

 [image: Second Edition]

 vi and Vim Editors Pocket Reference

Arnold Robbins

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Chapter 1. vi and Vim Editors Pocket Reference

Introduction

This pocket reference is a companion to Learning the vi and Vim
 Editors, by Arnold Robbins et al. It describes the
 vi command-line options, command-mode commands,
 ex commands and options, regular expressions and the
 use of the substitute (s) command, and other pertinent
 information for using vi.
While retaining coverage of the vi clones, nvi,
 elvis, and vile, this edition offers
 expanded coverage of the Vim editor, which has become the de facto
 standard version of vi in the GNU/Linux world.
The Solaris version of vi served as the
 “reference” version of the original vi for this pocket
 reference.

Conventions

The following font conventions are used in this book:
	Courier
	Used for filenames, command names, options, and everything to
 be typed literally.

	Courier Italic
	Used for replaceable text within commands.

	Italic
	Used for replaceable text within regular text, Internet URLs,
 for emphasis, and for new terms when first defined.

	[...]
	Identifies optional text; the brackets are not typed.

	CTRL-G
	Indicates a keystroke.

Acknowledgments

Thanks to Robert P.J. Day and Elbert Hannah, who reviewed this
 edition. The production team at O’Reilly Media did a great job helping me
 make the book look the way I wanted. A special thanks to my editor, Andy
 Oram, for keeping the project moving with continual gentle
 encouragement.

Command-Line Options

	Command	Action
	vi
 file	Invoke vi on
 file

	vi file1
 file2	Invoke vi on files
 sequentially

	view
 file	Invoke vi on
 file in read-only mode

	vi -R
 file	Invoke vi on
 file in read-only mode

	vi -r
 file	Recover file and recent edits
 after a crash

	vi -t
 tag	Look up tag and start editing at
 its definition

	vi -w
 n	Set the window size to n; useful
 over a slow connection

	vi +
 file	Open file at last
 line

	vi +n
 file	Open file directly at line
 number n

	vi -c
 command file	Open file, execute
 command, which is usually a search command or
 line number (POSIX)

	vi
 +/pattern
 file	Open file directly at
 pattern

	ex
 file	Invoke ex on
 file

	ex -
 file <
 script	Invoke ex on
 file, taking commands from
 script; suppress informative messages and
 prompts

	ex -s
 file <
 script	Invoke ex on
 file, taking commands from
 script; suppress informative messages and
 prompts (POSIX)

vi Commands

vi commands are used in “screen” mode (the default), where you use the commands to
 move around the screen and to perform operations on the text.
Most vi commands follow a general pattern:
[command][number]textobject
or the equivalent form:
[number][command]textobject
Movement Commands

vi movement commands distinguish between two kinds of “words.” The lowercase commands define a word as a
 contiguous sequence of underscores, letters, and digits. The uppercase commands define a word as a
 contiguous sequence of nonwhitespace characters.
	Command	Meaning
	Character	
	h, j,
 k, l	Left, down, up, right (←, ↓, ↑, →)

	Text	
	w, W,
 b, B	Forward, backward by word

	e, E	End of word

), (Beginning of next, previous sentence

	}, {	Beginning of next, previous
 paragraph

]], [[Beginning of next, previous section

	Lines	
	ENTER	First nonblank character of next
 line

	0, $	First, last position of current line

	^	First nonblank character of current
 line

	+, -	First nonblank character of next, previous
 line

	n |	Column n of current
 line

	H, M,
 L	Top, middle, last line of screen

	n H	n (number) of lines after top
 line

	n L	n (number) of lines before
 last line

	Scrolling	
	CTRL-F, CTRL-B	Scroll forward, backward one screen

	CTRL-D, CTRL-U	Scroll down, up one half-screen

	CTRL-E, CTRL-Y	Show one more line at bottom, top of window

	z ENTER	Reposition line with cursor: to top of
 screen

	z.	Reposition line with cursor: to middle of
 screen

	z–	Reposition line with cursor: to bottom of
 screen

	CTRL-L	Redraw screen (without scrolling)

	Command	Meaning
	Searches	
	/pattern	Search forward for
 pattern

	?pattern	Search backward for
 pattern

	n, N	Repeat last search in same, opposite direction

	/, ?	Repeat previous search forward,
 backward

	f x	Search forward for character x
 in current line

	F x	Search backward for character
 x in current line

	t x	Search forward to character before
 x in current line

	T x	Search backward to character after
 x in current line

	;	Repeat previous current-line search

	,	Repeat previous current-line search in opposite
 direction

	Line number	
	CTRL-G	Display current line number

	n G	Move to line number
 n

	G	Move to last line in file

	: n	Move to line n in
 file

	Marking position	
	m x	Mark current position as
 x

	‘ x	Move cursor to mark x (grave
 accent)

	‘ ‘	Return to previous mark or context (two grave
 accents)

	’ x	Move to beginning of line containing mark
 x (single quote)

	’ ’	Return to beginning of line containing previous
 mark (two single quotes)

Editing Commands

	Command	Action
	Insert	
	i, a	Insert text before, after cursor

	I, A	Insert text before beginning, after end of
 line

	o, O	Open new line for text below, above
 cursor

	Change	
	cw	Change word

	cc	Change current line

	c
 motion	Change text between the cursor and the target of
 motion

	C	Change to end of line

	r	Replace single character

	R	Type over (overwrite) characters

	s	Substitute: delete character and insert new
 text

	S	Substitute: delete current line and insert new
 text

	Delete, move	
	x	Delete character under cursor

	X	Delete character before cursor

	dw	Delete word

	dd	Delete current line

	d
 motion	Delete text between the cursor and the target of
 motion

	D	Delete to end of line

	p, P	Put deleted text after, before
 cursor

	" n
 p	Put text from delete buffer number
 n after cursor (for last nine
 deletions)

	Yank	
	yw	Yank (copy) word

	yy	Yank current line

	" a
 yy	Yank current line into named buffer
 a (a–z); uppercase names append
 text

	y
 motion	Yank text between the cursor and the target of
 motion

	p, P	Put yanked text after, before cursor

	" a
 P	Put text from buffer a before
 cursor (a–z)

	 Other commands

	
	.	Repeat last edit command

	u, U	Undo last edit; restore current line

	J	Join two lines

	 ex edit commands

	
	:d	Delete lines

	:m	Move lines

	:co or :t	Copy lines

	:.,$d	Delete from current line to end of
 file

	:30,60m0	Move lines 30 through 60 to top of
 file

	:.,/pattern/co$	Copy from current line through line containing
 pattern to end of file

Exit Commands

	Command
	Meaning

	 :w
	Write (save) file

	 :w!
	Write (save) file, overriding
 protection

	 :wq
	Write (save) and quit file

	 :x
	Write (save) and quit file

	 ZZ
	Write (save) and quit file

	:30,60w newfile
	Write from line 30 through line 60 as
 newfile

	:30,60w>> file
	Write from line 30 through line 60 and append to
 file

	 :w
 %.new
	Write current buffer named
 file as
 file.new

	 :q
	Quit file

	 :q!
	Quit file, overriding protection

	 Q
	Quit vi and invoke
 ex

	:e file2
	Edit file2 without leaving
 vi

	 :n
	Edit next file

	 :e!
	Return to version of current file as of time of
 last write (save)

	 :e #
	Edit alternate file

	 :vi
	Invoke vi editor from
 ex

	 :
	Invoke one ex command from
 vi editor

	 %
	Current filename (substitutes into
 ex command line)

	 #
	Alternate filename (substitutes into
 ex command line)

Solaris vi Command-Mode Tag Commands

	Command
	Action

	 ^]
	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; if tag stacking is enabled, the current location is
 automatically pushed onto the tag stack

	 ^T
	Return to the previous location in the tag stack,
 i.e., pop off one element

Buffer Names

	Buffer names
	Buffer use

	1–9
	The last nine deletions, from most to least
 recent

	a–z
	Named buffers to use as needed; uppercase letters
 append to the respective buffers

Buffer and Marking Commands

	Command
	Meaning

	 " b
 command
	Do command with buffer
 b

	 m x

	Mark current position with
 x

	‘ x

	Move cursor to character marked by
 x (grave accent)

	‘ ‘
	Return to exact position of previous mark or
 context (two grave accents)

	’ x

	Move cursor to first character of line marked by
 x (single quote)

	’ ’
	Return to beginning of the line of previous mark or
 context (two single quotes)

Input Mode Shortcuts

vi provides two ways to decrease the amount of typing you have to do:
 abbreviations and
 maps.
Word Abbreviation

	:ab abbr
 phrase
	Define abbr as an abbreviation for
 phrase.

	:ab
	List all defined abbreviations.

	:unab
 abbr
	Remove definition of abbr.

Command and Input Mode Maps

	:map x sequence
	Define character(s) x as a
 sequence of editing commands.

	:unmap x
	Disable the sequence defined for
 x.

	:map
	List the characters that are currently mapped.

	:map! x sequence
	Define character(s) x as a
 sequence of editing commands or text that
 will be recognized in insert mode.

	:unmap! x
	Disable the sequence defined for the
 insert mode map x.

	:map!
	List the characters that are currently mapped for
 interpretation in insert mode.

For both command and insert mode maps, the map name
 x can take several forms:
	One character
	When you type the character, vi executes
 the associated sequence of commands.

	Multiple characters
	All the characters must be typed within one second. The
 value of notimeout changes the behavior.

	# n
	Function key notation: a # followed by a
 digit n represents the sequence of characters
 sent by the keyboard’s function key number
 n.

To enter characters such as Escape (^[) or
 carriage return (^M), first type
 CTRL-V (^V).

Executable Buffers

Named buffers provide yet another way to create “macros”—complex command
 sequences you can repeat with a few keystrokes. Here’s how it’s
 done:
	Type a vi command sequence or an
 ex command preceded by a
 colon; return to command mode.

	Delete the text into a named buffer.

	Execute the buffer with the @ command
 followed by the buffer letter.

The ex command
 :@buf-name works
 similarly.
Some versions of vi treat *
 identically to @ when used from the
 ex command line. In addition, if the buffer character
 supplied after the @ or * commands
 is *, the command is taken from the default (unnamed)
 buffer.

Automatic Indentation

Enable automatic indentation with the following command:
:set autoindent
Four special input sequences affect automatic indentation:
	^T
	Add one level of indentation; typed in insert mode

	^D
	Remove one level of indentation; typed in insert mode

	^ ^D
	Shift the cursor back to the beginning of the line, but only
 for the current line[1]

	0 ^D
	Shift the cursor back to the beginning of the line and reset
 the current auto-indent level to zero[2]

Two commands can be used for shifting source code:
	<<
	Shift a line left eight spaces

	>>
	Shift a line right eight spaces

The default shift is the value of shiftwidth,
 usually eight spaces.

[1] ^ ^D and 0 ^D are
 not in elvis.

[2] The nvi 1.79 documentation has these
 two commands switched, but the program actually behaves as
 described here.

Substitution and Regular Expressions

Regular expressions, and their use with the substitute command, are what give
 vi most of its significant editing power.
The Substitute Command

The general form of the substitute command is:
:[addr1[,addr2]]s/old/new/[flags]
Omitting the search pattern
 (:s//replacement/)
 uses the last search or substitution regular expression.
An empty replacement part
 (:s/pattern//)
 “replaces” the matched text with nothing, effectively deleting it from
 the line.
Substitution flags

	Flag
	Meaning

	 c
	Confirm each substitution

	 g
	Change all occurrences of
 old to new on each
 line (globally)

	 p
	Print the line after the change is
 made

It’s often useful to combine the substitute command with the
 ex global command, :g:

:g/Object Oriented/s//Buzzword compliant/g

vi Regular Expressions

	.
	(period) Matches any single character
 except a newline. Remember that spaces are treated as
 characters.

	*
	Matches zero or more (as many as there are) of the single
 character that immediately precedes it.
The * can follow a metacharacter, such as
 ., or a range in brackets.

	^
	When used at the start of a regular expression,
 ^ requires that the following regular
 expression be found at the beginning of the line. When not at the
 beginning of a regular expression, ^ stands for
 itself.

	$
	When used at the end of a regular expression,
 $ requires that the preceding regular
 expression be found at the end of the line. When not at the end of
 a regular expression, $ stands for
 itself.

	\
	Treats the following special character as an ordinary
 character. Use \\ to get a literal
 backslash.

	~
	Matches whatever regular expression was used in the
 last search.

