[image: First Edition]
Learning the vi and Vim Editors

Arnold Robbins

Elbert Hannah

Linda Lamb

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To my wife, Miriam, for your love, patience, and support.
—Arnold Robbins, Sixth and Seventh Editions

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

Text editing is one of the most common tasks on any computer system,
 and vi is one of the most useful
 standard text editors on a system. With vi you can create new files or edit any existing
 text-only file.
vi, like many of the classic
 utilities developed during the early years of Unix, has a reputation for
 being hard to navigate. Bram Moolenaar’s enhanced clone, Vim (“vi Improved”), has gone a long way toward
 removing reasons for such impressions. Vim includes countless
 conveniences, visual guides, and help screens. It has become probably the
 most popular version of vi, so this
 seventh edition of this book devotes seven new chapters to it in Part II. However, many other worthy
 clones of vi also exist; we cover three
 of them in Part III.
Scope of This Book

This book consists of 18 chapters and 4 appendixes, divided into 4
 parts. Part I, is designed
 to get you started using vi quickly,
 and to follow up with advanced skills that will let you use it
 effectively.
The first two chapters, Chapter 1, and Chapter 2, present some simple vi commands with which you can get started.
 You should practice these until they are second nature. You could stop
 reading at the end of Chapter 2, having learned some
 elementary editing tools.
But vi is meant to do a lot
 more than rudimentary word processing; the variety of commands and
 options enables you to shortcut a lot of editing drudgery. Chapter 3, and Chapter 4, concentrate on easier ways
 to do tasks. During your first reading, you’ll get at least an idea of
 what vi can do and what commands you
 might harness for your specific needs. Later, you can come back to these
 chapters for further study.
Chapter 5, Chapter 6, and Chapter 7, provide tools that help you
 shift more of the editing burden to the computer. They introduce you to
 the ex line editor underlying
 vi, and they show you how to issue
 ex commands from within vi.
Chapter 8, provides an
 introduction to the extensions available in the four vi clones covered in this book. It centralizes
 in one place the descriptions of multiwindow editing, GUI interfaces,
 extended regular expressions, facilities that make editing easier, and
 several other features, providing a roadmap to what follows in the rest
 of this book. It also provides a pointer to source code for the original
 vi, which can be compiled easily on
 modern Unix systems (including GNU/Linux).
Part II, describes
 Vim, the most popular vi clone in the
 early part of the 21st century.
Chapter 9, provides a
 general introduction to Vim, including where to get binary versions for
 popular operating systems and some of the different ways to use
 Vim.
Chapter 10, describes the
 major improvements in Vim over vi,
 such as built-in help, control over initialization, additional motion
 commands, and extended regular expressions.
Chapter 11, focuses on
 multiwindow editing, which is perhaps the most significant additional
 feature over standard vi. This
 chapter provides all the details on creating and using multiple
 windows.
Chapter 12, looks into the
 Vim command language, which lets you write scripts to customize and
 tailor Vim to suit your needs. Much of Vim’s ease of use “out of the
 box” comes from the large number of scripts that other users have
 already written and contributed to the Vim distribution.
Chapter 13, looks at Vim
 in modern GUI environments, such as those that are now standard on
 commercial Unix systems, GNU/Linux and other Unix work-alikes, and MS
 Windows.
Chapter 14, focuses on
 Vim’s use as a programmer’s editor, above and beyond its facilities for
 general text editing. Of particular value are the folding and outlining
 facilities, smart indenting, syntax highlighting, and edit-compile-debug
 cycle speedups.
Chapter 15, is a bit of a
 catch-all chapter, covering a number of interesting points that don’t
 fit into the earlier chapters.
Part III, describes
 three other popular vi clones:
 nvi, elvis, and vile.
Chapter 16, Chapter 17, and Chapter 18, cover the various vi clones—nvi, elvis,
 and vile—showing you how to use their
 extensions to vi and discussing the
 features that are specific to each one.
Part IV, provides
 useful reference material.
Appendix A, lists all
 vi and ex commands, sorted by function. It also
 provides an alphabetical list of ex
 commands. Selected vi and ex commands from Vim are also included.
Appendix B, lists set command options for vi and for all four clones.
Appendix C, consolidates
 checklists found earlier in the book.
Appendix D, describes
 vi’s place in the larger Unix and
 Internet culture.

How the Material Is
 Presented

Our philosophy
 is to give you a good overview of what we feel are vi survival materials for the new user.
 Learning a new editor, especially an editor with all the options of
 vi, can seem like an overwhelming
 task. We have made an effort to present basic concepts and commands
 in an easy-to-read and logical manner.
After providing the
 basics for vi, which are usable everywhere,
 we move on to cover Vim in depth. We then round out our coverage of
 the vi landscape by looking at nvi, elvis,
 and vile. The following sections describe
 the conventions used in this book.

 Discussion of vi
 Commands

A picture of a keyboard button, like
 the one on the left, marks the main discussion of that
 particular keyboard command or of related commands. You will
 find a brief introduction to the main concept before it is
 broken down into task-oriented sections. We then present the
 appropriate command to use in each case, along with a
 description of the command and the proper syntax for using
 it.

Conventions

In syntax
 descriptions and examples, what you would actually type is
 shown in the Courier font, as
 are all command names. Filenames are also shown in Courier, as are program
 options. Variables (which you would not type literally, but
 would replace with an actual value when you type the
 command) are shown in Courier
 italic. Brackets indicate that a
 variable is optional. For example, in the syntax line:
vi [filename]
filename would
 be replaced by an actual filename. The brackets indicate
 that the vi command can be invoked
 without specifying a filename at all. The brackets
 themselves are not typed.
Certain examples show the
 effect of commands typed at the Unix shell prompt. In such
 examples, what you actually type is shown in Courier
 Bold, to distinguish it from the system
 response. For example:
$ls
ch01.xml ch02.xml ch03.xml ch04.xml
In
 code examples, italic
 indicates a comment that is not to be typed. Otherwise,
 italic
 introduces special terms and emphasizes anything that needs
 emphasis.
Following traditional Unix documentation
 convention, references of the form printf(3) refer to the online
 manual (accessed via the man
 command). This example refers to the entry for the printf() function in section
 3 of the manual (you would type man 3
 printf on most systems to see
 it).

Keystrokes

Special keystrokes are
 shown in a box. For example:
iWith aESC
Throughout
 the book, you will also find columns of vi commands and their results:

 	Keystrokes
 	Results

 	ZZ
 	
 "practice" [New file] 6 lines, 320 characters

 	
 	 Give the write and save command, ZZ. Your file is saved as a
 regular Unix file.

In the preceding example, the command ZZ is shown in the left
 column. In the window to the right is a line (or several
 lines) of the screen that show the result of the command.
 Cursor position is shown in reverse video. In this instance,
 since ZZ saves and writes the
 file, you see the status line shown when a file is written;
 the cursor position is not shown. Below the window is an
 explanation of the command and its result.
 Sometimes
 vi commands are issued by
 pressing the CTRL key and
 another key simultaneously. In the text, this combination
 keystroke is usually written within a box (for example,
 CTRL-G). In code
 examples, it is written by preceding the name of the key
 with a caret (^). For example, ^G means to hold down CTRL while pressing the G key.

Problem
 Checklist

A problem
 checklist is included in those sections where you may run
 into some trouble. You can skim these checklists and go back
 to them when you actually encounter a problem. All of the
 problem checklists are also collected in Appendix C, for ease of
 reference.

What You Need to Know Before Starting

This book assumes you have already read Learning the
 Unix Operating System (O’Reilly), or some other introduction to
 Unix. You should already know how to:
	Log in and log out

	Enter Unix commands

	Change directories

	List files in a directory

	Create, copy, and remove files

Familiarity with grep (a global
 search program) and wildcard characters is also helpful.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

To ask technical questions or comment on the book, send email
 to:
	bookquestions@oreilly.com

The web site for this book lists examples, errata, and plans for
 future editions. You can access this page at:
	http://www.oreilly.com/catalog/9780596529833

For more information about our books, conferences, software,
 resource centers, and the O’Reilly Network, see our web site:
	http://www.oreilly.com

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

About the Previous Editions

In the fifth edition of this book (then called Learning
 the vi Editor), the ex
 editor commands were first discussed more fully. In Chapters 5, 6, and 7, the complex
 features of ex and vi were clarified by adding more examples, in
 topics such as regular expression syntax, global replacement, .exrc files, word abbreviations, keyboard
 maps, and editing scripts. A few of the examples were drawn from
 articles in Unix World magazine. Walter Zintz
 wrote a two-part tutorial[1] on vi that taught us a
 few things we didn’t know, and that also had a lot of clever examples
 illustrating features we did already cover in the book. Ray Swartz also
 had a helpful tip in one of his columns.[2] We are grateful for the ideas in these articles.
The sixth edition of Learning the vi Editor
 introduced coverage of four freely available “clones,” or work-alike
 editors. Many of them have improvements over the original vi. One could thus say that there is a
 “family” of vi editors, and the
 book’s goal was to teach you what you need to know to use them. That
 edition treated nvi, Vim, elvis, and vile equally.
The sixth edition also added the following features:
	Many minor corrections and additions were made to the basic
 text.

	For each chapter where appropriate, a command summary was
 added at the end.

	New chapters covered each vi clone, the features and/or extensions
 common to two or more of the clones, and multiwindow editing.

	The chapters for each vi
 clone described a bit of that program’s history and goals, its
 unique features, and where to get it.

	A new appendix described vi’s place in the larger Unix and Internet
 culture.

[1] “vi Tips for Power Users,”
 Unix World, April 1990; and “Using vi to Automate Complex Edits,”
 Unix World, May 1990. Both articles by Walter
 Zintz. (See Appendix D for the web location of
 these articles.)

[2] “Answers to Unix,” Unix World, August
 1990.

Preface to the Seventh Edition

This seventh edition of Learning the vi and Vim
 Editors retains all the good features of the sixth edition.
 Time has proven Vim to be the most popular vi clone, so this edition adds considerably
 expanded coverage of that editor (and gives it a place in the title).
 However, to be relevant for as many users as possible, we have retained
 and updated the material on nvi,
 elvis, and vile.
What’s New

The following features are new for this edition:
	Once again, we have corrected errors in the basic
 text.

	Seven new chapters provide exhaustive coverage of
 Vim.

	The material on nvi,
 elvis, and vile has been brought up-to-date.

	The previous edition’s two reference appendixes on ex and vi have been condensed into one and now
 contain selected additional material on Vim.

	The other appendixes have been updated as well.

Versions

The following programs were used for testing out various
 vi features:
	The Solaris version of vi
 for a “reference” version of Unix vi

	Version 1.79 of Keith Bostic’s nvi

	Version 2.2 of Steve Kirkendall’s elvis

	Version 7.1 of Bram Moolenaar’s Vim

	Version 9.6 of vile, by
 Kevin Buettner, Tom Dickey, and Paul Fox

Acknowledgments from the Sixth Edition

First and foremost, thanks to my wife, Miriam, for taking care
 of the kids while I was working on this book, particularly during the
 “witching hours” right before meal times. I owe her large amounts of
 quiet time and ice cream.
Paul Manno, of the Georgia Tech College of Computing, provided
 invaluable help in pacifying my printing software. Len Muellner and
 Erik Ray of O’Reilly & Associates helped with the SGML software.
 Jerry Peek’s vi macros for SGML
 were invaluable.
Although all of the programs were used during the preparation of
 the new and revised material, most of the editing was done with Vim
 versions 4.5 and 5.0 under GNU/Linux (Red Hat 4.2).
Thanks to Keith Bostic, Steve Kirkendall, Bram Moolenaar, Paul
 Fox, Tom Dickey, and Kevin Buettner, who reviewed the book. Steve
 Kirkendall, Bram Moolenaar, Paul Fox, Tom Dickey, and Kevin Buettner
 also provided important parts of Chapters 8 through 12. (These chapter
 numbers refer to the sixth edition.)
Without the electricity being generated by the power company,
 doing anything with a computer is impossible. But when the electricity
 is there, you don’t stop to think about it. So too when writing a
 book—without an editor, nothing happens, but when the editor is there
 doing her job, it’s easy to forget about her. Gigi Estabrook at
 O’Reilly is a true gem. It’s been a pleasure working with her, and I
 appreciate everything she’s done and continues to do for me.
Finally, many thanks to the production team at O’Reilly &
 Associates.
—Arnold Robbins Ra’anana, ISRAEL June
 1998

Acknowledgments for the Seventh Edition

Once again, Arnold thanks his wife, Miriam, for her love and
 support. The size of his quiet time and ice cream debt continues to
 grow. In addition, thanks to J.D. “Illiad” Frazer for the great
 User Friendly cartoons.[3]
Elbert would like to thank Anna, Cally, Bobby, and his parents
 for staying excited about his work through the tough times. Their
 enthusiasm was contagious and appreciated.
Thanks to Keith Bostic and Steve Kirkendall for providing input
 on revising their editors’ chapters. Tom Dickey provided significant
 input for revising the chapter on vile and the table of set options in Appendix B.
 Bram Moolenaar (the author of Vim) reviewed the book this time around
 as well. Robert P.J. Day, Matt Frye, Judith Myerson, and Stephen
 Figgins provided important review comments throughout the text.
Arnold and Elbert would both like to thank Andy Oram and Isabel
 Kunkle for their work as editors, and all of the tools and production
 staff at O’Reilly Media.
—Arnold Robbins Nof Ayalon, ISRAEL 2008

—Elbert Hannah Kildeer, Illinois USA 2008

[3] See http://www.userfriendly.org if
 you’ve never heard of User Friendly.

Part I. Basic and Advanced vi

Part I is designed to get you started quickly with the vi editor and to provide the advanced skills
 that will let you use vi most
 effectively. These chapters cover the original, core vi and provide commands you can use on any
 version; later chapters cover popular clones. This part contains the
 following chapters:
	Chapter 1, The vi Text Editor

	Chapter 2, Simple Editing

	Chapter 3, Moving Around in a Hurry

	Chapter 4, Beyond the Basics

	Chapter 5, Introducing the ex Editor

	Chapter 6, Global Replacement

	Chapter 7, Advanced Editing

	Chapter 8, Introduction to the vi Clones

Chapter 1. The vi Text Editor

Unix[4] has a number of editors that can process the contents of
 text files, whether those files contain data, source code, or
 sentences. There are line editors, such as ed and ex, which display a line of the file on the
 screen; and there are screen editors, such as vi and Emacs, which display a part of the file on your terminal
 screen. Text editors based on the X Window System are also commonly available and are becoming increasing
 popular. Both GNU Emacs and its derivative, XEmacs, provide multiple X windows; two
 interesting alternatives are the sam and Acme
 editors from Bell Labs. Vim also provides an X-based interface.
vi is the most useful standard
 text editor on your system. (vi is
 short for visual editor and is pronounced
 “vee-eye.” This is illustrated graphically in Figure 1-1.) Unlike Emacs, it is available in nearly
 identical form on every modern Unix system, thus providing a kind of
 text-editing lingua franca.[5] The same might be said of ed and ex,
 but screen editors are generally much easier to use. (So much so, in
 fact, that line editors have generally fallen into disuse.) With a
 screen editor, you can scroll the page, move the cursor, delete lines,
 insert characters, and more, while seeing the results of your edits as
 you make them. Screen editors are very popular, since they allow you to
 make changes as you read through a file, like you would edit a printed
 copy, only faster.
[image: Correct pronunciation of vi]

Figure 1-1. Correct pronunciation of vi

To many beginners, vi looks
 unintuitive and cumbersome—instead of using special control keys for
 word processing functions and just letting you type normally, it uses
 all of the regular keyboard keys for issuing commands. When the keyboard
 keys are issuing commands, vi is said to
 be in command mode. You must be in a
 special insert mode before you can type actual text on the screen. In addition,
 there seem to be so many commands.
Once you start learning, however, you realize that vi is well designed. You need only a few
 keystrokes to tell vi to do complex
 tasks. As you learn vi, you learn
 shortcuts that transfer more and more of the editing work to the
 computer—where it belongs.
vi (like any text editor) is
 not a “what you see is what you get” word processor. If you want to
 produce formatted documents, you must type in codes that are used by
 another formatting program to control the appearance of the printed
 copy. If you want to indent several paragraphs, for instance, you put a
 code where the indent begins and ends. Formatting codes allow you to experiment with or change
 the appearance of your printed files, and, in many ways, they give you
 much more control over the appearance of your documents than a word
 processor. Unix supports the troff formatting package.[6] The TeX and LaTeX formatters are popular, commonly available alternatives.[7]
(vi does support some simple
 formatting mechanisms. For example, you can tell it to automatically
 wrap when you come to the end of a line, or to automatically indent new
 lines. In addition, Vim version 7 provides automatic spellchecking.)
As with any skill, the more editing you do, the easier the basics
 become, and the more you can accomplish. Once you are used to all the
 powers you have while editing with vi, you may never want to return to any
 “simpler” editor.
What are the components of editing? First, you want to insert text (a forgotten word or a
 new or missing sentence), and you want to delete
 text (a stray character or an entire paragraph). You also need to
 change letters and words (to correct misspellings
 or to reflect a change of mind about a term). You might want to
 move text from one place to another part of your
 file. And, on occasion, you want to copy text to
 duplicate it in another part of your file.
Unlike many word processors, vi’s command mode is the initial or “default” mode. Complex, interactive edits can be
 performed with only a few keystrokes. (And to insert raw text, you
 simply give any of the several “insert” commands and then type
 away.)
One or two characters are used for the basicIp commands. For example:
	i
	Insert

	cw
	Change word

Using letters as commands, you can edit a file with great speed.
 You don’t have to memorize banks of function keys or stretch your
 fingers to reach awkward combinations of keys. You never have to remove
 your hands from the keyboard, or mess around with multiple levels of
 menus! Most of the commands can be remembered by the letters that
 perform them, and nearly all commands follow similar patterns and are
 related to each other.
In general, vi commands:
	Are case-sensitive (uppercase and lowercase keystrokes
 mean different things; I is
 different from i).

	Are not shown (or “echoed”) on the screen when you type
 them.

	Do not require an ENTER after
 the command.

There is also a group of commands that echo on the bottom
 line of the screen. Bottom-line commands are preceded by different
 symbols. The slash (/) and the
 question mark (?) begin search
 commands, and are discussed in Chapter 3. A colon (:) begins all
 ex commands. ex commands are those used by the ex line editor. The ex editor is available to you when you use
 vi, because ex is the underlying editor and vi is really just its “visual” mode. ex commands and concepts are discussed fully
 in Chapter 5, but this chapter introduces you to the
 ex commands to quit a file without
 saving edits.

[4] These days, the term “Unix” includes both commercial systems
 derived from the original Unix code base, and Unix work-alikes whose
 source code is available. Solaris, AIX, and HP-UX are examples of
 the former, and GNU/Linux and the various BSD-derived systems are
 examples of the latter. Unless otherwise noted, everything in this
 book applies across the board to all those systems.

[5] GNU Emacs has become the universal version of Emacs. The only
 problem is that it doesn’t come standard with most commercial Unix
 systems; you must retrieve and install it yourself.

[6] troff is for laser printers
 and typesetters. Its “twin brother” is nroff, for line printers and terminals.
 Both accept the same input language. Following common Unix convention, we refer to both
 with the name troff. Today,
 anyone using troff uses the GNU
 version, groff. See http://www.gnu.org/software/groff/ for more
 information.

[7] See http://www.ctan.org and http://www.latex-project.org for information on
 TeX and LaTeX, respectively.

A Brief Historical Perspective

Before diving into all the ins and outs of vi, it will help you to understand vi’s worldview of your environment. In
 particular, this will help you make sense of many of vi’s otherwise more obscure error messages,
 and also appreciate how the vi
 clones have evolved beyond the original vi.
vi dates back to a time when
 computer users worked on terminals connected via serial lines to
 central mini-computers. Hundreds of different kinds of terminals
 existed and were in use worldwide. Each one did the same kind of
 actions (clear the screen, move the cursor, etc.), but the commands
 needed to make them do these actions were different. In addition, the Unix system let you choose
 the characters to use for backspace, generating an interrupt signal,
 and other commands useful on serial terminals, such as suspending and
 resuming output. These facilities were (and still are) managed
 with the stty command.
The original UCB version of vi abstracted out the terminal control
 information from the code (which was hard to change) into a text-file
 database of terminal capabilities (which was easy to change),
 managed by the termcap
 library. In the early 1980s, System V introduced a
 binary terminal information database and terminfo library. The two libraries were
 largely functionally equivalent. In order to tell vi which terminal you had, you had to set
 the TERM environment
 variable. This was typically done in a shell startup file, such
 as .profile or .login.
Today, everyone uses terminal emulators in a graphic environment
 (such as xterm). The system almost
 always takes care of setting TERM
 for you. (You can use vi from a PC
 non-GUI console too, of course. This is very useful when doing system
 recovery work in single-user mode. There aren’t too many people left
 who would want to work this way on a regular basis, though.) For
 day-to-day use, it is likely that you will want to use a GUI version
 of vi, such as Vim or one of the
 other clones. On a Microsoft Windows or Mac OS X system, this will
 probably be the default. However, when you run vi (or some other screen editor of the same
 vintage) inside a terminal emulator, it still uses TERM and termcap or terminfo and pays attention to the stty settings. And using it inside a
 terminal emulator is just as easy a way to learn vi as any other.
Another important fact to understand about vi is that it was developed at a time when
 Unix systems were considerably less stable than they are today. The
 vi user of yesteryear had to be
 prepared for the system to crash at arbitrary times, and so vi included support for recovering files
 that were in the middle of being edited when the system
 crashed.[8] So, as you learn vi
 and see the descriptions of various problems that might occur, bear
 these historical developments in mind.

[8] Thankfully, this kind of thing is much less common, although
 systems can still crash due to external circumstances, such as a
 power outage.

Opening and Closing Files

You can use vi to
 edit any text file. vi copies the
 file to be edited into a buffer (an area
 temporarily set aside in memory), displays the buffer (though you can
 see only one screenful at a time), and lets you add, delete, and
 change text. When you save your edits, vi copies the edited buffer back into a
 permanent file, replacing the old file of the same name. Remember that
 you are always working on acopy of your file in the buffer,
 and that your edits will not affect your original file until you save
 the buffer. Saving your edits is also called “writing the buffer,” or more commonly, “writing your
 file.”
Opening a File

vi is the Unix
 command that invokes the vi
 editor for an existing file or for a brand new file. The syntax for
 the vi command is:
$ vi [filename]
The brackets shown on the above command line indicate that the
 filename is optional. The brackets should not be typed. The $ is the Unix prompt. If the filename is
 omitted, vi will open an unnamed
 buffer. You can assign the name when you write the buffer into a
 file. For right now, though, let’s stick to naming the file on the
 command line.
A filename must be unique inside its directory. A filename can include any 8-bit character except a
 slash (/), which is reserved as the separator between files and
 directories in a pathname, and ASCII NUL, the character with all
 zero bits. You can even include spaces in a filename by typing a
 backslash (\) before the space. In practice, though, filenames
 generally consist of any combination of uppercase and lowercase
 letters, numbers, and the characters dot (.) and underscore (_). Remember that Unix is case-sensitive: lowercase
 letters are distinct from uppercase letters. Also remember that you
 must press ENTER to tell Unix that
 you are finished issuing your command.
When you want to open a new file in a directory, give a new
 filename with the vi command. For
 example, if you want to open a new file called practice in the current directory, you
 would enter:
$vi practice
Since this is a new file, the buffer is empty and the screen
 appears as follows:
~
~
~
"practice" [New file]
The tildes (~) down the lefthand column of the screen
 indicate that there is no text in the file, not even blank
 lines. The prompt line (also called the status line) at the
 bottom of the screen echoes the name and status of the file.
You can also edit any existing text file in a directory by
 specifying its filename. Suppose that there is a Unix file with the pathname
 /home/john/letter. If you are
 already in the /home/john
 directory, use the relative pathname. For example:
$vi letter
brings a copy of the file letter to the screen.
If you are in another directory, give the full
 pathname to begin editing:
$vi /home/john/letter

Problems Opening Files

	When you invoke vi , the message
 [open mode]
 appears.
 Your terminal type is probably incorrectly
 identified. Quit the editing session immediately by typing
 :q. Check the environment
 variable $TERM. It should be
 set to the name of your terminal. Or ask your system
 administrator to provide an adequate terminal type
 setting.

	You see one of the following
 messages:
Visual needs addressable cursor or upline capability
Bad termcap entry
Termcap entry too longterminal: Unknown terminal type
Block device required
Not a typewriter
 Your terminal type is either undefined, or
 there’s probably something wrong with your terminfo or termcap entry. Enter :q to quit. Check your $TERM environment variable, or ask
 your system administrator to select a terminal type for your
 environment.

	A [new
 file] message appears when you think a file
 already exists.
Check that you have used correct case in the filename
 (Unix filenames are case-sensitive). If you have, then you are
 probably in the wrong directory. Enter :q to quit. Then check to see that you
 are in the correct directory for that file (enter pwd at the Unix prompt). If you are in
 the right directory, check the list of files in the directory
 (with ls) to see whether the
 file exists under a slightly different name.

	You invoke vi , but you get a colon
 prompt (indicating that you’re in ex line-editing
 mode).
You probably typed an interrupt before vi could draw the screen. Enter
 vi by typing vi at the ex prompt (:).

	One of the following messages
 appears:
[Read only]
File is read only
Permission denied
“Read only” means that you can only look at the file; you
 cannot save any changes you make. You may have invoked vi in view mode (with view or vi
 -R), or you do not have write permission for the file.
 See the section Problems Saving Files.

	One of the following messages
 appears:
Bad file number
Block special file
Character special file
Directory
Executable
Non-ascii file file non-ASCII
The file you’ve called up to edit is not a regular text
 file. Type :q! to quit, then check the file you wish to edit,
 perhaps with the file
 command.

	When you type :q because of one of the
 previously mentioned difficulties, this message
 appears:
 No write since last change (:quit! overrides).
You have modified the file without realizing it. Type
 :q! to leave vi. Your changes from this session
 will not be saved in the file.

Modus Operandi

 As mentioned earlier, the concept of the current
 “mode” is fundamental to the way vi works. There are two modes, command
 mode and insert mode. You start out
 in command mode, where every keystroke represents a command. In
 insert mode, everything you type becomes text in your file.
Sometimes, you can accidentally enter insert mode, or
 conversely, leave insert mode accidentally. In either case, what you
 type will likely affect your files in ways you did not
 intend.
Press the ESC key to force vi to
 enter command mode. If you are already in command mode, vi will beep at you when you press the
 ESC key. (Command mode is thus sometimes referred to as “beep
 mode.”)
Once you are safely in command mode, you can proceed to repair
 any accidental changes, and then continue editing your text.

Saving and Quitting a File

 You can quit working on a file at any time, save your
 edits, and return to the Unix prompt. The vi command to quit and save edits is
 ZZ. Note that ZZ is capitalized.
Let’s assume that you do create a file called practice to practice vi commands, and that you type in six
 lines of text. To save the file, first check that you are in command
 mode by pressing ESC, and then
 enter ZZ.
	Keystrokes	Results
	ZZ	 "practice" [New file] 6 lines, 320 characters

	 	 Give the write and save command, ZZ. Your file is saved as a
 regular Unix file.

	ls	 ch01 ch02 practice

	 	 Listing the files in the directory shows the
 new file practice that
 you created.

 You can also save your edits with ex commands. Type :w to save (write) your file but not quit
 vi; type :q to quit if you haven’t made any edits;
 and type :wq to both save your edits and quit. (:wq is equivalent to ZZ.) We’ll explain fully how to use
 ex commands in Chapter 5; for now, you should just memorize a few
 commands for writing and saving files.

Quitting Without Saving Edits

When you are first learning vi, especially if you are an intrepid
 experimenter, there are two other ex commands that are
 handy for getting out of any mess that you might create.
What if you want to wipe out all of the edits you have made in a
 session and then return to the original file? The command:
:e!ENTER
returns you to the last saved version of the file, so you can
 start over.
Suppose, however, that you want to wipe out your edits and then
 just quit vi? The
 command:
:q!ENTER
quits the file you’re editing and returns you to the Unix
 prompt. With both of these commands, you lose all edits made in the
 buffer since the last time you saved the file. vi normally won’t let you throw away your
 edits. The exclamation point added to the :e or :q
 command causes vi to override this
 prohibition, performing the operation even though the buffer has been
 modified.
Problems Saving Files

	You try to write your file, but you get one of
 the following messages:
File exists
File file exists - use w!
[Existing file]
File is read only
Type :w!
 file to overwrite the existing file, or type :w
 newfile to save the edited version in
 a new file.

	You want to write a file, but you don’t have
 write permission for it. You get the message “Permission
 denied.”
Use :w
 newfile to write out the buffer into
 a new file. If you have write permission for the directory, you
 can use mv to replace the
 original version with your copy of it. If you don’t have write
 permission for the directory, type :w
 pathname/file to write out the buffer
 to a directory in which you do have write permission (such as
 your home directory, or /tmp).

	You try to write your file, but you get a
 message telling you that the file system is full.

Type :!rm
 junkfile to delete a (large) unneeded
 file and free some space. (Starting an ex
 command with an exclamation point gives you access to
 Unix.)
Or type :!df to
 see whether there’s any space on another file system. If there
 is, choose a directory on that file system and write your file
 to it with :w pathname.
 (df is the Unix command to
 check a disk’s free space.)

	The system puts you into open mode and tells you
 that the file system is full.
The disk with vi’s
 temporary files is filled up. Type :!ls /tmp to see whether there are any
 files you can remove to gain some disk space.[9] If there are, create a temporary Unix shell from
 which you can remove files or issue other Unix commands.
 You can create a shell by typing :sh; type CTRL-D or exit to terminate the shell and return
 to vi. (On modern Unix
 systems, when using a job-control shell, you can simply type
 CTRL-Z to suspend vi and return to the Unix prompt; type
 fg to return to vi.) Once you’ve freed up some space,
 write your file with :w!.

	You try to write your file, but you get a
 message telling you that your disk quota has been
 reached.
Try to force the system to save your buffer with the
 ex command :pre (short
 for :preserve). If that
 doesn’t work, look for some files to remove. Use :sh (or CTRL-Z if you are using a job-control
 system) to move out of vi and
 remove files. Use CTRL-D (or
 fg) to return to vi when you’re done. Then write your
 file with :w!.

Exercises

The only way to learn vi is
 to practice. You now know enough to create a new file and to return
 to the Unix prompt. Create a file called practice, insert some text, and then save
 and quit the file.
	Open a file called practice in the current
 directory:	vi
 practice
	Insert text:	i any
 text you like
	Return to command mode:	ESC
	Quit vi, saving
 edits:	ZZ

[9] Your vi may keep
 its temporary files in /usr/tmp, /var/tmp, or your current
 directory; you may need to poke around a bit to figure out
 where exactly you’ve run out of room. Vim generally keeps
 its temporary file in the same directory as the file being
 edited.

Chapter 2. Simple Editing

 This chapter introduces you to editing with vi, and it is set up to be read as a tutorial.
 In it you will learn how to move the cursor and how to make some simple
 edits. If you’ve never worked with vi, you should read the entire chapter.
Later chapters will show you how to expand your skills to perform
 faster and more powerful edits. One of the biggest advantages for an
 adept user of vi is that there are so
 many options to choose from. (One of the biggest
 disadvantages for a newcomer to vi is that there are so many different editor
 commands.)
You can’t learn vi by
 memorizing every single vi command.
 Start out by learning the basic commands introduced in this chapter.
 Note the patterns of use that the commands have in common.
As you learn vi, be on the
 lookout for more tasks that you can delegate to the editor, and then
 find the command that accomplishes it. In later chapters you will learn
 more advanced features of vi, but
 before you can handle the advanced, you must master the simple.
This chapter covers:
	Moving the cursor

	Adding and changing text

	Deleting, moving, and copying text

	More ways to enter insert mode

vi Commands

vi has two modes:
 command mode and insert mode. As soon as you enter a file, you are in
 command mode, and the editor is waiting for you to enter a command.
 Commands enable you to move anywhere in the file, to perform edits, or
 to enter insert mode to add new text. Commands can also be given to
 exit the file (saving or ignoring your edits) in order to return to
 the Unix prompt.
You can think of the different modes as representing two
 different keyboards. In insert mode, your keyboard functions like a
 typewriter. In command mode, each key has a new meaning or initiates
 some instruction.
 There are several ways to tell vi that you want to begin insert mode. One
 of the most common is to press i.
 The i doesn’t appear on the screen,
 but after you press it, whatever you type will
 appear on the screen and will be entered into the buffer. The cursor
 marks the current insertion point.[10] To tell vi that you
 want to stop inserting text, pressESC. Pressing ESC moves the cursor back one space (so that
 it is on the last character you typed) and returns vi to command mode.
For example, suppose you have opened a new file and want to
 insert the word “introduction.” If you type the keystrokes iintroduction, what appears on the screen
 is:
introduction
 When you open a new file, vi starts in command mode and interprets the
 first keystroke (i) as the insert
 command. All keystrokes made after the insert command are considered
 text until you press ESC. If you need
 to correct a mistake while in insert mode, backspace and type over the
 error. Depending on the type of terminal you are using, backspacing
 may erase what you’ve previously typed or may just back up over it. In
 either case, whatever you back up over will be deleted. Note that you
 can’t use the backspace key to back up beyond the point where you
 entered insert mode. (If you have disabled vi compatibility, Vim allows you to
 backspace beyond the point where you entered insert mode.)
vi has an option that lets
 you define a right margin and provides a carriage return automatically
 when you reach it. For right now, while you are inserting text, press
 ENTER to break the lines.
Sometimes you don’t know whether you are in insert mode or
 command mode. Whenever vi does not
 respond as you expect, press ESC once
 or twice to check which mode you are in. When you hear the beep, you
 are in command mode.

[10] Some versions show that you’re in input mode in the status
 line.

Moving the Cursor

 You may spend only a small amount of time in an editing
 session adding new text in insert mode; much of the time you will be
 making edits to existing text.
In command mode you can position the cursor anywhere in the
 file. Since you begin all basic edits (changing, deleting, and copying
 text) by placing the cursor at the text that you want to change, you
 want to be able to move the cursor to that place as quickly as
 possible.
There are vi commands to move
 the cursor:
	Up, down, left, or right—one character
 at a time

	Forward or backward by blocks of text
 such as words, sentences, or paragraphs

	Forward or backward through a file, one
 screen at a time

In Figure 2-1, an underscore marks the
 present cursor position. Circles show movement of the cursor from its
 current position to the position that would result from various
 vi commands.
[image: Sample movement commands]

Figure 2-1. Sample movement commands

Single Movements

 The keys h,
 j, k, and l, right under your fingertips, will move
 the cursor:
	h
	Left, one space

	j
	Down, one line

	k
	Up, one line

	l
	Right, one space

You can also use the cursor arrow keys (←, ↓,
 ↑, →), +
 and - to go up and down, or the
 ENTER and BACKSPACE keys, but they are out of the
 way.
 At first, it may seem awkward to use letter keys instead of arrows
 for cursor movement. After a short while, though, you’ll find it is
 one of the things you’ll like best about vi—you can move around without ever taking
 your fingers off the center of the keyboard.
Before you move the cursor, press ESC to make sure that you are in command
 mode. Use h, j, k,
 and l to move forward or backward
 in the file from the current cursor position. When you have gone as
 far as possible in one direction, you hear a beep and the cursor
 stops. For example, once you’re at the beginning or end of a line,
 you cannot use h or l to wrap around to the previous or next
 line; you have to use j
 or k.[11] Similarly, you cannot move the cursor past a tilde (~)
 representing a line without text, nor can you move the cursor above
 the first line of text.

Numeric Arguments

 You can precede movement commands with numbers. Figure 2-2 shows how the command 4l moves the cursor four spaces to the
 right, just as if you had typed l
 four times (llll).
[image: Multiplying commands by numbers]

Figure 2-2. Multiplying commands by numbers

The ability to multiply commands gives you more options and
 power for each command you learn. Keep this in mind as you are
 introduced to additional commands.

Movement Within a Line

 When you saved the file practice, vi displayed a message telling you how
 many lines are in that file. A line is not
 necessarily the same length as the visible line (often limited to 80
 characters) that appears on the screen. A line is any text entered
 between newlines. (A newline character is
 inserted into the file when you press the ENTER key in insert mode.) If you type 200
 characters before pressing ENTER,
 vi regards all 200 characters as
 a single line (even though those 200 characters visibly take up
 several lines on the screen).
As we mentioned in Chapter 1, vi has an option that allows you to set a
 distance from the right margin at which vi will automatically insert a newline character. This option is wrapmargin (its
 abbreviation is wm). You can set
 a wrapmargin at 10
 characters:
:set wm=10
This command doesn’t affect lines that you’ve already typed.
 We’ll talk more about setting options in Chapter 7. (This one really couldn’t wait!)
If you do not use vi’s
 automatic wrapmargin option, you
 should break lines with carriage returns to keep the lines of
 manageable length.
 Two useful commands that involve movement within a
 line are:

	0 (digit
 zero)
	 Move to beginning of line.

	$
	 Move to end of line.

 In the following example, line numbers are displayed.
 (Line numbers can be displayed in vi by using the number option, which is enabled by typing
 :setnu in command mode. This operation is
 described in Chapter 7.)
 1 With a screen editor you can scroll the page,
 2 move the cursor,delete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 3 Screen editors are very popular.

The number of logical lines (3) does not
 correspond to the number of visible lines (5) that you see on the
 screen. If the cursor were positioned on the d
 in the word delete, and you entered $, the cursor would move to the period
 following the word them. If you entered
 0, the cursor would move back to
 the letter m in the word
 move, at the beginning of line two.

Movement by Text Blocks

 You can also move the cursor by blocks of text:
 words, sentences, paragraphs, etc. The w command
 moves the cursor forward one word at a time, counting symbols and
 punctuation as equivalent to words. The following line shows cursor
 movement by w:
cursor,delete lines,insert characters,
 You can also move by word, not counting symbols and
 punctuation, using the W command.
 (You can think of this as a “large” or “capital”
 Word.)
Cursor movement using W
 looks like this:
cursor,delete lines, insert characters,
 To move backward by word, use the b command. Capital B allows you to move backward by word, not
 counting punctuation.
As mentioned previously, movement commands take numeric
 arguments; so, with either the w
 or b commands you can multiply
 the movement with numbers. 2w
 moves forward two words; 5B moves
 back five words, not counting punctuation.
To move to a specific line, you can use the G command. Plain G goes to the end of the file, 1G goes to the top of the file, and
 42G goes to line 42. This is
 described in more detail later in the section The G (Go To) Command.
We’ll discuss movement by sentences and by paragraphs in Chapter 3. For now, practice using the cursor movement
 commands that you know, combining them with numeric multipliers.

[11] Vim, with nocompatible
 set, allows you to “space past” the end of the line to the next
 one with l or the space
 bar.

Simple Edits

When you enter text in your file, it is rarely perfect. You find
 typos or want to improve on a phrase; sometimes your program has a
 bug. Once you enter text, you have to be able to change it, delete it,
 move it, or copy it. Figure 2-3 shows the kinds
 of edits you might want to make to a file. The edits are indicated by
 proofreading marks.
[image: Proofreading edits]

Figure 2-3. Proofreading edits

 In vi you can
 perform any of these edits with a few basic keystrokes: i for insert (which you’ve already seen);
 a for append; c for change; and d for delete. To move or copy text, you use
 pairs of commands. You move text with a d for “delete,” then a p for “put”; you copy text with a y for “yank,” then a p for “put.” Each type of edit is described
 in this section. Figure 2-4 shows the vi commands you use to make the edits marked
 in Figure 2-3.
[image: Edits with vi commands]

Figure 2-4. Edits with vi commands

Inserting New Text

You have already seen the insert command used to enter text
 into a new file. You also use the insert command while editing
 existing text to add missing characters, words, and sentences. In
 the file practice, suppose you
 have the sentence:
 you can scroll
 the page, move the cursor, deletelines, and insert characters.

with the cursor positioned as shown. To insert With
 a screen editor at the beginning of the sentence, enter
 the following:
	Keystrokes	Results
	2k	you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Move the cursor up two lines
 with the k command, to
 the line where you want to make the insertion.

	iWith a	 With a you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Press i to enter insert mode and begin
 inserting text.

	screen
 editor ESC	 With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Finish inserting text, and
 press ESC to end the insert
 and return to command mode.

Appending Text

 You can append text at any place in your file with
 the append command, a. This works
 in almost the same way as i,
 except that text is inserted after the cursor
 rather than before the cursor. You may have
 noticed that when you press i to
 enter insert mode, the cursor doesn’t move until after you enter
 some text. By contrast, when you press a to enter insert mode, the cursor moves
 one space to the right. When you enter text, it appears after the
 original cursor position.

Changing Text

 You can replace any text in your file with the change
 command, c. To tell c how much text to change, you combine
 c with a movement command. In
 this way, a movement command serves as a text
 object for the c
 command to affect. For example, c
 can be used to change text from the cursor:
	cw
	To the end of a word

	c2b
	Back two words

	c$
	To the end of line

	c0
	To the beginning of line

After issuing a change command, you can replace the identified
 text with any amount of new text, with no characters at all, with
 one word, or with hundreds of lines. c, like i and a, leaves you in insert mode until you
 press the ESC key.
 When the change affects only the current line,
 vi marks the end of the text that
 will be changed with a $, so that
 you can see what part of the line is affected. (See the example for
 cw, next.)
Words

 To change a word, combine the c (change) command with w for word. You can replace a word
 (cw) with a longer or shorter
 word (or any amount of text). cw can be thought of as “delete the word
 marked and insert new text until ESC is pressed.”
Suppose you have the following line in your file practice:
With an editor you can scroll the page,
and want to change an to a
 screen. You need to change only one word:
	Keystrokes	Results
	w	 Withan editor you can scroll the page,

 Move with w to
 the place you want the edit to begin.

	cw	 Witha$ editor you can scroll the page,

 Give the change word command. The end of the text
 to be changed will be marked with a $ (dollar sign).

	a screen	 With a screen editor you can scroll the page,

 Type in the replacement text, and then press
 ESC to return to command
 mode.

cw also works on a
 portion of a word. For example, to change
 spelling to spelled, you
 can position the cursor on the i, type
 cw, then type
 ed, and finish with ESC.
General Form of vi Commands
In the change commands we’ve mentioned up to this point,
 you may have noticed the following pattern:
(command)(text
 object)

command is the change command
 c, and text
 object is a movement command (you don’t type the
 parentheses). But c is not
 the only command that requires a text object. The d command (delete) and the y command (yank) follow this pattern
 as well.
Remember also that movement commands take numeric
 arguments, so numbers can be added to the text objects of
 c, d, and y commands. For example, d2w and 2dw are commands to delete two words.
 With this in mind, you can see that most vi commands follow a general
 pattern:
(command)(number)(text
 object)

or the equivalent form:
(number)(command)(text
 object)

Here’s how this works. number and
 command are optional. Without them, you
 simply have a movement command. If you add a
 number, you have a multiple movement. On
 the other hand, combine a command (c, d, or y) with a text
 object to get an editing command.
When you realize how many combinations are possible in
 this way, vi becomes a
 powerful editor
 indeed!

Lines

 To replace the entire current line, use the special
 change command, cc. cc changes an entire line, replacing
 that line with any amount of text entered before pressing ESC. It doesn’t matter where the cursor
 is located on the line; cc
 replaces the entire line of text.
A command like cw works
 differently from a command like cc. In using cw, the old text remains until you type
 over it, and any old text that is left over (up to the $) goes away when you press ESC. In using cc, though, the old text is wiped out
 first, leaving you a blank line on which to insert text.
 The “type over” approach happens with any change
 command that affects less than a whole line, whereas the “blank
 line” approach happens with any change command that affects one or
 more lines.
C replaces
 characters from the current cursor position to the end of the
 line. It has the same effect as combining c with the special end-of-line indicator
 $ (c$).
The commands cc and
 C are really shortcuts for
 other commands, so they don’t follow the general form of vi commands. You’ll see other shortcuts
 when we discuss the delete and yank commands.

Characters

 One other replacement edit is given by the r command. r replaces a single character with another single
 character. You do not have to press ESC to return to command mode after
 making the edit. There is a misspelling in the line below:
Pith a screen editor you can scroll the page,

Only one letter needs to be corrected. You don’t want to use
 cw in this instance because you
 would have to retype the entire word. Use r to replace a single character at the
 cursor:
	Keystrokes	Results
	rW	With a screen editor you can scroll the page,

 Give the replace command r, followed by the replacement
 character W.

Substituting text

 Suppose you want to change just a few characters,
 and not a whole word. The substitute command (s), by itself, replaces a single
 character. With a preceding count, you can replace that many
 characters. As with the change command (c), the last character of the text will
 be marked with a $ so that you
 can see how much text will be changed.
 The S command,
 as is usually the case with uppercase commands, lets you change
 whole lines. In contrast to the C command, which changes the rest of the
 line from the current cursor position, the S command deletes the entire line, no
 matter where the cursor is. vi
 puts you in insert mode at the beginning of the line. A preceding
 count replaces that many lines.
Both s and S put you in insert mode; when you are
 finished entering new text, press ESC.
 The R command,
 like its lowercase counterpart, replaces text. The difference is
 that R simply enters overstrike
 mode. The characters you type replace what’s on the screen,
 character by character, until you type ESC. You can overstrike a maximum of only
 one line; as you type ENTER,
 vi will open a new line,
 effectively putting you into insert mode.

Changing Case

Changing the case of a letter is a special form of
 replacement. The tilde (~)
 command will change a lowercase letter to uppercase or an uppercase
 letter to lowercase. Position the cursor on the letter whose case
 you want to change, and type a ~.
 The case of the letter will change, and the cursor will move to the
 next character.
In older versions of vi,
 you cannot specify a numeric prefix or text object for the ~ to affect. Modern versions do allow a
 numeric prefix.
 If you want to change the case of more than one line
 at a time, you must filter the text through a Unix command such as
 tr, as described in Chapter 7.

Deleting Text

 You can also delete any text in your file with the
 delete command, d. Like the
 change command, the delete command requires a text object (the
 amount of text to be operated on). You can delete by word (dw), by line (dd and D), or by other movement commands that you
 will learn later.
With all deletions, you move to where you want the edit to
 take place, then give the delete command (d) and the text object, such as w for word.
Words

 Suppose you have the following text in the
 file:

Screen editors are are very popular,
 since they allowed you to make
 changes as you read through a file.

with the cursor positioned as shown. You want to delete one
 are in the first line:
	Keystrokes	Results
	2w	 Screen editorsare are very popular,
 since they allowed you to make
 changes as you read through a file.
 Move the cursor to where
 you want the edit to begin (are).

	dw	 Screen editorsare very popular,
 since they allowed you to make
 changes as you read through a file.
 Give the delete word
 command (dw) to delete
 the word are.

dw deletes a word
 beginning where the cursor is positioned. Notice that the space
 following the word is deleted.
dw can also be used to
 delete a portion of a word. In this example:
 since they allowed you to make

you want to delete the ed from the end
 of allowed.
	Keystrokes	Results
	dw	 since they allowyou to make

 Give the delete word command (dw) to delete the word,
 beginning with the position of the cursor.

dw always deletes the
 space before the next word on a line, but we don’t want to do that
 in this example. To retain the space between words, use de, which deletes only to the end of a
 word. Typing dE deletes to the
 end of a word, including punctuation.
 You can also delete backward (db) or to the end or beginning of a line
 (d$ or d0).

Lines

 The dd command
 deletes the entire line that the cursor is on. dd will not delete part of a line. Like
 its complement, cc, dd is a special command. Using the same
 text as in the previous example, with the cursor positioned on the
 first line as shown here:
 Screen editorsare very popular,
 since they allow you to make
 changes as you read through a file.

you can delete the first two lines:
	Keystrokes	Results
	2dd	changes as you read through a file.

 Give the command to delete two lines (2dd). Note that even though the
 cursor was not positioned on the beginning of the line,
 the entire line is deleted.

 The D command
 deletes from the cursor position to the end of the line. (D is a shortcut for d$.) For example, with the cursor
 positioned as shown:
 Screen editors are very popular,
 since they allow you to make
 changesas you read through a file.

you can delete the portion of the line to the right of the
 cursor:
	Keystrokes	Results
	D	 Screen editors are very popular,
 since they allow you to make
 changes
 Give the
 command to delete the portion of the line to the right of
 the cursor (D).

Characters

 Often you want to delete only one or two
 characters. Just as r is a
 special change command to replace a single character, x is a special delete command to delete
 a single character. x deletes
 only the character the cursor is on. In the line here:
zYou can move text by deleting text and then
you can delete the letter z by pressing
 x.[12] A capital X
 deletes the character before the cursor. Prefix either of these commands with a number to
 delete that number of characters. For example, 5x will delete the five characters under
 and to the right of the cursor.

Problems with deletions

	You’ve deleted the wrong text and you want to
 get it back.
There are several ways to recover deleted text. If
 you’ve just deleted something and you realize you want it
 back, simply type u to undo
 the last command (for example, a dd). This works only if you haven’t given any further
 commands, since u undoes
 only the most recent command. Alternatively, a U will restore the line to its
 pristine state, the way it was before any
 changes were applied to it.
 You can still recover a recent deletion,
 however, by using the p
 command, since vi saves the
 last nine deletions in nine numbered deletion buffers. If you
 know, for example, that the third deletion back is the one you
 want to restore, type:
"3p
to “put” the contents of buffer number 3 on the line
 below the cursor.
This works only for a deleted line.
 Words, or a portion of a line, are not saved in a buffer.
 If you want to restore a deleted word or line
 fragment, and u won’t work,
 use the p command by
 itself. This restores whatever you’ve last deleted. The next
 few subsections will talk more about the commands u and p.
Note that Vim supports “infinite” undo, which makes life
 much easier. See the section Undoing Undos for more
 information.

Moving Text

 In vi, you move
 text by deleting it and then placing that deleted text elsewhere in
 the file, like a “cut and paste.” Each time you delete a text block,
 that deletion is temporarily saved in a special buffer. Move to
 another position in your file and use the put command (p) to place that text in the new position.
 You can move any block of text, although moving is more useful with
 lines than with words.
 The put command (p) puts the text that is in the buffer
 after the cursor position. The uppercase
 version of the command,P, puts the text
 before the cursor. If you delete one or more
 lines, p puts the deleted text on
 a new line(s) below the cursor. If you delete less than an entire
 line, p puts the deleted text
 into the current line, after the cursor.
Suppose in your file practice you have the text:
 You can move text by deleting it and then,like a "cut and paste,"
 placing the deleted text elsewhere in the file.
 each time you delete a text block.

and you want to move the second line, like a “cut
 and paste,” below the third line. Using delete, you can
 make this edit:
	Keystrokes	Results
	dd	 You can move text by deleting it and then,placing the deleted text elsewhere in the file.
 each time you delete a text block.
 With the cursor on the
 second line, delete that line. The text is placed in a
 buffer (reserved memory).

	p	 You can move text by deleting it and then,
 placing that deleted text elsewhere in the file.like a "cut and paste"
 each time you delete a text block.
 Give the put command,
 p, to restore the deleted
 line at the next line below the cursor. To finish reordering
 this sentence, you would also have to change the
 capitalization and punctuation (with r) to match the new structure.

Note
 Once you delete text, you must restore it before
 the next change command or delete command. If you make another
 edit that affects the buffer, your deleted text will be lost. You
 can repeat the put over and over, so long as you don’t make a new
 edit. In Chapter 4, you will learn how to save
 text you delete in a named buffer so that you can retrieve it
 later.

Transposing two letters

 You can use xp
 (delete character and put after cursor) to transpose two letters.
 For example, in the word mvoe, the letters
 vo are transposed (reversed). To correct a
 transposition, place the
 cursor on v and press x, then p. By coincidence, the word
 transpose helps you remember the sequence
 xp; x stands for trans,
 and p stands for
 pose.
 There is no command to transpose words. The section
 More Examples of Mapping Keys discusses a short sequence of
 commands that transposes two words.

Copying Text

 Often you can save editing time (and keystrokes) by
 copying a part of your file to use in other places. With the two commands y (for yank) and p (for put), you can copy any amount of
 text and put that copied text in another place in the file. A yank
 command copies the selected text into a special buffer, where it is
 held until another yank (or deletion) occurs. You can then place
 this copy elsewhere in the file with the put command.
As with change and delete, the yank command can be combined
 with any movement command (yw,
 y$, 4yy). Yank is most frequently used with a
 line (or more) of text, because to yank and put a word usually takes
 longer than simply to insert the word.
 The shortcut yy
 operates on an entire line, just as dd and cc do. But the shortcut Y, for some reason, does not operate the
 way D and C do. Instead of yanking from the current
 position to the end of the line, Y yanks the whole line; that is, Y does the same thing as yy.
Suppose you have in your file practice the text:
With a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

You want to make three complete sentences, beginning each with
 With a screen editor you can. Instead of moving
 through the file, making this edit over and over, you can use a yank
 and put to copy the text to be added.
	Keystrokes	Results
	yy	 With ascreen editor you can
 scroll the page.
 move the cursor.
 delete lines.
 Yank the line of text that you want to copy
 into the buffer. The cursor can be anywhere on the line you
 want to yank (or on the first line of a series of lines).

	2j	 With a screen editor you can
 scroll the page.move the cursor.
 delete lines.
 Move the cursor to where you want to put the
 yanked text.

	P	 With a screen editor you can
 scroll the page.With a screen editor you can
 move the cursor.
 delete lines.
 Put the yanked text above the cursor line with
 P.

	jp	 With a screen editor you can
 scroll the page.
 With a screen editor you can
 move the cursor.With a screen editor you can
 delete lines.
 Move the cursor down a line and put the yanked
 text below the cursor line with p.

 Yanking uses the same buffer as deleting. Each new
 deletion or yank replaces the previous contents of the yank buffer.
 As we’ll see in Chapter 4, up to nine previous
 yanks or deletions can be recalled with put commands. You can also
 yank or delete directly into up to 26 named buffers, which allows
 you to juggle multiple text blocks at once.

Repeating or Undoing Your Last Command

 Each edit command that you give is stored in a
 temporary buffer until you give the next command. For example, if
 you insert the after a word in your file, the
 command used to insert the text, along with the text that you
 entered, is temporarily saved.
Repeat

 Any time you make the same editing command over and
 over, you can save time by duplicating it with the repeat command,
 the period (.). Position the cursor where you want to repeat the
 editing command, and type a period.
Suppose you have the following lines in your file:
 With a screen editor you can
 scroll the page.With a screen editor you can
 move the cursor.

You can delete one line, and then, to delete another line,
 simply type a period.
	Keystrokes	Results
	dd	 With a screen editor you can
 scroll the page.move the cursor.

 Delete a line with the command dd.

	.	 With a screen editor you canscroll the page.

 Repeat the deletion.

 Older versions of vi have problems repeating commands. For
 example, such versions may have difficulty repeating a long
 insertion when wrapmargin is
 set. If you have such a version, this bug will probably bite you
 sooner or later. There’s not a lot you can do about it after the
 fact, but it helps to be forewarned. (Modern versions do not seem
 to have this problem.) There are two ways you can guard against a
 potential problem when repeating long insertions. You can write
 your file (:w) before repeating
 the insertion (returning to this copy if the insertion doesn’t
 work correctly). You can also turn off wrapmargin like this:
:set wm=0
In the later section More Examples of Mapping Keys,
 we’ll show you an easy way to use the wrapmargin solution. In some versions of vi, the command CTRL-@ repeats the most recent insertion.
 CTRL-@ is typed in insert mode
 and returns you to command mode.

Undo

 As mentioned earlier, you can undo your last
 command if you make an error. Simply press u. The cursor need not be on the line
 where the original edit was made.
To continue the previous example, showing deletion of lines
 in the file practice:
	Keystrokes	Results
	u	 With a screen editor you can
 scroll the page.move the cursor.

 u undoes the last
 command and restores the deleted line.

U, the uppercase
 version of u, undoes all edits
 on a single line, as long as the cursor remains on that
 line. Once you move off a line, you can no longer use
 U.
Note that you can undo your last undo with u, toggling between two versions of
 text. u will also undo U, and U will undo any changes to a line,
 including those made with u.
Tip
A tip: the fact that u
 can undo itself leads to a nifty way to get around in a file. If
 you ever want to get back to the site of your last edit, simply
 undo it. You will pop back to the appropriate line. When you
 undo the undo, you’ll stay on that line.

Vim lets you use CTRL-R to
 “redo” an undone operation. Combined with infinite undo, you can
 move backward and forward through the history of changes to your
 file. See the section Undoing Undos
 for more information.

[12] The mnemonic for x is
 that it is supposedly like “x-ing out” mistakes with a
 typewriter. Of course, who uses a typewriter anymore?

More Ways to Insert Text

 You have inserted text before the cursor with the
 sequence:
itext to be inserted ESC
You’ve also inserted text after the cursor with the a command. Here are some other insert
 commands for inserting text at different positions relative to the
 cursor:
	A
	Append text to end of current line.

	I
	Insert text at beginning of line.

	o (lowercase
 letter “o”)
	Open blank line below cursor for text.

	O (uppercase
 letter “o”)
	Open blank line above cursor for text.

	s
	Delete character at cursor and substitute text.

	S
	Delete line and substitute text.

	R
	Overstrike existing characters with new characters.

All of these commands place you in insert mode. After inserting
 text, remember to press ESC to return
 to command mode.
A (append) and
 I (insert) save you from having to
 move your cursor to the end or beginning of the line before invoking
 insert mode. (The A command saves
 one keystroke over $a. Although one
 keystroke might not seem like much of a saving, the more adept—and
 impatient—an editor you become, the more keystrokes you will want to
 omit.)
o and O (open) save you from having to insert a
 carriage return. You can type these commands from anywhere within the
 line.
s and S (substitute) allow you to delete a
 character or a whole line and replace the deletion with any amount of
 new text. s is the equivalent of
 the two-stroke command cSPACE, and S is the same as cc. One of the best uses for s is to change one character to several
 characters.
R (“large” replace)
 is useful when you want to start changing text, but you don’t know
 exactly how much. For example, instead of guessing whether to say
 3cw or 4cw, just type R and then enter your replacement
 text.
Numeric Arguments for Insert Commands

 Except for o and
 O, the insert commands just
 listed (plus i and a) take numeric prefixes. With numeric
 prefixes, you might use the commands i, I,
 a, and A to insert a row of underlines or
 alternating characters. For example, typing 50i*ESC
 inserts 50 asterisks, and typing 25a*-ESC
 appends 50 characters (25 pairs of asterisk and hyphen). It’s better
 to repeat only a small string of characters.[13]
 With a numeric prefix, r replaces that number of characters with
 a repeated instance of a single character. For example, in C or C++
 code, to change || to &&, you would place the cursor on
 the first pipe character and type 2r&.
You can use a numeric prefix with S to substitute several lines. It’s
 quicker and more flexible, though, to use c with a movement command.
A good case for using the s
 command with a numeric prefix is when you want to change a few
 characters in the middle of a word. Typing r wouldn’t be correct, and typing cw would change too much text. Using
 s with a numeric prefix is
 usually the same as typing R.

There are other combinations of commands that work naturally
 together. For example, ea is
 useful for appending new text to the end of a word. It helps to
 train yourself to recognize such useful combinations so that they
 become automatic.

[13] Very old versions of vi
 have difficulty repeating the insertion of more than one line’s
 worth of text.

Joining Two Lines with J

 Sometimes while editing a file you end up with a series
 of short lines that are difficult to scan. When you want to merge two
 lines into one, position the cursor anywhere on the first line, and
 press J to join the two
 lines.
Suppose your file practice
 reads:
With a
 screen editor
 you can
 scroll the page, move the cursor

	Keystrokes	Results
	J	With a screen editor
 you can
 scroll the page, move the cursor
 J joins the line the cursor is on
 with the line below.

	.	With a screen editor you can
 scroll the page, move the cursor
 Repeat the last command
 (J) with the . to join the next line with the
 current line.

Using a numeric argument with J joins that number of consecutive lines. In
 the example here, you could have joined three lines by using the
 command 3J.
Problem Checklist

	When you type commands, text jumps around on the
 screen and nothing works the way it’s supposed
 to.
Make sure you’re not typing the J command when you mean j.
 You may have hit the CAPS
 LOCK key without noticing it. vi is case-sensitive; that is,
 uppercase commands (I,
 A, J, etc.) are different from lowercase
 commands (i, a, j), and if you hit this key, all your
 commands are interpreted not as lowercase but as uppercase
 commands. Press the CAPS LOCK
 key again to return to lowercase, press ESC to ensure that you are in command
 mode, and then type either U
 to restore the last line changed or u to undo the last command. You’ll
 probably also have to do some additional editing to fully
 restore the garbled part of your file.

Review of Basic vi Commands

Table 2-1 presents a few of the commands you can perform by
 combining the commands
 c, d, and y with various text objects. The last two rows show additional
 commands for editing. Tables 2-2 and 2-3 list some other basic commands. Table 2-4 summarizes the rest of the commands described in this
 chapter.
Table 2-1. Edit commands
	Text object	Change	Delete	Copy
	One word	cw	dw	yw
	Two words, not counting punctuation
	2cW or c2W	2dW or d2W	2yW or y2W
	Three words back	3cb or c3b	3db or d3b	3yb or y3b
	One line	cc	dd	yy or Y
	To end of line	c$ or C	d$ or D	y$
	To beginning of line	c0	d0	y0
	Single character	r	x or X	yl or yh
	Five characters	5s	5x	5yl

Table 2-2. Movement
	Movement	Commands
	←, ↓, ↑, →	h, j, k, l

	To first character of next line	+
	To first character of previous line	-
	To end of word	e or E
	Forward by word	w or W
	Backward by word	b or B
	To end of line	$
	To beginning of line	0

Table 2-3. Other operations
	Operations	Commands
	Place text from buffer	P or p
	Start vi, open file
 if specified	vi
 file
	Save edits, quit file	ZZ
	No saving of edits, quit file	:q!

Table 2-4. Text creation and manipulation commands
	Editing action	Command
	Insert text at current position	i
	Insert text at beginning of line	I
	Append text at current position	a
	Append text at beginning of line	A
	Open new line below cursor for new text	o
	Open new line above cursor for new text	O
	Delete line and substitute text	S
	Overstrike existing characters with new text	R
	Join current and next line	J
	Toggle case	~
	Repeat last action	.
	Undo last change	u
	Restore line to original state	U

You can get by in vi using
 only the commands listed in these tables. However, in order to harness
 the real power of vi (and increase
 your own productivity), you will need more tools. The following
 chapters describe those tools.

Chapter 3. Moving Around in a Hurry

You will not use vi just to
 create new files. You’ll spend a lot of your time in vi editing existing files. You rarely want to
 simply open to the first line in the file and move through it line by
 line; you want to get to a specific place in a file and start
 working.
All edits start with you moving the cursor to where you want to
 begin the edit (or, with ex line
 editor commands, by identifying the line numbers to be edited). This
 chapter shows you how to think about movement in a variety of ways (by
 screens, by text, by patterns, or by line numbers). There are many ways
 to move in vi, since editing speed
 depends on getting to your destination with only a few
 keystrokes.
This chapter covers:
	Movement by screens

	Movement by text blocks

	Movement by searches for patterns

	Movement by line number

Movement by Screens

When you read a book, you think of “places” in the book in terms
 of pages: the page where you stopped reading or the page number in an
 index. You don’t have this convenience when you’re editing files. Some
 files take up only a few lines, and you can see the whole file at
 once. But many files have hundreds (or thousands!) of lines.
You can think of a file as text on a long roll of paper. The
 screen is a window of (usually) 24 lines of text on that long
 roll.
 In insert mode, as you fill up the screen with text,
 you will end up typing on the bottom line of the screen. When you
 reach the end and press ENTER, the
 top line rolls out of sight, and a blank line appears on the bottom of
 the screen for new text. This is called
 scrolling.
In command mode, you can move through a file to see any text in
 it by scrolling the screen ahead or back. And, since cursor movements
 can be multiplied by numeric prefixes, you can move quickly to
 anywhere in your file.
Scrolling the Screen

 There are vi
 commands to scroll forward and backward through the file by full and
 half screens:
	^F
	Scroll forward one screen.

	^B
	Scroll backward one screen.

	^D
	Scroll forward half screen (down).

	^U
	Scroll backward half screen (up).

(In this list of commands, the ^ symbol represents the CTRL key. So ^F means to hold down the CTRL key and press the f key simultaneously.)
 There are also commands to scroll the screen up one
 line (^E) and down one line
 (^Y). However, these two commands
 do not send the cursor to the beginning of the line. The cursor
 remains at the same point in the line as when the command was
 issued.

Repositioning the Screen with z

 If you want to scroll the screen up or down, but you
 want the cursor to remain on the line where you left it, use the
 z command.
	z ENTER
	Move current line to top of screen and scroll.

	z.
	Move current line to center of screen and scroll.

	z-
	Move current line to bottom of screen and scroll.

With the z command, using a
 numeric prefix as a multiplier makes no sense. (After all, you would
 need to reposition the cursor to the top of the screen only once.
 Repeating the same z command
 wouldn’t move anything.) Instead, z understands a numeric prefix as a line
 number that it will use in place of the current line. For example,
 z ENTER moves the current line to the top of
 the screen, but 200z ENTER moves line 200 to the top of the
 screen.

Redrawing the Screen

 Sometimes while you’re editing, messages from your
 computer system will display on your screen. These messages don’t
 become part of your editing buffer, but they do interfere with your
 work. When system messages appear on your screen, you need to
 redisplay, or redraw, the screen.
Whenever you scroll, you redraw part of (or all of) the
 screen, so you can always get rid of unwanted messages by scrolling
 them off the screen and then returning to your previous position.
 But you can also redraw the screen without scrolling, by typing
 CTRL-L.

Movement Within a Screen

 You can also keep your current screen, or view of the
 file, and move around within the screen using:
	H
	Move to home—the top line on screen.

	M
	Move to middle line on screen.

	L
	Move to last line on screen.

	n H
	Move to n lines below top
 line.

	n L
	Move to n lines above last
 line.

H moves the cursor from
 anywhere on the screen to the first, or “home,” line. M moves to the middle line, L to the last. To move to the line below
 the first line, use 2H.
	Keystrokes	Results
	L	 With a screen editor you can
 scroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changesas you read through a file.

 Move to the last line of the screen with the L command.

	2H	 With a screen editor you canscroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changes
 as you read through a file.
 Move to the second line of the
 screen with the 2H
 command. (H alone moves
 to the top line of the screen.)

Movement by Line

 Within the current screen there are also commands to
 move by line. You’ve already seen j and k. You can also use:
	ENTER
	Move to first character of next line.

	+
	Move to first character of next line.

	-
	Move to first character of previous line.

These three commands move down or up to the first
 character of the line, ignoring any spaces or
 tabs. j and k, by contrast, move the cursor down or up
 to the first position of a line, even if that position is blank (and
 assuming that the cursor started at the first position).
Movement on the current line

 Don’t forget that h and l move the cursor to the left and right,
 and that 0 (zero) and $ move the cursor to the beginning or
 end of the line. You can also use:
	^
	Move to first nonblank character of current line.

	n |
	Move to column n of current line.

As with the line movement commands shown earlier, ^ moves to the first
 character of the line, ignoring any spaces or
 tabs. 0, by contrast, moves to
 the first position of the line, even if that position is
 blank.

Movement by Text Blocks

 Another way that you can think of moving through a
 vi file is by text blocks—words,
 sentences, paragraphs, or sections.
You have already learned to move forward and backward by word
 (w, W, b or
 B). In addition, you can use these
 commands:
	e
	Move to end of word.

	E
	Move to end of word (ignore punctuation).

	(
	Move to beginning of current sentence.

)
	Move to beginning of next sentence.

	{
	Move to beginning of current paragraph.

	}
	Move to beginning of next paragraph.

	[[
	Move to beginning of current section.

]]
	Move to beginning of next section.

 To find the end of a sentence, vi looks for one of these punctuation marks:
 ?, ., or !.
 vi locates the end of a sentence
 when the punctuation is followed by at least two spaces or when it
 appears as the last nonblank character on a line. If you have left
 only a single space following a period, or if the sentence ends with a
 quotation mark, vi won’t recognize
 the sentence.
 A paragraph is defined as text up to the next blank
 line, or up to one of the default paragraph macros (.IP, .PP,
 .LP, or .QP) from the troff MS macro package. Similarly, a section
 is defined as text up to the next default section macro (.NH, .SH,
 .H 1, or .HU). The macros that are recognized as
 paragraph or section separators can be customized with the :set command, as described in Chapter 7.
Remember that you can combine numbers with movement. For
 example, 3) moves ahead three
 sentences. Also remember that you can edit using movement commands:
 d) deletes to the end of the
 current sentence, 2y} copies
 (yanks) two paragraphs ahead.

Movement by Searches

 One of the most useful ways to move around quickly in a
 large file is by searching for text, or more properly, a
 pattern of characters. Sometimes a search can be
 performed to find a misspelled word or to find each occurrence of a
 variable in a program.
 The search command is the special character / (slash). When you enter a slash, it
 appears on the bottom line of the screen; you then type in the
 pattern that you want to find: /pattern.
 A pattern can be a whole word or any other sequence of
 characters (called a “character string”). For example, if you search
 for the characters red, you will match
 red as a whole word, but you’ll also match
 occurred. If you include a space before or after
 pattern, the spaces will be treated as part of
 the word. As with all bottom-line commands, press ENTER to finish. vi, like all other Unix editors, has a
 special pattern-matching language that allows you to look for
 variable text patterns: for example, any word beginning with a capital
 letter, or the word The at the beginning of a
 line.
We’ll talk about this more powerful pattern-matching syntax in
 Chapter 6. For right now, think of a
 pattern simply as a word or phrase.
vi begins the search
 at the cursor and searches forward, wrapping around to the start of
 the file if necessary. The cursor will move to the first occurrence of
 the pattern. If there is no match, the message “Pattern not found” will be shown on the status
 line.[14]
Using the file practice,
 here’s how to move the cursor by searches:
	Keystrokes	Results
	/edits	 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of youredits as you make them.

 Search for the pattern edits.
 Press ENTER to enter. The
 cursor moves directly to that pattern.

	/scr	 With ascreen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Search for the
 pattern scr. Press ENTER to enter. Note that there is no
 space after scr.

The search wraps around to the front of the file. Note that you
 can give any combination of characters; a search does not have to be
 for a complete word.
 To search backward, type a ? instead of a /:
?pattern
In both cases, the search wraps around to the beginning or end
 of the file, if necessary.
Repeating Searches

 The last pattern that you searched for stays
 available throughout your editing session. After a search, instead
 of repeating your original keystrokes, you can use a command to
 search again for the last pattern:
	n
	Repeat search in same direction.

	N
	Repeat search in opposite direction.

	/ ENTER
	Repeat search forward.

	? ENTER
	Repeat search backward.

Since the last pattern stays available, you can search for a
 pattern, do some work, and then search again for the same pattern
 without retyping it by using n,
 N, /, or ?. The direction of your search (/ is forward, ? is backward) is displayed at the bottom
 left of the screen. (nvi does not
 show the direction for the n and
 N commands. Vim puts the search
 text into the command line too, and lets you scroll through a saved
 history of search commands, using the up and down arrow
 keys.)
To continue with the previous example, since the pattern
 scr is still available for search, you can do
 the following:
	Keystrokes	Results
	n	 With a screen editor you canscroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Move to the next
 instance of the pattern scr (from
 screen to scroll)
 with the n (next)
 command.

	?you	 With a screen editoryou can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Search backward with
 ? from the cursor to the
 first occurrence of you. You need to
 press ENTER after typing
 the pattern.

	N	 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results ofyour edits as you make them.

 Repeat the previous search for
 you but in the opposite direction
 (forward).

 Sometimes you want to find a word only if it is
 further ahead; you don’t want the search to wrap around earlier in
 the file. vi has an option,
 wrapscan, that controls whether
 searches wrap. You can disable wrapping like this:
:set nowrapscan
 When nowrapscan is
 set and a forward search fails, the status line displays the
 message:
Address search hit BOTTOM without matching pattern
When nowrapscan is set and
 a backward search fails, the message displays “TOP” instead of “BOTTOM.”
Changing through searching

 You can combine the / and ? search operators with the commands
 that change text, such as c and
 d. Continuing with the previous
 example:
	Keystrokes	Results
	d?move	 With a screen editor you can scroll the
 page,your edits as you make them.

 Delete from before the cursor up to and through the
 word move.

Note how the deletion occurs on a character basis, and whole
 lines are not deleted.
This section has given you only the barest introduction to
 searching for patterns. Chapter 6, will teach
 you more about pattern matching and its use in making global
 changes to a file.

Current Line Searches

 There are also miniature versions of the search
 commands that operate within the current line. The command fx moves the
 cursor to the next instance of the character x
 (where x stands for any character). The command
 tx
 moves the cursor to the character before the
 next instance of x. Semicolons can then be used
 repeatedly to “find” your way along.
The inline search commands are summarized here. None of these
 commands will move the cursor to the next line:
	f
 x
	Find (move cursor to) next occurrence of
 x in the line, where
 x stands for any character.

	F
 x
	Find (move cursor to) previous occurrence of
 x in the line.

	t
 x
	Find (move cursor to) character
 before next occurrence of
 x in the line.

	T
 x
	Find (move cursor to) character
 after previous occurrence of
 x in the line.

	;
	Repeat previous find command in same direction.

	,
	Repeat previous find command in opposite direction.

With any of these commands, a numeric prefix
 n locates the nth
 occurrence. Suppose you are editing in practice, on this line:
With a screen editor you can scroll the
	Keystrokes	Results
	fo	 With a screen editor you can scroll the

 Find the first occurrence of o
 in your current line with f.

	;	 With a screen editor you can scroll the

 Move to the next occurrence of o
 with the ; command (find
 next o).

dfx deletes up
 to and including the named character x. This
 command is useful in deleting or yanking partial lines. You might
 need to use dfx instead of
 dw if there are symbols or
 punctuation within the line that make counting words difficult. The
 t command works just like
 f, except that it positions the
 cursor before the character searched for. For example, the command
 ct. could be used to change text
 up to the end of a sentence, leaving the period.

[14] The exact message varies with different vi clones, but their meanings are the
 same. In general, we won’t bother noting everywhere that the text
 of a message may be different; in all cases the information
 conveyed is the same.

Movement by Line Number

 Lines in a file are numbered sequentially, and you can
 move through a file by specifying line numbers.
Line numbers are useful for identifying the beginning and end of
 large blocks of text you want to edit. Line numbers are also useful
 for programmers, since compiler error messages refer to line numbers.
 Finally, line numbers are used by ex commands, which you will learn in the
 next chapters.
If you are going to move by line numbers, you must have a way to
 identify them. Line numbers can be displayed on the screen using the :set nu
 option described in Chapter 7. In vi, you can also display the current line
 number on the bottom of the screen.
 The command CTRL-G
 causes the following to be displayed at the bottom of your screen: the
 current line number, the total number of lines in the file, and what
 percentage of the total the present line number represents. For
 example, for the file practice,
 CTRL-G might display:
"practice" line 3 of 6 --50%--
CTRL-G is useful either for
 displaying the line number to use in a command or for orienting
 yourself if you have been distracted from your editing session.
Depending upon the implementation of vi you’re using, you may see additional
 information, such as what column the cursor is on, and an indication
 as to whether the file has been modified but not yet written out. The
 exact format of the message will vary as well.
The G (Go To) Command

 You can use line numbers to move the cursor through a
 file. The G (go to) command uses
 a line number as a numeric argument and moves directly to that line.
 For instance, 44G moves the
 cursor to the beginning of line 44. G without a line number moves the cursor
 to the last line of the file.
 Typing two backquotes (``) returns you to your original position
 (the position where you issued the last G command), unless you have done some
 edits in the meantime. If you have made an edit and then moved the
 cursor using some command other than G, ``
 will return the cursor to the site of your last edit. If you have
 issued a search command (/ or
 ?), `` will return the cursor to its position
 when you started the search. A pair of apostrophes ('') works much like two backquotes, except
 that it returns the cursor to the beginning of the line instead of
 the exact position on that line where your cursor had been.
The total number of lines shown with CTRL-G can be used to give yourself a rough
 idea of how many lines to move. If you are on line 10 of a
 1,000-line file:
"practice" line 10 of 1000 --1%--
and you know that you want to begin editing near the end of
 that file, you could give an approximation of your destination with
 800G.
Movement by line number is a tool that can move you quickly
 from place to place through a large file.

Review of vi Motion Commands

Table 3-1 summarizes the
 commands covered in this chapter.
Table 3-1. Movement commands
	Movement	Command
	 Scroll forward one screen
	^F
	 Scroll backward one screen
	^B
	 Scroll forward half screen
	^D
	 Scroll backward half screen
	^U
	 Scroll forward one line
	^E
	 Scroll backward one line
	^Y
	 Move current line to top of screen and
 scroll
	z ENTER
	 Move current line to center of screen and
 scroll
	z.
	 Move current line to bottom of screen and
 scroll
	z-
	 Redraw the screen
	^L
	 Move to home—the top line of
 screen
	H
	 Move to middle line of screen
	M
	 Move to bottom line of screen
	L
	 Move to first character of next
 line
	ENTER
	 Move to first character of next
 line
	+
	 Move to first character of previous
 line
	-
	 Move to first nonblank character of current
 line
	^
	 Move to column n of current
 line
	n |
	 Move to end of word
	e
	 Move to end of word (ignore
 punctuation)
	E
	 Move to beginning of current
 sentence
	(
	 Move to beginning of next
 sentence
)
	 Move to beginning of current
 paragraph
	{
	 Move to beginning of next
 paragraph
	}
	 Move to beginning of current
 section
	[[
	 Move to beginning of next section
]]
	 Search forward for pattern
	/
 pattern
	 Search backward for pattern
	?
 pattern
	 Repeat last search
	n
	 Repeat last search in opposite
 direction
	N
	 Repeat last search forward
	/
	 Repeat last search backward
	?
	 Move to next occurrence of
 x in current line
	f
 x
	 Move to previous occurrence of
 x in current line
	F
 x
	 Move to just before next occurrence of
 x in current line
	t
 x
	 Move to just after previous occurrence of
 x in current line
	T
 x
	 Repeat previous find command in same
 direction
	;
	 Repeat previous find command in opposite
 direction
	,
	 Go to given line
 n
	n G
	 Go to end of file
	G
	 Return to previous mark or
 context
	``
	 Return to beginning of line containing previous
 mark
	''
	 Show current line (not a movement
 command)
	^G

Chapter 4. Beyond the Basics

You have already been introduced to the basic vi editing commands, i, a,
 c, d, and y.
 This chapter expands on what you already know about editing. It
 covers:
	Descriptions of additional editing facilities, with a review
 of the general command form

	Additional ways to enter vi

	Making use of buffers that store yanks and deletions

	Marking your place in a file

More Command Combinations

In Chapter 2, you learned the edit commands
 c, d, and y,
 as well as how to combine them with movements and numbers (such as
 2cw or 4dd). In Chapter 3, you
 added many more movement commands to your repertoire. Although the
 fact that you can combine edit commands with movement is not a new
 concept to you, Table 4-1 gives you a feel for
 the many editing options you now have.
Table 4-1. More editing commands
	Change	Delete	Copy	From cursor to...
	cH	dH	yH	Top of screen
	cL	dL	yL	Bottom of screen
	c+	d+	y+	Next line
	c5|	d5|	y5|	Column 5 of current line
	2c)	2d)	2y)	Second sentence following
	c{	d{	y{	Previous paragraph
	c/
 pattern	d/
 pattern	y/
 pattern	Pattern
	cn	dn	yn	Next pattern
	cG	dG	yG	End of file
	c13G	d13G	y13G	Line number 13

Notice how all of the sequences in Table 4-1 follow the general pattern:
(number)(command)(text
 object)

number is the optional numeric argument.
 command in this case is one of c, d, or
 y. text object
 is a movement command.
The general form of a vi
 command is discussed in Chapter 2. You may wish to
 review Tables 2-1 and 2-2 as well.

Options When Starting vi

 So far, you have invoked the vi editor with the command:
$vifile
There are other options to the vi command that can be helpful. You can open
 a file directly to a specific line number or pattern. You can also
 open a file in read-only mode. Another option recovers all changes to
 a file that you were editing when the system crashed.
Advancing to a Specific Place

 When you begin editing an existing file, you can call
 the file in and then move to the first occurrence of a
 pattern or to a specific line number. You can
 also specify your first movement by search or by line number right
 on the command line:[15]
	$ vi +n file
	Opens file at line number
 n.

	$ vi + file
	Opens file at last line.

	$ vi +/pattern file
	Opens file at the first occurrence
 of pattern.

In the file practice, to
 open the file and advance directly to the line containing the word
 Screen, enter:
	Keystrokes	Results
	vi +/Screen practice	 With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters, while
 seeing the results of your edits as
 you make them.Screen editors are
 very popular, since they allow you
 to make changes as you read
 Give the vi command with the option
 +/
 pattern to go directly to the
 line containing Screen.

As you see in this example, your search pattern will not
 necessarily be positioned at the top of the screen. If you include
 spaces in the pattern, you must enclose the
 whole pattern within single or double quotes:[16]
+/"you make"
or escape the space with a backslash:
+/you\ make
In addition, if you want to use the general pattern-matching
 syntax described in Chapter 6, you may need to
 protect one or more special characters from interpretation by the
 shell with either single quotes or backslashes.
Using +/pattern is helpful
 if you have to leave an editing session before you’re finished. You
 can mark your place by inserting a pattern such as ZZZ or HERE. Then, when you return to the file,
 all you have to remember is /ZZZ
 or /HERE.
Note
 Normally, when you’re editing in vi, the wrapscan option is enabled. If you’ve
 customized your environment so that wrapscan is always disabled (see Repeating Searches), you might not be able to use
 +/pattern.
 If you try to open a file this way, vi opens the file at the last line and
 displays the message, “Address search hit BOTTOM without matching
 pattern.”

Read-Only Mode

 There will be times when you want to look at a file
 but want to protect that file from inadvertent keystrokes and
 changes. (You might want to call in a lengthy file to practice
 vi movements, or you might want
 to scroll through a command file or program.) You can enter a file
 in read-only mode and use all the vi movement commands, but you won’t be
 able to change the file.
To look at a file in read-only mode, enter either:
$vi -Rfile
or:
$viewfile
(The view command, like the
 vi command, can use any of the
 command-line options for advancing to a specific place in the
 file.[17]) If you do decide to make some edits to the file, you
 can override read-only mode by adding an exclamation point to the
 write command:
:w!
or:
:wq
If you have a problem writing out the file, see the problem
 checklists summarized in Appendix C.

Recovering a Buffer

 Occasionally a system failure may happen while you
 are editing a file. Ordinarily, any edits made after your last write
 (save) are lost. However, there is an option, -r,
 which lets you recover the edited buffer at the time of a system
 crash.
On a traditional Unix system with the original vi, when you first log on after the system
 is running again, you will receive a mail message stating that your
 buffer has been saved. In addition, if you type the command:
$ex -r
or:
$vi -r
you will get a list of any files that the system has
 saved.
Use the -r option with a filename to recover
 the edited buffer. For example, to recover the edited buffer of the
 file practice after a system
 crash, enter:
$vi -r practice
It is wise to recover the file immediately, lest you
 inadvertently make edits to the file and then have to resolve a
 version skew between the preserved buffer and the newly edited
 file.
 You can force the system to preserve your buffer even
 when there is not a crash by using the command :pre (short for :preserve). You may find it useful if you
 have made edits to a file and then discover that you can’t save your
 edits because you don’t have write permission. (You could also just
 write out a copy of the file under another name or into a directory
 where you do have write permission. See Problems Saving Files.)
Note
Recovery may work differently for the various clones and can
 change from version to version. It is best to check your local
 documentation. vile does not
 support any kind of recovery. The vile documentation recommends the use of the autowrite and autosave options. How to do this is
 described in Customizing vi.

[15] According to the POSIX standard, vi should use -c
 command instead of +command as
 shown here. Typically, for backward compatibility, both versions
 are accepted.

[16] It is the shell that imposes the quoting requirement, not
 vi.

[17] Typically view is just
 a link to vi.

Making Use of Buffers

 You have seen that while you are editing, your last
 deletion (d or x) or yank (y) is saved in a buffer (a place in stored
 memory). You can access the contents of that buffer and put the saved
 text back in your file with the put command (p or P).
 The last nine deletions are stored by vi in numbered buffers. You can access any
 of these numbered buffers to restore any (or all) of the last nine
 deletions. (Small deletions, of only parts of lines, are not saved in
 numbered buffers, however. These deletions can be recovered only by
 using the p or P command immediately after you’ve made the
 deletion.)
vi also allows you to place
 yanks (copied text) into buffers identified by letters. You can fill
 up to 26 (a–z) buffers with yanked text and restore that text with a
 put command at any time in your editing session.
Recovering Deletions

 Being able to delete large blocks of text in a single
 bound is all very well and good, but what if you mistakenly delete
 53 lines that you need? You can recover any of your past
 nine deletions, for they are saved in numbered
 buffers. The last delete is saved in buffer 1, the second-to-last in
 buffer 2, and so on.
 To recover a deletion, type " (double quote), identify the buffered
 text by number, then give the put command. To recover your
 second-to-last deletion from buffer 2, type:
"2p
The deletion in buffer 2 is placed after the cursor.
 If you’re not sure which buffer contains the deletion
 you want to restore, you don’t have to keep typing "np over and over again. If you use the repeat command (.) with p after u, it automatically increments the buffer
 number. As a result, you can search through the numbered buffers
 using:
"1pu.u.uetc.
to put the contents of each succeeding buffer in the file one
 after the other. Each time you type u, the restored text is removed; when you
 type a dot (.), the contents of the next buffer
 is restored to your file. Keep typing u and . until you’ve recovered the text
 you’re looking for.

Yanking to Named Buffers

 You have seen that you must put (p or P)
 the contents of the unnamed buffer before you make any other edit,
 or the buffer will be overwritten. You can also use y and d
 with a set of 26 named buffers (a–z) that are specifically available
 for copying and moving text. If you name a buffer to store the
 yanked text, you can retrieve the contents of the named buffer at
 any time during your editing session.
 To yank into a named buffer, precede the yank command
 with a double quote (") and the
 character for the name of the buffer you want to load. For
 example:
"dyyYank current line into buffer d.
"a7yyYank next seven lines into buffer a.
After loading the named buffers and moving to the new
 position, use p or P to put the text back:
"dPPut the contents of buffer d before cursor.
"apPut the contents of buffer a after cursor.
There is no way to put part of a buffer into the text—it is
 all or nothing.
In the next chapter, you’ll learn how to edit multiple files.
 Once you know how to travel between files without leaving vi, you can use named buffers to
 selectively transfer text between files. When using the
 multiple-window feature of the various clones, you can also use the
 unnamed buffer to transfer data between files.
You can also delete text into named buffers using much the
 same procedure:
"a5ddDelete five lines into buffer a.
 If you specify a buffer name with a capital letter,
 your yanked or deleted text will be appended to
 the current contents of that buffer. This allows you to be selective
 in what you move or copy. For example:
	"zd)
	Delete from cursor to end of current sentence and save
 in buffer z.

	2)
	Move two sentences further on.

	"Zy)
	Add the next sentence to buffer z. You can continue adding more text
 to a named buffer for as long as you like, but be warned: if
 you forget once, and yank or delete to the buffer without
 specifying its name in capitalized form, you’ll overwrite the
 buffer, losing whatever you had accumulated in it.

Marking Your Place

 During a vi session,
 you can mark your place in the file with an invisible “bookmark,”
 perform edits elsewhere, and then return to your marked place. In
 command mode:
	m
 x
	Marks the current position with x
 (x can be any letter). (The original
 vi allows only lowercase
 letters. Vim distinguishes between uppercase and lowercase
 letters.)

	'
 x
	(Apostrophe.) Moves the cursor to the first character of
 the line marked by x.

	`
 x
	(Backquote.) Moves the cursor to the character marked by
 x.

	``
	(Backquotes.) Returns to the exact position of the
 previous mark or context after a move.

	''
	(Apostrophes.) Returns to the beginning of the line of the
 previous mark or context.

Note
Place markers are set only during the current vi session; they are not stored in the
 file.

Other Advanced Edits

There are other advanced edits that you can execute with
 vi, but to use them you must first
 learn a bit more about the ex
 editor by reading the next chapter.

Review of vi Buffer and Marking Commands

Table 4-2 summarizes the
 command-line options common to all versions of vi. Tables 4-3 and 4-4 summarize the buffer and marking
 commands.
Table 4-2. Command-line options
	Option	Meaning
	+
 n
 file	Open file at line number
 n.
	+
 file	Open file at last line.
	+/
 pattern file	Open file at first
 occurrence of pattern (traditional
 version of POSIX -c).

	-c command
 file	 Run command after opening
 file; usually a line number or search
 (POSIX version of +).

	-R	Operate in read-only mode (same as using view instead of vi).
	-r	Recover files after a crash.

Table 4-3. Buffer names
	Buffer names	Buffer use
	1–9	The last nine deletions, from most to least
 recent.
	a–z	 Named buffers for you to use as needed.
 Uppercase letters append to the buffer.

Table 4-4. Buffer and marking commands
	Command	Meaning
	"
 b
 command	Do command with buffer
 b.
	m
 x	Mark current position with
 x.
	'
 x	Move cursor to first character of line marked by
 x.
	`
 x	Move cursor to character marked by
 x.
	``	Return to exact position of previous mark or
 context.
	''	Return to beginning of the line of previous mark or
 context.

Chapter 5. Introducing the ex Editor

 If this is a book on vi, why would we include a chapter on another
 editor? Well, ex is not really
 another editor. vi is the visual mode
 of the more general, underlying line editor, which is ex. Some ex
 commands can be useful to you while you are working in vi, since they can save you a lot of editing
 time. Most of these commands can be used without ever leaving vi.[18]
You already know how to think of files as a sequence of numbered
 lines. ex gives you editing commands
 with greater mobility and scope. With ex, you can move easily between files and
 transfer text from one file to another in a variety of ways. You can
 quickly edit blocks of text larger than a single screen. And with global
 replacement you can make substitutions throughout a file for a given
 pattern.
This chapter introduces ex and
 its commands. You will learn how to:
	Move around a file by using line numbers

	Use ex commands to copy,
 move, and delete blocks of text

	Save files and parts of files

	Work with multiple files (reading in text or commands,
 traveling between files)

[18] vile is different from the
 other clones in that many of the more advanced ex commands simply don’t work. Instead of
 noting each command here, we provide more details in Chapter 18.

ex Commands

 Long before vi or
 any other screen editor was invented, people communicated with
 computers on printing terminals, rather than on today’s CRTs (or
 bitmapped screens with pointing devices and terminal emulation
 programs). Line numbers were a way to quickly identify a part of a
 file to be worked on, and line editors evolved to edit those files. A
 programmer or other computer user would typically print out a line (or
 lines) on the printing terminal, give the editing commands to change
 just that line, and then reprint to check the edited line.
People don’t edit files on printing terminals anymore, but some
 ex line editor commands are still
 useful to users of the more sophisticated visual editor built on top
 of ex. Although it is simpler to
 make most edits with vi, the line
 orientation of ex gives it an
 advantage when you want to make large-scale changes to more than one
 part of a file.
Note
 Many of the commands we’ll see in this chapter have
 filename arguments. Although it’s possible, it is usually a very bad
 idea to have spaces in your files’ names. ex will be confused to no end, and you
 will go to more trouble than it’s worth trying to get the filenames
 to be accepted. Use underscores, dashes, or periods to separate the
 components of your filenames, and you’ll be much happier.

Before you start off simply memorizing ex commands (or worse, ignoring them), let’s
 first take some of the mystery out of line editors. Seeing how
 ex works when it is invoked
 directly will help make sense of the sometimes obscure command
 syntax.
Open a file that is familiar to you and try a few ex commands. Just as you can invoke the
 vi editor on a file, you can invoke
 the ex line editor on a file. If
 you invoke ex, you will see a
 message about the total number of lines in the file, and a colon
 command prompt. For example:
$ex practice
"practice" 6 lines, 320 characters
:
You won’t see any lines in the file unless you give an ex command that causes one or more lines to
 be displayed.
ex commands consist
 of a line address (which can simply be a line number) plus a command;
 they are finished with a carriage return (by hitting ENTER). One of the most basic commands is
 p for print (to the screen). So,
 for example, if you type 1p at the
 prompt, you will see the first line of the file:
:1p
With a screen editor you can
:
 In fact, you can leave off the p, because a line number by itself is
 equivalent to a print command for that line. To print more than one
 line, you can specify a range of line numbers (for example, 1,3—two numbers separated by a comma, with
 or without spaces in between). For example:
:1,3
With a screen editor you can
scroll the page, move the cursor,
delete lines, insert characters, and more,
 A command without a line number is assumed to affect
 the current line. So, for example, the substitute command (s), which allows you to substitute one word
 for another, could be entered like this:
:1
With a screen editor you can
:s/screen/line/
With a line editor you can
Notice that the changed line is reprinted after the command is
 issued. You could also make the same change like this:
:1s/screen/line/
With a line editor you can
Even though you will be invoking ex commands from vi and will not be using them directly, it
 is worthwhile to spend a few minutes in ex itself. You will get a feel for how you
 need to tell the editor which line (or lines) to work on, as well as
 which command to execute.
After you have given a few ex
 commands in your practice file,
 you should invoke vi on that same
 file, so that you can see it in the more familiar visual mode. The
 command :vi will get you from
 ex to vi.
 To invoke an ex
 command from vi, you must type the
 special bottom-line character :
 (colon). Then type the command and press ENTER to execute it. So, for example, in the
 ex editor you move to a line simply
 by typing the number of the line at the colon prompt. To move to line
 6 of a file using this command from within vi, enter:
:6
Press ENTER.
After the following exercise, we will discuss ex commands only as they are executed from
 vi.
Exercise: The ex Editor

	 At the Unix prompt, invoke the ex editor on a file called
 practice:

	ex
 practice
	 A message appears:
	 "practice" 6 lines,
 320 characters

	 Go to and print (display) the first line:

	:1
	 Print (display) lines 1 through 3:

	:1,3
	 Substitute screen for
 line on line 1:
	:1s/screen/line
	 Invoke the vi editor on file:
	:vi
	 Go to the first line:
	:1

Problem Checklist

	While editing in vi , you accidentally end up
 in the ex
 editor.
 A Q in the
 command mode of vi invokes
 ex. Any time you are in
 ex, the command vi returns you to the vi editor.

Editing with ex

 Many ex commands
 that perform normal editing operations have an equivalent in vi that does the job more simply. Obviously,
 you will use dw or dd to delete a single word or line rather
 than using the delete command in
 ex. However, when you want to make
 changes that affect numerous lines, you will find the ex commands more useful. They allow you to
 modify large blocks of text with a single command.
These ex commands are listed
 here, along with abbreviations for those commands. Remember that in
 vi, each ex command must be preceded with a colon.
 You can use the full command name or the abbreviation, whichever is
 easier to remember.
	Full name	Abbreviation	Meaning
	delete	d	Delete lines
	move	m	Move lines
	copy	co	Copy lines
	 	t	Copy lines (a synonym for co)

You can separate the different elements of an ex command with spaces, if you find the
 command easier to read that way. For example, you can separate line
 addresses, patterns, and commands in this way. You cannot, however,
 use a space as a separator inside a pattern or at the end of a
 substitute command.
Line Addresses

 For each ex
 editing command, you have to tell ex which line number(s) to edit. And for
 the exmove and copy commands, you also need to tell
 ex where to move or copy the text
 to.
You can specify line addresses in several ways:
	With explicit line numbers

	With symbols that help you specify line numbers relative
 to your current position in the file

	With search patterns as addresses
 that identify the lines to be affected

Let’s look at some examples.

Defining a Range of Lines

 You can use line numbers to explicitly define a line
 or range of lines. Addresses that use explicit numbers are called
 absolute line addresses. For example:
	:3,18d
	Delete lines 3 through 18.

	:160,224m23
	Move lines 160 through 224 to follow line 23. (Like
 delete and put in vi.)

	:23,29co100
	Copy lines 23 through 29 and put after line 100. (Like
 yank and put in vi.)

To make editing with line numbers easier, you can also display
 all line numbers on the left of the screen. The command:
:set number
or its abbreviation:
:set nu
displays line numbers. The file practice then appears:
1 With a screen editor
2 you can scroll the page,
3 move the cursor, delete lines,
4 insert characters and more

The displayed line numbers are not saved when you write a
 file, and they do not print if you print the file. Line numbers are
 displayed either until you quit the vi session or until you disable the
 set option:
:set nonumber
or:
:set nonu
 To temporarily display the line numbers for a set of
 lines, you can use the # sign.
 For example:
:1,10#
would display the line numbers from line 1 to line 10.
As described in Chapter 3, you can also use
 the CTRL-G command to
 display the current line number. You can thus identify the line
 numbers corresponding to the start and end of a block of text by
 moving to the start of the block, typing CTRL-G, and then moving to the end of the
 block and typing CTRL-G
 again.
Yet another way to identify line numbers is with the
 ex= command:
	:=
	Print the total number of lines.

	:.=
	Print the line number of the current line.

	:/
 pattern /=
	Print the line number of the first line that matches
 pattern.

Line Addressing Symbols

 You can also use symbols for line addresses. A dot
 (.) stands for the current line;
 and $ stands for the last line of
 the file.% stands for every
 line in the file; it’s the same as the combination 1,$. These symbols can also be combined
 with absolute line addresses. For example:
	:.,$d
	Delete from current line to end of file.

	:20,.m$
	Move from line 20 through the current line to the end of
 the file.

	:%d
	Delete all the lines in a file.

	:%t$
	Copy all lines and place them at the end of the file
 (making a consecutive duplicate).

 In addition to an absolute line address, you can
 specify an address relative to the current line. The symbols
 + and - work like arithmetic operators. When
 placed before a number, these symbols add or subtract the value that
 follows. For example:
	:.,.+20d
	Delete from current line through the next 20
 lines.

	:226,$m.-2
	Move lines 226 through the end of the file to two lines
 above the current line.

	:.,+20#
	Display line numbers from the current line to 20 lines
 further on in the file.

In fact, you don’t need to type the dot (.) when you use
 + or - because the current line is the assumed
 starting position.
Without a number following them, + and -
 are equivalent to +1 and –1, respectively.[19] Similarly, ++ and
 -- each extend the range by an
 additional line, and so on. The +
 and - can also be used with
 search patterns, as shown in the next section.
The number 0 stands for the
 top of the file (imaginary line 0). 0 is equivalent to 1-, and both allow you to move or copy
 lines to the very start of a file, before the first line of existing
 text. For example:
	:-,+t0
	Copy three lines (the line above the cursor through the
 line below the cursor) and put them at the top of the
 file.

Search Patterns

 Another way that ex can address lines is by using search
 patterns. For example:
	:/
 pattern /d
	Delete the next line containing
 pattern.

	:/
 pattern /+d
	Delete the line below the next line
 containing pattern. (You could also use
 +1 instead of + alone.)

	:/
 pattern1 /,/
 pattern2 /d
	Delete from the first line containing
 pattern1 through the first line
 containing pattern2.

	:.,/
 pattern /m23
	Take the text from the current line (.) through the first line containing
 pattern and put it after line 23.

Note that a pattern is delimited by a slash both
 before and after.
If you make deletions by pattern with vi and ex, there is a difference in the way the
 two editors operate. Suppose your file practice contains the lines:

 With a screen editor you can scroll the
 page, move the cursor,delete lines, insert
 characters and more, while seeing results
 of your edits as you make them.

	Keystrokes	Results
	d/while	 With a screen editor you can scroll the
 page, move the cursor,while seeing results
 of your edits as you make them.
 The vi delete to
 pattern command deletes from the cursor
 up to the word while, but leaves the
 remainder of both lines.

	:.,/while/d	 With a screen editor you can scroll theof your edits as you make them.

 The ex command
 deletes the entire range of addressed lines, in this case
 both the current line and the line containing the pattern.
 All lines are deleted in their entirety.

Redefining the Current Line Position

 Sometimes, using a relative line address in a command
 can give you unexpected results. For example, suppose the cursor is
 on line 1 and you want to print line 100 plus the five lines below
 it. If you type:
:100,+5 p
 you’ll get an error message saying, “First address
 exceeds second.” The reason the command fails is that the second
 address is calculated relative to the current cursor position (line
 1), so your command is really saying this:
:100,6 p
What you need is some way to tell the command to think of line
 100 as the “current line,” even though the cursor is on line
 1.
ex provides such a
 way. When you use a semicolon instead of a comma, the first line
 address is recalculated as the current line. For example, the
 command:
:100;+5 p
prints the desired lines. The +5 is now calculated relative to
 line 100. A semicolon is useful with search patterns as well as
 absolute addresses. For example, to print the next line containing
 pattern, plus the 10 lines that follow it,
 enter the command:
:/pattern/;+10 p

Global Searches

 You already know how to use / (slash) in vi to search for patterns of characters in
 your files. ex has a global
 command, g, that lets you search
 for a pattern and display all lines containing the pattern when it
 finds them. The command :g! does
 the opposite of :g. Use :g! (or its synonym, :v) to search for all lines that do
 not contain
 pattern.
You can use the global command on all lines in the file, or
 you can use line addresses to limit a global search to specified
 lines or to a range of lines.
	:g/
 pattern
	Finds (moves to) the last occurrence of
 pattern in the file.

	:g/
 pattern /p
	Finds and displays all lines in the file containing
 pattern.

	:g!/
 pattern /nu
	Finds and displays all lines in the file that don’t
 contain pattern; also displays the line
 number for each line found.

	:60,124g/
 pattern /p
	Finds and displays any lines between lines 60 and 124
 containing pattern.

As you might expect, g can
 also be used for global replacements. We’ll talk about that in Chapter 6.

Combining ex Commands

 You don’t always need to type a colon to begin a new
 ex command. In ex, the vertical bar (|) is a command separator, allowing you to
 combine multiple commands from the same ex prompt (in much the same way that a
 semicolon separates multiple commands at the Unix shell prompt).
 When you use the |, keep track of
 the line addresses you specify. If one command affects the order of
 lines in the file, the next command does its work using the new line
 positions. For example:
	:1,3d | s/thier/their/
	Delete lines 1 through 3 (leaving you now on the top
 line of the file), and then make a substitution on the current
 line (which was line 4 before you invoked the ex prompt).

