT (http://www.vandyke.com/,
 commercial) is a terminal emulator with SSH support, covered in Chapter 17. SecureFX is VanDyke’s
 secure file-transfer program with a graphical user interface. It is
 not an SSH terminal program.
ShellGuard (http://www.shellguard.com/,
 commercial) is an SSH-capable terminal emulator with secure copy
 capability.
Tectia (http://www.ssh.com/, commercial)
 is the Windows implementation of the major product we’ve been covering
 throughout this whole book, from SSH Communications Security.
VShell (http://www.vandyke.com/,
 commercial) is an SSH server from the maker of SecureCRT.
WinSSHD (http://www.bitvise.com/winsshd.html, commercial) is an
 SSH server.
WiSSH (http://www.wissh.com/,
 commercial) is a “remote desktop” program that operates over the SSH
 protocol, encrypting traffic between your local machine and the remote
 PC.
ZOC (http://www.emtec.com/zoc/,
 commercial) is an SSH terminal emulator.

13.3.8 Microsoft Windows CE (PocketPC)

PocketPuTTY (http://pocketputty.duxy.net/,
 free) is a port of PuTTY.
PocketTTY (http://dejavusoftware.com/pocketty/) is another SSH
 terminal client.

13.3.9 OS/2

ZOC, the Windows client, is also available for OS/2. [13.3.7]

13.3.10 Palm OS

The only Palm implementation used to be Top Gun SSH, but it supports only the SSH-1 protocol and is quite
 old. Fortunately there are some new kids on the block.
pSSH (http://www.sealiesoftware.com/pssh, free) is an SSH
 client for PalmOS 5 and up.
TuSSH (http://www.tussh.com/) is an SSH
 client for PalmOS 4 and up.

13.3.11 Perl

Several free Perl modules (http://www.cpan.org/) are available that provide an SSH
 API for software developers:
	Net::SSH::Perl
	An implementation of the SSH protocol, written in
 Perl

	Net::SSH
	An SSH API that provides wrappers around the
 ssh command

	Net::SCP
	An SSH API that provides wrappers around the
 scp command

	Net::SCP::Expect
	Another wrapper around scp, this one
 supporting Expect (http://expect.nist.gov/) so that passwords can be
 passed to it programmatically

13.3.12 Unix Variants (Linux, OpenBSD, etc.)

We’ve covered OpenSSH and Tectia extensively in this book, but
 there are others....
Dropbear (http://matt.ucc.asn.au/dropbear/dropbear.html, free) is
 an SSH client and server intended to run in as little memory as
 possible.
Kermit (http://www.columbia.edu/kermit/ssh.html, free), the
 venerable communications program of long ago, has been updated with
 SSH protocol support.
lsh (http://www.lysator.liu.se/~nisse/lsh/, free) is an
 SSH-2 client (lsh) and server
 (lshd).
PuTTY runs on Linux as well as Windows. [13.3.7] In addition, there
 is an unrelated program gPutty (http://www.defora.org/index.php?page=gputty), that is a
 PuTTY clone for the GNOME environment.
SecPanel (http://www.pingx.net/secpanel/,
 free) is a graphical, point-and-click manager for SSH client
 connections. It’s written in the programming language
 tcl and invokes SSH clients from your installed
 OpenSSH or Tectia distribution.

13.3.13 VMS

BAMSE (http://www.free.lp.se/bamse/) is
 an SSH client. It has not been updated since 2002 but is supposedly
 the best VMS client available.

Chapter 14. OpenSSH for Windows

OpenSSH, though originally written for Unix-like operating systems,
 runs well under Windows too. If you prefer command-line programs rather
 than a GUI, OpenSSH is probably your best bet for a free SSH
 implementation.
In order to run OpenSSH on Windows, you must install the Cygwin
 library (http://www.cygwin.com/) and associated
 programs. The installation is pretty simple but large: some users complain about the
 added “bloat” of Cygwin’s many programs. If this concerns you, check out
 OpenSSH For Windows (http://sshwindows.sourceforge.net/), a minimal installation
 of OpenSSH and Cygwin. Our perspective, however, is that Cygwin comes with
 so many mind-bogglingly useful tools (ported from Unix) that you might as
 well do a full install.
In most cases, OpenSSH operates the same way under Windows as it
 does under Unix. In this chapter we’ll cover only the differences; in
 Chapter 15 we will cover OpenSSH on
 the Macintosh similarly.
Tip
Like Unix, Cygwin uses the term “directory” to refer to a folder.
 We will use the Cygwin terminology.

Installation

 Cygwin is available from http://www.cygwin.com/. Download the installation program
 and run it. Make sure to install the following packages:
	openssh
	The full suite of programs and support files

	cygrunsrv
	A program needed to run sshd as a
 Windows service

Once Cygwin is installed, complete the setup:
	Make sure that c:\cygwin\bin is in your search
 path.

	Create an environment variable called CYGWIN, and give it the value ntsec tty.

Using the SSH Clients

 The client programs ssh,
 scp, and sftp work just as
 they do on Unix:
 # Log into server.example.com as user smith
 $ ssh -l smith server.example.com

 # Copy myfile from your local machine to server.example.com
 $ scp myfile server.example.com:

 # Run an interactive file-copy session with sftp
 $ sftp server.example.com
The only bit of trickiness is locating your ~/.ssh directory via Windows. On Unix
 platforms, your home directory is located in an obvious place, usually
 /home/
 yourname. And in fact, if you run a Cygwin
 shell, you can literally refer to /home/ yourname as
 well. But what if you’re using a standard Windows command shell (e.g.,
 cmd) or browsing files with Windows Explorer: how
 can you find your ~/.ssh directory?
 Simply type this command from a Windows command shell:
 C:\> cygpath -w ~
 C:\cygwin\home\smith
The cygpath command converts Cygwin paths
 into Windows paths, and the lone tilde (~) represents
 your Cygwin home directory. In this example,
 cygpath reveals your home directory to be C:\cygwin\home\smith. Thus, your SSH-related
 client files will be stored in the directory C:\cygwin\home\smith\.ssh.

Setting Up the SSH Server

The SSH server, sshd, runs under Cygwin as a
 standard Windows service, called (not surprisingly) Cygwin SSH Service.
 Cygwin provides a script, called ssh-host-config,
 to set this up. Here’s what to do:
Warning
The Cygwin SSH Service (a.k.a. sshd) runs
 only on flavors of Windows that support services: NT, 2000, XP, 2003,
 etc.

	Make sure you’ve set up the path and environment variables for
 OpenSSH and Cygwin. [14.1]

	From an account with administrative privileges, run:
 C:\> ssh-host-config

	Answer yes to all questions.

	When ssh-host-config completes, your
 service should be ready to run. Open your Services control panel,
 look for Cygwin SSHD Service, and start the service. Alternatively,
 use the command line:
 C:\> net start sshd
You might also want to set the service startup to Automatic,
 so it runs whenever you boot the computer. To stop the service,
 again use the Services control panel or type:
 C:\> net stop sshd

If the service refuses to run, here are some things to try:
	Make sure the file /var/log/sshd.log is writable by the
 SYSTEM account.

	Read /var/log/sshd.log
 for error messages.

To test the server, connect to yourself:
 C:\> ssh localhost
You should be prompted for your password and be able to log
 in.
Tip
Serverwide configuration files are found in /etc, such as /etc/sshd_config. This is in contrast to
 Unix-like systems that usually keep these files in /etc/ssh.

14.3.1 Opening Remote Windows on the Desktop

If you want to run graphical applications via
 ssh that open windows, such as
 notepad or regedit:
 C:\> ssh my-pc-name notepad
this will not work unless you grant sshd
 permission to do so. Here’s how to do it on Windows XP and
 2000:
	Open the Services control panel.

	Stop the Cygwin sshd service.

	Double-click the Cygwin sshd service to
 view its properties.

	Select the Log On tab.

	Under “Log on as,” select the Local System account and check
 the box “Allow service to interact with desktop.”

	Click OK and restart the Cygwin sshd
 service.

Before doing this, however, carefully consider the security
 implications. You’re permitting any user with SSH
 privileges—not just the logged-in user, not just administrators—to
 open windows on the desktop remotely.

Public-Key Authentication

The OpenSSH clients--ssh,
 scp, and sftp--and the
 key-related programs--ssh-keygen,
 ssh-agent, and ssh-add
 (covered in Chapter 6)--use
 public-key authentication just as they do under Unix. You might need to know where
 your ~/.ssh folder is to refer to
 keys. [14.2]
When connecting to the Cygwin SSHD Service
 (sshd) from the outside world, there are a few
 things to think about:
	Make sure your ~/.ssh/authorized_keys file contains the
 appropriate public keys. [6.1.1]

	Check the Cygwin SSHD
 Service in the Services control panel, and note the NT
 user account under which it is running. Then make sure that this
 account:
	Has read access to your ~/.ssh directory and your ~/.ssh/authorized_keys file.

	Has read access to the host keys in the Cygwin /etc directory.

	Has write access to the log file /var/log/sshd.log.

	Is in the local Administrators group, if you plan to
 invoke operations by SSH that require administrative privileges.
 Then authenticate using this account. (For more flexible
 credentials, consider a PKI solution. [11.5] Cygwin includes a
 Kerberos package.[166])

	Is listed in the Cygwin /etc/passwd file. Use the Cygwin
 mkpasswd program to generate this file if
 you need; for example, in the Cygwin shell:
 $ mkpasswd -l > /etc/passwd
but make sure you understand what you’re doing so that you
 don’t wipe out vital accounts! Run man
 mkpasswd to learn more.

14.4.1 Running an Agent

An agent is a program that keeps private keys in memory
 and provides authentication services to SSH clients. If you preload an
 agent with private keys at the beginning of a login session, your SSH
 clients won’t prompt for passphrases. Instead, they communicate with
 the agent as needed. [2.5]
 The OpenSSH agent program is ssh-agent.
In order for ssh-agent to work, it
 communicates via environment variables. [6.3.2] If you’re using the
 Cygwin shell (bash), you can start the agent via
 the same methods as on Unix. Unfortunately, these methods don’t work
 immediately on Windows if you’re using the command shell
 (cmd.exe or command.exe), so
 here is a quick recipe:
	Run the agent:
 C:\> ssh-agent
 SSH_AUTH_SOCK=/tmp/ssh-agent.1468; export SSH_AUTH_SOCK;
 SSH_AGENT_PID=3212; export SSH_AGENT_PID;
 echo Agent pid 3212;

	Notice the output includes some environment
 variables:
 SSH_AUTH_SOCK=/tmp/ssh-agent.1468; export SSH_AUTH_SOCK;
 SSH_AGENT_PID=3212; export SSH_AGENT_PID;

	Set the environment variables by hand:
 C:\> set SSH_AUTH_SOCK=/tmp/ssh-agent.1468
 C:\> set SSH_AGENT_PID=3212

	Your agent is ready to load with keys: [2.5]
 C:\> ssh-add
 Enter passphrase for /home/you/.ssh/id_dsa: ********
 Identity added: /home/you/.ssh/id_dsa (/home/you/.ssh/id_dsa)

[166] For Kerberos or GSSAPI support., you might need to
 recompile OpenSSH. At press time, KerberosAuthentication and
 GSSAPIAuthentication are
 disabled in the Cygwin binaries for OpenSSH. You’ll need to
 download the OpenSSH source code and recompile it with the
 GNU C compiler, gcc, also included with
 Cygwin. Once things are set up, they do work as in our case
 study. [11.5.2]

Troubleshooting

The following lists some ideas for troubleshooting :
	If /var/log/sshd.log says
 “Privilege separation user sshd does not exist,” then either turn
 off privilege separation in /etc/sshd_config, or create the “sshd”
 account (e.g., with Cygwin’s useradd
 command).

	Run filemon from the command line, and
 look for accesses to the ~/.ssh
 directory.

	In the Local Security Policy administrative tool, turn on
 auditing for object access: this is found under Local Policies/Audit
 Policy. Set it to audit both success and failure. Then select the
 ~/.ssh folder and enable this
 auditing for all accesses to the folder and its contents
 (Properties/Security/Advanced/Auditing).

Summary

The full-featured OpenSSH suite runs on Windows for free. What
 could be better?

Chapter 15. OpenSSH for Macintosh

OpenSSH is supplied with Macintosh OS X and runs much like it does for other Unix-like
 operating systems. The primary differences and distinguishing features
 are:
	Some extra setup before the OpenSSH server,
 sshd, can be accessed by the outside world

	The software, which is a modified version of OpenSSH maintained
 by Apple

	Some important differences in the way sshd
 is configured by default, such as invocation and Kerberos
 support

Using the SSH Clients

 The usual OpenSSH clients, ssh,
 scp, and sftp, work normally
 without any extra effort on your part:
 # Log into server.example.com as user smith
 $ ssh -l smith server.example.com

 # Copy myfile from your local machine to server.example.com
 $ scp myfile server.example.com:

 # Run an interactive file-copy session with sftp
 $ sftp server.example.com

Using the OpenSSH Server

Before you can use sshd on Mac OS X, you’ll
 need to enable the server and possibly open up the Mac’s firewall. In
 addition, you’ll want to know about some configuration differences as
 compared to most other OpenSSH installations.
15.2.1 Enabling the Server

SSH server startup is controlled from the Sharing pane in System
 Preferences, under Services, as in Figure 15-1. To enable
 sshd, select Remote Login and click the Start
 button.
[image: Enabling the SSH server in System Preferences]

Figure 15-1. Enabling the SSH server in System Preferences

15.2.2 Opening the Firewall

By default, the Mac OS X personal firewall will block SSH
 connections from the outside world. If you have this firewall enabled,
 you must manually permit SSH traffic through it. This is done from the
 Sharing pane in System Preferences, under Firewall, as in Figure 15-2.
[image: Opening a firewall hole for SSH in System Preferences]

Figure 15-2. Opening a firewall hole for SSH in System Preferences

15.2.3 Control by xinetd

In most Unix-like operating systems, the OpenSSH server runs as
 a daemon, listening for SSH connections. On Mac OS X, however,
 sshd is controlled by the super-server daemon,
 xinetd. [5.3.3.2] Whenever an SSH
 client attempts to contact sshd on TCP port 22,
 xinetd notices the attempt and invokes a single
 instance of sshd (specifically, sshd
 -i) to serve that connection.
The xinetd configuration file for
 sshd is /etc/xinetd.d/ssh:
 # /etc/xinetd.d/ssh:
 service ssh
 {
 disable = no

 socket_type = stream
 wait = no
 user = root
 server = /usr/libexec/sshd-keygen-wrapper
 server_args = -i
 groups = yes
 flags = REUSE IPv6
 session_create = yes
 }
Note the use of the wrapper script
 sshd-keygen-wrapper: it will generate new host
 keys if they are missing, as after a fresh OS install.

15.2.4 Server Configuration Details

On Mac OS X, the serverwide configuration files are found in the
 /etc directory instead of the
 more common /etc/ssh: for
 example, the serverwide configuration file is /etc/sshd_config rather than /etc/ssh/sshd_config.
The SSH software is a modified version of OpenSSH maintained by
 Apple; they backport security fixes to it whenever required.
Warning
At press time, version “OpenSSH_3.6.1p1+CAN-2004-0175” has a
 bug whereby dynamic port forwarding (-D)
 doesn’t work: it listens on the specified port, but actual
 connection forwarding fails.

15.2.5 Kerberos Support

The OS X OpenSSH build has protocol 2 Kerberos support for both
 user and server authentication, following the major Internet-Drafts on
 these (draft-ietf-secsh-gsskex
 and draft-ietf-galb-secsh-gssapi). It implements user
 authentication via the gssapi and
 external-keyx methods; it does not
 yet have the improved gssapi-with-mic method. In case a
 Kerberos-secured key exchange has been used for server authentication,
 the external-keyx method allows the
 userauth protocol to refer back to
 the previous Kerberos exchange for user authentication, skipping an
 unnecessary extra authentication phase.
This Kerberos support is also fully DNS-enabled, meaning it will
 find Kerberos authentication servers from information in the DNS if it
 is available. In a network of compatible and correctly configured
 Kerberos and OpenSSH servers, no extra
 configuration is needed for a plain OS X host newly attached to the
 network to use Kerberos for secure, single-signon client SSH
 connections. All that is required is to run:
 $ kinit user@REALM
 Please enter the password for user@REALM: ********
 $ ssh user@host
Place the following lines into /etc/krb5.conf to relieve the user from
 having to specify the realm—and if the Kerberos principal and OS X
 account usernames are the same, then a simple
 kinit will suffice:
 [libdefaults]
 default_realm =REALM
Instead of the command-line utility kinit,
 you can use the OS X GUI Kerberos utility: /System/Library/CoreServices/Kerberos.app.

Chapter 16. Tectia for Windows

Our treatment of Tectia in previous chapters has focused on Unix
 implementations, but Tectia is fully supported on Microsoft Windows
 platforms. It’s packaged as a suite of products, including:
	Tectia Client
	A GUI application that initiates outgoing SSH connections,
 with a terminal emulator, supporting key-management functionality,
 port forwarding, and file transfers using SFTP, plus command-line
 programs for scripting

	Accession Lite
	An authentication agent

	Tectia Connector
	Transparent, dynamic port forwarding for selected
 applications

	Tectia Server
	A service to accept incoming SSH connections

At press time, the Tectia products can be installed on the versions
 of Windows listed in Table
 16-1. Consult the latest documentation for a complete list of
 supported platforms.
Table 16-1. Supported Microsoft Windows platforms for SSH Tectia
	Program
	95
	98
	Me
	NT
	2000
	XP
	Server 2003

	Tectia Client
	-
	any
	any
	4.0SP6
	SP2
	any
	any

	Accession Lite
	-
	any
	any
	4.0SP6
	SP2
	any
	any

	Tectia Connector
	-
	-
	-
	4.0SP6
	SP2
	SP1
	-

	Tectia Server
	-
	-
	-
	4.0SP6
	SP2
	any
	any

Obtaining and Installing

 Tectia products are shipped as Windows Installer
 Packages.[167] The easiest way to install is to use Windows Explorer to
 double-click on the included .msi
 files:
	TectiaClient-version.msi

	TectiaConnector-version.msi

	TectiaServer-version.msi

These files can be found in the install/windows folder on your distribution
 media, or downloaded from the ssh.com web site,
 depending on how you purchased the products. The installers must be run
 by a user with administrative privileges. Installing the Connector
 package requires a reboot.
During interactive installation, you’ll see a series of dialogs; use these to specify the
 install directory if the default location is not appropriate. By
 default, Tectia products are installed within the Program Files folder
 in a Tectia subfolder named SSH Communications
 Security.[168] Files for each product are collected in separate
 subfolders under the Tectia
 subfolder:
	SSH Secure Shell

	SSH Accession Lite

	SSH Tectia Connector

	SSH Secure Shell Server

We’ll refer to these as the “installation folders.” The installers
 also create entries in the Start/Programs menu, under the program
 groups:
	SSH Tectia Client

	SSH Tectia Connector

	SSH Tectia Server

The installer for the Client package optionally creates desktop
 icons for the GUI client application:
	SSH Tectia Client

	SSH Tectia Client - File Transfer

The PATH environment variable
 is updated to include the installation folder for the Client package, so
 scripts can easily access command-line programs.
The Server installer generates host key files by running
 ssh-keygen2 in a command window: this can take
 several minutes to complete.[169] The server is added as a service that starts automatically
 whenever the system boots.
Tectia products can also be installed silently, using the
 msiexec command-line tool:
 C:\> msiexec /q /i Tectia<Product>-<version>.msi INSTALLDIR="<path>"
If the INSTALLDIR argument is
 omitted, the default locations are used. Silent installation is handy
 for rolling out products to a large number of systems.
To remove Tectia products, use the Add/Remove Programs section of
 the Control Panel, or the command:
 C:\> msiexec /q /x Tectia<Product>-<version>.msi
The Tectia Server must be stopped before it is uninstalled.

[167] Accession Lite is included with the Client and Connector
 packages and is not available as a separate package.

[168] The Program Files folder can be determined by examining the
 value of the PROGRAMFILES
 environment variable. It is typically C:\Program Files.

[169] If you run Server installer in silent mode, the host key is
 not generated automatically. Use ssh-keygen2 to
 generate the host key manually.

Basic Client Use

When you run the GUI client application (typically via the desktop icon or the Start menu), it
 displays a terminal window. To initiate an outgoing connection, do one
 of the following:
	Click on the Connect toolbar icon.

	Use the File/Connect menu item.

	Press the Enter key or space bar within an unconnected
 terminal window.

This brings up the Connect To Remote Host dialog shown in Figure 16-1. Fill out the values
 for the server’s hostname, the remote username (on the server), and the
 port number (if different from the default 22); select an authentication
 method from the drop-down menu; and finally click Connect. If the host
 key for the server has not been seen before, the client prompts for
 confirmation before saving it, as in Figure 16-2. Respond to the
 prompts demanded by subsequent dialogs, which depend on the
 authentication method chosen.
[image: The Connect to Remote Host dialog]

Figure 16-1. The Connect to Remote Host dialog

[image: Encountering a previously unknown host key]

Figure 16-2. Encountering a previously unknown host key

If authentication succeeds and the server grants access, you can
 work within the terminal window in Figure 16-3.
You can create additional sessions on the same server by using the
 New Terminal Window toolbar icon or the Window/New Terminal menu item.
 These sessions run in separate terminal windows, and are tunneled
 through different channels within the existing SSH connection, so no
 additional authentication is required.
The client disconnects automatically when the last session
 terminates. If you need to disconnect manually for some reason, use the
 Disconnect toolbar icon or the File/Disconnect menu item.

Key Management

To manage the key pairs that are used for public-key
 authentication, use the Keys page (Figure 16-4) of the Settings
 dialog, which is accessed by either the Settings toolbar icon or the
 Edit/Settings menu item. The Settings dialog is a GUI-based interface to
 the functionality provided by the ssh-keygen2
 command-line program.
Click Generate New Keypair to start the Key Generation Wizard,
 which presents a dialog that prompts for the key type (DSA or RSA) and
 key length, generates the key (this can run for several minutes, which
 provides plenty of time to appreciate an animated display of random
 bits), and finally prompts for a filename to store the key, an optional
 comment, and the passphrase.
To copy a key pair from files in some other location to the user
 profile folder, click Import. If an existing key is selected, click
 Export to copy the key pair from the user
[image: Terminal window]

Figure 16-3. Terminal window

profile folder to some other folder, or Delete to remove the key
 pair, or Change Passphrase to present a dialog that prompts for the old
 and new passphrases.
Click Upload to conveniently transfer a selected public key to a
 server using sftp, and automatically add an entry
 in the authorization file so that the key will be used.[170] This assumes you have already authenticated using some
 other mechanism. A dialog allows the destination folder and
 authorization filename to be changed if the default locations on the
 server are not appropriate.
To view the contents of the public-key file (using the Notepad
 editor), double-click on a key in the list, or select a key and click
 View.
Finally, click Configure to update the identification file that is
 used by the ssh2 command-line program. All keys in
 the list are included; the identification file must be edited manually
 if some keys should be excluded.
[image: Keys page of the Settings dialog]

Figure 16-4. Keys page of the Settings dialog

[170] Uploading is also offered as an option by the Key Generation
 Wizard whenever new key pairs are produced.

Accession Lite

 Accession Lite is started automatically when each user
 logs in; it acts as an authentication agent.[171] The GUI application provides the same functionality as the
 ssh-agent and ssh-add programs
 that are used on Unix systems.[172]
The easiest way to access the Accession Lite GUI, shown in Figure 16-5, is to double-click
 the icon in the tool tray on the taskbar. The Tectia Client and
 Connector applications also have icons and menus for Accession Lite.
 Normally, Accession Lite stops automatically when the user logs out (or
 the system is shut down), but if it needs to be stopped manually for
 some reason, use the File /Quit menu item.
[image: Accession Lite]

Figure 16-5. Accession Lite

The main Accession Lite window displays information about the
 loaded keys and a log of its operations in separate panes.
The toolbar icons or equivalent items in the Tools menu can be
 used to perform actions:
	Add a key to the agent: a series of dialogs prompt for the
 filename and a passphrase.

	Delete a selected key from the agent.

	Lock or unlock a selected key: dialogs prompt for a
 passphrase.

	Edit attributes for a selected key: this presents the Key
 Attributes page (Figure
 16-6) of the Settings dialog, which can also be obtained via
 the Settings toolbar icon or the Edit/Settings menu item.

The default attributes apply to all of the keys, unless overridden
 for specific keys. Keys can be set to expire after a specified time, and
 can be limited to a maximum number of uses. Forwarding can be restricted
 to a limited number of hops, or more
[image: Key Attributes page of Accession Lite]

Figure 16-6. Key Attributes page of Accession Lite

generally according to a constraint string, which uses the same
 syntax as the ssh-add -F option. [6.3.3]
A short alias can be assigned to each key; these are optionally
 displayed by the GUI instead of the more verbose descriptions according
 to settings on the Appearance page.
“Enable key compatibility” means that SSH-1 keys can be used by
 SSH-2 clients, and vice versa. Support for SSH-1 and SSH-2 client
 connections is controlled independently by checkboxes on the
 Compatibility page.
If “Confirm key operations” is checked, then the agent prompts for
 each use of the key. “Test private key” requires the agent to verify
 that the certificate corresponds to the key whenever it is used.
The Compatibility page allows a single key to be loaded
 automatically when Accession Lite starts. To load an entire collection
 of keys automatically, use the Key Providers page and add the Software
 provider. This emulates a smart card by monitoring a specified folder,
 and automatically adding or deleting keys in the agent as they are
 created or removed from the folder.
The Log page allows the transaction log that is displayed in the
 log pane of the main window to be saved to a file.
By default, all configuration settings are saved automatically;
 this can be disabled by a setting on the Appearance page. The File/Save
 Configuration menu item is used to manually record configuration
 changes.

[171] By default, a splash screen is briefly displayed when the
 program starts. This can be disabled if you find it annoying.

[172] These command-line programs are not provided with the Tectia
 Client product on Windows. Only Accession Lite can be used as an
 authentication agent.

Advanced Client Use

 Most of the time, the Tectia GUI applications effectively
 act as configuration editors, allowing users and administrators to
 change and save the configuration without worrying about the location or
 format of configuration files. In some other circumstances, however, an
 understanding of these details is useful, so we’ll provide a brief
 guided tour through the internal structure of Tectia’s configuration on
 Windows.
The system client configuration file ssh2_config is stored in the Tectia client
 installation folder. This file has the same format and function as the
 /etc/ssh2/ssh2_config file on Unix
 systems.[7.1.2.2]
Most other parts of the configuration are separately maintained
 for each user, and are stored in the user profile folder[173] in the application data subfolder.[174] Tectia configuration files are collected in a subfolder
 named SSH. This folder is analogous
 to the user configuration folder on Unix systems (typically ~/.ssh2, but ultimately determined by the
 UserConfigDirectory keyword),
 although the specific files and folder layout are different for Windows,
 as we’ll see. [5.3.1.5]
Warning
If roaming profiles are used, then the user profile folder is
 replicated on a server, and files are transmitted to client machines
 via the network, where they can be seen by anyone who is able to sniff
 traffic en route. To prevent this, either disable roaming profiles for
 Tectia users, or store the Tectia configuration files in a different,
 local folder. If the SSHCLIENT_USERPROFILE environment variable
 is set, its value specifies an alternate location to be used for the
 Tectia configuration files, instead of the user profile folder.

The Tectia user configuration folder contains:
	RandomSeed
	A pool of random data. [7.4.18]

	HostKeys
	A subfolder to store public keys for known hosts. [7.4.3]

	UserKeys
	A subfolder for storing user identities.

	identification
	A list of keys used by the command-line client,
 ssh2.exe. This file can be produced
 automatically by the GUI client. [16.3] If the identification file is missing, then
 all keys in the UserKeys
 folder are used.

	*.ssh2
	Profile settings for the GUI client, which are used to store
 configuration information based on the connection target
 (discussed shortly).

	global.dat
	Global settings for the GUI client, which apply to all
 connections (discussed shortly).

	SSH Accession\config.cfg
	The configuration settings for Accession Lite, stored in XML
 format.

The All Users profile folder
 is conceptually merged with each user profile folder.[175] Host keys and profile settings can be copied from a user
 profile folder to the All Users
 profile folder to provide systemwide access.
Warning
The All Users profile
 folder isn’t available on older platforms such as Windows 98 or
 Me.

To provide a systemwide default configuration for Accession Lite,
 copy a suitably crafted config.cfg
 file from a user profile folder to the Accession Lite installation
 folder.
Warning
Accession Lite doesn’t use the All
 Users profile folder.

The *.ssh2 files for profile
 settings and the global.dat
 configuration file are usually updated by the GUI client (discussed
 shortly). However, they are ordinary text files that use the venerable
 DOS *.ini format and are easy to
 edit directly.
Settings are grouped in sections that are identified by names with
 square brackets, on separate lines. Each setting is a keyword and value,
 separated by an equals sign, with one pair per line. Values have
 prefixes to indicate the type of data:
	N:
	Decimal number

	H:
	Hexadecimal number

	S:
	String

Boolean values are represented as decimal numbers, with zero and
 one indicating false and true, respectively. For example:
 [Security]
 ...
 FIPS mode=N:0
Direct editing of these files is required to update a few settings
 that are not displayed by the GUI client: e.g., the FIPS mode setting.
 It is also occasionally convenient to use a script to generate a large
 number of profile setting files that differ only by a few
 settings.
The files default.ssh2 and
 defaultsftp.ssh2 contain default
 settings for the GUI client’s terminal and SFTP modes, respectively. If
 these files are missing, then hardwired default settings are
 used.
Profile settings files can be used in several ways:
	Double-click on *.ssh2
 files in Windows Explorer. This works because the installer arranges
 to associate the .ssh2 file
 suffix with the GUI client.

	Create desktop shortcuts to the profile settings files, and
 then double-click on the desktop icons. The Tectia client installer
 automatically creates desktop shortcuts for the default profiles
 using the terminal and SFTP modes.

	Click on the Profiles toolbar icon, and then select one of the
 defined profile settings from the drop-down menu.

	Use the File/Profiles menu item to present the same drop-down
 menu.

The drop-down profiles menu also contains items that allow new
 profiles to be added, and existing profiles to be edited. When new
 connections are initiated using unsaved profile settings, a dialog is
 briefly displayed that allows the new profile settings to be added. The
 Settings toolbar icon or the Edit/Settings menu item provides access to
 the Profile Settings page of the Settings dialog for editing the current
 profile.
Use the File/Save Settings menu item to save the current profile
 settings, as well as the global settings. The File/Save Layout menu item
 performs the same function, but also records the current position of all
 the GUI client’s windows.
Profile settings include connection parameters (e.g., the remote
 hostname, username, and port number), encryption and MAC algorithms,
 authentication methods, optional port forwarding (which is discussed in
 the next section), and sftp file transfer
 modes.
Global settings include key pairs (which we’ve discussed
 previously: see Figure
 16-4), host keys, other sftp options, and
 SOCKS firewall specifications.
Except for settings that are related to the appearance or behavior
 of the GUI client itself, all of the profile and global settings
 correspond to keywords discussed in Chapter 7.

[173] The user profile folder can be determined by examining the
 value of the USERPROFILE
 environment variable. It is typically C:\Documents and
 Settings\username.hostname or (on older systems)
 C:\WINNT\Profiles\username.

[174] The full pathname for the application data folder, including
 the user profile folder components, can be found in the value of the
 APPDATA environment variable. The
 subfolder is typically named Application
 Data.

[175] The All Users profile
 folder can be determined by examining the value of the ALLUSERSPROFILE environment variable. It
 is typically C:\Documents and Settings\All
 Users or (on older systems) C:\WINNT\Profiles\All Users.

Port Forwarding

Port forwarding allows Tectia to tunnel TCP connections
 through multiplexed channels within an existing SSH connection. [9.2] To set up forwarding, use
 the Tunneling page (Figure
 16-7) of the Settings dialog which is accessed by either the
 Settings toolbar icon or the Edit/Settings menu item. Local and remote
 forwarding (specified by the -L and
 -R options for the ssh2
 command-line client) correspond to outgoing and incoming tunnels,
 respectively, for the GUI client.
[image: Tunneling page]

Figure 16-7. Tunneling page

Configure forwarding by first selecting the Outgoing or Incoming
 tab. Click Add to define settings for a new port forwarding, using a
 separate dialog (Figure
 16-8), or click Edit to redefine settings for a selected existing
 forwarding, using a similar dialog. Click Remove to destroy a selected
 forwarding.
[image: Defining settings for a new port forwarding]

Figure 16-8. Defining settings for a new port forwarding

Settings for each forwarding include:
	A descriptive name, for the displayed list

	The port on which to listen, either on the client side (for
 local forwarding or outgoing connections) or on the server side (for
 remote forwarding or incoming connections)

	The destination host and port, to which connections should be
 forwarded on the opposite side

	A checkbox to allow only local connections (only for local
 forwarding or outgoing connections), which is usually left
 enabled

	The type of forwarding: usually TCP to indicate no special
 processing, or FTP to create temporary forwarding in the reverse
 direction for FTP data channels in active mode

Forwarding changes are effective only for the next session, except
 for removals, which happen immediately.
X forwarding is controlled by a checkbox. This is used with a
 separate X server running on the same system as the Tectia
 client.

Connector

 We have previously seen how static port forwarding can be
 extended for SOCKS-aware applications to provide dynamic port
 forwarding. [9.3] SOCKS is
 fully supported by the Tectia client, but you have to reconfigure each
 application to use the SOCKS proxy, which can be annoying.
Tectia Connector extends this concept further to achieve complete
 transparency: applications can use dynamic port forwarding without any
 reconfiguration whatsoever, because the applications are entirely
 unaware that the forwarding is happening.
To accomplish this feat, Connector worms its way into the Windows
 TCP/IP protocol stack (which includes hostname lookup functionality).
 This allows it to intercept networking operations by applications and
 reroute them to its own Connector engine, which then initiates SSH
 connections to servers on behalf of the applications. The capture and
 forward mechanism also allows the Connector engine to exercise precise
 control over network connections, and to enforce security policies that
 require certain kinds of connections to use secure protocols, like
 SSH.
Tip
As of Version 4.2, Connector requires functionality provided
 only by “Tectia Server (T).” [16.11] “Tectia Server (A)”
 can’t be used with Connector, and other non-Tectia servers are
 unsupported.

Connector only affects outgoing TCP connections. Applications can
 still accept incoming connections directly, and other protocols (like
 UDP, ICMP, etc.) are completely ignored by Connector. Note, however,
 that all applications can be affected by Connector’s interception of
 hostname lookups.
Connector uses only the SSH-2 protocol, never SSH-1. It is fully
 self-contained, and does not rely on the Tectia client. Instead,
 Connector implements the SSH-2 protocol and initiates its own
 connections.
The Connector engine starts automatically when each user logs in.
 If it has been stopped for some reason, it can be restarted manually
 using the SSH Tectia Connector item from the Start/Programs/SSH Tectia
 Connector menu, or by running the SSHConnector
 program in the Connector installation folder.
In normal operation, Connector is unobtrusive, presenting only a
 small icon in the tool tray on the taskbar to announce its presence.
 Right-click the icon to produce a menu that displays a list of
 applications currently using Connector, a checkbox that allows the
 Connector engine to be enabled or disabled, and an Exit item that shuts
 down the Connector engine.
The Connector Status dialog can be displayed by double-clicking
 the tool tray icon or selecting the Status item from the tool tray icon
 menu. The Tunnels view shows each forwarded port, with the program using
 the connection, the destination server, and usage statistics (data sent
 and received). The Logs view displays messages (with timestamps) about
 authentication, creation of forwarded ports, connections by
 applications, etc. The Connector engine maintains its own log; it
 doesn’t send messages to the Windows event log.
Privileged users can use the Administration dialog or edit the
 configuration file directly to configure the Connector engine. The
 administrative GUI interface is accessed by selecting the SSH Tectia
 Connector Admin item from the Start/Programs/SSH Tectia Connector menu,
 or a similar item in the Connector tool tray icon menu, or by running
 the SSHConnectorAdmin program in the Connector
 installation folder.
16.7.1 General Settings

The Connector engine itself is configured by the General
 Settings view of the Administration dialog (Figure 16-9), which applies to
 all outgoing connections.
[image: Configuring the Connector engine]

Figure 16-9. Configuring the Connector engine

Sometimes it is necessary or convenient to bypass Connector and
 allow applications to initiate their own connections directly: this is
 known as pass-through mode. An option is provided to allow
 pass-through if the engine is disabled or shut down. If this
 pass-through option is disabled, then connections will be blocked,
 which might be appropriate if security policies mandate that only
 secure connections are allowed. A comma-separated list of applications
 can also be exempted from interference by Connector. Typically these
 applications are for network diagnostics (e.g.,
 nslookup or ping) or related
 to direct use of SSH (e.g., the Tectia client, Accession Lite,
 etc.).
Applications frequently need to connect to secure servers within
 internal networks from outside of firewalls. External hostname lookups
 are commonly prevented, to avoid leaking information about the
 internal network, and because direct access to the secure servers is
 blocked by the firewall anyway. In such cases, Connector can be
 configured to return dynamically assigned pseudo (or fake) IP
 addresses to applications in response to hostname lookups. When the
 connection is forwarded across the firewall via SSH, the hostname
 lookup is done internally. This is similar to the naming support
 provided by SOCKS5.
A base address must be identified for the pseudo IP addresses.
 This should be chosen carefully to avoid conflicts with real addresses
 of machines that applications might need to contact. It is natural to
 use reserved addresses (e.g., the 10.0.0.0/8 network) for this
 purpose, but if applications detect the use of such reserved addresses
 and misbehave, then it may be necessary to use a suitable range of
 otherwise unused real addresses.
As we have seen, Connector works by modifying the Windows TCP/IP
 protocol stack. Other, unrelated packages that also modify the
 protocol stack (such as firewalls and VPN software) can interfere with
 the operation of Connector, and require that Connector’s protocol
 stack modifications be reinstalled, which in turn requires a reboot.
 An option is provided to automate this; no user confirmation is
 needed.
Connector’s SSH implementation supports FIPS mode, which can be
 selected by an option. [5.3.5]
In most cases, Connector operates silently, and behind the
 scenes. However, SSH servers can be configured to send banner messages
 to clients, and Connector has an option for displaying them. [5.6.1] In addition, Connector
 can display a splash screen as a brief security notification when new
 forwarded connections are created for applications.
The tray icon menu can be configured to control access to
 functions that affect the engine, to prevent unprivileged users from
 circumventing security policies. Of course, the Connector
 configuration file should only be writable by privileged users.