	[]
	Matches any one of the characters
 enclosed between the brackets. A range of consecutive characters
 can be specified by separating the first and last characters in
 the range with a hyphen.
You can include more than one range inside brackets and
 specify a mix of ranges and separate characters.
Most metacharacters lose their special meaning inside
 brackets, so you don’t need to escape them if you want to use them
 as ordinary characters. Within brackets, the three metacharacters
 you still need to escape are \
 -]. The hyphen
 (-) acquires meaning as a range specifier; to
 use an actual hyphen, you can also place it as the first character
 inside the brackets.
A caret (^) has special meaning only when
 it’s the first character inside the brackets, but in this case,
 the meaning differs from that of the normal ^
 metacharacter. As the first character within brackets, a
 ^ reverses their sense: the brackets match any
 one character not in the list. For example, [^a-z]
 matches any character that’s not a lowercase letter.
Caution
On modern systems, the locale can affect the
 interpretation of ranges within brackets, causing
 vi to match letters in a surprising fashion.
 It is better to use POSIX bracket expressions (see POSIX Bracket Expressions) to match specific kinds of
 characters, such as all lowercase or all uppercase characters.

	\(...\)
	Saves the pattern enclosed between \(and
 \) into a special holding space or “hold
 buffer.” You can save up to nine patterns in this way on a single
 line.
You can also use the
 \n notation within a
 search or substitute string:
:s/\(abcd\)\1/alphabet-soup/

 changes abcdabcd into
 alphabet-soup.[3]

	\< \>
	Matches characters at the beginning
 (\<) or end (\>) of a
 word. The end or beginning of a word is determined either by a
 punctuation mark or by a space. Unlike \(...\),
 these don’t have to be used in matched pairs.

POSIX Bracket Expressions

POSIX bracket expressions may contain the following:
	Character classes
	A POSIX character class consists of keywords bracketed by
 [: and :]. The keywords
 describe different classes of characters, such as alphabetic
 characters, control characters, and so on (see the following
 table).

	Collating symbols
	A collating symbol is a multicharacter sequence that
 should be treated as a unit. It consists of the characters
 bracketed by [. and
 .].

	Equivalence classes
	An equivalence class lists a set of characters that
 should be considered equivalent, such as e and
 è. It consists of a named element from the
 locale, bracketed by [= and
 =].

All three constructs must appear inside the
 square brackets of a bracket expression.
POSIX character classes

	Class
	Matching characters

	 [:alnum:]
	Alphanumeric characters

	 [:alpha:]
	Alphabetic characters

	 [:blank:]
	Space and tab characters

	 [:cntrl:]
	Control characters

	 [:digit:]
	Numeric characters

	 [:graph:]
	Printable and visible (nonspace)
 characters

	 [:lower:]
	Lowercase characters

	 [:print:]
	Printable characters (includes
 whitespace)

	 [:punct:]
	Punctuation characters

	 [:space:]
	Whitespace characters

	 [:upper:]
	Uppercase characters

	 [:xdigit:]
	Hexadecimal digits

Metacharacters Used in Replacement Strings

	\n
	Is replaced with the text matched by the
 nth pattern previously saved by
 \(and \), where
 n is a number from one to nine, and
 previously saved patterns (kept in hold buffers) are counted from
 the left on the line.

	\
	Treats the following special character as an ordinary
 character. To specify a real backslash, type two in a row
 (\\).

	&
	Is replaced with the entire text matched by the search
 pattern when used in a replacement string. This is useful when you
 want to avoid retyping text.

	~
	The string found is replaced with the replacement text
 specified in the last substitute command. This is useful for
 repeating an edit.

	\u or \l
	Changes the next character in the replacement string to
 uppercase or lowercase, respectively.

	\U or \L and \e or \E
	\U and \L are similar
 to \u or \l, but all
 following characters are converted to uppercase or lowercase until
 the end of the replacement string or until \e
 or \E is reached. If there is no
 \e or \E, all characters of
 the replacement text are affected by the \U or
 \L.

More Substitution Tricks

	You can instruct vi to ignore case by
 typing :set ic.

	A simple :s is the same as
 :s//~/.

	:& is the same as
 :s. You can follow the &
 with g to make the substitution globally on the
 line, and even use it with a line range.

	You can use the & key as a
 vi command to perform the
 :& command, i.e., to repeat the last
 substitution.

	The :~ command is similar to the
 :& command, but with a subtle difference. The
 search pattern used is the last regular expression used in
 any command, not necessarily the one used in
 the last substitute command.

	Besides the / character, you may use any
 nonalphanumeric, nonwhitespace character as your delimiter, except
 backslash, double quote, and the vertical bar (\,
 ", and |).

	When the edcompatible option is enabled,
 vi remembers the flags (g for
 global and c for confirmation) used on the last
 substitution and applies them to the next one.

[3] This works with vi,
 nvi, and Vim, but not with
 elvis or vile.

ex Commands

This section summarizes the ex commands used from the colon prompt in vi.
Command Syntax

:[address]command[options]

Address Symbols

	Address
	Includes

	 1,$
	All lines in the file

	x,y
	Lines x through
 y

	x;y
	Lines x through
 y, with current line reset to
 x

	 0
	Top of file

	 .
	Current line

	 n
	Absolute line number n

	 $
	Last line

	 %
	All lines; same as
 1,$

	 x-n
	n lines before
 x

	 x+n
	n lines after
 x

	-[n]
	One or n lines
 previous

	+[n]
	One or n lines
 ahead

	’
 x
	Line marked with x (single
 quote)

	’ ’
	Previous mark (two single quotes)

	/pat/
 or
 ?pat?
	Ahead or back to the line where
 pat matches

Command Option Symbols

	Symbol
	Meaning

	 !
	A variant form of the command

	 count
	Repeat the command count
 times

	 file
	Filename: % is current file,
 # is previous file

Alphabetical List of Commands

The following table of ex commands covers both
 standard ex
 commands and selected commands specific to Vim. Commands
 covered in Vim—vi Improved are omitted
 here.
	Full name	Command	Vim only
	Abbrev	ab [string
 text]
	
	Append	
[address] a[!]

text

.

	
	Args	ar
	
	Args	args files …

	✓
	Bdelete	[num]
 bd[!]
 [num]
	✓
	Buffer	[num]
 b[!]
 [num]
	✓
	Buffers	[num]
 buffers[!]
	✓
	Center	 [address]
 ce [width]

	✓
	Change	
[address]c[!]

text

.

	
	Chdir	 cd
 directory
	
	Copy	[address]
 co
 destination
	
	Delete	[address]
 d
 [buffer]
	
	Edit	e
 [!][+n]
 [filename]
	
	File	f
 [filename]
	
	Global	[address]g[!]/pattern/[commands]
	
	Insert	
[address]i[!]

text

.

	
	Join	[address]j[!][count]
	
	K (mark)	[address]
 k
 char
	
	Left	[address]
 le [count]

	✓
	List	[address]
 l
 [count]
	
	Map	map char
 commands
	
	Mark	[address]
 ma
 char
	
	Mkexrc	mk[!]
 file
	✓
	Move	[address]
 m
 destination
	
	Next	n[!]
 [[+command]
 filelist]
	
	Number	[address]
 nu
 [count]
	
	Open	[address]
 o
 [/pattern/]
	
	Preserve	 pre
	
	Previous	 prev[!]

	✓
	Print	
[address] p [count]

[address] P [count]

	
	Put	[address]
 pu
 [char]
	
	Quit	q[!]
	
	Read	[address]
 r
 filename
	
	Read	[address] r
 ! command
	
	Recover	rec
 [filename]
	
	Rewind	rew[!]
	
	Right	[address]
 ri [count]

	✓
	Set	
set

set option

set nooption

set option=value

set option?

	
	Shell	 sh
	
	Source	so
 filename
	
	Stop	st
	
	Substitute	[addr]
 s
 [/pat/repl/][opts]
	
	Suspend	su
	
	T (to)	[address]t
 destination
	
	Tag	[address]
 ta
 tag
	
	Unabbreviate	una
 word
	
	Undo	 u
	
	Unmap	unm
 char
	
	V (global exclude)	[address]
 v/pattern/[commands]
	
	Version	 ve
	
	Visual	[address]
 vi [type]
 [count]
	
	Visual	vi
 [+n]
 [filename]
	
	Write	[address]
 w[!]
 [[>>]filename]
	
	Write	[address] w
 !command
	
	Wall (write all)	wa[!]

	✓
	Wq (write + quit)	wq[!]
	
	Wqall (write all +
 quit)	wqa[!]

	✓
	Xit	 x
	
	Yank	[address]
 y [char]
 [count]
	
	Z (position line)	[address]
 z[type]
 [count]

 type can be one of:

 	+
	Place line at the top of the window
 (default)

	-
	Place line at bottom of the window

	.
	Place line in the center of the window

	^
	Print the previous window

	=
	Place line in the center of the window and leave
 the current line at this line

	
	! (execute command)	[address]
 !command
	
	@ (execute register)	[address]
 @ [char]

	
	= (line number)	[address]
 =
	
	< > (shift)	[address] < [count]

[address] > [count]

	
	& (repeat substitute)	[address]
 & [options]
 [count]
	
	~	[address]~[count]

 Like &, but with last used regular
 expression; for details, see Chapter 6 of Learning
 the vi and Vim Editors
	
	Return (next line)	ENTER
	
	Address	 address
	

Initialization

vi performs the following initialization steps:
	If the EXINIT environment variable exists,
 execute the commands it contains. Separate multiple commands by a pipe
 symbol (|).

	If EXINIT doesn’t exist, look for the file
 $HOME/.exrc. If it exists, read and execute
 it.

	If either EXINIT or
 $HOME/.exrc turns on the exrc
 option, read and execute the file ./.exrc, if it
 exists.

	Execute search or goto commands given with
 +/pattern or
 +n command-line options
 (POSIX: -c option).

The .exrc files are simple scripts of ex commands;
 the commands in them don’t need a
 leading colon. You can put comments in your scripts by starting a line
 with a double quote ("). This is recommended.

Recovery

The commands ex -r or vi -r list
 any files you can recover. You then use the command:
$ vi -r file

 to recover a particular file.
Even without a crash, you can force the system to preserve your
 buffer by using the command :pre (preserve).

vi set Options

	Option
	Default

	autoindent
 (ai)
	 noai

	autoprint
 (ap)
	 ap

	autowrite
 (aw)
	 noaw

	beautify
 (bf)
	 nobf

	directory
 (dir)
	/tmp

	 edcompatible
	 noedcompatible

	errorbells
 (eb)
	 errorbells

	exrc
 (ex)
	 noexrc

	hardtabs
 (ht)
	8

	ignorecase
 (ic)
	 noic

	 lisp
	 nolisp

	 list
	 nolist

	 magic
	 magic

	 mesg
	 mesg

	 novice
	 nonovice

	number
 (nu)
	 nonu

	 open
	 open

	optimize
 (opt)
	 noopt

	paragraphs
 (para)
	 IPLPPPQP LIpplpipbp

	 prompt
	 prompt

	readonly
 (ro)
	 noro

	redraw
 (re)
	
	 remap
	 remap

	 report
	5

	 scroll
	half window

	sections
 (sect)
	 SHNHH HU

	shell
 (sh)
	 /bin/sh

	shiftwidth
 (sw)
	8

	showmatch
 (sm)
	 nosm

	 showmode
	 noshowmode

	slowopen
 (slow)
	
	tabstop
 (ts)
	8

	taglength
 (tl)
	0

	 tags
	tags
 /usr/lib/tags

	 tagstack
	 tagstack

	 term
	(from $TERM)

	 terse
	 noterse

	timeout
 (to)
	 timeout

	 ttytype
	(from $TERM)

	 warn
	 warn

	window
 (w)
	
	wrapscan
 (ws)
	 ws

	wrapmargin
 (wm)
	0

	writeany
 (wa)
	 nowa

Nothing like the Original

For many, many years, the source code to the original vi was
 unavailable without a Unix source code license. This fact prompted the
 creation of all of the vi clones described in this
 reference.
In January 2002, the source code for the original
 ex and vi became available under an
 open source license.
This code does not compile “out of the box” on modern systems, and
 porting it is difficult. Fortunately, the work has already been done. If you would like to use
 the original, “real” vi, you can download the source
 code and build it yourself. See http://ex-vi.sourceforge.net/ for more information.

Enhanced Tags and Tag Stacks

Vim and most of the other vi clones provide
 enhanced tagging facilities. You can stack locations on a
 tag stack, and with Exuberant ctags, tag
 more items than just functions.
Exuberant ctags

The “Exuberant ctags” program was written by Darren Hiebert (home page: http://ctags.sourceforge.net/). As of this writing, the
 current version is 5.8.
This enhanced tags file format has three tab-separated
 fields: the tag name (typically an identifier), the source file
 containing the tag, and the location of the identifier. Extended
 attributes are placed after a separating ;". Each
 attribute is separated from the next by a tab character and consists of
 two colon-separated subfields. The first subfield is a keyword
 describing the attribute; the second is the actual value.
Extended ctags keywords

	Keyword
	Meaning

	 arity
	For functions

	 class
	For C++ member functions and
 variables

	 enum
	For values in an enum data
 type

	 file
	For static tags, i.e., local to the
 file

	 function
	For local tags

	 kind
	The value is a single letter that indicates the
 lexical type of the tag

	 scope
	Intended mostly for C++ class member
 functions

	 struct
	For fields in a
 struct

If the field doesn’t contain a colon, it’s assumed to be of type
 kind.
Within the value part of each attribute, the backslash, tab,
 carriage return, and newline characters should be encoded as
 \\, \t, \r,
 and \n, respectively.

