

vi and Vim Editors
Pocket Reference

SECOND EDITION

vi and Vim Editors
Pocket Reference

Arnold Robbins

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

vi and Vim Editors Pocket Reference, Second Edition
by Arnold Robbins

Copyright © 2011 Arnold Robbins. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Copyeditor: Amy Thomson
Production Editor: Adam Zaremba
Proofreader: Sada Preisch
Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
January 1999: First Edition.
January 2011: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. vi and Vim Editors Pocket
Reference, the image of a tarsier, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39217-8

[TM]

1294430582

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Contents

vi and Vim Editors Pocket Reference 1
Introduction 1
Conventions 1
Acknowledgments 2
Command-Line Options 2
vi Commands 3
Input Mode Shortcuts 9
Substitution and Regular Expressions 11
ex Commands 16
Initialization 21
Recovery 21
vi set Options 21
Nothing like the Original 23
Enhanced Tags and Tag Stacks 23
Vim—vi Improved 25
nvi—New vi 59
elvis 63
vile—vi like Emacs 71
Internet Resources for vi 80
Program Source and Contact Information 81

Index 83

v

vi and Vim Editors Pocket
Reference

Introduction
This pocket reference is a companion to Learning the vi and
Vim Editors, by Arnold Robbins et al. It describes the vi com-
mand-line options, command-mode commands, ex com-
mands and options, regular expressions and the use of the
substitute (s) command, and other pertinent information for
using vi.

While retaining coverage of the vi clones, nvi, elvis, and
vile, this edition offers expanded coverage of the Vim editor,
which has become the de facto standard version of vi in the
GNU/Linux world.

The Solaris version of vi served as the “reference” version of
the original vi for this pocket reference.

Conventions
The following font conventions are used in this book:

Courier
Used for filenames, command names, options, and every-
thing to be typed literally.

1

http://oreilly.com/catalog/9780596529833/
http://oreilly.com/catalog/9780596529833/

Courier Italic
Used for replaceable text within commands.

Italic
Used for replaceable text within regular text, Internet
URLs, for emphasis, and for new terms when first defined.

[...]
Identifies optional text; the brackets are not typed.

CTRL-G
Indicates a keystroke.

Acknowledgments
Thanks to Robert P.J. Day and Elbert Hannah, who reviewed
this edition. The production team at O’Reilly Media did a great
job helping me make the book look the way I wanted. A special
thanks to my editor, Andy Oram, for keeping the project mov-
ing with continual gentle encouragement.

Command-Line Options
Command Action

vi file Invoke vi on file

vi file1 file2 Invoke vi on files sequentially

view file Invoke vi on file in read-only mode

vi -R file Invoke vi on file in read-only mode

vi -r file Recover file and recent edits after a
crash

vi -t tag Look up tag and start editing at its
definition

vi -w n Set the window size to n; useful over a
slow connection

vi + file Open file at last line

vi +n file Open file directly at line number n

2 | vi and Vim Editors Pocket Reference

Command Action

vi -c command file Open file, execute command, which is
usually a search command or line num-
ber (POSIX)

vi +/pattern file Open file directly at pattern

ex file Invoke ex on file

ex - file < script Invoke ex on file, taking commands
from script; suppress informative mes-
sages and prompts

ex -s file < script Invoke ex on file, taking commands
from script; suppress informative mes-
sages and prompts (POSIX)

vi Commands
vi commands are used in “screen” mode (the default), where
you use the commands to move around the screen and to per-
form operations on the text.

Most vi commands follow a general pattern:

[command][number]textobject

or the equivalent form:

[number][command]textobject

Movement Commands
vi movement commands distinguish between two kinds of
“words.” The lowercase commands define a word as a contig-
uous sequence of underscores, letters, and digits. The upper-
case commands define a word as a contiguous sequence of
nonwhitespace characters.

vi Commands | 3

Command Meaning

Character

h, j, k, l Left, down, up, right (←, ↓, ↑, →)

Text

w, W, b, B Forward, backward by word

e, E End of word

), (Beginning of next, previous sentence

}, { Beginning of next, previous paragraph

]], [[Beginning of next, previous section

Lines

ENTER First nonblank character of next line

0, $ First, last position of current line

^ First nonblank character of current line

+, - First nonblank character of next, previous
line

n | Column n of current line

H, M, L Top, middle, last line of screen

n H n (number) of lines after top line

n L n (number) of lines before last line

Scrolling

CTRL-F , CTRL-B Scroll forward, backward one screen

CTRL-D , CTRL-U Scroll down, up one half-screen

CTRL-E , CTRL-Y Show one more line at bottom, top of
window

z ENTER Reposition line with cursor: to top of
screen

z . Reposition line with cursor: to middle of
screen

z – Reposition line with cursor: to bottom of
screen

CTRL-L Redraw screen (without scrolling)

4 | vi and Vim Editors Pocket Reference

Command Meaning

Searches

/pattern Search forward for pattern

?pattern Search backward for pattern

n, N Repeat last search in same, opposite
direction

/, ? Repeat previous search forward, backward

f x Search forward for character x in current
line

F x Search backward for character x in current
line

t x Search forward to character before x in cur-
rent line

T x Search backward to character after x in
current line

; Repeat previous current-line search

, Repeat previous current-line search in op-
posite direction

Line number

CTRL-G Display current line number

n G Move to line number n

G Move to last line in file

: n Move to line n in file

Marking position

m x Mark current position as x

‘ x Move cursor to mark x (grave accent)

‘ ‘ Return to previous mark or context (two
grave accents)

’ x Move to beginning of line containing mark
x (single quote)

’ ’ Return to beginning of line containing pre-
vious mark (two single quotes)

vi Commands | 5

Editing Commands

Command Action

Insert

i, a Insert text before, after cursor

I, A Insert text before beginning, after end of line

o, O Open new line for text below, above cursor

Change

cw Change word

cc Change current line

c motion Change text between the cursor and the tar-
get of motion

C Change to end of line

r Replace single character

R Type over (overwrite) characters

s Substitute: delete character and insert new
text

S Substitute: delete current line and insert new
text

Delete, move

x Delete character under cursor

X Delete character before cursor

dw Delete word

dd Delete current line

d motion Delete text between the cursor and the target
of motion

D Delete to end of line

p, P Put deleted text after, before cursor

" n p Put text from delete buffer number n after
cursor (for last nine deletions)

Yank

yw Yank (copy) word

6 | vi and Vim Editors Pocket Reference

Command Action

yy Yank current line

" a yy Yank current line into named buffer a (a–z);
uppercase names append text

y motion Yank text between the cursor and the target
of motion

p, P Put yanked text after, before cursor

" a P Put text from buffer a before cursor (a–z)

Other commands

. Repeat last edit command

u, U Undo last edit; restore current line

J Join two lines

ex edit commands

:d Delete lines

:m Move lines

:co or :t Copy lines

:.,$d Delete from current line to end of file

:30,60m0 Move lines 30 through 60 to top of file

:.,/pattern/co$ Copy from current line through line contain-
ing pattern to end of file

Exit Commands

Command Meaning

:w Write (save) file

:w! Write (save) file, overriding protection

:wq Write (save) and quit file

:x Write (save) and quit file

ZZ Write (save) and quit file

:30,60w newfile Write from line 30 through line 60 as newfile

:30,60w>> file Write from line 30 through line 60 and append
to file

vi Commands | 7

Command Meaning

:w %.new Write current buffer named file as file.new

:q Quit file

:q! Quit file, overriding protection

Q Quit vi and invoke ex

:e file2 Edit file2 without leaving vi

:n Edit next file

:e! Return to version of current file as of time of
last write (save)

:e # Edit alternate file

:vi Invoke vi editor from ex

: Invoke one ex command from vi editor

% Current filename (substitutes into ex com-
mand line)

Alternate filename (substitutes into ex com-
mand line)

Solaris vi Command-Mode Tag Commands

Command Action

^] Look up the location of the identifier under the cursor
in the tags file and move to that location; if tag stack-
ing is enabled, the current location is automatically
pushed onto the tag stack

^T Return to the previous location in the tag stack, i.e.,
pop off one element

Buffer Names

Buffer names Buffer use

1–9 The last nine deletions, from most to least recent

a–z Named buffers to use as needed; uppercase letters
append to the respective buffers

8 | vi and Vim Editors Pocket Reference

Buffer and Marking Commands

Command Meaning

" b command Do command with buffer b

m x Mark current position with x

‘ x Move cursor to character marked by x (grave accent)

‘ ‘ Return to exact position of previous mark or context
(two grave accents)

’ x Move cursor to first character of line marked by x
(single quote)

’ ’ Return to beginning of the line of previous mark or
context (two single quotes)

Input Mode Shortcuts
vi provides two ways to decrease the amount of typing you
have to do: abbreviations and maps.

Word Abbreviation
:ab abbr phrase

Define abbr as an abbreviation for phrase.

:ab
List all defined abbreviations.

:unab abbr
Remove definition of abbr.

Command and Input Mode Maps
:map x sequence

Define character(s) x as a sequence of editing commands.

:unmap x
Disable the sequence defined for x.

:map
List the characters that are currently mapped.

Input Mode Shortcuts | 9

:map! x sequence
Define character(s) x as a sequence of editing commands
or text that will be recognized in insert mode.

:unmap! x
Disable the sequence defined for the insert mode map x.

:map!
List the characters that are currently mapped for interpre-
tation in insert mode.

For both command and insert mode maps, the map name x
can take several forms:

One character
When you type the character, vi executes the associated
sequence of commands.

Multiple characters
All the characters must be typed within one second. The
value of notimeout changes the behavior.

n
Function key notation: a # followed by a digit n represents
the sequence of characters sent by the keyboard’s function
key number n.

To enter characters such as Escape (^[) or carriage return (^M),
first type CTRL-V (^V).

Executable Buffers
Named buffers provide yet another way to create “macros”—
complex command sequences you can repeat with a few key-
strokes. Here’s how it’s done:

1. Type a vi command sequence or an ex command preceded
by a colon; return to command mode.

2. Delete the text into a named buffer.

3. Execute the buffer with the @ command followed by the
buffer letter.

The ex command :@buf-name works similarly.

10 | vi and Vim Editors Pocket Reference

Some versions of vi treat * identically to @ when used from the
ex command line. In addition, if the buffer character supplied
after the @ or * commands is *, the command is taken from the
default (unnamed) buffer.

Automatic Indentation
Enable automatic indentation with the following command:

:set autoindent

Four special input sequences affect automatic indentation:

^T Add one level of indentation; typed in insert mode

^D Remove one level of indentation; typed in insert mode

^ ^D
Shift the cursor back to the beginning of the line, but only
for the current line*

0 ^D
Shift the cursor back to the beginning of the line and reset
the current auto-indent level to zero†

Two commands can be used for shifting source code:

<< Shift a line left eight spaces

>> Shift a line right eight spaces

The default shift is the value of shiftwidth, usually eight
spaces.

Substitution and Regular Expressions
Regular expressions, and their use with the substitute com-
mand, are what give vi most of its significant editing power.

* ^ ^D and 0 ^D are not in elvis.

† The nvi 1.79 documentation has these two commands switched, but the
program actually behaves as described here.

Substitution and Regular Expressions | 11

The Substitute Command
The general form of the substitute command is:

:[addr1[,addr2]]s/old/new/[flags]

Omitting the search pattern (:s//replacement/) uses the last
search or substitution regular expression.