16.7.2 Servers for Outgoing SSH Connections

Settings for each server used for an outgoing SSH connection
 must be defined by the Servers view of the Administration dialog in
 Figure 16-10.
A display name is assigned to the collection of settings for the
 server. Connections to a server can be routed via a previously defined
 server, to set up chains of port forwardings, if required for nested
 firewalls.
[image: Defining settings for outgoing SSH connections]

Figure 16-10. Defining settings for outgoing SSH connections

The most important characteristics of the SSH connection can be
 specified for the server. The special token %USERNAME% means that the local Windows
 username is used for the remote username as well.
By default, Connector initiates SSH connections only when
 required to forward connections from applications, but an option is
 provided to initiate the connection when the Connector engine starts.
 Idle SSH connections are terminated by Connector after a specified
 timeout interval elapses.[176] Normally, SSH connections are retained (even when idle)
 if any forwarding channels are still active, but Connector can be
 configured to ignore active channels when it closes idle
 connections.
The allowed authentication methods are specified as a
 comma-separated list, chosen from the set: gssapi-with-mic, publickey, keyboard-interactive, and password. Public-key authentication is
 especially convenient with Accession Lite acting as an authentication
 agent. [16.4] Accession
 Lite is included with the Tectia Connector package, and the agent can
 be started using the Connector tray icon menu. A predefined response
 can be stored in the Connector configuration for password
 authentication. This is insecure, since the password saved in the
 configuration file is not encrypted in any way, and the predefined
 response is intended only for situations when the application handles
 its own authentication using some other secure mechanism.
A proxy server URL can be specified using the same syntax as for
 the Tectia client’s SocksServer
 keyword or the SSH_SOCKS_SERVER
 environment variable. [7.4.7.2] HTTP forwarding is
 also supported, using a similar syntax. SOCKS4 is used by default, but
 an option is provided to use SOCKS5 instead.
A filename should be chosen to store the host key for the
 server. The key can be fetched automatically by the Connector
 administration program, but the fingerprint should be verified using
 ssh-keygen -F. [6.2.2] Host keys are commonly
 stored in the All Users profile
 folder.

16.7.3 Filter Rules for Dynamic Port Forwarding

The Connector engine consults a list of filter rules to
 decide how to forward outgoing connections by applications. These are
 configured by the Filters view of the Administration dialog in Figure 16-11.
[image: Filter rules for forwarding outgoing connections]

Figure 16-11. Filter rules for forwarding outgoing connections

A display name is assigned to each filter rule. The filter rules
 are matched according to the DNS hostname or IP address requested by
 an application, and the first matching filter rule is used for the
 connection. DNS hostnames and IP addresses can be specified either
 literally or as patterns using the egrep regular
 expression syntax. DNS hostnames are case-insensitive.
In the usual case when an application connects using a DNS
 hostname, Connector scans the filter rule list. If a hostname match is
 found, then the first matching filter rule is used. The IP address
 returned to the application is taken from the filter rule if one is
 specified, or is otherwise dynamically assigned from the pool of
 pseudo IP addresses.[177] If no matching filter rule is found, then the connection
 is initiated directly, with no port forwarding.
When an application connects using an IP address, Connector
 similarly scans the filter rule list, looking for a filter rule with a
 matching address, and uses the first filter rule that is found.
 Otherwise, if there is no matching filter rule, then Connector does a
 reverse hostname lookup using the IP address. If this lookup succeeds,
 then Connector performs a DNS hostname match, as described previously.
 Otherwise, if the reverse hostname lookup failed, then Connector
 blocks the connection. Any hostname specified for the filter rule is
 passed to the other side of the forwarded connection so that the
 server can perform the hostname lookup for the real IP address on an
 internal network.
Connections are forwarded based on the target port requested by
 the application, according to a list of connection rules for each
 filter rule. Each connection rule consists of a comma-separated list
 of ports, or the special value All,
 plus one of the following actions:
	DIRECT
	Initiate a connection directly, without port
 forwarding.

	BLOCK
	Block the connection, so the application will see the
 error “connection refused.”

	server
	Initiate an SSH connection, according to the settings for
 the named server.

The first matching connection rule for the requested port is
 used. If no connection rule matches, then a direct connection is
 initiated.
Connections are also forwarded according to the full pathname
 for the application. The Connector administrative interface allows the
 specification of only a single application. This restriction was
 imposed as of Version 4.2, and is actually a reduction in
 functionality. Earlier versions of
 SSHConnectorAdmin allowed the specification of an
 application for each filter rule.[178]

16.7.4 Configuration File

The Connector engine uses the configuration file sshcorpoeng.cfg in the installation folder.
 The Connector administration program saves its settings in the
 configuration file automatically, and is the usual way to change the
 configuration.
However, the configuration file uses a straightforward format
 and is easy to edit directly. Settings are grouped in hierarchical
 sections that are delimited by curly braces. Each setting is a keyword
 and value, separated by an equals sign, with one pair per line. Values
 are Boolean (FALSE or TRUE), decimal numbers, or quoted strings,
 which use C-language conventions for backslash escape sequences. This
 convention is unfortunate, because all backslashes for Windows
 filename separators must be doubled.
Some features can only be used by editing the configuration
 file, and are not available via the GUI-based administrative
 interface. For example, the filter rules shown in Figure 16-11 correspond to the
 configure file section:
 Filters = {
 secure_mail = {
 DNSNameRegexp = ".*\\.mail\\.example\\.com$"
 Application = "C:\\\\Program Files\\\\WhizBangMail\\\\MailClient\\.exe"
 RealIP = FALSE
 Connections = {
 connection1 = {
 Via = "mail"
 Port = "25,143"
 }
 connection2 = {
 Via = "DIRECT"
 Port = "0-65536"
 }
 }
 }
 }
Regular expressions or literal values can be selected
 independently for DNS hostnames and IP addresses by using any
 combination of the following keywords:
	DNSNameRegexp

	DNSName

	IPAddressRegexp

	IPAddress

The RealIP keyword controls
 assignment of pseudo IP addresses for each rule.
A separate application can be specified for each filter rule.
 The application pathname is actually a pattern, using the
 egrep regular expression syntax. The combination
 of C-language conventions for strings and regular expressions leads to
 an abundance of backslashes. For the setting:
 Application = "C:\\\\Program Files\\\\WhizBangMail\\\\MailClient\\.exe"
the C-language string corresponds (collapsing the doubled
 backslashes) to the regular expression:
 C:\\Program Files\\WhizBangMail\\MailClient\.exe
which matches the pathname:
 C:\Program Files\WhizBangMail\MailClient.exe

[176] The timeout interval is expressed as a number of
 seconds.

[177] If pseudo IP addresses are disabled in the General Settings,
 then the actual IP address of the server is used.

[178] You can specify multiple applications if you use Tectia
 Manager to configure Connector. The restriction also does not
 apply if you edit the configuration file directly.

File Transfers

The Tectia client supports file transfers using sftp. The File Transfer window
 (Figure 16-12) for the GUI
 client is obtained by using the New File Transfer Window toolbar icon or
 the Window/New File Transfer menu item, and operates similarly to
 Windows Explorer.
To transfer files, use any of the following methods:
	Simply drag and drop files or folders between the Local and
 Remote views.

	Select the files or folders to be transferred in the Local or
 Remote views, and then click the download or upload icons in the
 toolbar.

	Right-click on a file or folder in the Local or Remote view to
 produce a menu, and then use the Upload or Download menu items. If
 the Upload Dialog or Download Dialog menu items are used instead,
 then a separate dialog allows selection of files to be
 transferred.

	Select the files or folders to be transferred in the Local or
 Remote views, and then use the same menu items in the Operation
 menu.

Most other file operations can be performed within the Local or
 Remote views using the Operation menu, or familiar Windows Explorer
 gestures. These include opening files, running programs, deleting or
 renaming files and folders, creating new folders, etc. Some restrictions
 on the operations may be imposed by the remote system.
The sftp file transfer mode can be set to
 ASCII, Binary, or Auto Select using icons on the toolbar, or the
 Operation/File Transfer Mode menu items.
The transfer view at the bottom of the window shows progress
 information and statistics for each transfer.
[image: File transfer window]

Figure 16-12. File transfer window

Command-Line Programs

The GUI client can be launched from the command line. This
 is useful for creating customized shortcuts, or other wrapper scripts
 (e.g., *.bat files).
The program is named SSHClient, and supports
 the following options:[179]
	-r
	Reset all customizations made to the user interface
 (toolbars and menus). The client asks for confirmation before
 doing this.

	-u [username]
	Specify the remote username.

	-h [hostname]
	Specify the remote hostname (where the SSH server
 runs).

	-p [port]
	Specify the port number.

	-f
	Start using the file-transfer window instead of the terminal
 window.

A profile settings file (*.ssh2) can also be specified as the last
 argument on the command line.
The GUI client immediately initiates an outgoing connection if any
 of the -u, -h, or
 -p options, or a profile settings file, are
 specified. If no remote hostname is given (either by the
 -h option or a profile settings file), then the
 client prompts for connection parameters, with any other supplied values
 as defaults. Otherwise, the client starts in an unconnected state and
 waits for outgoing connections to be initiated manually.
The precedence for settings is (from strongest to weakest):
	Command-line options

	A profile settings file specified on the command line

	Default profile settings files: either default.ssh2 or defaultsftp.ssh2 (if the
 -f option is used)

	Hardwired default settings, if the default profile settings
 files do not exist

The Tectia Client package also supplies a set of command-line
 programs, including ssh2,
 scp2, sftp2, and
 ssh-keygen2.[180] These programs are intended for scripting, and function
 almost exactly as they do for Unix implementations, except that they are
 aware of the Windows conventions for configuration file locations. In
 fact, ssh2 -h is an easy way to list the location
 of the configuration files for the client (in the user profile folder).
 The programs understand both Windows and Unix filename conventions using
 backslashes and (forward) slashes, respectively. Wildcards are
 case-insensitive, in accordance with Windows filesystem
 conventions.
Tip
Command-line variants for ssh-agent2 or
 ssh-add2 are notably absent. This functionality
 is provided only by Accession Lite. The command-line client program
 (ssh2) uses Accession Lite to contact an agent
 for authentication.

[179] Options can also be specified with a forward slash instead of
 a hyphen: e.g., /f or
 -f.

[180] Note that all of the program names end with the “2” suffix.
 Corresponding program names without “2” are not provided, as they
 are (via symbolic links) on Unix systems.

Troubleshooting

The Help menu offers two items that are useful for
 identifying problems.
The Troubleshooting dialog (Figure 16-13) displays a
 collection of useful information, including:
	Local client version

	License details

	Operating system

	Remote server version

	Algorithms used

	Connection settings

	Error messages

[image: The Troubleshooting dialog]

Figure 16-13. The Troubleshooting dialog

The Debugging dialog (Figure
 16-14) collects diagnostic output messages from the client. A
 checkbox enables or disables debugging. The debug level is specified
 according to the syntax described for the ssh2 -d
 command-line option [7.3];
 it can restrict output to specific modules.[181] A log file must be specified to store the debug messages,
 which are also displayed in a scrollable view. A checkbox allows the log
 file to be automatically cleared when the client starts; it can also be
 cleared manually at any time using the Clear File button.
[image: The Debugging dialog]

Figure 16-14. The Debugging dialog

[181] Verbose log levels cause the client to run more slowly.

Server

Two distinct flavors of the Tectia server are available
 (as of Version 4.2). The full-featured Tectia Server (T) is intended for
 application tunneling, and supports extra functionality needed by Tectia
 Connector, while the slightly encumbered Tectia Server (A) is intended
 only for remote system administration. All the programs that make up
 these products are identical; the only difference is the license file
 that enables or disables the additional features.
16.11.1 Server Operation

The Tectia server is implemented by a program,
 ssh2master, that runs as a daemon and listens for
 incoming connections. A separate program,
 ssh2server, is run to handle each connection when
 it is accepted. The sftp server is implemented by
 the program sftp_server2.
Tip
If you run a Tectia server on a Windows system configured with
 a firewall, be sure to allow access to the port(s) used to accept
 SSH connections, typically port 22.

Stopping the ssh2master program doesn’t
 affect existing connections, since ssh2server
 continues to run. The Tectia server can even be restarted by a session
 that uses an SSH connection!
Normally, the Tectia server is run as a Windows service that is
 automatically started whenever the system boots. Several mechanisms
 can be used to start or stop the service manually:
	Use the Tectia server administration program (discussed
 shortly).

	Select either the Start Server or Stop Server item within
 the menu Start/Programs/SSH Tectia Server/Tools.

	Access the Control Panel, and use the dialogs for
 Administrative Tools/Services to select the display name SSH
 Tectia Server, and then click Start, Stop, or Restart the
 service.

	Run the start-ssh.bat or
 stop-ssh.bat scripts in the installation
 folder.

	Start or stop the service using the command net
 start SSHSecureShell2Server or net stop
 SSHSecureShell2Server, respectively.

	Run ssh2master -start or ssh2master
 -stop.

ssh2master also understands the options
 -install and -remove to add
 or delete the Tectia server from the list of Windows services.
In addition, ssh2master accepts a few
 options that we have discussed previously for
 sshd2 on Unix platforms:
	-p port
	Listen to the specified port. [5.3.3.1]

	-f config-file
	Use an alternate server configuration file. [5.2.1]

	-d level
	Run in debug mode, and specify the debug level. [5.9.2]

16.11.2 Server Configuration

The server’s configuration files are stored in the installation folder (nothing is
 stored in the Windows registry):
	hostkey
	Private host key (must be protected!)

	hostkey.pub
	Public host key

	server_random_seed
	Pool of random data

	sshd2_config
	Server configuration

sshd2_config has the same
 format as for Unix systems, and almost all of the keywords have
 exactly the same meaning for Windows, so we’ll just discuss the
 differences.
The server administration program,
 ssh2admin, also known as the Server Configuration
 tool (Figure 16-15), can
 display and change some keywords, but many features can be customized
 only by editing the file.
ssh2admin can be either run directly, or
 accessed by selecting the SSH Tectia Server Administration item within
 the menu Start/Programs/SSH Tectia Server. The Tools/View
 Configuration item displays the sshd2_config file in the Notepad
 editor.
Configuration changes take effect for each new session, as they
 are read by ssh2server. Only a few configuration
 keywords are used by ssh2master. If any of these
 are changed, the service should be restarted:
	Port

	ListenAddress

	MaxConnections

FIPS mode is controlled by the FIPSmode keyword, with a value of yes or no
 (the default): [5.3.5]
 FIPSMode yes

16.11.3 Commands and Interactive Sessions

When a command has been specified by an SSH client, it is run
 directly by the Tectia server. For commands that are built into the Windows command interpreter
 cmd.exe, specify cmd
 explicitly for the ssh command:
 $ ssh winserver.example.com cmd /c type readme.txt
[image: Server configuration with ssh2admin]

Figure 16-15. Server configuration with ssh2admin

Otherwise, if no command is given, then the server runs
 cmd.exe by default for the interactive session.
 An alternate program can be specified by the TerminalProvider keyword:
 # Tectia
 TerminalProvider "some-other-cmd.exe"
This provides the same functionality as the login shell for Unix
 systems, except that it applies to all users. User-specific
 subconfiguration files can specify different programs for individual
 users. [11.6.2]
Users can run graphical applications from SSH sessions, but the
 applications have no access to the display, so this has limited
 usefulness. Full-screen text applications don’t work correctly,
 because they expect to run in a real console window, and the SSH
 connection doesn’t provide information about the window dimensions,
 etc.
By default, the Tectia server creates terminals for interactive
 sessions in a fully private window station. This is controlled by the
 PrivateWindowStation
 keyword:
 # Tectia
 PrivateWindowStation yes
The DoubleBackSpace keyword
 copes with Japanese Windows systems, which require double backspaces
 to be sent by the server in response to single backspaces from the
 client, for each two-byte Japanese character. The value is either
 yes (to enable this behavior) or
 no (the default):
 # Tectia
 DoubleBackSpace yes
Child processes that are launched from SSH sessions are not
 automatically terminated when the session ends. This could be
 construed as a bug or a feature, depending on the circumstances:
 beware.
The user profile folder is used as the home folder for commands
 and interactive sessions.

16.11.4 Authentication

Windows passwords are used for password
 authentication. The password authentication method is always required
 for domain user accounts. Public-key authentication works only for
 local user accounts, not domain user accounts.
The %D pattern for the
 UserConfigDirectory keyword refers
 to the user profile folder. [5.3.1.5] The user
 configuration folder contains the authorization file and public
 keys.
Tip
The default value for UserConfigDirectory is %D/.ssh2, which works and is consistent
 with the Unix location. However, it is strange from a Windows
 perspective, and different from all of the other Tectia programs,
 which use the Application
 Data\SSH subfolder within the user profile folder.

16.11.5 Access Control

Accounts that use the SSH server for logins must possess the
 right to “log on locally.” This is disabled by default on some
 servers, such as domain controllers. Keywords like PermitRootLogin that refer to the Unix
 superuser affect any Windows accounts with administrative
 privileges.
In the server configuration, domain user accounts should be
 specified as domain/user (with a forward slash). The usual Windows
 backslash separator cannot be used.
Windows groups are not supported by the server, so keywords and
 values that refer to groups must not appear in the configuration
 files.

16.11.6 Forwarding

The Tectia server supports only TCP port forwarding on Windows, and enforces the restriction that only
 privileged users can use privileged port numbers (less than
 1024).[182] X forwarding and agent forwarding are not
 supported.

16.11.7 SFTP Server

To support SFTP, the Tectia server configuration must include
 the sftp subsystem definition:
 Subsystem-sftp "sftp_server2.exe"
No internal implementation is built into the SSH server, as it
 is for the Tectia servers on Unix systems.
The SFTP server restricts access to a set of folders. This is
 controlled by the Sftp-DirList
 keyword:
 # Tectia
 Sftp-DirList "HOME=%D, SCRATCH=S:\scratch\%U"
The value is a comma-separated list (with optional whitespace),
 where each element has the format
 virtual=real. Virtual folder
 names are arbitrary, and are presented to the SFTP clients. These are
 mapped to the specified real folders on the server. The folder names
 can contain the patterns %D and
 %U, representing the user profile
 folder and the username, respectively. The default value is HOME=%D.
A set of administrative (or power) users can be defined to use
 an alternate list of folders:
 # Tectia
 Sftp-AdminUsers "administrator, backup.*, rebecca"
 Sftp-AdminDirList "HOME=%D, BACKUP=Z:\backup, C:=C:, D:=D:"
The value for Sftp-AdminUsers
 is a comma-separated list (with optional whitespace) of username
 patterns. By default, only the administrator account is
 included.
The Sftp-AdminDirList value
 has the same format as for Sftp-DirList. The default is HOME=%D, C:=C:, D:=D:.
SFTP sessions start in a home folder, which is specified by the
 Sftp-Home keyword:
 # Tectia
 Sftp-Home "S:\sftp\%U"
The SFTP home folder must be accessible, according to Sftp-DirList or Sftp-AdminDirList. The folder can use the
 same patterns, %D and %U. The default is %D (the user profile folder).

16.11.8 Logging and Debugging

The server records log messages in the Windows event
 log, instead of using the standards syslog service found on Unix
 systems. The event log can be viewed using the Tectia server
 administration program, or using the Control Panel, by selecting
 Administrative Tools/Event Viewer.
The verbosity of the messages is controlled by the EventLogFilter keyword:
 # Tectia
 EventLogFilter error, warning
Values are a comma-separated list (with optional whitespace)
 consisting of one or more of the following levels:
	error
	Serious problems that prevent operations from
 completing

	warning
	Problems that allow operations to continue

	information
	Normal, successful events

Note that the higher levels do not include the lower levels, as
 they do for syslog on Unix systems. Each Windows event log level must
 be specified explicitly.
The SFTP server’s log messages are controlled by a separate
 keyword, SftpLogCategory, that
 specifies the kinds of messages that are sent to the event log:
 # Tectia
 SftpLogCategory 31
The numeric value is the sum of any of the following:
	16 = user login/logout (the default)

	8 = folder listings

	4 = modifications

	2 = uploads

	1 = downloads

The ssh2admin program provides more
 convenient checkboxes to specify the value for SftpLogCategory.
The ssh2master -d option works the same way
 as it does for sshd2 on Unix systems to enable
 debug mode and specify the debug log level: [5.9.2]
 # Tectia
 ssh2master -d4
Debug output is written to the console window by default, but
 this can be redirected to a file:
 # Tectia
 ssh2master -d4 2> debug.txt
The scripts debug-ssh.bat and
 debug-ssh-file.bat run
 ssh2master with debug level 4, as shown earlier.
 In addition, the debug-ssh-file.bat script
 redirects output to the file sshd2_debug_output.txt in the installation
 folder, and then displays the file in the Notepad editor after the
 server exits. These scripts can also be run by selecting the items
 Troubleshoot Server or Troubleshoot Server and Save Debug Output from
 the menu Start/Programs/SSH Tectia Server/Tools.

[182] Windows does not normally distinguish privileged ports from
 higher-numbered ports.

Chapter 17. SecureCRT and SecureFX for Windows

SecureCRT, created by VanDyke Software, is a commercial SSH client for Microsoft Windows 95
 through Windows 2003. It is structured as a terminal program; in fact, it
 started life as the terminal program CRT, another VanDyke product. As a
 result, SecureCRT’s terminal capabilities are quite configurable. It
 includes emulation of several terminal types, logins via Telnet as well as
 SSH, a scripting language, a keymap editor, SOCKS firewall support, chat
 features, and much more. We will focus only on its SSH capabilities,
 however.
SecureCRT supports both SSH-1 and SSH-2 in a single program. Other
 important features include port forwarding, X11 packet forwarding, support
 for multiple SSH identities, and an agent. Secure file copy is
 accomplished not only by an scp-type program,
 vcp, but also by ZModem, an old protocol for
 uploading and downloading files. (The remote machine must have ZModem
 installed.) If ZModem is used while you’re logged in via SSH, these file
 transfers are secure.
We’ve organized this chapter to mirror the first part of the book
 covering Unix SSH implementations. When appropriate, we refer you to the
 earlier material for more detailed information.
Our discussion of SecureCRT is based on a prerelease of Version 5.0,
 dated December 2004.

Obtaining and Installing

SecureCRT may be purchased and downloaded from VanDyke
 Software:
A free evaluation version is available, expiring 30 days after
 installation, so you can try before you buy. If you do purchase the
 program, VanDyke will provide a serial number and license key.
Installation is straightforward and glitch-free. The software is
 distributed as a single .exe file;
 simply run it to install the program. Follow the onscreen instructions,
 installing the software in any folder you like. We accepted the default
 choices.

Basic Client Use

 Once you’ve installed the program, it’s time to set up a
 new session, which is SecureCRT’s word for a collection of settings.
 Choose “Quick Connect...” from the File menu, and in the window that
 appears (see Figure 17-1),
 enter the following information:
	Protocol
	Select ssh2 for the SSH-2
 protocol.

	Hostname
	Enter the hostname of the remote SSH server, such as
 server.example.com.

	Port
	Leave it at the default port number, 22, unless your server
 uses a nonstandard port.

	Username
	Enter your username on the remote machine.

	Authentication
	Select Password, unless you have another method set up
 already.

Also put a checkmark in the “Save session” checkbox if you plan to
 return to this SSH server regularly.
Now click the Connect button. You should be prompted for your
 login password on the remote machine, and then you’ll be logged in via
 SSH. SecureCRT operates just like a normal terminal program. SSH’s
 end-to-end encryption is transparent to the user, as it should
 be.

Key Management

SecureCRT supports public-key authentication using DSA or RSA
 keys. It can generate keys with a built-in wizard (in SECSH format,
 compatible with Tectia [6.1.2]), or you can import
 existing keys. It also distinguishes between two different types of SSH
 identities: global and session-specific. Finally, SecureCRT includes an
 SSH agent and supports OpenSSH-style agent forwarding.
17.3.1 Key Generation Wizard

[image: SecureCRT Quick Connect window]

Figure 17-1. SecureCRT Quick Connect window

SecureCRT’s Key Generation Wizard creates key pairs for
 public-key authentication. The utility is run in the Tools menu by
 selecting Create Public Key. Equivalently, from the Global Options
 window, under SSH2 or SSH1,[183] click Create Identity File.
Operation is straightforward. All you need to supply are the
 passphrase, the number of bits in the key, and some random data by
 moving your mouse around the screen. The RSA Key Generation Wizard
 then creates a key pair and stores it in two files. As with the Unix
 SSH implementations, the private key filename is anything you choose
 (say, mykey), and its
 corresponding public-key filename is the same with .pub added (e.g., mykey.pub).
Once your key pair is generated, you need to copy the public key
 to the SSH server machine, storing it in your account’s authorization
 file. [6.1] SecureCRT can
 do this automatically, or you can do it manually.
17.3.1.1 Automatic installation of keys

SecureCRT can upload your public keys to an SSH server
 with the click of a button, but there’s a catch: your remote SSH
 server must support the publickey subsystem, described in technical
 detail at:
	http://www.vandyke.com/technology/draft-ietf-secsh-publickey-subsystem.txt

VanDyke’s own VShell server supports it, and VanDyke makes
 available a patched OpenSSH server with similar support at:
	http://www.vandyke.com/download/os/pks_ossh.html

Assuming you’re running one of these servers:
	Open the Session Options window, either for an existing
 session or to create a new session.

	Under Connection/SSH2, fill in your desired hostname and
 remote username. Then, for your primary authentication method,
 choose PublicKey.

	Click the Properties button to display the Public Key
 Properties dialog (see Figure 17-2).

	Select your desired public key, or generate a new
 one.

	Click the Upload button.

	SecureCRT will upload your public key to the remote SSH
 server machine. You will have to authenticate.

[image: SecureCRT Public Key Properties dialog]

Figure 17-2. SecureCRT Public Key Properties dialog

If the server does not support the publickey subsystem, you’ll
 see an error message like “Unable to open the subsystem for
 publickey assistant.” Try installing the key manually.

17.3.1.2 Manual installation of keys

To install your SecureCRT public key on a remote SSH
 server:
	Log into the SSH server machine using SecureCRT and
 password authentication.

	View the public-key file and copy the full text of the key
 to the Windows clipboard.

	Install the public key (by pasting from the clipboard as
 necessary) on the SSH server machine in your remote account.
 [2.4.3]

	Log out.

	In the Session Options window, select Connection/SSH2, and
 change Authentication from Password to PublicKey.

	Log in again. SecureCRT prompts you for your private-key
 passphrase, and you’ll be logged in.

17.3.2 Using Multiple Identities

SecureCRT supports two types of SSH identities. Your
 global identity is the default for all SecureCRT
 sessions, and is found on the Global Options window, under SSH2 or
 SSH1 (“Use identity file”).
You may override the default by using a
 session-specific identity that may differ (as the
 name implies) for each session you define:
	Open the Session Options window.

	Select Connection/SSH2.

	For your primary authentication type, select PublicKey, then
 click the Properties button to its right, to view the Public Key
 Properties dialog (see Figure
 17-2).

	Select “Use session public key setting,” then select or
 generate your key of choice.

17.3.3 The SSH Agent

SecureCRT comes with an SSH agent for holding your SSH keys in
 memory, so you don’t have to type your passphrase. (We cover
 agents in Chapter
 6.)
SecureCRT’s agent is the simplest to use of any SSH
 implementation we’ve seen. Simply open the Global Options window,
 select SSH2, and place a checkmark next to “Add keys to agent.” From
 that point onward, each time you enter a passphrase for a key, the
 decrypted key will be stored in the agent, so you won’t have to
 reenter the passphrase.
To enable SecureCRT’s agent forwarding, which works with OpenSSH
 and VanDyke’s own VShell servers only, open the Global Options window
 and select SSH2. Then place a checkmark next to “Enable OpenSSH agent
 forwarding.” [6.3.5]
You might also notice that SecureCRT offers to remember login
 passwords when you use password authentication. This is not the same
 as using an agent: your login password on the remote machine has
 nothing to do with keys and passphrases on the local machine.

[183] VanDyke uses the terms “SSH1” and “SSH2” to mean the
 protocols SSH-1 and SSH-2, respectively.

Advanced Client Use

SecureCRT lets you change settings for its SSH features and its
 terminal features. We will cover only the SSH-related ones. The others
 (and more details on the SSH features) are found in SecureCRT’s online
 help.
SecureCRT calls a set of configuration parameters a
 session. It also distinguishes between session
 options that affect only the current session and global options that
 affect all sessions.
You can change session options before starting an SSH connection
 or while you are connected. Some options can’t be changed while
 connected, naturally, such as the name of the remote SSH server machine.
 View the Session Options window (Figure 17-3) by selecting Session
 Options from the Options menu or clicking the Properties button on the
 button bar.
[image: SecureCRT session options]

Figure 17-3. SecureCRT session options

17.4.1 Mandatory Fields

To establish any SSH connection, fill in the Connection
 fields in the Session Options window. These include:
	Name
	A memorable name for your collection of settings. This can
 be anything, but it defaults to the name of the SSH
 server.

	Protocol
	Either SSH-1 or SSH-2.

Then fill in the following fields under Connection/SSH2:
	Hostname
	The name of the remote SSH server machine to which you
 want to connect.

	Port
	The TCP port for SSH connections. Virtually all SSH
 clients and servers operate on port 22. Unless you plan to
 connect to a nonstandard SSH server, you won’t need to change
 this. [7.4.5.1]

	Username
	Your username on the remote SSH server machine. If you’re
 using public-key authentication, this username must belong to an
 account that contains your public key.

	Authentication
	How you identify yourself to the SSH server. This can be
 password (i.e., your remote login password), public key,
 keyboard-interactive authentication (a.k.a. challenge-response
 or one-time password), or GSSAPI authentication. [5.4]

17.4.2 Data Compression

SecureCRT can transparently compress and uncompress the data
 traveling over an SSH connection. This can speed up your connection.
 [7.4.14]
In the Session Options window, choose Connection/SSH2/Advanced.
 The “Compression” dropdown lets you select the type of compression
 (zlib is the most standard). You
 may also set a value for the compression Level. The higher the value,
 the better the compression, but the greater load on the CPU,
 potentially slowing your computer.

17.4.3 Firewall Use

SecureCRT supports connections through several types of
 firewalls, such as the SOCKS4 and SOCKS5 firewalls supported by
 various SSH servers. You can configure one or more named firewalls and
 select one to be the default for all new sessions. Every individual
 session can use any of the named firewalls. You need to know the
 hostname or IP address of the firewall, and the TCP port on which to
 connect.

Forwarding

SecureCRT supports the SSH feature called forwarding (Chapter 9), in
 which another network connection can be passed through SSH to encrypt
 it. It is also called tunneling because the SSH connection provides a
 secure “tunnel” through which another connection may pass. Both TCP port
 forwarding and X forwarding are supported. (As well as agent
 forwarding, as we mentioned earlier.)
17.5.1 Port Forwarding

Port forwarding permits an arbitrary TCP connection to be routed
 through an SSH connection, transparently encrypting its data. [9.2] This turns an insecure TCP
 connection, such as Telnet, IMAP, or NNTP (Usenet news), into a secure
 one. SecureCRT supports local port forwarding, meaning that your local
 SSH client (SecureCRT) forwards the connection to a remote SSH
 server.
Each SecureCRT session you create may have different port
 forwardings set up. To set up forwarding to a particular remote host,
 open the Session Options window and select Connection/Port
 Forwarding.
To create a new forwarding, first click the Add button to
 display the Local Port Forwarding Properties window, as in Figure 17-4. Then enter:
	Name
	Any descriptive name for your forwarding, to help you
 remember what it does.

	Local
	The port number on your local machine
 to connect to the secure tunnel. This can be just about any
 number, but for tradition’s sake, make it 1024 or higher. Choose
 a local port number that’s not being used by any other SSH
 client on your PC. If you want to restrict the local IP address
 that allows connections (i.e., if your PC has multiple network
 addresses), check the associated checkbox (“Manually select
 local IP addresses...”) and fill in the address.

	Remote
	The port number of the remote service, such as 119 for
 NNTP or 143 for IMAP. The remote machine, by default, is the
 same one used for your SecureCRT session, but you can change
 this by checking “Destination host is different from the SSH
 server” and entering the hostname where the remote service is
 found. But beware: you can produce a non-secured tunnel with
 this kind of third-party forwarding if you’re not
 careful.

	Application
	SecureCRT can run an external program for you to take part
 in the forwarding. For example, if you’re forwarding to an IMAP
 mail server, SecureCRT could launch your mail client. If you
 want this behavior, enter the path to your desired application
 program.

When you’re done, click OK to save the forwarding, and your
 desired TCP port will be forwarded for the duration of your
 connection.
[image: Local Port Forwarding properties window]

Figure 17-4. Local Port Forwarding properties window

17.5.2 X Forwarding

The X Window System is the most popular windowing software for
 Unix machines. If you want to run remote X clients that open windows
 on your PC, you need:
	A remote host, running an SSH server, that has X client
 programs available

	An X server running on your PC under Windows, such as
 Cygwin/X or X-SecurePro

SSH makes your X connection secure by a process called X
 forwarding. [9.4]
 Turning on X forwarding is trivial in SecureCRT. Simply put a
 checkmark in the checkbox “Forward X11 Packets.” It is found in the
 Session Options window under Connection/Port Forwarding/X11.
To secure an X connection by forwarding it through SSH, first
 run SecureCRT and establish a secure terminal connection to the SSH
 server machine, with X forwarding enabled. Then run your PC’s X
 server, disabling its login features such as XDM. Now simply invoke X
 clients on the server machine.

Command-Line Client Programs

 Although SecureCRT is a graphical terminal program, it
 also comes with a few command-line programs very similar to the ssh,
 scp, and sftp programs
 supplied with OpenSSH and Tectia. They are called
 vsh, vcp, and
 vsftp.
vsh is a remote login and command-execution
 program similar to ssh. Type
 vsh by itself for full usage information. Here are
 some notable examples:
 # Log into server.example.com as smith
 C:\> vsh -l smith server.example.com

 # Invoke the remote command "who"
 C:\> vsh -l smith server.example.com who
vcp is a file-transfer program similar to
 scp: we discuss it in the next section.
 vsftp is an interactive file-transfer program
 similar to sftp and
 ftp.

File Transfer

SecureCRT offers three ways to transfer files securely between
 systems via SSH:
	vcp and vsftp

	Xmodem or Zmodem

	SecureFX

17.7.1 The vcp and vsftp Commands

SecureCRT comes with a command-line program,
 vcp, for transferring files securely. It has
 syntax almost identical to scp. For example, to
 copy the local file myfile to the
 remote SSH server server.example.com,
 authenticating as smith, and naming the copy newfile:
 C:\> vcp myfile smith@server.example.com:newfile
Many of vcp’s options are the same as
 scp’s:
	 -r

	Recursive copy

	 -i

	Specify a public-key identity for
 authentication

	 -v

	Verbose flag for
 debugging

However, other options are different. Type
 vcp by itself for full usage information.
vsftp is an FTP-like client provided with
 SecureCRT; it should feel familiar to anyone who has used an FTP
 client. Run vsftp -h for full usage
 information.

17.7.2 Zmodem File Transfer

SecureCRT supports file transfer using the old Xmodem
 and Zmodem protocols, secured via SSH. To use these protocols, your
 SSH server machine will need Xmodem or Zmodem programs installed, such
 as sz and rz (send and
 receive Zmodem, respectively) or sx and
 rx (send and receive Xmodem, respectively), often
 found on Linux machines. For example, to send a file from the remote
 server machine to your local client machine via Zmodem:
	On the remote system, run:
 $ sz myfile

	SecureCRT will automatically detect the Zmodem connection
 and perform the download, displaying the file-transfer status in a
 window.