Solaris vi Tag Stacking

vi provides ex and
 vi commands for managing the tag stack.
Tag commands—ex

	Command
	Function

	ta[g][!]
 tagstring
	Edit the file containing
 tagstring as defined in the
 tags file

	po[p][!]
	Pop the tag stack by one element

Tag commands—vi

	Command
	Function

	 ^]
	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; if tag stacking is enabled, the current location is
 automatically pushed onto the tag stack

	 ^T
	Return to the previous location in the tag stack,
 i.e., pop off one element

Tag management options

	Option
	Function

	taglength,
 tl
	Controls the number of significant characters in
 a tag to be looked up; the default value of zero indicates
 that all characters are significant

	tags,
 tagpath
	The value is a list of filenames in which to look
 for tags; the default value is "tags
 /usr/lib/tags"

	 tagstack
	When set to true,
 vi stacks each location on the tag
 stack

Vim—vi Improved

Vim is the most powerful and most popular of the
 vi clones currently in use. It is the default version
 of vi on most GNU/Linux systems.
Important Command-Line Options

	-b
	Start in binary mode.

	-c command
	Execute command at startup (POSIX
 version of the historical
 +command).

	-C
	Run in vi compatibility mode.

	-f
	For the GUI version, stay in the foreground.

	-g
	Start the GUI version of Vim, if Vim was compiled with
 support for the GUI.

	-i viminfo
	Read the given viminfo file for
 initialization instead of the default viminfo
 file.

	-o
 [N]
	Open N windows, if given; otherwise,
 open one window per file.

	-O
 [N]
	Like -o, but split the windows
 vertically.

	-n
	Don’t create a swap file: recovery won’t be possible.

	-p
	Open a new tab for each file named on the command
 line.

	-q filename
	Treat filename as the “quick fix”
 file.

	-R
	Start in read-only mode, setting the
 readonly option.

	-s
	Enter batch (script) mode. This is only for
 ex and intended for running editing scripts
 (POSIX version of the historical “–” argument).

	-u vimrc
	Read the given .vimrc file for
 initialization and skip all other normal initialization
 steps.

	-U gvimrc
	Read the given .gvimrc file for GUI
 initialization and skip all other normal GUI initialization
 steps.

	-y
	Enter “easy” mode, which provides more intuitive behavior
 for beginners.

	-Z
	Enter restricted mode (same as having a leading
 r in the name).

Vim Window Management

Vim lets you split the screen into multiple windows and control
 their size and placement.
Window management commands—ex

	Command
	Function

	clo[se][!]
	Close the current window; behavior affected by
 the hidden option

	hid[e]
	Close the current window, if it’s not the last
 one on the screen

	[N]new
 [position]
 [file]
	Create a new window, editing an empty
 buffer

	on[ly]
	Make this window the only one on the
 screen

	qa[ll][!]
	Exit Vim

	q[uit][!]
	Quit the current window (exit if given in the
 last window)

	res[ize]
 [±n]
	Increase or decrease the current window height by
 n

	res[ize]
 [n]
	Set the current window height to
 n if supplied; otherwise, set it to the
 largest size possible without hiding the other
 windows

	[N]sn[ext]
	Split the window and move to the next file in the
 argument list, or to the Nth file if a
 count is supplied

	[N]sp[lit]
 [position]
 [file]
	Split the current window in half

	sta[g]
 [tagname]
	Split the window and run the
 :tag command as appropriate in the new
 window

	[N]sv[iew]
 [position]
 file
	Same as :split, but set the
 readonly option for the
 buffer

	wa[ll][!]
	Write all modified buffers that have
 filenames

	wqa[ll][!]
	Write all changed buffers and exit

	xa[ll][!]
	Same as wqall

Window management commands—vi

	Command
	Function

	
^W s

^W S

^W ^S

	Same as :split without a
 file argument; ^W ^S
 may not work on all terminals.

	
^W n

^W ^N

	Same as :new without a
 file argument.

	
^W ^

^W ^^

	Perform :split #, split the
 window, and edit the alternate file.

	
^W q

^W ^Q

	Same as the :quit command;
 ^W ^Q may not work on all
 terminals.

	^W c	Same as the :close
 command.

	
^W o

^W ^O

	Same as the :only
 command.

	
^W ↓

^W j

^W ^J

	Move cursor to nth window
 below the current one.

	
^W ↑

^W k

^W ^K

	Move cursor to nth window
 above the current one.

	
^W w

^W ^W

	With count, go to
 nth window; otherwise, move to the window
 below the current one. If in the bottom window, move to the
 top one.

	^W W	With count, go to
 nth window; otherwise, move to window
 above the current one. If in the top window, move to the
 bottom one.

	
^W t

^W ^T

	Move the cursor to the top window.

	
^W b

^W ^B

	Move the cursor to the bottom
 window.

	
^W p

^W ^P

	Go to the most recently accessed (previous)
 window.

	
^W r

^W ^R

	Rotate all the windows downward; the cursor stays
 in the same window.

	^W R	Rotate all the windows upward; the cursor stays
 in the same window.

	
^W x

^W ^X

	Without count, exchange the
 current window with the next one; if there is no next window,
 exchange with the previous window. With
 count, exchange the current window with
 the nth window (first window is one; the
 cursor is put in the other window).

	^W =	Make all windows the same height.

	^W -	Decrease current window height.

	^W +	Increase current window height.

	
^W _

^W ^_

	Set the current window size to the value given in
 a preceding count.

	z N
 ENTER	Set the current window height to
 N.

	
^W]

^W ^]

	Split the current window; in the new upper
 window, use the identifier under the cursor as a tag and go to
 it.

	
^W f

^W ^F

	Split the current window and edit the filename
 under the cursor in the new window.

	
^W i

^W ^I

	Open a new window; move the cursor to the first
 line that matches the keyword under the cursor.

	
^W d

^W ^D

	Open a new window; move the cursor to the macro
 definition that contains the keyword under the cursor.

Tabbed Editing

Similar to modern web browsers, Vim lets you create and manage multiple
 tabs. Within each tab, there can be multiple
 windows. You can then switch back and forth between tabs. This is an
 easy way to work on multiple unrelated editing tasks without cluttering
 up your screen. Tabs are supported in both the character and the GUI
 versions of Vim.
Managing tabs—ex

Tabs are numbered from one.
	Command
	Function

	[count]
 tab
 command	 Run command, but open a new
 tab when otherwise a new window would be opened, e.g., use
 :tab split to split the current buffer into
 a new tab.

	tabc[lose][!]
 [count]	 Close the current tab page. With
 count, close the page whose number is
 indicated in count. Use
 ! to force closing, even if file contents
 have not been saved (the buffer’s contents are not
 lost).

	tabdo
 command	 Execute command for each
 tab.

	tabe[dit]
 [option]
 [command]
 [file]	 Open a new page with a window editing
 file. With no arguments, open an empty
 page.

	tabf[ind]
 [option]
 [command]
 file	 Open a new page and search for
 file in the value of the
 path option, like
 :find.

	tabf[irst]	 Move to the first tab.

	tabl[ast]	 Move to the last tab.

	tabm[ove]
 [N]	 Move the current tab page to after tab page
 N (change the ordering of the tab pages
 themselves, not which tab you’re working in). With no
 argument, make the current tab become the last one.

	tabnew
 [option]
 [command]
 [file]	 Same as
 :tabedit.

	tabn[ext]
 [count]	 Move to next tab, or to tab
 count.

	tabN[ext]
 [count]	 Same as
 :tabprevious.

	tabo[nly][!]	 Close all other tab pages.

	tabp[revious]
 [count]	 Move to previous tab, or go back
 count tabs. This wraps around.

	tabr[ewind]	 Move to the first tab (same as
 :tabfirst).

Managing tabs—vi

The control sequences work in both command mode and insert
 mode.
	Command
	Function

	
gt

CTRL Page Down

	 Same as :tabnext

	
gT

CTRL Page Up

	 Same as :tabprevious

	^W gf	 Edit the filename under the cursor in a new tab
 page

	^W gF	 Edit the filename under the cursor in a new tab
 page, starting at the line number following the filename

Tabbed editing options

	Option
	Default

	t:cmdheight (t:ch) (per tab
 page)	1

	guitablabel (gtl)	

	guitabtooltip (gtt)	

	showtabline (stal)	1

	tabline (tal)	

	tabpagemax (tpm)	10

Vim Extended Regular Expressions

	\|
	Indicates alternation.

	\+
	Matches one or more of the preceding regular expressions.

	\=
	Matches zero or one of the preceding regular
 expressions.

	\{...}
	Defines an interval expression.
 Interval expressions describe counted numbers of repetitions. In
 the following description, n and
 m represent integer constants:
	\{n}
	Matches exactly n repetitions of
 the previous regular expression.

	\{n,}
	Matches n or more repetitions of
 the previous regular expression, as many as possible.

	\{n,m}
	Matches n to
 m repetitions.

For Vim, n and m
 can range from 0 to 32,000. Vim requires the backslash only on the
 { and not on the }. Vim
 extends traditional interval expressions with additional matching
 notations, as follows:
	\{,m}
	Matches 0 to m of the preceding
 regular expression, as
 much as possible.

	\{}
	Matches 0 or more of the preceding regular
 expressions, as much as possible (same as
 *).

	\{-n,m}
	Matches n to
 m of the preceding regular expression,
 as few as possible.

	\{-n}
	Matches n of the preceding
 regular expression.

	\{-n,}
	Matches at least n of the
 preceding regular expression, as few as possible.

	\{-,m}
	Matches 0 to m of the preceding
 regular expression, as
 few as possible.

	\i
	Matches any identifier character, as defined by the isident option.

	\I
	Like \i, excluding digits.

	\k
	Matches any keyword character, as defined by the iskeyword option.

	\K
	Like \k, excluding digits.

	\f
	Matches any filename character, as defined by the isfname option.

	\F
	Like \f, excluding digits.

	\p
	Matches any printable character, as defined by the isprint option.

	\P
	Like \p, excluding digits.

	\s
	Matches a whitespace character (exactly a space or
 tab).

	\S
	Matches anything that isn’t a space or a tab.

	\b
	Backspace.

	\e
	Escape.

	\r
	Carriage return.

	\t
	Tab.

	\n
	Matches the end of line.

	~
	Matches the last given substitute (i.e., replacement)
 string.

	\(...\)
	Provides grouping for *,
 \+, and \=, as well as
 making matched subtexts available in the replacement part of a
 substitute command (\1, \2,
 etc.).

	\1
	Matches the same string that was matched by the first
 subexpression in \(and \).
 \2, \3, and so on, may be
 used to represent the second, third, and so forth subexpressions.

The isident, iskeyword,
 isfname, and isprint options
 define the characters that appear in identifiers, keywords, and
 filenames, and that are printable, respectively.

Command-Line History and Completion

Vim keeps a history of ex commands that you
 have issued. You can recall and edit commands from that history and use
 the completion facilities to save typing when entering commands.
History commands—vi

	Key
	Meaning

	↑, ↓
	Move up (previous), down (more recent) in the
 history

	←, →
	Move left, right on the recalled
 line

	 INS
	Toggle insert/overstrike mode; default is insert
 mode

	 BACKSPACE
	Delete characters

	SHIFT or
 CONTROL combined with ← or →
	Move left or right one word at a
 time

	^B or
 HOME
	Move to the beginning of the command
 line

	^E or
 END
	Move to the end of the command
 line

If Vim is in vi compatibility mode,
 ESC acts likes ENTER and executes
 the command. When vi compatibility is turned off,
 ESC exits the command line without executing
 anything.
The wildchar option contains the character
 you type when you want Vim to do a completion. The default value is
 the tab character. You can use completion for the following:
	Command names
	Available at the start of the command line.

	Tag values
	After you’ve typed :tag.

	Filenames
	When typing a command that takes a filename argument (see
 :help suffixes for details).

	Option values
	When entering a :set command, for both
 option names and their values.