An empty replacement part (:s/pattern//) “replaces” the
matched text with nothing, effectively deleting it from the line.

Substitution flags

Flag Meaning

c Confirm each substitution

g Change all occurrences of old to new on each line (globally)

p Print the line after the change is made

It’s often useful to combine the substitute command with the
ex global command, :g:

:g/Object Oriented/s//Buzzword compliant/g

vi Regular Expressions
. (period) Matches any single character except a newline.

Remember that spaces are treated as characters.

* Matches zero or more (as many as there are) of the single
character that immediately precedes it.

The * can follow a metacharacter, such as ., or a range in
brackets.

^ When used at the start of a regular expression, ^ requires
that the following regular expression be found at the be-
ginning of the line. When not at the beginning of a regular
expression, ^ stands for itself.

$ When used at the end of a regular expression, $ requires
that the preceding regular expression be found at the end

12 | vi and Vim Editors Pocket Reference

of the line. When not at the end of a regular expression,
$ stands for itself.

\ Treats the following special character as an ordinary char-
acter. Use \\ to get a literal backslash.

~ Matches whatever regular expression was used in the
last search.

[]
Matches any one of the characters enclosed between the
brackets. A range of consecutive characters can be speci-
fied by separating the first and last characters in the range
with a hyphen.

You can include more than one range inside brackets and
specify a mix of ranges and separate characters.

Most metacharacters lose their special meaning inside
brackets, so you don’t need to escape them if you want to
use them as ordinary characters. Within brackets, the
three metacharacters you still need to escape are \ -]. The
hyphen (-) acquires meaning as a range specifier; to use
an actual hyphen, you can also place it as the first char-
acter inside the brackets.

A caret (^) has special meaning only when it’s the first
character inside the brackets, but in this case, the meaning
differs from that of the normal ^ metacharacter. As the
first character within brackets, a ̂ reverses their sense: the
brackets match any one character not in the list. For
example, [^a-z] matches any character that’s not a low-
ercase letter.

CAUTION
On modern systems, the locale can affect the inter-
pretation of ranges within brackets, causing vi to
match letters in a surprising fashion. It is better to
use POSIX bracket expressions (see “POSIX Brack-
et Expressions” on page 14) to match specific
kinds of characters, such as all lowercase or all
uppercase characters.

Substitution and Regular Expressions | 13

\(...\)
Saves the pattern enclosed between \(and \) into a special
holding space or “hold buffer.” You can save up to nine
patterns in this way on a single line.

You can also use the \n notation within a search or sub-
stitute string:

:s/\(abcd\)\1/alphabet-soup/

changes abcdabcd into alphabet-soup.‡

\< \>
Matches characters at the beginning (\<) or end (\>) of a
word. The end or beginning of a word is determined either
by a punctuation mark or by a space. Unlike \(...\), these
don’t have to be used in matched pairs.

POSIX Bracket Expressions
POSIX bracket expressions may contain the following:

Character classes
A POSIX character class consists of keywords bracketed
by [: and :]. The keywords describe different classes of
characters, such as alphabetic characters, control charac-
ters, and so on (see the following table).

Collating symbols
A collating symbol is a multicharacter sequence that
should be treated as a unit. It consists of the characters
bracketed by [. and .].

Equivalence classes
An equivalence class lists a set of characters that should
be considered equivalent, such as e and è. It consists of a
named element from the locale, bracketed by [= and =].

All three constructs must appear inside the square brackets of
a bracket expression.

‡ This works with vi, nvi, and Vim, but not with elvis or vile.

14 | vi and Vim Editors Pocket Reference

POSIX character classes

Class Matching characters

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Space and tab characters

[:cntrl:] Control characters

[:digit:] Numeric characters

[:graph:] Printable and visible (nonspace) characters

[:lower:] Lowercase characters

[:print:] Printable characters (includes whitespace)

[:punct:] Punctuation characters

[:space:] Whitespace characters

[:upper:] Uppercase characters

[:xdigit:] Hexadecimal digits

Metacharacters Used in Replacement Strings
\n Is replaced with the text matched by the nth pattern pre-

viously saved by \(and \), where n is a number from one
to nine, and previously saved patterns (kept in hold buf-
fers) are counted from the left on the line.

\ Treats the following special character as an ordinary char-
acter. To specify a real backslash, type two in a row (\\).

& Is replaced with the entire text matched by the search pat-
tern when used in a replacement string. This is useful
when you want to avoid retyping text.

~ The string found is replaced with the replacement text
specified in the last substitute command. This is useful for
repeating an edit.

\u or \l
Changes the next character in the replacement string to
uppercase or lowercase, respectively.

Substitution and Regular Expressions | 15

\U or \L and \e or \E
\U and \L are similar to \u or \l, but all following charac-
ters are converted to uppercase or lowercase until the end
of the replacement string or until \e or \E is reached. If
there is no \e or \E, all characters of the replacement text
are affected by the \U or \L.

More Substitution Tricks
• You can instruct vi to ignore case by typing :set ic.

• A simple :s is the same as :s//~/.

• :& is the same as :s. You can follow the & with g to make
the substitution globally on the line, and even use it with
a line range.

• You can use the & key as a vi command to perform
the :& command, i.e., to repeat the last substitution.

• The :~ command is similar to the :& command, but with
a subtle difference. The search pattern used is the last reg-
ular expression used in any command, not necessarily the
one used in the last substitute command.

• Besides the / character, you may use any nonalphanu-
meric, nonwhitespace character as your delimiter, except
backslash, double quote, and the vertical bar (\, ", and |).

• When the edcompatible option is enabled, vi remembers
the flags (g for global and c for confirmation) used on the
last substitution and applies them to the next one.

ex Commands
This section summarizes the ex commands used from the colon
prompt in vi.

Command Syntax
:[address] command [options]

16 | vi and Vim Editors Pocket Reference

Address Symbols
Address Includes

1,$ All lines in the file

x,y Lines x through y

x;y Lines x through y, with current line reset to x

0 Top of file

. Current line

n Absolute line number n

$ Last line

% All lines; same as 1,$

x-n n lines before x

x+n n lines after x

-[n] One or n lines previous

+[n] One or n lines ahead

’ x Line marked with x (single quote)

’ ’ Previous mark (two single quotes)

/pat/ or ?pat? Ahead or back to the line where pat matches

Command Option Symbols
Symbol Meaning

! A variant form of the command

count Repeat the command count times

file Filename: % is current file, # is previous file

Alphabetical List of Commands
The following table of ex commands covers both standard
ex commands and selected commands specific to Vim.
Commands covered in “Vim—vi Improved” on page 25 are
omitted here.

ex Commands | 17

Full name Command Vim only

Abbrev ab [string text]

Append [address] a[!]
text
.

Args ar

Args args files … ✓
Bdelete [num] bd[!] [num] ✓
Buffer [num] b[!] [num] ✓
Buffers [num] buffers[!] ✓
Center [address] ce [width] ✓
Change [address]c[!]

text
.

Chdir cd directory

Copy [address] co destination

Delete [address] d [buffer]

Edit e [!][+n] [filename]

File f [filename]

Global [address]g[!]/pattern/[commands]

Insert [address]i[!]
text
.

Join [address]j[!][count]

K (mark) [address] k char

Left [address] le [count] ✓
List [address] l [count]

Map map char commands

Mark [address] ma char

Mkexrc mk[!] file ✓
Move [address] m destination

Next n[!] [[+command] filelist]

Number [address] nu [count]

18 | vi and Vim Editors Pocket Reference

Full name Command Vim only

Open [address] o [/pattern/]

Preserve pre

Previous prev[!] ✓
Print [address] p [count]

[address] P [count]

Put [address] pu [char]

Quit q[!]

Read [address] r filename

Read [address] r ! command

Recover rec [filename]

Rewind rew[!]

Right [address] ri [count] ✓
Set set

set option
set nooption
set option=value
set option?

Shell sh

Source so filename

Stop st

Substitute [addr] s [/pat/repl/][opts]

Suspend su

T (to) [address]t destination

Tag [address] ta tag

Unabbreviate una word

Undo u

Unmap unm char

V (global exclude) [address] v/pattern/[commands]

Version ve

Visual [address] vi [type] [count]

Visual vi [+n] [filename]

ex Commands | 19

Full name Command Vim only

Write [address] w[!] [[>>]filename]

Write [address] w !command

Wall (write all) wa[!] ✓
Wq (write + quit) wq[!]

Wqall (write all + quit) wqa[!] ✓
Xit x

Yank [address] y [char] [count]

Z (position line) [address] z[type] [count]

type can be one of:

+ Place line at the top of the win-
dow (default)

- Place line at bottom of the
window

. Place line in the center of the
window

^ Print the previous window

= Place line in the center of the
window and leave the current
line at this line

! (execute command) [address] !command

@ (execute register) [address] @ [char]

= (line number) [address] =

< > (shift) [address] < [count]
[address] > [count]

& (repeat substitute) [address] & [options] [count]

~ [address]~[count]

Like &, but with last used regular
expression; for details, see Chap-
ter 6 of Learning the vi and Vim
Editors

Return (next line) ENTER

Address address

20 | vi and Vim Editors Pocket Reference

Initialization
vi performs the following initialization steps:

1. If the EXINIT environment variable exists, execute the
commands it contains. Separate multiple commands by a
pipe symbol (|).

2. If EXINIT doesn’t exist, look for the file $HOME/.exrc. If it
exists, read and execute it.

3. If either EXINIT or $HOME/.exrc turns on the exrc option,
read and execute the file ./.exrc, if it exists.

4. Execute search or goto commands given with +/pattern
or +n command-line options (POSIX: -c option).

The .exrc files are simple scripts of ex commands; the
commands in them don’t need a leading colon. You can put
comments in your scripts by starting a line with a double quote
("). This is recommended.

Recovery
The commands ex -r or vi -r list any files you can recover.
You then use the command:

$ vi -r file

to recover a particular file.

Even without a crash, you can force the system to preserve your
buffer by using the command :pre (preserve).

vi set Options
Option Default

autoindent (ai) noai

autoprint (ap) ap

autowrite (aw) noaw

vi set Options | 21

Option Default

beautify (bf) nobf

directory (dir) /tmp

edcompatible noedcompatible

errorbells (eb) errorbells

exrc (ex) noexrc

hardtabs (ht) 8

ignorecase (ic) noic

lisp nolisp

list nolist

magic magic

mesg mesg

novice nonovice

number (nu) nonu

open open

optimize (opt) noopt

paragraphs (para) IPLPPPQP LIpplpipbp

prompt prompt

readonly (ro) noro

redraw (re)

remap remap

report 5

scroll half window

sections (sect) SHNHH HU

shell (sh) /bin/sh

shiftwidth (sw) 8

showmatch (sm) nosm

showmode noshowmode

slowopen (slow)

tabstop (ts) 8

taglength (tl) 0

22 | vi and Vim Editors Pocket Reference

Option Default

tags tags /usr/lib/tags

tagstack tagstack

term (from $TERM)

terse noterse

timeout (to) timeout

ttytype (from $TERM)

warn warn

window (w)

wrapscan (ws) ws

wrapmargin (wm) 0

writeany (wa) nowa

Nothing like the Original
For many, many years, the source code to the original vi was
unavailable without a Unix source code license. This fact
prompted the creation of all of the vi clones described in this
reference.

In January 2002, the source code for the original ex and vi
became available under an open source license.