Similarly, to upload a file:
	On the remote system, run:
 $ rz

	In SecureCRT, choose Transfer/Zmodem Upload List, and select
 the files you want to transfer. Then select Transfer/Start Zmodem
 Upload.

17.7.3 SecureFX

If you want a graphical file transfer with a Windows
 Explorer-like interface, plus integration with SecureCRT, consider
 VanDyke’s commercial product, SecureFX. Once you’ve authenticated and
 connected to a remote SSH server, you can drag and drop files between
 the machines with your mouse.
SecureFX also has an interesting feature called Quick
 Synchronize, which is roughly similar to hotsynching on a Palm Pilot.
 Suppose you have a set of files on your local computer and a backup
 copy on a remote system. The Quick Synchronize feature compares the
 two sets, displays the differences, and lets you make them identical
 by copying files securely between the two systems. Even if you’ve
 edited the files on both systems, Quick Synchronize can bring both
 sets up to date with the most recent changes.

Troubleshooting

SecureCRT, like any other SSH client, can run into unexpected
 difficulties interacting with an SSH server. In this section we cover
 problems specific to SecureCRT. For more general problems, see also
 Chapter 12.
17.8.1 Authentication

	Q:
	When I try to upload my public key, I get the message,
 “Unable to open publickey subsystem” and the upload
 fails.

	A:
	SecureCRT can upload public keys only to SSH servers
 supporting the publickey subsystem, an open standard created by
 VanDyke. If you get this message, your remote server doesn’t
 have this support.

17.8.2 Forwarding

	Q:
	I can’t do port forwarding. I get a message that the port
 is already in use.

	A:
	Do you have another SecureCRT window open and connected
 with the same port-forwarding setup? You can’t have two
 connections forwarding the same local port. As a workaround,
 create a second session that duplicates the first, but with a
 different local port number. Now you can use both sessions
 simultaneously.

VShell

VanDyke Software also sells an SSH server product, VShell,
 that runs on Windows and various Unix platforms, including Red Hat
 Linux, Solaris, FreeBSD, OS X, and HP-UX. VShell has interesting
 features to recommend it:
	File and notification triggers
	VShell can execute arbitrary commands in response to events
 such as SFTP file transfers or failed authentication
 attempts.

	Flexible SFTP configuration
	VShell’s SFTP server has an access control list (ACL)
 language that can assign access to individual server directories
 by any combination of account name or group membership. It can
 conveniently use the Unix chroot mechanism to restrict users to
 given directories, as well as define virtual directories that hide
 details of server file organization from clients.

	Fine-grained access control
	Again using ACLs, the VShell server can restrict access to
 services by individual accounts. One account might be allowed full
 access while another may use only SFTP. One group may do local
 port forwarding and get interactive sessions with their defined
 shells, but not remote forwarding or arbitrary remote command
 execution, except for one user in that group, who still gets full
 access.
Of course, the efficacy of such measures depends on further
 work: it does little good to restrict remote commands, for
 example, if any program can be started by the user’s shell. But
 VShell provides these restrictions at the right place: in terms of
 the basic SSH channel types used to invoke the services. Other SSH
 products often do not have this level of control, and require
 awkward and fragile combinations of special shells or specific
 authentication methods to achieve the same goal.

	GSSAPI
	Support for emerging GSSAPI/Kerberos SSH standards for both
 client and server authentication.

	Very understandable debug messages
	Don’t underestimate the value of readable verbose messages!
 There will always be problems, and logging is your main tool for
 solving them. Reading the verbose output of some SSH products can
 be an art in itself. VShell’s messages are particularly well
 done.

Summary

VanDyke’s SSH products are mature, stable, and well rounded, and
 have good vendor support. The GUI clients SecureCRT and SecureFX both
 work well. The command-line clients are not as flexible as OpenSSH and
 Tectia’s, but they cover the basics and get the job done. The VShell
 server supports some interesting features and is well worth checking
 out.

Chapter 18. PuTTY for Windows

The world is full of rich, hyper-powerful SSH implementations, but
 sometimes simplicity is best. Enter PuTTY, a tiny, uncomplicated, free SSH client for Microsoft
 Windows.[184] There’s no installation procedure, no steep learning curve, and in many cases, no
 configuration needed.
At press time, PuTTY was still labeled as “beta” software, but don’t
 be discouraged: it’s a robust and just plain useful SSH client. Thanks to
 Simon Tatham for creating the PuTTY suite of programs, releasing them as
 free software, and writing a detailed manual on his web site. Because
 PuTTY’s manual is very good, we’ll focus on the most common uses. This
 chapter covers PuTTY Version 0.56.

[184] It’s also available for Unix, but OpenSSH and Tectia are so
 widespread that we don’t see much point in using PuTTY on Unix
 platforms.

Obtaining and Installing

Installation of PuTTY is as easy as it gets. Just download
 the putty.exe executable
 from:
and run it. This simplicity is especially handy if you’re
 traveling and need an SSH client; PuTTY is just a quick download
 away.

Basic Client Use

To get started, just run (or double-click) putty.exe. The PuTTY Configuration dialog
 shown in Figure 18-1 will
 appear:
For a quick start, locate the box labeled “Host Name (or IP
 address),” enter the hostname of your remote server machine, and click
 the Open button. A terminal window then appears and prompts you for your
 login name and password. Assuming
[image: PuTTY Configuration dialog]

Figure 18-1. PuTTY Configuration dialog

there’s nothing unusual about your SSH server, you’re done: PuTTY
 establishes a secure login session with the server.
Tip
PuTTY supports not only SSH, but also insecure protocols like
 Telnet and Rlogin. Make sure your connections are using the SSH
 protocol by selecting SSH on the initial PuTTY Configuration dialog.
 SSH is the default protocol for the other programs in the suite, such
 as Plink, PSFTP, and PSCP.

18.2.1 Plink, a Console Client

PuTTY comes with a second SSH terminal client, Plink,
 which is reminiscent of the ssh client of OpenSSH
 and Tectia. For a quick start, open a command window and type:
 C:\> plink smith@server.example.com
This command connects you via SSH to
 server.example.com, logging in as remote user
 smith.
Plink is most appropriate for noninteractive use: for example,
 setting up tunnels for port forwarding, or running inside batch jobs.
 It can also handle interactive logins, but PuTTY is a better choice,
 particularly for screen-based programs like text editors. The Windows
 command line is not a particularly good terminal emulator.
The plink client has many command-line
 options, similar to those of ssh. Run
 plink by itself to see a list of valid options,
 as shown in Table
 18-1.
Table 18-1. plink command-line options
	Option
	Meaning

	1
	Use SSH-1 protocol.

	2
	Use SSH-2 protocol.

	C
	Use compression for the SSH
 connection. [7.4.14]

	-i
 keyname
	Use the private key
 keyname.

	-l
 username
	Specify the remote username (if
 omitted, it defaults to your local username).

	-load
 session
	Load settings from a saved
 session.

	-m
 filename
	Read remote commands from the file
 filename.

	-pw P

	Use password
 P.

	-P port

	Use TCP port
 port to connect to the remote SSH
 server.

	-s
	Use an SSH subsystem. [5.8]

	-t
	Allocate a pseudo-terminal
 (pty).

	-T
	Do not allocate a pseudo-terminal.
 (pty).

	-v
	Print verbose
 diagnostics.

	V
	Display the program
 version.

18.2.2 Running Remote Commands

Instead of an interactive terminal session, PuTTY and
 Plink can run a single command of your choice, then exit immediately.
 It’s simplest with Plink: just append the remote command to the Plink
 command line. For example, to run the ls (list
 files) command on a remote Linux machine running an SSH server,
 type:
 C:\> plink smith@server.example.com ls
With PuTTY, visit the PuTTY Configuration dialog and look under
 Connection/SSH. Fill in the blank labeled “Remote command,” then
 connect. The command will run and PuTTY will terminate
 afterward.

File Transfer

The PuTTY suite includes two programs for copying your files
 securely between machines. PSCP is a noninteractive program much like
 scp, and PSFTP is an interactive program inspired
 by ftp.
18.3.1 File Transfer with PSCP

PuTTY’s pscp client is for copying files
 securely between machines, just like scp from
 OpenSSH and Tectia. Also like scp,
 pscp is noninteractive. (For an interactive
 client, see psftp. [18.3.2])
The syntax for PSCP is almost identical to that of
 scp. [7.5] Remote files are
 referenced by:
	[user@]host:path

where user is the remote username,
 host is the remote hostname, and
 path is the folder path to the file in
 question.

18.3.2 File Transfer with PSFTP

PSCP can copy files securely between computers, but the
 user interface is noninteractive. If you prefer a familiar FTP-like
 interface, try PSFTP, PuTTY’s interactive file-transfer program. To
 start a file copying session with remote computer
 server.example.com, run:
 C:\> psftp server.example.com
 login as: smith
 Using username "smith".
 smith@server.example.com's password:
 Remote working directory is /home/smith
 psftp>
The prompt psftp>
 indicates that PSFTP is ready to accept commands. If you’re familiar
 with FTP, the PSFTP commands will make you feel right at home. To
 transfer a file from your local machine to the remote server,
 use:
 psftp> put myfile
or to copy a local file, myfile, as remote file remotefile:
 psftp> put myfile remotefile
This is equivalent to the PSCP command:
 C:\> scp myfile server.example.com:remotefile
In the other direction, to transfer files from the remote server
 to your local machine, use get:
 psftp> get remotefile
 psftp> get remotefile myfile
To traverse the directory (folder) hierarchy of the remote
 machine, use the cd command as in DOS or
 Unix:
 psftp> cd my_remote_subfolder
 psftp> cd ..
To change your working directory on the local machine, use
 lcd:
 psftp> lcd my_local_subfolder
 psftp> lcd ..
For a full list of commands, type help, or
 for assistance with a particular command, specify the command name as
 well (e.g., help put). Table 18-2 lists the available
 commands. Unfortunately, PSFTP does not include the useful
 mput and mget commands for
 transferring many files at once.
Table 18-2. PSFTP commands
	 Basic
 commands:
	
	 open

	Open an SFTP connection to a remote
 server.

	 bye, exit,
 quit
	Exit PSFTP.

	 help

	Get a help message.

	 !

	Shell escape: run a command-line
 program on your local computer.

	 Directory
 (folder) commands:
	
	 dir, ls

	List a directory.

	 cd

	Change directory (remote
 machine).

	 lcd

	Change directory (local
 machine).

	 pwd

	Print the name of the directory
 you’re in (remote machine).

	 lpwd

	Print the name of the directory
 you’re in (local machine).

	 mkdir

	Create a directory.

	 rmdir

	Delete a directory.

	 File
 commands:
	
	 get

	Download a file.

	 put

	Upload a file.

	 reget

	Restart a download that you tried
 previously, but failed; will pick up where the previous
 download left off.

	 reput

	Restart an upload that you tried
 previously, but failed; will pick up where the previous upload
 left off.

	 mv, ren

	Rename a file.

	 rm, del

	Delete a file.

	 chmod

	Change permissions of a file, like
 the Unix chmod command.

Key Management

If you’d like to use public-key authentication to connect
 to remote hosts [2.4], PuTTY
 includes a key generator program, called PuTTYgen. It has a simple
 graphical user interface for creating and editing RSA and DSA keys, as
 shown in Figure 18-2.
[image: PuTTYgen, the key generator]

Figure 18-2. PuTTYgen, the key generator

To create a new key, simply click the Generate button. You’ll be
 asked to waggle your mouse around to supply random numbers to the
 generator, then to supply a passphrase. To edit an existing key, just
 click the Load button.
You might remember that OpenSSH and Tectia use different file
 formats for their keys. PuTTYgen uses the SECSH format for public keys
 [6.1.2], but its own
 unique format for private keys. The private key is stored in a file with
 the suffix .ppk and looks like
 this:
 PuTTY-User-Key-File-2: ssh-rsa
 Encryption: aes256-cbc
 Comment: Your comment here
 Public-Lines: 4
 AAAAB3NzaC1yc2EAAAABJQAAAIBltDpO1wC9qJ98peVr5y9C7N9vdOh+OrCNwbIh
 lba1oSf94rrDl1TQXKXxgIHSd1ICgh7wkdxFWbyDRXSuWdur6kreTGRaw9XgCzQt
 LyANMtKAPpDYVE1g8jb6jA1bOMtK8b+pGPmetbvdyBDmFcQ/oPwYyrZIjfbd8IdK
 FxxJvw==
 Private-Lines: 8
 3ryAyuTLEnYuLGsetfNvazRYOhxQmzBWSyMLyT2i+zt7QqArlPglY1Um3NBJlYgS
 caHDiLyH95tV2onEeBThJzYFAvgrr7UlXVjQTDLr29fe2FTS/bNm4OahTaKzTNV4
 0EojvG1yafCucaZMVwsndB4djpm4otJja+xDVLN7Wj3ibzUT+SfodSJyazMAjB0y
 Q3ndbcqcIPPg4OM3sL8c09KTVdcuLkkyKMSV5yEgTAP0RG0M+T8/ChHLFLHswwV+
 /tlb0GLZRa1w3KsnzHHFKxMsM2zOdHXnSG8TX0kecdpT2p8PT3UGw2+SMESD8umc
 GLai7g/o03lMJVSOezrooDC06p8J8OXk8h84gYeJbBIyXdELh10E3fnDSkTy5jS4
 w2SCNzXX67ggWjIFtsefsx6VJ4WwJUYtNbKY35M59xMug/GRBL07QPLu+xSh8/RB
 yM/rWtUvGwXG3ygW/TVm7A==
 Private-MAC: a0f9fa2204172fc6df9e0f6d5b918c8790d88611
But never fear: PuTTYgen can read and write public and private
 keys for both OpenSSH and Tectia:
	To read an OpenSSH or Tectia key, simply click the Load button
 and select the key file. (In the file dialog, be sure to set the
 file type to “All Files (*.*)” so that your non-PuTTY keys show
 up.)

	To write an OpenSSH or Tectia private key, use the Conversion
 menu and select “Export OpenSSH key” or “Export ssh.com key.”

	To write an OpenSSH public key, copy and paste the key shown
 at the top of the window, under “Public key for pasting into OpenSSH
 authorized_keys file.” To write a Tectia public key, do nothing:
 PuTTY’s public keys are already in SECSH format.

18.4.1 Choosing a Key

To select the private key for PuTTY to use, open the
 PuTTY Configuration dialog and visit Connection/SSH/Auth. Under
 “Private key file for authentication,” browse to and select your key
 of choice. (Make sure the corresponding public key is properly
 installed on the server. [6.2])
If you’re using Plink, you can choose the key on the command
 line with the -i option:
 C:\> plink -i c:\keys\me.ppk smith@server.example.com

18.4.2 Pageant, an SSH Agent

An SSH agent goes hand in hand with public-key authentication.
 [6.3] PuTTY has an agent,
 called Pageant, that caches private keys (stores them in memory) and
 responds to authentication-related queries from PuTTY, PSCP, and other
 clients in the suite. In short, Pageant is a timesaver, so you don’t
 have to keep retyping your passphrase.
To run Pageant, just double-click it or invoke it from the
 command line. (Even better, add pageant.exe to your system startup so that
 it’s always available when you boot or log in.) An icon will appear in
 the Windows System Tray on the taskbar. Right-click the icon and you
 can load keys into the agent, view your keys, or perform other
 operations, as shown in Figure
 18-3. (To add a key, you’ll need to know its passphrase.) Once
 a key is loaded into Pageant, the various PuTTY clients will use the
 key transparently, and you won’t have to retype its passphrase.
[image: Pageant, the PuTTY agent]

Figure 18-3. Pageant, the PuTTY agent

You can also run Pageant on the command line. Just follow it
 with one or more keys you’d like to load, e.g.:
 C:\> pageant key1 key2 key3
and it will dutifully load them.
Speaking of agents, PuTTY also supports agent forwarding [6.3.5], but only for OpenSSH
 servers, not Tectia servers. Just make sure the option “Allow agent
 forwarding” is checked in PuTTY’s configuration window; or if you’re
 using Plink, add the -A option to enable agent
 forwarding or -a to disable it.

Advanced Client Use

PuTTY is simple to use in its most basic form.
 Nevertheless, its clients have many options that are worth trying out.
 We will cover the ones relating to SSH. Other terminal-related features,
 like settings for the window, keyboard, and mouse, we encourage you to
 explore on your own.
18.5.1 Saved Sessions

If you have a habit of connecting to the same remote machines
 often, set up a Saved Session, which remembers the settings for that
 connection so that you can reuse them. This is similar to the OpenSSH
 and Tectia feature of configuration files, but with a GUI. [7.1.2] Simply configure PuTTY
 the way you like it, then save that configuration under a name, such
 as “My Favorite Settings” or “office.”
When you create and name a Saved Session, it becomes available
 not only to PuTTY, but also to the other programs in PuTTY’s suite,
 such as PSCP and Plink. Just provide the saved session’s name in place
 of a hostname. For example, if you created a Saved Session called
 “office” to stand for employer.example.com, you
 could run:
 C:\> plink office
and it will connect to
 employer.example.com.
Saved Sessions are stored in the Windows registry under the key
 \HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions.

18.5.2 Host Keys

Like other SSH implementations, PuTTY records the host
 keys of SSH servers it encounters. They are stored in the
 Windows registry under the key \HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys.

18.5.3 Choosing a Protocol Version

We always recommend you use the SSH-2 protocol, since it is more
 secure and robust than the original SSH-1. Nevertheless, PuTTY does
 support both protocols, and you can choose your preferred protocol on
 the PuTTY Configuration dialog, under Connection/SSH. The choices
 are:
	1 only
	Require SSH-1, or else fail.

	1
	Try SSH-1 first, then SSH-2.

	2
	Try SSH-2 first, then SSH-1.

	2 only
	Require SSH-2, or else fail (recommended).

With Plink, you can force the protocol version with the
 -1 (SSH-1 only) and -2
 (SSH-2) options:
 C:\> plink -2 smith@server.example.com

18.5.4 TCP/IP Settings

SSH uses TCP/IP as its transport mechanism, and PuTTY gives you
 control over some TCP-related settings.
18.5.4.1 Selecting a remote port

SSH servers almost always run on TCP port 22, but if you
 encounter a nonstandard server, you can choose a port in the PuTTY
 Configuration dialog, under Connection. Locate the Port value and
 fill it in.
With Plink, just specify the -P option to
 set the port number:
 C:\> plink -P 12345 smith@server.example.com

18.5.4.2 Keepalive messages

SSH clients can optionally send TCP keepalive
 messages to an SSH server to recognize when a connection has
 failed. [7.4.5.4] If
 the client detects a lack of responses to these messages, it shuts
 down the connection. You can enable or disable this feature in the
 PuTTY Configuration dialog, under Connection.

18.5.4.3 The Nagle Algorithm

TCP/IP has a feature called the Nagle Algorithm, which is
 designed to reduce the number of TCP segments sent with very small
 amounts of data (e.g., 1 byte), usually as part of an interactive
 terminal session. This can affect performance over wide-area
 networks. [7.4.5.5]
 PuTTY lets you enable or disable the Nagle Algorithm in the PuTTY
 Configuration dialog, under Connection.

18.5.5 Pseudo-Terminal Allocation

SSH clients allocate a pseudo-terminal on the server machine: a
 software abstraction representing a computer terminal. [7.4.6.5] PuTTY does this by
 default, but you can prevent this in the PuTTY Configuration dialog,
 under Connection/SSH.
Because PuTTY is designed as a terminal client, which is
 interactive, you generally can leave this setting alone. But if you’re
 using PuTTY noninteractively, say, only to set up port forwarding—you
 don’t strictly need a pseudo-terminal. If you’re using Plink, you can
 disable pseudo-terminal allocation with the -T option or leave it
 enabled with -t.

18.5.6 Proxies and SOCKS

PuTTY supports SOCKS, an application-layer network
 proxying system supported by various SSH implementations. [7.4.7] You can enable it in
 the PuTTY Configuration dialog, under Connection/Proxy.

18.5.7 Encryption Algorithms

On the Connection/SSH section of the PuTTY Configuration dialog,
 you can choose the encryption algorithms (ciphers) acceptable to the client. [7.4.9] Any algorithms
 appearing below the line “--warn below here--” will cause PuTTY to
 display a warning before they are used.
For most people, the defaults are fine. But if, say, a security
 hole were found in one of the algorithms (say, Blowfish), you could
 move it below the line, and PuTTY will warn before using it.

18.5.8 Authentication

PuTTY supports the following authentication types: password, public-key, challenge-response (a.k.a.
 keyboard-interactive), and TIS. [7.4.13] Password
 authentication works by default. Public-key authentication requires
 you to set up a key, as we’ve seen. [2.4] Challenge-response
 authentication is enabled in the PuTTY Configuration dialog, under
 Connection/SSH/Auth. [5.4.5]
TIS authentication is uncommon: it authenticates users via the
 Gauntlet firewall toolkit from Trusted Information Systems. It works
 only for the SSH-1 protocol so we recommend against using it. That
 being said, it is enabled in the PuTTY Configuration dialog, under
 Connection/SSH/Auth.

18.5.9 Compression

The data flowing between the SSH client and server may
 optionally be compressed to save bandwidth. [7.4.14] To enable
 compression, open the PuTTY Configuration dialog and look under
 Connection/SSH. If you’re using Plink, add the -C
 option to enable compression:
 C:\> plink -C smith@server.example.com

18.5.10 Logging and Debugging

If you’re having a connection problem with PuTTY, you can
 capture the session data in a file. Open the PuTTY Configuration
 dialog and look under Session/Logging. Here you select the file to
 receive the data, and four different settings:
	Logging completely turned off
	As it says, do no logging.

	Log printable output only
	This simply captures the text of your terminal session,
 and is not very useful for debugging.

	Log all session output
	This captures not only the text of your session, but also
 any nonprinting control characters. This is useful for debugging
 terminal emulation problems, e.g., if your favorite text editor
 isn’t behaving when viewed through PuTTY.

	Log SSH packet data
	This is the big one: the actual SSH data, unencrypted,
 that passes over the connection. It appears in hexadecimal and
 ASCII, annotated with high-level information such as “Doing
 Diffie-Hellman group exchange” and “Access denied.” If you’re
 debugging an SSH problem, this is the logging you need. However,
 it’s not very user-friendly: you’ll need substantial knowledge
 of the SSH protocol to figure out what’s going on.

Warning
If you select “Log SSH packet data,”
 always select “Omit known password fields” as
 well. Otherwise, sensitive data like passwords will be captured in
 the log file, which is a security risk if the log file is read or
 stolen by a hostile third party.

If you’re using Plink, you can display diagnostic information
 with the -v option:
 C:\> plink -v smith@server.example.com
 Server version: SSH-1.99-OpenSSH_3.8.1p1
 We claim version: SSH-2.0-PuTTY-Release-0.56
 Using SSH protocol version 2
 Doing Diffie-Hellman group exchange
 Doing Diffie-Hellman key exchange
 Host key fingerprint is:
 ssh-dss 1024 80:de:c6:fa:f7:82:4f:c7:c4:8c:1f:6f:d4:40:4b:0e
 Initialised AES-256 client->server encryption
 Initialised AES-256 server->client encryption
 ...

18.5.11 Batch Jobs

SSH can be used within batch jobs to secure their communications. [11.1] With PuTTY, batch jobs
 are most easily done with Plink and its -batch
 option:
 C:\> plink -batch smith@server.example.com my-job
The -batch option suppresses all user
 prompts. But wait: just because you’ve disabled prompts doesn’t
 automatically authenticate you. You’ll also need to set up
 passwordless authentication. Otherwise, you’ll simply fail to
 authenticate, prompts or no.

Forwarding

Forwarding or tunneling is the use of SSH to secure another
 network application, covered fully in Chapter 9. Both PuTTY and Plink can set
 up secure tunnels for this purpose.
18.6.1 Forwarding with PuTTY

Forwarding is set up with the PuTTY Configuration dialog. For
 local port forwarding, which is the most common type, select Tunnels.
 Then fill in these fields:
	Source port
	Any unused TCP/IP port on your local machine.

	Destination
	The remote SSH server name, followed by a colon, followed
 by the remote port number.

	Local/Remote/Dynamic
	Choose Local.

For example, to connect to a remote VNC server (port 5900) on
 server.example.com, you’d provide a destination
 of server.example.com:5900, and any
 unused source port (say, 12345).
 This example demonstrates local forwarding [9.2.1], but PuTTY can also do
 remote [9.2.1.2] and
 dynamic [9.3] port
 forwarding.
To turn on X forwarding [9.4] for secure connections
 with an X Window server, simply choose Tunnels again and select the
 checkbox Enable X11 Forwarding.
To turn on agent forwarding [6.3.5] to allow your SSH
 agent to communicate with clients on other machines, navigate to
 Connection/SSH/Auth and select the checkbox Allow Agent
 Forwarding.

18.6.2 Forwarding with Plink

To enable the various kinds of forwarding with the command-line
 program Plink:
	Local port forwarding [9.2.1]
	Use the -L option, supplying the
 source port, remote server name, and remote port. For example,
 to forward local port 12345 to remote port 5900 on
 server.example.com, run:
 C:\> plink server.example.com -L 12345:server.example.com:5900

	Remote port forwarding [9.2.1.2]

	Use the -R option, supplying the
 remote source port, local server name, and local port. For
 example, to forward remote port 12345 on
 outerspace.example.com to your local port
 5900, run:
 C:\> plink outerspace.example.com -R 12345:localhost:5900

	Dynamic port forwarding [9.3]
	Use the -D option. For example, to
 perform dynamic port forwarding via proxy on port 12345,
 run:
 C:\> plink -D 12345 server.example.com

	X forwarding [9.4]
	Use the -X option to enable it, or
 -x to disable it

	Agent forwarding [6.3.5]
	Use the -A option to enable it, or
 -a to disable it.

Summary

PuTTY is a small, useful SSH client for Windows (and available for
 Linux if you don’t already have another SSH client installed). Its major
 benefit is its simplicity—just download and start using it—but under the
 hood it has additional powerful features for the inquisitive user. For
 more information, see the PuTTY manual at:
	http://www.chiark.greenend.org.uk/~sgtatham/putty/

Appendix A. OpenSSH 4.0 New Features

Stop the presses! Just before this book was printed, OpenSSH 4.0 was
 released by those fine folks at openssh.com. While compatible with
 Version 3.9, it has several important new features that we discuss
 briefly. (We cover just features, not bug fixes.)

Server Features: sshd

 The OpenSSH server has new features pertaining to logging, listening
 addresses, and password and account expiration warnings.
Logging of Access Control Violations

When authentication attempts are rejected by user-level access
 control (AllowUsers, DenyUsers) or group-level access control
 (AllowGroups, DenyGroups), sshd will
 log an informative message about it.

AddressFamily Keyword

The AddressFamily
 configuration keyword, previously available to clients only, can now
 be configured for the SSH server as well. If your server supports both
 IPv4 and IPv6, this lets you control on which sort of addresses
 sshd will listen.

Password and Account Expiration Warnings

If your password or account is going to expire (on operating
 systems that support expiration), sshd will now
 warn you in advance when you authenticate—for example.:
 Your password will expire in 6 days
 Your account will expire in 11 days

Client Features: ssh, scp, and sftp

OpenSSH clients have new features pertaining to keyboard-interactive
 authentication, connection sharing, known-hosts handling, port forwarding, and command-line editing and history.
KbdInteractiveDevices Keyword

The KbdInteractiveDevices keyword was
 undocumented in OpenSSH 3.9, but now it’s officially supported. It
 determines the devices that the client will try for
 keyboard-interactive authentication.
 KbdInteractiveDevices = pam,skey,bsdauth

More Control for Connection Sharing

If you’re using the connection-sharing feature of
 ssh, you can now control the master process of
 that connection with the -O option. To check
 whether you’re using connection sharing, run the following:
 $ ssh -O check server.example.com
To request the master process to exit, run the following:
 $ ssh -O exit server.example.com

Hashing of Hostnames

In previous versions of OpenSSH, known_host files contain the hostnames and
 IP addresses of the computer’s you’ve visited via SSH. If you’d like
 to keep this information more private, use the new HashKnownHosts configuration keyword in your
 client configuration file:
 HashKnownHosts yes
SSH clients will now hash the hostnames so they look like random
 strings—for example:
 |1|Un5Q61BdVPCq65Yj3ec/HH6r+zI=|2pPQE/qjP7rrPLblvS1epjYbUOs=
This feature is experimental at the moment, so use it at your
 own risk.

Port Forwarding

When you construct a port forwarding, you can now specify a bind
 address: the address on which the accepting side of the forwarding
 will listen. This is useful either for controlling whether a
 forwarding is available off-host (not listening on only on the
 loopback), or distinguishing among multiple addresses if the listening
 host is multi-homed. You give the bind address on the command line,
 preceding the usual -L or -R
 value. For example, to set up a local forwarding from local port 2001
 to remote server port 143 (IMAP), listening on 192.168.100.66:
 $ ssh -L 192.168.100.66:2001:localhost:143 server.example.com
or for a remote forwarding:
 $ ssh -R 192.168.100.66:2001:localhost:143 server.example.com
You can also do this with the LocalForward and RemoteForward configuration keywords,
 prepending the bind address to the second argument:
 LocalForward 2001 192.168.100.66:localhost:143
 RemoteForward 2001 192.168.100.66:localhost:143
Note that this forwarding will not be
 listening on the loopback address. You need to connect to
 192.168.100.66:2001, even on the server itself; trying to connect to
 localhost:2001 will result in “connection refused.” Also note that the
 bind address refers to the client for local forwarding and to the
 server for remote forwarding.
For local forwarding, the default binding is determined by the
 GatewayPorts keyword. For remote
 forwarding, the server may choose to honor or ignore a client’s
 binding request using a new GatewayPorts value, clientspecified:
 GatewayPorts clientspecified
This means the SSH client can select the binding address for the
 forwarding. This permits clients to bind addresses for remote
 forwardings
An empty binding address, or the special value *, indicates that the client or server
 should listen on all interfaces (including real ones and the loopback
 interface for localhost).

sftp Command-Line Features

The sftp client now supports
 command-line history and editing using Emacs-like keystrokes. You’ll
 need the libedit library
 installed on your computer, available from http://sourceforge.net/projects/libedit. This feature
 is controlled at compile time with the flag
 --with-libedit.

ssh-keygen

If you’re using the experimental hostname hashing feature
 described earlier, ssh-keygen has some new
 command-line options to support it.
Hashing Your Known Hosts File

ssh-keygen can convert your known_hosts file to use hashes with the
 -H option:
 $ ssh-keygen -H
Warning
The ssh-keygen manpage claims that the
 results of ssh-keygen -H are written to
 standard output, but this is not true. The command modifies your
 ~/.ssh/known_hosts file
 directly. It also stashes a copy of the old file in ~/.ssh/known_hosts.old for safety, but
 don’t depend on this: running ssh-keygen -H
 twice obliterates the safe copy.

Managing Hosts

Once you’ve hashed your hostnames, it’s hard to edit the
 known_hosts file because you
 can’t read which line corresponds to which host.
 ssh-keygen provides new commands for locating and
 removing hosts from the file. To locate a particular host in the file,
 use the -F option:
 $ ssh-keygen -F server.example.com
 # Host server.example.com found: line 3 type RSA1
 server.example.com 1024 35 1301302858553510086.....
To remove a known host, use the -R option
 and provide the original hostname:
 $ ssh-keygen -R server.example.com
 /home/smith/.ssh/known_hosts updated.
 Original contents retained as /home/smith/.ssh/known_hosts.old

Appendix B. Tectia Manpage for sshregex

This document describes the regular expressions (or globbing
 patterns) used in filename globbing with scp2 and
 sftp2 and in the configuration files ssh2_config and sshd2_config.
Regex syntax used with scp2 and
 sftp2 is ZSH_FILEGLOB.

Regex Syntax: Egrep Patterns

 The escape character is a backslash (\). You can use it to escape metacharacters to
 use them in their plain character form.
In the following examples, literal E and F
 denote any expression, whether a pattern or a character:
(Start a capturing
 subexpression.
) End a capturing
 subexpression.
	E|F
	Disjunction, match either E or F (inclusive). E is preferred if both match.

	E*
	Act as Kleene star, match E zero or more times.

	E+
	Closure, match E one or
 more times.

	E?
	Option, match E
 optionally once.

. Match any character except
 for newline characters (\n, \f, \r) and
 the NULL byte.
	E{
 n }
	Match E exactly
 n times.

	E{
 n ,}
 or E{
 n ,0}
	Match E
 n or more times.

	E{,
 n } or
 E{0, n
 }
	Match E at most
 n times.

	E{
 n ,
 m }
	Match E no less than
 n times and no more than
 m times.

[Start a character set. See
 "Character Sets for Egrep and
 ZSH_FILEGLOB.”
$ Match the empty string at the
 end of the input or at the end of a line.
^ Match the empty string at the
 start of the input or at the beginning of a line.
Escaped Tokens for Regex Syntax Egrep

The following list describes the tokens:
	\0
 n ..
 n
	The literal byte with octal value
 n ..
 n.

	\0
	The NULL byte.

	\[1-9]..
 x
	The literal byte with decimal value [1-9]..
 x.

	\x
 n ..
 n or\0x n
 ..
 n
	The literal byte with hexadecimal value
 n ..
 n.

	\<
	Match the empty string at the beginning of a word.

	\>
	Match the empty string at the end of a word.

	\b
	Match the empty string at a word boundary.

	\B
	Match the empty string provided it is not at a word
 boundary.

	\w
	Match a word-constituent character, equivalent to [a:zA:Z0:9-].

	\W
	Match a non-word-constituent character.

	\a
	Literal alarm character.

	\e
	Literal escape character.

	\f
	Literal line feed.

	\n
	Literal newline, equivalent to C’s \n so that it can be more than one
 character long.

	\r
	Literal carriage return.

	\t
	Literal tab.

All other escaped characters denote the literal character
 itself.

Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns

The escape character is a backslash (\). With this you can escape metacharacters to
 use them in their plain character form.
In the following examples, literal E and F
 denote any expression, whether a pattern or a character:
	*
	Match any string consisting of zero or more characters. The
 characters can be any characters apart from slashes (/). However, the asterisk does not match
 a string if the string contains a dot (.) as its first character, or if the
 string contains a dot immediately after a slash. This means that
 the asterisk cannot be used to match filenames that have a dot as
 their first character.
If the previous character is a slash (/), or if an asterisk (*) is used to denote a match at the
 beginning of a string, it does match a dot (.).
That is, the asterisk (*)
 functions as normal in Unix shell fileglobs.

	?
	Match any single character except for a slash (/). However, do not match a dot
 (.) if located at the beginning
 of the string, or if the previous character is a slash (/).
That is, the question mark (?) functions as normal in Unix shell
 fileglobs (at least in ZSH, although discarding the dot may not be
 a standard procedure).

	**/
	Match any sequence of characters that is either empty, or
 ends in a slash. However, the substring /. is not allowed. This mimics the
 **/ construct in ZSH. (Please
 note that ** is equivalent to
 *.)

	E#
	Act as Kleene star, match E zero or more times.

	E##
	Closure, match E one or
 more times.

(Start a capturing
 subexpression.
)
	End a capturing subexpression.

	E|F
	Disjunction, match either E or F (inclusive). E is preferred if both match.

	[
	Start a character set (covered next).

Character Sets for Egrep and ZSH_FILEGLOB

 A character set starts with [and ends at non-escaped] that is not part of a POSIX character set
 specifier and that does not follow immediately after [.
The following characters have a special meaning and need to be
 escaped if meant literally:
	- (minus sign)
	A range operator, except immediately after [where it loses its special
 meaning.

	^ or ! (latter applies to ZSH_FILEGLOB)
	If immediately after the starting [, denotes a complement: the whole
 character set will be complemented. Otherwise, literal.

	[:alnum:]
	Characters for which isalnum returns true (see ctype.h).

	[:alpha:]
	Characters for which isalpha returns true (see ctype.h).

	[:cntrl:]
	Characters for which iscntrl returns
 true (see ctype.h).

	[:digit:]
	Characters for which isdigit returns true (see ctype.h).

	[:graph:]
	Characters for which isgraph returns true (see ctype.h).

	[:lower:]
	Characters for which islower returns true (see ctype.h).

	[:print:]
	Characters for which isprint returns true (see ctype.h).

	[:punct:]
	Characters for which ispunct returns true (see ctype.h).

	[:space:]
	Characters for which isspace returns true (see ctype.h).

	[:upper:]
	Characters for which isupper returns true (see ctype.h).

	[:xdigit:]
	Characters for which isxdigit returns true (see ctype.h).

Example

 [[:xdigit:]XY]
is typically equivalent to:
 [0123456789ABCDEFabcdefXY] .
It is also possible to include the predefined escaped
 character sets into a newly defined one, so:
 [\d\s]
matches digits and whitespace characters.