	:1,5 m 10 | g/pattern/nu
	Move lines 1 through 5 after line 10, and then display
 all lines (with numbers) containing
 pattern.

Note the use of spaces to make the commands easier to
 read.

[19] In a relative address, you shouldn’t separate the plus or
 minus symbol from the number that follows it. For example,
 +10 means “10 lines
 following,” but + 10 means “11 lines following (1 +
 10),” which is probably not
 what you mean (or want).

Saving and Exiting Files

 You have learned the vi command ZZ to quit and write (save) your file. But
 you will frequently want to exit a file using ex commands, because these commands give you
 greater control. We’ve already mentioned some of these commands in
 passing. Now let’s take a more formal look:
	:w
	Writes (saves) the buffer to the file but does not exit.
 You can (and should) use :w
 throughout your editing session to protect your edits against
 system failure or a major editing error.

	:q
	Quits the editor (and returns to the Unix prompt).

	:wq
	Both writes the file and quits the editor. The write
 happens unconditionally, even if the file was not
 changed.

	:x
	 Both writes the file and quits (exits) the editor. The file is written
 only if it has been modified.[20]

vi protects existing files
 and your edits in the buffer. For example, if you want to write your
 buffer to an existing file, vi
 gives you a warning. Likewise, if you have invoked vi on a file, made edits, and want to quit
 without saving the edits, vi gives you an error message such as:

No write since last change.
These warnings can prevent costly mistakes, but sometimes you
 want to proceed with the command anyway. An exclamation point
 (!) after your command overrides
 the warning:
:w!
:q!
:w! can also be used to save
 edits in a file that was opened in read-only mode with vi-R or view (assuming you have write permission for
 the file).
:q! is an essential editing
 command that allows you to quit without affecting the original file,
 regardless of any changes you made in this session. The contents of
 the buffer are discarded.
Renaming the Buffer

 You can also use :w to save the entire buffer (the copy of
 the file you are editing) under a new filename.
Suppose you have a file practice, which contains 600 lines. You
 open the file and make extensive edits. You want to quit but also
 save both the old version of practice and your new edits for
 comparison. To save the edited buffer in a file called practice.new, give the command:
:w practice.new
Your old version, in the file practice, remains unchanged (provided
 that you didn’t previously use :w). You can now quit editing the new
 version by typing :q.

Saving Part of a File

 While editing, you will sometimes want to save just
 part of your file as a separate, new file. For example, you might
 have entered formatting codes and text that you want to use as a
 header for several files.
 You can combine ex
 line addressing with the write command, w, to save part of a file. For example, if
 you are in the file practice
 and want to save part of practice as the file
 newfile, you could enter:
	:230,$w
 newfile
	Saves from line 230 to end of file in newfile.

	:.,600w
 newfile
	Saves from the current line to line 600 in newfile.

Appending to a Saved File

 You can use the Unix redirect and append operator
 (>>) with w to append all or part of the contents of
 the buffer to an existing file. For example, if you entered:
:1,10wnewfile
and then:
:340,$w >>newfile
newfile would contain lines 1–10 and from
 line 340 to the end of the buffer.

[20] The difference between :wq and :x is important when editing
 source code and using make, which performs actions based
 upon file modification times.

Copying a File into Another File

 Sometimes you want to copy text or data already entered
 on the system into the file you are editing. In vi, you can read in the contents of another
 file with the ex command:
:readfilename
or its abbreviation:
:rfilename
This command inserts the contents of
 filename starting on the line after the cursor
 position in the file. If you want to specify a line other than the one
 the cursor’s on, simply type the line number (or other line address)
 you want before the read or
 r command.
Let’s suppose you are editing the file practice and want to read in a file called
 data from another directory
 called /home/tim. Position the
 cursor one line above the line where you want the new data inserted,
 and enter:
:r /home/tim/data
The entire contents of /home/tim/data are read into practice, beginning below the line with the
 cursor.
To read in the same file and place it after line 185, you would
 enter:
:185r /home/tim/data
Here are other ways to read in a file:
	:$r /home/tim/data
	Place the read-in file at the end of the current
 file.

	:0r /home/tim/data
	Place the read-in file at the very beginning of the
 current file.

	:/
 pattern /r /home/tim/data
	Place the read-in file in the current file, after the line
 containing pattern.

Editing Multiple Files

ex commands enable
 you to switch between multiple files. The advantage of editing
 multiple files is speed. If you are sharing the system with other
 users, it takes time to exit and reenter vi for each file you want to edit. Staying
 in the same editing session and traveling between files is not only
 faster for access, but you also save abbreviations and command
 sequences that you have defined (see Chapter 7), and
 you keep yank buffers so that you can copy text from one file to
 another.
Invoking vi on Multiple Files

 When you first invoke vi, you can name more than one file to
 edit, and then use ex commands to
 travel between the files. For example:
$vi file1 file2
edits file1 first. After
 you have finished editing the first file, the ex command :w writes (saves) file1 and :n calls in the next file (file2).
Suppose you want to edit two files, practice and note:
	Keystrokes	Results
	vi practice note	With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 Open the two files
 practice and note. The first-named file,
 practice, appears on
 your screen. Perform any edits.

	:w	 "practice" 6 lines, 328 characters

 Save the edited file practice with the ex command w. Press ENTER.

	:n	Dear Mr.
 Henshaw:
 Thank you for the prompt . . .
 Call in the next file,
 note, with the ex command n. Press ENTER. Perform any edits.

	:x	 "note" 23 lines, 1343 characters

 Save the second file, note, and quit the editing
 session.

Using the Argument List

ex actually lets
 you do more than just move to the next file in the argument list
 with :n. The :args command (abbreviated :ar) lists the files named on the command
 line, with the current file enclosed in brackets.
	Keystrokes	Results
	vi practice note	With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 Open the two files
 practice and note. The first-named file,
 practice, appears on
 your screen.

	:args	 [practice] note

 vi displays the
 argument list in the status line, with brackets around the
 current filename.

 The :rewind
 (:rew) command resets the current
 file to be the first file named on the command line. elvis and Vim provide a corresponding
 :last command to move to the last
 file on the command line.

Calling in New Files

 You don’t have to call in multiple files at the
 beginning of your editing session. You can switch to another file at
 any time with the ex command
 :e. If you want to edit another file within vi, you first need to save your current file (:w),
 then give the command:
:efilename
Suppose you are editing the file practice and want to edit the file
 letter, and then return to
 practice:
	Keystrokes	Results
	:w	 "practice" 6 lines, 328 characters

 Save practice
 with w and press ENTER. practice is saved and remains on
 the screen. You can now switch to another file, because your
 edits are saved.

	:e letter	 "letter" 23 lines, 1344 characters

 Call in the file letter with e and press ENTER. Perform any edits.

vi “remembers” two
 filenames at a time as the current and alternate filenames. These
 can be referred to by the symbols % (current filename) and # (alternate filename). # is particularly useful with :e, since it allows you to switch easily
 back and forth between two files. In the example just given, you
 could return to the first file, practice, by typing the command :e #. You could also read the file
 practice into the current file
 by typing:r #.
If you have not first saved the current file, vi will not allow you to switch files with
 :e or :n unless you tell it imperatively to do
 so by adding an exclamation point after the command.
For example, if after making some edits to letter, you wanted to discard the edits
 and return to practice, you
 could type :e! #.
The following command is also useful. It discards your edits
 and returns to the last saved version of the current file:
:e!
In contrast to the #
 symbol, % is useful mainly when
 writing out the contents of the current buffer to a new file. For
 example, in the earlier section Renaming the Buffer, we showed you how to save a second
 version of the file practice
 with the command:
:w practice.new
Since % stands for the
 current filename, that line could also have been typed:
:w %.new

Switching Files from vi

Since switching back to the previous file is something
 that you will tend to do a lot, you don’t have to move to the
 ex command line to do it. The
 vi command ^^ (the Ctrl key with the caret key) will
 do this for you. Using this command is the same as typing :e #. As with the :e command, if the current buffer has not
 been saved, vi will not let you
 switch back to the previous file.

Edits Between Files

 When you give a yank buffer a one-letter name, you
 have a convenient way to move text from one file to another. Named
 buffers are not cleared when a new file is loaded into the vi buffer with the :e command. Thus, by yanking or deleting
 text from one file (into multiple named buffers if necessary),
 calling in a new file with :e,
 and putting the named buffer(s) into the new file, you can transfer
 material between files.
The following example illustrates how to transfer text from
 one file to another:
	Keystrokes	Results
	"f4yy	 With ascreen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yank four lines
 into buffer f.

	:w	 "practice" 6 lines, 238 characters

 Save the file.

	:e letter	 Dear Mr.
 Henshaw:
 I thought that you wouldbe interested to know that:
 Yours truly,
 Enter the file letter with :e. Move the cursor to where the
 copied text will be placed.

	"fp	 Dear Mr.
 Henshaw:
 I thought that you would
 be interested to know that:With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yours truly,
 Place yanked text from named buffer f below the cursor.

 Another way to move text from one file to another is
 to use the ex commands :ya (yank) and :pu (put). These commands work the same
 way as the equivalent vi commands
 y and p, but they are used with ex’s line-addressing capability and named
 buffers.
For example:
:160,224ya a
would yank (copy) lines 160 through 224 into buffer a. Next you would move with :e to the file where you want to put these
 lines. Place the cursor on the line where you want to put the yanked
 lines. Then type:
:pu a
to put the contents of buffer a after the current line.

Chapter 6. Global Replacement

Sometimes, halfway through a document or at the end of a draft,
 you may recognize inconsistencies in the way that you refer to certain
 things. Or, in a manual, some product whose name appears throughout your
 file is suddenly renamed (marketing!). Often enough it happens that you
 have to go back and change what you’ve already written, and you need to
 make the changes in several places.
The way to make these changes is with a powerful change command
 called global replacement. With one command you can automatically
 replace a word (or a string of characters) wherever it occurs in the
 file.
In a global replacement, the ex
 editor checks each line of a file for a given pattern of characters. On
 all lines where the pattern is found, ex replaces the pattern with a new
 string of characters. For right now, we’ll treat the search
 pattern as if it were a simple string; later in the chapter we’ll look
 at the powerful pattern-matching language known as regular
 expressions.
Global replacement really uses two ex commands: :g (global) and :s (substitute). Since the syntax of global
 replacement commands can get fairly complex, let’s look at it in
 stages.
The substitute command has the syntax:
:s/old/new/
This changes the first occurrence of the
 pattern old to new on the
 current line. The / (slash) is the delimiter between the various parts
 of the command. (The slash is optional when it is the last character on
 the line.)
A substitute command with the syntax:
:s/old/new/g
changes every occurrence of
 old to new on the current
 line, not just the first occurrence. The :s command allows
 options following the substitution string. The g option in the syntax above stands for
 global. (The g
 option affects each pattern on a line; don’t confuse it with the
 :g command, which affects each line
 of a file.)
By prefixing the :s command
 with addresses, you can extend its range to more than one line. For
 example, this command will change every occurrence of
 old to new from line 50 to
 line 100:
:50,100s/old/new/g
This command will change every occurrence of
 old to new within the entire
 file:
:1,$s/old/new/g
 You can also use %
 instead of 1,$ to specify every line
 in a file. Thus, the last command could also be given like this:
:%s/old/new/g
Global replacement is much faster than finding each instance of a
 string and replacing it individually. Because the command can be used to
 make many different kinds of changes, and because it is so powerful, we
 will first illustrate simple replacements and then build up to complex,
 context-sensitive replacements.
Confirming Substitutions

 It makes sense to be overly careful when using a search
 and replace command. It sometimes happens that what you get is not
 what you expect. You can undo any search and replacement command by
 entering u, provided that the
 command was the most recent edit you made. But you don’t always catch
 undesired changes until it is too late to undo them. Another way to
 protect your edited file is to save the file with :w before performing a global replacement.
 Then at least you can quit the file without saving your edits and can
 go back to where you were before the change was made. You can also
 read the previous version of the buffer back in with :e!.
It’s wise to be cautious and know exactly what is going to be
 changed in your file. If you’d like to see what the search turns up
 and confirm each replacement before it is made, add the c option (for
 confirm) at the end of the substitute command:
:1,30s/his/the/gc
ex will display the entire
 line where the string has been located, and the string will be marked
 by a series of carets (^^^^):
copyists at his school
 ^^^
If you want to make the replacement, you must enter y (for yes) and press ENTER. If you don’t want to make a change,
 simply press ENTER.
this can be used for invitations, signs, and menus.
 ^^^
 The combination of the vi commands n (repeat last search) and dot (.) (repeat last command) is also an
 extraordinarily useful and quick way to page through a file and make
 repetitive changes that you may not want to make globally. So, for
 example, if your editor has told you that you’re using
 which when you should be using
 that, you can spot-check every occurrence of
 which, changing only those that are
 incorrect:
	/which	Search for which
	cwthat ESC	Change to that
	n	Repeat search
	n	Repeat search, skip a change
	.	Repeat change (if appropriate)
	 	(Etc.)

Context-Sensitive Replacement

 The simplest global replacements substitute one word
 (or a phrase) for another. If you have typed a file with several
 misspellings (editer for
 editor), you can do the global
 replacement:
:%s/editer/editor/g
This substitutes editor for every
 occurrence of editer throughout the file.
There is a second, slightly more complex syntax for global
 replacement. This syntax lets you search for a pattern, and then, once
 you find the line with the pattern, make a substitution on a string
 different from the pattern. You can think of this as context-sensitive
 replacement.
The syntax is as follows:
:g/pattern/s/old/new/g
The first g tells the command
 to operate on all lines of a file. pattern
 identifies the lines on which a substitution is to take place. On
 those lines containing pattern, ex is to substitute (s) for old the
 characters in new. The last g indicates that the substitution is to
 occur globally on that line.
For example, as we write this book, the XML directives <keycap> and </keycap> place a box around ESC to show the Escape key. You want ESC to be all in caps, but you don’t want to
 change any instances of Escape that might be in
 the text. To change instances of Esc to
 ESC only when Esc is on a
 line that contains the <keycap> directive, you could
 enter:
:g/<keycap>/s/Esc/ESC/g
If the pattern being used to find the line is the same as the
 one you want to change, you don’t have to repeat it. The
 command:
:g/string/s//new/g
would search for lines containing string
 and substitute for that same string.
Note that:
:g/editer/s//editor/g
has the same effect as:
:%s/editer/editor/g
You can save some typing by using the second form. It is also
 possible to combine the :g command
 with :d, :mo, :co,
 and other ex commands besides
 :s. As we’ll show, you can thus
 make global deletions, moves, and copies.

Pattern-Matching Rules

 In making global replacements, Unix editors such as
 vi allow you to search not just for
 fixed strings of characters, but also for variable patterns of words,
 referred to as regular expressions.
When you specify a literal string of characters, the search
 might turn up other occurrences that you didn’t want to match. The
 problem with searching for words in a file is that a word can be used
 in different ways. Regular expressions help you conduct a search for
 words in context. Note that regular expressions can be used with the
 vi search commands / and ?,
 as well as in the ex commands
 :g and :s.
For the most part, the same regular expressions work with other
 Unix programs, such as grep,
 sed, and awk.[21]
 Regular expressions are made up by combining normal
 characters with a number of special characters called
 metacharacters.[22] The metacharacters and their uses are listed
 next.
Metacharacters Used in Search Patterns

	. (period, dot)
	Matches any single
 character except a newline. Remember that spaces are treated
 as characters. For example, p.p matches character strings such
 as pep, pip, and
 pcp.

	*
	 Matches zero or more (as many as there are) of
 the single character that immediately precedes it. For
 example, bugs* will match
 bugs (one s) or
 bug (no s). (It will
 also match bugss,
 bugsss, and so on.)
The * can follow a
 metacharacter. For example, since . (dot) means any character,
 .* means “match any number
 of any character.”
Here’s a specific example of this: the command :s/End.*/End/ removes all characters
 after End (it replaces the remainder of
 the line with nothing).

	^
	 When used at the start of a regular expression,
 requires that the following regular expression be found at the
 beginning of the line. For example, ^Part matches
 Part when it occurs at the beginning of a
 line, and ^... matches the
 first three characters of a line. When not at the beginning of
 a regular expression, ^
 stands for itself.

	$
	 When used at the end of a regular expression,
 requires that the preceding regular expression be found at the
 end of the line; for example, here:$ matches only when
 here: occurs at the end of a line. When
 not at the end of a regular expression, $ stands for itself.

	\
	 Treats the following special character as an
 ordinary character. For example, \. matches an actual period instead
 of “any single character,” and * matches an actual asterisk
 instead of “any number of a character.” The \ (backslash)
 prevents the interpretation of a special character. This
 prevention is called “escaping the character.” (Use \\ to get
 a literal backslash.)

	[]
	 Matches any one of the
 characters enclosed between the brackets. For example,
 [AB] matches either
 A or B, and p[aeiou]t matches
 pat, pet,
 pit, pot, or
 put. A range of consecutive characters
 can be specified by separating the first and last characters
 in the range with a hyphen. For example, [A-Z] will match any uppercase
 letter from A to Z,
 and [0-9] will match any
 digit from 0 to
 9.
You can include more than one range inside brackets, and
 you can specify a mix of ranges and separate characters. For
 example, [:;A-Za-z()]
 will match four different punctuation marks, plus all
 letters.
Note
When regular expressions and vi were first developed, they were
 meant to work only with the ASCII character set. In today’s
 global market, modern systems support
 locales, which provide different
 interpretations of the characters that lie between a and z. To get accurate results, you
 should use POSIX bracket expressions (discussed shortly) in
 your regular expressions, and avoid ranges of the form
 a-z.

Most metacharacters lose their special meaning inside
 brackets, so you don’t need to escape them if you want to use
 them as ordinary characters. Within brackets, the three
 metacharacters you still need to escape are \ -]. The hyphen (-) acquires meaning as a range
 specifier; to use an actual hyphen, you can also place it as
 the first character inside the brackets.
 A caret (^)
 has special meaning only when it is the first character inside
 the brackets, but in this case the meaning differs from that
 of the normal ^
 metacharacter. As the first character within brackets, a
 ^ reverses their sense: the
 brackets will match any one character not
 in the list. For example, [^0-9] matches any character that is
 not a digit.

	\(\)
	 Saves the pattern enclosed between \(and \) into a special holding space, or
 a “hold buffer.” Up to nine patterns can be saved in this way
 on a single line. For example, the pattern:
\(That\) or \(this\)
saves That in hold buffer number 1
 and saves this in hold buffer number 2.
 The patterns held can be “replayed” in substitutions by the
 sequences \1 to \9. For example, to rephrase
 That or this to read this or
 That, you could enter:
:%s/\(That\) or \(this\)/\2 or \1/
You can also use the \n
 notation within a search or substitute string. For example:

:s/\(abcd\)\1/alphabet-soup/

 changes abcdabcd into
 alphabet-soup.[23]

	\< \>
	 Matches characters at the beginning (\<) or at the end (\>) of a word. The end or
 beginning of a word is determined either by a punctuation mark
 or by a space. For example, the expression \<ac will match only words that
 begin with ac, such as
 action. The expression ac\> will match only words that
 end with ac, such as
 maniac. Neither expression will match
 react. Note that unlike \(...\), these do not have to be
 used in matched pairs.

	~
	 Matches whatever regular expression was used in
 the last search. For example, if you
 searched for The, you could search for
 Then with /~n. Note that you can use this
 pattern only in a regular search (with /).[24] It won’t work as the pattern in a substitute
 command. It does, however, have a similar meaning in the
 replacement portion of a substitute command.

All of the clones support optional, extended regular
 expression syntaxes. See the section Extended Regular Expressions for more information.

POSIX Bracket Expressions

We have just described the use of brackets for matching any
 one of the enclosed characters, such as [a-z]. The POSIX standard introduced
 additional facilities for matching characters that are not in the
 English alphabet. For example, the French è is
 an alphabetic character, but the typical character class [a-z] would not match it. Additionally,
 the standard provides for sequences of characters that should be
 treated as a single unit when matching and collating (sorting)
 string data.
POSIX also formalizes the terminology. Groups of characters
 within brackets are called “bracket expressions” in the POSIX
 standard. Within bracket expressions, beside literal characters such
 as a, !, and so on, you
 can have additional components. These components
 are:
	 Character classes
	A POSIX character class consists of keywords bracketed
 by [: and :]. The keywords describe different
 classes of characters, such as alphabetic characters, control
 characters, and so on (see Table 6-1).

	 Collating symbols
	A collating symbol is a multicharacter sequence that
 should be treated as a unit. It consists of the characters
 bracketed by [. and
 .].

	 Equivalence classes
	An equivalence class lists a set of characters that
 should be considered equivalent, such as
 e and è. It consists
 of a named element from the locale, bracketed by [= and =].

All three of these constructs must appear
 inside the square brackets of a bracket expression. For example,
 [[:alpha:]!] matches any single
 alphabetic character or the exclamation point, [[.ch.]] matches the collating element
 ch, but does not match just the letter
 c or the letter h. In a
 French locale, [[=e=]] might
 match any of e, è, or
 é. Classes and matching characters are shown in
 Table 6-1.
Table 6-1. POSIX character classes
	Class	Matching characters
	[:alnum:]	Alphanumeric characters
	[:alpha:]	Alphabetic characters
	[:blank:]	Space and tab characters
	[:cntrl:]	Control characters
	[:digit:]	Numeric characters
	[:graph:]	Printable and visible (nonspace) characters
	[:lower:]	Lowercase characters
	[:print:]	Printable characters (includes whitespace)
	[:punct:]	Punctuation characters
	[:space:]	Whitespace characters
	[:upper:]	Uppercase characters
	[:xdigit:]	Hexadecimal digits

vi on HP-UX 9.x (and newer)
 systems support POSIX bracket expressions, as does /usr/xpg4/bin/vi on Solaris (but not
 /usr/bin/vi). This facility is
 also available in nvi, elvis, Vim, and vile. Current GNU/Linux systems, in particular, are sensitive to the locale
 chosen at installation time, and you can expect to get reasonable
 results, particularly when trying to match only lowercase or
 uppercase letters, just by using the POSIX bracket expressions.

Metacharacters Used in Replacement Strings

 When you make global replacements, the regular
 expression metacharacters discussed earlier carry their special
 meanings only within the search portion (the first part) of the
 command.
For example, when you type this:
:%s/1\. Start/2. Next, start with $100/
note that the replacement string treats the characters
 . and $ literally, without your having to escape
 them. By the same token, let’s say you enter:
:%s/[ABC]/[abc]/g
If you’re hoping to replace A with
 a, B with
 b, and C with
 c, you’ll be surprised. Since brackets behave
 like ordinary characters in a replacement string, this command will
 change every occurrence of A,
 B, or C to the
 five-character string [abc].
To solve problems like this, you need a way to specify
 variable replacement strings. Fortunately, there are additional
 metacharacters that have special meaning in a
 replacement string.
	\
 n
	 Is replaced with the text matched by the
 nth pattern previously saved by \(and \), where n is
 a number from 1 to 9, and previously saved patterns (kept in
 hold buffers) are counted from the left on the line. See the
 explanation for \(and
 \) in the earlier section
 Metacharacters Used in Search Patterns.

	\
	 Treats the following special character as an
 ordinary character. Backslashes are metacharacters in
 replacement strings as well as in search patterns. To specify
 a real backslash, type two in a row (\\).

	&
	 Is replaced with the entire text matched by the
 search pattern when used in a replacement string. This is
 useful when you want to avoid retyping text:
:%s/Yazstremski/&, Carl/
The replacement will say Yazstremski,
 Carl. The &
 can also replace a variable pattern (as specified by a regular
 expression). For example, to surround each line from 1 to 10
 with parentheses, type:
:1,10s/.*/(&)/
The search pattern matches the whole line, and the
 & “replays” the line,
 included within your text.

	~
	 Has a similar meaning as when it is used in a
 search pattern: the string found is replaced with the
 replacement text specified in the last substitute command.
 This is useful for repeating an edit. For example, you could
 say :s/thier/their/ on one
 line and repeat the change on another with :s/thier/~/. The search pattern
 doesn’t need to be the same, though.
For example, you could say :s/his/their/ on one line and repeat
 the replacement on another with :s/her/~/.[25]

	\u or \l
	 Causes the next character in the replacement
 string to be changed to uppercase or lowercase, respectively.
 For example, to change yes, doctor into
 Yes, Doctor, you could say:
:%s/yes, doctor/\uyes, \udoctor/
This is a pointless example, though, since it’s easier
 just to type the replacement string with initial caps in the
 first place. As with any regular expression, \u and \l are most useful with a variable
 string. Take, for example, the command we used earlier:
:%s/\(That\) or \(this\)/\2 or \1/
The result is this or That, but we
 need to adjust the cases. We’ll use \u to uppercase the first letter in
 this (currently saved in hold buffer 2);
 we’ll use \l to lowercase
 the first letter in That (currently saved
 in hold buffer 1):
:s/\(That\) or \(this\)/\u\2 or \l\1/
The result is This or that. (Don’t
 confuse the number one with the lowercase l; the one comes after.)

	\U or \L and \e or \E
	\U and
 \L are similar to \u or \l, but all following characters are
 converted to uppercase or lowercase until the end of the
 replacement string or until \e or \E is reached. If there is no
 \e or \E, all characters of the
 replacement text are affected by the \U or \L. For example, to uppercase
 Fortran, you could say:
:%s/Fortran/\UFortran/
or, using the &
 character to repeat the search string:
:%s/Fortran/\U&/

 All pattern searches are case-sensitive. That is, a
 search for the will not find
 The. You can get around this by specifying both
 uppercase and lowercase in the pattern:
/[Tt]he
 You can also instruct vi to ignore case by typing :setic.
 See Chapter 7 for additional details.

More Substitution Tricks

 You should know some additional important facts about
 the substitute command:
	 A simple :s is
 the same as :s//~/. In other
 words, repeat the last substitution. This can save enormous
 amounts of time and typing when you are working your way through
 a document making the same change repeatedly but you don’t want
 to use a global substitution.

	 If you think of the & as meaning “the same thing” (as
 in, what was just matched), this command is relatively mnemonic.
 You can follow the & with
 a g, to make the substitution
 globally on the line, and even use it with a line range:
:%&gRepeat the last substitution everywhere

	The & key can be used
 as a vi command to perform
 the :& command, i.e., to
 repeat the last substitution. This can save even more typing
 than :s ENTER—one keystroke versus
 three.

	 The :~ command
 is similar to the :&
 command but with a subtle difference. The search pattern used is
 the last regular expression used in any
 command, not necessarily the one used in the last substitute
 command.
For example,[26] in the sequence:
:s/red/blue/
:/green
:~
the :~ is equivalent to
 :s/green/blue/.

	Besides the /
 character, you may use any nonalphanumeric, nonwhitespace
 character as your delimiter, except backslash, double quotes,
 and the vertical bar (\,
 ", and |). This is particularly handy when
 you have to make a change to a pathname.
:%s;/user1/tim;/home/tim;g

	 When the edcompatible option is enabled,
 vi remembers the flags
 (g for global and c for confirmation) used on the last
 substitution and applies them to the next one.
This is most useful when you are moving through a file and
 you wish to make global substitutions. You can make the first
 change:
:s/old/new/g
:set edcompatible
and after that, subsequent substitute commands will be
 global.
Despite the name, no known version of Unix ed actually works this way.

[21] Much more information on regular expressions can be found in
 the two O’Reilly books sed & awk, by
 Dale Dougherty and Arnold Robbins, and Mastering
 Regular Expressions, by Jeffrey E.F. Friedl.

[22] Technically speaking, we should probably call these
 metasequences, since sometimes two characters
 together have special meaning, and not just single characters.
 Nevertheless, the term metacharacters is in
 common use in Unix literature, so we follow that convention
 here.

[23] This works with vi, nvi, and Vim, but not with
 elvis or vile.

[24] This is a rather flaky feature of the original
 vi. After using it, the
 saved search pattern is set to the
 new text typed after the ~, not the
 combined new pattern, as one might expect. Also, none of
 the clones behave this way. So, while this feature exists,
 it has little to recommend its use.

[25] Modern versions of the ed editor use % as the sole character in the
 replacement text to mean “the replacement text of the last
 substitute command.”

[26] Thanks to Keith Bostic, in the nvi documentation, for this
 example.

Pattern-Matching Examples

 Unless you are already familiar with regular
 expressions, the preceding discussion of special characters probably
 looks forbiddingly complex. A few more examples should make things
 clearer. In the examples that follow, a square (□) is used to mark a
 space; it is not a special character.
Let’s work through how you might use some special characters in
 a replacement. Suppose that you have a long file and that you want to
 substitute the word child with the word
 children throughout that file. You first save the
 edited buffer with :w, then try the
 global replacement:
:%s/child/children/g
When you continue editing, you notice occurrences of words such
 as childrenish. You have unintentionally matched
 the word childish. Returning to the last saved
 buffer with :e!, you now
 try:
:%s/child□/children□/g
(Note that there is a space after child.)
 But this command misses the occurrences child.,
 child,, child: and so on.
 After some thought, you remember that brackets allow you to specify
 one character from among a list, so you realize a solution:
:%s/child[□,.;:!?]/children[□,.;:!?]/g
This searches for child followed by either
 a space (indicated by □) or any one of the punctuation characters
 ,.;:!?. You expect to replace this
 with children followed by the corresponding space
 or punctuation mark, but you’ve ended up with a bunch of punctuation marks after every occurrence
 of children. You need to save the space and
 punctuation marks inside a \(and
 \). Then you can “replay” them with
 a \1. Here’s the next
 attempt:
:%s/child\([□,.;:!?]\)/children\1/g
When the search matches a character inside the \(and \), the \1 on the righthand side restores the same
 character. The syntax may seem awfully complicated, but this command sequence can save you a lot of
 work. Any time you spend learning regular expression syntax
 will be repaid a thousandfold!
The command is still not perfect, though. You’ve noticed that
 occurrences of Fairchild have been changed, so
 you need a way to match child when it isn’t part
 of another word.
As it turns out, vi (but not
 all other programs that use regular expressions) has a special syntax
 for saying “only if the pattern is a complete word.” The character
 sequence \< requires the pattern
 to match at the beginning of a word, whereas \> requires the pattern to match at the
 end of a word. Using both will restrict the match to a whole word. So,
 in the example task, \<child\> will find all instances of
 the word child, whether followed by punctuation
 or spaces. Here’s the substitution command you should use:
:%s/\<child\>/children/g
Search for General Class of Words

 Suppose your subroutine names begin with the prefixes
 mgi, mgr, and
 mga:
 mgibox routine,
 mgrbox routine,
 mgabox routine,

If you want to save the prefixes, but want to change the name
 box to square, either of
 the following replacement commands will do the trick. The first
 example illustrates how \(and
 \) can be used to save whatever
 pattern was actually matched. The second example shows how you can
 search for one pattern but change another:
:g/mg\([ira]\)box/s//mg\1square/g
 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,
The global replacement keeps track of whether an
 i, r, or
 a is saved. In that way,
 box is changed to square
 only when box is part of the routine’s
 name.
:g/mg[ira]box/s/box/square/g
 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,
This has the same effect as the previous command, but it is a
 little less safe since it could change other instances of
 box on the same line, not just those within the
 routine names.

Block Move by Patterns

 You can also move blocks of text delimited by
 patterns. For example, assume you have a 150-page reference manual
 written in troff. Each page is
 organized into three paragraphs with the same three
 headings: SYNTAX, DESCRIPTION, and PARAMETERS. A sample of one
 reference page follows:
.Rh 0 "Get status of named file" "STAT"
.Rh "SYNTAX"
.nf
integer*4 stat, retval
integer*4 status(11)
character*123 filename
...
retval = stat (filename, status)
.fi
.Rh "DESCRIPTION"
Writes the fields of a system data structure into the
status array.
These fields contain (among other
things) information about the file's location, access
privileges, owner, and time of last modification.
.Rh "PARAMETERS"
.IP "\fBfilename\fR" 15n
A character string variable or constant containing
the Unix pathname for the file whose status you want
to retrieve.
You can give the ...
Suppose that you decide to move DESCRIPTION above the SYNTAX
 paragraph. With pattern matching, you can move blocks of text on all
 150 pages with one command!
:g /SYNTAX/.,/DESCRIPTION/-1 move /PARAMETERS/-1
This command works as follows. First, ex finds and marks each line that matches
 the first pattern (i.e., that contains the word
 SYNTAX). Second, for each marked line, it sets
 . (dot, the current line) to that
 line, and executes the command. Using the move command, the command moves the block
 of lines from the current line (dot) to the line before the one
 containing the word DESCRIPTION (/DESCRIPTION/-1) to just before the line containing
 PARAMETERS (/PARAMETERS/-1).
Note that ex can place text
 only below the line specified. To tell ex to place text above a line,
 you first subtract one with -1,
 and then ex places your text
 below the previous line. In a case like this, one command
 saves literally hours of work. (This is a real-life example—we once
 used a pattern match like this to rearrange a reference manual
 containing hundreds of
 pages.)
Block definition by patterns can be used equally well with
 other ex commands. For example,
 if you wanted to delete all DESCRIPTION paragraphs in the reference
 chapter, you could enter:
:g/DESCRIPTION/,/PARAMETERS/-1d
This very powerful kind of change is implicit in ex’s line addressing syntax, but it is not
 readily apparent even to experienced users. For this reason,
 whenever you are faced with a complex, repetitive editing task, take
 the time to analyze the problem and find out if you can apply
 pattern-matching tools to get the job done.

More Examples

Since the best way to learn pattern matching is by example,
 here is a list of pattern-matching examples, with explanations.
 Study the syntax carefully, so that you understand the principles at
 work. You should then be able to adapt these examples to your own
 situation:
	Put troff italicization
 codes around the word ENTER:
:%s/ENTER/\\fI&\\fP/g
Notice that two backslashes (\\) are needed in the replacement,
 because the backslash in the troff italicization code will be
 interpreted as a special character. (\fI alone would be interpreted as
 fI; you must type \\fI to get
 \fI.)

	Modify a list of pathnames in a file:
:%s/\/home\/tim/\/home\/linda/g
A slash (used as a delimiter in the global replacement
 sequence) must be escaped with a backslash when it is part of
 the pattern or replacement; use \/ to get /. An alternate way to achieve this
 same effect is to use a different character as the pattern
 delimiter. For example, you could make the previous replacement
 using colons as delimiters. (The delimiter colons and the
 ex command colon are separate
 entities.) Thus:
:%s:/home/tim:/home/linda:g
This is much more readable.

	Put HTML italicization codes around the word
 ENTER:
:%s:ENTER:<I>&</I>:g
Notice here the use of & to represent the text that was
 actually matched, and, as just described, the use of colons as
 delimiters instead of slashes.

	Change all periods to semicolons in lines 1 to 10:
:1,10s/\./;/g
A dot has special meaning in regular expression syntax and
 must be escaped with a backslash (\.).

	Change all occurrences of the word
 help (or Help) to
 HELP:
:%s/[Hh]elp/HELP/g
or:
:%s/[Hh]elp/\U&/g
The \U changes the
 pattern that follows to all uppercase. The pattern that follows
 is the repeated search pattern, which is either
 help or Help.

	Replace one or more spaces with a
 single space:
:%s/□□*/□/g
Make sure you understand how the asterisk works as a
 special character. An asterisk following any character (or
 following any regular expression that matches a single
 character, such as . or
 [[:lower:]]) matches
 zero or more instances of that character.
 Therefore, you must specify two spaces
 followed by an asterisk to match one or more spaces (one space,
 plus zero or more spaces).

	Replace one or more spaces following a colon with two
 spaces:
:%s/:□□*/:□□/g

	Replace one or more spaces following a period
 or a colon with two spaces:
:%s/\([:.]\)□□*/\1□□/g
Either of the two characters within brackets can be
 matched. This character is saved into a hold buffer, using
 \(and \), and restored on the righthand side
 by the \1. Note that within
 brackets a special character such as a dot does not need to be
 escaped.

	Standardize various uses of a word or heading:
:%s/^Note[□:s]*/Notes:□/g
The brackets enclose three characters: a space, a colon,
 and the letter s. Therefore, the pattern
 Note[□s:] will match
 Note□, Notes, or
 Note:. An asterisk is added to the pattern
 so that it also matches Note (with zero
 spaces after it) and Notes: (the already
 correct spelling). Without the asterisk,
 Note would be missed entirely and
 Notes: would be incorrectly changed to
 Notes:□:.

	Delete all blank lines:
:g/^$/d
What you are actually matching here is the beginning of
 the line (^) followed by the
 end of the line ($), with
 nothing in between.

	Delete all blank lines, plus any lines that contain only
 whitespace:
:g/^[□tab]*$/d
(In the example, a tab is shown as
 tab.) A line may appear to be blank, but
 may in fact contain spaces or tabs. The previous example will
 not delete such a line. This example, like the previous one,
 searches for the beginning and end of the line. But instead of
 having nothing in between, the pattern tries to find any number
 of spaces or tabs. If no spaces or tabs are matched, the line is
 blank. To delete lines that contain whitespace but that
 aren’t empty, you would have to match lines
 with at least one space or tab:
:g/^[□tab][□tab]*$/d

	Delete all leading spaces on every line:
:%s/^□□*\(.*\)/\1/
Use ^□□* to search for one or more spaces at
 the beginning of each line; then use \(.*\) to save the rest of the line
 into the first hold buffer. Restore the line without leading
 spaces, using \1.

	Delete all spaces at the end of every line:
:%s/\(.*\)□□*$/\1/
For each line, use \(.*\) to save all the text on the
 line, but only up until one or more spaces at the end of the
 line. Restore the saved text without the spaces.
The substitutions in this example and the previous one
 will happen only once on any given line, so the g option doesn’t need to follow the
 replacement string.

	Insert a >□□ at the start of every line in a
 file:
:%s/^/>□□/
What we’re really doing here is “replacing” the start of
 the line with >□□. Of course, the start of the line (being a
 logical construct, not an actual character) isn’t really
 replaced!
This command is useful when replying to mail or Usenet
 news postings. Frequently, it is desirable to include part of
 the original message in your reply. By convention, the inclusion
 is distinguished from your reply by setting off the included
 text with a right angle bracket and a couple of spaces at the
 start of the line. This can be done easily, as shown in the
 example. (Typically, only part of the original message will be
 included. Unneeded text can be deleted either before or after
 the replacement.) Advanced mail systems do this automatically.
 However, if you’re using vi
 to edit your mail, you can do it with this command.

	Add a period to the end of the next six lines:
:.,+5s/$/./
The line address indicates the current line plus five
 lines. The $ indicates the
 end of line. As in the previous example, the $ is a logical construct. You aren’t
 really replacing the end of the line.

	Reverse the order of all hyphen-separated items in a
 list:
:%s/\(.*\)□-□\(.*\)/\2□-□\1/
Use \(.*\) to save text
 on the line into the first hold buffer, but only until you find
 □-□. Then use \(.*\) to save the rest of the line
 into the second hold buffer. Restore the saved portions of the
 line, reversing the order of the two hold buffers. The effect of
 this command on several items is shown here:
more - display files
becomes:
display files - more
and:
lp - print files
becomes:
print files - lp

	Change every letter in a file to uppercase:
:%s/.*/\U&/
or:
:%s/./\U&/g
The \U flag at the
 start of the replacement string tells vi to change the replacement to
 uppercase. The &
 character replays the text matched by the search pattern as the
 replacement. These two commands are equivalent; however, the
 first form is considerably faster, since it results in only one
 substitution per line (.*
 matches the entire line, once per line), whereas the second form
 results in repeated substitutions on each line (. matches only a single character,
 with the replacement repeated on account of the trailing
 g).

	Reverse the order of lines in a file:[27]
:g/.*/mo0
The search pattern matches all lines (a line contains zero
 or more characters). Each line is moved, one by one, to the top
 of the file (that is, moved after imaginary line 0). As each
 matched line is placed at the top, it pushes the previously
 moved lines down, one by one, until the last line is on top.
 Since all lines have a beginning, the same result can be
 achieved more succinctly:
:g/^/mo0

	In a text-file database, on all lines not marked
 Paid in full, append the phrase
 Overdue:
:g!/Paid in full/s/$/ Overdue/
or the equivalent:
:v/Paid in full/s/$/ Overdue/
To affect all lines except those
 matching your pattern, add a ! to the g command, or simply use the v command.

	For any line that doesn’t begin with a number, move the
 line to the end of the file:
:g!/^[[:digit:]]/m$
or:
:g/^[^[:digit:]]/m$
As the first character within brackets, a caret negates
 the sense, so the two commands have the same effect. The first
 one says, “Don’t match lines that begin with a number,” and the
 second one says, “Match lines that don’t begin with a
 number.”

	Change manually numbered section heads (e.g., 1.1, 1.2,
 etc.) to a troff macro (e.g.,
 .Ah for an A-level
 heading):
:%s/^[1-9]\.[1-9]/.Ah/
The search string matches a digit other than zero,
 followed by a period, followed by another nonzero digit. Notice
 that the period doesn’t need to be escaped in the replacement
 (though a \ would have no
 effect, either). The command just shown won’t find chapter
 numbers containing two or more digits. To do so, modify the
 command like this:
:%s/^[1-9][0-9]*\.[1-9]/.Ah/
Now it will match chapters 10 to 99 (digits 1 to 9,
 followed by a digit), 100 to 999 (digits 1 to 9, followed by two
 digits), etc. The command still finds chapters 1 to 9 (digits 1
 to 9, followed by no digit).

	Remove numbering from section headings in a document. You
 want to change the sample lines:
2.1 Introduction
10.3.8 New Functions
into the lines:
Introduction
New Functions
Here’s the command to do this:
:%s/^[1-9][0-9]*\.[1-9][0-9.]*□//
The search pattern resembles the one in the previous
 example, but now the numbers vary in length. At a minimum, the
 headings contain number,
 period, number, so you
 start with the search pattern from the previous example:
[1-9][0-9]*\.[1-9]
But in this example, the heading may continue with any
 number of digits or periods:
[0-9.]*

	Change the word Fortran to the phrase
 FORTRAN (acronym of FORmula TRANslation):
:%s/\(For\)\(tran\)/\U\1\2\E□(acronym□of□\U\1\Emula□\U\2\Eslation)/g
First, since we notice that the words
 FORmula and
 TRANslation use portions of the original
 words, we decide to save the search pattern in two pieces:
 \(For\) and \(tran\). The first time we restore
 it, we use both pieces together, converting all characters to
 uppercase: \U\1\2. Next, we
 undo the uppercase with \E;
 otherwise, the remaining replacement text would all be
 uppercase. The replacement continues with actual typed words,
 and then we restore the first hold buffer. This buffer still
 contains For, so again we convert to
 uppercase first: \U\1.
 Immediately after, we lowercase the rest of the word: \Emula. Finally, we restore the second
 hold buffer. This contains tran, so we
 precede the “replay” with uppercase, follow it with lowercase, and type out the rest
 of the word: \U\2\Eslation).

[27] From an article by Walter Zintz in Unix
 World, May 1990.

A Final Look at Pattern Matching

We conclude this chapter by presenting sample tasks that involve
 complex pattern-matching concepts. Rather than solve the problems
 right away, we’ll work toward the solutions step by step.
Deleting an Unknown Block of Text

Suppose you have a few lines with this general form:
the best of times; the worst of times: moving
The coolest of times; the worst of times: moving
The lines that you’re concerned with always end with
 moving, but you never know what the first two
 words might be. You want to change any line that ends with
 moving to read:
The greatest of times; the worst of times: moving
Since the changes must occur on certain lines, you need to
 specify a context-sensitive global replacement. Using :g/moving$/ will match lines that end with
 moving. Next, you realize that your search
 pattern could be any number of any character, so the metacharacters .* come to mind. But these will match the
 whole line unless you somehow restrict the match. Here’s your first
 attempt:
:g/moving$/s/.*of/The□greatest□of/
This search string, you decide, will match from the beginning
 of the line to the first of. Since you needed
 to specify the word of to restrict the search,
 you simply repeat it in the replacement. Here’s the resulting
 line:
The greatest of times: moving
Something went wrong. The replacement gobbled the line up to
 the second of instead of the first. Here’s why:
 when given a choice, the action of “match any number of any
 character” will match as much text as possible.
 In this case, since the word of appears twice,
 your search string finds:
the best of times; the worst of
rather than:
the best of
Your search pattern needs to be more restrictive:
:g/moving$/s/.*of times;/The greatest of times;/
Now the .* will match all
 characters up to the instance of the phrase of
 times;. Since there’s only one instance, it has to be the
 first.
There are cases, though, when it is inconvenient, or even
 incorrect, to use the .* metacharacters. For example, you might
 find yourself typing many words to restrict your search pattern, or
 you might be unable to restrict the pattern by specific words (if
 the text in the lines varies widely). The next section presents such
 a case.

Switching Items in a Textual Database

 Suppose you want to switch the order of all last
 names and first names in a (text) database. The lines look like
 this:
Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567
Name: Joy, Susan S.; Areas: Graphics; Phone: 999-3333
The name of each field ends with a colon, and each field is
 separated by a semicolon. Using the top line as an example, you want
 to change Feld, Ray to Ray
 Feld. We’ll present some commands that look promising but
 don’t work. After each command, we show you the line the way it
 looked before the change and after the change.
:%s/: \(.*\), \(.*\);/: \2 \1;/

Name:Feld, Ray; Areas: PC, Unix; Phone: 123-4567 Before
Name: Unix Feld, Ray; Areas: PC; Phone: 123-4567After
We’ve highlighted the contents of the first hold buffer in
 bold and the contents of the
 second hold buffer in italic. Note that
 the first hold buffer contains more than you want. Since it was not
 sufficiently restricted by the pattern that follows it, the hold
 buffer was able to save up to the second comma. Now you try to
 restrict the contents of the first hold buffer:
:%s/: \(....\), \(.*\);/: \2 \1;/

Name:Feld, Ray; Areas: PC, Unix; Phone: 123-4567 Before
Name: Ray; Areas: PC, Unix Feld; Phone: 123-4567After
Here you’ve managed to save the last name in the first hold
 buffer, but now the second hold buffer will save anything up to the
 last semicolon on the line. Now you restrict the second hold buffer,
 too:
:%s/: \(....\), \(...\);/: \2 \1;/

Name:Feld, Ray; Areas: PC, Unix; Phone: 123-4567 Before
Name: Ray Feld; Areas: PC, Unix; Phone: 123-4567After
This gives you what you want, but only in the specific case of
 a four-letter last name and a three-letter first name. (The previous
 attempt included the same mistake.) Why not just return to the first
 attempt, but this time be more selective about the end of the search
 pattern?
:%s/: \(.*\), \(.*\); Area/: \2 \1; Area/

Name:Feld, Ray; Areas: PC, Unix; Phone: 123-4567 Before
Name: Ray Feld; Areas: PC, Unix; Phone: 123-4567After
This works, but we’ll continue the discussion by introducing
 an additional concern. Suppose that the Area
 field isn’t always present or isn’t always the second field. The
 command just shown won’t work on such lines.
We introduce this problem to make a point. Whenever you
 rethink a pattern match, it’s usually better to work toward refining
 the variables (the metacharacters), rather than using specific text
 to restrict patterns. The more variables you use in your patterns,
 the more powerful your commands will be.
In the current example, think again about the patterns you
 want to switch. Each word starts with an uppercase letter and is
 followed by any number of lowercase letters, so you can match the
 names like this:
[[:upper:]][[:lower:]]*
A last name might also have more than one uppercase letter
 (McFly, for example), so you’d want to search
 for this possibility in the second and succeeding letters:
[[:upper:]][[:alpha:]]*
It doesn’t hurt to use this for the first name, too (you never
 know when McGeorge Bundy will turn up). Your
 command now becomes:
:%s/: \([[:upper:]][[:alpha:]]*\), \([[:upper:]][[:alpha:]]*\);/: \2 \1;/
Quite forbidding, isn’t it? It still doesn’t cover the case of
 a name like Joy, Susan S. Since the first-name
 field might include a middle initial, you need to add a space and a
 period within the second pair of brackets. But enough is enough.
 Sometimes, specifying exactly what you want is more difficult than
 specifying what you don’t want. In your sample
 database, the last names end with a comma, so a last-name field can
 be thought of as a string of characters that are
 not commas:
[^,]*
This pattern matches characters up until the first comma.
 Similarly, the first-name field is a string of characters that are
 not semicolons:
[^;]*
Putting these more efficient patterns back into your previous
 command, you get:
:%s/: \([^,]*\), \([^;]*\);/: \2 \1;/
The same command could also be entered as a context-sensitive
 replacement. If all lines begin with Name, you
 can say:
:g/^Name/s/: \([^,]*\), \([^;]*\);/: \2 \1;/
You can also add an asterisk after the first space, in order
 to match a colon that has extra spaces (or no spaces) after
 it:
:g/^Name/s/: *\([^,]*\), \([^;]*\);/: \2 \1;/

Using :g to Repeat a Command

 In the usual way we’ve seen the :g command used, it selects lines that are
 typically then edited by subsequent commands on the same line—for
 example, we select lines with g,
 and then make substitutions on them, or select them and delete
 them:
:g/mg[ira]box/s/box/square/g
:g/^$/d
However, in his two-part tutorial in Unix
 World,[28] Walter Zintz makes an interesting point about the
 g command. This command selects
 lines, but the associated editing commands need not actually affect
 the lines that are selected.
Instead, he demonstrates a technique by which you can repeat
 ex commands some arbitrary number
 of times. For example, suppose you want to place 10 copies of lines
 12 through 17 of your file at the end of your current file. You
 could type:
:1,10g/^/ 12,17t$
This is a very unexpected use of g, but it works! The g command selects line 1, executes the
 specified t command, then goes on
 to line 2 to execute the next copy command. When line 10 is reached,
 ex will have made 10
 copies.

Collecting Lines

 Here’s another advanced g example, again building on suggestions
 provided in Zintz’s article. Suppose you’re editing a document that
 consists of several parts. Part 2 of this file is shown here, using
 ellipses to show omitted text and displaying line numbers for
 reference:
301 Part 2
302 Capability Reference
303 .LP
304 Chapter 7
305 Introduction to the Capabilities306 This and the next three chapters ...

400 ... and a complete index at the end.
401 .LP
402 Chapter 8
403 Screen Dimensions
404 Before you can do anything useful
405 on the screen, you need to know ...

555 .LP
556 Chapter 9
557 Editing the Screen
558 This chapter discusses ...

821 .LP
822 Part 3:
823 Advanced Features
824 .LP
825 Chapter 10
The chapter numbers appear on one line, their titles appear on
 the line below, and the chapter text (marked in bold for emphasis) begins on the line
 below that. The first thing you’d like to do is copy the beginning
 line of each chapter, sending it to an already existing file called
 begin.
Here’s the command that does this:
:g /^Chapter/ .+2w >> begin
You must be at the top of your file before issuing this
 command. First, you search for Chapter at the
 start of a line, but then you want to run the command on the
 beginning line of each chapter—the second line below
 Chapter. Because a line beginning with
 Chapter is now selected as the current line,
 the line address .+2 will
 indicate the second line below it. The equivalent line addresses
 +2 or ++ work as well. You want to write these
 lines to an existing file named begin, so you issue the w command with the append operator
 >>.
Suppose you want to send the beginnings of chapters that are
 only within Part 2. You need to restrict the lines selected by
 g, so you change your command to
 this:
:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin
Here, the g command selects
 the lines that begin with Chapter, but it
 searches only that portion of the file from a line starting with
 Part 2 through a line starting with
 Part 3. If you issue the command just shown,
 the last lines of the file begin will read as follows:
This and the next three chapters ...
Before you can do anything useful
This chapter discusses ...
These are the lines that begin Chapters 7, 8, and 9.
In addition to the lines you’ve just sent, you’d like to copy
 chapter titles to the end of the document, in preparation for making
 a table of contents. You can use the vertical bar to tack on a
 second command after your first command, like so:
:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin | +t$
Remember that with any subsequent command, line addresses are
 relative to the previous command. The first command has marked lines
 (within Part 2) that start with Chapter, and
 the chapter titles appear on a line below such lines. Therefore, to
 access chapter titles in the second command, the line address is
 + (or the equivalents +1 or .+1). Then, use t$ to copy the chapter titles to the end
 of the file.
As these examples illustrate, thought and experimentation may
 lead you to some unusual editing solutions. Don’t be afraid to try
 things. Just be sure to back up your file first! (Of course, with
 the infinite “undo” facilities in the clones, you may not even need
 to save a backup copy.)

[28] Part one, “vi Tips for
 Power Users,” appears in the April 1990 issue of UNIX
 World. Part two, “Using vi to Automate Complex Edits,” appears
 in the May 1990 issue. The examples presented are from Part
 2.

Chapter 7. Advanced Editing

This chapter introduces you to some of the more advanced
 capabilities of the vi and ex editors. You should be reasonably familiar
 with the material presented in the earlier chapters of this book before
 you start working with the concepts presented here.
We have divided this chapter into five parts. The first part
 discusses a number of ways to set options that allow you to customize
 your editing environment. You’ll learn how to use the set command and how to create a number of
 different editing environments using .exrc files.
The second part discusses how you can execute Unix commands from
 within vi, and how you can use
 vi to filter text through Unix
 commands.
The third part discusses various ways to save long sequences of
 commands by reducing them to abbreviations, or even to commands that use
 only one keystroke (this is called mapping keys).
 It also includes a section on @-functions, which allow you to store
 command sequences in a buffer.
The fourth part discusses the use of ex scripts from the Unix command line or from
 within shell scripts. Scripting provides a powerful way to make
 repetitive edits.
The fifth part discusses some features of vi that are especially useful to programmers.
 vi has options that control line
 indentation and an option to display invisible characters (specifically
 tabs and newlines). There are search commands that are useful with
 program code blocks or with C functions.
Customizing vi

vi
 operates differently on various terminals. On modern Unix systems, vi gets
 operating instructions about your terminal type from the terminfo terminal database. (On older
 systems, vi uses the original
 termcap database.)[29]
There are also a number of options that you can set from within
 vi that affect how it operates. For
 example, you can set a right margin that will cause vi to wrap lines automatically, so you don’t
 need to hit ENTER.
 You can change options from within vi by using the ex command :set. In addition, whenever vi is started up, it reads a file in your
 home directory called .exrc for further operating instructions.
 By placing :set commands in this
 file, you can modify the way vi
 acts whenever you use it.
You can also set up .exrc
 files in local directories to initialize various options that you want
 to use in different environments. For example, you might define one
 set of options for editing English text, but another set for editing
 source programs. The .exrc file
 in your home directory will be executed first, and then the one in
 your current directory.
 Finally, any commands stored in the environment
 variable EXINIT will be executed by
 vi on startup. The settings in
 EXINIT take precedence over those
 in the home directory.exrc file.
The :set Command

 There are two types of options that can be changed
 with the :set command: toggle
 options, which are either on or off, and options that take a numeric
 or string value (such as the location of a margin or the name of a
 file).
Toggle options may be on or off by default. To turn a toggle
 option on, the command is:
:setoption
To turn a toggle option off, the command is:
:set nooption
For example, to specify that pattern searches should ignore
 case, type:
:set ic
If you want vi to return to
 being case-sensitive in searches, give the command:
:set noic
 Some options have a value assigned to them. For
 example, the window option sets
 the number of lines shown in the screen’s “window.” You set values
 for these options with an equals sign (=):
:set window=20
 During a vi
 session, you can check which options vi is using. The command:
:set all
displays the complete list of options, including options that
 you have set and defaults that vi
 has “chosen.”
The display should look something like this:[30]
autoindent nomodelines noshowmode
autoprint nonumber noslowopen
noautowrite nonovice tabstop=8
beautify nooptimize taglength=0
directory=/var/tmp paragraphs=IPLPPPQPP LIpplpipnpbp tags=tags /usr/lib/tags
noedcompatible prompt tagstack
errorbells noreadonly term=vt102
noexrc redraw noterse
flash remap timeout
hardtabs=8 report=5 ttytype=vt102
noignorecase scroll=11 warn
nolisp sections=NHSHH HUuhsh+c window=23
nolist shell=/bin/ksh wrapscan
magic shiftwidth=8 wrapmargin=0
nomesg showmatch nowriteany
You can find out the current value of any individual option by
 name, using the command:
:setoption?
The command:
:set
shows options that you have specifically changed, or set,
 either in your .exrc file or
 during the current session.
For example, the display might look like this:
number sect=AhBhChDh window=20 wrapmargin=10

The .exrc File

 The .exrc file
 that controls your own vi
 environment is in your home directory (the directory you are in when
 you first log on). You can modify the .exrc file with the vi editor, just as you can any other text
 file.
If you don’t yet have an .exrc file, simply use vi to create one. Enter into this file the
 set, ab, and map commands that you want to have in
 effect whenever you use vi or
 ex. (ab and map are discussed later in this chapter.)
 A sample .exrc file might look
 like this:
set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
map v dwElp
ab ORA O'Reilly Media, Inc.
Since the file is actually read by ex before it enters visual mode (vi), commands in .exrc need not have a preceding
 colon.

Alternate Environments

 In addition to reading the .exrc file in your home directory, you
 can allow vi to read a file
 called .exrc in the current
 directory. This lets you set options that are appropriate to a
 particular project.
 In all modern versions of vi, you have to first set the exrc option in your home directory’s
 .exrc file before vi will read the .exrc file in the current
 directory:
set exrc
This mechanism prevents other people from placing, in your
 working directory, an .exrc
 file whose commands might jeopardize the security of your
 system.[31]
For example, you might want to have one set of options in a
 directory mainly used for programming:
set number autoindent sw=4 terse
set tags=/usr/lib/tags
and another set of options in a directory used for text
 editing:
set wrapmargin=15 ignorecase
Note that you can set certain options in the .exrc file in your home directory and
 unset them in a local directory.
 You can also define alternate vi environments by saving option settings
 in a file other than .exrc and
 reading in that file with the :so
 command. (so is short for
 source.)
For example:
:so .progoptions
Local .exrc files are
 also useful for defining abbreviations and key mappings (described
 later in this chapter). When we write a book or manual, we save all
 abbreviations to be used in that book in an .exrc file in the directory in which the
 book is being created.

Some Useful Options

As you can see when you type :set
 all, there are an awful lot of options that can be set.
 Many of them are used internally by vi and aren’t usually changed. Others are
 important in certain cases but not in others (for example, noredraw and window can be useful over a
 cross-continental ssh session).
 Table B-1 in the section Solaris vi Options contains a brief description of each
 option. We recommend that you take some time to play with setting
 options. If an option looks interesting, try setting it (or
 unsetting it) and watch what happens while you edit. You may find
 some surprisingly useful tools.
 As discussed earlier in the section Movement Within a Line, one option, wrapmargin, is essential for editing
 nonprogram text. wrapmargin
 specifies the size of the right margin that will be used to autowrap
 text as you type. (This saves manually typing carriage returns.) A
 typical value is 7 to 15:
:set wrapmargin=10
 Three other options control how vi acts when conducting a search.
 Normally, a search differentiates between uppercase and lowercase
 (foo does not match Foo),
 wraps around to the beginning of the file (meaning that you can
 begin your search anywhere in the file and still find all
 occurrences), and recognizes wildcard characters when pattern
 matching. The default settings that control these options are
 noignorecase, wrapscan, and
 magic, respectively. To change
 any of these defaults, you would set the opposite toggle options:
 ignorecase, nowrapscan, and nomagic.
Options that may be of particular interest to programmers
 include autoindent, showmatch, tabstop, shiftwidth, number, and list, as well as their opposite toggle
 options.
 Finally, consider using the autowrite option. When set, vi will automatically write out the
 contents of a changed buffer when you issue the :n (next) command to move to the next file
 to be edited, and before running a shell command with :!.

[29] The location of these two databases varies from vendor to
 vendor. Try the commands man terminfo and man termcap to get
 more information about your specific system.

[30] The result of :set all
 depends very much on the version of vi you have. This particular display
 is typical of Unix vi; what
 comes out of the various clones will be different. The order is
 alphabetical going down the columns, ignoring any leading
 no.

[31] The original versions of vi automatically read both files, if
 they existed. The exrc option
 closes a potential security hole.

Executing Unix Commands

 You can display or read in the results of any Unix
 command while you are editing in vi. An exclamation mark (!) tells ex to create a shell and to regard what
 follows as a Unix command:
:!command
So if you are editing and you want to check the time or date
 without exiting vi, you can enter:

:!date
The time and date will appear on your screen; press ENTER to continue editing at the same place
 in your file.
 If you want to give several Unix commands in a row
 without returning to vi editing in
 between, you can create a shell with the ex command:
:sh
When you want to exit the shell and return to vi, press CTRL-D.
 You can combine :read with a call to Unix, to read the
 results of a Unix command into your file. As a very simple
 example:
:r !date
will read in the system’s date information into the text of your
 file. By preceding the :r command
 with a line address, you can read the result of the command in at any
 desired point in your file. By default, it will appear after the
 current line.
Suppose you are editing a file and want to read in four phone
 numbers from a file called phone,
 but in alphabetical order. phone
 reads:
Willing, Sue 333-4444
Walsh, Linda 555-6666
Quercia, Valerie 777-8888
Dougherty, Nancy 999-0000
The command:
:r !sort phone
reads in the contents of phone after they have been passed through
 the sort filter:
Dougherty, Nancy 999-0000
Quercia, Valerie 777-8888
Walsh, Linda 555-6666
Willing, Sue 333-4444
Suppose you are editing a file and want to insert text from
 another file in the directory, but you can’t remember the new file’s
 name. You could perform this task the long way:
 exit your file, give the ls
 command, note the correct filename, reenter your file, and search for
 your place.
Or you could do the task in fewer steps:
	Keystrokes	Results
	:!ls	 file1 file2 letter
 newfile practice
 Display a list of files in the current
 directory. Note the correct filename. Press ENTER to continue editing.

	:r newfile	 "newfile" 35 lines, 949 characters

 Read in the new file.

Filtering Text Through a Command

 You can also send a block of text as standard input
 to a Unix command. The output from this command replaces the block
 of text in the buffer. You can filter text through a command from
 either ex or vi. The main difference between the two
 methods is that you indicate the block of text with line addresses
 in ex and with text objects
 (movement commands) in vi.
Filtering text with ex

 The first example demonstrates how to filter text
 with ex. Assume that the list
 of names in the preceding example, instead of being contained in a
 separate file called phone,
 is already contained in the current file on lines 96 through 99.
 You simply type the addresses of the lines you want to
 filter, followed by an exclamation mark and the Unix command to be
 executed. For example, the command:
:96,99!sort
will pass lines 96 through 99 through the sort filter and replace those lines with
 the output of sort.

Filtering text with vi

 In vi, text is
 filtered through a Unix command by typing an exclamation mark
 followed by any of vi’s
 movement keystrokes that indicate a block of text, and then by the
 Unix command line to be executed. For example:
!)command
will pass the next sentence through
 command.
There are a few unusual aspects of the way vi acts when you use this
 feature:
	The exclamation mark doesn’t appear on your screen right
 away. When you type the keystroke(s) for the text object you
 want to filter, the exclamation mark appears at the bottom of
 the screen, but the character you type to reference
 the object does not.

	Text blocks must be more than one line, so you can use
 only the keystrokes that would move more than one line (
 G, { }, (), [[
]], +, -). To repeat the effect, a number
 may precede either the exclamation mark or the text object.
 (For example, both !10+ and
 10!+ would indicate the
 next 10 lines.) Objects such as w do not work unless enough of them
 are specified so as to exceed a single line. You can also use
 a slash (/) followed by a
 pattern and a carriage return to specify
 the object. This takes the text up to the pattern as input to
 the command.

	Entire lines are affected. For example, if your cursor
 is in the middle of a line and you issue a command to go to
 the end of the next sentence, the entire lines containing the
 beginning and end of the sentence will be changed, not just
 the sentence itself.[32]

	There is a special text object that can be used only
 with this command syntax: you can specify the current line by
 entering a second exclamation mark:
!!command
Remember that either the entire sequence or the text
 object can be preceded by a number to repeat the effect. For
 instance, to change lines 96 through 99 as in the previous
 example, you could position the cursor on line 96 and enter
 either:
4!!sort
or:
!4!sort

As another example, assume you have a portion of text in a
 file that you want to change from lowercase to uppercase letters.
 You could process that portion with the tr command to change the case. In this
 example, the second sentence is the block of text that will be
 filtered through the command:
 One sentence before.With a screen editor you can scroll the page
 move the cursor, delete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 One sentence after.

	Keystrokes	Results
	!)	 One sentence after.
 ~
 ~
 ~
 !
 An exclamation mark
 appears on the last line to prompt you for the Unix
 command. The)
 indicates that a sentence is the unit of text to be
 filtered.

	tr '[:lower:]'
 '[:upper:]'	 One sentence before.WITH A SCREEN EDITOR YOU CAN SCROLL THE PAGE
 MOVE THE CURSOR, DELETE LINES, INSERT CHARACTERS,
 AND MORE, WHILE SEEING THE RESULTS OF YOUR EDITS
 AS YOU MAKE THEM.
 One sentence after.
 Enter the Unix command and press ENTER. The input is replaced by
 the output.

To repeat the previous command, the syntax is:
!object !
It is sometimes useful to send sections of a coded document
 to nroff to be replaced by
 formatted output. (Or, when editing electronic mail, you might use
 the fmt program to “beautify”
 your text before sending the message.) Remember that the
 “original” input is replaced by the output. Fortunately, if there
 is a mistake—such as an error message being sent instead of the
 expected output—you can undo the command and restore the
 lines.

[32] Of course, there’s always an exception. In this
 example, Vim changes only the current line.

Saving Commands

 Often you type the same long phrases over and over in a
 file. vi and ex have a number of different ways of saving
 long sequences of commands, both in command mode and in insert mode.
 When you call up one of these saved sequences to execute it, all you
 do is type a few characters (or even only one), and the entire
 sequence is executed as if you had entered the whole sequence of
 commands one by one.
Word Abbreviation

 You can define abbreviations that vi will automatically expand into the full
 text whenever you type the abbreviation in insert mode. To define an
 abbreviation, use this ex
 command:
:ababbr phrase
abbr is an abbreviation for the specified
 phrase. The sequence of characters that make up
 the abbreviation will be expanded in insert mode only if you type it
 as a full word; abbr will not be expanded
 within a word.
Suppose in the file practice you want to enter text that
 contains a frequently recurring phrase, such as a difficult product
 or company name. The command:
:ab imrc International Materials Research Center

 abbreviates International Materials Research
 Center to the initials imrc. Now
 whenever you type imrc in insert mode,
 imrc expands to the full text.
	Keystrokes	Results
	ithe imrc	 the International Materials Research Center

Abbreviations expand as soon as you press a nonalphanumeric
 character (e.g., punctuation), a space, a carriage return, or
 ESC (returning to command mode).
 When you are choosing abbreviations, choose combinations of
 characters that don’t ordinarily occur while you are typing text. If
 you create an abbreviation that ends up expanding in places where
 you don’t want it to, you can disable the abbreviation by
 typing:
:unababbr
To list your currently defined abbreviations, type:
:ab
The characters that compose your abbreviation cannot also
 appear at the end of your phrase. For example, if you issue the
 command:
:ab PG This movie is rated PG
you’ll get the message “No tail recursion,” and the
 abbreviation won’t be set. The message means that you have tried to
 define something that will expand itself repeatedly, creating an
 infinite loop. If you issue the command:
:ab PG the PG rating system
you may or may not produce an infinite loop, but in either
 case you won’t get a warning message. For example, when the above
 command was tested on a System V version of Unix, the expansion
 worked. Circa 1990 on a Berkeley version, the abbreviation expanded repeatedly, like this:
the the the the the ...
until a memory error occurred and vi quit.
When tested, we obtained the following results on these
 vi versions:
	Solaris vi
	 The tail recursive version is not allowed,
 while the version with the name in the middle of the expansion
 expands only once.

	nvi 1.79
	 Both versions exceed an internal expansion
 limit, the expansion stops, and nvi produces an error
 message.

	elvis, Vim, and
 vile
	 Both forms are detected and expand only
 once.

If you are using Unix vi or
 nvi, we recommend that you avoid
 repeating your abbreviation as part of the defined phrase.

Using the map Command

 While you’re editing, you may find that you are using
 a command sequence frequently, or that you occasionally use a very
 complex command sequence. To save yourself keystrokes, or the time
 that it takes to remember the sequence, you can assign the sequence
 to an unused key by using the map
 command.
The map command acts a lot
 like ab except that you define a
 macro for vi’s command mode
 instead of for insert mode:
	:map x sequence
	Define character x as a
 sequence of editing commands.

	:unmap x
	Disable the sequence defined for
 x.

	:map
	List the characters that are currently mapped.

Before you can start creating your own maps, you need to know
 the keys not used in command mode that are available for
 user-defined commands:
	Letters
	g, K, q, V, and v

	Control keys
	^A, ^K, ^O, ^W, and ^X

	Symbols
	_, *, \, and =

Note
The = is used by vi if Lisp mode is set, and to do text
 formatting by several of the clones. In many modern versions of
 vi, the _ is equivalent to the ^ command, and elvis and Vim have a “visual mode” that
 uses the v, V, and ^V keys. The moral is to test your
 version carefully.

Depending on your terminal, you may also be able to associate
 map sequences with special function keys.
 With maps, you can create simple or complex command
 sequences. As a simple example, you could define a command to
 reverse the order of words. In vi, with the cursor as shown:
you canthe scroll page
the sequence to put the after
 scroll would be dwelp: delete word, dw; move to the end of next word, e; move one space to the right, l; put the deleted word there, p. Saving this sequence:
:map v dwelp
enables you to reverse the order of two words at any time in
 the editing session with the single keystroke v.

Protecting Keys from Interpretation by ex

 Note that when defining a map, you cannot simply type
 certain keys, such as ENTER, ESC, BACKSPACE, and DELETE, as part of the command to be
 mapped, because these keys already have meaning within ex. If you want to include one of these
 keys as part of the command sequence, you must escape the normal
 meaning by preceding the key with CTRL-V. The keystroke ^V appears in the map as the ^ character. Characters following the
 ^V also do not appear as you
 expect. For example, a carriage return appears as ^M, escape as ^[, backspace as ^H, and so on.
On the other hand, if you want to use a control character as
 the character to be mapped, in most cases all you have to do is hold
 down the CTRL key and press the
 letter key at the same time. So, for example, all you need to do in
 order to map ^A is to
 type:
:mapCTRL-Asequence
There are, however, three control characters that must be
 escaped with a ^V. They are
 ^T, ^W, and ^X. So, for example, if you want to map
 ^T, you must type:
:mapCTRL-VCTRL-Tsequence
The use of CTRL-V applies to
 any ex command, not just a
 map command. This means that you
 can type a carriage return in an abbreviation or a substitution
 command. For example, the abbreviation:
:ab 123 one^Mtwo^Mthree
expands to this:
one
two
three
(Here we show the sequence CTRL-V ENTER as ^M, the way it would appear on your
 screen.)
You can also globally add lines at certain locations. The
 command:
:g/^Section/s//As you recall, in^M&/
inserts, before all lines beginning with the word
 Section, a phrase on a separate line. The
 & restores the search
 pattern.
Unfortunately, one character always has special meaning in
 ex commands, even if you try to
 quote it with CTRL-V. Recall that
 the vertical bar (|) has special
 meaning as a separator of multiple ex commands. You cannot use a vertical bar
 in insert mode maps.
Now that you’ve seen how to use CTRL-V to protect certain keys inside
 ex commands, you’re ready to
 define some powerful map sequences.

A Complex Mapping Example

 Assume that you have a glossary with entries like
 this:
map - an ex command which allows you to associate
a complex command sequence with a single key.
You would like to convert this glossary list to troff format, so that it looks like
 this:
.IP "map" 10n
An ex command...
The best way to define a complex map is to do the edit once
 manually, writing down each keystroke that you have to type. Then
 recreate these keystrokes as a map. You want to:
	Insert the MS macro for an indented paragraph at the
 beginning of the line. Insert the first quotation mark as well
 (I.IP ").

	Press ESC to terminate
 insert mode.

	Move to the end of the first word (e) and add a second quotation mark,
 followed by a space and the size of the indent (a" 10n).

	Press ENTER to insert a
 new line.

	Press ESC to terminate
 insert mode.

	Remove the hyphen and two surrounding spaces (3x) and capitalize the next word
 (~).

That will be quite an editing chore if you have to repeat it
 more than just a few times.
With :map you can save the
 entire sequence so that it can be reexecuted with a single
 keystroke:
:map g I.IP "^[ea" 10n^M^[3x~
Note that you have to “quote” both the ESC and the ENTER characters with CTRL-V. ^[is the sequence that appears when you
 type CTRL-V followed by ESC. ^M
 is the sequence shown when you type CTRL-V ENTER.
Now, simply typing g will
 perform the entire series of edits. On a slow connection you can
 actually see the edits happening individually. On a fast one it will
 seem to happen by magic.
Don’t be discouraged if your first attempt at key mapping
 fails. A small error in defining the map can give very different
 results from the ones you expect. Type u to undo the edit, and try again.

More Examples of Mapping Keys

 The following examples will give you an idea of the
 clever shortcuts possible when defining keyboard maps:
	Add text whenever you move to the end of a word:
:map e ea
Most of the time, the only reason you want to move to the
 end of a word is to add text. This map sequence puts you in
 insert mode automatically. Note that the mapped key, e, has meaning in vi. You’re allowed to map a key that
 is already used by vi, but
 the key’s normal function will be unavailable as long as the map
 is in effect. This isn’t so bad in this case, since the E command is often identical to
 e.

	 Transpose two words:
:map K dwElp
We discussed this sequence earlier in the chapter, but now
 you need to use E (assume
 here, and in the remaining examples, that the e command is mapped to ea). Remember that the cursor begins
 on the first of the two words. Unfortunately, because of the
 l command, this sequence (and
 the earlier version) doesn’t work if the two words are at the
 end of a line: during the sequence, the cursor ends up at the
 end of the line, and l cannot
 move further right. Here’s a better solution:
:map K dwwP
You could also use W
 instead of w.

	 Save a file and edit the next one in a
 series:
:map q :w^M:n^M
Notice that you can map keys to ex commands, but be sure to finish
 each ex command with a
 carriage return. This sequence makes it easy to move from one
 file to the next and is useful when you’ve opened many short
 files with one vi command.
 Mapping the letter q helps
 you remember that the sequence is similar to a “quit.”

	 Put troff
 emboldening codes around a word:
:map v i\fB^[e\fP^[
This sequence assumes that the cursor is at the beginning
 of the word. First, you enter insert mode, then you type the
 code for the bold font. In map commands, you don’t need to type
 two backslashes to produce one backslash. Next, you return to
 command mode by typing a “quoted” ESC. Finally, you append the closing
 troff code at the end of the
 word, and you return to command mode. Notice that when we
 appended to the end of the word, we didn’t need to use ea, since this sequence is itself
 mapped to the single letter e. This shows you that map sequences
 are allowed to contain other mapped commands. (The ability to
 use nested map sequences is controlled by vi’s remap option, which is normally
 enabled.)

	Put HTML emboldening codes around a word, even when the
 cursor is not at the beginning of the word:
:map V lbi^[e^[
This sequence is similar the previous one; besides using
 HTML instead of troff, it
 uses lb to handle the
 additional task of positioning the cursor at the beginning of
 the word. The cursor might be in the middle of the word, so you
 want to move to the beginning with the b command. But if the cursor were
 already at the beginning of the word, the b command would move the cursor to the
 previous word instead. To guard against that case, type an
 l before moving back with
 b, so that the cursor never
 starts on the first letter of the word. You can define
 variations of this sequence by replacing the b with B and the e with Ea. In all cases, though, the l command prevents this sequence from
 working if the cursor is at the end of a line. (You could append
 a space to get around this.)

	 Repeatedly find and remove parentheses from
 around a word or phrase: [33]
:map = xf)xn
This sequence assumes that you first found an open
 parenthesis, by typing /(
 followed by ENTER.
If you choose to remove the parentheses, use the map command: delete the open
 parenthesis with x, find the
 closing one with f), delete
 it with x, and then repeat
 your search for an open parenthesis with n.
If you don’t want to remove the parentheses (for example,
 if they’re being used correctly), don’t use the mapped command:
 press n instead to find the
 next open parenthesis.
You could also modify the map sequence in this example to
 handle matching pairs of quotes.

	 Place C/C++ comments around an entire
 line:
:map g I/* ^[A */^[
This sequence inserts /* at the line’s beginning and appends
 */ at the line’s end. You
 could also map a substitute command to do the same thing:
:map g :s;.*;/* & */;^M
Here, you match the entire line (with .*), and when you replay it (with
 &), you surround the line
 with the comment symbols. Note the use of semicolon delimiters,
 to avoid having to escape the / in the comment.

	 Safely repeat a long insertion:
:map ^J :set wm=0^M.:set wm=10^M
We mentioned in Chapter 2 that vi occasionally has difficulty
 repeating long insertions of text when wrapmargin is set. This map command is a useful workaround. It
 temporarily turns off the wrapmargin (by setting it to 0), gives
 the repeat command, and then restores the wrapmargin. Note that a map sequence
 can combine ex and vi commands.

In the previous example, even though ^J is a vi command (it moves the cursor down a
 line), this key is safe to map because it’s really the same as the
 j command. There are many keys
 that either perform the same tasks as other keys or are rarely used.
 However, you should be familiar with the vi commands before you boldly disable
 their normal use by using them in map definitions.

Mapping Keys for Insert Mode

 Normally, maps apply only to command mode—after all,
 in insert mode, keys stand for themselves and shouldn’t be mapped as
 commands. However, by adding an exclamation mark (!) to the map command, you can force it to override
 the ordinary meaning of a key and produce the map in insert mode.
 This feature is useful when you find yourself in insert mode but
 need to escape briefly to command mode, run a command, and then
 return to insert mode.
For example, suppose you just typed a word but forgot to
 italicize it (or place quotes around it, etc.). You can define this
 map:
:map! + ^[bi<I>^[ea</I>
Now, when you type a + at
 the end of a word, you will surround the word with HTML
 italicization codes. The + won’t
 show up in the text.
The sequence just shown escapes to command mode (^[), backs up to insert the first code
 (bi<I>), escapes again
 (^[), and moves ahead to append
 the second code (ea</I>). Since the map sequence
 begins and ends in insert mode, you can continue entering text after
 marking the word.
Here’s another example. Suppose that you’ve been typing your
 text, and you realize that the previous line should have ended with
 a colon. You can correct that by defining this map
 sequence:[34]
:map! % ^[kA:^[jA
Now, if you type a %
 anywhere along your current line, you’ll append a colon to the end
 of the previous line. This command escapes to command mode, moves up
 a line, and appends the colon (^[kA:). The command then escapes again,
 moves down to the line you were on, and leaves you in insert mode
 (^[jA).
Note that we wanted to use uncommon characters (% and +) for the previous map commands. When a
 character is mapped for insert mode, you can no longer type that
 character as text.
To reinstate a character for normal typing, use the
 command:
:unmap!x
where x is the character that was
 previously mapped for insert mode. (Although vi will expand x on
 the command line as you type it, making it look like you are
 unmapping the expanded text, it will correctly unmap the
 character.)
Insert-mode mapping is often more appropriate for tying
 character strings to special keys that you wouldn’t otherwise use.
 It is especially useful with programmable function keys.

Mapping Function Keys

 Many terminals have programmable function keys (which
 are faithfully emulated by today’s terminal emulators on bitmapped
 workstations). You can usually set up these keys to print whatever
 character or characters you want using a special setup mode on the
 terminal. However, keys programmed using a terminal’s setup mode
 work only on that terminal; they may also limit the action of
 programs that want to set up those function keys themselves.
ex allows you to map
 function keys by number, using the syntax:
:map #1commands
for function key number 1, and so on. (It can do this because
 the editor has access to the entry for that terminal found in either
 the terminfo or termcap database and knows the escape
 sequence normally put out by the function key.)
As with other keys, maps apply by default to command mode, but
 by using the map! commands as
 well, you can define two separate values for a function key—one to
 be used in command mode, the other in insert mode. For example, if
 you are an HTML user, you might want to put font-switch codes on
 function keys. For example:
:map #1 i<I>^[
:map! #1 <I>
If you are in command mode, the first function key will enter
 insert mode, type in the three characters <I>, and return to command mode. If
 you are already in insert mode, the key will simply type the
 three-character HTML code.
If the sequence contains ^M, which is a carriage return, press
 CTRL-M. For instance, in order to
 have function key 1 available for mapping, the terminal database
 entry for your terminal must have a definition of k1, such as:
k1=^A@^M
In turn, the definition:
^A@^M
must be what is output when you press that key.
To see what the function key puts out, use the od (octal dump) command with the
 -c option (show each character). You will need to
 press ENTER after the function key,
 and then CTRL-D to get od to print the information. For
 example:
$od -c
^[[[A
^D
0000000 033 [[A \n
0000005
Here, the function key sent Escape, two left brackets, and an
 A.

Mapping Other Special Keys

 Many keyboards have special keys, such as HOME, END,
 PAGE UP, and PAGE DOWN, that duplicate commands in
 vi. If the terminal’s terminfo or termcap description is complete, vi will be able to recognize these keys.
 But if it isn’t, you can use the map command to make them available to
 vi. These keys generally send an
 escape sequence to the computer—an Escape character followed by a
 string of one or more other characters. To trap the Escape, you
 should press ^V before pressing
 the special key in the map. For example, to map the HOME key on the keyboard of an IBM PC to a
 reasonable vi equivalent, you
 might define the following map:
:map CTRL-V HOME 1G
This appears on your screen as:
:map ^[[H 1G
Similar map commands display as follows:
:mapCTRL-V END G displays :map ^[[Y G
:map CTRL-V PAGE UP ^F displays :map ^[[V ^F
:map CTRL-V PAGE DOWN ^B displays :map ^[[U ^B
You’ll probably want to place these maps in your .exrc file. Note that if a special key
 generates a long escape sequence (containing multiple nonprinting
 characters), ^V quotes only the
 initial escape character, and the map doesn’t work. You will have to
 find the entire escape sequence (perhaps from the terminal manual)
 and type it in manually, quoting at the appropriate points, rather
 than simply pressing ^V and then
 the key.
If you use different kinds of terminals (such as both the
 console of a PC and an xterm),
 you cannot expect that mappings like those just presented will
 always work. For this reason, Vim provides a portable way to
 describe such key mappings:
:map <Home> 1GEnter six characters: < H o m e > (Vim)

Mapping Multiple Input Keys

Mapping multiple keystrokes is not restricted just to function
 keys. You can also map sequences of regular keystrokes. This can
 help make it easier to enter certain kinds of text, such as XML or
 HTML.
Here are some :map
 commands, thanks to Jerry Peek, coauthor of O’Reilly’s
 Learning the Unix Operating System, that make
 it easier to enter XML markup. (The lines beginning with a double
 quote are comments. This is discussed later in the section Comments in ex Scripts.)
" ADR: need this
:set noremap
" bold:
map! =b </emphasis>^[F<i<emphasis role="bold">
map =B i<emphasis role="bold">^[
map =b a</emphasis>^[
" Move to end of next tag:
map! =e ^[f>a
map =e f>
" footnote (tacks opening tag directly after cursor in text-input mode):
map! =f <footnote>^M<para>^M</para>^M</footnote>^[kO
" Italics ("emphasis"):
map! =i </emphasis>^[F<i<emphasis>
map =I i<emphasis>^[
map =i a</emphasis>^[
" paragraphs:
map! =p ^[jo<para>^M</para>^[O
map =P O<para>^[
map =p o</para>^[
" less-than:
map! *l <
...
Using these commands, to enter a footnote you would enter
 insert mode and type =f. vi would then insert the opening and
 closing tags, and leave you in insert mode between them:
All the world's a stage.<footnote>
<para>
</para>
</footnote>
Needless to say, these macros proved quite useful during the
 development of this book.

@-Functions

 Named buffers provide yet another way to create
 “macros”—complex command sequences that you can repeat with only a
 few keystrokes.
If you type a command line in your text (either a vi sequence or an ex command preceded by a
 colon), and then delete it into a named buffer, you can
 execute the contents of that buffer with the @ command. For example, open a new line
 and enter:
 cwgadflyCTRL-VESC

This will appear as:
cwgadfly^[
on your screen. Press ESC
 again to exit insert mode, then delete the line into buffer g by typing "gdd. Now whenever you place the cursor at
 the beginning of a word and type @g, that word in your text will be changed
 to gadfly.
Since @ is interpreted as a
 vi command, a dot (.) will repeat
 the entire sequence, even if the buffer contains an ex command. @@ repeats the last @, and u or U
 can be used to undo the effect of @.
This is a simple example. @-functions are useful because they
 can be adapted to very specific commands. They are especially useful
 when you are editing between files, because you can store the
 commands in their named buffers and access them from any file you
 edit. @-functions are also useful in combination with the global
 replacement commands discussed in Chapter 6.

Executing Buffers from ex

 You can also execute text saved in a buffer from
 ex mode. In this case, you would
 enter an ex command, delete it
 into a named buffer, and then use the @ command from the ex colon prompt. For example, enter the
 following text:
ORA publishes great books.
ORA is my favorite publisher.
1,$s/ORA/O'Reilly Media/g
With your cursor on the last line, delete the command into the
 g buffer: "gdd. Move your cursor to the first line:
 kk. Then, execute the buffer from
 the colon command line: :@g
 ENTER. Your screen should now look
 like this:
O'Reilly Media publishes great books.
O'Reilly Media is my favorite publisher.
Some versions of vi treat
 * identically to @ when used from the ex command line. In addition, if the
 buffer character supplied after the @ or *
 command is *, the command will be
 taken from the default (unnamed) buffer.

[33] From the article by Walter Zintz, in Unix
 World, April 1990.

[34] From an article by Walter Zintz, in Unix
 World, April 1990.

Using ex Scripts

 Certain ex commands
 you use only within vi, such as
 maps, abbreviations, and so on. If you store these commands in your
 .exrc file, the commands will
 automatically be executed when you invoke vi. Any file that contains commands to
 execute is called a script.
The commands in a typical .exrc script are of no use outside vi. However, you can save other ex commands in a script, and then execute
 the script on a file or on multiple files. Mostly you’ll use
 substitute commands in these external scripts.
For a writer, a useful application of ex scripts is to ensure consistency of
 terminology—or even of spelling—across a document set. For example,
 let’s assume that you’ve run the Unix spell command on two files and that the
 command has printed out the following list of misspellings:
$spell sect1 sect2
chmod
ditroff
myfile
thier
writeable
As is often the case, spell
 has flagged a few technical terms and special cases it doesn’t
 recognize, but it has also identified two genuine spelling
 errors.
Because we checked two files at once, we don’t know which files
 the errors occurred in or where they are in the files. Although there
 are ways to find this out, and the job wouldn’t be too hard for only
 two errors in two files, you can easily imagine how time-consuming the job could grow to be
 for a poor speller or for a typist proofing many files at once.
To make the job easier, you could write an ex script containing the following commands:
%s/thier/their/g
%s/writeable/writable/g
wq
Assume you’ve saved these lines in a file named exscript. The script could be executed from
 within vi with the command:
:so exscript
or the script can be applied to a file right from the command
 line. Then you could edit the files sect1 and sect2 as follows:
$ex -s sect1 < exscript
$ex -s sect2 < exscript
The -s following the invocation of ex is the POSIX way to tell the editor to
 suppress the normal terminal messages.[35]
If the script were longer than the one in our simple example, we
 would already have saved a fair amount of time. However, you might
 wonder if there isn’t some way to avoid repeating the process for each
 file to be edited. Sure enough, we can write a shell script that
 includes—but generalizes—the invocation of ex, so that it can be used on any number of
 files.
Looping in a Shell Script

 You may know that the shell is a programming language
 as well as a command-line interpreter. To invoke ex on a number of files, we use a simple
 type of shell script command called the for loop. A for loop allows you to apply a sequence of
 commands for each argument given to the script. (The for loop is probably the single most
 useful piece of shell programming for beginners. You’ll want to
 remember it even if you don’t write any other shell
 programs.)
Here’s the syntax of a for
 loop:
forvariable in list
do
 command(s)
done
For example:
for file in $*
do
 ex - $file < exscript
done
(The command doesn’t need to be indented; we indented it for
 clarity.) After we create this shell script, we save it in a file
 called correct and make it
 executable with the chmod
 command. (If you aren’t familiar with the chmod command and the procedures for
 adding a command to your Unix search path, see Learning
 the Unix Operating System, published by O’Reilly.) Now
 type:
$correct sect1 sect2
The for loop in correct will assign each argument (each
 file in the list specified by $*,
 which stands for all arguments) to the variable
 file and execute the ex script on the contents of that
 variable.
It may be easier to grasp how the for loop works with an example whose
 output is more visible. Let’s look at a script to rename
 files:
for file in $*
do
 mv $file $file.x
done
Assuming this script is in an executable file called move, here’s what we can do:
$ls
ch01 ch02 ch03 move
$ move ch?? Just the chapter files
$ ls Check the results
ch01.x ch02.x ch03.x move
With creativity, you could rewrite the script to rename the
 files more specifically:
for nn in $*
do
 mv ch$nn sect$nn
done
With the script written this way, you’d specify numbers
 instead of filenames on the command line:
$ls
ch01 ch02 ch03 move
$ move 01 02 03
$ ls
sect01 sect02 sect03 move
The for loop need not take
 $* (all arguments) as the list of
 values to be substituted. You can specify an explicit list as well.
 For example:
forvariable ina b c d
assigns variable to
 a, b,
 c, and d in turn. Or you
 can substitute the output of a command. For example:
forvariable in `grep -l "Alcuin" *`
assigns variable in turn to the name of
 each file in which grep finds the
 string Alcuin. (grep
 -l prints the filenames whose contents match the pattern,
 without printing the actual matching lines.)
If no list is specified:
forvariable
the variable is assigned to each command-line argument in
 turn, much as it was in our initial example. This is actually not
 equivalent to:
forvariable in $*
but to:
forvariable in "$@"
which has a slightly different meaning. The symbol $* expands to $1, $2,
 $3, etc., but the four-character
 sequence "$@" expands to "$1", "$2", "$3", etc. Quotation marks prevent further
 interpretation of special characters.
Let’s return to our main point and our original script:
for file in $*
do
 ex - $file < exscript
done
It may seem a little inelegant to have to use two scripts—the
 shell script and the ex script.
 And in fact, the shell does provide a way to include an editing
 script inside a shell script.

Here Documents

 In a shell script, the operator << means to take the following
 lines, up to a specified string, as input to a command. (This is
 often called a here document.) Using this
 syntax, we could include our editing commands in correct like this:
for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done
The string end-of-script is
 entirely arbitrary—it just needs to be a string that won’t otherwise
 appear in the input and can be used by the shell to recognize when
 the here document is finished. It also must be
 placed at the start of the line. By convention, many users specify
 the end of a here document with the string EOF, or E_O_F, to indicate the end of the
 file.
There are advantages and disadvantages to each approach shown.
 If you want to make a one-time series of edits and don’t mind
 rewriting the script each time, the here document provides an
 effective way to do the job.
However, it’s more flexible to write the editing commands in a
 separate file from the shell script. For example, you could
 establish the convention that you will always put editing commands
 in a file called exscript. Then
 you only need to write the correct script once. You can store it
 away in your personal “tools” directory (which you’ve added to your
 search path) and use it whenever you like.

Sorting Text Blocks: A Sample ex Script

 Suppose you want to alphabetize a file of troff-encoded glossary definitions. Each
 term begins with an .IP macro. In
 addition, each entry is surrounded by the .KS/.KE
 macro pair. (This ensures that the term and its definition will
 print as a block and will not be split across a new page.) The
 glossary file looks something like this:
.KS
.IP "TTY_ARGV" 2n
The command, specified as an argument vector,
that the TTY subwindow executes.
.KE
.KS
.IP "ICON_IMAGE" 2n
Sets or gets the remote image for icon's image.
.KE
.KS
.IP "XV_LABEL" 2n
Specifies a frame's header or an icon's label.
.KE
.KS
.IP "SERVER_SYNC" 2n
Synchronizes with the server once.
Does not set synchronous mode.
.KE
You can alphabetize a file by running the lines through the
 Unix sort command, but you don’t
 really want to sort every line. You want to sort only the glossary
 terms, moving each definition—untouched—along with its corresponding
 term. As it turns out, you can treat each text block as a unit by
 joining the block into one line. Here’s the first version of your
 ex script:
g/^\.KS/,/^\.KE/j
%!sort
Each glossary entry is found between a .KS and .KE macro. j is the ex command to join a line (the equivalent
 in vi is J). So, the first command joins every
 glossary entry into one “line.” The second command then sorts the
 file, producing lines like this:
.KS .IP "ICON_IMAGE" 2n Sets or gets ... image. .KE
.KS .IP "SERVER_SYNC" 2n Synchronizes with ... mode. .KE
.KS .IP "TTY_ARGV" 2n The command, ... executes. .KE
.KS .IP "XV_LABEL" 2n Specifies a ... icon's label. .KE
The lines are now sorted by glossary entry; unfortunately,
 each line also has macros and text mixed in (we’ve used ellipses
 [...] to show omitted text). Somehow, you need to insert newlines to
 “un-join” the lines. You can do this by modifying your ex script: mark the joining points of the
 text blocks before you join them, and then
 replace the markers with newlines. Here’s the expanded ex script:
g/^\.KS/,/^\.KE/-1s/$/@@/
g/^\.KS/,/^\.KE/j
%!sort
%s/@@ /^M/g
The first three commands produce lines like this:

.KS@@ .IP "ICON_IMAGE" 2nn@@ Sets or gets ... image. @@ .KE
.KS@@ .IP "SERVER_SYNC" 2nn@@ Synchronizes with ... mode. @@ .KE
.KS@@ .IP "TTY_ARGV" 2nn@@ The ... vector, @@ that@@ .KE
.KS@@ .IP "XV_LABEL" 2nn@@ Specifies a ... icon's label. @@ .KE
Note the extra space following the @@. The spaces result from the j command, because it converts each
 newline into a space.
The first command marks the original line breaks with @@. You don’t need to mark the end of the
 block (after the .KE), so the
 first command uses a -1 to move
 back up one line at the end of each block. The fourth command
 restores the line breaks by replacing the markers (plus the extra
 space) with newlines. Now your file is sorted by blocks.

Comments in ex Scripts

 You may want to reuse such a script, adapting it to a
 new situation. With a complex script like this, it is wise to add
 comments so that it’s easier for someone else (or even yourself!) to
 reconstruct how it works. In ex
 scripts, anything following a double quote is ignored during
 execution, so a double quote can mark the beginning of a comment.
 Comments can go on their own line. They can also go at the end of
 any command that doesn’t interpret a quote as part of the command.
 (For example, a quote has meaning to map commands and shell escapes,
 so you can’t end such lines with a comment.)
Besides using comments, you can specify a command by its full
 name, something that would ordinarily be too time-consuming from
 within vi. Finally, if you add
 spaces, the ex script shown
 previously becomes this more readable one:
" Mark lines between each KS/KE block
global /^\.KS/,/^\.KE/-1 s /$/@@/
" Now join the blocks into one line
global /^\.KS/,/^\.KE/ join
" Sort each block--now really one line each
%!sort
" Restore the joined lines to original blocks
% s /@@ /^M/g
Surprisingly, the substitute command does not work in
 ex, even though the full names
 for the other commands do.

Beyond ex

 If this discussion has whetted your appetite for even
 more editing power, you should be aware that Unix provides editors
 even more powerful than ex: the
 sed stream editor and the
 awk data manipulation language.
 There is also the extremely popular perl programming language. For information
 on these programs, see the O’Reilly books sed &
 awk, Effective awk Programming,
 Learning Perl, and Programming
 Perl.

[35] Traditionally, ex used a
 single minus sign for this purpose. Typically, for backward
 compatibility, both versions are accepted.

Editing Program Source Code

 All of the features discussed so far are of interest
 whether you are editing regular text or program source code. However,
 there are a number of additional features that are of interest chiefly
 to programmers. These include indentation control, searching for the
 beginning and end of procedures, and using ctags.
 The following discussion is adapted from documentation
 provided by Mortice Kern Systems with their excellent implementation
 of vi for DOS and Windows-based
 systems, available as a part of the MKS Toolkit or separately as MKS
 Vi. It is reprinted by permission of Mortice Kern Systems.
Indentation Control

 The source code for a program differs from ordinary
 text in a number of ways. One of the most important of these is the
 way in which source code uses indentation. Indentation shows the
 logical structure of the program: the way in which statements are
 grouped into blocks. vi provides
 automatic indentation control. To use it, issue the command:
:set autoindent
Now, when you indent a line with spaces or tabs, the following
 lines will automatically be indented by the same amount. When you
 press ENTER after typing the first
 indented line, the cursor goes to the next line and automatically
 indents the same distance as the previous line.
As a programmer, you will find this saves you quite a bit of
 work getting the indentation right, especially when you have several
 levels of indentation.
When you are entering code with autoindent enabled, typing
 CTRL-T at the start of a line gives
 you another level of indentation, and typing CTRL-D takes one away.
We should point out that CTRL-T and CTRL-D are typed while you are in insert
 mode, unlike most other commands, which are typed in command
 mode.
There are two additional variants of the CTRL-D command:[36]
	^ ^D
	When you type ^ ^D
 (^ CTRL-D), vi shifts the cursor back to the
 beginning of the line, but only for the current line. The next
 line you enter will start at the current autoindent level.
 This is particularly useful for entering C preprocessor
 commands while typing in C/C++ source code.

	0 ^D
	When you type 0 ^D,
 vi shifts the cursor back
 to the beginning of the line. In addition, the current
 autoindent level is reset to zero; the next line you enter
 will not be autoindented.[37]

Try using the autoindent
 option when you are entering source code. It simplifies the job of
 getting indentation correct. It can even sometimes help you avoid
 bugs—e.g., in C source code, where you usually need one closing
 curly brace (}) for every level
 of indentation you go backward.
The << and >> commands are also helpful when
 indenting source code. By default, >> shifts a line right eight spaces
 (i.e., adds eight spaces of indentation) and << shifts a line left eight spaces.
 For example, move the cursor to the beginning of a line and press
 > twice (>>). You will see the line move
 right. If you now press < twice
 (<<), the line will move
 back again.
You can shift a number of lines by typing the number followed
 by >> or <<. For example, move the cursor to
 the first line of a good-sized paragraph and type 5>>. You will shift the first five
 lines in the paragraph.
The default shift is eight spaces (right or left). This
 default can be changed with a command such as:
:set shiftwidth=4
You will find it convenient to have a shiftwidth that is the same size as the
 width between tab stops.
vi attempts to be smart
 when doing indenting. Usually, when you see text indented by eight
 spaces at a time, vi will
 actually insert tab characters into the file, since tabs usually
 expand to eight spaces. This is the Unix default; it is most
 noticeable when you type a tab during normal input and when files
 are sent to a printer—Unix expands them with a tab stop of eight
 spaces.
If you wish, you can change how vi represents tabs on your screen, by
 changing the tabstop option. For
 example, if you have something that is deeply indented, you might
 wish to have use a tab stop setting of every four characters, so
 that the lines will not wrap. The following command will make this
 change:
:set tabstop=4
Note
Changing your tab stops is not recommended. Although
 vi will display the file using
 an arbitrary tab stop setting, the tab characters in your files
 will still be expanded using an eight-character tab stop by every
 other Unix program.
Even worse: mixing tabs, spaces, and unusal tab stops will
 make your file completely unreadable when viewed outside the
 editor, with a pager such as more, or when printed. Eight-character
 tab stops are one of the facts of life on Unix, and you should
 just get used to them.

Sometimes indentation won’t work the way you expect, because
 what you believe to be a tab character is actually one or more
 spaces. Normally, your screen displays both a tab and a space as
 whitespace, making the two indistinguishable. You can, however,
 issue the command:
:set list
This alters your display so that a tab appears as the control
 character ^I and an end-of-line
 appears as a $. This way, you can
 spot a true space, and you can see extra spaces at the end of a
 line. A temporary equivalent is the :l command. For example, the
 command:
:5,20 l
displays lines 5 through 20, showing tab characters and
 end-of-line characters.

A Special Search Command

 The characters (,
 [, {, and < can all be called opening brackets.
 When the cursor is resting on one of these characters, pressing the
 % key moves the cursor from the
 opening bracket forward to the corresponding closing
 bracket—),], },
 or >—keeping in mind the usual
 rules for nesting brackets.[38] For example, if you were to move the cursor to the
 first (in:
if (cos(a[i]) == sin(b[i]+c[i]))
{
 printf("cos and sin equal!\n");
}
and press %, you would see
 that the cursor jumps to the parenthesis at the end of the line.
 This is the closing parenthesis that matches the opening one.
Similarly, if the cursor is on one of the closing bracket
 characters, pressing % will move
 the cursor backward to the corresponding opening bracket character.
 For example, move the cursor to the closing brace after the printf line just shown and press %.
vi is even smart enough to
 find a bracket character for you. If the cursor is not on a bracket
 character, when you press %,
 vi will search forward on the
 current line to the first open or close bracket character it finds,
 and then it will move to the matching bracket! For instance, with
 the cursor on the > in the
 first line of the example just shown, % will find the open parenthesis and then
 move to the close parenthesis.
Not only does this search character help you move forward and
 backward through a program in long jumps, it lets you check the
 nesting of brackets and parentheses in source code. For example, if
 you put the cursor on the first {
 at the beginning of a C function, pressing % should move you to the } that (you think) ends the function. If
 it’s the wrong one, something has gone wrong somewhere. If there is
 no matching } in the file,
 vi will beep at you.
Another technique for finding matching brackets is to turn on
 the following option:
:set showmatch
Unlike %, setting showmatch (or its abbreviation sm) helps you while you’re in insert mode.
 When you type a) or a },[39] the cursor will briefly move back to the matching
 (or { before returning to your current
 position. If the match doesn’t exist, the terminal beeps. If the
 match is merely off-screen, vi
 silently keeps going. Vim 7.0 and later can highlight the matching
 parenthesis or brace, using the matchparen plugin, which is loaded by default.

Using Tags

 The source code for a large C or C++ program will
 usually be spread over several files. Sometimes, it is difficult to
 keep track of which file contains which function definitions. To
 simplify matters, a Unix command called ctags can be used together with the
 :tag command of vi.
Note
Unix versions of ctags
 handle the C language and often Pascal and Fortran 77. Sometimes
 they even handle assembly language. Almost universally, however,
 they do not handle C++. Other versions are available that can
 generate tags files for C++
 and for other languages and file types. For more information, see
 Enhanced Tags.