Completion commands—vi

	Command
	Function

	 ^A
	Insert all names that match the
 pattern

	 ^D
	List the names that match the pattern; for
 filenames, directories
 are highlighted

	 ^L
	If there is exactly one match, insert it;
 otherwise, expand to the longest common prefix of the multiple
 matches

	 ^N
	Go to next of multiple
 wildchar matches, if any; otherwise, recall
 more recent history line

	 ^P
	Go to previous of multiple
 wildchar matches, if any; otherwise, recall
 older history line

	Value of
 wildchar
	(Default: tab) Perform a match, inserting the
 generated text; pressing TAB successively
 cycles among all the matches

Tag Stacks

Vim provides ex and vi
 commands for managing the tag stack.
Tag commands—ex

	Command
	Function

	[count]po[p][!]
	Pop a cursor position off the stack, restoring
 the cursor to its previous position

	sts[elect][!]
 [tagstring]
	Like tselect, but split the
 window for the selected tag

	ta[g][!]
 [tagstring]
	Edit the file containing
 tagstring as defined in the
 tags file

	[N]ta[g][!]
	Jump to the Nth newer entry
 in the tag stack

	 tags
	Display the contents of the tag
 stack

	tl[ast][!]
	Jump to the last matching tag

	[N]tn[ext][!]
	Jump to the Nth next
 matching tag (default one)

	[N]tN[ext][!]
	Same as
 tprevious

	[N]tp[revious][!]
	Jump to the Nth previous
 matching tag (default one)

	[N]tr[ewind][!]
	Jump to the first matching tag; with
 N, jump to the Nth
 matching tag

	ts[elect][!]
 [tagstring]
	List the tags that match
 tagstring, using the information in the
 tags file(s)

Tag commands—vi

	Command
	Function

	
^]

g <LeftMouse>

CTRL-<LeftMouse>

	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; the current location is automatically pushed to the
 tag stack

	 ^T
	Return to the previous location in the tag stack,
 i.e., pop off one element

Edit-Compile Speedup

Vim provides several commands to increase programmer productivity.
Program development commands—ex

	Command
	Function

	cc[!]
 [n]
	Display error n if supplied;
 otherwise, redisplay the current error

	cf[ile][!]
 [errorfile]
	Read the error file and jump to the first
 error

	clast[!]
 [n]
	Display error n if supplied;
 otherwise, display the last error

	cl[ist][!]
	List the errors that include a
 filename

	[N]cn[ext][!]
	Display the Nth next error
 that includes a filename

	[N]cp[previous][!]
	Display the Nth previous
 error that includes a filename

	crewind[!]
 [n]
	Display error n if
 supplied

	cq[uit]
	Quit with an error code so that the compiler
 won’t compile the same file again; intended primarily for the
 Amiga compiler

	mak[e]
 [arguments]
	Run make, based on the
 settings of several options as described in the next table,
 then go to the location of the first error

Program development options

	Option
	Value
	Function

	errorformat
	 %f:%l:\ %m
	A description of what error messages from the
 compiler look like; this example value is for
 gcc, the C compiler from the GNU Compiler
 Collection

	 makeef
	 /tmp/vim##.err
	The name of a file that will contain the compiler
 output; the ## causes Vim to create unique
 filenames

	 makeprg
	 make
	The program that handles the recompilation

	 shell
	 /bin/sh
	The shell to execute the command for rebuilding
 your program

	 shellpipe
	 2>&1| tee

	Whatever is needed to cause the shell to save
 both standard output and standard error from the compilation
 in the error file

Programming Assistance

Vim provides multiple mechanisms for finding identifiers that
 are of interest.
Identifier search commands—ex

	Command
	Function

	che[ckpath][!]
	List all the included files that couldn’t be
 found; with the !, list all the included
 files.

	[range]dj[ump][!]
 [count]
 [/]pattern[/]
	Like [^D and]
 ^D, but search in range lines;
 the default is the whole file.

	
[range]dl[ist][!]

[/]pattern[/]

	Like [D and
]D, but search in
 range lines; the default is the whole
 file.

	
 [range]ds[earch][!]
 [count]
 [/]pattern[/]

	Like [d and
]d, but search in
 range lines; the default is the whole
 file.

	[range]dsp[lit][!]
 [count]
 [/]pattern[/]
	Like ^W d and ^W
 ^D, but search in range lines;
 the default is the whole file.

	[range]ij[ump][!]
 [count]
 [/]pattern[/]
	Like [^I and]
 ^I, but search in range lines;
 the default is the whole file.

	
[range]il[ist][!]

[/]pattern[/]

	Like [I and
]I, but search in
 range lines; the default is the whole
 file.

	
 [range]is[earch][!]
 [count]
 [/]pattern[/]

	Like [i and
]i, but search in
 range lines (the default is the whole
 file). Without the slashes, a word search is done; with
 slashes, a regular expression search is done.

	[range]isp[lit][!]
 [count]
 [/]pattern[/]
	Like ^W i and ^W
 ^I, but search in range lines;
 the default is the whole file.

Identifier search commands—vi

	Command
	Function

	 [d
	Display the first macro definition for the
 identifier under the cursor

]d
	Display the first macro definition for the
 identifier under the cursor, but start the search from the
 current position

	 [D
	Display all macro definitions for the identifier
 under the cursor; filenames and line numbers are
 displayed

]D
	Display all macro definitions for the identifier
 under the cursor, but start the search from the current
 position

	 [^D
	Jump to the first macro definition for the
 identifier under the cursor

] ^D
	Jump to the first macro definition for the
 identifier under the cursor, but start the search from the
 current position

	
^W d

^W ^D

	Open a new window showing the location of the
 first macro definition of the identifier under the cursor;
 with a preceding count, find the specified occurrence of the
 macro

	 [i
	Display the first line that contains the keyword
 under the cursor

]i
	Display the first line that contains the keyword
 under the cursor, but start the search at the current position
 in the file; this command is most effective when given a
 count

	 [I
	Display all lines that contain the keyword under
 the cursor; filenames and line numbers are
 displayed

]I
	Display all lines that contain the keyword under
 the cursor, but start from the current position in the
 file

	 [^I
	Jump to the first occurrence of the keyword under
 the cursor

] ^I
	Jump to the first occurrence of the keyword under
 the cursor, but start the search from the current
 position

	
^W i

^W ^I

	Open a new window showing the location of the
 first occurrence of the identifier under the cursor; with a
 preceding count, go to the specified occurrence

Extended matching commands—vi

Provide a preceding count to these commands to move forward or
 backward by more than one instance of the desired search text.
	Command
	Function

	 %
	Extended to match the /* and
 */ of C comments and the C preprocessor
 conditionals (#if,
 #endif, etc.)

	 [(
	Move to the Nth previous
 unmatched (

	 [)
	Move to the Nth next
 unmatched)

	 [{
	Move to the Nth previous
 unmatched {

	 [}
	Move to the Nth next
 unmatched }

	 [#
	Move to the Nth previous
 unmatched #if or
 #else

]#
	Move to the Nth next
 unmatched #else or
 #endif

	[*,
 [/
	Move to the Nth previous
 unmatched start of a C comment,
 /*

]*,
]/
	Move to the Nth next
 unmatched end of a C comment,
 */

Indentation and formatting options

	Option
	Function

	 autoindent
	Simple-minded indentation; uses that of the
 previous line

	 smartindent
	Similar to autoindent, but is
 smarter about C syntax; deprecated in favor of
 cindent

	 cindent
	Enables automatic indenting for C programs and is
 quite smart; C formatting is affected by the rest of the
 options listed in this table

	 cinkeys
	Input keys that trigger indentation
 options

	 cinoptions
	Options that tailor your preferred indentation
 style

	 cinwords
	Keywords that start an extra indentation on the
 following line

	 formatoptions
	A number of single-letter flags that control
 several behaviors, notably how comments are formatted as you type
 them

	 comments
	Describes different formatting options for
 different kinds of comments, both those with starting and
 ending delimiters, as in C, and those that start with a single
 symbol and go to the end of the line, such as in a
 Makefile or shell program

Folding and Unfolding Text

Folding is enabled with the foldenable option.
 There are six folding methods,
 controlled by the foldmethod option, as follows:
	diff
	Folds are used for unchanged text.

	expr
	Folds are defined by a regular expression.

	indent
	 Folds are defined by the
 indentation of the text being folded and the value of
 shiftwidth.

	manual
	Folds are defined using regular Vim commands (such as the
 search and motion commands).

	marker
	Folds are defined by predefined markers (which you can
 change) in the text.

	syntax
	Folds are defined by the syntax of the language being
 edited.

Folding commands—ex

	Command
	Function

	range
 fo[ld]	 Create a fold for the lines in
 range.

	range
 foldc[lose][!]	 Close folds in range. With
 !, close all folds; otherwise, open just
 one fold.

	[range]
 folddoc[losed]
 command	 (Fold do closed.) Similar to the
 g (global) command, this
 command marks all lines that are in a closed fold and executes
 command on them.

	[range]
 foldd[oopen]
 command	 (Fold do open.) Similar to the
 g (global) command, this
 command marks all lines not in a closed fold and executes
 command on them.

	range
 foldo[pen][!]	 Open folds in range. With
 !, open all folds; otherwise, open just one
 fold.

Folding commands—vi

Folding commands start with z, since it looks
 something like a folded piece of paper, viewed from the side.
	Command
	Function

	za	 Toggle folding. On an open fold, close one or
 count folds. On a closed fold, open folds
 and set foldenable.

	zA	 Like za, but open or close
 folds recursively.

	zc	 Close one or count folds
 under the cursor.

	zC	 Close all folds under the cursor.

	zd	 Delete the fold under the cursor. Nested folds
 are moved up a level. Careful! This can delete more than you
 expect, and there is no undo.

	zD	 Delete folds recursively starting under the
 cursor.

	zE	 Eliminate all folds in the
 window.

	zf
 motion	 Create a fold.

	zF	 Create a fold for count
 lines (like zf).

	zi	 Toggle the value of
 foldenable.

	zj	 Move down to start of next fold or down
 count folds.

	zk	 Move up to start of previous fold or up
 count folds.

	zm	 Fold more by subtracting one from
 foldlevel if it’s greater than zero; set
 foldenable.

	zM	 Close all folds, set
 foldlevel to zero, and set foldenable.

	zn	 Fold “none”: reset foldenable
 and open all folds.

	zN	 Fold “normal”: set foldenable
 and restore all folds to their previous states.

	zo	 Open one or count folds.

	zO	 Open all folds under the cursor.

	zr	 Reduce folding. Adds one to
 foldlevel.

	zR	 Open all folds and set
 foldlevel to the highest fold level.

	zv	 Open enough folds to make the line with the
 cursor visible (view the cursor).

	zx	 Update folds by undoing manually opened and
 closed folds, reapplying foldlevel, and
 doing zv.

	zX	 Undo manually opened and closed folds, then
 reapply foldlevel.

	[z	 Move to start of current open fold. If already
 there, move to start of containing fold if there is one;
 otherwise, fail. With count, repeat the
 given number of times.

]z	 Like [z, but move to the end
 of the fold or the end of the containing fold.

Folding options

	Option
	Default

	foldclose (fcl)	 0

	foldcolumn (fdc)	 0

	foldenable (fen)	 foldenable

	foldexpr (fde)	 0

	foldignore (fdi)	 #

	foldlevel (fdl)	 0

	foldlevelstart (fdls)	 –1

	foldmarker (fmr)	 {{{,}}}

	foldmethod (fdm)	 manual

	foldminlines (fml)	 1

	foldnestmax (fdn)	 20

	foldopen (fdo)	
 block,hor,mark,percent,quickfix,search,tag,undo

	foldtext (fd)	 foldtext()

Insertion Completion Facilities

Vim provides completion facilities: the ability to enter
 only a part of the final text and have Vim provide you with a list of
 suggested completions based on the commands you use and the content of
 the current files.
The completion commands (except for completion with the
 complete option) are two-keystroke combinations that
 start with CTRL-X. Most second keystrokes are not bound
 to actions in input mode, so it is often useful to map the second
 keystroke to the original combination, such as :inoremap ^F
 ^X^F.
The completion commands present a list of choices that you can
 cycle through using CTRL-N and CTRL-P
 (for “next” and “previous,” respectively). Use CTRL-E
 to end the completion without making a choice, and use
 CTRL-Y or ENTER to select the current
 choice and insert it.
The completion facilities are not simple, but they bring
 considerable power and time savings to long editing sessions. It is
 worthwhile to invest time to learn to use them. See Chapter 14 of
 Learning the vi and Vim
 Editors for the details.
Completion commands—vi

The order here is alphabetic by keystroke. Commands marked with
 a ✓ allow use of the second character to move to the next candidate,
 along with the regular CTRL-N.
Completion with the complete option is the
 most customizable and flexible method.
	Command
	Completion
	Description

	
^N

^P

	Using complete
	Do completion searching forward
 (^N) or backward (^P),
 based on the comma-separated list of completion
 sources given in the complete option. The next table
 lists the possible sources. Use ^X ^N or
 ^X ^P to copy additional words from the
 original source.

	^X ^D ✓	Macro names
	Search the current and included files for macros
 (defined with #define) that match the text
 under the cursor. Repeating the command after an insertion
 copies additional words
 from the original source.