Regex Syntax: SSH Patterns

The escape character is a tilde ~. With this you can escape metacharacters to
 use them in their plain character form.
Tip
In configuration the backslash (\) is used to escape the list separator
 (',').

In the following examples literal E and F
 denote any expression, whether a pattern or a character.
	(
	Start a capturing subexpression.

)
	End a capturing subexpression.

	{
	Start an anonymous, noncapturing subexpression.

	}
	End an anonymous, noncapturing subexpression.

	E|F
	Disjunction, match either E or F (inclusive). E is preferred if both match.

	E*
	Act as Kleene star, match E zero or more times.

	E*?
	Act as Kleene star, but match nongreedily (lazy
 match).

	E+
	Closure, match E one or more times.

	E+?
	Closure, but match non-greedily (lazy match).

	E?
	Option, match E optionally once.

	E??
	Option, but match non-greedily (lazy match).

	.
	Match ANY character, including possibly the NULL byte and
 the newline characters.

	E/
 n /
	Match E exactly
 n times.

	E/
 n ,/
 or E/
 n ,0/
	Match E
 n or more times.

	E/,
 n / or
 E/0, n
 /
	Match E at most
 n times.

	E/
 n ,
 m /
	Match E no less than
 n times and no more than
 m times.

	E/n,/?, E/ n ,0/?, E/, n /?, E/0, n /?, E/
 n ,
 m /?
	The lazy versions of above.

	[
	Start a character set. See the section "Escaped Tokens for Regex Syntax
 SSH.”

	>C
	One-character lookahead. ‘C’ must be either a literal
 character or parse as a character set. Match the empty string
 anywhere provided that the next character is ‘C’ or belongs to
 it.

	<C
	One-character lookback. As above, but examine the previous
 character instead of the next character.

	$
	Match the empty string at the end of the input.

	^
	Match the empty string at the start of the input.

Escaped Tokens for Regex Syntax SSH

The following list describes the tokens:
	~0
 n ..
 n
	The literal byte with octal value
 n ..
 n.

	~0
	The NULL byte.

	~[1-9]..
 x
	The literal byte with decimal value ~[1-9]..
 x.

	~
 xn .. n or
 ~0
 xn .. n
	The literal byte with hexadecimal value
 n ..
 n.

	~<
	Match the empty string at the beginning of a word.

	~>
	Match the empty string at the end of a word.

	~b
	Match the empty string at a word boundary.

	~B
	Match the empty string provided it is not at a word
 boundary.

	~d
	Match any digit, equivalent to [0:9].

	~D
	Match any character except a digit.

	~s
	Match a whitespace character (matches space, newline, line
 feed, carriage return, tab, and vertical tab).

	~S
	Match a nonwhitespace character.

	~w
	Match a word-constituent character, equivalent to
 [a:zA:Z0:9-].

	~W
	Match a non-word-constituent character.

	~a
	Literal alarm character.

	~e
	Literal escape character.

	~f
	Literal line feed.

	~n
	Literal newline, equivalent to C’s \n so that it can be more than one
 character long.

	~r
	Literal carriage return.

	~t
	Literal tab.

All other escaped characters denote the literal character
 itself.

Character Sets for Regex Syntax SSH

A character set starts with '[' and ends at non-escaped]' that is not part of a POSIX character set
 specifier and that does not follow immediately after '['.
The following characters have a special meaning and need to be
 escaped if meant literally:
	:
	A range operator, except immediately after [, where it loses its special
 meaning.

	- (minus sign)
	Until next +, the characters, ranges, and sets will be
 subtracted from the current set instead of being added. If
 appears as the first character after [, start subtracting from a set
 containing all characters instead of the empty set.
Until next -, the characters, ranges, and sets will be
 added to the current set. This is the default.

	[:alnum:]
	Characters for which isalnum returns true (see ctype.h).

	[:alpha:]
	Characters for which isalpha returns true (see ctype.h).

	[:cntrl:]
	Characters for which iscntrl returns true (see ctype.h).

	[:digit:]
	Characters for which isdigit returns true (see ctype.h).

	[:graph:]
	Characters for which isgraph returns true (see ctype.h).

	[:lower:]
	Characters for which islower returns true (see ctype.h).

	[:print:]
	Characters for which isprint returns true (see ctype.h).

	[:punct:]
	Characters for which ispunct returns true (see ctype.h).

	[:space:]
	Characters for which isspace returns true (see ctype.h).

	[:upper:]
	Characters for which isupper returns true (see ctype.h).

	[:xdigit:]
	Characters for which isxdigit returns true (see ctype.h).

It is also possible to include the predefined escaped character
 sets into a newly defined one, so:
 [~d~s]
matches digits and whitespace characters.
Also, escape sequences resulting in literals work inside
 character sets.
Example

 [[:xdigit:]-a:e]
is typically equivalent to :
 [0123456789ABCDEFf]

Authors

SSH Communications Security Corp.
For more information, see http://www.ssh.com/.

See Also

ssh2_config(5), sshd2_config(5), scp2(1), sftp2(1)

Appendix C. Tectia Module Names for Debugging

	AnsiX962Rand
	ArcFour
	CmiStress
	CryptoRandomPoll
	DUMMY_ACC
	GenHash
	GenMac
	GenPasswdPlugin
	GenRand
	GenTestCipher
	GenTestMac
	GenTestMain
	GenTestMisc
	GenTestPkcs
	GenTestRand
	GetOptCompat
	Hash_Test
	ModuleName
	Pkcs1
	PkcsImportExport
	Scp2
	Sftp2
	SftpCwd
	SftpPager
	ssh-certview
	Ssh-F-ConfigD
	Ssh-F-ConfigD-Log
	Ssh-F-ConfigD-Ssh-Configure
	Ssh-F-ConfigD-SshD-Conf
	Ssh1KeyDecode
	Ssh1Protocol
	Ssh2
	Ssh2AuthCommonServer
	Ssh2AuthGSSAPI
	Ssh2AuthGSSAPICommon
	Ssh2AuthHostBasedClient
	Ssh2AuthHostBasedRhosts
	Ssh2AuthHostBasedServer
	Ssh2AuthKbdInteractiveClient
	Ssh2AuthKbdInteractiveServer
	Ssh2AuthKbdIntPAM
	Ssh2AuthKbdIntPasswd
	Ssh2AuthKbdIntPlugin
	Ssh2AuthKbdIntRadius
	Ssh2AuthKbdIntSecurID
	Ssh2AuthKbdIntSubmethods
	Ssh2AuthKerberosClient
	Ssh2AuthKerberosServer
	Ssh2AuthKerberosTgtClient
	Ssh2AuthKerberosTgtServer
	Ssh2AuthPAMClient
	Ssh2AuthPAMCommon
	Ssh2AuthPAMServer
	Ssh2AuthPasswdClient
	Ssh2AuthPasswdServer
	Ssh2AuthPubKeyClient
	Ssh2AuthPubKeyServer
	Ssh2AuthSecurIDClient
	Ssh2AuthSecurIDServer
	Ssh2ChannelAgent
	Ssh2ChannelSession
	Ssh2ChannelSsh1Agent
	Ssh2ChannelTcpFwd
	Ssh2ChannelX11
	Ssh2Client
	Ssh2Common
	Ssh2KeyBlob
	Ssh2PgpPublic
	Ssh2PgpSecret
	Ssh2PgpUtil
	Ssh2SftpServer
	SshAdd
	SshADT
	SshADTArray
	SshADTAssoc
	SshADTAvlTree
	SshADTConv
	SshADTList
	SshADTMap
	SshADTPriorityHeap
	SshADTRanges
	SshAgent
	SshAgentClient
	SshAgentPath
	SshAppCommon
	SshAskPass
	SshAsn1
	SshAsn1Ber
	SshAsn1Create
	SshAsn1OidDB
	SshAsn1VM
	SshAuthMethodClient
	SshAuthMethodServer
	SshAuthServerPasswdChange
	SshBuffer
	SshBufferAux
	SshBufZIP
	SshCAEK
	SshCert
	SshCertCheck
	SshCertClient
	SshCertCMi
	SshCertCMiKey
	SshCertCMiTrust
	SshCertCMiUtil
	SshCertCrmf
	SshCertd
	SshCertDB
	SshCertDNDer
	SshCertDNEncode
	SshCertDNLdap
	SshCertEdb
	SshCertEdbHttp
	SshCertEdbLdap
	SshCertEdbOcsp
	SshCertEncode
	SshCertEval
	SshCertIDCheck
	SshCertMap
	SshCertOid
	SshCertReqEncode
	SshCertServer
	SshCertX509
	SshCipherAlias
	SshCipherRabbit
	SshCipherRijndael
	SshClientExternalKey
	SshCmiPolicyTree
	SshCmpClient
	SshConfig
	SshConfigParse
	SshCopyStream
	SshCryptHmac
	SshCryptoAuxInit
	SshCryptoAuxKeyExpand
	SshCryptoAuxOldImport
	SshCryptoGenpkcs
	SshCryptoInit
	SshCryptoPKGroup
	SshCryptoPKPrivate
	SshCryptoRGF
	SshCryptoRSA
	SshCryptoSSL3MAC
	SshCryptoTests
	SshCryptTwofish
	Sshd2
	SshdCheckConf
	SshDebug
	SshDecay
	SshDirectory
	SshDLib
	SshDumpCert
	SshDumpCRL
	SshEcCmp
	SshEKAcc
	SshEKDummy
	SshEkGenAccDevice
	SshEkGenaccProv
	SshEKPKCS11
	SshEKProv
	SshEKSystem
	SshEkView
	SshEncode
	SshEventLoop
	SshFastalloc
	SshFCGlob
	SshFCRecurse
	SshFCTransfer
	SshFCTransferCore
	SshFdStream
	SshFileBuffer
	SshFileCopy
	SshFileXferClient
	SshFileXferInternal
	SshFilterStream
	SshFSM
	SshFtpFilter
	SshGafpClientInterface
	SshGafpFragmentStore
	SshGafpKeyEncode
	SshGenCiph
	SshGenMPAux
	SshGenMPInteger
	SshGenMPPrime
	SshGenPlugin
	SshGenPluginCmd
	SshGetCwd
	SshGetOpt
	SshGlob
	SshGlobals
	SshHostKey
	SshHostKeyIO
	SshHS
	SshHSBackEndSymlink
	SshHttp
	SshHttpClient
	SshHttpFilterProxy
	SshHttpProxy
	SshHttpServer
	SshHttpTests
	SshHttpUtils
	SshInet
	SshInetEncode
	SshKeyFile
	SshKeyGen
	SshKneel
	SshLdapBind
	SshLdapConnect
	SshLdapConvenience
	SshLdapExt
	SshLdapFilterFromString
	SshLdapFilterToString
	SshLdapInit
	SshLdapInput
	SshLdapModify
	SshLdapObject
	SshLdapOutput
	SshLdapSearch
	SshLdapTest
	SshMiscString
	SshMP2Adic
	SshMPArithmetic
	SshMPArithmeticExtra
	SshMPInit
	SshMPIntegerCore
	SshMPIntegerMisc
	SshMPIntMod
	SshMPKernel
	SshMPMont
	SshMPPowM
	SshMPSieve
	SshMtTimeouts
	SshNameList
	SshNameServer
	SshObstack
	SshOcsp
	SshOcspClient
	SshOcspHttp
	SshOcspTest
	SshOcspTestUtil
	SshPacketImplementation
	SshPacketWrapper
	SshPAMClient
	SshPdbDummy
	SshPgpCipher
	SshPgpFile
	SshPgpGen
	SshPgpKey
	SshPgpKeyDB
	SshPgpPacket
	SshPgpStringToKey
	SshPipeStream
	SshPKB
	SshPKCS12
	SshPKCS12Conv
	SshPkcs6
	SshPkcs7Common
	SshPkcs7Decode
	SshPkcs7Encode
	SshPkExport
	SshPKIDiscovery
	SshPkiEnroll
	SshPkiEnrollPkix
	SshPkiEnrollScep
	SshPrivateKeyRead
	SshProbe
	SshProcess
	SshProtoAuthClient
	SshProtoAuthServer
	SshProtoCompat
	SshProtoConnection
	SshProtoCross
	SshProtoKex
	SshProtoTransport
	SshProtoTransportAppl
	SshProxyKey
	SshPrvFile
	SshPswbMac
	SshRadius
	SshRadiusConfig
	SshRadiusUrl
	SshRandomAnsiX917
	SshRandomDev
	SshRandomPool
	SshReadLine
	SshReadPass
	SshRegex
	SshSecSHAlgName
	SshSerialStream
	SshServer
	SshServerProbe
	SshSftpServer
	SshSftpStandaloneServer
	SshSha
	SshSigChld
	SshSigner2
	SshSKB
	SshSNList
	SshSocks
	SshSocksFilter
	SshSPrintf
	SshStdIOFilter
	SshStr
	SshStream
	SshStreamConnect
	SshStreamPair
	SshStreamstub
	SshTcp
	SshThreadedMbox
	SshThreadPool
	SshThreadStubs
	SshTime
	SshTimeMeasure
	SshTimeout
	SshTtyFlags
	SshUdp
	SshUdpGeneric
	SshUnixLocalStream
	SshUnixPtyStream
	SshUnixPtyStreamPTMX
	SshUnixTcp
	SshUnixUser
	SshUserFile
	SshUserFileBuffer
	SshUserFiles
	SshUtilFile
	SshWinSyslog
	SshX509CertReqDecode
	SshX509Cmp
	SshX509CmpDecode
	SshX509CmpEncode
	SshX509CmpUtil
	SshX509CrlEncode
	SshXmlCompress
	t-ldapconv
	TestCertdStresser
	TestParser
	TestRandom
	TestSshFileCopy
	TestSshGlob
	TestTtyFlags
	TPassExploit
	X509Private

Appendix D. SSH-1 Features of OpenSSH and Tectia

This appendix describes the SSH-1 protocol features of OpenSSH and Tectia. Since we recommend
 against using SSH-1, you might never encounter these features, but we
 mention them for completeness.

OpenSSH Features

Serverwide Configuration

	KeyRegenerationInterval
 (or sshd -k)
	Set the number of seconds between generations of the SSH-1
 server key. This temporary key is used only for SSH-1
 connections. The default is 3600 seconds (1 hour), and a value
 of zero disables regeneration.

	RhostsRSAAuthentication
	Permit or deny authentication by the RSA key together with
 authentication by rhosts
 files.

	RSAAuthentication
	Permit or deny authentication by the RSA key.

	ServerKeyBits (or sshd
 -b)
	Set the number of bits in the SSH-1 server key: see
 KeyRegenerationInterval
 above. The default is 768 bits, and the fewest allowable is 512
 bits.

Client Configuration

	Cipher
	Replaced by Ciphers for
 SSH-2 protocol connections

	RhostsRSAAuthentication
	Same as for serverwide configuration

	RSAAuthentication
	Same as for serverwide configuration

Files

	~/.ssh/identity, ~/.ssh/identity.pub
	These files contain your default private and public keys,
 respectively, for public-key authentication.

	/etc/ssh/ssh_host_key
	This system file contains the SSH-1 protocol (RSA) host key.

Tectia Features

 Tectia provides limited support for SSH-1, mostly by
 running programs from some older implementation whenever the SSH-1
 protocol is required. Some of the Tectia programs do have built-in
 support for SSH-1, however.
Serverwide Configuration

The Tectia server has no built-in support for SSH-1, but it can
 be configured to run a separate SSH-1 server for SSH-1 clients. See
 "Compatibility Between SSH-1 and
 SSH-2 Servers" in Chapter
 5.
The following keywords in the /etc/ssh2/sshd2_config file control SSH-1
 compatibility mode:
	Ssh1Compatibility
	Run the SSH-1 server when SSH-1 clients connect (if
 yes).

	Sshd1Path
	The pathname for the SSH-1 server.

	Sshd1ConfigFile
	An alternate configuration file for the SSH-1 server,
 replacing the one specified for the Tectia server by the
 -f command-line option.

Client Configuration

The ssh -1t option runs an SSH-1 client
 program, and ssh -1i uses built-in SSH-1
 emulation. See "Choosing a
 protocol version" in Chapter
 7.
The following keywords in the /etc/ssh2/ssh2_config file control SSH-1
 compatibility mode:
	Ssh1Compatibility
	Use SSH-1 if the server supports only supports the older
 protocol (if yes), or
 otherwise fail (if no).

	Ssh1InternalEmulation
	Use the Tectia client’s built-in SSH-1 functionality (if
 yes), or otherwise run an
 external SSH-1 program (if no).

	Ssh1Path
	The pathname for the external SSH-1 program.

	Ssh1MaskPasswordLength
	Send SSH_MSG_IGNORE packets with SSH-1 sessions to obscure
 the length of the password (if yes, the default). Otherwise, the
 unencrypted length fields used by SSH-1 can be easily
 intercepted.

	Ssh1AgentCompatibility
	Specifies whether and how to do agent forwarding. The
 value is one of:
	none
	Don’t forward SSH-1 agent connections (the
 default).

	traditional
	Forward SSH-1 agent connections with no information
 about the forwarding path.

	ssh2
	Forward SSH-1 agent connections, and add information
 about the forwarding path as for SSH-2. This requires
 using the Tectia agent in SSH-1 compatibility mode.

File Transfers

 scp can run a program
 scp1 for file transfers using SSH-1. No mechanism
 is provided to specify an alternate name for the compatibility mode
 program (or a complete pathname: the scp1 program
 is always found by searching the PATH).
If the scp -1 option [7.5.9] is specified
 as the first option on the command line, then
 scp1 is run for SSH-1 compatibility, with the
 rest of the arguments passed verbatim.
scp1 is also run if the
 -t or -f command-line
 options are used. These options were used for old implementations of
 the remote scp server.

Key Management

The ssh-keygen -1 option converts a key (in
 a file specified as an argument for the option) from an older format
 used by some SSH-1 implementations to the new format used by
 Tectia.

Authentication Agent

The ssh-agent -1 option causes the agent to
 handle requests from SSH-1 clients.
Keys added with the ssh-add -1 option are
 an exception: they are not allowed to be used for SSH-1
 operations.
The ssh client uses the keyword Ssh1AgentCompatibility to control agent
 forwarding, as described previously.

Appendix E. SSH Quick Reference

Legend

	Mark
	Meaning

	 ✓
	Yes: feature is
 supported/included

	1
	SSH-1 protocol only, not
 SSH-2

	2
	SSH-2 protocol only, not
 SSH-1

sshd Options

	OpenSSH
	Tectia
	Option
	Meaning

	 ✓
	 	 -4

	Use IPv4 addresses only

	 ✓
	 	 -6

	Use IPv6 addresses only

	 ✓
	 	 -b bits

	# of bits in server key

	 ✓
	 	 -d

	Verbose mode

	 	 ✓
	 -d debug_spec

	Enable debug messages

	 	 ✓
	 -D debug_spec

	Enable debug messages, keep
 listening

	 ✓
	 	 -D

	Don’t detach into
 background

	 ✓
	 	 -e

	Send error messages to
 stderr

	 ✓
	 ✓
	 -f filename

	Use other configuration
 file

	 ✓
	 ✓
	 -g time

	Set login grace time

	 ✓
	 ✓
	 -h filename

	Use other host key file

	 ✓
	 ✓
	 -i

	Use inetd for
 invocation

	1
	 	 -k time

	Regeneration interval for SSH-1 server
 key

	 ✓
	 ✓
	 -o “keyword
 value”
	Set configuration
 keyword

	 ✓
	 ✓
	 -p port

	Select TCP port number

	 ✓
	 ✓
	 -q

	Quiet mode

	 ✓
	 	 -Q

	Quiet if RSA support is
 missing

	 ✓
	 	 -t

	Test mode

	 ✓
	 	 -u length

	Set length of utmp structure

	 	 ✓
	 -v

	Verbose mode

	 	 ✓
	 -V

	Print version number

sshd Keywords

	OpenSSH
	Tectia
	Keyword
	Value
	Meaning

	 ✓
	 ✓
	#
	Any text
	Comment line

	 ✓
	 	 AcceptEnv
	Variables
	Copy client environment variables to
 server

	 	 ✓
	 AllowAgentForwarding
	Yes/no
	Same as ForwardAgent

	 	 ✓
	 AllowedAuthentications
	Auth types
	Permitted authentication
 techniques

	 ✓
	 ✓
	 AllowGroups
	Group list
	Access control by Unix
 group

	 	 ✓
	 AllowHosts
	Host list
	Access control by
 hostname

	 	 ✓
	 AllowSHosts
	Host list
	Access control via
 .shosts

	 ✓
	 ✓
	 AllowTcpForwarding
	Yes/no
	Enable TCP port
 forwarding

	 	 ✓
	 AllowTcpForwardingForUsers

	User list
	Per user forwarding

	 	 ✓
	 AllowTcpForwardingForGroups

	Group list
	Per group forwarding

	 ✓
	 ✓
	 AllowUsers
	User list
	Access control by
 username

	 	 ✓
	 AllowX11Forwarding
	Yes/no
	Same as ForwardX11

	 	 ✓
	 AuthInteractiveFailureTimeout

	Seconds
	
	 	 ✓
	 AuthKbdInt.NumOptional
	# submethods
	Set number of optional submethods
 required for authentication

	 	 ✓
	 AuthKbdInt.Optional
	Auth methods
	Set optional authentication submethods
 for keyboard-interactive auth

	 	 ✓
	 AuthKbdInt.Plugin
	Filename
	Path to plugin for
 keyboard-interactive auth

	 	 ✓
	 AuthKbdInt.RADIUS.NASIdentifier

	 	Client identifier for RADIUS
 keyboard-interactive authentication

	 	 ✓
	 AuthKbdInt.RADIUS.Server

	Server spec
	RADIUS server for keyboard-interactive
 auth

	 	 ✓
	 AuthKbdInt.Required
	Auth methods
	Set required authentication submethods
 for keyboard-interactive auth

	 	 ✓
	 AuthKbdInt.Retries
	# retries
	Permitted retries for
 keyboard-interactive auth

	 	 ✓
	 AuthorizationFile
	Filename
	Location of authorization
 file

	 ✓
	 	 AuthorizedKeysFile
	Filename
	Location of authorization
 file

	 	 ✓
	 AuthPassword.ChangePlugin

	Filename
	Location of password-change plugin
 program

	 	 ✓
	 AuthPublicKey.MaxSize
	# bytes
	Max size of public key

	 	 ✓
	 AuthPublicKey.MinSize
	# bytes
	Min size of public key

	2
	 	 Banner
	Filename
	Location of banner file

	 	 ✓
	 BannerMessageFile
	Filename
	Location of banner file

	 	 ✓
	 Cert.RSA.Compat.HashScheme

	md5/sha1
	Set hash compatibility

	 	 ✓
	 CertdListenerPath
	Filename
	Location of certificate validation
 daemon

	 ✓
	 	 ChallengeResponseAuthentication

	Yes/no
	Permit Challenge-Response
 authentication

	 ✓
	 ✓
	 CheckMail
	Yes/no
	Check new mail on login

	 	 ✓
	 ChRootGroups
	Group list
	Run chroot() on login

	 	 ✓
	 ChRootUsers
	User list
	Run chroot() on login

	2
	 ✓
	 Ciphers
	Cipher list
	Select encryption
 ciphers

	 ✓
	 	 ClientAliveCountMax
	# messages
	Upper limit on client-alive
 messages

	 ✓
	 	 ClientAliveInterval
	Time
	Frequency of sending client-alive
 messages

	 ✓
	 	 Compression
	Yes/no
	Enable compression

	 ✓
	 ✓
	 DenyGroups
	Group list
	Access control by Unix
 group

	 	 ✓
	 DenyHosts
	Host list
	Access control by
 hostname

	 	 ✓
	 DenySHosts
	Host list
	Access control via
 .shosts

	 	 ✓
	 DenyTcpForwardingForUsers

	User list
	Per user forwarding

	 	 ✓
	 DenyTcpForwardingForGroups

	Group list
	Per group forwarding

	 ✓
	 ✓
	 DenyUsers
	User list
	Access control by
 username

	 	 ✓
	 DisableVersionFallback
	Yes/no
	Compatibility with old versions of
 software

	 	 ✓
	 ExternalAuthorizationProgram

	Filename
	Location of authorization
 program

	 	 ✓
	 ForwardACL
	Forwarding spec
	Access control over port
 forwarding

	 	 ✓
	 ForwardAgent
	Yes/no
	Enable agent forwarding

	 ✓
	 ✓
	 ForwardX11
	Yes/no
	Enable X forwarding

	 ✓
	 	 GatewayPorts
	Yes/no
	Gateway all locally forwarded
 ports

	 	 ✓
	 GSSAPI.AllowedMethods
	kerberos
	Permitted GSSAPI
 methods

	 	 ✓
	 GSSAPI.AllowOldMethodWhichIsInsecure

	Yes/no
	Use fallback code for old GSSAPI
 methods

	 	 ✓
	 GSSAPI.Dlls
	Directory
	Path to GSSAPI
 libraries

	2
	 	 GSSAPIAuthentication
	Yes/no
	Enable GSSAPI
 authentication

	2
	 	 GSSAPICleanupCredentials

	Yes/no
	Destroy credentials on
 logout

	2
	 	 HostbasedAuthentication

	Yes/no
	Enable hostbase
 authentication

	 	 ✓
	 HostbasedAuthForceClientHostnameDNSMatch

	Yes/no
	Fail authentication on DNS
 mismatch

	 	 ✓
	 HostCertificateFile
	Filename
	Location of X.509 certificate key
 file

	 ✓
	 	 HostKey
	Filename
	Location of host key
 file

	 	 ✓
	 HostKeyEkInitString
	Init string
	Initialization string for external
 host key provider

	 	 ✓
	 HostKeyEkProvider
	Provider spec
	External host key
 provider

	 	 ✓
	 HostKeyEkTimeOut
	Time
	External host key provider
 timeout

	 	 ✓
	 HostKeyFile
	Filename
	Location of host key
 file

	 	 ✓
	 HostSpecificConfig
	Filename
	Location of subconfiguration file for
 hosts

	 	 ✓
	 IdleTimeout
	Time
	Set idle timeout

	 	 ✓
	 IgnoreLoginRestrictions.PasswordExpiration

	Yes/no
	Ignore password-expiration policy of
 operating system

	 	 ✓
	 IgnoreLoginRestrictions.Rlogin.AIX

	Yes/no
	Ignore remote login restriction on IBM
 AIX

	 ✓
	 ✓
	 IgnoreRhosts
	Yes/no
	Ignore .rhosts
 files

	 	 ✓
	 IgnoreRootRhosts
	Yes/no
	Ignore .rhosts
 for root

	 ✓
	 	 IgnoreUserKnownHosts
	Yes/no
	Ignore user’s known-hosts
 keys

	 	 ✓
	 KeepAlive
	Yes/no
	Send keepalive packets

	 ✓
	 	 KerberosAuthentication
	Yes/no
	Permit Kerberos
 authentication

	 ✓
	 	 KerberosGetAFSToken
	Yes/no
	Attempt to get AFS tokens
 (Kerberos)

	 ✓
	 	 KerberosOrLocalPasswd
	Yes/no
	Kerberos fallback
 authentication

	 ✓
	 	 KerberosTicketCleanup
	Yes/no
	Destroy ticket cache on
 logout

	 ✓
	 	 KeyRegenerationInterval

	Time
	Key regeneration
 interval

	 ✓
	 ✓
	 ListenAddress
	IP address
	Listen on given
 interface

	 ✓
	 ✓
	 LoginGraceTime
	Time
	Time limit for
 authentication

	 ✓
	 	 LogLevel
	Syslog level
	Set syslog level

	 ✓
	 ✓
	 Macs
	Algorithm
	Select MAC algorithm

	 ✓
	 	 MaxAuthTries
	# attempts
	Maximum number of authentication
 attempts per connection

	 	 ✓
	 MaxBroadcastsPerSecond
	# broadcasts
	Listen for UDP
 broadcasts

	 	 ✓
	 MaxConnections
	# connections
	Maximum # of simultaneous
 connections

	 	 ✓
	 MaxStartups
	# connections
	Maximum # of simultaneous
 connections

	 ✓
	 	 NoDelay
	Yes/no
	Enable Nagle Algorithm

	 	 ✓
	 PasswordAuthentication
	Yes/no
	Permit password
 authentication

	 ✓
	 	 PasswordGuesses
	# guesses
	Limit # of password
 tries

	 	 	 PasswordExpireWarningDays

	# days
	Warn user before
 expiration

	 ✓
	 ✓
	 PermitEmptyPasswords
	Yes/no
	Permit empty passwords

	 ✓
	 ✓
	 PermitRootLogin
	Yes/no/nopwd
	Permit superuser logins

	 ✓
	 	 PermitUserEnvironment
	Yes/no
	Permit users to set environment
 variables

	 	 ✓
	 PGPPublicKeyFile
	Filename
	Default location of PGP public-key
 file for authentication

	 ✓
	 	 PidFile
	Filename
	Location of pid file

	 ✓
	 ✓
	 Port
	Port number
	Select server port
 number

	 ✓
	 	 PrintLastLog
	Yes/no
	Print date/time of last
 login

	 ✓
	 ✓
	 PrintMotd
	Yes/no
	Print message of the
 day

	 ✓
	 	 Protocol
	1/2/1,2
	Permit SSH-1,SSH-2
 connections

	 	 ✓
	 ProxyServer
	Server spec
	Set SOCKS server

	2
	 	 PubKeyAuthentication
	Yes/no
	Permit public-key
 authentication

	 	 ✓
	 PublicHostKeyFile
	Filename
	Location of public host
 key

	 	 ✓
	 QuietMode
	Yes/no
	Quiet mode

	 	 	 RandomSeed
	Filename
	Location of random seed
 file

	 	 ✓
	 RandomSeedFile
	Filename
	Location of random seed
 file

	 	 ✓
	 RekeyIntervalSeconds
	Seconds
	Frequency of rekeying

	 	 ✓
	 RequiredAuthentications

	Auth types
	Required authentication
 techniques

	 	 ✓
	 RequireReverseMapping
	Yes/no
	Do reverse DNS lookup

	 	 ✓
	 ResolveClientHostName
	Yes/no
	Should server resolve client IP
 addresses

	1
	 	 RhostsRSAAuthentication

	Yes/no
	Permit combined
 authentication

	1
	 	 RSAAuthentication
	Yes/no
	Permit public-key
 authentication

	 ✓
	 	 ServerKeyBits
	# bits
	# of bits in server key

	 	 ✓
	 SettableEnvironmentVariables

	Patterns
	Environment variables that may be set
 in server

	 	 ✓
	 SftpSysLogFacility
	Syslog level
	Set syslog level for
 sftp

	 ✓
	 	 SkeyAuthentication
	Yes/no
	Permit S/Key
 authentication

	 	 ✓
	 Ssh1Compatibility
	Yes/no
	Enable SSH1
 compatibility

	 	 ✓
	 Sshd1ConfigFile
	Filename
	Configuration file for SSH-1
 sessions

	 	 ✓
	 Sshd1Path
	Filename
	Path to sshd1

	 	 ✓
	 SocksServer
	 	Same as ProxyServer

	 ✓
	 ✓
	 StrictModes
	Yes/no
	Strict file/directory
 permissions

	 	 ✓
	 Subsystem-name

	Name | URL
	Define a subsystem

	 ✓
	 	 Subsystem
	Name
	Define a subsystem

	 ✓
	 ✓
	 SyslogFacility
	Syslog level
	Set syslog level

	 	 ✓
	 Terminal.AllowGroups
	Group list
	 AllowGroups for terminal
 access

	 	 ✓
	 Terminal.AllowUsers
	User list
	 AllowUsers for terminal
 access

	 	 ✓
	 Terminal.DenyGroups
	Group list
	 DenyGroups for terminal
 access

	 	 ✓
	 Terminal.DenyUsers
	User list
	 DenyUsers for terminal
 access

	 ✓
	 	 TCPKeepAlive
	Yes/no
	Send keepalive packets

	 ✓
	 	 UseDNS
	Yes/no
	Do reverse DNS lookups

	 ✓
	 	 UseLogin
	Yes/no
	Select login program

	 ✓
	 	 UsePAM
	Yes/no
	Use Pluggable Authentication Modules
 (PAM)

	 ✓
	 	 UsePrivilegeSeparation
	Yes/no
	Enable privilege
 separation

	 	 ✓
	 UserConfigDirectory
	Directory name
	Location of user SSH2
 directories

	 	 ✓
	 UserKnownHosts
	Yes/no
	Respect
 ~/.ssh2/knownhosts

	 	 ✓
	 UserSpecificConfig
	Filename
	Location of subconfiguration file for
 users

	 	 ✓
	 UseSOCKS5
	Yes/no
	Use SOCKS5 instead of
 SOCKS4

	 	 ✓
	 VerboseMode
	Yes/no
	Verbose mode

	 ✓
	 ✓
	 X11Forwarding
	Yes/no
	Same as ForwardX11

	 ✓
	 	 X11DisplayOffset
	# offset
	Limit X displays for
 SSH

	 ✓
	 	 X11UseLocalhost
	Yes/no
	Bind X server to loopback or wildcard
 address

	 ✓
	 	 XAuthLocation
	Filename
	Location of xauth

	 	 ✓
	 XAuthPath
	Filename
	Location of xauth

ssh Options

	OpenSSH
	Tectia
	Option
	Meaning

	 ✓
	 	 -1

	Use SSH-1 protocol only

	 	 ✓
	 -1(t |i)

	Use SSH-1 protocol via
 ssh1 executable (t) or
 internal emulation (i)

	 ✓
	 	 -2

	Use SSH-2 protocol only

	 ✓
	 ✓
	 -4

	Use IPv4 addresses only

	 ✓
	 ✓
	 -6

	Use IPv6 addresses only

	 ✓
	 ✓
	 -a

	Disable agent
 forwarding

	 	 ✓
	 +a

	Enable agent forwarding

	 ✓
	 	 -b bind_address

	Select a network
 interface

	 ✓
	 	 -A

	Enable agent forwarding

	 ✓
	 ✓
	 -c cipher

	Select encryption
 cipher

	 ✓
	 	 -C

	Enable compression

	 	 ✓
	 -C

	Disable compression

	 	 ✓
	 +C

	Enable compression

	 	 ✓
	 -d debug_spec

	Enable debug messages

	 ✓
	 	 -D port

	Do dynamic port
 forwarding

	 ✓
	 ✓
	 -e character

	Set escape character

	 	 ✓
	 -E name

	Use external key-provider
 name

	 ✓
	 ✓
	 -f

	Fork into background

	 	 ✓
	 -fo

	Fork into background
 once

	 ✓
	 ✓
	 -F filename

	Use other configuration
 file

	 ✓
	 ✓
	 -g

	Gateway locally forwarded
 ports

	 	 ✓
	 +g

	Don’t gateway locally forwarded
 ports

	 	 ✓
	 -h

	Print help message

	 ✓
	 ✓
	 -i filename

	Select identity file

	 	 ✓
	 -I string

	Initialization string for external-key
 provider

	 ✓
	 	 -I device

	Choose smartcard device

	 ✓
	 	 -k

	Disable Kerberos ticket
 forwarding

	 ✓
	 ✓
	 -l username

	Remote username

	 ✓
	 ✓
	 -L port1:host2:
 port2
	Local port forwarding

	 ✓
	 ✓
	 -m algorithm

	Select MAC algorithm

	 ✓
	 	 -M

	Do not execute remote
 command

	 ✓
	 ✓
	 -n

	Redirect stdin from
 /dev/null

	2
	 	 -N

	Execute no remote
 command

	 ✓
	 ✓
	 -o “keyword
 value”
	Set configuration
 keyword

	 ✓
	 ✓
	 -p port

	Select TCP port number

	 ✓
	 ✓
	 -P

	Use nonprivileged port

	 ✓
	 ✓
	 -q

	Quiet mode

	 ✓
	 ✓
	 -R port1:host2:
 port2
	Remote port forwarding

	 ✓
	 ✓
	 -s subsystem

	Invoke remote subsystem

	 	 ✓
	 -S

	No session channel

	 ✓
	 	 -S socket

	Choose control socket for connection
 sharing

	 ✓
	 ✓
	 -t

	Allocate tty

	 ✓
	 	 -T

	Don’t allocate tty

	 ✓
	 ✓
	 -v

	Verbose mode

	 	 ✓
	 -V

	Print version number

	 ✓
	 ✓
	 -x

	Disable X forwarding

	 	 ✓
	 +x

	Enable X forwarding

	 	 ✓
	 +X

	Enable trusted X
 forwarding

	 ✓
	 	 -X

	Enable X forwarding

	 ✓
	 	 -Y

	Enable trusted X
 forwarding

scp Options

	OpenSSH
	Tectia
	Option
	Meaning

	 ✓
	 ✓
	 -1

	Use SSH-1 protocol

	 ✓
	 	 -2

	Use SSH-2 protocol

	 ✓
	 	 -4

	Use IPv4 addresses only

	 ✓
	 	 -6

	Use IPv6 addresses only

	 	 ✓
	 -a [src: |dest:[unix |mac
 |dos]]
	Transfer files in ASCII
 mode

	 ✓
	 	 -a

	No file-by-file
 statistics

	 ✓
	 	 -A

	Print file-by-file
 statistics

	 ✓
	 ✓
	 -B

	Batch mode: disable
 prompting

	 ✓
	 ✓
	 -c cipher

	Select encryption
 cipher

	 ✓
	 	 -C

	Enable compression

	 ✓
	 	 --checksum (yes
 |no)
	Compare files by checksum
 (optimization)