This code does not compile “out of the box” on modern sys-
tems, and porting it is difficult. Fortunately, the work has
already been done. If you would like to use the original, “real”
vi, you can download the source code and build it yourself.
See http://ex-vi.sourceforge.net/ for more information.

Enhanced Tags and Tag Stacks
Vim and most of the other vi clones provide enhanced tagging
facilities. You can stack locations on a tag stack, and with Exu-
berant ctags, tag more items than just functions.

Enhanced Tags and Tag Stacks | 23

http://ex-vi.sourceforge.net/

Exuberant ctags
The “Exuberant ctags” program was written by Darren
Hiebert (home page: http://ctags.sourceforge.net/). As of this
writing, the current version is 5.8.

This enhanced tags file format has three tab-separated fields:
the tag name (typically an identifier), the source file containing
the tag, and the location of the identifier. Extended attributes
are placed after a separating ;". Each attribute is separated
from the next by a tab character and consists of two colon-
separated subfields. The first subfield is a keyword describing
the attribute; the second is the actual value.

Extended ctags keywords

Keyword Meaning

arity For functions

class For C++ member functions and variables

enum For values in an enum data type

file For static tags, i.e., local to the file

function For local tags

kind The value is a single letter that indicates the lexical
type of the tag

scope Intended mostly for C++ class member functions

struct For fields in a struct

If the field doesn’t contain a colon, it’s assumed to be of type
kind.

Within the value part of each attribute, the backslash, tab, car-
riage return, and newline characters should be encoded as \\,
\t, \r, and \n, respectively.

24 | vi and Vim Editors Pocket Reference

http://ctags.sourceforge.net/

Solaris vi Tag Stacking
vi provides ex and vi commands for managing the tag stack.

Tag commands—ex

Command Function

ta[g][!] tagstring Edit the file containing tagstring as defined
in the tags file

po[p][!] Pop the tag stack by one element

Tag commands—vi

Command Function

^] Look up the location of the identifier under the cursor
in the tags file and move to that location; if tag stack-
ing is enabled, the current location is automatically
pushed onto the tag stack

^T Return to the previous location in the tag stack, i.e.,
pop off one element

Tag management options

Option Function

taglength, tl Controls the number of significant characters in
a tag to be looked up; the default value of zero
indicates that all characters are significant

tags, tagpath The value is a list of filenames in which to look for
tags; the default value is "tags /usr/lib/tags"

tagstack When set to true, vi stacks each location on the
tag stack

Vim—vi Improved
Vim is the most powerful and most popular of the vi clones
currently in use. It is the default version of vi on most GNU/
Linux systems.

Vim—vi Improved | 25

Important Command-Line Options
-b Start in binary mode.

-c command
Execute command at startup (POSIX version of the his-
torical +command).

-C Run in vi compatibility mode.

-f For the GUI version, stay in the foreground.

-g Start the GUI version of Vim, if Vim was compiled with
support for the GUI.

-i viminfo
Read the given viminfo file for initialization instead of the
default viminfo file.

-o [N]
Open N windows, if given; otherwise, open one window
per file.

-O [N]
Like -o, but split the windows vertically.

-n Don’t create a swap file: recovery won’t be possible.

-p Open a new tab for each file named on the command line.

-q filename
Treat filename as the “quick fix” file.

-R Start in read-only mode, setting the readonly option.

-s Enter batch (script) mode. This is only for ex and intended
for running editing scripts (POSIX version of the historical
“–” argument).

-u vimrc
Read the given .vimrc file for initialization and skip all
other normal initialization steps.

-U gvimrc
Read the given .gvimrc file for GUI initialization and skip
all other normal GUI initialization steps.

26 | vi and Vim Editors Pocket Reference

-y Enter “easy” mode, which provides more intuitive behav-
ior for beginners.

-Z Enter restricted mode (same as having a leading r in the
name).

Vim Window Management
Vim lets you split the screen into multiple windows and control
their size and placement.

Window management commands—ex

Command Function

clo[se][!] Close the current window; be-
havior affected by the hidden
option

hid[e] Close the current window, if it’s
not the last one on the screen

[N]new [position] [file] Create a new window, editing an
empty buffer

on[ly] Make this window the only one
on the screen

qa[ll][!] Exit Vim

q[uit][!] Quit the current window (exit if
given in the last window)

res[ize] [±n] Increase or decrease the current
window height by n

res[ize] [n] Set the current window height to
n if supplied; otherwise, set it to
the largest size possible without
hiding the other windows

[N]sn[ext] Split the window and move to
the next file in the argument list,
or to the Nth file if a count is
supplied

[N]sp[lit] [position] [file] Split the current window in half

Vim—vi Improved | 27

Command Function

sta[g] [tagname] Split the window and run
the :tag command as appropri-
ate in the new window

[N]sv[iew] [position] file Same as :split, but set the
readonly option for the buffer

wa[ll][!] Write all modified buffers that
have filenames

wqa[ll][!] Write all changed buffers and
exit

xa[ll][!] Same as wqall

Window management commands—vi

Command Function

^W s
^W S
^W ^S

Same as :split without a file argument; ^W ^S may
not work on all terminals.

^W n
^W ^N

Same as :new without a file argument.

^W ^
^W ^^

Perform :split #, split the window, and edit the
alternate file.

^W q
^W ^Q

Same as the :quit command; ^W ^Q may not work
on all terminals.

^W c Same as the :close command.

^W o
^W ^O

Same as the :only command.

^W ↓
^W j
^W ^J

Move cursor to nth window below the current one.

^W ↑
^W k
^W ^K

Move cursor to nth window above the current one.

^W w
^W ^W

With count, go to nth window; otherwise, move to
the window below the current one. If in the bottom
window, move to the top one.

28 | vi and Vim Editors Pocket Reference

Command Function

^W W With count, go to nth window; otherwise, move to
window above the current one. If in the top win-
dow, move to the bottom one.

^W t
^W ^T

Move the cursor to the top window.

^W b
^W ^B

Move the cursor to the bottom window.

^W p
^W ^P

Go to the most recently accessed (previous)
window.

^W r
^W ^R

Rotate all the windows downward; the cursor stays
in the same window.

^W R Rotate all the windows upward; the cursor stays in
the same window.

^W x
^W ^X

Without count, exchange the current window with
the next one; if there is no next window, exchange
with the previous window. With count, exchange
the current window with the nth window (first win-
dow is one; the cursor is put in the other window).

^W = Make all windows the same height.

^W - Decrease current window height.

^W + Increase current window height.

^W _
^W ^_

Set the current window size to the value given in a
preceding count.

z N ENTER Set the current window height to N.

^W]
^W ^]

Split the current window; in the new upper window,
use the identifier under the cursor as a tag and go to
it.

^W f
^W ^F

Split the current window and edit the filename un-
der the cursor in the new window.

^W i
^W ^I

Open a new window; move the cursor to the first
line that matches the keyword under the cursor.

^W d
^W ^D

Open a new window; move the cursor to the macro
definition that contains the keyword under the
cursor.

Vim—vi Improved | 29

Tabbed Editing
Similar to modern web browsers, Vim lets you create and man-
age multiple tabs. Within each tab, there can be multiple win-
dows. You can then switch back and forth between tabs. This
is an easy way to work on multiple unrelated editing tasks
without cluttering up your screen. Tabs are supported in both
the character and the GUI versions of Vim.

Managing tabs—ex
Tabs are numbered from one.

Command Function

[count] tab command Run command, but open a new
tab when otherwise a new win-
dow would be opened, e.g.,
use :tab split to split the cur-
rent buffer into a new tab.

tabc[lose][!] [count] Close the current tab page. With
count, close the page whose
number is indicated in count.
Use ! to force closing, even if file
contents have not been saved
(the buffer’s contents are not
lost).

tabdo command Execute command for each tab.

tabe[dit] [option] [command]
[file]

Open a new page with a window
editing file. With no arguments,
open an empty page.

tabf[ind] [option] [command] file Open a new page and search for
file in the value of the path op-
tion, like :find.

tabf[irst] Move to the first tab.

tabl[ast] Move to the last tab.

tabm[ove] [N] Move the current tab page to
after tab page N (change the or-
dering of the tab pages them-
selves, not which tab you’re
working in). With no argument,

30 | vi and Vim Editors Pocket Reference

Command Function
make the current tab become the
last one.

tabnew [option] [command] [file] Same as :tabedit.

tabn[ext] [count] Move to next tab, or to tab count.

tabN[ext] [count] Same as :tabprevious.

tabo[nly][!] Close all other tab pages.

tabp[revious] [count] Move to previous tab, or go back
count tabs. This wraps around.

tabr[ewind] Move to the first tab (same
as :tabfirst).

Managing tabs—vi
The control sequences work in both command mode and insert
mode.

Command Function

gt
CTRL Page Down

Same as :tabnext

gT
CTRL Page Up

Same as :tabprevious

^W gf Edit the filename under the cursor in a new tab page

^W gF Edit the filename under the cursor in a new tab page,
starting at the line number following the filename

Tabbed editing options

Option Default

t:cmdheight (t:ch) (per tab page) 1

guitablabel (gtl)

guitabtooltip (gtt)

showtabline (stal) 1

tabline (tal)

tabpagemax (tpm) 10

Vim—vi Improved | 31

Vim Extended Regular Expressions
\| Indicates alternation.

\+ Matches one or more of the preceding regular
expressions.

\= Matches zero or one of the preceding regular expressions.

\{...}
Defines an interval expression. Interval expressions de-
scribe counted numbers of repetitions. In the following
description, n and m represent integer constants:

\{n} Matches exactly n repetitions of the previous
regular expression.

\{n,} Matches n or more repetitions of the previous
regular expression, as many as possible.

\{n,m} Matches n to m repetitions.

For Vim, n and m can range from 0 to 32,000. Vim requires
the backslash only on the { and not on the }. Vim extends
traditional interval expressions with additional matching
notations, as follows:

\{,m} Matches 0 to m of the preceding regular
expression, as much as possible.

\{} Matches 0 or more of the preceding regular
expressions, as much as possible (same as *).

\{-n,m} Matches n to m of the preceding regular ex-
pression, as few as possible.

\{-n} Matches n of the preceding regular
expression.

\{-n,} Matches at least n of the preceding regular ex-
pression, as few as possible.

\{-,m} Matches 0 to m of the preceding regular
expression, as few as possible.

\i Matches any identifier character, as defined by the
isident option.

\I Like \i, excluding digits.

32 | vi and Vim Editors Pocket Reference

\k Matches any keyword character, as defined by the
iskeyword option.

\K Like \k, excluding digits.

\f Matches any filename character, as defined by the
isfname option.

\F Like \f, excluding digits.

\p Matches any printable character, as defined by the
isprint option.

\P Like \p, excluding digits.

\s Matches a whitespace character (exactly a space or tab).

\S Matches anything that isn’t a space or a tab.

\b Backspace.

\e Escape.

\r Carriage return.

\t Tab.

\n Matches the end of line.

~ Matches the last given substitute (i.e., replacement)
string.

\(...\)
Provides grouping for *, \+, and \=, as well as making
matched subtexts available in the replacement part of a
substitute command (\1, \2, etc.).

\1 Matches the same string that was matched by the first
subexpression in \(and \). \2, \3, and so on, may be used
to represent the second, third, and so forth
subexpressions.

The isident, iskeyword, isfname, and isprint options define
the characters that appear in identifiers, keywords, and file-
names, and that are printable, respectively.