	^X ^F ✓	Filename
	Look for filenames (not file contents) that match
 the word under the cursor. The path option
 is not used here.

	^X ^I	Keyword in file and included files
	 Similar to keyword completion (^X
 ^N), but search in included files as well, as
 specified by the include option; the
 default is a pattern matching C and C++
 #include directives. The
 path option acts as a search path to find
 included files in addition to looking in the “standard”
 places. Repeating the
 command after an insertion copies additional words from the
 original source.

	^X ^K ✓	Dictionary
	Search the files in the comma-separated list that is the value
 of the dictionary option for a word that
 matches.

	^X ^L ✓	Whole line
	Search backward in the file for a line matching
 what you’ve typed so far. Typing ^X ^L
 after inserting a matched line lets you select one of the
 lines next to the original line that was
 inserted.

	
^X ^N ✓

^X ^P ✓

	Keyword in file
	Search forward (^X ^N) or
 backward (^X ^P) for a “keyword” matching
 what you’ve typed so far. Keywords are contiguous sequences of the characters
 appearing in the iskeyword option. Repeating the command after an
 insertion copies additional words from the original
 source.

	^X ^O ✓	Omni
	Call the Vim function named by the
 omnifunc option to do completion. This
 function is expected to be filetype-specific (Javascript,
 HTML, C++, etc.) and loaded when the file is
 loaded.

	
^X ^S ✓

^X s

	Spelling
	Offer possible spelling corrections for the word
 under the cursor.
 Spellchecking must be enabled with the
 spell option.

	^X ^T ✓	Thesaurus
	Similar to dictionary completion; search files in
 the thesaurus option and provide completion
 from all matching lines. Here, all words on a line with a
 match are shown as completion options, not just the first word
 on the line. Similarly, all lines with a possible match are
 shown.

	^X ^U ✓	User function
	Call the Vim function named by the
 completefunc option to do
 completion.

	^X ^V ✓	ex command line
	Provide completion for Vim commands. This is
 intended to simplify Vim script development. Repeating the command does
 additional
 completion.

	^X ^] ✓	Tag
	Search forward in the current and included files
 for the first tag matching the word under the cursor. If
 showfulltag is set, Vim displays the tag and the search
 pattern used for it.

The next table describes possible completion sources for use
 with the complete option. Sources are listed
 alphabetically. The default value for complete is
 ".,w,b,u,t,i".
	Name
	Description

	. (period)
	 The current buffer.

	b
	 Other buffers, even those that are not loaded in
 a window (visible).

	d
	 The current and included files; search for macro
 definitions.

	i
	 The current and included files.

	k
	 The dictionary files listed in the
 dictionary option.

	kfile
	 Scan file for dictionary
 lines that match. May be given multiple times, e.g.,
 k~/french. A pattern may be used.

	kspell
	 Use the current spellchecking scheme.

	s
	 The thesaurus files listed in the
 thesaurus option.

	sfile
	 Scan file for thesaurus
 lines. May be given multiple times, e.g.,
 s~/french. A pattern may be used.

	t,
]
	 Tag completion.

	u
	 The unloaded buffers in the buffer list.

	U
	 The buffers that are not in the buffer list.

	w
	 Buffers in other windows.

Completion options

	Option
	Default

	complete
 (cpt)	.,w,b,u,t,i

	completefunc
 (cfu)	

	completeopt
 (cot)	menu,preview

	define
 (def)
	^\s*#\s*define

	dictionary
 (dict)	

	include
 (inc)
	^\s*#\s*include

	infercase
 (inf)	noinfercase

	isfname
 (isf)
	@,48-57,/,.,-,_,+,,,#,$,%,~,=

	iskeyword
 (isk)
	@,48-57,_,192-255

	omnifunc
 (ofu)	

	pumheight
 (ph)	0

	showfulltag
 (sft)	noshowfulltag

	spell	nospell

	thesaurus
 (tsr)	

Diff Mode

When invoked as either vimdiff or
 gvimdiff, Vim provides diff mode, which lets you view a comparison of
 the differences between two files. vimdiff is for use
 on a standard terminal (or inside a terminal emulator), while
 gvimdiff uses the GUI facilities of your operating
 system.
When Vim is built from source, vimdiff and
 gvimdiff are usually installed as links to Vim. On a
 system using a package manager, you may have to install them
 separately.
Figure 1-1 shows an example screenshot
 of gvimdiff in action. The figure shows the salient
 points:
	Lines that are identical are folded so that they are hidden
 (see Folding and Unfolding Text for information on
 folding text).

	Lines that appear in one file but not in the other are
 highlighted (in light blue) in the file in which they are present
 and are shown as lines of dashes in the file from which they are
 absent.

	Lines that are different between the files are highlighted (in
 pink), with the actual differences between the lines highlighted in
 red.

This mode makes it straightforward to move bits of text from one
 version of a file to another. For example, if you maintain a project
 using copies of library files from another source, when the source files
 are revised, it is easy to copy and paste the changes into your version
 of the file.
[image: gvimdiff in action]

Figure 1-1. gvimdiff in action

Vim Scripting

Scripting in Vim is a large topic, one deserving of a full book to
 itself. This section presents some of the barest essentials. For more
 information, see Chapter 12 of Learning the vi and Vim
 Editors and the online help.
Vim provides essentially a full-featured programming language with
 variables, operators, control flow constructs, and the ability to define
 your own functions. This section looks (briefly) at each of these in
 turn.
Following vi, comments start
 with a double-quote character and continue to the end of the line.
 Typically you put comments on
 lines by themselves to avoid problems with double-quoted strings, which are also part
 of Vim’s language.
Variables, options, and numbers

Vim lets you define your own variables and includes a mechanism to
 indicate the scope, or lifetime, of a variable. You may
 also access the value of Vim options. Variable names consist of any
 number of letters, digits, or underscores, and may not start with a
 digit. Vim uses special markers in front of the variable or option
 name to indicate the type and scope. By default, variables are
 global:
	Prefix
	Meaning

	&	Vim option

	$	Environment variable

	@	Register (single-character names)

	a:	Function argument

	b:	Local to the buffer

	g:	Global

	l:	Local to the function

	s:	Local to script read with
 source

	t:	Local to the tab page

	v:	Vim-defined global variable

	w:	Local to the window

Two commands assign a value to a variable or remove a variable:
	Command
	Function

	let	Assign a value

	unlet[!]	Remove a variable; adding !
 prevents a diagnostic if the variable doesn’t
 exist

Numeric values in Vim are always integer values. Prefix a number with
 0 (zero) to indicate it is octal (base 8), or with
 either 0x or 0X to indicate that
 it is hexadecimal (base 16). Otherwise, the number is taken as decimal
 (base 10).
Vim provides regular arrays (termed lists) and associative arrays
 (termed dictionaries). As dictionaries may hold
 functions, you can even do object-oriented programming! See the online
 help for more information.

Control flow commands

The control flow commands are conventional, as described in
 the following table.
	Command
	Function

	if condition

 commands

elsif condition

 commands

else condition

 commands

endif

	If-then-else statement. The
 elsif and else parts are
 optional, and there may be as many elsif
 parts as needed.

	
for var in list

 commands

endfor

	Loop over a list of values, setting variable
 var to a new value each time before
 running commands. This is similar to the
 shell for loop.

	
while condition

 commands

endwhile

	While condition is true,
 execute commands.

	
try

 commands

catch pattern

 commands

finally

 commands

endtry

	Catch exceptions (see the online help for
 details).

	break	Break out of the enclosing
 while loop, skipping the rest of the loop
 body and terminating the loop.

	continue	 Go to the top of the enclosing
 while loop, skipping the rest of the loop
 body.

	finish	 Exit from a script read with the
 source command.

	throw
 expr	 Evaluate expr and throw the
 result as an exception; the exception is caught with a
 catch clause inside
 try…endtry.

Operators

Expressions are built up by applying operators to values. Values are
 obtained from numeric or string constants and from variables, options,
 and list or dictionary elements. Most of the operators will be
 familiar to programmers, and their precedence is generally that of the
 C language (“The usual precedence is used,” says the online
 help).
	Operators
	Meaning

	+ −	Addition and subtraction

	* / %	Multiplication, division, and
 modulus

	. (period)	String concatenation

	e1 ?
 e2 :
 e3	The C ternary operator: if
 e1 is true, use e2,
 otherwise, use e3

	== !=	Equals and not equals

	< <=	Less than and less than or equals

	> >=	Greater than and greater than or
 equals

	=~ !~	Matches and does not match (regular expression
 matching)

	=	Absolute assignment; use with
 let

	+= -= .=	Incremental assignment: add to, subtract from,
 and concatenate onto the end; use with
 let

By default, the comparison operators (==, !=, <, <=, >, >=, =~, !~) ignore case or respect it based on
 the setting of the ignorecase option. Suffixing the
 operators with # forces the test to match case,
 whereas using ? forces the test to ignore
 case.

User-defined functions

Vim lets you define your own functions. The following table
 outlines the commands related to defining and calling functions, with
 explanation following the table.
	Command
	Function

	function Name([args])

 commands

 return value

endfunction

	Define a function

	function Name([args]) range

 commands

 return value

endfunction

	Define a function that operates upon a range of
 lines

	function! Name([args])

 commands

 return value

endfunction

	Define a function, even if the function already
 exists

	function Name(args, ...)

 commands

 return value

endfunction

	Define a function that takes a variable number of
 arguments

	function
	List all user-defined function names and their
 arguments

	function
 Name
	Display the body of function
 Name

	delfunction
 Name
	Remove (undefine) function
 Name

	
 [N,M]
 call
 Func([args])

	Call a function upon a range of lines
 N through M

User-defined function names must begin with
 an uppercase letter so that Vim can distinguish them from built-in
 functions.
Arguments (parameters) are optional. If they’re supplied, you
 reference them within the function body using the
 a: prefix on their names. When the
 “...” syntax is used, you access the additional,
 unnamed arguments as a:1, a:2,
 and so on. a:0 is a count of the additional
 parameters, and a:000 is a list of all the
 additional arguments. Functions using “...” may
 have up to 20 additional arguments.
Functions defined with the range syntax are
 called once for the range of lines; the starting and ending line
 numbers are available as a:firstline and
 a:lastline, respectively. Functions defined without
 range are called once for each line in the
 range.
Use the return statement to return a value
 from the function. Return values must be numeric;
 return without a value or “falling off the end” of
 the function causes the function to return zero.
Variables used within a function body are automatically local to
 the function; you must use the g: prefix to access
 global variables.
The function body is checked for validity when the function is
 called, not when it’s defined. You should therefore test your
 functions carefully before publishing them.
The call command calls a function on a range
 of lines. Otherwise, function calls may be used as elements in an
 expression in any context that accepts an expression (such as with
 if).
Vim also provides function references, which are
 variables that “point” at functions and may be used to call them
 indirectly. Such variables must also have names that start with an
 uppercase letter. When combined with dictionaries, they provide a
 rudimentary object-oriented programming capability; see the online
 help for the details.
Of course, as is often the case in the Free Software and open
 source worlds, chances are good that someone else has already written
 a function that does what you need (or 90% of it). There are many Vim
 functions available at the Vim
 website. Check there first before diving in to write a
 function of your own!

Running scripts

There are multiple ways to run scripts. You can read a file
 directly with the source command. For example, your
 ~/.vimrc file might execute source
 ~/.exrc. Doing this lets you keep commands that will only
 work in vi in the .exrc file,
 while still letting you execute them in Vim as well.
More commonly used, the auto-commands mechanism lets you read and execute scripts based on a
 file’s type, as determined by the file’s suffix. For example, the
 author has the following in his .vimrc
 file:
autocmd BufReadPre,FileReadPre *.xml source ~/.ex-sgml-rc
The aliases and input mappings specific to XML are kept in a
 separate file. This keeps them from getting in the way when you are
 working on other kinds of files, but makes them available when you are
 editing XML.