	 ✓
	 ✓
	 -d

	Require target to be a directory when
 copying a single file

	 	 ✓
	 -D debug_spec

	Enable debug messages

	 ✓
	 ✓
	 -f

	Specify copy FROM (internal
 use)

	 ✓
	 	 -F filename

	Specify alternative configuration
 file

	 	 ✓
	
 --force-lower-case
	Rename destination files in all
 lowercase

	 	 ✓
	 -h

	Print help message

	 ✓
	 ✓
	 -i filename

	Select identity file

	 	 ✓
	 -I

	Interactive mode: prompt before
 overwriting

	 ✓
	 	 -l
 kilobits_per_second
	Limit bandwidth

	 	 ✓
	 -M num

	Set maximum number of requests to
 num

	 	 ✓
	 -n

	Print actions, but don’t
 copy

	 ✓
	 ✓
	 -o “keyword
 value”
	Set configuration
 keyword

	 	 ✓
	 --overwrite (yes
 |no)
	Do/don’t overwrite existing
 files

	 ✓
	 ✓
	 -p

	Preserve file
 attributes

	 ✓
	 ✓
	 -P port

	Select TCP port number

	 ✓
	 ✓
	 -q

	Quiet mode

	 	 ✓
	 -Q

	Don’t print statistics

	 ✓
	 ✓
	 -r

	Recursive copy

	 ✓
	 ✓
	 -S filename

	Path to ssh
 executable

	 	 ✓
	 --statistics (yes |no
 |simple)
	Verbosity level for
 statistics

	 ✓
	 ✓
	 -t

	Specify copy TO (internal
 use)

	 	 ✓
	 -u

	Remove original file after
 copying

	 ✓
	 ✓
	 -v

	Verbose mode

	 	 ✓
	 -V

	Print version number

	 	 ✓
	 -W

	Always transfer whole files; don’t
 optimize

ssh and scp Keywords

	OpenSSH
	Tectia
	Keyword
	Value
	Meaning

	 ✓
	 ✓
	#
	Any text
	Comment line

	 ✓
	 	 AddressFamily
	any | inet | inet6
	Set IP address type

	 	 ✓
	 AllowAgentForwarding
	Yes/no
	Same as ForwardAgent

	 	 ✓
	 AllowedAuthentications
	Auth types
	Permitted authentication
 techniques

	 	 ✓
	 AuthenticationNotify
	Yes/no
	Print message on stdout on successful
 authentication

	 	 ✓
	 AuthenticationSuccessMsg

	Yes/no
	Print message on stderr on successful
 authentication

	 ✓
	 ✓
	 BatchMode
	Yes/no
	Disable prompting

	 ✓
	 	 BindAddress
	Interface
	Select a network
 interface

	 	 ✓
	 Cert.DODPKI
	Yes/no
	Certificates must be DoD
 PKI-compliant

	 	 ✓
	 Cert.EndpointIdentityCheck

	Yes/no
	Verify server hostname versus
 certificate

	 	 ✓
	 Cert.RSA.Compat.HashScheme

	md5/sha1
	Set hash compatibility

	 ✓
	 	 ChallengeResponseAuthentication

	Yes/no
	Enable challenge-response
 authentication

	 ✓
	 	 CheckHostIP
	Yes/no
	Detect DNS spoofing

	1
	 	 Cipher
	Cipher
	Request encryption
 cipher

	2
	 ✓
	 Ciphers
	Cipher_ list
	Supported encryption
 ciphers

	 ✓
	 ✓
	 ClearAllForwardings
	Yes/no
	Ignore any specified
 forwarding

	 ✓
	 ✓
	 Compression
	Yes/no
	Enable data compression

	 ✓
	 	 CompressionLevel
	0-9
	Select compression
 algorithm

	 ✓
	 	 ConnectionAttempts
	# attempts
	# of retries by client

	 ✓
	 	 ConnectTimeout
	Time
	Timeout for connecting to SSH
 server

	 ✓
	 	 ControlMaster
	Yes/no/ask
	Enable connection
 sharing

	 ✓
	 	 ControlPath
	Socket
	Location of socket for connection
 sharing

	 	 ✓
	 DebugLogFile
	Filename
	File for debug messages

	 	 ✓
	 DefaultDomain
	Domain
	Specify domain name

	 	 ✓
	 DisableVersionFallback
	Yes/no
	Compatibility with old versions of
 software

	 	 ✓
	 DontReadStdin
	Yes/no
	Redirect stdin from /dev/
 null

	 ✓
	 	 DynamicForward
	Port, socket
	Set up a dynamic
 forwarding

	 	 ✓
	 EkInitString
	Init string
	Initialization string for external
 host key provider

	 	 ✓
	 EkProvider
	Provider
	External host key
 provider

	 ✓
	 	 EnableSSHKeysign
	Yes/no
	Enable
 ssh-keysign

	 ✓
	 ✓
	 EscapeChar
	Character
	Set escape character (^ = Ctrl
 key)

	 	 ✓
	 ForcePTTYAllocation
	Yes/no
	Allocate a pseudo-tty

	 ✓
	 ✓
	 ForwardAgent
	Yes/no
	Enable agent forwarding

	 ✓
	 ✓
	 ForwardX11
	Yes/no
	Enable X forwarding

	 ✓
	 	 ForwardX11Trusted
	Port, socket
	Set up a trusted X
 forwarding

	 ✓
	 ✓
	 GatewayPorts
	Yes/no
	Gateway locally forwarded
 ports

	 ✓
	 	 GlobalKnownHostsFile
	Filename
	Location of global known hosts
 file

	 	 ✓
	 GoBackground
	Yes/no
	Fork into background

	 	 ✓
	 GSSAPI.AllowedMethods
	kerberos
	Permitted GSSAPI
 methods

	 	 ✓
	 GSSAPI.AllowOldMethodWhichIsInsecure

	Yes/no
	Use fallback code for old GSSAPI
 methods

	 	 ✓
	 GSSAPI.DelegateToken
	Yes/no
	Delegate GSSAPI tokens

	 	 ✓
	 GSSAPI.Dlls
	Directory
	Location of GSSAPI
 libraries

	 ✓
	 	 GSSAPIAuthentication
	Yes/no
	Enable GSSAPI
 authentication

	 ✓
	 	 GSSAPIDelegateCredentials

	Yes/no
	Delegate GSSAPI tokens

	 	 ✓
	 Host
	Hostname
	Real name of a host

	 ✓
	 	 Host
	Pattern
	Begin section for this
 host

	 	 ✓
	 HostCa
	CA spec
	CA certificate for
 authentication

	 	 ✓
	 HostCAMoCRLs
	 	Same as HostCa but disables CRL
 checking

	 ✓
	 	 HostKeyAlgorithms
	Algorithm list
	Set precedence of host key
 algorithms

	 ✓
	 	 HostKeyAlias
	Alias
	Set alias for a host
 key

	 ✓
	 	 HostName
	Hostname
	Real name of host

	 ✓
	 	 IdentitiesOnly
	Yes/no
	Ignore ssh-agent

	 ✓
	 ✓
	 IdentityFile
	Filename
	Name of private-key file
 (RSA)

	 	 ✓
	 KeepAlive
	Yes/no
	Send keepalive packets

	 	 ✓
	 LDAPServers
	LDAP URL
	Locate LDAP servers

	 ✓
	 ✓
	 LocalForward
	Port, socket
	Local port forwarding

	 ✓
	 ✓
	 Macs
	Algorithm
	Select MAC algorithm

	 	 ✓
	 NoDelay
	Yes/no
	Enable Nagle Algorithm

	 ✓
	 	 NoHostAuthenticationForLocalhost

	Yes/no
	Ignore localhost when checking host
 keys

	 ✓
	 ✓
	 NumberOfPasswordPrompts

	# prompts
	# of prompts before
 failure

	 ✓
	 	 PasswordAuthentication
	Yes/no
	Permit password
 authentication

	 	 ✓
	 PasswordPrompt
	String
	Password prompt

	 ✓
	 ✓
	 Port
	Port number
	Select server port
 number

	 ✓
	 	 PreferredAuthentications

	Auth list
	Permitted authentication
 techniques

	 ✓
	 	 Protocol
	1/2
	SSH protocol version

	 ✓
	 	 ProxyCommand
	Command
	Connect to proxy server

	 	 ✓
	 ProxyServer
	Server spec
	SOCKS server

	 ✓
	 	 PubkeyAuthentication
	Yes/no
	Public-key
 authentication

	 	 ✓
	 QuietMode
	Yes/no
	Quiet mode

	 	 ✓
	 RandomSeedFile
	Filename
	Location of random seed
 file

	 	 ✓
	 RekeyIntervalSeconds
	Time
	Frequency of key
 exchange

	 ✓
	 ✓
	 RemoteForward
	Port, socket
	Remote port forwarding

	1
	 	 RhostsRSAAuthentication

	Yes/no
	Permit combined
 authentication

	1
	 	 RSAAuthentication
	Yes/no
	Permit public-key
 authentication

	 ✓
	 	 SendEnv
	Variable list
	Which environment variables are sent
 to SSH server

	 ✓
	 	 ServerAliveCountMax
	# retries
	Upper limit on retries to contact SSH
 server

	 ✓
	 	 ServerAliveInterval
	Time
	Timeout to contact SSH
 server

	 	 ✓
	 SetRemoteEnv
	var=value
	Set environment
 variable

	 ✓
	 	 SmartcardDevice
	device
	Smartcard device

	 	 ✓
	 SocksServer
	Server
	Same as ProxyServer

	 	 ✓
	 Ssh1AgentCompatibility
	Yes/no
	Enable SSH1 agent
 compatibility

	 	 ✓
	 Ssh1Compatibility
	Yes/no
	Enable SSH1
 compatibility

	 	 ✓
	 Ssh1InternalEmulation
	Yes/no
	Do SSH-1 internally

	 	 ✓
	 Ssh1MaskPasswordLength
	Yes/no
	Mask password length

	 	 ✓
	 Ssh1Path
	Filename
	Path to ssh1

	 	 ✓
	 SshSignerPath
	Filename
	Path to
 ssh-signer2

	 ✓
	 ✓
	 StrictHostKeyChecking
	Yes/no/ask
	Behavior on host key
 mismatch

	 ✓
	 	 TCPKeepAlive
	Yes/no
	Send keepalive packets

	 	 ✓
	 TrustX11Applications
	Yes/no
	Enable trusted X11
 forwarding

	 ✓
	 	 UsePrivilegedPort
	Yes/no
	Permit privileged port
 use

	 ✓
	 ✓
	 User
	Username
	Remote username

	 ✓
	 	 UserKnownHostsFile
	Filename
	Location of user known hosts
 file

	 	 ✓
	 UseSOCKS5
	Yes/no
	Use SOCKS5 instead of
 SOCKS4

	 	 ✓
	 VerboseMode
	Yes/no
	Verbose mode

	 ✓
	 	 VerifyHostKeyDNS
	Yes/no/ask
	Verify a remote host key via
 DNS

	 ✓
	 	 XAuthLocation
	Filename
	Location of xauth

	 	 ✓
	 XAuthPath
	Filename
	Location of xauth

ssh-keygen Options

	OpenSSH
	Tectia
	Option
	Meaning

	 a The output
 filename is given as the final argument to
 ssh-keygen.

	 b You may need
 to escape the question mark in your shell, e.g.,-\?

	 	 ✓
	 -1 filename

	Convert SSH1 key file to
 Tectia

	 	 ✓
	 -7 filename

	Convert PKCS #7 key file to
 Tectia

	 	 ✓
	 -a trials

	DH-GEX: number of
 primality

	 ✓
	 ✓
	 -b bits

	# of bits in generated
 key

	 	 ✓
	 -B
 positive_integer
	Specify numeric base for displaying
 key

	 ✓
	 	 -B

	Print fingerprint of key in
 BubbleBabble format

	 ✓
	 	 -c

	Change comment (with
 -C)

	 	 ✓
	 -c comment

	Change comment

	 ✓
	 	 -C comment

	Specify new comment (with
 -c)

	 ✓
	 	 -d

	Generate DSA key

	 	 ✓
	 -D filename

	Derive public key from private-key
 file

	 ✓
	 	 -D reader

	Download public key from smartcard
 reader

	 	 ✓
	 -e filename

	Edit key file
 interactively

	 ✓
	 	 -e

	Export OpenSSH public key to Tectia
 format

	 ✓
	 	 -f filename
 a

	Output filename

	 	 ✓
	 -F filename

	Print fingerprint of public
 key

	 ✓
	 	 -G filename

	DH-GEX: output file to generate
 candidate primes

	 	 ✓
	 -h

	Print help and exit

	 	 ✓
	 -i

	Display key information

	 ✓
	 	 -i

	Convert Tectia public key to
 OpenSSH

	 ✓
	 	 -k

	Convert PKCS #12 key file to
 Tectia

	 ✓
	 	 -l

	Print fingerprint of public
 key

	 ✓
	 	 -M memory

	DH-GEX: set amount of memory to
 use

	 	 ✓
	 -N passphrase

	Specify new passphrase

	 	 ✓
	 -o filename

	Output filename

	 ✓
	 	 --overwrite (yes
 |no)
	Overwrite output file or
 not

	 ✓
	 	 -p

	Change passphrase (with
 -P and
 -N)

	 	 ✓
	 -P passphrase

	Specify old passphrase (with
 -p)

	 ✓
	 -P

	Use empty passphrase
	 ✓

	 	 ✓
	 -q

	Quiet: suppress progress
 indicator

	 ✓
	 	 -r

	Stir in data from random
 pool

	 ✓
	 	 -S hexnumber

	DH-GEX: starting point

	 ✓
	 	 -r hostname

	Print DNS record

	 ✓
	 	 -R

	Detect RSA (exit code
 0/1)

	 ✓
	 ✓
	 -t algorithm

	Select key-generation
 algorithm

	 ✓
	 	 -T filename

	DH-GEX: output file for test
 primes

	 	 ✓
	 -U

	Upload public key to smartcard
 reader

	 ✓
	 	 -V

	Print version string and
 exit

	 	 ✓
	 -W generator

	DH-GEX: choose
 generator

	 ✓
	 	 -x filename

	Convert key from X.509 to
 Tectia

	 	 ✓
	 -y

	Derive public key from private-key
 file

	 	 ✓
	-?
 b
	Print help and exit

ssh-agent Options

	OpenSSH
	Tectia
	Option
	Meaning

	 	 ✓
	 -1

	SSH1 compatibility mode

	 ✓
	 	 -a socket

	Bind to given socket

	 ✓
	 	 -d

	Debug mode

	 	 ✓
	 -d debug_spec

	Debug mode

	 ✓
	 ✓
	 -c

	Print C-shell-style
 commands

	 ✓
	 	 -k

	Kill existing agent

	 ✓
	 ✓
	 -s

	Print sh-style
 commands

	 ✓
	 	 -t time

	Set maximum lifetime of
 identities

ssh-add Options

	OpenSSH
	Tectia
	Option
	Meaning

	 	 ✓
	 -1

	Limit SSH-1
 compatibility

	 ✓
	 	 -c

	Confirm identities before loading
 them

	 ✓
	 ✓
	 -d

	Unload key

	 ✓
	 ✓
	 -D

	Unload all keys

	 ✓
	 	 -e reader

	Remove key in smartcard
 reader

	 	 ✓
	 -f step

	Limit agent-forwarding
 hops

	 	 ✓
	 -F host_list

	Limit agent-forwarding
 hosts

	 	 ✓
	 -I

	PGP keys are identified by
 ID

	 	 ✓
	 -l

	List loaded keys

	 ✓
	 	 -l

	List fingerprints of loaded
 keys

	 	 ✓
	 -L

	Lock agent

	 ✓
	 	 -L

	List loaded keys

	 	 ✓
	 -N

	PGP keys are identified by
 name

	 	 ✓
	 -p

	Read passphrase from
 stdin

	 	 ✓
	 -P

	PGP keys are identified by
 fingerprint

	 	 ✓
	 -R filename

	Specify PGP keyring
 file

	 	 ✓
	 -s reader

	Add key in smartcard
 reader

	 ✓
	 ✓
	 -t timeout

	Expire key after
 timeout

	 	 ✓
	 -u

	Read key from URL

	 	 ✓
	 -U

	Unlock agent

	 ✓
	 	 -x

	Lock agent

	 ✓
	 	 -X

	Unlock agent

Identity and Authorization Files, OpenSSH

 ~/.ssh/authorized_keys key options: use one
 public key per line, preceded by options.
	Option
	Meaning

	 command=”Unix shell
 command"
	Specify a forced
 command

	 environment=”variable
 =
 value"
	Set environment
 variable

	 from=host_
 or_
 ip_address_specification
	Limit incoming hosts

	 no-agent-forwarding
	Disable agent
 forwarding

	 no-port-forwarding
	Disable port forwarding

	 no-pty
	Don’t allocate TTY

	 no-x11-forwarding
	Disable X Window
 forwarding

	 permitopen
 ="H:P"
	Permit forwarding to local port
 P from remote host
 H

Identity and Authorization Files, Tectia

~/.ssh2/authorization
 keywords: use one keyword/value pair per line.
	Keyword
	Meaning

	 Command
 Unix_command
	Old way to specify a forced command;
 now obsolete, use Options

	 Key
 filename.pub

	Location of public-key
 file

	 Options
 comma-separated-list-of-options

	Options for the key immediately
 preceding it; see Options table below

	 PgpPublicKeyFile
 filename
	Location of PGP public-key
 file

	 PgpKeyFingerprint
 fingerprint
	Select PGP key by
 fingerprint

	 PgpKeyId id

	Select PGP key by ID

	 PgpKeyName
 name
	Select PGP key by name

~/.ssh2/authorization key
 options: one or more options separated by commas.
	Option
	Meaning

	 allow-from=host_
 or_
 ip_address_specification
	Accept connections from incoming
 hosts

	 command=”Unix shell
 command"
	Specify a forced
 command

	 deny-from=host_
 or_
 ip_address_specification
	Reject connections from incoming
 hosts

	 environment=”variable
 =
 value"
	Set environment
 variable

	 idle-timeout=time

	Set idle timeout

	 no-agent-forwarding
	Disable agent
 forwarding

	 no-port-forwarding
	Disable port forwarding

	 no-pty
	Don’t allocate TTY

	 no-x11-forwarding
	Disable X Window
 forwarding

~/.ssh2/identification
 keywords: one keyword/value pair per line.
	Keyword
	Meaning

	 IdKey
 filename
	Location of private-key
 file

	 IdPgpKeyFingerprint
 fingerprint
	Select PGP key by
 fingerprint

	 IdPgpKeyId id

	Select PGP key by ID

	 IdPgpKeyName name

	Select PGP key by name

	 PgpSecretKeyFile
 filename
	Location of PGP private-key
 file

Environment Variables

	Variable
	Set by
	In
	Meaning

	SSH_ASKPASS
	 ssh user

	OpenSSH
	Path to askpass
 program

	SSH_AUTH_SOCK
	 ssh-agent

	OpenSSH
	Path to socket

	SSH2_AUTH_SOCK
	 ssh-agent

	Tectia
	Path to socket

	SSH_CLIENT
	 sshd

	OpenSSH
	Client socket info

	SSH2_CLIENT
	 sshd

	Tectia
	Client socket info

	SSH_CONNECTION
	 sshd

	OpenSSH
	Client and server socket
 info

	SSH_ORIGINAL_COMMAND
	 sshd

	OpenSSH
	Client’s remote command
 string

	SSH_ORIGINAL_COMMAND2
	 sshd

	Tectia
	Client’s remote command
 string

	SSH_SOCKS_SERVER
	 ssh user

	Tectia
	SOCKS firewall
 information

	SSH_TTY
	 sshd

	OpenSSH
	Name of allocated TTY

	SSH2_TTY
	 sshd

	Tectia
	Name of allocated TTY

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	$HOME environment variable, 1.4.1 Secure Remote Logins
	-- (double dash), 4.1.5 Perform Compile-Time Configuration
	3DES, 3.8.2.4 Triple-DES
	~ (tilde), 2.3.2 The Escape Character
	“none” encryption, 3.4.2.3 Parameter negotiation

 A
	AAA (authentication, authorization, and
 accounting), 4.2.4.3 Networking
	AcceptEnv keyword, 5.6.1 Welcome Messages for the User
	Accession Lite, Accession Lite, Accession Lite
		Enable Key Compatibility, Accession Lite

	account access control, 5.5.1 Account Access Control
	account permissions and security, 2.4.3.2 Instructions for Tectia
	active-mode (FTP), 11.2.4 Forwarding the Control Connection
	Address Space Layout Randomization (ASLR), 5.3.3.3 Restarting the SSH server for each connection
	AddressFamily keyword, 7.4.6 Making Connections, Server Features: sshd
	addressing, single name, multiple address issue, 3.6.2 Authorization in Hostbased Authentication
	AES (Advanced Encryption Standard), 3.8.2.2 Advanced Encryption Standard (AES)
	AFS (Andrew File System), 10.7.2 NFS Access Problems
	agents, 1.4.5 Access Control, The SSH Agent, The SSH Agent, The SSH Agent, 2.5.1 Agents and Automation, 2.5.2 A More Complex Passphrase Problem, 2.5.3 Agent Forwarding, Connecting Without a Password or Passphrase, Inside SSH-2, Subsystems, SSH Agents, 6.3.2 Starting an Agent, 6.3.2.2 Subshell method, 6.3.2.3 Format of environment variable commands, 6.3.2.3 Format of environment variable commands, 6.3.3 Loading Keys with ssh-add, 6.3.3.1 Automatic agent loading (single-shell method), 6.3.3.2 Automatic agent loading (subshell method), 6.3.3.3 Automatic agent loading (X Window System), 6.3.3.3 Automatic agent loading (X Window System), 6.3.4 Agents and Security, 6.3.4.2 Cracking an agent, 6.3.4.2 Cracking an agent, 6.3.4.2 Cracking an agent, 6.3.5 Agent Forwarding, 6.3.5.1 A firewall example, 6.3.5.2 How agent forwarding works, 6.3.5.3 Enabling agent forwarding, 6.3.5.3 Enabling agent forwarding, 6.3.5.3 Enabling agent forwarding, 6.4.1 Switching Identities Manually, What Is Forwarding?
		access control, 6.3.4 Agents and Security
	agent forwarding, 2.5.2 A More Complex Passphrase Problem, Connecting Without a Password or Passphrase, Subsystems, 6.3.5 Agent Forwarding, 6.3.5.1 A firewall example, 6.3.5.2 How agent forwarding works, 6.3.5.3 Enabling agent forwarding, What Is Forwarding?
		connections in series, Connecting Without a Password or Passphrase
	enabling, 6.3.5.3 Enabling agent forwarding
	firewall example, 6.3.5.1 A firewall example
	operation, 6.3.5.2 How agent forwarding works
	server configuration, Subsystems

	authentication agents, 1.4.5 Access Control
	automatic loading, 6.3.3.1 Automatic agent loading (single-shell method), 6.3.3.2 Automatic agent loading (subshell method), 6.3.3.3 Automatic agent loading (X Window System)
		single-shell method, 6.3.3.1 Automatic agent loading (single-shell method)
	subshell method, 6.3.3.2 Automatic agent loading (subshell method)
	X Windows, 6.3.3.3 Automatic agent loading (X Window System)

	automation and, 2.5.1 Agents and Automation
	client identification, 6.3.4.2 Cracking an agent
	cpu usage, 6.3.5.3 Enabling agent forwarding
	debugging (OpenSSH), 6.3.5.3 Enabling agent forwarding
	double-remote copying with scp, 2.5.3 Agent Forwarding
	environment variable command format, 6.3.2.3 Format of environment variable commands
	identities, listing and deleting, 6.3.3 Loading Keys with ssh-add
	invocation, login accounts, 6.3.2 Starting an Agent
	keys, The SSH Agent, The SSH Agent, 6.3.2.3 Format of environment variable commands
		loading, The SSH Agent, 6.3.2.3 Format of environment variable commands

	protected memory, 6.3.4.2 Cracking an agent
	security aspects, 6.3.3.3 Automatic agent loading (X Window System), 6.3.4.2 Cracking an agent
		agent cracking, 6.3.4.2 Cracking an agent

	subshell invocation, 6.3.2.2 Subshell method
	switching identities, 6.4.1 Switching Identities Manually

	allow-from keyword, 5.5.8 Summary of Authentication and Access Control, 8.2.4.2 Tectia host access control
	AllowAgentForwarding keyword (Tectia), Subsystems
	AllowedAuthentications keyword (Tectia), 5.4.1 Authentication Syntax, 5.4.4 Hostbased Authentication, 5.4.5.1 OpenSSH keyboard-interactive authentication, 5.4.7.2 Kerberos and Tectia
		gssapi, 5.4.7.2 Kerberos and Tectia
	hostbased, 5.4.4 Hostbased Authentication
	keyboard interactive, 5.4.5.1 OpenSSH keyboard-interactive authentication

	AllowGroups keyword, 5.5.2 Group Access Control, 5.5.3 Hostname Access Control, 5.5.7 Restricting Directory Access with chroot, Forwarding, 9.2.10.3 Per-account configuration, 10.3.2.7 Access control, 10.3.3.5 Login time, 11.6.2 Subconfiguration Files, 11.7.3 A Plugin for External Authorization, Server Features: sshd
	AllowHosts keyword, 4.3.5.3 Networking, 5.3.3.8 Reverse IP mappings, 5.5.4 shosts Access Control, User Logins and Accounts, 5.10.1 Security Issues with Tectia’s SSH-1 Compatibility
 Mode, 8.2.4.2 Tectia host access control, The User rc File, 10.3.3.5 Login time
	AllowSHosts keyword, User Logins and Accounts, 11.1.3 Hostbased Authentication
	AllowTcpForwarding keyword, Forwarding, 5.7.2 X Forwarding, 9.2.9.1 The TIME_WAIT problem, 9.2.10.3 Per-account configuration, 10.3.2.7 Access control, 10.3.3.9 Encryption
	AllowTcpForwardingForGroups keyword, Forwarding, 9.2.10.3 Per-account configuration
	AllowTcpForwardingForUsers keyword, Forwarding, 9.2.10.3 Per-account configuration
	AllowX11Forwarding keyword, 9.4.4.1 Compile-time configuration
	ASLR (Address Space Layout Randomization), 5.3.3.3 Restarting the SSH server for each connection
	asymmetric cryptography, 3.2.2 Public-and Secret-Key Cryptography
	attacks, 2.3.1 Known Hosts, 2.4.3.2 Instructions for Tectia, 3.1.2 Integrity, 3.2.1 How Secure Is Secure?, Threats SSH Can Counter, Threats SSH Can Counter, Threats SSH Can Counter, Threats SSH Can Counter, 3.9.1 Eavesdropping, 3.9.4 Man-in-the-Middle Attacks, Threats SSH Doesn’t Prevent, 3.10.2 IP and TCP Attacks, 3.10.3 Traffic Analysis, 3.10.4 Covert Channels, 3.10.4 Covert Channels, Threats Caused by SSH, 6.3.4.2 Cracking an agent
		agent cracking, 6.3.4.2 Cracking an agent
	brute-force attacks, 3.2.1 How Secure Is Secure?
	connection hijacking, Threats SSH Can Counter
	covert channels, 3.10.4 Covert Channels
	dictionary attack, 2.4.3.2 Instructions for Tectia
	eavesdropping, 3.9.1 Eavesdropping
	IP attacks, 3.10.2 IP and TCP Attacks
	IP spoofing, Threats SSH Can Counter
	keystroke timing data and potential attacks, 3.10.4 Covert Channels
	man-in-the-middle attacks, 2.3.1 Known Hosts, 3.9.4 Man-in-the-Middle Attacks
	name service spoofing, Threats SSH Can Counter
	password cracking, Threats SSH Doesn’t Prevent
	replay attacks, 3.1.2 Integrity
	traffic analysis, 3.10.3 Traffic Analysis
	user or administrator carelessness and, Threats Caused by SSH

	authentication, What SSH Is Not, Connecting Without a Password or Passphrase, 3.1.3 Authentication, 5.4.6 PGP Authentication, 7.4.12 Session Rekeying, 8.1.2 Authentication Issues, 11.4.5.2 Security
		passwordless, Connecting Without a Password or Passphrase
	per-account configuration and, 8.1.2 Authentication Issues
	scalability case study, 11.4.5.2 Security
	SecurID hardware-based authentication, 5.4.6 PGP Authentication
	ssh (client) configuration, 7.4.12 Session Rekeying

	AuthenticationNotify keyword, 7.4.13.2 The server is the boss, 7.4.13.3 Detecting successful authentication
	AuthenticationSuccessMsg keyword, 7.4.13.2 The server is the boss, 7.4.13.3 Detecting successful authentication
	AuthInteractiveFailureTimeout keyword (Tectia), 5.4.2 Password Authentication, 5.4.5.2 Tectia’s keyboard-interactive authentication
	AuthKbdInt.NumOptional keyword (Tectia), 5.4.5.2 Tectia’s keyboard-interactive authentication
	AuthKbdInt.Optional keyword, 5.4.5.2 Tectia’s keyboard-interactive authentication
	AuthKbdInt.Plugin keyword, 11.6.3 Quoted Values, Tectia Plugins
	AuthKbdInt.Required keyword, 5.4.5.2 Tectia’s keyboard-interactive authentication
	AuthKbdInt.Retries keyword (Tectia), 5.4.5.2 Tectia’s keyboard-interactive authentication
	authorization, 3.1.4 Authorization
	authorization files, server accounts, 8.2.1 OpenSSH Authorization Files
	AuthorizationFile keyword, 5.3.1.6 Per-account authorization files, 8.2.2 Tectia Authorization Files
	AuthorizedKeysFile keyword, 5.3.1.6 Per-account authorization files
	authorized_keys, 2.4.3 Installing a Public Key on an SSH Server Machine, Hostbased Access Control
	AuthPassword.ChangePlugin keyword, 11.7.1 A Plugin for Changing Expired Passwords, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol
	AuthPublicKey.MinSize and MaxSize keywords
 (Tectia), 5.4.4 Hostbased Authentication
	autoconf, 4.1.5 Perform Compile-Time Configuration
	Axessh, 13.3.7 Microsoft Windows

 B
	BAMSE, 13.3.13 VMS
	Banner keyword (OpenSSH), User Logins and Accounts
	BannerMessageFile keyword (Tectia), User Logins and Accounts
	bastion host, 6.3.5.1 A firewall example
	batch jobs, 11.1.1 Password Authentication, 11.1.1 Password Authentication, 11.1.1 Password Authentication, 11.1.2 Public-Key Authentication, 11.1.2.2 Using a plaintext key, 11.1.2.3 Using an agent, 11.1.3 Hostbased Authentication, 11.1.5 General Precautions for Batch Jobs, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.4 Useful ssh options
		hostbased authentication, 11.1.3 Hostbased Authentication
	Kerberos authentication, 11.1.5 General Precautions for Batch Jobs
	password authentication, 11.1.1 Password Authentication
	public-key authentication, 11.1.1 Password Authentication, 11.1.2 Public-Key Authentication, 11.1.2.2 Using a plaintext key, 11.1.2.3 Using an agent
		agents, 11.1.2.3 Using an agent
	filesystem passphrase storage, 11.1.2 Public-Key Authentication
	plaintext keys, 11.1.2.2 Using a plaintext key

	security precautions, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.2 Separate, locked-down automation accounts, 11.1.5.4 Useful ssh options
		least-privilege accounts, 11.1.5.2 Separate, locked-down automation accounts
	locked-down automation accounts, 11.1.5.2 Separate, locked-down automation accounts
	restricted-use keys, 11.1.5.2 Separate, locked-down automation accounts
	ssh options, 11.1.5.4 Useful ssh options

	BatchMode keyword, 7.4.6.3 Password prompting in Tectia, 11.1.6 Recommendations, 11.3.1.2 Making Pine use SSH
	BeOS SSH implementations, Other SSH Products
	binary distributions, Overview
	binary packet protocol, 3.4.2.2 Protocol version selection
	BindAddress keyword, 7.4.5.2 Connecting via a given network interface
	Blowfish, 3.8.2.6 Blowfish
	boot versus manual invocation, 5.1.1 Running sshd as the Superuser
	brute-force attacks, 3.2.1 How Secure Is Secure?
	bzip2 and bunzip2, 4.1.4 Extract the Source Files

 C
	cancel-tcpip-forward request, 3.4.4.2 Requests
	case studies, FTP and SSH, Pine, IMAP, and SSH, 11.3.3 Using a Connection Script, Scalable Authentication for SSH
		authentication, Scalable Authentication for SSH
	FTP, FTP and SSH
	gateway hosts, connecting through, 11.3.3 Using a Connection Script
	Pine email client, Pine, IMAP, and SSH

	CAST, 3.8.2.8 CAST
	certificate authorities, 1.6.6 Secure Socket Layer (SSL) Protocol
	challenge/response authentication, 2.4.1 A Brief Introduction to Keys
	ChallengeResponseAuthentication keyword, Authentication: Verifying Identities, 5.4.5.1 OpenSSH keyboard-interactive authentication
	channels, 3.4.1 Protocol Summary, 3.4.4.1 Channels, 3.4.4.1 Channels, 3.4.4.2 Requests
		channel numbers, 3.4.4.1 Channels
	channel requests, 3.4.4.2 Requests

	CheckHostIP keyword, 7.4.3.2 Verifying host keys by DNS
	Cipher keyword, 5.3.5 Encryption Algorithms, 12.2.5.4 scp
	ciphers, 3.2.1 How Secure Is Secure?
	Ciphers keyword, 3.4.2.3 Parameter negotiation, 5.3.6 Integrity-Checking (MAC) Algorithms, 5.3.7 SSH Protocol Settings, 7.4.10 Integrity-Checking (MAC) Algorithms
	ClearAllForwardings keyword, 9.2.2 Trouble with Multiple Connections, 9.2.3 Comparing Local and Remote Port Forwarding
	client configuration, How to Configure Clients, Client Configuration, Debug Messages: Your First Line of Defense, 12.2.5.2 Client configuration file
		debugging messages, Debug Messages: Your First Line of Defense
	setup recommendations, Client Configuration
	troubleshooting, 12.2.5.2 Client configuration file

	ClientAliveCountMax keyword, 5.3.3.4 Keepalive messages
	ClientAliveInterval keyword, 5.3.3.4 Keepalive messages, 5.3.3.5 Idle connections
	Command keyword, Identity and Authorization Files, OpenSSH
	Commodore Amiga SSH implementations, Other SSH Products
	compression algorithms, Threats SSH Can Counter
	Compression keyword, Authentication: Verifying Identities, 7.1.2.1 Keywords versus command-line options, 7.1.2.4 Multiple matches, 7.1.2.5 Making nicknames for hosts, Precedence, 7.4.1.1 Tricks with remote account names, 7.4.15 Program Locations
	CompressionLevel keyword, 12.2.5.3 ssh
	configuration, Inside SSH-2, 3.4.2.3 Parameter negotiation, 4.1.5 Perform Compile-Time Configuration, 4.1.5 Perform Compile-Time Configuration, 4.1.5 Perform Compile-Time Configuration, 4.1.5 Perform Compile-Time Configuration, 4.1.6 Compile Everything
		compile-time configuration, 4.1.5 Perform Compile-Time Configuration
	configuration files, Inside SSH-2
	configure script, 4.1.5 Perform Compile-Time Configuration, 4.1.5 Perform Compile-Time Configuration
		command-line flags, 4.1.5 Perform Compile-Time Configuration
	options, 4.1.5 Perform Compile-Time Configuration

	make command, 4.1.6 Compile Everything
	“none” encryption, 3.4.2.3 Parameter negotiation

	connection hijacking, Threats SSH Can Counter
	Connector, Connector
	ConnectTimeout keyword, 7.4.5.5 Controlling TCP_NODELAY
	control connections (FTP), 11.2.3 The FTP Protocol, 11.2.4 Forwarding the Control Connection, 11.2.4.1 Choosing the forwarding target
		forwarding, 11.2.4 Forwarding the Control Connection, 11.2.4.1 Choosing the forwarding target
		choosing the target, 11.2.4.1 Choosing the forwarding target

	ControlMaster keyword, 3.4.4.1 Channels, 7.4.4.2 Connection sharing
	ControlPath keyword, 3.4.4.1 Channels, 7.4.4.2 Connection sharing
	covert channels, 3.10.4 Covert Channels
	CRC (Cyclic Redundancy Check) hash, The Architecture of an SSH System
	CRC-32 (Cyclic Redundancy Check), 3.8.2.8 CAST
	cryptanalysis, A Cryptography Primer
	cryptography, A Cryptography Primer, 3.2.1 How Secure Is Secure?, 3.2.3 Hash Functions
		hash functions, 3.2.3 Hash Functions
	security, 3.2.1 How Secure Is Secure?