Vim—vi Improved | 33

Command-Line History and Completion
Vim keeps a history of ex commands that you have issued. You
can recall and edit commands from that history and use the
completion facilities to save typing when entering commands.

History commands—vi

Key Meaning

↑, ↓ Move up (previous), down (more recent)
in the history

←, → Move left, right on the recalled line

INS Toggle insert/overstrike mode; default is
insert mode

BACKSPACE Delete characters

SHIFT or CONTROL
combined with ← or →

Move left or right one word at a time

^B or HOME Move to the beginning of the command
line

^E or END Move to the end of the command line

If Vim is in vi compatibility mode, ESC acts likes ENTER and
executes the command. When vi compatibility is turned off,
ESC exits the command line without executing anything.

The wildchar option contains the character you type when you
want Vim to do a completion. The default value is the tab
character. You can use completion for the following:

Command names
Available at the start of the command line.

Tag values
After you’ve typed :tag.

Filenames
When typing a command that takes a filename argument
(see :help suffixes for details).

34 | vi and Vim Editors Pocket Reference

Option values
When entering a :set command, for both option names
and their values.

Completion commands—vi

Command Function

^A Insert all names that match the pattern

^D List the names that match the pattern; for
filenames, directories are highlighted

^L If there is exactly one match, insert it; other-
wise, expand to the longest common prefix
of the multiple matches

^N Go to next of multiple wildchar matches, if
any; otherwise, recall more recent history
line

^P Go to previous of multiple wildchar matches,
if any; otherwise, recall older history line

Value of wildchar (Default: tab) Perform a match, inserting the
generated text; pressing TAB successively
cycles among all the matches

Tag Stacks
Vim provides ex and vi commands for managing the tag stack.

Tag commands—ex

Command Function

[count]po[p][!] Pop a cursor position off the
stack, restoring the cursor to its
previous position

sts[elect][!] [tagstring] Like tselect, but split the win-
dow for the selected tag

ta[g][!] [tagstring] Edit the file containing tagstring
as defined in the tags file

[N]ta[g][!] Jump to the Nth newer entry in
the tag stack

Vim—vi Improved | 35

Command Function

tags Display the contents of the tag
stack

tl[ast][!] Jump to the last matching tag

[N]tn[ext][!] Jump to the Nth next matching
tag (default one)

[N]tN[ext][!] Same as tprevious

[N]tp[revious][!] Jump to the Nth previous match-
ing tag (default one)

[N]tr[ewind][!] Jump to the first matching tag;
with N, jump to the Nth match-
ing tag

ts[elect][!] [tagstring] List the tags that match tag-
string, using the information in
the tags file(s)

Tag commands—vi

Command Function

^]
g <LeftMouse>
CTRL-<LeftMouse>

Look up the location of the identifier
under the cursor in the tags file and
move to that location; the current lo-
cation is automatically pushed to the
tag stack

^T Return to the previous location in the
tag stack, i.e., pop off one element

Edit-Compile Speedup
Vim provides several commands to increase programmer
productivity.

36 | vi and Vim Editors Pocket Reference

Program development commands—ex

Command Function

cc[!] [n] Display error n if supplied; otherwise,
redisplay the current error

cf[ile][!] [errorfile] Read the error file and jump to the first
error

clast[!] [n] Display error n if supplied; otherwise,
display the last error

cl[ist][!] List the errors that include a filename

[N]cn[ext][!] Display the Nth next error that includes
a filename

[N]cp[previous][!] Display the Nth previous error that in-
cludes a filename

crewind[!] [n] Display error n if supplied

cq[uit] Quit with an error code so that the com-
piler won’t compile the same file again;
intended primarily for the Amiga
compiler

mak[e] [arguments] Run make, based on the settings of sev-
eral options as described in the next ta-
ble, then go to the location of the first
error

Program development options

Option Value Function

errorformat %f:%l:\ %m A description of what error messages
from the compiler look like; this ex-
ample value is for gcc, the C compiler
from the GNU Compiler Collection

makeef /tmp/vim##.err The name of a file that will contain
the compiler output; the ## causes
Vim to create unique filenames

makeprg make The program that handles the
recompilation

shell /bin/sh The shell to execute the command
for rebuilding your program

Vim—vi Improved | 37

Option Value Function

shellpipe 2>&1| tee Whatever is needed to cause the shell
to save both standard output and
standard error from the compilation
in the error file

Programming Assistance
Vim provides multiple mechanisms for finding identifiers that
are of interest.

Identifier search commands—ex

Command Function

che[ckpath][!] List all the included files that
couldn’t be found; with the !, list
all the included files.

[range]dj[ump][!] [count]
[/]pattern[/]

Like [^D and] ^D, but search in
range lines; the default is the whole
file.

[range]dl[ist][!]
[/]pattern[/]

Like [D and]D, but search in range
lines; the default is the whole file.

[range]ds[earch][!] [count]
[/]pattern[/]

Like [d and]d, but search in range
lines; the default is the whole file.

[range]dsp[lit][!] [count]
[/]pattern[/]

Like ^W d and ^W ^D, but search in
range lines; the default is the whole
file.

[range]ij[ump][!] [count]
[/]pattern[/]

Like [^I and] ^I, but search in
range lines; the default is the whole
file.

[range]il[ist][!]
[/]pattern[/]

Like [I and]I, but search in range
lines; the default is the whole file.

[range]is[earch][!] [count]
[/]pattern[/]

Like [i and]i, but search in range
lines (the default is the whole file).
Without the slashes, a word search
is done; with slashes, a regular ex-
pression search is done.

38 | vi and Vim Editors Pocket Reference

Command Function

[range]isp[lit][!] [count]
[/]pattern[/]

Like ^W i and ^W ^I, but search in
range lines; the default is the whole
file.

Identifier search commands—vi

Command Function

[d Display the first macro definition for the identifier under
the cursor

]d Display the first macro definition for the identifier under
the cursor, but start the search from the current position

[D Display all macro definitions for the identifier under the
cursor; filenames and line numbers are displayed

]D Display all macro definitions for the identifier under the
cursor, but start the search from the current position

[^D Jump to the first macro definition for the identifier under
the cursor

] ^D Jump to the first macro definition for the identifier under
the cursor, but start the search from the current position

^W d
^W ^D

Open a new window showing the location of the first
macro definition of the identifier under the cursor; with
a preceding count, find the specified occurrence of the
macro

[i Display the first line that contains the keyword under
the cursor

]i Display the first line that contains the keyword under
the cursor, but start the search at the current position in
the file; this command is most effective when given a
count

[I Display all lines that contain the keyword under the cur-
sor; filenames and line numbers are displayed

]I Display all lines that contain the keyword under the cur-
sor, but start from the current position in the file

[^I Jump to the first occurrence of the keyword under the
cursor

Vim—vi Improved | 39

Command Function

] ^I Jump to the first occurrence of the keyword under the
cursor, but start the search from the current position

^W i
^W ^I

Open a new window showing the location of the first
occurrence of the identifier under the cursor; with a pre-
ceding count, go to the specified occurrence

Extended matching commands—vi
Provide a preceding count to these commands to move forward
or backward by more than one instance of the desired search
text.

Command Function

% Extended to match the /* and */ of C comments and
the C preprocessor conditionals (#if, #endif, etc.)

[(Move to the Nth previous unmatched (

[) Move to the Nth next unmatched)

[{ Move to the Nth previous unmatched {

[} Move to the Nth next unmatched }

[# Move to the Nth previous unmatched #if or #else

]# Move to the Nth next unmatched #else or #endif

[*, [/ Move to the Nth previous unmatched start of a C
comment, /*

]*,]/ Move to the Nth next unmatched end of a C comment,
*/

Indentation and formatting options

Option Function

autoindent Simple-minded indentation; uses that of the
previous line

smartindent Similar to autoindent, but is smarter about C
syntax; deprecated in favor of cindent

40 | vi and Vim Editors Pocket Reference

Option Function

cindent Enables automatic indenting for C programs
and is quite smart; C formatting is affected by
the rest of the options listed in this table

cinkeys Input keys that trigger indentation options

cinoptions Options that tailor your preferred indentation
style

cinwords Keywords that start an extra indentation on the
following line

formatoptions A number of single-letter flags that control sev-
eral behaviors, notably how comments are
formatted as you type them

comments Describes different formatting options for dif-
ferent kinds of comments, both those with
starting and ending delimiters, as in C, and
those that start with a single symbol and go to
the end of the line, such as in a Makefile or shell
program

Folding and Unfolding Text
Folding is enabled with the foldenable option. There are
six folding methods, controlled by the foldmethod option, as
follows:

diff
Folds are used for unchanged text.

expr
Folds are defined by a regular expression.

indent
Folds are defined by the indentation of the text being
folded and the value of shiftwidth.

manual
Folds are defined using regular Vim commands (such as
the search and motion commands).

Vim—vi Improved | 41

marker
Folds are defined by predefined markers (which you can
change) in the text.

syntax
Folds are defined by the syntax of the language being
edited.

Folding commands—ex

Command Function

range fo[ld] Create a fold for the lines in
range.

range foldc[lose][!] Close folds in range. With !,
close all folds; otherwise, open
just one fold.

[range] folddoc[losed] command (Fold do closed.) Similar to the
g (global) command, this com-
mand marks all lines that are in a
closed fold and executes com-
mand on them.

[range] foldd[oopen] command (Fold do open.) Similar to the g
(global) command, this com-
mand marks all lines not in a
closed fold and executes com-
mand on them.

range foldo[pen][!] Open folds in range. With !,
open all folds; otherwise, open
just one fold.

Folding commands—vi
Folding commands start with z, since it looks something like
a folded piece of paper, viewed from the side.

42 | vi and Vim Editors Pocket Reference

Command Function

za Toggle folding. On an open fold, close one or
count folds. On a closed fold, open folds and set
foldenable.

zA Like za, but open or close folds recursively.

zc Close one or count folds under the cursor.

zC Close all folds under the cursor.

zd Delete the fold under the cursor. Nested folds are
moved up a level. Careful! This can delete more
than you expect, and there is no undo.

zD Delete folds recursively starting under the cursor.

zE Eliminate all folds in the window.

zf motion Create a fold.

zF Create a fold for count lines (like zf).

zi Toggle the value of foldenable.

zj Move down to start of next fold or down count folds.

zk Move up to start of previous fold or up count folds.

zm Fold more by subtracting one from foldlevel if it’s
greater than zero; set foldenable.

zM Close all folds, set foldlevel to zero, and set
foldenable.

zn Fold “none”: reset foldenable and open all folds.

zN Fold “normal”: set foldenable and restore all folds
to their previous states.

zo Open one or count folds.

zO Open all folds under the cursor.

zr Reduce folding. Adds one to foldlevel.

zR Open all folds and set foldlevel to the highest fold
level.

zv Open enough folds to make the line with the cursor
visible (view the cursor).

zx Update folds by undoing manually opened and
closed folds, reapplying foldlevel, and doing zv.

Vim—vi Improved | 43

Command Function

zX Undo manually opened and closed folds, then re-
apply foldlevel.

[z Move to start of current open fold. If already there,
move to start of containing fold if there is one; oth-
erwise, fail. With count, repeat the given number of
times.

]z Like [z, but move to the end of the fold or the end
of the containing fold.