You issue the ctags command
 at the Unix command line. Its purpose is to create an information
 file that vi can use later to
 determine which files define which functions. By default, this file
 is called tags. From within
 vi, a command of the form:
:!ctags file.c
creates a file named tags
 in your current directory that contains information on the functions
 defined in file.c. A command
 such as:
:!ctags *.c
creates a tags file
 describing all the C source files in the directory.
Now suppose your tags
 file contains information on all the source files that make up a C
 program. Also suppose that you want to look at or edit a function in
 the program, but you do not know where the function is. From within
 vi, the command:
:tagname
looks at the tags file to
 find out which file contains the definition of the function
 name. It then reads in the file and positions
 the cursor on the line where the name is defined. In this way, you
 don’t have to know which file you have to edit; you only have to
 decide which function you want to edit.
You can use the tag facility from vi’s command mode as well. Place the
 cursor on the identifier you wish to look up, and then type ^]. vi
 will perform the tag lookup and move to the file that defines the
 identifier. Be careful where you place the cursor; vi uses the “word” under the cursor
 starting at the current cursor position, not the entire word
 containing the cursor.
Note
If you try to use the :tag command to read in a new file and
 you haven’t saved your current text since the last time you
 changed it, vi will not let you
 go to the new file. You must either write out your current file
 with the :w command and then
 issue :tag, or else
 type:
:tag!name
to override vi’s
 reluctance to discard edits.

 The Solaris version of vi actually supports tag
 stacks. It appears, however, to be completely
 undocumented in the Solaris manpages. Because many, if not most,
 versions of Unix vi don’t do tag
 stacking, in this book we have moved the discussion of this feature
 to Tag Stacks where tag stacking is
 introduced.

[36] These do not work in elvis.

[37] The nvi 1.79
 documentation has these two commands switched, but the
 program actually behaves as described here.

[38] Of the versions tested, only nvi supported matching < and > with %. vile lets you set an option with the
 sets of pairs of characters that match for %.

[39] In elvis, Vim, and
 vile, showmatch also shows you matching
 square brackets ([and
]).

Chapter 8. Introduction to the vi Clones

And These Are My Brothers, Darrell, Darrell, and
 Darrell

There are a number of freely available “clones” of the vi editor. Appendix D
 provides a pointer to a web site that lists all known vi clones, and Part II
 covers Vim in great detail. Part III covers an
 additional three of the more popular clones. They are:
	Version 1.79 of Keith Bostic’s nvi (Chapter 16)

	Version 2.2.0 of Steve Kirkendall’s elvis (Chapter 17)

	Version 9.6.4 of vile, by
 Kevin Buettner, Tom Dickey, Paul Fox, and Clark Morgan (Chapter 18)

All the clones were written either because the source code for
 vi was not freely available—making
 it impossible to port vi to a
 non-Unix environment or to study the code—or because Unix vi (or another clone!) did not provide
 desired functionality. For example, Unix vi often has limits on the maximum length of
 a line, and it cannot edit binary files. (The chapters on the various
 programs present more information about each one’s history.)
Each program provides a large number of extensions to Unix
 vi; often, several of the clones
 provide the same extensions, although usually not in an identical way.
 Instead of repeating the treatment of each common feature in each
 program’s chapter, we have centralized the discussion here. You can
 think of this chapter as presenting “what the clones do,” with each
 clone’s own chapter presenting “how the clone does it.”
The order in which topics are presented in this chapter is used
 in an expanded fashion in Part II on Vim, and in
 a much more compact fashion in the chapters in Part III. This chapter covers the following:
	Multiwindow editing
	This is the ability to split the (terminal) screen into
 multiple “windows,” and/or the ability to use multiple windows
 within a GUI environment. You can edit a different file in each
 window or have several views into the same file. This is perhaps
 the single most important extension over regular vi.

	GUI interfaces
	All of the clones except nvi can be compiled to support an X
 Window interface. If you have a system running X, use of the GUI
 version may be preferable to splitting the screen of an xterm (or other terminal emulator);
 the GUI versions generally provide such nice features as
 scrollbars and multiple fonts. The native GUIs of other
 operating systems may also be supported.

	Extended regular expressions
	All of the clones make it possible to match text using
 regular expressions that are similar or identical to those
 provided by the Unix egrep
 command.

	Enhanced tags
	As described earlier in Using Tags, you can use the ctags program to build up a searchable
 database of your files. The clones make it possible to “stack”
 tags by saving your current location when you do a tag search.
 You can then return to that location. Multiple locations can be
 saved in a “last in, first out” (LIFO) order, producing a stack
 of locations.
Several of the vi clone
 authors and the author of at least one ctags clone have gotten together to
 define a standard form for an enhanced version of the ctags format. In particular, it is now
 easier to use the tag functionality with programs written in
 C++, which allows
 overloaded function names.

	Improved editing facilities
	All of the clones provide the ability to edit the ex command line, an “infinite undo”
 capability, arbitrary length lines and 8-bit data, incremental
 searching, an option to scroll the screen left to right for long
 lines instead of wrapping long lines, and mode indicators, as
 well as other features.

	Programming assistance
	Several of the editors provide features that allow you to
 stay within the editor during the typical “edit-compile-debug”
 cycle of software development.

	Syntax highlighting
	In elvis, Vim, and
 vile, you can arrange to
 display different parts of a file in different colors and fonts.
 This is particularly useful for editing program source
 code.

Multiwindow Editing

 Perhaps the single most important feature that the
 clones offer over standard vi is
 the ability to edit files in multiple “windows.” This makes it
 possible to easily work on more than one file at the same time, and to
 “cut and paste” text from one file to another via yanking and
 putting.
Note
In the clones, you need not split the screen to yank and put
 between files; only the original vi discards the cut buffers when switching
 between files.

There are two fundamental concepts underlying each editor’s
 multiwindow implementation: buffers and windows.
 A buffer holds text to be edited.
 The text may come from a file, or it may be brand new text to be
 eventually written to a file. Any given file has only one buffer
 associated with it.
A window provides a view into a buffer,
 allowing you to see and modify the text in the buffer. There may be
 multiple windows associated with the same buffer. Changes made to the
 buffer in one window are reflected in any other windows open on the
 same buffer. A buffer may also have no windows associated with it. In
 that case, you can’t do a whole lot with the buffer, although you can
 open a window on it later. Closing the last window open on a buffer
 effectively “hides” the file. If the buffer has been modified but not
 written to disk, the editor may or may not let you close the last
 window that’s open on it.
When you create a new window, the editor splits the current
 screen. For most of the editors, this new window shows another view on
 the file you’re currently editing. You then switch to the window where
 you wish to edit the next file, and instruct the editor to start
 editing the file there. Each editor provides vi and ex
 commands to switch back and forth between windows, as well as the
 ability to change the window size and hide and restore windows.
Chapter 11 is devoted to multiwindow editing
 in Vim. In each of the other editors’ chapters in Part III, we show a sample split screen (editing the
 same two files), and describe how to split the screen and move between
 windows.

GUI Interfaces

elvis, Vim, and
 vile provide graphical user
 interface (GUI) versions that can take advantage of a bitmapped
 display and mouse. Besides supporting X Windows under Unix, support
 for Microsoft Windows or other windowing systems may also be
 available. Table 8-1 summarizes the available
 GUIs for the different clones.
Table 8-1. Available GUIs
	Editor	Terminal	X11	Microsoft Windows	OS/2	BeOS	Macintosh	Amiga	QNX	OpenVMS
	Vim	•	•	•	•	•	•	•	 	
	nvi	•	 	 	 	 	 	 	 	
	elvis	•	•	•	•	 	 	 	 	
	vile	•	•	•	•	•	 	 	•	•

Extended Regular Expressions

 The metacharacters available in vi’s search and substitution regular
 expressions are described back in Chapter 6 in the
 section Metacharacters Used in Search Patterns. Each of the clones
 provides some form of extended regular expressions, which are either
 optional or always available. Typically, these are the same (or almost
 the same) as those provided by egrep. Unfortunately, each clone’s extended
 flavor is slightly different from the others’.
To give you a feel for what extended regular expressions can do,
 we present them in the context of nvi. The section Extended Regular Expressions describes Vim’s extended regular
 expressions, and each clone’s chapter in Part III
 describes that editor’s extended syntax, without repeating the
 examples.
nvi’s extended
 regular expressions are the Extended Regular Expressions (EREs) as
 defined by the POSIX standard. To enable this feature, use set extended from either your .nexrc file or from the ex colon prompt.
Besides the standard metacharacters described in Chapter 6 and the POSIX bracket expressions mentioned in
 POSIX Bracket Expressions in the same chapter, the
 following metacharacters are available:
	|
	 Indicates alternation. For example, a|b matches either
 a or b. However, this
 construct is not limited to single characters: house|home matches either of the
 strings house or
 home.

	(...)
	 Used for grouping, to allow the application of
 additional regular expression operators. For example, house|home can be shortened (if not
 simplified) to ho(use|me).
 The * operator can be applied
 to text in parentheses: (house|home)* matches
 home, homehouse,
 househomehousehouse, and so on.
When extended is set,
 text grouped with parentheses acts like text grouped in \(...\) in
 regular vi: the actual text
 matched can be retrieved in the replacement part of a substitute
 command with \1, \2, etc. In this case, \(represents a literal left
 parenthesis.

	+
	 Matches one or more of the
 preceding regular expressions. This is either a single character
 or a group of characters enclosed in parentheses. Note the
 difference between + and
 *. The * is allowed to match nothing, but
 with + there must be at least
 one match. For example, ho(use|me)* matches
 ho as well as home and
 house, but ho(use|me)+ will not match
 ho.

	?
	 Matches zero or one occurrence of the preceding
 regular expression. This indicates “optional” text that is
 either present or not present. For example, free?d will match either
 fred or freed, but
 nothing else.

	{...}
	 Defines an interval
 expression. Interval expressions describe counted
 numbers of repetitions. In the following descriptions,
 n and m represent
 integer constants:
	{
 n }
	Matches exactly n repetitions
 of the previous regular expression. For example, (home|house){2} matches
 homehome,
 homehouse,
 househome, and
 househouse, but nothing else.

	{
 n ,}
	Matches n or more repetitions
 of the previous regular expression. Think of it as “as
 least n” repetitions.

	{
 n , m
 }
	Matches n to
 m repetitions. The bounding is
 important, since it controls how much text would be
 replaced during a substitute command.[40]

When extended is not
 set, nvi provides the same
 functionality with \{ and
 \}.

[40] The *,
 +, and ? operators can be reduced
 to {0,}, {1,}, and {0,1} respectively, but the
 former are much more convenient to use. Also, interval
 expressions were developed later in the history of
 Unix regular expressions.

Enhanced Tags

 The “Exuberant ctags” program is a ctags clone that is considerably more
 capable than Unix ctags. It
 produces an extended tags file
 format that makes the tag searching and matching process more flexible
 and powerful. We describe the Exuberant version first, since it is
 supported by most of the vi
 clones.
This section also describes tag stacks: the ability to save
 multiple locations visited with the :tag or ^] commands. All of the clones support tag
 stacking.
Exuberant ctags

The Exuberant ctags program
 was written by Darren Hiebert, and, as of this writing, the
 current version is 5.7. Its home page is http://ctags.sourceforget.net/. The following list of
 the program’s features is adapted from the README file in the ctags distribution:
	It is capable of generating tags for
 all types of C and C++ language tags,
 including class names, macro definitions, enum names,
 enumerators (values inside an enumeration), function (method)
 definitions, function (method) prototypes/declarations,
 structure members and class data members, struct names,
 typedefs, union names, and variables. (Whew!)

	It supports both C and C++ code.

	Twenty-nine other languages are also supported, including
 C# and Java.

	It is very robust in parsing code and is far less easily
 fooled by code containing #if
 preprocessor conditional constructs.

	It can be used to print out a human-readable list of
 selected objects found in source files.

	It supports generation of GNU Emacs-style tag files
 (etags).

	It works on Amiga, Cray, MS-DOS, Macintosh, OS/2, QDOS,
 QNX, RISC OS, Unix, VMS, and Windows 95 through XP. Some
 precompiled binaries are available on the web site.

Exuberant ctags produces
 tags files in the form
 described next.

The New tags Format

 Traditionally, a tags file has three tab-separated fields:
 the tag name (typically an identifier); the source file containing
 the tag; and an indication of where to find the identifier. This
 indication is either a simple line number or a nomagic search pattern enclosed either in
 slashes or question marks. Furthermore, the tags file is always sorted.
This is the format generated by the Unix ctags program. In fact, many versions of
 vi allowed
 any command in the search pattern field (a
 rather gaping security hole). Furthermore, due to an undocumented
 implementation quirk, if the line ended with a semicolon and then a
 double quote (;"), anything
 following those two characters would be ignored. (The double quote
 starts a comment, as it does in .exrc files.)
The new format is backward compatible with the traditional
 one. The first three fields are the same: tag, filename, and search
 pattern. Exuberant ctags only
 generates search patterns, not arbitrary commands. Extended
 attributes are placed after a separating ;". Each attribute is separated from the
 next by a tab character, and consists of two colon-separated
 subfields. The first subfield is a keyword describing the attribute;
 the second is the actual value. Table 8-2
 lists the supported keywords.
Table 8-2. Extended ctags keywords
	Keyword	Meaning
	kind	The value is a single letter that indicates the
 tag’s lexical type. It can be f
 for a function, v for a
 variable, and so on. Since the default attribute name is
 kind, a solitary letter
 can denote the tag’s type (e.g., f for a function).

	file	For tags that are “static,” i.e., local to the file. The
 value should be the name of the file.
 If the
 value is given as an empty string (just file:), it is understood to be the
 same as the filename field; this special case was added
 partly for the sake of compactness, and partly to provide an
 easy way to handle tags
 files that aren’t in the current directory. The value of the
 filename field is always relative to the directory in which
 the tags file itself
 resides.

	function	For local tags. The value is the name of function in which
 they’re defined.

	struct	For fields in a struct. The value is the name of
 the structure.

	enum	For values in an enum data type. The value is the name of the enum type.

	class	For C++ member functions and variables.
 The value is the name of the
 class.

	scope	Intended mostly for C++ class member functions. It will usually be
 private for private
 members or omitted for public members, so users can restrict
 tag searches to only public members.

	arity	For functions. Defines the number of
 arguments.

If the field does not contain a colon, it is assumed to be of
 type kind. Here are some
 examples:
ARRAYMAXED awk.h 427;" d
AVG_CHAIN_MAX array.c 38;" d file:
array.c array.c 1;" F
ARRAYMAXED is a C #define macro defined in awk.h. AVG_CHAIN_MAX is also a C macro, but it is
 used only in array.c. The third
 line is a bit different: it is a tag for the actual source file!
 This is generated with the -i F
 option to Exuberant ctags, and
 allows you to give the command :tag
 array.c. More usefully, you can put the cursor over a
 filename and use the ^] command
 to go to that file (for example, if you’re editing a Makefile and wish to go to a particular
 source file).
Within the value part of each attribute, the backslash, tab,
 carriage return, and newline characters should be encoded as
 \\, \t, \r,
 and \n, respectively.
Extended tags files may
 have some number of initial tags that begin with !_TAG_. These tags usually sort to the
 front of the file and are useful for identifying which program
 created the file. Here is what Exuberant ctags generates:
!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/
!_TAG_PROGRAM_AUTHOR Darren Hiebert /dhiebert@users.sourceforge.net/
!_TAG_PROGRAM_NAME Exuberant Ctags //
!_TAG_PROGRAM_URL http://ctags.sourceforge.net /official site/
!_TAG_PROGRAM_VERSION 5.7 //
Editors can take advantage of these special tags to implement
 special features. For example, Vim pays attention to the !_TAG_FILE_SORTED tag and will use a
 binary search to search the tags file instead of a linear search if
 the file is indeed sorted.
If you use tags files, we
 recommend that you get and install Exuberant ctags.

Tag Stacks

 The ex command
 :tag and the vi mode ^] command provide a limited means of
 finding identifiers, based on the information provided in a
 tags file. Each of the clones
 extends this ability by maintaining a stack of
 tag locations. Each time you issue the ex command :tag, or use the vi mode ^] command, the editor saves the current
 location before searching for the specified tag. You may then return
 to a saved location using (usually) the vi command ^T or an ex command.
Solaris vi tag stacking and
 an example are presented next. Vim’s tag stacking is described in
 the section Tag Stacking. The
 ways the other clones handle tag stacking is described in each
 editor’s respective chapter in Part III.
Solaris vi

 Surprisingly enough, the Solaris version of
 vi supports tag stacking.
 Perhaps not so surprisingly, this feature is completely
 undocumented
 in the Solaris ex(1) and
 vi(1) manual pages. For completeness, we
 summarize Solaris vi tag
 stacking in Tables 8-3, 8-4, and 8-5. Tag
 stacking in Solaris vi is quite
 simple.[41]
Table 8-3. Solaris vi tag commands
	Command	Function
	ta[g][!] tagstring	Edit the file containing tagstring as defined
 in the tags file. The
 ! forces vi to switch to the new file if
 the current buffer has been modified but not
 saved.

	po[p][!]	Pop the tag stack by one element.

Table 8-4. Solaris vi command mode tag commands
	Command	Function
	^]	Look up the location of the identifier under
 the cursor in the tags file, and move to that
 location. If tag stacking is enabled, the current location
 is automatically pushed onto the tag stack.

	^T	Return to the previous location in the tag stack, i.e., pop off one
 element.

Table 8-5. Solaris vi options for tag management
	Option	Function
	taglength,
 tl	Controls the number of significant characters in a tag that is to
 be looked up. The default value of zero indicates that all
 characters are significant.

	tags, tagpath	The value is a list of filenames in which to look for tags. The
 default value is "tags
 /usr/lib/tags".

	tagstack	When set to true, vi
 stacks each location on the tag stack. Use :set notagstack to disable tag
 stacking.

Exuberant ctags and Vim

To give you a feel for using tag stacks, we present a short
 example that uses Exuberant ctags and Vim.
Suppose you are working with a program that uses the GNU
 getopt_long function, and you
 need to understand more about it.
GNU getopt consists of
 three files: getopt.h,
 getopt.c, and getopt1.c.
First, you create the tags file, and then you start by
 editing the main program, found in main.c:
$ctags *.[ch]
$ ls
Makefile getopt.c getopt.h getopt1.c main.c tags
$vim main.c
	Keystrokes	Results
	/getopt_	 /* option processing. ready, set, go! */
 for (optopt = 0, old_optind = 1;
 (c =getopt_long(argc, argv, optlist, optab, NULL)) != EOF;
 optopt = 0, old_optind = optind) {
 if (do_posix)
 opterr = TRUE;

	 	 Edit main.c and move to the call to
 getopt_long.

	^]	 intgetopt_long (int argc, char *const *argv, const char *options,
 const struct option *long_options, int *opt_index)
 {
 return _getopt_internal (argc, argv, options, long_options, opt_index, 0);
 }

 "getopt1.c" 192L, 4781C

	 	 Do a tag lookup on getopt_long. Vim moves to
 getopt1.c, placing
 the cursor on the definition of getopt_long.

It turns out that getopt_long is a “wrapper” function for
 _getopt_internal. You place the
 cursor on _getopt_internal and
 do another tag search.
	Keystrokes	Results
	3jf_ ^]	 int_getopt_internal (int argc, char *const *argv, const char *optstring,
 const struct option *longopts, int *longind, int long_only)
 {
 int result;

 getopt_data.optind = optind;
 getopt_data.opterr = opterr;

 result = _getopt_internal_r (argc, argv, optstring, longopts,
 longind, long_only, &getopt_data);

 optind = getopt_data.optind;
 "getopt.c" 1225L, 33298C

	 	 You have now moved to getopt.c. To find out more
 about struct option,
 move the cursor to option and do another tag
 search.

	jfo; ^]	 one). For long options that have a zero `flag' field, `getopt'
 returns the contents of the `val' field. */struct option
 {
 const char *name;
 /* has_arg can't be an enum because some compilers complain about
 type mismatches in all the code that assumes it is an int. */
 int has_arg;
 int *flag;
 int val;
 };

 /* Names for the values of the `has_arg' field of `struct option'. */

 "getopt.h" 177L, 6130C

	 	 The editor moves to the definition of
 struct option in getopt.h. You may now look over
 the comments that explain how it’s used.

	:tags	 # TO tag FROM line in file/text
 1 1 getopt_long 310 main.c
 2 1 _getopt_internal 67 getopt1.c
 3 1 option 1129 getopt.c

	 	 The :tags
 command in Vim displays the tag stack.

Typing ^T three times
 would move you back to main.c, where you started. The tag
 facilities make it easy to move around as you edit source
 code.

[41] This information was discovered based on
 experimentation. YMMV (your mileage may vary).

Improved Facilities

 All of the clones provide additional features that make
 simple text editing easier and more powerful:
	Editing the ex command line
	The ability to edit ex
 mode commands as you type them, possibly including a saved
 history of ex commands. Also,
 the ability to complete filenames and possibly other things,
 such as commands and options.

	No line length limit
	The ability to edit lines of essentially arbitrary length.
 Also, the ability to edit files containing any 8-bit
 character.

	Infinite undo
	The ability to successively undo all of the changes you’ve
 made to a file.

	Incremental searching
	The ability to search for text while you are typing the
 search pattern.

	Left/right scrolling
	The ability to let long lines trail off the edge of the
 screen instead of wrapping.

	Visual mode
	The ability to select arbitrary contiguous chunks of texts
 upon which some operation will be done.

	Mode indicators
	A visible indication of insert mode versus command mode,
 as well as indicators of the current line and column.

Command-Line History and Completion

 Users of the csh,
 tcsh, ksh, zsh, and bash shells have known for years that
 being able to recall previous commands, edit them slightly, and
 resubmit them makes them more productive.
This is no less true for editor users than it is for shell
 users; unfortunately, Unix vi
 does not have any facility to save and recall ex commands.
This lack is remedied in each of the clones. Although each one
 provides a different way of saving and recalling the command
 history, each one’s mechanism is usable and useful.
In addition to a command history, all of the editors can do
 some kind of completion. This is where you type
 the beginning of, for example, a filename. You then type a special
 character (such as tab), and the editor completes the filename for
 you. All of the editors can do filename completion, and some of them
 can complete other things as well. Details for Vim are found in the
 section Keyword and Dictionary Word Completion. Details for
 the other editors are provided in each editor’s chapter in Part III.

Arbitrary Length Lines and Binary Data

 All the clones can handle lines of any
 length.[42] Historic versions of vi often had limits of around 1,000
 characters per line; longer lines would be truncated.
All are also 8-bit clean, meaning that they can edit files
 containing any 8-bit character. It is even possible to edit binary
 and executable files, if necessary. This can be really useful at
 times. You may or may not have to tell each editor that a file is
 binary:
	nvi
	 Automatically handles binary data. No special
 command-line or ex options
 are required.

	elvis
	 Under Unix, does not treat a binary file
 differently from any other file. On other systems, it uses the
 elvis.brf file to set the
 binary option, to avoid
 newline translation issues. (The elvis.brf file and hex display modes are described in
 the section Interesting Features.)

	Vim
	 Does not limit the length of a line. When
 binary is not set, Vim is
 like nvi and automatically
 handles binary data. However, when editing a binary file, you
 should either use the -b command-line option
 or :set binary. These set
 several other Vim options that make it easier to edit binary
 files.

	vile
	 Automatically handles binary data. No special
 command-line or ex options
 are required.

 Finally, there is one tricky detail. Traditional
 vi always writes the file with a
 final newline appended. When editing a binary file, this might add
 one character to the file and cause problems. nvi and Vim are compatible with vi by default and add that newline. In Vim
 you can set the binary option so
 this doesn’t happen. elvis and
 vile never append the extra
 newline.

Infinite Undo

 Unix vi allows you
 to undo only your last change, or to restore the current line to the
 state it was in before you started making any changes. All of the
 clones provide “infinite undo,” the ability to keep undoing your
 changes, all the way back to the state the file was in before you
 started any editing.

Incremental Searching

 When incremental searching is
 used, the editor moves the cursor through the file, matching text
 as you type the search pattern. When you
 finally type ENTER, the search is
 finished.[43] If you’ve never seen it before, it is rather
 disconcerting at first. However, after a while you get used to it,
 and eventually you come to wonder how you ever did without
 it.
nvi, Vim, and elvis enable incremental searching with an
 option, and vile uses two special
 vi mode commands. vile can be compiled with incremental
 searching disabled, but it is enabled by default. Table 8-6 shows the options each editor
 provides.
Table 8-6. Incremental searching
	Editor	Option	
 Command
 	Action
	nvi	searchincr	 	The cursor moves through the file as you type, always being placed on the
 first character of the text that matches.

	Vim	incsearch	 	The cursor moves through the file as you type. Vim highlights the text that
 matches what you’ve typed so far.

	elvis	incsearch	 	The cursor moves through the file as you type. elvis highlights the text that
 matches what you’ve typed so far.

	vile	 	^X
 S, ^X R	The cursor moves through the file as you type, always being placed on the
 first character of the text that matches. ^X S incrementally searches
 forward through the file, while ^X
 R incrementally searches backward.

Left-Right Scrolling

 By default, vi and
 most of the clones wrap long lines around the screen. Thus, a single
 logical line of the file may occupy multiple physical lines on your
 screen.
There are times when it might be preferable for a long line to
 simply disappear off the righthand edge of the screen instead of
 wrapping. Moving onto that line and then moving to the right would
 “scroll” the screen sideways. This feature is available in all of
 the clones. Typically, a numeric option controls how much to scroll
 the screen, and a Boolean option controls whether lines wrap or
 disappear off the edge of the screen. vile also has command keys to perform
 sideways scrolling of the entire screen. Table 8-7 shows how to use horizontal scrolling
 with each editor.
Table 8-7. Sideways scrolling
	Editor	Scroll amount	Option	Action
	nvi	sidescroll = 16	leftright	Off by default. When set, long lines simply go off the edge of
 the screen. The screen scrolls left or right by 16
 characters at a time.

	elvis	sidescroll = 8	wrap	Off by default. When set, long lines simply go off the edge of
 the screen. The screen scrolls left or right by eight
 characters at a time.

	Vim	sidescroll =
 0	wrap	Off by default. When set, long lines simply go off the edge of
 the screen. With sidescroll set to zero, each
 scroll puts the cursor in the middle of the screen.
 Otherwise, the screen scrolls by the desired number of
 characters.

	vile	sideways = 0	linewrap	Off by default. When set, long lines wrap. Thus, the default
 is to have long lines go off the edge of the screen. Long
 lines are marked at the left and right edges with < and >. With sideways set to zero, each scroll
 moves the screen by ⅓. Otherwise, the screen scrolls by the
 desired number of characters.

	 	 	horizscroll	On by default. When set, moving the cursor along a long line
 offscreen shifts the whole screen. When not set, only the
 current line shifts; this may be desirable on slower
 displays.

vile has two additional
 commands, ^X ^R and ^X ^L. These two commands scroll the
 screen right and left, respectively, leaving the cursor in its
 current location on the line. You cannot scroll so far that the
 cursor position would go off the screen.

Visual Mode

 Typically, operations in vi apply to units of text—such as lines,
 words, or characters—or to
 sections of text from the current cursor position to a position
 specified by a search command. For example, d/^} deletes up to the next line that
 starts with a right brace. elvis
 and vile provide a mechanism to
 explicitly select a region of text to which an operation will apply.
 In particular, it is possible to select a rectangular block of text
 and apply an operation to all the text within the rectangle. See the
 section Visual Mode Motion for details on Vim.
 For details on the other editors, see each editor’s respective
 chapter in Part III.

Mode Indicators

 As you know by now, vi has two modes—command mode and insert
 mode. Usually, you can’t tell by looking at the screen which mode
 you’re in. Furthermore, it’s often useful to know where in the file
 you are, without having to use the ^G or ex:=
 commands.
 Two options address these issues: showmode and ruler. All the clones agree on the option
 names and meanings, and even Solaris vi has the showmode option.
Table 8-8 lists the special features
 in each editor.
Table 8-8. Position and mode indicators
	Editor	With ruler, displays	With showmode, displays
	nvi	Row and column	Insert, change, replace, and command mode
 indicators

	elvis	Row and column	Input and command mode indicators

	Vim	Row and column	Insert, replace, and visual mode indicators

	vile	Row,
 column, and percent of file	Insert, replace, and overwrite mode indicators

	vi	N/A	Separate mode indicators for open, input,
 insert, append, change, replace, replace one
 character, and substitute modes

The GUI version of elvis
 changes the cursor shape depending on the current mode.

[42] Well, up to the maximum value of a C long, 2,147,483,647 (on a 32-bit
 computer).

[43] Emacs has always had incremental searching.

Programming Assistance

vi was developed
 primarily as a programmer’s editor. It has features that make things
 especially easy for the traditional-style Unix programmer—someone
 writing C programs and troff
 documentation. (Real programmers write real documentation in troff.) Several of the clones are proud
 bearers of this tradition, adding a number of features that make them
 even more usable and capable for the “power user.”[44]
Two features (among many) most deserve discussion:
	Edit-compile speedup
	elvis, Vim, and
 vile allow you to easily
 invoke make, capture the
 errors from your compiler, and automatically move to the lines
 containing the errors. You can then fix the errors and rerun
 make, all from within the
 editor.

	Syntax highlighting
	elvis, Vim, and
 vile have the ability to
 highlight and/or change the color of different syntactic
 elements in different kinds of files.

Edit-Compile Speedup

 Programming often consists of an “edit-compile-debug”
 cycle. You make changes, compile the new code, and then test and
 debug it. When learning a new language, syntax errors are especially common, and it is frustrating to be
 constantly stopping and restarting (or suspending and resuming) the
 editor in between compiles.
elvis, Vim, and vile all provide facilities that allow you
 to stay within the editor while compiling your program. Furthermore,
 they capture the compiler’s output and use it to automatically go to
 each line that contains an error.[45] Consistent use of this capability can save time and
 improve programmer productivity.
Here is an example, using elvis. You are beginning to learn C++, so
 you start out with the obligatory first program:
	Keystrokes	Results
	:w
 hello.C	#include <iostream>

 int main()
 {
 std::cout << "hello, world!\n ;
 return 0;
 }

	 	 You enter the program, forgetting the closing
 quote, and then write the program to hello.C.

	:make
 hello	 g++ hello.C -o hello
 hello.C:5: error: missing terminating " character
 hello.C: In function 'int main()':
 hello.C:6: error: expected primary-expression before 'return'
 hello.C:6: error: expected `;' before 'return'
 make: *** [hello] Error 1

	 	 You type the :make command to run make, which in turn runs the C++
 compiler. (In this case, g++.) The output from g++ describes each error.

	 	 #include <iostream>

 int main()
 { std::cout << "hello, world\n ;
 return 0;
 }
 ~
 line 5: missing terminating " character 5,8 Command

	 	 The make
 output disappears quickly, and elvis replaces the status line
 with the first error message, positioning the cursor on the
 line that needs to be fixed.

You can fix the error, resave the file, rerun :make, and eventually compile your program
 without errors.
All of the editors have similar facilities. They will all
 compensate for changes in the file, correctly moving you to
 subsequent lines with errors. See the section Compiling and Checking Errors with Vim for details on Vim. For
 details on the other editors, see each editor’s respective chapter
 in Part III.

Syntax Highlighting

elvis, Vim, and
 vile all provide some form of
 syntax highlighting. All three also provide syntax coloring, which
 changes the color of different parts of the file on displays that
 can do so (such as under X11 or the Linux console). See the section
 Syntax Highlighting for more
 information on syntax highlighting in Vim. For information on the
 other editors, see each editor’s chapter in Part III.

[44] In contrast to the What You See Is What You Get (WYSIWYG)
 philosophy, Unix is the You Asked For It, You Got It operating
 system. (With thanks to Scott Lee.)

[45] Yet another feature that Emacs users are accustomed to
 comes to vi.

Editor Comparison Summary

 Most of the clones support most or all of the features
 described earlier in this chapter. Table 8-9
 summarizes what each editor supports. Of course, the table does not
 tell the full story; the details are provided in the rest of the
 book.
Table 8-9. Feature summary chart
	Feature	nvi	elvis	vim	vile
	Multiwindow editing	•	•	•	•
	GUI	 	•	•	•
	Extended regular expressions	•	•	•	•
	Enhanced tags	 	•	•	•
	Tag stacks	•	•	•	•
	Arbitrary length lines	•	•	•	•
	8-bit data	•	•	•	•
	Infinite undo	•	•	•	•
	Incremental searching	•	•	•	•
	Left-right scrolling	•	•	•	•
	Mode indicators	•	•	•	•
	Visual mode	 	•	•	•
	Edit-compile speedup	 	•	•	•
	Syntax highlighting	 	•	•	•
	Multiple OS support	 	•	•	•

Nothing Like the Original

For many, many years, the source code to the original vi was unavailable without a Unix source
 code license. Although educational institutions were able to get
 licenses at a relatively low cost, commercial licenses were always
 expensive. This fact prompted the creation of all of the vi clones described in this book.
In January 2002, the source code for V7 and 32V UNIX was made
 available under an open source-style license.[46] This opened up access to almost all of the code
 developed for BSD Unix, including ex and vi.
The original code does not compile “out of the box” on modern
 systems, such as GNU/Linux, and porting it is difficult.[47] Fortunately, the work has already been done. If you
 would like to use the original, “real” vi, you can download the source code and
 build it yourself. See http://ex-vi.sourceforge.net/ for more
 information.

[46] For more information about this, see the Unix Historical
 Society web site at http://www.tuhs.org.

[47] We know. We tried.

A Look Ahead

Part II covers Vim in excruciating detail.
 Seven full chapters cover the topics listed here, as well as the
 important subject of writing scripts for Vim, which provide much of
 the power and usefulness that come “out of the box” with that
 editor.
The three chapters in Part III cover
 nvi, elvis, and vile, in that order. Each chapter has the
 following outline:
	Who wrote the editor, and why.

	Important command-line arguments.

	Online help and other documentation.

	Initialization—what files and environment variables the
 program reads, and in what order.

	Multiwindow editing.

	GUI interface(s), if any.

	Extended regular expressions.

	Improved editing facilities (tag stacks, infinite undo,
 etc.).

	Programming assistance (edit-compile speedup, syntax
 highlighting).

	Interesting features unique to the program.

	Where to get the sources, and what operating systems the
 editor runs on.
All of the distributions are compressed with
 gzip, GNU zip. If you don’t
 already have it, you can get gzip from ftp://ftp.gnu.org//gnu/gzip/gzip-1.3.12.tar.[48] The untar.c
 program available from the elvis FTP site is a very portable,
 simple program for unpacking gziped tar files on non-Unix systems.

Because each of the programs discussed in Part III continues to undergo development, we have not
 attempted an exhaustive treatment of each one’s features. Such an
 approach would quickly become outdated. Instead, we have “hit the
 highlights,” covering the features that you are most likely to need
 and that are least likely to change as the program evolves. You should
 supplement this book with each program’s online documentation if you
 need to know how to use every last feature of your editor.

[48] This is current as of this writing. You may find a newer
 version.

Part II. Vim

Part II describes the most popular vi clone, named Vim (which stands for
 “vi improved”). This part contains
 the following chapters:
	Chapter 9, Vim (vi Improved): An Introduction

	Chapter 10, Major Vim Improvements over vi

	Chapter 11, Multiple Windows in Vim

	Chapter 12, Vim Scripts

	Chapter 13, Graphical Vim (gvim)

	Chapter 14, Vim Enhancements for Programmers

	Chapter 15, Other Cool Stuff in Vim

Chapter 9. Vim (vi Improved): An Introduction

This part of the book describes Vim, the other vi. We briefly introduce Vim and the most
 noteworthy of its many technical advances over vi, along with a bit of history. We’ll finish
 this chapter with some pointers to special Vim modes and teaching tools
 for new users. The following chapters cover:
	Editing enhancements over vi

	Multiwindow editing

	Vim scripts

	The Vim graphical user interface
 (GUI)

	Programming enhancements

	Editing patterns

	Other cool stuff

Vim stands for “vi improved.”
 It was written and is maintained by Bram Moolenaar. Today, Vim is perhaps the most widely
 used vi clone, and there exists a
 separate Internet domain (vim.org) dedicated to it. The current version is 7.1.
Unconstrained by standards or committees, Vim continues to grow in
 functionality. An entire community has grown up around it. Collectively,
 they decide what new features to add and what existing features to
 modify, by nominating and voting for suggestions during development
 cycles.
Inspired by Bram’s dedicated energy and the voting system, Vim
 enjoys a strong following. It maintains its value by growing and
 changing with the computing industry and, correspondingly, with editing
 needs. For instance, its context-specific language editing started with
 C and has grown to encompass C++, Java, and now C#.
Vim includes many new features that facilitate the editing of code
 in many new languages. In fact, many features promised at the release of this book’s previous
 edition are now fully implemented. The computing landscape has changed
 dramatically and dynamically these last 10 years, and Vim has matched it
 stride for stride.
Today Vim is so ubiquitous, especially among Unix and its variants
 (e.g., BSD and GNU/Linux), that for many users Vim has become synonymous
 with vi. Indeed, many distributions
 of GNU/Linux come with a default installation of Vim as the /bin/vi binary!
Vim provides features not in vi
 that are considered essential in modern-day text editors, such as ease
 of use, graphical terminal support, color, syntax highlighting and
 formatting, as well as extended customization.
Overview

Author and History[49]

Bram started work on Vim after buying an Amiga computer. As a
 Unix user he’d been using the vi-like editor called stevie, one he considered far from perfect. Fortunately, it came
 with the source code, and he began by making the editor more
 compatible with vi and fixing
 bugs. After a while the program became quite usable, and Vim version
 1.14 was published on Fred Fish disk 591 (a collection of free software for
 the Amiga).
Other people began to use the program, liked it, and started
 helping with its development. A port to Unix was followed by ports
 to MS-DOS and other systems, and subsequently Vim became one of the
 most widely available vi clones.
 More features were added gradually: multilevel undo, multiwindowing,
 etc. Some features were unique to Vim, but many were inspired by
 other vi clones. The goal has
 always been to provide the best features to the user.
Today Vim is one of the most full-featured of the vi-style editors anywhere. The online help
 is extensive.
One of the more obscure features of Vim is its support for
 typing from right to left, which is useful for languages such as
 Hebrew and Farsi and illustrates Vim’s versatility. Being a rock-stable editor on which professional software developers can
 rely is another of Vim’s design goals. Vim crashes are rare, and
 when they happen you can recover your changes.
Development on Vim continues. The group of people helping to add features and port Vim to more platforms
 is growing, and the quality of the ports to different computer
 systems is increasing. The Microsoft Windows version has dialogs and
 a file-selector, which opens up the hard-to-learn vi commands to a large group of
 users.

Why Vim?

Vim so dramatically extends the traditional vi functionality that one might more
 easily ask, “Why not Vim?” vi introduced the standard from which
 others borrowed (vile, elvis, nvi), and Vim took the baton and ran with
 it. Vim dared to radically extend features, sometimes pushing
 processors to the edge of their ability to perform Vim’s work with
 adequate response time. We don’t know whether it was an article of
 faith by Bram that processor and memory speeds would improve enough
 to catch up with Vim’s demands, but fortunately, modern processors
 and computers handle even the toughest Vim tasks well.

Compare and Contrast with vi

Vim is more universally available than vi. There is at least some version of Vim
 available on virtually all operating systems, whereas vi is available only on Unix or Unix
 work-alike systems.
vi is the original and has
 changed little over the years. It is the POSIX
 standard-bearer and fulfills its role well. Vim starts where vi leaves off, providing all of vi’s functionality and then extending that
 to add graphical interfaces and features such as complex options and
 scripting that go far beyond vi’s
 original capabilities.
Vim ships with its own built-in documentation in the form of a
 directory of specialized text files. A casual inspection of this
 directory (using the standard Unix word count tool, wc -c *.txt) shows 129 files comprising
 almost 122,000 lines of documentation! This is the first hint at the
 scope of Vim’s features. Vim accesses these files via its internal
 “help” command, another feature not available in vi. We look more closely at Vim’s help
 system later and offer tips and tricks to maximize your learning
 experience.
One way to contrast Vim’s features with vi’s is to look more closely at the
 included directory of help files. Vim flags options, commands, and
 functions in these files with an annotation of “not in vi” or “not
 available in vi”. A nonscientific scan of the help files (using a quick grep -i 'not.. *in vi')
 yields over 700 hits. Even if these hits were redundant by a factor
 of two, it’s clear Vim has many features vi does not.
The following chapters cover some of the more interesting Vim
 features. From extensions of the historic Vim to new functionality,
 we describe the best and most popular productivity features. We
 cover topics universally recognized as useful enhancements, such as
 syntax color highlighting. We also look at some more obscure
 features that are useful for added productivity. For example, we
 show a way to customize the Vim status line to show a real-time
 update of the date and time each time you move the cursor.

Categories of Features

Vim’s features span the range of activities common to
 virtually any text-editing task. Some features just extend what
 users wanted the original vi to
 do; others are completely new and not in vi. And if you need something that’s
 not there, Vim offers built-in scripting for
 unlimited extensibility and customization. Some categories of Vim
 features include:
	Syntax extensions
	Vim lets you control indentation and syntax-based color
 coding of your text. And you have many options to define this
 automatic format. If you don’t like the color highlighting,
 you can change it. If you need a certain style of indentation,
 Vim provides it, or if you have a specialized need, it lets
 you customize your environment.

	Programmer assistance
	Although Vim doesn’t try to provide all programming needs,
 it offers many features normally found in Integrated Development Environments (IDEs).
 From quick edit-compile-debug cycles to autocompletion of
 keywords, Vim has specialized features to let you do more than
 edit quickly—it helps you program.

	Graphical user interface (GUI) features
	Vim extends usability to a more general population by allowing point-and-click editing,
 like many modern easy-to-use editors. All of the power-user
 functionality gets the boost of simple GUI accessibility for
 lighter and simpler editing tasks.

	Scripting and plug-ins
	You can write your own Vim extensions or download plug-ins from the
 Internet. You can even contribute to the Vim community by
 publishing your extensions for others to use.

	Initialization
	Vim, like vi,
 uses configuration files to define sessions at
 startup time, but Vim has a vastly expanded repertoire of
 definable behaviors. You can keep it as simple as setting a
 few options, as you would in vi, or you can write an entire suite
 of customizations that define your session based on any
 context you define. For example, you can script your
 initialization files to precompile code based on which
 directory you’re editing files in, or you can retrieve
 information from some real-time source and incorporate it into
 your text at startup.

	Session context
	Vim keeps session information in a file, .viminfo. Ever wonder “Where was I?” when revisiting and editing a
 file? This fixes that! You can define how much and what kind
 of information to sustain across sessions. For example, you
 can define how many “recent documents” or last-edited files to
 track, how many edits (deletions, changes) to remember per
 file, how many commands to remember from the command history,
 and how many buffers and lines to keep from previous edit
 actions (“puts,” “deletes,” etc.). Not only does Vim remember edits in your last session for a file, it
 remembers basic things between files.
 This is handy for editing activities such as grabbing a
 sequence of lines in one file (with y [yank], or d [delete]) and “putting” them in
 another. Whatever is in the unnamed buffer is remembered and
 available from one file to the next. Also, Vim remembers the
 last search pattern, so you can simply use the command
 n (find next occurrence)
 when beginning a session to find the last-used search
 pattern.
Vim also remembers which line you were on for each of
 your most recently edited files. If you exit your edit session
 with the cursor on line 25, it repositions you on line 25 the
 next time you edit that file.

	Postprocessing
	In addition to performing presession functions, Vim lets you define what
 to do after you’ve edited a file. You can
 write cleanup routines to delete temporary files accumulated
 from compiles, or do real-time edits to the file before it’s
 written back to storage. You have complete control to
 customize any postedit activities

	Transitions
	Vim manages state transitions. When you move within a session from buffer to
 buffer or window to window (usually the same thing), Vim
 automatically does pre- and post- housekeeping.

	Transparent editing
	Vim detects and automatically unbundles archived or compressed files. For
 example, you can directly edit a zipped file such as myfile.tar.gz. You can even edit
 directories. Vim lets you navigate a directory and select
 files to edit using familiar Vim navigation commands.

	Meta-information
	Vim offers four handy read-only registers from which the user may extract
 meta-information for “puts”: the current filename (%), the alternate filename (#), the
 last command-line command executed (:),
 and the last inserted text (., a
 period).

	The black-hole register
	This is an obscure but useful extension of editing
 registers. Normally, text deletions put this text into buffers
 using a rotation scheme, which is useful for cycling through
 old deletes to get back old and deleted text. Vim provides the
 “black-hole” register as a place to throw deleted text away,
 without affecting the rotation of deleted text in the normal
 registers. If you’re a Unix user, this register is Vim’s
 version of /dev/null.

	Keyword completion
	Vim lets you complete partially typed words with context-sensitive
 completion rules. For example, Vim can look up words in a
 dictionary or in a file containing keywords specific to a
 language.

Vim also lets you drop back to a vi-compatible mode with its compatible option (:set compatible). Most of the time you’ll
 probably want Vim’s extra features, but it’s a thoughtful touch to
 provide for backward compatibility if you need it.

Philosophy

Vim’s philosophy aligns closely with vi’s. Both provide power and elegance in
 editing. Both rely on modality (command mode versus input mode). And
 both bring editing to the keyboard: that is, users can perform all
 of their editing work quickly and efficiently and never touch a
 mouse (or a ^X
 ^C). We like to think of this as “touch editing,” which is
 analogous to “touch typing,” reflecting the corresponding increase
 in speed and efficiency that
 both bring to their respective tasks.
Vim extends that philosophy by permitting and providing
 features for less experienced users (GUI, visual highlight mode) and
 power options for the power users (scripting, extended regular
 expressions, configurable syntax, and configurable
 indenting).
And for the super power users who like to code, Vim comes with
 source code. Users are free (even encouraged) to improve on the
 improvements. Philosophically, Vim strikes a balance for
 all users’ needs.

[49] This section is adapted from material supplied by Bram
 Moolenaar, Vim’s author. We thank him.

Where to Get Vim

If your environment is some variant of Unix—including Mac OS
 X—you may be in luck and already have Vim installed. If it’s available
 and executable in your predefined PATH environment variable, you should be able to type vim at the shell command line and open a Vim
 window. If you get the following typical Unix error message:
sh: command not found: vim
try vi and see whether a Vim welcome message
 appears. Your installation may actually substitute Vim for vi.
On many systems you’ll find old versions of Vim. This section
 may therefore be useful to help you install the latest version, even
 if you have Vim already. Once you are in the editor, check not only
 that you are running Vim but also the version with the :version command.
 Vim will provide a screen resembling this:
:version
VIM - Vi IMproved 7.0 (2006 May 7, compiled Aug 30 2006 21:54:03)
Included patches: 1-76
Compiled by corinna@cathi
Huge version without GUI. Features included (+) or not (-):
+arabic +autocmd -balloon_eval -browse ++builtin_terms +byte_offset +cindent
-clientserver -clipboard +cmdline_compl +cmdline_hist +cmdline_info +comments
+cryptv +cscope +cursorshape
 ...
 +profile -python +quickfix +reltime +rightleft -ruby +scrollbind +signs
+smartindent -sniff +statusline -sun_workshop +syntax +tag_binary +tag_old_static
-tag_any_white -tcl +terminfo +termresponse +textobjects +title -toolbar
+user_commands +vertsplit +virtualedit +visual +visualextra +viminfo +vreplace
+wildignore +wildmenu +windows +writebackup -X11 -xfontset -xim -xsmp
-xterm_clipboard -xterm_save
 system vimrc file: "$VIM/vimrc"
 user vimrc file: "$HOME/.vimrc"
 user exrc file: "$HOME/.exrc"
 fall-back for $VIM: "/usr/share/vim"
Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2
 Linking: gcc -L/usr/local/lib -o vim.exe -lncurses -liconv -lint
Some of this output is discussed in Chapter 10
 in the context of helping you compile Vim with customizations.
Note
Interestingly, on one of the authors’ Mac Mini, with
 OS X version 10.4.10 installed, not only does a
 vi command invoke Vim but the
 documentation (the “manpage”) documents Vim!

If you haven’t found Vim so far, here are a few common
 directories you may want to search before you try to download and
 install it. If you find the executable, add its directory as part of
 your PATH and you’re ready to
 go:
	/usr/bin (this should
 be in PATH anyway)
	/bin (so should
 this)
	/opt/local/bin
	/usr/local/bin

If none of those work, you probably don’t have Vim. Happily, Vim
 is available in many forms for many platforms and is (usually and
 relatively) easy to retrieve and install. The following sections guide
 you to getting Vim for your platform. We discuss how to install Vim
 for these platforms, in order:
	Unix and variants, including GNU/Linux

	Windows XP, 2000, Vista

	Macintosh

Getting Vim for Unix and GNU/Linux

Many modern Unix environments already come with some version of
 Vim. Most GNU/Linux distributions simply link the default vi location /bin/vi to a Vim executable. Most Unix
 users won’t ever need to install it.
Because there are so many variants of Unix and so many flavors
 of some variants (e.g., Sun Solaris HP-UX, *BSD, all the distributions
 of GNU/Linux), the most straightforward and recommended way to
 get Vim is to download its source, compile it, and install it.
Note
The installation procedure described here requires a
 development environment capable of compiling source code. Although
 most Unix variants provide compilers and related tools,
 some (notably current releases of the Ubuntu GNU/Linux distribution)
 require you to download and install additional packages before you
 can experience the pleasures of compiling code.
The Vim home page refers to a new installation procedure it
 recommends, called aap. It
 provides a link and brief introduction. Because aap is new and the old method of
 installing by downloading and compiling works well, we are not
 recommending aap as the
 installation procedure of choice. By the time you read this book,
 use of aap may be well
 established.
There are also prepackaged Vim bundles offering easy standard
 installations for GNU/Linux (Red Hat RPMs, Debian pkgs), IRIX (SoftwareManager), Sun Solaris
 (Companion Software), and HP-UX. The Vim home page provides links
 for all of these systems.

Vim source code is available from the Vim home page, http://www.vim.org. Source code is
 bundled in tarballs compressed in either GZIP (.gz) or BZIP2 (.bz2) format. Virtually all operating
 systems recognize and handle GZIP files nowadays, and most Unix
 variants have the utilities to handle BZIP2 as well. Download the
 source and unpack the compressed file as follows, substituting the
 name of the file you downloaded if you are installing a different
 version:
	.gz file
	$gunzip vim-7.1.tar.gz

	.bz2 file
	$bunzip2 vim-7.1.tar.gz

After the command completes, the file vim-7.1.tar (or a comparable file
 reflecting the version you downloaded) remains. Now untar the tar
 file:
$tar xvf vim-7.1.tar
vim71
vim71/README.txt
vim71/runtime
vim71/README_unix.txt
vim71/README_lang.txt
vim71/src
vim71/Makefile
vim71/Filelist
vim71/README_src.txt
 ...
vim71/runtime/doc/vimtutor-ru.1
vim71/runtime/doc/xxd-ru.1
vim71/runtime/doc/evim-ru.UTF-8.1
vim71/runtime/doc/vim-ru.UTF-8.1
vim71/runtime/doc/vimdiff-ru.UTF-8.1
vim71/runtime/doc/vimtutor-ru.UTF-8.1
vim71/runtime/doc/xxd-ru.UTF-8.1
You can now remove the vim-7.1.tar file. Change directories to the
 Vim directory created by the tar
 command:
$cd vim71

 The configure file is a script
 that configures the compilation parameters. Most configuration work
 should be left to the script, which examines the host environment and
 turns on and off features according to software installed on the
 system.
You can decide at this point whether to use the defaults or
 selectively choose (or not choose) features. For example, you may want
 to compile with the perl interface
 turned on where the configure
 script otherwise would not have done so, anticipating future
 installation of perl scripting
 tools:
$./configure --enable-perlinterp
Or,
 you may decide you have no use for a perl interface and turn that feature off
 with the configure options:
$./configure --disable-perlinterp
Warning
Current versions of Vim offer slightly different ways to
 customize your installation. Instead of putting all of the
 --disable-XXX and --enable-XXX options in configure options, the INSTALL file points you to making
 changes in the feature.h file.
 Unless you have compelling reasons to make changes in that file,
 we recommend you compile with available options (described in
 README.txt) and customize your
 editing needs in Vim configuration files.

The normal configure output
 (default, with no options) looks something like:
$configure
/home/ehannah/Desktop/vim/vim71/src
configure: loading cache auto/config.cache
checking whether make sets $(MAKE)... (cached) yes
checking for gcc... (cached) gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
...
checking for NLS... no "po/Makefile" - disabled
checking for dlfcn.h... (cached) yes
checking for dlopen()... no
checking for dlopen() in -ldl... yes
checking for dlsym()... yes
checking for setjmp.h... (cached) yes
checking for GCC 3 or later... yes
configure: creating auto/config.status
config.status: creating auto/config.mk
config.status: creating auto/config.h
config.status: auto/config.h is unchanged
Now build Vim with the make
 utility:
$make
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && /usr/local/lib/cw/make first
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 charset.o charset.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 diff.o diff.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 digraph.o digraph.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 edit.o edit.c

 ...

make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
creating auto/pathdef.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 pathdef.o auto/
 pathdef.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
link.sh: Using auto/link.sed file to remove a few libraries
 gcc -o vim objects/buffer.o objects/charset.o objects/diff.o
 objects/digraph.o objects/edit.o objects/eval.o objects/ex_cmds.o
 objects/ex_cmds2.o objects/ex_docmd.o objects/ex_eval.o
 objects/ex_getln.o objects/fileio.o objects/fold.o objects/getchar.o
 objects/hardcopy.o objects/hashtab.o objects/if_cscope.o
 objects/if_xcmdsrv.o objects/main.o objects/mark.o objects/memfile.o
 objects/memline.o objects/menu.o objects/message.o objects/misc1.o
 objects/misc2.o objects/move.o objects/mbyte.o objects/normal.o
 objects/ops.o objects/option.o objects/os_unix.o objects/pathdef.o
 objects/popupmnu.o objects/quickfix.o objects/regexp.o objects/screen.o
 objects/search.o objects/spell.o objects/syntax.o objects/tag.o
 objects/term.o objects/ui.o objects/undo.o objects/window.o
 objects/netbeans.o objects/version.o -lncurses -lgpm -ldl
link.sh: Linked fine with a few libraries removed
cd xxd; CC="gcc" CFLAGS=" -g -O2" \
	/usr/local/lib/cw/make -f Makefile
/home/ehannah/Desktop/vim/vim71/src/xxd
make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
gcc -g -O2 -DUNIX -o xxd xxd.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
If all has gone well, you now have an executable Vim binary in
 the src directory. Vim is now
 ready for use, but you have to either invoke it by specifying a full
 pathname or add the directory in which Vim was placed to each user’s
 executable path. If you can’t install programs as an administrator,
 this will have to do.
To finish installing Vim as a general resource to all users of
 the machine, you must have administrator (root) privileges. If you do, become root and enter:
#make install
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && make install
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
if test -f /usr/local/bin/vim; then \
 mv -f /usr/local/bin/vim /usr/local/bin/vim.rm; \
 rm -f /usr/local/bin/vim.rm; \
fi
cp vim /usr/local/bin
strip /usr/local/bin/vim
chmod 755 /usr/local/bin/vim
cp vimtutor /usr/local/bin/vimtutor
chmod 755 /usr/local/bin/vimtutor
/bin/sh ./installman.sh install /usr/local/man/man1 "" /usr/local/
 share/vim /usr/local/share/vim/vim71 /usr/local/share/vim ../
 runtime/doc 644 vim vimdiff evim
installing /usr/local/man/man1/vim.1
installing /usr/local/man/man1/vimtutor.1
installing /usr/local/man/man1/vimdiff.1

 ...

if test -d /usr/local/share/icons/hicolor/48x48/apps -a -w /usr/
 local/share/icons/hicolor/48x48/apps \
	-a ! -f /usr/local/share/icons/hicolor/48x48/apps/gvim.png; then \
 cp ../runtime/vim48x48.png /usr/local/share/icons/hicolor/48x48/
 apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/32x32/apps -a -w /usr/
 local/share/icons/locolor/32x32/apps \
	-a ! -f /usr/local/share/icons/locolor/32x32/apps/gvim.png; then \
 cp ../runtime/vim32x32.png /usr/local/share/icons/locolor/32x32/
 apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/16x16/apps -a -w /usr/
 local/share/icons/locolor/16x16/apps \
	-a ! -f /usr/local/share/icons/locolor/16x16/apps/gvim.png; then \
 cp ../runtime/vim16x16.png /usr/local/share/icons/locolor/16x16/
 apps/gvim.png; \
fi
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
Installation is complete; as long as users’ PATH variables are set correctly, they
 should all have access to Vim.

Getting Vim for Windows Environments

There are
 two main options for Microsoft Windows. The first is the
 self-installing executable, gvim.exe, available from the Vim home page.
 Download and run this, and it should do the rest. We have installed
 Vim using this executable on different Windows machines, and it’s
 always worked cleanly. The binary should install correctly on Windows
 XP, 2000, NT, ME, 98, and 95.
Note
At one point in the install process, a DOS window pops up and
 gives a warning about something not being verifiable. We have never
 seen this become a problem.

Another option for Windows users is to install Cygwin (http://www.cygwin.com/), a suite of common GNU tools
 ported to the Windows platform. It’s an amazingly full implementation
 of virtually all mainstream software used on Unix platforms. Vim is
 part of the standard Cygwin installation and can run from a Cygwin
 shell window.
Using Vim with Cygwin
The text-based console Vim works fine in Cygwin, but Cygwin’s
 gvim expects an X Window System
 server to be running and will degrade gracefully into running
 text-based Vim if started without this server.
To get Cygwin’s gvim
 working (assuming you wish to run it on a local screen), start
 Cygwin’s X server from the command line in a Cygwin shell as
 follows:
$X -multiwindow &
The -multiwindow option tells the X server to
 let Windows manage the Cygwin applications. There are many other
 ways to use Cygwin’s X server, but that discussion is outside the
 scope of this book. Installation of Cygwin’s X server is also
 outside the scope; if it is not installed, see the Cygwin home page
 for further information. A graphical “X” icon should appear in the
 Windows systray. This assures that the X server is in fact
 running.
It is confusing to have both Cygwin’s Vim and www.vim.org’s Vim installed at the same
 time. Some of the configuration files referenced for Vim
 configuration may reside in different places, thus resulting in
 seemingly identical versions of Vim that start up with completely
 different options. For instance, Cygwin and Windows may have
 different notions of what is the home directory.

Getting Vim for the Macintosh Environment

Mac OS X comes with Vim 6.2 installed, but not with any GUI
 version. Users can download .tar.bz2 files to compile versions 6.4 and
 7.1 with a GUI.
When downloading the source, however, the maintainer recommends
 downloading from CVS (a source control system) to ensure up-to-date source code along with the most recent patches. This
 isn’t difficult, but the idea of downloading via command line may seem
 a bit foreign to newer users.
Once files are downloaded, the procedure for installation is
 very similar to the Unix compilation and installation procedure
 described earlier in the section Getting Vim for Unix and GNU/Linux.

Other Operating Systems

Vim’s home page lists more environments for which Vim ostensibly
 works, but it offers the caveat to use them at your own risk. These
 other Vims are for:
	QNX, a real-time operating system
 (RTOS)

	Agenda

	Sharp Zaurus, a Linux-based handheld device

	HP Jornada, a Linux-based handheld device

	Windows CE, a Windows version for handheld devices

	Compaq Tru64 Unix on Alpha

	Open VMS, Digital’s VMS with POSIX

	Amiga

	OS/2

	RISC OS, an OS-based on a reduced instruction set CPU
 (RISC)

	MorphOS, an OS-based on the Amiga OS built on top of the
 Quark kernel

Aids and Easy Modes for New Users

Recognizing that both vi and
 Vim make some learning demands on new users, Vim provides several
 features that make it easier to use for some:
	Graphical Vim (gvim)
	When the user invokes the gvim command, a rich graphical window
 is displayed, offering Vim with some of the point-and-click
 features made popular by modern GUI programs. In many
 environments, gvim is a
 different binary file created by compiling Vim with all of the
 GUI options turned on. It can also be invoked through vim -g.

	“Easy” Vim (evim)
	The evim command
 substitutes some simple behaviors for standard vi features, which some users who are
 unfamiliar with vi might find
 to be a more intuitive way to edit files. Expert users probably
 won’t find this mode easy, because they’re already used to
 standard vi behavior. It can
 also be invoked through vim
 -e.

	vimtutor
	Vim comes with vimtutor, a separate command that
 essentially starts Vim with a special help file. This invocation
 of Vim gives users another starting point for learning the
 editor. vimtutor takes about
 30 minutes to complete.

Summary

vi is still the standard
 text-editing tool on Unix. vi was almost revolutionary in its time, with its dual mode and touch-edit
 philosophy. Vim continues where vi
 stops, and it is the next evolutionary step for powerful editing and
 text management:
	Vim extends vi, building
 on the excellent standard set by the older editor. Although other
 editors have also built upon the original, Vim has emerged as the
 most popular and widely used vi
 clone.

	Vim offers far more than vi, enough more to become the new
 standard.

	Vim is for beginners and for power
 users. For beginners, it offers various learning tools and “easy”
 modes, whereas for experts it offers powerful extensions to
 vi, along with a platform on
 which power users can enhance and tune Vim to their exact
 needs.

	Vim runs everywhere. As discussed earlier, in environments
 where Vim wasn’t available, others stepped in and ported it to
 most useful OS platforms. Vim may not literally be everywhere, but
 it’s close!

	Vim is free. Furthermore, as mentioned in the previous
 release of this book, Vim is charityware. The work Bram Moolenaar
 has done creating, improving, maintaining, and sustaining Vim is
 one of the truly remarkable feats in the free software market. If
 you like his work, Bram invites you to learn
 about his favorite cause, helping children in Uganda. More
 information is available at the web site, http://iccf-holland.org/,
 or simply use Vim’s built-in help command, topic
 “uganda” (:help
 uganda).

Chapter 10. Major Vim Improvements over vi

Vim’s improvements over vi are
 myriad, ranging from multiple color syntax definitions to full-blown
 scripting. If vi is excellent (it
 is), Vim is amazing. In this chapter we discuss how Vim fills in many
 features that users have complained were missing from vi. Some of these include:
	Built-in help

	Startup and initialization options

	New motion commands

	Extended regular expressions

	Extended undo

	Customizing the executable

Built-in Help

As mentioned in the previous chapter, Vim comes with more than
 100,000 lines of documentation. Almost all of this is immediately
 available to you from Vim’s built-in help facility. In its simplest
 form, you invoke the :help command. (This is interesting
 because it exposes users to their first example of Vim’s multiple
 window editing.)
While this is nice, it presents a bit of a chicken-and-egg
 conundrum because the built-in help requires a modicum of
 understanding of vi navigation
 techniques; for it to be really effective, users must know how to jump
 back and forth in tags. We’ll give an overview of help screen
 navigation here.
The :help command brings up something similar
 to:
help.txt For Vim version 7.0. Last change: 2006 May 07

 VIM - main help file
 k
 Move around: Use the cursor keys, or "h" to go left, h l
 "j" to go down, "k" to go up, "l" to go right. j
Close this window: Use ":q[Enter]".
 Get out of Vim: Use ":qa![Enter]" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. |bars|) and hit CTRL-].
 With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
 Double-click the left mouse button on a tag, e.g. |bars|.
 Jump back: Type CTRL-T or CTRL-O (repeat to go further back).

Get specific help: It is possible to go directly to whatever you want help
 on, by giving an argument to the |:help| command.
 It is possible to further specify the context:
 help-context
 WHAT PREPEND EXAMPLE ~
 Normal mode command (nothing) :help x
Thankfully, Vim accommodates the potential navigation problem
 for beginners and considerately opens with basic guidelines for
 navigation, and even tells you how to exit the help screen. We
 recommend this as a starting point and urge you to spend time
 exploring the help.
Once you are familiar with help, you can branch out by using tab
 completion in Vim’s command line. For any command at the command
 prompt (:), pressing the Tab key
 results in context-sensitive command-line completion. For example, the
 following:
:e /etc/termc[TAB]
on any Unix system would expand to:
:e /etc/termcap
The :e command implies that the
 command argument is a file, so command completion looks for files that
 match the partial filename to complete the input.
But :help has its own
 context, covering the help topics. The partial topic string you type
 is matched by a substring in any available Vim help topic. We strongly
 encourage you to learn and use this feature. It saves time and reveals
 new and interesting features you probably didn’t know about.
For example, suppose you want to know how to split a screen.
 Start with:
:help split
and press the Tab key. In the current session, the help command
 cycles through: split(); :split; :split_f; splitview; splitfind; 'splitright'; 'splitbelow'; g:netrw_browse_split; :dsplit; :vsplit; :isplit; :diffsplit; +vertsplit; and more. To see help for any
 topic, press the ENTER key when that
 topic is highlighted. You’ll not only see what you’re probably looking
 for (:split), but you will also discover things you
 didn’t realize you could do, such as :vsplit, the
 “vertical split” command.

Startup and Initialization Options

Vim uses different mechanisms to set up its environment at
 startup. It inspects command-line options. It self-inspects (how was it invoked, and by what
 name?). There are different compiled binaries to serve different needs
 (GUI versus text window). Vim also uses a sequence of initialization
 files in which uncountable combinations of behaviors can be defined
 and modified. There are too many options to cover completely; we will
 touch on some of the interesting ones. In the next sections, we
 discuss Vim’s starting sequence along the following lines:
	Command-line options

	Behaviors associated to command name

	Configuration files (system-wide and per-user)

	Environment variables

This section introduces you to some of the
 ways to start Vim. For a more detailed discussion of many more
 options, use the help command:
:help startup
Command-Line Options

Vim’s command-line options provide flexibility and power. Some
 options invoke extra features, whereas others override and suppress
 default behavior. We will discuss the command-line syntax as it
 would be used in a typical Unix environment. Single-letter options begin with
 - (one hyphen), as in
 -b, which allows editing of binary files.
 Word-length options begin with --
 (two hyphens), as in --noplugin,
 which overrides the default behavior of loading plugins. A
 command-line argument of two hyphens by themselves tells Vim that
 the rest of the command line contains no options (this is a standard
 Unix behavior).
Following the command-line options, you can optionally list
 one or more filenames to be edited. (Actually, there is an
 interesting case where a filename can be a single “-”, telling Vim
 that input comes from the standard input,
 stdin. This will be covered later, but you are
 encouraged to look at uses for this on your own.)
The following is a partial list of Vim command-line options
 not available in vi (all vi options are available in Vim):
	-b
	Edit in binary mode. This is self-explanatory and very
 cool. Editing binary files is an acquired taste, but this is a
 powerful way to edit files not touchable by most other tools.
 Users should read Vim’s help section on editing binary
 files.

	-c
 command
	command will be executed as an
 ex command. vi has this same option, but Vim
 allows up to 10 -c
 instances in one command.

	-C
	Run Vim in compatible (vi) mode. For obvious reasons, this
 option would never be in vi.

	-cmd
 command
	command executes before vimrc files. This is the long form
 of the -c option.

	-d
	Start in diff mode. Vim performs a diff on two, three,
 or four files and sets options making inspection of files
 differences simple (scrollbind, foldcolumn, etc.).
Vim uses the OS-available diff command, which is
 diff on Unix systems. The
 Windows version offers a downloadable executable with which
 Vim can perform the diff.

	-E
	Start in improved ex
 mode. For example, improved ex mode would use extended regular
 expressions.

	-F or -A
	Farsi or Arabic modes, respectively. These require key
 and character maps to be useful and draw the screen from right
 to left.

	-g
	Start gvim
 (GUI).

	-m
	Turn off the write option. Buffers will not be
 modifiable.

	-o
	Open all files in a separate window. Optionally an
 integer can specify the number of windows to open. Files named
 on the command line fill that number of windows only (the rest
 are in Vim buffers). If the specified number of windows
 exceeds the listed files, Vim opens empty windows to satisfy
 the request count of windows.

	-O
	Like -o, but opens
 vertically split windows.

	-y
	Run Vim in easy mode. This sets options to a more
 intuitive behavior for beginners. While “easy” may help the
 uninitiated, seasoned users will find this mode confusing and
 irritating.

	-z
	Run in restricted mode. This basically turns off all
 external interfaces and prevents access to the system
 features. For example, users can’t use !G!sort to sort from the current
 line in the buffer to end-of-file; the filter sort will not be available.

The following is a series of related options to use a remote
 instance of a server Vim. remote commands tell a remote
 Vim (which may or may not be executing on the same machine) to edit
 a file or evaluate an expression in that remote server. The server
 commands tell Vim which server to send to or can declare itself as a
 server. serverlist simply lists available
 servers:
	-remote
 file
	-remote-silent
 file
	-remote-wait
 file
	-remote-send
 file
	-servername
 name
	-remote-expr
 expr
	-remote-wait-silent
 file
	-remote-tab
	-remote-send
 keys
	-remote-wait-silent
 file
	-serverlist

For a more complete discussion of all command-line options,
 including the complete vi set,
 refer to the section Command-Line Syntax.

Behaviors Associated to Command Name

Vim comes in two main flavors, graphical (using the X Window
 System under Unix variants and native GUIs in other operating
 systems) and text, each of which can start up with subsets of
 characteristics. Unix users simply use one of the commands in the
 following list to get the desired behavior:
	vim
	Start the text-based Vim.

	gvim
	Start Vim in graphical mode. In many environments,
 gvim is a different binary
 file of Vim with all of the GUI options turned on during
 compilation. Same as vim -g. (In Unix environments,
 gvim requires the X Window
 System.)

	view, gview
	Start Vim or gvim in
 read-only mode. Same as vim
 -R.

	rvim
	Start Vim in restrictive mode. All external access to
 shell commands is disabled, as well as the ability to suspend
 the edit session with the ^Z command.

	rgvim
	Same as rvim but for
 the graphical version.

	rview
	Analogous to view,
 but start in restricted mode. In restricted mode, users do not
 have access to filters, outside enviroments, or OS features.
 Same as vim -Z (the
 -R option invokes just the read-only effect
 described previously).

	rgview
	Same as rview but for
 the graphical version.

	evim, eview
	Use “easy” mode for editing or read-only viewing. Vim
 sets options and features so it behaves in a more intuitive
 way for those who are not familiar with the Vim paradigm. Same
 as vim -y. Expert users
 probably won’t find this mode easy because they’re already
 used to standard vi
 behavior.
Note there is no analogous gXXX
 version of these commands, because gvim is ostensibly thought to be
 already easy, or at least intuitive to learn, with predictable
 point-and-click behavior.

	vimdiff, gvimdiff
	Start in “diff” mode and perform a diff on the input
 files. This is covered in depth later in the section What’s the Difference?.

	ex, gex
	Use the old line-editing ex mode. Useful in scripts. Same as
 vim -e.

Windows users can access a similar choice of Vim versions in
 the program list (Start menu).

System and User Configuration Files

Vim looks for initialization cues in a special sequence. It
 executes the first set of instructions it finds (either in the form
 of an environment variable or in a file) and begins editing. So, the
 first element of the following list that is encountered is the only
 element of the list that is executed. The sequence follows:
	VIMINIT. This is an
 environment variable. If it is nonempty, Vim executes its
 content as an ex
 command.

	User vimrc files. The
 vimrc (Vim resource)
 initialization file is a cross-platform concept, but because of
 subtle operating system and platform differences, Vim looks for
 it in different places in the following order:
	$HOME/.vimrc
 (Unix, OS/2, and Mac OS X)
	s:.vimrc
 (Amiga)
	home:.vimrc
 (Amiga)
	$VIM/.vimrc (OS/2
 and Amiga)
	$HOME/_vimrc (DOS
 and Windows)
	$VIM/_vimrc (DOS
 and Windows)

	exrc option. If the Vim
 exrc option is set, Vim looks
 for the three additional config files: [._]vimrc; [._]vimrc; and [._]exrc.

The vimrc file is a good
 place to configure Vim’s editing characteristics. Virtually any Vim
 option can be set or unset in this file, and it is particularly
 suited to setting up global variables and defining functions, abbreviations, key mappings, etc. Here are a few
 things to know about the vimrc
 file:
	Comments begin with a double quote ("), and the double quote can be
 anywhere in the line. All text after and including the double
 quote is ignored.

	ex commands can be
 specified with or without a colon. For example, set autoindent is
 identical to :set
 autoindent.

	The file is much more manageable if you break large sets
 of option definitions into separate lines. For example:
set terse sw=1 ai ic wm=15 sm nows ruler wc=<Tab> more
is
 equivalent to:
set terse " short error and info messages
set shiftwidth=1
set autoindent
set ignorecase
set wrapmargin=15
set nowrapscan " don't scan past end or top of file in searches
set ruler
set wildchar=<TAB>
set more
Notice how much more readable the second set of commands is.
 The second method is also much easier to maintain through
 deletions, insertions, and temporarily commenting out lines when debugging settings in the
 configuration file. For example, should you want to
 temporarily disable line numbering in the startup
 configuration, you simply insert the double quote (") at the beginning of the set number line in your
 configuration file.

Environment Variables

Many environment variables affect Vim’s startup behavior and even some edit-session behavior. These are mostly transparent
 and handled with defaults if not configured.
How to set environment variables

The command environment you have when you log in (called the
 shell in Unix) sets variables to reflect or
 control its behavior. Environment variables are especially
 powerful because they affect programs invoked within the command
 environment. The following instructions are not specific to Vim;
 they can be used to set any environment variables you want set in
 the command environment.
	Windows
	To set an environment variable:
	Bring up the control panel.

	Double-click System.

	Click the Advanced tab.

	Click the Environment Variables button.

The result is a window divided into two environment
 variable areas, User and System. Novices shouldn’t modify
 the System environment variables. In the User area, you can
 set environment variables related to Vim and make them
 persist across login sessions.

	Unix/Linux Bash and other Bourne shells
	Edit the appropriate shell configuration file (such as
 .bashrc for Bash users)
 and insert lines resembling:
VARABC=somevalueVARXYZ=someothervalueMYVIMRC=myfavoritevimrcfile
exportVARABCVARXYZMYVIMRC
The order of these lines is irrelevant. The export statement just makes
 variables visible to programs that run in the shell, and
 thus turns them into environment variables. The value of
 exported variables can be set before or after exporting
 them.

	Unix/Linux C shells
	Edit the appropriate shell configuration file (such as
 .cshrc) and insert
 lines resembling the
 following:
setenvVARABC somevalue
setenv VARXYZ someothervalue
setenvMYVIMRCmyfavoritevimrcfile

Environment variables relevant to Vim

The following list shows most of Vim’s environment variables and their effects.
The Vim -u command-line option overrides
 Vim’s environment variables and goes directly to the specified
 initialization file. The -u does
 not override non-Vim environment
 variables:
	SHELL
	Specifies which shell or external command interpreter
 Vim uses for shell commands (!!, :!, etc.). In MS-DOS, if SHELL is not set, the COMSPEC environment variable is used
 instead.

	TERM
	Sets Vim’s internal term option. This is somewhat
 unnecessary, because the editor sets its terminal itself as
 it deems appropriate. In other words, Vim probably knows
 what the terminal is better than a predefined
 variable.

	MYVIMRC
	Overrides Vim’s search for initialization files. If
 MYVIMRC has a value when
 starting, Vim assumes the value is the name of an
 initialization file and, if the file exists, takes initial
 settings from it. No other file is consulted (see the search sequence in the previous section).

	VIMINIT
	Specifies ex
 commands to execute when Vim starts. Define multiple
 commands by separating them with vertical bars (|).

	EXINIT
	Same as VIMINIT.

	VIM
	Contains the path of a system directory where standard
 Vim installation information is found (for information only
 and not used by Vim).
Note
If more than one version of Vim exists on a
 machine, VIM will
 likely reflect different values depending upon which
 version the user started. For example, on one author’s
 machine, the Cygwin version sets the VIM environment
 variable to /usr/share/vim, whereas the
 vim.org package sets
 it to C:\Program
 Files\Vim.
This is important to know if you are making
 changes to Vim files, as changes may not take effect if
 you edit the wrong files!

	VIMRUNTIME
	Points to Vim support files, such as online documentation, syntax definitions, and plug-in directories.
 Vim typically figures this out on its own. If the user sets
 the variable—for example, in the vimrc file—it can cause errors if
 a newer version of Vim is installed because the user’s
 personal VIMRUNTIME
 variable may point to an old, nonexistent, or invalid
 location.

New Motion Commands

Vim provides all vi movement
 or motion commands, most of which are listed in Chapter 3, and adds several others, summarized in Table 10-1.
Table 10-1. Motion commands in Vim
	Command	Description
	<C-End>	Go to the end of the file, i.e., the last character of
 the last line of the file. If a count is
 given, go to the last character of the line
 count.
	<C-Home>	Go to the first nonwhitespace character of the first
 line of the file. This differs from <C-End> because <C-Home> does not move the
 cursor to whitespace.
	count %	Go to the line count percent
 into the file, putting the cursor on the first nonblank line.
 It’s important to note that Vim bases its calculation on the
 number of lines in the file, not the total character count.
 This may not seem important, but consider an example of a file
 containing 200 lines, of which the first 195 contain 5
 characters (for example, prices such as $4.98), and the last four lines
 contain 1,000 characters. In Unix, accounting for the newline
 character, the file would contain approximately:

 (195 * (5 + 1)) (The number of characters in
 the first 5-character lines)
 + 2 + (4
 * (1000 + 1)) (The number of characters in the
 1,000-character lines)
 or 5,200
 characters. A true 50% count would place the cursor on line
 96, and Vim’s 50% motion command would place the cursor on
 line 100.

	 :go n

 n go
	Go to the nth
 byte in the buffer. All characters, including end-of-line
 characters, are counted.

Visual Mode Motion

Vim lets users define selections visually and perform editing
 commands on the visual selection. This is similar to what many users
 see in graphical editors where they highlight areas by clicking and
 dragging the mouse. What Vim offers with its visual mode is the
 convenience of seeing the selection on which work is done
 and all of the powerful Vim commands with which
 to do work on the visually selected text. This lets you do much more
 sophisticated work on highlighted text than the traditional cut and
 paste actions in less sophisticated editors.
You can select a visual area in Vim in the same manner as
 other editors, by clicking and dragging the mouse. But Vim also lets
 you use its powerful motion commands and some special visual mode
 commands to define the visual selection.
For example, you can type v
 in normal mode to start visual mode. Once you are in visual mode,
 any motion commands move the cursor and
 highlight text as the cursor moves to a new position. So, the “next
 word” command (w) in visual mode
 moves the cursor to the next word and highlights the selected text.
 Additional movements extend the selected region
 appropriately.
In visual mode, Vim uses some specialized commands with which
 you conveniently extend the selected text by selecting the text
 object around the cursor. For example, the cursor can be within a
 “word,” and at the same time be within a “sentence,” and also be
 within a “paragraph.” Vim lets you add to the visual selection with
 commands that extend the highlighted region to a text object. To
 visually select a word, you can use aw (when in visual mode).
Vim uses the following motion commands by taking advantage of
 “visual mode,” which highlights lines and characters in the buffer
 in order to provide visual cues about what text will be targeted by
 subsequent Vim actions. You can highlight visual areas of the buffer
 in several ways. In text-based mode, simply type v to toggle visual mode on and off. When
 on, visual mode selects and highlights the buffer as the cursor
 moves. In gvim, just click and
 drag the mouse across the desired region. This sets Vim’s visual
 flag.
Table 10-2 shows some of Vim’s visual
 mode motion commands.
Table 10-2. Visual mode motion commands in Vim
	Command	Description
	countaw,
 countaW	Select count words.
 Intervening whitespace is included. This is slightly
 different from iw (see
 next entry). Lowercase w
 looks for punctuation-delimited words, whereas uppercase
 W looks for
 whitespace-delimited words.
	countiw,
 countiW	Select count words. Add
 words but not whitespace. Lowercase w looks for punctuation-delimited
 words, whereas uppercase W looks for whitespace-delimited
 words.
	as, is	Add sentence, or inner sentence.
	ap, ip	Add paragraph, or inner paragraph.

For a more detailed discussion of text objects and how they
 are used in visual mode, use the help command:
:help text-objects

Extended Regular Expressions

 Of all the clones, Vim provides the richest set of
 regular expression matching facilities. Much of the descriptive text
 in the following list is borrowed from the Vim documentation:
	\|
	Indicates alternation, house\|home.

	\+
	 Matches one or more of the preceding regular
 expression.

	\=
	 Matches zero or one of the preceding regular
 expression.

	\{
 n ,
 m }
	 Matches n to
 m of the preceding regular expression, as
 much as possible. n and
 m are numbers between 0 and 32,000. Vim
 requires only the left brace to be preceded by a backslash, not
 the right brace.

	\{
 n }
	Matches n of the preceding regular
 expression.

	\{
 n ,}
	Matches at least n of the preceding
 regular expression, as much as possible.

	\{,
 m }
	Matches 0 to m of the preceding
 regular expression, as much as possible.

	\{}
	Matches 0 or more of the preceding regular expression, as
 much as possible (same as *).

	\{-
 n ,
 m }
	Matches n to m
 of the preceding regular expression, as few as possible.

	\{-
 n }
	Matches n of the preceding regular
 expression.

	\{-
 n ,}
	Matches at least n of the preceding
 regular expression, as few as possible.

	\{-,
 m }
	Matches 0 to m of the preceding
 regular expression, as few as possible.

	\i
	 Matches any identifier character, as defined by
 the isident option.

	\I
	Like \i, but excluding
 digits.

	\k
	Matches any keyword character, as defined by the iskeyword option.

	\K
	Like \k, but excluding
 digits.

	\f
	 Matches any filename character, as defined by the
 isfname option.

	\F
	Like \f, but excluding
 digits.

	\p
	 Matches any printable character, as defined by
 the isprint option.

	\P
	Like \p, but excluding
 digits.

	\s
	Matches a whitespace character (exactly a space or a tab).

	\S
	Matches anything that isn’t a space or a tab.

	\b
	Backspace.

	\e
	Escape.

	\r
	Carriage return.

	\t
	Tab.

	\n
	 Reserved for future use. Eventually, it will be
 used for matching multiline patterns. See the Vim documentation
 for more details.

	~
	 Matches the last given substitute (i.e.,
 replacement) string.

	\(…\)
	 Provides grouping for *, \+, and \=, as well as making matched subtexts
 available in the replacement part of a substitute command
 (\1, \2, etc.).

	\1
	 Matches the same string that was matched by the
 first subexpression in \(and
 \). For example, \([a-z]\).\1 matches
 ata, ehe,
 tot, etc. \2, \3, and so on may be used to represent
 the second, third, and so on subexpressions.

 The isident,
 iskeyword, isfname, and isprint options define the characters that
 appear in identifiers, keywords, and filenames, and that are
 printable. Use of these options makes regular expression matching very
 flexible.

Customizing the Executable

For most users, the default Vim suffices nicely. Today’s
 computers provide enough processing power (memory and processing
 cycles) for the full-featured Vim executable. You get all of Vim’s
 extended features with the confidence of good performance. However, in
 some instances, environment or circumstance may dictate a more
 stripped down Vim.
Users may need Vim to take up a minimal footprint, for example,
 on a handheld device running Linux that has limited memory. Users may
 also have no use for compiled-in features such as spellcheck (because
 they may be programmers with no interest in features that mimic word
 processing) or perl (because
 perl may not be installed on their
 machines).
It’s much easier to live with the available features than to
 reconfigure, recompile, and reinstall Vim with all new options, just
 to add missing features.

Chapter 11. Multiple Windows in Vim

By default, Vim edits all its files in a single window, showing just
 one buffer at a time as you move between files or to different parts of
 a single file. But Vim also offers multi-window editing, which can make
 complex editing tasks easier. This is different from starting multiple
 instances of Vim on a graphical terminal. This chapter covers the use of
 multiple windows in a single instance of a running Vim process (which
 we’ll call a session).
You can initiate your editing session with multiple windows or
 create new windows after a session starts. You can add windows to your
 edit session up to the limit imposed by sanity, and you can delete them
 back to a single edit window.
Here are some examples where multiple windows make your life
 easier:
	Editing a number of files that need to be formatted the same
 way, where you would like to compare them visually as you go
 along

	Cutting and pasting text quickly and repeatedly among multiple files or
 multiple parts of a single file

	Displaying one part of a file for reference, to facilitate
 work elsewhere in the same file

	Comparing two versions of a file

Vim offers many window-managing convenience features, including
 the ability to:
	Split windows horizontally or vertically

	Navigate from one window to another and back again
 quickly

	Copy and move text to and from multiple windows

	Move and reposition windows

	Work with buffers, including hidden buffers (to be described
 later)

	Use external tools such as the diff command
 with multiple windows

In this chapter, we guide you through the multiwindow experience.
 We show you how to start a multiwindow session, discuss features and
 tips for the edit session, and describe how to exit your work and ensure
 that all your work is properly saved (or abandoned, if you wish!). The
 following topics are covered:
	Initializing or starting multiwindow editing

	Multiwindow :ex
 commands

	Moving the cursor from window to window

	Moving windows around the display

	Resizing windows

	Buffers and their interaction with windows

	Tabbed editing (like the tabs offered by modern Internet
 browsers and dialog boxes)

	Closing and quitting windows

Initiating Multiwindow Editing

You can initiate multiwindow editing when you start Vim, or you can split windows within your editing session.
 Multiwindow editing is dynamic in Vim, allowing you to open, close,
 and navigate among multiple windows at any point, from most
 contexts.
Multiwindow Initiation from the Command Line (Shell)

By default, Vim opens only one window for a session, even if you
 specify more than one file. While we don’t know for sure why Vim
 would not open multiple windows for multiple files, it may be because using just a single
 window is consistent with vi
 behavior. Multiple files occupy multiple buffers, with each file in
 its own buffer. (Buffers are discussed shortly.)
To open multiple windows from the command line, use Vim’s
 -o option. For example:
$ Vim -o file1 file2
This opens the edit session with the display horizontally
 split into two equal-sized windows, one for each file (see Figure 11-1). For each file named on the command
 line, Vim tries to open a window for editing. If Vim cannot split
 the screen into enough windows for the files, the first files listed
 in the command-line arguments get windows, while the remaining files
 are loaded into buffers not visible (but still available) to the
 user.
[image: Results of “Vim -o5 file1 file2”]

Figure 11-1. Results of “Vim -o5 file1 file2”

Another form of the command line preallocates the windows by
 appending a number n to
 -o:
$ Vim -o5 file1 file2

 This opens a session with the display horizontally split into five equal-sized windows, the
 topmost of which contains file1
 and the second of which contains file2 (see Figure 11-2).
[image: Results of “Vim -o5 file1 file2”]

Figure 11-2. Results of “Vim -o5 file1 file2”

Tip
When Vim creates more than one window, its default behavior
 is to create a status line for each window (whereas the default
 behavior for a single window is not to display any status line).
 You can control this behavior with Vim’s laststatus option, e.g.:
:set laststatus=1
Set laststatus to 2 to
 always see a status line for each window, even in single window
 mode. (It is best to set this in your .vimrc file.)

Because window size affects readability and usability, you may
 want to control Vim’s limits for window sizes. Use Vim’s winheight and winwidth options to define reasonable limits for the current window
 (other windows may be resized to accommodate it).

Multiwindow Editing Inside Vim

You can initiate and modify the window configuration from
 within Vim. Create a new window with the :split command.
 This breaks the current window in half, showing the same buffer in
 both halves. Now you can navigate independently in each window on
 the same file.
Note
There are convenience key sequences for many of the commands
 in this chapter. In this case, for instance, ^Ws splits a window. (All Vim window-related commands begin with
 ^W, with the “W” being mnemonic
 for “window.”) For the purposes of discussion, we show only the
 command-line methods because
 they provide the added power of optional parameters that customize
 the default behavior. If you find yourself using commands
 routinely, you can easily find the corresponding key sequence in
 the Vim documentation, as described in Built-in Help.

Similarly, you can create a new, vertically separated edit
 window with the :vsplit
 command (see Figure 11-3).
[image: Vertically split window]

Figure 11-3. Vertically split window

For each of these methods, Vim splits the window (horizontally
 or vertically), and since no file was specified on the :split command line, you end up editing
 the same file with two views or windows.
Tip
Don’t believe you’re editing the same file at the same time?
 Split the edit window and scroll each window so that each shows
 the same area of the file. Make changes. Watch the other window.
 Magic.

Why or how is this useful? One common use by this author, when
 writing shell scripts or C programs, is to code a block of text that
 describes the program’s usage. (Typically, the program will display
 the block when passed a --help option.) I split the display so that one window displays the
 usage text, and I use this as a template to edit the code in the
 other window that parses all the options and command-line arguments
 described in the usage text. Often (almost always) this code is
 complex and ends up far enough from the usage text that I can’t
 display everything I want in a single window.
If you want to edit or browse another file without losing your
 place in your current file, provide the new file as an argument to
 your :split command. For
 instance:
:split otherfile
The next section describes splitting and unsplitting windows
 in more detail.

Opening Windows

This section goes into depth about how to get the precise
 behavior you want when you split your window.
New Windows

As discussed previously, the simplest way to open a new window
 is to issue :split (for a
 horizontal division) or :vsplit
 (for a vertical division). A more in-depth discussion of the many
 commands and variations follows. We also include a command synopsis
 for quick reference.

Options During Splits

The full :split command to
 open a new horizontal window is:
:[n]split [++opt] [+cmd] [file]
where:
	n
	Tells Vim how many lines to display in the new window,
 which goes at the top.

	opt
	Passes Vim option information to the new window session
 (note that it must be preceded by two plus signs).

	cmd
	Passes a command for execution in the new window (note
 that it must be preceded by a single plus sign).

	file
	Specifies a file to edit in the new window.

For example, suppose you are editing a file and want to split
 the window to edit another file named otherfile. You want to ensure that the
 session uses a fileformat of
 unix (which ensures the use of a
 line feed to end each line instead of a carriage return and line
 feed combination). Finally, you want the window to be 15 lines tall.
 Enter:
:15split ++fileformat=unix otherfile
To simply split the screen, showing the same file in both
 windows and using all the current defaults, you can use the key
 commands ^Ws,
 ^WS, or ^W^S.
Tip
If you want windows to always split equally, set the
 equalalways option, preferably
 putting it in your .vimrc to
 make it persistent over sessions. By default, setting equalalways splits both horizontal and
 vertical windows equally. Add the eadirection option (hor, ver, both, for horizontal, vertical, or both,
 respectively) to control which direction splits equally.

The following form of the :split command opens a new horizontal
 window as before, but with a slight nuance:
:[n]new [++opt] [+cmd] [file]

 In addition to creating the new window, the WinLeave,
 WinEnter, BufLeave, and BufEnter autocommands execute. (For more
 information on autocommands, see the section Autocommands.)
Along with the horizontal split commands, Vim offers analogous
 vertical ones. So, for example, to split a vertical window, instead
 of :split or :new, use
 :vsplit and :vnew respectively. The same optional parameters are available as for the
 horizontal split commands.
There are two horizontal split commands without vertical
 cousins:
	:sview
 filename
	Splits the screen horizontally to open a new window and sets the
 readonly for that buffer.
 :sview requires the
 filename argument.

	:sfind [++
 opt]
 [+ cmd]
 filename
	Works like :split,
 but looks for the filename in the
 path. If Vim does not find
 the file, it doesn’t split the window.

Conditional Split Commands

Vim lets you specify a command that causes a window to open if
 a new file is found. :topleft
 cmd tells Vim to execute
 cmd and display a new window with the cursor at the top left
 if cmd opens a new file. The command can
 produce three different results:
	cmd splits the window horizontally,
 and the new window spans the top of the Vim window.

	cmd splits the window vertically, and
 the new window spans the left side of the Vim window.

	cmd causes no split but instead
 positions the cursor at the top left of the current
 window.

Window Command Summary

Table 11-1 summarizes the
 commands for splitting windows.
Table 11-1. Summary of window commands
	ex
 command	vi
 command	Description
	:[n]split [++opt] [+cmd] [file]
	 ^Ws

 ^WS

 ^W^S
	Split the current window into two from side to
 side, placing the cursor in the new window. The optional
 file argument places that file in the
 newly created window. The windows are created as equal in
 size as possible, determined by free window
 space.

	:[n]new [++opt] [+cmd]
	 ^Wn

 ^W^N

	Same as :split, but start the new window
 editing an empty file. Note that the buffer will have no
 name until one is assigned.

	:[n]sview [++opt] [+cmd] [file]
	 	Read-only version of :split.

	:[n]sfind [++opt] [+cmd] [file]
	 	Split window and open file
 (if specified) in the new window. Look for
 file in the path.

	:[n]vsplit [++opt] [+cmd] [file]
	 ^Wv

 ^W^V

	Split current window into two from top to
 bottom and open file (if specified) in
 the new window.

	:[n]vnew [++opt] [+cmd]
	 	Vertical version of :new.

Moving Around Windows (Getting Your Cursor from Here to
 There)

It’s easy to move from window to window with a mouse in
 both gvim and Vim.
 gvim supports clicking with the
 mouse by default, whereas in Vim you can enable the behavior with the mouse option. A good default setting for Vim
 is :set mouse=a, to activate the
 mouse for all uses: command line, input, and navigation.
If you don’t have a mouse, or prefer to control your session
 from the keyboard, Vim provides a full set of navigation commands to
 move quickly and accurately among session windows. Happily, Vim uses
 the mnemonic prefix keystroke ^W
 consistently for window navigation. The keystroke that follows defines the
 motion or other action, and should be familiar to experienced vi and Vim users because they map closely to
 the same motion commands for editing.
Rather than describe each command and its behavior, we will
 consider an example. The command-synopsis table should then be
 self-explanatory.
To move from the current Vim window to the next one, type
 CTRL-W j (or CTRL-W
 <down> or CTRL-W CTRL-J). The CTRL-W is the mnemonic for “window” command, and the
 j is analogous to Vim’s j command, which
 moves the cursor to the next line.
Table 11-2
 summarizes the window navigation commands.
Note
As with many Vim and vi
 commands, these can be multiply executed by prefixing them with a
 count. For example, 3^Wj tells Vim to jump to the third
 window down from the current window.

Table 11-2: Window navigation commands
[image:]

Mnemonic Tips
t and b are mnemonic for
 top and bottom
 windows.
In keeping with the convention that lowercase and uppercase
 implement opposites, CTRL-W w moves you through the windows in the
 opposite direction from CTRL-W
 W.
The Control characters do not distinguish between uppercase
 and lowercase; in other words, pressing the Shift key while pressing
 a CTRL- key itself has no effect.
 However, an upper/lowercase distinction is
 recognized for the regular keyboard key you press afterward.

Moving Windows Around

You can move windows two ways in Vim. One way simply swaps the
 windows on the screen. The other way changes the actual window
 layouts. In the first case, window sizes remain constant while windows
 change position on the screen. In the second case, windows not only
 move but are resized to fill the position to which they’ve
 moved.
Moving Windows (Rotate or Exchange)

Three commands move windows without modifying layout. Two of
 these rotate the windows positionally in one direction (to the right
 or down) or the other (to the left or up), and the other one
 exchanges the position of two possibly nonadjacent windows. These
 commands operate only on the row or column in
 which the current window lives.
CTRL-Wr rotates windows to the right or down. Its
 complement is CTRL-WR, which rotates windows in the opposite
 direction.
An easier way to imagine how these work is to think of a row
 or column of Vim windows as a one-dimensional array. CTRL-W r
 would shift each element of the array one position to the right, and
 move the last element into the vacated first position. CTRL-W R
 simply moves the elements the other direction.
If there are no windows in a column or row that aligns with
 the current window, this command does nothing.
After Vim rotates the windows, the cursor remains in the
 window from which the rotate command executed; thus, the cursor
 moves with the window.
CTRL-Wx and CTRL-WCTRL-X let you exchange two windows in a
 row or column of windows. By default, Vim exchanges the current
 window with the next window, and if there is no next window, Vim
 tries to exchange with the previous window. You can exchange with
 the nth next window by prepending a count
 before the command. For example, to switch the current window with
 the third next window, use the command 3^Wx.
As with the two previous commands, the cursor stays in the
 window from which the exchange command executes.

Moving Windows and Changing Their Layout

Five commands move and reflow the windows: two move the
 current window to a full-width top or bottom window, two move the
 current window to a full-height left or right window, and the fifth
 moves the current window to another existing tab. (See the section
 Tabbed Editing.) The first four
 commands bear familiar mnemonic relationships to other Vim commands;
 for instance, CTRL-W K maps to the traditional notion of
 k as “up.” Table 11-2 summarizes these commands.
Table 11-2. Commands to move and reflow windows
	Command	Description
	^WK	Move the current window to the top of the
 screen, using the full width of the screen.

	^WJ	Move the current window to the bottom of the
 screen, using the full width of the screen.

	^WH	Move the current window to the left of the
 screen, using the full height of the screen.

	^WL	Move the current window to the right of the
 screen, using the full height of the screen.

	^WT	Move the current window to a new existing
 tab.

It is difficult to describe the exact behavior of these layout
 commands. After the move and expansion of the window to the full
 height or width of the screen, Vim reflows the windows in a
 reasonable way. The behavior of the reflow can also be influenced by
 some of the windows options settings.

Window Move Commands: Synopsis

Tables 11-3 and 11-4 summarize the commands introduced in this section.
Table 11-3. Commands to rotate window positions
	Command	Description
	 ^Wr

 ^W^R	Rotate windows down or to the right.
	^WR	Rotate windows up or to the left.
	 ^Wx

 ^W^X	Swap positions with the next window, or if issued
 with a count n, swap with
 nth next
 window.

Table 11-4. Commands to change position and layout
	Command	Description
	^WK	Move window to top of screen and use full
 width. The cursor stays with the moved
 window.

	^WJ	Move window to bottom of screen and use full
 width. The cursor stays with the moved
 window.

	^WH	Move window to left of screen and use full
 height. The cursor stays with the moved
 window.

	^WL	Move window to right of screen and use full
 height. The cursor stays with the moved
 window.

	^WT	Move window to new tab. The cursor stays with
 the moved window. If the current window is the only window
 in the current tab, no action is taken.

Resizing Windows

Now that you’re more familiar with Vim’s multiwindowing
 features, you need a little more control over them. This section
 addresses how you can change the size of the current window, with, of
 course, effects on other windows in the screen. Vim provides options
 to control window sizes and window sizing behavior when opening new
 windows with split commands.
If you’d rather control window sizes sans
 commands, use gvim and let the mouse do the work for you. Simply click and
 drag window boundaries with the mouse to resize. For vertically
 separated windows, click the mouse on the vertical separator of
 | characters. Horizontal windows
 are separated by their status lines.
Window Resize Commands

As you’d expect, Vim has vertical and horizontal resize commands. Like the
 other window commands, these all begin with CTRL-W and map nicely to mnemonic devices,
 making them easy to learn and remember.
CTRL-W= tries to resize all windows to equal
 size. (This is also influenced by the current values of winheight and windwidth, discussed in the following
 section.) If the available screen real estate doesn’t divide
 equally, Vim sizes the windows to be as close to equal as
 possible.
CTRL-W- decreases the current window height by
 one line. Vim also has an ex
 command that lets you decrease the window size explicitly. For
 example, the command resize -4
 decreases the current window by four lines and gives those lines to
 the window below it.
Note
It’s interesting to note that Vim obediently decreases your
 window size even if you are not in a multiple window edit session.
 While it may seem counterintuitive at first, the side effect is
 that Vim decreases the window as requested and the vacated screen
 real estate is allocated to the command-line window. Typically, the
 command-line window always
 uses a single line, but there are reasons to use a command-line
 window larger than one line high. (The most common reason we know
 of is to provide enough space to let Vim display complete
 command-line status and feedback without intermediate prompts.)
 That said, it’s best to use the :resize command to resize your current
 window, and to use the winheight option to size your
 command window.

CTRL-W+ increases the current window by one
 line. The :resize
 +n command increases the
 current window size by n lines. Once the
 window’s maximum height is reached, further use of this command has
 no effect.
Tip
One of the authors’ favorite ways to use the CTRL-W +
 and CTRL-W - commands is by mapping each to keys,
 both keys adjacent. The + key is
 a convenient choice. Though it is already the Vim “up” command,
 that behavior is redundant and little used by veteran Vim users
 (who use the k command instead).
 Therefore, this key is a good candidate to map to something else,
 in this case CTRL-W +. Immediately to that key’s left (on
 most standard keyboards) is the -. But since it is unshifted and the
 + is shifted, map the shifted
 key, _, to CTRL-W -. Now you have two convenient
 side-by-side keys to easily and quickly expand and contract your
 current window horizontally.

:resizen sets
 the horizontal size of the current window to n
 lines. It sets an absolute size, in contrast to the previously
 described commands that make a relative change.
zn sets the
 current window height to n lines. Note that
 n is not optional!
 Omitting it results in the vi/Vim
 command z, which moves the cursor
 to the top of the screen.
CTRL-W< and CTRL-W>
 decrease and increase the window width, respectively. Think of the
 mnemonic device of “shift left” (<<) and “shift right” (>>) to associate these commands to
 their function.
Finally, CTRL-W | resizes the current window to the widest
 size possible (by default). You can also specify explicitly how to
 change the window width with vertical
 resize n. The
 n defines the window’s new width.

Window Sizing Options

Several Vim options influence the behavior of the resize
 commands described in the previous section.
winheight and winwidth define the minimal window height and width, respectively,
 when a window becomes active. For example, if the screen
 accommodates two equal-sized windows of 45 lines, the default Vim
 behavior is to split them equally. If you were to set winheight to a value larger than 45—say,
 60—Vim will resize the window to which you move each time to 60
 lines, and will resize the other window to 30. This is handy for
 editing two files simultaneously; you automatically increase the
 allocated window size for maximum context when you switch from
 window to window and from file to file.
equalalways tells Vim to
 always resize windows equally after splitting or closing a window.
 This is a good option to set in order to ensure equitable allocation
 of windows as you add and delete them.
eadirection
 defines directional jurisdiction for equalalways. The possible values
 hor, ver, and both tell Vim
 to make windows of equal size horizontally,
 vertically, or both,
 respectively. The resizing applies each time you split or delete a
 window.
cmdheight sets the command
 line height. As described previously, decreasing a window’s height when there is only one window
 increases the command-line height. You can keep the command line the
 height you want using this option.
Finally, winminwidth and
 winminheight tell Vim the
 minimum width and height to size windows. Vim
 considers these to be hard values, meaning that windows will never
 be allowed to get smaller than these values.