	CVS (Concurrent Versions System), Replacing r-Commands with SSH
	Cyclic Redundancy Check (CRC-32), 3.8.3.1 CRC-32
	Cygwin, 13.3.7 Microsoft Windows

 D
	Data Encryption Standard (DES), 3.8.2.3 Data Encryption Standard (DES)
	debugging, 5.1.2 Running sshd as an Ordinary User, Debug Messages: Your First Line of Defense
		messages, Debug Messages: Your First Line of Defense
	serverwide configuration, 5.1.2 Running sshd as an Ordinary User
		syslog files, 5.1.2 Running sshd as an Ordinary User

	default identity, What Is an Identity?
	deny-from keyword, 8.2.4.2 Tectia host access control
	DenyGroups, 10.3.3.7 Access control
	DenyGroups keyword, Forwarding, 10.3.2.7 Access control, 10.3.3.5 Login time, Server Features: sshd
	DenyHosts keyword, 4.3.5.3 Networking, 5.3.3.8 Reverse IP mappings, User Logins and Accounts, 8.2.4.2 Tectia host access control, The User rc File
	DenySHosts keyword, User Logins and Accounts
	DenyTcpForwardingForGroups keyword, Forwarding
	DenyTcpForwardingForUsers keyword, Forwarding
	DES (Data Encryption Standard), 3.8.2.2 Advanced Encryption Standard (AES)
	dictionary attack, 2.4.3.2 Instructions for Tectia
	Diffie-Hellman key agreement algorithm, 3.8.1.3 Diffie-Hellman key agreement
	digital certificates, 1.6.6 Secure Socket Layer (SSL) Protocol
	Digital Signature Algorithm (DSA), 3.8.1.2 Digital Signature Algorithm (DSA)
	digital signatures, 3.2.2 Public-and Secret-Key Cryptography
	display, 9.4.5.1 How X authentication works
	DNS (Domain Name Service), 1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
 (GnuPG)
	DontReadStdin keyword, 7.4.6.6 Backgrounding a remote command
	DropBear, 13.3.9 OS/2
	DSA (Digital Signature Algorithm), Algorithms Used by SSH
	dynamic port forwarding, Dynamic Port Forwarding
	DynamicForward keyword, 7.4.7.2 SOCKS in Tectia

 E
	eavesdropping, 3.9.1 Eavesdropping
	Egrep, sshregex (Tectia), Regex Syntax: Egrep Patterns, Escaped Tokens for Regex Syntax Egrep, Character Sets for Egrep and ZSH_FILEGLOB
		character sets, Character Sets for Egrep and ZSH_FILEGLOB
	escaped tokens, Escaped Tokens for Regex Syntax Egrep

	EkInitString keyword, Tectia External Keys
	EkProvider keyword, Tectia External Keys
	EnableSSHKeysign keyword, The User rc File, 12.2.2.4 Public-key authentication
	encryption, Introduction to SSH, A Cryptography Primer, A Cryptography Primer
		algorithms, A Cryptography Primer
	programs, Introduction to SSH

	env channel request, 3.4.4.2 Requests
	environment variables, 6.3.2.3 Format of environment variable commands, 7.1.2.6 Comments, indenting, and style, 8.2.4.2 Tectia host access control
		agents and, 6.3.2.3 Format of environment variable commands
	per-account settings, 8.2.4.2 Tectia host access control
	ssh (client), 7.1.2.6 Comments, indenting, and style

	Ericom PowerTerm, 13.3.7 Microsoft Windows
	EscapeChar keyword, 7.1.2.4 Multiple matches, 7.4.6.8 Escaping, 7.4.7 Proxies and SOCKS
	exec channel request, 3.4.4.2 Requests
	ExternalAuthorizationProgram keyword, 5.5.6 External Access Control

 F
	F-Secure SSH, 13.3.7 Microsoft Windows
	file transfers, Secure, Interactive Copy with sftp
		sftp, Secure, Interactive Copy with sftp

	filesystems, recommended settings, Client Configuration
	firewalls, What Is SSH?, 1.6.8 stunnel, 9.2.5 Bypassing a Firewall, 11.2.5 FTP, Firewalls, and Passive Mode
		FTP passive mode and, 11.2.5 FTP, Firewalls, and Passive Mode
	port forwarding, bypassing with, 9.2.5 Bypassing a Firewall

	forced commands, Limits of This Technique, 8.2.3.1 Security issues, 8.2.3.1 Security issues, 8.2.3.2 Rejecting connections with a custom message, 8.2.3.3 Displaying a command menu, 8.2.3.4 Examining the client’s original command, 8.2.3.7 Forced commands and secure copy (scp), 8.2.3.7 Forced commands and secure copy (scp)
		command menu, displaying, 8.2.3.3 Displaying a command menu
	logging, 8.2.3.7 Forced commands and secure copy (scp)
	rejecting connections, 8.2.3.2 Rejecting connections with a custom message
	scp and, 8.2.3.7 Forced commands and secure copy (scp)
	security concerns, 8.2.3.1 Security issues
	SSH_ORIGINAL_COMMAND environment variable, 8.2.3.4 Examining the client’s original command

	ForcePTTYAllocation keyword, 7.4.6.5 Pseudo-terminal allocation (TTY/PTY/PTTY)
	ForwardACL keyword, Forwarding, 5.7.1 Port Forwarding
	ForwardAgent keyword, 6.3.5.3 Enabling agent forwarding
	forwarding, 3.1.4 Authorization, 8.2.8 Disabling TTY Allocation, Port Forwarding and X Forwarding
		limiting or disabling per-account, 8.2.8 Disabling TTY Allocation

	ForwardX11 keyword, 4.3.5.4 X Window System, 9.4.3 Enabling X Forwarding, 9.4.4.1 Compile-time configuration
	ForwardX11Trusted keyword, 9.4.5.3 Trusted X forwarding
	Friedl, Markus, Related Technologies
	FTP (file transfer protocol), 11.2.1 FTP-Specific Tools for SSH, 11.2.1.2 Tectia client, 11.2.2 Static Port Forwarding and FTP: A Study in Pain, 11.2.4.1 Choosing the forwarding target, 11.2.4.2 Using passive mode, 11.2.4.3 The “PASV port theft” problem, 11.2.6 FTP and Network Address Translation (NAT), 11.2.7 All About Data Connections, 11.2.7.1 The usual method of file transfer, 11.2.7.3 FTP with the default data ports, 11.2.7.3 FTP with the default data ports, 11.2.8 Forwarding the Data Connection, 12.2.5.5 sftp
		case study, 11.2.1 FTP-Specific Tools for SSH, 11.2.1.2 Tectia client, 11.2.4.1 Choosing the forwarding target
		control connection forwarding, 11.2.4.1 Choosing the forwarding target
	Tectia client, 11.2.1.2 Tectia client
	VanDyke’s SecureFX tool, 11.2.1 FTP-Specific Tools for SSH

	data connections, forwarding through SSH, 11.2.8 Forwarding the Data Connection
	default data port mode, 11.2.7.3 FTP with the default data ports, 11.2.7.3 FTP with the default data ports
		TCP protocol and, 11.2.7.3 FTP with the default data ports

	NAT and, 11.2.6 FTP and Network Address Translation (NAT)
	passive mode, 11.2.4.2 Using passive mode, 11.2.4.3 The “PASV port theft” problem, 11.2.7.1 The usual method of file transfer
		PASV port theft problem, 11.2.4.3 The “PASV port theft” problem

	troubleshooting, 12.2.5.5 sftp

 G
	gateway hosts, 6.3.5 Agent Forwarding, 11.4.1 Making Transparent SSH Connections, 11.4.2 Using SCP Through a Gateway, 11.4.3 Another Approach: SSH-in-SSH (Port Forwarding), 11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)
		case study, 11.4.1 Making Transparent SSH Connections, 11.4.2 Using SCP Through a Gateway, 11.4.3 Another Approach: SSH-in-SSH (Port Forwarding), 11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)
		port forwarding (SSH-in-SSH), 11.4.3 Another Approach: SSH-in-SSH (Port Forwarding)
	scp, 11.4.2 Using SCP Through a Gateway
	SSH connection, making, 11.4.1 Making Transparent SSH Connections
	tunnelled SSH withProxyCommand, 11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)

	GatewayPorts keyword, 9.2.1.1 Local forwarding and GatewayPorts, 9.2.1.2 Remote forwarding, 9.4.6.4 Location of the xauth program, 9.5.1 TCP-Wrappers Configuration, Compile-Time Configuration, Client Configuration, 11.2.4.2 Using passive mode, sftp Command-Line Features
	GNU Emacs and SSH, 13.3.4 Java
	GoBackground keyword, 9.2.11 Protocol-Specific Forwarding: FTP
	gPutty, 13.3.12 Unix Variants (Linux, OpenBSD, etc.)
	GSSAPI, 11.5.2.2 Kerberos support in SSH
	GSSAPI.AllowedMethods keyword (Tectia), 5.4.7.2 Kerberos and Tectia
	GSSAPI.AllowOldMethodWhichIsInsecure keyword, 5.4.7.2 Kerberos and Tectia
	GSSAPI.Dlls keyword (Tectia), 5.4.8 PAM Authentication
	GSSAPIAuthentication keyword (OpenSSH), 5.4.7 Kerberos Authentication
	GSSAPICleanupCredentials keyword, 5.4.7.2 Kerberos and Tectia

 H
	hash functions, The Architecture of an SSH System, 3.8.3.1 CRC-32
		collision-resistance and pre-image-resistance, The Architecture of an SSH System

	host keys, 2.3.1 Known Hosts, Implementation Issues, 7.4.3 Host Keys and Known-Hosts Databases
		implementation dependency, SSH, Implementation Issues

	Host keyword, 7.1.2.3 Configuration-file sections, 7.1.2.4 Multiple matches, 7.1.2.4 Multiple matches, 7.1.2.5 Making nicknames for hosts, 7.1.2.5 Making nicknames for hosts, 7.4.2 User Identity, 12.2.2.2 Password authentication, 12.2.5.2 Client configuration file
	hostbased authentication, The User rc File, 12.2.2.3 Hostbased authentication
		per-account configuration and, The User rc File
	troubleshooting, 12.2.2.3 Hostbased authentication

	HostbasedAuthForceClientHostnameDNSMatch
 keyword, 5.4.5 Keyboard-Interactive Authentication
	HostCertificateFile keyword, 11.5.1.6 Hostkey verification: configuring the Client
	HostKey keyword, 5.3.1.1 Host key files
	HostKeyAlias keyword, 7.4.3.3 Host key aliasing, 11.4.5 Comparing the Techniques
	HostKeyFile keyword, 5.3.1.1 Host key files
	HostName keyword, 7.1.2.5 Making nicknames for hosts, 7.4.1.1 Tricks with remote account names
	hosts, 2.3.1 Known Hosts
	hostspecs, 3.6.2.2 Control file details

 I
	IDEA (International Data Encryption
 Algorithm), 3.8.1.3 Diffie-Hellman key agreement
	identification files (Tectia), Creating an Identity
	identities, Key Management and Agents, What Is an Identity?, What Is an Identity?, Creating an Identity, 6.2.4 Generating New Groups for Diffie-Hellman Key
 Exchange, 6.3.3 Loading Keys with ssh-add, Multiple Identities, 6.4.3 Tailoring Sessions Based on Identity
		creating, Creating an Identity, 6.2.4 Generating New Groups for Diffie-Hellman Key
 Exchange
		Diffie-Hellman key exchange, group generation, 6.2.4 Generating New Groups for Diffie-Hellman Key
 Exchange

	default identity, What Is an Identity?
	listing and deleting, 6.3.3 Loading Keys with ssh-add
	multiple identities, Multiple Identities
	OpenSSH, What Is an Identity?
	tailored sessions, 6.4.3 Tailoring Sessions Based on Identity

	IdentitiesOnly keyword, 7.4.2.1 Using identities
	IdentityFile keyword, 5.3.3.7 Limiting simultaneous connections, Creating an Identity, 6.4.1 Switching Identities Manually, 7.1.2.5 Making nicknames for hosts, 7.4.2.1 Using identities, 11.1.2.3 Using an agent
	IdKey keyword, Creating an Identity
	idle-timeout keyword, 5.3.3.5 Idle connections, 8.2.6 Setting Idle Timeout, 10.3.3.9 Encryption, 12.2.2.2 Password authentication
	IdleTimeout keyword, 5.3.3.5 Idle connections
	IdPgpKeyFingerprint keyword, PGP Authentication in Tectia
	IdPgpKeyId keyword, PGP Authentication in Tectia
	IdPgpKeyName keyword, PGP Authentication in Tectia
	IgnoreRhosts keyword, 3.6.2.3 Netgroups as wildcards, User Logins and Accounts, 10.7.1 NFS Security Risks
	IMAP (Internet Message Access Protocol), 11.3.1 Securing IMAP Authentication
	inetd, 5.3.3.2 Invocation by inetd or xinetd, 5.9.3 Debugging Under inetd or xinetd
		server configuration and debugging, 5.9.3 Debugging Under inetd or xinetd
	server invocation using, 5.3.3.2 Invocation by inetd or xinetd

	initialization scripts, SSH servers, 5.6.2 Setting Environment Variables
	installation, Installation and Compile-Time Configuration, Overview, Overview, 4.1.1 Install the Prerequisites, Software Inventory, Software Inventory
		on Unix systems, Overview
	prerequisites, 4.1.1 Install the Prerequisites
	software inventory, table, Software Inventory
	symbolic links created during, Software Inventory
	Unix implementations, Installation and Compile-Time Configuration, Overview
		binary distributions, Overview

	integrity, 3.1.2 Integrity
	integrity checking, 1.3.1 Protocols, Products, Clients, and Confusion
	interactive sessions, authentication without
 passwords, Connecting Without a Password or Passphrase
	IP spoofing, Threats SSH Can Counter
	IPSEC (Internet Protocol Security), 1.6.4 IPSEC and Virtual Private Networks

 J
	J2SSH Maverick, 13.3.4 Java
	JavaSSH, 13.3.4 Java
	JSch, 13.3.4 Java

 K
	KDC (Key Distribution Center), 11.5.2 OpenSSH and Tectia with Kerberos
	KeepAlive keyword, 5.3.3.4 Keepalive messages
	keepalive messages, 5.3.3.4 Keepalive messages
	Kerberos, 1.6.3 Kerberos, 1.6.3 Kerberos, 4.2.4.5 Access control, 11.5.2.2 Kerberos support in SSH, 11.5.2.3 Kerberos interoperability with OpenSSH and
 Tectia
		OpenSSH and Tectia interoperability, 11.5.2.3 Kerberos interoperability with OpenSSH and
 Tectia
	OpenSSH implementation, 4.2.4.5 Access control
	support in SSH, 11.5.2.2 Kerberos support in SSH
	tickets, 1.6.3 Kerberos

	KerberosOrLocalPasswd keyword (OpenSSH), 5.4.7.2 Kerberos and Tectia
	KerberosTgtPassing keyword (OpenSSH), 5.4.7.2 Kerberos and Tectia
	KerberosTicketCleanup keyword, 5.4.7.2 Kerberos and Tectia
	Kermit, 13.3.7 Microsoft Windows, 13.3.12 Unix Variants (Linux, OpenBSD, etc.)
	KEXINIT messages, 3.4.2.3 Parameter negotiation
	Key keyword (Tectia), Creating an Identity
	keyboard-interactive authentication, 5.4.5 Keyboard-Interactive Authentication, 5.4.5 Keyboard-Interactive Authentication, 11.7.2 A Plugin for Keyboard-Interactive Authentication
		one-time passwords, 5.4.5 Keyboard-Interactive Authentication
	Tectia plugin for, 11.7.2 A Plugin for Keyboard-Interactive Authentication

	keys, 1.4.4 Keys and Agents, 2.3.1 Known Hosts, Authentication by Cryptographic Key, 2.4.3 Installing a Public Key on an SSH Server Machine, 2.4.4 If You Change Your Key, 3.2.1 How Secure Is Secure?, 3.2.2 Public-and Secret-Key Cryptography, The Architecture of an SSH System, Inside SSH-2, 3.4.2.3 Parameter negotiation, Implementation Issues, Key Management and Agents, What Is an Identity?, What Is an Identity?, Tectia External Keys, 7.4.3 Host Keys and Known-Hosts Databases, Client Configuration, 11.5.2.1 How Kerberos works
		changing, 2.4.4 If You Change Your Key
	host keys, 2.3.1 Known Hosts, Implementation Issues, 7.4.3 Host Keys and Known-Hosts Databases
		implementation dependency, SSH, Implementation Issues

	key exchange, 3.4.2.3 Parameter negotiation
	key generators, Inside SSH-2
	key management, Key Management and Agents, What Is an Identity?, Client Configuration
		programs for key creation, What Is an Identity?
	setup recommendations, Client Configuration

	key pairs, What Is an Identity?
	key-distribution problem, 3.2.2 Public-and Secret-Key Cryptography
	secrecy, 2.4.3 Installing a Public Key on an SSH Server Machine
	session keys, 11.5.2.1 How Kerberos works
	Tectia external keys, Tectia External Keys

	keywords, 5.2.1 Server Configuration Files
	known hosts, 2.3.1 Known Hosts, Inside SSH-2, 7.4.3.1 Strict host-key checking
		known-hosts databases, Inside SSH-2, 7.4.3.1 Strict host-key checking

 L
	launch-sshd shell script, 5.2.4 Changing the Configuration
	limiting simultaneous connections, 5.3.3.7 Limiting simultaneous connections
	ListenAddress, 5.3.3.1 Port number and network interface
	LocalForward keyword, 9.2.1.1 Local forwarding and GatewayPorts, 9.2.1.2 Remote forwarding
	LoginGraceTime keyword, 5.3.3.5 Idle connections, 5.3.3.6 Failed logins
	LogLevel keyword, 7.4.17 Logging and Debugging, 7.4.18 Random Seeds
	lsh, 13.3.12 Unix Variants (Linux, OpenBSD, etc.)

 M
	MAC (message authentication code), 3.4.2.3 Parameter negotiation
	Macintosh, OpenSSH for Macintosh, Using the SSH Clients, Using the SSH Clients
		OpenSSH, OpenSSH for Macintosh, Using the SSH Clients, Using the SSH Clients
		SSH clients, Using the SSH Clients
	SSH server, Using the SSH Clients

	MacSFTP, 13.3.5 Macintosh OS 9
	MacSSH, 13.3.5 Macintosh OS 9
	masquerading, 11.2.6 FTP and Network Address Translation (NAT)
	Maverick SSHD, 13.3.4 Java
	Maverick.NET, 13.3.4 Java
	MaxAuthTries keyword, 5.3.3.6 Failed logins
	MaxBroadcastsPerSecond keyword, 5.3.3.9 Controlling the Nagle Algorithm
	MaxConnections keyword, 5.3.3.7 Limiting simultaneous connections
	MaxStartups keyword, 5.3.3.7 Limiting simultaneous connections
	MD5, 3.8.3.2 MD5
	metaconfiguration, 11.6.1 Metaconfiguration
	MindTerm, 13.3.4 Java
	motd (message of the day), User Logins and Accounts

 N
	Nagle Algorithm, 5.3.3.9 Controlling the Nagle Algorithm
	name service spoofing, Threats SSH Can Counter
	NAT (Network Address Translation), 11.2.6 FTP and Network Address Translation (NAT), 11.2.6.1 Server-side NAT issues
		masquerading, 11.2.6 FTP and Network Address Translation (NAT)
	server-side issues, 11.2.6.1 Server-side NAT issues

	netgroups, 3.6.2.2 Control file details
	network applications, security issues, What Is SSH?
	Network Information Service (NIS), 1.6.1 rsh Suite (r-Commands)
	network interface server settings, 5.3.3.1 Port number and network interface
	NEWKEYS, 3.4.2.6 Wonder security powers, activate!
	NFS, recommended settings, Client Configuration
	NiftyTelnet SSH, 13.3.5 Macintosh OS 9
	nmap, 5.3.3.10 Discovering other servers
	no-agent-forwarding keyword, 8.2.3.2 Rejecting connections with a custom message, 10.3.3.9 Encryption, 11.1.5.2 Separate, locked-down automation accounts
	no-port-forwarding keyword, 8.2.2.1 Tectia PGP key authentication, 8.2.3.2 Rejecting connections with a custom message, 9.2.10.3 Per-account configuration, 10.3.3.9 Encryption, 11.1.5.2 Separate, locked-down automation accounts
	no-pty keyword, 7.4.6.5 Pseudo-terminal allocation (TTY/PTY/PTTY), 8.2.3.2 Rejecting connections with a custom message, Hostbased Access Control, 10.3.3.9 Encryption, 11.1.5.2 Separate, locked-down automation accounts, 12.2.3.3 Per-account authorization files
	no-X11-forwarding keyword, 9.4.4.1 Compile-time configuration, 11.1.5.2 Separate, locked-down automation accounts, Other SSH Resources
	NoDelay keyword, 4.3.5.3 Networking, 5.3.3.9 Controlling the Nagle Algorithm, 7.4.5.5 Controlling TCP_NODELAY
	NoHostAuthenticationForLocalhost keyword, 7.4.3.5 Moving the known hosts files
	NumberOfPasswordPrompts keyword, 7.4.6.3 Password prompting in Tectia

 O
	one-time pad, 3.2.1 How Secure Is Secure?
	one-time passwords, 4.2.4.5 Access control, 5.4.5 Keyboard-Interactive Authentication
	OpenBSD, 1.3.1 Protocols, Products, Clients, and Confusion, History of SSH
	OpenSSH, History of SSH, 3.6.1 Host Keys, Installing OpenSSH, 4.2.1 Prerequisites, 4.2.3 Building and Installing, 4.2.4.1 File locations, 4.2.4.1 File locations, 4.2.4.3 Networking, 4.2.4.3 Networking, 4.2.4.3 Networking, 4.2.4.4 Authentication, 4.2.4.5 Access control, What Is an Identity?, 6.1.2 Tectia Identities, Client Configuration in Depth, 8.2.4.1 OpenSSH host access control, Using the SSH Clients, Using the SSH Clients, Using the SSH Clients, Identity and Authorization Files, OpenSSH, Identity and Authorization Files, OpenSSH
		authorization files, Identity and Authorization Files, OpenSSH
	configuration, 4.2.1 Prerequisites, 4.2.3 Building and Installing, 4.2.4.1 File locations, 4.2.4.1 File locations, 4.2.4.3 Networking, 4.2.4.3 Networking, 4.2.4.3 Networking, 4.2.4.4 Authentication, 4.2.4.5 Access control
		access control with TCP-wrappers, 4.2.4.5 Access control
	command-line flags, 4.2.3 Building and Installing
	dependencies, 4.2.1 Prerequisites
	Kerberos support, 4.2.4.4 Authentication
	networking, 4.2.4.3 Networking
	PAM authentication, 4.2.4.3 Networking
	pid file, 4.2.4.1 File locations
	turning on support for Internet Protocol Version 4
 (IPv4), 4.2.4.3 Networking

	conversion, SSH-1 to SSH-2 keys, 6.1.2 Tectia Identities
	help command, Client Configuration in Depth
	host access control, 8.2.4.1 OpenSSH host access control
	host keys implementation, 3.6.1 Host Keys
	identities, What Is an Identity?, Identity and Authorization Files, OpenSSH
	installation, Installing OpenSSH
	Macintosh operation, Using the SSH Clients, Using the SSH Clients, Using the SSH Clients
		SSH clients, Using the SSH Clients
	SSH server, Using the SSH Clients

	OpenSSH (continued), 3.6.4 Randomness, 3.6.5 Privilege Separation in OpenSSH, 4.2.4.2 Random number generation, Software Inventory, 5.2.2 Checking Configuration Files, 5.3.3.7 Limiting simultaneous connections, 5.3.3.8 Reverse IP mappings, 5.3.8 Compression, Authentication: Verifying Identities, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.7.1 Kerberos and OpenSSH, 5.4.9 Privilege Separation, User Logins and Accounts, Subsystems, 5.9.1 OpenSSH Logging and Debugging, 6.2.3 Selecting a Passphrase, 8.2.3.4 Examining the client’s original command, 10.3.2 sshd_config for OpenSSH, 12.1.2 Server Debugging, 13.3.8 Microsoft Windows CE (PocketPC), Installation, Installation, Using the SSH Clients, Using the SSH Clients, 14.3.1 Opening Remote Windows on the Desktop, Public-Key Authentication, 14.4.1 Running an Agent, Troubleshooting, Server Features: sshd, Server Features: sshd, Server Features: sshd, Server Features: sshd, Server Features: sshd, Client Features: ssh, scp, and sftp, Client Features: ssh, scp, and sftp, Client Features: ssh, scp, and sftp, KbdInteractiveDevices Keyword, SSH-1 Features of OpenSSH and Tectia
		privilege separation, 3.6.5 Privilege Separation in OpenSSH, 5.4.9 Privilege Separation
	random number generation, 4.2.4.2 Random number generation
	random number storage, 3.6.4 Randomness
	server configuration, 5.3.3.7 Limiting simultaneous connections, 5.9.1 OpenSSH Logging and Debugging
		logging and debugging, 5.9.1 OpenSSH Logging and Debugging

	server protocol version string, 5.3.8 Compression
	serverwide configuration, 5.2.2 Checking Configuration Files, 5.3.3.8 Reverse IP mappings, Authentication: Verifying Identities, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.7.1 Kerberos and OpenSSH, User Logins and Accounts, 10.3.2 sshd_config for OpenSSH, 12.1.2 Server Debugging
		authentication keywords, Authentication: Verifying Identities
	configuration files, checking, 5.2.2 Checking Configuration Files
	debugging messages, 12.1.2 Server Debugging
	hostbased authentication, 5.4.4 Hostbased Authentication
	Kerberos authentication, 5.4.7.1 Kerberos and OpenSSH
	password authentication, 5.4.2 Password Authentication
	public-key authentication, 5.4.3 Public-Key Authentication
	recommended settings, 10.3.2 sshd_config for OpenSSH
	reverse IP mapping, 5.3.3.8 Reverse IP mappings
	user welcome, User Logins and Accounts

	smartcard support, 6.2.3 Selecting a Passphrase
	software inventory, Software Inventory
	SSH-1, SSH-1 Features of OpenSSH and Tectia
	SSH_ORIGINAL_COMMAND environment variable, 8.2.3.4 Examining the client’s original command
	subsystem command syntax, Subsystems
	Version 4.0 new features, Server Features: sshd, Server Features: sshd, Server Features: sshd, Server Features: sshd, Server Features: sshd, Client Features: ssh, scp, and sftp, Client Features: ssh, scp, and sftp, Client Features: ssh, scp, and sftp, KbdInteractiveDevices Keyword
		AddressFamily configuration keyword, Server Features: sshd
	clients, Client Features: ssh, scp, and sftp
	connection sharing, Client Features: ssh, scp, and sftp
	hostname hashing, KbdInteractiveDevices Keyword
	logging of access violations, Server Features: sshd
	password and account expiration warnings, Server Features: sshd
	port forwarding, Client Features: ssh, scp, and sftp
	server, Server Features: sshd

	Windows and Cygwin operation, 13.3.8 Microsoft Windows CE (PocketPC), Installation, Installation, Using the SSH Clients, Using the SSH Clients, 14.3.1 Opening Remote Windows on the Desktop, Public-Key Authentication, 14.4.1 Running an Agent, Troubleshooting
		agents, 14.4.1 Running an Agent
	Cygwin installation, Installation
	opening remote windows, 14.3.1 Opening Remote Windows on the Desktop
	public-key authentication, Public-Key Authentication
	ssh clients, Using the SSH Clients
	SSH server setup, Using the SSH Clients
	troubleshooting, Troubleshooting

	OpenSSL, 1.6.6 Secure Socket Layer (SSL) Protocol, 4.2.1 Prerequisites, 4.2.4.2 Random number generation
		directory path, flagging, 4.2.4.2 Random number generation

	Options keyword, 8.2.2.1 Tectia PGP key authentication, 9.2.10.3 Per-account configuration

 P
	PAM (Pluggable Authentication Modules), 4.2.4.3 Networking, 4.2.4.3 Networking
		OpenSSH authentication, 4.2.4.3 Networking

	passive mode (FTP), 11.2.4.2 Using passive mode, 11.2.4.3 The “PASV port theft” problem
		PASV port theft problem, 11.2.4.3 The “PASV port theft” problem

	passphrases, 2.4.4 If You Change Your Key, The SSH Agent
		changing, 2.4.4 If You Change Your Key
	limitations, The SSH Agent

	PasswdPath keyword (Tectia), 5.4.3 Public-Key Authentication
	password authentication, 5.4.2 Password Authentication, 5.4.2.2 Empty passwords, 5.4.2.3 Expired passwords, Unattended SSH: Batch or cron Jobs, 12.2.2.2 Password authentication
		batch jobs, issues with, Unattended SSH: Batch or cron Jobs
	empty passwords, 5.4.2.2 Empty passwords
	expired passwords, 5.4.2.3 Expired passwords
	troubleshooting, 12.2.2.2 Password authentication

	password cracking attacks, Threats SSH Doesn’t Prevent
	PasswordAuthentication keyword, Authentication: Verifying Identities, 7.1.2.4 Multiple matches, 10.3.2.7 Access control, 10.3.3.5 Login time, 12.2.2.2 Password authentication
	PasswordGuesses keyword (Tectia), 5.3.3.6 Failed logins
	PasswordPrompt keyword, 7.4.6.3 Password prompting in Tectia
	passwords, 4.2.4.5 Access control
		one-time passwords, 4.2.4.5 Access control

	PenguiNet, 13.3.7 Microsoft Windows
	per-account configuration, 4.1.5 Perform Compile-Time Configuration, Per-Account Server Configuration, Limits of This Technique, Limits of This Technique, 8.1.2 Authentication Issues, 8.2.2 Tectia Authorization Files, 8.2.3.7 Forced commands and secure copy (scp), 8.2.4.2 Tectia host access control, Hostbased Access Control, Summary, 10.3.3.9 Encryption, 12.2.3.3 Per-account authorization files
		advantages, Limits of This Technique
	authentication, 8.1.2 Authentication Issues, 8.2.2 Tectia Authorization Files, 8.2.3.7 Forced commands and secure copy (scp)
		access restriction by host or domain, 8.2.3.7 Forced commands and secure copy (scp)
	forced commands, 8.2.2 Tectia Authorization Files

	environment variables, setting, 8.2.4.2 Tectia host access control
	hostbased access control, Hostbased Access Control
	limitations, Limits of This Technique
	setup recommendations, 10.3.3.9 Encryption
	troubleshooting, 12.2.3.3 Per-account authorization files
	user’s rc file, Summary

	PGP (Pretty Good Privacy), PGP Authentication in Tectia
		authentication in Tectia, PGP Authentication in Tectia

	PgpKeyFingerprint keyword, PGP Authentication in Tectia, 8.2.2.1 Tectia PGP key authentication, Identity and Authorization Files, OpenSSH
	PgpKeyId keyword, PGP Authentication in Tectia, 8.2.2.1 Tectia PGP key authentication, Identity and Authorization Files, OpenSSH
	PgpKeyName keyword, PGP Authentication in Tectia, 8.2.2.1 Tectia PGP key authentication, Identity and Authorization Files, OpenSSH
	PgpPublicKeyFile keyword, PGP Authentication in Tectia, 8.2.2.1 Tectia PGP key authentication, Identity and Authorization Files, OpenSSH
	PgpSecretKeyFile keyword, Tectia External Keys
	PidFile keyword, 5.3.1.2 Random seed file
	Pine email client, 4.5.2 GNU Emacs, Pine, IMAP, and SSH, 11.3.2 Mail Relaying and News Access
		mail relaying, 11.3.2 Mail Relaying and News Access

	PKI (Public Key Infrastructure), 3.4.2.4 Key exchange and server authentication, 11.5.1.1 What’s a PKI?
	plaintext, A Cryptography Primer
	PocketPuTTY, 13.3.8 Microsoft Windows CE (PocketPC)
	PocketTTY, 13.3.8 Microsoft Windows CE (PocketPC)
	port forwarding, 1.4.6 Port Forwarding, Forwarding, Port Forwarding and X Forwarding, What Is Forwarding?, 9.2.1 Local Forwarding, 9.2.1.1 Local forwarding and GatewayPorts, 9.2.1.2 Remote forwarding, 9.2.4 Forwarding Off-Host, 9.2.6.1 One-shot forwarding, 9.2.8 Choosing the Target Forwarding Address, 9.2.9 Termination, 9.2.9.1 The TIME_WAIT problem, 9.2.9.1 The TIME_WAIT problem, 9.2.10.3 Per-account configuration, Dynamic Port Forwarding, 12.2.5.6 Port forwarding
		dynamic port forwarding, Dynamic Port Forwarding
	forwarding off-host, 9.2.4 Forwarding Off-Host
	ftp protocol forwarding, 9.2.10.3 Per-account configuration
	local forwarding, 9.2.1 Local Forwarding, 9.2.1.1 Local forwarding and GatewayPorts
		gateway ports, 9.2.1.1 Local forwarding and GatewayPorts

	remote forwarding, 9.2.1.2 Remote forwarding
	remote logins, without, 9.2.6.1 One-shot forwarding
	server configuration, Forwarding, 9.2.9.1 The TIME_WAIT problem
	target forwarding address, choosing, 9.2.8 Choosing the Target Forwarding Address
	termination, 9.2.9 Termination, 9.2.9.1 The TIME_WAIT problem
		TIME_WAIT problem, 9.2.9.1 The TIME_WAIT problem

	troubleshooting, 12.2.5.6 Port forwarding

	Port keyword, 5.3.3.1 Port number and network interface
	port number, 5.3.3.1 Port number and network interface
		server settings, 5.3.3.1 Port number and network interface

	Pragma Fortress, 13.3.7 Microsoft Windows
	PreferredAuthentications keyword, 7.4.13.2 The server is the boss
	PrintMotd keyword, User Logins and Accounts
	privacy, 3.1.1 Privacy (Encryption)
	private keys, What Is an Identity?
	privilege separation, issues with, 3.6.5 Privilege Separation in OpenSSH
	privileged ports, Related Technologies
	protocols, The SSH Protocol
	ProxyCommand keyword, 11.4.5.2 Security
	pSSH, 13.3.10 Palm OS
	pty-req channel request, 3.4.4.2 Requests
	public key files, 6.1.1 OpenSSH Identities
	Public Key Infrastructure (PKI), 3.4.2.4 Key exchange and server authentication
	public-key authentication, 2.4.1 A Brief Introduction to Keys, 2.4.2 Generating Key Pairs with ssh-keygen, 2.4.4 If You Change Your Key, 2.4.4 If You Change Your Key, 3.7.3 scp2/sftp Details, 11.1.2.2 Using a plaintext key, 11.1.2.3 Using an agent
		algorithms, 3.7.3 scp2/sftp Details
	authenticator, 2.4.1 A Brief Introduction to Keys
	batch jobs, 11.1.2.2 Using a plaintext key, 11.1.2.3 Using an agent
		agents, 11.1.2.3 Using an agent
	plaintext keys, 11.1.2.2 Using a plaintext key

	key pair generation, 2.4.2 Generating Key Pairs with ssh-keygen
	keys, changing, 2.4.4 If You Change Your Key, 2.4.4 If You Change Your Key
		OpenSSH, 2.4.4 If You Change Your Key

	public-key authentication
 (continued), 2.4.1 A Brief Introduction to Keys, 2.4.3.2 Instructions for Tectia, 2.4.3.2 Instructions for Tectia, What Is an Identity?, 12.2.2.4 Public-key authentication
		password authentication, compared to, 2.4.3.2 Instructions for Tectia
	public keys, 2.4.1 A Brief Introduction to Keys, 2.4.3.2 Instructions for Tectia, What Is an Identity?
		Tectia systems, installation, 2.4.3.2 Instructions for Tectia

	troubleshooting, 12.2.2.4 Public-key authentication

	PublicHostKeyFile keyword, 5.3.1.1 Host key files
	PuTTY, 13.3.7 Microsoft Windows, 13.3.12 Unix Variants (Linux, OpenBSD, etc.), PuTTY for Windows, PuTTY for Windows, Obtaining and Installing, 18.2.1 Plink, a Console Client, 18.2.1 Plink, a Console Client, 18.2.2 Running Remote Commands, 18.3.1 File Transfer with PSCP, 18.3.2 File Transfer with PSFTP, Key Management, 18.4.1 Choosing a Key, Advanced Client Use, 18.5.2 Host Keys, 18.5.2 Host Keys, 18.5.4.2 Keepalive messages, 18.5.4.2 Keepalive messages, 18.5.4.2 Keepalive messages, 18.5.5 Pseudo-Terminal Allocation, 18.5.6 Proxies and SOCKS, 18.5.7 Encryption Algorithms, 18.5.8 Authentication, 18.5.8 Authentication, 18.5.9 Compression, 18.5.11 Batch Jobs, 18.5.11 Batch Jobs
		batch jobs, 18.5.11 Batch Jobs
	configuration and settings, 18.5.5 Pseudo-Terminal Allocation, 18.5.6 Proxies and SOCKS, 18.5.7 Encryption Algorithms, 18.5.8 Authentication, 18.5.8 Authentication, 18.5.9 Compression
		authentication, 18.5.8 Authentication
	compression, 18.5.9 Compression
	encryption algorithms, 18.5.7 Encryption Algorithms
	logging and debugging, 18.5.8 Authentication
	Proxies and SOCKS, 18.5.6 Proxies and SOCKS
	pseudo-terminal allocation, 18.5.5 Pseudo-Terminal Allocation

	configuration and use, Obtaining and Installing, Advanced Client Use, 18.5.2 Host Keys, 18.5.2 Host Keys
		host keys, 18.5.2 Host Keys
	saved sessions, Advanced Client Use
	SSH protocol selection, 18.5.2 Host Keys

	file transfers, 18.2.2 Running Remote Commands, 18.3.1 File Transfer with PSCP, 18.3.2 File Transfer with PSFTP
		PSCP, 18.3.1 File Transfer with PSCP
	PSFTP, 18.3.2 File Transfer with PSFTP

	forwarding, 18.5.11 Batch Jobs
	installation, PuTTY for Windows
	key management, Key Management, 18.4.1 Choosing a Key
		agents, 18.4.1 Choosing a Key