Vim set Options

	Option
	Default

	autoread
 (ar)	noautoread
	 background
 (bg)
	 dark or
 light

	 backspace
 (bs)
	0

	 backup (bk)

	 nobackup

	 backupdir
 (bdir)
	 .,~/tmp/,~/

	 backupext
 (bex)
	 ~

	 binary (bin)

	 nobinary

	 cindent
 (cin)
	 nocindent

	 cinkeys
 (cink)
	 0{,0},:,0#,!^F,o,O,e

	 cinoptions
 (cino)
	
	 cinwords
 (cinw)
	
 if,else,while,do,for,switch

	 comments
 (com)
	
	 compatible
 (cp)
	 cp; nocp
 when a .vimrc file is found

	completeopt (cot)	menu,preview
	 cpoptions
 (cpo)
	 aABceFs

	cursorcolumn
 (cuc)	nocursorcolumn
	cursorline
 (cul)	nocursorline
	define
 (def)
	^\s*#\s*define

	 directory
 (dir)
	 .,~/tmp,/tmp

	 equalprg
 (ep)
	
	 errorfile
 (ef)
	 errors.err

	 errorformat
 (efm)
	(too long to print)

	 expandtab
 (et)
	 noexpandtab

	 fileformat
 (ff)
	 unix

	 fileformats
 (ffs)
	 dos,unix

	 formatoptions
 (fo)
	 Vim default: tcq;
 vi default: vt

	 gdefault
 (gd)
	 nogdefault

	 guifont
 (gfn)
	
	 hidden (hid)

	 nohidden

	 hlsearch
 (hls)
	 nohlsearch

	 history (hi)

	 Vim default: 20; vi default:
 0

	 icon
	 noicon

	 iconstring
	
	include
 (inc)
	^\s*#\s*include

	 incsearch
 (is)
	 noincsearch

	isfname
 (isf)
	@,48-57,/,.,-,_,+,,,#,$,%,~,=

	 isident
 (isi)
	 @,48-57,_,192-255

	 iskeyword
 (isk)
	 @,48-57,_,192-255

	 isprint
 (isp)
	 @,161-255

	 makeef (mef)

	 /tmp/vim##.err

	 makeprg (mp)

	 make

	modifiable
 (ma)	modifiable
	 mouse
	
	 mousehide
 (mh)
	 nomousehide

	 paste
	 nopaste

	 ruler (ru)

	 noruler

	 secure
	 nosecure

	 shellpipe
 (sp)
	
	 shellredir
 (srr)
	
	 showmode
 (smd)
	 Vim default: smd;
 vi default: nosmd

	 sidescroll
 (ss)
	0

	 smartcase
 (scs)
	 nosmartcase

	spell	nospell
	 suffixes
	 *.bak,~,.o,.h,.info,.swp

	 taglength
 (tl)
	0

	 tagrelative
 (tr)
	 Vim default: tr;
 vi default: notr

	 tags (tag)

	 ./tags,tags

	 tildeop
 (top)
	 notildeop

	 undolevels
 (ul)
	 1000

	 viminfo (vi)

	
	 writebackup
 (wb)
	 writebackup

nvi—New vi

nvi is a vi clone created for the 4.4BSD Berkeley Unix release. It’s
 intended to be “bug-for-bug” compatible with the original, although it
 does have a number of extensions over the original
 vi.
Important Command-Line Options

	-c command
	Execute command at startup.

	-F
	Don’t copy the entire file when starting to edit.

	-R
	Start in read-only mode, setting the
 readonly option.

	-s
	Enter batch (script) mode. This is only for
 ex and is intended for running editing scripts.
 Prompts and nonerror messages are disabled.

	-S
	Run with the secure option set,
 disallowing access to external programs.

nvi Window Management Commands

	Command
	Function

	 bg
	Hide the current window

	di[splay]
 b[uffers]
	Display all buffers, including named, unnamed, and
 numeric buffers

	di[splay]
 s[creens]
	Display the filenames of all backgrounded
 windows

	Edit
 filename
	Edit filename in a new
 window

	 Edit /tmp
	Create a new window editing an empty buffer;
 /tmp is interpreted specially to create a
 new temporary file

	fg
 filename
	Uncover filename into the
 current window

	Fg
 filename
	Uncover filename in a new
 window; the current window is split

	 Next
	Edit the next file in the argument list in a new
 window

	 Previous
	Edit the previous file in the argument list in a
 new window

	resize
 ±nrows
	Increase or decrease the size of the current window
 by nrows rows

	Tag
 tagstring
	Edit the file containing
 tagstring in a new window

The ^W command cycles between windows, top to
 bottom. The :q and ZZ commands
 exit the current window.
You may have multiple windows open on the same file. Changes made
 in one window are reflected in the other.

nvi Extended Regular Expressions

You use :set extended to enable extended regular expression matching:
	|
	Indicates alternation. The left and right sides don’t need
 to be single characters.

	+
	Matches one or more of the preceding regular expressions.
 This is either a single character or a group of characters
 enclosed in parentheses.

	?
	Matches zero or one occurrence of the preceding regular
 expression.

	(...)
	Used for grouping, to allow the application of additional
 regular expression operators.

	{...}
	Describes an interval expression (interval expressions were
 defined in Vim Extended Regular Expressions).
When extended isn’t set, use
 \{ and \}.

When extended is set, you should precede the
 above metacharacters with a backslash in order to match them
 literally.

Command-Line History and Completion Options

	Option
	Description

	 cedit
	The first character of this string, when used on
 the colon command line, provides access to the command history;
 pressing ENTER on any given line executes that
 line.

	 filec
	The first character of this string, when used on
 the colon command line, does shell-style filename expansion;
 when this character is the same as for the
 cedit option, command-line editing is
 performed only when the character is entered as the first
 character on the colon command line.

Both of these options are not set by default. Set them in your
 $HOME/.nexrc file.

Tag Stacks

nvi provides both ex and
 vi commands for managing the tag stack.
Tag commands—ex

	Command
	Function

	di[splay]
 t[ags]
	Display the tag stack

	ta[g][!]
 tagstring
	Edit the file containing
 tagstring as defined in the
 tags file

	Ta[g][!]
 tagstring
	Just like :tag, except that
 the file is edited in a new window

	tagp[op][!]
 tagloc
	Pop to the given tag or to the most recently used
 tag if no tagloc is
 supplied

	tagt[op][!]
	Pop to the oldest tag in the stack, clearing the
 stack in the process

Tag commands—vi

	Command
	Function

	 ^]
	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; the current location is automatically pushed to the
 tag stack

	 ^T
	Return to the previous location in the tag
 stack

nvi 1.79 set Options

	Option
	Default

	 backup
	
	 cdpath
	Environment variable $CDPATH or
 current directory

	 cedit
	
	 comment
	 nocomment

	directory
 (dir)
	$TMPDIR, or
 /tmp

	 extended
	 noextended

	 filec
	
	 iclower
	 noiclower

	 leftright
	 noleftright

	 lock
	 lock

	 octal
	 nooctal

	 path
	
	 recdir
	 /var/tmp/vi.recover

	 ruler
	 noruler

	 searchincr
	 nosearchincr

	 secure
	 nosecure

	 shellmeta
	 ~{[*?$`'"\

	 showmode
 (smd)
	 noshowmode

	 sidescroll
	16

	taglength
 (tl)
	0

	tags
 (tag)
	tags
 /var/db/libc.tags
 /sys/kern/tags

	 tildeop
	 notildeop

	wraplen
 (wl)
	0

elvis

elvis is a vi clone written by Steve Kirkendall.
Important Command-Line Options

	-a
	Load each file named on the command line to a separate
 window.

	-c command
	Execute command at startup (POSIX
 version of the historical
 +command syntax).

	-f filename
	Use filename for the session file
 instead of the default name.

	-G gui
	Use the given interface. The default is the
 termcap interface. Other choices include
 x11, windows,
 curses, open, and
 quit. Not all the interfaces may be compiled
 into your version of elvis.

	-i
	Start editing in input mode instead of in command
 mode.

	-o logfile
	Redirect the startup messages out to a file, instead of
 stdout/stderr. This is of critical importance to MS Windows users
 because Windows discards anything written to standard output and
 standard error.

	-R
	Start editing each file in read-only mode.

	-s
	Read an ex script from standard input and
 execute (per the POSIX standard). This bypasses all initialization
 scripts.

	-S
	Set the option security=safer for the
 whole session, not just execution of .exrc
 files.
 This adds a certain amount of security, but should not necessarily
 be trusted blindly.

	-SS
	Set the option security=restricted, which
 is even more paranoid than
 security=safer.

	-V
	Output more verbose status information.

	-?
	Print a summary of the possible options.

elvis Window Management

elvis provides multiwindow editing.
Window management commands—ex

	Command
	Function

	 close
	Close the current window; the buffer that the
 window was displaying remains intact

	 new
	Create a new empty buffer and create a new window
 to show that buffer

	 qall
	Issue a :q command for each
 window; buffers without windows are not
 affected

	sa[ll]
	Create a new window for any files named in the
 argument list that don’t already have a window

	sl[ast]
	Create a new window, showing the last file in the
 argument list

	sne[w]
	Same as new

	sn[ext]
 [file...]
	Create a new window, showing the next
 file in the argument list

	sN[ext]
	Create a new window, showing the previous file in
 the argument list

	sp[lit]
 [file]
	Create a new window; load it with
 file if supplied; otherwise, the new
 window shows the current file

	sre[wind][!]
	Create a new window, showing the first file in
 the argument list; reset the “current” file as the first with
 respect to the :next command

	sta[g][!]
 tag
	Create a new window, showing the file where the
 requested tag is found

	wi[ndow]
 [target]
	With no target, list all
 windows; the possible values for target
 are described in the next table

	 wquit
	Write the buffer back to the file and close the
 window; the file is saved whether or not it has been
 modified

Arguments to the :window command

	Argument
	Meaning

	 +
	Switch to the next window, like ^W
 k

	 ++
	Switch to the next window, wrapping like
 ^W ^W

	 -
	Switch to the previous window, like ^W
 j

	 --
	Switch to the previous window,
 wrapping

	 num
	Switch to the window whose
 windowid =
 num

	 buffer-name

	Switch to the window editing the named
 buffer

Window management commands—vi

	Command
	Function

	 ^W c
	Hide the buffer and close the
 window

	 ^W d
	Toggle the display mode between “normal” and the
 buffer’s usual display mode; this is a per-window option

	 ^W j
	Move down to the next window

	 ^W k
	Move up to the previous window

	 ^W n
	Create a new window and a new buffer to be
 displayed in the window

	 ^W q
	Save the buffer and close the
 window

	 ^W s
	Split the current window

	 ^W S
	Toggle the wrap option; this
 option controls whether long lines wrap or whether the whole
 screen scrolls to the right, and is a per-window
 option

	[N] ^W
 ^W
	Move to the next window, or to the
 Nth window

	 ^W]
	Create a new window, then look up the tag underneath the
 cursor

	 ^W +
	Increase the size of the current window
 (termcap interface only)

	 ^W -
	Reduce the size of the current window
 (termcap interface only)

	 ^W \
	Make the current window as large as possible
 (termcap interface only)

elvis Extended Regular Expressions

	\|
	Indicates alternation.

	\+
	Matches one or more of the preceding regular expressions.

	\?
	Matches zero or one of the preceding regular
 expressions.

	\@
	Matches the word under the cursor.

	\=
	Indicates where to put the cursor when the text is matched.

	\(...\)
	Used for grouping to allow the application of additional
 regular expression operators.

	\{...\}
	Describes an interval expression (interval expressions were
 defined in Vim Extended Regular Expressions).

POSIX bracket expressions (character classes, etc.; see POSIX character classes) are available.

Command-Line History and Completion Movement Keys

	Key
	Effect

	↑, ↓
	Page up and down through the Elvis ex
 history buffer

	←, →
	Move around on the command line

Insert characters by typing and erase them by backspacing over
 them.
You can use the TAB key for filename
 expansion.
To get a real tab character, precede it with a
 ^V. Disable filename completion entirely by setting
 the Elvis ex history buffer’s
 inputtab option to tab via the
 following command:
:(Elvis ex history)set inputtab=tab

Tag Stacks

elvis provides both ex and
 vi commands for managing the tag stack.
Tag commands—ex

	Command
	Function

	ta[g][!]
 [tagstring]
	Edit the file containing
 tagstring as defined in the
 tags file

	stac[k]
	Display the current tag stack

	po[p][!]
	Pop a cursor position off the stack, restoring
 the cursor to its previous position

Tag commands—vi

	Command
	Function

	 ^]
	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; the current location is automatically pushed onto
 the tag stack

	 ^T
	Return to the previous location in the tag
 stack

Edit-Compile Speedup

elvis provides several commands to increase programmer productivity.
Program development commands—ex

	Command
	Option
	Function

	cc[!]
 [args]
	 ccprg
	Run the C compiler; useful for recompiling an
 individual file

	er[rlist][!]
 [file]
	 	Move to the next error’s location

	mak[e][!]
 [args]
	 makeprg
	Recompile everything that needs recompiling
 (usually via
 make)

Display modes

	Mode
	Display appearance

	 hex
	An interactive hex dump, reminiscent of mainframe
 hex dumps; good for editing binary files

	 html
	A simple web page formatter; the tag commands can
 follow links and return to the starting web
 page

	 man
	Simple manpage formatter; like the output of
 nroff -man

	 normal
	No formatting; display text as it exists in the
 file

	 syntax
	Like normal, but with syntax
 coloring turned on

	tex
	A simple subset of the TEX
 formatter

Display-mode commands—ex

	Command
	Function

	di[splay]
 [mode
 [lang]]
	Change the display mode to
 mode; use lang for
 syntax mode

	 no[rmal]