Folding options

Option Default

foldclose (fcl) 0

foldcolumn (fdc) 0

foldenable (fen) foldenable

foldexpr (fde) 0

foldignore (fdi) #

foldlevel (fdl) 0

foldlevelstart (fdls) –1

foldmarker (fmr) {{{,}}}

foldmethod (fdm) manual

foldminlines (fml) 1

foldnestmax (fdn) 20

foldopen (fdo) block,hor,mark,per
cent,quickfix,search,tag,undo

foldtext (fd) foldtext()

Insertion Completion Facilities
Vim provides completion facilities: the ability to enter only a
part of the final text and have Vim provide you with a list of
suggested completions based on the commands you use and
the content of the current files.

44 | vi and Vim Editors Pocket Reference

The completion commands (except for completion with the
complete option) are two-keystroke combinations that start
with CTRL-X . Most second keystrokes are not bound to ac-
tions in input mode, so it is often useful to map the second
keystroke to the original combination, such as :inoremap ^F
^X^F.

The completion commands present a list of choices that you
can cycle through using CTRL-N and CTRL-P (for “next” and
“previous,” respectively). Use CTRL-E to end the completion
without making a choice, and use CTRL-Y or ENTER to se-
lect the current choice and insert it.

The completion facilities are not simple, but they bring con-
siderable power and time savings to long editing sessions. It is
worthwhile to invest time to learn to use them. See Chapter 14
of Learning the vi and Vim Editors for the details.

Completion commands—vi
The order here is alphabetic by keystroke. Commands marked
with a ✓ allow use of the second character to move to the next
candidate, along with the regular CTRL-N .

Completion with the complete option is the most customizable
and flexible method.

Command Completion Description

^N
^P

Using complete Do completion searching forward
(^N) or backward (^P), based on
the comma-separated list of com-
pletion sources given in the
complete option. The next table
lists the possible sources. Use ^X
^N or ^X ^P to copy additional
words from the original source.

^X ^D ✓ Macro names Search the current and included
files for macros (defined with
#define) that match the text un-
der the cursor. Repeating the
command after an insertion

Vim—vi Improved | 45

http://oreilly.com/catalog/9780596529833/

Command Completion Description
copies additional words from the
original source.

^X ^F ✓ Filename Look for filenames (not file con-
tents) that match the word under
the cursor. The path option is not
used here.

^X ^I Keyword in file
and included
files

Similar to keyword completion
(^X ^N), but search in included
files as well, as specified by the
include option; the default is a
pattern matching C and C++
#include directives. The path op-
tion acts as a search path to find
included files in addition to look-
ing in the “standard” places.
Repeating the command after an
insertion copies additional words
from the original source.

^X ^K ✓ Dictionary Search the files in the comma-
separated list that is the value of
the dictionary option for a word
that matches.

^X ^L ✓ Whole line Search backward in the file for a
line matching what you’ve typed
so far. Typing ̂ X ̂ L after inserting
a matched line lets you select one
of the lines next to the original line
that was inserted.

^X ^N ✓
^X ^P ✓

Keyword in file Search forward (^X ^N) or back-
ward (^X ^P) for a “keyword”
matching what you’ve typed so
far. Keywords are contiguous
sequences of the characters ap-
pearing in the iskeyword option.
Repeating the command after an
insertion copies additional words
from the original source.

^X ^O ✓ Omni Call the Vim function named by
the omnifunc option to do com-
pletion. This function is expected

46 | vi and Vim Editors Pocket Reference

Command Completion Description
to be filetype-specific (Javascript,
HTML, C++, etc.) and loaded
when the file is loaded.

^X ^S ✓
^X s

Spelling Offer possible spelling correc-
tions for the word under the
cursor. Spellchecking must be en-
abled with the spell option.

^X ^T ✓ Thesaurus Similar to dictionary completion;
search files in the thesaurus op-
tion and provide completion from
all matching lines. Here, all words
on a line with a match are shown
as completion options, not just
the first word on the line. Similar-
ly, all lines with a possible match
are shown.

^X ^U ✓ User function Call the Vim function named by
the completefunc option to do
completion.

^X ^V ✓ ex command
line

Provide completion for Vim com-
mands. This is intended to sim-
plify Vim script development.
Repeating the command does
additional completion.

^X ^] ✓ Tag Search forward in the current and
included files for the first tag
matching the word under the cur-
sor. If showfulltag is set, Vim
displays the tag and the search
pattern used for it.

The next table describes possible completion sources for use
with the complete option. Sources are listed alphabetically. The
default value for complete is ".,w,b,u,t,i".

Vim—vi Improved | 47

Name Description

. (period) The current buffer.

b Other buffers, even those that are not loaded in a
window (visible).

d The current and included files; search for macro
definitions.

i The current and included files.

k The dictionary files listed in the dictionary option.

kfile Scan file for dictionary lines that match. May be
given multiple times, e.g., k~/french. A pattern may
be used.

kspell Use the current spellchecking scheme.

s The thesaurus files listed in the thesaurus option.

sfile Scan file for thesaurus lines. May be given multiple
times, e.g., s~/french. A pattern may be used.

t,] Tag completion.

u The unloaded buffers in the buffer list.

U The buffers that are not in the buffer list.

w Buffers in other windows.

Completion options

Option Default

complete (cpt) .,w,b,u,t,i

completefunc (cfu)

completeopt (cot) menu,preview

define (def) ^\s*#\s*define

dictionary (dict)

include (inc) ^\s*#\s*include

infercase (inf) noinfercase

isfname (isf) @,48-57,/,.,-,_,+,,,#,$,%,~,=

iskeyword (isk) @,48-57,_,192-255

omnifunc (ofu)

48 | vi and Vim Editors Pocket Reference

Option Default

pumheight (ph) 0

showfulltag (sft) noshowfulltag

spell nospell

thesaurus (tsr)

Diff Mode
When invoked as either vimdiff or gvimdiff, Vim provides diff
mode, which lets you view a comparison of the differences be-
tween two files. vimdiff is for use on a standard terminal (or
inside a terminal emulator), while gvimdiff uses the GUI
facilities of your operating system.

When Vim is built from source, vimdiff and gvimdiff are usu-
ally installed as links to Vim. On a system using a package
manager, you may have to install them separately.

Figure 1 shows an example screenshot of gvimdiff in action.
The figure shows the salient points:

• Lines that are identical are folded so that they are hidden
(see “Folding and Unfolding Text” on page 41 for infor-
mation on folding text).

• Lines that appear in one file but not in the other are high-
lighted (in light blue) in the file in which they are present
and are shown as lines of dashes in the file from which
they are absent.

• Lines that are different between the files are highlighted
(in pink), with the actual differences between the lines
highlighted in red.

This mode makes it straightforward to move bits of text from
one version of a file to another. For example, if you maintain
a project using copies of library files from another source, when
the source files are revised, it is easy to copy and paste the
changes into your version of the file.

Vim—vi Improved | 49

Figure 1. gvimdiff in action

50 | vi and Vim Editors Pocket Reference

Vim Scripting
Scripting in Vim is a large topic, one deserving of a full book
to itself. This section presents some of the barest essentials. For
more information, see Chapter 12 of Learning the vi and Vim
Editors and the online help.

Vim provides essentially a full-featured programming language
with variables, operators, control flow constructs, and the abil-
ity to define your own functions. This section looks (briefly) at
each of these in turn.

Following vi, comments start with a double-quote character
and continue to the end of the line. Typically you put
comments on lines by themselves to avoid problems with
double-quoted strings, which are also part of Vim’s language.

Variables, options, and numbers
Vim lets you define your own variables and includes a mecha-
nism to indicate the scope, or lifetime, of a variable. You may
also access the value of Vim options. Variable names consist of
any number of letters, digits, or underscores, and may not start
with a digit. Vim uses special markers in front of the variable
or option name to indicate the type and scope. By default, var-
iables are global:

Prefix Meaning

& Vim option

$ Environment variable

@ Register (single-character names)

a: Function argument

b: Local to the buffer

g: Global

l: Local to the function

s: Local to script read with source

t: Local to the tab page

v: Vim-defined global variable

Vim—vi Improved | 51

http://oreilly.com/catalog/9780596529833/
http://oreilly.com/catalog/9780596529833/

Prefix Meaning

w: Local to the window

Two commands assign a value to a variable or remove a
variable:

Command Function

let Assign a value

unlet[!] Remove a variable; adding ! prevents a diagnostic
if the variable doesn’t exist

Numeric values in Vim are always integer values. Prefix a num-
ber with 0 (zero) to indicate it is octal (base 8), or with either
0x or 0X to indicate that it is hexadecimal (base 16). Otherwise,
the number is taken as decimal (base 10).

Vim provides regular arrays (termed lists) and associative ar-
rays (termed dictionaries). As dictionaries may hold functions,
you can even do object-oriented programming! See the online
help for more information.

Control flow commands
The control flow commands are conventional, as described in
the following table.

Command Function

if condition
 commands
elsif condition
 commands
else condition
 commands
endif

If-then-else statement. The elsif and else parts are
optional, and there may be as many elsif parts as
needed.

for var in list
 commands
endfor

Loop over a list of values, setting variable var to a
new value each time before running commands.
This is similar to the shell for loop.

52 | vi and Vim Editors Pocket Reference

Command Function

while condition
 commands
endwhile

While condition is true, execute commands.

try
 commands
catch pattern
 commands
finally
 commands
endtry

Catch exceptions (see the online help for details).

break Break out of the enclosing while loop, skipping the
rest of the loop body and terminating the loop.

continue Go to the top of the enclosing while loop, skipping
the rest of the loop body.

finish Exit from a script read with the source command.

throw expr Evaluate expr and throw the result as an exception;
the exception is caught with a catch clause inside
try…endtry.

Operators
Expressions are built up by applying operators to values. Val-
ues are obtained from numeric or string constants and from
variables, options, and list or dictionary elements. Most of the
operators will be familiar to programmers, and their prece-
dence is generally that of the C language (“The usual prece-
dence is used,” says the online help).

Operators Meaning

+ − Addition and subtraction

* / % Multiplication, division, and modulus

. (period) String concatenation

e1 ? e2 : e3 The C ternary operator: if e1 is true, use
e2, otherwise, use e3

== != Equals and not equals

< <= Less than and less than or equals

Vim—vi Improved | 53

Operators Meaning

> >= Greater than and greater than or equals

=~ !~ Matches and does not match (regular ex-
pression matching)

= Absolute assignment; use with let

+= -= .= Incremental assignment: add to, subtract
from, and concatenate onto the end; use
with let

By default, the comparison operators (==, !=, <, <=, >, >=,
=~, !~) ignore case or respect it based on the setting of the
ignorecase option. Suffixing the operators with # forces the test
to match case, whereas using ? forces the test to ignore case.

User-defined functions
Vim lets you define your own functions. The following table
outlines the commands related to defining and calling func-
tions, with explanation following the table.

Command Function

function Name([args])
 commands
 return value
endfunction

Define a function

function Name([args]) range
 commands
 return value
endfunction

Define a function that operates upon a
range of lines

function! Name([args])
 commands
 return value
endfunction

Define a function, even if the function
already exists

function Name(args, ...)
 commands
 return value
endfunction

Define a function that takes a variable
number of arguments

function List all user-defined function names
and their arguments

54 | vi and Vim Editors Pocket Reference

Command Function

function Name Display the body of function Name

delfunction Name Remove (undefine) function Name

[N,M] call Func([args]) Call a function upon a range of lines N
through M

User-defined function names must begin with an uppercase
letter so that Vim can distinguish them from built-in functions.