Resizing Command Synopsis

Table 11-5 summarizes the
 ways to resize windows. Options are set with the :set command.
Table 11-5. Window resizing commands
	Command or option	Description
	^W=	Resize all windows equally. The current window honors
 the settings of the winheight and winwidth options.

	:resize -n

 ^W-	Decrease the current window size. The default amount is one
 line.

	:resize +n

 ^W+

	Increase the current window size. The default
 amount is one line.

	:resizen

 ^W^_

 ^W_

	Set the current window height. The default is
 to maximize window height (unless n
 is specified).

	zn
 <ENTER>	Set the current window height to
 n.

	^W<	Increase the current window width. The default amount
 is one column.

	^W>	Decrease the current window width. The default amount is
 one column.

	:vertical resizen

 ^W|

	Set the current window width to n. The
 default is to make window as wide as possible.

	winheight
 option	When entering or creating a window, set its
 height to at least the specified value.

	winwidth
 option	When entering or creating a window, set its
 width to at least the specified value.

	equalalways
 option	When the number of windows changes, either by
 splitting or closing windows, resize them to be the same
 size.

	eadirection
 option	Define whether Vim resizes windows equally
 vertically, horizontally, or both.

	cmdheight
 option	Set the command line height.

	winminheight
 option	Define the minimum window height, which applies to
 all windows created.

	winminwidth
 option	Define the minimum window width, which applies to
 all windows created.

Buffers and Their Interaction with Windows

Vim uses buffers as containers for
 work. Understanding buffers completely is an acquired skill; there are
 many commands for manipulating and navigating them. However, it is
 worthwhile to familiarize yourself with some of the buffer basics and
 understand how and why they exist throughout a Vim session.
A good starting point is to open up a few windows editing
 different files. For example, start Vim by opening file1.
 Then, within the session, issue :split
 file2 and then :split file3.
 You should now have three open files in three separate Vim windows.
Now use the commands :ls,
 :files, or :buffers to list the buffers. You should see three lines, each numbered and including
 the filenames, along with additional information. These are Vim’s
 buffers for this session. There is one buffer for each file and each
 buffer has a unique, nonchanging associated number. In this example,
 file1 is in buffer 1, file2 is in buffer 2,
 etc.
Additional information on each buffer can be displayed if you
 append an exclamation point (!) after any of the commands.
To the right of each buffer number are status flags. These flags
 describe the buffers as shown in Table 11-6.
Table 11-6. Status flags describing buffers
	Code	Description
	u	Unlisted buffer. This buffer is not listed unless you use the
 ! modifier. To see an example of an unlisted
 buffer, type :help. Vim
 splits the current window to include a new
 window in which the built-in help appears. The plain :ls command will not show the help buffer, but :ls! includes it.

	% or (mutually
 exclusive) #	% is the buffer for the current window.# is the buffer to which you would
 switch with the :edit #
 command.

	a or (mutually
 exclusive) h	aindicates an active buffer. That means the
 buffer is loaded and visible. h indicates a
 hidden buffer. The hidden buffer exists but is not visible in
 any window.

	- or (mutually
 exclusive) =	- means that a buffer has the modifiable option turned off. The
 file is read-only. = is a read-only buffer that cannot be made modifiable
 (for instance, because you don’t have filesystem privileges to
 write to the file).

	+ or (mutually
 exclusive) x	+ indicates a modified buffer. x is a buffer
 with read errors.

Tip
The u flag is an interesting way to know what
 help file you are viewing in Vim. For example, had you issued
 :help split followed by :ls!, you would see that the unlisted
 buffer refers to the built-in Vim help file, windows.txt.

Now that you can list Vim buffers, we can talk about them and
 their various uses.
Vim’s Special Buffers

Vim uses some buffers for its own purposes, called
 special buffers. For instance, the help
 buffers described in the previous section are special. Typically,
 these buffers cannot be edited or modified.
Here are four examples of Vim special buffers:
	quickfix
	Contains the list of errors created by your commands
 (which can be viewed with :cwindow) or the location list
 (which can be viewed with the :lwindow command). Do not edit
 the contents of this buffer! It helps programmers iterate
 through the edit-compile-debug cycle. See Chapter 14.

	help
	Contains Vim help files, described earlier in the section Built-in Help. :help loads these text files into
 this special buffer.

	directory
	Contain directory contents, that is, a list of files for a directory (and some helpful extra
 command hints). This is a handy tool within Vim that lets you
 move around in this buffer as you would in a regular text file
 and select files under the cursor for editing by pressing
 ENTER.

	scratch
	These buffers contain text for general purposes. This text is
 expendable and can be deleted at any time.

Hidden Buffers

Hidden buffers are Vim buffers that are not currently displayed in
 any window. This makes it easier to edit multiple files, considering
 the limited screen real estate for multiple windows, without
 constantly retrieving and rewriting files. For example, imagine you
 are editing the myfile file but
 wish to momentarily edit some other file, myOtherfile. If the hidden option is set, you can edit
 myOtherfile through :edit myOtherfile, causing Vim to hide the
 myfile buffer and display
 myOtherfile in its place. You
 can verify this with :ls and see
 both buffers listed with myfile
 flagged as hidden.

Buffer Commands

There are almost 50 commands that specifically target buffers. Many
 are useful but are for the most part outside the scope of this
 discussion. Vim manages buffers automatically as you open and close
 multiple files and windows. The suite of buffer commands allows you
 to do almost anything with buffers. Often they are used within
 scripts to handle such tasks as unloading, deleting, and modifying
 buffers.
Two buffer commands are worth knowing for general use because
 of their power to do lots of work across many files:
	windo
 cmd
	Short for “window do” (at least we think it’s a decent
 mnemonic), this pseudo-buffer command (actually it’s a window
 command) executes the command cmd in each window.
 It acts as if you go to the top of the screen (^Wt), and cycles through each window
 to execute the specified command as :cmd in that window. It acts only
 within the current tab and stops at any window where :cmd generates an error. The window
 in which the error occurs becomes the new current
 window.
cmd is not permitted
 to change the state of the windows; that is, it cannot delete,
 add, or change the order of the windows.
Note
cmd can concatenate
 multiple commands with the pipe (|) symbol.
 Do not confuse this notation with the Unix shell
 convention of piping commands! The commands are
 executed in sequence, with the first command executed
 sequentially through all windows, then the second command in
 all windows, etc.

As an example of :windo in action, suppose you are
 editing a suite of Java files and for some reason you have a
 class name that is improperly capitalized. You need to repair
 this by changing every occurrence of
 myPoorlyCapitalizedClass to
 MyPoorlyCapitalizedClass. With :windo you can do that with:
:windo %s/myPoorlyCapitalizedClass/MyPoorlyCapitalizedClass/g
Pretty
 cool!

	bufdo[!]
 cmd
	This is analogous to windo but
 operates on all of the buffers in your editing session, not
 just visible buffers in the current tab. bufdo stops at the first error
 encountered, just like windo, and leaves the cursor in the
 buffer where the command fails.
The following example changes all buffers to Unix file
 format:
:bufdo set fileformat=unix

Buffer Command Synopsis

Table 11-7 makes no
 attempt to describe all the commands related to buffers; instead it
 summarizes the ones described in this section and some other popular
 commands.
Table 11-7. Summary of buffer commands
	Command	Description
	:ls[!]

 :files[!]

 :buffers[!]
	List buffers and file names. Include unlisted buffers if
 ! modifier is included.

	:ball

 :sball
	Edit all args or buffers. (sball opens them in new windows.)

	:unhide

 :sunhide
	Edit all loaded
 buffers. (sunhide
 opens them in new windows.)

	:baddfile
	Add file
 to list.

	:bunload[!]
	Unload buffer from memory. The ! modifier forces a
 modified buffer to be unloaded without being
 saved.

	:bdelete[!]
	Unload buffer and delete it from the buffer list.
 The ! modifier forces a modified buffer to be
 unloaded without being saved.

	:buffer [n]

 :sbuffer [n]
	Move to buffer n.
 (sbuffer opens a new
 window.)

	:bnext [n]

 :sbnext [n]
	Move to next
 nth buffer.
 (sbnext opens a new
 window.)

	:bNext [n]

 :sbNext [n]

 :bprevious [n]

 :sbprevious [n]
	Move to
 nth next or
 previous buffer. (sbNext
 and sbprevious
 open a new window.)

	:bfirst

 :sbfirst
	Move to first buffer (sbfirst opens a new
 window).

	:bfirst

 :sbfirst
	Move to last buffer (sblast opens a new
 window).

	:bmod [n]

 :sbmod [n]
	Move to
 nth modified
 buffer (sbmod opens a new
 window).

Playing Tag with Windows

Vim
 extends the vi tag functionality
 into windows by offering the same tag traversal mechanisms through
 multiple windows. Following a tag can also open a file in the
 associated place in a new window.
The tag windowing commands split the current window and follow a tag either to a
 file matching the tag or to the file matching the filename under the
 cursor.
:stag[!]tag
 splits the window to display the location for the tag found.
 The new file containing the matched tag becomes the current window,
 and the cursor is placed over the matched tag. If no tag is found, the
 command fails and no new window is created.
Tip
As you become more familiar with Vim’s help system, you can
 use this :stag command to split
 your way through the help system rather than jumping from file to
 file in the same window.

^WJ or ^W^J splits the window and opens a window above the current window.
 The new window becomes the current window, and the cursor is placed on
 the matching tag. If there is no match on the tag, the command
 fails.
^Wg] splits the window and creates a new window above the current
 window. In the new window, Vim performs the command :tselecttag,
 where tag was the tag identifier under the
 cursor. If no matching tag exists, the command fails. The cursor is
 placed in the new window, and that new window becomes the current
 window.
^Wg^J works exactly like
 ^Wg], except that instead of performing :tselect, it performs :tjump.
^Wf (or ^W^F) splits the window and edits the filename underneath the cursor.
 Vim will look sequentially through the files set in the option
 variable path to find the file. If
 the file doesn’t exist in any of the path directories, the command fails and does
 not create a new window.
^WF splits the window and
 edits the filename under the cursor. The cursor is placed in the new
 window editing that file and positioned at the line number matching
 the number following the filename in the first window.
^Wgf opens the file under the
 cursor in a new tab. If the file doesn’t exist, the new tab is not
 created.
^Wgf opens the file under the
 cursor in a new tab and positions the cursor on the line specified by
 the number following the filename in the first window. If the file
 doesn’t exist, the new tab is not created.

Tabbed Editing

Did you know that in addition to editing in multiple windows, you can
 create multiple tabs? Vim lets you create new
 tabs, each of which behaves independently. In each tab you can split
 the screen, edit multiple files—virtually anything you would normally
 do in a single window, but now all of your work is easily managed in
 one window with tabs.
Many Firefox users
 are very familiar with and dependent on tabbed browsing and will
 recognize what this feature brings to power editing. For the
 uninitiated, it’s worth trying.
You can use tabs in both regular Vim and gvim, but gvim is much nicer and easier. Some of the
 more important ways to create and manage tabs include:
	:tabnew
 filename
	Open a new tab and edit a file (optional). If no file
 is specified Vim opens a new tab with an empty buffer.

	:tabclose
	Close the current tab.

	:tabonly
	Close all other tabs. If other tabs have
 modified files, they are not removed unless the
 autowrite option is set, in which case all
 modified files are written before the other tabs are
 closed.

In gvim you can activate any tab simply by clicking the tab at the
 top of the screen. You can also activate tabs in character-based
 terminals with the mouse if the mouse is configured (see the
 mouse option). Also, it’s easy to move right and left
 from tab to tab with CTRL PAGE DOWN (move one tab to the right) and
 CTRL PAGE
 UP (move one tab to the left). If you are in the leftmost or
 rightmost tabs and you try to move left or right respectively, Vim
 moves to the far right or far left tab.
gvim offers right-click
 pop-up menus for the tab, from which you can open a new tab (with or
 without a new file to edit) and close a tab.
Figure 11-4 is an example of a set of
 tabs (notice the tab pop-up menu).
[image: Example of gvim tabs and tabbed editing]

Figure 11-4. Example of gvim tabs and tabbed editing

Closing and Quitting Windows

There are four different ways to close a window that are specific
 to window editing: quit,
 close, hide, and
 close all others.
^Wq (or ^W^Q, or :quit) is really just a window version of the:quit command. In its
 simplest form (i.e., a single session edit with only one window), it
 behaves exactly like vi’s :quit command. If the hidden option is set and the current window
 is the last window on the screen referencing that file, the window is
 closed but the file buffer is retained (it can be retrieved) and
 hidden. In other words, Vim is still storing the file and you can
 return to editing it later. If hidden is not set, the
 window is the last one referencing that file, and there are unsaved
 changes in the current window buffer, the command fails in order to
 avoid losing your changes. But if some other window displays the file,
 the current window closes.
^Wc (or :close[!]) closes the current window. If the hidden option is set and this is the last
 window referencing this file, Vim closes the window and the buffer is
 hidden. If this window is on a tab page and is the last window for
 that tab page, the window and the tab page are
 closed. As long as you don’t use the ! modifier, this
 command will not abandon any file with unsaved changes. The
 ! modifier tells Vim to close the current window
 unconditionally.
Note
Note that this command does not use ^W^C, because Vim uses ^C to cancel
 commands. Therefore, if you try to use ^W^C, the ^C simply cancels the command.
Similarly, while the ^W
 commands are used in combination with ^S and ^Q, some users may
 find their terminals frozen because some interpret ^S and ^Q as control characters to stop and start
 displaying information to the screen. If you find your screen
 freezing mysteriously when using these combinations, try the other
 listed combinations instead.

^Wo, ^W^O, and :only[!] close all windows except the
 current window. If the hidden
 option is set, all closed windows hide their buffers. If it’s not set,
 any window referencing a file with unsaved changes remains on the
 screen, unless you included the !
 modifier, in which case all windows are closed and the files are
 abandoned. The behavior of this
 command can be affected by the autowrite option: if it’s set, all windows
 are closed, but windows containing unsaved changes are written to the
 files on disk before being exited.
:hide
 [cmd] quits the current window and hides the
 buffer if no other window references it. If the optional
 cmd is supplied, the buffer is hidden and the
 command is executed.
Table 11-8 provides a summary
 of these commands.
Table 11-8. Commands for closing and quitting windows
	Command	Description
	:quit[!]

 ^Wq

 ^W^Q
	Quit the current window.

	:close[!]

 ^Wc
	Close the current window.

	:only[!]

 ^Wo

 ^W^O
	Make the current window the only
 window.

Summary

As you now appreciate, Vim ramps up the editing horsepower with
 its many windowing features. Vim lets you create and delete windows
 easily and on the fly. Additionally, Vim provides the under-the-hood
 power of the raw buffer commands, buffers being the underlying file
 management infrastructure with which Vim manages window editing. This
 is once again a perfect example of how Vim brings multiwindow editing
 to beginners while simultaneously giving
 power users the tools they need to tune their windowing experience.

Chapter 12. Vim Scripts

Sometimes customization alone isn’t enough for your editing
 environment. Vim lets you define all of your favorite settings in your
 .vimrc file, but maybe you want
 more dynamic or “just in time” configuration. Vim scripts let you do
 that.
From inspecting buffer contents to handling unanticipated external
 factors, Vim’s scripting language lets you complete complex tasks and
 make decisions based on your needs.
If you have a Vim configuration file (.vimrc, .gvimrc, or both), you are already scripting
 in Vim; you just don’t know it. All of the Vim commands and options are
 valid inputs to scripts. And, as you’d expect, Vim provides all of the
 standard flow control (if...then...else, while, etc.), variables, and functions typical
 in any language.
In this chapter, we’ll walk through an example and incrementally
 build up a script. We’ll look at simple constructs, use some of Vim’s
 built-in functions, and examine rules you must consider in order to
 write well-behaved and predictable Vim scripts.
What’s Your Favorite Color (Scheme)?

Let’s begin with the simplest of configurations. We’ll
 customize our environment to a color scheme we
 prefer. This is simple, and uses one of the basics of Vim scripts, the
 simple Vim command.
Vim ships with 17 customized color schemes. You can choose and
 activate a color scheme by putting the colorscheme
 command in your .vimrc or
 .gvimrc file. A favorite “understated” color scheme of one author is
 the desert scheme:
colorscheme desert
Put a colorscheme like that
 in your configuration file, and now every time you edit with Vim you
 will see your favorite colors.
So our first script is trivial. What if your tastes for your
 color scheme are more complex? What if you like more than one color
 scheme? What if the time of day correlates to your preferences? Vim
 scripts easily let you do this.
Note
Choosing an alternate color scheme depending on the time of
 day may seem trite, but maybe not as much as you may think. Even
 Google changes the colors and tone of your
 iGoogle home page throughout the day.

Conditional Execution

One of the authors likes to divide the day into four partitions, each
 with its own dedicated color scheme:
	darkblue
	Midnight to 6 a.m.

	morning
	6 a.m. to noon

	shine
	Noon to 6 p.m.

	evening
	6 p.m. to midnight

We’ll build a nested if...then...else... block
 of code for this purpose. There are a couple of
 different syntaxes you can use for this block. One is more
 traditional, with an explicitly laid out syntax:
ifcond expr
 line of vim code
 another line of vim code
 ...
elseif some secondary cond expr
 code for this case
else
 code that runs if none of the cases apply
endif
The elseif and else blocks are
 optional, and you can include multiple
 elseif blocks. Vim also allows the more terse and
 C-like construct:
cond ?expr 1 :expr 2
Vim checks the condition cond. If it’s
 true, expr 1 executes; otherwise,
 expr 2 executes.
Using the strftime() function

Now that we can conditionally execute code, we need to
 figure out what part of the day it is. Vim has built-in
 functions that return this kind of
 information. In our case, we use the strftime() function. strftime accepts two parameters, the
 first of which defines the output format of a time string. (This
 format is system dependent, and not portable, so you must pay due
 care when choosing a format. Fortunately, most mainstream formats
 are common across systems.) The second optional parameter is a
 time measured in seconds since Jan 1, 1970 (standard C time
 representation). This optional parameter defaults to the current
 time. For our example, we can use the time format %H, producing strftime("%H"), because the hour of the
 day is all we need to decide on our color scheme.
Now that we know how to use conditional code, we have the
 Vim built-in function to give us the information about the time of
 day with which we choose our matching color scheme. Put this code
 into your .vimrc
 file:
" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
if strftime("%H") < 6 + 0
 colorscheme darkblue
 echo "setting colorscheme to darkblue"
elseif strftime("%H") < 12 + 0
 colorscheme morning
 echo "setting colorscheme to morning"
elseif strftime("%H") < 18 + 0
 colorscheme shine
 echo "setting colorscheme to shine"
else
 colorscheme evening
 echo "setting colorscheme to evening"
endif
Notice that we introduce another Vim script command,
 echo. As a convenience, we add
 this to echo the current scheme to ourselves; it also lets us
 check that the code actually ran and produced the desired result.
 The message should appear in Vim’s command status window or as a
 pop up, depending on where in the startup sequence the echo command is encountered.
Note
When we issue the command colorscheme, we use the name of the scheme (e.g., desert) without
 surrounding quotes, but when we use the echo command, we
 do quote the name ("desert"). This is an important
 distinction!
In the case of the colorscheme command in our script, we
 are issuing a direct Vim command, and the parameter for this
 command is a literal. If we include surrounding quotes, the
 quotes are interpreted as part of the name of the color scheme
 by the colorscheme. This is
 an error because none of the schemes include quotes in their
 names.
On the other hand, the echo command interpolates words
 without quotes as expressions (calculations that return values)
 or functions. Therefore, we need to quote the name of the color
 scheme we choose.

Variables

If you are a programmer, you probably see a problem with the
 script we just presented. While it’s unlikely to be a big concern in
 what we are trying to do, we are executing a conditional check of
 the hour of the day by invoking the strftime() function at each
 conditional point. Technically, we are conditionally checking one
 thing, but we are evaluating it as an expression multiple times,
 potentially making a conditional decision on something that changes
 value mid-execution.
Instead of executing the function each time, let’s evaluate it
 once and store the results in a Vim script
 variable. We can then use the variable as often
 as we want in our conditional, without incurring the overhead of a
 function call.
Vim variables are fairly straightforward, but there are a few
 things to know and manage. Specifically, we must manage our
 variable’s scope. Vim defines a variable’s
 scope through a convention that depends on the name’s prefix. The
 prefixes include:
	b:
	A variable recognized in a single Vim buffer

	w:
	A variable recognized in a single Vim window

	t:
	A variable recognized in a single Vim tab

	g:
	A variable recognized globally—i.e., it can be referenced
 anywhere

	l:
	A variable recognized within the function (a local
 variable)

	s:
	A variable recognized within the sourced Vim
 script

	a:
	A function argument

	v:
	A Vim variable—one controlled by Vim (these are
 also global variables)

Note
If you do not define a Vim variable’s scope with a prefix,
 it defaults to a global (g:) variable when defined
 outside a function, and to a local (l:) variable when
 defined within a function.

You assign a value to a variable with the let command:
:letvar = "value"
For our purposes, we can define our variable any way we want
 (context allowing) because we use it only once (though this will
 change later). For now, we use no prefix and let Vim treat it as
 global by default. Let’s call our variable currentHour. By assigning the result from
 strftime() only once, we
 now have a more efficient script:
" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric)
let currentHour = strftime ("%H")
echo "currentHour is " currentHour
if currentHour < 6 + 0
 colorscheme darkblue
 echo "setting colorscheme to darkblue"
elseif currentHour < 12 + 0
 colorscheme morning
 echo "setting colorscheme to morning"
elseif currentHour < 18 + 0
 colorscheme shine
 echo "setting colorscheme to shine"
else
 colorscheme evening
 echo "setting colorscheme to evening"
endif
We can clean up the code a little more and get rid of a few
 lines by introducing a variable named colorScheme. This variable holds the value
 of the color scheme that we determine by time of day. We’ve added a
 capital “S” to distinguish the variable from the name of the
 colorscheme command, but we could
 use the exact same letters and it wouldn’t matter: Vim can determine
 from the context what is a command and what is a variable.
Note
Notice the use of the dot (.) notation with the echo
 command. This operator concatenates expressions into one string,
 which echo ultimately displays.
 In this case we concatenate a literal string, "setting color scheme to “, and the value
 assigned to the variable colorScheme.

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
let currentHour = strftime("%H")
echo "currentHour is " . currentHour
if currentHour < 6 + 0
 let colorScheme ="darkblue"
elseif currentHour < 12 + 0
 let colorScheme = "morning"
elseif currentHour < 18 + 0
 let colorScheme = "shine"
else
 let colorScheme = "evening"
endif
echo "setting color scheme to" . colorScheme
colorscheme colorScheme
Warning
We made an incorrect assumption about executing commands
 within this script. If you coded along with the example, you
 already know this. We correct the error in the next
 section.

The execute Command

So far we have improved how we pick our color scheme,
 but our last change introduced a slight twist. Initially, we decided
 to execute a color scheme discretely based on time of day. Our last
 improvement looks correct, but after defining a variable (colorScheme) to hold the value of our
 color scheme, we find that the command:
colorscheme colorScheme
results in the error shown in Figure 12-1.
[image: colorscheme colorScheme error]

Figure 12-1. colorscheme colorScheme error

We need a way to execute a Vim command that refers to a
 variable instead of a literal string such as darkblue. Vim gives us the execute command for this purpose. When
 passed a command, it evaluates variables and expressions and
 substitutes their values into the command. We can exploit this
 feature along with the concatenation shown in the previous section
 to pass the value of our variable to the colorscheme command:
execute "colorscheme " . colorScheme
The exact syntax used here (particularly the quotation marks)
 may be confusing. The execute
 command expects variables or expressions, but colorscheme is just a plain string, not a
 variable or expression. We don’t want execute to evaluate colorscheme; we just want it to accept the
 name as is. So we turn the name of the command into a literal string
 by enclosing it in quotation marks. While we’re at it, we add a
 blank space to the end, before the final quotation mark. This is
 important because we need a space between the command and the
 value.
Our variable colorScheme
 must be outside the quotation marks so that
 it’s evaluated by execute. Think
 of execute’s behavior this
 way:
	Plain words are evaluated as variables or expressions, and
 execute substitutes their
 values.

	Quotation marks enclosing strings are taken literally;
 execute does not try to
 evaluate them to return a value.

Using execute fixes our
 error, and Vim now loads the color scheme as expected.
After loading Vim, you can verify that you loaded the proper
 color scheme. The colorscheme
 command sets its own variable, colors_name. In addition to echoing values
 of the variables you set in your script, you can manually execute
 the echo command and examine the
 colors_name variable to see
 whether our script has in fact executed the correct colorscheme command based on the time of
 day:
echo colors_name

Defining Functions

So far we’ve created a script that works nicely for
 us. Now let’s create code we can execute at any time during a
 session, not just when Vim starts. We will give an example of this
 soon, but first we need to create a function
 containing the code of our script.
Vim lets you define your own functions with function...endfunction statements.
 Here is a sample skeleton of a user-defined
 function:
functionmyFunction (arg1, arg2...)
 line of code
 another line of code
endfunction
We can easily turn our script into a function. Notice that we
 don’t need to pass in any arguments, so the parentheses in the
 function definition are empty:
function SetTimeOfDayColors()
 " progressively check higher values... falls out on first "true"
 " (note addition of zero ... this guarantees return from function is numeric)
 let currentHour = strftime("%H")
 echo "currentHour is " . currentHour
 if currentHour < 6 + 0let colorScheme = "darkblue"
 elseif currentHour < 12 + 0
 let colorScheme = "morning"
 elseif currentHour < 18 + 0
 let colorScheme = "shine"
 else
 let colorScheme = "evening"
 endif
 echo "setting color scheme to" . colorScheme
 execute "colorscheme " . colorScheme
endfunction
Note
Vim user-defined function names must begin with a capital
 letter.

Now we have a function defined in our .gvimrc file. But if we don’t call it, the code will never execute.
 You call a function with Vim’s call statement. In our example it would
 look like:
call SetTimeOfDayColors()
Now we can set our color scheme at any time, anywhere within a
 Vim session. One option is just to put the previous call line in our .gvimrc. The results are the same as our
 earlier example, where we ran the code without using a function. But
 in the next section, we’ll see a neat Vim trick that calls our
 function repeatedly so that our color scheme gets set regularly
 throughout our session, thus changing dynamically throughout the
 day! Of course, this introduces other problems that we must
 address.

A Nice Vim Piggybacking Trick

In the previous section we defined a Vim function, SetTimeOfDayColors(), which we call
 once to define our color scheme. What if we want to repeatedly check
 the time of day and change the color scheme accordingly? Obviously
 the one-time call in .gvimrc
 doesn’t accomplish this. To fix this, we introduce a neat Vim trick
 using the statusline
 option.
Most Vim users take the Vim status line for granted.
 By default, statusline has no
 value, but you can define it to display virtually any information
 available to Vim in the status line. And because the status line can
 display dynamic information, such as the current line and column,
 Vim recalculates and redisplays statusline any time the edit status
 changes. Almost any action in Vim triggers a statusline redraw. So we’ll use this as a
 trick to call our color scheme function and change the color scheme
 dynamically. As we will soon see, this is an imperfect
 approach.
The statusline accepts an
 expression, evaluates it, and displays it in the status line. This
 includes functions. We use this feature to call our SetTimeOfDayColors() every time the
 status line is updated, which is often. Because this feature
 overrides the default status line and we don’t want to lose the
 valuable information we get by default, let’s incorporate a wealth
 of information in the following initial definition of our status
 line:
set statusline=%<%t%h%m%r\ \ %a\ %{strftime(\"%c\")}%=0x%B\
 \\ line:%l,\ \ col:%c%V\ %P
Note
The definition for statusline is split across two lines.
 Vim considers any line with an initial nonblank character of
 backslash (\) to be a continuation of the previous
 line, and it ignores all whitespace up to the backslash. So if you
 use our definition, make sure it is copied and entered exactly. If
 you can’t get it to work, you can revert to starting with an
 undefined statusline.

You can look up the meaning of the various characters preceded
 by percent signs in the Vim documentation. The definition produces a
 status line like the following:
ch12.xml Wed 13 Feb 2008 06:24:25 PM EST 0x3C line:1, col:1 Top

 Our focus in this chapter is not on what the status line can
 display, but on exploiting the statusline option to evaluate a
 function.
Now we add our SetTimeOfDayColors() function to the
 statusline. By using += instead of a plain equals sign, we add
 something to the end instead of replacing what we defined
 earlier:
set statusline += \ %{SetTimeOfDayColors()}
Now our function is part of the status line. Even though it
 doesn’t contribute interesting information to the status line, it
 now checks the time of day and potentially updates our color scheme
 as the hour of the day progresses. Can you see a problem with
 this?
We now have a Vim script function that inspects the hour of
 the day each time the Vim status line gets updated. In an earlier
 section we put some effort into eliminating a few calls to strftime() for the sake of
 efficiency, but now we’ve added so many calls to our session that
 the number is dizzying.
When our session happens to evaluate the statusline at the proper hour of the day,
 it does what we want and changes the color scheme. But as we’ve
 defined it, it checks the time and resets the color scheme
 regardless of whether there’s a change. In the next section, we
 examine more efficient means to this end by using global variables
 outside of our function.

Tuning a Vim Script with Global Variables

As we discovered with our last modification to our Vim
 script, we almost have the desired behavior.
 Our function is called every time the Vim status line is updated,
 but because that happens quite often, it’s problematic on several
 levels.
First, because it’s called so often, we might be concerned
 about the load it creates on the computer’s processor. Fortunately,
 with today’s computers this is unlikely to be of much concern, but
 it’s still probably bad form to redefine the color scheme over and
 over so often. If this were the only issue, we might consider our
 script complete and not bother tuning it further. However, it is
 not.
If you’ve coded along with the examples, you already know the
 problem. The constant reestablishment of the color scheme while you
 move around in the edit session creates a noticeable and annoying
 flicker, because each definition of the color scheme, even if it’s
 the same as the current color scheme, requires Vim to reread the
 color scheme definition script, reinterpret the text, and reapply
 all of the color syntax highlight rules. Even computers with
 extremely high computing power are unlikely to provide enough
 graphics processing power to render the constant updating
 flicker-free. We need to fix this.
We can define our color scheme once, and then, within a
 conditional block, determine each time whether the color scheme
 changes and consequently needs to be defined and drawn. We do this
 by taking advantage of the global variable set by the colorscheme
 command: colors_name. Let’s
 recast our function to take this into consideration:
function SetTimeOfDayColors()
 " progressively check higher values... falls out on first "true"
 " (note addition of zero ... this guarantees return from function is numeric)
 let currentHour = strftime("%H")
 if currentHour < 6 + 0
 let colorScheme = "darkblue"
 elseif currentHour < 12 + 0
 let colorScheme = "morning"
 elseif currentHour < 18 + 0
 let colorScheme = "shine"
 else
 let colorScheme = "evening"
 endif" if our calculated value is different, call the colorscheme command.
 if g:colors_name !~ colorScheme
 echo "setting color scheme to " . colorScheme
 execute "colorscheme " . colorScheme
 endif
endfunction
This would seem to solve our problem, but now we have a
 different one. We now get the error shown in Figure 12-2.
[image: Undefined variable]

Figure 12-2. Undefined variable

It turns out that Vim takes a very stern attitude when we try
 to refer to a variable that hasn’t yet been defined. But what’s
 wrong with the colors_name
 variable? We know that colorscheme sets it. We’ve even taken the
 precaution of using the g: prefix to indicate that it’s
 a global variable. But the first time this function executes, g:colors_name has no value and hasn’t
 even been defined, because the colorscheme command hasn’t executed. Only
 after the command runs can we safely check g:colors_name.
This is simple to fix, and we can do it one of two ways.
 Insert either:
let g:colors_name = "xyzzy"
or:
colorscheme default
in your .gvimrc file.
 Either statement defines the global variable as soon as your session
 starts, so the comparison in our function will always be valid. Now
 we have a dynamic and efficient function. We will make one last
 improvement in the following section.

Arrays

It would be nice if somehow we could just extract our
 color scheme value without the extended if...then...else block. With Vim
 arrays, we can improve the script and make it eminently more
 readable.
Vim arrays are created by defining a variable’s value as a
 comma-separated list of values within square brackets. We introduce
 an array named Favcolorschemes
 for our function. We could define it within the scope of the
 function, but to leave open the possibility of accessing the array
 elsewhere in our session, we’ll define the array outside of the
 function as a global array:
let g:Favcolorschemes = ["darkblue", "morning", "shine", "evening"]
This line should go in your .gvimrc file. Now we can reference any value within the array
 variable g:Favcolorschemes by its
 subscript, starting with element zero. For example, g:Favcolorschemes[2] is equal to the
 string "shine".
Taking advantage of Vim’s treatment of math functions, where
 results of integer division are integers (the remainder gets
 truncated), we can now quickly and easily get our preferred color
 scheme based on the hour of the day. Let’s look at a final version
 of our function:
function SetTimeOfDayColors()
 " currentHour will be 0, 1, 2, or 3
 let g:CurrentHour = (strftime("%H") + 0) / 6
 if g:colors_name !~ g:Favcolorschemes[g:CurrentHour]
 execute "colorscheme " . g:Favcolorschemes[g:CurrentHour]
 echo "execute " "colorscheme " . g:Favcolorschemes[g:CurrentHour]
 redraw
 endif
endfunction
Congratulations! You have built a complete Vim script that
 takes into consideration many of the factors needed to build any
 useful script you may want.

Dynamic File Type Configuration Through Scripting

Let’s look at
 another nifty script example. Normally, when editing a new file, the
 only clue Vim gets in order to determine and set
 filetype is the file’s extension. For example,
 .c means the file is C code. Vim
 easily determines this and loads the correct behavior to make it easy
 to edit a C program.
But not all files require an extension. For example, while it’s become common convention to
 create shell scripts with a .sh
 extension, this author doesn’t like or abide by this convention,
 especially having created thousands of scripts before a notion of this
 convention arose. Vim is actually sufficiently well-trained to
 recognize a shell script without the crutch of a file extension, by
 looking at the text inside the file. However, it can do so only on the
 second edit, when the file provides some context for determining the
 type. Vim scripts can fix that!
Autocommands

In our first script example, we relied on Vim’s habit of updating the status line constantly
 and “hid” our function in the status line to set the color scheme by
 time of day. Our script to determine the file type dynamically
 relies on a bit more formal Vim convention,
 autocommands.
Autocommands include any valid Vim commands. Vim uses
 events to execute commands. Some examples of
 Vim events include:
	BufNewFile
	Triggers an associated command when Vim begins
 editing a new file

	BufReadPre
	Triggers an associated command
 before Vim moves to a new buffer

	BufRead
BufReadPost
	Trigger an associated command when editing a new
 buffer, but after reading the file

	BufWrite
BufWritePre
	Trigger an associated command before writing a
 buffer to a file

	FileType
	Triggers an associated command after setting the
 filetype

	VimResized
	Triggers an associated command after a Vim
 window size has changed

	WinEnter
WinLeave
	Trigger an associated command upon entering or
 leaving a Vim window, respectively

	CursorMoved
CursorMovedI
	Trigger an associated command every time the
 cursor moves in normal mode or in
 insert mode, respectively

Altogether there are almost 80 Vim events. For any of
 these events, you can define an automatic autocmd that executes when that event
 occurs. The autocmd format
 is:
autocmd [group] event pattern [nested]command
The elements of this format are:
	group
	An optional command group (described later)

	event
	The event that will trigger
 command

	pattern
	The pattern matching the filename for which
 command should execute

	nested
	If present, allows this autocommand to be nested within
 others

	command
	The Vim command, function, or user-defined script to
 execute when the event occurs

For our example, our goal is to identify the file type for any
 new file we open, so we use * for
 pattern.
The next decision is which event to use to trigger our script.
 Because we want to try to identify our file type as early as
 possible, two good candidates suggest themselves: CursorMovedI and CursorMoved.
CursorMoved triggers an
 event when the cursor moves, which seems wasteful because merely
 moving the cursor is not likely to provide more information about a
 file’s type. CursorMovedI, in
 contrast, fires when text is input, and therefore seems like the
 best candidate.
We must write a function to do the work each time. Let’s call
 it CheckFileType. We now have
 enough information to define our autocmd command. It looks like
 this:
autocmd CursorMovedI * call CheckFileType()

Checking Options

In our CheckFileType
 function, we need to inspect the value of the filetype option. Vim scripts use special
 variables to extract values from options, by prefixing the option
 name (filetype in our case) with
 an ampersand (&) character. Hence we will use the
 variable &filetype in our function.
We start with a simple version of our CheckFileType function:
function CheckFileType()
 if &filetype == ""
 filetype detect
 endif
 endfunction
The Vim command filetype
 detect is a Vim script installed in the
 $VIMRUNTIME directory. It runs through many criteria
 and tries to assign a file type to your file. Normally this occurs
 once, so if the file is new and filetype cannot determine a file type, the
 edit session cannot assign syntax formatting.
There is a problem: we call our function each time the cursor
 moves during input mode, continually trying to detect the file type.
 We first check to see whether the file already has a file type,
 which would mean that our function succeeded in its previous
 execution and therefore does not need to do it anymore. We won’t
 worry about anomalies, such as a mistaken identification or a file
 that we start in one programming language and then decide to change
 to another.
Let’s edit a new shell script file and see the results:
$vim ScriptWithoutSuffix
Input the following:
#! /bin/sh

inputFile="DailyReceipts"
By now, Vim turns on color syntax, as shown in Figure 12-3.
[image: File type of new file detected]

Figure 12-3. File type of new file detected

You can tell from the picture that Vim is using gray for the
 string, but the black-and-white image does not show that #
 /bin/sh is blue, inputFile= is black, and "DailyReceipts" is purple.
 Unfortunately, these aren’t the colors for shell syntax highlighting. A quick check of the
 filetype option through the
 command set filetype displays the
 message shown in Figure 12-4.
[image: conf file type detected]

Figure 12-4. conf file type detected

Vim assigned file type conf
 to our file, which is not what we want. What went wrong?
If you try this example, you will see that Vim assigned the
 file type immediately when you entered the first character,
 #, at the first CursorMovedI event. Configuration files
 for Unix utilities and daemons typically use the #
 character to start a comment, so Vim’s heuristics assume that a
 # at the beginning of the line is the beginning of a
 comment in a configuration file. We have to teach Vim to be more
 patient.
Let’s change our function to allow for more context. Instead
 of trying to detect the file type at the first available
 opportunity, let’s allow the user to enter about 20 characters
 first.

Buffer Variables

We need to introduce a variable into our function to tell Vim
 to hold off and not try to detect the file type
 until the CursorMovedI
 autocommand calls the function more than 20 times. Our notion of
 what is a new file, as well as the number of characters we want to
 enter into that file, are specific to a buffer. In other words,
 cursor movement in other buffers of the edit session should not
 count against the check. Therefore, we use a buffer variable and
 call it b:countCheck.
Next, we revise the function to check for at least 20 moves of
 the cursor in input mode (implying approximately 20 characters
 entered), along with checking whether a file type has already been
 assigned:
function CheckFileType()

let b:countCheck += 1

" Don’t start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
 filetype detect
 endif
 endfunction
But now we get the error shown in Figure 12-5.
[image: b:countCheck generates an “undefined” error]

Figure 12-5. b:countCheck generates an “undefined” error

That’s a familiar error. As before, we had the gall to check a
 variable before it was defined. And this time, it’s all our fault
 because our script is responsible for defining
 b:countCheck. We’ll handle this subtlety in the next
 section.

The exists() Function

It’s important to know how to manage all of your
 variables and functions: Vim requires you to define each one so it
 already exists before any type of evaluation
 references it.
We can easily resolve our script error by checking for b:countCheck’s existence and
 assigning it a value with the :let command shown earlier:
function CheckFileType()

 if exists(“b:countCheck”) == 0
 let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
 filetype detect
 endif
 endfunction
Now test the code. Figure 12-6 shows
 the moment before the 20-character limit is reached, and Figure 12-7 shows the effect of entering the 21st
 character.
[image: No file type detected yet]

Figure 12-6. No file type detected yet

[image: File type detected]

Figure 12-7. File type detected

The /bin/sh text suddenly has syntax color
 highlighting. A quick check with set filetype verifies that Vim has made
 the correct assignment, as shown in Figure 12-8.
[image: Correct detection]

Figure 12-8. Correct detection

For all practical purposes, we have a complete and
 satisfactory solution, but for good form we add another check to
 stop Vim from trying to detect a file type after approximately 200
 characters have been entered:
function CheckFileType()

if exists("b:countCheck") == 0
 let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
 filetype detect
 endif
 endfunction
Now, even though our function CheckFileType is called each time Vim’s
 cursor moves, we incur little overhead because the initial checks
 exit the function once a file type is detected or the threshold of
 200 characters is exceeded. Although this is probably all we need
 for reasonable functionality and minimal processing overhead, we’ll
 continue to look at more mechanisms to give us a more complete and
 satisfactory solution that not only incurs minimal overhead, but
 actually “goes away” when we don’t need it any more.
Note
You may have noticed we have been slightly vague about the
 exact meaning of our threshold count of 20 characters. This
 ambiguity is intentional. Because we are counting cursor
 movements, in input mode it’s reasonable to assume each movement
 of the cursor corresponds to a new character, adding to the
 “sufficient” context text from which CheckFileType() will determine the
 file type. However, all cursor movement in
 input mode counts, so any backspacing to correct typing errors
 also counts against the threshold counter. To confirm this, try
 our example, type #, and
 backspace over it and retype it 10 times. The 11th time should
 reveal a color-coded #, and the file type should now
 be (incorrectly) set to conf.

Autocommands and Groups

Our script so far ignores any side effects introduced
 by calling our function for every movement of the cursor. We
 minimized overhead through reasonableness checks that avoid calling
 the heavy filetype detect command
 unnecessarily. But what if even minimal code for our function is
 expensive? We need a way to stop calling code when we don’t need it.
 For this we leverage Vim’s notion of autocommand
 groups and their ability to remove commands
 based on their group association.
We modify our example by first associating our function called
 by the CursorMovedI event with a group. Vim
 provides an augroup command to do
 this. Its syntax is:
augroupgroupname
All subsequent autocmd
 definitions become associated with group
 groupname until the statement:
augroup END
(There’s also a default group for commands not entered within
 an augroup block.)
Now we associate our previous autocmd command with our own group.
augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END
Our CursorMovedI-triggered function is part
 of the autocommand group newFileDetection. We will explore the
 usefulness of this in the next section.

Deleting Autocommands

To implement our function as cleanly as possible, we
 strive to have it remain effective only as long as necessary. We
 want to undefine its reference once it has exceeded its useful life
 (that is, as soon as we’ve either detected a file type or decided we
 can’t). Vim lets you delete an autocommand simply by referencing the
 event, the pattern that filenames must match, or its group.
autocmd! [group] [event] [pattern]
The usual Vim “force” character—an exclamation point
 (!)—follows the autocmd keyword to indicate that commands
 associated with the group, event, or pattern are to be removed.
Because we previously associated our function with our
 user-defined group newFileDetection, we now have control over it and
 can remove it by referencing the group in the autocommand remove
 syntax. We do so with:
autocmd! newFileDetection
This deletes all autocommands associated with the group
 newFileDetection, which in our
 case is only our function.
We verify both the definition and removal of our autocommand
 by querying Vim at startup (when creating the new file) with the
 command:
autocmd newFileDetection
Vim responds as shown in Figure 12-9.
[image: Response to autocmd newFileDetection command]

Figure 12-9. Response to autocmd newFileDetection command

After a file type has been detected and assigned
 or the threshold of 200 characters has been
 exceeded, we no longer want the autocommand definition. So, we add
 the final touch to our code. Combining the definition of our
 augroup, our autocmd command, and our function, the
 lines in our .vimrc look
 like:
augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END

function CheckFileType()

 if exists("b:countCheck") == 0
 let b:countCheck = 0
 endif

 let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
 filetype detect
 " If we’ve exceeded the count threshold (200), OR a filetype has been detected
 " delete the autocmd!
 elseif b:countCheck >= 200 || &filetype != ""
 autocmd! newFileDetection
 endif
endfunction
After the syntax color highlighting begins, we can verify that
 our function deletes itself by entering the same command as when we
 entered the buffer:
autocmd newFileDetection
Vim’s response is shown in Figure 12-10.
[image: After the deletion criteria have been met for our autocommand group]

Figure 12-10. After the deletion criteria have been met for our
 autocommand group

Notice now that no autocommands are defined for the newFileDetection group. You can delete the
 auto group as follows:
augroup!groupname
but doing so does not delete the
 associated autocommands, and Vim will create an error condition each
 time those autocommands are referenced. Therefore, make sure to
 delete the autocommands within a group before deleting the
 group.
Warning
Do not confuse deleting autocommands with deleting auto
 groups.

Congratulations! You have completed your second Vim script.
 This script extends your Vim knowledge and gives you a peek at the
 different features accessible with scripting.

Some Additional Thoughts About Vim Scripting

We’ve covered only a small corner of the
 entire Vim scripting universe, but we hope you get the sense of Vim’s
 power. Virtually everything you can do interactively using Vim can be
 coded in a script.
In this section we look at a nice example included in the
 built-in Vim documentation, discuss in more detail concepts we touched
 on earlier, and look at a few new features.
A Useful Vim Script Example

Vim’s built-in documentation includes a handy script we think
 you’ll want to use. It specifically addresses keeping a current
 timestamp in the meta line of an
 HTML file, but it could easily be used for many other types of files
 where it is useful to have the most recent modification time of the
 file within the text of that file.
Here is the example essentially intact (we have modified it
 slightly):
autocmd BufWritePre,FileWritePre *.html mark s|call LastMod()|'s
fun LastMod()
 " if there are more than 20 lines, set our max to 20, otherwise, scan
 " entire file.
 if line("$") > 20
 let lastModifiedline = 20
 else
 let lastModifiedline = line("$")
 endif
 exe "1," . lastModifiedline . "g/Last modified: /s/Last modified:
 .*/Last modified: " .
 \ strftime("%Y %b %d")
endfun
Here’s a brief breakdown of the autocmd
 command:
	BufWritePre, FileWritePre
	These are the events for which the command is triggered.
 In this case, Vim executes the autocommand
 before the file or buffer gets written to
 the storage device.

	*.html
	Execute this autocommand for any file whose name ends in
 .html.

	 mark s
	We changed this for readability from the original.
 Instead of ks, we used the
 equivalent but more obvious command mark s. This simply creates a marked
 position named s in the
 file so we can return to this point later.

	|
	Pipe characters separate multiple Vim commands that are
 executed within an autocommand definition. These are simple
 separators with no relationship to Unix shell pipes.

	call LastMod()
	This calls our user-defined LastMod function.

	|
	Same as previous.

	's
	Return to the line we marked with the name s.

It’s worth verifying this script by editing a .html file, adding the line “Last modified: “”, and issuing the
 w command.
Note
This example is useful, but it’s not canonically correct in
 relation to its stated goal of substituting the HTML meta statement. More appropriately, if
 indeed it were meant to address a meta statement, the substitution should
 look for the content=... part
 of the meta statement. Still,
 this example is a good start toward solving that problem and is a
 useful example for other file types.

More About Variables

We now discuss in more detail what makes up Vim
 variables and how they’re used. Vim has five variable types:
	Number
	A signed 32-bit number. This number can be represented
 in decimal, hexadecimal (e.g., 0xffff), or octal (e.g., 0177).

	String
	A string of characters.

	Funcref
	A reference to a function.

	List
	This is Vim’s version of an array. It is an ordered
 “list” of values and can contain any mix of Vim values as
 elements.

	Dictionary
	This is Vim’s version of a hash,
 often also referred to as an associative
 array. It is an unordered collection of
 value-pairs, the first being a key that
 can be used to retrieve an associated
 value.

Vim performs convenience conversions of variables where
 context allows, most notably back and forth between strings and
 numbers. To be safe (as we were in our first script example), when
 using a string as a number, ensure conversion by adding 0 to
 it:
if strftime("%H") < 6 + 0

Expressions

Vim evaluates expressions in a fairly straightforward
 way. An expression can be as simple as a number or literal string,
 or it can be as complex as a compound statement, itself composed of
 expressions.
It is important to note that Vim’s math functions work with
 integers only. If you want floating-point and precision, you need to
 use extensions, such as system calls to external math-capable
 routines.

Extensions

Vim offers a number of extensions and interfaces to
 other scripting languages. Notably, these include perl, Python, and Ruby, three of the most
 popular scripting languages. See Vim’s built-in documentation for
 details on usage.

A Few More Comments About autocmd

In our earlier example in the section Dynamic File Type Configuration Through Scripting, we used Vim’s autocmd command to key on events from
 which our user-defined functions are called. This is very powerful,
 but do not discount simpler uses of autocmd. For example, you can use autocmd to tune specific Vim options for
 different file types.
A good example might be to change the shiftwidth option for different file
 types. File types with copious indentation and nesting levels may
 benefit from more modest indentation. You may want to define your
 shiftwidth as 2 for HTML in order
 to prevent code from “walking” off the right side of the screen, but
 use a shiftwidth of 4 for C programs. To accomplish
 this distinction, include these lines in your .vimrc or .gvimrc file:
autocmd BufRead,BufNewFile *.html set shiftwidth=2
autocmd BufRead,BufNewFile *.c,*.h set shiftwidth=4

Internal Functions

In addition to all the Vim commands, you have access to
 about 200 built-in functions. It is beyond the scope of this
 discussion to identify and document all of these functions, but it
 is useful to know what categories or types of functions are
 available. The following categories are taken from the Vim built-in
 help file, usr_41.txt:
	String manipulation
	All of the standard string functions that programmers
 expect are included in these functions, from conversion
 routines to substring routines and more.

	List functions
	This is an entire array of array functions. They mirror
 closely the array functions found in perl.

	Dictionary (associative array) functions
	These functions include extraction, manipulation,
 verification, and other types of functions. Again, these
 closely resemble perl hash
 functions.

	Variable functions
	These functions are “getters” and “setters” to move
 variables around in Vim windows and buffers. There is also a
 type to determine
 variable types.

	Cursor and position functions
	These functions allow moving around in files and
 buffers, and creating marks so that positions can be
 remembered and returned to. There are also functions that give
 positional information (e.g., cursor line and column).

	Text in current buffer functions
	These functions manipulate text within buffers, for
 example, changing a line, retrieving a line, etc. There
 are also search functions.

	System and file manipulation functions
	These include functions to navigate the operating system
 on which Vim is running, for example, finding files within
 paths, determining the current working directory, creating and
 deleting files, etc. This group includes the system() function, which passes
 commands to the operating system for external
 execution.

	Date and time functions
	These do a wide variety of manipulations of date and
 time formats.

	Buffer, window, and argument list functions
	These functions provide mechanisms to gather information
 about buffers, and the arguments for each one.

	Command-line functions
	These functions get command-line position, the command
 line, and the command-line type, and set the cursor position
 within the command line.

	Quick fix and location lists functions
	These functions retrieve and modify the quick fix
 lists.

	Insert mode completion functions
	These functions are used for command and insertion
 completion features.

	Folding functions
	These functions give information for folds, and expand
 text displayed for closed folds.

	Syntax and highlighting functions
	These functions retrieve information about syntax
 highlighting groups and syntax IDs.

	Spelling functions
	These functions find suspected misspelled words and
 offer suggested correct spellings.

	History functions
	These functions get, add, and delete history
 items.

	Interactive functions
	These functions provide an interface to the user for
 activities such as file selection.

	GUI functions
	There are three simple functions here to get the name of
 the current font, get the GUI window x
 coordinate, and get the GUI window y
 coordinate.

	Vim server functions
	These functions communicate with a (possibly) remote Vim
 server.

	Window size and position functions
	These functions get window information and allow for
 saving and restoring window “views.”

	Various functions
	These are the miscellaneous “other” functions that don’t
 fit nicely in the previous categories. They include functions
 such as exists, which
 checks for the existence of a Vim item, and has, which checks to see whether
 Vim supports a certain feature.

Resources

We hope we’ve piqued enough interest and provided enough
 information to get you started with Vim scripts. An entire book could
 be devoted to the subject of Vim scripting. Luckily, there are other
 resources to turn to for help.
A good starting point is to go to the source of Vim itself and
 visit the pages specifically dedicated to scripting: http://www.vim.org/scripts/index.php.
 Here you will find over 2,000 scripts available for download. The
 entire body of work is searchable and you are invited to participate
 by rating scripts and even contributing your own.
We also remind you that the built-in Vim help is invaluable. The
 most productive help topics we recommend are:
help autocmd
help scripts
help variables
help functions
help usr_41.txt
And don’t forget the myriad Vim scripts in the Vim runtime
 directories. All of the files with the suffix .vim are
 scripts, and these provide an excellent and fertile playground for
 learning how to code by example.
Go play. It’s the best way to learn.

Chapter 13. Graphical Vim (gvim)

A longtime complaint about vi and
 its clones was the lack of a graphical user interface
 (GUI). Especially for those caught up in the
 Emacs versus vi
 religious wars, vi’s lack of a GUI
 was the ultimate trump card to argue that vi was a nonstarter when discussing
 editors.
Eventually, the vi clones and
 “work-alikes” created their own GUI versions. Graphical Vim is called gvim. Like the other vi clones, gvim offers robust and extensible GUI
 functions and features. We’ll cover the most useful ones in this
 chapter.
Some of gvim’s graphical
 functionality wraps commonly used Vim features, whereas others introduce
 the point-and-click convenience functionality most computer users now
 expect. Although some veteran Vim users (this author included!) may
 cringe at the thought of grafting a GUI onto their workhorse editor,
 gvim is thoughtfully conceived and
 implemented. gvim offers
 functionality and features spanning the range of its users’ abilities,
 softening Vim’s steep learning curve for beginners and transparently
 bringing expert users extra editing power. This strikes a nice
 compromise.
Tip
gvim for MS Windows
 comes with a menu entry labeled “easy gvim.” This is indeed valuable to people who
 have never used Vim, but, ironically, it is anything
 but easy for expert users.

In this chapter we first discuss the general gvim GUI concepts and features, with a brief
 introductory section about mouse interaction. Additionally, we refine
 the discussion around differences and things you should know for
 different gvim environments.
 Specifically, we focus on MS Windows and the X Window System, the two main graphical platforms. We touch briefly on
 other platforms and guide you to appropriate resources for more complete
 information. We also provide a brief list of GUI options with synopses.
General Introduction to gvim

gvim brings all the
 functionality, power, and features of Vim while adding the convenience
 and intuitive nature of a GUI environment. From traditional menus to
 visual highlighting editing, gvim
 provides the GUI experience today’s users expect. For veteran,
 console-based, text-environment vi
 users, gvim still gives the
 familiar core power and doesn’t dumb down the paradigm that garnered
 vi its reputation as a power
 editor.
Starting gvim

When Vim is compiled with GUI support, you can invoke it by
 issuing a gvim command or a Vim
 command with an added -g option. On Windows, the self-installing executable adds one
 interesting feature that many discover only accidentally after
 installation: a new Windows Explorer menu item labeled “Edit with
 Vim.” This provides quick and easy access to gvim by integrating it into the Windows
 environment. It is worth trying on files you maybe wouldn’t have
 considered before, especially unusual files such as binaries.
 However, it is potentially dangerous to edit
 binary files, and we caution you to use extreme care when editing
 these files.
The configuration files and options recognized by gvim are slightly different from those
 used by Vim. gvim reads and
 executes two startup files: .vimrc,
 followed by .gvimrc. Although
 you can put gvim-specific options
 and definitions in .vimrc, it’s
 better to define them in .gvimrc. This provides a nice separation
 of regular Vim and gvim customization. It also assures proper
 behavior on startup. For example, :set
 columns=100 isn’t valid in Vim and will generate an
 error when Vim is started.
If a system gvimrc exists
 (usually in $VIM/gvimrc), it is executed.
 Administrators can use this system-wide configuration file to set
 common options for their users. This provides a baseline
 configuration so that users will share a common editing
 experience.
More experienced Vim users can add their own favorite custom
 settings and features. After gvim
 reads the optional system configuration, it looks in four places for
 additional configuration information, in the following order, and
 stops searching after finding any one of these:
	An exrc command
 stored in the $GVIMINIT
 environment variable.

	A user’s gvimrc
 file, usually stored in $HOME/.gvimrc. If it is found, it
 is sourced.

	In a Windows environment, if $HOME is not set, gvim looks in $VIM/_gvimrc. (This is the normal
 situation for Windows users, but it’s an important distinction
 for users who have Unix work-alikes installed and are likely
 to have the $HOME variable
 set. One example would be the popular Cygwin suite of Unix
 tools.)

	If a _gvimrc isn’t
 found, gvim finally looks
 again for .gvimrc.

If gvim finds a
 nonempty file to execute, that file’s name is stored in the $MYGVIMRC variable and further initialization stops.
There is one more option for customization. If, in the
 cascading sequence of initialization just described, the option
 exrc is set:
set exrc
gvim will additionally look
 in the current directory for .gvimrc, .exrc, or .vimrc and source
 that file if it isn’t one of the previously listed files (i.e., it
 hasn’t already been discovered as an initialization file and already
 executed).
Warning
In a Unix environment, there are security issues around
 local directories containing configuration files (both .gvimrc and
 .vimrc files), and gvim defaults to enforcing some
 restrictions on what can be executed from these files by setting
 the secure option if the file
 is not owned by the user. This helps prevent malicious code from
 being malicious. If you want to be sure, set the secure option explicitly in your
 .vimrc or .gvimrc file.

Using the Mouse

The mouse in gvim does
 something useful in every editing mode. Let’s look at the standard
 Vim editing modes and how gvim
 treats the mouse in each:
	Command mode
	You enter this mode when you open the command buffer at the
 bottom of the window by typing a colon (:). If the window is in command
 mode, you can use the mouse to reposition the cursor anywhere
 in the command line. This is enabled by default or when you
 include the c flag in your
 mouse option.

	Insert mode
	This is the mode for entering text. If you click in
 a buffer that’s in insert mode, the mouse repositions the
 cursor and lets you immediately start entering text at that
 position. This mode is enabled by default or when you
 include the i flag
 in your mouse
 option.
The mouse’s behavior in insert mode provides easy and
 intuitive point-and-click positioning. In particular, it
 bypasses the need to exit insert mode, navigate with the
 mouse, motion commands, or other methods, and then reenter
 insert mode.
Superficially, this seems like a great idea, but in
 practice it will appeal to only a subset of users. It may be
 more annoying than helpful to experienced Vim users.
Consider what happens when you are in insert mode and
 leave gvim for some other
 application. When you click back into the gvim window, the point you click is
 now the insertion point for text, and probably not the one you
 want. In a single-window gvim session, you could land in a
 different spot from where you were originally working; in a
 multiple-window gvim
 screen, you could end up with the mouse in a completely
 different window. You might end up entering text into the
 wrong file!

	Normal mode
	This includes any time you’re not in insert mode or on the
 command line. Clicking the mouse in the screen simply leaves
 the cursor on the character where you clicked. This mode is
 enabled by default or when you include the n flag in
 your mouse option.
Normal mode provides a straightforward and easy method
 to position the cursor, but it offers only clunky support for
 moving beyond the top or bottom of the visible window. Click
 and hold the mouse and slide to the top or bottom of a window;
 gvim will scroll up and
 down correspondingly. If scrolling stops, move the mouse back
 and forth sideways to make it resume. (It’s not clear why
 normal mode acts this way.)
Another drawback to normal mode is that users,
 especially beginners, can come to rely on point and click as
 the positioning method of choice. This can hold back their
 motivation to learn Vim’s navigation commands, and hence its
 power-editing methods. Finally, it creates the same potential
 confusion as insert mode.

Additionally, gvim offers
 visual mode, also known as select mode. This
 mode is enabled by default, or when you include the v flag in your mouse option. Visual is the most versatile
 mode, because it lets you select text by dragging the mouse, which
 highlights the selection. It can be used in combination with
 command, insert, and normal modes.
Any combination of flags can be specified in the mouse option. The syntax to use is
 illustrated by the following commands:
	:set mouse=""
	Disable all mouse behavior.

	:set mouse=a
	Enable all mouse behavior (the default).

	:set mouse+=v
	Enable visual mode (v). This example uses
 the += syntax to add a flag to the current
 mouse setting.

	:set mouse-=c
	Disable mouse behavior in command mode (c).
 This example uses the -= syntax to remove a flag
 from the current mouse
 setting.

Beginners may prefer more “on” settings, whereas experts may
 turn the mouse off completely (as the author of this chapter
 does).
If you use the mouse, we recommend choosing a familiar
 behavior through gvim’s :behave command, which accepts either mswin or xterm as an argument. As suggested by the
 names of the arguments, mswin
 will set options to closely mimic Windows behavior, whereas xterm mimics a window on the X Window
 System.
Vim has a number of other mouse options, including mousefocus, mousehide, mousemodel, and selectmode. For more information, refer to
 the Vim built-in documentation for these options.
If you have a mouse with a scroll wheel, gvim handles it well by default, scrolling
 the screen or window up and down predictably, regardless of how you
 set the mouse option.

Useful Menus

One nice touch gvim
 brings to the GUI environment is menu actions that simplify some of
 Vim’s more esoteric commands. There are two worth mentioning.
gvim’s Window menu

gvim’s
 Window menu contains many of the most useful and common Vim window
 management commands: commands that split a single GUI window into
 multiple display areas. You may find it worth “tearing off” this
 menu, as shown in Figure 13-1, so that you
 can conveniently open and bounce around among windows. The result
 is shown in Figure 13-2.
[image: gvim Window menu]

Figure 13-1. gvim Window menu

[image: gvim Window menu, torn off and floating]

Figure 13-2. gvim Window menu, torn off and floating

gvim’s right-click pop-up menu

gvim pops up the menu
 shown in Figure 13-3 when you right-click
 within a buffer you’re editing.
[image: gvim general editing menu]

Figure 13-3. gvim general editing menu

If any text is selected (highlighted), another menu pops up
 when you right-click, as shown in Figure 13-4.
[image: gvim editing menu when text is selected]

Figure 13-4. gvim editing menu when text is selected

Notice how the menu in Figure 13-3 is
 moved and floats over completely unrelated application. This is a
 nice way to have an often-used menu conveniently available but out
 of the way of the editing. Both of these are handy for common
 select, cut, copy, delete, and paste operations. Users of other
 GUI editors employ this kind of feature all the time, but this is
 useful even for long-time Vim users. It is especially useful in
 that it interacts with the Windows clipboard in a predictable
 way.

Customizing Scrollbars, Menus, and Toolbars

gvim provides the usual GUI
 widgets, such as scrollbars, menus, and toolbars. Like most modern GUI
 applications, these widgets are customizable.
The gvim window, by default,
 shows several menus and a toolbar at the top, as illustrated by Figure 13-5.
[image: Top of gvim window]

Figure 13-5. Top of gvim window

Scrollbars

Scrollbars, which let you navigate up and down or right and left
 quickly through a file, are optional in gvim. You can display or hide them with
 the guioptions option,
 described at the end of this chapter in GUI Options and Command Synopsis.
Because Vim’s standard behavior is to show all text in the
 file (wrapping lines in the window if necessary), it’s interesting
 to note that the horizontal scrollbar serves no purpose in typically
 configured gvim sessions.
Turn the left and right scrollbars on and off by including or
 excluding r or l in the guioptions option. l makes
 sure the screen always has a left scrollbar, whereas r
 makes it always have a right scrollbar. The uppercase variants
 L and R tell gvim to show left or right scrollbars only
 when there is a vertically split window.
The horizontal scrollbar is controlled by including or
 excluding b in the guioptions option.
And yes, you can scroll the right and
 left scrollbars at the same time! More precisely, scrolling either
 one causes the other to move in the corresponding direction. It can
 be pretty convenient to have scrollbars configured on both sides.
 Depending upon where your mouse is positioned, you simply click and
 drag the nearest scrollbar.
Note
Many options, including guioptions, control many behaviors, and
 thus can include many flags by default. New flags could even be
 added in future versions of gvim. Hence, it is important to use the
 += and -= syntax in
 the :set guioptions command, to
 avoid deleting desirable behaviors. For example, :set guioptions+=l adds the “scrollbar
 always on left” option to gvim,
 leaving the other components in the guioptions string intact.

Menus

gvim has a fully customizable menu feature. In this section we
 describe the default menu characteristics, which appeared earlier in
 Figure 13-5, and show how you can control the
 menu layout.
Figure 13-6 shows one example of using
 a menu. In this case we’re choosing Global Settings from the Edit
 menu.
[image: Cascading Edit menu]

Figure 13-6. Cascading Edit menu

It’s interesting to note these menu options are merely
 wrappers for Vim commands. In fact, that is exactly how you can
 create and customize your own menu entries, which we discuss
 shortly.
Tip
Notice that if you pay attention to the menus, including the
 keystrokes or commands shown on the right side, you can learn Vim
 commands over time. For example, in Figure 13-6, although it’s handy for beginners to
 find the familiar Undo command in the Edit menu, where it appears
 in other popular applications, it is much
 faster and easier to use the Vim u keystroke, which
 is shown in the menu.

As shown in Figure 13-6, each menu
 starts with a dashed line containing a picture of scissors. Clicking
 this line “tears off” the menu to create a free-standing window in
 which that submenu’s options are available without going to the menu
 bar. If you clicked the dashed line above the Toggle Pattern
 Highlight menu in Figure 13-6, you would see
 something like Figure 13-7. You can position
 the free-floating menu anywhere on your desktop.
[image: Tearing off a menu]

Figure 13-7. Tearing off a menu

Now, all of the commands on this submenu are immediately
 available with just one click in the submenu’s window. Each menu
 selection is mapped to a button. If a menu selection itself is a
 submenu, it is represented by a button with greater-than signs
 (which look like rightward-pointing arrows) at the right side of the
 button. Clicking these arrows expands the submenu.
Basic menu customization

gvim stores menu
 definitions in a file named
 $VIMRUNTIME/menu.vim.
Defining menu items is similar to mapping. As you saw in the
 section Using the map Command, you can map a key
 like this:
:map <F12> :set syntax=html<CR>

 Menus are handled very similarly.
Suppose that, rather than map F12 to set the syntax to
 html, we want a special “HTML”
 entry on our File menu to do this task. Use the :amenu command:
:amenu File.HTML :set syntax=html<CR>

 The four characters <CR>
 are to be typed as shown, and are part of the command.
Now look at your file menu. You should see a new HTML entry,
 as shown in Figure 13-8. By using amenu
 instead of menu, we ensure that the entry is available in all modes
 (command, insert, and normal).
[image: HTML menu item under File menu]

Figure 13-8. HTML menu item under File menu

Note
The menu command adds the entry to the
 menu only in command mode; the entry does not appear in insert
 and normal modes.

The location for a menu entry is specified by a series of
 cascading menu entries separated by periods (.). In
 our example, File.HTML added
 the menu entry “HTML” to the File menu. The last entry in the
 series is the one you want to add. Here we’ve added it to an
 existing menu, but we’ll soon see that we can just as easily
 create a whole cascading series of new menus.
Be sure to test your new menu selection. For example, we
 started editing a file that Vim treats as an XML file, as can be
 seen in the status line in Figure 13-9.
 We’ve customized the status line so that Vim and gvim display the currently active syntax
 on the far right. (See A Nice Vim Piggybacking Trick.)
[image: Status line showing XML syntax before new menu action]

Figure 13-9. Status line showing XML syntax before new menu
 action

After invoking our new HTML menu item, the Vim status line
 verifies that the menu item worked and that the syntax is now
 HTML. See Figure 13-10.
[image: Status line showing HTML syntax after new menu action]

Figure 13-10. Status line showing HTML syntax after new menu
 action

Notice that the HTML menu item we added doesn’t have a
 shortcut or command on the righthand side. So let’s redo the menu
 addition and include this nice enhancement.
First, delete the existing entry:
:aunmenu File.HTML
Note
If you add a menu entry for command mode only using the
 menu command, you can remove
 it using unmenu.

Next, add a new HTML menu item that displays the command you
 associated to the item:
:amenu File.HTML<TAB>syntax=html<CR> :set syntax=html<CR>
The specification of the menu entry is now followed
 by <TAB>
 (typed literally) and syntax=html<CR>. In general, to
 display text on the righthand side of the menu, place it after the
 string <TAB> and
 terminate it with <CR>.
 Figure 13-11 shows the resulting File
 menu.
[image: HTML menu item, displaying associated command]

Figure 13-11. HTML menu item, displaying associated command

Note
If you want spaces in the descriptive text of the menu
 item (or in the menu name itself), quote the spaces with
 backslashes (\). If you don’t, Vim uses everything
 after the first space character for the definition of the menu
 action. In the previous example, if we wanted :set syntax=html instead of just
 syntax=html for the
 descriptive text, the :amenu
 command would have to be:
:amenu File.HTML<TAB>set\ syntax=html<CR> :set syntax=html<CR>

In most cases, it’s probably best not to modify the default
 menu definitions, but instead to create separate and independent
 entries. This requires defining a new menu at the root level, but
 this is just as simple as adding an entry to an existing
 menu.
Continuing our example, let’s create a new menu tree called
 MyMenu on the menu bar, and
 then add an HTML menu item to it. First, remove the HTML item from
 the File menu:
:aunmenu File.HTML
Next, enter the command:
:amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
Figure 13-12 shows how your menu bar
 may appear.
[image: Menu bar with “MyMenu” menu added]

Figure 13-12. Menu bar with “MyMenu” menu added

The menu commands offer more subtle control over where the
 menus appear and their behavior, such as whether the command
 indicates any activity, or even whether the menu item is visible.
 We discuss these possibilities further in the following
 section.

More menu customization

Now that we see how easy it is to modify and extend gvim’s menus, let’s look at more
 examples of customization and control.
Our previous example didn’t specify where to put the new
 MyMenu menu, and gvim
 arbitrarily placed it on the menu bar between Window and Help.
 gvim lets us control the
 position with its notion of priority, which
 is simply a numerical value assigned to each menu to determine
 where it goes on the menu bar. The higher this value is, the
 further to the right the menu appears. Unfortunately, the way
 users think of priority is the opposite of how it’s defined by
 gvim. To get priority straight,
 look back at the order of menus in Figure 13-5 and compare it to gvim’s default menu priorities, as
 listed in Table 13-1.
Table 13-1. gvim’s default menu priorities
	Menu	Priority
	File	10
	Edit	20
	Tools	40
	Syntax	50
	Buffers	60
	Window	70
	Help	9999

Most users would consider File a higher priority than Help
 (which is why File is on the left and Help on the right), but the
 priority of Help is higher. So, just think of the priority value
 as an indication of how far to the right a menu appears.
You can define a menu’s priority by prepending its numeric
 value to the menu command. If no value is specified, a default
 value of 500 is assigned, which explains why MyMenu ended up where
 it did in our earlier example: it landed between Window (priority
 70) and Help (priority 9999).
Assume we want our new menu to be between the File and Edit
 menus. We need to assign MyMenu a numeric priority greater than 10
 and less than 20. The following command assigns a priority of 15,
 leading to the desired effect:
:15amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
Note
Once a menu exists, its position is fixed for an entire
 editing session and does not change in response to additional
 commands that affect the menu. For example, you cannot change a
 menu’s position by adding a new item to it and prefixing the
 command with a different priority value.

To add some more confusion to priorities and menu placement,
 you can also control item placement within a
 menu by specifying a priority. Higher-priority menu items appear
 further down in the menu than lower-priority items, but the syntax
 is different from priority definitions for menus.
We’ll extend one of our earlier menu examples here by
 assigning a very high value (9999) to the HTML menu item, so that
 it appears at the bottom of the File menu:
:amenu File.HTML .9999 <TAB>syntax=html<CR> :set syntax=html<CR>
Why is there a period before 9999? You need to specify two
 priorities here, separated by a period: one for File and one for
 HTML. We are leaving the File priority blank because it’s a
 pre-existing menu and can’t be changed.
In general, priorities for a menu item appear between the
 item’s menu placement and the item’s definition. For every level
 in the menu hierarchy, you must specify a priority, or include a
 period to indicate that you’re leaving it blank. Thus, if you add
 an item deep in the menu hierarchy—such as under Edit → Global
 Settings → Context lines→ Display—and you want to assign the
 priority 30 to the last item (Display), you would specify the
 priority as ...30, and the
 placement together with the priority would look like:
Edit.Global\ Settings.Context\ lines.Display ...30
As with menu priorities, menu item priorities are fixed once
 they are assigned.
Finally, you can control menu “whitespace” with gvim’s menu separators. Use the same
 definition as you would to add a menu item, but instead of a
 command named “…”, place a hyphen (-) before and after it.

Putting it all together

Now we know how to create, place, and customize menus. Let’s
 make our example a permanent part of our gvim environment by adding the commands
 we discussed to the .gvimrc
 file. The sequence of lines should look something like:
" add HTML menu between File and Edit menus[image: 1]15amenu MyMenu.XML<TAB>syntax=xml :set syntax=xml<CR>
 [image: 2]amenu [image: 3].600 MyMenu.-Sep- :
 [image: 4]amenu [image: 5].650 MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
 [image: 6]amenu [image: 7].700 MyMenu.XHTML<TAB>syntax=xhtml :set syntax=xhtml<CR>
We now have a top-level, personalized menu with three
 favorite syntax commands quickly available to us. There are a few
 important things to note in this example:
	The first command ([image: 1])
 uses the prefix 15, telling gvim to use priority
 15. For an uncustomized environment, this
 places the new menu between the File and Edit menus.

	The subsequent commands ([image: 2], [image: 4],
 and [image: 6]) do
 not specify the priority, because once
 a priority is determined, no other values are used.

	We’ve used the submenu priority syntax ([image: 3], [image: 5],
 and [image: 7]) after the first command
 to ensure the correct order for each new item. Notice we
 started with the first definition of .600. This
 assures that the submenu item is placed behind the first one
 we defined, because we didn’t assign
 that priority and it therefore
 defaulted to 500.

For even handier access, click on the “scissors” tear-off
 line to have your personalized floating menu, as shown in Figure 13-13.
[image: Personalized floating tearoff menu]

Figure 13-13. Personalized floating tearoff menu

Toolbars

Toolbars are long strips of icons that allow quick access to
 program functions. On Windows, for instance, gvim displays the toolbar shown in Figure 13-14 at the top of the window.
[image: gvim’s toolbar]

Figure 13-14. gvim’s toolbar

Table 13-2 shows the toolbar icons and
 their meanings.

Table 13-2. gvim toolbar icons and their meanings
	Icon	Description	Icon	Description
	[image:]	Open file dialog	[image:]	Find next occurence of search pattern
	[image:]	Save current file	[image:]	Find previous occurence of search pattern
	[image:]	Save all files	[image:]	Choose saved edit session to load
	[image:]	Print buffer	[image:]	Save current edit session
	[image:]	Undo last change	[image:]	Choose Vim script to run
	[image:]	Redo last action	[image:]	Make current project with make command
	[image:]	Cut selection to clipboard	[image:]	Build tags for current directory tree
	[image:]	Copy selection to clipboard	[image:]	Jump to tag under cursor
	[image:]	Paste clipboard into buffer	[image:]	Open help
	[image:]	Find and replace	[image:]	Search help

If these icons are not familiar or intuitive, you can make the
 toolbar show both text and icons. Issue this command:
:set toolbar="text,icons"
Note
As with many advanced features, Vim requires toolbar
 features to be turned on during compilation so people who don’t
 want them can save memory by not including them. The toolbar does
 not exist unless one of the +GUI_GTK, +GUI_Athena, +GUI_Motif, or +GUI_Photon features is compiled into
 your version of gvim. Chapter 9 explains how to recompile Vim, during which
 the link to the gvim executable
 is created.

We modify the toolbar very much like we do menus. As a matter
 of fact, we use the same :menu command, but with extra syntax to specify graphics. Although
 an algorithm exists to help gvim
 find the icon associated with each command, we recommend explicitly
 pointing to the icon graphic.
gvim treats the toolbar as
 a one-dimensional menu. And, just as you control the right-to-left
 position of new menus, you can control the position of new toolbar
 entries by prefixing the menu
 command with a number that determines its positional
 priority. Unlike menus, there is no notion of
 creating a new toolbar. All new toolbar definitions appear on the
 single toolbar. The syntax for adding a toolbar selection is:

:amenu icon=/some/icon/image.bmp ToolBar.NewToolBarSelectionAction
where
 /some/icon/image.bmp is the path of the file
 containing the toolbar button or image (usually an icon) to display
 in the toolbar, NewToolBarSelection is the new
 entry for the toolbar button, and Action
 defines what the button does.
For example, let’s define a new toolbar selection that, when
 clicked or selected, brings up a DOS window in Windows. Assuming the
 Windows path is set up correctly (it should be), we will define our
 toolbar selection to start a DOS window from within gvim by executing the following (this is
 its Action):
:!cmd
For
 the new selection’s toolbar button, or image, we use an icon showing
 a DOS command prompt, shown in Figure 13-15,
 which on our system is stored in $HOME/dos.bmp.
[image: DOS icon]

Figure 13-15. DOS icon

Execute the command:
:amenu icon="c:$HOME/dos.bmp" ToolBar.DOSWindow :!cmd<CR>

 This creates a toolbar entry and adds our icon at the end of the
 toolbar. The toolbar should now look like Figure 13-16. The new icon appears on the rightmost
 end of the toolbar.
[image: Toolbar with added DOS command]

Figure 13-16. Toolbar with added DOS command

Tooltips

gvim lets you define
 tooltips for both menu entries and toolbar icons. Menu tooltips
 display in the gvim command-line
 area when the mouse is over that menu selection. Toolbar tooltips
 pop up graphically when the mouse hovers over a toolbar icon. For
 example, Figure 13-17 shows the tooltip that
 pops up when we put the mouse over the toolbar’s Find Previous
 button.
[image: Tooltip for the Find Previous icon]

Figure 13-17. Tooltip for the Find Previous icon

The :tmenu command
 defines tooltips for both menus and toolbar items. The
 syntax is:
:tmenuTopMenu.NextLevelMenu.MenuItemtool tip text

 where
 TopMenu.NextLevellMenu.MenuItem defines the
 menu as it cascades from the top level all the way to the menu item
 for which you wish to define a tooltip. So, for example, a tooltip
 for the Open menu item under the File menu would be defined with the
 command:
:tmenu File.Open Open a file
Use
 ToolBar for the top-level “menu”
 if you are defining a toolbar item (there is no real top-level menu
 for a toolbar).
Let’s define a pop-up tooltip for the DOS toolbar icon we
 created in the previous section. Enter the command:
:tmenu ToolBar.DOSWindow Open up a DOS window
Now
 when you hover over the newly added toolbar icon, you can see the
 tooltip, as shown in Figure 13-18.
[image: Toolbar with added DOS command and its new tooltip]

Figure 13-18. Toolbar with added DOS command and its new tooltip

gvim in Microsoft Windows

gvim is increasingly
 popular among Windows users. Veteran vi and Vim users will find the Windows
 version excellent, and it is probably the most current version across
 all operating systems.
Note
The self-installing executable should automatically and
 seamlessly integrate Vim into the Windows environment. If it
 doesn’t, consult the gui-w32.txt help file in the Vim runtime
 directory for regedit
 instructions. Because this involves editing the Windows Registry, do
 not try it if it’s a procedure with which you
 are the slightest bit uncomfortable. You may be able to find someone
 with more expertise to help you. It is a common but nontrivial
 exercise.

Long-time Windows users are familiar with the
 clipboard, a storage area where text and other information is kept to
 facilitate copy, cut, and paste operations. Vim supports interaction
 with the Windows clipboard. Simply highlight text in visual mode and
 click the Copy or Cut menu item to store Vim text in the Windows
 clipboard. You can then paste that text into other Windows
 applications.

gvim in the X Window System

Users familiar with the X environment can define and use many of the tunable X
 features. For example, you can define many resources with the standard
 class definitions typically defined in the .Xdefaults file.
Caution
Note that these standard X resources are useful only for the
 Motif or Athena versions of the GUI. Obviously, the Windows version
 has no understanding of X resources. Not so obviously, X resources
 are not picked up by KDE or GNOME either.

A full discussion of X and how you configure and customize it
 has been exhaustively documented elsewhere and is beyond the scope of
 this book. For a brief (or not so brief) introduction to X, we suggest
 the X manpage.

GUI Options and Command Synopsis

Table 13-3 summarizes the commands and
 options specially associated with gvim. These are added to Vim when it is
 compiled with GUI support, and they take effect when it is invoked
 as gvim or vim
 -g.
Table 13-3. gvim-specific options
	Command or
 option	Type	Description
	 guicursor 	Option	Settings for cursor shape and blinking
	 guifont 	Option	Names of single-byte fonts to be used
	 guifontset 	Option	Names of multi-byte fonts to be used
	 guifontwide 	Option	List of font names for double-wide characters
	 guiheadroom 	Option	Number of pixels to leave for window decorations
	 guioptions 	Option	Which components and options are used
	 guipty 	Option	Use a pseudo-tty for “:!” commands
	guitablabel	Option	Custom label for a tab page
	 guitabtooltip 	Option	Custom tooltip for a tab page
	toolbar	Option	Items to show in the toolbar
	-g	Option	Start the GUI (which also allows the other
 options)
	-U gvimrc	Option	Use gvim startup
 file, named gvimrc or something similar, when
 starting the GUI
	:gui	Command	Start the GUI (on Unix-like systems only)
	:gui
 filename...	Command	Start the GUI and edit the specified files
	:menu	Command	List all menus
	:menu
 menupath	Command	List menus starting with
 menupath
	:menu
 menupath action	Command	Add menu menupath, to perform
 action action
	:menu n
 menupath action	Command	Add menu menupath with positional
 priority of n
	:menu ToolBar.toolbarname action	Command	Add toolbar item toolbarname to
 perform action action
	:tmenu
 menupath
 text	Command	Create tooltip for menu item
 menupath with text of
 text
	:unmenu
 menupath	Command	Remove menu menupath

Chapter 14. Vim Enhancements for Programmers

Text editing is only one of Vim’s strong suits. Good programmers demand powerful
 tools to ensure efficient and proficient work. A good editor is only a
 start and, by itself, isn’t enough. Many modern programming environments
 attempt to provide comprehensive solutions when all that is really
 necessary is a strong editor with some extra smarts.
Programming tools offer extra features ranging from editors with
 syntax coloring, auto indentation and formatting, keyword completion,
 and so on, to full-blown Integrated Development
 Environments (IDEs) with sophisticated integration that
 build up complete development ecosystems. These IDEs can be expensive
 (e.g., Visual Studio) or free (Eclipse), but their disk and memory requirements are
 large, their learning curves steep, and their demand for resources
 immense.
Programmers’ tasks vary, and so do their technology requirements.
 Small development tasks are easily completed with simple editors that
 offer little more than text editing capabilities. Large, multicomponent,
 multiplatform, and multistaff efforts almost demand
 the heavy lifting IDEs provide. But from anecdotal experience, many
 veteran programmers feel that IDEs offer little more than extra
 complexity with no higher probability of success.
Vim strikes a nice compromise between simple editors and
 monolithic IDEs. It has features that until recently were available only
 in expensive IDEs. It lets you do quick and simple programming tasks
 without the overhead and learning curve of an IDE.
The many options, features, commands, and functions especially
 suited to making the programmer’s life easier range from folding lines
 of code into one line, to syntax coloring, to automatic formatting. Vim
 affords programmers many tools that can be fully appreciated only by
 using them. At the high end, it offers a sort of mini-IDE called
 Quickfix, but it also has convenience features specific to various
 programming tasks. We present the following topics in this
 chapter:
	Folding

	Auto and smart indenting

	Keyword and dictionary word completion

	Tags and extended tags

	Syntax highlighting

	Syntax highlight authoring (roll your own)

	Quickfix, Vim’s mini-IDE

Folding and Outlining (Outline Mode)

Folding lets you define what parts of the file you see. For instance,
 in a block of code you can hide anything within curly
 braces, or hide all comments. Folding is a two-stage process.
 First, using any of several fold methods (we’ll
 talk more about these later), you define what constitutes a block of
 text to fold. Then, when you use a fold command, Vim hides the
 designated text and leaves in its place a one-line placeholder. Figure 14-1 shows what folds look like in Vim. You
 can manage the lines hidden by the fold with the fold
 placeholder.
[image: Example of Vim folds]

Figure 14-1. Example of Vim folds

In the example, line 11 is hidden by a two-line fold starting
 with line 10. An eight-line fold starting at line 15 hides lines 16
 through 22. And a four-line fold starting at line 26 hides lines 27
 through 29.
There are virtually no limits on how many folds you can create.
 You can even create nested folds (folds within folds).
Several options control how Vim creates and displays folds.
 Also, if you’ve taken the time to create many folds, Vim provides the
 convenience commands :mkview and
 :loadview to preserve folds between sessions so you don’t have to create them
 again.
Folds require some effort to learn but, when mastered, add a
 powerful way to control what to display and when. Do not underestimate
 the power this brings. Correct and maintainable programs require
 robust design at several levels, so good programming often requires
 looking at the forest rather than the trees—in other words, ignoring
 details of implementation in order to see the overall structure of a
 file.
For power users, Vim offers six different ways to define,
 create, and manipulate folds. This flexibility lets you create and
 manage folds in different contexts. Ultimately, once created, folds
 open and close and behave similarly for the whole suite of fold
 commands.
The six methods of creating folds are:
	manual
	Define the span of a fold with standard Vim constructs, such
 as motion commands.

	indent
	Folds and fold levels correspond to the indentation of
 text and the value of the option shiftwidth.

	expr
	Regular expressions define folds.

	syntax
	Folds correspond to the semantics of a file’s language
 (e.g., a C program’s function blocks could fold).

	diff
	The differences between two files define folds.

	marker
	Predefined (but also user-definable) markers in the file
 specify fold boundaries.

The manipulation of folds (opening and closing, deleting, etc.)
 is the same for all methods. We’ll examine manual folds and discuss
 Vim fold commands in detail. We address some details for the other
 methods, but they are complex, specialized, and beyond the scope of
 this introduction. We hope our coverage will prompt you to explore the
 richness of these other methods.
So, let’s take a brief look at the important fold commands and
 go through a short example of what folds look like.
The Fold Commands

Fold commands all begin with z. As a mnemonic to remember this, think
 of the side view of a folded piece of paper (when folded correctly)
 and how it looks like the letter “z.”
There are about 20 z fold commands. With these
 commands you create and delete folds, open and close folds (hide and
 expose text belonging to folds), and toggle the expose/hide state of
 the folds. Here are short descriptions:
	 zA
	Toggle the state of folds, recursively.

	 zC
	Close folds, recursively.

	 zD
	Delete folds, recursively.

	 zE
	Eliminate all folds.

	 zf
	Create a fold from the current line to the one where
 the following motion command takes the cursor.

	 countzF

	Create a fold covering count lines,
 starting with the current line.

	 zM
	Set option foldlevel to 0.

	 zN
 zn
	Set (zN) or reset (zn) the foldenable option.

	 zO
	Open folds, recursively.

	 za
	Toggle the state of one fold.

	 zc
	Close one fold.

	 zd
	Delete one fold.

	 zi
	Toggle the value of the foldenable option.

	 zj
 zk
	Move cursor to the start (zj) of the
 next fold or to the end (zk) of the previous
 fold. (Note the mnemonic of the j (“jump”) and
 k motion commands and how they are analogous to
 motions within the context of folds.)

	 zm
 zr
	Decrement (zm) or increment (zr) the value of the
 foldlevel option by
 one.

	 zo
	Open one fold.

Warning
Don’t confuse delete fold with the
 delete command. Use the delete
 fold command to remove, or undefine, a fold. A deleted
 fold has no effect on the text contained in that fold.

zA, zC, zD,
 and zO are called
 recursive because they operate on all folds
 nested within the one where you issue the commands.

Manual Folding

If you know Vim motion commands, you already know half
 of what you must learn to be proficient with manual fold
 commands.
For example, to hide three lines in a fold, enter either of
 the following:
3zF
2zfj
3zf executes the zF folding command over three lines,
 starting with the current one. 2zfj executes the zf folding command from the current line
 to the line where j moves the
 cursor (two lines down).
Let’s try a more sophisticated command of use to C
 programmers. To fold a block of C code, position the cursor over the
 beginning or ending brace ({ or }) of a
 block of code and type zf%.
 (Remember that % moves to the matching brace.)
Create a fold from the cursor to the beginning of file by
 typing zfgg.
 (gg goes to the beginning of the file.)
It is easier to understand folds by seeing an example. We’ll
 take a simple file, create and manipulate folds, and watch the
 behavior. We’ll also see some of the enhanced visual folding cues
 that Vim provides.
First consider the example file in Figure 14-2, which contains some (meaningless)
 lines of C code. Initially, there are no folds.
[image: Sample file with no folds]

Figure 14-2. Sample file with no folds

There are a few things to note in this picture. First, Vim
 displays line numbers on the left side of the screen. We recommend
 that you always turn them on (using the number option) for added visual
 information about file location, and in this context the information
 becomes more valuable when you fold lines out of view. Vim tells you
 how many lines are not displayed, and the line numbers confirm and
 reinforce that information.
Also notice the gray columns to the left of the line numbers.
 These columns are reserved for more folding visual cues. As we
 create and use folds, we will see the visual cues Vim inserts into
 these columns.
In Figure 14-2, notice that the cursor
 is on line 18. Let’s fold that line and the two following lines into
 one fold. We type zf2j. Figure 14-3 shows the result.
[image: Three lines folded at line 18]

Figure 14-3. Three lines folded at line 18

Notice how Vim creates an easily identified marker with the
 +-- as a prefix, and how it displays text from the first folded line
 in the fold placeholder. Now notice the far
 left side of the screen where Vim inserted the +. This
 is another visual cue.
In the same file, we’ll next fold the block of code between
 and including the braces after the if statement.
 Position the cursor on either one of the braces and type zf%. The file now appears as in Figure 14-4.
[image: Block of code folded following an if statement]

Figure 14-4. Block of code folded following an if statement

Now there are eight lines of code folded, three of which are
 contained in a fold already created. This is called a
 nested fold. Note there is no indication of the
 nested fold.
Our next experiment is to position the cursor on line 25 and
 fold all lines up to and including the function declaration for
 fcn. This time we use the Vim
 search motion. We initiate the fold command
 with zf, search backward to the beginning of the
 fcn function using ?int
 fcn (the backward search command in Vim), and press the
 ENTER key. The
 screen now looks like Figure 14-5.
[image: Folding to the beginning of a function]

Figure 14-5. Folding to the beginning of a function

Note
If you count lines and create a fold that spans another fold
 (for example, 3zf), all lines
 contained in the spanned fold count as one line. For example, if
 the cursor is on line 30, and lines 31–35 are hidden in a fold on
 the next screen line, so that the next line on the screen displays
 line 36, 3zf creates a new fold
 containing three lines as they appear on the screen: the text line
 30, the five lines contained in the fold holding lines 31–35, and
 the text line 36 displayed in the next line on the screen.
 Confusing? A little. You might say that the zf
 command counts lines in accordance with the rule, “What you see is
 what you fold.”

Let’s try some other features. First, open all the folds with
 the command zO (that’s z followed by the letter O, not z followed by a zero). Now we start seeing
 some visual cues in the left margin about the folds we made, as
 shown in Figure 14-6. Each of the columns in
 this margin is called a foldcolumn.
[image: All folds opened]

Figure 14-6. All folds opened

In this figure, the first line of each fold is marked with a
 minus sign (–), and all the other lines of the fold are marked by a
 vertical bar or pipe character (|). The largest
 (outermost) fold is in the leftmost column, and the innermost fold is in the
 rightmost column. As you see in our picture, lines 5–25 represent
 the lowest fold level (in this case, 1), lines 15–22 represent the
 next fold level (2), and lines 18–20 represent the highest fold
 level.
Tip
By default, this helpful visual metaphor is turned off (we
 don’t know why; perhaps because it uses up screen space). Turn it
 on and define its width with the following command:
:set foldcolumns=n
where n is the number of columns to use
 (maximum is 12, default is 0). In the figure, we use foldcolumn=5. (For those paying close
 attention, yes, the earlier figures had foldcolumn set to 3. We changed the
 value for a better visual presentation.)

Now create more folds to observe their effects.
First, refold the deepest fold, which covers lines 18–20, by
 positioning the cursor on any line within the range of that fold and
 typing zc (close
 fold). Figure 14-7 shows the result.
[image: After refolding lines 18–20]

Figure 14-7. After refolding lines 18–20

See the change in the gray margin? Vim maintains the visual
 cues, making visualization and management of your folds easy.
Now let’s see what a typical “one line” command does to a fold. Position the cursor on the folded
 line (18). Type ~~ (toggle case
 for all characters in the current line). Remember that in Vim, ~ is an object
 operator (unless the compatible
 option is set) and therefore should toggle the case of all the
 characters in the line for this example. Next, open the fold by
 typing zo (open
 fold). The code now looks like Figure 14-8.
[image: Case change applied to a fold]

Figure 14-8. Case change applied to a fold

This is a powerful feature. Line commands or operators act on
 the entire text represented by a fold line! Admittedly this may seem
 like a contrived example, but it illustrates nicely the potential of
 this technique.
Note
Any action on a fold affects the whole fold. For instance,
 in Figure 14-7, if you position the cursor
 over line 18—a fold hiding lines 18 through 20—and type dd (delete
 line), all three lines are deleted and the fold is removed.
It’s also important to note that Vim manages all edit
 actions as if there were no folds, so any undos will undo an
 entire edit’s action. So, if we typed u (undo) after the previous change, all
 three lines that had been deleted would be restored. The undo
 feature is separate from the “one line” actions discussed in this
 section, although sometimes they seem to act similarly.

Now is a good time to familiarize yourself with the visual
 cues in the foldcolumn margin.
 They make it easy to see what fold you are about to
 act on. For example, the zc
 (close fold) command closes the innermost fold containing the line
 the cursor is on. You can see how large this fold is through the
 vertical bars in the foldcolumns. Once mastered, actions such as
 opening, closing, and deleting folds become second nature.

Outlining

Consider the following simple (and contrived) file using tabs
 for indentation:
1. This is Headline ONE with NO indentation and NO fold level.
 1.1 This is sub-headline ONE under headline ONE
 This is a paragraph under the headline. Its fold
 level is 2.
 1.2 This is sub-headline TWO under headline ONE.
2. This is Headline TWO. No indentation, so no folds!
 2.1 This is sub-headline ONE under headline TWO.
 Like the indented paragraph above, this has fold level 2.
 - Here is a bullet at fold level 3.
 A paragraph at fold level 4.
 - Here is the next bullet, again back at fold level 3.
 And, another set of bullets:
 - Bullet one.
 - Bullet two.
 2.2 This is heading TWO under Headline TWO.
3. This is Headline THREE.
You can use Vim folds to look at your file as a
 pseudo-outline. Define your folding method as indent:
:set foldmethod=indent
In our file we define the shiftwidth (the indentation level for
 tabs) to be 4. Now we can open and close folds based on indentation
 of lines. For each shiftwidth (a
 multiple of four columns in this case) to a line that
 is indented, its fold level increases by 1. For example, the
 subheadlines in our file are indented one shiftwidth, or four columns, and hence
 have a fold level of 1. Lines indented eight columns (two shiftwidths) have a fold level of 2,
 etc.
You can control the level of folds you see with the foldlevel command. It takes an integer as its argument and displays only lines whose
 fold levels are less than or equal
 to the argument. In our file we can ask to view
 only the highest-level headings with:
:set foldlevel=0
and our screen now looks like Figure 14-9.
[image: fold level = 0]

Figure 14-9. fold level = 0

Display everything up to and including the bullets by setting
 foldlevel to 2. Everything with a
 fold level greater than or equal to 2 is then
 displayed, as in Figure 14-10.
[image: fold level = 2]

Figure 14-10. fold level = 2

Using this technique to inspect your file, you can quickly
 expand and collapse the level of detail you see with Vim’s fold
 increment (zr) and
 decrement (zm) commands.

A Few Words About the Other Fold Methods

We don’t have time to cover all of the other fold methods, but
 to whet your appetite, we invite you to take a quick peek at the
 syntax folding method.
We use the same C file as before, but this time we let Vim
 decide what to fold based on C syntax. The rules governing folding
 within C are complex, but this simple snippet of code suffices to
 demonstrate Vim’s automatic capabilities.
First, make sure to get rid of all folds by typing zD (delete all folds). The screen now displays all code with no visual
 markers in the fold column.
Make sure folding is turned on with the command:
:set foldenable
 (You didn’t need to
 do this before for manual folding, because foldenable
 was automatically set when foldmethod was set to manual.) Now type the command:
:set foldmethod=syntax
 The folds
 appear as in Figure 14-11.
[image: After the command set foldmethod=syntax]

Figure 14-11. After the command set foldmethod=syntax

Vim folded all bracketed blocks of code, because those are
 logical semantic blocks in C. If you type zo on line 6 of this example, Vim expands
 the fold and reveals the inner fold.
Each fold method uses different rules to define folds. We
 encourage you to roll up (fold up?) your sleeves and read more on
 these powerful methods in the Vim documentation.
The Vim diff mode (also invoked through the vimdiff command) is a powerful combination of folding, windowing, and syntax
 highlighting, a feature we discuss later. As illustrated in Figure 14-12, the mode shows the differences
 between files, usually between
 two versions of the same file.
[image: Vim diff feature and its use of folds]

Figure 14-12. Vim diff feature and its use of folds

Auto and Smart Indenting

Vim offers four increasingly complex and powerful methods
 to automatically indent text. In its simplest form, Vim behaves almost
 identically to vi’s autoindent option, and indeed it uses the
 same name to describe the behavior.
You can choose the indentation method simply by specifying it in
 a :set command, such as:
:set cindent

 Vim offers the following methods, listed in order of increasing
 sophistication:
	autoindent
	Auto indentation closely mimics vi’s autoindent. It differs subtly as to
 where the cursor is placed after indentation is deleted.

	smartindent
	Slightly more powerful than autoindent, but it
 recognizes some basic C syntax primitives for defining
 indentation levels.

	cindent
	As its name implies, cindent embodies a much richer
 awareness of C syntax and introduces sophisticated customization
 beyond simple indentation levels. For example, cindent can be
 configured to match your (or your boss’s) favorite coding style
 rules, including but not limited to how braces ({})
 indent, where braces are placed, whether either or both braces
 are indented, and even how indentation matches included
 text.

	indentexpr
	Lets you define your own expression, which Vim
 evaluates in the context of each new line you begin. With this
 feature, you write your own rules. We refer you to the
 discussions of scripting and functions in this book and to the
 Vim documentation for details. If the other three options don’t
 give you enough flexibility for automatic indentation, indentexpr certainly will.

Vim autoindent Extensions to vi’s autoindent

autoindent for Vim behaves
 almost like vi’s and can be made identical by setting
 the compatible option. One nice
 extension to vi’s autoindent is Vim’s ability to recognize a
 file’s “type” and insert appropriate comment characters when comment
 lines in a file wrap to a new line. This feature works cooperatively
 with either the wrapmargin (text
 wraps within wrapmargin columns
 of the right margin) or textwidth
 (text wraps when characters in a line exceed textwidth characters) options. Figure 14-13 shows the results of identical inputs,
 one using Vim’s autoindent and
 the other using vi.
[image: Difference between Vim and vi autoindent]

Figure 14-13. Difference between Vim and vi autoindent

Notice that in the second block of text (line 16 and beyond)
 there is no leading comment character. Also, with the compatible option set (to mimic
 vi’s behavior), the textwidth option isn’t recognized,
 and now the text wraps only because option wrapmargin has a value.

smartindent

smartindent extends
 autoindent, slightly. It’s
 useful, but if you are writing code in a C-like programming language
 with a fairly complex syntax, you are better served by using
 cindent instead.
smartindent automatically
 inserts indents when:
	A new line follows a line with a left brace
 ({).

	A new line begins with a keyword that’s contained in the
 option cinwords.

	A new line is created preceding a line starting with a
 right brace (}), if the cursor
 is positioned on the line containing the brace and the user
 creates a new line using the O (open line above)
 command.

	A new line is a closing, or right, brace
 (}).

cindent

Regular Vim users who program in C-like languages will want to
 use either cindent or indentexpr for coding. Although indentexpr is more powerful, flexible, and
 customizable, cindent is more
 practical for most programming tasks. It has plenty of settings for
 most programmers’ needs (and corporate standards). Try it for a
 while with its default settings, and then customize it if your
 standards differ.
Note
If the indentexpr option
 has a defined value, it overrides cindent’s actions.

Three options define cindent’s behavior:
	cinkeys
	Defines keyboard keys that signal Vim to reevaluate
 indentation

	cinoptions
	Defines the indentation style

	cinwords
	Defines keywords that signal when Vim should add an
 extra indent in subsequent lines

cindent uses the string
 defined by cinkeys as its ruleset
 to define how to indent. We’ll examine the default value of cinkeys and then look at other settings
 you can define and how they work.
The cinkeys option

cinkeys is a
 comma-separated list of values:
0{,0},0),:,0#,!^X^F,o,O,e

 Here are the values, broken into their separate contexts, with
 brief descriptions for each behavior:
	0{
	0 (zero) sets a beginning of
 line context for the following character, {.
 That is, if you type the character { as the first
 character of a line, Vim will reevaluate the indentation for
 that line.
Do not confuse the zero in this option with the
 behavior “use zero indentation here,” a common practice in C
 indentation. The zero here means “if the character is typed
 at the beginning of the line,” not “force the character to
 appear at the beginning of the line.”
The default indentation for { is zero: no
 added indentation beyond the current level. The following
 example shows typical results:
main ()
{
 if (argv[0] == (char *)NULL)
 { ...

	0}
0)
	As in the previous description, these two settings
 define beginning of line context. Thus,
 if you type either } or) at the
 beginning of a line, Vim reevaluates indentation.
The default indentation for } matches the
 indentation defined for its matching open brace
 {.
The default indentation for) is one
 shiftwidth.

	:
	This is the C label or case
 statement context. If a : (colon) is
 typed at the end of a label or case
 statement statement, Vim reevaluates
 indentation.
The default indentation for : is column
 1, the first column in a line. Do not confuse this with zero
 indentation, which leaves the new line at the same
 indentation level as the previous one. When the indentation
 is 1, the first character of a new line is shifted left
 all the way to the first column.

	0#
	Again, this is a beginning of
 line context. When # is the first
 character typed in a line, Vim reevaluates
 indentation.
Default indentation, as in the previous definition,
 shifts the entire line to the first column. This is
 consistent with the practice of beginning macros
 (#define...) in column 1.