	Same as :display normal, but
 much easier to type

Options for print management

	Option
	Function

	lpcolor
 (lpcl)	Enable color printing for PostScript and MS
 Windows printers

	lpcolumns
 (lpcols)
	The printer’s width

	lpcontrast
 (lpct)	Control shading and contrast; for use with the
 lpcolor option

	lpconvert
 (lpcvt)
	If set, convert Latin-8 extended ASCII to PC-8
 extended ASCII

	lpcrlf
 (lpc)
	The printer needs <CR><LF> to end
 each line

	lpformfeed
 (lpff)
	Send a formfeed after the last
 page

	lplines
 (lprows)
	The length of the printer’s page

	lpoptions
 (lpopt)
	 Control of various printer features; this
 matters only for PostScript printers

	lpout
 (lpo)
	The file or command to print to

	lptype
 (lp)
	The printer type

	lpwrap
 (lpw)
	Simulate line wrapping

Values for the lptype option

	Name
	Printer type

	 bs
	Overtyping is done via backspace characters; this
 setting is the closest to traditional Unix
 nroff

	 cr
	Line printers; overtyping is done with carriage
 return

	 dumb
	Plain ASCII; no font control

	 epson
	Most dot-matrix printers; no graphic characters
 supported

	 hp
	Hewlett-Packard printers and most non-PostScript
 laser printers

	 ibm
	Dot-matrix printers with IBM graphic
 characters

	 pana
	Panasonic dot-matrix printers

	 ps
	PostScript; one logical page per sheet of
 paper

	 ps2
	PostScript; two logical pages per sheet of
 paper

elvis 2.2 set Options

elvis 2.2 has a total of 225 options that affect its behavior. The
 most important ones are summarized here. Options shared with
 vi are not repeated here.
	Option
	Default

	autoiconify
 (aic)	noautoiconify
	backup (bk)	nobackup
	binary
 (bin)	
	boldfont
 (xfb)	
	bufdisplay
 (bd)	normal
	ccprg (cp)	cc ($1?$1:$2)
	directory
 (dir)	
	display
 (mode)	normal
	elvispath
 (epath)	
	equalprg
 (ep)	fmt
	focusnew
 (fn)	focusnew
	font (fnt)	
	gdefault
 (gd)	nogdefault
	home (home)	$HOME
	italicfont
 (xfi)	
	locked
 (lock)	nolocked
	lpcolor
 (lpcl)	nolpcl
	lpcolumns
 (lpcols)	80
	lpcrlf
 (lpc)	nolpcrlf
	lpformfeed
 (lpff)	nolpformfeed
	lpheader
 (lph)	nolph
	lplines
 (lprows)	60
	lpout (lpo)	
	lptype
 (lpt)	dumb
	lpwrap
 (lpw)	lpwrap
	makeprg
 (mp)	make $1
	prefersyntax
 (psyn)	never
	ruler (ru)	noruler
	security
 (sec)	normal
	showmarkups
 (smu)	noshowmarkups
	sidescroll
 (ss)	0
	smartargs
 (sa)	nosmartargs
	spell (sp)	nospell
	taglength
 (tl)	0
	tags
 (tagpath)	tags
	tagstack
 (tsk)	tagstack
	undolevels
 (ul)	0
	warpback
 (wb)	nowarpback
	warpto (wt)	don't

vile—vi like Emacs

vile is a vi clone based originally on MicroEmacs, whose main goal is to
 provide the “finger feel” of vi.
Important Command-Line Options

	-g N
	vile begins editing on the first file at the specified
 line number; this can also be given as
 +N.

	-h
	Invokes vile on the help file.

	-R
	Invokes vile in “read-only” mode; no
 writes are permitted while in this mode.

	-s pattern
	In the first file, vile executes an
 initial search for the given pattern; this can also be given as
 +/pattern.

	-v
	Invokes vile in “view” mode; no changes
 are permitted to any buffer while in this mode.

	-?
	vile prints a short usage summary and
 exits.

	@ cmdfile
	vile runs the specified file as its
 startup file and bypasses any normal startup file.

vile Window Management Commands

	Command
	
Key

sequences

	Function

	delete-other-windows
	^O, ^X
 1
	Eliminate all windows except the current
 one

	delete-window
	^K, ^X
 0
	Destroy the current window unless it’s the last
 one

	
edit-file, E, e

find-file

	^X e	Bring given (or under-cursor, for ^X
 e) file or existing buffer into window

	grow-window
	V
	Increase the size of the current window by
 count

	move-next-window-down

	^A ^E
	Move next window down (or buffer up) by
 count lines

	move-next-window-up

	^A ^Y
	Move next window up (or buffer down) by
 count lines

	move-window-left
	^X ^L
	Scroll window to left by count
 columns, half-screen if count
 unspecified

	move-window-right

	^X ^R
	Scroll window to right by
 count columns, half-screen if
 count unspecified

	next-window
	^X o
	Move to the next window

	position-window
	z
 where
	Reframe with cursor specified by
 where, as follows: center
 (., M,
 m), top (ENTER,
 H, t), or bottom
 (-, L,
 b)

	previous-window
	^X O
	Move to the previous window

	resize-window
	 	Change the current window to
 count lines

	restore-window
	 	Return to window saved with
 save-window

	save-window
	 	Mark a window for later return with
 restore-window

	scroll-next-window-down
	^A ^D
	Move next window down by count
 half-screens

	scroll-next-window-up
	^A ^U
	Move next window up by count
 half-screens

	shrink-window
	v
	Decrease the size of the current window by
 count lines

	split-current-window
	^X 2
	Split the window in half; a
 count of 1 or 2 determines which becomes
 current

	view-file
	 	Bring given file or existing buffer into window;
 mark it “view-only”

	historical-buffer

	_
	Display a list of the first nine buffers; a digit
 moves to the given buffer, _ _ moves to the
 most recently edited file

	toggle-buffer-list

	*
	Pop up/down a window showing all the
 vile buffers

vile Extended Regular Expressions

	\|
	Indicates alternation.

	\+
	Matches one or more of the preceding regular expressions.

	\?
	Matches zero or one of the preceding regular
 expressions.

	\s \S
	Matches whitespace and nonwhitespace characters, respectively.

	\w \W
	Matches “word-constituent” characters (alphanumerics and the
 underscore, “_”) and nonword-constituent characters,
 respectively.

	\d \D
	Matches digits and nondigits, respectively.

	\p \P
	Matches printable and nonprintable characters, respectively.
 Whitespace is considered to be printable.

	\(...\)
	Provides grouping for *,
 \+, and \?, as well as
 making matched subtexts available in the replacement part of a
 substitute command.

vile allows the escape sequences
 \b, \f, \r,
 \t, and \n to appear in the
 replacement part of a substitute command. They stand for backspace,
 formfeed, carriage return, tab, and newline, respectively. Also, from
 the vile documentation:
Note that vile mimics
 perl’s handling of \u\L\1\E
 instead of vi’s. Given
 :s/\(abc\)/\u\L\1\E/, vi will
 replace with abc whereas vile
 and perl will replace with Abc.
 This is somewhat more useful for capitalizing words.

Command-Line History and Completion

vile stores all your ex commands in a buffer
 named [History]. Options control
 your access to it and the use of the minibuffer (the colon command
 line).
History commands—vi

	Key
	Meaning

	↑, ↓
	Move up (previous), down (more recent) in the
 history

	←, →
	Move left, right on the recalled
 line

	BACKSPACE
	Delete characters

The ex command line provides completion of
 various sorts. Completion applies to built-in and user-defined
 vile commands, tags, filenames, modes, and
 variables, and to the terminal
 characters (the character setting, such as backspace, suspend, and so
 on, derived from your stty settings).

History options

	Option
	Meaning

	history
	Log commands from the colon command line in the
 [History] buffer.

	mini-edit
	The character that toggles the editing mode in
 the minibuffer to use vi motion commands.
 You can also use the vi commands
 i, I,
 a, and A.

	mini-hilite
	Define the highlight attribute to use when the
 user toggles the editing mode in the minibuffer. The value
 should be one of none,
 underline, bold,
 italic, or reverse; the
 default is reverse.

Tag Stacks

vile provides both ex and
 vi commands for managing the tag stack.
Tag commands—ex

	Command
	Function

	ta[g][!]
 [tagstring]
	Edit the file containing
 tagstring as defined in the
 tags file

	pop[!]
	Pop a cursor position off the stack, restoring
 the cursor to its previous position

	 next-tag
	Continue searching through the
 tags file for more matches

	 show-tagstack
	Create a new window that displays the tag stack;
 the display changes as tags are pushed to or popped off the
 stack

Tag commands—vi

	Command
	Function

	^]
	Look up the location of the identifier under the
 cursor in the tags file and move to that
 location; the current location is automatically pushed to the
 tag stack

	
^T

^X ^]

	Return to the previous location in the tag stack,
 i.e., pop off one element

	 ^A ^]
	Same as the :next-tag
 command

Edit-Compile Speedup

Unlike the other clones, vile only provides
 vi commands for increasing programmer
 productivity.
Program development commands—vi

	Command
	Function

	 ^X !
 command ENTER

	Run command, saving the
 output in a buffer named
 [Output]

	 ^X ^X
	Find the next error; vile
 parses the output and moves to the location of each successive
 error

The error messages are parsed using regular expressions in the
 buffer [Error Expressions]. vile
 creates this buffer automatically and uses it when you use ^X
 ^X. You can add expressions to it as needed.
You can point the error finder at an arbitrary buffer (not just
 the output of shell commands) using the
 :error-buffer command. This lets you use the error
 finder on the output of previous compiler or egrep
 runs.

vile 9.8 set Options

	Option
	Default

	alt-tabpos
 (atp)	noatp
	animated	animated
	autobuffer
 (ab)	autobuffer
	autocolor
 (ac)	0
	autosave
 (as)	noautosave
	autosavecnt
 (ascnt)	256
	backspacelimit
 (bl)	backspacelimit
	backup-style	off
	bcolor	default
	byteorder-mark
 (bom)	auto
	check-access	current
	check-modtime	nocheck-modtime
	cindent	nocindent
	cindent-chars	:#{}()[]
	cmode	off
	color-scheme
 (cs)	default
	comment-prefix	^\s*\(\(\s*[#*>]\)\|\(///*\)\)\+
	comments	^\s*/\?\(\s*[#*>/]\)\+/\?\s*$
	cursor-tokens	regex
	dirc	nodirc
	dos	nodos
	fcolor	default
	fence-begin	/*
	fence-end	*/
	fence-if	^\s*#\s*if
	fence-elif	^\s*#\s*elif\>
	fence-else	^\s*#\s*else\>
	fence-fi	^\s*#\s*endif\>
	fence-pairs	{}()[]
	file-encoding	auto
	filtername
 (fn)	
	for-buffers
 (fb)	mixed
	glob	!echo %s
	highlight
 (hl)	highlight
	history
 (hi)	history
	ignoresuffix
 (is)	\(\.orig\|~\)$
	horizscroll
 (hs)	horizscroll
	linewrap
 (lw)	nolinewrap
	maplonger	nomaplonger
	meta-insert-bindings
 (mib)	mib
	mini-hilite
 (mh)	reverse
	modeline	nomodeline
	modelines	5
	overlap-matches	overlap-matches
	percent-crlf	50
	percent-utf8	90
	popup-choices
 (pc)	delayed
	popup-msgs
 (pm)	nopopup-msgs
	recordseparator
 (rs)	lf[a]
	resolve-links	noresolve-links
	reuse-position	noreuse-position
	ruler	noruler
	showchar
 (sc)	noshowchar
	showformat
 (sf)	foreign
	showmode
 (smd)	showmode
	sideways	0
	tabinsert
 (ti)	tabinsert
	tagignorecase
 (tc)	notagignorecase
	taglength
 (tl)	0
	tagrelative
 (tr)	notagrelative
	tags	tags
	tagword
 (tw)	notagword
	undolimit
 (ul)	10
	unicode-as-hex
 (uh)	nounicode-as-hex
	unprintable-as-octal
 (uo)	nounprintable-as-octal
	visual-matches	none
	xterm-fkeys	noxterm-fkeys
	xterm-mouse	noxterm-mouse
	xterm-title	noxterm-title
	[a] This depends on the platform for which
 vile is compiled.

Internet Resources for vi

There are many resources and items of interest on the Internet
 related to vi and its clones. This section provides a
 brief overview of some of them:
	http://www.thomer.com/vi/vi.html
	Thomer M. Gil’s vi Lover’s Home page.
 This is one of two main sites for vi, with links
 to many resources and other sites.

	http://www.vi-editor.org
	Sven Guckes’s VI Pages. This is the
 second of the main vi sites.

	http://www.darryl.com/vi.shtml
	A “This site is vi powered” logo, as shown in Figure 1-2.

	http://www.cafepress.com/geekcheat/366808
	Concise vi command references, printed on
 coffee mugs, t-shirts, and more!

	http://www.networkcomputing.com/unixworld/tutorial/009/009.html
	A nine-part tutorial on vi by Walter Zintz,
 originally published in Unix World
 magazine.

	http://ars.userfriendly.org/cartoons/?id=20000106
	This is the start of the “vigor” story line in the
 User Friendly comic strip, which was the
 inspiration for the next item in this list.

	http://vigor.sourceforge.net
	The source code for vigor.