	Plink console client, 18.2.1 Plink, a Console Client
	remote commands, 18.2.1 Plink, a Console Client
	TCP/IP settings, 18.5.4.2 Keepalive messages, 18.5.4.2 Keepalive messages, 18.5.4.2 Keepalive messages
		keepalive messages, 18.5.4.2 Keepalive messages
	Nagle algorithm, 18.5.4.2 Keepalive messages
	remote port selection, 18.5.4.2 Keepalive messages

 R
	r-commands, 1.6.1 rsh Suite (r-Commands), Replacing r-Commands with SSH, Replacing r-Commands with SSH, 4.5.4 rsync, rdist, 10.3.1 Disable Other Means of Access
		disabling, 10.3.1 Disable Other Means of Access
	SSH, replacing with, Replacing r-Commands with SSH, Replacing r-Commands with SSH, 4.5.4 rsync, rdist
		in CVS, Replacing r-Commands with SSH
	in rsync and rdist, 4.5.4 rsync, rdist

	random number generation, 3.6.3 SSH-1 Backward Compatibility, 4.2.4.1 File locations
		OpenSSH, 4.2.4.1 File locations

	random seed, Inside SSH-2
	RandomSeedFile keyword, 5.3.1.2 Random seed file
	RC4 (ARCFOUR), 3.8.2.5 ARCFOUR (RC4)
	rcp, SSH and File Transfers (scp and sftp)
	realms, 11.5.2.1 How Kerberos works
	regex syntax, SSH patterns (Tectia), Example, Escaped Tokens for Regex Syntax SSH, Character Sets for Regex Syntax SSH
		character sets, Character Sets for Regex Syntax SSH
	escaped tokens, Escaped Tokens for Regex Syntax SSH

	regular expressions manpage (Tectia), Regex Syntax: Egrep Patterns, Regex Syntax: Egrep Patterns, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns
		egrep patterns, Regex Syntax: Egrep Patterns
	ZSH_FILEGLOB, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns

	RekeyIntervalSeconds keyword, 5.3.3.5 Idle connections
	remote account name, 7.4.1 Remote Account Name
	remote program invocation and security, 8.2.3.1 Security issues
	RemoteForward keyword, 9.2.1.2 Remote forwarding
	RemotelyAnywhere, 13.3.7 Microsoft Windows
	requests, 3.4.4.2 Requests
	RequiredAuthentications keyword (Tectia), 5.4.4 Hostbased Authentication, 5.4.5.1 OpenSSH keyboard-interactive authentication, 5.4.7.2 Kerberos and Tectia
		gssapi, 5.4.7.2 Kerberos and Tectia
	hostbased, 5.4.4 Hostbased Authentication
	keyboard interactive, 5.4.5.1 OpenSSH keyboard-interactive authentication

	RequireReverseMapping keyword, 5.3.3.8 Reverse IP mappings
	restricted shell, 11.1.5.3 Restricted-use keys
	reverse IP mappings in server configuration, 5.3.3.8 Reverse IP mappings
	RhostsRSAAuthentication keyword, The User rc File
	RIPEMD-160, 3.8.3.2 MD5
	RPM packages, Overview
	rsh (restricted shell), 11.1.5.2 Separate, locked-down automation accounts
	rsh suite, Related Technologies

 S
	S/Key in OpenSSH, 4.2.4.5 Access control
	ScanSSH program, 5.3.3.10 Discovering other servers
	scp (Secure Copy Program), 1.4.2 Secure File Transfer, 2.2.1 File Transfer with scp, 2.2.1 File Transfer with scp, SSH and File Transfers (scp and sftp), 3.7.1 What’s in a Name?, 7.4.17 Logging and Debugging, 7.5.2 Handling of Wildcards, 7.5.2 Handling of Wildcards, 7.5.4 Preserving Permissions, 7.5.4 Preserving Permissions, 7.5.6.1 Directory confirmation, 7.5.7 Batch Mode, 7.5.8 User Identity, 7.5.13 Data Compression, 7.5.15 Optimizations, 7.5.17 Locating the ssh Executable, 7.5.18 Getting Help, 8.2.3.7 Forced commands and secure copy (scp), 11.4.2 Using SCP Through a Gateway, 12.2.5.4 scp, Using the SSH Clients, OpenSSH for Macintosh
		bandwidth settings, 7.5.13 Data Compression
	batch mode, 7.5.7 Batch Mode
	Cygwin under Windows, Using the SSH Clients
	directories, recursive copying, 7.5.2 Handling of Wildcards
	encryption algorithms, setting, 7.5.8 User Identity
	forced commands and, 8.2.3.7 Forced commands and secure copy (scp)
	gateway hosts, using through, 11.4.2 Using SCP Through a Gateway
	help, 7.5.18 Getting Help
	internal options, 7.5.17 Locating the ssh Executable
	Macintosh, OpenSSH for Macintosh
	optimization, 7.5.15 Optimizations
	original file, automatic removal (Tectia), 7.5.4 Preserving Permissions
	permissions, 7.5.4 Preserving Permissions
	safety features, 7.5.6.1 Directory confirmation
	syntax, 2.2.1 File Transfer with scp, 7.4.17 Logging and Debugging
	troubleshooting, 12.2.5.4 scp
	wildcards, 7.5.2 Handling of Wildcards

	scp2, 3.7.1 What’s in a Name?, 3.7.3 scp2/sftp Details
	SecPanel, 13.3.12 Unix Variants (Linux, OpenBSD, etc.)
	secret-key algorithms, 3.8.1.3 Diffie-Hellman key agreement
	SECSH (Secure Shell) working group, Related Technologies
	Secure iXplorer, 13.3.7 Microsoft Windows
	Secure KoalaTerm, 13.3.7 Microsoft Windows
	secure remote logins, Overview of SSH Features
	SecureCRT, 13.3.7 Microsoft Windows, SecureCRT and SecureFX for Windows, Basic Client Use, Basic Client Use, 17.3.1.1 Automatic installation of keys, 17.3.1.1 Automatic installation of keys, 17.3.1.2 Manual installation of keys, 17.3.2 Using Multiple Identities, 17.3.3 The SSH Agent, 17.4.1 Mandatory Fields, Forwarding, Forwarding, 17.5.2 X Forwarding, Command-Line Client Programs, Command-Line Client Programs, Command-Line Client Programs, 17.7.2 Zmodem File Transfer
		client configuration and use, 17.4.1 Mandatory Fields
	command-line programs, Command-Line Client Programs
	file transfers, Command-Line Client Programs, Command-Line Client Programs, 17.7.2 Zmodem File Transfer
		vcp and vsftp commands, Command-Line Client Programs
	Zmodem over SSH, 17.7.2 Zmodem File Transfer

	forwarding, Forwarding, Forwarding, 17.5.2 X Forwarding
		port forwarding, Forwarding
	X forwarding, 17.5.2 X Forwarding

	key management, Basic Client Use, 17.3.1.1 Automatic installation of keys, 17.3.1.1 Automatic installation of keys, 17.3.1.2 Manual installation of keys, 17.3.2 Using Multiple Identities, 17.3.3 The SSH Agent
		agents, 17.3.3 The SSH Agent
	key generation, 17.3.1.1 Automatic installation of keys
	key installation, automatic, 17.3.1.1 Automatic installation of keys
	key installation, manual, 17.3.1.2 Manual installation of keys
	multiple identities, 17.3.2 Using Multiple Identities

	session configuration, Basic Client Use

	SecureFX, 17.7.3 SecureFX
	SecurID, 5.4.5.2 Tectia’s keyboard-interactive authentication
	security, What Is SSH?, Threats Caused by SSH, Subsystems, Multiple Identities, 8.2.3.1 Security issues, 8.2.3.1 Security issues, Compile-Time Configuration
		agent forwarding and untrusted machines, Subsystems
	carelessness and, Threats Caused by SSH
	compile-time configuration setup
 recommendations, Compile-Time Configuration
	forced commands and, 8.2.3.1 Security issues
	multiple identities, advantages, Multiple Identities
	network applications and, What Is SSH?
	shell escapes and, 8.2.3.1 Security issues

	SendEnv keyword, 7.4.4.3 Setting environment variables in the server
	server authentication, 3.1.3 Authentication
	ServerAliveCountMax keyword, 5.3.3.4 Keepalive messages, 7.4.5.5 Controlling TCP_NODELAY
	ServerAliveInterval keyword, 5.3.3.4 Keepalive messages, 7.4.5.5 Controlling TCP_NODELAY
	serverwide configuration
 (continued), 5.2.1 Server Configuration Files, 5.2.1 Server Configuration Files, 5.2.5 A Tricky Reconfiguration Example, Getting Ready: Initial Setup, 5.3.1.1 Host key files, 5.3.1.1 Host key files, 5.3.1.2 Random seed file, 5.3.1.2 Random seed file, 5.3.1.4 Server configuration file, 5.3.1.6 Per-account authorization files, 5.3.1.7 utmp file structure, 5.3.2 File Permissions, 5.3.3.1 Port number and network interface, 5.3.3.3 Restarting the SSH server for each connection, 5.3.3.5 Idle connections, 5.3.4 Key Regeneration, 5.3.5 Encryption Algorithms, 5.3.7.1 Protocol version string, Authentication: Verifying Identities, Authentication: Verifying Identities, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.5 Keyboard-Interactive Authentication, 5.4.6 PGP Authentication, 5.4.10 Selecting a Login Program, User Logins and Accounts, User Logins and Accounts, 5.6.3 Initialization Scripts, 5.7.1 Port Forwarding, 5.7.1 Port Forwarding, 5.7.3 Agent Forwarding, Subsystems, Subsystems, Logging and Debugging, Logging and Debugging, 9.2.9.1 The TIME_WAIT problem, Compile-Time Configuration, Tectia Extensions to Server Configuration Files, 12.2.3.3 Per-account authorization files
		authentication, Authentication: Verifying Identities, Authentication: Verifying Identities, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.5 Keyboard-Interactive Authentication, 5.4.6 PGP Authentication, 5.4.10 Selecting a Login Program
		authentication syntax, Authentication: Verifying Identities
	hostbased authentication, 5.4.4 Hostbased Authentication
	keyboard-interactive authentication, 5.4.5 Keyboard-Interactive Authentication
	login programs, selecting, 5.4.10 Selecting a Login Program
	password authentication, 5.4.2 Password Authentication
	PGP, 5.4.6 PGP Authentication
	public-key authentication, 5.4.3 Public-Key Authentication

	configuration files, 5.2.1 Server Configuration Files, 5.3.3.5 Idle connections
		time values in, 5.3.3.5 Idle connections

	file locations, 5.3.1.1 Host key files, 5.3.1.1 Host key files, 5.3.1.2 Random seed file, 5.3.1.2 Random seed file, 5.3.1.4 Server configuration file, 5.3.1.6 Per-account authorization files, 5.3.1.7 utmp file structure
		host-key files, 5.3.1.1 Host key files
	per-account authorization files, 5.3.1.6 Per-account authorization files
	process ID file, 5.3.1.2 Random seed file
	random seed file, 5.3.1.2 Random seed file
	server configuration files, 5.3.1.4 Server configuration file
	utmp file structure, 5.3.1.7 utmp file structure

	file permissions, 5.3.2 File Permissions
	forwarding, 5.7.1 Port Forwarding, 5.7.1 Port Forwarding, 5.7.3 Agent Forwarding
		agent forwarding, 5.7.3 Agent Forwarding
	port forwarding, 5.7.1 Port Forwarding

	initial setup, Getting Ready: Initial Setup, 5.3.3.1 Port number and network interface, 5.3.3.3 Restarting the SSH server for each connection, 5.3.4 Key Regeneration, 5.3.5 Encryption Algorithms, 5.3.7.1 Protocol version string
		encryption algorithms, 5.3.5 Encryption Algorithms
	key regeneration, 5.3.4 Key Regeneration
	numeric values, configuration files, 5.3.3.1 Port number and network interface
	protocol version string, 5.3.7.1 Protocol version string
	restart for each connection, 5.3.3.3 Restarting the SSH server for each connection

	logging and debugging, Logging and Debugging, Logging and Debugging
		syslog, Logging and Debugging

	metaconfiguration information, Tectia Extensions to Server Configuration Files
	port forwarding, 9.2.9.1 The TIME_WAIT problem
	reconfiguration example, 5.2.5 A Tricky Reconfiguration Example
	setup recommendations, Compile-Time Configuration
	subconfiguration files, 5.2.1 Server Configuration Files
	subsystems, Subsystems, Subsystems
		definition syntax, Subsystems

	troubleshooting, 12.2.3.3 Per-account authorization files
	user logins and accounts, User Logins and Accounts, User Logins and Accounts, 5.6.3 Initialization Scripts
		initialization scripts, 5.6.3 Initialization Scripts
	user welcome messages, User Logins and Accounts

	serverwide configuration, xv, Running the Server, Access Control: Letting People In
		access control, Access Control: Letting People In

	session keys, 11.5.2.1 How Kerberos works
	sessions, The Architecture of an SSH System
	setup recommendations, The Basics, Compile-Time Configuration, Compile-Time Configuration, 10.3.3.9 Encryption, Client Configuration, Client Configuration, Client Configuration
		client configuration, Client Configuration
	compile-time configuration, Compile-Time Configuration
	key management, Client Configuration
	per-account configuration, 10.3.3.9 Encryption
	remote home directories, Client Configuration
	serverwide configuration, Compile-Time Configuration

	sftp, Miscellaneous Clients, 2.7.1 sftp, 2.7.2 slogin, SSH and File Transfers (scp and sftp), 3.7.3 scp2/sftp Details, 7.5.20 Further Configuration, Secure, Interactive Copy with sftp, 7.6.2 Command-Line Options, Using the SSH Clients, OpenSSH for Macintosh
		ASCII vs. binary transfer, 2.7.2 slogin
	command-line options, 2.7.1 sftp, 7.6.2 Command-Line Options
	Cygwin under Windows, Using the SSH Clients
	interactive commands, 7.5.20 Further Configuration
	Macintosh, OpenSSH for Macintosh

	SHA-1 (Secure Hash Algorithm), 3.8.3.3 SHA-1
	shadow files, 4.2.4.4 Authentication
	Shannon, Claude, 3.2.1 How Secure Is Secure?
	shell channel request, 3.4.4.2 Requests
	SHELL environment variable, The SSH Agent
	shell escapes, 8.2.3.1 Security issues
	ShellGuard, 13.3.7 Microsoft Windows
	SIGHUP signal, 5.2.4 Changing the Configuration
	signers, Inside SSH-2
	sniffing, 3.1.1 Privacy (Encryption)
	SocksServer keyword, 4.3.5.8 SOCKS proxies, 7.4.7.2 SOCKS in Tectia, 16.7.3 Filter Rules for Dynamic Port Forwarding
	SRP (Secure Remote Password), 1.6.5 Secure Remote Password (SRP)
	ssh (client), Overview of SSH Features, A Running Example, Remote Terminal Sessions with ssh, 2.3.2 The Escape Character, Advanced Client Use, 7.1.1 Command-Line Options, 7.1.2 Client Configuration Files, 7.1.3 Environment Variables, Precedence, Introduction to Verbose Mode, 7.4.1 Remote Account Name, 7.4.3.1 Strict host-key checking, 7.4.3.5 Moving the known hosts files, 7.4.5.1 Selecting a remote port, 7.4.7.2 SOCKS in Tectia, 7.4.9 Encryption Algorithms, 7.4.11 Host Key Types, 7.4.13 Authentication, 7.4.13.4 Using ssh-keysign for hostbased
 authentication, 7.4.16 Subsystems, Debug Messages: Your First Line of Defense, 12.2.5.3 ssh, Using the SSH Clients, OpenSSH for Macintosh
		configuration, Advanced Client Use, 7.1.1 Command-Line Options, 7.1.2 Client Configuration Files, 7.1.3 Environment Variables, Precedence, 7.4.1 Remote Account Name, 7.4.3.1 Strict host-key checking, 7.4.3.5 Moving the known hosts files, 7.4.5.1 Selecting a remote port, 7.4.7.2 SOCKS in Tectia, 7.4.9 Encryption Algorithms, 7.4.11 Host Key Types, 7.4.13 Authentication, 7.4.13.4 Using ssh-keysign for hostbased
 authentication, 7.4.16 Subsystems
		authentication, 7.4.13 Authentication
	command-line options, 7.1.1 Command-Line Options
	configuration files, 7.1.2 Client Configuration Files
	data compression, 7.4.13.4 Using ssh-keysign for hostbased
 authentication
	encryption algorithms, 7.4.9 Encryption Algorithms
	environment variables, 7.1.3 Environment Variables
	forwarding, 7.4.7.2 SOCKS in Tectia
	host key types, 7.4.11 Host Key Types
	host keys and known-hosts databases, 7.4.3.1 Strict host-key checking
	precedence, Precedence
	protocol settings, 7.4.3.5 Moving the known hosts files
	remote account name, 7.4.1 Remote Account Name
	subsystems, 7.4.16 Subsystems
	TCP/IP settings, 7.4.5.1 Selecting a remote port

	Cygwin under Windows, Using the SSH Clients
	debugging messages, Debug Messages: Your First Line of Defense
	escape character, 2.3.2 The Escape Character
	Macintosh, OpenSSH for Macintosh
	remote terminal sessions, A Running Example, Remote Terminal Sessions with ssh
		login, Remote Terminal Sessions with ssh

	troubleshooting, 12.2.5.3 ssh
	verbose mode, Introduction to Verbose Mode

	SSH (Secure Shell)
 (continued), What Is SSH?, History of SSH, History of SSH, Related Technologies, 1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
 (GnuPG), 1.6.3 Kerberos, Inside SSH, Inside SSH, The Architecture of an SSH System, The Architecture of an SSH System, The Architecture of an SSH System, Inside SSH-2, Inside SSH-2, 3.4.1 Protocol Summary, 3.4.1 Protocol Summary, 3.4.1 Protocol Summary, 3.4.1 Protocol Summary, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.4 Key exchange and server authentication, 3.4.2.5 Server authentication and antispoofing: some gory
 details, 3.4.2.5 Server authentication and antispoofing: some gory
 details, 3.4.3 SSH Authentication Protocol (SSH-AUTH), 3.4.3.1 The authentication request, 3.4.3.1 The authentication request, 3.4.3.3 Getting started: the “none” request, 3.4.3.3 Getting started: the “none” request, 3.4.3.5 Password authentication, 3.4.3.6 Hostbased authentication, 3.4.4 SSH Connection Protocol (SSH-CONN), 3.4.4.1 Channels, 3.4.4.2 Requests, 3.4.4.2 Requests, 3.4.4.2 Requests, 3.4.4.3 The finish line, Inside SSH-1, Inside SSH-1, Threats SSH Can Counter, Threats SSH Doesn’t Prevent, 4.3.6 SSH-1 Compatibility Support for Tectia, Software Inventory, Replacing r-Commands with SSH, Replacing r-Commands with SSH
		pronunciation, What Is SSH?
	protections provided by, Threats SSH Can Counter
	r-commands, replacing, Replacing r-Commands with SSH, Replacing r-Commands with SSH
		in CVS, Replacing r-Commands with SSH

	related technologies, Related Technologies, 1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
 (GnuPG), 1.6.3 Kerberos
		Kerberos, 1.6.3 Kerberos
	PGP and GnuPG, 1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
 (GnuPG)

	security vulnerabilities, Threats SSH Doesn’t Prevent
	server, The Architecture of an SSH System
	sessions, The Architecture of an SSH System
	software inventory, Software Inventory
	SSH-1, Inside SSH, Inside SSH-1, 4.3.6 SSH-1 Compatibility Support for Tectia
		Tectia compatibility support, 4.3.6 SSH-1 Compatibility Support for Tectia

	SSH-1 protocol, History of SSH
	SSH-2, Inside SSH, Inside SSH-2, Inside SSH-1
		SSH-1 compared to, Inside SSH-1

	SSH-2 protocol, History of SSH
	SSH-AUTH, Inside SSH-2, 3.4.3 SSH Authentication Protocol (SSH-AUTH), 3.4.3.1 The authentication request, 3.4.3.1 The authentication request, 3.4.3.3 Getting started: the “none” request, 3.4.3.3 Getting started: the “none” request, 3.4.3.5 Password authentication, 3.4.3.6 Hostbased authentication
		authentication request, 3.4.3.1 The authentication request
	authentication response, 3.4.3.1 The authentication request
	host-based authentication, 3.4.3.6 Hostbased authentication
	password authentication, 3.4.3.5 Password authentication
	public-key authentication, 3.4.3.3 Getting started: the “none” request
	“none” request, 3.4.3.3 Getting started: the “none” request

	SSH-CONN, 3.4.1 Protocol Summary, 3.4.4 SSH Connection Protocol (SSH-CONN), 3.4.4.1 Channels, 3.4.4.2 Requests, 3.4.4.2 Requests, 3.4.4.2 Requests, 3.4.4.3 The finish line
		channel requests, 3.4.4.2 Requests
	channels, 3.4.4.1 Channels
	completing the connection process, 3.4.4.3 The finish line
	global requests, 3.4.4.2 Requests
	requests, 3.4.4.2 Requests

	SSH-SFTP, 3.4.1 Protocol Summary
	SSH-TRANS, 3.4.1 Protocol Summary, 3.4.1 Protocol Summary, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.3 Parameter negotiation, 3.4.2.4 Key exchange and server authentication, 3.4.2.5 Server authentication and antispoofing: some gory
 details, 3.4.2.5 Server authentication and antispoofing: some gory
 details
		connection, 3.4.1 Protocol Summary
	initialization of encryption, 3.4.2.5 Server authentication and antispoofing: some gory
 details
	key exchange algorithm, 3.4.2.3 Parameter negotiation
	key exchange and server authentication, 3.4.2.4 Key exchange and server authentication
	message authentication code and algorithms, 3.4.2.3 Parameter negotiation
	parameter negotiation, 3.4.2.3 Parameter negotiation
	protocol version selection, 3.4.2.3 Parameter negotiation
	server authentication and anti-spoofing, 3.4.2.5 Server authentication and antispoofing: some gory
 details

	system architecture, The Architecture of an SSH System

	SSH (Secure Shell), xii, What Is SSH?, What Is SSH?, What Is SSH?, Overview of SSH Features, Overview of SSH Features, 1.4.6 Port Forwarding, History of SSH, A Running Example, Overview of Features, Overview of Features, 3.1.1 Privacy (Encryption), 3.1.2 Integrity, 3.1.3 Authentication, 3.1.4 Authorization, 3.1.4 Authorization, 3.1.4 Authorization, 3.1.5 Forwarding (Tunneling), The Architecture of an SSH System, The Architecture of an SSH System, Inside SSH-2, 3.4.1 Protocol Summary, 3.4.2.4 Key exchange and server authentication, Implementation Issues, 3.6.1 Host Keys, 3.6.2.1 Hostbased access files, 3.6.2.1 Hostbased access files, 3.6.2.2 Control file details, 3.6.2.3 Netgroups as wildcards, 3.6.3 SSH-1 Backward Compatibility, SSH and File Transfers (scp and sftp), 3.8.1.3 Diffie-Hellman key agreement, 3.8.3.1 CRC-32, Threats SSH Can Counter
		algorithms, 3.8.1.3 Diffie-Hellman key agreement, 3.8.3.1 CRC-32
		hash functions, 3.8.3.1 CRC-32
	secret-key algorithms, 3.8.1.3 Diffie-Hellman key agreement

	authentication, 3.1.3 Authentication, 3.1.4 Authorization
		supported methodologies, 3.1.4 Authorization

	authorization, 3.1.4 Authorization
	authorization in hostbased authentication, 3.6.2.1 Hostbased access files, 3.6.2.1 Hostbased access files, 3.6.2.2 Control file details, 3.6.2.3 Netgroups as wildcards
		control file details, 3.6.2.1 Hostbased access files
	hostbased access files, 3.6.2.1 Hostbased access files
	netgroups, 3.6.2.2 Control file details
	netgroups as wildcards, 3.6.2.3 Netgroups as wildcards

	backward compatibility, 3.6.3 SSH-1 Backward Compatibility
	client/server architecture, What Is SSH?
	clients, A Running Example, The Architecture of an SSH System
	compression algorithms, Threats SSH Can Counter
	features, Overview of SSH Features, Overview of SSH Features, 1.4.6 Port Forwarding, Overview of Features
		port forwarding, 1.4.6 Port Forwarding
	remote logins, Overview of SSH Features

	file transfers, SSH and File Transfers (scp and sftp)
	flexibility in prosecution of services, 3.4.1 Protocol Summary
	forwarding, 3.1.4 Authorization, 3.1.5 Forwarding (Tunneling)
		supported types, 3.1.5 Forwarding (Tunneling)

	function and purpose, What Is SSH?
	history, History of SSH
	implementation-dependent features, Implementation Issues, 3.6.1 Host Keys
		host keys, 3.6.1 Host Keys

	included component protocols, Inside SSH-2
	integrity, 3.1.2 Integrity
	keys, The Architecture of an SSH System
	PKI, supported types and supporting
 implementations, 3.4.2.4 Key exchange and server authentication
	privacy, 3.1.1 Privacy (Encryption)

	SSH Communications Security, 1.3.1 Protocols, Products, Clients, and Confusion, History of SSH
	ssh-add command, The SSH Agent, The SSH Agent, 6.3.2.3 Format of environment variable commands, 6.3.3 Loading Keys with ssh-add, 12.2.3.2 ssh-agent and ssh-add
		command-line options, 6.3.3 Loading Keys with ssh-add
	reading input, The SSH Agent
	troubleshooting, 12.2.3.2 ssh-agent and ssh-add

	ssh-agent command, The SSH Agent, 12.2.3.2 ssh-agent and ssh-add
		troubleshooting, 12.2.3.2 ssh-agent and ssh-add

	ssh-askpass program, The SSH Agent
	ssh-copy-id command (for key installation), 2.4.3.2 Instructions for Tectia
	ssh-keygen command, 6.2.1 Generating Keys for OpenSSH
	ssh-probe program (Tectia), 5.3.3.10 Discovering other servers
	ssh.pid file, path specification, 4.2.4.2 Random number generation
	SSH1 product, History of SSH
	Ssh1AgentCompatibility keyword, File Transfers
	Ssh1Compatibility keyword, Compatibility Between SSH-1 and SSH-2 Servers, Tectia Features
	Ssh1InternalEmulation keyword, Tectia Features
	sshd (server), 5.1.2 Running sshd as an Ordinary User, 5.2.3 Command-Line Options, 5.2.4 Changing the Configuration, 5.3.1.4 Server configuration file, Authentication: Verifying Identities, User Logins and Accounts, 5.6.3 Initialization Scripts, Compile-Time Configuration
		authentication syntax, Authentication: Verifying Identities
	command-line options, 5.2.3 Command-Line Options
	initialization scripts, 5.6.3 Initialization Scripts
	running as ordinary user, 5.1.2 Running sshd as an Ordinary User
		disadvantages, 5.1.2 Running sshd as an Ordinary User

	setup recommendations, Compile-Time Configuration
	SIGHUP signal, 5.2.4 Changing the Configuration
	user SSH directory, 5.3.1.4 Server configuration file
	user welcome messages, User Logins and Accounts

	sshd-check-conf program, 5.2.2.2 Checking Tectia configuration files, 5.9.2 Tectia Logging and Debugging
	Sshd1ConfigFile keyword, Tectia Features
	Sshd1Path keyword, Compatibility Between SSH-1 and SSH-2 Servers, Tectia Features
	sshregex (Tectia) manpage, Tectia Manpage for sshregex, Regex Syntax: Egrep Patterns, Regex Syntax: Egrep Patterns, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns
		egrep patterns, Regex Syntax: Egrep Patterns
	syntax, Tectia Manpage for sshregex
	ZSH_FILEGLOB, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns

	SSHTerm Professional, 13.3.4 Java
	StrictHostKeyChecking keyword, 7.4.3.1 Strict host-key checking, 7.4.3.2 Verifying host keys by DNS, 7.4.3.3 Host key aliasing
	StrictModes keyword, 2.4.3.2 Instructions for Tectia, 5.3.3 TCP/IP Settings, 5.3.3.1 Port number and network interface
	subconfiguration files, 11.6.2 Subconfiguration Files, 11.6.2 Subconfiguration Files
		sections, 11.6.2 Subconfiguration Files

	subshell agent invocation, 6.3.2.2 Subshell method
	subsystem channel request, 3.4.4.2 Requests
	Subsystem keyword, Subsystems
	symbolic links, created by SSH installations, Software Inventory
	SyslogFacility keyword, Logging and Debugging

 T
	TCP-wrappers, 9.4.6.5 X forwarding and the GatewayPorts feature
	TCP/IP settings, server, 5.3.3.1 Port number and network interface, 5.3.3.2 Invocation by inetd or xinetd, 5.3.3.3 Restarting the SSH server for each connection, 5.3.3.4 Keepalive messages, 5.3.3.5 Idle connections, 5.3.3.6 Failed logins, 5.3.3.7 Limiting simultaneous connections, 5.3.3.8 Reverse IP mappings, 5.3.3.9 Controlling the Nagle Algorithm, 5.3.3.9 Controlling the Nagle Algorithm
		ASLR (Address Space Layout Randomization), 5.3.3.3 Restarting the SSH server for each connection
	failed logins, 5.3.3.6 Failed logins
	idle connections, 5.3.3.5 Idle connections
	invocation by inetd or xinetd, 5.3.3.2 Invocation by inetd or xinetd
	keepalive messages, 5.3.3.4 Keepalive messages
	Nagle Algorithm, 5.3.3.9 Controlling the Nagle Algorithm
	port number and network interface, 5.3.3.1 Port number and network interface
	reverse IP mappings, 5.3.3.8 Reverse IP mappings
	server discovery, 5.3.3.9 Controlling the Nagle Algorithm
	simultaneous connections, limiting, 5.3.3.7 Limiting simultaneous connections

	tcpip-forward request, 3.4.4.2 Requests
	TCPKeepAlive keyword, 5.3.3.4 Keepalive messages
	TCP_NODELAY bit, 5.3.3.9 Controlling the Nagle Algorithm
	Tectia, 4.2.4.5 Access control, 4.3.1 Prerequisites, 4.3.4 Building and Installing, 4.3.4 Building and Installing, 4.3.5 Configuration Options, 4.3.5.3 Networking, 4.3.5.3 Networking, 4.3.5.4 X Window System, 4.3.5.5 TCP port forwarding, 4.3.5.6 Encryption, 4.3.5.6 Encryption, 4.3.5.8 SOCKS proxies, 4.3.5.9 Debugging, 5.2.1 Server Configuration Files, 6.1.2 Tectia Identities, Creating an Identity, Tectia External Keys, Client Configuration in Depth, 8.2.4.2 Tectia host access control, 11.5.1.1 What’s a PKI?, Tectia Extensions to Server Configuration Files, Tectia Extensions to Server Configuration Files, 11.6.2 Subconfiguration Files, Tectia Plugins, Tectia Plugins, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol, 11.7.1.3 Creating a customized password-change plugin, SSH-1 Features of OpenSSH and Tectia, Identity and Authorization Files, OpenSSH, Identity and Authorization Files, OpenSSH
		authentication, 6.1.2 Tectia Identities, Creating an Identity, Tectia External Keys, 11.5.1.1 What’s a PKI?
		authorization file, 6.1.2 Tectia Identities
	external keys, Tectia External Keys
	identification files, Creating an Identity
	X.509 certificates, 11.5.1.1 What’s a PKI?

	authorization files, Identity and Authorization Files, OpenSSH
	configuration, 4.3.4 Building and Installing, 4.3.5 Configuration Options, 4.3.5.3 Networking, 4.3.5.3 Networking, 4.3.5.4 X Window System, 4.3.5.5 TCP port forwarding, 4.3.5.6 Encryption, 4.3.5.6 Encryption, 4.3.5.8 SOCKS proxies, 4.3.5.9 Debugging
		authentication, 4.3.5.6 Encryption
	debugging, 4.3.5.9 Debugging
	encryption, 4.3.5.6 Encryption
	file locations and permissions, 4.3.5 Configuration Options
	networking, 4.3.5.3 Networking
	random number generation, 4.3.5.3 Networking
	SOCKS proxies, 4.3.5.8 SOCKS proxies
	TCP port forwarding, 4.3.5.5 TCP port forwarding
	X Window system, 4.3.5.4 X Window System

	configuration extensions, Tectia Extensions to Server Configuration Files
	configuration files, 11.6.2 Subconfiguration Files
		keywords, 11.6.2 Subconfiguration Files

	debugging, SSH-1 Features of OpenSSH and Tectia
		module names, SSH-1 Features of OpenSSH and Tectia

	help command, Client Configuration in Depth
	host access control, 8.2.4.2 Tectia host access control
	identity files, Identity and Authorization Files, OpenSSH
	installation, 4.2.4.5 Access control, 4.3.1 Prerequisites, 4.3.4 Building and Installing
		build and install, 4.3.4 Building and Installing
	file extraction, 4.3.1 Prerequisites

	metaconfiguration, 5.2.1 Server Configuration Files, Tectia Extensions to Server Configuration Files
	plugins, Tectia Plugins, Tectia Plugins, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol, 11.7.1.3 Creating a customized password-change plugin
		customized password-change plugin, 11.7.1.3 Creating a customized password-change plugin
	expired passwords, changing, Tectia Plugins
	general rules, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol
	Perl package for plugin implementation, 11.7.1.2 A Perl package implementing the Tectia plugin
 protocol

	Tectia (continued), 2.4.3.2 Instructions for Tectia, 3.7.3 scp2/sftp Details, 4.3.5.10 SSH-1 protocol compatibility, Software Inventory, 5.2.1 Server Configuration Files, 5.2.2.2 Checking Tectia configuration files, 5.3.3.7 Limiting simultaneous connections, 5.3.3.9 Controlling the Nagle Algorithm, 5.3.3.10 Discovering other servers, 5.4.1 Authentication Syntax, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.5.1 OpenSSH keyboard-interactive authentication, 5.4.7.2 Kerberos and Tectia, User Logins and Accounts, Subsystems, 8.2.3.4 Examining the client’s original command, 10.3.3 sshd2_config for Tectia, 11.6.2 Subconfiguration Files, 11.6.2 Subconfiguration Files, Tectia Manpage for sshregex, Regex Syntax: Egrep Patterns, Regex Syntax: Egrep Patterns, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns, Files, Tectia Features, Tectia Features
		public-key installation, 2.4.3.2 Instructions for Tectia
	scp2, 3.7.3 scp2/sftp Details
	serverwide configuration, 5.2.1 Server Configuration Files, 5.2.2.2 Checking Tectia configuration files, 5.3.3.7 Limiting simultaneous connections, 5.3.3.9 Controlling the Nagle Algorithm, 5.3.3.10 Discovering other servers, 5.4.1 Authentication Syntax, 5.4.2 Password Authentication, 5.4.3 Public-Key Authentication, 5.4.4 Hostbased Authentication, 5.4.5.1 OpenSSH keyboard-interactive authentication, 5.4.7.2 Kerberos and Tectia, User Logins and Accounts, 10.3.3 sshd2_config for Tectia
		authentication techniques, 5.4.1 Authentication Syntax
	configuration files, checking, 5.2.2.2 Checking Tectia configuration files
	hostbased authentication, 5.4.4 Hostbased Authentication
	Kerberos authentication, 5.4.7.2 Kerberos and Tectia
	keyboard-interactive authentication, 5.4.5.1 OpenSSH keyboard-interactive authentication
	limiting simultaneous connections, 5.3.3.7 Limiting simultaneous connections
	password authentication, 5.4.2 Password Authentication
	public-key authentication, 5.4.3 Public-Key Authentication
	recommended settings, 10.3.3 sshd2_config for Tectia
	rules for quoted strings, 5.2.1 Server Configuration Files
	server discovery, 5.3.3.9 Controlling the Nagle Algorithm
	ssh-probe, 5.3.3.10 Discovering other servers
	user welcome, User Logins and Accounts

	software inventory, Software Inventory
	SSH-1, Files, Tectia Features, Tectia Features
		client configuration, Tectia Features
	serverwide configuration, Tectia Features