	!^F
	The special character ! defines any
 following character as a trigger to
 reevaluate the indentation in the current line. In this
 case, the triggering character is ^F, which
 stands for CTRL-F, so the
 default behavior is for Vim to reevaluate a line’s
 indentation any time you type CTRL-F.

	o
	This context defines any new line you create, whether
 by pressing the ENTER key
 in insert mode or by using the o (open new line) command.

	O
	This context covers the creation of a new line
 above the current line using the
 O (open new line above)
 command.

	e
	This is the else context. If you
 begin a line with the word else, Vim reevaluates indentation.
 Vim does not recognize this context until the final “e” of
 else is typed.

cinkeys syntax rules. Each cinkeys definition
 consists of an optional prefix (one of !,
 *, or 0) and the key for which
 indentation is reevaluated. The prefixes have the following
 meanings:
	!
	Indicates a key (default CTRL-F) that causes Vim to
 reevaluate indentation on the current line. You can add an
 additional key definition as a command (by using the
 += syntax) without overriding the preexisting
 command. In other words, you can provide multiple keys to
 trigger line indentation. Any key you add to the
 ! definition still performs its old function as
 well.

	*
	Tells Vim to reevaluate the current line indentation
 before inserting the key.

	0
	Sets a beginning of line context.
 The key you specify after the 0 triggers a
 reevaluation of indentation only when typed as the first
 character of a line.
Note
Be aware of the distinction in vi and Vim between “first
 character in a line” and “first column in a line.” You
 already know that typing ^ moves to the first
 character of a line, not necessarily the first column
 (flush left); the same is true of inserting with
 I. In the same way, the 0 prefix
 applies to entering a character as the first character in
 a line, regardless of whether it is flush left.

cinkeys has special key
 names and provides ways to override any reserved characters, such
 as those used as prefix characters. Here are the special key
 options:
	<>
	Use this form to define keys literally. For special
 nonprinting keys, use the spelled-out versions. For example,
 you can define the literal character “:” with
 <:>. Another example for a nontyping key
 is to define the “up arrow” as
 <Up>.

	^
	Use the caret (^) to signify a control
 character. For example, ^F defines the key
 CTRL-F.

	o
O
e
:
	We saw these special keys in the default value for
 cinkeys.

	= word
=~ word
	Use these to define a word that should receive special
 behavior. Once the string word is
 matched, if it is the first text on a new line, Vim
 reevaluates indentation.
The form
 =~word is the same
 as =word except that
 it ignores case.
Note
The term word is an unfortunate
 misnomer. More properly, it represents beginning
 of word, because the trigger occurs as soon as
 the string matches, but it does not require that the
 matched end of string also be the end of word. Vim’s
 built-in documentation gives the example of
 end matching both end and
 endif.

The cinwords option

cinwords
 defines keywords that, when typed, trigger extra
 indentation on the following line. The option’s default value is:

if,else,while,do,for,switch

 This covers the standard keywords in the C programming
 language.
Note
These keywords are case-sensitive. In checking for them,
 Vim even ignores the setting of the ignorecase option. If you need
 variations for different cases of keywords, you must specify all
 combinations in the cinwords
 string.

The cinoptions option

cinoptions controls
 how Vim reindents lines of text in their C context. It
 includes settings to control a number of code formatting
 standards, such as:
	How far to indent a code block enclosed by braces

	Whether to insert a newline in front of a brace that
 follows a condition statement

	How to align blocks of code relative to their enclosing
 braces

cinoptions defines 28
 settings with its default value:
s,e0,n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(2s,us,U0,w0,W0,
 m0,j0,)20,*30
 The very length of the option gives you a sense of
 how many ways Vim lets you customize indentation. Most
 customization with cinoptions
 defines slight differences in context blocks. Some customizations
 define how far to scan (how many lines forward and backward in the
 file to go) in order to establish the right context and properly
 evaluate indentation.
Settings that alter the amount of indentations for various
 contexts can increase or decrease levels of indentation. Also, you
 can redefine the number of columns to use for indentation. For
 example, setting cinoptions=f5
 causes an opening brace ({) to be indented five columns, so long as it
 is not inside any other braces.
Another way to define increments of indentation is by some
 multiplier (which doesn’t have to be an integer) of shiftwidth. If, in the previous example,
 you append w to the definition (i.e., cinoptions=f5w), the opening brace
 shifts five shiftwidths.
Insert a minus sign (-) before any numeric
 value to alter the indentation level to the left (a negative
 indentation).
Warning
This option and its string value is one to modify with
 great care. Remember that when you use = syntax,
 you redefine an option completely. Because cinoptions carries so many possible
 settings, use very fine-grained commands to make changes:
 += to add a setting, -= to remove an
 existing setting, and -= followed by
 += to change an existing setting.

The following is a brief list of the options you are most
 likely to change. It is a small subset of the settings in cinoptions, and many readers may find
 the other (or even all) settings useful to
 customize.
	>n (default
 is s)
	Any line where indentation is indicated should be
 indented n places. The default for this
 is s, meaning that the default indentation for
 a line is one shiftwidth.

	f n
{ n
	The f defines how far to indent an
 opening unnested brace ({). The default value
 is zero, thus aligning braces with their logical
 counterpart. For example, a brace following a line with a
 while statement is placed under the “w” of the
 while.
The { behaves the same way as the
 f but applies to nested
 opening braces. Again, this one defaults to an indent level
 of zero.
Figures 14-14 and 14-15 show two examples of
 identical text entry in Vim, the first example with cinoptions=s,f0,{0, and the second
 with cinoptions=s,fs,{s.
 For both examples, option shiftwidth has the value 4 (four columns).
[image: cinoptions=s,f0,{0]

Figure 14-14. cinoptions=s,f0,{0

[image: cinoptions=s,fs,{s]

Figure 14-15. cinoptions=s,fs,{s

	} n
	Use this setting to define a closing brace’s
 (}) offset from its matching brace. The default
 is zero (aligned with the matching brace).

	^ n
	Add n to the current indentation
 inside a set of braces ({...}) if the opening
 brace is in column one.

	: n
= n
b n
	These three control indentation in case statements. With
 :, Vim indents case labels
 n characters from the position of its
 corresponding switch statement. The default is
 one shiftwidth.
The = setting defines the offset for
 lines of code from their corresponding case label. The
 default is to indent statements one shiftwidth.
The b setting defines where to place
 break statements. The default (zero) aligns
 break with the other statements within the
 corresponding case block. Any nonzero value
 aligns the break with its corresponding
 case label.

) n
* n
	These two settings tell Vim how many lines to scan to
 find unclosed parentheses (default is 20 lines) and unclosed
 comments (default is 30 lines), respectively.
Tip
Ostensibly, these two settings limit how hard Vim
 has to work to look for matches. With today’s powerful
 computers, you should consider ratcheting these values up
 to assure more complete scope management to match comments
 and parentheses. Try doubling each to 40 and 60
 as a starting point.

indentexpr

indentexpr, if defined,
 overrides cindent so that you can
 define indentation rules and tailor them exactly to your language
 editing needs.
indentexpr defines an
 expression to be evaluated each time a new line is created in a
 file. This expression resolves to an integer that Vim uses as the
 indentation of the new line.
In addition, the option indentkeys can define useful keywords in
 the same way that cinkeys
 keywords define lines after which indentation is reevaluated.
The bad news is that it is a nontrivial project to write
 customized indentation rules from scratch for any language. The good
 news is it’s likely that the work is already done. Look in the
 $VIMRUNTIME/indent directory to
 see whether your favorite language is represented. A quick peek
 today reveals more than 70 indent files.
The most common programming languages are represented,
 including ada, awk,
 docbook (the indent file is named docbk), eiffel,
 fortran, html,
 java, lisp,
 pascal, perl, php,
 python, ruby,
 scheme, sh,
 sql, and zsh. There is
 even an indent file defined for xinetd!
You can tell Vim to automatically detect your file type and
 load the indent file by putting the command filetype indent on in your .vimrc file. Now Vim will try to detect
 what file type you are editing and load a corresponding
 indent definition file for you. If the indent
 rules do not fill your needs—for example, if they indent in some
 unfamiliar or unwanted fashion—turn the definitions off with the
 command :filetype indent
 off.
We encourage power users to explore and learn from the indent
 definition files that come with Vim. And if you develop new
 definition files or improvements to existing ones, we encourage you
 to submit them to vim.org for possible addition
 to the Vim package.

A Final Word on Indentation

Before ending our discussion, it’s worth noting a couple of
 points about working with automatic indenting:
	When automatic indenting isn’t
	Any time you act on a line in an edit session with
 automatic indenting and you change that line’s indentation
 manually, Vim flags that line and will no longer try to
 automatically define its indentation.

	Copy and paste
	When you paste text into your file where automatic
 indenting is turned on, Vim considers this regular input and
 applies all automatic indentation rules. In most cases, this
 is probably not what you intend. Any indentation in pasted
 text is tacked on to applied indentation rules. Typically the
 result is text that progressively skews to the right side of
 the screen with large indentation and no corresponding retreat
 to the left side.

To avoid this awkward situation and to paste text intact
 without side effects, set Vim’s paste option before adding the imported
 text. paste comprehensively
 reconfigures all of Vim’s automatic features to faithfully
 incorporate pasted text. To return to automatic mode, simply reset
 the paste option with the command
 :set nopaste.

Keyword and Dictionary Word Completion

Vim offers a comprehensive suite of insertion-completion
 capabilities. From programming language-specific keywords to
 filenames, dictionary words, and even entire lines, Vim knows how to
 offer possible completions to partially entered text. Not only that,
 but Vim abstracts the semantic of dictionary-based completion to
 include completions based on synonyms for the completed word from a
 thesaurus!
In this section we look at the different completion methods,
 their syntaxes, and descriptions of how they work with examples. The
 methods of completion include:
	Whole line

	Current file keywords

	dictionary option
 keywords

	thesaurus option
 keywords

	Current and included file
 keywords

	Tags (as in ctags)

	Filenames

	Macros

	Vim command line

	User-defined

	Omni

	Spelling suggestions

	complete option
 keywords

Except for complete keywords,
 all completion commands start with CTRL-X. The second key specifically defines the type of completion
 Vim attempts. For example, the command to autocomplete filenames is
 CTRL-X CTRL-F. (Not all the commands are so
 mnemonic, unfortunately.) Vim uses unmapped (default) keys, which
 allows you to shorten most of these commands to just the second
 keystroke by mapping the commands appropriately. (For instance, you
 can map CTRL-X CTRL-N to just CTRL-N.)
All completion methods have virtually identical behavior: they
 cycle through a list of candidate completions as you retype the second
 keystroke. Thus, if you choose filename autocompletion through CTRL-X CTRL-F
 and you don’t get the right word on the first try, you can
 repeatedly press CTRL-F to see the
 other options. Additionally, if you press CTRL-N (for “next”), you move forward through
 the possibilities, whereas CTRL-P
 (for “previous”) moves backward.
Let’s look at some of these autocompletion methods with examples
 and consider how they might be useful.
Insertion Completion Commands

These methods range in function from simply looking for
 words in your current file to spanning the range of function,
 variable, macro, and other names throughout an entire suite of code.
 The final method combines features of the others for a nice
 compromise between power and sophistication.
Tip
You may want to find your favorite completion method and map
 it to a single easy-to-use key. I map mine to the Tab key:
:imap Tab <C-P>
This sacrifices my ability to insert tabs easily, but it
 allows me to use the same key I use (available by default) in
 command-line environments such as DOS and shell (xterm, konsole, etc.) to complete partially
 typed information. (Remember, you can always insert a tab by
 quoting it with CTRL-V.) Mapping
 to the Tab key also corresponds to the normal completion key in
 Vim’s command-line mode.

Completing whole lines

This is invoked through CTRL-X CTRL-L. The method looks backward in the
 current file for a line matching the characters you’ve typed.
 We’ll try an example to give you a sense of how completion
 works.
Consider a file that contains terminal, or console,
 definitions that characterize the features of terminals and how to
 manipulate them. Say your screen resembles Figure 14-16.
[image: Example of completion by line]

Figure 14-16. Example of completion by line

Note the highlighted line containing “This terminal widely
 used in our company...”. You need this line in many places as you
 mark terminals as “widely used” for your company. Simply type
 enough of the line to make it unique, or close to unique, and then
 type CTRL-X CTRL-L. Thus, Figure 14-17 contains the partial input line:

Thi
[image: Partially typed line waiting for completion]

Figure 14-17. Partially typed line waiting for completion

CTRL-XCTRL-L causes Vim to show a set of
 possible completions for the line, based on lines previously
 entered in the file. The list of completions is shown in Figure 14-18.
[image: After typing CTRL-X CTRL-L]

Figure 14-18. After typing CTRL-X CTRL-L

It is hard to see in grayscale, but the screen offers a
 colored pop-up window containing multiple occurrences of lines
 matching the beginning of our partial line. Also displayed, but
 not visible in the screenshot, is information describing where the
 match is found. This method uses the complete option to define the scope for
 searching for matches. Scope is discussed in detail in the last
 method of this section.
The pop up[50] list highlights selections as you move forward
 (CTRL-N) or backward (CTRL-P) through the list. Press ENTER to select your match. If you do not
 want any of the choices in the list, type CTRL-E to halt the match method without
 substituting any text. Your cursor returns to its original
 position on the same partial input.
Figure 14-19 shows the results after
 we select an option from the list.
[image: After typing CTRL-X CTRL-L and selecting our matching line]

Figure 14-19. After typing CTRL-X CTRL-L and selecting our matching
 line

Completion by keyword in file

CTRL-XCTRL-N searches forward through the
 current file for keywords matching the keyword in front of the
 cursor. Once you enter those keystrokes, you can use CTRL-N and CTRL-P to search forward or backward,
 respectively. Press ENTER to
 select a match.
Note
Note that “keyword” is loosely defined. While it may be
 keywords programmers are familiar with, it can really match any
 word in the file. Words are defined as a contiguous set of
 characters in the iskeyword
 option. The iskeyword
 defaults are pretty sane, but you can redefine the option if you
 want to include or leave out some punctuation. Characters in
 iskeyword can be specified
 either directly (such as a–z) or through ASCII code
 (such as using 97-122 to represent a–z).
For instance, the defaults allow an underscore as part of
 a word, but consider a period or hyphen to be a delimiter. This
 works fine for C-like languages, but may not be the best choice
 for other environments.

Completion by dictionary

CTRL-XCTRL-K searches forward through the files
 defined by the dictionary
 option for keywords matching the keyword in front of the
 cursor.
The default setup leaves the dictionary option undefined. There are
 common places to find dictionary files, and you can define your
 own. The most common dictionary files are:
	/usr/dict/words
 (Cygwin on XP)

	/usr/share/dict/words
 (FreeBSD)

	$HOME/.mydict (personal list of
 dictionary words)

Notice that for Windows XP, the dictionary word file is
 provided by Cygwin (http://www.cygwin.com/), a
 free software emulation suite of Unix utilities. Although
 installation of Cygwin is beyond the scope of this discussion, it
 is worth noting that you can selectively install small portions of
 it, and you may find it worthwhile to install the piece that
 contains the word dictionary.

Completion by thesaurus

CTRL-XCTRL-T searches forward through the files
 defined by the thesaurus
 option for keywords that match the keyword in front of the
 cursor.
This method offers an interesting twist. When Vim finds a
 match, if the line in the thesaurus file contains more than one
 word, Vim includes all the words in the list of completion
 candidates.
Ostensibly (and implied by the option’s name), this method
 provides synonyms but allows you to define
 your own standard. Consider the example file containing these
 lines:
fun enjoyable desirable
funny hilarious lol rotfl lmao
retrieve getchar getcwd getdirentries getenv getgrent ...
The first two lines are typical English-language synonyms
 (matching “fun” and “funny,” respectively), while the third line
 might be useful for C programmers who regularly insert function
 names that begin with get. The synonym we use for
 these functions is “retrieve.”
In real life, we’d separate the English-language thesaurus
 from the C-language one, because Vim can search multiple
 thesauruses.
In input mode, type the word fun, then CTRL-X CTRL-T. Figure 14-20 shows the resulting pop up in
 gvim.
[image: Thesaurus completion of “fun”]

Figure 14-20. Thesaurus completion of “fun”

Notice the following:
	Vim matches any word it can find in
 a thesaurus entry, not just the first word of each line in the
 thesaurus file.

	Vim includes candidate words from all lines in the
 thesaurus that have a match with the keyword in front of the
 cursor. Thus, in this case, it finds the matches for both
 “fun” and “funny.”

Note
Another interesting and perhaps unanticipated behavior of
 thesaurus is that the match
 can be on words on a line in the thesaurus file other
 than the first word. For instance, in the line from
 the previous example file:
funnyhilarious lol rotfl lmao
If you type hilar and
 complete it, Vim will include in the list all words from
 hilarious on that line, i.e., “hilarious,” “lol,”
 “rotfl,” and “lmao.” Funny!

Did you notice the extra information in the list of
 candidates for completion? You can get information about where
 Vim found the match in the pop-up menu by adding the value preview to the completeopt option.
Now consider an example, using the same file as before, in
 which you type the partial word retrie. This matches
 “retrieve,” a synonym we like as a mnemonic for “getting” stuff,
 and we include all “get” function names as synonyms. Now, CTRL-X CTRL-T gives us the pop-up menu (in
 gvim) of all of our functions
 as choices for completion. See Figure 14-21.
[image: Thesaurus completion of string “retrie”]

Figure 14-21. Thesaurus completion of string “retrie”

As with other completion methods, press ENTER to select the match.

Completion by keyword in current file and included
 files

CTRL-XCTRL-I searches forward through the
 current file and included files for keywords matching the keyword
 in front of the cursor. This method differs from the “search
 current file” method (CTRL-XCTRL-P) in that Vim inspects the current
 file for include file references and searches those files, too.
Vim uses the value in include to detect lines referencing
 include files. The default is a pattern
 telling Vim to find lines matching the standard C
 construct:
include <somefile.h>
In this case, Vim would find matches in the file somefile.h in the standard include file
 directories on the system. Vim also uses the path option as a list of directories to
 search for the included files.

Completion by tag

CTRL-XCTRL-] searches forward through the
 current file and included files for keywords matching
 tags. (See the earlier section Using Tags for a discussion of tags.)

Completion by filename

CTRL-XCTRL-F searches for filenames matching
 the keyword in front of the cursor. Note that this causes Vim to
 complete the keyword with the name of the
 file, not with words found in files.
Note
As of Vim 7.1, Vim searches only in
 the current directory for files with possible filename matches.
 This is in contrast to many Vim features that use the path option to look for files. The
 built-in Vim documentation hints that this behavior is
 temporary, by pointing out that path isn’t used “yet.”

Completion by macro and definition names

CTRL-XCTRL-D searches forward through the
 current file and included files for macro names and definitions
 defined by the #define directive. This method
 inspects the current file for include file references and searches
 those files, too.

Completion method with Vim commands

This method, invoked through CTRL-X CTRL-V, is meant for use on the Vim
 command line and tries to guess the best completions for words.
 This context is provided to assist users developing Vim
 scripts.

Completion by user functions

This method, invoked through CTRL-X CTRL-U, lets you define the completion
 method with your own function. Vim uses the function pointed to by
 the option completefunc to make the
 completion. Refer to Chapter 12 for discussions
 about scripting and writing Vim functions.

Completion by omni function

This method, invoked through CTRL-X CTRL-O, uses user-defined functions much
 like the previous user function method. The significant difference
 is that this method expects the functions to be file
 type-specific, and hence, determined and loaded as a file is
 loaded. Omni completion files are already available for C, CSS,
 HTML, JavaScript, PHP, Python, Ruby, SQL, and XML. The built-in
 Vim documentation mentions that more scripts will be available
 soon for Vim 7.1, including an omni function file for C++. We encourage you to experiment
 with them.

Completion for spelling correction

This method is invoked through CTRL-X CTRL-S. The word in front of the cursor
 is used as the base word for which Vim offers candidates for
 completion. If the word appears to be badly spelled, Vim offers
 suggested “more correct” spellings.

Completion with the complete option

This is the most generic option, invoked through CTRL-N, and lets you combine all the
 other searches into one. For many users, this may be the most
 satisfactory because it requires little understanding of the
 nuances of the more specific methods.
Define where and how this completion acts by setting the
 comma-separated list of available sources in the complete option. Each available source
 is denoted by a single character. The choices include:
	. (period)
	Search the current buffer

	w
	Search buffers in other windows (within the screen
 containing your Vim session)

	b
	Search other loaded buffers in the buffer list (which
 might not be visible in any Vim windows)

	u
	Search the unloaded buffers in the buffer list

	U
	Search the buffers not in the
 buffer list

	k
	Search the dictionary files (listed in the dictionary option)

	kspell
	Use the current spellchecking scheme (this is the only
 option that is not a single character)

	s
	Search the thesaurus files (listed in the thesaurus option)

	i
	Search the current and included files

	d
	Search the current and included files for defined
 macros

	t
]
	Search for tag completion

Some Final Comments on Vim Autocompletion

We’ve covered a lot of material
 related to autocompletion, but there’s lots more. The autocompletion
 methods yield great returns for the time you invest in mastering
 their use. If you edit a lot, and if there’s
 any notion or context of text to be completed,
 find the method best suited to that and learn it.
One final tip. Combinations with two keystrokes (more if you
 are a typical Unix user and count key combinations as “more than
 one”) can be error-prone, especially given that they are
 combinations with the CTRL key. If
 you think you’d use autocompletion heavily, consider mapping your
 favorite autocompletion to just one keystroke or key combination.
 Large numbers of autocompletion commands abbreviated to half the
 length offer that much more efficiency.
The following example shows you why we find this customization
 so valuable. I map the Tab key to generic keyword matching, as
 mentioned earlier. While editing this book using DocBook XML tags, I
 have (using a conservative grep
 of the files) typed “emphasis” more than 1,200 times! Using keyword
 completion, I know the partial “emph” always matches to one choice,
 the “emphasis” tag I want. Thus, for each occurence of this word, I save at
 least three keystrokes (assuming perfect typing for the three
 initial letters), giving me a total savings of at least 3,600
 keystrokes!
Here’s another way to measure the efficiency of this method: I
 already know I type about four characters per second, thus gaining a
 savings in typing for one keyword alone of
 3,600 divided by 4, or 15 minutes time saved.
 For the same DocBook files, I complete another 20 to 30 keywords in
 the same fashion. The savings in time accrue quickly!

[50] The pop up is in gvim; Vim behaves slightly
 differently.

Tag Stacking

Tag
 stacking
 is described earlier in the section Tag Stacks. Besides moving back and forth among the tags you search for, you can
 choose among multiple matching tags. You can also do tag selection and
 window splitting with one command. The Vim ex mode commands
 for working with tags are provided in Table 14-1.
Table 14-1. Vim tag commands
	Command	Function
	ta[g][!]
 [tagstring]	Edit the file containing
 tagstring as defined in the tags file. The ! forces Vim to switch to the new
 file if the current buffer has been modified but not saved.
 The file may or may not be written out, depending on the
 setting of the autowrite
 option.

	[count]ta[g][!]	Jump to the count’th newer
 entry in the tag stack.

	[count]po[p][!]	Pop a cursor position off the stack, restoring
 the cursor to its previous position. If supplied, go to the
 count’th older entry.

	tags	Display the contents of the tag
 stack.

	ts[elect][!] [tagstring]	List the tags that match
 tagstring, using the information in the
 tags file(s). If no tagstring is given,
 the last tag name from the tag stack is used.

	sts[elect][!] [tagstring]	Like :tselect,
 but splits the window for the selected
 tag.

	[count]tn[ext][!]	Jump to the count’th next
 matching tag (default is 1).

	[count]tp[revious][!]	Jump to the
 count’th previous matching tag (default
 is 1).

	[count]tN[ext][!]
	[count]tr[ewind][!]	Jump to the first matching tag. With
 count, jump to the
 count’th matching tag.

	tl[ast][!]	Jump to the last matching tag.

Normally, Vim shows you which matching tag out of how many it
 has jumped to. For example:
tag 1 of >3
It uses a greater-than sign (>) to indicate that it has not yet tried
 all the matches. You can use :tnext
 or :tlast to try more matches. If
 this message is not displayed because of some other message, use
 :0tn to see it.
Here is the output of the :tags command, with the current location
 marked with a greater-than sign (>):
 # TO tag FROM line in file
 1 1 main 1 harddisk2:text/vim/test
 > 2 2 FuncA 58 -current-
 3 1 FuncC 357 harddisk2:text/vim/src/amiga.c
The :tselect command lets
 you pick from more than one matching tag. The “priority”
 (pri field) indicates the quality
 of the match (global versus static, exact case versus case-independent, etc.); this is described
 more fully in the vim
 documentation.
 nr pri kind tag file ~
 1 F f mch_delay os_amiga.c
 mch_delay(msec, ignoreinput)
> 2 F f mch_delay os_msdos.c
 mch_delay(msec, ignoreinput)
 3 F f mch_delay os_unix.c
 mch_delay(msec, ignoreinput)
Enter nr of choice (<CR> to abort):
The :tag and :tselect commands can be given an argument
 that starts with /. In that case,
 the command uses it as a regular expression, and Vim will find all the
 tags that match the given regular expression. For example, :tag /normal will find the
 macro NORMAL, the function normal_cmd, and so on. Use :tselect /normal and enter the number of the
 tag you want.
The vi command mode commands
 are described in Table 14-2. Besides using the
 keyboard, as in the other editors, you can also use the mouse if mouse
 support is enabled in your version of Vim.
Table 14-2. Vim command mode tag commands
	Command	Function
	^]	Look up the location of the identifier under the
 cursor in the tags file,
 and move to that location. The current location is
 automatically pushed onto the tag stack.

	g
 <LeftMouse>
	CTRL-<LeftMouse>
	^T	Return to the previous location in the tag stack, i.e.,
 pop off one element. A preceding count specifies how many
 elements to pop off the stack.

The Vim options that affect tag searching are described in Table 14-3.
Table 14-3. Vim options for tag management
	Option	Function
	taglength, tl	Controls the number of significant characters in
 a tag that is to be looked up. The default value of zero
 indicates that all characters are significant.

	tags	The value is a list of filenames in which to look
 for tags. As a special case, if a filename starts with
 ./, the dot is replaced
 with the directory part of the current file’s pathname, making
 it possible to use tags
 files in a different directory. The default value is "./tags,tags".

	tagrelative	When set to true (the default) and using a
 tags file in another
 directory, filenames in that tags file are considered to be
 relative to the directory where the tags file is.

Vim can use Emacs-style etags files, but this is only for backward
 compatibility; the format is not documented in the Vim documentation,
 nor is the use of etags files
 encouraged.
Finally, Vim also looks
 up the entire word containing the cursor, not just the part of the
 word from the cursor location forward.

Syntax Highlighting

One of Vim’s strongest enhancements to vi is
 its syntax highlighting. Vim’s syntax formatting relies heavily on the
 use of color, but it also degrades gracefully on screens that do not
 support color. In this section we discuss three topics: getting
 started, customizing, and rolling your own. Syntax highlighting for
 Vim contains features that go beyond the scope of this book, so we
 focus on providing enough information to get you familiar with it and
 enable you to extend it to fit your needs.
Note
Because the impact of Vim’s syntax highlighting is most
 dramatic in color, and this book isn’t (in color), we strongly
 encourage you to try syntax highlighting to fully appreciate the
 power of color in defining context. I have never met a user who
 tried it and then did not continue to always use it.

Getting Started

Displaying a file’s syntax highlighting is simple. Just issue
 the command:
:syntax enable
If all is well, and if you edit a file with a formal syntax,
 such as a programming language, you should see text in various
 colors, all determined by context and syntax. If nothing changed,
 try turning syntax on:
:syntax on
Enabling syntax should be
 enough by itself, but we have encountered situations where the
 additional command was required to turn on the syntax
 highlighting.
If you still see no syntax highlights, Vim may not know what
 your file type is and thus not understand which syntax is
 appropriate. There are a number of reasons this happens.
For example, if you create a new file and don’t use a
 recognized suffix, or no suffix at all, Vim cannot determine the
 file type because the file is new and therefore empty. For instance,
 I write shell scripts without any .sh suffix. Each new shell script begins
 its editing life without syntax highlighting. Fortunately, once the
 file contains code, Vim knows how to figure out the file type and
 syntax highlighting works as expected.
It’s also possible (though not likely) that Vim doesn’t
 recognize your file type. This is very rare, and usually you just
 need to specify a file type explicitly, because someone has already
 written a syntax file for the language. Unfortunately, creating one
 from scratch is a complex undertaking, although we give you some
 tips later in this chapter.
You can force Vim to use the syntax highlighting of your
 choice by setting the syntax manually from the command line. When
 starting a new shell script, for instance, I always define the
 syntax with:
:set syntax=sh
The section Dynamic File Type Configuration Through Scripting shows a
 clever and rather roundabout way to avoid this step.
When you enable syntax, Vim sets up syntax highlighting by
 going through a checklist. Without getting mired in too many
 technical details, we’ll just say that Vim ultimately determines
 your file type, finds the appropriate syntax definition file, and
 loads it for you. The standard location for syntax files is the
 $VIMRUNTIME/syntax
 directory.
To get a sense of the comprehensive coverage of syntax
 definitions, the Vim syntax file directory contains almost
 500 syntax files. Available syntaxes span the gamut from
 languages (C, Java, HTML) to content (calendar) to
 well-known configuration files (fstab, xinetd, crontab). If Vim doesn’t recognize your
 file type, try looking in the $VIMRUNTIME/syntax directory for a syntax file that
 closely matches yours.

Customization

Once you start using syntax highlighting, you may find that some of the colors do not work for
 you. They may be difficult to see or just not suit your taste. Vim
 has a few ways to customize and tune colors.
Here are some things to try before taking more drastic
 measures (e.g., writing your own syntax, as described in the next
 section) to make syntax highlighting work for you.
Two of the most common and dramatic symptoms of syntax
 highlighting gone amok are:
	Bad contrast, with colors too similar and hard to see
 distinctly as different from each other

	Too many, or too varied, colors, which creates a harsh
 look to the text

Although these are subjective deficiencies, it’s nice that Vim
 lets you make corrections. Two commands, colorscheme and highlight, and one option, background, can probably bring the colors
 to a satisfactory balance for most users.
There are a few other commands and options with which you can
 customize your syntax highlighting. After a brief introduction to
 syntax groups, we will talk about these commands and options in the
 following sections, with an emphasis on the three just
 mentioned.
Syntax groups

Vim classifies different types of text into groups. These
 groups each receive color and highlight definitions. Additionally,
 Vim allows groups of groups. You can address definitions at
 different levels. If you assign a definition to a group containing
 subgroups, unless otherwise defined, each subgroup inherits the
 parent group’s definitions.
Some high-level groups for syntax highlighting
 include:
	Comment
	Comments specific to the programming language, e.g.:

 // I am both a C++ and a JavaScript comment

	Constant
	Any constant, e.g. TRUE

	Identifier
	Variable and function names

	Type
	Declarations, such as int and struct in C

	Special
	Special characters, such as delimiters

Taking the “special” group from the previous list, we can
 look at an example of subgroups:
	SpecialChar

	Tag

	Delimiter

	SpecialComment

	Debug

With a basic understanding of syntax highlighting, groups,
 and subgroups, we now know enough to modify syntax highlighting to
 suit our tastes.

The colorscheme command

This command changes colors for different syntax highlights such
 as comments, keywords, or strings by redefining these syntax
 groups. Vim ships with the following color scheme choices:
	blue

	darkblue

	default

	delek

	desert

	elflord

	evening

	koehler

	morning

	murphy

	pablo

	peachpuff

	ron

	shine

	slate

	torte

	zellner

These files are in the directory $VIMRUNTIME/colors. You can activate any one of
 them with:
:colorschemeschemeName
Tip
In non-GUI Vim, you can quickly cycle through the
 different schemes this way: type the partial command :color, press the Tab key to start command completion,
 press the Space bar, then repeatedly press the Tab key to cycle
 through the different choices.
In gvim, the choice is
 even easier. Click on the Edit menu, move the mouse over the
 Colorscheme submenu, and select the “tear off” (the line with
 scissors) menu. Now you can look at all the choices by clicking
 each button.

Setting the background option

When Vim sets colors, it first tries to determine what kind of background
 color your screen has. Vim has just two categories for background:
 dark or light. Based on Vim’s determination, it sets colors
 differently for each, with the end result hopefully being a set of
 colors that works well with that background (one with good
 contrast and color compatibility). Although Vim does try very
 hard, a correct assessment is tricky, and an assignment to dark or
 light is subjective. Sometimes the contrasts render the session
 uncomfortable to view, and sometimes they are unreadable.
So, if the colors don’t look good, try explicitly choosing a
 background setting. Make sure
 first to identify the setting:
:set background?

 so that you know that you are changing the setting. Then, issue a
 command such as:
:set background=dark
Use the background option
 in tandem with the colorscheme
 command to fine-tune your screen colors. These two together
 can usually produce a satisfactory color palette that is
 comfortable to view.

The highlight command

Vim’s highlight
 command lets you manipulate different groups and control
 how they are highlighted in your edit session. This command is
 powerful. You can inspect settings for various groups either as a
 list or by requesting specific group highlight information. For
 example:
:highlight comment

 in my edit session returns Figure 14-22.
[image: Highlight for comments]

Figure 14-22. Highlight for comments

The output shows how comments in this file will appear. The
 xxx is dark gray on this page,
 but on the screen it’s blue. The term=bold output means that on a
 terminal incapable of color, comments will be shown in bold.
 ctermfg=4 means that on a color
 terminal, such as an xterm on a
 color monitor, the foreground color for comments will be the
 matching DOS color dark blue. Finally, guifg=Blue means the GUI interface will display comments with the foreground color
 blue.
Note
The DOS color scheme is a more restricted set of colors
 than modern GUI sets. For the DOS colors, there are eight:
 black, red, green, yellow, blue, magenta, cyan, and white. Each of these can be set for
 text foreground or background and optionally can be defined as
 “bright,” a brighter color on the screen. Vim uses analogous
 mappings for defining text colors in non-GUI windows, e.g.,
 xterms.
GUI windows offer virtually unlimited color definitions.
 Vim lets you define some colors with common names such as
 Blue, but you can also
 define these colors with red, green, and blue values. The
 format is #rrggbb where the
 # is literal, and rr, gg, and bb are hex numbers representing the
 level of each color. For example, red could be defined with
 #ff0000.

Use the highlight command
 to change settings for groups whose colors you don’t like. For
 example, we can find that identifiers in this file are dark cyan
 for our GUI interface, as shown in the output in Figure 14-23.
:highlight identifier
[image: Highlight for identifiers]

Figure 14-23. Highlight for identifiers

We can redefine the color for identifiers with the command:

:highlight identifiers guifg=red
Now all identifiers on the screen are (a rather ugly) red.
 This kind of customization is fairly inflexible: it applies to all
 file types and does not adapt to different backgrounds or color
 schemes.
To see how many highlight definitions exist and what their
 values are, again use highlight:
:highlight
 Figure 14-24 shows a small sample of the results
 from the highlight
 command.
[image: Partial results from the highlight command]

Figure 14-24. Partial results from the highlight command

Note how some lines contain full definitions (listing
 term, ctermfg, and so on), whereas others
 receive their attributes from parent groups (e.g., String links back to Constant).

Overriding syntax files

In the previous section, we learned how to define syntax group
 attributes for all instances of a group. Suppose you want to
 change a group for only one or a few syntax definitions. Vim lets
 you do this with the after
 directory. This is a directory in which you can create any number
 of after syntax files that Vim will execute
 after the normal syntax file.
To do this, simply include highlight commands (or any
 processing commands—the notion of “after” processing is generic)
 in the specific file in a directory named after that is included in the runtimepath option. Now, when Vim sets
 up syntax highlighting rules for your file type, it will also
 execute your custom commands in the after file.
For example, let’s apply a customization to XML files, which
 use the xml syntax. This means
 Vim loaded syntax definitions from a file in the syntax directory
 named xml.vim. As in the
 previous example, we want to define identifiers always to be red.
 So we create our own file named xml.vim in a directory named ~/.vim/after/syntax. In our xml.vim file we put the line:
highlight identifier ctermfg=red guifg=red
Before this customization works, we must ensure that
 ~/.vim/after/syntax is in the
 runtimepath path:
:set runtimepath+=~/.vim/after/syntaxIn our .vimrc

 To make the change permanent, of course, the line should go in our
 .vimrc file.
Now, whenever Vim loads syntax definitions for xml, it will override the definitions
 for identifier with our own
 customization.

Rolling Your Own

With the building blocks of the previous sections, we now have
 enough knowledge to write our own syntax files, simple as they might
 be. There are still many facets to learn before we can fully develop
 a syntax file.
We will incrementally build our own syntax file. Because
 syntax definitions can be extremely complex, let’s consider
 something simple enough to be easily grasped, but complex enough to
 show its potential power.
Consider an excerpt from a generated Latin file, loremipsum.latin:
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin eget
tellus. Suspendisse ac magna at elit pulvinar aliquam. Pellentesque
iaculis augue sit amet massa. Aliquam erat volutpat. Donec et dui at
massa aliquet molestie. Ut vel augue id tellus hendrerit porta. Quisque
condimentum tempor arcu. Aenean pretium suscipit felis. Curabitur semper
eleifend lectus. Praesent vitae sapien. Ut ornare tempus mauris. Quisque
ornare sapien congue tortor.

In dui. Nam adipiscing ligula at lorem. Vestibulum gravida ipsum iaculis
justo. Integer a ipsum ac est cursus gravida. Etiam eu turpis. Nam laoreet
ligula mollis diam. In aliquam semper nisi. Nunc tristique tellus eu
erat. Ut purus. Nulla venenatis pede ac erat.

...
Create a new syntax by creating a new file of that syntax
 name, in this case latin. Its
 corresponding Vim file is latin.vim, which you can create in your
 personal Vim runtime directory, $HOME/.vim. Then, start your syntax
 definition simply by creating some keywords with the syntax keyword command. Choosing lorem, dolor, nulla, and lectus as our keywords, you can inaugurate
 the syntax file with the line:
syntax keyword identifier lorem dolor nulla lectus
There still isn’t any syntax highlighting when you edit
 loremipsum.latin. More work
 needs to be done before highlighting is automatic. But for the time
 being, activate the syntax with the command:
:set syntax=latin
Because the
 $HOME/.vim directory is one of
 the directories in the runtimepath option, the text should now
 look something like Figure 14-25.
[image: Latin file with keywords defined]

Figure 14-25. Latin file with keywords defined

It is a little difficult to see, but the keywords you defined
 that are visible in this snapshot are dark gray instead of black,
 indicating a different color from the rest of the text. (The actual
 colors on the screen were black text with blue keywords.)
You may have noticed that the first occurence of Lorem isn’t highlighted. By default,
 syntax keywords are case-sensitive. Add the line at the top of our
 syntax file:
:syntax case ignore

 and you should now see Lorem
 included as a highlighted keyword.
Before we try this again, let’s make it all work
 automatically. After Vim tries to detect any file type, it
 optionally checks for other definitions, or even overriding
 definitions (which are not recommended), in a directory named
 ftdetect in your runtimepath. Therefore, create that
 directory under $HOME/.vim and
 create a file in it named latin.vim containing a single line:

au BufRead,BufNewFile *.latin set filetype=latin

 This line tells Vim that any files with the suffix .latin are latin files, and therefore that Vim should
 execute the syntax file in $HOME/.vim/syntax/latin.vim when
 displaying them.
Now when you edit loremipsum.latin, you see Figure 14-26.
[image: Latin file with keywords defined, ignoring case]

Figure 14-26. Latin file with keywords defined, ignoring case

First, notice that the syntax was active right away, as Vim
 correctly detected your new syntax file type, latin. And keywords now match without any
 sensitivity to case.
For some more interesting extensions, define a match and assign it to group Comment. The match method uses a regular expression to define what is highlighted. For example, we will
 define all words beginning with s and ending with
 t to be Comment
 syntax (remember, this is just an example!). Our regular expression
 is: \<s[^\t]*t\> (trust us). We also will define
 a region and highlight it as a Number. Regions are defined with a
 start and end regular expression.
Our region begins with Suspendisse and ends with
 sapien\.. To add even more of a twist, we decide that
 the keyword lectus is
 contained within our region. Our latin.vim syntax file now looks
 like:
syntax case ignore
syntax keyword identifier lorem dolor nulla lectus
syntax keyword identifier lectus contained
syntax match comment /\<s[^\t]*t\>/
syntax region number start=/Suspendisse/ end=/sapien\./ contains=identifier
Now, when we edit loremipsum.latin, we see Figure 14-27.
[image: New latin syntax highlighting]

Figure 14-27. New latin syntax highlighting

There are several things to notice, which you can see much
 more easily if you run the example and view the results in
 color:
	The new match highlights appear. On the first line,
 sit is highlighted in blue
 because it satisfies the regular expression for the match.

	The new region highlights appear. The entire section of
 the paragraph beginning with Suspendisse through sapien. is highlighted in purple
 (ick).

	The keywords are still highlighted as before.

	Within the highlighted region, the keyword lectus is still highlighted in green
 because we defined group identifier as contained and defined our region as
 contains identifier.

This example only begins to tap the rich powers of syntax
 highlighting. Although this particular example is somewhat useless,
 we hope that it demonstrates enough to convince you of its power and
 encourages you to experiment and create your own syntax
 definitions.

Compiling and Checking Errors with Vim

Vim isn’t an Integrated Development Environment
 (IDE), but it tries to make life a little easier
 for programmers by incorporating compilation into the edit session and
 providing a quick and easy way to find and correct errors.
Additionally, Vim offers some convenience functions to track and
 navigate locations in your files. We discuss a
 simple example: the edit-compile-edit cycle using Vim’s built-in
 features and some of its related commands and options, as well as the
 convenience functions. All of these depend on the same Vim Quickfix List
 window.
As a simple starting point, Vim lets you compile files using
 make each time you change one. Vim uses default behavior to manage
 the results of your build so that you can easily alternate between
 editing and compilation. Compilation errors appear in Vim’s special
 Quickfix List window, where you can
 inspect, jump to, and correct errors.
For this topic we use a little C program that generates
 Fibonacci numbers. In its correct and compilable form, the code
 is:
include <stdio.h>

int main(int argc, char *argv[])
 {
 /*
 * arg 1: starting value
 * arg 2: second value
 * arg 3: number of entries to print
 *
 */

 if (argc - 1 != 3)
 {
 printf ("Three command line args: (you used %d)\n", argc);
 printf ("usage: value 1, value 2, number of entries\n");
 return (1);
 }

 /* count = how many to print */
 int count = atoi(argv[3]);

 /* index = which to print */
 long int index;

 /* first and second passed in on command line */
 long int first, second;

 /* these get calculated */
 long int current, nMinusOne, nMinusTwo;

 first = atoi(argv[1]);
 second = atoi(argv[2]);
 printf("%d fibonacci numbers with starting values: %d, %d\n", count, first,
 second);
 printf("=======================================\n");

 /* print the first 2 from the starter values */
 printf("%d %04d\n", 1, first);
 printf("%d %04d ratio (golden?) %.3f\n", 2, second, (double) second/first);

 nMinusTwo = first;
 nMinusOne = second;

 for (index=1; index<=count; index++)
 {
 current = nMinusTwo + nMinusOne;
 printf("%d %04d ratio (golden?) %.3f\n",
 index,
 current,
 (double) current/nMinusOne);
 nMinusTwo = nMinusOne;
 nMinusOne = current;
 }
 }
From Vim, compile this program (assuming a filename of fibonacci.c) with the command:
:make fibonacci
By default, Vim passes the make command through to the external shell
 and captures the results in the special Quickfix List window. After compiling the
 previous code, the screen with the Quickfix
 List window looks something like Figure 14-28.
[image: Quickfix List window after a clean compile]

Figure 14-28. Quickfix List window after a clean compile

Next, we change enough lines in our program to introduce a
 healthy number of errors.
Change:
 long int current, nMinusOne, nMinusTwo;
to the invalid declaration:
 longish int current, nMinusOne, nMinusTwo;
Change:
 nMinusTwo = first;
 nMinusOne = second;
to misspelled variables xfirst and
 xsecond:
 nMinusTwo = xfirst;
 nMinusOne = xsecond;
Change:
 printf("%d %04d ratio (golden?) %.3f\n", 2, second, (float) second/first);
to this, with missing commas:
 printf("%d %04d ratio (golden?) %.3f\n", 2 second (float) second/first);
Now recompile the program. Figure 14-29
 shows what the Quickfix List window
 now contains.
[image: Quickfix List window after a compilation with errors]

Figure 14-29. Quickfix List window after a compilation with errors

Line 1 of the Quickfix List
 window shows the compile command executed. If there had been no
 errors, this would be the only line in the window. But because there
 are errors, line 3 begins the list of errors and their context.
Vim lists all errors in the Quickfix
 List window and lets you access the code, where errors are
 indicated in several ways. Vim starts with the convenience behavior by
 highlighting the first error in the Quickfix
 List window. It then repositions the source file (scrolling
 if necessary) and places the cursor at the beginning of the source
 code line corresponding to the error.
As you fix errors, you can navigate to the next error in one of
 a couple ways: enter the command :cnext, or position the cursor over the
 error line in the Quickfix List
 window and press ENTER. Again, Vim
 scrolls the source file if necessary, and positions the cursor at the
 beginning of the offending source code line.
After you’ve made changes and are satisfied that you’ve
 corrected your errors, you’re ready to begin the compile-edit cycle
 again using the same technique. If you have a standard developer’s
 environment (which is almost always true for Unix/Linux machines),
 Vim’s default behaviors will handle edit-compile-edit as described
 without any tweaking.
If Vim’s defaults don’t find a proper compile program, it has
 options you can use to define where utilities are located, to let you
 do your work. The details about programming environments and compilers
 are outside the scope of this discussion, but we present these Vim
 options as a starting point in case you need to play with your environment:
	makeprg
	An option containing the name of the development environment’s
 make or compile program.

	:cnext
:cprevious
	Commands that move the cursor to next
 and previous error locations, as defined in
 the Quickfix List window,
 respectively.

	:colder
:cnewer
	Vim remembers the last 10 lists of errors. These commands load
 the next older or next
 newer list of errors in the Quickfix List window. Each command
 takes an optional integer n to load
 the nth older or
 newer error list.

	errorformat
	An option defining a format that Vim matches to find errors returned
 from a compile. Vim’s built-in documentation gives much more
 detailed information on how this is defined, but the default
 almost always works. If you need to tune the option, view its
 details with:
:help errorformat

More Uses for the Quickfix List Window

Vim also lets you build your own list of locations within
 files, specifying the locations through a grep-like syntax. The Quickfix List window returns the results
 you asked for in a format closely resembling the lines returned from
 the compilation process described earlier.
This feature is useful for such tasks as refactoring. As an
 example, we composed this manuscript in DocBook, a form similar to
 XML. At some point in the composition process we switched the
 notation for any occurence of “vim” from <emphasis> to <literal>. So, each occurence
 like:
<emphasis>vim</emphasis>
needed to be changed to:
<literal>vim</literal>
After executing this command:
:vimgrep /<emphasis>vim<\/emphasis>/ *.xml
the Quickfix List window
 contained the information shown in Figure 14-30.
[image: Quickfix List window after :vimgrep command]

Figure 14-30. Quickfix List window after :vimgrep command

Then it was a simple matter to navigate through all
 occurrences and quickly change to the new values.
Note
This example may seem to solve a problem more easily solved
 with this simple command:
:%s/<emphasis>vim<\/emphasis>/<literal>vim<\/literal>/g
But remember, vimgrep is
 more general and operates against multiple files. This is an
 example of what vimgrep does,
 not a definitive way to perform this task. In Vim, there are
 usually many ways to complete a task.

Some Final Thoughts on Vim for Writing Programs

We have
 looked at many powerful features in this chapter. Spend some time
 mastering these techniques and you’ll gain great productivity. If
 you’re a long-time vi user, you’ve
 already climbed one steep learning curve. The extra effort to learn
 Vim’s additional features is worth a second learning curve.
If you’re a programmer, we hope this chapter shows how much Vim
 offers for your programming tasks. We encourage you to try some of
 these features and even to extend Vim to your own needs. And
 maybe you will create
 extensions to give back to the Vim community. Now, go program!

Chapter 15. Other Cool Stuff in Vim

Chapters 10 through 14 covered powerful Vim features and
 techniques we think you should know about to make effective use of the
 editor. This chapter takes a lighter look at Vim. It’s a catch-all for
 some of the features that didn’t fit into previous topics, ideas about
 editing and the Vim philosophy, and some fun things about Vim (not that
 the earlier chapters weren’t fun!).
Editing Binary Files

Officially, Vim, like vi, is
 a text editor. But in pinch, Vim also lets you edit files containing
 data that is normally unreadable by humans.
Why would you ever want to edit a binary file? Aren’t binary
 files binary for a reason? Aren’t binary files typically generated by
 some application in a well-defined and specific format?
Warning
While we enjoy Vim’s binary editing feature, we do not present
 an in-depth discussion about potential serious issues to consider
 while editing binary files. For example, some binary files contain
 digital signatures or checksums to ensure file integrity. Editing
 these files risks damaging their integrity and could render them
 unusable. Therefore, do not consider this an endorsement of casual
 binary edits.

It’s true that binary files are typically created by a
 computerized or analog process and are not intended to be edited
 manually. For example, digital cameras often store pictures in JPEG
 format, a compressed binary format for digital pictures. These are
 binary, but they have well-defined sections or blocks where standard
 information is stored (that is, they do if they’re implemented
 according to specification). Digital pictures in JPEG format store
 picture meta-information (time of picture, resolution, camera
 settings, date, etc.) in reserved blocks separate from the compressed
 digital picture data. A practical application might use Vim’s binary
 file editing feature to edit a directory of JPEG pictures to change
 all of the year fields in the “created” block to
 correct the picture’s “date of creation” field.
Figure 15-1 shows an editing session on a
 JPEG file. Notice how the cursor is positioned over the date field.
 You can directly edit information about this picture by changing these
 fields.
[image: Editing a binary JPEG file]

Figure 15-1. Editing a binary JPEG file

For power users familiar with a particular binary format, Vim
 can be extremely handy for making changes directly that might
 otherwise require tedious, repetitive access with other tools.
There are two main ways to edit binary files. You can set the
 binary option from the Vim command
 line:
set binary
 or start Vim
 with the -b option.
To facilitate binary editing and protect
 Vim from damaging the file’s integrity, Vim sets the following options
 accordingly:
	The textwidth and
 wrapmargin options are set to 0. This stops Vim from inserting
 spurious newline sequences into the file.

	The modeline and expandtab options are unset (nomodeline and noexpandtab). This stops Vim from
 expanding tabs to shiftwidth
 spaces, and prevents it from interpreting commands in a modeline,
 which potentially would set options that introduce unexpected and
 unwanted side effects.

Note
Be careful when moving from window to window, or buffer to
 buffer, when using binary mode. Vim uses entry and exit events to
 set and change options for switching buffers and windows, and you
 may confuse it into removing some of the protections just listed. We
 recommend a single-window, single-buffer session when editing binary
 files.

Digraphs: Non-ASCII Characters

Do you say that the Messiah is composed by George Frideric Händel,
 not George Frideric Handel? Do you think your
 résumé conveys a little more cachet than a
 resume? Use Vim’s digraphs to enter special
 characters.
Even English-language text files occasionally need a special
 character, especially when making references to a globalized world.
 Text files in languages other than English need scads of special
 characters.
Vim lets you enter special characters in a number of ways, and
 two of them are relatively straightforward and intuitive. Both rely on
 defining a digraph through a prefix (CTRL-K) or the use of the BS (Backspace) key between two keyboard
 characters. (The other methods are more suited to entering characters
 by their raw numerical values, specified as decimal, hexadecimal, or
 octal numbers. While powerful, these methods do not lend themselves to
 easy mnemonics for digraphs.)
Note
The term digraph traditionally describes
 a two-letter combination that represents a single phonetic sound,
 such as the ph in “digraph” or “phonetic.” Vim
 borrows the notion of “two-letter” combinations to describe its
 input mechanism for characters with special characteristics,
 typically accents or other markings such as the umlaut on
 ä. These special marks are properly called
 diacritics, or diacritical
 marks. In other words, Vim uses digraphs to create
 diacritics. Glad we could clear that up.

The first input method for diacritics is a three-character
 sequence consisting of CTRL-K, the
 base letter, and a punctuation character indicating the accent or mark
 to be added. For example, to create a c with a cedilla (ç), enter
 CTRL-Kc,. To create an
 a with a grave accent (à), enter CTRL-Ka!.
Greek letters can be created by a corresponding Latin letter
 followed by an asterisk (for instance, enter CTRL-Kp* for a lowercase π).
 Russian letters can be created by a corresponding Latin letter
 followed by an equals sign or, in a few places, a percent sign. Use
 CTRL-K?I (make sure to
 use a capital I) to enter an inverted question mark (¿) and CTRL-Kss to enter a German
 sharp S (ß).
To use Vim’s second method, set the digraph option:
set digraph
Now create special
 characters by typing the first character of the two-character
 combination, then a backspace character (BS), and then the punctuation that creates a
 mark. Thus, enter ç through cBS, and à through
 aBS!.
Setting the digraph option
 doesn’t preclude you from entering digraphs with the CTRL-K method. Consider using
 only the CTRL-K
 method if your typing is less than stellar. Otherwise, you may find
 yourself inadvertently entering digraphs more often than you want as
 you backspace and type corrections.
Use the :digraph command to
 show all the default sequences; more verbose descriptions can be
 obtained with :help digraph-table. Figure 15-2 shows a partial list from the digraph command.
[image: Vim digraphs]

Figure 15-2. Vim digraphs

In the display, each digraph
 is represented by three columns. The display is a bit jumbled because
 Vim jams as many three-column combinations on each line as the screen
 permits. For each of the groups, column one shows the digraph’s
 two-character combination, column two displays the digraph, and column
 three lists the decimal Unicode value for the digraph.
For your convenience, Table 15-1, lists
 the punctuation to use as the final character in the sequence to enter
 the most commonly needed accents and marks.
Table 15-1. How to enter accents and other marks
	Mark
	Character to enter as part of
 digraph

	Acute accent (fiancé)
	Apostrophe (')

	Breve (publică)
	Left parenthesis (

	Caron (Dubček)
	Less-than sign (<)

	Cedilla (français)
	Comma (,)

	Circumflex or carot (português)
	Greater-than sign (>)

	Grave accent (voilà)
	Exclamation point (!)

	Macron (ātmā)
	Hyphen (-)

	Stroke (Søren)
	Slash (/)

	Tilde (señor)
	Question mark (?)

	Umlaut or diaeresis (Noël)
	Colon (:)

Editing Files in Other Places

Thanks to seamless integration of network protocols, Vim lets you
 edit files on remote machines just as if they were local! If you
 simply specify a URL for a filename, Vim opens it in your window and
 writes your changes to it on the remote system (depending on your
 access rights). For instance, the following command edits a .vimrc file owned by user ehannah on the system mozart. The remote machine offers the SSH
 secure protocol on port 122 (this is a nonstandard port, providing
 additional security through obscurity):
$vim scp://ehannah@mozart:122//home/ehannah/.vimrc
Because we’re editing a file in ehannah’s home directory on the remote
 machine, we can shorten the URL by using a simple filename. It’s
 treated as a pathname relative to the user’s home directory on the
 remote system:
$vim scp://ehannah@mozart:122/.vimrc
Let’s take apart the URL so you can learn how to build URLs for
 your particular environment:
	scp:
	The first part, up to the colon, represents the transport
 protocol. In this example, the protocol is scp, a file copy protocol built on the
 Secure Shell (SSH) protocol. The following : is required.

	//
	This introduces host information, which for most transport
 protocols takes the form
 [user@]hostname[:port].

	ehannah@
	This is optional. For secure protocols such as scp, it specifies what user to log in
 as on the remote machine. When omitted, it defaults to your
 username on the local machine. When you are prompted for a
 password, you must enter the user’s password on the remote
 machine.

	mozart
	This is the remote machine’s symbolic name, and it can
 also be specified as a numeric address, e.g.,
 192.168.1.106.

	:122
	This is optional and specifies the port on which the
 protocol is provided. The colon separates the port number from
 the preceding hostname. All standard protocols use well-known
 ports, so this element of the URL can be omitted if the standard
 port is used. In this example, 122 in not
 the standard port for the scp protocol, and because
 the administrator of the mozart system has chosen to provide
 the service on 122, this specification is required.

	//home/ehannah/.vimrc
	This is the file on the remote machine we want to edit. We
 start with two slashes because we’re specifying an absolute
 path. A relative path or simple filename requires only a single
 slash to separate it from the preceding hostname. A relative
 path is relative to the home directory of the user that you
 logged in as. So, in the example a relative path would be
 relative to ehannah’s home
 directory, e.g., /home/ehannah.

Here is a partial list of the supported protocols:
	ftp: and sftp:
 (regular FTP and secure FTP)

	scp: (secure remote copy over SSH)

	http: (file transfer using standard
 browser protocol)

	dav: (a relatively new but popular proposed open standard for web
 transfer)

	rcp: (remote copy)

What we’ve described so far is enough to allow remote editing,
 but the process may not be as transparent as editing a file locally.
 That is, because of the intervening requirement to move data from
 remote hosts, you may be prompted for passwords to do your work. This
 can become tedious if you are used to periodically writing your file
 to disk while editing, as each of the “writes” is interrupted to
 prompt you to enter a password to complete the transaction.
All of the transport protocols in the preceding list allow you
 to configure the service to allow password-free access, but the
 details vary. Use the service’s documentation for specific protocol
 details and configurations.

Navigating and Changing Directories

If you’ve used Vim a lot, you may have accidentally discovered that you
 can view a directory and move through it using keystrokes similar to
 those used with files.
Let’s consider a directory containing many .c
 files, ex-050325 (this happens to
 be the directory containing the compilable source for the original
 vi editor). Edit ex-050325 with:
$vim ex-050325
Figure 15-3 is a partial screenshot of
 something similar to what you might see.
[image: Vim “editing” the ex-050325 directory]

Figure 15-3. Vim “editing” the ex-050325 directory

Vim displays three types of information: introductory comments
 (preceded by equals signs), directories (displayed with trailing
 slashes), and files. Each directory or file is on its own line.
There are many ways to use this feature, but with little effort
 you can be immediately and intuitively productive with standard Vim
 motion commands (e.g., w to move to
 the next word, j or the down arrow
 to jump down one line) and by clicking the mouse over entries. Some
 particular features of directory mode include:
	When the cursor is positioned over a directory name, move to
 that directory by pressing the ENTER key.

	If the cursor is over a filename, pressing ENTER edits that file.

Tip
If you want to keep the directory window around for further
 work in that directory, edit the file under the cursor by typing
 o, and Vim will split the window,
 editing the file in the newly created window. (This is also true for
 moving to another directory when the cursor is over a directory
 name; Vim splits the window and “edits” the directory to which you
 moved in the new window.)

	You can delete and rename files and directories. Rename a
 file or directory by typing capital R. Probably a little counterintuitively,
 Vim creates a command-line prompt with which you perform the
 rename. It should look something like Figure 15-4.
To complete the rename, edit the second command-line
 argument.
Deleting a file works similarly. Simply position the cursor
 over the filename you want to delete and type capital D. Vim prompts you with a verification
 dialog to delete the file. As with the rename function, Vim
 prompts for verification in the command-line area of the
 screen.

[image: Prompt for rename in “edit directory”]

Figure 15-4. Prompt for rename in “edit directory”

	One really nice advantage of editing directories is quick
 access to files through Vim’s search function. For example,
 suppose you want to edit the file expreserve.c in the ex-050325 directory described earlier.
 To quickly navigate to and edit this file, you can search for part
 or all of the filename:
/expreserve.c
and
 with the cursor over that filename, press ENTER or o.

Note
When you read the online help for directory editing, you will
 see that Vim describes it as part of the entire suite of editing
 files with network protocols, which was described in the previous
 section. We have made directory editing its own topic in this
 chapter because it is useful, and it could get lost in the large
 volume of detail about network protocol editing.

Backups with Vim

Vim helps protect you from unintentionally losing data by
 letting you make a backup of the files you edit. For an edit session
 that has gone terribly wrong, this can be useful because you can
 recover your previous file.
Backups are controlled by the settings of two options: backup and
 writebackup. Where and how backups
 are created are controlled by four other options: backupskip, backupcopy, backupdir, and backupext.
If both the backup and
 writebackup options are off (i.e., nobackup and nowritebackup), Vim makes no backup files
 for your edit sessions. If backup
 is on, Vim deletes any old backups and creates a backup for the
 current file. If backup is off and
 writebackup is on, Vim creates a
 backup file for the duration of the edit session and deletes the
 backup afterward.
The backupdir is a
 comma-separated list of directories in which Vim creates backup files.
 For example, if you want backups to always be created in your system’s
 temporary directory, set backupdir
 to "C:\TEMP" for Windows or
 "/tmp" for Unix and Linux.
Tip
If you’d like to always create a backup of your file in the
 current directory, you can specify “.” (a dot) as your backup directory. Or
 you could try to create a backup in a hidden subdirectory first if
 it exists, and then in the current directory if the hidden
 subdirectory doesn’t exist. Do this by defining backupdir’s value to be something such as
 "./.mybackups,." (the single dot
 at the end denotes the file’s current directory). This is a flexible
 option that supports many strategies for defining backup
 locations.

If you want to make backups for your edit sessions but not for
 all files, use the backupskip option to define a
 comma-separated list of patterns. Vim will not make a backup of any
 file matching one of the patterns. For example, you may never want to
 back up any files edited in the /tmp or /var/tmp directories. Prevent Vim from
 doing so by setting backupskip to
 "/tmp/*,/var/tmp/*".
By default, Vim creates your backup with the same filename as
 the original and the suffix ~ (a
 tilde). This is a fairly safe suffix, because filenames ending in that
 character are rare. Change the suffix to your preference with the
 backupext option. For example, if
 you want your backups to have the suffix .bu, set backupext to the string ".bu".
Finally, the backupcopy
 option defines how a backup copy is created. We
 recommend setting this option to "auto" to let Vim make a calculated choice
 of the best method for the backup.

HTML Your Text

Have you ever needed to present your code or text to a group? Have
 you ever tried to do a code review but were using someone else’s Vim
 configuration and couldn’t figure it out? Consider converting your
 text or code to HTML and viewing it from a browser.
Vim provides three methods to create an HTML version of your
 text. They all create a new buffer with the same name as the original
 file and the suffix .html Vim
 splits the current session window and displays the HTML version of the
 file in the new window:
	gvim “Convert to
 HTML”
	This is the friendliest method, and is built into the
 gvim graphical editor
 (described in Chapter 13). Open the Syntax
 menu in gvim and select
 “Convert to HTML.”

	2html.vim script
	This is the underlying script invoked by the “Convert to
 HTML” menu option described in the previous item. Invoke it
 through the command:
:runtime!syntax/2html.vim

 It doesn’t accept a range; it converts the whole buffer.

	TOhtml command
	This is more flexible than the 2html.vim script, because you can
 specify an exact range of lines you want to convert. For
 instance, to convert lines 25 through 44 of a buffer,
 enter:
:25,44TOhtml

One advantage of using gvim
 for HTML conversion is that the GUI lets it accurately detect colors
 and create correct corresponding HTML directives. These methods still
 work in a non-GUI context, but the results are less assured to be
 accurate and may not be very useful.
Note
It’s up to you to manage the newly created file. Vim does not
 save it for you; it merely creates a buffer. We recommend providing
 a management policy to save and synchronize HTML
 versions of your text files. For example, you could create some
 autocommands to trigger the creation and saving of your HTML
 files.

The saved HTML file can be viewed in any web browser. Some
 people may not be familiar with ways to open files on the local system
 in their browsers. It’s quite easy, though: virtually all browsers
 offer an Open File menu option in the File menu and display a file
 selection dialog to let you navigate to the folder containing the HTML
 file. If you plan on using this feature on a regular basis, we
 recommend building up a collection of bookmarks for all of your
 files.

What’s the Difference?

Changes between different versions of a file are often subtle,
 and a tool that lets you view precise differences at a glance could
 save hours of work. Vim integrates the well known Unix diff command into a very sophisticated
 visualization interface invoked through its vimdiff
 command.
There are two equivalent ways to invoke this feature: as a
 standalone command and as an option to Vim:
$vimdiff old_file new_file
$vim -d old_file new_file
Typically, the first file to be compared is an old version of a
 file, and the second is a newer version, but that is by convention
 only. Indeed, it’s possible to make a case for reversing the
 order.
Figure 15-5 shows an example of vimdiff output. Because of limited real
 estate, we’ve squeezed the width and turned off Vim’s wrap option to allow illustration of the
 differences.
[image: vimdiff results]

Figure 15-5. vimdiff results

Though the figure does not convey the full impact of the visual
 content (particularly because colors are reduced to gray), it shows
 some key characteristic behaviors:
	On line 4, you can see a dark block on the left line that
 isn’t on the right line. This is a highlighted word indicating a
 difference between the two lines. Similarly, on line 32, the
 righthand line contains a highlighted word that is not on the
 left.

	On line 11 of both sides, Vim has created a 15-line
 fold. These 15 lines in both files are
 identical, so Vim folds them to maximize useful “diff” information
 on the screen.

	Lines 41–42 on the left are highlighted, whereas in the
 corresponding positions on the right, strings of hyphens
 (-) indicate that the lines are missing. The line
 numbering differs from this
 point on, because the right side has two lines fewer, but
 corresponding lines in the two files still line up
 horizontally.

The vimdiff feature comes
 with all Unix-like Vim installations because the diff command is a Unix standard. Non-Unix
 Vim installations should come with Vim’s own version of diff. Vim allows drop-in replacements of
 diff commands as long as they
 create standard diff output.
The diffexpr variable defines
 the replacement expression for the default vimdiff behavior and is typically
 implemented as a script that operates on the following
 variables:
	v:fname_in
	The first input file to be compared

	v:fname_new
	The second file to be compared

	v:fname_out
	A file that captures the diff output

Undoing Undos

Beyond the convenience of undoing an arbitrary number of
 edits, Vim offers an interesting twist called branching undos.
To use this feature, first decide how much control you want over
 undoing edits. Use the undolevels
 option to define the number of undoable changes you can make in an
 edit session. The default is 1,000, which is probably more than enough
 for most users. If you want vi
 compatibility, set undolevels to
 zero:
:set undolevels=0
In vi, the undo command
 u is basically a toggle between the
 file’s current state and its most recent change. The first
 undo reverts to the state before the last change.
 The next undo redoes the undone change. Vim
 behaves quite differently, and therefore the commands are implemented
 differently.
Instead of toggling the most recent change, repeated invocations
 of Vim’s undo rolls back the state of the file through the most recent
 changes, in order, for as many changes as defined by the undolevels
 option. Because the undo command u
 only moves backward, we need a command to roll forward and “redo”
 changes. Vim does this with the redo command, :redo, or the CTRL-R key. The CTRL-R key accepts a numeric prefix to redo
 several changes at once.
When rolling forward and backward through changes with the redo
 (CTRL-R) and undo (u) commands, Vim maintains a map of the
 file’s state and knows when the last possible undo has been performed.
 When all possible undos are done, Vim resets the file’s
 modified status, which allows quitting without
 the ! suffix. Although this is a
 modest benefit for general user interaction, it is more useful for
 behind-the-scenes scripting where the modified state of the file is
 important.
For most users, simply undoing and redoing changes is
 sufficient. But consider a more complex scenario. What if you make
 seven changes to a file, and undo three? So far, so good, nothing
 unusual to consider. But now, suppose that after undoing three out of
 seven changes, you then make a change different from the next forward
 change in Vim’s collection of changes? Vim defines that point in the
 change history as a branch from which different
 paths of changes occur. With that path you can now move back and forth
 chronologically, with the added twist that at a branch point you can
 move forward along any of the different paths of recorded
 changes.
For more complete descriptions of how to navigate changes as a
 tree, use Vim’s help command:
:help usr_32.txt

Now, Where Was I?

Most text editors start editing files at line 1, column 1. That
 is, each time the editor is started, the file is loaded and editing
 begins from line 1. If you edit a file many times, progressing through
 it, you would find it more convenient to begin an edit session where
 the last one ended. Vim lets you do just that.
There are two different methods to save edit session information
 for future uses: the viminfo option
 and the mksession command.
The viminfo Option

Vim uses the viminfo
 option to define what, how, and where to save edit session
 information. The option is a string with comma-delimited parameters
 that tell Vim how much information to save and where to save it.
 Some of viminfo’s suboptions are
 defined by the following:
	<n
	Tells Vim to save lines for each register, up to a
 maximum of n lines.
Tip
If you do not specify any value for this option,
 all lines are saved. While at first
 this may seem to be the normal desire, consider whether
 you commonly edit very large files and make large changes
 to those files. For example, if you commonly edit a
 10,000-line file and delete all lines (possibly to pare it
 down from rapid growth caused by some external
 application) and then save it, all 10,000 lines get saved
 in the viminfo file for
 that entry. If you do this often for many files, the
 viminfo file will grow
 very large. You may then notice long delays when starting
 Vim, even for files not related to the large file, because
 Vim must process the viminfo file each time it starts
 up.
We recommend specifying some sane but useful limit.
 This author uses 50.

	/n
	The number of search pattern history items to be
 saved. If not specified, Vim uses the value in the history option.

	:n
	The maximum number of commands from the command-line
 history to save. If not specified, Vim uses the value in the
 history option.

	'n
	The maximum number of files for which Vim maintains
 information. If you define the viminfo option, this parameter is
 required.

Here is what Vim saves in the viminfo file:
	Command-line history

	Search string history

	Input-line history

	Registers

	File marks (e.g., a mark created by mx is saved
 and can be moved to when re-editing the file by typing 'x)

	Last search and substitute patterns

	Buffer list

	Global variables

This option is really handy for sustaining continuity across
 edit sessions. For example, if you edit a large file in which you
 are changing a pattern, the search pattern is remembered as well as
 where the cursor is positioned in the file. To continue searching in
 a new session, you need only type n to move to the next occurrence of the
 search pattern.

The mksession Command

Vim saves all edit information specific to a session with
 its mksession command. The
 sessionoptions option contains a
 comma-separated string specifying which components of a session to
 save. This way of saving edit session information is much more
 comprehensive but much more specific than viminfo. Saving session information this
 way is specific to all of the files, buffers, windows, etc. in the
 current edit session, and mksession saves the information so that
 the entire session can be reconstructed. All of the files being
 edited and all of the settings for all options, even window sizes,
 are saved so that reloading the information brings back an exact
 recreation of the session. Contrast this with viminfo, which only restores edit
 information on a per-file basis.
To save a session this way, enter:
:mksession [filename]
where
 filename specifies a file in which to save the
 session information. Vim creates a script file that, when executed
 later with the source command,
 reconstructs the session. (The default filename, if none was
 specified, is Session.vim.).
 So, if you save a session with the command:
:mksession mysession.vim
you could
 later reestablish the session with the command:
:source mysession.vim
Here is what you can save from a session, and the parameter in
 the sessionoptions
 option to save it:
	blank
	Empty windows

	buffers
	Hidden and unloaded buffers

	curdir
	The current directory

	folds
	Manually created folds, opened/closed folds, and local
 fold options
Note
It wouldn’t make any sense to save anything but
 manually created folds. Automatically created folds will be
 automatically recreated!

	globals
	Global variables, which start with an uppercase
 letter and contain at least one lowercase
 letter

	help
	The help window

	localoptions
	Options defined locally to a window

	options
	Options set by :set

	resize
	Size of the Vim window

	sesdir
	The directory in which the session file is
 located

	slash
	Backslashes in filenames replaced with forward
 slashes

	tabpages
	All tab pages
Note
If you do not specify this in the sessionoptions string, only the
 current tab session is saved as a standalone entity. This
 gives you the flexibility of defining sessions at either the
 tab level or globally across all tabs.

	unix
	Unix end-of-line format

	winpos
	Position of Vim window on the screen

	winsize
	Size of buffer windows on the screen

So, for example, if you want to save a session to retain all
 information for all buffers, all folds, global variables, all
 options, window size, and window position, you would define the
 sessionoptions option
 with:
:set sessionoptions=buffers,folds,globals,options,resize,winpos

What’s My Line (Size)?

Vim allows lines of virtually unlimited lengths. You can have
 them either wrap onto multiple screen lines, so you can see them all
 without horizontal scrolling, or you can display the beginning
 of each line on one screen line and scroll to the right to see hidden
 parts.
If you prefer one line of text per screen line, turn off the
 wrap option:
set nowrap
With nowrap, Vim displays as many characters as the screen width permits.
 Think of the screen as a view port or window through which the wide
 line is viewed. For example, a 100-character line contains 20
 characters too many for a screen that is 80 columns wide. Depending on
 what character is displayed in the screen’s first column, Vim
 determines which characters in the 100-character line are not
 displayed. For example, if the screen’s first column is the line’s 5th
 character, characters 1–4 are to the left of the visible screen and
 therefore invisible, that is, not displayed. Characters 5–84 are
 visible in the screen, and the remaining characters from 85–100 are to
 the right of the screen and are also invisible.
Vim manages how the line is displayed as you move left and right
 through the long line. Vim shifts the line left and right a minimum of
 sidescroll characters. You can set
 its value as follows:
set sidescroll=n
where
 n is the number of columns to scroll. We
 recommend setting sidescroll to 1,
 because modern PCs easily provide the processing power necessary to
 smoothly shift the screen one column at a time. If your screen slows
 down and response times lag, you may need to bump the value to
 something higher to minimize the screen redraws.
The sidescroll value defines
 a minimum shift. As you probably expect, Vim
 shifts far enough to complete any motion commands. For example, typing
 w moves the cursor to the next word
 in the line. However, Vim’s treatment of the movement is a bit tricky.
 If the next word is partially visible (on the right), Vim moves to the
 first character of that word but does not shift the line. The next w command will shift the line to the left
 far enough to position the cursor over the first character of the next
 word, but only far enough to expose this first character.
You can control this behavior with the sidescrolloff
 option. sidescrolloff defines the
 minimum number of columns to maintain to the right and left of the
 cursor. So, for example, if you defined sidescrolloff to be 10, Vim maintains at
 least 10 characters of context as the cursor nears either side of the
 screen. Now when you move left and right on a line, your cursor will
 never get closer than (in this case) 10 columns from either side of
 the screen, as Vim shifts enough text into view to maintain that
 context. This is probably a better way to configure Vim in nowrap mode.
Vim provides convenient visual cues with the listchar option. listchar defines how to display characters
 when Vim’s list option is set. Vim
 also provides two settings in this option that control whether to use
 characters to indicate if there are more characters to the left or
 right of the visible screen for long lines. For example:
set listchars=extends:>
set listchars+=precedes:<
tells Vim to display a < in column 1 if a long line contains
 more characters to the left of the visible screen, and a > in the last column to indicate there
 are more characters to the right of the visible screen. Figure 15-6 shows an example.
[image: A long line in nowrap mode]

Figure 15-6. A long line in nowrap mode

In contrast, if you prefer to see a whole line without
 scrolling, tell Vim to wrap the lines with the wrap option:
set wrap
Now
 the line appears as in Figure 15-7.
[image: A long line in wrap mode]

Figure 15-7. A long line in wrap mode

Very long lines that can’t be entirely displayed on the screen
 are displayed with the single character @ in the first position, until the cursor
 and file are positioned in such a way that the line can be displayed
 completely. The line in Figure 15-7 appears as
 shown in Figure 15-8 when it is near the bottom
 of the screen.
[image: Long line indicator]

Figure 15-8. Long line indicator

Abbreviations of Vim Commands and Options

There are so many commands and options in Vim that we recommend
 learning them by name first. Almost all commands and options (at least
 any that have more than a few characters) have some associated short
 form. These can save time, but be sure you know
 what you’re abbreviating! This author has had some embarrassing and
 unexpected results using short forms thought to be one thing that
 turned out to be something quite different.
As you become more experienced and develop your favorite subset
 of Vim commands and options, using some of the abbreviated forms for
 commands and options saves time. Vim typically tries for Unix-like
 abbreviations for options and allows for the shortest unique initial
 substring for commands’ abbreviations.
Some abbreviations for common commands include:
	n	next
	prev	previous
	q	quit
	se	set
	w	write

Some abbreviations for common options include:
	ai	autoindent
	bg	background
	ff	fileformat
	ft	filetype
	ic	ignorecase
	li	list
	nu	number
	sc	showcommand
 (notshowcase)
	sm	showmatch
	sw	shiftwidth
	wm	wrapmargin

Short forms for commands and options save time when you know
 your commands and options well. But for scripting and setting up
 sessions with commands in your .vimrc or .gvimrc files, you’re more likely to save
 time in the long run by sticking with full command and option names.
 Your configuration file and scripts are easier to read and debug when
 you use full names.
Note
Note that this is not the approach taken with the suite of Vim
 script files (syntax, autoindent, colorscheme, etc.) in the Vim
 distribution, though we take no issue with their approach. We just
 recommend, for ease of managing your own scripts, that you stay with
 full names.

A Few Quickies (Not Necessarily Vim-Specific)

We now offer several techniques—some of which are offered by
 basic vi as well as Vim—that are worth remembering and
 having handy:
	A quick swap
	A common typing error is to enter two characters in the
 wrong order. Position the cursor over the first wayward
 character and type xp (delete character, put
 character).

	Another quick swap
	Got two lines you’d rather swap? Position the cursor on
 the top line, and type ddp (delete line, put line
 after current line).

	Quick help
	Don’t forget about Vim’s built-in help. A quick tap on the
 F1 function key splits your
 screen and displays the introduction to the online help.

	What was that great command I used?
	In its simplest form, Vim lets you access recently
 executed commands by using the arrow keys in the command line.
 Moving up and down with the arrow keys, Vim displays recent
 commands, any one of which you may edit. Whether or not you edit
 a command from Vim’s history, you can execute the command by
 pressing the ENTER key.
You can get even more sophisticated by invoking Vim’s
 built-in command history editing. Do this by entering CTRL-F on the command line. A small
 “command” window opens up (with the default height of 7) in
 which you can navigate with normal Vim motion commands. You can
 search as if in a normal Vim buffer, and make changes.
In the command edit window, you can easily find a recent
 command, modify it if necessary, and execute it by pressing
 ENTER. You can write the buffer
 to a filename of your choice, to record the command history for
 future reference.

	A bit of humor
	Try entering the command:
:help sure

 and read Vim’s reply.

More Resources

Here are two links for HTML renditions of Vim’s built-in help
 for the two most recent major Vim releases:
	Vim 6.2
	http://www.vim.org/htmldoc/help.html

	Vim 7
	http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

Additionally, http://vimdoc.sourceforge.net/vimfaq.html
 is a Vim Frequently Asked Questions list. It doesn’t link questions to
 answers, but it is all on one page. We recommend scrolling down to the
 section with the answers and scanning from there.
The official Vim page used to host tips on Vim, but because of
 problems with spammers, the administrators moved the tips to a wiki
 where spam is more easily managed. That wiki is here: http://vim.wikia.com/wiki/Category:Integration.

Part III. Other vi Clones

Part III covers other popular clones of vi that have grown up in parallel with Vim.
 This part contains the following chapters:
	Chapter 16, nvi: New vi

	Chapter 17, Elvis

	Chapter 18, vile: vi Like Emacs

Chapter 16. nvi: New vi

nvi is short for “new vi.” It was developed initially at the
 University of California at Berkeley (UCB), home of the famous Berkeley
 Software Distribution (BSD) versions of Unix. It was used for writing
 this chapter.
Author and History

 The original vi was
 developed at UCB in the late 1970s by Bill Joy, then a computer
 science graduate student, and later a founder and vice president of
 Sun Microsystems.
Prior to nvi, Bill Joy first
 built ex, by starting with and
 heavily enhancing the sixth edition ed editor. The first enhancement was open
 mode, done with Chuck Haley. Between 1976 and 1979, ex evolved into vi. Mark Horton then came to Berkeley, added
 macros “and other features,”[51] and did much of the labor on vi to make it work on a large number of
 terminals and Unix systems. By 4.1 BSD (1981), the vi editor already had essentially all of the
 features we have described in Part I of this
 book.
Despite all of the changes, vi’s core was (and is) the original Unix
 ed editor. As such, it was code
 that could not be freely distributed. By the early 1990s, when they
 were working on 4.4 BSD, the BSD developers wanted a version of
 vi that could be freely distributed
 in source code form.
 Keith Bostic of UCB started with elvis 1.8,[52] which was a freely distributable vi clone, and began turning it into a “bug
 for bug compatible” clone of vi.
 nvi also complies with the POSIX
 Command Language and Utilities Standard (IEEE P1003.1) where it makes
 sense to do so.
Although no longer affiliated with UCB, Keith Bostic continues
 to distribute nvi. The current
 version at the time of this writing is nvi 1.79.
nvi is important because it
 is the “official” Berkeley version of vi. It is part of 4.4 BSD-Lite II, and it is
 the vi version used on the various
 popular BSD variants, such as NetBSD and FreeBSD.

[51] From the nvi reference
 manual. Unfortunately, it does not say which features.

[52] Although little or no original elvis code is left.

Important Command-Line Arguments

 In a pure BSD environment, nvi is installed under the names ex, vi,
 and view. Typically they are all
 links to the same executable, and nvi looks at how it is invoked to determine
 its behavior. (Unix vi works this
 way, too.) It allows the Q command
 from vi mode to switch it into
 ex mode. The view variant is like vi, except that the readonly option is set initially.
nvi has a number of
 command-line options. The most useful are described here:
	-c
 command
	 Execute command upon
 startup. This is the POSIX version of the historical +command syntax, but nvi is not limited to positioning
 commands. (The old syntax is also accepted.)

	-F
	 Don’t copy the entire file when starting to edit.
 This may be faster, but it allows the possibility of someone
 else changing the file while you’re working on it.

	-r
	Recover specified files, or if no files are listed on the
 command line, list all the files that can be recovered.

	-R
	 Start in read-only mode, setting the readonly option.

	-s
	 Enter batch (script) mode. This is only for
 ex and is intended for
 running editing scripts. Prompts and nonerror messages are
 disabled. This is the POSIX version of the historic “-”
 argument; nvi supports
 both.

	-S
	 Run with the secure option set, disallowing access
 to external programs.[53]

	-t tag
	 Start editing at the specified
 tag.

	-w size
	 Set the initial window size to
 size lines.

[53] As with anything labeled “secure,” blind trust is
 usually inappropriate. Keith Bostic says, though, that you
 can trust nvi’s secure option.

Online Help and Other Documentation

nvi comes with quite
 comprehensive printable documentation. In particular, it comes with
 troff source, formatted ASCII, and
 formatted PostScript for the following documents:
	The vi reference manual
	The reference manual for nvi. This manual describes all of the
 nvi command-line options,
 commands, options, and ex
 commands.

	The vi manpage
	The manpage for nvi.

	The vi tutorial
	This document is a tutorial introduction to editing with
 vi.

	The ex reference manual
	The reference manual for ex. This manual is the original one
 for ex; it is a bit
 out-of-date with respect to the facilities in nvi.

Also included are ASCII files that document some of the nvi internals and provide a list of features
 that should be implemented, along with files that can be used as an
 online tutorial to vi.
 The online help built into nvi is minimal, consisting of two commands,
 :exusage and :viusage. These commands provide one-line
 summaries of each ex and vi command. This is usually sufficient to
 remind you about how something works, but not very good for learning
 about new or obscure features in nvi.
You can give a command as an argument to the :exusage and :viusage commands, in which case nvi will display the help just for that
 command. nvi prints one line
 explaining what the command does, and a one-line summary of the
 command’s usage.

Initialization

 If the -s or “-” options have been
 specified, then nvi will bypass all
 initializations. Otherwise, nvi
 performs the following steps:
	 Read and execute the file /etc/vi.exrc. It must be owned either
 by root or by you.

	 Execute the value of the NEXINIT environment variable if it
 exists; otherwise, use EXINIT
 if it exists. Only one will be used, not both. Bypass executing
 $HOME/.nexrc or $HOME/.exrc.

	 If $HOME/.nexrc exists, read and execute
 it. Otherwise, if $HOME/.exrc
 exists, read and execute it. Only one will be used.

	 If the exrc
 option has been set, then look for and execute either ./.nexrc if it exists, or ./.exrc. Only one will be used.

nvi will not execute any file
 that is writable by anyone other than the file’s owner.
The nvi documentation
 suggests putting common initialization actions into your .exrc file (i.e., options and commands for
 Unix vi), and having your .nexrc file execute :source .exrc before or after the nvi-specific initializations.

Multiwindow Editing

 To create a new window in nvi, you use a capitalized version of one of
 the ex editing commands: Edit, Fg,
 Next, Previous, Tag, or Visual. (As usual, these commands can be
 abbreviated.) If your cursor is in the top half of the screen, the new
 window is created on the bottom half, and vice versa. You then switch
 to another window with CTRL-W:
<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any existing
Unix text file.
</para>ch00.sgm: unmodified: line 1
Makefile for vi book
#
Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
	ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
	ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \Makefile: unmodified: line 1
This example shows nvi
 editing two files, ch00.sgm and
 Makefile. The split screen is the
 result of typing nvi ch00.sgm
 followed by :Edit Makefile. The
 last line of each window acts as the status line, and it’s where colon
 commands are executed for that window. The status lines are
 highlighted in reverse video.
The windowing ex mode
 commands and what they do are described in Table 16-1.
Table 16-1. nvi window management commands
	Command	Function
	bg	Hide the current window. It can be recalled with the fg and Fg commands.

	di[splay] b[uffers]	Display all buffers, including named, unnamed, and numeric
 buffers.

	di[splay] s[creens]	Display the filenames of all backgrounded
 windows.

	Edit
 filename	Edit filename in a new
 window.

	Edit /tmp	Create a new window editing an empty buffer.
 /tmp is interpreted
 specially to create a new temporary file.

	fg
 filename	Uncover filename into the
 current window. The previous file moves to the
 background.

	Fg
 filename	Uncover filename in a new
 window. The current window is split, instead of redistributing
 the screen space among all open windows.

	Next	Edit the next file in the argument list in a new
 window.

	Previous	Edit the previous file in the argument list in a
 new window. (The corresponding previous command, which moves
 back to the previous file, exists in nvi; it is
 not in Unix vi.)

	resize
 ±nrows	Increase or decrease the size of the current
 window by nrows rows.

	Tag
 tagstring	Edit the file containing
 tagstring in a new window.

 The CTRL-W command
 cycles between windows, top to bottom. The :q and ZZ
 commands exit the current window.
You may have multiple windows open on the same file. Changes
 made in one window are reflected in the other, although changes made
 in nvi’s insert mode are not seen
 in the other window until after you finalize the change by typing
 ESC. You will not be prompted to save
 your changes until you issue a command that would cause nvi to leave the last window open upon a
 file.

GUI Interfaces

nvi does not provide a
 graphical user interface (GUI) version.

Extended Regular Expressions

 We introduced extended regular expressions earlier in
 the section Extended Regular Expressions. Here, we just
 summarize the metacharacters that nvi provides. nvi also supports the POSIX bracket
 expressions, [[:alnum:]], and so
 on.
You use :set extended to
 enable extended regular expression matching:
	|
	Indicates alternation. The left and right sides need not
 be just single characters.

	(...)
	 Used for grouping, to allow the application of
 additional regular expression operators.
When extended is set,
 text grouped with parentheses acts like text grouped in \(...\) in
 regular vi; the actual text
 matched can be retrieved in the replacement part of a substitute
 command with \1, \2, etc. In this case, \(represents a literal left
 parenthesis.

	+
	 Matches one or more of the preceding regular
 expressions. This is either a single character or a group of
 characters enclosed in parentheses.

	?
	 Matches zero or one occurrence of the preceding
 regular expression.

	{...}
	 Defines an interval
 expression. Interval expressions describe counted
 numbers of repetitions. In the following descriptions,
 n and m represent
 integer constants:
	{
 n }
	Matches exactly n repetitions
 of the previous regular expression.

	{
 n ,}
	Matches n or more repetitions
 of the previous regular expression.

	{
 n , m
 }
	Matches n to
 m repetitions.

When extended is not
 set, nvi provides the same
 functionality with \{ and
 \}.

As might be expected, when extended is set, you should precede
 metacharacters with a backslash in order to match them
 literally.

Improvements for Editing

 This section describes the features of nvi that make simple text editing easier and
 more powerful.
Command-Line History and Completion

nvi saves your
 ex command lines and makes it
 possible for you to edit them for resubmission.
This facility is controlled with the cedit option, whose value is a
 string.
When you type the first character of this string on the colon
 command line, nvi opens a new
 window on the command history that you can then edit. On any given
 line when you hit ENTER, nvi executes that line. ESC is a good choice for this option. (Use
 ^V ^[to
 enter it.)
Because the ENTER key
 actually executes the command, be careful to use either the j or ↓ keys to move down from one line to
 the next.
In addition to being able to edit your command line, you can
 also do filename expansion. This feature is controlled with the
 filec option.
When you type the first character of this string on the colon
 command line, nvi treats the
 blank delimited word in front of the cursor as if it had an * appended to it and does shell-style
 filename expansion. ESC is also a
 good choice for this option. (Use ^V
 ^[to enter it.) When this character is the same as for
 the cedit option, the
 command-line editing is performed only when it is entered as the
 first character on the colon command line.
Note
The nvi documentation
 indicates that TAB is another
 common choice for the filec
 option. To make this work, you must type :set filec=\TAB. In any case, in practice, using
 ESC for both options works
 well.

It is easiest to set these options in your .nexrc file:
set cedit=^[
set filec=^[

Tag Stacks

 Tag stacking is described earlier in the section
 Tag Stacks. nvi’s tag stack is the simplest of the
 four clones. Tables 16-2 and 16-3 show
 the commands it uses.
Table 16-2. nvi tag commands
	Command	Function
	di[splay] t[ags]	Display the tag stack.

	ta[g][!] tagstring	Edit the file containing
 tagstring as defined in the tags file. The !
 forces nvi to switch to
 the new file if the current buffer has been modified but not
 saved.

	Ta[g][!] tagstring	Just like :tag, except that the file is edited in a new
 window.

	tagp[op][!] tagloc	Pop to the given tag, or to the most recently used tag if no
 tagloc is supplied. The location may be
 either a filename of the tag of interest or a number
 indicating a position in the stack.

	tagt[op][!]	Pop to the oldest tag in the stack, clearing the stack in the
 process.

Table 16-3. nvi command mode tag commands
	Command	Function
	^]	Look up the location of the identifier
 under the cursor in the tags file, and move to that
 location. The current location is automatically pushed onto
 the tag stack.

	^T	Return to the previous location in the tag
 stack, i.e., pop off one element.

 You can set the tags option to a list of filenames where
 nvi should look for a tag. This
 provides a simplistic search path mechanism. The default value is
 "tags /var/db/libc.tags
 /sys/kern/tags", which on a 4.4 BSD system looks in the
 current directory, and then in the files for the C library and the
 operating system source code.
 The taglength
 option controls how many characters in a tag string are significant.
 The default value of zero means to use all the characters.
nvi behaves like vi: it uses the “word” under the cursor
 starting at the current cursor position. If your cursor is on the
 i in main, nvi searches for the identifier
 in, not main.
nvi relies on the
 traditional tags file format.
 Unfortunately, this format is very limited. In particular, it has no
 concept of programming language scope, which
 allows the same identifier to be used in different contexts to mean
 different things. The problem is exacerbated by C++, which
 explicitly allows function name overloading,
 i.e., the use of the same name for different functions.
nvi gets around the
 tags file limitations by using
 a different mechanism entirely: the cscope program.
 cscope, once proprietary, is now
 an open source program available from the Bell Labs World-Wide
 Exptools project (see http://www.bell-labs.com/project/wwexptools/).
 It reads C source files and builds a database describing the
 program. nvi provides commands
 that query the database and allow you to process the results.
 Because cscope is not universally
 available, we do not cover its use here. Details of the nvi commands are provided in the nvi documentation.
 The extended tags file format produced by Exuberant
 ctags does not produce any errors
 with nvi 1.79; however, nvi does not take advantage of this
 format, either.

Infinite Undo

 In vi, the dot
 (.) command generally acts as the
 “do again” command; it repeats the last editing action you
 performed, be it a deletion, insertion, or replacement.
nvi generalizes the dot
 command into a full “redo” command, applying it even if the last
 command was u for “undo.”
Thus, to begin a series of “undo” commands, first type a
 u. Then, for each . (dot) that you type, nvi will continue to undo changes, moving
 the file progressively closer to its original state.
Eventually, you will reach the initial state of your file. At
 that point, typing . will just
 ring the bell (or flash the screen). You can now begin redoing by
 typing u to “undo the undos” and
 then using . to reapply
 successive changes.
nvi does not allow you to
 provide a count to either the u
 or . command.

Arbitrary Length Lines and Binary Data

nvi can edit files
 with arbitrary length lines and with an arbitrary number of
 lines.
nvi automatically handles
 binary data. No special command-line options or ex options are required. You use ^X followed by one or two hexadecimal
 digits to enter any 8-bit character into your file.

Incremental Searching

 Enable incremental searching in nvi using :set
 searchincr.
The cursor moves through the file as you type, always being
 placed on the first character of the text that matches.

Left-Right Scrolling

 Enable left-right scrolling in nvi using :set leftright. The
 value of sidescroll controls the
 number of characters by which nvi
 shifts the screen when scrolling left to right.

Programming Assistance

nvi does not provide specific
 programming assistance facilities.

Interesting Features

nvi is the most
 minimal of the clones, without a large number of additional features
 that have not yet been covered. However, it does have several
 important features worthy of mention:
	Internationalization support
	 Most of the informational and warning messages in
 nvi can be replaced with
 translations into a different language, using a facility known
 as a “message catalog.” nvi
 implements this facility itself, using a straightforward
 mechanism documented in the file catalog/README in the nvi distribution. Message catalogs are
 provided for Dutch, English, French, German, Russian, Spanish,
 and Swedish.

	Arbitrary buffer names
	 Historically, vi buffer names are limited to the 26
 characters of the alphabet. nvi allows you to use any character as
 a buffer name.

	Special interpretation of /tmp
	 For any ex
 command that needs a filename argument, if you use the special
 name /tmp, nvi will replace it with the name of a
 unique temporary file.

Sources and Supported Operating Systems

nvi can be obtained
 from http://www.bostic.com/vi. This is a web
 page from which you can download the current version,[54] and can also ask to be added to a mailing list that
 sends notifications about new versions of nvi and new features.
The source code for nvi is
 freely distributable. The licensing terms are described in the
 LICENSE file in the distribution,
 and they permit distribution in source and binary form.
nvi builds and runs under
 Unix. It can also be built to run under LynxOS 2.4.0, and possibly
 later versions. It may build and run on other POSIX-compliant systems
 as well, but the documentation does not contain a specific list of
 known operating systems.
Compiling nvi is
 straightforward. Retrieve the distribution via ftp. Uncompress and untar it, run the
 configure program, and then run
 make:
$gzip -d < nvi.tar.gz | tar -xvpf -
...
$ cd nvi-1.79; ./configure
...
$ make
...
nvi should configure and
 build with no problems. Use make
 install to install it.
Should you need to report a bug or problem in nvi, the person to contact is Keith Bostic,
 at bostic@bostic.com.

[54] A GUI version of nvi is
 under development; see the web page for contact information if
 you’re interested.

Chapter 17. Elvis

elvis was written and is
 maintained by Steve Kirkendall. An earlier version became the basis for
 nvi. This chapter was originally
 written using elvis.
Author and History

With our thanks for his help, we’ll let Steve Kirkendall give
 the history in his own words:
I started writing elvis 1.0
 after an early clone called stevie crashed on me, causing me to lose a few hours’ work
 and totally destroying my confidence in that program. Also, stevie stored the edit buffer in RAM,
 which simply wasn’t practical in Minix. So I started writing my own
 clone, which stored its edit buffer in a file. And even if my editor
 crashed, the edited text could still be retrieved from that
 file.
elvis 2.x is almost
 completely separate from 1.x. I wrote this, my second vi clone, because my first one inherited
 too many limitations from the real vi, and from Minix. The biggest change is
 the support for multiple edit buffers and multiple windows, neither
 of which could be retrofitted into 1.x very easily. I also wanted to
 shed the line-length limitation, and have online help written in
 HTML.

As to the name “elvis,” Steve says that at least part of the
 reason he chose the name was to see how many people would ask him why
 he chose the name![55] It is also common for vi clones to have the letters “vi” somewhere
 in their names.

[55] ☺ In around eight years, I was only number four!
 —A.R.

Important Command-Line Arguments

elvis is not
 typically installed as vi, though
 it can be. If invoked as ex, it
 operates as a line editor and allows the Q command from vi mode to switch into ex mode.
elvis has a number of
 command-line options. The most useful are described here:
	-a
	 Load each file named on the command line into a
 separate window.

	-c
 command
	 Execute command upon
 startup. This is the POSIX version of the historical +command syntax. (The old syntax
 is also accepted.)

	-f
 filename
	 Use filename for the session
 file instead of the default name. Session files are discussed
 later in this chapter.

	-G gui
	 Use the given interface. The default is the
 termcap interface. Other
 choices include x11, windows, curses, open, and quit. Not all the interfaces may be
 compiled into your version of elvis.

	-i
	Start editing in input mode instead of in command mode.
 This may be easier for novice users.

	-o
 logfile
	 Redirect the startup messages out to a file,
 instead of stdout/stderr. This is of critical importance
 to MS Windows users because Windows discards anything written to
 standard output and standard error, which made WinElvis
 configuration problems almost impossible to diagnose. With
 -ofilename you can
 send the diagnostic info to a file and view it later.

	-r
	Perform recovery after a crash.

	-R
	Start editing each file in read-only mode.

	-s
	 Read an ex
 script from standard input and execute (per the POSIX standard).
 This bypasses all initialization scripts.

	-S
	 Set the option security=safer for the whole session,
 not just execution of .exrc
 files.
 This adds a certain amount of security, but it should not
 necessarily be trusted blindly.

	-SS
	 Set the option security=restricted, which is even
 more paranoid than security=safer.

	-t tag
	 Start editing at the specified
 tag.

	-V
	 Output more verbose status information. Useful
 for diagnosing problems with initialization files.

	-?
	 Print a summary of the possible options.

Online Help and Other Documentation

elvis is very
 interesting in this department. The online help is comprehensive and
 written entirely in HTML. This makes is easy to view in your favorite
 web browser. elvis also has an HTML
 display mode (discussed later), which makes it easy and pleasant to
 view the online help from within elvis itself.
When viewing HTML files, you use the tag commands (^] and ^T) to go to different topics and then
 return, making it easy to browse the help files. We applaud this
 innovation in online help.
Of course, elvis also comes
 with Unix manpages.

Initialization

 This section describes elvis’s session files and itemizes the steps
 it takes during initialization.
The Session File

elvis is intended
 to eventually meet Common Open System Environment (COSE) standards.
 These require that programs be able to save their state and return
 to that saved state at a later time.
To be able to do this, elvis maintains all its state in a session
 file. Normally elvis creates the
 session file when it starts and removes it when it exits, but if
 elvis crashes, a left-over
 session file can be used to implement recovery of the edited
 files.

Initialization Steps

elvis performs the
 following initialization steps. Interestingly, much of the
 customization for elvis is moved
 out of editor options and into initialization files:
	Initialize all hardcoded options.

	Select an interface from those compiled into elvis. elvis will choose the “best” of the
 ones that are compiled in and that can work. For
 example, the X11 interface is considered to be better than the
 termcap interface, but it may
 not be usable if the X Window System is not currently
 running.
The selected interface can process the command line for
 initialization options that are specific to it.

	Create the session file if it doesn’t exist; otherwise,
 read it (in preparation for recovery).

	 Initialize the elvispath option from the ELVISPATH environment variable.
 Otherwise, give it a default value. "~/.elvislib:/usr/local/lib/elvis" is
 a typical value, but the actual value will depend on how
 elvis was configured and
 built.

	 Search elvispath for an ex script named elvis.ini and run it. The default
 elvis.ini file performs the
 following actions:
	Chooses a digraph table based on the current operating
 system. (Digraphs are a way to define the system’s extended
 ASCII character set and how characters from the extended set
 should be entered.)

	Sets options based on the program’s name (for example,
 ex versus vi mode).

	Handles system-dependent tweaks, such as setting the
 colors for X11 and adding menus to the interface.

	Picks an initialization filename, either .exrc for Unix or elvis.rc for non-Unix systems.
 Call this file f.

	 If the EXINIT environment variable
 exists, executes its value. Otherwise, it executes :source~/f, where f is the filename chosen
 previously.

	 If the exrc option has been set, runs the
 safely source command on
 f in the current
 directory.

	For X11, sets the normal, bold, and italic fonts, if
 they have not been set already.

	 Load the pre- and post-read and pre- and
 post-write command files, if they exist. Also load the elvis.msg file. All of these files
 are described later in this chapter.

	Load and display the first file named on the command
 line.

	 If the -a option was given, load
 and display the rest of the files, each in its own
 window.

Multiwindow Editing

 To create a new window in elvis, you use the ex command :split. You then use one of the regular
 ex commands, such as :efilename or
 :n to edit a new file. This is the
 simplest method; other, shorter methods are described later in this
 chapter. You can switch back and forth between windows with CTRL-WCTRL-W:
<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing Unix text file.

Makefile for vi book
#
Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \
 appa.ps appb.ps appc.ps appd.ps
The split screen is the result of typing elvis ch00.sgm followed by :split Makefile.
Like nvi, elvis gives each window its own status line.
 elvis is unique in that it uses a
 highlighted line of underscores, instead of reverse video, for the
 status line. ex colon commands are
 carried out on each window’s status line.
Table 17-1 describes the windowing
 ex mode commands and what they
 do.
Table 17-1. elvis window management commands
	Command	Function
	sp[lit]
 [file]	Create a new window, and load it with file if
 supplied. Otherwise, the new window shows the current
 file.

	new	Create a new empty buffer,
 and then create a new window to show that
 buffer.

	sne[w]
	sn[ext]
 [file...]	Create a new window, showing the next file in the argument list. The
 current file is not affected.

	sN[ext]	Create a new window, showing the
 previous file in the argument list.
 The current file is not affected.

	sre[wind][!]	Create a new window, showing the first file in
 the argument list. Reset the “current” file to be the first
 one with respect to the :next command. The current file is
 not affected.

	sl[ast]	Create a new window, showing the last file in the argument list. The
 current file is not affected.

	sta[g][!]
 tag	Create a new window showing the file where the requested tag is
 found.

	sa[ll]	Create a new window for any files named in the argument list that don’t
 already have a window.

	wi[ndow]
 [target]	With no target, list all windows. The possible values for
 target are described in Table 17-2.

	close	Close the current window. The buffer that the
 window was displaying remains intact. If it was modified,
 the other elvis commands
 that quit will prevent you from quitting until you explicitly
 save or discard the buffer.

	wquit	Write the buffer back to the file and close the
 window. The file is saved, regardless of whether it has
 been modified.

	qall	Issues a :q
 command for each window. Buffers without windows are not
 affected.