Arguments (parameters) are optional. If they’re supplied, you
reference them within the function body using the a: prefix on
their names. When the “...” syntax is used, you access the
additional, unnamed arguments as a:1, a:2, and so on. a:0 is
a count of the additional parameters, and a:000 is a list of all
the additional arguments. Functions using “...” may have up
to 20 additional arguments.

Functions defined with the range syntax are called once for the
range of lines; the starting and ending line numbers are avail-
able as a:firstline and a:lastline, respectively. Functions
defined without range are called once for each line in the range.

Use the return statement to return a value from the function.
Return values must be numeric; return without a value or
“falling off the end” of the function causes the function to re-
turn zero.

Variables used within a function body are automatically local
to the function; you must use the g: prefix to access global
variables.

The function body is checked for validity when the function is
called, not when it’s defined. You should therefore test your
functions carefully before publishing them.

The call command calls a function on a range of lines. Oth-
erwise, function calls may be used as elements in an expression
in any context that accepts an expression (such as with if).

Vim also provides function references, which are variables that
“point” at functions and may be used to call them indirectly.

Vim—vi Improved | 55

Such variables must also have names that start with an upper-
case letter. When combined with dictionaries, they provide a
rudimentary object-oriented programming capability; see the
online help for the details.

Of course, as is often the case in the Free Software and open
source worlds, chances are good that someone else has already
written a function that does what you need (or 90% of it). There
are many Vim functions available at the Vim website. Check
there first before diving in to write a function of your own!

Running scripts
There are multiple ways to run scripts. You can read a file di-
rectly with the source command. For example, your ~/.vimrc
file might execute source ~/.exrc. Doing this lets you keep
commands that will only work in vi in the .exrc file, while still
letting you execute them in Vim as well.

More commonly used, the auto-commands mechanism lets you
read and execute scripts based on a file’s type, as determined
by the file’s suffix. For example, the author has the following
in his .vimrc file:

autocmd BufReadPre,FileReadPre *.xml source ~/.ex-sgml-rc

The aliases and input mappings specific to XML are kept in a
separate file. This keeps them from getting in the way when
you are working on other kinds of files, but makes them avail-
able when you are editing XML.

Vim set Options

Option Default

autoread (ar) noautoread

background (bg) dark or light

backspace (bs) 0

backup (bk) nobackup

backupdir (bdir) .,~/tmp/,~/

56 | vi and Vim Editors Pocket Reference

http://www.vim.org

Option Default

backupext (bex) ~

binary (bin) nobinary

cindent (cin) nocindent

cinkeys (cink) 0{,0},:,0#,!^F,o,O,e

cinoptions (cino)

cinwords (cinw) if,else,while,do,for,switch

comments (com)

compatible (cp) cp; nocp when a .vimrc file is found

completeopt (cot) menu,preview

cpoptions (cpo) aABceFs

cursorcolumn (cuc) nocursorcolumn

cursorline (cul) nocursorline

define (def) ^\s*#\s*define

directory (dir) .,~/tmp,/tmp

equalprg (ep)

errorfile (ef) errors.err

errorformat (efm) (too long to print)

expandtab (et) noexpandtab

fileformat (ff) unix

fileformats (ffs) dos,unix

formatoptions (fo) Vim default: tcq; vi default: vt

gdefault (gd) nogdefault

guifont (gfn)

hidden (hid) nohidden

hlsearch (hls) nohlsearch

history (hi) Vim default: 20; vi default: 0

icon noicon

iconstring

include (inc) ^\s*#\s*include

incsearch (is) noincsearch

Vim—vi Improved | 57

Option Default

isfname (isf) @,48-57,/,.,-,_,+,,,#,$,%,~,=

isident (isi) @,48-57,_,192-255

iskeyword (isk) @,48-57,_,192-255

isprint (isp) @,161-255

makeef (mef) /tmp/vim##.err

makeprg (mp) make

modifiable (ma) modifiable

mouse

mousehide (mh) nomousehide

paste nopaste

ruler (ru) noruler

secure nosecure

shellpipe (sp)

shellredir (srr)

showmode (smd) Vim default: smd; vi default: nosmd

sidescroll (ss) 0

smartcase (scs) nosmartcase

spell nospell

suffixes *.bak,~,.o,.h,.info,.swp

taglength (tl) 0

tagrelative (tr) Vim default: tr; vi default: notr

tags (tag) ./tags,tags

tildeop (top) notildeop

undolevels (ul) 1000

viminfo (vi)

writebackup (wb) writebackup

58 | vi and Vim Editors Pocket Reference

nvi—New vi
nvi is a vi clone created for the 4.4BSD Berkeley Unix release.
It’s intended to be “bug-for-bug” compatible with the original,
although it does have a number of extensions over the original
vi.

Important Command-Line Options
-c command

Execute command at startup.

-F Don’t copy the entire file when starting to edit.

-R Start in read-only mode, setting the readonly option.

-s Enter batch (script) mode. This is only for ex and is in-
tended for running editing scripts. Prompts and nonerror
messages are disabled.

-S Run with the secure option set, disallowing access to ex-
ternal programs.

nvi Window Management Commands

Command Function

bg Hide the current window

di[splay] b[uffers] Display all buffers, including named,
unnamed, and numeric buffers

di[splay] s[creens] Display the filenames of all back-
grounded windows

Edit filename Edit filename in a new window

Edit /tmp Create a new window editing an emp-
ty buffer; /tmp is interpreted specially
to create a new temporary file

fg filename Uncover filename into the current
window

Fg filename Uncover filename in a new window;
the current window is split

nvi—New vi | 59

Command Function

Next Edit the next file in the argument list
in a new window

Previous Edit the previous file in the argument
list in a new window

resize ±nrows Increase or decrease the size of the
current window by nrows rows

Tag tagstring Edit the file containing tagstring in a
new window

The ^W command cycles between windows, top to bottom.
The :q and ZZ commands exit the current window.

You may have multiple windows open on the same file.
Changes made in one window are reflected in the other.

nvi Extended Regular Expressions
You use :set extended to enable extended regular expression
matching:

| Indicates alternation. The left and right sides don’t need
to be single characters.

+ Matches one or more of the preceding regular expressions.
This is either a single character or a group of characters
enclosed in parentheses.

? Matches zero or one occurrence of the preceding regular
expression.

(...)
Used for grouping, to allow the application of additional
regular expression operators.

{...}
Describes an interval expression (interval expressions
were defined in “Vim Extended Regular Expres-
sions” on page 32).

When extended isn’t set, use \{ and \}.

60 | vi and Vim Editors Pocket Reference

When extended is set, you should precede the above metachar-
acters with a backslash in order to match them literally.

Command-Line History and Completion Options

Option Description

cedit The first character of this string, when used on the colon
command line, provides access to the command history;
pressing ENTER on any given line executes that line.

filec The first character of this string, when used on the colon
command line, does shell-style filename expansion; when
this character is the same as for the cedit option, command-
line editing is performed only when the character is entered
as the first character on the colon command line.

Both of these options are not set by default. Set them in your
$HOME/.nexrc file.

Tag Stacks
nvi provides both ex and vi commands for managing the tag
stack.

Tag commands—ex

Command Function

di[splay] t[ags] Display the tag stack

ta[g][!] tagstring Edit the file containing tagstring as defined
in the tags file

Ta[g][!] tagstring Just like :tag, except that the file is edited in
a new window

tagp[op][!] tagloc Pop to the given tag or to the most recently
used tag if no tagloc is supplied

tagt[op][!] Pop to the oldest tag in the stack, clearing
the stack in the process

nvi—New vi | 61

Tag commands—vi

Command Function

^] Look up the location of the identifier under the cursor
in the tags file and move to that location; the current
location is automatically pushed to the tag stack

^T Return to the previous location in the tag stack

nvi 1.79 set Options

Option Default

backup

cdpath Environment variable $CDPATH or current
directory

cedit

comment nocomment

directory (dir) $TMPDIR, or /tmp

extended noextended

filec

iclower noiclower

leftright noleftright

lock lock

octal nooctal

path

recdir /var/tmp/vi.recover

ruler noruler

searchincr nosearchincr

secure nosecure

shellmeta ~{[*?$`'"\

showmode (smd) noshowmode

sidescroll 16

taglength (tl) 0

tags (tag) tags /var/db/libc.tags /sys/kern/tags

62 | vi and Vim Editors Pocket Reference

Option Default

tildeop notildeop

wraplen (wl) 0

elvis
elvis is a vi clone written by Steve Kirkendall.

Important Command-Line Options
-a Load each file named on the command line to a separate

window.

-c command
Execute command at startup (POSIX version of the his-
torical +command syntax).

-f filename
Use filename for the session file instead of the default
name.

-G gui
Use the given interface. The default is the termcap inter-
face. Other choices include x11, windows, curses, open, and
quit. Not all the interfaces may be compiled into your
version of elvis.

-i Start editing in input mode instead of in command mode.

-o logfile
Redirect the startup messages out to a file, instead of
stdout/stderr. This is of critical importance to MS Win-
dows users because Windows discards anything written
to standard output and standard error.

-R Start editing each file in read-only mode.

-s Read an ex script from standard input and execute (per
the POSIX standard). This bypasses all initialization
scripts.

elvis | 63

-S Set the option security=safer for the whole session, not
just execution of .exrc files. This adds a certain amount
of security, but should not necessarily be trusted blindly.

-SS
Set the option security=restricted, which is even more
paranoid than security=safer.

-V Output more verbose status information.

-? Print a summary of the possible options.

elvis Window Management
elvis provides multiwindow editing.

Window management commands—ex

Command Function

close Close the current window; the buffer that the
window was displaying remains intact

new Create a new empty buffer and create a new
window to show that buffer

qall Issue a :q command for each window; buffers
without windows are not affected

sa[ll] Create a new window for any files named in
the argument list that don’t already have a
window

sl[ast] Create a new window, showing the last file in
the argument list

sne[w] Same as new

sn[ext] [file...] Create a new window, showing the next file in
the argument list

sN[ext] Create a new window, showing the previous
file in the argument list

sp[lit] [file] Create a new window; load it with file if sup-
plied; otherwise, the new window shows the
current file

64 | vi and Vim Editors Pocket Reference

Command Function

sre[wind][!] Create a new window, showing the first file in
the argument list; reset the “current” file as the
first with respect to the :next command

sta[g][!] tag Create a new window, showing the file where
the requested tag is found

wi[ndow] [target] With no target, list all windows; the possible
values for target are described in the next table

wquit Write the buffer back to the file and close the
window; the file is saved whether or not it has
been modified

Arguments to the :window command

Argument Meaning

+ Switch to the next window, like ^W k

++ Switch to the next window, wrapping like ^W ^W

- Switch to the previous window, like ^W j

- - Switch to the previous window, wrapping

num Switch to the window whose windowid = num

buffer-name Switch to the window editing the named buffer

Window management commands—vi

Command Function

^W c Hide the buffer and close the window

^W d Toggle the display mode between “normal” and
the buffer’s usual display mode; this is a per-
window option

^W j Move down to the next window

^W k Move up to the previous window

^W n Create a new window and a new buffer to be dis-
played in the window

^W q Save the buffer and close the window

^W s Split the current window

elvis | 65

Command Function

^W S Toggle the wrap option; this option controls
whether long lines wrap or whether the whole
screen scrolls to the right, and is a per-window
option

[N] ^W ^W Move to the next window, or to the Nth window

^W] Create a new window, then look up the tag
underneath the cursor

^W + Increase the size of the current window (termcap
interface only)

^W - Reduce the size of the current window (termcap
interface only)

^W \ Make the current window as large as possible
(termcap interface only)

elvis Extended Regular Expressions
\| Indicates alternation.