	SSH-1 protocol compatibility and support, 4.3.5.10 SSH-1 protocol compatibility
	SSH2_ORIGINAL_COMMAND, 8.2.3.4 Examining the client’s original command
	sshregex manpage, Tectia Manpage for sshregex, Regex Syntax: Egrep Patterns, Regex Syntax: Egrep Patterns, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns
		egrep patterns, Regex Syntax: Egrep Patterns
	syntax, Tectia Manpage for sshregex
	ZSH_FILEGLOB, Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns

	subconfiguration files, 11.6.2 Subconfiguration Files, 11.6.2 Subconfiguration Files
		sections, 11.6.2 Subconfiguration Files

	subsystem command syntax, Subsystems

	Tectia for Windows, Obtaining and Installing, Obtaining and Installing, Obtaining and Installing, Basic Client Use, Key Management, Accession Lite, Advanced Client Use, Port Forwarding, Connector, File Transfers, Command-Line Programs, Troubleshooting, Server, 16.11.2 Server Configuration, 16.11.2 Server Configuration, 16.11.3 Commands and Interactive Sessions, 16.11.4 Authentication, 16.11.4 Authentication, 16.11.6 Forwarding, 16.11.7 SFTP Server, 16.11.8 Logging and Debugging
		Accession Lite, Accession Lite
	client application, Basic Client Use, Advanced Client Use
		configuration and profiles, Advanced Client Use

	command-line programs, Command-Line Programs
	Connector, Connector
	file transfers, File Transfers
	installation, Obtaining and Installing
	key management, Key Management
	port forwarding, Port Forwarding
	supported Windows platforms, Obtaining and Installing
	Tectia Servers A and T, Server, 16.11.2 Server Configuration, 16.11.2 Server Configuration, 16.11.3 Commands and Interactive Sessions, 16.11.4 Authentication, 16.11.4 Authentication, 16.11.6 Forwarding, 16.11.7 SFTP Server, 16.11.8 Logging and Debugging
		access control, 16.11.4 Authentication
	authentication, 16.11.4 Authentication
	commands, 16.11.3 Commands and Interactive Sessions
	configuration, 16.11.2 Server Configuration
	forwarding, 16.11.6 Forwarding
	logging and debugging, 16.11.8 Logging and Debugging
	operation, 16.11.2 Server Configuration
	SFTP server, 16.11.7 SFTP Server

	troubleshooting, Troubleshooting

	tickets, 11.5.2.1 How Kerberos works
	time values, server configuration files, 5.3.3.5 Idle connections
	TIME_WAIT state, 11.2.7.3 FTP with the default data ports
	Top Gun SSH, 13.3.10 Palm OS
	traffic analysis, 3.10.3 Traffic Analysis
	transparency, Port Forwarding and X Forwarding
	transparent proxies, 11.2.5 FTP, Firewalls, and Passive Mode
	Triple-DES, 3.8.2.4 Triple-DES
	troubleshooting, Problems and Solutions
	TrustX11Applications keyword, 9.4.5.3 Trusted X forwarding
	tunneling, 3.1.5 Forwarding (Tunneling), Port Forwarding
	TuSSH, 13.3.10 Palm OS
	Twofish, 3.8.2.7 Twofish

 U
	Unix, User Logins and Accounts, Logging and Debugging
		syslog, Logging and Debugging
	“message of the day” (motd), User Logins and Accounts

	UseDNS keyword, 5.3.3.8 Reverse IP mappings
	UsePAM keyword, 4.2.4.4 Authentication, Authentication: Verifying Identities, 5.4.5.1 OpenSSH keyboard-interactive authentication
	UsePrivilegedPort keyword, 7.4.5.4 Keepalive messages
	user authentication, 3.1.3 Authentication
	User keyword, 7.4.1 Remote Account Name, 12.2.2.2 Password authentication
	UserConfigDirectory keyword, 5.2.2.2 Checking Tectia configuration files, 5.3.1.4 Server configuration file, 5.3.1.6 Per-account authorization files, 7.1.2.2 Global and local files, Advanced Client Use
	UserKnownHostsFile keyword, 7.4.3.5 Moving the known hosts files

 V
	VanDyke Software, SecureCRT and SecureFX for Windows
	VerifyHostDNS keyword, 7.4.3.3 Host key aliasing
	version-control systems, Replacing r-Commands with SSH
	VMS SSH implementations, 13.3.13 VMS
	VShell, 13.3.7 Microsoft Windows, VShell

 W
	Windows, OpenSSH for Windows, Installation, Using the SSH Clients, Using the SSH Clients, Public-Key Authentication, Troubleshooting
		OpenSSH on Cygwin, OpenSSH for Windows, Installation, Using the SSH Clients, Using the SSH Clients, Public-Key Authentication, Troubleshooting
		installation, OpenSSH for Windows
	public-key authentication, Public-Key Authentication
	ssh clients, Using the SSH Clients
	SSH server setup, Using the SSH Clients
	troubleshooting, Troubleshooting

	WinSSHD, 13.3.7 Microsoft Windows
	WiSSH, 13.3.7 Microsoft Windows
	wu-ftpd, 11.2.4.3 The “PASV port theft” problem

 X
	X forwarding, Port Forwarding and X Forwarding, 9.3.2 Other Uses of Dynamic Forwarding
	x11-req channel request, 3.4.4.2 Requests
	X11DisplayOffset keyword, 9.4.4.1 Compile-time configuration
	xauth, 4.2.4.1 File locations
	XAuthLocation keyword, 9.4.4.1 Compile-time configuration, 9.4.6.4 Location of the xauth program, Other SSH Resources
	xinetd, 5.3.3.2 Invocation by inetd or xinetd
		server invocation using, 5.3.3.2 Invocation by inetd or xinetd

 Y
	Ylönen, Tatu, Overview of SSH Features, History of SSH

 Z
	zlib, 3.8.4 Compression Algorithms: zlib, 4.2.1 Prerequisites
	ZOC, 13.3.7 Microsoft Windows, 13.3.9 OS/2
	ZSH_FILEGLOB, sshregex (Tectia), Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns, Character Sets for Egrep and ZSH_FILEGLOB
		character sets, Character Sets for Egrep and ZSH_FILEGLOB

 About the Authors
Daniel J. Barrett has been immersed in Internet technology since 1985. Currently working as a software engineer, Dan has also been a heavy metal singer, Unix system administrator, university lecturer, web designer, and humorist. He is the author of O'Reilly's Linux Pocket Guide, and is the coauthor of Linux Security Cookbook, and the first edition of SSH, The Secure Shell: The Definitive Guide. He also writes monthly columns for Compute! and Keyboard Magazine, and articles for the O'Reilly Network.
Richard E. Silverman has a B.A. in computer science and an M.A. in pure mathematics. Richard has worked in the fields of networking, formal methods in software development, public-key infrastructure, routing security, and Unix systems administration. He co-authored the first edition of SSH, The Secure Shell: The Definitive Guide.
Robert G. Byrnes, Ph.D., has been hacking on Unix systems for twenty years, and has been involved with security issues since the original Internet worm was launched from Cornell University, while he was a graduate student and system administrator. Currently, he's a software engineer at Curl Corporation, and has worked in the fields of networking, telecommunications, distributed computing, financial technology, and condensed matter physics.

Colophon
About the Author. Daniel J. Barrett, Ph.D., has
 been immersed in Internet technology since 1985. Currently working as a
 software engineer, Dan has also been a heavy metal singer, Unixsystem
 administrator, university lecturer, web designer, and humorist. He is
 the author of O’Reilly’s Linux Pocket Guide, and is
 the coauthor of Linux Security Cookbook and the
 first edition of SSH, The Secure Shell: The Definitive
 Guide. He also writes monthly columns for Compute!
 and Keyboard Magazine, as well as articles for the O’Reilly
 Network.
Richard E. Silverman has a B.A.
 in computer science and an M.A. in pure mathematics. Richard has worked in
 the fields of networking, formal methods in software development,
 public-key infrastructure, routing security, and Unixsystems
 administration. He coauthored the first edition of SSH, The
 Secure Shell: The Definitive Guide, and he loves to read, study
 languages and mathematics, sing, dance, and exercise.
Robert G. Byrnes, Ph.D., has been
 hacking on Unix systems for 20 years, and has been involved with security
 issues since the original Internet worm was launched from Cornell
 University, while he was a graduate student and system administrator.
 Currently, he’s a software engineer at Curl Corporation. He has worked in
 the fields of networking, telecommunications, distributed computing,
 financial technology, and condensed matter physics.
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of SSH, the Secure Shell: The
 Definitive Guide is a land snail (Mollusca
 gastropoda).
A member of the mollusk family, a snail has a soft, moist body that
 is protected by a hard shell, into which it can retreat when in danger or
 when in arid or bright conditions. Snails prefer wet weather and, though
 not nocturnal, will stay out of bright sun. At the front of a snail’s long
 body are two sets of tentacles: its eyes are at the end of one set, and
 the other set is used for smelling and navigation.
Land snails are hermaphrodites, each having both female and male sex
 organs, though a snail must mate with another snail in order for
 fertilization to occur. A snail lays eggs approximately six times a year,
 with almost 100 eggs each time. Young snails hatch in a month and become
 adults in two years. A snail’s life span is approximately 5–10
 years.
Known as a slow mover, a snail moves by muscles on its underside
 that contract and expand, propelling the snail along at a slow pace. It
 leaves a wet trail of mucus, which protects the snail from anything sharp
 it may need to crawl over as it searches for food. The snail’s diet of
 plants, bark, and fruits causes it to be a pest in many parts of the world
 where it is notorious for destroying crops.
Mary Brady was the production editor for SSH, the Secure
 Shell: The Definitive Guide. Audrey Doyle proofread the book.
 Marlowe Shaeffer and Mary Anne Weeks Mayo provided quality control. Lydia
 Onofrei provided production assistance. John Bickelhaupt wrote the
 index.
Ellie Volckhausen designed the cover of this book, based on a series
 design by Edie Freedman. The cover image is an original engraving from the
 book Natural History of Animals by Sanborn Tenney and
 Abby A. Tenney, published by Scribner, Armstrong & Co. in 1873. Karen
 Montgomery produced the cover layout with Adobe InDesign CS using Adobe’s
 ITC Garamond font.
David Futato designed the interior layout. This book was converted
 by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool
 created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
 Perl and XML technologies. The text font is Linotype Birka; the heading
 font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans
 Mono Condensed. The illustrations that appear in the book were produced by
 Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand
 MX and Adobe Photoshop CS. The tip and warning icons were drawn by
 Christopher Bing. This colophon was written by Nicole Arigo.

SSH, the Secure Shell, 2nd Edition

Daniel J. Barrett

Richard E. Silverman

Robert G. Byrnes

Editor
Mike Loukides

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T21:38:27-07:00

OEBPS/httpatomoreillycomsourceoreillyimages95677.png
% scp2 file.txt server: renaned. txt
or

7
: % sitp server
S#tp> put File.txt renaned. txt |

OEBPS/httpatomoreillycomsourceoreillyimages95771.png
Sharing (=)

@ @ a&@

ShowAll_ Network_Software Update Sound | Sharing.

Computer Name: | lickable-aqua

Other computers on your local subnet can reach your.

ER

Select a service to change its settings.

On_[Service: Remote Login Off

) Personal File Sharing

] Windows Sharing °

O Personal Web Sharing Click Star o allow users of ather
e Computes 0 3ces s computer g
O FIP Access

) Apple Remote Deskiop

O Remote Apple Events

© Printer sharing

Click the lock o prevent further changes.

OEBPS/httpatomoreillycomsourceoreillyimages95697.png
R

wssh stha

authorized_keys authorization

Key one
publcey 11 publckey 11
= ey o
publchey 12 pobichey 12
s ssh

SSHT OpensSH Tectia

OEBPS/httpatomoreillycomsourceoreillyimages95735.png
A B f ,,,,,,,
J. ¥ N

{ X fonson
e \i’ .- o0
a

OEBPS/httpatomoreillycomsourceoreillyimages95767.png
¢

ShA01S26

“Ghloclhost 2001

OEBPS/httpatomoreillycomsourceoreillyimages95795.png
@A Xt

@
N
S
QD mal
A

@ s

Ero e [momd
Fiesed comecions
ons [Fmsh cxampiotcons

1P odsess: ,—

7 WUse rogis gressions

R —
Pore Corvecten
£ wd
i DReCT

A £ fonmve

o omcnt | sy Heb

OEBPS/httpatomoreillycomsourceoreillyimages95713.png
Environment
vaiales

Users dient
onfiguation e

Glotaldient
onfiguation e

Compietime
fags

Keyseated
s

Koown hoss
Gatabases

(Configuration types

Command-ine
optons

Custom session
St I
Serverside
oniguationfie

Ketberos
Confguation fies|

P |

OEBPS/httpatomoreillycomsourceoreillyimages95731.png
Host € Host$S.

| e -
| server Aip jued HEECHONY i;ﬂ“"""}
i A
w®

OEBPS/httpatomoreillycomsourceoreillyimages95687.png
-]

peraccont
. acesannl SSH Server

OEBPS/httpatomoreillycomsourceoreillyimages95671.png
s shellispcom)

locl university.edu oot
oo

'scp pat@shelLsp.com:peint-me psmith@other. hostnetimprime-moi®

OEBPS/httpatomoreillycomsourceoreillyimages95769.png

OEBPS/httpatomoreillycomsourceoreillyimages95703.png
a=p

-8

OEBPS/httpatomoreillycomsourceoreillyimages95681.png
true dlient machine e senermocue

wnencypted dataxposed

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages95663.png
URarsity Network ISP Network

local.university.edy shellisp.com

OEBPS/httpatomoreillycomsourceoreillyimages95685.png
Envionment
vaiales I

Users dient
onfiguation e

Glotaldient
onfiguation e

Compietime
fags

Koown hoss
Gatabases

(Configuration types

==
=

Serverside
authorzaton mal

Compileime
fags

Targetaccomt's
aulforzatonies|

TCP-wappers
e

Ketberos
Configuation fies|

P |

OEBPS/httpatomoreillycomsourceoreillyimages95755.png
ssh—R32714focaost 317 sener

OEBPS/httpatomoreillycomsourceoreillyimages95675.png
applicaton software (e, 35 sshd,scpfp,sfp-server)

SSH Authenticaton Protoco [SSH-AUTH) | SSH Connection Protocol[SH#-CONN] | SH il Transfe Protocol [SSH-SFTF]
dentathenticion channel mutpleing renote flessten ccss
publckey pseudo-eminal fleanster
hostased fowontd
password sgnlpogagation
gsapl remeteprogeam xecaton
asapiwitc autentictinaoe fowarding
axenatiese T portandX ovating
Reboart-ieractie terminal hnding
subsstems
SSH Transport Protoco [SSH-TRANS]
gt egotaion
sssonkeyexchange
sesionlD
senerauthentiction
piagy
integity
daa compesson

TCP(ortherranspaen,relable, dple byt rened comnection)

OEBPS/httpatomoreillycomsourceoreillyimages95787.png
= Piotle Setings

-

= Comnecton
Coher Lt
Autherication
Colre
Keyboard
Tumeing
= Fie Tiansler
Remole Favertes
=/ Giohal Setings
= Appeaance
Font
Colors
Messages
= User Authentcation
Keys
Ceiicates
SSH Accession
& PKCS 11
Confiuraion
= Server Authenlicaion
HostKeys
CA Cettcates
LOAP Servers
= Fie Tianster
Advanced

Configure secure outgong unnes the ae niate fom the ocal compuer
o the server. Conmuricaton wil be secured between the ocal compudet
andthe serve. but insecuse beyond th seiver.

The setings wil ke effect upon net logn.

Qg | |

Name | LitenPort | DestHost DestPot | Alowlo
web server 638 v exaple con 90 Yer
MeP 2o imspexsnplecon 143 Yes
emal 5 malexanplecon 25 Yer

X11 taneing

Enable secure unneing for X1 graphic connections. AnX server
o be 50 urring passve mod on the localcompuder.

¥ Tunnel 11 connections

oK Cancel Hel

OEBPS/httpatomoreillycomsourceoreillyimages95781.png
Settings

= Connecton Y
Coba List Managa kay pais usad i publickay athantioation.
L
i
L
Tundlig Piivate Key file name | Comment
-
£ Appeaance)
.
=
User Authenticaion s >
e e
Certiicates iy oo
SSH Accession Generate New. Import Delete
Tl —
-~
il feer—
= =
L08® Serves o | [
Command Line Clent: CRES

OEBPS/httpatomoreillycomsourceoreillyimages95729.png

OEBPS/httpatomoreillycomsourceoreillyimages95665.png
local.university.edu shellsp.com

OEBPS/httpatomoreillycomsourceoreillyimages95793.png
LE RN

[sreaseror

b secue mal

S Ca—
Ip—

ot [rocomesm | B [
s [StrRaEr [Gomelon ot
T [0 I Teatih counchamds
Cohers fscone

p—

ovednonats ot
% v spss s v psswo)

Boerss [

Py

Py Server r

Hostderifcan bl ko)

[CDocumerts and Seting Al User\Appicatin Das\SSHUA> Foen

el

o Cocel | oy [

OEBPS/httpatomoreillycomsourceoreillyimages95721.png
HostA HostB.

server B

e

OEBPS/httpatomoreillycomsourceoreillyimages95715.png
Gentmachive Severmachie

fn /bin/1s vakey X

s ’ et i ot

fored ommand forkey X = /bin/uho

OEBPS/httpatomoreillycomsourceoreillyimages95659.png

OEBPS/httpatomoreillycomsourceoreillyimages95693.png
(Configuration types

Command-ine
optons I

Cstomsession
st

Usets cent Senverside
ongution il oniguationfie

Glotaldient

Serverside
onfiguation e amhmimiwﬁ\nl

Compileime
ags

Taget accounts
aulfiozatonies|

OEBPS/httpatomoreillycomsourceoreillyimages95673.png
S5H comnection

identity i or agent

OEBPS/httpatomoreillycomsourceoreillyimages95669.png

OEBPS/httpatomoreillycomsourceoreillyimages95657.png
Satari

OEBPS/httpatomoreillycomsourceoreillyimages95765.png
ssh | zun “sshs

sshd

s

ssh

Tun a shell

sshd

OEBPS/httpatomoreillycomsourceoreillyimages95797.png
rver.example.com - default - SSH Tectia File Transfer.

Ele| Edt Vew Operatin Window

™)

Assmelgn el e @

£) QuikConeet (] profes

@ | ok X |[rebece

V<] | as

&laa= dx [Pocalat =] | add

S [Te

Moded

Remet Nane

See Type

Fie Folder
Fie Folder
e Foldr
Fie Folder
Fie Folder

20320
2n3j20
2n3p0
2030
2n3p20

Wordpad Document 2/13/20

Bemap Inage
Text Document

<

2030
203720

>

D apps

Coboid

[Saons

[Sincuce

=03

| Oprojects.

(Ssats
scconboh
scnce s

Sscocsind

B canes

[m—

[

[

<

Folder
Folder
Folder
Folder
Folder
Folder
Folder
cicer
i Fie
i Fe
Fie
E
GuEss1
U8 Fleig
5

Tnster | queve

" [SoncsFlo | Source Droctory
& cHances Nocaljscratchjugb.
T coveranbre Clogurlvatn..

Destinaton Ovectory | Size| Status
Cloygunlvarlm... 85,301 Conplte
Jocaljsratehiub... 955,190 Compite

Speed
2785
sw0.1igls

o]
wo.
wo..

| Connectad to server.example.com - floc SSH - ses128-ch - hmac-shal - none |1 selected (85.8 KB)

OEBPS/httpatomoreillycomsourceoreillyimages95799.png.jpg
Troubleshooting X

The program has gaihered the folowing data duing 1 peration If you have
encouniered s malnclion of 8 bug n the progsam, please nchide the dsta
1 3 detaled descrpiion of the problem a5 a 1epot 1o ou techrical suppor

Ripor 10 SSH techrical support t i/ /umny s convsuopor

[SSH Windows Secuze Shal Tioubleshoing Report a
(Genecsed on Sun Feb 13 2005 075207

SSH Ctnt vrsion:
411 Buld 1)

55H Chlnt larguage:
3 Engish (Unied States)

Liconse:

Name: CDROM customer

(Company: N/A.

Emet ssh.soes@ssh com

License Type: commercid

Nunbe of censer

Liconse ssued on:

License Expres on<NonExpi

oee Sinatae. TOBFAC SE2C FN27E8

Copy o Cipboard Cose

OEBPS/httpatomoreillycomsourceoreillyimages95737.png

OEBPS/httpatomoreillycomsourceoreillyimages95745.png
s 01207

ss1
S e passive mode (10,1,2,17]

)

OEBPS/httpatomoreillycomsourceoreillyimages95709.png
Ulient configuration file

{Host +edu
Compression yes

senveharvard.edu confguration
"> Compression yes
PasswordAuthentication yes
(= EscapeChar %

Host *.com
StricthostkeyChecking yes

{Host ¥ .harvard. edi
Conpression 1o
| EscapeChar %

OEBPS/httpatomoreillycomsourceoreillyimages95813.png
Cateooy:

= Sesson
Loggng
= Teminal
Kesbosd
Bel
Featires
= Window
Appestance
Behaviour
Trarsision
Selecion
Colous
= Connecton
Proy
Teinet
Rlogin
= S5H
futh
Turnels
Bugs

Basicoptcns for your PuTTY session

Specily you connecton wheunmw?amn
Host Name (o 1P addess)

cerver enampie com

Protoest

CBw Clset CRogn G SSH

Load, save or el a stoed sossion

Saved Sessions

jute

efauk Seltngs Load
Save

Close ndon on

OEBPS/httpatomoreillycomsourceoreillyimages95667.png

OEBPS/httpatomoreillycomsourceoreillyimages95741.png
Torvardedor|
Xiorarting,
orminsener

OEBPS/httpatomoreillycomsourceoreillyimages95785.png
A SSH Accession Settings

hopesrce | KeyProves | Keyhbues | Log | Conpatsity |

Avaiobe keye

Overide elaur | Descrpton
Defaut vahies
for guest access to examgle com 2048 bit dsa. quest@esampl.con, Sun Jan23 2005 234
fot acces 5.t o 1o

for access to exanple com fom mylaptop 204864 dsa. rebecea(@iaplop exarple com. S

|

Koy b

Eioion [0 dan [0 2] bous i3] mites
Usage coun: ok ELr
Keyaiar [[p—

¥ Enabe ey conputbity [~ Corimkey cpesicrs [Test pevalekey

[

OEBPS/httpatomoreillycomsourceoreillyimages95683.png
Configuration types
Envionment
vaables I
s
Usets clent a,

onfiguation fie

Giotaldient
onfiguation e

Kaown hoss
Gatabases

(Configuration types

Command-ine
optons

Customsession
statup I

Senverside
niguationfie

Serverside
authorzaton mal

Targetaccont's
aulforzatonies|

TCP-wappers
e

Ketberos
Configuaton fies|

OEBPS/httpatomoreillycomsourceoreillyimages95811.png.jpg
<) Fie Tuanster
modem/Znadem

Localy forwarded connections

Nome Loca Address

Remole Host__| Applicaton

myfowardng 119

localost 119

OEBPS/httpatomoreillycomsourceoreillyimages95679.png
0

: % scp file.txt server:renaned. txt renaned. txt w
‘ file.brt ¢
 zun "ssh x -a...server scp -t xenaned.txt" Tun "scp -t renamed. txt” |

o

OEBPS/httpatomoreillycomsourceoreillyimages95807.png.jpg
Public Key Properties

& Use gobalpubickeyseling * Use session publc ke seting [
i =
o
Cieate [dertiy Fie. Uplosd Change Passphrase.
€ Use certiicate.

Each ceifical in you personsl loe vl b bied uni one:
cucceed:

OEBPS/httpatomoreillycomsourceoreillyimages95789.png
4udd New Outgoing Tunnel

Disply Name:
Type:

ListenPort

Destiaton Host:

[websever
e =

=

% Alow Local Connectons Orly

[rwn exampe com

DesinainPot [

OEBPS/httpatomoreillycomsourceoreillyimages95725.png
HostA HostB.

OEBPS/httpatomoreillycomsourceoreillyimages95733.png
Corporate Network

OEBPS/httpatomoreillycomsourceoreillyimages95791.png
i Fres
A secue msi

SSH Tectia Connecto”
General Settings

Pass hough

Pasthaugh nean e cennectos il rct b captaed ardfomarded zcardngl
ha g s o, connecicns vl be Sect

¥ Bassthoush vhen engire doen

Possihiough 9ps: [rdeckup o, o ev, sihclentovs, 2 eve, o _oecerson.

PeaudolP

SSH Tectia Connecto canuse Paeudo P runbers o s thl e s vl be
ore et e Fas i P anbers shokd o 5 1sod whe e (S5kAen 31
s bodone it locaind

Prsdo P rusbers shcid e s P e s sppdcsions it behave
certly i esered P e,

¥ e preud P ranbers.

Peofpsat |80 0 0
I~ 8PS mods I Hid wayicon
¥ Show seve s % Show Ex snd Enbied butns iy rens

™ Force ettaton and sbost when ™ Shon SSH Tectia onneclodnin 1 oy menu
pitccd sack o beenmodied
I Show SSH Accession n vy ners

¥ Show secusty elficaion
ox Concel sty Heb

OEBPS/httpatomoreillycomsourceoreillyimages95719.png
HostA

OEBPS/httpatomoreillycomsourceoreillyimages95701.png
0SSHiys pernied

Corporate Network

OEBPS/httpatomoreillycomsourceoreillyimages95717.png

OEBPS/httpatomoreillycomsourceoreillyimages95711.png

OEBPS/httpatomoreillycomsourceoreillyimages95723.png

OEBPS/httpatomoreillycomsourceoreillyimages95749.png
Firewall

jet
2928316950 /

R

® comect to 219.243.169.50:
o ort 20533 REFECTED

OEBPS/orm_front_cover.jpg
Securing your Network and Services 2

The Secure Shell

The Definitive Guide

Daniel J. Barrett,

O’RE'LLY® Richard Silverman & Robert G. Byrnes

OEBPS/httpatomoreillycomsourceoreillyimages95705.png

OEBPS/httpatomoreillycomsourceoreillyimages95739.png
Configuration types (Configuration types

Command-ine
optons I

Cstomsession
st

Serverside
ongution il niguationfie

Giotaldient

o
nlgutintie amhmimiwﬁ\nl
Compile-time Compile-time.
el | &

5
Keyelated
s

Tagetaccounts
aulfozatonies|

OEBPS/httpatomoreillycomsourceoreillyimages95691.png

OEBPS/httpatomoreillycomsourceoreillyimages95699.png

OEBPS/httpatomoreillycomsourceoreillyimages95661.png
Authestication
- lamme
lammetoo

£
ik, g
iahv“'& Aol 87 ,\\ﬂ'"m%% —a

OEBPS/httpatomoreillycomsourceoreillyimages95809.png.jpg
Advanced
= Port Fomardng
Femote
xat
<) Teminal
= Emiston
Mades
Emacs
Mapped Keys
Advancad
= Appeaiance
idow
LogFie
= Piring
Advanced
) Fie Toanster
modem/Znadem

55H2 Options

Hotnane: [severmanplecon
Pot: 2

Evewst Nore

Wsemame: Jomith

Authericaion
oo -
s E
Depoudimecive =

Properis.

-

o

OEBPS/httpatomoreillycomsourceoreillyimages95759.png
inbox = {localhost:2001/imap/user=slade}inbox

1PinSH
0 LOGIN sade password -

OEBPS/httpatomoreillycomsourceoreillyimages95743.png
Active Mode:

ntl comection
PORT 10,1,2,3,
FIP lent
Paddess 0123 § datacomectin
201 »
i
P68 FIPServer
Passive Mode
> pasv N
-)
— 227 Entering passive mode (10,1,2,17,)
data 3
]
"3

FIP Server

Paddress
01217

OEBPS/httpatomoreillycomsourceoreillyimages95727.png

OEBPS/httpatomoreillycomsourceoreillyimages95763.png
private corporate
network

B— = &

OEBPS/httpatomoreillycomsourceoreillyimages95777.png
You are connecting tothe host “server,example.con for the st tne,
The host has provided you s Kentfiatio, a hos publc key.

The figerprint of the host publc ey st
“rost:rotafvruces-pokek-hiis-nuborrufyz govurlesi-mgev-fsox”

You can save the host key tothe local database by cicking es.
You can continus without saving the host ey by cicking o
ou can aso cance the connection by cliing Cancel

100 you wank tosave the new host e to the local database?

Te o ol

telp

OEBPS/httpatomoreillycomsourceoreillyimages95815.png.jpg
Bublic key for pasting into OpenSSH authorized_keys fle

[AAAABINZC1yC2E AABABIGABAIEAMWIO UV 0pIX0bILVpIVZ0GB0NInpsD + i
|VZBoE NBO7E wmwmalp4isix/SdHT 0g)1 2kpodE wih/ Br0vi/SSAGDIorY 4PyheK 1k
(HpaHU4+870 syataG 2ef Prneligdn3/Ey7LET OWFboKJpCZXSAHOSINbsmIEJTER
6= ok 2050130 =l

Key fingerpiin [sshvisa 1024 81:17:86:77-e4 22 1b:9e:67:a1:01 eeb7-38.07:60
Key comment: [1sskey-20050130

Keypsshrase o
Cortim passphuass: [+

e
bt
Leain g he o Lot

Save tho genarated key.

Petamelers

Type of key to generate:
€ 55H1 RS} ssHzRsA SSHzDSA

Number of pts ina generated key: [fo24

OEBPS/httpatomoreillycomsourceoreillyimages95753.png
7100805
Internet privateaddresses
omect10 2062631693021 WA comect 0 101121721 /’"H:\

", > PASV.

‘e 227 Entering passive mode (10,1,2,17, 2l

server

P
dert

Jcomect to 10120957 @

OEBPS/httpatomoreillycomsourceoreillyimages95761.png
sade’s mailbox

inapd emate command
Ping preauthentiatedas slade

| “eecimap
"ssh ~q -1 slade exec inapd”

i s
subprocess |+ PREAUTH ——

OEBPS/httpatomoreillycomsourceoreillyimages95707.png
Configuration types (Configuration types
. Conmandiine
optons
Cstomsession
satup I
Senverside
anfguationfil
Serverside
amhmmﬂmmesl
L compieaime
ags

L_ ragetaccounts
aulhorzatonfies|

hauration i

Compie-ine
g5

Koown hoss
Gatabases TCP-wappers
e

Ketberos
configuation fies|

LU

OEBPS/httpatomoreillycomsourceoreillyimages95757.png
mailisp.net

T

Pine

(AP potocl
inbox = {email.isp.net/imap/user=slade}inbox

OEBPS/httpatomoreillycomsourceoreillyimages95751.png
privateadiesses

Internet
PORT 10,1,2,3{

@ comect to 0.

L Noroute to host!

OEBPS/httpatomoreillycomsourceoreillyimages95773.png
@

Sharing —

® &

ShowAll_ Network_Software Update Sound | Sharing.

Computer Name:

Firewall On

lickable-aqua

Other computers on your local subnet can reach your.

EER

T e
Services | Firewall |_Internet

(Stop) Click top o allowncoming network communication t0 3l snvices and

ports.

Allow: | 0n

To use FTPto retreve files while the firewall i on, enable passive FTP mode using the Proxies
tab in Nework Preferences.

Description (Ports)

Personal File Sharing (548, 427) A
indons St (159 U
b

Personal Web Sharing (80, 427)

Remote Login - SSH (22)

FTP Access (20-21, 1024-65535 from 20-21)
Remote Apple Events (3031)

Printer Sharing (631, 515)

n
!l the tock o preventurhr changes.

OEBPS/httpatomoreillycomsourceoreillyimages95695.png
$HOME

1

. o e e
e

OEBPS/httpatomoreillycomsourceoreillyimages95689.png

OEBPS/httpatomoreillycomsourceoreillyimages95801.png.jpg
Dobugging,

¥ {Enable Debugand

OSaAu

CXocuments oo Setngs\isbecca bptop Appieaton D3t |

%l Fie on Statup

Debug ik
[Se support 1 sth methods ubickey”

|Ssh2Common localip = 192 168,336, ocal pot = 1913
ISshaCommors remote i = 192 168,335, remcte pot = 2222
[Remote version: SSH.5.0.4.1.32 S5H Secise Shel

IMalor 4 Minor 1 Revisor: 3

ISsHProloAuthClent. dov_teceived_packet STARTUP
|SshahuthPubKeyClent: sah pubkey op = 1 user = byres
I5skProloAuthClent. next method

|SshPrtouthClent dov, ecenved_packet ALGORITHMS
ISskProlofuthClent dov.received._packet PACKET
(SshProtouthClent process_fakae cont =0

server ofers auth methods pubickey password.
|SshProtouhClent process_ sk productve = pubckey
I5skProlofuthClent. next method

[Ssh2huihPubKeyClent: auh_pubkey op =0 user = byres
[SSh2AuibPubeyClent: Stating puibkey auth

CeaFie | QenFlemtsio |

OEBPS/httpatomoreillycomsourceoreillyimages95817.png
Pageant Key List

hdss 1020 2265187942051 b0 deUbal Fabla diakey Z00B0217
shisa 1024 $£6OS7 0 o083 201 1c 900106385405 sarkey 20050130

Bemove Key

OEBPS/httpatomoreillycomsourceoreillyimages95747.png
locafhostiq s Cp: RUKCT

192.168.10.1

OEBPS/httpatomoreillycomsourceoreillyimages95803.png.jpg
P2 S5H Tectia Server Configuration

EECTEECE Network
Generl

Configure network sefngs.
Encypion

Idenily Pot 2

Tunreling

User Auheriicaton Liten adeess 0000

Passwoud

SR e ONS o [feban =]
G Carg s
RoAtuoa POty ©
sssun
Host Restictions WD F
U s
P
Fovaties
oo

OEBPS/httpatomoreillycomsourceoreillyimages95805.png.jpg
Brotocat SsHz

Hostname: [server examplecom

Pat z Fiewat

[Pubickey
I kesbosdnterscive

None

BI=

I~ Show quick comectenstatp ¥ Save session
I™ Openinatab

(] oo

OEBPS/httpatomoreillycomsourceoreillyimages95783.png
S Yow Took e

L

Keye Used [Expraion [Staks
- omfor guee oot to anpe comRUGERD 0 Meves 2048 bl ook ahan (S5H2)
Adzne Safen 120210532005
| v Ay
| souee fle /11 Mocumentsan Setingseoecca aton/ A

& smlr 50855 toexanglecom o hane (2045 2018 it s sho! (S5H2)

i ol

Addtine SaiFeo 12020351 2005

Vaid Ay

Souce e /12 Mcanents and Seingsrebeccalaptop/Apc

| B

Dae Tiee[ie Key
(S Feb 120203212005 PO SSH Accasson #aned
S3Fb 120209512005 KEY Addad o cabert fe accne o v com e
531 Feb 120210122005 KEY Opersion istrand-siylrcshal om osshost stred o acoess o svangle comfe
531 Feb 120210122005 KEY Opersion hashvandeirris.shal e ocabhost compited fox acosss 0 exangle.comiic
o Fet 12021031 2005 KEY A hmbcabnt for e 0 crampe comc
S Feb 120210532005 KEY Addod Hemlocabost forguet accoss tocxamplec
(531 Fb 120211002005 KEY Operatonhashandsir o locabstsated for acors o example.comfic
(Sa1Feb 120211002005 KEY Opession " hastvande s o locabros congeted for scees 1o exanpe com e

e —|

s

OEBPS/httpatomoreillycomsourceoreillyimages95775.png
Connect to Remote Host

HostName: [sever exampie corl.

User Name: febecca

ot Number [z

Auhenication Method [Publc Key

OEBPS/httpatomoreillycomsourceoreillyimages95779.png
3 server.example.com - default - SSH Tectia Client
Fle Edt View Window Heb
CIEIY NI RS
) kot () Proles

server. example.con s -1 /ete/ssh2

root. hostkey
root. 11 21:26 hostkey.pub
root. 25 2004 license ssh2.dac
zoot. 5 2004 neptile exasple
root. 7 19:51 plugin/
zoot. 13:2) randou seed
zoot. 2004 ssh2_contig

2004 ssh2_config. example
2004 s5h_certd_contig

u
A
s
root. 6
zoot. 6 2004 ssh_cercd_config.example
6
5
‘
u

zo0t
armexex 2 zoor.
Seever. exeaple.cons |

2004 3sn_dusay_shell.out.
2004 sshdz_config

2004 32n42"config. exauple
21:23 swcontia/

1
1
1
1
2
1
1
1 xoot
1
1
1
1
1
2

Connectad to server example.com 'SSHC - ass128-cbe - hac-shal - none | 80x24