[image: vi powered!]

Figure 1-2. vi powered!

Program Source and Contact Information

	 	
	Editor	Modernized, original
 vi

	Author	Gunnar Ritter

	Email	 gunnarr@acm.org

	Source	http://ex-vi.sourceforge.net

	Editor	Vim

	Author	Bram Moolenaar

	Email	 Bram@vim.org

	Source	 http://www.vim.org/

	Editor	 nvi

	Author	Keith Bostic

	Email	 bostic@bostic.com

	Source	 https://sites.google.com/a/bostic.com/keithbostic/nvi

	Editor	 elvis

	Author	Steve Kirkendall

	Email	 kirkenda@cs.pdx.edu

	Source	 ftp://ftp.cs.pdx.edu/pub/elvis/README.html

	Editor	 vile

	Authors	Kevin Buettner, Tom Dickey, and Paul
 Fox

	Email	 vile@nongnu.org

	Source	 http://www.invisible-island.net/vile/vile.html

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 A
	abbreviations, Input Mode Shortcuts
	auto-commands, Running scripts
	automatic indentation, Automatic Indentation

 B
	bracket expressions, POSIX Bracket Expressions
	buffer commands, Buffer and Marking Commands
	buffer names, Buffer Names
	buffers, executable, Executable Buffers

 C
	character classes, POSIX Bracket Expressions
	collating symbols, POSIX Bracket Expressions
	command mode maps, Command and Input Mode Maps
	command-line options, Command-Line Options, Important Command-Line Options, Important Command-Line Options, Important Command-Line Options, Important Command-Line Options
		elvis, Important Command-Line Options
	nvi, Important Command-Line Options
	vile, Important Command-Line Options
	Vim, Important Command-Line Options

	commands, vi Commands–More Substitution Tricks, Movement Commands, Editing Commands, Exit Commands, Buffer and Marking Commands, Buffer and Marking Commands, The Substitute Command, ex Commands–Alphabetical List of Commands, Running scripts
		auto-commands (scripting), Running scripts
	buffer commands, Buffer and Marking Commands
	editing commands, Editing Commands
	ex commands, ex Commands–Alphabetical List of Commands
	exit commands, Exit Commands
	marking commands, Buffer and Marking Commands
	movement commands, Movement Commands
	substitute command, The Substitute Command

	completion, Insertion Completion Facilities
	ctags, Exuberant ctags

 D
	dictionaries, Variables, options, and numbers
	diff mode, Diff Mode

 E
	editing commands, Editing Commands
	elvis, elvis–elvis 2.2 set Options, Important Command-Line Options, elvis Window Management–Window management commands—vi, elvis Extended Regular Expressions, Command-Line History and Completion Movement Keys, Command-Line History and Completion Movement Keys, Tag Stacks, Edit-Compile Speedup–Values for the lptype option, elvis 2.2 set Options
		command-line history, Command-Line History and Completion Movement Keys
	command-line options, Important Command-Line Options
	completion movement keys, Command-Line History and Completion Movement Keys
	extended regular expressions, elvis Extended Regular Expressions
	program development commands, Edit-Compile Speedup–Values for the lptype option
	set options, elvis 2.2 set Options
	tag stacks, Tag Stacks
	window management, elvis Window Management–Window management commands—vi

	enhanced tags, Enhanced Tags and Tag Stacks
	equivalence classes, POSIX Bracket Expressions
	ex commands, ex Commands–Alphabetical List of Commands
	executable buffers, Executable Buffers
	exit commands, Exit Commands
	.exrc files, Initialization
	Exuberant ctags, Exuberant ctags

 F
	folding and unfolding text, Folding and Unfolding Text–Folding options
	function references, User-defined functions

 I
	initialization, Initialization
	input mode maps, Command and Input Mode Maps
	input mode shortcuts, Input Mode Shortcuts
	Internet resources, Internet Resources for vi

 L
	lists, Variables, options, and numbers
	locale, vi Regular Expressions
	lowercase commands, Movement Commands

 M
	maps, Command and Input Mode Maps
	marking commands, Buffer and Marking Commands
	metacharacters in replacement strings, Metacharacters Used in Replacement Strings
	movement commands, Movement Commands

 N
	nvi, nvi—New vi–nvi 1.79 set Options, Important Command-Line Options, nvi Window Management Commands, nvi Extended Regular Expressions, Command-Line History and Completion Options, Tag Stacks, nvi 1.79 set Options
		command-line history and completion, Command-Line History and Completion Options
	command-line options, Important Command-Line Options
	extended regular expressions, nvi Extended Regular Expressions
	set options, nvi 1.79 set Options
	tag stacks, Tag Stacks
	window management commands, nvi Window Management Commands

 P
	POSIX bracket expressions, POSIX Bracket Expressions

 R
	recovery commands, Recovery
	regular expressions, Substitution and Regular Expressions, The Substitute Command, POSIX Bracket Expressions, Metacharacters Used in Replacement Strings, Vim Extended Regular Expressions, nvi Extended Regular Expressions, elvis Extended Regular Expressions, vile Extended Regular Expressions
		elvis, elvis Extended Regular Expressions
	metacharacters in replacement strings, Metacharacters Used in Replacement Strings
	nvi, nvi Extended Regular Expressions
	POSIX bracket expressions and character
 classes, POSIX Bracket Expressions
	substitute command and flags, The Substitute Command
	vile, vile Extended Regular Expressions
	Vim, Vim Extended Regular Expressions

 S
	scope, Variables, options, and numbers
	screen mode, vi Commands
	set options, vi set Options, Vim set Options, nvi 1.79 set Options, elvis 2.2 set Options, vile 9.8 set Options
		elvis, elvis 2.2 set Options
	nvi, nvi 1.79 set Options
	vile, vile 9.8 set Options
	Vim, Vim set Options

	Solaris vi, Introduction, Solaris vi Command-Mode Tag Commands, Tag commands—ex
		command-mode tag commands, Solaris vi Command-Mode Tag Commands
	tag stacking, Tag commands—ex

	source code, Nothing like the Original, Program Source and Contact Information
	substitute command, The Substitute Command
	substitution tricks, More Substitution Tricks

 T
	tabbed editing, Tabbed Editing–Tabbed editing options
	tag stacks, Enhanced Tags and Tag Stacks, Tag Stacks, Tag Stacks, Tag Stacks, Tag Stacks
		elvis, Tag Stacks
	nvi, Tag Stacks
	vile, Tag Stacks
	Vim, Tag Stacks

	tags file format, Exuberant ctags

 U
	uppercase commands, Movement Commands

 V
	vi source code, Nothing like the Original
	vi versions, Introduction
	vile, vile—vi like Emacs–vile 9.8 set Options, Important Command-Line Options, Important Command-Line Options, vile Extended Regular Expressions, Command-Line History and Completion, Tag Stacks, Edit-Compile Speedup, vile 9.8 set Options
		command-line history and completion, Command-Line History and Completion
	command-line options, Important Command-Line Options
	extended regular expressions, vile Extended Regular Expressions
	program development commands, Edit-Compile Speedup
	set options, vile 9.8 set Options
	tag stacks, Tag Stacks
	window management commands, Important Command-Line Options

	Vim, Alphabetical List of Commands, Vim—vi Improved–Vim set Options, Important Command-Line Options, Vim Window Management, Tabbed Editing–Tabbed editing options, Vim Extended Regular Expressions–Vim Extended Regular Expressions, Command-Line History and Completion, Completion commands—vi, Completion commands—vi, Tag Stacks, Edit-Compile Speedup, Programming Assistance–Indentation and formatting options, Identifier search commands—ex, Extended matching commands—vi, Indentation and formatting options, Folding and Unfolding Text–Folding options, Insertion Completion Facilities–Completion options, Diff Mode, Vim Scripting–Running scripts, Variables, options, and numbers, Variables, options, and numbers, Control flow commands, Operators, Operators, User-defined functions, Running scripts, Vim set Options
		command-line history, Command-Line History and Completion
	command-line options, Important Command-Line Options
	completion commands, Completion commands—vi, Completion commands—vi
	diff mode, Diff Mode
	ex commands, Alphabetical List of Commands
	extended matching commands, Extended matching commands—vi
	extended regular expressions, Vim Extended Regular Expressions–Vim Extended Regular Expressions
	folding and unfolding text, Folding and Unfolding Text–Folding options
	identifier search commands, Identifier search commands—ex
	indentation and formatting options, Indentation and formatting options
	insertion completion facilities, Insertion Completion Facilities–Completion options
	numeric values, Variables, options, and numbers
	program development commands and options, Edit-Compile Speedup
	programming assistance, Programming Assistance–Indentation and formatting options
	scripting, Vim Scripting–Running scripts, Variables, options, and numbers, Control flow commands, Operators, Operators, User-defined functions, Running scripts
		comparison operators and case, Operators
	control flow commands, Control flow commands
	operators, Operators
	running scripts, Running scripts
	user-defined functions, User-defined functions
	variables, Variables, options, and numbers

	set options, Vim set Options
	tabbed editing, Tabbed Editing–Tabbed editing options
	tag stacks and commands, Tag Stacks
	window management, Vim Window Management

 W
	window management, Vim Window Management, nvi Window Management Commands, elvis Window Management, Important Command-Line Options
		elvis, elvis Window Management
	nvi, nvi Window Management Commands
	vile, Important Command-Line Options
	Vim, Vim Window Management

	word abbreviation, Word Abbreviation
	words, Movement Commands

 About the Author
Arnold Robbins is a professional programmer and technical author who has worked with Unix systems since 1980 and has been using AWK since 1987. As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard for AWK. Arnold is currently the maintainer of gawk and its documentation. He is coauthor of the sixth edition of O'Reilly's Learning the vi Editor.

vi and Vim Editors Pocket Reference

Arnold Robbins

Editor
Andy Oram

Copyright © 2011 Arnold Robbins

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. vi and Vim
 Editors Pocket Reference,
 the image of a tarsier, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-04-01T08:10:54-07:00

OEBPS/orm_front_cover.jpg
Support for Every Text Editing Task

Pocket Reference

O’REILLY" Arnold Robbins

OEBPS/httpatomoreillycomsourceoreillyimages766608.png
T JUT paubTSUN :S3UT| 6EZ--+ 4]

H H

(415« JeY> 35U0d) pasd pury (415 JeY> 35U0d) paud pury

H 2dk107esp 39035 3su0> dTieas| « 2dA127e4p 190435 15U0D OTIEIS

B
{ as1e4 ‘TION “TINN { as1e4 ‘TION “TINN
{ as1es Huelgst ‘ujuend, *{ 351e) "JURLQST ‘.juelq.,
“{ 85184 ‘14IUDST “{ B51EL ‘14IUIST ‘U010,
+{ 5s1e) “ydeubst +{ 5s1e) “ydeubst
“{ as12) ‘3uTAdsT T “{ as12) ‘3uTAdsT
“{ 25121 ‘wnuiest “{ 25121 ‘wnuiest
“{ #5121 ‘30undsT “{ #5121 ‘30undsT
“{ as1e) ‘adedssT “{ as1e) ‘adedssT
1A1u0"53Aq 316uTs 100 isAUTL 6 -+ 4] *A1u0"514q =16uTs 1009 : = |
15uny. 23e31paud 15uny. 23e31paud
‘aueu, Jeys 1suod ‘aueu, Jeyd> 1Su0d
} 2dk13 egp 3935, } 2df1> e4p 00135
>Txe1 aua Aq ustes usaq Apeaite sey] Burpesy auL "ssel> aun uates usaq Apeaite sey] Burpesy auL -ssel> aun
1oeJ8U> USATD © J3U3BUA BUTUIIAP IEUD SUOTIOUN) 3edTpald 03 6 1ouaaun sutwiazep 3eun suoTaduny 3edTpald 03
21e.eY> paweu XTSOd 3Y 10 SaUeU 3y} sdew 1STY BuTmO1104 3yl «/ feu xTsod au1 1o saueu 3yl sdew ST BUTMO110) BUL /|
1TpUBH E
(6) as1ey auTyaps
(1) 13 auryaps
UT 1009 TP
MVD 43P3TH

£(3uT) 21e01paud JuT yapadAy +(3ut) 23e3Tpaud T yopadha (v

vEo % TR P el

331aWIAD - (Z 40 2) (Pabisw-ymeb/>qmeb/nus/=) >:ejp

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages766610.png