\+ Matches one or more of the preceding regular
expressions.

\? Matches zero or one of the preceding regular expressions.

\@ Matches the word under the cursor.

\= Indicates where to put the cursor when the text is
matched.

\(...\)
Used for grouping to allow the application of additional
regular expression operators.

\{...\}
Describes an interval expression (interval expressions
were defined in “Vim Extended Regular Expres-
sions” on page 32).

POSIX bracket expressions (character classes, etc.; see “POSIX
character classes” on page 15) are available.

66 | vi and Vim Editors Pocket Reference

Command-Line History and Completion Movement
Keys

Key Effect

↑, ↓ Page up and down through the Elvis ex history buffer

←, → Move around on the command line

Insert characters by typing and erase them by backspacing over
them.

You can use the TAB key for filename expansion.

To get a real tab character, precede it with a ^V. Disable file-
name completion entirely by setting the Elvis ex history buf-
fer’s inputtab option to tab via the following command:

:(Elvis ex history)set inputtab=tab

Tag Stacks
elvis provides both ex and vi commands for managing the tag
stack.

Tag commands—ex

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined
in the tags file

stac[k] Display the current tag stack

po[p][!] Pop a cursor position off the stack, restoring
the cursor to its previous position

elvis | 67

Tag commands—vi

Command Function

^] Look up the location of the identifier under the cursor
in the tags file and move to that location; the current
location is automatically pushed onto the tag stack

^T Return to the previous location in the tag stack

Edit-Compile Speedup
elvis provides several commands to increase programmer
productivity.

Program development commands—ex

Command Option Function

cc[!] [args] ccprg Run the C compiler; use-
ful for recompiling an in-
dividual file

er[rlist][!] [file] Move to the next error’s
location

mak[e][!] [args] makeprg Recompile everything that
needs recompiling
(usually via make)

Display modes

Mode Display appearance

hex An interactive hex dump, reminiscent of mainframe hex
dumps; good for editing binary files

html A simple web page formatter; the tag commands can follow
links and return to the starting web page

man Simple manpage formatter; like the output of nroff -man

normal No formatting; display text as it exists in the file

syntax Like normal, but with syntax coloring turned on

tex A simple subset of the TEX formatter

68 | vi and Vim Editors Pocket Reference

Display-mode commands—ex

Command Function

di[splay] [mode [lang]] Change the display mode to mode;
use lang for syntax mode

no[rmal] Same as :display normal, but much
easier to type

Options for print management

Option Function

lpcolor (lpcl) Enable color printing for PostScript and MS
Windows printers

lpcolumns (lpcols) The printer’s width

lpcontrast (lpct) Control shading and contrast; for use with
the lpcolor option

lpconvert (lpcvt) If set, convert Latin-8 extended ASCII to
PC-8 extended ASCII

lpcrlf (lpc) The printer needs <CR><LF> to end each
line

lpformfeed (lpff) Send a formfeed after the last page

lplines (lprows) The length of the printer’s page

lpoptions (lpopt) Control of various printer features; this mat-
ters only for PostScript printers

lpout (lpo) The file or command to print to

lptype (lp) The printer type

lpwrap (lpw) Simulate line wrapping

Values for the lptype option

Name Printer type

bs Overtyping is done via backspace characters; this setting is
the closest to traditional Unix nroff

cr Line printers; overtyping is done with carriage return

dumb Plain ASCII; no font control

epson Most dot-matrix printers; no graphic characters supported

elvis | 69

Name Printer type

hp Hewlett-Packard printers and most non-PostScript laser
printers

ibm Dot-matrix printers with IBM graphic characters

pana Panasonic dot-matrix printers

ps PostScript; one logical page per sheet of paper

ps2 PostScript; two logical pages per sheet of paper

elvis 2.2 set Options
elvis 2.2 has a total of 225 options that affect its behavior. The
most important ones are summarized here. Options shared
with vi are not repeated here.

Option Default

autoiconify (aic) noautoiconify

backup (bk) nobackup

binary (bin)

boldfont (xfb)

bufdisplay (bd) normal

ccprg (cp) cc ($1?$1:$2)

directory (dir)

display (mode) normal

elvispath (epath)

equalprg (ep) fmt

focusnew (fn) focusnew

font (fnt)

gdefault (gd) nogdefault

home (home) $HOME

italicfont (xfi)

locked (lock) nolocked

lpcolor (lpcl) nolpcl

lpcolumns (lpcols) 80

70 | vi and Vim Editors Pocket Reference

Option Default

lpcrlf (lpc) nolpcrlf

lpformfeed (lpff) nolpformfeed

lpheader (lph) nolph

lplines (lprows) 60

lpout (lpo)

lptype (lpt) dumb

lpwrap (lpw) lpwrap

makeprg (mp) make $1

prefersyntax (psyn) never

ruler (ru) noruler

security (sec) normal

showmarkups (smu) noshowmarkups

sidescroll (ss) 0

smartargs (sa) nosmartargs

spell (sp) nospell

taglength (tl) 0

tags (tagpath) tags

tagstack (tsk) tagstack

undolevels (ul) 0

warpback (wb) nowarpback

warpto (wt) don't

vile—vi like Emacs
vile is a vi clone based originally on MicroEmacs, whose main
goal is to provide the “finger feel” of vi.

vile—vi like Emacs | 71

Important Command-Line Options
-g N

vile begins editing on the first file at the specified line
number; this can also be given as +N.

-h Invokes vile on the help file.

-R Invokes vile in “read-only” mode; no writes are permitted
while in this mode.

-s pattern
In the first file, vile executes an initial search for the given
pattern; this can also be given as +/pattern.

-v Invokes vile in “view” mode; no changes are permitted
to any buffer while in this mode.

-? vile prints a short usage summary and exits.

@ cmdfile
vile runs the specified file as its startup file and bypasses
any normal startup file.

vile Window Management Commands
Command Key

sequences
Function

delete-other-
windows

^O, ^X 1 Eliminate all windows ex-
cept the current one

delete-window ^K, ^X 0 Destroy the current window
unless it’s the last one

edit-file, E, e
find-file

^X e Bring given (or under-
cursor, for ̂ X e) file or exist-
ing buffer into window

grow-window V Increase the size of the cur-
rent window by count

move-next-window-
down

^A ^E Move next window down
(or buffer up) by count lines

move-next-window-
up

^A ^Y Move next window up (or
buffer down) by count lines

72 | vi and Vim Editors Pocket Reference

Command Key
sequences

Function

move-window-left ^X ^L Scroll window to left by
count columns, half-screen if
count unspecified

move-window-right ^X ^R Scroll window to right by
count columns, half-screen if
count unspecified

next-window ^X o Move to the next window

position-window z where Reframe with cursor speci-
fied by where, as follows:
center (., M, m), top
(ENTER , H, t), or bottom
(-, L, b)

previous-window ^X O Move to the previous
window

resize-window Change the current window
to count lines

restore-window Return to window saved
with save-window

save-window Mark a window for later re-
turn with restore-window

scroll-next-
window-down

^A ^D Move next window down by
count half-screens

scroll-next-
window-up

^A ^U Move next window up by
count half-screens

shrink-window v Decrease the size of the cur-
rent window by count lines

split-current-
window

^X 2 Split the window in half; a
count of 1 or 2 determines
which becomes current

view-file Bring given file or existing
buffer into window; mark it
“view-only”

historical-buffer _ Display a list of the first nine
buffers; a digit moves to the

vile—vi like Emacs | 73

Command Key
sequences

Function

given buffer, __ moves to the
most recently edited file

toggle-buffer-
list

* Pop up/down a window
showing all the vile buffers

vile Extended Regular Expressions
\| Indicates alternation.

\+ Matches one or more of the preceding regular
expressions.

\? Matches zero or one of the preceding regular expressions.

\s \S
Matches whitespace and nonwhitespace characters,
respectively.

\w \W
Matches “word-constituent” characters (alphanumerics
and the underscore, “_”) and nonword-constituent char-
acters, respectively.

\d \D
Matches digits and nondigits, respectively.

\p \P
Matches printable and nonprintable characters, respec-
tively. Whitespace is considered to be printable.

\(...\)
Provides grouping for *, \+, and \?, as well as making
matched subtexts available in the replacement part of a
substitute command.

vile allows the escape sequences \b, \f, \r, \t, and \n to appear
in the replacement part of a substitute command. They stand
for backspace, formfeed, carriage return, tab, and newline, re-
spectively. Also, from the vile documentation:

74 | vi and Vim Editors Pocket Reference

Note that vile mimics perl’s handling of \u\L\1\E instead
of vi’s. Given :s/\(abc\)/\u\L\1\E/, vi will replace with
abc whereas vile and perl will replace with Abc. This is
somewhat more useful for capitalizing words.

Command-Line History and Completion
vile stores all your ex commands in a buffer named
[History]. Options control your access to it and the use of the
minibuffer (the colon command line).

History commands—vi

Key Meaning

↑, ↓ Move up (previous), down (more recent) in the
history

←, → Move left, right on the recalled line

BACKSPACE Delete characters

The ex command line provides completion of various sorts.
Completion applies to built-in and user-defined vile com-
mands, tags, filenames, modes, and variables, and to the
terminal characters (the character setting, such as backspace,
suspend, and so on, derived from your stty settings).

History options

Option Meaning

history Log commands from the colon command line in
the [History] buffer.

mini-edit The character that toggles the editing mode in the
minibuffer to use vi motion commands. You can
also use the vi commands i, I, a, and A.

mini-hilite Define the highlight attribute to use when the user
toggles the editing mode in the minibuffer. The
value should be one of none, underline, bold,
italic, or reverse; the default is reverse.

vile—vi like Emacs | 75

Tag Stacks
vile provides both ex and vi commands for managing the tag
stack.

Tag commands—ex

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined
in the tags file

pop[!] Pop a cursor position off the stack, restoring
the cursor to its previous position

next-tag Continue searching through the tags file for
more matches

show-tagstack Create a new window that displays the tag
stack; the display changes as tags are
pushed to or popped off the stack

Tag commands—vi

Command Function

^] Look up the location of the identifier under the cursor
in the tags file and move to that location; the current
location is automatically pushed to the tag stack

^T
^X ^]

Return to the previous location in the tag stack, i.e., pop
off one element

^A ^] Same as the :next-tag command

Edit-Compile Speedup
Unlike the other clones, vile only provides vi commands for
increasing programmer productivity.

76 | vi and Vim Editors Pocket Reference

Program development commands—vi

Command Function

^X ! command
ENTER

Run command, saving the output in a buffer named
[Output]

^X ^X Find the next error; vile parses the output and
moves to the location of each successive error

The error messages are parsed using regular expressions in the
buffer [Error Expressions]. vile creates this buffer automati-
cally and uses it when you use ^X ^X. You can add expressions
to it as needed.