Table 17-2 describes the windowing
 ex arguments and their
 meanings.
Table 17-2. Arguments to the elvis window command
	Argument	Meaning
	+	Switch to the next window, like ^W k.

	++	Switch to the next window, wrapping like ^W ^W.

	-	Switch to the previous window, like ^W j.

	--	Switch to the previous window,
 wrapping.

	num	Switch to the window whose windowid=num.

	buffer-name	Switch to the window editing the named
 buffer.

elvis provides a number of
 vi mode commands for moving between
 windows. They are summarized in Table 17-3.
Table 17-3. elvis window commands from vi command mode
	Command	Function
	^W c	Hide the buffer and close the window. This is
 identical to the :close
 command.

	^W d	Toggle the display mode between syntax mode and the other display
 modes (html, man, tex) if that’s appropriate. This
 makes editing web pages a little more convenient. This is a
 per-window option. Display modes are discussed in the later
 section Display Modes.

	^W j	Move down to the next window.

	^W k	Move up to the previous window.

	^W n	Create a new window, and create a new buffer to
 be displayed in the window. It is similar to the :snew command.

	^W q	Save the buffer and close the window, identical
 to ZZ.

	^W s	Split the current window, equivalent to :split.

	^W S	Toggle the wrap option. This option controls
 whether long lines wrap or whether the whole screen scrolls to
 the right. This is a per-window option. This option is
 discussed in the later section Left-Right Scrolling.

	^W]	Create a new window, then look up the tag
 underneath the cursor. It is similar to the :stag command.

	[count] ^W ^W	Move to next window, or to the
 countth window.

	^W +	Increase the size of the current window (termcap interface
 only).

	^W -	Reduce the size of the current window (termcap interface
 only).

	^W \	Make the current window as large as possible
 (termcap interface
 only).

GUI Interfaces

 The screenshots and explanation for this section were
 supplied by Steve Kirkendall. We thank him.
elvis’s X11 interface
 provides a scrollbar and mouse support, and it allows you to select
 which fonts to use. There is no way to change fonts after elvis has created the first window. The
 fonts must all be monospace fonts, typically some variation of a
 Courier or other fixed-width font.
elvis’s X11 interface
 supports multiple fonts and colors, a blinking cursor that changes
 shape to indicate your editing mode (insert versus command), a
 scrollbar, anti-aliased text, an image file to use for the background
 (with optional tint), a user-specified icon image, and mouse actions.
 The mouse can be used for selecting text, cutting and pasting between
 applications, and performing tag searches. In addition, there is a
 configurable toolbar, dialog windows, a status bar, and the
 -client flag.
Note
The MS Windows GUI interface also supports a background image
 file, using the same command and using XPM format files, so that the
 same background image file may be used in both environments.

The Basic Window

The basic elvis window is
 shown in Figure 17-1.
[image: The elvis GUI window]

Figure 17-1. The elvis GUI window

elvis provides a separate
 text search pop-up dialog box, which is shown in Figure 17-2.
[image: The elvis search dialog]

Figure 17-2. The elvis search dialog

The look and feel are intended to resemble Motif, but elvis doesn’t actually use the Motif
 libraries.
Command-line options let you choose the four different fonts
 that elvis uses: normal, italic,
 bold, and “control,” which is the font for the toolbar text and
 button labels. You may also specify foreground and background
 colors, the initial window geometry, and whether elvis should start out iconified.
 The -client option causes elvis to look for an already running
 elvis process and send it a
 message requesting it to start editing the files named on the
 command line. Doing it this way allows you to share yanked text and
 other information between the files elvis is currently editing and the new
 files.
Besides the toolbar, there is also a status bar that displays
 status messages and any available information about toolbar
 buttons.

Mouse Behavior

 The mouse behavior tries to strike a balance between
 xterm and what makes sense for an
 editor. To do this correctly, elvis distinguishes between clicking and
 dragging.
Dragging the mouse always selects text. Dragging with button 1
 pressed selects characters, dragging with button 2 selects a
 rectangular area, and dragging with button 3 selects whole lines.
 (Buttons 1, 2, and 3 correspond to the left, middle, and right
 buttons for a right-handed user. The order will be the opposite for
 a left-handed user.) These operations correspond to elvis’s v, ^V,
 and V commands, respectively.
 (These commands are described later in this chapter.) When you
 release the button at the end of the drag, the selected text is
 immediately copied into an X11 cut buffer, so you can paste it into
 another application, such as xterm. The text remains selected, so you
 can apply an operator command to it.
Clicking button 1 cancels any pending selection and moves the
 cursor to the clicked-on character. Clicking button 3 moves the
 cursor without canceling the pending selection; you use this to extend a
 pending selection.
Clicking button 2 “pastes” text from the X11 cut buffer (such
 as xterm). If you’re entering an
 ex command line, the text will be
 pasted into the command line as though you had typed it. If you’re
 in visual command mode or input mode, the text will be pasted into
 your edit buffer. When pasting, it doesn’t matter where you click in
 the window; elvis always inserts
 the text at the position of the text cursor.
Double-clicking button 1 simulates a ^] keystroke, causing elvis to perform tag lookup on the
 clicked-on word. If elvis happens
 to be displaying an HTML document, then tag lookup pursues hypertext
 links, so you can double-click on any underlined text to view the
 topic that describes that text. Double-clicking button 3 simulates a
 ^T keystroke, taking you back to
 where you did the last tag lookup.

The Toolbar

 The X11 interface supports a user-configurable
 toolbar. By default, the toolbar is enabled unless your ~/.exrc file has a set notoolbar command.
 The default toolbar already has some buttons defined.
 You use the :gui command to
 reconfigure the toolbar.
There are a number of commands. In particular, you can
 reconfigure the toolbar to suit your tastes, deleting one or all of
 the existing buttons, adding new ones, and controlling the spacing
 between buttons or groups of buttons. Here is a simple
 example:
:gui Make:make
:gui Make " Rebuild the program
:gui Quit:q
:gui Quit?!modified
 These commands add two new buttons. The first line
 adds a button named Make, which will execute the :make command when pressed. (The :make command is described later in this chapter.) The
 second line adds descriptive text for the Make button that shows up
 in the status line when the button is pressed. In this case, the
 " does not start a comment;
 rather it is an operator for the :gui command.
 The second button, named Quit, is created by the
 third line. It exits the program. The fourth line changes its
 behavior. If the condition (!modified) is true, the button will behave
 normally. But if it’s false, the button will ignore any mouse
 clicks, and it will also be displayed as being “flat” instead of
 having the normal 3-D appearance. Thus, if the current file is
 modified, you won’t be able to use the Quit button to exit.
You can create pop-up dialogs that appear when a toolbar
 button is pressed. The dialog can set the value(s) of predefined
 variables (options) that can then be tested from the ex command associated with the button.
 There are 26 predefined variables, named a–z, that are set aside for user
 “programs” of this sort to use. This example associates a dialog
 with a new button named Split:
:gui Split"Create a new window, showing a given file
:gui Split;"File to load:" (file) f = filename
:gui Split:split (f)
 The first command associates descriptive text with
 the Split button. The second command creates the pop-up dialog: its
 prompt is File to load:
 and it will set the filename
 option. The (file) indicates that
 any string may be entered, but that the TAB key may be used for filename
 completion. The f = filename
 copies the value of filename into
 f. Finally, the third command
 actually executes the :split
 command on the value of f, which
 will be the new filename supplied by the user.
The facility is quite flexible; see the online help for the
 full details.

Options

 A large number of options control the X11 interface.
 You typically set these in your .exrc file. There are options and
 abbreviations for setting the various fonts, and for enabling and
 configuring the toolbar, status bar, scrollbars, and the cursor.
 Other options control the cursor’s behavior when you switch windows
 with ^W ^W and whether the cursor goes back to the
 original xterm when elvis exits.
The online documentation describes all of the X11-related
 ex options. Here, we describe
 some of the more interesting ones:
	autoiconify
	 Normally, when the ^W
 ^W command switches focus to an iconified window,
 that window is de-iconified. When autoiconify is true, elvis will iconify the old window,
 so that the number of open elvis windows remains
 constant.

	blinktime
	 The value is a number between 1 and 10 that
 indicates for how many 10ths of a second the cursor should be
 visible and then invisible. A value of 0 disables blinking.

	firstx, firsty, stagger
	firstx and
 firsty control the position
 of the first window that elvis creates. If not set, the
 -geometry option or the window manager
 controls placement. If stagger is set to a nonzero value,
 any new windows are created that many pixels down and to the
 right of the current window. Setting it to zero lets the
 window manager do the placement.

	stopshell
	 Stores a command that runs an interactive
 shell, for the ex commands
 :shell and :stop, and for the ^Z visual command. The default value
 is xterm &, which
 starts an interactive terminal emulator in another
 window.

	xscrollbar
	 Values left
 and right place the
 scrollbar on the indicated side of the window, and none disables the scrollbar. The
 default is right.

elvis can be
 configured via X resources.[56] The resource values can be overridden by command-line
 flags, or by explicit :set or
 :color commands in the
 initialization scripts. elvis’s
 resources are listed in Table 17-4.
Table 17-4. elvis X resources
	Resource class (name is
 lowercase of class)	Type	Default value
	Elvis.Toolbar	Boolean	true
	Elvis.Statusbar	Boolean	true
	Elvis.Font	Font	fixed
	Elvis.Geometry	Geometry	80x34
	Elvis.Foreground	Color	black
	Elvis.Background	Color	gray90
	Elvis.MultiClickTimeout	Timeout	3
	Elvis.Control.Font	Font	variable
	Elvis.Cursor.Foreground	Color	red
	Elvis.Cursor.Selected	Color	red
	Elvis.Cursor.BlinkTime	Timeout	3
	Elvis.Tool.Foreground	Color	black
	Elvis.Tool.Background	Color	gray75
	Elvis.Scrollbar.Foreground	Color	gray75
	Elvis.Scrollbar.Background	Color	gray60
	Elvis.Scrollbar.Width	Number	11
	Elvis.Scrollbar.Repeat	Timeout	4
	Elvis.Scrollbar.Position	Edge	right

The “Timeout” type gives a time value, in 10ths of a second.
 The “Edge” type gives a scrollbar position, one of left, right, or none.
For example, if your X resource database contains the line
 elvis.font: 10x20, the default
 text font would be 10x20. This
 value would be used if the normalfont option was unset.

[56] X resources are a way to configure X11 applications based
 on a set of name/value pairs stored in memory by the X server.
 They are not used very much by the current crop of desktop
 environments, such as KDE and GNOME. Nonetheless, you can still
 set them using the xrdb
 command.

Extended Regular Expressions

 We introduced extended regular expressions earlier in
 the section Extended Regular Expressions. The additional
 metacharacters available in elvis
 are:
	\|
	 Indicates alternation.

	\(...\)
	Used for grouping, to allow the application of additional
 regular expression operators.

	\+
	 Matches one or more of the preceding regular
 expressions.

	\?
	Matches zero or one of the preceding regular expressions.

	\@
	Matches the word under the cursor.

	\=
	 Indicates where to put the cursor when the text
 is matched. For instance, hel\=lo would put the cursor on
 the second l in the next occurrence of
 hello.

	\{...\}
	 Describes an interval expression, such as
 x\{1,3\} to match
 x, xx, or
 xxx.

POSIX bracket expressions (character classes, etc.) are
 available.

Improved Editing Facilities

 This section describes the features of elvis that make simple text editing easier
 and more powerful.
Command-Line History and Completion

 Everything you type on the ex command line is saved in a buffer named
 Elvisexhistory. This is accessible like any
 other elvis buffer, but it is not
 directly useful when just viewed in a window.
To access the history, you use the arrow keys to display
 previous commands and to edit them. Use ↑ and ↓ to
 page through the list, and ← and
 → to move around on a command line.
 You can insert characters by typing, and you can erase them by
 backspacing over them. Much as when editing in a regular vi buffer, the backspace does remove the
 characters, but the line is not updated as you type, so be
 careful!
When entering text into the Elvis ex
 history buffer (i.e., on the colon command line), the
 TAB key can be used for filename
 expansion. The preceding word is assumed to be a partial filename,
 and elvis searches for all
 matching files. If there are multiple matches, it fills in as many
 characters of the name as possible, and then beeps; or, if no
 additional characters are implied by the matching filenames,
 elvis lists all matching names
 and redisplays the command line. If there is a single match,
 elvis completes the name and
 appends a tab character. If there are no matches, elvis simply inserts a tab
 character.
To get a real tab character, precede it with a ^V. You can also disable filename
 completion entirely by setting the Elvis ex history
 buffer’s inputtab option to
 tab, via the following
 command:
:(Elvis ex history)set inputtab=tab

Tag Stacks

 Tag stacking is described earlier in the section
 Tag Stacks. In elvis, tag stacking is very
 straightforward, as shown in Tables 17-5 and 17-6.
Table 17-5. elvis tag commands
	Command	Function
	ta[g][!]
 [tagstring]	Edit the file containing
 tagstring as defined in the tags file. The !
 forces elvis to switch to
 the new file if the current buffer has been modified but not
 saved.

	stac[k]	Display the current tag stack.

	po[p][!]	Pop a cursor position off the stack, restoring the cursor to its previous
 position.

Table 17-6. elvis command mode tag commands
	Command	Function
	^]	Look up the location of the identifier
 under the cursor in the tags file, and move to that
 location. The current location is automatically pushed onto
 the tag stack.

	^T	Return to the previous location in the tag stack, i.e., pop off one
 element.

Unlike traditional vi, when
 you type ^], elvis looks up the entire word containing
 the cursor, not just the part of the word from the cursor location
 forward.
 In HTML mode (discussed in the later section Display Modes), the commands all work the same,
 except that :tag expects to be
 given a URL instead of a tag name. URLs don’t depend on having a
 tags file, so the tags file is ignored when in HTML mode.
 elvis supports file:, http:, and ftp: URLs. It can also write via FTP.
 Simply give a URL wherever elvis
 expects a filename. To access your own account on an FTP site
 (instead of the anonymous account), the directory name portion of
 the URL must begin with /~.
 elvis will read your ~/.netrc file to find the right name and
 password. The html display mode
 makes good use of these features! (The network functions work in
 Windows and OS/2, too.)
Several :set options affect
 how elvis works with tags, as
 described in Table 17-7.
Table 17-7. elvis options for tag management
	Option	Function
	taglength,
 tl	Control the number of significant characters in a tag that is to be looked up.
 The default value of zero indicates that all characters are
 significant.

	tags, tagpath	The value is a list of directories and/or filenames in which to look for
 tags files. elvis looks for a file named
 tags in any entry that
 is a directory. Entries in the list are colon-separated (or
 semicolon-separated on DOS/Windows), in order to allow
 spaces in directory names. The default value is just
 tags, which looks for a
 file named tags in the
 current directory. This can be overridden by setting the
 TAGPATH environment
 variable.

	tagstack	When set to true, elvis stacks each location on the
 tag stack. Use :set
 notagstack to disable tag stacking.

elvis supports the
 extended tags file format
 described in Chapter 8. elvis comes with its own version of
 ctags (named elvtags, to avoid conflict with the
 standard version). It generates the enhanced format described
 earlier. Here is an example of the special !_TAG_ lines it produces:
!_TAG_FILE_FORMAT 2 /supported features/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR Steve Kirkendall /kirkenda@cs.pdx.edu/
!_TAG_PROGRAM_NAME Elvis Ctags //
!_TAG_PROGRAM_URL ftp://ftp.cs.pdx.edu/pub/elvis/README.html //
!_TAG_PROGRAM_VERSION 2.1 //
In elvis, each window has
 its own tag stack.
In general, elvis does some
 innovative things with tags. When reading overloaded tags, it tries
 to guess which one you’re looking for and presents the most likely
 one first. If you reject it (by hitting ^] again, or typing :tag again), it then presents you with the
 next most likely match, and so on. It also notes the attributes of
 the tags that you reject or accept and uses those to improve its
 guessing heuristic for later searches.
 The :tag command’s
 syntax has been extended to allow you to search for tags by features
 other than just the tag name. There are too many details to go into
 here; see the chapter in the online help that describes the use of
 tags.
 There is also a :browse command, which finds all matching
 tags at once and builds an HTML table from them. From this table,
 you can follow hypertext links to any matching tags you want.
 Finally, there is the tagprg option, which, if set, discards the
 built-in tag searching algorithm and instead runs an external
 program to perform the search.

Infinite Undo

 With elvis, before
 being able to undo and redo multiple levels of changes, you must first set the undolevels option to the number of levels
 of “undo” that elvis should
 allow. A negative value disallows any undoing
 (which is not terribly useful). The elvis documentation warns that each level
 of undo uses around 6K bytes of the session file (the file that
 describes your editing session), and thus can eat up disk space
 rather quickly. It recommends not setting undolevels any higher than 100 and
 “probably much lower.”
Once you’ve set undolevels
 to a nonzero value, you enter text as normal. Then, each successive
 u command undoes one change. To
 redo (undo the undo), you use the (rather mnemonic) ^R (Ctrl-R) command.
In elvis, the default value
 of undolevels is zero, which
 causes elvis to mimic Unix
 vi. The option applies per buffer
 being edited; see the earlier section Initialization Steps for a description of how to set it
 for every file that you edit.
Once undolevels has been
 set, adding a count to either the u or ^R
 commands undoes or redoes the given number of changes.

Arbitrary Length Lines and Binary Data

elvis can edit
 files with arbitrary length lines and with an arbitrary number of
 lines.
 Under Unix, elvis
 does not treat a binary file differently from any other file. On
 other systems, it uses the elvis.brf file to set the binary option. This avoids newline
 translation issues. You can enter 8-bit text by typing ^X followed by two hexadecimal digits.
 Using the hex display mode is an
 excellent way to edit binary files. The elvis.brf file and the hex display mode are described in the
 later section Interesting Features.

Left-Right Scrolling

 You enable left-right scrolling in elvis using :set
 nowrap. The value of sidescroll controls the number of
 characters by which elvis shifts
 the screen when scrolling left to right. The ^W S command toggles the value of this
 option.

Visual Mode

elvis allows you to
 select regions one character at a time, one line at a time, or
 rectangularly, using the commands shown in Table 17-8.
Table 17-8. elvis block mode command characters
	Command	Function
	v	Start region selection, character-at-a-time mode.

	V	Start region selection, line-at-a-time
 mode.

	^V	Start region selection, rectangular mode.

elvis highlights the text
 (using reverse video) as you are selecting it. To make your
 selection, simply use the normal motion keys. The screen here shows
 a rectangular region:
The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings thebook into the late 1990’s.
In particular, besides the “original” version of
<command>vi</command> that comes as a standard part of every Unix
system, there are now a number of freely available “clones”
or work-alike editors.
elvis permits only a few
 operations on selected areas of text. Some operations work only on
 whole lines, even if you’ve selected a region that does not contain
 whole lines (see Table 17-9).
Table 17-9. elvis block mode operations
	Command	Operation
	c, d, y	Change, delete, or yank text. Only d works exactly on
 rectangles.

	<, >, !	Shift text left or right, and filter text.
 These operate on the whole lines containing the marked
 region.

After using the d command
 to delete the region, the screen now looks like this:
The 6th edition of <citetitle>Learning the vi Editor</citetitle>brings the 90’s.
In particulo;original” version of
<command>vi as a standard part of every
system, there are n available “clones”
or work-alike editors.

Programming Assistance

elvis’s programming
 assistance capabilities are described in this section.
Edit-Compile Speedup

elvis provides
 commands that make it easier to stay within the editor while working
 on a program. You can recompile a single file, rebuild your entire
 program, and work through compiler errors one at a time. The
 elvis commands are summarized in
 Table 17-10.
Table 17-10. elvis program development commands
	Command	Option	Function
	cc[!]
 [args]	ccprg	Run the C compiler. Useful for recompiling an individual file.

	mak[e][!]
 [args]	makeprg	Recompile everything that needs recompiling (usually via make).

	er[rlist][!]
 [file]	 	Move to the next error’s location.

The cc command recompiles
 an individual source file. You run it from the colon command line.
 For example, if you are editing the file hello.c and you type :cc, elvis will compile hello.c for you.
If you supply additional arguments to the :cc command, those arguments will be
 passed on to the C compiler. In this case, you need to supply
 all the arguments, including the
 filename.
The :cc command works by
 executing the text of the ccprg
 option. The default value is "cc
 ($1?$1:$2)". elvis sets
 $2 to the name of the current
 source file, and $1 to the
 arguments you give to the :cc
 command. The value of ccprg thus
 uses your arguments if they are present; otherwise, it just passes
 the current file’s name to the system cc command. (You can, of course, change
 ccprg to suit your taste.)
Similarly, the :make
 command is intended to recompile everything that needs recompiling.
 It does this by executing the contents of the makeprg option, which by default is
 "make $1". Thus, you could type
 :make hello to make just the
 hello program, or just :make to make everything.
elvis captures the output
 of the compile or make and looks
 for things that look like filenames and line numbers. When it finds
 likely candidates, it treats them as such and moves to the location
 of the first error. The :errlist
 command moves to each successive error location in turn. elvis displays the error message text in
 the status line as you move to each location.
If you supply a filename argument to
 :errlist, elvis will load a fresh batch of error
 messages from that file, and move to the location of the first
 error.
The vi mode command
 * (asterisk) is equivalent to
 :errlist. This is more convenient
 to use when you have a lot of errors to step through.
Finally, one really nice feature is that elvis compensates for changes in the file.
 As you add or delete lines, elvis
 keeps track, so that when you go to the next error, you end up on
 the correct line—which is not necessarily the one with the same
 absolute line number as in the compiler’s error message.

Syntax Highlighting

 To cause elvis to
 do syntax highlighting, use the :display
 syntax command. This is a per-window command. (The other
 elvis display modes are described
 in Display Modes.)
You specify the appearance of text directly, using the
 :color command. You first give
 the type of text to highlight. For example, in the syntax display mode, some of the
 possibilities are:
	comment
	 How to display comments

	function
	 How to display identifiers that are function
 names

	keyword
	 How to display identifiers that are
 keywords

	prep
	 How to display C and C++ preprocessor
 directives

	string
	 How to display string constants (such as
 "Don't panic!" in awk)

	variable
	 How to display for variables, fields, and so
 on

	other
	 How to display things that don’t fall into the
 other categories but that should not be displayed in the
 normal font (e.g., type names defined with the C typedefkeyword)

Next, you indicate the font face, one of normal, bold, italic, underlined, emphasized, boxed, graphic, proportional, or fixed. (These can be abbreviated to a
 single letter.) You can then follow the face with a color. For
 example:
:color function bold yellow
The description of each language’s comments, functions,
 keywords, etc., is stored in the elvis.syn file. This file comes with a
 number of specifications in it already. As an example, here is the
 syntax specification for awk:
Awk. This is actually for Thompson Automation's AWK compiler, which is
somewhat beefier than the standard AWK interpreter.
language tawk awk
extension .awk
keyword BEGIN BEGINFILE END ENDFILE INIT break continue do else for function
keyword global if in local next return while
comment #
function (
string "
regexp /
useregexp (,~
other allcaps
The format is mostly self-explanatory and is fully documented
 in the elvis online documentation.
The reason elvis associates
 fonts and colors with different parts of a file’s syntax is its
 ability to print files as they’re shown on the screen (see the
 discussion of the :lpr command in
 the later section Display Modes).
On a nonbitmapped display, such as the Linux console, all of
 the fonts map into the one used by the console driver. This makes it
 rather difficult to distinguish normal from italic, for example. However, on some
 displays (such as the Linux console), elvis compensates by changing the color of
 the different fonts. If you have a GNU/Linux system with elvis, use it to edit a convenient C
 source file and you will see different parts of the code in
 different colors. The effect is rather pleasant; we regret that we
 can’t reproduce it here in print.
In elvis, the syntax colors
 are per-window attributes. You can change the color for the italic
 font in one window, and it will not affect the color for the italic
 font in another window. This is true even if both windows are
 showing the same file.
Syntax coloring makes program editing much more interesting
 and lively. But you have to be careful in your choice of
 colors!

Interesting Features

elvis has a number of
 interesting features:
	Internationalization support
	 Like nvi,
 elvis also has a home-grown
 method for allowing translations of messages into different
 languages. The elvis.msg
 file is searched for along the elvispath and loaded into a buffer
 named Elvis messages.
Messages have the form “terse
 message:long message.”
 Before printing a message, elvis looks up the terse form, and if
 there is a corresponding long form, that message is used.
 Otherwise, the terse message is used.

	Display modes
	This is perhaps the most interesting of elvis’s features. For certain kinds of
 files, elvis formats the file
 content on the screen, giving a surprisingly good approximation
 of a WYSIWYG effect. elvis
 can also use the same formatting for printing the buffer to
 several kinds of printers. Display modes get their own
 subsection later in this chapter.

	Pre- and post-operation command files
	elvis loads four files
 (if they exist) that allow you to customize its behavior before
 and after reading and writing a file. This feature also gets its
 own subsection, later.

	Open mode
	elvis is the
 only one of the clones that actually implements vi’s open mode. (Think of open mode as
 like vi, but with only a
 one-line window. The “advantage” of open mode is that it can be used on terminals that
 don’t have cursor motion capabilities.)

	Security
	 The :safely
 command sets the security
 option for execution of non-home-directory.exrc files, or any other untrusted
 files. When security=safer is
 set, “certain commands are disabled, wildcard expansion in
 filenames is disabled, and certain options are locked (including
 the security option itself).”
 The elvisdocumentation provides the
 details; however, don’t blindly trust elvis to provide complete security for
 you.

	Built-in calculator
	elvis extends
 the ex command language with
 a built-in calculator (sometimes referred to as an expression
 evaluator in the documentation). It understands C expression
 syntax, and is most used in the :if, :calc, and :eval commands. See the online help
 for details, as well as examples in the elvis distribution’s sample initialization files.

	Macro debugger
	elvis has a debugger
 for vi macros (the :map command). This can be useful when
 writing complicated input or command maps.

	Macros for ex mode
	 The :alias
 command provides for defining ex macros. It is intended to resemble
 the alias command in csh. For example, there is a :safer alias for the :safely command, which provides
 backward compatibility with earlier versions of elvis.

	Smarter % command
	The visual % command
 has been extended to recognize #if, #else, and #endif directives if you’re using the
 syntax display mode.

	Built-in spellchecker
	In syntax display mode,
 the spellchecker is smart enough to check the tags file for program symbols and a
 natural-language dictionary for comments. See :help set spell.

	Text folding
	Text folding allows you to hide and reveal certain parts
 of a file, which is useful for working with structured text. See
 :help :fold.

	Highlighting selected lines
	Steve tells us: “elvis
 can add a highlight to selected lines. See :help :region. For example, the
 commands :load since and then
 :rcssince will highlight
 lines that have been changed since the last time the file was
 checked into RCS.”

Display Modes

elvis has several
 display modes. Depending on the kind of file, elvis produces a formatted version of the
 file, producing a WYSIWYG effect. The display modes are outlined in Table 17-11.
Table 17-11. elvis display modes
	Mode	Display appearance
	normal	No formatting; displays your text as it exists in the
 file.

	syntax	Like normal,
 but with syntax coloring turned
 on.

	hex	An interactive hex dump, reminiscent of
 mainframe hex dumps. Good for editing binary files.

	html	A simple web page formatter. The tag commands
 can be used to follow links and return to the original
 starting point.

	man	Simple manpage formatter. Like the output
 of nroff
 -man.

	tex	 A simple subset of the TeX formatter.

 The :normal
 command will switch the display from one of the formatted views to
 normal mode. Use :displaymode to
 switch back. As a shortcut, the ^W
 d command will toggle the display modes for the
 window.
Of the available modes, html and man are the most WYSIWYG in nature. The
 online documentation clearly defines the subset of both markup
 languages that elvis understands.
elvis uses the html mode for displaying its online help,
 which is written in HTML and has many
 cross-referencing links within it.
The example here shows elvis editing one of the HTML help files.
 The screen is split. Both windows show the same buffer; the bottom
 window is using the html display
 mode, whereas the top is using the normal display mode:
<html><head>
<title>Elvis 2.0 Sessions</title>
</head><body>

<h1>10. SESSIONS, INITIALIZATION, AND RECOVERY</h1>

This section of the manual describes the life-cycle of an
edit session. We begin with the definition of an
edit session and
what that means to elvis.
This is followed by sections discussing
initialization
and recovery after a crash.
___10.0 SESSIONS, INITIALIZATION, AND RECOVERY

 This section of the manual describes the life-cycle of an
 edit session. We begin with the definition of an edit
 session and what that means to elvis. This is
 followed by sections discussing initialization andrecovery after a crash.10.1 Sessions
The man mode is also
 interesting, since normally you have to format and print a manpage
 to be sure you’ve done a decent job of laying it out. The following
 quote from the online help seems appropriate:
Troff source was never designed to be interactively edited,
 and although I did the best I could, attempting to edit in
 man mode is still a
 disorienting experience. I suggest you get in the habit of using
 normal mode when making
 changes, and man mode to
 preview the effect of those changes. The ^W d command makes switching between
 modes a pretty easy thing to do.

As an interesting adjunct, both the html and man modes also work with the :color command described later in Syntax Highlighting. This is particularly nice with
 man mode. For example, by default
 on a Linux console, only bold text (.B) is distinguishable from normal text.
 But with syntax coloring on, both bold and italic (.I) text become distinct. The mode
 commands are summarized in Table 17-12.

Table 17-12. elvis display mode commands
	Command	Function
	di[splay]
 [mode
 [lang]]	Change the display mode to mode. Use
 lang for syntax mode.

	no[rmal]	Same as :display
 normal, but much easier to type.

 Associated with each window is the bufdisplay option, which should be set to
 one of the supported display modes. The standard elvis.arf file (see the next subsection)
 will look at the extension of the buffer’s filename and attempt to
 set the display to a more interesting mode than normal.
 Finally, elvis can
 also apply its WYSIWYG formatting to printing the contents of a
 buffer. The :lpr command formats
 a line range (or the whole buffer, by default) for printing. You can
 print to a file or down a pipe to a command. By default, elvis prints to a pipe that executes the
 system print spooling command.
The :lpr command is
 controlled by several options, described in Table 17-13.
Table 17-13. elvis options for print management
	Option	Function
	lptype, lp	The printer type.

	lpconvert,
 lpcvt	If set, convert Latin-8 extended ASCII to PC-8
 extended ASCII.

	lpcrlf, lpc	The printer needs CR/LF to end each line.

	lpout, lpo	The file or command to print to.

	lpcolumns,
 lpcols	The printer’s width.

	lpwrap, lpw	Simulate line wrapping.

	lplines, lprows	The length of the printer’s page.

	lpformfeed,
 lpff	Send a form feed after the last page.

	lpoptions,
 lpopt	 Control of various printer features. This
 matters only for PostScript printers.

	lpcolor, lpcl	Enables color printing for PostScript and MS
 Windows printers.

	lpcontrast,
 lpct	Controls shading and contrast; for use with the
 lpcolor option.

Most of the options are self-explanatory. elvis supports several printer types, as
 described in Table 17-14.
Table 17-14. Values for the lptype option
	Name	Printer Type
	ps	PostScript, one logical page per sheet of
 paper.

	ps2	PostScript, two logical pages per sheet of
 paper.

	epson	Most dot-matrix printers; no graphic characters
 supported.

	pana	Panasonic dot-matrix printers.

	ibm	Dot-matrix printers with IBM graphic characters.

	hp	Hewlett-Packard printers, and most non-PostScript laser
 printers.

	cr	Line printers; overtyping is done with carriage
 return.

	bs	Overtyping is done via backspace characters.
 This setting is the closest to traditional
 Unix nroff.

	dumb	Plain ASCII, no font control.

If you have a PostScript printer, by all means use an lptype of ps or ps2. Use the latter to save paper, which
 is particularly handy when printing drafts.

Pre- and Post-Operation Control Files

elvis gives you the
 ability to control its actions at four points when reading and
 writing files: before and after reading a file, and before and after
 writing a file. It does this by executing the contents of four
 ex scripts at those respective
 points. These scripts are searched for using the directories listed
 in the elvispath option:
	elvis.brf
	 This file is executed Before Reading a File
 (.brf). The default
 version looks at the file’s extension and attempts to guess
 whether the file is binary. If it is, the binary option is turned on, to
 prevent elvis from
 converting newlines (which may be actual CR/LF pairs in the
 file) into line feeds internally.

	elvis.arf
	 This file is executed After Reading a File
 (.arf). The default
 version examines the file’s extension in order to turn on
 syntax highlighting.

	elvis.bwf
	 This file is executed Before Writing a File
 (.bwf), in particular,
 before completely replacing an original file with the contents
 of the buffer. The default version implements copying the
 original file to a file with a .bak extension. You must set the
 backup option for this to
 work.

	elvis.awf
	 This file is executed After Writing a File
 (.awf). There is no
 default file for this, although it might be a good place to
 add hooks into a source code control system.

The use of command files to control these actions is quite
 powerful. It allows you to easily tailor elvis’s behavior to suit your needs; in
 other editors these kinds of features are much more hardwired into
 the code.
In addition, elvis supports
 Vim-style autocommands with :autocmd. See the online help for
 details.

elvis Futures

 Steve Kirkendall informs us that there are a few things
 he has implemented but not yet released, as described in the following
 list:
	An interface to the GDB (GNU debugger) for use in software
 development

	A persistence feature similar to Vim’s viminfo file

	The ability to embed one syntax within another, such as
 JavaScript embedded in HTML

Sources and Supported Operating Systems

 The official WWW location for elvis is ftp://ftp.cs.pdx.edu/pub/elvis/README.html. From there,
 you can download the elvis
 distribution or get it directly, using ftp from ftp://ftp.cs.pdx.edu/pub/elvis/elvis-2.2_0.tar.gz.
The source code for elvis is
 freely distributable. elvis is
 distributed under the terms of perl’s Artistic License. The licensing terms
 are described in the doc/license.html file in the
 distribution.
elvis works under Unix, OS/2,
 MS-DOS, and modern versions of MS Windows. The Unix and Windows ports
 provide a graphical user interface. The MS-DOS version includes mouse
 support.
Compiling elvis is
 straightforward. Retrieve the distribution via ftp or via a web browser. Uncompress and
 untar it,[57] run the configure
 program, and then run make:
$gzip -d < elvis-2.2_0.tar.gz | tar -xvpf -
...
$ cd elvis-2.2_0; ./configure
...
$ make
...
elvis should configure and
 build with no problems. Use make
 install to install it.
Note
The default configuration causes elvis to install itself in standard system
 directories, such as /usr/bin,
 /usr/share, and so on. If you
 wish to have things installed in /usr/local, use the
 --prefix option to the configure script.

Should you need to report a bug or problem in elvis, the person to contact is Steve
 Kirkendall at kirkenda@cs.pdx.edu.

[57] The untar.c program
 available from the elvis
 ftp site is a very portable,
 simple program for unpacking gziped tar files on non-Unix systems.

Chapter 18. vile: vi Like Emacs

vile stands for “vi Like Emacs.” It started out as a copy of
 version 3.9 of MicroEMACS that was modified to have the “finger-feel” of
 vi. Thomas Dickey and Paul Fox are
 the maintainers. Over the years (since 1990), there have been other
 contributors, including Kevin Buettner and Clark Morgan.
The current version is 9.6, released late in 2007. The screenshots
 in this chapter were made with 9.5s (a pre-release beta). Until the late
 1990s, version numbers advanced roughly one per year; starting with
 1999, the scheme is about 0.1 per year—and someday will reach 10.
This chapter was written using vile.
Authors and History

Paul Fox describes the early vile history this way:
vile’s design goal has
 always been a little different than that of the other clones.
 vile has never
 really attempted to be a “clone” at all, though
 most people find it close enough. I started it because in 1990 I
 wanted to be able to edit multiple files in multiple windows, I had
 been using vi for 10 years
 already, and the sources to MicroEMACS came floating past my
 newsreader at a job where I had too much time on my hands. I started
 by changing the existing keymaps in the obvious way, and ran
 full-tilt into the “Hey! Where’s ‘insert’ mode?” problem. So I
 hacked a little more, and hacked a little more, and eventually
 released in ’91 or ’92. (Starting soon thereafter, major version
 numbers tracked the year of release: 7.3 was the third release in
 ’97.)
But my goal has always been to preserve finger-feel (as
 opposed to the display visuals), and, selfishly, to preserve
 finger-feel most for the commands I use. ☺ vile has quite an amazing ex mode, that works very well—it just
 looks really odd, and a couple of commands that
 are beyond the scope of the current parser are missing. For the same
 reasons, vile also won’t fully
 parse existing .exrc files,
 since I don’t really think that’s so important—it does simple ones,
 but more sophisticated ones need some tweaking. But when you toss in
 vile’s built-in command/macro
 language, you quickly forget you ever cared about .exrc.

Thomas Dickey started working on vile in December of 1992, initially just
 contributing patches, and later doing more significant features and
 extensions, such as line numbering, name completion, and animating the
 buffer list window. He explains: “Integrating features together is
 more important to my design goals than implementing a large number of
 features.”
In February of 1994, Kevin Buettner started working on vile. Initially, he supplied bug fixes for
 the X11 version, xvile, and then
 improvements, such as scrollbars. This evolved into support for the
 Motif, OpenLook, and Athena widget sets. Because the Athena widgets
 were, surprisingly, not “universally available in a bug-free form,” he
 wrote a version that used the raw Xt toolkit. This version ended up providing
 superior functionality to the Athena version. Kevin also contributed
 the initial support in vile for GNU
 Autoconf.
The Win32 GUI port, called winvile, started in 1997, and continued on
 with extensions, including an OLE server and a Visual Studio
 add-in.
In the current version of vile, the perl interface and major modes (discussed
 later) are stable. They are used as a basis for other features, such
 as a server (using the perl
 interface) and syntax highlighting based on the major modes. For the
 near term, future work will focus on improving the locale
 support.

Important Command-Line Arguments

 Although vile does
 not expect to be invoked as either vi or ex,
 it can be invoked as view, in which
 case it will treat each file as read-only. Unlike the other clones, it
 does not have a line-editor mode.
Here are the important vile
 command-line arguments:
	-c
 command
+
 command
	vile will execute the
 given ex-style command.
 Any number of -c options may be
 given.

	-h
	Invokes vile on the
 help file.

	-R
	Invokes vile in
 “read-only” mode; no writes are permitted while in this mode. (This will also be
 true if vile is invoked as
 view, or if readonly mode is set in the startup
 file.)

	-t tag
	Start editing at the specified tag.
 The -T option is equivalent and
 can be used when X11 option parsing eats the
 -t.

	-v
	Invokes vile in “view”
 mode; no changes are permitted to any buffer while in this
 mode.

	-?
	vile prints a short
 usage summary and then exits.

	@
 cmdfile
	vile will run
 the specified file as its startup file, and will bypass any
 normal startup file (i.e., .vilerc) or environment variable
 (i.e., VILEINIT).

A few often-used options are obsolete since vile implements the POSIX
 -c (or +)
 option:
	-g N
	vile will begin editing
 on the first file at the specified line number. This can
 also be given as +N.

	-s
 pattern
	In the first file, vile
 will execute an initial search for the given pattern. This can also be
 given as +/pattern.

Online Help and Other Documentation

vile currently comes
 with a single (rather large) ASCII text file, vile.hlp. The :help command
 (which can be abbreviated to :h)
 opens a new window on that file. You can then search for information
 on a particular topic, using standard vi search techniques. Because it is a flat
 ASCII file, it is also easy to print out and read through.
In addition to the help file, vile has a number of built-in commands for
 displaying information about the facilities and state of the editor.
 Some of the most useful commands
 are:
	:show-commands
	Creates a new window that shows a complete list of all
 vile commands, with a brief description of each one.
 The information is placed in its own buffer that can be treated
 just like any other vile
 buffer. In particular, it is easy to write it out to a file for
 later printing.

	:apropos
	Shows all commands whose names contain a given substring.
 This is easier than just randomly searching
 through the help file to find information on a particular
 topic.

	:describe-key
	 Prompts you for a key or key sequence, and then
 shows the description of that command. For instance, the
 x key implements the delete-next-character function.

	:describe-function
	Prompts you for a function name, and then shows the
 description of that function. For instance, the delete-next-character function deletes
 a given number of characters to the right of the current cursor
 position.

The :apropos, :describe-function, and :describe-key commands all give the
 descriptive information, plus all other synonyms (since a function may
 have more than one name, for convenience), all other keys that are
 bound to it (since many key sequences may be bound to the same
 function), and whether the command is a “motion” or an “operator.” A
 good example of this is the output of :describe-function next-line:
"next-line" ^J ^N j #-B
 or "down-arrow"
 or "down-line"
 or "forward-line"
 (motion: move down CNT lines)
This shows all four of its names and its key bindings. (The
 sequence #-B is vile’s terminal-independent representation of
 the up arrow—use :show-key-names
 for a complete list.)
 The VILE_STARTUP_PATH environment variable can
 be set to a colon-separated search path for the help file.[58] The VILE_HELP_FILE
 environment variable can be used to override the name of the help file (typically
 vile.hlp).
The combination of online searchable help, built-in command and
 key descriptions, and command completion makes the help facility
 straightforward to use.

[58] The Win32 port uses a semicolon as a list-separator; the
 OpenVMS port uses commas.

Initialization

xvile performs extra
 initialization for its menus, before the other steps:
	(xvile only.) Use the value of the XVILE_MENU environment variable for the
 name of the menu description file, if provided. Otherwise, it
 uses .vilemenu. This file sets the default
 menus for the X11 interface.[59]

After that, the different versions vile, xvile, and winvile perform the same two-stage
 initialization. The first stage uses a mixture of environment
 variables and files:
	 Execute the file named on the command line with
 @cmdfile
 options, if any. Bypass any other initialization steps that would
 otherwise be done.

	 If the VILEINIT
 environment variable exists, execute its value. Otherwise, look
 for an initialization file.

	 If the VILE_STARTUP_FILE environment variable
 exists, use that as the name of the startup file. If not, on Unix
 use .vilerc, and on other
 systems use vile.rc.

	Look for the startup file in the current directory, and then
 in the user’s home directory. Use whichever one is found
 first.

The second stage uses the initialization commands:
	Load the first file specified on the command line into a
 memory buffer.

	Execute the commands given with -c options,
 applying them by default to the first file.

Like the other clones, vile
 lets you place common initialization actions into your .exrc file (i.e., options and commands for
 Unix vi and/or the other clones),
 and use your .vilerc file to
 execute :source .exrc before or
 after the vile-specific initializations.

[59] winvile’s menus are
 not configurable; they provide features that are supported
 only in Win32.

Multiwindow Editing

vile is somewhat
 different from the other clones. It started life as a version of
 MicroEMACS, and then was modified into an editor with the “finger-feel” of vi.
One of the things that versions of Emacs have always done is
 handle multiple windows and multiple files; as such, vile was the first vi-like program to provide multiple windows
 and editing buffers.
 As in elvis and Vim,
 the :split command[60] creates a new window, and then you can use the ex command :efilename to
 edit a new file in the new window. After that, things become
 different; in particular, the vi
 command mode keys to switch among windows are very different.
[image: Editing this chapter in vile]

Figure 18-1. Editing this chapter in vile

Figure 18-1 depicts a split screen that
 results from typing vile
 ch12.xml[61] followed by :split
 and :e !zcat chapter.xml.gz.
Like Vim, all windows share the bottom line for execution of
 ex commands. Each window has its
 own status line, with the current window indicated by filling its
 status line with equals signs. The status line also acquires an
 I in the second column when in
 insert mode, and [modified] is
 appended after the filename when the file has been changed but not yet
 written out.
vile is also like Emacs in
 that commands are bound to key sequences. Table 18-1 presents the commands and their key
 sequences. In some cases, two sets of key sequences do the same
 operation, for example, the delete-other-windows command.
Table 18-1. vile window management commands
	Command
	 Key sequence(s)
	Function

	delete-other-windows	^O, ^X 1
	Eliminate all windows except the current one.

	delete-window	^K, ^X 0
	Destroy the current window, unless it is the last one.

	edit-file, E, e	^X e	Bring given (or under-cursor, for ^X e) file or existing buffer into window.
	find-file	^X e	Like edit-file.
	grow-window	 V

	Increase the size of the current window by count
 lines.

	move-next-window-down	 ^A ^E

	Move next window down (or buffer up) by count
 lines.

	move-next-window-up	 ^A ^Y

	Move next window up (or buffer down) by count
 lines.

	move-window-left	 ^X ^L

	Scroll window to left by count columns, or a half
 screen if count is
 unspecified.

	move-window-right	 ^X ^R

	Scroll window to right by count columns, or
 a half screen if count is
 unspecified.

	next-window	 ^X o

	Move to the next window.

	position-window	 z
 where
	Reframe with cursor specified by where, as follows:
 center (., M, m), top (ENTER, H, t), or bottom (-, L, b).

	previous-window	 ^X O

	Move to the previous window.

	resize-window	 	Change the current window to
 count lines. count is supplied as a
 prefix argument.

	restore-window	 	Return to window saved with save-window.

	save-window	 	Mark a window for later return with restore-window.

	scroll-next-window-down	 ^A ^D

	Move next window down by count half screens.
 count is supplied as a prefix
 argument.

	scroll-next-window-up	 ^A ^U

	Move next window up by count half screens.
 count is supplied as a prefix
 argument.

	shrink-window	 v

	Decrease the size of the current window by
 count lines. count is supplied as a
 prefix argument.

	split-current-window	 ^X 2

	Split the window in half; a
 count of 1 or 2 chooses which becomes
 current. count is supplied as a
 prefix argument.

	view-file	 	Bring given file or existing buffer into window, and mark it
 “view-only.”

	set-window	 	Bring existing buffer into window.

	historical-buffer	 _

	Display a list of the first nine buffers. A digit
 moves to the given buffer; __ moves to the most recently edited file. Tab (and
 back-tab) rotate the list, making it simple to navigate in a
 list of long buffer names.

	toggle-buffer-list	 *

	Pop up/down a window showing all the vile buffers.

[60] That this works is an artifact of vile allowing you to abbreviate
 commands. The actual command name is split-current-window.

[61] The alert reader may have noticed that this is not Chapter
 12. The chapters were renumbered during the development of the
 seventh edition.

GUI Interfaces

 The screen shots and the explanation in this section
 were supplied by Kevin Buettner, Thomas Dickey, and Paul Fox. We thank
 them.
There are several X11 interfaces for vile, each utilizing a different toolkit
 based on the Xt library.There is a plain “No Toolkit” version that does not use
 a toolkit, but it has custom scrollbars and a bulletin board widget
 for geometry management. There are versions that use the Motif,
 Athena, or OpenLook toolkits.[62] The Motif and Athena versions are the best supported,
 and have menu support.
There is a “single” Win32 GUI—with variations to support OLE and
 Unicode. On the surface, they look the same.
Fortunately, the basic interface is the same for all versions.
 There is a single top-level window that can be split into two or more
 panes. The panes, in turn, may be used to display multiple views of a
 buffer, multiple buffers, or a mixture of both. In vile parlance these panes are called
 “windows,” but to avoid confusion, we will continue to call them
 “panes” in the following discussion.
Building xvile

Although there are binary packages for xvile, you may wish to compile it on a
 platform with no package support.
When building xvile, you
 have to choose which toolkit version to use. This is done when you
 configure vile with the configure command.[63] The relevant options are:
	--with-screen=
 value
	Specify terminal driver. The default is tcap, for the termcap/terminfo driver. Other values
 include curses, ncurses, ncursesw, X11, OpenLook, Motif, Athena, Xaw, Xaw3d, neXtaw, and ansi.

	--with-x
	Use the X Window System. This is the “No Toolkit”
 version.

	--with-Xaw-scrollbars
	Use Xaw scrollbars
 rather than the vile custom
 scrollbars.

	--with-drag-extension
	Use the drag/scrolling extension with Xaw.

xvile Basic Appearance and Functionality

The following figures show xvile’s Motif interface. It is similar to
 the Athena interface.
[image: The xvile GUI window]

Figure 18-2. The xvile GUI window

Figure 18-2 shows three panes:
	The manpage for vile,
 which shows the use of underlining and boldface.

	A buffer misc.c, from
 tin, which shows syntax
 highlighting (this time with colors—grayscaled for printing—for
 preprocessor statements, comments, and keywords).

	A three-line pane, which is active (noted by a darker
 status line), named [Completions], for filename
 completions. The pane is coordinated with the minibuffer (the
 colon command line): the first line reads Completions prefixed by
 /usr/build/in/tin-1.9.2+/src/m:, and the minibuffer
 reads Find file: m. The rest
 of the pane contains the actual filenames that match. The first
 line of [Completions] and the contents
 change as the user completes the filename (and presses TAB to tell vile to show the reduced set of
 choices).

[image: Buffers and completions in vile]

Figure 18-3. Buffers and completions in vile

Figure 18-3 also shows three
 panes:
	The [Help] pane, which
 of course shows the most important feature of an editor (how to
 exit without modifying your files). ☺

	The [Buffer List],
 which indicates that charset.c is the # (previous) buffer. The % (current) buffer is not shown on the
 list, since only the “visible” buffers are displayed in this
 copy of [Buffer List].
 Supplying an argument to the * command would have shown the
 invisible buffers as well. Buffers 0 and 2 are charset.c and misc.c. They have been loaded, so
 their sizes (12425 and 89340) are displayed in the [Buffer List]. Buffer 1 (<vile.1>) holds a formatted
 manpage generated by a macro and does not correspond to a
 file.[64] Buffer 3 (color.c) has not been loaded, so a
 u is displayed in the first
 column, and the size is shown as zero.

	The [Completions]
 buffer is active. This time it displays tag completions for the
 partial match co, and the
 Completions prefixed message is not shown
 because the buffer is scrolled down, which is another side
 effect of pressing TAB:
 vile cycles through a
 scrolling action so that all of the choices will be shown, even
 when the window is small.[65]

Generated buffers such as [Help] and [Buffer List] are “scratch” buffers. When
 popped down, they are closed, and their content is discarded. There
 are other buffers, e.g., those containing scripts, which are
 “invisible.” Both are normally not shown in [Buffer List].
Scrollbars

 At the right of each pane is a scrollbar that may
 be used in the customary fashion to move about in the buffer.
 Note, however, that the customary fashion varies from toolkit to
 toolkit. In the Athena and “No Toolkit” versions, the middle mouse
 button may be used to drag the “thumb” or visible indicator
 around. The left and right mouse buttons move down or up
 (respectively) in the buffer. The amount moved depends on the
 location of the mouse cursor on the scrollbar. Placing it near the
 top will scroll by as little as one line. When placed near the
 bottom, the text will scroll by as much as a full pane.
The Motif scrollbar is probably more familiar. The leftmost
 mouse button is used for all operations. Clicking on the little
 arrows will move up or down by one line. The scrollbar indicator
 may be dragged in order to move about, and scrolling up or down by
 an entire pane can be accomplished by clicking above or below the
 indicator.
In each version, there is a small handle above or below
 (i.e., between) scrollbars that may be used to adjust the size of
 two adjacent panes. In the “No Toolkit” version of xvile, the pane resize handle blends in
 with the status line of two adjacent panes. In the other versions,
 the resize handle is more distinguishable. But in each case, the
 mouse cursor will change to a heavy vertical double arrow when
 placed above the resize handle. The windows may be resized by
 clicking on and dragging the handle.
A pane can be split into two by holding the Ctrl key down
 and clicking the left mouse button on a scrollbar. Then you will
 have two views of a particular buffer. Other vile commands may be used to replace one
 of the views with another buffer if desired. A pane may be deleted
 by holding the Ctrl key down and clicking the middle mouse button.
 Sometimes after creating a lot of panes, you find yourself wanting
 to use all of the window real estate for just one pane. To do
 this, Ctrl-click the right mouse button; all other panes will be
 removed, leaving the entire xvile window containing only the pane on
 which you clicked. These actions are summarized in Table 18-2.
Table 18-2. vile pane management commands
	Command	Function
	Ctrl-left button	On a scrollbar, split the pane.

	Ctrl-middle button	Delete a pane.

	Ctrl-right button	Make the clicked pane the only pane.

Setting the cursor position and mouse motions

 Within the text area of a pane, the cursor may be
 set by clicking the left mouse button. This not only sets the
 cursor position, but also sets the pane in which editing is being
 done. To set just the pane but preserve the old position, click on
 the status line below the text you wish to edit.
A mouse click is viewed as a motion, just like 4j is considered a motion. To delete
 five lines, you could enter d4j, which will delete the current line
 and the four below it. You can do the same thing with a mouse
 click. Position your cursor at the place you want to start
 deleting from and then press d.
 After this, click in the buffer at the point to which you wish to
 delete. Mouse clicks are real motions and may be used with other
 operators as well.

Selections

 Selections may be made by holding the left mouse
 button down and dragging with the mouse. This is called the
 PRIMARY selection. Release of the mouse button causes the
 selection to be yanked and made available (if desired) for
 pasting. You can force the selected region to be rectangular by
 holding the Ctrl key down while dragging with the left button
 depressed. If the dragging motion goes out of the current window,
 text will be scrolled in the appropriate direction, if possible,
 to accommodate selections larger than the window. The speed at
 which the scrolling occurs will increase with the passage of time,
 making it practical to select large regions of text
 quickly.
Individual words or lines may be selected by double- or
 triple-clicking on them.
A selection may be extended by clicking the right mouse
 button. As with the left button, the selection can be adjusted or
 scrolled by holding the right button down and dragging with it.
 Selections may be extended in any window open to the same buffer
 as the one in which the selection was started. That is, if you
 have two views of a buffer (in two different panes), one
 containing the start of the buffer and the other the end, it is
 possible to select the entire buffer by clicking the left button
 at the beginning of the pane that shows the beginning of the
 buffer and then clicking the right button in the pane that shows
 the end of the buffer. Also, selections may be extended in a
 rectangular fashion by holding the Ctrl key down in conjunction
 with the right mouse button.
The middle button is used for pasting the selection. By
 default, it pastes at the last text cursor position. If the Shift
 key is held down while clicking the middle button, the paste
 occurs at the position of the mouse cursor.
A selection may be cleared (if owned by xvile) by double-clicking on one of the
 status lines.

Clipboard

 Data may be exchanged between many X applications
 via the PRIMARY selection. This selection is set and manipulated
 as described previously.
Other applications use the CLIPBOARD selection to exchange
 data between applications. On many Sun keyboards, selected text is
 moved to the clipboard by pressing the COPY key and pasted by pressing the
 PASTE key. If you find that you
 cannot paste text selected in xvile into other applications (or vice
 versa), it may well be that these applications use the CLIPBOARD
 selection instead of the PRIMARY selection. (The other mechanism
 used among really old applications involves the use of a ring of
 cut buffers.)
xvile provides
 two commands for manipulating the clipboard: copy-to-clipboard and paste-from-clipboard. When copy-to-clipboard is executed, the
 contents of the current selection are copied to the special
 clipboard kill register (denoted by ; in the register list). When an
 application requests the clipboard selection, xvile gives it the contents of this kill
 register. The paste-from-clipboard command requests
 clipboard data from the current owner of the CLIPBOARD
 selection.
Users of Sun systems may want to put the following key
 bindings in their .vilerc
 file in order to make use of the COPY and PASTE keys found on their
 keyboards:
bind-key copy-to-clipboard #-^
bind-key paste-from-clipboard #-*
Key bindings are described in detail later in this
 chapter.

Resources

xvile has many resources
 that can be used to control appearance and behavior. Font choice
 is particularly important if you want italic or oblique fonts to
 be displayed properly.
 vile’s documentation has a
 complete list of resources, as well a sample set of .Xdefault entries.

Adding menus

 The Motif and Athena versions have menu support.
 Menu items, which are user-definable, are read from the
 .vilemenu file, in the
 current or home directory.
xvile allows three types
 of menu items:
	Built-in, i.e., specific to the menuing system, such as
 rereading the .vilerc
 file or spawning a new copy of xvile

	Direct invocation of built-in commands (e.g., displaying
 the [Buffer List])

	Invocation of arbitrary command strings (e.g., running
 interactive macros, such as a search command)

We make a distinction between the last two because the
 authors prefer making vile able
 to check the validity of commands before they are
 executed.

Building winvile

 Binaries are available for each release of winvile, but you may wish to compile one
 of the interim patch versions. The sources provide makefiles for the
 Microsoft (makefile.wnt) and
 Borland (makefile.tbc)
 compilers. The former has more features, providing options for
 building with OLE, perl, and built-in syntax highlighting.
 The Win32 GUI can be built with either compiler environment.

winvile Basic Appearance and Functionality

Figures 18-4 and 18-5 show
 winvile’s Win32 GUI interface. On
 the surface, it is much like the “No Toolkit” X11 interface, having
 scrollbars. Underneath the surface—which is easily accessed—it is
 more elaborate than the Motif interface.
[image: winvile with non-Unicode font]

Figure 18-4. winvile with non-Unicode font

Figure 18-4 shows a view of winvile editing Unicode data:
	The font dialog is initially set to the fixed-pitch system
 font. Like xvile, the font
 can be set when winvile is
 started, or via a script. It can also be set via an OLE server.
 Finally, as shown here, it can use the Win32 common
 controls.

	The data is Unicode UTF-16, with no byte order mark. It is
 underlined, since the highlighting palette used underlining and
 cyan for coloring quoted strings.

	The default system font cannot display the characters in
 the file. winvile sees that
 the font is small, and displays the Unicode data in hexadecimal
 form.

[image: winvile with Unicode font]

Figure 18-5. winvile with Unicode font

Figure 18-5 shows the result of
 selecting a more capable font. If you select the system font again,
 winvile will show the hexadecimal
 values again. If you prefer to see the wide characters as
 hexadecimal all the time, vile
 has an option setting for this purpose.
[image: The winvile recent files menu]

Figure 18-6. The winvile recent files menu

Figure 18-6 shows some of the winvile menu functions, which
 include:
	winvile extends the
 system menu, which is accessed by right-clicking on the title
 bar of the window.
It also has the same selections on a right-click pop-up
 menu, eliminating the need to go up to the title bar. That is
 enabled by the “Menu” entry at the bottom.

	The menus provide the open, save, print, and font
 operations typical of GUI applications. You can also set
 winvile’s current working
 directory with the CD entry.
The corresponding dialogs are also accessible from the
 Win32 console version, though without a menu.

	winvile also allows you
 to browse the Windows Favorites
 folder.

	The recent files (and recent folders) entries select from
 a user-configurable number of “recent” files (or folders).
 winvile saves the names in
 the user’s registry data, making them available for each
 instance of winvile that
 might be running.

[62] Sun Microsystems dropped support for OpenLook before
 releasing Solaris 9 in 2002.

[63] The configure script
 should work for any Unix (or similar) platform. For building on
 OpenVMS, use the vmsbuild.com script. Build
 instructions are in comments at the top of the script.

[64] The angle-brackets in the name <vile.1> are a convention to
 avoid naming conflicts, since two buffers are not allowed to
 have the same name.

[65] The [Completions]
 buffer is automatically sized, showing no more lines than
 necessary. If it is too large for the available space,
 vile borrows up to ¾
 of the space from an adjacent pane.

Extended Regular Expressions

 We introduced extended regular expressions earlier in
 the section Extended Regular Expressions. vile provides essentially the same
 facilities as nvi’s extended option. This
 includes the POSIX bracket expressions for character classes, [[:alnum::]], with some extensions
 (additional classes and abbreviations), and interval expressions, such
 as {,10}. The syntax is somewhat
 different from nvi, relying on
 additional backslash-escaped characters:
	\|
	Indicates alternation: house\|home.

	\+
	Matches one or more of the preceding regular expression.

	\?
	Matches zero or one of the preceding regular expression.

	\(...\)
	 Provides grouping for *, \+, and \?, as well as making matched subtexts
 available in the replacement part of a substitute command
 (\1, \2, etc.).

	\s, \S
	Match whitespace and nonwhitespace characters,
 respectively.

	\w, \W
	 Match “word-constituent” characters
 (alphanumerics and the underscore, “_”) and non-word-constituent
 characters, respectively. For example, \w\+ would match C/C++ identifiers and
 keywords.[66]

	\d, \D
	Match digits and nondigits, respectively.

	\p, \P
	 Match printable and nonprintable characters,
 respectively. Whitespace is considered to be printable.

vile allows the escape
 sequences \b, \f, \r,
 \t, and \n to appear in the replacement part of a
 substitute command. They stand for backspace, form feed, carriage
 return, tab, and newline, respectively. Also, from the vile documentation:
Note that vile mimics
 perl’s handling of \u\L\1\E instead of vi’s. Given :s/\(abc\)/\u\L\1\E/, vi will replace with
 abc whereas vile and perl will replace with
 Abc. This is somewhat more useful for
 capitalizing words.

[66] For the pedantic among you, it also matches
 identifiers that start with a leading digit; usually this
 isn’t much of a problem.

Improved Editing Facilities

 This section describes the features of vile that make simple text editing easier
 and more powerful.
Command-Line History and Completion

vile records your
 ex commands in a buffer named
 [History]. This feature is
 controlled with the history
 option, which is true by default. Turning it off disables the
 history feature and removes the [History] buffer. The command show-history splits the screen and
 displays the [History] buffer in
 a new window.
The colon command line is really a minibuffer. You can use it
 to recall lines from the [History] buffer and edit them.
You use the ↑ and ↓ keys to scroll backward and forward in
 the history, and ← and → to move around within the line. Your
 current delete character (usually BACKSPACE) can be used to delete
 characters. Any other characters you type will be inserted at the
 current cursor position.
You can toggle the minibuffer into vi mode by typing the mini-edit character (by default, ^G). When you do this, vile will highlight the minibuffer using
 the mechanism specified by the mini-hilite
 option. The default is reverse,
 for reverse video. In vi mode,
 you can use vi-style commands for
 positioning. You can also use other vile commands that are appropriate to
 editing within a single line, such as i, I,
 a, and A. vile
 decides which commands to accept based on its command tables, which
 allows your key bindings to work in the minibuffer, too.
An interesting feature is that vile will use the history to show you
 previous data that corresponds to the command you’re entering. For
 instance, after typing :set
 followed by a space, vile will
 prompt you with Global value:. At
 that point, you can use ↑ to see
 previous global variables that you have set, should you wish to
 change one of them.
The ex command line
 provides completion of various sorts. As you type the name of a
 command, you can hit the TAB key at
 any point. vile fills out the
 rest of the command name as much as possible. If you type a TAB a second time, vile creates a new window that shows you
 all the possible completions.
Completion applies to built-in and user-defined vile commands, tags, filenames, modes
 (described later in this chapter), variables, enumerated values
 (such as color names), and to the terminal characters (the character
 settings such as backspace, suspend, and so on, derived from your
 stty settings).
As a side note, this leads to an interesting phenomenon. In
 vi-style editors, commands may
 have long names, but they tend to be unique in the first few
 characters, since abbreviations are accepted. In Emacs-style
 editors, command names often are not unique in the first several
 characters, but command completion still allows you to get away with
 less typing.

Tag Stacks

 Tag stacking is described earlier in the section
 Tag Stacks. In vile, tag stacking is available and
 straightforward. It is somewhat different than the other clones,
 most notably in the vi mode
 commands that are used for tag searching and popping the tag stack.
 Table 18-3 shows the vile tag commands.
Table 18-3. vile tag commands
	Command	Function
	next-tag	Continues searching through the tags
 file for more matches.

	pop[!]	Pops a cursor position off the stack,
 restoring the cursor to its previous
 position.

	show-tagstack	Creates a new window that displays the tag stack. The display changes as tags are
 pushed onto or popped off of the stack.

	ta[g][!] [tagstring]	Edit the file containing
 tagstring as defined in the tags file. The !
 forces vile to switch to
 the new file if the current buffer has been modified but not
 saved.

The vi mode commands are
 described in Table 18-4.
Table 18-4. vile command mode tag commands
	Command	Function
	 ^]

	Look up the location of the identifier
 under the cursor in the tags file, and move to that
 location. The current location is automatically pushed onto
 the tag stack.

	^T, ^X ^]
	Return to the previous location in the tag stack, i.e., pop off one
 element.

	 ^A ^]

	Same as the :next-tag command.

As in the other editors, options control how vile manages the tag-related commands, as
 shown in Table 18-5.
Table 18-5. vile options for tag management
	Option	Function
	pin-tagstack	Makes tag searches and pop ups not change the
 current window, thereby “pinning” it. This option is false by
 default.

	tagignorecase	Makes tag searches ignore case. This option is false by
 default.

	taglength	Controls the number of significant characters
 in a tag that is to be looked up. The default value of
 zero indicates that all characters are
 significant.

	tagrelative	When using a tags file in another directory,
 filenames in that tags
 file are considered to be relative to the directory where
 the tags file
 is.

	tags	Can be set to a whitespace-separated list of
 tags files to use
 for looking up tags. vile loads all tags files into separate buffers
 that are hidden by default, but that can be edited if you
 wish. You can place environment variables and shell
 wildcards into tags.

	tagword	Uses the whole word under the cursor for the
 tag lookup, not just the subword starting at the current
 cursor position. This option is disabled by
 default, which keeps vile
 compatible with vi.

Infinite Undo

vile is similar in
 principle but different in practice from the other editors. Like
 elvis and Vim, you can set an
 undo limit, but like nvi, the
 . command will do the next undo
 or redo as appropriate. Separate vi mode commands implement successive undo
 and redo.
vile uses the
 undolimit option to control how
 many changes it will store. The default is 10, meaning that you can
 undo up to the 10 most recent changes. Setting it to zero allows
 true “infinite undo,” but this may consume a lot of memory.
To start an undo, first use either the u or ^X
 u commands. Then, each successive . command will do another undo. Like
 vi, two u commands just toggle the state of the
 change; however, each ^X u
 command does another undo.
The ^X r command does a
 redo. Typing . after the first
 ^X r will do successive redos.
 You can provide a count to the ^X
 u and ^X r commands, in
 which case vile performs the
 requested number of undos or redos.

Arbitrary Length Lines and Binary Data

vile can edit files
 with arbitrary length lines, and with an arbitrary number of
 lines.
vile automatically handles
 binary data. No special command lines or options are required. To
 enter 8-bit text, type ^V
 followed by an x and two
 hexadecimal digits, or a 0 and
 three octal digits, or three decimal digits.
You can also enter 16-bit Unicode values by typing ^V followed by a u and up to four hexadecimal digits. If
 the current buffer’s file-encoding option is one of the Unicode
 flavors (utf-8, utf-16, or utf-32), vile stores it directly as UTF-8,
 displaying it according to the capabilities of the terminal or
 display.
This leads us into the topic of localization.
Locale support

For many years, vile had
 only rudimentary locale support. In part this was because locale
 support on the various platforms was rudimentary (except for
 vendor Unix systems). It had
 its own character type tables (i.e., control, numeric, printable,
 punctuation, as well as
 application-specific filename, wildcard, shell), allowing you to
 specify which of those non-ASCII characters were printable.
Times change, and vile
 continues to evolve according to its users’ needs. Here is a brief
 summary of those changes, ordered logically rather than in the
 order they were developed:
	Rather than having a fixed notion of the character
 types, vile imports the
 host’s character type tables and then provides commands to
 modify the data via scripts.[67]

	vile regular
 expressions support POSIX character classes, as well as
 classes corresponding to vile’s own character types.

	vile supports
 extraction of tokens from the screen, e.g., for tags, for scripting, etc. Once,
 these tokens were a mixture of character-type tests with
 special parsing logic. Now, they are purely regular
 expressions, with no need for the parsing logic.

	Editing a file containing 8-bit data—e.g., data encoded
 in ISO-8859-7 (Greek)—when the host’s locale encoding uses
 UTF-8 can be challenging. When vile starts up, it checks whether
 the host locale ends with UTF-8 (or similar), e.g., el_GR.UTF-8. If so, it then supports
 editing in the corresponding 8-bit locale, e.g., el_GR.

	Similarly, when editing files in a host environment
 supporting UTF-8, there are files encoded in UTF-8. In the
 newest release, you can tell vile to write a file in various
 Unicode encodings, and to read the same encodings. The 8-bit
 editing model is carried forward, translating to the 8-bit
 encoding for buffers that are marked as 8-bit, and directly
 editing (i.e., with no translation) the Unicode
 buffers.

These are all extensions; at each stage the older features
 are still retained.
There are other aspects of localization that are not
 addressed in vile, such as
 message formatting and text collating order.

File formats

When vile reads a file,
 it makes several guesses about its content, in order to present
 you with useful data:
	It checks whether the file permissions allow you to
 write to the file.

	It checks for line endings, which may be different
 flavors of CR, LF, or CR/LF.

	It checks for Unicode byte order marks.

	It checks for Unicode multibyte encodings.

Based on these checks, vile may set properties (called “modes”)
 of the newly read buffer that apply to that buffer. In addition,
 it may translate the data as it is read:
	It removes the line endings from each line, remembering
 the associated recordseparator mode.

	If the file is missing a final line ending, vile sets the nonewline option.

	It translates UTF-16 and UTF-32 data into UTF-8,
 remembering the associated file-encoding option.

When you tell vile to
 write a buffer to a file, it uses these local option settings to
 reconstruct the file.

Incremental Searching

 As mentioned earlier in the section Incremental Searching, you perform incremental searching in
 vile using the ^X S and ^X
 R commands. It is not necessary to set an option to enable
 incremental searching.
The cursor moves through the file as you type, always being
 placed on the first character of the text that matches. ^X S incrementally searches forward
 through the file, whereas ^X R
 incrementally searches backward.
You may wish to add the following commands (described later in
 The vile Editing Model) to your .vilerc file to make the more familiar
 / and ? search commands work incrementally:

bind-key incremental-search /
bind-key reverse-incremental-search ?
 Also of interest is the “visual match” facility,
 which highlights all occurrences of the matched
 expression. For a .vilerc
 file:
set visual-matches reverse
directs vile to use reverse
 video for visual matching. Since the highlighting can sometimes be
 visually distracting, the =
 command turns off any current highlighting until you enter a new
 search pattern.

Left-Right Scrolling

 As mentioned earlier in the section Left-Right Scrolling, you enable left-right scrolling in
 vile using :set nolinewrap. Unlike the other editors,
 left-right scrolling is the default. Long lines are marked at the
 left and right edges with <
 and >. The value of sideways controls the number of characters
 by which vile shifts the screen
 when scrolling left to right. With sideways set to zero, each scroll moves
 the screen by one third. Otherwise, the screen scrolls by the
 desired number of characters.

Visual Mode

vile is different
 from elvis and Vim in the way you
 highlight the text you want to operate on. It uses the “quoted
 motion” command, q.
You enter q at the
 beginning of the region, any other vi motions to get to the opposite end of
 the region, and then another q to
 end the quoted motion. vile
 highlights the marked text.
Arguments to the q command
 determine what kind of highlighting it will do. 1q (same as q) does an exact highlighting, 2q does line-at-a-time highlighting, and
 3q does rectangular
 highlighting.
Typically, you use a quoted motion in conjunction with an
 operator, such as d or y. Thus, d3qjjwq deletes the rectangle indicated by
 the motions. When used without an operator, the region is left
 highlighted. It can be referred to later using ^S. Thus, d
 ^S will delete the highlighted region.
 In addition, rectangular regions can be indicated
 through the use of marks.[68] As you know, a mark can be used to refer to either a
 specific character (when referred to with `) or a specific line (when referred to
 with '). In addition, referring
 to the mark (say, a mark set with mb) with `b instead of 'b can change the nature of the operation
 being done—d'b will delete a set
 of lines, and d`b will delete two
 partial lines and the lines in between. Using the ` form of mark reference gives a more
 “exact” region than the ' form of
 mark reference.
vile adds a third
 form of mark reference. The \
 command can be used as another way of referring to a mark. By
 itself, it behaves just like `
 and moves the cursor to the character at which the mark was set.
 When combined with an operator, however, the behavior is quite
 different. The mark reference becomes “rectangular,” such that the
 action d\b will delete the
 rectangle of characters whose corners are marked by the cursor and
 the character that holds mark b:
	Keystrokes	Results
	ma	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings thebook into the late 1990’s.
 In particular, besides the “original” version of
 <command>vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available “clones”
 or work-alike editors.

	 	Set mark a
 at the b in
 book.

	3jfr	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the book into the late 1990’s.
 In particular, besides the “original” version of
 <command >vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available “clones”
 or work-alike editors.

	 	Move the cursor to the r
 in number to mark the opposite
 corner.

	^A ~\a	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the BOOK INTO The late 1990’s.
 In particulAR, BESIDES the “original” version of
 <command>vi</COMMAND> that comes as a standard part of every Unix system,
 there are nOW A NUMBER of freely available “clones”
 or work-alike editors.

	 	Toggle the case of the rectangle bounded with
 mark a.

The commands that define arbitrary regions and operate upon
 them are summarized in Table 18-6.
Table 18-6. vile block mode operations
	Command	Operation
	q	Start and end a quoted motion.

	^A r	Open up a rectangle.

	>	Shift text to the right. Same as ^A r when the region is
 rectangular.

	<	Shift text to the left. Same as d when the region is
 rectangular.

	y	Yank the whole region. vile remembers that it was
 rectangular.

	c	Change the region. For a nonrectangular region,
 delete all the text between the end points and enter insert
 mode. For a rectangular region, prompt for the text to fill
 the lines.

	^A u	Change the case of the region to all
 uppercase.

	^A l	Change the case of the region to all
 lowercase.

	^A ~	Toggle the case of all alphabetic characters in
 the region.

	^A SPACE	Fill the region with spaces.

	p, P	Put the text back. vile does a rectangular put if the
 original text was rectangular.

	^A p, ^A P	Force previously yanked text to be put back as
 if it were rectangular. The width of the longest yanked line
 is used for the rectangle’s width.

[67] This feature is useful even on the vendor Unix
 systems, which do not always deliver correct
 tables.

[68] Thanks to Paul Fox for this explanation.

Programming Assistance

vile’s programming
 assistance capabilities are discussed in this section.
Edit-Compile Speedup

vile uses two
 straightforward vi mode commands
 to manage program development, shown in Table 18-7.
Table 18-7. vile program development vi mode commands
	Command	Function
	^X
 !commandENTER	Run command, saving the
 output in a buffer named [Output].

	^X ^X	Find the next error. vile parses the output and moves
 to the location of each successive error.

vile understands the
 Entering directory
 XXX and Leaving
 directory XXX messages that
 GNU make generates, allowing it
 to find the correct file, even if it’s in a different directory.
The error messages are parsed using regular expressions in the
 buffer [Error Expressions]. vile automatically creates this buffer,
 and then it uses the buffer when you use ^X
 ^X. You can add expressions to it as needed, and it has an
 extended syntax that allows you to specify where filenames, line
 numbers, columns, and so on appear in the error messages. Full
 details are provided in the online help, but you probably won’t need
 to make any changes, as it works pretty well “out of the
 box.”
vile’s error finder
 also compensates for changes in the file, keeping track of additions
 and deletions as you progress to each error.
The error finder applies to the most recent buffer created by
 reading from a shell command. For example, ^X!command produces a buffer named
 [Output], and :e !command produces a buffer named
 [!command]. The error finder will
 be set appropriately.
You can point the error finder at an arbitrary buffer (not
 just the output of shell commands) using the :error-buffer command. This lets you use
 the error finder on the output of previous compiler or egrep runs.

Syntax Highlighting

vile supports
 syntax highlighting in all configurations. It uses custom
 syntax filter programs to perform syntax
 coloring. These may be built into vile or run as external programs. vile sends the contents of the buffer to
 be colored by the syntax filter, reads a marked-up version of it,
 and applies the markup to color the buffer.
Note
Built-in filters are faster than external programs, and
 eliminate interference from your shell when displaying in a
 terminal. For some platforms, the syntax filters can be
 dynamically loaded. This allows the editor executable to be
 smaller, though not as fast as with the built-in filters.

There are currently 71 programs, as well as a separate program
 for Unix manpages. Some of the programs are used for more than one
 type of file. For instance, C, C++, and Java have similar syntax,
 but use different keywords.
vile provides macros that
 run the syntax filters on demand, or automatically as you modify the
 buffer. These are summarized in Table 18-8.
Table 18-8. vile syntax highlighting commands
	Command	Key
 binding	Function
	:HighlightFilter	 	Invoke syntax-highlighting filter on the
 current buffer. vile
 chooses a filter based on an extended property of the
 buffer, called a major mode (discussed
 later in the section Major Modes).
 If the
 filters are built-in, vile’s initialization sets the
 autocolor mode to invoke this macro
 five seconds after you stop modifying a buffer.

	:HighlightFilterMsg	^X-q	Attach highlighting to the current buffer using
 HighlightFilter. Display a message on
 completion.[a]

	:HighlightClear	^X-Q	Clear all highlighting from the current buffer.
 This does not alter the buffer’s major mode.

	 :set-highlighting
 majormode 	 	Change the buffer’s major mode to
 majormode and run the syntax
 highlighter.

	:show-filtermsgs	 	Show syntax-filter error messages for the
 current buffer. If the syntax filter
 finds any errors, it reports them, and vile displays them in the [Filter Messages] buffer and sets
 the error buffer to allow you to step through the places
 where an error is found.

	[a] When syntax highlighting was first implemented in
 vile in the
 mid-1990s, it was important to show that it was
 completed. Times change—machines are faster.

Each time a syntax filter runs, it reads
 one or more external files containing the keywords to be
 highlighted, along with their corresponding color and video
 attributes (bold, underline, italic). It searches for these files
 (suffixed .keywords) using the
 name of the buffer’s majormode. The search
 rules are documented in the online help. You can use the :which-keywords macro to show the
 locations where vile will look
 for the files, and where it finds them. See Example 18-1.
Example 18-1. Sample output of “:which-keywords cmode”
Show which keyword-files are tested for:
 cmode[image: 1]
(* marks found-files)

$cwd [image: 2]
 ./.c.keywords
$HOME
 ~/.c.keywords
 ~/.vile/c.keywords
$startup-path [image: 3]
* /usr/local/share/vile/c.keywords
	[image: 1]
	The major mode, which always ends
 with “mode”

	[image: 2]
	Your current working directory

	[image: 3]
	vile’s search path
 for scripts

Whether the configuration is X11, terminal (termcap, terminfo, curses), or Windows, vile’s syntax filters use a common set of
 colors, defined in classes: Action, Comment, Error, Ident, Ident2, Keyword, Keyword2, Literal, Number, Preproc, and Type. Most of the keyword definitions
 refer to a class. Doing this allows you to modify all of the colors
 by changing just one file, normally your $HOME/.vile.keywords file. The online
 help gives details on customizing the syntax colors.
On the one hand, because syntax highlighting is accomplished
 with an external program, it should be possible to write any number
 of highlighters for different languages. On the other hand, because
 the facilities are rather low-level, doing so is not for
 nonprogrammers. The online help describes how the highlight filters
 should work.
The directory ftp://invisible-island.net/vile/utilities contains
 user-contributed filters for coloring makefiles, input, perl, HTML, and troff. It even contains a macro that will
 color the lines in RCS files according to their age!

Interesting Features

vile has a number of
 interesting features that are the topic of this section:
	The vile editing
 model
	vile’s editing model is
 somewhat different from vi’s.
 Based on concepts from Emacs, it provides key rebinding and a
 more dynamic command line.

	Major modes
	vile supports editing
 “modes.” These are groups of option settings that make it
 convenient for editing different kinds of files.

	The procedure language
	vile’s procedure
 language allows you to define functions and macros that make the
 editor more programmable and flexible.

	Miscellaneous small features
	A number of smaller features make day-to-day editing
 easier.

The vile Editing Model

 In vi and the
 other clones, editing functionality is “hardwired” into the editor.
 The association between command characters and what they do is built
 into the code. For example, the x
 key deletes characters, and the i
 key enters insert mode. Without resorting to severe trickery, you
 cannot switch the functionality of the two keys (if it can even be
 done at all).
vile’s editing model,
 derived from Emacs through MicroEMACS, is different. The editor has
 defined, named functions, each of which performs a single editing
 task, such as delete-next-character or delete-previous-character. Many of the
 functions are then bound to keystrokes, such as binding delete-next-character to x.[69]
vile has different
 flavors of key bindings for its insert, command, and selection
 modes. Here we are describing the bindings for the normal editing
 mode. Changing bindings is very easy to do. Use the :bind-key command, and as arguments, give
 the name of the function and then the key sequence to bind the
 function to. As mentioned earlier, you might put the following
 commands into your .vilerc
 file:
bind-key incremental-search /
bind-key reverse-incremental-search ?
These commands change the /
 and ? search commands to do
 incremental searching.
In addition to predefined functions, vile contains a simple programming
 language that allows you to write procedures. You can then bind the
 command for executing a procedure to a keystroke sequence. GNU Emacs
 uses a variant of Lisp for its language, which is extremely
 powerful. vile has a somewhat
 simpler, less general-purpose language.
Also, as in Emacs, the vile
 command line is very interactive. Many commands display a default
 value for their operand, which you can either edit if inappropriate
 or select by hitting ENTER. As you
 type vi mode editing commands,
 such as those that change or delete characters, you will see
 feedback about the operation in the status line.
 The “amazing” ex
 mode that Paul referred to earlier is best reflected in the behavior
 of the :s (substitute) command.
 It prompts for each part of the command: the search pattern, the
 replacement text, and any flags.
As an example, let’s assume you wish to change all instances
 of perl to awk everywhere
 in your file. In the other editors, you’d simply type :1,$s/perl/awk/gENTER, and that’s what would appear on the
 command line. The following examples describe what you see on the
 vile colon command line
 as you type:
	Keystrokes	Results
	:1,$s	The first part of the substitute
 command.

	/	substitute pattern:

 vile prompts you
 for the pattern to search for. Any previous pattern is
 placed there for you to reuse.

	perl/	replacement string:

 At the next / delimiter, vile prompts you for the
 replacement text. Any previous text is placed there for you
 to reuse.

	awk/	(g)lobally, ([1-9])th occurrence on line, (c)onfirm, and/or (p)rint result:

 At the final delimiter, vile prompts for the optional
 flags. Enter any desired flags, then press ENTER.

vile follows through with
 this style of behavior on all appropriate ex commands. For example, the read command
 (:r) prompts you with the name of
 the last file you read. To read that file again, just hit ENTER.
Finally, vile’s ex command parser is weaker than in the
 other editors. For example, you cannot use search patterns to
 specify line ranges (:/now/,/forever/s/perl/awk/g), and the
 move command (m) is not
 implemented. In practice, what’s not implemented does not seem to
 hinder you very much.

Major Modes

 A major mode[70] is a collection of option settings that apply when
 editing a certain class of file. These options apply on a per-buffer
 basis, such as the tab-stop settings.
vile provides three types
 of options:
	Universal, applied to the
 program

	Buffer, applied to the content of a
 memory buffer

	Window, applied to windows
 (“panes,” in our terminology)

 The buffer—and
 window—option settings can be global or local
 values. Any buffer (or window, depending on the option) can have its
 own private (local) option value. If it does not have a private
 value, it uses the global value. Major modes add a level between the
 buffer global and local values by providing
 option values that a buffer uses if it does not have a private
 value.
vile has two
 built-in major modes: cmode, for
 editing C and C++ programs, and vilemode, for its scripts that are loaded
 into memory buffers. With cmode,
 you can use % to match C
 preprocessor conditionals (#if,
 #else, and #endif). vile will do automatic source code
 indentation based on the placement of braces ({ and }), and it will do smart formatting of C
 comments. The tabstop and
 shiftwidth options are set on a
 per-major-mode basis as
 well.
Using major modes, you can apply the same features to programs
 written in other languages. This example, courtesy of Thomas Dickey, defines a new major mode, shmode, for editing Bourne shell scripts.
 (This is useful for any Bourne-style shell, such as ksh, bash, or zsh.)
define-mode sh
set shsuf "\.sh$"
set shpre "^#!\\s*\/.*sh\\>$"
define-submode sh comment-prefix "^\\s*/[:#]"
define-submode sh comments "^\\s*/\\?[:#]\\s+/\\?\\s*$"
define-submode sh fence-if "^\\s*\\<if\\>"
define-submode sh fence-elif "^\\s*\\<elif\\>"
define-submode sh fence-else "^\\s*\\<else\\>"
define-submode sh fence-fi "^\\s*\\<fi\\>"
The shsuf (shell suffix)
 variable describes the filename suffix that indicates a file is a
 shell script. The shpre (shell
 preamble) variable describes a first line of the file that indicates
 that the file contains shell code. The define-submode commands then add options
 that apply only to buffers where the corresponding major mode is
 set. The examples here set up the smart comment formatting and the
 smart % command matching for
 shell programs.
The example shown is more verbose than needed. vile’s scripting language recognizes a
 more concise description using ~with:
define-mode sh
~with define-submode sh
 suf "\.sh$"
 pre "^#!\\s*\/.*sh\\>$"
 comment-prefix "^\\s*/[:#]"
 comments "^\\s*/\\?[:#]\\s+/\\?\\s*$"
 fence-if "^\\s*\\<if\\>"
 fence-elif "^\\s*\\<elif\\>"
 fence-else "^\\s*\\<else\\>"
 fence-fi "^\\s*\\<fi\\>"
~endwith
With its initialization scripts, vile provides 90 predefined major modes.
 Use the :show-majormodes command
 to see the definitions of the available major modes.
The suffix and prefix are criteria used by vile to decide which major mode to apply,
 when it reads a file into a buffer.[71] Table 18-9 lists all of the
 criteria.
Table 18-9. Major mode criteria
	Criteria
	Description

	after	Force the defined major mode to be checked
 after the given major mode. Normally, major modes are
 checked in the order in which they are defined.

	before	Force the defined major mode to be checked
 before the given major mode. Normally, major modes are
 checked in the order in which they are defined.

	mode-filename (mf)	A regular expression describing filenames for
 which the corresponding major mode will be set. The
 expression is applied only to the portion of the complete
 pathname after removing the directory name.

	mode-pathname (mp)	A regular expression describing pathnames for
 which the corresponding major mode will be set.

	preamble
 (pre)	A regular expression describing the first line
 of filenames for which the corresponding major mode will be
 set.

	qualifiers	Tells how to combine the preamble and suffixes criteria. Use all to tell vile to use both, and any to use either.

	suffixes
 (suf)	A regular expression describing filename
 suffixes for which the corresponding major mode will be set.
 The expression is applied only to the portion of the
 filename starting with the first period.

You can always tell vile to
 use a specific major mode; for example:
:setl cmode
will
 set it to “c” mode.[72] But that does not update the syntax highlighting. Use
 the macro:
:set-h cmode
(set-highlighting; see Table 18-8), which does both parts.

The Procedure Language

vile’s procedure
 language is almost unchanged from that of MicroEMACS. Comments begin
 with a semicolon or a double quote character. Environment variable
 names (editor options) start
 with a $, and user variable names
 start with %. A number of
 built-in functions exist for doing comparisons and testing
 conditions; their names all begin with &. Flow control commands and certain
 others begin with ~. An @ with a string prompts the user for
 input, and the user’s answer is returned. This rather whimsical
 example from the macros.doc
 file should give you a taste of the language’s flavor:
~if &sequal %curplace "timespace vortex"
 insert-string "First, rematerialize\n"
~endif
~if &sequal %planet "earth" ;If we have landed on earth...
 ~if &sequal %time "late 20th century" ;and we are then
 write-message "Contact U.N.I.T."
 ~else
 insert-string "Investigate the situation....\n"
 insert-string "(SAY 'stay here Sara')\n"
 ~endif
~elseif &sequal %planet "luna" ;If we have landed on our neighbor...
 write-message "Keep the door closed"
~else
 setv %conditions @"Atmosphere conditions outside? "
 ~if &sequal %conditions "safe"
 insert-string &cat "Go outside......" "\n"
 insert-string "lock the door\n"
 ~else
 insert-string "Dematerialize..try somewhen else"
 newline
 ~endif
~endif
You can store these procedures into a numbered macro or give
 them names that can be bound to keystrokes. The procedure just shown
 is most useful when using the Tardis vile port. ☺
This more realistic example from Paul Fox runs grep, searching for the word under the
 cursor in all C source files. It then puts the results in a buffer
 named after the word, and sets things up so that the built-in error
 finder (^X ^X) will use this
 output as its list of lines to visit. Finally, the macro is bound to
 ^A g. The ~force command allows the following
 command to fail without generating an error message:
14 store-macro
 set-variable %grepfor $identifier
 edit-file &cat "!egrep -n " &cat %grepfor " *.[ch]"
 ~force rename-buffer %grepfor
 error-buffer $cbufname
~endm
bind-key execute-macro-14 ^A-g
User-defined procedures can have parameters, much like the
 Bourne shell—but the parameters can be limited to specific data
 types. This makes procedures work as expected with vile’s editing model (and command-history
 mechanism). The procedures are not completely interchangeable with
 the built-in commands, since there is not yet a mechanism for making
 the undo feature treat a whole macro as a single operation.
 Finally, the read-hook and write-hook variables can be set to names
 of procedures to run after reading and before writing a file,
 respectively. This allows you to do things similar to the pre- and
 post-operation files in elvis and
 the autocommand facility in Vim.
The language is quite capable, including flow control and
 comparison features, as well as variables that provide access to a
 large amount of vile’s internal
 state. The macros.doc file in
 the vile distribution describes
 the language in detail.

Miscellaneous Small Features

Several other, smaller features are worth mentioning:
	Piping into vile
	 If you make vile the last command in a pipeline,
 it will create a buffer named [Standard Input] and edit that
 buffer for you. This is perhaps the “pager to end all
 pagers.”

	Editing Windows files
	When set to true, the dos option
 causes vile to strip
 carriage returns at the end of a line in files when reading,
 and to write them back out again. This makes it easy to edit
 Windows files on a Unix or GNU/Linux system.

	Text reformatting
	 The ^A f
 command reformats text, performing word wrapping on selected
 text. It understands C and shell comments (lines with a
 leading * or #) and quoted email (a leading
 >). It is similar to the
 Unix fmt command, but
 faster.

	Formatting the information line
	The modeline-format
 variable is a string that controls the way vile formats the status line. This
 is the line at the bottom of each window that describes the
 buffer’s status, such as its name, current major mode,
 modification status, insert versus command mode, and so
 on.[73]
The string consists of
 printf(3)-style percent sequences. For
 example, %b represents the
 buffer name, %m the major
 mode, and %l the line
 number if ruler has been
 set. Characters in the string that are not part of a format
 specifier are output verbatim.

vile has many other
 features. The vi finger-feel
 makes it easy to switch to vile
 from another editor. The programmability provides flexibility, and
 its interactive nature and use of defaults is perhaps friendlier
 than traditional vi for the
 novice.

[69] vile 9.6 has 421
 defined functions (including some that are available only in the
 X11 or Win32 configurations), with predefined key bindings for
 about 260.

[70] vile’s documentation
 spells it as a single word.

[71] These criteria are a fourth category of option, counting
 universal, buffer, and window. They are not listed with the
 others in Table B-5 because you set
 them in an entirely different way.

[72] The setl command sets
 the local properties of the buffer. The command :set cmode sets the default major mode
 if vile is unable to
 recognize the file.

[73] vile’s
 documentation refers to this as the
 modeline. However, since vile also implements the
 vimodeline feature, we are calling
 it a status line, to reduce confusion.

Sources and Supported Operating Systems

 The official WWW location for vile is http://invisible-island.net/vile/vile.html. The
 ftp location is ftp://invisible-island.net/vile/vile.tar.gz. The file
 vile.tar.gz is always a symbolic
 link to the current version.
vile is written in ANSI C. It
 builds and runs on Unix, OpenVMS, MS-DOS, Win32 console and Win32 GUI,
 BeOS, QNX, and OS/2.
Compiling vile is
 straightforward. Retrieve the distribution via ftp or from the web page. Uncompress and
 untar it, run the configure
 program, and then run make:
$gzip -d < vile.tar.gz | tar -xvpf -
...
$ cd vile-*; ./configure
...
$ make
...
vile should configure and
 build with no problems. Use make
 install to install it.
Note
If you want syntax coloring to work smoothly, you may wish to
 run configure with the option
 --with-builtin-filters. You should use flex (version 2.54a or newer) rather than
 lex, since Unix versions of that
 tool do not perform well. The configure script will also not accept a
 version of flex that is too
 old.

Should you need to report a bug or problem in vile, send email to the address
 vile@nongnu.org. This is the preferred way to report
 bugs. If necessary, you can contact Thomas Dickey directly at
 dickey@invisible-island.net.

Part IV. Appendixes

Part IV provides reference material that should be of interest to
 a vi user. This part contains the
 appendixes:
	Appendix A,
 The vi, ex, and Vim Editors

	Appendix B,
 Setting Options

	Appendix C,
 Problem Checklists

	Appendix D,
 vi and the Internet

Appendix A. The vi, ex, and Vim Editors

This appendix summarizes the standard features of vi in quick-reference format. Commands entered
 at the colon (known as ex commands
 because they date back to the original creation of that editor) are
 included, as well as the most popular Vim features.
This appendix presents the following topics:
	Command-line syntax

	Review of vi
 operations

	Alphabetical list of keys in command mode

	vi commands

	vi configuration

	ex basics

	Alphabetical summary of ex
 commands

Command-Line Syntax

The three most common ways of starting a vi session are:
vi [options] file
vi [options] +num file
vi [options] +/pattern file
You can open file for editing, optionally
 at line num or at the first line matching
 pattern. If no file is
 specified, vi opens with an empty
 buffer.
Command-Line Options

Because vi and ex are the same program, they share the same options. However, some
 options only make sense for one version of the program. Options
 specific to Vim are so marked:
	+[
 num]
	Start editing at line number num, or the
 last line of the file if num is
 omitted.

	+/
 pattern
	Start editing at the first line matching
 pattern. (For ex, this fails if nowrapscan is set in your .exrc startup file, since ex starts editing at the last line
 of a file.)

	+?
 pattern
	Start editing at the last line matching
 pattern.

	-b
	Edit the file in binary mode. {Vim}

	-c
 command
	Run the given ex
 command upon startup. Only one -c
 option is permitted for vi;
 Vim accepts up to 10. An older form of this option, +command,
 is still supported.

	--cmd
 command
	Like -c, but execute the command before any resource files are read.
 {Vim}

	-C
	Solaris vi: same
 as -x, but assume the file is
 encrypted already.
Vim: start the editor in vi-compatible mode.

	-d
	Run in diff mode. Works like vimdiff. {Vim}

	-D
	Debugging mode for use with scripts. {Vim}

	-e
	Run as ex
 (line-editing rather than full-screen mode).

	-h
	Print help message, then exit. {Vim}

	-i file
	Use the specified file instead
 of the default (~/.viminfo) to save or restore
 Vim’s state. {Vim}

	-l
	Enter Lisp mode for running Lisp programs (not supported in all
 versions).

	-L
	List files that were saved due to an aborted editor session
 or system crash (not supported in all versions). For Vim, this
 option is the same as -r.

	-m
	Start the editor with the write option turned off so that the
 user cannot write to files. {Vim}

	-M
	Do not allow text in files to be modified. {Vim}

	-n
	Do not use a swap file; record changes in memory only.
 {Vim}

	--noplugin
	Do not load any plug-ins. {Vim}

	-N
	Run Vim in a non-vi-compatible mode. {Vim}

	-o[num]
	Start Vim with num open windows.
 The default is to open one window for each file. {Vim}

	-O[num]
	Start Vim with num open windows arranged horizontally (split vertically)
 on the screen. {Vim}

	-r
 [file]
	Recovery mode; recover and resume editing on
 file after an aborted editor session or
 system crash. Without file, list files
 available for recovery.

	-R
	Edit files in read-only mode.

	-s
	Silent; do not display prompts. Useful when running a
 script. This behavior also can be set through the older
 - option. For Vim, applies only when used
 together with -e.

	-s
 scriptfile
	Read and execute commands given in the specified
 scriptfile as if they were typed in from
 the keyboard. {Vim}

	-S
 commandfile
	Read and execute commands given in
 commandfile after loading any files for
 editing specified on the command line. Shorthand for vim -c 'source
 commandfile'. {Vim}

	-t tag
	Edit the file containing tag, and
 position the cursor at its definition.

	-T type
	Set the option terminal type. This value overrides the $TERM
 environment variable. {Vim}

	-u file
	Read configuration information from the specified
 resource file instead of the default .vimrc resource file. If the
 file argument is NONE, Vim will read no resource
 files, load no plug-ins, and run in compatible mode. If the
 argument is NORC, it will
 read no resource files, but it will load plug-ins.
 {Vim}

	-v
	Run in full-screen mode (default for vi).

	--version
	Print version information, then exit. {Vim}

	-V[num]
	Verbose mode; print messages about what options are
 being set and what files are being read or written. You can
 set a level of verbosity to increase or decrease the number of
 messages received. The default value is 10 for high verbosity.
 {Vim}

	-w rows
	Set the window size so rows lines at a
 time are displayed; useful when editing over a slow dial-up
 line (or long distance Internet connection). Older versions of
 vi do not permit a space
 between the option and its argument. Vim does not support this
 option.

	-W
 scriptfile
	Write all typed commands from the current session to the
 specified scriptfile. The file created
 can be used with the -s command. {Vim}

	-x
	Prompt for a key that will be used to try to encrypt or
 decrypt a file using crypt
 (not supported in all versions).[74]

	-y
	Modeless vi;
 run Vim in insert mode only, without a command
 mode. This is the same as invoking Vim as evim. {Vim}

	-Z
	Start Vim in restricted mode. Do not allow shell commands or suspension
 of the editor. {Vim}

Although most people know ex commands only by their use within
 vi, the editor also exists as a
 separate program and can be invoked from the shell (for instance, to
 edit files as part of a script). Within ex, you can enter the vi or visual command to start vi. Similarly, within vi, you can enter Q to quit the vi editor and enter ex.
You can exit ex in several
 ways:
	 :x
	Exit (save changes and quit).

	 :q!
	Quit without saving changes.

	 :vi
	Enter the vi
 editor.

[74] The crypt
 command’s encryption is weak. Don’t use it for serious
 secrets.

Review of vi Operations

This
 section provides a review of the following:
	vi modes

	Syntax of vi
 commands

	Status-line commands

Command Mode

Once the file is opened, you are in command mode. From command mode, you
 can:
	Invoke insert mode

	Issue editing commands

	Move the cursor to a different position in the file

	Invoke ex
 commands

	Invoke a Unix shell

	Save the current version of the file

	Exit vi

Insert Mode

In insert mode, you can enter new text in the file. You normally enter
 insert mode with the i command.
 Press the ESC key to exit insert
 mode and return to command mode. The full list of commands that
 enter insert mode is provided later in the section Insert Commands.

Syntax of vi Commands

In vi, editing commands
 have the following general form:
[n] operator [m]motion
The basic editing operators are:
	 c
	Begin a change.

	 d
	Begin a deletion.

	 y
	Begin a yank (or
 copy).

If the current line is the object of the operation, the
 motion is the same as the operator: cc, dd,
 yy. Otherwise, the editing
 operators act on objects specified by cursor-movement commands or
 pattern-matching commands. (For example, cf. changes up to the next period.)
 n and m are the number of
 times the operation is performed, or the number of objects the
 operation is performed on. If both n and
 m are specified, the effect is
 n ×
 m.
An object of operation can be any of the following text
 blocks:
	word
	Includes characters up to a whitespace character (space
 or tab) or punctuation mark. A capitalized object is a variant
 form that recognizes only whitespace.

	sentence
	Up to ., !, or ?, followed by two spaces.

	paragraph
	Up to the next blank line or paragraph macro defined by
 the para= option.

	section
	Up to the next nroff/troff section heading defined by the
 sect= option.

	motion
	Up to the character or other text object as specified by
 a motion specifier, including pattern searches.

Examples

	 2cw
	Change the next two
 words.

	 d}
	Delete up to the next
 paragraph.

	 d^
	Delete back to the beginning of
 the line.

	 5yy
	Copy the next five
 lines.

	 y]]
	Copy up to the next
 section.

	 cG
	Change to the end of the edit
 buffer.

More commands and examples may be found in the section Changing and deleting text later in this appendix.

Visual mode (Vim only)

Vim provides an additional facility, “visual mode.” This
 allows you to highlight blocks of text, which then become the
 object of edit commands such as deletion or saving (yanking).
 Graphical versions of Vim allow you to use the mouse to highlight
 text in a similar fashion. See the earlier section Visual Mode Motion for more information.
	 v
	Select text in visual mode one
 character at a time.

	 V
	Select text in visual mode one
 line at a time.

	 CTRL-V
	Select text in visual mode in
 blocks.

Status-Line Commands

Most commands are not echoed on the screen as you input them. However, the status
 line at the bottom of the screen is used to edit these
 commands:
	 /
	Search forward for a
 pattern.

	 ?
	Search backward for a
 pattern.

	 :
	Invoke an ex command.

	 !
	Invoke a Unix command that takes
 as its input an object in the buffer and replaces it with
 output from the command. You type a motion command after the
 ! to describe what should
 be passed to the Unix command. The command itself is entered
 on the status line.

Commands that are entered on the status line must be entered
 by pressing the ENTER key. In addition, error messages
 and output from the CTRL-G command
 are displayed on the status line.

vi Commands

vi supplies a large set of
 single-key commands when in command mode. Vim supplies additional
 multikey commands.
Movement Commands

Some versions of vi do not
 recognize extended keyboard keys (e.g., arrow keys, page up, page down, home, insert,
 and delete); some do. All versions, however, recognize the keys in
 this section. Many users of vi
 prefer to use these keys, as it helps them keep their fingers on the
 home row of the keyboard. A number preceding a command repeats the
 movement. Movement commands are also used after an operator. The
 operator works on the text that is moved.
Character

	h, j, k, l
	Left, down, up, right (←, ↓, ↑, →)

	Spacebar
	Right

	 BACKSPACE
	Left

	 CTRL-H
	Left

Text

	w, b
	Forward, backward by “word”
 (letters, numbers, and underscores make up
 words).

	W, B
	Forward, backward by “WORD”
 (only whitespace separates items).

	 e
	End of word.

	 E
	End of WORD.

	 ge
	End of previous word.
 {Vim}

	 gE
	End of previous WORD.
 {Vim}

), (
	Beginning of next, current
 sentence.

	}, {
	Beginning of next, current
 paragraph.

]], [[
	Beginning of next, current
 section.

][, [ ]
	End of next, current section.
 {Vim}

Lines

Long lines in a file may show up on the screen as multiple
 lines. (They wrap around from one screen
 line to the next.) Although most commands work on the lines as
 defined in the file, a few
 commands work on lines as they appear on the screen. The Vim
 option wrap allows you to
 control how long lines are displayed.
	0, $
	First, last position of current
 line.

	^, _
	First nonblank character of
 current line.

	+, -
	First nonblank character of
 next, previous line.

	 ENTER
	First nonblank character of next
 line.

	 num
 |
	Column num
 of current line.

	g0, g$
	First, last position of screen
 line. {Vim}

	 g^
	First nonblank character of
 screen line. {Vim}

	 gm
	Middle of screen line.
 {Vim}

	gk, gj
	Move up, down one screen line.
 {Vim}

	 H
	Top line of screen (Home
 position).

	 M
	Middle line of
 screen.

	 L
	Last line of
 screen.

	 num
 H
	num lines
 after top line.

	 num
 L
	num lines
 before last line.

Screens

	CTRL-F, CTRL-B
	Scroll forward, backward one
 screen.

	CTRL-D, CTRL-U
	Scroll down, up one-half
 screen.

	CTRL-E, CTRL-Y
	Show one more line at bottom,
 top of screen.

	 z ENTER
	Reposition line with cursor to
 top of screen.

	 z.
	Reposition line with cursor to
 middle of screen.

	 z-
	Reposition line with cursor to
 bottom of screen.

	 CTRL-L
	Redraw screen (without
 scrolling).

	 CTRL-R
	vi: redraw screen (without
 scrolling).

	 	Vim: redo last undone
 change.

Searches

	 /
 pattern
	Search forward for
 pattern. End with ENTER.

	 /
 pattern /+
 num
	Go to line
 num after
 pattern. Forward search for
 pattern.

	 /
 pattern /-
 num
	Go to line
 num before
 pattern. Forward search for
 pattern.

	 ?
 pattern
	Search backward for
 pattern. End with ENTER.

	 ?
 pattern ?+
 num
	Go to line
 num after
 pattern. Backward search for
 pattern.

	 ?
 pattern ?-
 num
	Go to line
 num before
 pattern. Backward search for
 pattern.

	 :noh
	Suspend search highlighting
 until next search. {Vim}

	 n
	Repeat previous
 search.

	 N
	Repeat search in opposite
 direction.

	 /
	Repeat previous search
 forward.

	 ?
	Repeat previous search
 backward.

	 *
	Search forward for word under
 cursor. Matches only exact words. {Vim}

	 #
	Search backward for word under
 cursor. Matches only exact words. {Vim}

	 g*
	Search backward for word under
 cursor. Matches the characters of this word when embedded
 in a longer word. {Vim}

	 g#
	Search backward for word under
 cursor. Matches the characters of this word when embedded
 in a longer word. {Vim}

	 %
	Find match of current
 parenthesis, brace, or bracket.

	 f x

	Move cursor forward to
 x on current line.

	 F x

	Move cursor backward to
 x on current line.

	 t x

	Move cursor forward to character
 before x in current
 line.

	 T x

	Move cursor backward to
 character after x in current
 line.

	 ,
	Reverse search direction of last
 f, F, t, or T.

	 ;
	Repeat last f, F, t, or T.

Line numbering

	 CTRL-G
	Display current line
 number.

	 gg
	Move to first line in file. {Vim}

	 num
 G
	Move to line number
 num.

	 G
	Move to last line in
 file.

	 : num

	Move to line number
 num.

Marks

	 m x

	Place mark
 x at current position.

	 ` x

	(Backquote.) Move cursor to mark
 x.

	 ' x

	(Apostrophe.) Move to start of
 line containing x.

	 ``
	(Backquotes.) Return to position
 before most recent jump.

	 ''
	(Apostrophes.) Like preceding,
 but return to start of line.

	 '"
	(Apostrophe quote.) Move to
 position when last editing the file. {Vim}

	`[, ']
	(Backquote bracket.) Move to
 beginning/end of previous text operation.
 {Vim}

	'[, ']
	(Apostrophe bracket.) Like
 preceding, but return to start of line where operation
 occurred. {Vim}

	 `.
	(Backquote period.) Move to last
 change in file. {Vim}

	 '.
	(Apostrophe period.) Like
 preceding, but return to start of line.
 {Vim}

	 '0
	(Apostrophe zero.) Position
 where you last exited Vim. {Vim}

	 :marks
	List active marks.
 {Vim}

Insert Commands

	 a
	Append after cursor.

	 A
	Append to end of line.

	 c
	Begin change operation.

	 C
	Change to end of line.

	 gI
	Insert at beginning of line. {Vim}

	 i
	Insert before cursor.

	 I
	Insert at beginning of line.

	 o
	Open a line below cursor.

	 O
	Open a line above cursor.

	 R
	Begin overwriting text.

	 s
	Substitute a character.

	 S
	Substitute entire line.

	 ESC
	Terminate insert
 mode.

The following commands work in insert mode:
	 BACKSPACE
	Delete previous
 character.

	 DELETE
	Delete current
 character.

	 TAB
	Insert a tab.

	 CTRL-A
	Repeat last insertion.
 {Vim}

	 CTRL-D
	Shift line left to previous
 shiftwidth. {Vim}

	 CTRL-E
	Insert character found just below
 cursor. {Vim}

	 CTRL-H
	Delete previous character (same as
 backspace).

	 CTRL-I
	Insert a tab.

	 CTRL-K
	Begin insertion of multikeystroke
 character.

	 CTRL-N
	Insert next completion of the
 pattern to the left of the cursor. {Vim}

	 CTRL-P
	Insert previous completion of the
 pattern to the left of the cursor. {Vim}

	 CTRL-T
	Shift line right to next
 shiftwidth. {Vim}

	 CTRL-U
	Delete current
 line.

	 CTRL-V
	Insert next character
 verbatim.

	 CTRL-W
	Delete previous
 word.

	 CTRL-Y
	Insert character found just above
 cursor. {Vim}

	 CTRL-[
	(ESC) Terminate insert
 mode.

Some of the control characters listed in the previous table
 are set by stty. Your terminal
 settings may differ.

Edit Commands

Recall that c, d, and y are the basic editing operators.
Changing and deleting text

The following list is not exhaustive, but it illustrates the
 most common operations:
	 cw
	Change word.

	 cc
	Change line.

	 c$
	Change text from current
 position to end-of-line.

	 C
	Same as c$.

	 dd
	Delete current line.

	 num
 dd
	Delete num
 lines.

	 d$
	Delete text from current
 position to end-of-line.

	 D
	Same as d$.

	 dw
	Delete a word.

	 d}
	Delete up to next paragraph.

	 d^
	Delete back to beginning of line.

	 d/
 pat
	Delete up to first occurrence of
 pattern.

	 dn
	Delete up to next occurrence of pattern.

	 df x

	Delete up to and including x
 on current line.

	 dt x

	Delete up to (but not including)
 x on current line.

	 dL
	Delete up to last line on screen.

	 dG
	Delete to end of file.

	 gqap
	Reformat current paragraph to textwidth. {Vim}

	 g~w
	Switch case of word. {Vim}

	 guw
	Change word to lowercase. {Vim}

	 gUw
	Change word to uppercase. {Vim}

	 p
	Insert last deleted or yanked
 text after cursor.

	 gp
	Same as p, but leave cursor at end of inserted text.
 {Vim}

	 gP
	Same as P, but leave cursor at end of inserted text.
 {Vim}

]p
	Same as p, but match current indention.
 {Vim}

	 [p
	Same as P, but match current indention.
 {Vim}

	 P
	Insert last deleted or yanked
 text before cursor.

	 r x

	Replace character with
 x.

	 R
 text
	Replace with new
 text (overwrite), beginning at
 cursor. ESC ends replace
 mode.

	 s
	Substitute
 character.

	 4s
	Substitute four
 characters.

	 S
	Substitute entire
 line.

	 u
	Undo last change.

	 CTRL-R
	Redo last change.
 {Vim}

	 U
	Restore current
 line.

	 x
	Delete current cursor position.

	 X
	Delete back one character.

	 5X
	Delete previous five
 characters.

	 .
	Repeat last
 change.

	 ~
	Reverse case and move cursor
 right.

	 CTRL-A
	Increment number under cursor.
 {Vim}

	 CTRL-X
	Decrement number under cursor.
 {Vim}

Copying and moving

Register names are the letters a–z.
 Uppercase names append text to the corresponding register.
	 Y
	Copy current line.

	 yy
	Copy current line.

	 " x
 yy
	Copy current line to register
 x.

	 ye
	Copy text to end of word.

	 yw
	Like ye, but include the whitespace after the
 word.

	 y$
	Copy rest of line.

	 " x
 dd
	Delete current line into
 register x.

	 " x
 d
	Delete into register
 x.

	 " x
 p
	Put contents of register
 x.

	 y]]
	Copy up to next section
 heading.

	 J
	Join current line to next line.

	 gJ
	Same as J,
 but without inserting a space. {Vim}

	 :j
	Same as J.

	 :j!
	Same as gJ.

Saving and Exiting

Writing a file means overwriting the file with the current text.
	 ZZ
	Quit vi, writing the file only if changes were
 made.

	 :x
	Same as ZZ.

	 :wq
	Write file and
 quit.

	 :w
	Write file.

	 :w file

	Save copy to
 file.

	 : n
 ,
 m w file

	Write lines n
 to m to new
 file.

	 : n
 ,
 m w
 >> file

	Append lines
 n to m to existing
 file.

	 :w!
	Write file (overriding
 protection).

	 :w!
 file
	Overwrite
 file with current text.

	 :w
 %. new
	Write current buffer named
 file as
 file.new.

	 :q
	Quit vi (fails if changes were
 made).

	 :q!
	Quit vi (discarding
 edits).

	 Q
	Quit vi and invoke ex.

	 :vi
	Return to vi after Q command.

	 %
	Replaced with current filename in
 editing commands.

	 #
	Replaced with alternate filename
 in editing commands.

Accessing Multiple Files

	 :e file

	Edit another file; current
 file becomes alternate.

	 :e!
	Return to version of current file
 at time of last write.

	 :e
 + file
	Begin editing at end of
 file.

	 :e
 + num file

	Open file at
 line num.

	 :e
 #
	Open to previous position in
 alternate file.

	 :ta tag

	Edit file at location
 tag.

	 :n
	Edit next file in the list of
 files.

	 :n!
	Force next file.

	 :n
 files
	Specify new list of
 files.

	 :rewind
	Edit first file in the
 list.

	 CTRL-G
	Show current file and line
 number.

	 :args
	Display list of files to be
 edited.

	 :prev
	Edit previous file in the list of
 files.

Window Commands (Vim)

The following table lists common commands for controlling windows
 in Vim. See also the split,
 vsplit, and resize commands in the later section Alphabetical Summary of ex Commands. For brevity, control characters are
 marked in the following list by ^.
	 :new
	Open a new window.

	 :new
 file
	Open file in
 a new window.

	:sp
 [file]
	Split the current window. With
 file, edit that file in the new
 window.

	:sv
 [file]
	Same as :sp, but make new window
 read-only.

	:sn
 [file]
	Edit next file in file list in new
 window.

	:vsp
 [file]
	Like :sp, but split vertically instead
 of horizontally.

	 :clo
	Close current
 window.

	 :hid
	Hide current window, unless it is
 the only visible window.

	 :on
	Make current window the only
 visible one.

	 :res
 num
	Resize window to
 num lines.

	 :wa
	Write all changed buffers to their
 files.

	 :qa
	Close all buffers and
 exit.

	 ^W
 s
	Same as :sp.

	 ^W
 n
	Same as :new.

	 ^W
 ^
	Open new window with alternate
 (previously edited) file.

	 ^W
 c
	Same as :clo.

	 ^W
 o
	Same as :only.

	^W
 j, ^W
 k
	Move cursor to next/previous
 window.

	 ^W
 p
	Move cursor to previous
 window.

	^W
 h, ^W
 l
	Move cursor to window on
 left/right of screen.

	^W
 t, ^W
 b
	Move cursor to window on
 top/bottom of screen.

	^W
 K, ^W
 B
	Move current window to top/bottom
 of screen.

	^W
 H, ^W
 L
	Move current window to far
 left/right of screen.

	^W
 r, ^W
 R
	Rotate windows
 down/up.

	^W
 +, ^W
 -
	Increase/decrease current window
 size.

	 ^W
 =
	Make all windows same
 height.

Interacting with the System

	 :r file

	Read in contents of
 file after cursor.

	 :r
 ! command

	Read in output from
 command after current
 line.

	 : num
 r !
 command
	Like previous, but place after
 line num (0 for top of
 file).

	 :!
 command
	Run command,
 then return.

	 ! motion
 command
	Send the text covered by
 motion to Unix
 command; replace with
 output.

	 : n
 ,
 m !
 command
	Send lines
 n–m to
 command; replace with
 output.

	 num
 !!
 command
	Send num
 lines to Unix command; replace with
 output.

	 :!!
	Repeat last system
 command.

	 :sh
	Create subshell; return to editor
 with EOF.

	 CTRL-Z
	Suspend editor, resume with
 fg.

	 :so
 file
	Read and execute ex commands from
 file.

Macros

	 :ab in
 out
	Use in as abbreviation for
 out in insert mode.

	 :unab
 in
	Remove abbreviation for
 in.

	 :ab
	List abbreviations.

	 :map string
 sequence
	Map characters
 string as sequence
 of commands. Use #1,
 #2, etc., for the
 function keys.

	 :unmap
 string
	Remove map for characters
 string.

	 :map
	List character strings that are
 mapped.

	 :map! string
 sequence
	Map characters
 string to input mode
 sequence.

	 :unmap!
 string
	Remove input mode map (you may
 need to quote the characters with CTRL-V).

	 :map!
	List character strings that are
 mapped for input mode.

	 q x

	Record typed characters into
 register specified by letter x. If
 letter is uppercase, append to register.
 {Vim}

	 q
	Stop recording.
 {Vim}

	 @ x

	Execute the register specified by
 letter x. Use @@ to repeat the last @ command.

In vi, the following
 characters are unused in command mode and can be mapped as
 user-defined commands:
	Letters
	g, K, q, V, and v

	Control keys
	^A, ^K, ^O, ^W, ^X, ^_, and ^\

	Symbols
	_, *, \, =, and #
Tip
The = is used by
 vi if Lisp mode is set.
 Different versions of vi
 may use some of these characters, so test them before
 using.

Vim does not use ^K,
 ^_, _, or \.

Miscellaneous Commands

	 <
	Shift text described by following
 motion command left by one shiftwidth. {Vim}

	 >
	Shift text described by following
 motion command right by one shiftwidth. {Vim}

	 <<
	Shift line left one shiftwidth
 (default is eight spaces).

	 >>
	Shift line right one shiftwidth
 (default is eight spaces).

	 >}
	Shift right to end of
 paragraph.

	 <%
	Shift left until matching
 parenthesis, brace, or bracket. (Cursor must be on the
 matching symbol.)

	 ==
	Indent line in C-style, or using
 program specified in equalprg option.
 {Vim}

	 g
	Start many multiple character
 commands in Vim.

	 K
	Look up word under cursor in
 manpages (or program defined in keywordprg). {Vim}

	 ^O
	Return to previous jump.
 {Vim}

	 ^Q
	Same as ^V. {Vim} (On some terminals,
 resume data flow.)

	 ^T
	Return to the previous location in
 the tag stack. (Solaris vi, Vim, nvi, elvis, and vile.)

	 ^]
	Perform a tag lookup on the text
 under the cursor.

	 ^\
	Enter ex line-editing
 mode.

	 ^^
	(Caret key with Ctrl key pressed.)
 Return to previously edited file.

vi Configuration

This section describes the following:
	The :set command

	Options available with :set

	Example .exrc
 file

The :set Command

The :set command allows you to specify options that change
 characteristics of your editing environment. Options may be put in
 the ~/.exrc file or set during
 a vi session.
The colon does not need to be typed if the command is put in
 .exrc:
	 :set x

	Enable Boolean option
 x; show value of other
 options.

	 :set
 no x
	Disable option
 x.

	 :set x
 =
 value
	Give value to
 option x.

	 :set
	Show changed
 options.

	 :set
 all
	Show all options.

	 :set x
 ?
	Show value of option
 x.

Appendix B provides tables of :set options for Solaris vi, Vim, nvi, elvis, and vile. Please see that appendix for more
 information.

Example .exrc File

In an ex script file,
 comments start with the double quote character. The following lines of
 code are an example of a customized .exrc file:
set nowrapscan " Searches don't wrap at end of file
set wrapmargin=7 " Wrap text at 7 columns from right margin
set sections=SeAhBhChDh nomesg " Set troff macros, disallow message
map q :w^M:n^M " Alias to move to next file
map v dwElp " Move a word
ab ORA O'Reilly Media, Inc. " Input shortcut
Tip
The q alias isn’t needed
 for Vim, which has the :wn
 command. The v alias would hide
 the Vim command v, which enters
 character-at-a-time visual mode operation.

ex Basics

The ex line editor serves as the foundation for the screen editor
 vi. Commands in ex work on the current line or on a range of
 lines in a file. Most often, you use ex from within vi. In vi, ex
 commands are preceded by a colon and entered by pressing ENTER.
You can also invoke ex on its
 own—from the command line—just as you would invoke vi. (You could execute an ex script this way.) Or you can use the
 vi command Q to quit the vi editor and enter ex.
Syntax of ex Commands

To enter an ex command from
 vi, type:
:[address] command [options]
An initial : indicates an
 ex command. As you type the
 command, it is echoed on the status line. Execute the command by
 pressing the ENTER key.
 Address is the line number or range of lines
 that are the object of command.
 Options and addresses are
 described later. ex commands are
 described in the later section Alphabetical Summary of ex Commands.
You can exit ex in several
 ways:
	 :x
	Exit (save changes and
 quit).

	 :q!
	Quit without saving
 changes.

	 :vi
	Switch to the vi editor on the current
 file.

Addresses

If no address is given, the current line is the object of the
 command. If the address specifies a range of lines, the format
 is:
x,y
where x and y are
 the first and last addressed lines (x must
 precede y in the buffer).
 x and y each may be a line
 number or a symbol. Using ;
 instead of , sets the current
 line to x before interpreting
 y. The notation 1,$ addresses all lines in the file, as
 does %.

Address Symbols

	 1,$
	All lines in the
 file.

	 x
 ,
 y
	Lines x
 through y.

	 x
 ;
 y
	Lines x
 through y, with current line reset to
 x.

	 0
	Top of file.

	 .
	Current line.

	 num

	Absolute line number
 num.

	 $
	Last line.

	 %
	All lines; same as 1,$.

	 x
 -
 n
	n lines
 before x.

	 x
 +
 n
	n lines after
 x.

	-[num]
	One or num
 lines previous.

	+[num]
	One or num
 lines ahead.

	 ' x

	(Apostrophe.) Line marked with
 x.

	 ''
	(Apostrophe apostrophe.) Previous
 mark.

	 /
 pattern /
	Forward to line matching
 pattern.

	 ?
 pattern ?
	Backward to line matching
 pattern.

See Chapter 6 for more information on using
 patterns.

Options

	!
	Indicates a variant form of the command, overriding the
 normal behavior. The ! must
 come immediately after the command.

	count
	The number of times the command is to be repeated.
 Unlike in vi commands,
 count cannot precede the command, because
 a number preceding an ex
 command is treated as a line address. For example, d3 deletes three lines, beginning
 with the current line; 3d
 deletes line 3.

	file
	The name of a file that is affected by the command.
 % stands for the current
 file; # stands for the
 previous file.

Alphabetical Summary of ex Commands

ex commands can be entered by
 specifying any unique abbreviation. In the following list of
 reference entries, the full name appears as the heading of the
 reference entry, and the shortest possible abbreviation is shown in
 the syntax line below it. Examples are assumed to be typed from
 vi, so they include the : prompt.

Name
abbreviate

Synopsis
ab [string text]

Define string when typed to be translated into text. If
 string and text are not
 specified, list all current abbreviations.

Examples
Note: ^M appears when you
 type ^V followed by ENTER.
:ab ora O'Reilly Media, Inc.
:ab id Name:^MRank:^MPhone:

Name
append

Synopsis
[address] a[!]
text
.

Append new text at specified address, or at present address
 if none is specified. Add a !
 to toggle the autoindent
 setting that is used during input. That is, if autoindent was enabled, ! disables it. Enter new text after
 entering the command. Terminate input of new text by entering a
 line consisting of just a period.

Example
:aBegin appending to current line
Append this line
and this line too.
.Terminate input of text to append

Name
args

Synopsis
ar
args file ...

Print the members of the argument list (files named on the
 command line), with the current argument printed in brackets
 ([]).
The second syntax is for Vim, which allows you to reset the
 list of files to be edited.

Name
bdelete

Synopsis
[num] bd[!] [num]

Unload buffer num and remove it from the buffer list. Add a ! to force removal of an unsaved buffer.
 The buffer may also be specified by filename. If no buffer is
 specified, remove the current buffer. {Vim}

Name
buffer

Synopsis
[num] b[!] [num]

Begin editing buffer num in the buffer list.
 Add a ! to force a switch from
 an unsaved buffer. The buffer may also be specified by filename.
 If no buffer is specified, continue editing the current buffer.
 {Vim}

Name
buffers

Synopsis
buffers[!]

Print the members of the buffer list. Some buffers (e.g., deleted buffers)
 will not be listed. Add ! to
 show unlisted buffers. ls is
 another abbreviation for this command. {Vim}

Name
cd

Synopsis
cd dir
chdir dir

Change the current directory within the editor to
 dir.

Name
center

Synopsis
[address] ce [width]

Center the line within the specified width. If
 width is not specified, use textwidth. {Vim}

Name
change

Synopsis
[address] c[!]
text
.

Replace the specified lines with text. Add
 a ! to switch the autoindent setting during input of
 text. Terminate input by entering a line
 consisting of just a period.

Name
close

Synopsis
clo[!]

Close current window unless it is the last window. If buffer in
 window is not open in another window, unload it from memory. This
 command will not close a buffer with unsaved changes, but you may
 add ! to hide it instead.
 {Vim}

Name
copy

Synopsis
[address] co destination

Copy the lines included in address to
 the specified destination address. The
 command t (short for “to”) is a
 synonym for copy.

Example
:1,10 co 50Copy first 10 lines to just after line 50

Name
delete

Synopsis
[address] d [register] [count]

Delete the lines included in address.
 If register is specified, save or append the
 text to the named register. Register names are the lowercase
 letters a–z. Uppercase names append text to the
 corresponding register. If count is
 specified, delete that many lines.

Examples
:/Part I/,/Part II/-1dDelete to line above “Part II”
:/main/+d Delete line below “main”
:.,$d xDelete from this line to last line into register x

Name
edit

Synopsis
e[!] [+num] [filename]

Begin editing on filename. If no
 filename is given, start over with a copy of
 the current file. Add a ! to
 edit the new file even if the current file has not been saved
 since the last change. With the +num argument,
 begin editing on line num. Alternatively,
 num may be a pattern, of the form /pattern.

Examples
:e fileEdit file in current editing buffer
:e +/^Index # Edit alternate file at pattern match
:e!Start over again on current file

Name
file

Synopsis
f [filename]

Change the filename for the current buffer to
 filename. The next time the buffer is
 written, it will be written to file filename.
 When the name is changed, the buffer’s “not edited” flag is set,
 to indicate that you are not editing an existing file. If the new
 filename is the same as a file that already exists on the disk,
 you will need to use :w! to
 overwrite the existing file. When specifying a filename, the
 % character can be used to
 indicate the current filename. A # can be used to indicate the alternate
 filename. If no filename is specified, print
 the current name and status of the buffer.

Example
:f %.new

Name
fold

Synopsis
address fo

Fold the lines specified by address. A
 fold collapses several lines on the screen into one line,
 which can later be unfolded. It doesn’t affect the text of the
 file. {Vim}

Name
foldclose

Synopsis
[address] foldc[!]

Close folds in the specified address,
 or at the present address if none is specified. Add a
 ! to close more than one level
 of folds. {Vim}

Name
foldopen

Synopsis
[address] foldo[!]

Open folds in the specified address, or
 at the present address if none is specified. Add a ! to open more than one level of folds.
 {Vim}

Name
global

Synopsis
[address] g[!]/pattern/[commands]

Execute commands on all lines that contain pattern or,
 if address is specified, on all lines within
 that range. If commands are not specified,
 print all such lines. Add a !
 to execute commands on all lines
 not containing pattern.
 See also v, later in this
 list.

Examples
:g/Unix/pPrint all lines containing “Unix”
:g/Name:/s/tom/Tom/Change “tom” to “Tom” on all lines containing “Name:”

Name
hide

Synopsis
hid

Close current window unless it is the last window, but do not
 remove the buffer from memory. This command is safe to use on an
 unsaved buffer. {Vim}

Name
insert

Synopsis
[address] i[!]
text
.

Insert text at line before the specified address,
 or at present address if none is specified. Add a ! to switch the autoindent setting during input of
 text. Terminate input of new text by entering
 a line consisting of just a period.

Name
join

Synopsis
[address] j[!] [count]

Place the text in the specified range on one line, with
 whitespace adjusted to provide two space characters after a period
 (.), no space characters before a), and one space character otherwise.
 Add a ! to prevent whitespace
 adjustment.

Example
:1,5j!Join first five lines, preserving whitespace

Name
jumps

Synopsis
ju

Print jump list used with CTRL-I and CTRL-O commands. The jump list is a
 record of most movement commands that skip over multiple lines. It
 records the position of the cursor before each jump. {Vim}

Name
k

Synopsis
[address] k char

Same as mark; see
 mark later in this list.

Name
left

Synopsis
[address] le [count]

Left-align lines specified by address,
 or current line if no address is specified. Indent lines by
 count spaces. {Vim}

Name
list

Synopsis
[address] l [count]

Print the specified lines so that tabs display as ^I and the ends of lines display as
 $. l is like a temporary version of
 :set list.

Name
map

Synopsis
map[!] [string commands]

Define a keyboard macro named string as
 the specified sequence of commands.
 string is usually a single character or the
 sequence #num, the latter
 representing a function key on the keyboard. Use a ! to create a macro for input mode. With
 no arguments, list the currently defined macros.

Examples
:map K dwwPTranspose two words
:map q :w^M:n^M Write current file; go to next
:map! + ^[bi(^[ea)Enclose previous word in parentheses
Tip
Vim has K and q commands, which the example aliases
 would hide.

Name
mark

Synopsis
[address] ma char

Mark the specified line with char, a
 single lowercase letter. Same as k. Return later to the line with
 'x
 (apostrophe plus x, where
 x is the same as char).
 Vim also uses uppercase and numeric characters for marks.
 Lowercase letters work the same as in vi. Uppercase letters are associated with filenames and can be
 used between multiple files. Numbered marks, however, are
 maintained in a special viminfo file and cannot be set using
 this command.

Name
marks

Synopsis
marks [chars]

Print list of marks specified by chars,
 or all current marks if no chars specified.
 {Vim}

Example
:marks abcPrint marks a, b, and c

Name
mkexrc

Synopsis
mk[!] file

Create an .exrc file
 containing set commands for
 changed ex options and key
 mappings. This saves the current option settings, allowing you to
 restore them later. {Vim}

Name
move

Synopsis
[address] m destination

Move the lines specified by address to
 the destination address.

Example
:.,/Note/m /END/Move text block to after line containing “END”

Name
new

Synopsis
[count] new

Create a new window count lines high with
 an empty buffer. {Vim}

Name
next

Synopsis
n[!] [[+num] filelist]

Edit the next file from the command-line argument list. Use
 args to list these files. If
 filelist is provided, replace the current
 argument list with filelist and begin editing
 on the first file. With the +num argument,
 begin editing on line num. Alternatively,
 num may be a pattern, of the form /pattern.

Example
:n chap*Start editing all “chapter” files

Name
nohlsearch

Synopsis
noh

Temporarily stop highlighting all matches to a search when using the
 hlsearch option. Highlighting
 is resumed with the next search. {Vim}

Name
number

Synopsis
[address] nu [count]

Print each line specified by
 address, preceded by its buffer line number.
 Use # as an alternate
 abbreviation for number.
 count specifies the number of lines to show,
 starting with address.

Name
only

Synopsis
on [!]

Make the current window be the only one on the screen.
 Windows open on modified buffers are not removed from the screen
 (hidden), unless you also use the ! character. {Vim}

Name
open

Synopsis
[address] o [/pattern/]

Enter open mode (vi) at
 the lines specified by address, or at the
 lines matching pattern. Exit open mode with
 Q. Open mode lets you use the
 regular vi commands, but only
 one line at a time. It can be useful on slow dial-up lines (or on
 very distant Internet ssh
 connections).

Name
preserve

Synopsis
pre

Save the current editor buffer as though the system were
 about to crash.

Name
previous

Synopsis
prev[!]

Edit the previous file from the command-line argument list.
 {Vim}

Name
print

Synopsis
[address] p [count]

Print the lines specified by address.
 count specifies the number of lines to print,
 starting with address. P is another abbreviation.

Example
:100;+5pShow line 100 and the next 5 lines

Name
put

Synopsis
[address] pu [char]

Place previously deleted or yanked lines from the named register specified by
 char, to the line specified by
 address. If char is not
 specified, the last deleted or yanked text is restored.

Name
qall

Synopsis
qa[!]

Close all windows and terminate the current editing session. Use ! to discard changes made since the last
 save. {Vim}

Name
quit

Synopsis
q[!]

Terminate the current editing session. Use ! to discard changes made since the last
 save. If the editing session includes additional files in the
 argument list that were never accessed, quit by typing q! or by typing q twice. Vim closes the editing window
 only if there are still other windows open on the screen.

Name
read

Synopsis
[address] r filename

Copy the text of filename after the line
 specified by address. If
 filename is not specified, the current
 filename is used.

Example
:0r $HOME/dataRead file in at top of current file

Name
read

Synopsis
[address] r !command

Read the output of shell command into
 the text after the line specified by
 address.

Example
:$r !spell %Place results of spellchecking at end of file

Name
recover

Synopsis
rec [file]

Recover file from the system save
 area.

Name
redo

Synopsis
red

Restore last undone change. Same as CTRL-R. {Vim}

Name
resize

Synopsis
res [[±]num]

Resize current window to be num lines
 high. If + or - is specified, increase or decrease the
 current window height by num lines.
 {Vim}

Name
rewind

Synopsis
rew[!]

Rewind the argument list and begin editing the first file
 in the list. Add a ! to rewind
 even if the current file has not been saved since the last
 change.

Name
right

Synopsis
[address] ri [width]

Right-align lines specified by address,
 or current line if no address is specified, to column
 width. Use textwidth option if no
 width is specified. {Vim}

Name
sbnext

Synopsis
[count] sbn [count]

Split the current window and begin editing the count
 next buffer from the buffer list. If no count is specified, edit
 the next buffer in the buffer list. {Vim}

Name
sbuffer

Synopsis
[num] sb [num]

Split the current window and begin editing buffer
 num from the buffer list in the new window.
 The buffer to be edited may also be specified by filename. If no
 buffer is specified, open the current buffer in the new window.
 {Vim}

Name
set

Synopsis
se parameter1 parameter2 ...

Set a value to an option with each
 parameter, or if no
 parameter is supplied, print all options that
 have been changed from their defaults. For Boolean options, each
 parameter can be phrased as
 option or nooption; other
 options can be assigned with the syntax
 option=value. Specify
 all to list current settings.
 The form set
 option? displays the value of
 option. See the tables that list set options in Appendix B.

Examples
:set nows wm=10
:set all

Name
shell

Synopsis
sh

Create a new shell. Resume editing when the shell terminates.

Name
snext

Synopsis
[count] sn [[+num] filelist]

Split the current window and begin editing the next file from the
 command-line argument list. If count is
 provided, edit the count next file. If
 filelist is provided, replace the current
 argument list with filelist and begin editing
 the first file. With the +n argument, begin
 editing on line num. Alternately,
 num may be a pattern of the form /pattern.
 {Vim}

Name
source

Synopsis
so file

Read (source) and execute ex commands from
 file.

Example
:so $HOME/.exrc

Name
split

Synopsis
[count] sp [+num] [filename]

Split the current window and load filename in the
 new window, or the same buffer in both windows if no file is
 specified. Make the new window count lines
 high, or if count is not specified, split the
 window into equal parts. With the +n
 argument, begin editing on line num.
 num may also be a pattern of the form
 /pattern. {Vim}

Name
sprevious

Synopsis
[count] spr [+num]

Split the current window and begin editing the previous file from the
 command-line argument list in the new window. If
 count is specified, edit the
 count previous file. With the +num argument,
 begin editing on line num.
 num may also be a pattern of the form
 /pattern. {Vim}

Name
stop

Synopsis
st

Suspend the editing session. Same as CTRL-Z. Use
 the shell fg command to resume
 the session.

Name
substitute

Synopsis
[address] s [/pattern/replacement/] [options] [count]

Replace the first instance of pattern
 on each of the specified lines with
 replacement. If pattern
 and replacement are omitted, repeat last
 substitution. count specifies the number of
 lines on which to substitute, starting with
 address. (Spelling out the command name does
 not work in Solaris vi.)

Options
	 c
	Prompt for confirmation before
 each change.

	 g
	Substitute all instances of
 pattern on each line
 (global).

	 p
	Print the last line on which a
 substitution was made.

Examples
:1,10s/yes/no/gSubstitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase “Fortran” on next three lines
:g/^[0-9][0-9]*/s//Line &:/For every line beginning with one or more digits, add “Line” and a colon

Name
suspend

Synopsis
su

Suspend the editing session. Same as CTRL-Z. Use the shell fg command to resume the session.

Name
sview

Synopsis
[count] sv [+num] [filename]

Same as the split
 command, but set the readonly option for the new buffer.
 {Vim}

Name
t

Synopsis
[address] t destination

Copy the lines included in address
 to the specified
 destination address. t is equivalent to copy.

Example
:%t$Copy the file and add it to the end

Name
tag

Synopsis
[address] ta tag

In the tags file,
 locate the file and line matching tag and
 start editing there.

Example
Run ctags, then switch to
 the file containing myfunction:
:!ctags *.c
:tagmyfunction

Name
tags

Synopsis
tags

Print list of tags in the tag stack. {Vim}

Name
unabbreviate

Synopsis
una word

Remove word from the list of
 abbreviations.

Name
undo

Synopsis
u

Reverse the changes made by the last editing command. In
 vi the undo command will undo
 itself, redoing what you undid. Vim supports multiple levels of
 undo. Use redo to redo an
 undone change in Vim.

Name
unhide

Synopsis
[count] unh

Split screen to show one window for each active buffer in
 the buffer list. If specified, limit the number of windows to
 count. {Vim}

Name
unmap

Synopsis
unm[!] string

Remove string from the list of keyboard macros. Use ! to remove a macro for input
 mode.

Name
v

Synopsis
[address] v/pattern/[command]

Execute command on all lines
 not containing pattern.
 If command is not specified, print all such
 lines. v is equivalent to
 g!. See global, earlier in this list.

Example
:v/#include/dDelete all lines except “#include” lines

Name
version

Synopsis
ve

Print the editor’s current version number and date of last
 change.

Name
view

Synopsis
vie[[+num] filename]

Same as edit, but set
 file to readonly. When executed
 in ex mode, return to normal or
 visual mode. {Vim}

Name
visual

Synopsis
[address] vi [type] [count]

Enter visual mode (vi) at
 the line specified by address. Return to
 ex mode with Q. type can be one
 of -, ^, or . (see the z command, later in this section).
 count specifies an initial window
 size.

Name
visual

Synopsis
vi [+num] file

Begin editing file in visual mode
 (vi), optionally at line
 num. Alternately, num
 may be a pattern, of the form /pattern.
 {Vim}

Name
vsplit

Synopsis
[count] vs [+num] [filename]

Same as the split
 command, but split the screen vertically. The
 count argument can be used to specify a width
 for the new window. {Vim}

Name
wall

Synopsis
wa[!]

Write all changed buffers with filenames. Add ! to force writing of any buffers marked
 readonly. {Vim}

Name
wnext

Synopsis
[count] wn[!] [[+num] filename]

Write current buffer and open next file in argument list, or
 the count next file if specified. If
 filename is specified, edit it next. With the
 +num
 argument, begin editing on line num.
 num may also be a pattern of the form
 /pattern. {Vim}

Name
wq

Synopsis
wq[!]

Write and quit the file in one action. The file is always
 written. The ! flag forces the
 editor to write over any current contents of
 file.

Name
wqall

Synopsis
wqa[!]

Write all changed buffers and quit the editor. Add ! to force writing of any buffers marked
 readonly. xall is another alias for this command.
 {Vim}

Name
write

Synopsis
[address] w[!] [[>>] file]

Write lines specified by address to
 file, or write full contents of buffer if
 address is not specified. If
 file is also omitted, save the contents of
 the buffer to the current filename. If >> file is
 used, append lines to the end of the specified
 file. Add a ! to force the editor to write over any
 current contents of file.

Examples
:1,10w name_listCopy first 10 lines to file name_list
:50w >> name_listNow append line 50

Name
write

Synopsis
[address] w !command

Write lines specified by address to
 command.

Example
:1,66w !pr -h myfile | lpPrint first page of file

Name
X

Synopsis
X

Prompt for an encryption key. This can be preferable to
 :set key, as typing the key is
 not echoed to the console. To remove an encryption key, just reset
 the key option to an empty
 value. {Vim}

Name
xit

Synopsis
x

Write the file if it was changed since the last write, and
 then quit.

Name
yank

Synopsis
[address] y [char] [count]

Place lines specified by address in
 named register char. Register names are the
 lowercase letters a–z. Uppercase names append text to the
 corresponding register. If no char is given,
 place lines in the general register. count
 specifies the number of lines to yank, starting with
 address.

Example
:101,200 ya aCopy lines 100–200 to register “a”

Name
z

Synopsis
[address] z [type] [count]

Print a window of text with the line specified by
 address at the top.
 count specifies the number of lines to be
 displayed.
Type
	+
	Place specified line at the top of the window
 (default).

	-
	Place specified line at the bottom of the
 window.

	.
	Place specified line in the center of the
 window.

	^
	Print the previous window.

	=
	Place specified line in the center of the window and
 leave the current line at this line.

Name
&

Synopsis
[address] & [options] [count]

Repeat the previous substitute (s) command. count
 specifies the number of lines on which to substitute, starting
 with address. options
 are the same as for the substitute command.

Examples
:s/Overdue/Paid/Substitute once on current line
:g/Status/&Redo substitution on all “Status” lines

Name
@

Synopsis
[address] @ [char]

Execute contents of register specified by
 char. If address is
 given, move cursor to the specified address first. If
 char is @,
 repeat the last @
 command.

Name
=

Synopsis
[address] =

Print the line number of the line indicated by
 address. The default is the line number of
 the last line.

Name
!

Synopsis
[address] !command

Execute Unix command in a shell. If
 address is specified, use the lines contained
 in address as standard input to
 command, and replace those lines with the
 output and error output. (This is called
 filtering the text through the
 command.)

Examples
:!lsList files in the current directory
:11,20!sort -fSort lines 11–20 of current file

Name
< >

Synopsis
[address] < [count]
 or
[address] > [count]

Shift lines specified by address either
 left (<) or right (>). Only leading spaces and tabs are
 added or removed when shifting lines. count
 specifies the number of lines to shift, starting with
 address. The shiftwidth option controls the number of
 columns that are shifted. Repeating the < or > increases the shift amount. For
 example, :>>> shifts
 three times as much as :>.

Name
~

Synopsis
[address] ~ [count]

Replace the last-used regular expression (even if from a
 search, and not from an s
 command) with the replacement pattern from the most recent
 s (substitute) command. This is
 rather obscure; see Chapter 6 for
 details.

Name
address

Synopsis

 address

Print the lines specified in
 address.

Name
ENTER

Synopsis

Print the next line in the file. (For ex only, not from the : prompt in vi.)

Appendix B. Setting Options

 This appendix describes the important set command options for Solaris vi, nvi
 1.79, elvis 2.2, Vim 7.1, and
 vile 9.6.
Solaris vi Options

Table B-1 contains brief
 descriptions of the important set
 command options. In the first column, options are listed in
 alphabetical order; if the option can be abbreviated, that
 abbreviation is shown in parentheses. The second column shows the
 default setting that vi uses unless
 you issue an explicit set command
 (either manually or in the .exrc
 file). The last column describes what the option does, when
 enabled.
Table B-1. Solaris vi set options
	Option	Default	Description
	autoindent (ai)	noai	In insert mode, indents each line to the same
 level as the line above or below. Use with the shiftwidth option.

	autoprint
 (ap)	ap	Display changes after each editor command. (For
 global replacement, display last replacement.)

	autowrite
 (aw)	noaw	Automatically write (save) the file if changed
 before opening another file with :n or before giving a Unix command
 with :!.

	beautify
 (bf)	nobf	Ignore all control characters during input
 (except tab, newline, or form feed).

	directory
 (dir)	/tmp	Names directory in which ex/vi stores buffer files. (Directory
 must be writable.)

	edcompatible	 noedcompatible
	Remember the flags used with the most recent
 substitute command (global, confirming), and use them for the
 next substitute command. Despite the name, no version of
 ed actually does
 this.

	errorbells
 (eb)	errorbells	Sound bell when an error occurs.
	exrc (ex)	noexrc	Allow the execution of .exrc files that reside outside the
 user’s home directory.

	 flash (fp)

	nofp	Flash the screen instead of ringing the
 bell.

	hardtabs
 (ht)	8	Define boundaries for terminal hardware
 tabs.

	ignorecase (ic)	noic	Disregard case during a search.

	lisp	nolisp	Insert indents in appropriate Lisp format.
 (), { }, [[, and]] are modified to have meaning for
 Lisp.

	list	nolist	Print tabs as ^I; mark ends of lines with $. (Use list to tell whether end character
 is a tab or a space.)

	magic	magic	Wildcard characters . (dot), * (asterisk), and [] (brackets) have special meaning
 in patterns.

	mesg	mesg	Permit system messages to display on terminal
 while editing in vi.

	novice	nonovice	Require the use of long ex command names, such as copy or read.

	number (nu)	nonu	Display line numbers on left of screen during
 editing session.

	open	open	Allow entry to open or
 visual mode from ex. Although not in Solaris vi, this option has traditionally
 been in vi, and may be in
 your Unix’s version of vi.

	optimize
 (opt)	noopt	Abolish carriage returns at the end of lines when
 printing multiple lines; this speeds output on dumb terminals
 when printing lines with leading whitespace (spaces or
 tabs).

	paragraphs (para)	 IPLPPPQP LIpplpipbp

	Define paragraph delimiters for movement by
 { or }. The pairs of characters in the
 value are the names of troff macros that begin
 paragraphs.

	prompt	prompt	Display the ex
 prompt (:) when vi’s
 Q command is
 given.

	readonly
 (ro)	noro	Any writes (saves) of a file fail unless you use
 ! after the write (works
 with w, ZZ, or autowrite).

	redraw (re)		vi redraws the
 screen whenever edits are made (in other words, insert mode
 pushes over existing characters, and deleted lines immediately
 close up). Default depends on line speed and terminal type.
 noredraw is useful at slow
 speeds on a dumb terminal: deleted lines show up as @, and
 inserted text appears to overwrite existing text until you
 press ESC.

	remap	remap	Allow nested map sequences.

	report	5	Display a message on the status line whenever you
 make an edit that affects at least a certain number of lines.
 For example, 6dd reports
 the message “6 lines deleted.”

	scroll	[½ window]	Number of lines to scroll with ^D and ^U commands.

	sections
 (sect)	SHNHH HU	Define section delimiters for [[and]] movement. The pairs of characters
 in the value are the names of troff macros that begin
 sections.

	shell (sh)	/bin/sh	Pathname of shell used for shell escape (:!) and shell command (:sh). Default value is derived from
 shell environment, which varies on different
 systems.

	shiftwidth
 (sw)	8	Define number of spaces in backward (^D) tabs when using the autoindent option, and for the
 << and >> commands.

	showmatch
 (sm)	nosm	In vi, when
) or } is entered, cursor moves briefly
 to matching (or {. (If no match, ring the error message bell.) Very useful for
 programming.

	showmode	noshowmode	In insert mode, display a message on the prompt
 line indicating the type of insert you are making, for
 example, “OPEN MODE” or “APPEND MODE.”

	slowopen
 (slow)		Hold off display during insert. Default depends
 on line speed and terminal type.

	tabstop (ts)	8	Define number of spaces that a tab indents during
 editing session. (Printer still uses system tab of
 8.)

	taglength
 (tl)	0	Define number of characters that are significant
 for tags. Default (zero) means that all characters are
 significant.

	tags	 tags
 /usr/lib/tags

	Define pathname of files containing tags. (See
 the Unix ctags command.) By
 default, vi searches the
 file tags in the current
 directory and /usr/lib/tags.

	tagstack	tagstack	Enable stacking of tag locations on a
 stack.

	term		Set terminal type.
	terse	noterse	Display shorter error messages.

	timeout (to)	timeout	Keyboard maps time out after 1 second.[a]

	ttytype		Set terminal type. This is just another name for
 term.

	warn	warn	Display the warning message, “No write since last
 change.”

	window (w)		Show a certain number of lines of the file on the
 screen. Default depends on line speed and terminal
 type.

	wrapmargin
 (wm)	0	Define right margin. If greater than zero,
 automatically inserts carriage returns to break
 lines.

	wrapscan (ws)	ws	Searches wrap around either end of
 file.

	writeany
 (wa)	nowa	Allow saving to any file.
	[a] When you have mappings of several keys (for
 example, :map zzz 3dw),
 you probably want to use notimeout. Otherwise, you
 need to type zzz within
 one second.
 When you have an insert mode mapping for a cursor key (for
 example, :map! ^[OB
 ^[ja), you should use timeout. Otherwise, vi won’t react to ESC until
 you type another key.

nvi 1.79 Options

nvi 1.79 has a total
 of 78 options that affect its behavior. Table B-2 summarizes the most important ones.
 Most options described in Table B-1 are not
 repeated here.
Table B-2. nvi 1.79 set options
	Option	Default	Description
	backup		A string describing a backup filename to use. The
 current contents of a file are saved in this file before
 writing the new data out. A first character of N causes nvi to include a version number at
 the end of the file; version numbers are always incremented.
 "N%.bak" is a reasonable
 example.

	cdpath	Environment variable CDPATH, or current directory
	A search path for the :cd command.

	cedit	 	When the first character of this string is
 entered on the colon command line, nvi opens a new window on the
 command history that you can then edit. Hitting ENTER on any given line executes that
 line. ESC is a good choice
 for this option. (Use ^V ^[
 to enter it.)

	comment	nocomment	If the first nonempty line begins with /*, //, or #, nvi skips the comment text before
 displaying the file. This avoids displaying long, boring legal
 notices.

	directory (dir)	Environment variable TMPDIR, or /tmp
	The directory where nvi puts its temporary
 files.

	extended	noextended	Searches use egrep-style extended regular
 expressions.

	filec	 	When the first character of this string is
 entered on the colon command line, nvi treats the blank delimited word
 in front of the cursor as if it had an * appended to it and does
 shell-style filename expansion. ESC is also a good choice for this
 option. (Use ^V ^[to enter
 it.) When this character is the same as for the cedit option, command-line editing
 is performed only when the character is entered as the first
 character on the colon command line.

	iclower	noiclower	Make all regular expression searches
 case-insensitive, as long as the search pattern contains no
 uppercase letters.

	leftright	noleftright	Long lines scroll the screen left to right,
 instead of wrapping.

	lock	lock	nvi attempts
 to get an exclusive lock on the file. Editing a file that
 cannot be locked creates a read-only session.

	octal	nooctal	Display unknown characters in octal, instead of
 in hexadecimal.

	path		A colon-separated list of directories in which
 nvi will look for the file
 to be edited.

	recdir	/var/tmp/vi.recover	The directory where recovery files are
 stored.

	ruler	noruler	Displays the row and column of the cursor.

	searchincr	nosearchincr	Searches are done incrementally.

	secure	nosecure	Turn off access to external programs via text
 filtering (:r!, :w!), disable the vi mode ! and ^Z commands, and the ex mode !, shell, stop, and suspend commands. Once set, it
 cannot be changed.

	shellmeta	~{[*?$`'"\	When any of these characters appear in a filename
 argument to an ex command,
 the argument is expanded by the program named by the shell option.

	showmode
 (smd)	noshowmode	Display a string in the status line showing the
 current mode. Display an *
 if the file has been modified.

	sidescroll	16	The number of columns by which the screen is
 shifted left or right when leftright is
 true.

	taglength
 (tl)	0	Defines number of characters that are significant
 for tags. Default (zero) means that all characters are
 significant.

	tags (tag)	 tags
 /var/db/libc.tags
 /sys/kern/tags
	The list of possible tag files.

	tildeop	notildeop	The ~ command
 takes an associated motion, not just a preceding
 count.

	wraplen (wl)	0	Identical to the wrapmargin option, except that it
 specifies the number of characters from the left margin at
 which the line will be split. The value of wrapmargin overrides wraplen.

elvis 2.2 Options

elvis 2.2 has a total
 of 225 options that affect its behavior. Table B-3 summarizes the most important ones.
 Most options described in Table B-1 are not
 repeated here.
Table B-3. elvis 2.2 set options
	Option	Default	Description
	autoiconify
 (aic)	noautoiconify	Iconify the old window when de-iconifying a new
 one. X11 only.

	backup (bk)	nobackup	Make a backup file (xxx.bak) before writing the current
 file out to disk.

	binary (bin)		The buffer’s data is not text. This option is set
 automatically.

	boldfont
 (xfb)		The name of the bold font. X11
 only.

	bufdisplay
 (bd)	normal	The default display mode for the buffer (hex, html, man, normal, syntax, or tex).

	ccprg (cp)	cc
 ($1?$1:$2)	The shell command for :cc.

	directory
 (dir)		Where to store temporary files. The default is
 system-dependent.

	display
 (mode)	normal	The name of current display mode, set by the
 :display
 command.

	elvispath
 (epath)		A list of directories in which to search for
 configuration files. The default is
 system-dependent.

	focusnew
 (fn)	focusnew	Force keyboard focus into the new window. X11
 only.

	font (fnt)		The name of the normal font, for the Windows and
 X11 interfaces.

	gdefault
 (gd)	nogdefault	Cause the substitute command to change all
 instances.

	home (home)	$HOME	The home directory for ~ in filenames.

	italicfont (xfi)		The name of the italic font. X11
 only.

	locked
 (lock)	nolocked	Make the buffer read-only and cause most commands
 that would modify the buffer to fail. Usually set
 automatically for read-only HTML files.

	lpcolor
 (lpcl)	nolpcl	Use color when printing; for :lpr.

	lpcolumns (lpcols)	80	The width of a printer page; for :lpr.

	lpcrlf (lpc)	nolpcrlf	The printer needs CR/LF for newline in the file;
 for :lpr.

	lpformfeed
 (lpff)	nolpformfeed	Send a form feed after the last page; for
 :lpr.

	lpheader
 (lph)	nolph	Print a header at the top of the page; for
 :lpr.

	lplines
 (lprows)	60	The length of a printer page; for :lpr.

	lpout (lpo)		The printer file or filter, for :lpr. A typical value might be
 !lpr. The default is
 system-dependent.

	lptype (lpt)	dumb	The printer type, for :lpr. The value should be one of:
 ps, ps2, epson, pana, ibm, hp, cr, bs, dumb, html, or ansi.

	lpwrap (lpw)	lpwrap	Simulate line wrap; for :lpr.

	makeprg (mp)	make $1	The shell command for :make.

	prefersyntax (psyn)	never	Control use of syntax mode. Useful for HTML and
 manpages to show the input instead of the formatted contents.
 With a value of never,
 never use syntax mode. With writable, do so for writable files.
 With local, do so for files
 in the current directory. With always, always use syntax mode.

	ruler (ru)	noruler	Display the cursor’s line and
 column.

	security
 (sec)	normal	One of normal
 (standard vi behavior),
 safer (attempt to prevent
 writing malicious scripts), or restricted (try to make elvis safe for use as a restricted
 editor). In general, use the :safely command to set this; don’t
 do it directly.

	showmarkups
 (smu)	noshowmarkups	For the man
 and html modes, show the
 markup at the cursor position, but not
 elsewhere.

	sidescroll
 (ss)	0	The sideways scrolling amount. Zero mimics
 vi, making lines
 wrap.

	smartargs
 (sa)	nosmartargs	Place the arguments for a function on the screen
 based on a tags file
 lookup after typing the function name and the function character (usually a left
 parenthesis).

	spell (sp)	nospell	Highlight misspelled words. This also works with
 programs, based on lookups in a tags file.

	taglength
 (tl)	0	Defines the number of characters that are
 significant for tags. Default (zero) means that all characters
 are significant.

	tags
 (tagpath)	tags	The list of possible tag files.

	tagstack
 (tsk)	tagstack	Remember the origin of tag searches on a
 stack.

	undolevels
 (ul)	0	The number of undoable commands. Zero mimics
 vi. You probably want to
 set this to a bigger number.

	warpback
 (wb)	nowarpback	Upon exit, move the pointer back to the xterm that started elvis. X11 only.

	warpto (wt)	don't	How ^W ^W
 forces pointer movement: don't for no movement, scrollbar moves the pointer to the
 scrollbar, origin moves the
 pointer to the upper left corner, and corners moves it to the corners
 furthest from and nearest to the current cursor position. This
 forces the X display to pan, to make sure the window is
 entirely onscreen.

Vim 7.1 Options

 Vim 7.1 has a total of 295 (!) options that affect its
 behavior. Table B-4 summarizes the most
 important ones. Most
 options described in Table B-1 are not
 repeated here.
The summaries in this table are by necessity very brief. Much
 more information about each option may be found in the Vim online
 help.
Table B-4. Vim 7.1 set options
	Option
	Default
	Description

	autoread
 (ar)	noautoread	Detect whether a file inside Vim has been modified
 externally, not by Vim, and automatically refresh the Vim
 buffer with the changed version of the file.
	 background (bg)
	dark or
 light
	Vim tries to use background and foreground colors
 that are appropriate to the particular terminal. The default
 depends on the current terminal or windowing
 system.

	 backspace
 (bs)
	 0

	Control whether you can backspace over a newline
 and/or over the start of insert. Values are: 0 for vi compatibility; 1 to backspace
 over newlines; and 2 to backspace over the start of insert.
 Using a value of 3 allows both.

	 backup (bk)

	 nobackup

	Make a backup before overwriting a file, then
 leave it around after the file has been successfully written.
 To have a backup file just while the file is being written,
 use the writebackup
 option.

	 backupdir
 (bdir)
	 ., ~/tmp/, ~/
	A list of directories for the backup file,
 separated with commas. The backup file is created in the first
 directory in the list where this is possible. If empty, you
 cannot create a backup file. The name . (dot) means the same directory as
 where the edited file is.

	 backupext
 (bex)
	 ~

	The string that is appended to a filename to make
 the name of the backup file.

	 binary (bin)

	 nobinary

	Change a number of other options to make it
 easier to edit binary files. The previous values of these
 options are remembered and restored when bin is switched back off. Each
 buffer has its own set of saved option values. This option
 should be set before editing a binary file. You can also use
 the -b command-line option.

	 cindent (cin)

	 nocindent

	Enable automatic smart C program
 indenting.

	 cinkeys
 (cink)
	 0{,0},:,0#,!^F,
 o,O,e
	A list of keys that, when typed in insert mode,
 cause reindenting of the current line. Only happens if
 cindent is
 on.

	 cinoptions (cino)

	 	Affects the way cindent reindents lines in a C
 program. See the online help for details.

	 cinwords
 (cinw)
	if, else, while, do, for, switch
	These keywords start an extra indent in the next
 line when smartindent or
 cindent is set. For
 cindent this is done only at an
 appropriate place (inside {...}).

	 comments
 (com)
	 	A comma-separated list of strings that can start
 a comment line. See the online help for
 details.

	 compatible
 (cp)
	cp; nocp when a .vimrcfile is found
	Makes Vim behave more like vi in too many ways to describe
 here. It is on by default, to avoid surprises. Having a
 .vimrc turns off the
 vi compatibility; usually
 this is a desirable side effect.

	completeopt (cot)	menu,preview	A comma-separated list of options for insert mode
 completion.
	 cpoptions
 (cpo)
	 aABceFs

	A sequence of single character flags, each one
 indicating a different way in which Vim will or will not
 exactly mimic vi. When
 empty, the Vim defaults are used. See the online help for
 details.

	cursorcolumn
 (cuc)	nocursorcolumn	Highlight the screen column of the cursor with CursorColumn
 highlighting. This is useful for lining up text vertically.
 Can slow down screen display.
	cursorline
 (cul)	nocursorline	Highlight the screen line of the cursor with CursorRow highlighting. Makes it
 easy to find the current line in the edit session. Use in
 conjunction with cursorcolumn for a crosshairs
 effect. Can slow down screen display.
	 define (def)

	 ^#\s*define

	A search pattern that describes macro
 definitions. The default value is for C programs. For C++, use
 ^\(#\s*define\
 |[a-z]*\s*const\s*[a-z]*\). When using the :set command, you need to double the
 backslashes.

	 directory
 (dir)
	 ., ~/tmp,
 /tmp
	A list of directory names for the swap file,
 separated with commas. The swap file will be created in the
 first directory where this is possible. If empty, no swap file
 will be used and recovery is impossible! The name . (dot) means to put the swap file
 in the same directory as the edited file. Using . first in the list is recommended
 so that editing the same file twice will result in a
 warning.

	 equalprg (ep)

	 	External program to use for = command. When this option is
 empty, the internal formatting functions are
 used.

	 errorfile
 (ef)
	 errors.err

	Name of the error file for the quickfix mode.
 When the -q command-line argument is used,
 errorfile is set to the
 following argument.

	 errorformat
 (efm)
	(Too long to print)
	Scanf-like description of the format for the
 lines in the error file.

	 expandtab
 (et)
	 noexpandtab

	When inserting a tab, expand it to the
 appropriate number of spaces.

	 fileformat
 (ff)
	 unix

	Describes the convention to terminate lines when
 reading/writing the current buffer. Possible values are
 dos (CR/LF), unix (LF), and mac (CR). Vim usually sets this
 automatically.

	 fileformats
 (ffs)
	 dos,unix

	List the line-terminating conventions that Vim
 tries to apply to a file when reading. Multiple names enable
 automatic end-of-line detection when reading a
 file.

	 formatoptions
 (fo)
	 Vim default: tcq; vi
 default: vt
	A sequence of letters that describes how
 automatic formatting is to be done. See the online help for
 details.

	 gdefault (gd)

	 nogdefault

	Cause the substitute command to change all
 instances.

	 guifont (gfn)

	 	A comma-separated list of fonts to try when
 starting the GUI version of Vim.

	 hidden (hid)

	 nohidden

	Hide the current buffer when it is unloaded from
 a window, instead of abandoning it.

	 history (hi)

	 Vim default: 20; vi default: 0
	Control how many ex commands, search strings, and
 expressions are remembered in the command
 history.

	 hlsearch
 (hls)
	 nohlsearch

	Highlight all matches of the most recent search
 pattern.

	 icon

	 noicon

	Vim attempts to change the name of the icon
 associated with the window where it is running. Overridden by
 the iconstring
 option.

	 iconstring

	 	String value used for the icon name of the
 window.

	 include (inc)

	 ^#\s*include

	Define a search pattern for finding include
 commands. The default value is for C programs.

	 incsearch
 (is)
	 noincsearch

	Enable incremental searching.

	 isfname (isf)

	 @,48-57,/,.,-,_,
 +,,,$,:,~
	A list of characters that can be included in file
 and path names. Non-Unix systems have different default
 values. The @ character stands for any alphabetic character.
 It is also used in the other is XXX
 options, described next.

	 isident (isi)

	 @,48-57,_,192-255
	A list of characters that can be included in
 identifiers. Non-Unix systems may have different default
 values.

	 iskeyword
 (isk)
	 @,48-57,_,192-255
	A list of characters that can be included in
 keywords. Non-Unix systems may have different default values.
 Keywords are used in searching and recognizing with many
 commands, such as w,
 [i, and many
 more.

	 isprint (isp)

	 @,161-255

	A list of characters that can be displayed
 directly to the screen. Non-Unix systems may have different
 default values.

	 makeef (mef)

	 /tmp/vim##.err
	The error file name for the :make command. Non-Unix systems have
 different default values. The ## is replaced by a number to make
 the name unique.

	 makeprg (mp)

	 make

	The program to use for the :make command. % and # in the value are
 expanded.

	modifiable
 (ma)	modifiable	When turned off, do not allow any changes in the
 buffer.
	 mouse

	 	Enable the mouse in non-GUI versions of Vim. This
 works for MS-DOS, Win32, QNX pterm, and xterm. See the online help for
 details.

	 mousehide
 (mh)
	 nomousehide

	Hide the mouse pointer during typing. Restores
 the pointer when the mouse is moved.

	 paste

	 nopaste

	Change a large number of options so that pasting
 into a Vim window with a mouse does not mangle the pasted
 text. Turning it off restores those options to their previous
 values. See the online help for details.

	 ruler (ru)

	 noruler

	Show the line and column number of the cursor
 position.

	 secure

	 nosecure

	Disable certain kinds of commands in the startup
 file. Automatically enabled if you don’t own the .vimrc and .exrc files.

	 shellpipe
 (sp)
	 	The shell string to use for capturing the output
 from :make into a file. The
 default value depends upon the shell.

	 shellredir
 (srr)
	 	The shell string for capturing the output of a
 filter into a temporary file. The default value depends upon
 the shell.

	 showmode
 (smd)
	 Vim default: smd; vi
 default: nosmd
	Put a message in the status line for insert,
 replace, and visual modes.

	 sidescroll
 (ss)
	 0

	How many columns to scroll horizontally. The
 value zero puts the cursor in the middle of the
 screen.

	 smartcase
 (scs)
	 nosmartcase

	Override the ignorecase option if the search
 pattern contains uppercase characters.

	spell	nospell	Turn on spellchecking.
	 suffixes

	 *.bak,~,.o,.h,.info,.swp

	When multiple files match a pattern during
 filename completion, the value of this variable sets a
 priority among them, in order to pick the one Vim will
 use.

	 taglength
 (tl)
	 0

	Define number of characters that are significant
 for tags. Default (zero) means that all characters are
 significant.

	 tagrelative
 (tr)
	 Vim default: tr; vi
 default: notr
	Filenames in a tags file from another directory
 are taken to be relative to the directory where the tags file is.

	 tags (tag)

	./tags,tags
	Filenames for the :tag command, separated by spaces or
 commas. The leading ./ is
 replaced with the full path to the current
 file.

	 tildeop (top)

	 notildeop

	Make the ~
 command behave like an operator.

	 undolevels
 (ul)
	 1000

	The maximum number of changes that can be undone.
 A value of 0 means vi
 compatibility: one level of undo and u undoes itself. Non-Unix systems
 may have different default values.

	 viminfo (vi)

	 	Read the viminfo file upon startup, and
 write it upon exiting. The value is complex; it controls the
 different kinds of information that Vim will store in the
 file. See the online help for details.

	 writebackup
 (wb)
	 writebackup

	Make a backup before overwriting a file. The
 backup is removed after the file is successfully written,
 unless the backup option is
 also on.

vile 9.6 Options

vile 9.6 has 167
 options (called “modes” in vile),
 which are denoted universal,
 buffer, or window modes
 according to their use. There are also 101 environment
 variables, which are more useful in scripts than for direct
 user manipulation.[75] Not all are available on every platform; some apply only
 to X11 or Win32.
Table B-5 shows the compiled-in default
 values for the most important of vile’s options. The initialization scripts,
 such as vileinit.rc, override
 several of those values. Most options described in Table B-1 are not repeated here.
Table B-5. vile 9.6 set options
	Option
	Default
	Description

	alt-tabpos
 (atp)	noatp	 Controls whether the cursor sits at the left or
 right end of the whitespace representing a tab character.

	animated	animated	 Automatically updates the contents of scratch
 buffers when their contents change.

	autobuffer
 (ab)	autobuffer	 Uses “most-recently-used” style buffering; the
 buffers are sorted in order of use. Otherwise, buffers remain
 in the order in which they were edited.

	autocolor
 (ac)	0	 Automatic syntax coloring. If set to zero,
 automatic syntax coloring is disabled. Otherwise, it should be
 set to a small positive integer that represents the number of
 milliseconds to wait for a “quiet interval” before invoking
 the autocolor-hook hook.

	autosave
 (as)	noautosave	 Automatic file saving. Writes the file after
 every autosavecnt
 characters of inserted text.

	autosavecnt
 (ascnt)	256	 Specifies after how many inserted characters
 automatic saves take place.

	backspacelimit (bl)	backspacelimit	 If disabled, then in insert mode you can
 backspace past the point at which the insert began.

	backup-style	off	 Controls how backup files are created when
 writing a file. Possible values are off, .bak for DOS-style backups, and
 tilde for Emacs-style
 hello.c~ backups under
 Unix.

	bcolor	default	 Sets the background color on systems that
 support it.

	byteorder-mark
 (bom)	auto	 Controls the check for a prefix used to
 distinguish different types of UTF encoding. The default value
 auto tells vile to inspect the file; specific
 values tell it to use that value.

	check-modtime	nocheck-modtime	 Issues a “file newer than buffer” warning if the
 file has changed since it was last read or written, and
 prompts for confirmation.

	cindent	nocindent	 Enable C-style indentation, which helps maintain
 current indentation level automatically during insert, like
 autoindent.

	cindent-chars	:#{}()[]	 The list of characters interpreted by the
 cindent mode. These include
 # to indent to column 1,
 and : to indent further, as
 after a label. Listing a pair of characters that are also in
 fence-pairs causes text
 enclosed by the pair to be further indented.

	cmode	off	 A built-in major mode for C code.

	color-scheme
 (cs)	default	 Specify by name an aggregate of fcolor, bcolor, video-attrs, and $palette defined via the define-color-scheme command.

	comment-prefix	^\s*\(\(\s*[#*>]\)\|\(///*\)\)\+	 Describes the leading part of a line that should
 be left alone when reformatting comments. The default value is
 good for Makefile, shell
 and C comments, and email.

	comments	^\s*/\?\(\s*[#*>/]\)\+/\?\s*$	 A regular expression defining commented
 paragraph delimiters. Its purpose is to preserve paragraphs
 inside comments when reformatting.

	cursor-tokens	regex	 Controls whether vile uses regular expressions or
 character classes for parsing tokens from the screen for
 various commands. This uses an enumeration: both, cclass, and regex.

	dirc	nodirc	vile checks
 each name when scanning directories for filename completion.
 This allows you to distinguish between directory names and
 filenames in the prompt.

	dos	nodos	 Strips out the CR from CR/LF pairs when reading
 files, and puts them back when writing. New buffers for
 nonexistent files inherit the line style of the operating
 system, whatever the value of dos.

	fcolor	default	 Sets the foreground color on systems that
 support it.

	fence-begin	/*	 Regular expressions for the start
 and end of simple non-nestable fences, such as C
 comments.

	fence-end	*/
	fence-if	^\s*#\s*if	 Regular expressions marking the
 start, “else if”, “else”, and end of line-oriented, nested
 fences, such as C-preprocessor control lines.

	fence-elif	^\s*#\s*elif\>
	fence-else	^\s*#\s*else\>
	fence-fi	^\s*#\s*endif\>
	fence-pairs	{}()[]	 Each pair of characters denotes a set of
 “fences” that should be matched with %.

	file-encoding	auto	 Specifies the character encoding of the buffer
 contents, e.g., one of 8bit, ascii, auto, utf-8, utf-16, or utf-32.

	filtername
 (fn)		 Specifies a syntax-highlighting filter, for a
 given major mode.

	for-buffers
 (fb)	mixed	 Specifies whether globbing or regular
 expressions are used to select buffer names in the for-buffers and kill-buffer commands.

	glob	!echo %s	 Controls how wildcard characters (e.g., * and ?) are treated in prompts for
 filenames. A value of off
 disables expansion, and on
 uses the internal globber, which can handle normal shell
 wildcards and ~ notation.
 The default value for Unix guarantees compatibility with your
 shell.

	highlight
 (hl)	highlight	 Enables or disables syntax highlighting in the
 corresponding buffers.

	history (hi)	history	 Logs commands from the colon command line
 (minibuffer) in the [History] buffer.

	 horizscroll (hs) 	horizscroll	 Moving off the end of a long line shifts the
 whole screen sideways. If not set, only the current line
 shifts.

	ignoresuffix
 (is)	\(\.orig\|~\)$	 Strips the given pattern from a filename before
 matching it for major mode suffixes.

	linewrap
 (lw)	nolinewrap	 Wraps long logical lines onto multiple screen
 lines.

	maplonger	nomaplonger	 The map facility matches against the longest
 possible mapped sequence, not the shortest.

	meta-insert-
 bindings (mib)	mib	Controls behavior of 8-bit characters during
 insert. Normally, key bindings are operational only when in
 command mode; when in insert mode, all characters are
 self-inserting. If this mode is on, and a metacharacter (i.e.,
 a character with the eighth bit set) is typed that is bound to
 a function, then that function binding will be honored and
 executed from within insert mode. Any unbound metacharacters
 will remain self-inserting.

	mini-hilite
 (mh)	reverse	Defines the highlight attribute to use when the
 user toggles the editing mode in the minibuffer.

	modeline	nomodeline	Controls whether a vi-like mode line feature is
 enabled.

	modelines	5	 Controls the number of lines from each end of
 the buffer to scan for vi-like mode lines.

	overlap-matches	overlap-matches	 Modifies the highlighting shown by visual-matches to control whether
 overlapping matches are shown.

	percent-crlf	50	 Percentage of total lines that must end with
 CR/LF for vile to
 automatically convert buffer’s recordseparator to crlf.

	percent-utf8	90	 Percentage of total characters that contain
 embedded nulls, making them look like UTF-16 or UTF-32
 encodings. If the file-encoding option is set to
 auto and the match is
 higher than this threshold, vile will load the buffer data as
 UTF-8.

	popup-choices
 (pc)	delayed	 Controls the use of a pop-up window for help in
 doing completion. The value is either off for no window, immediate for an immediate pop up,
 or delayed to wait for a
 second Tab key.

	popup-msgs
 (pm)	nopopup-msgs	 When enabled, vile pops up the [Messages] buffer, showing the text
 that was written to the message line.

	recordseparator
 (rs)	lf [a]	 Specify format of files that vile reads and writes. Formats are
 lf (for Unix), crlf (for DOS), cr (for Macintosh), and default (lf or crlf, depending on the platform).

	resolve-links	noresolve-links	 If set, vile
 fully resolves filenames in case some path components are
 symbolic links. This helps avoid multiple unintentional edits
 of the same physical file via different pathnames.

	ruler	noruler	 Shows the current line and column in the status
 line, as well as what percentage of the current buffer’s lines
 are in front of the cursor.

	showchar
 (sc)	noshowchar	 Shows the value of the current character in the
 status line.

	showformat
 (sf)	foreign	 Controls when/whether recordseparator information is shown
 in the status line. Values are: always, differs (to show when the local mode
 differs from the global), local (to show whenever a local mode
 is set), foreign (to show
 when the recordseparator
 differs from the native default), and never.

	showmode
 (smd)	showmode	 Displays an indicator on the status line for
 insert and replace modes.

	sideways	0	 Controls by how many characters the screen
 scrolls to the left or right. The value of 0 moves the screen
 by one-third.

	tabinsert
 (ti)	tabinsert	 Allows the physical insertion of tab characters
 into the buffer. If turned off (notabinsert), vile will never insert a tab into a
 buffer; instead it will always insert the appropriate number
 of spaces.

	tagignorecase
 (tc)	notagignorecase	 Makes tag searches ignore case.

	taglength
 (tl)	0	 Defines the number of characters that are
 significant for tags. Default (zero) means that all characters
 are significant. This does not affect tags picked up from the
 cursor; they are always matched exactly. (This is different
 from the other editors).

	tagrelative
 (tr)	notagrelative	 When using a tags file in another directory,
 filenames in that tags
 file are considered to be relative to the directory where the
 tags file is.

	tags	tags	 A space-separated list of files in which to look
 up tag references.

	tagword (tw)	notagword	 Use the whole word under the cursor for the tag
 lookup, not just the subword starting at the current cursor
 position.

	undolimit
 (ul)	10	 Limits how many changes may be undone. The value
 zero means “no limit.”

	unicode-as-hex
 (uh)	nounicode-as-hex	 If displaying a buffer whose file encoding says
 it is one of the Unicode flavors (e.g., utf-8, utf-16, or utf-32), shows the values that are
 non-ASCII in \uXXXX
 format even if the display is capable of showing these as
 regular characters.

	unprintable-as- octal (uo)	nounprintable-as-octal	 Displays nonprinting characters with the eighth
 bit set in octal. Otherwise, uses hexadecimal. Nonprinting
 characters whose eighth bit is not set are always displayed in
 control character notation.

	visual-matches	none	 Controls highlighting of all matching
 occurrences of a search pattern. The possible values are
 none for no highlighting,
 or underline, bold, and reverse for those kinds of
 highlighting. Colors may also be used on systems that support
 it.

	xterm-fkeys	noxterm-fkeys	 Supports xterm’s modified function keys by
 generating system bindings for the Shift-, Ctrl-, and Alt-
 modifiers of each function key listed in the terminal
 description.

	xterm-mouse	noxterm-mouse	 Allows use of the mouse from inside an xterm. See the online help for
 details.

	xterm-title	noxterm-title	 Enables title bar updates if you are running
 within an xterm. Each time
 you switch to a different buffer, vile can update the title. This uses
 the same tests of the TERM
 variable as the xterm-mouse
 mode.

	[a] This depends on the platform for which vile is compiled.

[75] These include variables that are set or used as a side
 effect of other commands. Owing to their focus on scripting, their
 descriptions are also not suitable for this table since they tend
 to be lengthy—read the online help for details.

Appendix C. Problem Checklists

This appendix consolidates the problem checklists that are
 provided throughout Part I. Here they are
 presented in one place for ease of reference.
Problems Opening Files

	When you invoke vi , the message
 [open mode]
 appears.
Your terminal type is probably incorrectly identified.
 Quit the editing session immediately by typing :q. Check the environment variable $TERM.
 It should be set to the name of your terminal. Alternatively, ask
 your system administrator to provide an adequate terminal type
 setting.

	You see one of the following
 messages:
 Visual needs addressable cursor or upline capability
 Bad termcap entry
 Termcap entry too longterminal: Unknown terminal type
 Block device required
 Not a typewriter
Either your terminal type is undefined, or there’s probably
 something wrong with your terminfo or termcap entry. Enter :q to quit. Check your $TERM environment variable, or ask your
 system administrator to select a terminal type for your environment.

	A [new
 file] message appears when you think a file
 already exists.
Check that you have used the correct case in the filename
 (filenames are often case-sensitive). If you have, you are
 probably in the wrong directory. Enter :q to quit. Then check to see that you
 are in the correct directory for that file (enter pwd at the Unix prompt). If you are in
 the right directory, check the list of files in the directory
 (with ls) to see whether the
 file exists under a slightly different name.

	You invoke vi , but you get a colon
 prompt (indicating that you’re in ex line-editing
 mode).
You probably typed an interrupt before vi could draw the screen. Enter vi by typing vi at the ex prompt (:).

	One of the following messages
 appears:
 [Read only]
 File is read only
 Permission denied
“Read only” means that you can only look at the file; you cannot save
 any changes you make. You may have invoked vi in view mode
 (with view or vi -R), or you do not have write
 permission for the file. See the next section, Problems Saving Files.

	One of the following messages
 appears:
 Bad file number
 Block special file
 Character special file
 Directory
 Executable
 Non-ascii file file non-ASCII
The file you’ve called up to edit is not a regular text
 file. Type :q! to quit, then
 check the file you wish to edit, perhaps with the file command.

	When you type :q because of one of the
 previously mentioned difficulties, this message
 appears:
 No write since last change (:quit! overrides).
You have modified the file without realizing it. Type
 :q! to leave vi. Your changes from this session will
 not be saved in the file.

Problems Saving Files

	You try to write your file, but you get one of the
 following messages:
 File exists
 File file exists - use w!
 [Existing file]
 File is read only
Type :w!
 file to overwrite the existing file, or
 type :w
 newfile to save the edited version in a
 new file.

	You want to write a file, but you don’t have write
 permission for it. You get the message “Permission
 denied.”
Use :w
 newfile to write out the buffer into a
 new file. If you have write permission for the directory, you can
 use mv to replace the original
 version with your copy of it. If you don’t have write permission
 for the directory, type :w
 pathname/file to write out the buffer
 to a directory in which you do have write permission (such as your
 home directory, or /tmp).

	You try to write your file, but you get a message
 telling you that the file system is full.
Type :!rm
 junkfile to delete a (large) unneeded
 file and free some space. (Starting an ex command line with an exclamation
 point gives you access to Unix.)
Or type :!df to see
 whether there’s any space on another file system. If there is,
 choose a directory on that file system and write your file to it
 with :w
 pathname. (df is the Unix command to check a
 disk’s free space.)

	The system puts you into open mode and tells you
 that the file system is full.
The disk with vi’s
 temporary files is filled up. Type :!ls /tmp to see whether there are any
 files you can remove to gain some disk space.[76] If there are, create a temporary Unix shell from
 which you can remove files or issue other Unix commands. You can
 create a shell by typing :sh;
 type CTRL-D or exit to terminate the shell and return
 to vi. (On most Unix systems,
 when using a job-control shell, you can simply type CTRL-Z to suspend vi and return to the Unix prompt; type
 fg to return to vi.) Once you’ve freed up some space,
 write your file with :w!.

	You try to write your file, but you get a message
 telling you that your disk quota has been
 reached.
Try to force the system to save your buffer with the
 ex command :pre (short for :preserve). If that doesn’t work, look
 for some files to remove. Use :sh (or CTRL-Z if you are using a job-control
 system) to move out of vi and
 remove files. Use CTRL-D (or
 fg) to return to vi when you’re done. Then write your
 file with :w!.

[76] Your vi may keep its
 temporary files in /usr/tmp, /var/tmp, or your current
 directory; you may need to poke around a bit to figure out
 where exactly you’ve run out of room.

Problems Getting to Visual Mode

	While editing in vi , you accidentally end up
 in the ex
 editor.
A Q in the command mode of vi invokes ex. Any time you are in ex, the command vi returns you to the vi editor.

Problems with vi Commands

	When you type commands, text jumps around on the
 screen and nothing works the way it’s supposed
 to.
Make sure you’re not typing the J command when you mean j.
You may have hit the CAPS LOCK key without noticing it. vi
 is case-sensitive; that is, uppercase commands (I, A,
 J, etc.) are different from
 lowercase commands (i, a, j), so all your commands are being
 interpreted not as lowercase but as uppercase commands. Press the
 CAPS LOCK key again to return to
 lowercase, press ESC to ensure
 that you are in command mode, then type either U to restore the last line changed or
 u to undo the last command.
 You’ll probably also have to do some additional editing to fully
 restore the garbled part of your file.

Problems with Deletions

	You’ve deleted the wrong text and you want to get
 it back.
There are several ways to recover deleted text. If you’ve
 just deleted something and you realize you want it back, simply
 type u to undo the last command
 (for example, a dd). This works
 only if you haven’t given any further commands, since u undoes only the most recent command.
 On the other hand, a U will
 restore the line to its pristine state, the way it was before
 any changes were applied to it.
You can still recover a recent deletion, however, by using
 the p command, since vi saves the last nine deletions in nine
 numbered deletion buffers. If you know, for example, that the
 third deletion back is the one you want to restore, type:
"3p
to “put” the contents of buffer number 3 on the line below
 the cursor. This works only for a deleted
 line. Words, or a portion of a line, are not
 saved in a buffer. If you want to restore a deleted word or line
 fragment, and u won’t work, use
 the p command by itself. This
 restores whatever you’ve last deleted.

Appendix D. vi and the Internet

Sure, vi is user friendly. It’s just particular about
 who it makes friends with.

 Being the “standard” Unix screen editor since at least
 1980 has enshrined vi firmly in Unix
 culture.
vi helped build Unix, and Unix
 in turn built the foundation for today’s Internet. Thus, it was
 inevitable that there be at least one Internet web site devoted to
 vi. This appendix describes some of
 the vi resources that are available
 for the vi connoisseur.
Where to Start

There is surely no activity with more built-in obsolescence than
 publishing World Wide Web sites in a printed book. We have tried to
 publish URLs that we hope will have a reasonable lifetime.
In the meantime, the “Tips” section of the elvis documentation lists interesting
 vi-related web sites (that’s where
 we started), and the Usenet comp.editors newsgroup is also a good place
 to look.

vi Web Sites

 There are two primary vi-related web sites, the vi
 Lover’s Home Page, by Thomer M. Gil, and the Vi
 Pages, by Sven Guckes. Each contains a large number of
 links to interesting vi-related
 items.
The vi Lover’s Home Page

The vi Lover’s Home Page can be found
 at http://www.thomer.com/vi/vi.html. This site
 contains the following items:
	A table of all known vi
 clones, with links to the source code or binary
 distributions

	Links to other vi
 sites, including the Vi Pages, by Sven
 Guckes

	A large number of links to vi documentation, manuals, help, and
 tutorials, at a number of different levels

	vi macros for writing
 HTML documents and solving the Towers of Hanoi, and FTP sites
 for other macro sets

	Miscellaneous vi links:
 poems, a story about the “real history” of vi, vi versus Emacs discussions, and
 vi coffee mugs (see the
 section vi for Java Lovers)

There are other things there, too; this makes a great starting
 point.

The Vi Pages

The Vi Pages can be found at http://www.vi-editor.org.[77] This site contains the following items:
	A detailed comparison of options and features among
 different vi clones

	Screenshots of different versions of vi

	A table listing many vi
 clones, as well as a list with contact information (name,
 address, URL) for the clones

	Pointers to several FAQ files

	Some cute quotes about vi, such as the one that opened this
 chapter

	Other links, including a link to the vi coffee mugs

The vi Lover’s Home Page refers to this
 web site as “the only Vi site on this planet better than the one
 you’re looking at.” This site is also well worth checking
 out.

vi Powered!

 One of the cuter items we found is the vi
 Powered logo (Figure D-1). This
 is a small GIF file you can add to your personal web page to show
 that you used vi to create
 it.
[image: vi Powered!]

Figure D-1. vi Powered!

The original home page for the vi Powered
 logo was http://www.abast.es/~avelle/vi.html.
 That page was written in Spanish and is no longer available. The
 English home page is at http://www.darryl.com/vi.shtml. Instructions for
 adding the logo are at http://www.darryl.com/addlogo.html. Doing so consists
 of several simple steps:
	Download the logo. Enter http://www.darryl.com/vipower.gif into your
 (graphical) web browser, and then save it to a file, or use a
 command-line web retrieval utility, such as wget.

	Add the following code to your web page in an appropriate
 place:

This puts the logo into your page and makes it into a
 hypertext link that, when selected, will go to the vi
 Powered home page. You may wish to add an ALT="This Web Page is vi Powered"
 attribute to the
 tag, for users of nongraphical browsers.

	Add the following code to the <HEAD> section of your web
 page:
<META name="editor" content="/usr/bin/vi">

Just as the Real Programmer will eschew a WYSIWYG word
 processor in favor of troff, so
 too will Real Webmasters eschew fancy HTML authoring tools in favor
 of vi. You can use the
 vi Powered logo to display this fact with
 pride. ☺
You can find the Vim logo, in several variations, at http://www.vim.org/logos.php. A number of
 Vim Powered logos for web sites are at http://www.vim.org/buttons.php.

vi for Java Lovers

Despite the title, this subsection is about the java you
 drink, not the Java you program in.[78]
Our hypothetical Real Programmer, while using vi to write her C++ code, her troff documentation, and her web page,
 undoubtedly will want a cup of coffee now and then. She can now
 drink her coffee from a mug with a vi command reference printed on it!

When we first found vi
 reference mugs, they were available in sets of four from a dedicated
 web site. That site seems to have disappeared. However, vi reference mugs, T-shirts, sweatshirts,
 and mouse pads are now available from a different site: http://www.cafepress.com/geekcheat/366808.

Online vi Tutorial

 The two home pages we’ve mentioned have a large
 number of links to documentation on vi. Of special note, though, is a
 nine-part online tutorial from Unix World
 magazine, by Walter Zintz. The starting-off point is here: http://www.networkcomputing.com/unixworld/tutorial/009/009.html.
 (The link for this has moved around; it may not be up-to-date on the vi home pages, but this URL worked when we
 tried it early in 2008.) The tutorial covers the following
 topics:
	Editor fundamentals

	Line-mode addresses

	The g (global)
 command

	The substitute command

	The editing environment (the set command, tags, and EXINIT and .exrc)

	Addresses and columns

	The replacement commands, r and R

	Automatic indentation

	Macros

Also available with the tutorial is an online quiz that you
 can use to see how well you’ve absorbed the material in the
 tutorial. Or you can just try the quiz directly, to see how well
 we’ve done with this book!

[77] This site is mirrored at http://www.saki.com.au/mirror/vi/index.php3.

[78] Still, it’s somehow fitting that Java came from Sun
 Microsystems, where Bill Joy—vi’s original author—is a founder and
 former vice president.

A Different vi Clone

Depicted in Figures D-2 through D-9 is the
 story of vigor, a
 different vi
 clone.
[image: The story of vigor—part I]

Figure D-2. The story of vigor—part I

[image: The story of vigor—part II]

Figure D-3. The story of vigor—part II

[image: The story of vigor—part III]

Figure D-4. The story of vigor—part III

[image: The story of vigor—part IV]

Figure D-5. The story of vigor—part IV

[image: The story of vigor—part V]

Figure D-6. The story of vigor—part V

[image: The story of vigor—part VI]

Figure D-7. The story of vigor—part VI

[image: The story of vigor—part VII]

Figure D-8. The story of vigor—part VII

[image: The story of vigor—part VIII]

Figure D-9. The story of vigor—part VIII

The source code for vigor is
 available at http://vigor.sourceforge.net.

Amaze Your Friends!

 In the long term, perhaps the most useful items are in
 the collection of vi-related
 information in the FTP archives at alf.uib.no. The original archives were at
 ftp://afl.uib.no/pub/vi. This site has gone
 away, but you can find the archives mirrored at ftp://ftp.uu.net/pub/text-processing/vi.[79] The file INDEX in
 that directory describes what’s in the archives and lists additional
 mirrors that may be geographically closer to you.
Unfortunately, these files were last updated in May of 1995.
 Fortunately, vi’s basic
 functionality has not changed, and the information and macros in the
 archive are still useful. The archive has four subdirectories:
	docs
	Documentation on vi,
 and also some comp.editors
 postings.

	macros
	vi macros.

	comp.editors
	Various materials posted to comp.editors.

	programs
	Source code for vi
 clones for various platforms (and other programs). Take things
 from here with caution, as much of it is out of date.

The docs and macros are the most interesting. The
 docs directory has a large number
 of articles and references, including beginners’ guides, explanations
 of bugs, quick references, and many short “how to” kinds of articles
 (e.g., how to capitalize just the first letter of a sentence in
 vi). There’s even a song about
 vi!
The macros directory has
 over 50 files in it that do different things. We mention just three of
 them here. (Files whose names end in .Z are compressed with the Unix compress program. They can be uncompressed
 with either uncompress or gunzip.)
	evi.tar.Z
	An Emacs “emulator.” The idea behind it is to turn
 vi into a modeless editor
 (one that is always in input mode, with commands done with
 control keys). It is actually done with a shell script that
 replaces the EXINIT
 environment variable.

	hanoi.Z
	This is perhaps the most famous of the unusual uses of
 vi: a set of macros that
 solve the Towers of Hanoi programming problem. This program
 simply displays the moves; it does not actually draw the disks.
 For fun, we have reprinted it in the sidebar later in this
 chapter.

	turing.tar.Z
	This program uses vi to
 implement an actual Turing machine! It’s rather amazing to watch
 it execute the programs.

There are many, many more interesting macros, including perl and RCS modes.
The Towers of Hanoi, vi Version
" From: gregm@otc.otca.oz.au (Greg McFarlane)
" Newsgroups: comp.sources.d,alt.sources,comp.editors
" Subject: VI SOLVES HANOI
" Date: 19 Feb 91 01:32:14 GMT
"
" Submitted-by: gregm@otc.otca.oz.au
" Archive-name: hanoi.vi.macros/part01
"
" Everyone seems to be writing stupid Tower of Hanoi programs.
" Well, here is the stupidest of them all: the hanoi solving
" vi macros.
"
" Save this article, unshar it, and run uudecode on
" hanoi.vi.macros.uu. This will give you the macro file
" hanoi.vi.macros.
" Then run vi (with no file: just type "vi") and type:
" 	:so hanoi.vi.macros
" 	g
" and watch it go.
"
" The default height of the tower is 7 but can be easily changed
" by editing the macro file.
"
" The disks aren't actually shown in this version, only numbers
" representing each disk, but I believe it is possible to write
" some macros to show the disks moving about as well. Any takers?
"
" (For maze solving macros, see alt.sources or comp.editors)
"
" Greg
"
" ------------ REAL FILE STARTS HERE ---------------
set remap
set noterse
set wrapscan
" to set the height of the tower, change the digit in the following
" two lines to the height you want (select from 1 to 9)
map t 7
map! t 7
map L 1G/t^MX/^0^M$P1GJ$An$BGC0e$X0E0F$X/T^M@f^M@h^M$A1GJ@f0lXnPU
map g IL
map I KMYNOQNOSkRTV
map J /^0[^t]*$^M
map X x
map P p
map U L
map A
map B "hyl
map C "fp
map e "fy2l
map E "hp
map F "hy2l
map K 1Go^[
map M dG
map N yy
map O p
map q tllD
map Y o0123456789Z^[0q
map Q 0iT^[
map R $rn
map S r
map T ko0^M0^M^M^[
map V Go/^[

[79] You may have better luck accessing this site with a
 command-line FTP client than with a web browser.

Tastes Great, Less Filling

vi is [[13~^[[15~^[[15~^[[19~^[[18~^ a
muk[^[[29~^[[34~^[[26~^[[32~^ch better editor than this emacs. I know
I^[[14~'ll get flamed for this but the truth has to be
said. ^[[D^[[D^[[D^[[D ^[[D^[^[[D^[[D^[[B^
exit ^X^C quit :x :wq dang it :w:w:w :x ^C^C^Z^D
— Jesper Lauridsen from
 alt.religion.emacs

 We can’t discuss vi
 as part of Unix culture without acknowledging what is perhaps the
 longest running debate in the Unix community:[80]vi versus
 Emacs.
Discussions about which is better have cropped up on comp.editors (and other newsgroups) for
 years and years. (This is illustrated nicely in Figure D-10.) You will find summaries of some of
 these discussions in the many web sites described earlier. You will
 find pointers to more recent versions on the web pages.
[image: It’s not a religious war. Really!]

Figure D-10. It’s not a religious war. Really!

Some of the better arguments in favor of vi are:
	vi is available on every
 Unix system. If you are installing systems, or moving from system
 to system, you might have to use vi anyway.

	You can usually keep your fingers on the home row of the
 keyboard. This is a big plus for touch typists.

	Commands are one (or sometimes two) regular characters; they
 are much easier to type than all of the control and metacharacters
 that Emacs requires.

	vi is generally smaller
 and less resource-intensive than Emacs. Startup times are
 appreciably faster, sometimes up to a factor of 10.

	Now that the vi clones
 have added features such as incremental searching, multiple
 windows, and buffers, GUI interfaces, syntax highlighting and
 smart indenting, and programmability via extension languages, the
 functional gap between the two editors has narrowed significantly,
 if not disappeared entirely.

To be complete, two more items should be mentioned. First, there
 are actually two versions of Emacs that are popular: the original GNU
 Emacs and XEmacs, which is derived from an earlier version of GNU
 Emacs. Both have advantages and disadvantages, and their own sets of
 devotees.[81]
Second, although GNU Emacs has always had vi-emulation packages, they are usually not
 very good. However, the “viper mode” is now reputed to be an excellent
 vi emulation. It can serve as a
 bridge for learning Emacs for those who are interested in doing
 so.
To conclude, always remember that you are the final judge of a
 program’s utility. You should use the tools that make you the most
 productive, and for many tasks, vi
 and its clones are excellent tools.

[80] OK, it’s really a religious war, but we’re trying to be
 nice. (The other religious war, BSD versus System V, was settled
 by POSIX. System V won, although BSD received significant
 concessions. ☺)

[81] Who undoubtedly share a joint distaste for vi! ☺

vi Quotes

 Finally, here are some more vi quotes, courtesy of Bram Moolenaar, Vim’s
 author:
THEOREM: vi is
 perfect.
PROOF: VI in roman numerals is 6. The natural numbers less
 than 6 which divide 6 are 1, 2, and 3. 1 + 2 + 3 = 6. So 6 is a
 perfect number. Therefore, vi is
 perfect.
— Arthur Tateishi

A reaction from Nathan T. Oelger:
So, where does the above leave Vim? VIM in roman numerals
 might be: (1000 – (5 + 1)) = 994, which happens to be equal to
 2*496+2. 496 is divisible by 1, 2, 4, 8, 16, 31, 62, 124, and 248
 and 1+2+4+8+16+31+62+124+248 = 496. So, 496 is a perfect number.
 Therefore, Vim is twice as perfect as vi, plus a couple
 extra bits of goodies. ☺
That is, Vim is better than
 perfect.

This quote seems to sum it up for the true vi lover:
To me vi is zen. To use
 vi is to practice zen. Every
 command is a koan. Profound to the user, unintelligible to the
 uninitiated. You discover truth every time you use it.
— Satish Reddy

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! (exclamation point)
		buffers, interaction with, Buffers and Their Interaction with Windows
	
	cinkeys syntax rules, The cinkeys option
	
	ex commands starting with, Problems Saving Files
	
	mapping keys for insert mode, Mapping Keys for Insert Mode
	
	overriding save warnings, Saving and Exiting Files
	
	for Unix commands, Executing Unix Commands, Filtering text with vi
	

	# (pound sign)
		for alternate
 filename, Calling in New Files
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	meta-information, extracting, Categories of Features
	
	show line numbers command, Defining a Range of Lines
	

	$ (dollar sign)
		cursor movement command, Movement Within a Line, Movement on the current line
	
	for last file line
 (ex), Line Addressing Symbols
	
	marking end of change region, Changing Text
	
	metacharacter, Metacharacters Used in Search Patterns
	

	$MYGVIMRC variable, Starting gvim
	
	% (percent sign)
		buffers, describing, Buffers and Their Interaction with Windows
	
	for current
 filename, Calling in New Files
	
	every line symbol (ex), Global Replacement
	
	matching brackets, A Special Search Command
	
	meta-information, extracting, Categories of Features
	
	representing every line (ex), Line Addressing Symbols
	

	& (ampersand)
		metacharacter, Metacharacters Used in Replacement Strings
	
	to repeat last
 command, More Substitution Tricks
	

	' (apostrophe)
		'' (move to mark) command, The G (Go To) Command, Marking Your Place
	
	marking lines (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	() (parentheses)
		((move cursor) command, Movement by Text Blocks
	
) (move cursor) command, Movement by Text Blocks
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	finding and removing, More Examples of Mapping Keys
	
	as grouping
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	matching, A Special Search Command
	

	(underscore), using in file names, Opening a File
	
	* (asterisk)
		cinkeys syntax rules, The cinkeys option
	

	* (asterisk) metacharacter, Metacharacters Used in Search Patterns
	
	+ (plus sign), Command-Line Options
		\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	move cursor command, Single Movements, Movement by Line, Movement by Line
	
	for next file lines
 (ex), Line Addressing Symbols
	
	running commands when starting vi, Advancing to a Specific Place
	

	+-- marker, as a fold placeholder, Manual Folding
	
	+/ option, Command-Line Options
	
	+? option, Command-Line Options
	
	, (comma)
		for line ranges (ex), ex Commands, Defining a Range of Lines
	
	repeat search command, Current Line Searches
	

	- (hyphen)
		buffers, describing, Buffers and Their Interaction with Windows
	
	manual folding and, Manual Folding
	
	move cursor command, Single Movements, Movement by Line
	
	for previous file lines
 (ex), Line Addressing Symbols
	

	-? option (elvis), Important Command-Line Arguments
	
	-? option (vile), Important Command-Line Arguments
	
	-b option, Command-Line Options
	
	-e option, Command-Line Options
	
	-h option, Command-Line Options
	
	. (dot)
		current line symbol (ex), Line Addressing Symbols
	
	echo command and, Variables
	
	filenames and, Opening a File
	
	meta-information, extracting, Categories of Features
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	
	undo/redo (nvi), Infinite Undo
	

	.viminfo file, Categories of Features
	
	.vimrc startup file
		strftime() function and, Using the strftime() function
	

	/ (slash)
		pathname separator, Opening a File
	
	referring to marks (vile), Visual Mode
	
	search command, The vi Text Editor, Movement by Searches
		opening files at specific place, Advancing to a Specific Place
	

	0 (move cursor) command, Movement Within a Line, Movement on the current line
	
	\1, \2, ...
 metacharacters, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	: (colon)
		:! commands and, Executing Unix Commands
	
	ex commands and, ex Commands
	
	line-editing mode, Problems Opening Files
	
	meta-information, extraction, Categories of Features
	
	using ex commands and, The vi Text Editor
	

	:ls command
		buffers, describing and, Buffers and Their Interaction with Windows
	

	:sball command, Buffer Command Synopsis
	
	:tmenu command, Tooltips
	
	:tselect command, Tag Stacking
	
	:version command, Where to Get Vim
	
	:vertical command, Resizing Command Synopsis
	
	:w (write) command, Read-Only Mode
	
	:w command, saving existing files, Problems Saving Files
	
	:w! command overwriting files, Problems Saving Files
	
	; (semicolon)
		for line ranges (ex), Redefining the Current Line Position
	
	repeat search command, Current Line Searches
	

	<> (angle brackets)
		<< (redirect/here document)
 operator, Here Documents
	
	>> (redirect/append) operator, Appending to a Saved File
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	matching, A Special Search Command
	

	= (equals sign)
		:= (identify line) command, Defining a Range of Lines
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	

	? (question mark)
		\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	search command, The vi Text Editor, Movement by Searches
	

	@ (at sign)
		@ option (vile), Important Command-Line Arguments, Initialization
	
	\@ metacharacter, Extended Regular Expressions
	

	@-functions, @-Functions
	
	[] (brackets)
		[[,]] (move
 cursor) commands, Movement by Text Blocks
	
	[: :]
 metacharacters, POSIX Bracket Expressions
	
	[. .]
 metacharacters, POSIX Bracket Expressions
	
	[= =]
 metacharacters, POSIX Bracket Expressions
	
	metacharacters, Metacharacters Used in Search Patterns
	

	\ (backslash) metacharacter, Metacharacters Used in Search Patterns, Metacharacters Used in Replacement Strings
		\1, \2, ...
 metacharacters, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	\@ metacharacter, Extended Regular Expressions
	
	\b metacharacter, Extended Regular Expressions
	
	\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	\d, \D
 metacharacters, Extended Regular Expressions
	
	\e
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	\E
 metacharacter, Metacharacters Used in Replacement Strings
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\f, \F
 metacharacters, Extended Regular Expressions
	
	\i, \I
 metacharacters, Extended Regular Expressions
	
	\k, \K
 metacharacters, Extended Regular Expressions
	
	\n
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions, Extended Regular Expressions
	
	\p, \P
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\r metacharacter, Extended Regular Expressions
	
	\s, \S
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	\t metacharacter, Extended Regular Expressions
	
	\u and \l
 metacharacters, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\U and \L
 metacharacters, Metacharacters Used in Replacement Strings
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	\w, \W
 metacharacters, Extended Regular Expressions
	

	^ (caret)
		cursor movement command, Movement on the current line
	
	metacharacter, Metacharacters Used in Search Patterns
	
	representing CTRL key, Keystrokes, Keystrokes
		(see also CTRL- commands)
	

	within [] metacharacters, Metacharacters Used in Search Patterns
	

	^] command, Tag Stacking
	
	` (backquote)
		`` (move to mark)
 command, The G (Go To) Command, Marking Your Place
	
	marking characters (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	{ } (braces)
		\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	cinkeys option, The cinkeys option
	
	finding and matching, A Special Search Command
	
	folding and, Folding and Outlining (Outline Mode)
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	| (vertical bar)
		alternation metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	for combining ex
 commands, Combining ex Commands
	
	cursor movement command, Movement on the current line
	
	manual folding and, Manual Folding
	

	~ (tilde)
		:~ (substitute using last search pattern) command
 (ex), More Substitution Tricks
	
	along left screen margin, Opening a File
	
	case conversion command, Changing Case
	
	folding, Manual Folding
	
	as last
 replacement text, Metacharacters Used in Search Patterns
	
	metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	

	~~ (folding), toggling case, Manual Folding
	

A
	a (append) command, Simple Edits, Appending Text, Insert Commands
		ex,
	

	A (append) command, More Ways to Insert Text, Insert Commands
	
	-a option (elvis), Important Command-Line Arguments, Initialization Steps
	
	a status flag, Buffers and Their Interaction with Windows
	
	a: Vim variable, Variables
	
	:ab
 (abbreviation) command (ex), Word Abbreviation,
		commands in .exrc files, The .exrc File
	

	abbreviations of commands, Word Abbreviation, Abbreviations of Vim Commands and Options
	
	absolute line addresses, Defining a Range of Lines
	
	absolute pathnames, Opening a File
	
	Acme editor, The vi Text Editor
	
	“Address
 search hit BOTTOM without matching pattern” message, Repeating Searches
	
	:alias command
 (elvis), Interesting Features
	
	alphabetizing text blocks (example), Sorting Text Blocks: A Sample ex Script
	
	alternate .exrc files, Alternate Environments
	
	alternate filenames (#), Calling in New Files
	
	alternation, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	:amenu command, Basic menu customization
	
	ampersand (&)
		metacharacter, Metacharacters Used in Replacement Strings
	
	to repeat last
 command, More Substitution Tricks
	

	angle brackets (<>)
		<< (redirect/here document)
 operator, Here Documents
	
	>> (redirect/append) operator, Appending to a Saved File
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	matching, A Special Search Command
	

	apostrophe (') command
		'' (move to mark) command, The G (Go To) Command, Marking Your Place
	
	move to mark command, Marking Your Place
	

	appending text, Simple Edits, Appending Text
		from named buffers, Yanking to Named Buffers
	
	to saved files, Appending to a Saved File
	

	:apropos command
 (vile), Online Help and Other Documentation
	
	:ar command, Using the Argument List,
	
	archives on vi (FTP), Amaze Your Friends!
	