You can point the error finder at an arbitrary buffer (not just
the output of shell commands) using the :error-buffer com-
mand. This lets you use the error finder on the output of pre-
vious compiler or egrep runs.

vile 9.8 set Options

Option Default

alt-tabpos (atp) noatp

animated animated

autobuffer (ab) autobuffer

autocolor (ac) 0

autosave (as) noautosave

autosavecnt (ascnt) 256

backspacelimit (bl) backspacelimit

backup-style off

bcolor default

byteorder-mark (bom) auto

check-access current

check-modtime nocheck-modtime

cindent nocindent

cindent-chars :#{}()[]

vile—vi like Emacs | 77

Option Default

cmode off

color-scheme (cs) default

comment-prefix ^\s*\(\(\s*[#*>]\)\|\(///*\)\)\+

comments ^\s*/\?\(\s*[#*>/]\)\+/\?\s*$

cursor-tokens regex

dirc nodirc

dos nodos

fcolor default

fence-begin /*

fence-end */

fence-if ^\s*#\s*if

fence-elif ^\s*#\s*elif\>

fence-else ^\s*#\s*else\>

fence-fi ^\s*#\s*endif\>

fence-pairs {}()[]

file-encoding auto

filtername (fn)

for-buffers (fb) mixed

glob !echo %s

highlight (hl) highlight

history (hi) history

ignoresuffix (is) \(\.orig\|~\)$

horizscroll (hs) horizscroll

linewrap (lw) nolinewrap

maplonger nomaplonger

meta-insert-bindings (mib) mib

mini-hilite (mh) reverse

modeline nomodeline

modelines 5

overlap-matches overlap-matches

78 | vi and Vim Editors Pocket Reference

Option Default

percent-crlf 50

percent-utf8 90

popup-choices (pc) delayed

popup-msgs (pm) nopopup-msgs

recordseparator (rs) lfa

resolve-links noresolve-links

reuse-position noreuse-position

ruler noruler

showchar (sc) noshowchar

showformat (sf) foreign

showmode (smd) showmode

sideways 0

tabinsert (ti) tabinsert

tagignorecase (tc) notagignorecase

taglength (tl) 0

tagrelative (tr) notagrelative

tags tags

tagword (tw) notagword

undolimit (ul) 10

unicode-as-hex (uh) nounicode-as-hex

unprintable-as-octal (uo) nounprintable-as-octal

visual-matches none

xterm-fkeys noxterm-fkeys

xterm-mouse noxterm-mouse

xterm-title noxterm-title

a This depends on the platform for which vile is compiled.

vile—vi like Emacs | 79

Internet Resources for vi
There are many resources and items of interest on the Internet
related to vi and its clones. This section provides a brief over-
view of some of them:

http://www.thomer.com/vi/vi.html
Thomer M. Gil’s vi Lover’s Home page. This is one of two
main sites for vi, with links to many resources and other
sites.

http://www.vi-editor.org
Sven Guckes’s VI Pages. This is the second of the main
vi sites.

http://www.darryl.com/vi.shtml
A “This site is vi powered” logo, as shown in Figure 2.

http://www.cafepress.com/geekcheat/366808
Concise vi command references, printed on coffee mugs,
t-shirts, and more!

http://www.networkcomputing.com/unixworld/tutorial/009/
009.html

A nine-part tutorial on vi by Walter Zintz, originally pub-
lished in Unix World magazine.

http://ars.userfriendly.org/cartoons/?id=20000106
This is the start of the “vigor” story line in the User Friend-
ly comic strip, which was the inspiration for the next item
in this list.

http://vigor.sourceforge.net
The source code for vigor.

Figure 2. vi powered!

80 | vi and Vim Editors Pocket Reference

http://www.thomer.com/vi/vi.html
http://www.vi-editor.org
http://www.darryl.com/vi.shtml
http://www.cafepress.com/geekcheat/366808
http://www.networkcomputing.com/unixworld/tutorial/009/009.html
http://www.networkcomputing.com/unixworld/tutorial/009/009.html
http://ars.userfriendly.org/cartoons/?id=20000106
http://vigor.sourceforge.net

Program Source and Contact Information

Editor Modernized, original vi

Author Gunnar Ritter

Email gunnarr@acm.org

Source http://ex-vi.sourceforge.net

Editor Vim

Author Bram Moolenaar

Email Bram@vim.org

Source http://www.vim.org/

Editor nvi

Author Keith Bostic

Email bostic@bostic.com

Source https://sites.google.com/a/bostic.com/keithbostic/nvi

Editor elvis

Author Steve Kirkendall

Email kirkenda@cs.pdx.edu

Source ftp://ftp.cs.pdx.edu/pub/elvis/README.html

Editor vile

Authors Kevin Buettner, Tom Dickey, and Paul Fox

Email vile@nongnu.org

Source http://www.invisible-island.net/vile/vile.html

Program Source and Contact Information | 81

mailto:gunnarr@acm.org
http://ex-vi.sourceforge.net
mailto:Bram@vim.org
http://www.vim.org/
mailto:bostic@bostic.com
https://sites.google.com/a/bostic.com/keithbostic/nvi
mailto:kirkenda@cs.pdx.edu
ftp://ftp.cs.pdx.edu/pub/elvis/README.html
mailto:vile@nongnu.org
http://www.invisible-island.net/vile/vile.html

Index

A
abbreviations, 9
auto-commands, 56
automatic indentation, 11

B
bracket expressions, 14
buffer commands, 9
buffer names, 8
buffers, executable, 10

C
character classes, 14
collating symbols, 14
command mode maps, 9
command-line options, 2

elvis, 63
nvi, 59
vile, 72
Vim, 26

commands, 3–16
auto-commands (scripting),

56
buffer commands, 9
editing commands, 6
ex commands, 16–20

exit commands, 7
marking commands, 9
movement commands, 3
substitute command, 12

completion, 44
ctags, 24

D
dictionaries, 52
diff mode, 49

E
editing commands, 6
elvis, 63–71

command-line history, 67
command-line options, 63
completion movement keys,

67
extended regular expressions,

66
program development

commands, 68–70
set options, 70
tag stacks, 67
window management, 64–66

enhanced tags, 23

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

83

equivalence classes, 14
ex commands, 16–20
executable buffers, 10
exit commands, 7
.exrc files, 21
Exuberant ctags, 24

F
folding and unfolding text, 41–

44
function references, 55

I
initialization, 21
input mode maps, 9
input mode shortcuts, 9
Internet resources, 80

L
lists, 52
locale, 13
lowercase commands, 3

M
maps, 9
marking commands, 9
metacharacters in replacement

strings, 15
movement commands, 3

N
nvi, 59–63

command-line history and
completion, 61

command-line options, 59
extended regular expressions,

60
set options, 62
tag stacks, 61
window management

commands, 59

P
POSIX bracket expressions, 14

R
recovery commands, 21
regular expressions, 11

elvis, 66
metacharacters in

replacement strings,
15

nvi, 60
POSIX bracket expressions

and character classes,
14

substitute command and
flags, 12

vile, 74
Vim, 32

S
scope, 51
screen mode, 3
set options, 21

elvis, 70
nvi, 62
vile, 77
Vim, 56

Solaris vi, 1
command-mode tag

commands, 8
tag stacking, 25

source code, 23, 81
substitute command, 12
substitution tricks, 16

T
tabbed editing, 30–31
tag stacks, 23

elvis, 67
nvi, 61
vile, 76
Vim, 35

tags file format, 24

84 | Index

U
uppercase commands, 3

V
vi source code, 23
vi versions, 1
vile, 71–79

command-line history and
completion, 75

command-line options, 72
extended regular expressions,

74
program development

commands, 76
set options, 77
tag stacks, 76
window management

commands, 72
Vim, 25–58

command-line history, 34
command-line options, 26
completion commands, 35
diff mode, 49
ex commands, 17
extended matching

commands, 40
extended regular expressions,

32–33
folding and unfolding text,

41–44
identifier search commands,

38
indentation and formatting

options, 40
insertion completion facilities,

44–49
numeric values, 52
program development

commands and
options, 36

programming assistance, 38–
41

scripting, 51–56
comparison operators and

case, 54

control flow commands,
52

operators, 53
running scripts, 56
user-defined functions, 54
variables, 51

set options, 56
tabbed editing, 30–31
tag stacks and commands, 35
window management, 27

W
window management

elvis, 64
nvi, 59
vile, 72
Vim, 27

word abbreviation, 9
words, 3

Index | 85

	Table of Contents
	Chapter 1. vi and Vim Editors Pocket Reference
	Introduction
	Conventions
	Acknowledgments
	Command-Line Options
	vi Commands
	Movement Commands
	Editing Commands
	Exit Commands
	Solaris vi Command-Mode Tag Commands
	Buffer Names
	Buffer and Marking Commands

	Input Mode Shortcuts
	Word Abbreviation
	Command and Input Mode Maps
	Executable Buffers
	Automatic Indentation

	Substitution and Regular Expressions
	The Substitute Command
	Substitution flags

	vi Regular Expressions
	POSIX Bracket Expressions
	POSIX character classes

	Metacharacters Used in Replacement Strings
	More Substitution Tricks

	ex Commands
	Command Syntax
	Address Symbols
	Command Option Symbols
	Alphabetical List of Commands

	Initialization
	Recovery
	vi set Options
	Nothing like the Original
	Enhanced Tags and Tag Stacks
	Exuberant ctags
	Extended ctags keywords

	Solaris vi Tag Stacking
	Tag commands—ex
	Tag commands—vi
	Tag management options

	Vim—vi Improved
	Important Command-Line Options
	Vim Window Management
	Window management commands—ex
	Window management commands—vi

	Tabbed Editing
	Managing tabs—ex
	Managing tabs—vi
	Tabbed editing options

	Vim Extended Regular Expressions
	Command-Line History and Completion
	History commands—vi
	Completion commands—vi

	Tag Stacks
	Tag commands—ex
	Tag commands—vi

	Edit-Compile Speedup
	Program development commands—ex
	Program development options

	Programming Assistance
	Identifier search commands—ex
	Identifier search commands—vi
	Extended matching commands—vi
	Indentation and formatting options

	Folding and Unfolding Text
	Folding commands—ex
	Folding commands—vi
	Folding options

	Insertion Completion Facilities
	Completion commands—vi
	Completion options

	Diff Mode
	Vim Scripting
	Variables, options, and numbers
	Control flow commands
	Operators
	User-defined functions
	Running scripts

	Vim set Options

	nvi—New vi
	Important Command-Line Options
	nvi Window Management Commands
	nvi Extended Regular Expressions
	Command-Line History and Completion Options
	Tag Stacks
	Tag commands—ex
	Tag commands—vi

	nvi 1.79 set Options

	elvis
	Important Command-Line Options
	elvis Window Management
	Window management commands—ex
	Arguments to the :window command
	Window management commands—vi

	elvis Extended Regular Expressions
	Command-Line History and Completion Movement Keys
	Tag Stacks
	Tag commands—ex
	Tag commands—vi

	Edit-Compile Speedup
	Program development commands—ex
	Display modes
	Display-mode commands—ex
	Options for print management
	Values for the lptype option

	elvis 2.2 set Options

	vile—vi like Emacs
	Important Command-Line Options
	vile Window Management Commands
	vile Extended Regular Expressions
	Command-Line History and Completion
	History commands—vi
	History options

	Tag Stacks
	Tag commands—ex
	Tag commands—vi

	Edit-Compile Speedup
	Program development commands—vi

	vile 9.8 set Options

	Internet Resources for vi
	Program Source and Contact Information

	Index