	:args command, Using the Argument List,
	
	arity keyword (ctags), The New tags Format
	
	arrays (Vim), Arrays
	
	arrow keys, Single Movements
	
	ASCII characters, Digraphs: Non-ASCII Characters
	
	asterisk (*), Metacharacters Used in Search Patterns
		cinkeys syntax rules and, The cinkeys option
	

	at sign (@)
		@ option (vile), Important Command-Line Arguments, Initialization
	
	\@ metacharacter, Extended Regular Expressions
	

	auto indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	autocmd command, Autocommands, Autocommands and Groups, A Useful Vim Script Example
	
	autocommands, Autocommands–Some Additional Thoughts About Vim Scripting
	
	autoiconify option (elvis), Options
	
	autoindent method, Auto and Smart Indenting
	
	autosave option, Recovering a Buffer
	
	autowrite option, Recovering a Buffer, Some Useful Options
	
	awk data manipulation language, Beyond ex
	

B
	:b (buffer)
 command,
	
	b (move word) command, Movement by Text Blocks
	
	B (move word) command, Movement by Text Blocks
	
	-b option, Editing Binary Files
	
	\b, \B
 metacharacters, Extended Regular Expressions
	
	b: Vim variable, Variables
	
	background color options, Setting the background option
	
	backquote (`)
		`` (move to mark)
 command, The G (Go To) Command, Marking Your Place
	
	marking characters (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	backslash (\) (see \ (backslash) metacharacter)
	
	Backspace key
		deleting in insert mode, vi Commands
	
	moving with, Single Movements
	

	backup files, Backups with Vim
	
	backupcopy option, Backups with Vim
	
	backupdir option, Backups with Vim
	
	backupnext option, Backups with Vim
	
	backupskip option, Backups with Vim
	
	backward searching, Movement by Searches
	
	“Bad file number”
 message, Problems Opening Files
	
	“Bad termpcap entry”
 message, Problems Opening Files
	
	:badd command, Buffer Command Synopsis
	
	:ball command, Buffer Command Synopsis
	
	:bd (bdelete)
 command,
	
	:bdelete
 command, Buffer Command Synopsis
	
	beep mode, Modus Operandi
		(see also command mode)
	

	beginning of line context, The cinkeys option
	
	:behave command
 (gvim), Using the Mouse
	
	:bfirst
 command, Buffer Command Synopsis
	
	:bg (hide window) command
 (nvi), Multiwindow Editing
	
	binary data, editing, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	binary files, editing, Editing Binary Files
	
	binary option (elvis), Arbitrary Length Lines and Binary Data
	
	:bind-key command, The vile Editing Model
	
	black-hole registers, Categories of Features
	
	blank parameter (sessionoptions option), The mksession Command
	
	blinktime option (elvis), Options
	
	block (visual) mode, Visual Mode
		elvis editor, Visual Mode
	
	vile editor, Visual Mode
	

	“Block device
 required” message, Problems Opening Files
	
	“Block special file”
 message, Problems Opening Files
	
	:bmod command, Buffer Command Synopsis
	
	:bnext command, Buffer Command Synopsis
	
	:bNext command, Buffer Command Synopsis
	
	bookmarks, placing, Marking Your Place
	
	Bostic, Keith, Author and History
	
	bottom-line commands, The vi Text Editor
	
	:bprevious
 command, Buffer Command Synopsis
	
	braces ({ })
		\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	cinkeys options and, The cinkeys option
	
	finding and matching, A Special Search Command
	
	folding and, Folding and Outlining (Outline Mode)
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	brackets ([])
		[[,]] (move
 cursor) commands, Movement by Text Blocks
	
	[: :]
 metacharacters, POSIX Bracket Expressions
	
	[. .]
 metacharacters, POSIX Bracket Expressions
	
	[= =]
 metacharacters, POSIX Bracket Expressions
	
	matching, A Special Search Command
	
	metacharacters, Metacharacters Used in Search Patterns
	

	branching undos, Undoing Undos
	
	:browse command, Tag Stacks
	
	bs values (lptype option), Display Modes
	
	Buettner, Kevin, vile: vi Like Emacs
	
	bufdisplay option (elvis), Display Modes
	
	bufdo command, Buffer Commands
	
	BufEnter autocommand, Options During Splits
	
	buffer variables, Buffer Variables
	
	buffers, Opening and Closing Files, Making Use of Buffers
		autowrite and autosave options, Recovering a Buffer
	
	commands, Buffer Commands, Command-Line History and Completion
		for summary, Review of vi Buffer and Marking Commands
	

	copying file contents into, Copying a File into Another File
	
	executing contents of, @-Functions
	
	hidden, Hidden Buffers
	
	hold buffer (metacharacters), Metacharacters Used in Search Patterns, Extended Regular Expressions, Extended Regular Expressions
	
	interaction with windows, Buffers and Their Interaction with Windows–Playing Tag with Windows
	
	multiple windows, editing, Multiple Windows in Vim
	
	multiwindow editing and, Multiwindow Editing
	
	named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
		arbitrarily naming (nvi), Interesting Features
	

	numbered buffers for deletions/yanks, Moving Text, Making Use of Buffers
	
	preserving manually, Recovering a Buffer
	
	recovering after system failure, Recovering a Buffer
	
	renaming (ex), Renaming the Buffer
	
	special, Vim’s Special Buffers
	

	buffers command,
	
	:buffers command, Buffers and Their Interaction with Windows, Buffer Command Synopsis
	
	buffers parameter (sessionoptions
 option), The mksession Command
	
	BufLeave autocommand, Options During Splits
	
	BufNewFile command, Autocommands
	
	BufRead command, Autocommands
	
	BufReadPost command, Autocommands
	
	BufReadPre command, Autocommands
	
	BufWrite command, Autocommands
	
	BufWritePre command, Autocommands
	
	built-in calculator, elvis, Interesting Features
	
	:bunload
 command, Buffer Command Synopsis
	

C
	c (change) command, Simple Edits, Changing Text, Insert Commands,
		cc command, Lines–Lines
	
	cw command, Words–Words
	
	examples of use, Review of Basic vi Commands, More Command Combinations
	
	review examples of, Changing through searching
	

	C (change) command, Lines, Insert Commands
	
	c option
		:s command, Confirming Substitutions
	

	-c option, Advancing to a Specific Place, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-C option, Command-Line Options
	
	c$ command, Changing and deleting text
	
	C/C++ programming languages
		cmode mode (vile), Major Modes
	
	comments, placing (example), More Examples of Mapping Keys
	

	:calc command
 (elvis), Interesting Features
	
	calculator, elvis, Interesting Features
	
	capitals, changing to lowercase, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	Caps Lock key, Problem Checklist
	
	caret (^)
		cursor movement command, Movement on the current line
	
	metacharacter, Metacharacters Used in Search Patterns
	
	representing CTRL key, Keystrokes, Keystrokes
		(see also CTRL- commands)
	

	within [] metacharacters, Metacharacters Used in Search Patterns
	

	case sensitivity, The vi Text Editor, Opening a File, Problem Checklist, Metacharacters Used in Replacement Strings
		case-insensitive pattern searches, The :set Command
	
	of commands, The vi Text Editor
	
	pattern searching, Some Useful Options
	

	case, converting, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	cc command, Edit-Compile Speedup, Changing and deleting text
	
	ccprg option (elvis), Edit-Compile Speedup
	
	cd command,
	
	cedit option (nvi), Command-Line History and Completion
	
	center command,
	
	change word (cw) command, The vi Text Editor
	
	changing (replacing) text, Simple Edits, Changing Text
		by characters, Characters
	
	globally, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	substitution tricks, More Substitution Tricks
	

	by lines, Lines–Lines, Substituting text
	
	searching and, Changing through searching
	
	by words, Words–Words
	

	character classes, POSIX Bracket Expressions–POSIX Bracket Expressions
	
	“Character special
 file” message, Problems Opening Files
	
	character strings, Movement by Searches
	
	characters, Review of Basic vi Commands
		(see also lines; text; words)
	
	case conversions, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	deleting, vi Commands, Characters
	
	marking with ` (vile), Visual Mode
	
	matching (see metacharacters)
	
	moving by, Single Movements
	
	replacing (changing) singly, Characters
	
	searching for in lines, Current Line Searches
	
	transposing, Transposing two letters
	

	cindent method, Auto and Smart Indenting
	
	cinkeys cindent option, cindent
	
	cinoptions cindent option, cindent, The cinoptions option
	
	cinwords cindent option, cindent, The cinwords option
	
	class keyword (ctags), The New tags Format
	
	clicking in elvis, Mouse Behavior
	
	-client option
 (elvis), The Basic Window
	
	clipboard
		Windows, gvim in Microsoft Windows
	
	xvile and, Clipboard
	

	clo (close) command,
	
	clones, vi, And These Are My Brothers, Darrell, Darrell, and
 Darrell–A Look Ahead, Editor Comparison Summary
		(see also specific clone)
	
	enhanced tags, Enhanced Tags–Exuberant ctags and Vim
	
	feature summary, Editor Comparison Summary
	
	GUI interfaces, GUI Interfaces
		elvis editor, GUI Interfaces–Options, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, GUI Interfaces–winvile Basic Appearance and Functionality, GUI Interfaces–winvile Basic Appearance and Functionality, Syntax Highlighting
	

	improvements over vi, Improved Facilities–Mode Indicators
		elvis editor, Improved Editing Facilities–Visual Mode
	
	nvi editor, Improvements for Editing–Left-Right Scrolling
	
	vile editor, Improved Editing Facilities–Visual Mode
	

	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	programming assistance, Programming Assistance–Syntax Highlighting
		elvis editor, Programming Assistance–Syntax Highlighting
	
	vile editor, Programming Assistance–Syntax Highlighting
	

	regular expressions, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	set command options (list), Setting Options
	

	:close command
 (elvis), Multiwindow Editing
	
	:close[!] command, Closing and Quitting Windows
	
	cmd command, Conditional Split Commands, Command-Line Options
		windo and bufdo commands, Buffer Commands
	

	cmdheight option, Window Sizing Options
	
	cmode mode (vile), Major Modes
	
	:cnewer command, Compiling and Checking Errors with Vim
	
	:cnext command, Compiling and Checking Errors with Vim
	
	:co (copy) command
 (ex), Editing with ex,
	
	coffee mugs with vi logo, vi for Java Lovers
	
	:colder command, Compiling and Checking Errors with Vim
	
	collating symbols, POSIX Bracket Expressions
	
	colon (:)
		:! commands and, Executing Unix Commands
	
	ex commands and, The vi Text Editor, ex Commands
	
	line-editing mode, Problems Opening Files
	
	meta-information, extracting, Categories of Features
	

	:color command, The colorscheme command
	
	colors
		GUI interfaces, GUI Interfaces
	
	schemes, What’s Your Favorite Color (Scheme)?–Dynamic File Type Configuration Through Scripting
	

	colorscheme command, What’s Your Favorite Color (Scheme)?, Using the strftime() function, Customization, The colorscheme command, Setting the background option
		global variables, using Vim scripts, Tuning a Vim Script with Global Variables
	

	comma (,)
		for line ranges (ex), ex Commands, Defining a Range of Lines
	
	repeat search command, Current Line Searches
	

	command completion, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	command mode, The vi Text Editor, Modus Operandi, vi Commands, Command Mode
		gvim, using the mouse, Using the Mouse
	
	keystroke maps, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	useful examples of, More Examples of Mapping Keys
	

	mode indicators, Mode Indicators
	

	command-line
		history, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	multiwindow initiation from, Multiwindow Initiation from the Command Line (Shell)
	
	options, Options When Starting vi, Startup and Initialization Options, Command-Line Options
		elvis editor, Important Command-Line Arguments–Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments–Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments–Important Command-Line Arguments
	

	syntax, Command-Line Syntax–Review of vi Operations
	

	commands, The vi Text Editor, Problems with vi Commands
		abbreviations of Vim, Abbreviations of Vim Commands and Options
	
	auto, Autocommands
		deleting, Deleting Autocommands–Deleting Autocommands, Deleting Autocommands
	
	groups, Autocommands and Groups
	

	cw (change word), The vi Text Editor
	
	echo, Using the strftime() function
	
	ex, Quitting Without Saving Edits
	
	execute, The execute Command
	
	i (insert), The vi Text Editor
	
	saving, Saving Commands
	
	:w
 command, saving edited files, Problems Saving Files
	
	:w!, overwriting
 files, Problems Saving Files
	
	window (Vim), Window Commands (Vim)
	
	wq, saving edits, Saving and Quitting a File
	

	comment display mode (elvis), Syntax Highlighting
	
	comments
		in ex scripts, Comments in ex Scripts
	
	placing markers around lines
 (example), More Examples of Mapping Keys
	

	compatible option, Categories of Features
	
	compiling program source code, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	completion commands, Insertion Completion Commands–Some Final Comments on Vim Autocompletion
	
	completion, command-line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	conditional execution, Conditional Execution
	
	configuration files
		gvim, Starting gvim
	

	:configure command
 (vile), Building xvile
	
	confirming substitutions, Confirming Substitutions
	
	context-sensitive global replacement, Context-Sensitive Replacement
	
	copies of files, working in buffers, Opening and Closing Files
	
	:copy command (ex), Editing with ex
	
	:copy-to-clipboard command
 (xvile), Clipboard
	
	copying files into other files, Copying a File into Another File
	
	copying text, Copying Text
		by lines, Editing with ex
	
	named deletion/yank buffers, Yanking to Named Buffers, Edits Between Files
	
	yank-and-put, Simple Edits
		numbered deletion/yank buffers, Moving Text, Making Use of Buffers
	

	COSE standards, The Session File
	
	countzF fold command, The Fold Commands
	
	:cprevious
 command, Compiling and Checking Errors with Vim
	
	cr values (lptype option), Display Modes
	
	cscope program, Tag Stacks
	
	ctags command (Unix), Using Tags
		Exuberant ctags program, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	tag stacks, Tag Stacks–Exuberant ctags and Vim
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	CTRL- commands
		CTRL-A CTRL-] (next tag; vile), Tag Stacks
	
	CTRL-@, Repeat
	
	CTRL-B, CTRL-F (scrolling), Scrolling the Screen
	
	CTRL-] (find
 tag), Tag Stacks–Exuberant ctags and Vim, Tag Stacks, Tag Stacks, Tag Stacks
	
	CTRL-^ command, Switching Files from vi
	
	CTRL-D, CTRL-U (scrolling), Scrolling the Screen
	
	CTRL-E, CTRL-Y (scrolling), Scrolling the Screen
	
	CTRL-G (display line numbers), Movement by Line Number, Defining a Range of Lines
	
	CTRL-L, CTRL-R (redrawing), Redrawing the Screen
	
	CTRL-T (find tag), Solaris vi, Tag Stacks, Tag Stacks
	
	CTRL-T CTRL-X CTRL-] (next tag;
 vile), Tag Stacks
	
	CTRL-V, Protecting Keys from Interpretation by ex
	
	CTRL-V command (elvis block mode), Visual Mode
	
	CTRL-W commands
		elvis vi-mode window commands, Multiwindow Editing
	
	nvi window cycle commands, Multiwindow Editing
	

	CTRL-X CTRL-R, CTRL-X CTRL-L (scroll;
 vile), Left-Right Scrolling
	
	CTRL-X CTRL-S, CTRL-X CTRL-R (search;
 vile), Incremental Searching
	
	cursors, moving inside windows and, Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	resizing windows, Window Resize Commands
	
	word completions and, Keyword and Dictionary Word Completion
	

	curdir parameter (sessionoptions
 option), The mksession Command
	
	curly braces ({ })
		{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	finding and matching, A Special Search Command
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	current file, % for, Calling in New Files
	
	current line (ex)
		. symbol for, Line Addressing Symbols
	
	redefining, Redefining the Current Line Position
	

	cursor, moving, Moving the Cursor, Movement Within a Screen
		commands for, Review of vi Motion Commands
	
	to marks, Marking Your Place
	
	opening files at specific place, Advancing to a Specific Place
	
	by searching for
 patterns, Movement by Searches, Movement by Line Number
	
	by text blocks, Movement by Text Blocks, Movement by Text Blocks
	
	xvile interface, Setting the cursor position and mouse motions
	

	CursorMoved command, Autocommands
	
	CursorMoverI command, Autocommands
	
	customizing editing environment, Customizing vi
	
	cut-and-paste, Simple Edits, Moving Text
		multiple windows in Vim and, Multiple Windows in Vim
	

	cw (change word) command, The vi Text Editor, Changing and deleting text
	
	Cygwin, Completion by dictionary
	

D
	d (delete) command, Simple Edits, Deleting Text
		db, d$, d0 commands, Words
	
	dd command, Lines
	
	de and dE commands, Words
	
	df command, Current Line Searches
	
	dw command, Words
	
	examples of use, Review of Basic vi Commands, More Command Combinations
	
	with named buffers, Copying Text, Yanking to Named Buffers
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	review examples of, Changing through searching
	

	D (delete) command, Lines
	
	:d (delete) command
 (ex), Editing with ex
	
	-d option, Command-Line Options
	
	-D option, Command-Line Options
	
	d$ command, Changing and deleting text
	
	\d, \D
 metacharacters, Extended Regular Expressions
	
	database, switching items in (example), Switching Items in a Textual Database
	
	date command (Unix), Executing Unix Commands
	
	dav, Editing Files in Other Places
	
	dd (delete line) command, Manual Folding, Changing and deleting text
	
	“default” command
 mode, The vi Text Editor
	
	:delete command (ex), Editing with ex
	
	:delete-other-windows
 command (vile), Multiwindow Editing
	
	:delete-window command
 (vile), Multiwindow Editing
	
	:edit-file command
 (vile), Multiwindow Editing
	
	deleting
		lines, Editing with ex
	
	parentheses (example), More Examples of Mapping Keys
	
	recovering deletions, Recovering Deletions
	
	text, Simple Edits, Deleting Text, Current Line Searches
		by characters, vi Commands, Characters
	
	with ex editor, Search Patterns
	
	by lines, Lines
	
	named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	undoing deletions, Problems with deletions
	
	by words, Words
	

	:describe-function
 command (vile), Online Help and Other Documentation
	
	:describe-key
 command (vile), Online Help and Other Documentation
	
	df command, Problems Saving Files, Current Line Searches, Changing and deleting text
	
	dG command, Changing and deleting text
	
	:di (display)
 command
		elvis editor, Display Modes
	
	nvi editor, Multiwindow Editing, Tag Stacks
	

	Dickey, Thomas, vile: vi Like Emacs
	
	dictionary option, Completion by dictionary
	
	diff command, Multiple Windows in Vim, What’s the Difference?
	
	diff method, creating folds, Folding and Outlining (Outline Mode)
	
	digraphs, Digraphs: Non-ASCII Characters
	
	directories, navigating and changing, Navigating and Changing Directories–Backups with Vim
	
	directory buffer, Vim’s Special Buffers
	
	“Directory” message, Problems Opening Files
	
	“Disk quota
 has been reached” message, Problems Saving Files
	
	:display (di)
 command
		elvis editor, Display Modes
	
	nvi editor, Multiwindow Editing, Tag Stacks
	

	display modes, elvis, Syntax Highlighting, Display Modes–Display Modes
	
	:display syntax
 command (elvis), Syntax Highlighting, Display Modes–Display Modes
	
	dL command, Changing and deleting text
	
	dn command, Changing and deleting text
	
	documentation
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vi-related archives (FTP), Amaze Your Friends!
	
	vi-related web sites, vi Web Sites
	
	vile editor, Online Help and Other Documentation
	

	dollar sign ($)
		cursor movement command, Movement Within a Line, Movement on the current line
	
	for last file line
 (ex), Line Addressing Symbols
	
	marking end of change region, Changing Text
	
	metacharacter, Metacharacters Used in Search Patterns
	

	dot (.)
		current line symbol (ex), Line Addressing Symbols
	
	echo command and, Variables
	
	filenames and, Opening a File
	
	meta-information, extracting, Categories of Features
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	
	undo/redo (nvi), Infinite Undo
	

	double quote (XXX_DQUOTE) command, Recovering Deletions, Yanking to Named Buffers
	
	dt command, Changing and deleting text
	
	dumb values (lptype option), Display Modes
	
	dw command, Changing and deleting text
	
	d^ command, Changing and deleting text
	
	d} command, Changing and deleting text
	

E
	:e (edit file)
 command (ex), Calling in New Files,
		:e! command, Calling in New Files
	

	e (move cursor) command, Movement by Text Blocks
	
	E (move cursor) command, Movement by Text Blocks
	
	:e command, Accessing Multiple Files
	
	\E
 metacharacter, Metacharacters Used in Replacement Strings
	
	\e
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	:e! ENTER command, Quitting Without Saving Edits
	
	eadirection option, Window Sizing Options
	
	“easy gvim” (MS
 Windows), Graphical Vim (gvim)
	
	echo command, Using the strftime() function
	
	echoing of commands, The vi Text Editor
	
	Eclipse, Vim Enhancements for Programmers
	
	ed line editor, The vi Text Editor
	
	ed text editor, The vi Text Editor
	
	edcompatible option, More Substitution Tricks
	
	:edit command, Buffers and Their Interaction with Windows
	
	:Edit command
 (nvi), Multiwindow Editing
	
	edit commands, Edit Commands
	
	edit-compile speedup, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	editing, Simple Editing–Review of Basic vi Commands
		clone improvements over vi, Improved Facilities–Mode Indicators, Improvements for Editing–Left-Right Scrolling, Improved Editing Facilities–Visual Mode, Improved Editing Facilities–Visual Mode
	
	customizing editing environment, Customizing vi
	
	ex commands on command line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	ex editor for, Editing with ex
	
	lists of files, More Examples of Mapping Keys
	
	multiple files, Editing Multiple Files
	
	read-only mode, Read-Only Mode
	
	recovering the buffer, Recovering a Buffer
	
	replacing text (see replacing text)
	
	source code, advice for, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags, Enhanced Tags–Exuberant ctags and Vim
	

	transparent for Vim, Categories of Features
	
	using multiple windows, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	vile editing model, The vile Editing Model
	

	else blocks, Conditional Execution
	
	elseif blocks, Conditional Execution
	
	elvis (vi clone), Author and History, Elvis–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	future of, elvis Futures
	
	GUI interfaces for, GUI Interfaces–Options
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improved Editing Facilities–Visual Mode
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features–Pre- and Post-Operation Control Files
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	print management, Display Modes
	
	programming assistance, Programming Assistance–Syntax Highlighting
	
	set command options (list), elvis 2.2 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks
	
	word abbreviations, Word Abbreviation
	

	“elvis ex history”
 buffer, Command-Line History and Completion
	
	elvis.arf file, Display Modes, Pre- and Post-Operation Control Files
	
	elvis.awf file, Pre- and Post-Operation Control Files
	
	elvis.brf file, Arbitrary Length Lines and Binary Data, Pre- and Post-Operation Control Files
	
	elvis.bwf file, Pre- and Post-Operation Control Files
	
	elvis.ini script, Initialization Steps
	
	elvis.msg file, Initialization Steps, Interesting Features
	
	ELVISPATH environment variable (elvis), Initialization Steps
	
	elvispath option (elvis), Initialization Steps
	
	Emacs text editor, The vi Text Editor, Graphical Vim (gvim)
		vi editor versus, Tastes Great, Less Filling
	
	vile editing model, The vile Editing Model
	

	END key, mapping, Mapping Other Special Keys
	
	endfunction statement, Defining Functions
	
	ENTER command, Quitting Without Saving Edits
	
	Enter key
		moving with, Single Movements, Movement by Line
	
	newlines in insert mode, Movement Within a Line
	

	enum keyword (ctags), The New tags Format
	
	epson values (lptype option), Display Modes
	
	equalalways option, Window Sizing Options
	
	equals sign (=)
		:= (identify line) command, Defining a Range of Lines
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	

	equivalence classes, POSIX Bracket Expressions
	
	:er,
 errlist commands (elvis), Edit-Compile Speedup
	
	erasing (see deleting)
	
	error finder, vile, Edit-Compile Speedup
	
	errorformat option, Compiling and Checking Errors with Vim
	
	errors, compiling and checking, Compiling and Checking Errors with Vim–Some Final Thoughts on Vim for Writing Programs
	
	ESC for command mode, vi Commands
	
	ESC key
		command mode, entering, Modus Operandi
	

	/etc/vi.exrc file
 (nvi), Initialization
	
	:eval command
 (elvis), Interesting Features
	
	ex commands, Quitting Without Saving Edits, ex Commands
		combining, Combining ex Commands
	
	editing on command line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	executing Unix commands, Executing Unix Commands
	
	line addresses, ex Commands, Line Addresses
		ranges of lines, Defining a Range of Lines, Redefining the Current Line Position
	

	line addressing
		redefining current line, Redefining the Current Line Position
	
	relative addressing, Line Addressing Symbols
	
	symbols for, Line Addressing Symbols
	

	opening files and, Problems Opening Files
	
	saving and exiting, Saving and Quitting a File, Saving and Exiting Files
	
	saving files and, Problems Saving Files
	
	tag stacking and, Tag Stacking
	

	ex line editor, The vi Text Editor
	
	ex scripts, Using ex Scripts
	
	ex text editor, The vi Text Editor, Introducing the ex Editor
		basics of, ex Basics
	
	commands, Alphabetical Summary of ex Commands–
	
	editing with, Editing with ex
	
	executing buffers from, Executing Buffers from ex
	
	filtering text with, Filtering text with ex
	
	invoking on multiple files, Looping in a Shell Script
	
	using ex commands in vi, The vi Text Editor
	

	exclamation point (!)
		buffers, interaction with, Buffers and Their Interaction with Windows
	
	cinkeys syntax rules, The cinkeys option
	
	ex commands starting with, Problems Saving Files
	
	mapping keys for insert mode, Mapping Keys for Insert Mode
	
	overriding save warnings, Saving and Exiting Files
	
	for Unix commands, Executing Unix Commands, Filtering text with vi
	

	“Executable” message, Problems Opening Files
	
	execute command, The execute Command
	
	executing text from buffers, @-Functions
	
	EXINIT environment variable, Customizing vi
		elvis editor, Initialization Steps
	
	nvi editor, Initialization
	

	“[Existing file]”
 message, Problems Saving Files
	
	exists() function, The exists() Function
	
	exiting ex (into vi), Problem Checklist
	
	exiting vi, Saving and Quitting a File, Saving and Exiting Files
	
	expr method, creating folds, Folding and Outlining (Outline Mode)
	
	expressions, Expressions
	
	.exrc files, Customizing vi, The .exrc File, Initialization, Example .exrc File
		security concerning (elvis), Interesting Features
	

	exrc option, Alternate Environments, Initialization, Initialization Steps
	
	extended regular expressions, Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	extended tags file format, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	extensions, Extensions
	
	Exuberant ctags program, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	:exusage command
 (nvi), Online Help and Other Documentation
	

F
	:f (file) command,
	
	f (search line) command, Current Line Searches
	
	F (search line) command, Current Line Searches
	
	-f option (elvis), Important Command-Line Arguments
	
	-F option, Important Command-Line Arguments
	
	\f, \F
 metacharacters, Extended Regular Expressions
	
	:fg (uncover window)
 command (nvi), Multiwindow Editing
	
	:Fg (uncover window)
 command (nvi), Multiwindow Editing
	
	“File exists”
 message, Problems Saving Files
	
	“File is read only”
 message, Problems Opening Files, Problems Saving Files
	
	file keyword (ctags), The New tags Format
	
	“File system is full”
 message, Problems Saving Files
	
	“File to load” prompt, The Toolbar
	
	filec option (nvi), Command-Line History and Completion
	
	files
		accessing multiple, Accessing Multiple Files
	
	copying into other files, Copying a File into Another File
	
	current and alternate (% and #), Calling in New Files
	
	deleting, Problems Saving Files
	
	editing (see editing)
	
	editing in other places, Editing Files in Other Places
	
	executing ex scripts on, Using ex Scripts
	
	extensions, Dynamic File Type Configuration Through Scripting
	
	filenames, Opening a File, ex Commands
	
	iterating through lists of, More Examples of Mapping Keys
	
	multiwindow editing and, Multiwindow Initiation from the Command Line (Shell)
	
	opening, Opening a File
		multiple at once, Invoking vi on Multiple Files, Calling in New Files
	
	previous file, Switching Files from vi
	
	read-only mode, Read-Only Mode
	
	at specific place, Advancing to a Specific Place
	

	problems opening, Problems Opening Files
	
	quitting (see quitting vi)
	
	reading as vi environments, Alternate Environments
	
	renaming buffer (ex), Renaming the Buffer
	
	saving, Problems Saving Files (see saving edits)
	
	writing (see writing the buffer)
	

	:files command, Buffers and Their Interaction with Windows, Buffer Command Synopsis
	
	FileType command, Autocommands
	
	filtering text through Unix commands, Filtering Text Through a Command
	
	:find-file command
 (vile), Multiwindow Editing
	
	“First address
 exceeds second” message, Redefining the Current Line Position
	
	first line of file
		moving to, Movement Within a Screen
	

	firstx, firsty option (elvis), Options
	
	fold command,
	
	foldc command,
	
	foldcolumn margin, Manual Folding
	
	foldenable, setting, A Few Words About the Other Fold Methods
	
	folding, Folding and Outlining (Outline Mode)
		manual, Manual Folding–Outlining
	

	foldlevel command, Outlining
	
	foldo command,
	
	folds parameter (sessionoptions option), The mksession Command
	
	fonts (see GUI interfaces)
	
	for loops, Looping in a Shell Script
	
	formatting codes, The vi Text Editor
	
	Fox, Paul, vile: vi Like Emacs
	
	Fred Fish disk 591, Author and History
	
	FreeBSD, Completion by dictionary
	
	FTP, Editing Files in Other Places
		archives on vi, Amaze Your Friends!
	

	function display mode (elvis), Syntax Highlighting
	
	function keys, mapping, Mapping Function Keys
	
	function keyword (ctags), The New tags Format
	
	function statement, Defining Functions
	
	functions
		defining, Defining Functions
	
	exists(), The exists() Function–The exists() Function
	
	internal, Internal Functions–Internal Functions, Internal Functions
	
	strftime, Using the strftime() function
	

G
	:g (global
 replacement) command (ex), Context-Sensitive Replacement,
		collecting lines with (example), Collecting Lines
	
	pattern-matching examples, Pattern-Matching Examples
	
	repeating commands with (example), Using :g to Repeat a Command
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	g (global) command
 (ex), Global Searches
	
	G (go to) command, The G (Go To) Command
	
	g option (:s command), Global Replacement
	
	-g option, GUI Options and Command Synopsis
		gvim, Starting gvim
	

	-G option (elvis), Important Command-Line Arguments
	
	g: Vim variable, Variables
	
	gg option, Line numbering
	
	gI command, Insert Commands
	
	gJ command, Copying and moving
	
	global replacement, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	examples of, Pattern-Matching Examples
	
	global pattern-matching rules, Pattern-Matching Rules
	
	pattern-matching rules
		replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	global searches (ex), Global Searches
	
	globals parameter (sessionoptions
 option), The mksession Command
	
	glossary
		converting to troff (example), A Complex Mapping Example
	

	GNU Emacs text editor, The vi Text Editor
	
	gp command, Changing and deleting text
	
	gP command, Changing and deleting text
	
	gqap command, Changing and deleting text
	
	Graphical User Interfaces (see GUI interfaces)
	
	Graphical Vim (see gvim)
	
	groups (syntax highlighting), Customization
	
	:gui command, GUI Options and Command Synopsis
		elvis, The Toolbar
	

	GUI interfaces, Categories of Features
		elvis editor, GUI Interfaces–Options
		display modes, Syntax Highlighting, Display Modes–Display Modes
	

	gvim, Graphical Vim (gvim)–GUI Options and Command Synopsis
	
	vi clones, GUI Interfaces
	
	vile editor, GUI Interfaces–Adding menus
	

	guicursor option, GUI Options and Command Synopsis
	
	guifont option, GUI Options and Command Synopsis
	
	guifontset option, GUI Options and Command Synopsis
	
	guifontwide option, GUI Options and Command Synopsis
	
	guiheadroom option, GUI Options and Command Synopsis
	
	guioptions option, Scrollbars, GUI Options and Command Synopsis
	
	guitablabel option, GUI Options and Command Synopsis
	
	guitabtooltip option, GUI Options and Command Synopsis
	
	guw command, Changing and deleting text
	
	gUw command, Changing and deleting text
	
	gvim, Moving Around Windows (Getting Your Cursor from Here to
 There), Graphical Vim (gvim)
		menus, Useful Menus
	
	mouse behavior and, Using the Mouse–Useful Menus
	
	resizing windows and, Resizing Windows
	
	starting, Starting gvim
	
	tabbed editing, Tabbed Editing
	

	$GVIMINIT
 environment variable, Starting gvim
	
	.gvimrc startup
 file, Starting gvim
		arrays and, Arrays
	
	colorscheme command and, What’s Your Favorite Color (Scheme)?
	
	functions, defining, Defining Functions
	

	gzip utility, A Look Ahead
	
	g~w command, Changing and deleting text
	

H
	H (home) command, Movement Within a Screen
	
	h (move cursor) command, Single Movements, Movement on the current line
	
	-h option
		vile editor, Important Command-Line Arguments
	

	h status flag, Buffers and Their Interaction with Windows
	
	Haley, Chuck, Author and History
	
	hash mark (see pound sign (#))
	
	help
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vile editor, Online Help and Other Documentation
	

	help buffer, Vim’s Special Buffers
	
	:help command, Buffers and Their Interaction with Windows
	
	:help (:h) command
 (vile), Online Help and Other Documentation
	
	--help option, Multiwindow Editing Inside Vim
	
	help parameter (sessionoptions option), The mksession Command
	
	here documents, Here Documents
	
	hex display mode (elvis), Arbitrary Length Lines and Binary Data, Display Modes
	
	hid (hide) command,
	
	hidden buffers, Hidden Buffers
	
	Hiebert, Darren, Exuberant ctags
	
	highlight command, The highlight command
	
	highlight option, Customization
	
	:historical-buffer
 command (vile), Multiwindow Editing
	
	[History] buffer
 (vile), Command-Line History and Completion
	
	history, command-line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	hold buffer, Metacharacters Used in Search Patterns, Extended Regular Expressions, Extended Regular Expressions
	
	home (see first line of file)
	
	HOME key, mapping, Mapping Other Special Keys
	
	$HOME/.nexrc file
 (nvi), Initialization
	
	horizontal scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	horizontally splitting windows, Multiwindow Initiation from the Command Line (Shell)
	
	horizscroll option, Left-Right Scrolling
	
	Horton, Mark, Author and History
	
	hp values (lptype option), Display Modes
	
	HTML, HTML Your Text
	
	html display mode (elvis), Tag Stacks, Display Modes–Display Modes
	
	hyphen (-)
		buffers, describing, Buffers and Their Interaction with Windows
	
	manual folding and, Manual Folding
	
	move cursor command, Single Movements, Movement by Line
	
	for previous file lines
 (ex), Line Addressing Symbols
	

I
	i (insert) command, The vi Text Editor, vi Commands, Insert Commands,
	
	I (insert) command, More Ways to Insert Text, Insert Commands
	
	i flag (gvim mouse option), Using the Mouse
	
	-i option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	

	\i, \I
 metacharacters, Extended Regular Expressions
	
	ibm values (lptype option), Display Modes
	
	ic option, Metacharacters Used in Replacement Strings, The :set Command
	
	IDEs (Integrated Development
 Environments), Categories of Features, Vim Enhancements for Programmers
	
	if...then...else block, Conditional Execution, Arrays
	
	ignorecase option, Some Useful Options
	
	include files (C), Completion by keyword in current file and included
 files
	
	:incremental-search command
 (vile), Incremental Searching
	
	incremental searching, Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	incsearch option
		elvis editor, Incremental Searching
	
	Vim editor, Incremental Searching
	

	indent method, creating folds, Folding and Outlining (Outline Mode)
	
	indentation, Indentation Control
	
	indentexpr method, Auto and Smart Indenting
	
	indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	infinite undo facility, Infinite Undo
		elvis editor, Infinite Undo
	
	nvi editor, Infinite Undo
	
	vile editor, Infinite Undo
	

	initialization
		elvis editor, Initialization
	
	nvi editor, Initialization
	
	vile editor, Initialization
	

	initialization for Vim, Categories of Features
	
	inputtab option (elvis), Command-Line History and Completion
	
	insert (i) command, The vi Text Editor,
	
	insert commands, Insert Commands
	
	insert mode, The vi Text Editor, Modus Operandi, Insert Mode
		gvim, using the mouse, Using the Mouse
	
	mapping keys for, Mapping Keys for Insert Mode
	
	mode indicators, Mode Indicators
	
	word abbreviations, Word Abbreviation
	

	inserting text, More Ways to Insert Text
		a (append) command, Simple Edits, Appending Text
	
	handling long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	in insert mode, vi Commands
	
	repeating insert with CTRL-@, Repeat
	

	insertion completion command, Insertion Completion Commands–Some Final Comments on Vim Autocompletion
	
	insertion-completion capabilities, Keyword and Dictionary Word Completion
	
	Integrated Development Environments
 (IDEs), Categories of Features, Vim Enhancements for Programmers
	
	interfaces for vi clones, GUI Interfaces
		elvis editor, GUI Interfaces–Options
		display modes, Syntax Highlighting, Display Modes–Display Modes
	

	vile editor, GUI Interfaces–Adding menus
	

	internal functions, Internal Functions
	
	internationalization support
		elvis editor, Interesting Features
	
	nvi editor, Interesting Features
	

	Internet, vi and, vi and the Internet
	
	invoking vi
		command-line options, Options When Starting vi
	
	on multiple files, Invoking vi on Multiple Files
	

	isfname option (Vim), Extended Regular Expressions
	
	isident option (Vim), Extended Regular Expressions, Extended Regular Expressions
	
	iskeyword option (Vim), Extended Regular Expressions, Completion by keyword in file
	
	isprint option (Vim), Extended Regular Expressions
	

J
	J (join) command, Joining Two Lines with J, Copying and moving
	
	j (move cursor) command, Single Movements, Movement by Line
	
	joining lines, Joining Two Lines with J
	
	Joy, Bill, Author and History
	
	ju (jump) command,
	

K
	k (move cursor) command, Single Movements, Movement by Line
	
	\k, \K
 metacharacters, Extended Regular Expressions
	
	keystrokes, remembering with :map, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	useful examples of, More Examples of Mapping Keys
	

	keyword completion, Categories of Features, Keyword and Dictionary Word Completion–Tag Stacking
	
	keyword display mode (elvis), Syntax Highlighting
	
	kill ring (see deleting text, buffers for)
	
	kind keyword (ctags), The New tags Format
	
	Kirkendall, Steve, Elvis
	

L
	L (last line) command, Movement Within a Screen
	
	l (move cursor) command, Single Movements, Movement on the current line
	
	\l
 metacharacter, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\L
 metacharacter, Metacharacters Used in Replacement Strings
	
	-l option, Command-Line Options
	
	-L option, Command-Line Options
	
	l: Vim variable, Variables
	
	:last command (elvis,
 Vim), Using the Argument List
	
	last line of file
		$ symbol for (ex), Line Addressing Symbols
	
	moving to, Movement Within a Screen
	

	LaTeX formatter, The vi Text Editor
	
	left/right scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	leftright option (nvi), Left-Right Scrolling, Left-Right Scrolling
	
	:let command, The exists() Function
	
	line editors, The vi Text Editor, The vi Text Editor
	
	line numbers, Movement Within a Line
		displaying, Movement by Line Number, Defining a Range of Lines
	
	in ex commands, ex Commands, Line Addresses
		ranges of lines, Defining a Range of Lines, Redefining the Current Line Position
	
	redefining current line, Redefining the Current Line Position
	
	relative addressing, Line Addressing Symbols
	
	symbols for, Line Addressing Symbols
	

	moving by, Movement by Line Number
	
	opening files at specific, Advancing to a Specific Place
	

	line-editing mode, Problems Opening Files
	
	lines, Review of Basic vi Commands
		(see also characters; text; words)
	
	case conversions, Changing Case
	
	collecting with :g command, Collecting Lines
	
	deleting by, Lines
		undoing deletions, Problems with deletions
	

	ex commands for, Editing with ex
	
	joining, Joining Two Lines with J
	
	length limitations, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	marking with ' (vile), Visual Mode
	
	moving by, Movement Within a Line, Movement by Line
	
	moving to specific, Movement Within a Screen, Movement by Line Number
	
	moving within, Movement Within a Line
	
	opening files at specific, Advancing to a Specific Place
	
	placing C/C++ comments around
 (example), More Examples of Mapping Keys
	
	printing, ex Commands
	
	replacing (changing), Changing Text, Lines–Lines, Substituting text
	
	searching within, Current Line Searches
	
	to start/end of (see words)
	
	visible on screen, option for, The :set Command
	
	yanking, Copying Text
	

	linewrap option (vile), Left-Right Scrolling
	
	Linux, getting Vim for, Getting Vim for Unix and GNU/Linux–Getting Vim for Windows Environments
	
	:loadview command, Folding and Outlining (Outline Mode)
	
	local .exrc files, Alternate Environments, Initialization
	
	localoptions parameter (sessionoptions
 option), The mksession Command
	
	long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	loops in shell scripts, Looping in a Shell Script
	
	lowercase, converting to uppercase, Changing Case, Metacharacters Used in Replacement Strings
	
	lpc, lpcrlf options (elvis), Display Modes
	
	lpcolor option (elvis), Display Modes
	
	lpcolumns option (elvis), Display Modes
	
	lpcontrast option (elvis), Display Modes
	
	lpconvert option (elvis), Display Modes
	
	lpff, lpformfeed options (elvis), Display Modes
	
	lplines option (elvis), Display Modes
	
	lpo, lpout options (elvis), Display Modes
	
	lpopt, lpoptions options (elvis), Display Modes
	
	:lpr command
 (elvis), Display Modes
	
	lprows option (elvis), Display Modes
	
	lptype option (elvis), Display Modes
	
	lpw, lpwrap options (elvis), Display Modes
	
	:ls command, Buffers and Their Interaction with Windows
		buffers, using, Buffer Command Synopsis
	

M
	m (mark place) command, Marking Your Place
	
	M (middle line) command, Movement Within a Screen
	
	:m (move) command
 (ex), Editing with ex
	
	-m option, Command-Line Options
	
	-M option, Command-Line Options
	
	Mac OS X, installing Vim, Where to Get Vim
	
	macros, Macros
	
	magic option, Some Useful Options
	
	major modes, vile, Major Modes
	
	Make button (elvis), The Toolbar
	
	:make command
 (elvis), The Toolbar, Edit-Compile Speedup
	
	make program, Compiling and Checking Errors with Vim
	
	makeprg option, Compiling and Checking Errors with Vim
		elvis editor, Edit-Compile Speedup
	

	man display mode (elvis), Display Modes–Display Modes
	
	manual folding, Manual Folding–Outlining
	
	manual method, creating folds, Folding and Outlining (Outline Mode)
	
	:map command (ex), Using the map Command,
		commands in .exrc files, The .exrc File
	
	useful examples of, More Examples of Mapping Keys
	

	maps, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	for insert mode, Mapping Keys for Insert Mode
	
	named buffer contents as, @-Functions
	
	useful examples of, More Examples of Mapping Keys
	

	margins
		repeating long insertions, Repeat
	
	setting, Movement Within a Line
	

	marker method, creating folds, Folding and Outlining (Outline Mode)
	
	marking your place, Marking Your Place
	
	marks (vile visual mode), Visual Mode
	
	matching brackets, A Special Search Command
	
	:menu command, Basic menu customization, GUI Options and Command Synopsis
		toolbars, Toolbars
	

	menu support for xvile, Adding menus
	
	menus, using gvim, Useful Menus, Menus–Toolbars
		customizing, More menu customization
	

	meta-information, Categories of Features
	
	metacharacters, Pattern-Matching Rules
		extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	Microsoft Windows (see MS Windows)
	
	middle line, moving to, Movement Within a Screen
	
	mini-hilite option (vile), Command-Line History and Completion
	
	minus sign (see hyphen)
	
	mksession command, The mksession Command
	
	:mkview command, Folding and Outlining (Outline Mode)
	
	mode indicators (vi clones), Mode Indicators
	
	:modeline-format
 command (vile), Miscellaneous Small Features
	
	modeline option, Editing Binary Files
	
	modes, Modus Operandi
	
	Moolenaar, Bram, Vim (vi Improved): An Introduction, vi Quotes
	
	Morgan, Clark, vile: vi Like Emacs
	
	Mortice Kern Systems, Editing Program Source Code
	
	mouse behavior
		elvis editor, Mouse Behavior
	
	gvim, Using the Mouse–Useful Menus
	

	:move command (ex), Editing with ex
	
	:move-next-window-down
 command (vile), Multiwindow Editing
	
	:move-next-window-up
 command (vile), Multiwindow Editing
	
	:move-window-left
 command (vile), Multiwindow Editing
	
	:move-window-right
 command (vile), Multiwindow Editing
	
	movement commands, Movement Commands
	
	moving
		among multiple files, Invoking vi on Multiple Files
	
	lines, Editing with ex
	
	switching database items (example), Switching Items in a Textual Database
	
	text (delete-and-put), Simple Edits
		numbered deletion/yank buffers, Moving Text, Making Use of Buffers
	

	text blocks by patterns, Block Move by Patterns
	

	moving the cursor, Moving the Cursor, Movement Within a Screen
		commands for, Review of vi Motion Commands
	
	to marks, Marking Your Place
	
	opening files at specific place, Advancing to a Specific Place
	
	by searching for
 patterns, Movement by Searches, Movement by Line Number
	
	by text blocks, Movement by Text Blocks, Movement by Text Blocks
	
	xvile interface, Setting the cursor position and mouse motions
	

	MS Windows, using gvim, Graphical Vim (gvim), gvim in Microsoft Windows
	
	mugs with vi logo, vi for Java Lovers
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	initiation, Initiating Multiwindow Editing–Opening Windows
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	
	Vim editor, Multiple Windows in Vim–Summary
	

N
	:n (next file)
 command (ex), Invoking vi on Multiple Files
	
	n (search again) command, Repeating Searches, Confirming Substitutions
	
	N (search again) command, Repeating Searches
	
	n flag (mouse option), Using the Mouse
	
	\n metacharacter, Extended Regular Expressions
	
	-N option, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-n option, Command-Line Options
	
	named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
		arbitrarily naming (nvi), Interesting Features
	
	executing contents of, @-Functions
	

	nested folds, Folding and Outlining (Outline Mode)
	
	:new command, Options During Splits, Window Commands (Vim),
		elvis, Multiwindow Editing
	

	“[new file]”
 message, Problems Opening Files
	
	newline characters, Movement Within a Line, Arbitrary Length Lines and Binary Data
	
	NEXINIT environment variable, Initialization
	
	.nexrc file (nvi), Initialization
	
	:Next command
 (nvi), Multiwindow Editing
	
	:next-tag command
 (vile), Tag Stacks
	
	:next-window command
 (vile), Multiwindow Editing
	
	:no (:normal)
 command (elvis), Display Modes, Display Modes
	
	“No Toolkit” vile interface, GUI Interfaces
	
	“No write since
 last change” message, Problems Opening Files, Saving and Exiting Files
	
	noexpandtab option, Editing Binary Files
	
	noh command,
	
	noignorecase option, Some Useful Options
	
	nolinewrap option (vile), Left-Right Scrolling
	
	nomagic option, Some Useful Options
	
	non-ASCII characters, Digraphs: Non-ASCII Characters
	
	“Non-ascii file”
 message, Problems Opening Files
	
	nonu (nonumber) option, Defining a Range of Lines
	
	--noplugin
 option, Command-Line Options
	
	:normal (:no)
 command (elvis), Display Modes, Display Modes
	
	normal display mode (elvis), Display Modes
	
	normal mode (gvim), Using the Mouse
	
	“Not a typewriter”
 message, Problems Opening Files
	
	notagstack option (elvis), Tag Stacks
	
	nowrap option, What’s My Line (Size)?
		elvis editor, Left-Right Scrolling
	

	nowrapscan option, Repeating Searches, Some Useful Options
	
	nroff formatting package, The vi Text Editor
	
	nu option, Movement Within a Line, Movement by Line Number,
	
	num command, Changing and deleting text
	
	numbered deletions/yanks buffers, Moving Text, Making Use of Buffers
	
	numbers for lines (see line numbers)
	
	numeric arguments for commands, Numeric Arguments, Numeric Arguments for Insert Commands
	
	nvi (vi clone), nvi: New vi–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	extended regular expressions, Extended Regular Expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improvements for Editing–Left-Right Scrolling
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	set command options (list), nvi 1.79 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks–Tag Stacks
	
	word abbreviations, Word Abbreviation
	

O
	o (open line) command, More Ways to Insert Text, Insert Commands
	
	O (open line) command, More Ways to Insert Text, Insert Commands
	
	-o option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	

	-O option, Command-Line Options
	
	obtaining source code
		elvis editor, Sources and Supported Operating Systems
	
	nvi editor, Sources and Supported Operating Systems
	
	vile editor, Sources and Supported Operating Systems
	

	“one line” command, Manual Folding
	
	online help
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vi tutorial, Online vi Tutorial
	
	vile editor, Online Help and Other Documentation
	

	open mode (elvis), Interesting Features
	
	“[open mode]” message, Problems Opening Files
	
	opening files
		multiple files at once, Invoking vi on Multiple Files, Calling in New Files
	
	previous file, Switching Files from vi
	
	read-only mode, Read-Only Mode
	
	at specific place, Advancing to a Specific Place
	

	options parameter (sessionoptions
 option), The mksession Command
	
	options, set command, The :set Command
		(see also :set command)
	
	list, Setting Options
	
	viewing current, The :set Command
	

	options, vi command, Options When Starting vi
	
	other display mode (elvis), Syntax Highlighting
	
	outline mode, Folding and Outlining (Outline Mode)–Auto and Smart Indenting, Outlining
	
	output (Unix), reading into files, Executing Unix Commands
	
	overstrike mode, Substituting text
	

P
	:p (print) command
 (ex), ex Commands,
	
	p (put) command, Simple Edits, Problems with deletions, Moving Text
		with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	

	P (put) command, Moving Text
		with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	

	:p (put) command
 (ex), Edits Between Files
	
	\p, \P
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	PAGE UP, PAGE DOWN keys, mapping, Mapping Other Special Keys
	
	pana values (lptype option), Display Modes
	
	paragraphs
		delimiters for, Movement by Text Blocks
	
	moving by, Movement by Text Blocks
	

	parentheses ()
		((move cursor) command, Movement by Text Blocks
	
) (move cursor) command, Movement by Text Blocks
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	finding and removing, More Examples of Mapping Keys
	
	as grouping
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	matching, A Special Search Command
	

	parts of files, saving, Saving Part of a File
	
	:paste-to-clipboard
 command (xvile), Clipboard
	
	PATH environment variable, installing Vim, Where to Get Vim
	
	“Pattern not found”
 message, Movement by Searches
	
	pattern searching, Movement by Searches
		configuration options for, Some Useful Options
	
	ex commands for, Search Patterns, Global Searches
	
	global pattern-matching rules, Pattern-Matching Rules
		examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	incremental searching (vi clones), Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	making case-insensitive, The :set Command
	
	matching brackets, A Special Search Command
	
	opening files at specific place, Advancing to a Specific Place
	
	replacing text and (see replacing text)
	
	within lines, Current Line Searches
	
	wrapping searches, Movement by Searches, Repeating Searches
	

	percent sign (%)
		buffers, describing, Buffers and Their Interaction with Windows
	
	for current
 filename, Calling in New Files
	
	every line symbol (ex), Global Replacement
	
	matching brackets, A Special Search Command
	
	meta-information, extracting, Categories of Features
	
	representing every line (ex), Line Addressing Symbols
	

	period (.) (see dot)
		current line symbol (ex), Line Addressing Symbols
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	

	“Permission denied”
 message, Problems Opening Files, Problems Saving Files
	
	pin-tagstack option (vile), Tag Stacks
	
	pipe (|) (see vertical bar)
	
	piping into vile, Miscellaneous Small Features
	
	place marking, Marking Your Place
	
	plug-ins for Vim, Categories of Features
	
	plus sign (+), Command-Line Options
		\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	move cursor command, Single Movements, Movement by Line, Movement by Line
	
	for next file lines
 (ex), Line Addressing Symbols
	
	running commands when starting vi, Advancing to a Specific Place
	

	:po command
 (Solaris vi), Solaris vi
	
	:pop (:po)
 command
		elvis editor, Tag Stacks
	
	vile editor, Tag Stacks
	

	:position-window command
 (vile), Multiwindow Editing
	
	POSIX standards, Compare and Contrast with vi
	
	post-read, post-write files (elvis), Initialization Steps, Pre- and Post-Operation Control Files
	
	postprocessing (Vim), Categories of Features
	
	pound sign (#)
		for alternate
 filename, Calling in New Files
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	meta-information, extracting, Categories of Features
	
	show line numbers command, Defining a Range of Lines
	

	:pre command,
		ex, Problems Saving Files, Recovering a Buffer
	

	pre-read, pre-write files (elvis), Initialization Steps, Pre- and Post-Operation Control Files
	
	prep display mode (elvis), Syntax Highlighting
	
	prev command,
	
	:Previous command
 (nvi), Multiwindow Editing
	
	previous file, switching to, Switching Files from vi
	
	:previous-window command
 (vile), Multiwindow Editing
	
	printing
		elvis print management, Display Modes
	
	lines, ex Commands
	

	procedure language, vile, The Procedure Language
	
	programming assistance, Programming Assistance–Syntax Highlighting, Vim Enhancements for Programmers–Some Final Thoughts on Vim for Writing Programs
		edit-compile speedup, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	elvis editor, Programming Assistance–Syntax Highlighting
	
	source code editing, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags
	

	syntax highlighting, Syntax Highlighting
		elvis display modes, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, Syntax Highlighting
	

	using tags, Enhanced Tags–Exuberant ctags and Vim
	
	vile editor, Programming Assistance–Syntax Highlighting
	
	Vim editor, Categories of Features
	

	prompt line, Opening a File
	
	ps, ps2 values (lptype option), Display Modes
	
	:pu (put) command,
	
	putting text, Simple Edits
		deleting and (cut-and-paste), Moving Text
	
	from named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	yanking and (copy-and-paste), Copying Text
	

Q
	:q (quit) command
 (ex), Saving and Quitting a File, Saving and Exiting Files
		:q! command, Saving and Exiting Files
	

	Q command, Problem Checklist
	
	:q (quoted motion) command
 (vile), Visual Mode
	
	:q! command, Quitting Without Saving Edits, Command-Line Options
		quitting, Problems Opening Files
	

	qa command,
	
	:qall command
 (elvis), Multiwindow Editing
	
	question mark (?)
		\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	search command, The vi Text Editor, Movement by Searches
	

	quickfix buffer, Vim’s Special Buffers
	
	Quickfix List window, Compiling and Checking Errors with Vim
	
	quipty option, GUI Options and Command Synopsis
	
	Quit button (elvis), The Toolbar
	
	:quit command, Closing and Quitting Windows
	
	quitting vi, Saving and Exiting Files
	
	XXX_DQUOTE (yank from buffer)
 command, Recovering Deletions, Yanking to Named Buffers
	
	quote (XXX_DQUOTE) command, Recovering Deletions, Yanking to Named Buffers
	
	quoted motion (q) command (vile), Visual Mode
	
	quotes about vi, vi Quotes
	

R
	:r (read) command
 (ex), Copying a File into Another File,
	
	r (replace character) command, Characters, Numeric Arguments for Insert Commands
	
	R (replace character) command, Substituting text, More Ways to Insert Text, Insert Commands
	
	\r metacharacter, Extended Regular Expressions
	
	-R option, Read-Only Mode, Recovering a Buffer, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-r option, Recovering a Buffer
		elvis editor, Important Command-Line Arguments
	

	-R option
		nvi editor, Important Command-Line Arguments
	

	range of lines, Defining a Range of Lines, Redefining the Current Line Position
	
	rcp (remote copy), Editing Files in Other Places
	
	:read command (ex), Copying a File into Another File
		reading Unix command output, Executing Unix Commands
	

	read-hook option (vile), The Procedure Language
	
	“Read Only” files, Problems Opening Files
	
	“[Read only]”
 message, Problems Opening Files
	
	read-only mode, Read-Only Mode
	
	read-only registers (Vim), Categories of Features
	
	rec command,
	
	recovering deletions, Problems with deletions, Recovering Deletions
	
	recovering the buffer, Recovering a Buffer
	
	red command,
	
	redrawing screen, Redrawing the Screen
	
	reformatting text (vile), Miscellaneous Small Features
	
	regular expressions, Pattern-Matching Rules, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	metacharacters
		in replacement strings, Metacharacters Used in Replacement Strings
	
	in search patterns, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	pattern-matching examples, Pattern-Matching Examples
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	relative line addressing (ex), Line Addressing Symbols
	
	relative pathnames, Opening a File
	
	renaming buffer (ex), Renaming the Buffer
	
	repeating commands, Repeat–Repeat
		:g command for
 (example), Using :g to Repeat a Command
	
	global substitutions, More Substitution Tricks
	
	pattern searches, Repeating Searches, Current Line Searches
	
	searching numbered buffers, Recovering Deletions
	

	replacing text, Simple Edits, Changing Text
		by characters, Characters
	
	globally, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	substitution tricks, More Substitution Tricks
	

	by lines, Lines–Lines, Substituting text
	
	searching and, Changing through searching
	
	by words, Words–Words
	

	repositioning screen, Repositioning the Screen with z
	
	res command,
	
	:resize command, Window Resize Commands
		nvi, Multiwindow Editing
	

	resize parameter (sessionoptions
 option), The mksession Command
	
	:resize-window command
 (vile), Multiwindow Editing
	
	:restore-window command
 (vile), Multiwindow Editing
	
	:reverse-incremental-search
 command (vile), Incremental Searching
	
	rew command,
	
	:rew, :rewind
 commands (ex), Using the Argument List
	
	right margin, setting, Movement Within a Line
	
	right/left scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	rm command (Unix), Problems Saving Files
	
	ruler option, Mode Indicators
	

S
	s (substitute) command, Substituting text, More Ways to Insert Text–Numeric Arguments for Insert Commands, Insert Commands
	
	S (substitute) command, Substituting text, More Ways to Insert Text–Numeric Arguments for Insert Commands, Insert Commands
	
	s (substitute) command (ex), ex Commands, Global Replacement–Global Replacement
		context-sensitive replacement, Context-Sensitive Replacement
	
	pattern-matching examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	
	vile editor, The vile Editing Model
	

	-s option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-S option
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	

	-S option, Command-Line Options
	
	-SS option
 (elvis), Important Command-Line Arguments
	
	\s, \S
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	s: Vim variable, Variables
	
	:safely command
 (elvis), Interesting Features
	
	:sall (:sa)
 command (elvis), Multiwindow Editing
	
	sam editor, The vi Text Editor
	
	:save-window command
 (vile), Multiwindow Editing
	
	saving commands, Saving Commands
	
	saving edits, Saving and Quitting a File, Saving and Exiting Files, Saving and Exiting
		appending to saved files, Appending to a Saved File
	
	iterating through list of files, More Examples of Mapping Keys
	
	preserving the buffer, Recovering a Buffer
	
	saving parts of files, Saving Part of a File
	

	sb command,
	
	:sbfirst
 command, Buffer Command Synopsis
	
	:sbmod command, Buffer Command Synopsis
	
	sbn command,
	
	:sbnext
 command, Buffer Command Synopsis
	
	:sbNext
 command, Buffer Command Synopsis
	
	:sbprevious
 command, Buffer Command Synopsis
	
	:sbuffer
 command, Buffer Command Synopsis
	
	scope keyword (ctags), The New tags Format
	
	scp (secure remote copy over SSH), Editing Files in Other Places
	
	scratch buffer, Vim’s Special Buffers
	
	screen editors, The vi Text Editor
	
	screens
		left/right scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	moving cursor (see moving the cursor)
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	redrawing, Redrawing the Screen
	
	repositioning, Repositioning the Screen with z
	
	scrolling, Movement by Screens
	
	setting number of lines shown, The :set Command
	

	scripting for Vim, Categories of Features
	
	scripts
		ex, Using ex Scripts
	
	Vim, Vim Scripts–Resources
	

	:scroll-next-window-down
 command (vile), Multiwindow Editing
	
	:scroll-next-window-up
 command (vile), Multiwindow Editing
	
	scrollbars, Scrollbars
		gvim, Scrollbars
	
	xvile, Scrollbars
	

	scrolling, Movement by Screens
		without moving cursor, Repositioning the Screen with z
	

	scrolling right/left, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	se command,
	
	searchincr option (nvi), Incremental Searching, Incremental Searching, Incremental Searching
	
	searching
		for class of
 words, Search for General Class of Words
	
	metacharacters for, Pattern-Matching Rules
	

	searching for patterns, Movement by Searches
		configuration options for, Some Useful Options
	
	ex commands for, Search Patterns, Global Searches
	
	global pattern-matching rules, Pattern-Matching Rules
		examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	incremental searching (vi clones), Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	making case-insensitive, The :set Command
	
	matching brackets, A Special Search Command
	
	opening files at specific place, Advancing to a Specific Place
	
	replacing text and (see replacing text)
	
	within lines, Current Line Searches
	
	wrapping searches, Movement by Searches, Repeating Searches
	

	searching numbered buffers, Recovering Deletions
	
	sections, moving by, Movement by Text Blocks
	
	security, elvis, Interesting Features
	
	sed stream editor, Beyond ex
	
	select mode (gvim), Using the Mouse
	
	selecting text with xvile, Selections
	
	semicolon (;)
		for line ranges (ex), Redefining the Current Line Position
	
	repeat search command, Current Line Searches
	

	sentences
		delimiters for, Movement by Text Blocks
	
	moving by, Movement by Text Blocks
	

	sesdir parameter (sessionoptions
 option), The mksession Command
	
	session context for Vim, Categories of Features
	
	session files, elvis, The Session File
	
	sessionoptions option, The mksession Command
	
	sessions (Vim), Multiple Windows in Vim
	
	:set command, Categories of Features, The :set Command
		commands in .exrc files, The .exrc File
	
	ex, Customizing vi
		list of options for, Setting Options
	
	viewing current options, The :set Command
	

	mouse options and, Using the Mouse
	

	:set-window command
 (vile), Multiwindow Editing
	
	:sfind command, Options During Splits
	
	sftp (secure FTP), Editing Files in Other Places
	
	:sh (create shell)
 command (ex), Executing Unix Commands
	
	:sh command (ex), Problems Saving Files,
	
	shell, Unix, Executing Unix Commands
	
	shiftwidth, using outline modes, Outlining
	
	shmode mode (vile; example), Major Modes
	
	:show-history command
 (vile), Command-Line History and Completion
	
	:show-tagstack
 command (vile), Tag Stacks
	
	:show-commands
 command (vile), Online Help and Other Documentation
	
	showmode option, Mode Indicators
	
	:shrink-window command
 (vile), Multiwindow Editing
	
	sidescroll option (nvi), Left-Right Scrolling
	
	sidescroll value, Left-Right Scrolling, Left-Right Scrolling
	
	sidescrolloff option, What’s My Line (Size)?
	
	sideways scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	slash (/)
		pathname separator, Opening a File
	
	referring to marks (vile), Visual Mode
	
	search command, The vi Text Editor, Movement by Searches
		opening files at specific place, Advancing to a Specific Place
	

	slash parameter (sessionoptions option), The mksession Command
	
	:slast (:sl) command
 (elvis), Multiwindow Editing
	
	smart indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	smartindent method, Auto and Smart Indenting
	
	sn command,
	
	:snew (:sne) command
 (elvis), Multiwindow Editing
	
	:sNext (:sN) command
 (elvis), Multiwindow Editing, Multiwindow Editing
	
	:so command (ex), Alternate Environments
	
	Solaris vi
		set command options (list), Solaris vi Options
	
	tag stacks, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	word abbreviations, Word Abbreviation
	

	sort command (Unix), Executing Unix Commands
	
	sorting
		text blocks (example), Sorting Text Blocks: A Sample ex Script
	

	source code editing, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags, Enhanced Tags–Exuberant ctags and Vim
	

	sourced, finding startup files, Starting gvim
	
	sp command,
	
	spaces (see whitespace)
	
	special buffers, Vim’s Special Buffers
	
	spellchecking, The vi Text Editor
	
	Split button (elvis), The Toolbar
	
	:split command, Multiwindow Editing Inside Vim
		buffers, using, Buffers and Their Interaction with Windows
	
	elvis, Multiwindow Editing
	
	opening new windows, New Windows
	
	vile, Multiwindow Editing
	

	:split-current-window
 command (vile), Multiwindow Editing, Multiwindow Editing
	
	split windows (see multiwindow editing)
	
	spr command,
	
	:srewind (:sre)
 command (elvis), Multiwindow Editing
	
	st command,
	
	:stack (:stac)
 command (elvis), Tag Stacks
	
	stacks, tags, Tag Stacks–Exuberant ctags and Vim
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	:stag (:sta) command
 (elvis), Multiwindow Editing
	
	:stag[!] tag, Playing Tag with Windows
	
	starting vi (see invoking vi)
	
	state transitions for Vim, Categories of Features
	
	status line (see prompt line)
	
	status-line commands, Status-Line Commands
	
	statusline option, A Nice Vim Piggybacking Trick
	
	stevie editor, Author and History, Author and History
	
	stopshell option (elvis), Options
	
	strftime() function, Using the strftime() function
	
	string display mode (elvis), Syntax Highlighting
	
	struct keyword (ctags), The New tags Format
	
	sts command, Tag Stacking
	
	stty command, A Brief Historical Perspective
	
	su command,
	
	substitute (:s)
 command (ex), ex Commands, Global Replacement–Global Replacement
		context-sensitive replacement, Context-Sensitive Replacement
	
	pattern-matching examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	
	vile editor, The vile Editing Model
	

	substituting text (see changing text)
	
	:sunhide
 command, Buffer Command Synopsis
	
	sv command,
	
	:sview command, Options During Splits
	
	switching database items (example), Switching Items in a Textual Database
	
	switching words (example), Using the map Command, More Examples of Mapping Keys
	
	:syntax command, Getting Started
	
	syntax display mode (elvis), Display Modes
	
	syntax extensions for Vim, Categories of Features
	
	syntax files, Overriding syntax files
	
	syntax folding method, A Few Words About the Other Fold Methods
	
	syntax highlighting, Syntax Highlighting, Syntax Highlighting–Compiling and Checking Errors with Vim
		customizing, Customization
	
	elvis display modes, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, Syntax Highlighting
	

	syntax method, creating folds, Folding and Outlining (Outline Mode)
	
	system failure, recovering after, Recovering a Buffer
	

T
	:t (copy) command
 (ex), Editing with ex
	
	t (search line) command, Current Line Searches
	
	T (search line) command, Current Line Searches
	
	^T command, Tag Stacking
	
	\t metacharacter, Extended Regular Expressions
	
	-t option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-T option, Command-Line Options
	
	t: Vim variable, Variables
	
	:Ta, Tag commands
 (nvi), Multiwindow Editing, Tag Stacks
	
	ta, tag commands
 (nvi), Tag Stacks
	
	:ta, tag
 commands (Solaris vi), Solaris vi
	
	<TAB>, using
 menu entries, Basic menu customization
	
	:tabclose
 command, Tabbed Editing
	
	:tabnew command, Tabbed Editing
	
	:tabonly
 command, Tabbed Editing
	
	tabpages parameter (sessionoptions
 option), The mksession Command
	
	tabs, editing, Tabbed Editing
	
	:tag (:ta)
 command
		elvis editor, Tag Stacks
	
	vile editor, Tag Stacks
	

	:tag command, Tag Stacks–Exuberant ctags and Vim, Tag Stacks
	
	:tag command (ex), Using Tags
	
	tag stacks, Tag Stacks–Exuberant ctags and Vim, Tag Stacking–Syntax Highlighting
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	tag windowing commands, Playing Tag with Windows
	
	tagignorecase option (vile), Tag Stacks
	
	taglength option, Tag Stacks
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	
	vile editor, Tag Stacks
	

	:tagp,
 tagpop commands (nvi), Tag Stacks
	
	tagpath option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	tagprg option (elvis), Tag Stacks
	
	tagrelative option (vile), Tag Stacks
	
	:tags command
 (Solaris vi), Exuberant ctags and Vim
	
	tags file format, The New tags Format–The New tags Format, Tag Stacks
	
	tags option
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks
	
	Solaris vi, Solaris vi
	
	vile editor, Tag Stacks
	

	tagstack option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	:tagt,
 tagtop commands (nvi), Tag Stacks
	
	tagword option (vile), Tag Stacks
	
	TERM environment variable, A Brief Historical Perspective, Problems Opening Files
		opening files and, Problems Opening Files
	

	termcap entries, Problems Opening Files, Customizing vi
	
	“Termcap entry too
 long” message, Problems Opening Files
	
	termcap library, A Brief Historical Perspective
	
	terminal type, Problems Opening Files
	
	terminfo entries, Problems Opening Files, Customizing vi
	
	terminfo library, A Brief Historical Perspective
	
	tex display mode (elvis), Display Modes–Display Modes
	
	Tex formatter, The vi Text Editor
	
	text, Review of Basic vi Commands
		(see also characters; lines; words)
	
	case conversions, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	copying (yank-and-put), Simple Edits, Copying Text
	
	deleting, Simple Edits, Deleting Text, Current Line Searches
		by characters, vi Commands, Characters
	
	with ex editor, Search Patterns
	
	by lines, Lines
	
	named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	recovering deletions, Recovering Deletions
	
	undoing deletions, Problems with deletions
	
	by words, Words
	

	filtering through Unix commands, Filtering Text Through a Command
	
	finding and deleting parentheses, More Examples of Mapping Keys
	
	indentation control, Indentation Control
	
	inserting, More Ways to Insert Text
		a (append) command, Simple Edits, Appending Text
	
	handling long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data
	
	in insert mode, Modus Operandi, vi Commands
	

	moving, Moving Text
		switching database items (example), Switching Items in a Textual Database
	

	moving (delete-and-put), Simple Edits
	
	reformatting (vile), Miscellaneous Small Features
	
	replacing (changing), Simple Edits, Changing Text, Changing through searching
		globally, Global Replacement
	

	searching for (see pattern searching)
	
	transposing characters, Transposing two letters
	

	text blocks
		filtering through Unix commands, Filtering Text Through a Command
	
	moving by patterns, Block Move by Patterns
	
	range of lines (ex), Defining a Range of Lines, Redefining the Current Line Position
	
	saving parts of files, Saving Part of a File
	
	sorting (example), Sorting Text Blocks: A Sample ex Script
	

	text blocks, moving by, Movement by Text Blocks, Movement by Text Blocks
	
	text editors, The vi Text Editor
	
	textwidth option, Editing Binary Files
	
	thesaurus option, Completion by thesaurus
	
	tilde (~)
		:~ (substitute using last search pattern) command
 (ex), More Substitution Tricks
	
	along left screen margin, Opening a File
	
	case conversion command, Changing Case
	
	folding, Manual Folding
	
	as last
 replacement text, Metacharacters Used in Search Patterns
	
	metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	

	tl (taglength) option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	/tmp (special
 filename, nvi), Interesting Features
	
	:toggle-buffer-list
 command (vile), Multiwindow Editing
	
	toggle options (ex), setting, The :set Command
	
	TOhtml command, HTML Your Text
	
	toolbar option, GUI Options and Command Synopsis
	
	toolbar, elvis, The Toolbar
	
	toolbars, Toolbars
	
	tools, programming, Vim Enhancements for Programmers–Some Final Thoughts on Vim for Writing Programs
	
	:topleft command, Conditional Split Commands
	
	transitions (state) for Vim, Categories of Features
	
	transparent edition, Categories of Features
	
	transposing characters, Transposing two letters
	
	transposing words, Transposing two letters
	
	transposing words (example), Using the map Command, More Examples of Mapping Keys
	
	troff
		alphabetizing glossary (example), Sorting Text Blocks: A Sample ex Script
	
	converting glossary to (example), A Complex Mapping Example
	
	formatting package, The vi Text Editor
	
	put emboldening codes around words, More Examples of Mapping Keys
	

	troubleshooting
		deleting text, Problems with deletions–Characters
	

	:tselect command, Playing Tag with Windows
	
	type-over (see c command)
	

U
	u (undo) command, Problems with deletions, Undo–Undo
		buffer recovery, Recovering Deletions
	

	U (undo) command, Problems with deletions, Undo
	
	-U gvimrc
 option, GUI Options and Command Synopsis
	
	\u
 metacharacter, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\U
 metacharacter, Metacharacters Used in Replacement Strings
	
	-u option, Command-Line Options
	
	u status flag, Buffers and Their Interaction with Windows
	
	underscore (_), using in file names, Opening a File
	
	undoing, Undo–Undo
		infinitely (vi clones), Infinite Undo
		elvis editor, Infinite Undo
	
	nvi editor, Infinite Undo
	
	vile editor, Infinite Undo
	

	recovering deletions, Problems with deletions, Recovering Deletions
	
	text deletions, Problems with deletions
	

	undolevels option, Undoing Undos
		elvis editor, Infinite Undo
	

	undolimit option (vile), Infinite Undo
	
	undos, Undoing Undos
	
	:unhide
 command, Buffer Command Synopsis
	
	Unix
		commands, Executing Unix Commands
	
	Vim, installing, Getting Vim for Unix and GNU/Linux
	

	unix parameter (sessionoptions option), The mksession Command
	
	“Unknown terminal
 type” message, Problems Opening Files
	
	unm command,
	
	uppercase, converting to lowercase, Changing Case, Metacharacters Used in Replacement Strings
	
	/usr/tmp directory, Problems Saving Files
	

V
	-v option, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-V option, Command-Line Options
	
	-V option (elvis), Important Command-Line Arguments
	
	v, V commands (elvis block mode), Visual Mode
	
	v: Vim variable, Variables
	
	v:fname_in variable, What’s the Difference?
	
	v:fname_new variable, What’s the Difference?
	
	v:fname_out variable, What’s the Difference?
	
	/var/tmp directory, Problems Saving Files
	
	variable display mode (elvis), Syntax Highlighting
	
	variables, Variables–Variables
		buffer, Buffer Variables
	
	global, using Vim scripts, Tuning a Vim Script with Global Variables
	
	types, More About Variables
	
	Vim, Variables
	

	--version
 option, Command-Line Options
	
	versions of vi (see clones, vi)
	
	vertical bar (|)
		alternation metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	for combining ex
 commands, Combining ex Commands
	
	cursor movement command, Movement on the current line
	
	manual folding and, Manual Folding
	

	vertically splitting windows, Multiwindow Editing Inside Vim
	
	vi command (Unix)
		command-line options, Options When Starting vi
	
	editing multiple files, Invoking vi on Multiple Files
	

	:vi command, Problem Checklist, Command-Line Options
	
	vi commands, vi Commands
		bottom-line, The vi Text Editor
	
	general form of, Words
	
	numeric arguments for, Numeric Arguments, Numeric Arguments for Insert Commands
	
	repeating (see repeating commands)
	
	running when starting vi, Advancing to a Specific Place
	
	undoing (see undoing)
	

	“vi Powered” logo, vi Powered!
	
	vi text editor
		clones of (see clones, vi)
	
	customizing editing environment, Customizing vi
	
	Emacs editor versus, Tastes Great, Less Filling
	
	filtering text with, Filtering text with vi
	
	Internet and, vi and the Internet
	
	quotes about, vi Quotes
	
	starting (see invoking vi)
	

	vi.exrc file (nvi), Initialization
	
	view command (Unix), Read-Only Mode
	
	:view-file command
 (vile), Multiwindow Editing
	
	view mode, Problems Opening Files
	
	vile (vi clone), Recovering a Buffer, vile: vi Like Emacs–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	editing model, The vile Editing Model
	
	extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improved Editing Facilities–Visual Mode
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features–Miscellaneous Small Features
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	procedure language for, The Procedure Language
	
	programming assistance, Programming Assistance–Syntax Highlighting
	
	set command options (list), vile 9.6 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks
	
	word abbreviations, Word Abbreviation
	

	VILEINIT environment variable (vile), Initialization
	
	.vilemenu file, Initialization
	
	.vilemenu file
 (vile), Adding menus
	
	VILE_HELP_FILE environment variable (vile), Online Help and Other Documentation
	
	VILE_STARTUP_FILE environment variable
 (vile), Initialization
	
	VILE_STARTUP_PATH environment variable (vile), Online Help and Other Documentation
	
	Vim, Vim (vi Improved): An Introduction–Summary
		extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	infinite undo facility, Infinite Undo
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiple windows in, Multiple Windows in Vim–Summary
	
	set command options (list), Vim 7.1 Options
	
	sideways scrolling, Left-Right Scrolling
	
	word abbreviations, Word Abbreviation
	

	vimdiff command, A Few Words About the Other Fold Methods, What’s the Difference?
	
	viminfo option, The viminfo Option
	
	.vimrc startup file, Starting gvim
	
	VimResized command, Autocommands
	
	visual (block) mode, Visual Mode
		elvis editor, Visual Mode
	
	vile editor, Visual Mode
	

	visual match facility (vile), Incremental Searching
	
	visual mode, Using the Mouse
		problems getting to, Problems Getting to Visual Mode
	

	“Visual
 needs addressable cursor or upline capability”
 message, Problems Opening Files
	
	Visual Studio, Vim Enhancements for Programmers
	
	:viusage command
 (nvi), Online Help and Other Documentation
	
	:vnew command, Options During Splits
	
	:vsplit command, Multiwindow Editing Inside Vim, Options During Splits
	

W
	w (move word) command, Movement by Text Blocks
	
	W (move word) command, Movement by Text Blocks
	
	:w (write) command, Calling in New Files
	
	:w (write) command
 (ex), Saving and Quitting a File, Saving and Exiting Files
		renaming buffer, Renaming the Buffer
	
	saving parts of files, Saving Part of a File
	
	:w! command, Saving and Exiting Files
	

	^W command
		cursors, moving around in windows and, Moving Around Windows (Getting Your Cursor from Here to
 There)
	

	^W key sequence, Multiwindow Editing Inside Vim
	
	-w option, Command-Line Options
		nvi editor, Important Command-Line Arguments
	

	-W option, Command-Line Options
	
	\w, \W
 metacharacters, Extended Regular Expressions
	
	^W- command, Resizing Command Synopsis
	
	w: Vim variable, Variables
	
	^W< command, Resizing Command Synopsis
	
	^W= command, Resizing Command Synopsis
	
	^W> command, Resizing Command Synopsis
	
	^Wc command, Closing and Quitting Windows
	
	web sites for vi, vi Web Sites
	
	^Wf command, Playing Tag with Windows
	
	^Wg] command, Playing Tag with Windows
	
	^Wg^J command, Playing Tag with Windows
	
	^WH command, Moving Windows and Changing Their Layout
	
	whitespace
		deleting words and, Words
	
	indentation, Indentation Control
	
	newline characters, Movement Within a Line, Arbitrary Length Lines and Binary Data
	
	sentence delimiters, Movement by Text Blocks
	
	spaces in filenames, Opening a File, ex Commands
	

	windo command, Buffer Commands
	
	:window (:wi)
 command (elvis), Multiwindow Editing
	
	Window menus, gvim’s Window menu
	
	window option, The :set Command
	
	windows, Opening Windows
		(see also multiwindow editing)
	
	closing and quitting, Closing and Quitting Windows
	
	cursors, moving around in, Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	moving around, Moving Windows Around–Resizing Windows
	
	opening, Opening Windows–Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	resizing, Resizing Windows–Buffers and Their Interaction with Windows
	
	tag commands, Playing Tag with Windows
	

	Windows (Microsoft) (see MS Windows)
	
	Windows files, editing with vile, Miscellaneous Small Features
	
	WinEnter command, Autocommands
	
	winheight option, Multiwindow Initiation from the Command Line (Shell), Window Sizing Options
	
	WinLeave autocommand, Options During Splits
	
	WinLeave command, Autocommands
	
	winminheight option, Resizing Command Synopsis
	
	winminwidth option, Resizing Command Synopsis
	
	winpos parameter (sessionoptions
 option), The mksession Command
	
	winsize parameter (sessionoptions
 option), The mksession Command
	
	winvile editor, Building winvile–winvile Basic Appearance and Functionality
	
	winwidth option, Multiwindow Initiation from the Command Line (Shell), Window Sizing Options
	
	^WJ command, Moving Windows and Changing Their Layout, Playing Tag with Windows
	
	^WK command, Moving Windows and Changing Their Layout
	
	^WL command, Moving Windows and Changing Their Layout
	
	wm (wrapmargin) option, Movement Within a Line, Some Useful Options
		disabling for long insertions, More Examples of Mapping Keys
	
	repeating long insertions, Repeat
	

	word abbreviations, Word Abbreviation
	
	word completion, Keyword and Dictionary Word Completion–Tag Stacking
	
	words, Review of Basic vi Commands
		(see also characters; lines; text)
	
	deleting by, Words
		undoing deletions, Problems with deletions
	

	deleting parentheses around (example), More Examples of Mapping Keys
	
	moving by, Movement by Text Blocks, Movement by Text Blocks
	
	replacing (changing), Changing Text, Words–Words
	
	searching for general class of, Search for General Class of Words
	
	to start/end of (see characters)
	
	transposing, Transposing two letters, Using the map Command, More Examples of Mapping Keys
	
	troff emboldening codes around, More Examples of Mapping Keys
	

	:wq command, Saving and Quitting a File
	
	^Wq command, Closing and Quitting Windows
	
	:wquit command
 (elvis), Multiwindow Editing
	
	^Wr command, Window Move Commands: Synopsis
	
	^WR command, Window Move Commands: Synopsis
	
	wrap option, What’s My Line (Size)?
		elvis editor, Left-Right Scrolling
	

	wrapmargin (wm) option, Movement Within a Line, Some Useful Options, Editing Binary Files
		disabling for long insertions, More Examples of Mapping Keys
	
	repeating long insertions, Repeat
	

	wrapping searches, Movement by Searches, Repeating Searches
	
	wrapscan option, Repeating Searches, Advancing to a Specific Place, Some Useful Options
	
	write-hook option (vile), The Procedure Language
	
	write permission, Problems Opening Files, Problems Saving Files
	
	writebackup option, Backups with Vim
	
	writing the buffer
		autowrite and autosave options, Recovering a Buffer
	
	overriding read-only mode, Read-Only Mode
	

	“writing
 the buffer”, saving edits and, Opening and Closing Files
	
	^Ws command, Options During Splits
	
	^WS command, Options During Splits
	
	^WT command, Moving Windows and Changing Their Layout
	
	^Wx command, Window Move Commands: Synopsis
	
	^W^F command, Playing Tag with Windows
	
	^W^J command, Playing Tag with Windows
	
	^W^Q command, Closing and Quitting Windows
	
	^W^R command, Window Move Commands: Synopsis
	
	^W^S command, Options During Splits
	
	^W^X command, Window Move Commands: Synopsis
	
	^W^_ command, Resizing Command Synopsis
	
	^W_ command, Resizing Command Synopsis
	
	^W| command, Resizing Command Synopsis
	

X
	x (delete character) command, Characters, Changing and deleting text
		xp command, Transposing two letters
	

	X (delete character) command, Characters, Changing and deleting text
	
	:x (write
 and quit) command (ex), Saving and Exiting Files, Command-Line Options
	
	-x option, Command-Line Options
	
	X resources for elvis, Options
	
	X Window System, The vi Text Editor
		using gvim, Graphical Vim (gvim), gvim in the X Window System
	

	X11 interface
		elvis, Initialization Steps, GUI Interfaces, Options
	
	vile, GUI Interfaces
	

	XEmacs text editor, The vi Text Editor
	
	xscrollbar option (elvis), Options
	
	xvile editor, GUI Interfaces–Adding menus
	
	XVILE_MENU environment variable (vile), Initialization
	

Y
	Y (yank line) command, Copying Text, Copying and moving
	
	y (yank) command, Simple Edits, Copying Text
		examples of use, Review of Basic vi Commands, More Command Combinations
	
	with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	yy command, Copying Text
	

	y (yank) command (ex), Edits Between Files
	
	-y option, Command-Line Options
	
	y$ command, Copying and moving
	
	yanking text, Simple Edits
		named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	

	ye command, Copying and moving
	
	yw command, Copying and moving
	
	yy command, Copying and moving
	

Z
	z command, Repositioning the Screen with z
	
	-Z option, Command-Line Options
	
	zA fold command, The Fold Commands
	
	za fold command, The Fold Commands
	
	zC fold command, The Fold Commands
	
	zc fold command, The Fold Commands, Manual Folding, Manual Folding
	
	zD fold command, The Fold Commands, A Few Words About the Other Fold Methods
	
	zd fold command, The Fold Commands
	
	zE fold command, The Fold Commands
	
	zf fold command, The Fold Commands
		cursors, creating folds from, Manual Folding
	

	zi fold command, The Fold Commands
	
	Zintz, Walter, Using :g to Repeat a Command
	
	zj fold command, The Fold Commands
	
	zk fold command, The Fold Commands
	
	zM fold command, The Fold Commands
	
	zm fold command, The Fold Commands, Outlining
	
	zN fold command, The Fold Commands
	
	zn fold command, The Fold Commands
	
	zo command, Manual Folding
	
	zO fold command, The Fold Commands
	
	zo fold command, The Fold Commands
	
	zr fold command, The Fold Commands, Outlining
	
	ZZ (quit vi) command, Saving and Quitting a File
	
	ZZ command, Saving and Exiting
	

About the Authors
Arnold Robbins, an Atlanta native, is a professional programmer and technical author. He has been working with Unix systems since 1980, when he was introduced to a PDP-11 running a version of Sixth Edition Unix. His experience also includes multiple commercial Unix systems, from Sun, IBM, HP and DEC. He has been working with GNU/Linux systems since 1996. He likes his Macintosh laptop, but it has been commandeered by one of his daughters.

Arnold has also been a heavy awk user since 1987, when he became involved with gawk, the GNU project's version of awk. As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard for awk. He is currently the maintainer of gawk and its documentation.

O'Reilly has been keeping him busy: He is author and/or coauthor of the bestselling titles: Unix In A Nutshell, Effective awk Programming, sed & awk, Classic Shell Scripting, and several pocket references.
Elbert is a professional software engineer and software architect recently finishing a 21-year career in the telcom industry. He wrote a full screen editor in assembler in 1983 as his first professional assignment, and has had special interest in editors since. He loves connecting Unix to anything and once wrote a stream editor program to automate JCL edits for mainframe monthly configurations by streaming mainframeJCL to a stream editor on an RJE connected Unix box.

He loves tinkering with everything Unix and considers any environment incomplete without his suite of Unix work-alike tools and the latest version of vim. He is a Unix Shell specialist, writing entire applications with only the shell.

His telcom honored him with their highest award for money-saving applications that he authored using a set of mainframe screen-scraping tools he wrote himself. They continue to use those applications today. He was also one of three founding team members that brought web 1.0 to the corporate consciousness in his telco position, and his team featured on the cover of CIO Magazine for their innovative and pioneering works.

He also served a brief stint on the original Microsoft NT beta support team in 1992.

He loves bicycling, music, and reading. Today he lives in the Chicago area where he occasionally takes on short term projects and works on personal software products.
Linda Lamb is a former employee of O'Reilly Media, where she worked in various capacities, including technical writer, editor of technical books, and marketing manager. She also worked on O'Reilly's series of consumer health books, Patient Centered Guides.

Colophon
The animal on the cover of Learning the vi and Vim
 Editors, Seventh Edition, is a tarsier, a nocturnal mammal
 related to the lemur. Its generic name, Tarsius, is derived from the
 animal’s very long ankle bone, the tarsus. The tarsier is a native of the
 East Indies jungles from Sumatra to the Philippines and Sulawesi, where it
 lives in the trees, leaping from branch to branch with extreme agility and
 speed.
A small animal, the tarsier’s body is only 6 inches long, followed
 by a 10-inch tufted tail. It is covered in soft, brown or gray silky fur,
 and has a round face and huge eyes. Its arms and legs are long and
 slender, as are its digits, which are tipped with rounded, fleshy pads to
 improve its grip on trees. Tarsiers are active only at night, hiding
 during the day in tangles of vines or in the tops of tall trees. They
 subsist mainly on insects and, though very curious animals, tend to be
 loners.
The cover image is a 19th-century engraving from the Dover Pictorial
 Archive. The cover font is Adobe’s ITC Garamond. The text font is Linotype
 Birka, the heading font is Adobe
 Myriad Condensed, and the code font is LucasFont’s TheSansMonoCondensed.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Learning the vi and Vim Editors

Arnold Robbins

Elbert Hannah

Linda Lamb

Editor
Andy Oram

Copyright © 2009 Arnold Robbins and Elbert Hannah

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://safari.oreilly.com). For more
 information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
 logo are registered trademarks of O’Reilly Media, Inc.
 Learning the vi and Vim Editors, 7th Edition, the
 image of a tarsier, and related trade dress are trademarks of O’Reilly
 Media, Inc.
Many of the designations uses by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-07-07T08:44:15-07:00

Learning the vi and Vim Editors

Table of Contents
		Dedication

		Special Upgrade Offer

		Preface		Scope of This Book

		How the Material Is Presented		Discussion of vi Commands

		Conventions

		Keystrokes

		Problem Checklist

		What You Need to Know Before Starting

		Comments and Questions

		Safari® Books Online

		About the Previous Editions

		Preface to the Seventh Edition		What’s New

		Versions

		Acknowledgments from the Sixth Edition

		Acknowledgments for the Seventh Edition

		I. Basic and Advanced vi		1. The vi Text Editor		A Brief Historical Perspective

		Opening and Closing Files		Opening a File

		Problems Opening Files

		Modus Operandi

		Saving and Quitting a File

		Quitting Without Saving Edits		Problems Saving Files

		Exercises

		2. Simple Editing		vi Commands

		Moving the Cursor		Single Movements

		Numeric Arguments

		Movement Within a Line

		Movement by Text Blocks

		Simple Edits		Inserting New Text

		Appending Text

		Changing Text		Words

		Lines

		Characters

		Substituting text

		Changing Case

		Deleting Text		Words

		Lines

		Characters

		Problems with deletions

		Moving Text		Transposing two letters

		Copying Text

		Repeating or Undoing Your Last Command		Repeat

		Undo

		More Ways to Insert Text		Numeric Arguments for Insert Commands

		Joining Two Lines with J		Problem Checklist

		Review of Basic vi Commands

		3. Moving Around in a Hurry		Movement by Screens		Scrolling the Screen

		Repositioning the Screen with z

		Redrawing the Screen

		Movement Within a Screen

		Movement by Line		Movement on the current line

		Movement by Text Blocks

		Movement by Searches		Repeating Searches		Changing through searching

		Current Line Searches

		Movement by Line Number		The G (Go To) Command

		Review of vi Motion Commands

		4. Beyond the Basics		More Command Combinations

		Options When Starting vi		Advancing to a Specific Place

		Read-Only Mode

		Recovering a Buffer

		Making Use of Buffers		Recovering Deletions

		Yanking to Named Buffers

		Marking Your Place

		Other Advanced Edits

		Review of vi Buffer and Marking Commands

		5. Introducing the ex Editor		ex Commands		Exercise: The ex Editor

		Problem Checklist

		Editing with ex		Line Addresses

		Defining a Range of Lines

		Line Addressing Symbols

		Search Patterns

		Redefining the Current Line Position

		Global Searches

		Combining ex Commands

		Saving and Exiting Files		Renaming the Buffer

		Saving Part of a File

		Appending to a Saved File

		Copying a File into Another File

		Editing Multiple Files		Invoking vi on Multiple Files

		Using the Argument List

		Calling in New Files

		Switching Files from vi

		Edits Between Files

		6. Global Replacement		Confirming Substitutions

		Context-Sensitive Replacement

		Pattern-Matching Rules		Metacharacters Used in Search Patterns

		POSIX Bracket Expressions

		Metacharacters Used in Replacement Strings

		More Substitution Tricks

		Pattern-Matching Examples		Search for General Class of Words

		Block Move by Patterns

		More Examples

		A Final Look at Pattern Matching		Deleting an Unknown Block of Text

		Switching Items in a Textual Database

		Using :g to Repeat a Command

		Collecting Lines

		7. Advanced Editing		Customizing vi		The :set Command

		The .exrc File

		Alternate Environments

		Some Useful Options

		Executing Unix Commands		Filtering Text Through a Command		Filtering text with ex

		Filtering text with vi

		Saving Commands		Word Abbreviation

		Using the map Command

		Protecting Keys from Interpretation by ex

		A Complex Mapping Example

		More Examples of Mapping Keys

		Mapping Keys for Insert Mode

		Mapping Function Keys

		Mapping Other Special Keys

		Mapping Multiple Input Keys

		@-Functions

		Executing Buffers from ex

		Using ex Scripts		Looping in a Shell Script

		Here Documents

		Sorting Text Blocks: A Sample ex Script

		Comments in ex Scripts

		Beyond ex

		Editing Program Source Code		Indentation Control

		A Special Search Command

		Using Tags

		8. Introduction to the vi Clones		And These Are My Brothers, Darrell, Darrell, and
 Darrell

		Multiwindow Editing

		GUI Interfaces

		Extended Regular Expressions

		Enhanced Tags		Exuberant ctags

		The New tags Format

		Tag Stacks		Solaris vi

		Exuberant ctags and Vim

		Improved Facilities		Command-Line History and Completion

		Arbitrary Length Lines and Binary Data

		Infinite Undo

		Incremental Searching

		Left-Right Scrolling

		Visual Mode

		Mode Indicators

		Programming Assistance		Edit-Compile Speedup

		Syntax Highlighting

		Editor Comparison Summary

		Nothing Like the Original

		A Look Ahead

		II. Vim		9. Vim (vi Improved): An Introduction		Overview		Author and History

		Why Vim?

		Compare and Contrast with vi

		Categories of Features

		Philosophy

		Where to Get Vim

		Getting Vim for Unix and GNU/Linux

		Getting Vim for Windows Environments

		Getting Vim for the Macintosh Environment

		Other Operating Systems

		Aids and Easy Modes for New Users

		Summary

		10. Major Vim Improvements over vi		Built-in Help

		Startup and Initialization Options		Command-Line Options

		Behaviors Associated to Command Name

		System and User Configuration Files

		Environment Variables		How to set environment variables

		Environment variables relevant to Vim

		New Motion Commands		Visual Mode Motion

		Extended Regular Expressions

		Customizing the Executable

		11. Multiple Windows in Vim		Initiating Multiwindow Editing		Multiwindow Initiation from the Command Line (Shell)

		Multiwindow Editing Inside Vim

		Opening Windows		New Windows

		Options During Splits

		Conditional Split Commands

		Window Command Summary

		Moving Around Windows (Getting Your Cursor from Here to
 There)

		Moving Windows Around		Moving Windows (Rotate or Exchange)

		Moving Windows and Changing Their Layout

		Window Move Commands: Synopsis

		Resizing Windows		Window Resize Commands

		Window Sizing Options

		Resizing Command Synopsis

		Buffers and Their Interaction with Windows		Vim’s Special Buffers

		Hidden Buffers

		Buffer Commands

		Buffer Command Synopsis

		Playing Tag with Windows

		Tabbed Editing

		Closing and Quitting Windows

		Summary

		12. Vim Scripts		What’s Your Favorite Color (Scheme)?		Conditional Execution		Using the strftime() function

		Variables

		The execute Command

		Defining Functions

		A Nice Vim Piggybacking Trick

		Tuning a Vim Script with Global Variables

		Arrays

		Dynamic File Type Configuration Through Scripting		Autocommands

		Checking Options

		Buffer Variables

		The exists() Function

		Autocommands and Groups

		Deleting Autocommands

		Some Additional Thoughts About Vim Scripting		A Useful Vim Script Example

		More About Variables

		Expressions

		Extensions

		A Few More Comments About autocmd

		Internal Functions

		Resources

		13. Graphical Vim (gvim)		General Introduction to gvim		Starting gvim

		Using the Mouse

		Useful Menus		gvim’s Window menu

		gvim’s right-click pop-up menu

		Customizing Scrollbars, Menus, and Toolbars		Scrollbars

		Menus		Basic menu customization

		More menu customization

		Putting it all together

		Toolbars

		Tooltips

		gvim in Microsoft Windows

		gvim in the X Window System

		GUI Options and Command Synopsis

		14. Vim Enhancements for Programmers		Folding and Outlining (Outline Mode)		The Fold Commands

		Manual Folding

		Outlining

		A Few Words About the Other Fold Methods

		Auto and Smart Indenting		Vim autoindent Extensions to vi’s autoindent

		smartindent

		cindent		The cinkeys option

		The cinwords option

		The cinoptions option

		indentexpr

		A Final Word on Indentation

		Keyword and Dictionary Word Completion		Insertion Completion Commands		Completing whole lines

		Completion by keyword in file

		Completion by dictionary

		Completion by thesaurus

		Completion by keyword in current file and included
 files

		Completion by tag

		Completion by filename

		Completion by macro and definition names

		Completion method with Vim commands

		Completion by user functions

		Completion by omni function

		Completion for spelling correction

		Completion with the complete option

		Some Final Comments on Vim Autocompletion

		Tag Stacking

		Syntax Highlighting		Getting Started

		Customization		Syntax groups

		The colorscheme command

		Setting the background option

		The highlight command

		Overriding syntax files

		Rolling Your Own

		Compiling and Checking Errors with Vim		More Uses for the Quickfix List Window

		Some Final Thoughts on Vim for Writing Programs

		15. Other Cool Stuff in Vim		Editing Binary Files

		Digraphs: Non-ASCII Characters

		Editing Files in Other Places

		Navigating and Changing Directories

		Backups with Vim

		HTML Your Text

		What’s the Difference?

		Undoing Undos

		Now, Where Was I?		The viminfo Option

		The mksession Command

		What’s My Line (Size)?

		Abbreviations of Vim Commands and Options

		A Few Quickies (Not Necessarily Vim-Specific)

		More Resources

		III. Other vi Clones		16. nvi: New vi		Author and History

		Important Command-Line Arguments

		Online Help and Other Documentation

		Initialization

		Multiwindow Editing

		GUI Interfaces

		Extended Regular Expressions

		Improvements for Editing		Command-Line History and Completion

		Tag Stacks

		Infinite Undo

		Arbitrary Length Lines and Binary Data

		Incremental Searching

		Left-Right Scrolling

		Programming Assistance

		Interesting Features

		Sources and Supported Operating Systems

		17. Elvis		Author and History

		Important Command-Line Arguments

		Online Help and Other Documentation

		Initialization		The Session File

		Initialization Steps

		Multiwindow Editing

		GUI Interfaces		The Basic Window

		Mouse Behavior

		The Toolbar

		Options

		Extended Regular Expressions

		Improved Editing Facilities		Command-Line History and Completion

		Tag Stacks

		Infinite Undo

		Arbitrary Length Lines and Binary Data

		Left-Right Scrolling

		Visual Mode

		Programming Assistance		Edit-Compile Speedup

		Syntax Highlighting

		Interesting Features		Display Modes

		Pre- and Post-Operation Control Files

		elvis Futures

		Sources and Supported Operating Systems

		18. vile: vi Like Emacs		Authors and History

		Important Command-Line Arguments

		Online Help and Other Documentation

		Initialization

		Multiwindow Editing

		GUI Interfaces		Building xvile

		xvile Basic Appearance and Functionality		Scrollbars

		Setting the cursor position and mouse motions

		Selections

		Clipboard

		Resources

		Adding menus

		Building winvile

		winvile Basic Appearance and Functionality

		Extended Regular Expressions

		Improved Editing Facilities		Command-Line History and Completion

		Tag Stacks

		Infinite Undo

		Arbitrary Length Lines and Binary Data		Locale support

		File formats

		Incremental Searching

		Left-Right Scrolling

		Visual Mode

		Programming Assistance		Edit-Compile Speedup

		Syntax Highlighting

		Interesting Features		The vile Editing Model

		Major Modes

		The Procedure Language

		Miscellaneous Small Features

		Sources and Supported Operating Systems

		IV. Appendixes		A. The vi, ex, and Vim Editors		Command-Line Syntax		Command-Line Options

		Review of vi Operations		Command Mode

		Insert Mode

		Syntax of vi Commands		Examples

		Visual mode (Vim only)

		Status-Line Commands

		vi Commands		Movement Commands		Character

		Text

		Lines

		Screens

		Searches

		Line numbering

		Marks

		Insert Commands

		Edit Commands		Changing and deleting text

		Copying and moving

		Saving and Exiting

		Accessing Multiple Files

		Window Commands (Vim)

		Interacting with the System

		Macros

		Miscellaneous Commands

		vi Configuration		The :set Command

		Example .exrc File

		ex Basics		Syntax of ex Commands

		Addresses

		Address Symbols

		Options

		Alphabetical Summary of ex Commands

		B. Setting Options		Solaris vi Options

		nvi 1.79 Options

		elvis 2.2 Options

		Vim 7.1 Options

		vile 9.6 Options

		C. Problem Checklists		Problems Opening Files

		Problems Saving Files

		Problems Getting to Visual Mode

		Problems with vi Commands

		Problems with Deletions

		D. vi and the Internet		Where to Start

		vi Web Sites		The vi Lover’s Home Page

		The Vi Pages

		vi Powered!

		vi for Java Lovers

		Online vi Tutorial

		A Different vi Clone

		Amaze Your Friends!

		Tastes Great, Less Filling

		vi Quotes

		Index

		About the Authors

		Colophon

		Special Upgrade Offer

		Copyright

